WorldWideScience

Sample records for temperature gradient index

  1. Gradient Index Optics at DARPA

    Science.gov (United States)

    2013-11-01

    sodium, is submerged into a bath of molten salt containing a different ion, such as lithium bromide. Ions from the salt bath diffuse into the glass...molecules, creating a gradient of index of refraction (Mohr et al. 1979). • Crystal growing. From a silver- chloride /sodium- chloride bath, starting with a...sodium chloride seed, a crystal is pulled that begins to deplete the sodium in the bath and starts to pull silver, forming a gradient (Houde-Walter

  2. Temperature-gradient-induced

    Science.gov (United States)

    Park, Cheol; Glaser, Matt; Maclennan, Joe; Clark, Noel; Trittel, Torsten; Stannarius, Ralf

    Freely-suspended smectic films of sub-micrometer thickness and lateral extensions of several millimeters were used to study thermally driven migration and convection in the film plane. Film experiments were performed during the 6 minute microgravity phase of a TEXUS suborbital rocket flight (Texus 52, launched April 27, 2015). We have found an attraction of the smectic material towards the cold edge of the film in a temperature gradient, similar to the Soret effect. This process is reversed when this edge is heated up again. Thermal convection driven by two thermocontacts in the film is practically absent, even at temperature gradients up to 10 K/mm, with thermally driven convection only setting in when the hot post reaches the transition temperature to the nematic phase. The Observation and Analysis of Smectic Islands in Space (OASIS) flight hardware was launched on SpaceX-6 in April 2015 and experiments on smectic bubbles were carried out on the International Space Station using four different smectic A and C liquid crystal materials in separate sample chambers. We observed that smectic islands on the surface of the bubbles migrated towards the colder part of the bubble in a temperature gradient. This work was supported by NASA Grant No. NNX-13AQ81G, by the Soft Materials Research Center under NSF MRSEC Grants No. DMR-0820579 and No. DMR-1420736, and by DLR Grants 50WM1127 and 50WM1430.

  3. Sound beam manipulation based on temperature gradients

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Feng [Key Laboratory of Modern Acoustics, Institute of Acoustics and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); School of Physics & Electronic Engineering, Changshu Institute of Technology, Changshu 215500 (China); Quan, Li; Liu, Xiaozhou, E-mail: xzliu@nju.edu.cn; Gong, Xiufen [Key Laboratory of Modern Acoustics, Institute of Acoustics and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-10-28

    Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest to fields such as noise control or acoustic cloaking.

  4. Sound beam manipulation based on temperature gradients

    International Nuclear Information System (INIS)

    Qian, Feng; Quan, Li; Liu, Xiaozhou; Gong, Xiufen

    2015-01-01

    Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest to fields such as noise control or acoustic cloaking

  5. Rainbow refractometry on particles with radial refractive index gradients

    Energy Technology Data Exchange (ETDEWEB)

    Saengkaew, Sawitree [CNRS/Universite et INSA de Rouen, UMR 6614/CORIA, BP12, 76 800, Saint Etienne du Rouvray CEDEX (France); Chulalongkorn University, Center of Excellence in Particle Technology, Faculty of Engineering, Bangkok (Thailand); Charinpanitkul, Tawatchai; Vanisri, Hathaichanok; Tanthapanichakoon, Wiwut [Chulalongkorn University, Center of Excellence in Particle Technology, Faculty of Engineering, Bangkok (Thailand); Biscos, Yves; Garcia, Nicolas; Lavergne, Gerard [ONERA/DMAE, Toulouse (France); Mees, Loic; Gouesbet, Gerard; Grehan, Gerard [CNRS/Universite et INSA de Rouen, UMR 6614/CORIA, BP12, 76 800, Saint Etienne du Rouvray CEDEX (France)

    2007-10-15

    The rainbow refractrometry, under its different configurations (classical and global), is an attractive technique to extract information from droplets in evaporation such as diameter and temperature. Recently a new processing strategy has been developed which increases dramatically the size and refractive index measurements accuracy for homogeneous droplets. Nevertheless, for mono component as well as for multicomponent droplets, the presence of temperature and/or of concentration gradients induce the presence of a gradient of refractive index which affects the interpretation of the recorded signals. In this publication, the effect of radial gradient on rainbow measurements with a high accuracy never reached previously is quantified. (orig.)

  6. Polyacrylamide temperature gradient gel electrophoresis.

    Science.gov (United States)

    Viglasky, Viktor

    2013-01-01

    Temperature Gradient Gel Electrophoresis (TGGE) is a form of electrophoresis in which temperature gradient is used to denature molecules as they move through either acrylamide or agarose gel. TGGE can be applied to analyze DNA, RNA, protein-DNA complexes, and, less commonly, proteins. Separation of double-stranded DNA molecules during TGGE relies on temperature-dependent melting of the DNA duplex into two single-stranded DNA molecules. Therefore, the mobility of DNA reflects not only the size of the molecule but also its nucleotide composition, thereby allowing separation of DNA molecules of similar size with different sequences. Depending on the relative orientation of electric field and temperature gradient, TGGE can be performed in either a parallel or a perpendicular mode. The former is used to analyze multiple samples in the same gel, whereas the later allows detailed analysis of a single sample. This chapter is focused on analysis of DNA by polyacrylamide TGGE using the perpendicular mode.

  7. Temperature Gradient in Hall Thrusters

    International Nuclear Information System (INIS)

    Staack, D.; Raitses, Y.; Fisch, N.J.

    2003-01-01

    Plasma potentials and electron temperatures were deduced from emissive and cold floating probe measurements in a 2 kW Hall thruster, operated in the discharge voltage range of 200-400 V. An almost linear dependence of the electron temperature on the plasma potential was observed in the acceleration region of the thruster both inside and outside the thruster. This result calls into question whether secondary electron emission from the ceramic channel walls plays a significant role in electron energy balance. The proportionality factor between the axial electron temperature gradient and the electric field is significantly smaller than might be expected by models employing Ohmic heating of electrons

  8. Realizable planar gradient-index solar lenses.

    Science.gov (United States)

    Kotsidas, Panagiotis; Modi, Vijay; Gordon, Jeffrey M

    2012-04-01

    The design of single element planar hemispherical gradient-index solar lenses that can accommodate the constraints of realistic materials and fabrication techniques are presented, and simulated with an extended and polychromatic solar source for concentrator photovoltaics at flux concentration values exceeding 1000 suns. The planar hemispherical far-field lens is created from a near-field unit magnification spherical gradient-index design, and illustrated with an f/1.40 square solar lens that allows lossless packing within a concentrator module.

  9. Gradient-index optics fundamentals and applications

    CERN Document Server

    Gomez-Reino, Carlos; Bao, Carmen

    2010-01-01

    Gradient-Index (GRIN) optics provides a comprehensive and thorough treatment on fundamentals and applications of light propagation through inhomogeneous media. The book can be used both as a classroom text for students in physics and engineering and as a reference for specialists. A description of the phenomena, components and technology used in GRIN Optics are presented. The relationship to lenses, waveguides, optical connections, spatial solitons and vision is demonstrated. Applications of GRIN components and hybrid structures for optical connections, optical sensing and Talbot effect are analyzed.

  10. Thermal conduction down steep temperature gradients

    International Nuclear Information System (INIS)

    Bell, A.R.; Evans, R.G.; Nicholas, D.J.

    1980-08-01

    The Fokker-Planck equation has been solved numerically in one spatial and two velocity dimensions in order to study thermal conduction in large temperature gradients. An initially cold plasma is heated at one end of the spatial grid producing temperature gradients with scale lengths of a few times the electron mean free path. The heat flow is an order of magnitude smaller than that predicted by the classical theory which is valid in the limit of small temperature gradients. (author)

  11. Wireless SAW Based Temperature Gradient Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Prime Photonics proposes design and development of a surface acoustic wave (SAW) based temperature gradient sensor for instrumentation of thermal protection systems...

  12. Fano resonances from gradient-index metamaterials.

    Science.gov (United States)

    Xu, Yadong; Li, Sucheng; Hou, Bo; Chen, Huanyang

    2016-01-27

    Fano resonances - resonant scattering features with a characteristic asymmetric profile - have generated much interest, due to their extensive and valuable applications in chemical or biological sensors, new types of optical switches, lasers and nonlinear optics. They have been observed in a wide variety of resonant optical systems, including photonic crystals, metamaterials, metallic gratings and nanostructures. In this work, a waveguide structure is designed by employing gradient-index metamaterials, supporting strong Fano resonances with extremely sharp spectra. As the changes in the transmission spectrum originate from the interaction of guided modes from different channels, instead of resonance structures or metamolecules, the Fano resonances can be observed for both transverse electric and transverse magnetic polarizations. These findings are verified by fine agreement with analytical calculations and experimental results at microwave, as well as simulated results at near infrared frequencies.

  13. Tolman temperature gradients in a gravitational field

    OpenAIRE

    Santiago, Jessica; Visser, Matt

    2018-01-01

    Tolman's relation for the temperature gradient in an equilibrium self-gravitating general relativistic fluid is broadly accepted within the general relativity community. However, the concept of temperature gradients in thermal equilibrium continues to cause confusion in other branches of physics, since it contradicts naive versions of the laws of classical thermodynamics. In this paper we discuss the crucial role of the universality of free fall, and how thermodynamics emphasises the great di...

  14. Air temperature gradient in large industrial hall

    Science.gov (United States)

    Karpuk, Michał; Pełech, Aleksander; Przydróżny, Edward; Walaszczyk, Juliusz; Szczęśniak, Sylwia

    2017-11-01

    In the rooms with dominant sensible heat load, volume airflow depends on many factors incl. pre-established temperature difference between exhaust and supply airflow. As the temperature difference is getting higher, airflow volume drops down, consequently, the cost of AHU is reduced. In high industrial halls with air exhaust grids located under the ceiling additional temperature gradient above working zone should be taken into consideration. In this regard, experimental research of the vertical air temperature gradient in high industrial halls were carried out for the case of mixing ventilation system The paper presents the results of air temperature distribution measurements in high technological hall (mechanically ventilated) under significant sensible heat load conditions. The supply airflow was delivered to the hall with the help of the swirl diffusers while exhaust grids were located under the hall ceiling. Basing on the air temperature distribution measurements performed on the seven pre-established levels, air temperature gradient in the area between 2.0 and 7.0 m above the floor was calculated and analysed.

  15. Temperature Gradient Driven Lasing and Stimulated Cooling

    Science.gov (United States)

    Sandner, K.; Ritsch, H.

    2012-11-01

    A laser can be understood as a thermodynamic engine converting heat to a coherent single mode field close to Carnot efficiency. To achieve lasing, spectral shaping of the excitation light is used to generate a higher effective temperature on the pump than on the gain transition. Here, using a toy model of a quantum well structure with two suitably designed tunnel-coupled wells kept at different temperatures, we predict that lasing can also occur on an actual spatial temperature gradient between the pump and gain regions. Gain and narrow band laser emission require a sufficiently large temperature gradient and resonator quality. Lasing appears concurrent with amplified heat flow between the reservoirs and points to a new form of stimulated solid state cooling. In addition, such a mechanism could reduce intrinsic heating and thus extend the operating regime of quantum cascade lasers by substituting phonon emission driven injection by a phonon absorption step.

  16. Considerations of ion temperature gradient driven turbulence

    International Nuclear Information System (INIS)

    Cowley, S.C.; Kulsrud, R.M.

    1991-02-01

    The ion temperature gradient driven instability is considered in this paper. Physical pictures are presented to clarify the nature of the instability. The saturation of a single eddy is modeled by a simple nonlinear equation. We show that eddies which are elongated in the direction of the temperature gradient are the most unstable and have the highest saturation amplitudes. In a sheared magnetic field, such elongated eddies twist with the field lines. This structure is shown to be alternative to the usual Fourier mode picture in which the mode is localized around the surface where k parallel = 0. We show how these elongated twisting eddies, which are an integral part of the ''ballooning mode'' structure, could survive in a torus. The elongated eddies are shown to be unstable to secondary instabilities that are driven by the large gradients in the long eddy. We argue that this mechanism isotropizes ion temperature gradient turbulence. We further argue that the ''mixing length'' is set by this nonlinear process, not by a linear eigenmode width. 17 refs., 6 figs

  17. Thomas Young's investigations in gradient-index optics.

    Science.gov (United States)

    Atchison, David A; Charman, W Neil

    2011-05-01

    James Clerk Maxwell is usually recognized as being the first, in 1854, to consider using inhomogeneous media in optical systems. However, some 50 years earlier, Thomas Young, stimulated by his interest in the optics of the eye and accommodation, had already modeled some applications of gradient-index optics. These applications included using an axial gradient to provide spherical aberration-free optics and a spherical gradient to describe the optics of the atmosphere and the eye lens. We evaluated Young's contributions. We attempted to derive Young's equations for axial and spherical refractive index gradients. Raytracing was used to confirm accuracy of formula. We did not confirm Young's equation for the axial gradient to provide aberration-free optics but derived a slightly different equation. We confirmed the correctness of his equations for deviation of rays in a spherical gradient index and for the focal length of a lens with a nucleus of fixed index surrounded by a cortex of reducing index toward the edge. Young claimed that the equation for focal length applied to a lens with part of the constant index nucleus of the sphere removed, such that the loss of focal length was a quarter of the thickness removed, but this is not strictly correct. Young's theoretical work in gradient-index optics received no acknowledgment from either his contemporaries or later authors. Although his model of the eye lens is not an accurate physiological description of the human lens, with the index reducing least quickly at the edge, it represented a bold attempt to approximate the characteristics of the lens. Thomas Young's work deserves wider recognition.

  18. Transport of nanoparticles in a temperature gradient

    Science.gov (United States)

    Putnam, Shawn; Cahill, David

    2006-03-01

    Thermodiffusion, mass transport in a temperature gradient, is commonly characterized by either the thermodiffusion coefficient DT or the Soret coefficient ST; e.g., at low particle concentration c, the particle flux of a colloidal suspension subjected to a temperature gradient ∇T is J=- cDT∇T-Dc∇c, where Dc is the diffusion coefficient and the Soret coefficient is ST= DT/Dc. We present our measured DT data for aqueous suspensions of charged polystyrene spheres, alumina nanoparticles, and globular proteins of lysozyme. Special emphasis is given to our published work on charged polystyrene spheres with different surface functionalities. For example, in solutions with large concentrations of monovalent salts, 100 mM, DT for 26 nm spheres with carboxyl functionality can be varied within the range -0.9 x10^- 7 cm^2 s-1 K-1 protein solutions of lysozyme.

  19. Temperature profiles in high gradient furnaces

    Science.gov (United States)

    Fripp, A. L.; Debnam, W. J.; Woodell, G. A.; Berry, R.; Crouch, R. K.; Sorokach, S. K.

    1989-01-01

    Accurate temperature measurement of the furnace environment is very important in both the science and technology of crystal growth as well as many other materials processing operations. A high degree of both accuracy and precision is acutely needed in the directional solidification of compound semiconductors in which the temperature profiles control the freezing isotherm which, in turn, affects the composition of the growth with a concomitant feedback perturbation on the temperature profile. Directional solidification requires a furnace configuration that will transport heat through the sample being grown. A common growth procedure is the Bridgman Stockbarger technique which basically consists of a hot zone and a cold zone separated by an insulator. In a normal growth procedure the material, contained in an ampoule, is melted in the hot zone and is then moved relative to the furnace toward the cold zone and solidification occurs in the insulated region. Since the primary path of heat between the hot and cold zones is through the sample, both axial and radial temperature gradients exist in the region of the growth interface. There is a need to know the temperature profile of the growth furnace with the crystal that is to be grown as the thermal load. However it is usually not feasible to insert thermocouples inside an ampoule and thermocouples attached to the outside wall of the ampoule have both a thermal and a mechanical contact problem as well as a view angle problem. The objective is to present a technique of calibrating a furnace with a thermal load that closely matches the sample to be grown and to describe procedures that circumvent both the thermal and mechanical contact problems.

  20. Fabrication process for a gradient index x-ray lens

    Science.gov (United States)

    Bionta, Richard M.; Makowiecki, Daniel M.; Skulina, Kenneth M.

    1995-01-01

    A process for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments m the soft x-ray region.

  1. Design of LED projector based on gradient-index lens

    Science.gov (United States)

    Qian, Liyong; Zhu, Xiangbing; Cui, Haitian; Wang, Yuanhang

    2018-01-01

    In this study, a new type of projector light path is designed to eliminate the deficits of existing projection systems, such as complex structure and low collection efficiency. Using a three-color LED array as the lighting source, by means of the special optical properties of a gradient-index lens, the complex structure of the traditional projector is simplified. Traditional components, such as the color wheel, relay lens, and mirror, become unnecessary. In this way, traditional problems, such as low utilization of light energy and loss of light energy, are solved. With the help of Zemax software, the projection lens is optimized. The optimized projection lens, LED, gradient-index lens, and digital micromirror device are imported into Tracepro. The ray tracing results show that both the utilization of light energy and the uniformity are improved significantly.

  2. Density Gradient Stabilization of Electron Temperature Gradient Driven Turbulence in a Spherical Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Y; Mazzucato, E; Guttenfelder, W; Bell, R E; Domier, C W; LeBlanc, B P; Lee, K C; Luhmann Jr, N C; Smith, D R

    2011-03-21

    In this letter we report the first clear experimental observation of density gradient stabilization of electron temperature gradient driven turbulence in a fusion plasma. It is observed that longer wavelength modes, k⊥ρs ≤10, are most stabilized by density gradient, and the stabilization is accompanied by about a factor of two decrease in the plasma effective thermal diffusivity.

  3. Self-induced temperature gradients in Brownian dynamics

    Science.gov (United States)

    Devine, Jack; Jack, M. W.

    2017-12-01

    Brownian systems often surmount energy barriers by absorbing and emitting heat to and from their local environment. Usually, the temperature gradients created by this heat exchange are assumed to dissipate instantaneously. Here we relax this assumption to consider the case where Brownian dynamics on a time-independent potential can lead to self-induced temperature gradients. In the same way that externally imposed temperature gradients can cause directed motion, these self-induced gradients affect the dynamics of the Brownian system. The result is a coupling between the local environment and the Brownian subsystem. We explore the resulting dynamics and thermodynamics of these coupled systems and develop a robust method for numerical simulation. In particular, by focusing on one-dimensional situations, we show that self-induced temperature gradients reduce barrier-crossing rates. We also consider a heat engine and a heat pump based on temperature gradients induced by a Brownian system in a nonequilibrium potential.

  4. A tunable microplasma gradient-index lens for millimeter waves

    Energy Technology Data Exchange (ETDEWEB)

    Venkattraman, Ayyaswamy [School of Engineering, University of California Merced, Merced, California 95343 (United States)

    2015-10-15

    This work presents proof of concept of a novel application of field emission assisted (FEA) microplasmas that exploits the relatively high plasma number densities encountered in these devices. We hypothesize that the number density gradients and the resulting gradient in the microplasma relative permittivity/refractive index can be utilized as a tunable diverging lens with on/off ability to defocus waves in the Terahertz regime. Electron number density profiles obtained from one-dimensional particle-in-cell with Monte Carlo collisions simulations for a typical FEA microplasma are used to determine the relative permittivity and conductivity profiles. Frequency domain wave propagation simulations using these profiles show that sub-mm waves can be controlled using the microplasma lens with the degree of defocusing depending on the wavelength. In spite of the non-zero conductivity, the medium is not significantly lossy at the frequencies considered.

  5. Electromagnetic Wave Chaos in Gradient Refractive Index Optical Cavities

    International Nuclear Information System (INIS)

    Wilkinson, P. B.; Fromhold, T. M.; Taylor, R. P.; Micolich, A. P.

    2001-01-01

    Electromagnetic wave chaos is investigated using two-dimensional optical cavities formed in a cylindrical gradient refractive index lens with reflective surfaces. When the planar ends of the lens are cut at an angle to its axis, the geometrical ray paths are chaotic. In this regime, the electromagnetic mode spectrum of the cavity is modulated by both real and ghost periodic ray paths, which also 'scar' the electric field intensity distributions of many modes. When the cavity is coupled to waveguides, the eigenmodes generate complex series of resonant peaks in the electromagnetic transmission spectrum

  6. Temperature gradient-induced magnetization reversal of single ferromagnetic nanowires

    Science.gov (United States)

    Michel, Ann-Kathrin; Corinna Niemann, Anna; Boehnert, Tim; Martens, Stephan; Montero Moreno, Josep M.; Goerlitz, Detlef; Zierold, Robert; Reith, Heiko; Vega, Victor; Prida, Victor M.; Thomas, Andy; Gooth, Johannes; Nielsch, Kornelius

    2017-12-01

    In this study, we investigate the temperature- and temperature gradient-dependent magnetization reversal process of individual, single-domain Co39Ni61 and Fe15Ni85 ferromagnetic nanowires via the magneto-optical Kerr effect and magnetoresistance measurements. While the coercive fields (H C) and therefore the magnetic switching fields (H SW) generally decrease under isothermal conditions at elevated base temperatures (T base), temperature gradients (ΔT) along the nanowires lead to an increased switching field of up to 15% for ΔT  = 300 K in Co39Ni61 nanowires. This enhancement is attributed to a stress-induced, magneto-elastic anisotropy term due to an applied temperature gradient along the nanowire that counteracts the thermally assisted magnetization reversal process. Our results demonstrate that a careful distinction between locally elevated temperatures and temperature gradients has to be made in future heat-assisted magnetic recording devices.

  7. Calculation of Vertical Temperature Gradients in Heated Rooms

    DEFF Research Database (Denmark)

    Overby, H.; Steen-Thøde, Mogens

    This paper deals with a simple model which predicts the vertical temperature gradient in a heated room. The gradient is calculated from a dimensionless temperature profile which is determined by two room air temperatures only, the mean temperature in the occupied zone and the mean temperature...... in the zone above the occupied zone. A model to calculate the two air temperatures has been developed and implemented in Suncode- PC, a thermal analysis programme for residential and small commercial buildings. The dimensionless temperature profile based on measurements in a laboratory test room is presented...

  8. Colloidal attraction induced by a temperature gradient.

    Science.gov (United States)

    Di Leonardo, R; Ianni, F; Ruocco, G

    2009-04-21

    Colloidal crystals are of extreme importance for applied research and for fundamental studies in statistical mechanics. Long-range attractive interactions, such as capillary forces, can drive the spontaneous assembly of such mesoscopic ordered structures. However, long-range attractive forces are very rare in the colloidal realm. Here we report a novel strong, long-ranged attraction induced by a thermal gradient in the presence of a wall. By switching the thermal gradient on and off, we can rapidly and reversibly form stable hexagonal 2D crystals. We show that the observed attraction is hydrodynamic in nature and arises from thermally induced slip flow on particle surfaces. We used optical tweezers to measure the force law directly and compare it to an analytical prediction based on Stokes flow driven by Marangoni-like forces.

  9. Weakening of lower tropospheric temperature gradient between ...

    Indian Academy of Sciences (India)

    Parthasarathy B, Munot A A and Kothawale D R 1994 All-. India Monthly and Seasonal Rainfall Series: 1871–1993;. Theor. Appl. Climatol. 49 217–224. Rajeevan M, De U S and Prasad P K 2000 Decadal varia- tion of sea surface temperature, cloudiness and monsoon depression in the north Indian Ocean; Curr. Sci. 79(3).

  10. Porous Silicon Gradient Refractive Index Micro-Optics.

    Science.gov (United States)

    Krueger, Neil A; Holsteen, Aaron L; Kang, Seung-Kyun; Ocier, Christian R; Zhou, Weijun; Mensing, Glennys; Rogers, John A; Brongersma, Mark L; Braun, Paul V

    2016-12-14

    The emergence and growth of transformation optics over the past decade has revitalized interest in how a gradient refractive index (GRIN) can be used to control light propagation. Two-dimensional demonstrations with lithographically defined silicon (Si) have displayed the power of GRIN optics and also represent a promising opportunity for integrating compact optical elements within Si photonic integrated circuits. Here, we demonstrate the fabrication of three-dimensional Si-based GRIN micro-optics through the shape-defined formation of porous Si (PSi). Conventional microfabrication creates Si square microcolumns (SMCs) that can be electrochemically etched into PSi elements with nanoscale porosity along the shape-defined etching pathway, which imparts the geometry with structural birefringence. Free-space characterization of the transmitted intensity distribution through a homogeneously etched PSi SMC exhibits polarization splitting behavior resembling that of dielectric metasurfaces that require considerably more laborious fabrication. Coupled birefringence/GRIN effects are studied by way of PSi SMCs etched with a linear (increasing from edge to center) GRIN profile. The transmitted intensity distribution shows polarization-selective focusing behavior with one polarization focused to a diffraction-limited spot and the orthogonal polarization focused into two laterally displaced foci. Optical thickness-based analysis readily predicts the experimentally observed phenomena, which strongly match finite-element electromagnetic simulations.

  11. Geometry-invariant gradient refractive index lens: analytical ray tracing.

    Science.gov (United States)

    Bahrami, Mehdi; Goncharov, Alexander V

    2012-05-01

    A new class of gradient refractive index (GRIN) lens is introduced and analyzed. The interior iso-indicial contours mimic the external shape of the lens, which leads to an invariant geometry of the GRIN structure. The lens model employs a conventional surface representation using a coincoid of revolution with a higher-order aspheric term. This model has a unique feature, namely, it allows analytical paraxial ray tracing. The height and the angle of an arbitrary incident ray can be found inside the lens in a closed-form expression, which is used to calculate the main optical characteristics of the lens, including the optical power and third-order monochromatic aberration coefficients. Moreover, due to strong coupling of the external surface shape to the GRIN structure, the proposed GRIN lens is well suited for studying accommodation mechanism in the eye. To show the power of the model, several examples are given emphasizing the usefulness of the analytical solution. The presented geometry-invariant GRIN lens can be used for modeling and reconstructing the crystalline lens of the human eye and other types of eyes featuring a GRIN lens.

  12. Continuous gradient temperature Raman spectroscopy of unsaturated fatty acids

    Science.gov (United States)

    A new innovative technique gradient temperature, Raman spectroscopy (GTRS), identifies Raman frequency shifts in solid or liquid samples, and correlates them with specific temperature ranges within which flexible structures absorb heat. GTRS can easily detect changes that occur within one celcius te...

  13. Temperature dependency of silicon structures for magnetic field gradient sensing

    Science.gov (United States)

    Dabsch, Alexander; Rosenberg, Christoph; Stifter, Michael; Keplinger, Franz

    2018-02-01

    This work describes the temperature dependence of two sensors for magnetic field gradient sensors and demonstrates a structure to compensate for the drift of resonance frequency over a wide temperature range. The temperature effect of the sensing element is based on internal stresses induced by the thermal expansion of material, therefore FEM is used to determine the change of the eigenvalues of the sensing structure. The experimental setup utilizes a Helmholtz coil system to generate the magnetic field and to excite the MEMS structure with Lorentz forces. The MEMS structure is placed on a plate heated with resistors and cooled by a Peltier element to control the plate temperature. In the second part, we describe how one can exploit temperature sensitivity for temperature measurements and we show the opportunity to include the temperature effect to increase the sensitivity of single-crystal silicon made flux density gradient sensors.

  14. Weakening of lower tropospheric temperature gradient between ...

    Indian Academy of Sciences (India)

    results are based on sixty years (1948–2007) of daily temperature and wind data extracted from. CDAS-NCEP/NCAR reanalysis datasets. TG based on ERA-40 data also indicates a decreasing trend of 0.0229. ◦. /year and 0.0397. ◦. /year for Arabian Sea and Bay of Bengal respectively. As TG is not governed by any type of ...

  15. Monitoring of temperature gradient development of highway concrete bridge

    Directory of Open Access Journals (Sweden)

    Krkoska Lukas

    2017-01-01

    Full Text Available Thermal effect is one of very important from the large bridge design procedure point of view. Especially vertical temperature gradient is being crucial. There were realized some research works of the thermal effects monitoring on the concrete bridges in the world. More of them were performed in the USA but only a few at European bridges. The short overview of our long-term monitoring of the temperature load on chosen concrete bridge is presented in this paper. We decided to analyse one concrete box girder bridge that was built by incremental launching method on highway D1 at Slovakia near Zilina city. Recorded temperature gradient was compared with thermal gradients for the concrete box girder bridge recommended by EC 1991-1-5 design specifications.

  16. Short wavelength temperature gradient driven modes in tokamak plasmas

    International Nuclear Information System (INIS)

    Smolyakov, A.I.; Yagi, M.; Kishimoto, Y.; Sydora, R.

    2003-01-01

    A new temperature gradient driven instability in the short wavelength region k perpendicular 2 ρ i 2 > 1 is investigated. The mode is driven by the ion temperature gradient; it exists with adiabatic electrons but may be further enhanced by the non-adiabatic electron effects. In the slab plasma approximation, both local dispersion equation and non-local (differential equation) analysis indicate instability in the short wavelength region. In the toroidal case the mode is somewhat similar to the 'ubiquitous mode' but does not require trapped electrons. (author)

  17. Anomalous plasma transport due to electron temperature gradient instability

    International Nuclear Information System (INIS)

    Tokuda, Sinji; Ito, Hiroshi; Kamimura, Tetsuo.

    1979-01-01

    The collisionless drift wave instability driven by an electron temperature inhomogeneity (electron temperature gradient instability) and the enhanced transport processes associated with it are studied using a two-and-a-half dimensional particle simulation code. The simulation results show that quasilinear diffusion in phase space is an important mechanism for the saturation of the electron temperature gradient instability. Also, the instability yields particle fluxes toward the hot plasma regions. The heat conductivity of the electron temperature perpendicular to the magnetic field, T sub(e'), is not reduced by magnetic shear but remains high, whereas the heat conductivity of the parallel temperature, T sub(e''), is effectively reduced, and the instability stabilized. (author)

  18. Variability in estuarine water temperature gradients and influence on ...

    African Journals Online (AJOL)

    Structure and variability of water temperature gradients and potential influence on distribution of two tropical zooplankters (the mysid Mesopodopsis africana and the copepod Acartia natalensis) and their temperate congenerics (M. wooldridgei and A. longipatella) was investigated over a 10-year period in the Mgazi Estuary, ...

  19. A new unit for crossed gradients of temperature and light

    Czech Academy of Sciences Publication Activity Database

    Kvíderová, Jana; Lukavský, Jaromír

    2001-01-01

    Roč. 123, - (2001), s. 541-550 ISSN 1438-9134. [International conference: Algae and extreme environments . Třeboň, 11.09.2000-16.09.2000] R&D Projects: GA AV ČR KSK6005114 Institutional research plan: CEZ:AV0Z6005908 Keywords : algae * cyanobacteria * cultivation * crossed gradients * temperature * light * Petri dishes * immunological plates * solid media * clonal colonies * giant colonies Subject RIV: EF - Botanics Impact factor: 0.488, year: 2000

  20. Characterization and simulation on antireflective coating of amorphous silicon oxide thin films with gradient refractive index

    Science.gov (United States)

    Huang, Lu; Jin, Qi; Qu, Xingling; Jin, Jing; Jiang, Chaochao; Yang, Weiguang; Wang, Linjun; Shi, Weimin

    2016-08-01

    The optical reflective properties of silicon oxide (SixOy) thin films with gradient refractive index are studied both theoretically and experimentally. The thin films are widely used in photovoltaic as antireflective coatings (ARCs). An effective finite difference time domain (FDTD) model is built to find the optimized reflection spectra corresponding to structure of SixOy ARCs with gradient refractive index. Based on the simulation analysis, it shows the variation of reflection spectra with gradient refractive index distribution. The gradient refractive index of SixOy ARCs can be obtained in adjustment of SiH4 to N2O ratio by plasma-enhanced chemical vapor deposition (PECVD) system. The optimized reflection spectra measured by UV-visible spectroscopy confirms to agree well with that simulated by FDTD method.

  1. Presence and significance of temperature gradients among different ovarian tissues

    DEFF Research Database (Denmark)

    Hunter, Ronald Henry Fraser; Einer-Jensen, Niels; Greve, Torben

    2006-01-01

    also be involved. Temperature gradients would be maintained locally by counter-current heat exchange mechanisms and, in this context, the microvasculature and lymphatic flow of individual follicles were found to be appropriate. Observations on the temperature of preovulatory follicles appear relevant......, and cow, and generally fell in the range of 1.3-1.7 degrees C: follicles were always cooler than stroma. Measurements were made principally by means of a thermo-sensing camera at midventral laparotomy, but also using microelectrodes or thermistor probes sited in the follicular antrum of rabbits and pigs...

  2. Sentinel Gap basalt reacted in a temperature gradient

    International Nuclear Information System (INIS)

    Charles, R.W.; Bayhurst, G.K.

    1982-01-01

    Six basalt prisms were reacted in a controlled temperature gradient hydrothermal circulation system for two months. The prisms are centered at 72, 119, 161, 209, 270, and 310 0 C. Total pressure is 1/3 kbar. All prisms show large weight loss: 5.5% to 14.9%. The matrix micropegmatite and natural nontronitic alteration readily reacts to clays at all temperatures. The first four prisms are coated with a Ca-smectite while the last two prisms are covered with discrete patches of K rich phengite and alkali feldspar. The clays may act as adsorbers of various ions

  3. Estimates of the temperature flux-temperature gradient relation above a sea floor

    NARCIS (Netherlands)

    Cimatoribus, A.; van Haren, H.

    2016-01-01

    The relation between the ux of temperature (or buoyancy), the verti-cal temperature gradient and the height above the bottom, is investigatedin an oceanographic context, using high-resolution temperature measure-ments. The model for the evolution of a strati?ed layer by Balmforthet al. (1998) is

  4. Computational analysis of frp composite under different temperature gradient

    Science.gov (United States)

    Gunasekar, P.; Manigandan, S.

    2017-05-01

    Composite material strength depends on the stiffness of fiber and the resin which is used for reinforcement. The strength of the laminate can be increased by applying good manufacturing practices. The strength is directly depending on the property of resin. The property of the any compound subjected to changed when they exposed to the temperature. This paper investigates the strength of laminate when they subjected to different temperature gradient of resin while manufacturing. The resin is preheated before adding hardener with them. These types of laminate reinforced with resin at different levels of temperature 20c, 40c, and 60c. These different temperature resin are used for reinforcement and the specimen tested. The comparative results are made to find how the stiffness of laminate changes with respect to the thermal property of resin. The results are helpful to obtain high strength laminate.

  5. Dispersion sensitivity of large-scale axial gradient index glass for spherochromat doublets

    Science.gov (United States)

    Manhart, Paul K.; Hunter, Boyd V.; Blankenbecler, Richard

    1999-10-01

    Bi-AGRIN cemented doublets, super corrected for zero axial color, spherical aberration and sphero-chromatism can show polychromatic performance in the range of 0.004 waves PV or better at the red and blue wavelengths for speeds up to F/2. These doublets are comprised of two elements of axial gradient index glass. The crown and flint elements are each designed with separate and distinct gradient glass lines, giving each element an axial gradient in refractive index and dispersion. This paper examines one design and its performance sensitivity to dispersion modeling via the Buchdahl and Sellmeier dispersion equations.

  6. Soliton formation in electron-temperature-gradient-driven magnetoplasma

    Science.gov (United States)

    M Yaqub, KHAN; Javed, IQBAL

    2018-02-01

    Electron-temperature-gradient (ETG)-driven solitons are studied in a plasma. We derive the linear dispersion relation and an admitted solitary wave solution Korteweg–de Vries-type equation (KdV) for the ETG mode in the nonlinear regime by using the Braginskii model and a transformation. It is found that the ETG mode supports only rarefactive solitons. It is also observed that the ratio of electron-to-ion temperature τ ={T}{{e}}/{T}{{i}}, the ratio of gradient scale lengths {η }{{e}}={L}n/{L}T, and the magnetic field B affect both the amplitude and width of a soliton. It is found that the soliton profile changes with variation in these parameters. We apply the homotopy perturbation method to the derived KdV equation. It is found this method is computationally attractive and the results are very impressive. This work may be useful to study the low electrostatic modes in inhomogeneous electron–ion plasma with density and ETG gradients. For illustration, the model has been applied to tokamak plasma.

  7. ESTIMATION OF THE CONCRETE PAVEMENT TEMPERATURE FIELDS AND THEIR GRADIENTS

    Directory of Open Access Journals (Sweden)

    M. K. Pshembaev

    2015-01-01

    Full Text Available The heat fluxes impact on the road-dressing concrete surfacing under different regions climatic conditions of the construction and maintenance dramatically degrades their solidity, corroding-, shiftingand frost-resistance, and ultimately – the service durability. The source of deformation processes is the character of the gradient temperature fields in the road dressing materials developing with both protracted (static and short run (dynamic heat-and-mass impacts that forward destruction of the pavement surface layers being in contact with free air. In addition, pulsating hydrodynamic pressures appear in the pores of moisture-laden pavement as a result of the vehicular traffic that foster material structure disruption of the surface layers leading to irreversible deformation incipiency (cracks etc.. The authors report of developing a С++ computer program for temperature and gradient fields engineering evaluations of the road dressings made of materials with various surfacing and free-air thermophysical characteristics in line with boundary conditions of the 3rd kind for semi-bounded body. The paper presents the evaluation results in form of graphical curves of the temperature allocation along the surfacing thickness as function of its initial temperature and thermophysical characteristics of the concrete. 

  8. Control of colloids with gravity, temperature gradients, and electric fields

    CERN Document Server

    Sullivan, M; Harrison, C; Austin, R H; Megens, M; Hollingsworth, A; Russel, W B; Cheng Zhen; Mason, T; Chaikin, P M

    2003-01-01

    We have used a variety of different applied fields to control the density, growth, and structure of colloidal crystals. Gravity exerts a body force proportional to the buoyant mass and in equilibrium produces a height-dependent concentration profile. A similar body force can be obtained with electric fields on charged particles (electrophoresis), a temperature gradient on all particles, or an electric field gradient on uncharged particles (dielectrophoresis). The last is particularly interesting since its magnitude and sign can be changed by tuning the applied frequency. We study these effects in bulk (making 'dielectrophoretic bottles' or traps), to control concentration profiles during nucleation and growth and near surfaces. We also study control of non-spherical and optically anisotropic particles with the light field from laser tweezers.

  9. Study on the properties of infrared wavefront coding athermal system under several typical temperature gradient distributions

    Science.gov (United States)

    Cai, Huai-yu; Dong, Xiao-tong; Zhu, Meng; Huang, Zhan-hua

    2018-01-01

    Wavefront coding for athermal technique can effectively ensure the stability of the optical system imaging in large temperature range, as well as the advantages of compact structure and low cost. Using simulation method to analyze the properties such as PSF and MTF of wavefront coding athermal system under several typical temperature gradient distributions has directive function to characterize the working state of non-ideal temperature environment, and can effectively realize the system design indicators as well. In this paper, we utilize the interoperability of data between Solidworks and ZEMAX to simplify the traditional process of structure/thermal/optical integrated analysis. Besides, we design and build the optical model and corresponding mechanical model of the infrared imaging wavefront coding athermal system. The axial and radial temperature gradients of different degrees are applied to the whole system by using SolidWorks software, thus the changes of curvature, refractive index and the distance between the lenses are obtained. Then, we import the deformation model to ZEMAX for ray tracing, and obtain the changes of PSF and MTF in optical system. Finally, we discuss and evaluate the consistency of the PSF (MTF) of the wavefront coding athermal system and the image restorability, which provides the basis and reference for the optimal design of the wavefront coding athermal system. The results show that the adaptability of single material infrared wavefront coding athermal system to axial temperature gradient can reach the upper limit of temperature fluctuation of 60°C, which is much higher than that of radial temperature gradient.

  10. Electron temperature gradient driven instability in the tokamak boundary plasma

    International Nuclear Information System (INIS)

    Xu, X.Q.; Rosenbluth, M.N.; Diamond, P.H.

    1992-01-01

    A general method is developed for calculating boundary plasma fluctuations across a magnetic separatrix in a tokamak with a divertor or a limiter. The slab model, which assumes a periodic plasma in the edge reaching the divertor or limiter plate in the scrape-off layer(SOL), should provide a good estimate, if the radial extent of the fluctuation quantities across the separatrix to the edge is small compared to that given by finite particle banana orbit. The Laplace transform is used for solving the initial value problem. The electron temperature gradient(ETG) driven instability is found to grow like t -1/2 e γmt

  11. Temperature-gradient instability induced by conducting end walls

    International Nuclear Information System (INIS)

    Berk, H.L.; Ryutov, D.D.; Tsidulko, Yu.A.

    1990-04-01

    A new rapidly growing electron temperature gradient instability is found for a plasma in contact with a conducting wall. The linear instability analysis is presented and speculations are given for its nonlinear consequences. This instability illustrates that conducting walls can produce effects that are detrimental to plasma confinement. This mode should be of importance in open-ended systems including astrophysical plasmas, mirror machines and at the edge of tokamaks where field lines are open and are connected to limiters or divertors. 16 refs., 2 figs

  12. Eye patches: Protein assembly of index-gradient squid lenses

    Energy Technology Data Exchange (ETDEWEB)

    Cai, J.; Townsend, J. P.; Dodson, T. C.; Heiney, P. A.; Sweeney, A. M.

    2017-08-10

    A parabolic relationship between lens radius and refractive index allows spherical lenses to avoid spherical aberration. We show that in squid, patchy colloidal physics resulted from an evolutionary radiation of globular S-crystallin proteins. Small-angle x-ray scattering experiments on lens tissue show colloidal gels of S-crystallins at all radial positions. Sparse lens materials form via low-valence linkages between disordered loops protruding from the protein surface. The loops are polydisperse and bind via a set of hydrogen bonds between disordered side chains. Peripheral lens regions with low particle valence form stable, volume-spanning gels at low density, whereas central regions with higher average valence gel at higher densities. The proteins demonstrate an evolved set of linkers for self-assembly of nanoparticles into volumetric materials.

  13. AC susceptibility response of bulk YBCO superconductors in the presence of a temperature gradient

    International Nuclear Information System (INIS)

    Bodi, A.C.; Kirschner, I.

    1997-01-01

    Low-frequency AC susceptibility measurements on ceramic YBCO superconductors carried out at the presence of a quasi-one-dimensional temperature gradient are compared with those made without the temperature gradient. The values of the different characteristic temperatures measured on samples without and with a temperature gradient are identical but in the second case its characteristic temperature is a medium value. When the temperature gradient is constant on the sample the arithmetic medium value of the local temperatures is the effective characteristic temperature different phenomena. (orig.)

  14. Theory of neoclassical ion temperature-gradient-driven turbulence

    Science.gov (United States)

    Kim, Y. B.; Diamond, P. H.; Biglari, H.; Callen, J. D.

    1991-02-01

    The theory of collisionless fluid ion temperature-gradient-driven turbulence is extended to the collisional banana-plateau regime. Neoclassical ion fluid evolution equations are developed and utilized to investigate linear and nonlinear dynamics of negative compressibility ηi modes (ηi≡d ln Ti/d ln ni). In the low-frequency limit (ωB2p. As a result of these modifications, growth rates are dissipative, rather than sonic, and radial mode widths are broadened [i.e., γ˜k2∥c2s(ηi -(2)/(3) )/μi, Δx˜ρs(Bt/Bp) (1+ηi)1/2, where k∥, cs, and ρs are the parallel wave number, sound velocity, and ion gyroradius, respectively]. In the limit of weak viscous damping, enhanced neoclassical polarization persists and broadens radial mode widths. Linear mixing length estimates and renormalized turbulence theory are used to determine the ion thermal diffusivity in both cases. In both cases, a strong favorable dependence of ion thermal diffusivity on Bp (and hence plasma current) is exhibited. Furthermore, the ion thermal diffusivity for long wavelength modes exhibits favorable density scaling. The possible role of neoclassical ion temperature-gradient-driven modes in edge fluctuations and transport in L-phase discharges and the L to H transition is discussed.

  15. A sandwich-designed temperature-gradient incubator for studies of microbial temperature responses.

    Science.gov (United States)

    Elsgaard, Lars; Jørgensen, Leif Wagner

    2002-03-01

    A temperature-gradient incubator (TGI) is described, which produces a thermal gradient over 34 aluminium modules (15x30x5 cm) intersected by 2-mm layers of partly insulating graphite foil (SigraFlex Universal). The new, sandwich-designed TGI has 30 rows of six replicate sample wells for incubation of 28-ml test tubes. An electric plate heats one end of the TGI, and the other end is cooled by thermoelectric Peltier elements in combination with a liquid cooling system. The TGI is equipped with 24 calibrated Pt-100 temperature sensors and insulated by polyurethane plates. A PC-operated SCADA (Supervisory Control And Data Acquisition) software (Genesis 4.20) is applied for temperature control using three advanced control loops. The precision of the TGI temperature measurements was better than +/-0.12 degrees C, and for a 0-40 degrees C gradient, the temperature at the six replicate sample wells varied less than +/-0.04 degrees C. Temperatures measured in incubated water samples closely matched the TGI temperatures, which showed a linear relationship to the sample row number. During operation for 8 days with a gradient of 0-40 degrees C, the temperature at the cold end was stable within +/-0.02 degrees C, while the temperatures at the middle and the warm end were stable within +/-0.08 degrees C (n=2370). Using the new TGI, it was shown that the fine-scale (1 degrees C) temperature dependence of S(o) oxidation rates in agricultural soil (0-29 degrees C) could be described by the Arrhenius relationship. The apparent activation energy (E(a)) for S(o) oxidation was 79 kJ mol(-1), which corresponded to a temperature coefficient (Q(10)) of 3.1. These data demonstrated that oxidation of S(o) in soil is strongly temperature-dependent. In conclusion, the new TGI allowed a detailed study of microbial temperature responses as it produced a precise, stable, and certifiable temperature gradient by the new and combined use of sandwich-design, thermoelectric cooling, and advanced

  16. An optimized resistor pattern for temperature gradient control in microfluidics

    International Nuclear Information System (INIS)

    Selva, Bertrand; Marchalot, Julien; Jullien, Marie-Caroline

    2009-01-01

    In this paper, we demonstrate the possibility of generating high-temperature gradients with a linear temperature profile when heating is provided in situ. Thanks to improved optimization algorithms, the shape of resistors, which constitute the heating source, is optimized by applying the genetic algorithm NSGA-II (acronym for the non-dominated sorting genetic algorithm) (Deb et al 2002 IEEE Trans. Evol. Comput. 6 2). Experimental validation of the linear temperature profile within the cavity is carried out using a thermally sensitive fluorophore, called Rhodamine B (Ross et al 2001 Anal. Chem. 73 4117–23, Erickson et al 2003 Lab Chip 3 141–9). The high level of agreement obtained between experimental and numerical results serves to validate the accuracy of this method for generating highly controlled temperature profiles. In the field of actuation, such a device is of potential interest since it allows for controlling bubbles or droplets moving by means of thermocapillary effects (Baroud et al 2007 Phys. Rev. E 75 046302). Digital microfluidics is a critical area in the field of microfluidics (Dreyfus et al 2003 Phys. Rev. Lett. 90 14) as well as in the so-called lab-on-a-chip technology. Through an example, the large application potential of such a technique is demonstrated, which entails handling a single bubble driven along a cavity using simple and tunable embedded resistors

  17. Monte Carlo method for polarized radiative transfer in gradient-index media

    International Nuclear Information System (INIS)

    Zhao, J.M.; Tan, J.Y.; Liu, L.H.

    2015-01-01

    Light transfer in gradient-index media generally follows curved ray trajectories, which will cause light beam to converge or diverge during transfer and induce the rotation of polarization ellipse even when the medium is transparent. Furthermore, the combined process of scattering and transfer along curved ray path makes the problem more complex. In this paper, a Monte Carlo method is presented to simulate polarized radiative transfer in gradient-index media that only support planar ray trajectories. The ray equation is solved to the second order to address the effect induced by curved ray trajectories. Three types of test cases are presented to verify the performance of the method, which include transparent medium, Mie scattering medium with assumed gradient index distribution, and Rayleigh scattering with realistic atmosphere refractive index profile. It is demonstrated that the atmospheric refraction has significant effect for long distance polarized light transfer. - Highlights: • A Monte Carlo method for polarized radiative transfer in gradient index media. • Effect of curved ray paths on polarized radiative transfer is considered. • Importance of atmospheric refraction for polarized light transfer is demonstrated

  18. Adjustable internal structure for reconstructing gradient index profile of crystalline lens.

    Science.gov (United States)

    Bahrami, Mehdi; Goncharov, Alexander V; Pierscionek, Barbara K

    2014-03-01

    Employing advanced technologies in studying the crystalline lens of the eye has improved our understanding of the refractive index gradient of the lens. Reconstructing and studying such a complex structure requires models with adaptable internal geometry that can be altered to simulate geometrical and optical changes of the lens with aging. In this Letter, we introduce an optically well-defined, geometrical structure for modeling the gradient refractive index profile of the crystalline lens with the advantage of an adjustable internal structure that is not available with existing models. The refractive index profile assigned to this rotationally symmetric geometry is calculated numerically, yet it is shown that this does not limit the model. The study provides a basis for developing lens models with sophisticated external and internal structures without the need for analytical solutions to calculate refractive index profiles.

  19. On detonation initiation by a temperature gradient for a detailed chemical reaction models

    International Nuclear Information System (INIS)

    Liberman, M.A.; Kiverin, A.D.; Ivanov, M.F.

    2011-01-01

    The evolution from a temperature gradient to a detonation is investigated for combustion mixture whose chemistry is governed by a detailed chemical kinetics. We show that a detailed chemical reaction model has a profound effect on the spontaneous wave concept for detonation initiation by a gradient of reactivity. The evolution to detonation due to a temperature gradient is considered for hydrogen-oxygen and hydrogen-air mixtures at different initial pressures. It is shown that the minimal length of the temperature gradient for which a detonation can be ignited is much larger than that predicted from a one-step chemical model. - Highlights: → We study detonation initiation by temperature gradient for detailed chemical models. → Detailed chemical models have a profound effect on the spontaneous wave concept. → Initiating detonation by temperature gradient differs from one-step model. → In real fuels DDT can not be initiated by temperature gradient.

  20. Collisional damping for ion temperature gradient mode driven zonal flow

    International Nuclear Information System (INIS)

    Xiao Yong; Catto, Peter J.; Molvig, Kim

    2007-01-01

    Zonal flow helps reduce and control the level of ion temperature gradient turbulence in a tokamak. The collisional damping of zonal flow has been estimated by Hinton and Rosenbluth (HR) in the large radial wavelength limit. Their calculation shows that the damping of zonal flow is closely related to the frequency response of neoclassical polarization of the plasma. Based on a variational principle, HR calculated the neoclassical polarization in the low and high collisionality limits. A new approach, based on an eigenfunction expansion of the collision operator, is employed to evaluate the neoclassical polarization and the zonal flow residual for arbitrary collisionality. An analytical expression for the temporal behavior of the zonal flow is also given showing that the damping rate tends to be somewhat slower than previously thought. These results are expected to be useful extensions of the original HR collisional work that can provide an effective benchmark for numerical codes for all regimes of collisionality

  1. Ion temperature gradient driven turbulence with strong trapped ion resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kosuga, Y., E-mail: kosuga@riam.kyushu-u.ac.jp [Institute for Advanced Study, Kyushu University, Fukuoka (Japan); Research Institute for Applied Mechanics, Kyushu University, Fukuoka (Japan); Itoh, S.-I. [Research Center for Plasma Turbulence, Kyushu University, Fukuoka (Japan); Research Institute for Applied Mechanics, Kyushu University, Fukuoka (Japan); Diamond, P. H. [CASS and CMTFO, University of California at San Diego, La Jolla, California 92093 (United States); WCI Center for Fusion Theory, National Fusion Research Institute, Daejeon (Korea, Republic of); Itoh, K. [National Institute for Fusion Science, Gifu (Japan); Research Center for Plasma Turbulence, Kyushu University, Fukuoka (Japan); Lesur, M. [Research Institute for Applied Mechanics, Kyushu University, Fukuoka (Japan)

    2014-10-15

    A theory to describe basic characterization of ion temperature gradient driven turbulence with strong trapped ion resonance is presented. The role of trapped ion granulations, clusters of trapped ions correlated by precession resonance, is the focus. Microscopically, the presence of trapped ion granulations leads to a sharp (logarithmic) divergence of two point phase space density correlation at small scales. Macroscopically, trapped ion granulations excite potential fluctuations that do not satisfy dispersion relation and so broaden frequency spectrum. The line width from emission due only to trapped ion granulations is calculated. The result shows that the line width depends on ion free energy and electron dissipation, which implies that non-adiabatic electrons are essential to recover non-trivial dynamics of trapped ion granulations. Relevant testable predictions are summarized.

  2. Electron temperature gradient driven instability in the tokamak boundary plasma

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X.Q.; Rosenbluth, M.N.; Diamond, P.H.

    1992-12-15

    A general method is developed for calculating boundary plasma fluctuations across a magnetic separatrix in a tokamak with a divertor or a limiter. The slab model, which assumes a periodic plasma in the edge reaching the divertor or limiter plate in the scrape-off layer(SOL), should provide a good estimate, if the radial extent of the fluctuation quantities across the separatrix to the edge is small compared to that given by finite particle banana orbit. The Laplace transform is used for solving the initial value problem. The electron temperature gradient(ETG) driven instability is found to grow like t{sup {minus}1/2}e{sup {gamma}mt}.

  3. Quasi-steady temperature gradient metamorphism in idealized, dry snow

    International Nuclear Information System (INIS)

    Christon, M.

    1994-01-01

    A three-dimensional model for heat and mass transport in microscale ice lattices of dry snow is formulated consistent with conservation laws and solid-vapor interface constraints. A finite element model that employs continuous mesh deformation is developed, and calculation of the effective diffusion rates in snow, metamorphosing under a temperature gradient, is performed. Results of the research provide basic insight into the movement of heat and water vapor in seasonal snowcovers. Agreement between the numerical results and measured data of effective thermal conductivity is excellent. The enhancement to the water vapor diffusion rate in snow is bracketed in the range of 1.05--2.0 times that of water vapor in dry air

  4. CDC WONDER: Daily Air Temperatures and Heat Index

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Daily Air Temperature and Heat Index data available on CDC WONDER are county-level daily average air temperatures and heat index measures spanning the years...

  5. Numerical methods for the design of gradient-index optical coatings.

    Science.gov (United States)

    Anzengruber, Stephan W; Klann, Esther; Ramlau, Ronny; Tonova, Diana

    2012-12-01

    We formulate the problem of designing gradient-index optical coatings as the task of solving a system of operator equations. We use iterative numerical procedures known from the theory of inverse problems to solve it with respect to the coating refractive index profile and thickness. The mathematical derivations necessary for the application of the procedures are presented, and different numerical methods (Landweber, Newton, and Gauss-Newton methods, Tikhonov minimization with surrogate functionals) are implemented. Procedures for the transformation of the gradient coating designs into quasi-gradient ones (i.e., multilayer stacks of homogeneous layers with different refractive indices) are also developed. The design algorithms work with physically available coating materials that could be produced with the modern coating technologies.

  6. Conoscopic evaluation of the birefringence of gradient-index lenses: infidelity sources.

    Science.gov (United States)

    Tentori, Diana; Camacho, Javier

    2002-12-01

    Gradient-index lenses are samples whose special characteristics must be taken into account to design the optical polariscopes that can be applied in the evaluation of their birefringence. We discuss the main infidelity sources that modify the conoscopic patterns when a traditional polariscopic setup is used.

  7. Conoscopic evaluation of the birefringence of gradient-index lenses: infidelity sources

    Science.gov (United States)

    Tentori, Diana; Camacho, Javier

    2002-12-01

    Gradient-index lenses are samples whose special characteristics must be taken into account to design the optical polariscopes that can be applied in the evaluation of their birefringence. We discuss the main infidelity sources that modify the conoscopic patterns when a traditional polariscopic setup is used.

  8. Propagation properties of the chirped Airy beams through the gradient-index medium

    Science.gov (United States)

    Feng, Liyan; Zhang, Jianbin; Pang, Zihao; Wang, Linyi; Zhong, Tianfen; Yang, Xiangbo; Deng, Dongmei

    2017-11-01

    Through analytical derivation and numerical analysis, the propagation properties of the chirped Airy(CAi) beams in the gradient-index medium are investigated. The intensity and the phase distributions, the propagation trajectory and the Poynting vector of the CAi beams are demonstrated to investigate the propagation properties. Owing to the special and symmetrical refractive index profile of the gradient-index medium, the CAi beams propagate periodically. The effects of the distribution factor and the chirped parameter on the propagation of the CAi beams are analyzed. As the increasing of the distribution factor, the intensity distribution of the CAi beams is more scattering. However, with the chirped parameter increasing, the focusing property of the CAi beams strengthens. The variation of the chirped parameter can change the position of the peak intensity maximum, but it cannot alter the period of the peak intensity. The variations of the initial phase and the energy of the beams in the transverse plane expedite accordingly.

  9. Gradient-index optical fiber lens for efficient fiber-to-chip coupling.

    Science.gov (United States)

    Melkonyan, Henrik; Al Qubaisi, Kenaish; Sloyan, Karen; Khilo, Anatol; Dahlem, Marcus S

    2017-06-12

    A gradient-index optical fiber lens is proposed and fabricated on the tip of a single-mode fiber using focused ion beam milling. Second-order effective medium theory is used to design a gradual change in the fill factor, which ensures a parabolic effective refractive index distribution. The proposed fiber lens design is simulated via the three-dimensional finite-difference time-domain method, and demonstrated through confocal optical measurements. At a wavelength of 1550 nm, the fabricated lenses focus a 10.4 μm mode field diameter exiting the fiber into spot sizes between 3-5 μm, located 4-6 μm away from the fiber tip. Direct coupling into a silicon-on-insulator chip is also demonstrated, where the fabricated gradient-index lens has a coupling efficiency comparable to a commercial lensed fiber.

  10. Thermoelectric properties of high electron concentration materials under large temperature gradients

    International Nuclear Information System (INIS)

    Bulat, L.P.; Stefansky, V.A.

    1994-01-01

    Theoretical methods of investigating of transport properties in solids under large temperature gradients are grounded. The nonlinear and non-local expressions for current density and heat flow are obtained with degenerated of current carriers gas. A number of new effects with large temperature gradients have been tested. Use of large temperature gradients leads to the increasing of the thermoelectric figure of merit. copyright 1995 American Institute of Physics

  11. An assessment of skin temperature gradients in a tropical primate using infrared thermography and subcutaneous implants.

    Science.gov (United States)

    Thompson, Cynthia L; Scheidel, Caleb; Glander, Kenneth E; Williams, Susan H; Vinyard, Christopher J

    2017-01-01

    Infrared thermography has become a useful tool to assess surface temperatures of animals for thermoregulatory research. However, surface temperatures are an endpoint along the body's core-shell temperature gradient. Skin and fur are the peripheral tissues most exposed to ambient thermal conditions and are known to serve as thermosensors that initiate thermoregulatory responses. Yet relatively little is known about how surface temperatures of wild mammals measured by infrared thermography relate to subcutaneous temperatures. Moreover, this relationship may differ with the degree that fur covers the body. To assess the relationship between temperatures and temperature gradients in peripheral tissues between furred and bare areas, we collected data from wild mantled howling monkeys (Alouatta palliata) in Costa Rica. We used infrared thermography to measure surface temperatures of the furred dorsum and bare facial areas of the body, recorded concurrent subcutaneous temperatures in the dorsum, and measured ambient thermal conditions via a weather station. Temperature gradients through cutaneous tissues (subcutaneous-surface temperature) and surface temperature gradients (surface-ambient temperature) were calculated. Our results indicate that there are differences in temperatures and temperature gradients in furred versus bare areas of mantled howlers. Under natural thermal conditions experienced by wild animals, the bare facial areas were warmer than temperatures in the furred dorsum, and cutaneous temperature gradients in the face were more variable than the dorsum, consistent with these bare areas acting as thermal windows. Cutaneous temperature gradients in the dorsum were more closely linked to subcutaneous temperatures, while facial temperature gradients were more heavily influenced by ambient conditions. These findings indicate that despite the insulative properties of fur, for mantled howling monkeys surface temperatures of furred areas still demonstrate a

  12. Thermotaxis of human sperm cells in extraordinarily shallow temperature gradients over a wide range.

    Directory of Open Access Journals (Sweden)

    Anat Bahat

    Full Text Available On the basis of the finding that capacitated (ready to fertilize rabbit and human spermatozoa swim towards warmer temperatures by directing their movement along a temperature gradient, sperm thermotaxis has been proposed to be one of the processes guiding these spermatozoa to the fertilization site. Although the molecular mechanism underlying sperm thermotaxis is gradually being revealed, basic questions related to this process are still open. Here, employing human spermatozoa, we addressed the questions of how wide the temperature range of thermotaxis is, whether this range includes an optimal temperature or whether spermatozoa generally prefer swimming towards warmer temperatures, whether or not they can sense and respond to descending temperature gradients, and what the minimal temperature gradient is to which they can thermotactically respond. We found that human spermatozoa can respond thermotactically within a wide temperature range (at least 29-41°C, that within this range they preferentially accumulate in warmer temperatures rather than at a single specific, preferred temperature, that they can respond to both ascending and descending temperature gradients, and that they can sense and thermotactically respond to temperature gradients as low as <0.014°C/mm. This temperature gradient is astonishingly low because it means that as a spermatozoon swims through its entire body length (46 µm it can sense and respond to a temperature difference of <0.0006°C. The significance of this surprisingly high temperature sensitivity is discussed.

  13. Reconstruction of the refractive index gradient by x-ray diffraction enhanced computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Wang Junyue [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Zhu Peiping [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Yuan Qingxi [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Huang Wanxia [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Shu Hang [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen Bo [Department of Physics, University of Science and Technology of China, Hefei 230026 (China); Hu Tiandou [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wu Ziyu [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2006-07-21

    The computed tomography technique cannot easily be extended to diffraction enhanced imaging (DEI) because, while from DEI we may extract the refractive index gradient in one dimension, from the conventional CT reconstruction algorithm we may reconstruct only a scalar quantity. However, recently we showed that changing the direction of the scan axis, and collecting a set of data related to the three-dimensional distribution of the refractive index gradient of the sample, a CT image was obtained. The algorithm we used is based on the conventional CT algorithm but with a specific pre-processing of the projection data. The mathematical framework of the procedure and a simple CT experiment are presented and discussed.

  14. Reconstruction of the refractive index gradient by x-ray diffraction enhanced computed tomography

    International Nuclear Information System (INIS)

    Wang Junyue; Zhu Peiping; Yuan Qingxi; Huang Wanxia; Shu Hang; Chen Bo; Hu Tiandou; Wu Ziyu

    2006-01-01

    The computed tomography technique cannot easily be extended to diffraction enhanced imaging (DEI) because, while from DEI we may extract the refractive index gradient in one dimension, from the conventional CT reconstruction algorithm we may reconstruct only a scalar quantity. However, recently we showed that changing the direction of the scan axis, and collecting a set of data related to the three-dimensional distribution of the refractive index gradient of the sample, a CT image was obtained. The algorithm we used is based on the conventional CT algorithm but with a specific pre-processing of the projection data. The mathematical framework of the procedure and a simple CT experiment are presented and discussed

  15. The Polymerization of MMA and ST to Prepare Material with Gradient Refractive Index in Electric Field

    Directory of Open Access Journals (Sweden)

    Yao Huang

    2015-01-01

    Full Text Available Light scattering material with gradient refractive index was prepared under the electrical field by taking methyl methacrylate (MMA monomer as the matrix with the addition of a little preheated styrene (ST and peroxidation benzoin formyl (BPO. The material obtained under electrical field presented different transmittance and molecular weight at different parts of the cylindrical sample along the axis of the direction of electric field which led to the layering phenomenon and gradient refractive index. The disparity of molecular weight between different layers can be as much as 230 thousand. There were several peaks in the figure of GPC test of the sample under electric field. This proved that there were polymers with different molecular weights in the sample. Therefore, it can be concluded that electrical field has a significant effect on polymerization.

  16. Process equipped with a sloped UV lamp for the fabrication of gradient-refractive-index lenses.

    Science.gov (United States)

    Liu, Jui-Hsiang; Chiu, Yi-Hong

    2009-05-01

    In this investigation, a method for the preparation of gradient-refractive-index (GRIN) lenses by UV-energy-controlled polymerization has been developed. A glass reaction tube equipped with a sloped UV lamp was designed. Methyl methacrylate and diphenyl sulfide were used as the reactive monomer and nonreactive dopant, respectively. Ciba IRGACURE 184 (1-hydroxy-cyclohexyl-phenyl-ketone) was used as the initiator. The effects of initiator concentration, the addition of acrylic polymers, and the preparation conditions on the optical characteristics of the GRIN lenses produced by this method were also investigated. Refractive index distributions and image transmission properties were estimated for all GRIN lenses prepared.

  17. Optical waves in a gradient negative-index lens of a half-infinite length.

    Science.gov (United States)

    Ding, Yi S; Chan, C T; Wang, R P

    2013-10-16

    Materials with negative permittivity and permeability can overcome the diffraction limit, thereby making the sub-wavelength imaging possible. In this study, we analyze the effects of gradient index on a half-infinite perfect lens. We assume that the sharp interface between the vacuum and the negative-index material is replaced by a smooth transition profile such that the index gradually changing from positive to negative. Interestingly, we find that if the graded index profile is modeled by a tanh function, we can have closed-form analytical solutions for this problem, which is a distinct advantage as numerical solutions are not accurate for evanescent waves with large transverse wave vectors. By analyzing the analytical formulas we confirm that a nonzero total absorption can occur even for a near-zero absorption coefficient in the steady-state limit and the image plane contains multiple sub-wavelength images of an object.

  18. The temperature gradient on section of casting in process of primary crystallization of chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2008-08-01

    Full Text Available The methodology of defining in article was introduced the temperature gradient in process of primary crystallization during cooling the casting from chromium cast iron on basis of measurements of thermal field in test DTA-K3. Insert also the preliminary results of investigations of influence temperature gradient on structure of studied wear resistance chromium cast iron.

  19. Temperature Versus Salinity Gradients Below the Ocean Mixed Layer

    Science.gov (United States)

    2012-05-03

    13] The effects of density compensated gradients below the mixed layer are not limited to ocean circulation and cli- mate. Since sound speed and...The Impact of Spice on Ocean circulation . The second is the 6.2 program element 62435N Full Column Mixing for Numerical Ocean Models. The authors would...and F. Paparella (2003), Compensation and alignment of thermohaline gradients in the ocean mixed layer, J. Phys. Oceanogr., 33, 2214–2223, doi

  20. Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom.

    Science.gov (United States)

    Mao, Xiaole; Lin, Sz-Chin Steven; Lapsley, Michael Ian; Shi, Jinjie; Juluri, Bala Krishna; Huang, Tony Jun

    2009-07-21

    We report a tunable optofluidic microlens configuration named the Liquid Gradient Refractive Index (L-GRIN) lens for focusing light within a microfluidic device. The focusing of light was achieved through the gradient refractive index (GRIN) within the liquid medium, rather than via curved refractive lens surfaces. The diffusion of solute (CaCl(2)) between side-by-side co-injected microfluidic laminar flows was utilized to establish a hyperbolic secant (HS) refractive index profile to focus light. Tailoring the refractive index profile by adjusting the flow conditions enables not only tuning of the focal distance (translation mode), but also shifting of the output light direction (swing mode), a second degree of freedom that to our knowledge has yet to be accomplished for in-plane tunable microlenses. Advantages of the L-GRIN lens also include a low fluid consumption rate, competitive focusing performance, and high compatibility with existing microfluidic devices. This work provides a new strategy for developing integrative tunable microlenses for a variety of lab-on-a-chip applications.

  1. Temperature Gradient Approach for Rapidly Assessing Sensor Binding Kinetics and Thermodynamics.

    Science.gov (United States)

    Wagner, Caleb E; Macedo, Lucyano J A; Opdahl, Aric

    2015-08-04

    We report a highly resolved approach for quantitatively measuring the temperature dependence of molecular binding in a sensor format. The method is based on surface plasmon resonance (SPR) imaging measurements made across a spatial temperature gradient. Simultaneous recording of sensor response over the range of temperatures spanned by the gradient avoids many of the complications that arise in the analysis of SPR measurements where temperature is varied. In addition to simplifying quantitative analysis of binding interactions, the method allows the temperature dependence of binding to be monitored as a function of time, and provides a straightforward route for calibrating how temperature varies across the gradient. Using DNA hybridization as an example, we show how the gradient approach can be used to measure the temperature dependence of binding kinetics and thermodynamics (e.g., melt/denaturation profile) in a single experiment.

  2. Impedance Characterization and Modeling of Lithium-Ion Batteries Considering the Internal Temperature Gradient

    Directory of Open Access Journals (Sweden)

    Haifeng Dai

    2018-01-01

    Full Text Available Battery impedance is essential to the management of lithium-ion batteries for electric vehicles (EVs, and impedance characterization can help to monitor and predict the battery states. Many studies have been undertaken to investigate impedance characterization and the factors that influence impedance. However, few studies regarding the influence of the internal temperature gradient, which is caused by heat generation during operation, have been presented. We have comprehensively studied the influence of the internal temperature gradient on impedance characterization and the modeling of battery impedance, and have proposed a discretization model to capture battery impedance characterization considering the temperature gradient. Several experiments, including experiments with artificial temperature gradients, are designed and implemented to study the influence of the internal temperature gradient on battery impedance. Based on the experimental results, the parameters of the non-linear impedance model are obtained, and the relationship between the parameters and temperature is further established. The experimental results show that the temperature gradient will influence battery impedance and the temperature distribution can be considered to be approximately linear. The verification results indicate that the proposed discretization model has a good performance and can be used to describe the actual characterization of the battery with an internal temperature gradient.

  3. Threshold temperature gradient effect on migration of brine inclusions in salt

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1987-01-01

    Theories of the migration of brine inclusions in salt were interpreted as simple physical processes, and theories by Russian and US workers were shown to yield the same results. The migration theory was used to predict threshold temperature gradients below which migration of brine inclusions should not occur. The predicted threshold gradients were compared with the temperature gradients expected at the Waste Isolation Pilot Plant in New Mexico. The theory of threshold gradients helps explain the existence of brine inclusions in natural salt deposits

  4. Measurement of water transfer and swelling stress in the buffer material due to temperature gradient

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H. [ITC, Tokai, Ibaraki (Japan); Chijimatsu, M.; Fujita, A.

    1999-03-01

    Coefficients concerning the water transfer in the buffer material was obtained by empirically giving a temperature gradient, and the swelling stress was measured when water was soaked in the sample under the uniform temperature and temperature gradient conditions. The distributions of temperature and water in the buffer material empirically given a temperature gradient were measured to deduce water diffusion constant due to the temperature gradient. The diffusion constant was the order of 10{sup -8} cm{sup 2}/s/degC. As a result of a equitemperature soaking test, it was found that the swelling stress of the part where soaktion was slow was greater than that of the part with fast soaking at a stage of non-uniform water distribution. The water soaking quantity to the sample and swelling stress reached a stationary state after 7000 hours and the water distribution in the whole sample was found saturated. (H. Baba)

  5. Gastroesophageal pressure gradients in gastroesophageal reflux disease: relations with hiatal hernia, body mass index, and esophageal acid exposure

    NARCIS (Netherlands)

    de Vries, Durk R.; van Herwaarden, Margot A.; Smout, André J. P. M.; Samsom, Melvin

    2008-01-01

    OBJECTIVES: The roles of intragastric pressure (IGP), intraesophageal pressure (IEP), gastroesophageal pressure gradient (GEPG), and body mass index (BMI) in the pathophysiology of gastroesophageal reflux disease (GERD) and hiatal hernia (HH) are only partly understood. METHODS: In total, 149 GERD

  6. Optoelectronic Workshops. 6. Testing /Fabrication/Gradient Index Optics and Computer Aided Manufacture of Optics

    Science.gov (United States)

    1988-05-24

    SEIsKIC WV ES RAY PATHS Akll.Quantjtatv* Sismology # vol 2op6S2 15 SOUND ZN WATER .CONSTANT IT"MERATURE PRESSURE INCREASES WITH DEPTff TE.PERATUR...OD z 0 0 O L)C 78 ! i 0 0 0 0, C.)79 FIRST ORDER PROPERTIES NUMERICAL APERTURE 0,4S FOCAL LENGTH -8.0Om. FULL FIELD OF VIEW 700uM. LENS DIAMETER...II CRUCIBLE GRADIENT INDEX FABRICATION METHOD OF ION EXCHANGE 85 LIST OF BASE GLASSES BK-7 517.642 SF-2 648.339 BK-13 521 .628 SF-4 755.276 SK-3

  7. Response of Soft Continuous Structures and Topological Defects to a Temperature Gradient

    Science.gov (United States)

    Kurita, Rei; Mitsui, Shun; Tanaka, Hajime

    2017-09-01

    Thermophoresis, which is mass transport induced by a temperature gradient, has recently attracted considerable attention as a new way to transport materials. So far the study has been focused on the transport of discrete structures such as colloidal particles, proteins, and polymers in solutions. However, the response of soft continuous structures such as membranes and gels to a temperature gradient has been largely unexplored. Here we study the behavior of a lamellar phase made of stacked surfactant bilayer membranes under a temperature gradient. We find the migration of membranes towards a low-temperature region, causing the increase in the degree of membrane undulation fluctuations towards that direction. This is contrary to our intuition that the fluctuations are weaker at a lower temperature. We show that this can be explained by temperature-gradient-induced migration of membranes under the topological constraint coming from the connectivity of each membrane. We also reveal that the pattern of an edge dislocation array formed in a wedge-shaped cell can be controlled by a temperature gradient. These findings suggest that application of a temperature gradient provides a novel way to control the organization of soft continuous structures such as membranes, gels, and foams, in a manner essentially different from the other types of fields, and to manipulate topological defects.

  8. Gradient-driven flux-tube simulations of ion temperature gradient turbulence close to the non-linear threshold

    Energy Technology Data Exchange (ETDEWEB)

    Peeters, A. G.; Rath, F.; Buchholz, R.; Grosshauser, S. R.; Strintzi, D.; Weikl, A. [Physics Department, University of Bayreuth, Universitätsstrasse 30, Bayreuth (Germany); Camenen, Y. [Aix Marseille Univ, CNRS, PIIM, UMR 7345, Marseille (France); Candy, J. [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States); Casson, F. J. [CCFE, Culham Science Centre, Abingdon OX14 3DB, Oxon (United Kingdom); Hornsby, W. A. [Max Planck Institut für Plasmaphysik, Boltzmannstrasse 2 85748 Garching (Germany)

    2016-08-15

    It is shown that Ion Temperature Gradient turbulence close to the threshold exhibits a long time behaviour, with smaller heat fluxes at later times. This reduction is connected with the slow growth of long wave length zonal flows, and consequently, the numerical dissipation on these flows must be sufficiently small. Close to the nonlinear threshold for turbulence generation, a relatively small dissipation can maintain a turbulent state with a sizeable heat flux, through the damping of the zonal flow. Lowering the dissipation causes the turbulence, for temperature gradients close to the threshold, to be subdued. The heat flux then does not go smoothly to zero when the threshold is approached from above. Rather, a finite minimum heat flux is obtained below which no fully developed turbulent state exists. The threshold value of the temperature gradient length at which this finite heat flux is obtained is up to 30% larger compared with the threshold value obtained by extrapolating the heat flux to zero, and the cyclone base case is found to be nonlinearly stable. Transport is subdued when a fully developed staircase structure in the E × B shearing rate forms. Just above the threshold, an incomplete staircase develops, and transport is mediated by avalanche structures which propagate through the marginally stable regions.

  9. Husimi functions at gradient index cavities designed by conformal transformation optics.

    Science.gov (United States)

    Kim, Inbo; Cho, Jinhang; Kim, Yushin; Min, Bumki; Ryu, Jung-Wan; Rim, Sunghwan; Choi, Muhan

    2018-03-19

    Dielectric cavity systems, which have been studied extensively so far, have uniform refractive indices of their cavities, and Husimi functions, the most widely used phase space representation of optical modes formed in the cavities, accordingly were derived only for these homogeneous index cavities. For the case of the recently proposed gradient index dielectric cavities (called as transformation cavities) designed by optical conformal mapping, we show that the phase space structure of resonant modes can be revealed through the conventional Husimi functions by constructing a reciprocal virtual space. As examples, the Husimi plots were obtained for an anisotropic whispering gallery mode (WGM) and a short-lived mode supported in a limaçon-shaped transformation cavity. The phase space description of the corresponding modes in the reciprocal virtual space is compatible with the far-field directionality of the resonant modes in the physical space.

  10. Temperature dependence of a refractive index sensor based on a macrobending micro-plastic optical fiber.

    Science.gov (United States)

    Jing, Ning; Teng, Chuanxin; Zhao, Xiaowei; Zheng, Jie

    2015-03-10

    We investigate the temperature dependence of a refractive index (RI) sensor based on a macrobending micro-plastic optical fiber (m-POF) both theoretically and experimentally. The performance of the RI sensor at different temperatures (10°C-70°C) is measured and simulated over an RI range from 1.33 to 1.45. It is found that the temperature dependent bending loss and RI measurement deviation monotonically change with temperature, and the RI deviation has a higher gradient with temperature variation for a higher measured RI. Because of the linear trend of temperature dependence of the sensor, it is feasible to correct for changes in ambient temperature.

  11. Gradient temperature Raman spectroscopy identifies flexible sites in proline and alanine peptides

    Science.gov (United States)

    Continuous thermo dynamic Raman spectroscopy (TDRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur just prior to phase transitions. Herein we apply TDRS...

  12. Using the column wall itself as resistive heater for fast temperature gradients in liquid chromatography.

    Science.gov (United States)

    De Pauw, Ruben; Pursch, Matthias; Desmet, Gert

    2015-11-13

    A new system is proposed for applying fast temperature gradients in liquid chromatography. It consists of a 0.7 mm × 150 mm fused-silica column coated with a 50 μm Nickel-layer, which is connecting with a power source and a temperature control system to perform fast and reproducible temperature gradients using the column wall itself as a resistive heater. Applying a current of 4A and passive cooling results in a maximal heating and cooling rate of, respectively, 71 and -21 °C/min. Multi-segment temperature gradients were superimposed on mobile phase gradients to enhance the selectivity for three sets of mixtures (pharmaceutical compounds, a highly complex mixture and an insecticide sample). This resulted in a higher peak count or better selectivities for the various mixtures. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Measurement of the vertical temperature gradient at the Saclay Nuclear Research Centre

    International Nuclear Information System (INIS)

    Santelli, F.; Le Quino, R.

    1962-01-01

    A 109 m mast has been erected at the Saclay Nuclear Research Centre for the precise measurement of thermal gradients and gaseous effluents. This note describes the temperature measurement devices (thermocouple and thermo-resistor) and the first results obtained

  14. Large concentration changes due to thermal diffusion effects in gas flow microsystems with temperature gradients

    DEFF Research Database (Denmark)

    Quaade, Ulrich; Johannessen, Tue; Jensen, Søren

    Thermal diffusion, or Sorét diffusion, is shown to cause significant concentration changes and transients in gas flow microsystems with temperature gradients. In a silicon microsystem, a temperature gradient of about 100 oC/mm is measured to produce concentration transients of up to 13.7 % in an ......Thermal diffusion, or Sorét diffusion, is shown to cause significant concentration changes and transients in gas flow microsystems with temperature gradients. In a silicon microsystem, a temperature gradient of about 100 oC/mm is measured to produce concentration transients of up to 13.......7 % in an argon/helium mixture, when the flow is abruptly changed from a high value to a low value. Finite element simulations of the thermal diffusion in a geometry similar to the experimental setup reproduce the measurements....

  15. Identifying Time Periods of Minimal Thermal Gradient for Temperature-Driven Structural Health Monitoring.

    Science.gov (United States)

    Reilly, John; Glisic, Branko

    2018-03-01

    Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM) analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc.) and generalized displacement (deflection, rotation, etc.) to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature-deformation-displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i) the range of raw temperatures on the structure, and (ii) the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University.

  16. Nonlinear Gyrokinetic Simulations of Ion-Temperature-Gradient Turbulence for the Optimized Wendelstein 7-X Stellarator

    Science.gov (United States)

    Xanthopoulos, P.; Merz, F.; Görler, T.; Jenko, F.

    2007-07-01

    Ion-temperature-gradient turbulence constitutes a possibly dominant transport mechanism for optimized stellarators, in view of the effective suppression of neoclassical losses characterizing these devices. Nonlinear gyrokinetic simulation results for the Wendelstein 7-X stellarator [G. Grieger , in Proceedings of the IAEA Conference on Plasma Physics and Controlled Nuclear Fusion Research, 1990 (IAEA, Vienna, 1991) Vol. 3, p. 525]—assuming an adiabatic electron response—are presented. Several fundamental features are discussed, including the role of zonal flows for turbulence saturation, the resulting flux-gradient relationship, and the coexistence of ion-temperature-gradient modes with trapped ion modes in the saturated state.

  17. Mutation screening of the TP53 gene by temporal temperature gradient gel electrophoresis.

    Science.gov (United States)

    Sørlie, Therese; Johnsen, Hilde; Vu, Phuong; Lind, Guro Elisabeth; Lothe, Ragnhild; Børresen-Dale, Anne-Lise

    2005-01-01

    A protocol for detection of mutations in the TP53 gene using temporal temperature gradient gel electrophoresis (TTGE) is described. TTGE is a mutation detection technique that separates DNA fragments differing by single base pairs according to their melting properties in a denaturing gel. It is based on constant denaturing conditions in the gel combined with a temperature gradient during the electrophoretic run. This method combines some of the advantages of the related techniques denaturing gradient gel electrophoresis (DGGE) and constant denaturant gel electrophoresis (CDGE) and eliminates some of the problems. The result is a rapid and sensitive screening technique that is robust and easily set up in smaller laboratory environments.

  18. Cooling vests with phase change material packs: the effects of temperature gradient, mass and covering area.

    Science.gov (United States)

    Gao, Chuansi; Kuklane, Kalev; Holmer, Ingvar

    2010-05-01

    Phase change material (PCM) absorbs or releases latent heat when it changes phases, making thermal-regulated clothing possible. The objective of this study was to quantify the relationships between PCM cooling rate and temperature gradient, mass and covering area on a thermal manikin in a climatic chamber. Three melting temperatures (24, 28, 32 degrees C) of the PCMs, different mass, covering areas and two manikin temperatures (34 and 38 degrees C) were used. The results showed that the cooling rate of the PCM vests tested is positively correlated with the temperature gradient between the thermal manikin and the melting temperature of the PCMs. The required temperature gradient is suggested to be greater than 6 degrees C when PCM vests are used in hot climates. With the same temperature gradient, the cooling rate is mainly determined by the covering area. The duration of the cooling effect is dependent on PCM mass and the latent heat. STATEMENT OF RELEVANCE: The study of factors affecting the cooling rate of personal cooling equipment incorporated with PCM helps to understand cooling mechanisms. The results suggest climatic conditions, the required temperature gradient, PCM mass and covering area should be taken into account when choosing personal PCM cooling equipment.

  19. Identifying Time Periods of Minimal Thermal Gradient for Temperature-Driven Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    John Reilly

    2018-03-01

    Full Text Available Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc. and generalized displacement (deflection, rotation, etc. to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature–deformation–displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i the range of raw temperatures on the structure, and (ii the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University.

  20. Selective entrainment of the Drosophila circadian clock to daily gradients in environmental temperature

    Directory of Open Access Journals (Sweden)

    Goda Tadahiro

    2009-08-01

    Full Text Available Abstract Background Circadian clocks are internal daily time keeping mechanisms that allow organisms to anticipate daily changes in their environment and to organize their behavior and physiology in a coherent schedule. Although circadian clocks use temperature compensation mechanisms to maintain the same pace over a range of temperatures, they are also capable of synchronizing to daily temperature cycles. This study identifies key properties of this process. Results Gradually ramping daily temperature cycles are shown here to synchronize behavioral and molecular daily rhythms in Drosophila with a remarkable efficiency. Entrainment to daily temperature gradients of amplitudes as low as 4°C persisted even in the context of environmental profiles that also included continuous gradual increases or decreases in absolute temperature. To determine which elements of daily temperature gradients acted as the key determinants of circadian activity phase, comparative analyses of daily temperature gradients with different wave forms were performed. The phases of ascending and descending temperature acted together as key determinants of entrained circadian phase. In addition, circadian phase was found to be modulated by the relative temperature of release into free running conditions. Release at or close to the trough temperature of entrainment consistently resulted in phase advances. Re-entrainment to daily temperature gradients after large phase shifts occurred relatively slowly and required several cycles, allowing flies to selectively respond to periodic rather than anecdotal signals. The temperature-entrained phase relationship between clock gene expression rhythms and locomotor activity rhythms strongly resembled that previously observed for light entrainment. Moreover, daily temperature gradient and light/dark entrainment reinforced each other if the phases of ascending and descending temperature were in their natural alignment with the light and

  1. A refractive index gradient (RING) diagnostic for transient discharges or expansions of vapor or plasmas

    International Nuclear Information System (INIS)

    Cuneo, M.E.; Lockner, T.R.; Tisone, G.C.

    1991-01-01

    The Refractive Index Gradient (RING) diagnostic described in this paper uses a fast, silicon, photodiode quadrant detector with a differential amplifier to temporally detect the refraction of a CW laser by transient discharges or expansions of vapor, gas, or plasma. The method is a local, one-dimensional, time-resolved, quantitative, species-discriminating (i.e., atoms or electrons) Schlieren technique. The diagnostic is easy to field, sensitive (minimum deflection angles detectable ∼ 0.3 μrad), and fast (risetime = 11 ± 1 ns). Circuit design, performance, and diagnostic theory will be discussed. The RING diagnostic has been applied to measurements on several ion sources under development at Sandia National Laboratory for use on intense applied-B ion diodes in the light ion-beam fusion program. Sources studied include different types of flashboards, a thermal evaporation lithium ion source, and a laser-produced ion source. Measurements have been made both in labs and directly on large pulsed power accelerators. In this paper to illustrate the utility of this technique, examples of measurements on LEVIS (Laser Evaporation Ion Source), a laser-produced, active, lithium ion source are given. Measured properties include vapor/plasma production thresholds, expansion velocities, and time-resolved gradient and density spatial profiles. Comparisons of the RING results with measurement using a Faraday cup and a double-floating Langmuir probe are presented

  2. 3D field-shaping lens using all-dielectric gradient refractive index materials.

    Science.gov (United States)

    Ding, Tongyu; Yi, Jianjia; Li, Haoyu; Zhang, Hailin; Burokur, Shah Nawaz

    2017-04-10

    A novel three-dimensional (3D) optical lens structure for electromagnetic field shaping based on spatial light transformation method is proposed at microwave frequencies. The lens is capable of transforming cylindrical wavefronts into planar ones, and generating a directive emission. Such manipulation is simulated and analysed by solving Laplace's equation, and the deformation of the medium during the transformation is theoretically described in detail. The two-dimensional (2D) design method producing quasi-isotropic parameters is further extended to a potential 3D realization with all-dielectric gradient refractive index metamaterials. Numerical full-wave simulations are performed on both 2D and 3D models to verify the functionality and broadband characteristics of the calculated lens. Far-field radiation patterns and near-field distributions demonstrate a highly radiated directive beam when the lens is applied to a conical horn antenna.

  3. Muscle temperature gradients in humans during cold water immersion hypothermia and rewarming

    Energy Technology Data Exchange (ETDEWEB)

    Bristow, G.K.; Giesbrecht, G.G. (Univ. of Manitoba, Winnipeg (Canada) Univ. of Calgary, Alberta (Canada))

    1991-03-11

    Muscle temperature gradients have not been measured in hypothermic man. Thigh and calf muscle temperatures were measured by indwelling multisensor thermocouples (deep (D) 4.5 cm, and superficial (S) 1.5 cm beneath the skin) on five healthy male subjects immersed in 8C water for 70 minutes on two occasions. Measurements continued during 55 minutes of rewarming by two methods; either treadmill exercise (EX) or shivering (SH). Esophageal temperature (T{sub es}) was also measured. Prior to immersion, deep thigh and calf temperatures were 36.1 and 34.8C respectively and temperature gradients were similar in both thigh and calf. At the end of cooling deep thigh temperature fell 3.0C and the gradient increased to 8.1C. Corresponding values for the calf were 10.3 and 6.4C respectively. Both rewarming methods were terminated at a T{sub es} of 35.7C. EX and SH caused similar changes in thigh temperatures; deep temperature increased 2.1 and 1.9C and gradients decreased to 2.7 and 2.6C respectively. However, an increase in deep calf temperature during EX was absent during SH. During cooling, muscle blood flow would appear to be better maintained in the thigh than the calf. Thigh blood flow increases similarly during EX and SH. However, in calf, blood flow increases during EX but not SH.

  4. Non-uniform temperature gradients and thermal stresses produced ...

    Indian Academy of Sciences (India)

    The thermo-physical property variations of the workpiece are negligible. • The workpiece material is homogeneous and isotropic. • The heat flux per unit area is uniform along the azimuthal direction. • The temperature, T , depends on r, φ and t, (T = T (r, φ, t)). In the hollow sphere (inner radius, Ri,≤ r ≤ outer radius, Ro, and ...

  5. Non-uniform temperature gradients and thermal stresses produced ...

    Indian Academy of Sciences (India)

    Abstract. This work presents numerical analyses of transient temperature and thermally-induced stress distributions in a hollow steel sphere heated by a moving uniform heat source applied on a certain zenithal segment (the heated zenithal segment, H ) of its outer surface (the processed surface) under stagnant ambient.

  6. Multiple-Point Temperature Gradient Algorithm for Ring Laser Gyroscope Bias Compensation

    Directory of Open Access Journals (Sweden)

    Geng Li

    2015-11-01

    Full Text Available To further improve ring laser gyroscope (RLG bias stability, a multiple-point temperature gradient algorithm is proposed for RLG bias compensation in this paper. Based on the multiple-point temperature measurement system, a complete thermo-image of the RLG block is developed. Combined with the multiple-point temperature gradients between different points of the RLG block, the particle swarm optimization algorithm is used to tune the support vector machine (SVM parameters, and an optimized design for selecting the thermometer locations is also discussed. The experimental results validate the superiority of the introduced method and enhance the precision and generalizability in the RLG bias compensation model.

  7. The relation between temperature and concentration gradients in superfluid sup 3 He- sup 4 He solutions

    CERN Document Server

    Zadorozhko, A A; Rudavskij, E Y; Chagovets, V K; Sheshin, G A

    2003-01-01

    The temperature and concentration gradients nabla T and nabla x in a superfluid sup 3 He- sup 4 He mixture with an initial concentration 9,8 % of sup 3 He are measured in a temperature range 70-500 mK. The gradients are produced by a steady thermal flow with heating from below. It is shown that the value of nabla x/nabla T observed in the experiment is in good agreement with the theoretical model derived from the temperature and concentration dependences of osmotic pressure. The experimental data permitted us to obtain a thermal diffusion ratio of the solution responsible for the thermal diffusion coefficient.

  8. Microevolution of the photosynthetic temperature optimum in relation to the elevational complex gradient

    Science.gov (United States)

    John H. Fryer; F. Thomas Ledig

    1972-01-01

    Balsam fir seedlings were grown under uniform conditions from seed collected along an elevational gradient in the White Mountains of New Hampshire. Photosynthetic temperature optimum of the seedlings decreased with increasing elevation of the seed source. The change in temperature optimum with elevation was similar to the adiabatic lapse rate, suggesting a precise...

  9. TEMPERATURE SELECTION BY HATCHLING AND YEARLING FLORIDA RED-BELLIED TURTLES (PSEUDEMYS NELSONI) IN THERMAL GRADIENTS

    Science.gov (United States)

    We tested hatchling and yearling Florida red-bellied turtles (Pseudemys nelsoni) in laboratory thermal gradient chambers to determine if they would prefer particular temperatures. Most 1995 hatchlings selected the highest temperature zone of 27degrees C (Test 1) and 30 degrees ...

  10. Search for a critical electron temperature gradient in DIII-D L-mode discharges

    International Nuclear Information System (INIS)

    DeBoo, J.C.; Cirant, S.; Luce, T.C.; Petty, C.C.; Baker, D.R.; Greenfield, C.M.; Staebler, G.M.; Manini, A.; Ryter, F.; Austin, M.E.; Gentle, K.W.; Kinsey, J.E.

    2005-01-01

    Two experiments on DIII-D have been performed with the purpose of searching for evidence of a critical electron temperature gradient or gradient scale length. Both experiments employed off-axis EC heating to vary the local value of ∇T e /T e while holding the total heating power and thus edge temperatures constant. No evidence of an inverse critical gradient scale length, k crit , was observed in these experiments, but the existence of one cannot be ruled out by the experimental results. If k crit exists, the experimental results indicate k crit -1 at ρ = 0.45 and k crit -1 at ρ = 0.29 corresponding to a critical gradient scale length larger than 43% and 65% of the plasma minor radius, respectively. Models other than one based on k crit are also consistent with the experimental observations. (author)

  11. Range-wide latitudinal and elevational temperature gradients for the world's terrestrial birds: implications under global climate change.

    Science.gov (United States)

    La Sorte, Frank A; Butchart, Stuart H M; Jetz, Walter; Böhning-Gaese, Katrin

    2014-01-01

    Species' geographical distributions are tracking latitudinal and elevational surface temperature gradients under global climate change. To evaluate the opportunities to track these gradients across space, we provide a first baseline assessment of the steepness of these gradients for the world's terrestrial birds. Within the breeding ranges of 9,014 bird species, we characterized the spatial gradients in temperature along latitude and elevation for all and a subset of bird species, respectively. We summarized these temperature gradients globally for threatened and non-threatened species and determined how their steepness varied based on species' geography (range size, shape, and orientation) and projected changes in temperature under climate change. Elevational temperature gradients were steepest for species in Africa, western North and South America, and central Asia and shallowest in Australasia, insular IndoMalaya, and the Neotropical lowlands. Latitudinal temperature gradients were steepest for extratropical species, especially in the Northern Hemisphere. Threatened species had shallower elevational gradients whereas latitudinal gradients differed little between threatened and non-threatened species. The strength of elevational gradients was positively correlated with projected changes in temperature. For latitudinal gradients, this relationship only held for extratropical species. The strength of latitudinal gradients was better predicted by species' geography, but primarily for extratropical species. Our findings suggest threatened species are associated with shallower elevational temperature gradients, whereas steep latitudinal gradients are most prevalent outside the tropics where fewer bird species occur year-round. Future modeling and mitigation efforts would benefit from the development of finer grain distributional data to ascertain how these gradients are structured within species' ranges, how and why these gradients vary among species, and the capacity

  12. Range-wide latitudinal and elevational temperature gradients for the world's terrestrial birds: implications under global climate change.

    Directory of Open Access Journals (Sweden)

    Frank A La Sorte

    Full Text Available Species' geographical distributions are tracking latitudinal and elevational surface temperature gradients under global climate change. To evaluate the opportunities to track these gradients across space, we provide a first baseline assessment of the steepness of these gradients for the world's terrestrial birds. Within the breeding ranges of 9,014 bird species, we characterized the spatial gradients in temperature along latitude and elevation for all and a subset of bird species, respectively. We summarized these temperature gradients globally for threatened and non-threatened species and determined how their steepness varied based on species' geography (range size, shape, and orientation and projected changes in temperature under climate change. Elevational temperature gradients were steepest for species in Africa, western North and South America, and central Asia and shallowest in Australasia, insular IndoMalaya, and the Neotropical lowlands. Latitudinal temperature gradients were steepest for extratropical species, especially in the Northern Hemisphere. Threatened species had shallower elevational gradients whereas latitudinal gradients differed little between threatened and non-threatened species. The strength of elevational gradients was positively correlated with projected changes in temperature. For latitudinal gradients, this relationship only held for extratropical species. The strength of latitudinal gradients was better predicted by species' geography, but primarily for extratropical species. Our findings suggest threatened species are associated with shallower elevational temperature gradients, whereas steep latitudinal gradients are most prevalent outside the tropics where fewer bird species occur year-round. Future modeling and mitigation efforts would benefit from the development of finer grain distributional data to ascertain how these gradients are structured within species' ranges, how and why these gradients vary among

  13. Migration of liquid phase from the primary/peritectic interface in a temperature gradient

    Science.gov (United States)

    Peng, Peng; Li, XinZhong; Su, YanQing; Guo, JingJie

    2016-07-01

    The migration of the liquid droplets from the primary α/peritectic β interface at the peritectic temperature TP has been observed and analyzed in a Sn-Ni peritectic alloy. During the isothermal annealing stage of the interrupted directional solidification, a concentration gradient is established across the liquid droplets along the direction of the temperature gradient due to the temperature gradient zone melting. Simultaneous remelting/resolidification at the top/bottom of the liquid droplets by this concentration gradient have been confirmed to lead to migration of these droplets towards higher temperatures. The dependence of the migration distance of the liquid droplets on isothermal annealing time has been well predicted. Furthermore, since the lengths of the liquid droplet are not uniform along the direction of the temperature gradient, the remelting/resolidification rates which are dependent on the local morphology of liquid droplet are different at different local positions of the liquid droplets. It has been demonstrated that the morphology of the liquid droplet was also influenced by the morphologies of the liquid phase themselves. Therefore, the morphology of the liquid droplet itself changes from spherical to some kinds of irregular shapes during its migration.

  14. Theoretical analysis on the refractive-index distribution and bandwidth of gradient-index polymer optical fibers from a centrifugal field.

    Science.gov (United States)

    Wei, Ming-Hsin; Chen, Wen-Chang

    2003-04-20

    Theoretical analysis was applied to analyze the refractive-index distribution (RID) and bandwidth (BW) of gradient-index polymer optical fibers (GI POFs) prepared by a centrifugal field process. The RID of the prepared GI POF could be represented by the equation of n(r) = n1[1 - 2delta(r/alpha)g](1/2). The studied material systems were poly(hexafluoroisopropyl 2-fluoroacrylate) (PHFIP 2-FA)/dibutyl phthalate (DBP) and poly(methyl methacrylate) (PMMA)/benzyl benzoate (BEN). The RID and the BW were significantly affected by an essential parameter k, which was related to thematerial properties (density difference and molecular weight) and processing properties (rotating speed, temperature, and radius). As k increased, the characteristic constant of RID, g, decreased to a minimum and then increased sharply, owing to the separation of the polymer and the dopant. On the other hand, the relative refractive-index difference of RID, delta, increased to a steady value after k increased to a certain value. The variation of RID with k resulted in a local minimum of intermodal dispersion, and thus a maximum bandwidth was obtained. The maximum BW of the PHFIP 2-FA/DBP and PMMA/BEN systems at 1550 nm (100-m fiber length and 2-nm spectral width) for the case of k not equal to 0 were 6.7 and 3.2 Gb/s, respectively. The wavelength of light source affects the BW significantly only at k around zero because of the importance of the intramodal dispersion in this case.

  15. Investigation into boron reaction with titanium at extreme temperature gradients

    International Nuclear Information System (INIS)

    Korchagin, M.A.; Gusenko, S.N.; Aleksandrov, V.V.; Neronov, V.A.

    1981-01-01

    The mechanism of self-propagation high-temperature synthesis of titanium boride is studied using the translucent electron microscopy. Titanium interaction with boron film (approximately 1000 A thick) starts with the metal partial melting. A twozone layer of the reaction products, separating the reagents, is formed. In the zone adjacent to B, Ti 3 B 4 and fusible liquid phases are present. The second zone consists of TiB. The subsequent interaction is realized by Means of the dissolving and absorption by titanium of the layer of products during its continuous increase in boron. TiB 2 formation takes place at subsequent stages of interaction inside Ti liquid particles during their saturation by boron from the products absorbed [ru

  16. Integrated Microfibre Device for Refractive Index and Temperature Sensing

    Directory of Open Access Journals (Sweden)

    Sulaiman W. Harun

    2012-08-01

    Full Text Available A microfibre device integrating a microfibre knot resonator in a Sagnac loop reflector is proposed for refractive index and temperature sensing. The reflective configuration of this optical structure offers the advantages of simple fabrication and ease of sensing. To achieve a balance between responsiveness and robustness, the entire microfibre structure is embedded in low index Teflon, except for the 0.5–2 mm diameter microfibre knot resonator sensing region. The proposed sensor has exhibited a linear spectral response with temperature and refractive index. A small change in free spectral range is observed when the microfibre device experiences a large refractive index change in the surrounding medium. The change is found to be in agreement with calculated results based on dispersion relationships.

  17. Vegetation index anomaly response to varying lengths of drought across vegetation and climatic gradients in Hawaii

    Science.gov (United States)

    Lucas, M.; Miura, T.; Trauernicht, C.; Frazier, A. G.

    2017-12-01

    A drought which results in prolonged and extended deficit in naturally available water supply and creates multiple stresses across ecosystems is classified as an ecological drought. Detecting and understanding the dynamics and response of such droughts in tropical systems, specifically across various vegetation and climatic gradients is fairly undetermined, yet increasingly important for better understandings of the ecological effects of drought. To understanding the link between what lengths and intensities of known meteorological drought triggers detectable ecological vegetation responses, a landscape scale regression analysis evaluating the response (slope) and relationship strength (R-squared) of several cumulative SPI (standard precipitation index) lengths(1, 3, 6, 12, 18, 24, 36, 48, and 60 month), to various satellite derived monthly vegetation indices anomalies (NDVI, EVI, EVI2, and LSWI) was performed across a matrix of dominant vegetation covers (grassland, shrubland, and forest) and climatic moisture zones (arid, dry, mesic, and wet). The nine different SPI lags across these climactic and vegetation gradients was suggest that stronger relationships and steeper slopes were found in dryer climates (across all vegetation covers) and finer vegetation types (across all moisture zones). Overall NDVI, EVI and EVI2 showed the best utility in these dryer climatic zones across all vegetation types. Within arid and dry areas "best" fits showed increasing lengths of cumulative SPI were with increasing vegetation coarseness respectively. Overall these findings suggest that rainfall driven drought may have a stronger impact on the ecological condition of vegetation in water limited systems with finer vegetation types ecologically responding more rapidly to meteorological drought events than coarser woody vegetation systems. These results suggest that previously and newly documented trends of decreasing rainfall and increasing drought in Hawaiian drylands may have

  18. Direct reduction of low grade nickel laterite ore to produce ferronickel using isothermal - temperature gradient

    Science.gov (United States)

    Zulhan, Zulfiadi; Gibranata, Ian

    2017-01-01

    In this study, low grade nickel laterite ore was processed by means of isothermal-temperature gradient method to produce ferronickel nugget. The ore and coal as reductant were ground to obtain the grain size of less than 0.25 mm and 0.425 mm, respectively. Both ground laterite ore and coal were mixed, agglomerated in the form of cylindrical pellet by using press machine and then reduced at temperature of 1000°C to 1400°C in a muffle furnace. The experiments were conducted at three stages each at different temperature profile: the first stage was isothermal at 1000°C; the second stage was temperature gradient at certain heating rate from 1000 to 1400°C; and the third stage was isothermal at 1400°C. The heating rate during temperature gradient stage was varied: 6.67, 8.33 and 10°C/minute. No fluxes were added in these experiments. By addition of 10 wt% of coal into the laterite nikel ore, product of ferronickel nugget was formed with the size varies from 1-2 mm. However, by increasing the coal content, the size of ferronickel nugget was decreased to less than 0.2 mm. The observation of the samples during the heating stage showed that ferronickel nugget grew and separated from the gangue during temperature gradient stage as it achieved the temperature of 1380°C. Furthermore, the experiment results indicated that the recovery of ferronickel can be increased at lower heating rate during temperature gradient stage and longer holding time for final isothermal stage. The highest nickel recovery was obtained at a heating rate of 6.67°C/minute.

  19. Ion temperature gradient driven mode in presence of transverse velocity shear in magnetized plasmas

    DEFF Research Database (Denmark)

    Chakrabarti, N.; Juul Rasmussen, J.; Michelsen, Poul

    2005-01-01

    The effect of sheared poloidal flow on the toroidal branch of the ion temperature gradient driven mode of magnetized nonuniform plasma is studied. A novel "nonmodal" calculation is used to analyze the problem. It is shown that the transverse shear flow considerably reduced the growth of the insta......The effect of sheared poloidal flow on the toroidal branch of the ion temperature gradient driven mode of magnetized nonuniform plasma is studied. A novel "nonmodal" calculation is used to analyze the problem. It is shown that the transverse shear flow considerably reduced the growth...

  20. Studies of the Trapped Particle and Ion Temperature Gradient Instabilities in the Columbia Linear Machine.

    Science.gov (United States)

    Mathey, Olivier Henry

    In the first part of the work, the effects of weak Coulomb and neutral collisions on the collisionless curvature driven trapped particle mode are studied in the Columbia Linear Machine (CLM) (Phys. Rev. Lett. 57, 1729, (1986)). Low Coulomb collisionality yields a small stabilizing correction to the magnetohydrodynamic (MHD) collisionless mode, which scales as nu_ {rm e} using the Krook model, and nu_{rm ec}^ {1/2} using a Lorentz pitch angle operator. In higher collisionality regimes, both models tend to yield similar scalings. In view of relative high neutral collisionality in CLM, both types of collisionality are then combined, modeling neutral collisions with the conserving Krook and Coulomb collisions with a Lorentz model. The dispersion relation is then integrated over velocity space. This combination yields results in very good accord with the available experimental data. The Ion Temperature Gradient Instability is then investigated. It is shown that anisotropy in gradient has a substantial effect on the ion temperature gradient driven mode. A gradient in the parallel temperature is needed for an instability to occur, and a gradient in the perpendicular temperature gradient further enhances the instability indirectly as long as the frequency of the mode is near ion resonance. The physical reason for this important role difference is presented. The Columbia Linear Machine is being redesigned to produce and identify the ion temperature gradient driven eta_ {rm i} mode. Using the expected parameters, we have developed detailed predictions of the mode characteristics in the CLM. Strong multi mode instabilities are expected. As the ion parallel and perpendicular ion temperature gradients are expected to differ significantly, we differentiate between eta_{ rm iparallel} and eta _{rm i|} and explore the physical differences between them, which leads to a scheme for stabilization of the mode. Lastly, since all gradients are significantly variable over the expected

  1. Evolving ecological networks and the emergence of biodiversity patterns across temperature gradients.

    Science.gov (United States)

    Stegen, James C; Ferriere, Regis; Enquist, Brian J

    2012-03-22

    In ectothermic organisms, it is hypothesized that metabolic rates mediate influences of temperature on the ecological and evolutionary processes governing biodiversity. However, it is unclear how and to what extent the influence of temperature on metabolism scales up to shape large-scale diversity patterns. In order to clarify the roles of temperature and metabolism, new theory is needed. Here, we establish such theory and model eco-evolutionary dynamics of trophic networks along a broad temperature gradient. In the model temperature can influence, via metabolism, resource supply, consumers' vital rates and mutation rate. Mutation causes heritable variation in consumer body size, which diversifies and governs consumer function in the ecological network. The model predicts diversity to increase with temperature if resource supply is temperature-dependent, whereas temperature-dependent consumer vital rates cause diversity to decrease with increasing temperature. When combining both thermal dependencies, a unimodal temperature-diversity pattern evolves, which is reinforced by temperature-dependent mutation rate. Studying coexistence criteria for two consumers showed that these outcomes are owing to temperature effects on mutual invasibility and facilitation. Our theory shows how and why metabolism can influence diversity, generates predictions useful for understanding biodiversity gradients and represents an extendable framework that could include factors such as colonization history and niche conservatism.

  2. Development of lichen response indexes using a regional gradient modeling approach for large-scale monitoring of forests

    Science.gov (United States)

    Susan Will-Wolf; Peter Neitlich

    2010-01-01

    Development of a regional lichen gradient model from community data is a powerful tool to derive lichen indexes of response to environmental factors for large-scale and long-term monitoring of forest ecosystems. The Forest Inventory and Analysis (FIA) Program of the U.S. Department of Agriculture Forest Service includes lichens in its national inventory of forests of...

  3. Wide-field schematic eye models with gradient-index lens.

    Science.gov (United States)

    Goncharov, Alexander V; Dainty, Chris

    2007-08-01

    We propose a wide-field schematic eye model, which provides a more realistic description of the optical system of the eye in relation to its anatomical structure. The wide-field model incorporates a gradient-index (GRIN) lens, which enables it to fulfill properties of two well-known schematic eye models, namely, Navarro's model for off-axis aberrations and Thibos's chromatic on-axis model (the Indiana eye). These two models are based on extensive experimental data, which makes the derived wide-field eye model also consistent with that data. A mathematical method to construct a GRIN lens with its iso-indicial contours following the optical surfaces of given asphericity is presented. The efficiency of the method is demonstrated with three variants related to different age groups. The role of the GRIN structure in relation to the lens paradox is analyzed. The wide-field model with a GRIN lens can be used as a starting design for the eye inverse problem, i.e., reconstructing the optical structure of the eye from off-axis wavefront measurements. Anatomically more accurate age-dependent optical models of the eye could ultimately help an optical designer to improve wide-field retinal imaging.

  4. Prediction of Pressure and Temperature Gradients in the Tokamak Plasma Edge

    Science.gov (United States)

    Stacey, W. M.

    2017-10-01

    An extended plasma fluid theory that takes into account kinetic ion orbit loss and electromagnetic forces in the continuity, momentum and energy balances, as well as atomic physics and radiation, has been used to reveal the explicit dependence of the temperature and pressure gradients in the tokamak edge plasma on these various factors. Combining the ion radial momentum balance and the Ohm's Law expression for Er reveals the dependence of the radial ion pressure gradient on VxB forces driven by radial particle fluxes, which depend on ion orbit loss, and other factors. The strong temperature gradients measured in the H-mode edge pedestal could certainly be associated with radiative and atomic physics edge cooling effects and the strong reduction in ion and energy fluxes due to ion orbit loss, as well as to the possible reductions in thermal diffusivities that is usually assumed to be the cause. Work supported by USDOE under DE-FC02-04ER54698.

  5. A new burn severity index based on land surface temperature and enhanced vegetation index

    Science.gov (United States)

    Zheng, Zhong; Zeng, Yongnian; Li, Songnian; Huang, Wei

    2016-03-01

    Remotely sensed data have already become one of the major resources for estimating the burn severity of forest fires. Recently, Land Surface Temperature (LST) calculated from remote sensing data has been considered as a potential indicator for estimating burn severity. However, using the LST-based index alone may not be sufficient for estimating burn severity in the areas that has unburned trees and vegetation. In this paper, a new index is proposed by considering LST and enhanced vegetation index (EVI) together. The accuracy of the proposed index was evaluated by using 264 composite burn index (CBI) field sample data of the five fires across different regional eco-type areas in the Western United States. Results show that the proposed index performed equally well for post-fire areas covered with both sparse vegetation and dense vegetation and relatively better than some commonly-used burn severity indices. This index also has high potential of estimating burn severity if more accurate surface temperatures can be obtained in the future.

  6. Experimental and numerical determination of temperature gradients for a single tube alkali metal thermal-to-electric converter cell

    Science.gov (United States)

    Wright, S.

    2001-01-01

    This paper presents the results from the experimental and numerical determination of shell temperature gradients for a single tube AMTEC cell evaluated under simulated deep space operating conditions.

  7. PHYSIOLOGICAL RESPONSES OF ECKLONIA RADIATA (LAMINARIALES) TO A LATITUDINAL GRADIENT IN OCEAN TEMPERATURE

    DEFF Research Database (Denmark)

    Stæhr, Peter Anton; Wernberg, Thomas

    2009-01-01

    and nutrients decreased with increasing ocean temperature. Concurrently, a number of gradual changes in the metabolic balance of E. radiata took place along the latitudinal gradient. Warm-acclimatized kelps had 50% lower photosynthetic rates and 90% lower respiration rates at the optimum temperature than did...... cool-acclimatized kelps. A reduction in temperature sensitivity was also observed as a reduction in Q10-values from cool- to warm-acclimatized kelps for gross photosynthesis (Q10: 3.35 to 1.45) and respiration (Q10: 3.82 to 1.65). Respiration rates were more sensitive to increasing experimental......We tested the ability of sporophytes of a small kelp, Ecklonia radiata (C. Agardh) J. Agardh, to adjust their photosynthesis, respiration, and cellular processes to increasingly warm ocean climates along a latitudinal gradient in ocean temperature (~4°C). Tissue concentrations of pigment...

  8. Effects of temperature-gradient-induced damage of zirconia metering nozzles

    Science.gov (United States)

    Zhao, Liang; Xue, Qun-hu

    2017-09-01

    The effects of temperature-gradient-induced damage of zirconia metering nozzles were investigated through analysis of the phase composition and microstructure of nozzle samples. The analysis was carried out using X-ray diffraction and scanning electron microscopy after the samples were subjected to a heat treatment based on the temperatures of the affected, transition, and original layers of zirconia metering nozzles during the continuous casting of steel. The results showed that, after heat treatment at 1540, 1410, or 1300°C for a dwell time of 5 h, the monoclinic zirconia phase was gradually stabilized with increasing heat-treatment temperature. Moreover, a transformation to the cubic zirconia phase occurred, accompanied by grain growth, which illustrates that the temperature gradient in zirconia metering nozzles affects the mineral composition and microstructure of the nozzles and accelerates damage, thereby deteriorating the quality and service life of the nozzles.

  9. Acoustic emission of quasi-isotropic rock samples initiated by temperature gradients

    Czech Academy of Sciences Publication Activity Database

    Vasin, R.N.; Nikitin, A. N.; Lokajíček, Tomáš; Rudajev, Vladimír

    2006-01-01

    Roč. 42, č. 10 (2006), s. 815-823 ISSN 1069-3513 Institutional research plan: CEZ:AV0Z30460519; CEZ:AV0Z30130516 Keywords : seismoacoustic emission * rock sample * temperature gradient Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.092, year: 2006

  10. Unstable ion-temperature-gradient modes in the Wendelstein 7-X stellarator configuration

    Science.gov (United States)

    Rafiq, T.; Kleiber, R.; Nadeem, M.; Persson, M.

    2002-12-01

    The linear stability of the ion-temperature-gradient modes (ITG) in the electrostatic limit is examined in the short wavelength region by using a two fluid reactive model in fully three-dimensional Wendelstein 7-X (W7-X) stellarator [G. Grieger et al., Plasma Physics and Controlled Nuclear Fusion Research, 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525] geometry. The spectrum of stable and unstable modes and their real frequencies and eigenfunctions are calculated. The effects of density gradients, temperature gradients, temperature ratios, wavevector, ballooning angle, curvature and local magnetic shear on the ITG mode are also investigated. The frequency and growth rate of the most unstable ITG mode is calculated and visualized for a specific magnetic flux surface. For the equilibrium under investigation both localized and extended eigenmodes are found. The effect of small and large temperature ratios, small and large density gradients as well as large local magnetic shear are all found to be stabilizing. The highest growth rates are found at the outer part of the surface where the local magnetic shear is small and normal curvature is unfavorable.

  11. Convective cells of internal gravity waves in the earth's atmosphere with finite temperature gradient

    Directory of Open Access Journals (Sweden)

    O. Onishchenko

    2013-03-01

    Full Text Available In this paper, we have investigated vortex structures (e.g. convective cells of internal gravity waves (IGWs in the earth's atmosphere with a finite vertical temperature gradient. A closed system of nonlinear equations for these waves and the condition for existence of solitary convective cells are obtained. In the atmosphere layers where the temperature decreases with height, the presence of IGW convective cells is shown. The typical parameters of such structures in the earth's atmosphere are discussed.

  12. Development of the CARS method for measurement of pressure and temperature gradients in centrifuges

    International Nuclear Information System (INIS)

    Zeltmann, A.H.; Valentini, J.J.

    1983-12-01

    These experiments evaluated the feasibility of applying the CARS technique to the measurement of UF 6 concentrations and pressure gradients in a gas centrifuge. The resultant CARS signals were properly related to system parameters as suggested by theory. The results have been used to guide design of an apparatus for making CARS measurements in a UF 6 gas centrifuge. Ease of measurement is expected for pressures as low as 0.1 torr. Temperature gradients can be measured by this technique with changes in the data acquisition method. 16 references, 8 figures, 2 tables

  13. On the physics of the pressure and temperature gradients in the edge of tokamak plasmas

    Science.gov (United States)

    Stacey, Weston M.

    2018-04-01

    An extended plasma fluid theory including atomic physics, radiation, electromagnetic and themodynamic forces, external sources of particles, momentum and energy, and kinetic ion orbit loss is employed to derive theoretical expressions that display the role of the various factors involved in the determination of the pressure and temperature gradients in the edge of tokamak plasmas. Calculations for current experiments are presented to illustrate the magnitudes of various effects including strong radiative and atomic physics edge cooling effects and strong reduction in ion particle and energy fluxes due to ion orbit loss in the plasma edge. An important new insight is the strong relation between rotation and the edge pressure gradient.

  14. Large polarization gradients and temperature-stable responses in compositionally-graded ferroelectrics

    Science.gov (United States)

    Damodaran, Anoop R.; Pandya, Shishir; Qi, Yubo; Hsu, Shang-Lin; Liu, Shi; Nelson, Christopher; Dasgupta, Arvind; Ercius, Peter; Ophus, Colin; Dedon, Liv R.; Agar, Josh C.; Lu, Hongling; Zhang, Jialan; Minor, Andrew M.; Rappe, Andrew M.; Martin, Lane W.

    2017-05-01

    A range of modern applications require large and tunable dielectric, piezoelectric or pyroelectric response of ferroelectrics. Such effects are intimately connected to the nature of polarization and how it responds to externally applied stimuli. Ferroelectric susceptibilities are, in general, strongly temperature dependent, diminishing rapidly as one transitions away from the ferroelectric phase transition (TC). In turn, researchers seek new routes to manipulate polarization to simultaneously enhance susceptibilities and broaden operational temperature ranges. Here, we demonstrate such a capability by creating composition and strain gradients in Ba1-xSrxTiO3 films which result in spatial polarization gradients as large as 35 μC cm-2 across a 150 nm thick film. These polarization gradients allow for large dielectric permittivity with low loss (εr~775, tan δ<0.05), negligible temperature-dependence (13% deviation over 500 °C) and high-dielectric tunability (greater than 70% across a 300 °C range). The role of space charges in stabilizing polarization gradients is also discussed.

  15. Plasma membrane temperature gradients and multiple cell permeabilization induced by low peak power density femtosecond lasers

    Directory of Open Access Journals (Sweden)

    Allen L. Garner

    2016-03-01

    Full Text Available Calculations indicate that selectively heating the extracellular media induces membrane temperature gradients that combine with electric fields and a temperature-induced reduction in the electropermeabilization threshold to potentially facilitate exogenous molecular delivery. Experiments by a wide-field, pulsed femtosecond laser with peak power density far below typical single cell optical delivery systems confirmed this hypothesis. Operating this laser in continuous wave mode at the same average power permeabilized many fewer cells, suggesting that bulk heating alone is insufficient and temperature gradients are crucial for permeabilization. This work suggests promising opportunities for a high throughput, low cost, contactless method for laser mediated exogenous molecule delivery without the complex optics of typical single cell optoinjection, for potential integration into microscope imaging and microfluidic systems.

  16. Ultraviolet irradiation and gradient temperature assisted autolysis for protein recovery from shrimp head waste.

    Science.gov (United States)

    Cao, Wenhong; Tan, Caiyun; Zhan, Xiaojian; Li, Huiyi; Zhang, Chaohua

    2014-12-01

    A novel autolysis method using ultraviolet (UV) irradiation and gradient temperature was investigated to efficiently recover proteins from the head of the shrimp Penaeus vannamei. The proteolytic activity of shrimp head subjected to 30W UV irradiation for 20 min was increased by 62%, compared with that of untreated samples. After irradiation, the enzymes remained active across a wide range of temperatures (45-60°C) and pH (7-10). An orthogonal design was used to optimize autolysis condition. After 5h autolysis, protein recovery from the UV-heat treated samples was up to 92.1%. These results indicate the potential of using UV irradiation in combination with gradient temperatures to improve recovery of proteins from shrimp head waste. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  17. Coral record of southeast Indian Ocean marine heatwaves with intensified Western Pacific temperature gradient

    Science.gov (United States)

    Zinke, J.; Hoell, A.; Lough, J. M.; Feng, M.; Kuret, A. J.; Clarke, H.; Ricca, V.; Rankenburg, K.; McCulloch, M. T.

    2015-10-01

    Increasing intensity of marine heatwaves has caused widespread mass coral bleaching events, threatening the integrity and functional diversity of coral reefs. Here we demonstrate the role of inter-ocean coupling in amplifying thermal stress on reefs in the poorly studied southeast Indian Ocean (SEIO), through a robust 215-year (1795-2010) geochemical coral proxy sea surface temperature (SST) record. We show that marine heatwaves affecting the SEIO are linked to the behaviour of the Western Pacific Warm Pool on decadal to centennial timescales, and are most pronounced when an anomalously strong zonal SST gradient between the western and central Pacific co-occurs with strong La Niña's. This SST gradient forces large-scale changes in heat flux that exacerbate SEIO heatwaves. Better understanding of the zonal SST gradient in the Western Pacific is expected to improve projections of the frequency of extreme SEIO heatwaves and their ecological impacts on the important coral reef ecosystems off Western Australia.

  18. Dose gradient analyses in linac-based intracranial stereotactic radiosurgery using paddick's gradient index. Consideration of the optimal method for plan evaluation

    International Nuclear Information System (INIS)

    Ohtakara, Kazuhiro; Hayashi, Shinya; Hoshi, Hiroaki

    2011-01-01

    The objective of our study was to describe the dose gradient characteristics of Linac-based stereotactic radiosurgery using Paddick's gradient index (GI) and to elucidate the factors influencing the GI value. Seventy-three plans for brain metastases using the dynamic conformal arcs were reviewed. The GI values were calculated at the 80% and 90% isodose surfaces (IDSs) and at the different target coverage IDSs (D99, D95, D90, and D85). The GI values significantly decreased as the target coverage of the reference IDS increased (the percentage of the IDS decreased). There was a significant inverse correlation between the GI values and target volume. The plans generated with the addition of a 1-mm leaf margin had worse GI values both at the D99 and D95 relative to those without leaf margin. The number and arrangement of arcs also affected the GI value. The GI values are highly sensitive to the IDS selection variability for dose prescription or evaluation, the target volume, and the planning method. To objectively compare the quality of dose gradient between rival plans, it would be preferable to employ the GI defined at the reference IDS indicating the specific target coverage (exempli gratia (e.g.), D95), irrespective of the intended marginal dose. The modified GI (mGI), defined in this study, substituting the denominator of the original GI with the target volume, would be useful to compensate for the false superior GI value in cases of target over-coverage with the reference IDS and to objectively evaluate the dose gradient outside the target boundary. (author)

  19. Evaluation of Thermal Stability of RNA Nanoparticles by Temperature Gradient Gel Electrophoresis (TGGE) in Native Condition.

    Science.gov (United States)

    Benkato, Kheiria; O'Brien, Benjamin; Bui, My N; Jasinski, Daniel L; Guo, Peixuan; Khisamutdinov, Emil F

    2017-01-01

    Temperature gradient gel electrophoresis (TGGE) is a powerful tool used to analyze the thermal stabilities of nucleic acids. While TGGE is a decades-old technique, it has recently gained favor in the field of RNA nanotechnology, notably in assessing the thermal stabilities of RNA nanoparticles (NPs). With TGGE, an electrical current and a linear temperature gradient are applied simultaneously to NP-loaded polyacrylamide gel, separating the negatively charged NPs based on their thermal behavior (a more stable RNA complex will remain intact through higher temperature ranges). The linear temperature gradient can be set either perpendicular or parallel to the electrical current, as either will make the NPs undergo a transition from native to denatured conformations. Often, the melting transition is influenced by sequence variations, secondary/tertiary structures, concentrations, and external factors such as the presence of a denaturing agent (e.g., urea), the presence of monovalent or divalent metal ions, and the pH of the solvent. In this chapter, we describe the experimental setup and the analysis of the thermal stability of RNA NPs in native conditions using a modified version of a commercially available TGGE system.

  20. [The temperature and temperature gradients distribution in the rabbit body thermophysical model with evaporation of moisture from its surface].

    Science.gov (United States)

    Rumiantsev, G V

    2004-04-01

    On created in laboratory heat-physical model of a rabbit body reflecting basic heat-physical parameters of the body such as: weight, size of a relative surface, heat absorption and heat conduction, heat capacity etc., a change of radial distribution of temperature and size was found across a superficial layer of evaporation of water from its surface, that simulates sweating, with various ratio of environmental temperature and capacity of electrical heater simulating heat production in animal. The experiments have shown that with evaporation of moisture from a surface of model in all investigated cases, there is an increase of superficial layer of body of a temperature gradient and simultaneous decrease of temperature of a model inside and on the surface. It seems that, with evaporation of a moisture from a surface of a body, the size of a temperature gradient in a thin superficial layer dependent in our experiments on capacity for heat production and environmental temperature, is increased and can be used in a live organism for definition of change in general heat content of the body with the purpose of maintenance of its thermal balance with environment.

  1. Threshold for the destabilisation of the ion-temperature-gradient mode in magnetically confined toroidal plasmas

    Science.gov (United States)

    Zocco, A.; Xanthopoulos, P.; Doerk, H.; Connor, J. W.; Helander, P.

    2018-02-01

    The threshold for the resonant destabilisation of ion-temperature-gradient (ITG) driven instabilities that render the modes ubiquitous in both tokamaks and stellarators is investigated. We discover remarkably similar results for both confinement concepts if care is taken in the analysis of the effect of the global shear . We revisit, analytically and by means of gyrokinetic simulations, accepted tokamak results and discover inadequacies of some aspects of their theoretical interpretation. In particular, for standard tokamak configurations, we find that global shear effects on the critical gradient cannot be attributed to the wave-particle resonance destabilising mechanism of Hahm & Tang (Phys. Plasmas, vol. 1, 1989, pp. 1185-1192), but are consistent with a stabilising contribution predicted by Biglari et al. (Phys. Plasmas, vol. 1, 1989, pp. 109-118). Extensive analytical and numerical investigations show that virtually no previous tokamak theoretical predictions capture the temperature dependence of the mode frequency at marginality, thus leading to incorrect instability thresholds. In the asymptotic limit , where is the rotational transform, and such a threshold should be solely determined by the resonant toroidal branch of the ITG mode, we discover a family of unstable solutions below the previously known threshold of instability. This is true for a tokamak case described by a local local equilibrium, and for the stellarator Wendelstein 7-X, where these unstable solutions are present even for configurations with a small trapped-particle population. We conjecture they are of the Floquet type and derive their properties from the Fourier analysis of toroidal drift modes of Connor & Taylor (Phys. Fluids, vol. 30, 1987, pp. 3180-3185), and to Hill's theory of the motion of the lunar perigee (Acta Math., vol. 8, 1886, pp. 1-36). The temperature dependence of the newly determined threshold is given for both confinement concepts. In the first case, the new temperature-gradient

  2. Vortex breakdown control by adding near-axis swirl and temperature gradients.

    Science.gov (United States)

    Herrada, Miguel Angel; Shtern, Vladimir

    2003-10-01

    Vortex breakdown (VB) is an intriguing effect of practical and fundamental interest, occurring, e.g., in tornadoes, above delta-wing aircraft, and in vortex devices. Depending on application, VB is either beneficiary or harmful and therefore requires a proper control. This study shows that VB can be efficiently controlled by a combination of additional near-axis swirl and heat. To explore the underlying mechanism, we address a flow in a cylindrical container driven by a rotating bottom disk. This model flow has been extensively studied being well suited for understanding both the VB mechanism and its control. Our numerical analysis explains experimentally observed effects of control corotation and counter-rotation (with no temperature gradient) and reveals some flaws of dye visualization. An important feature found is that a moderate negative (positive) axial gradient of temperature can significantly enforce (diminish) the VB enhancement by the counter-rotation. A strong positive temperature gradient stimulates the centrifugal instability and time oscillations in the flow with counter-rotation. An efficient time-evolution code for axisymmetric compressible flows has facilitated the numerical study.

  3. On the dynamics of large-scale structures in electron temperature gradient turbulence

    International Nuclear Information System (INIS)

    Holland, C.; Diamond, P.H.

    2005-01-01

    The electron temperature gradient mode has been proposed to be a source of experimentally relevant electron thermal transport, via a variety of non-linear phenomena such as the generation of streamers. The question of streamer stability and saturation is revisited, with the effects of geometry and perturbation stability highlighted. It is shown that the streamer saturation level is not determined by the balance of Kelvin-Helmholtz rate vs. linear growth rate, but by balancing the non-linear Kelvin-Helmholtz drive against damping mechanisms of the Kelvin-Helmholtz perturbation, suggesting a significantly lower streamer saturation level. In addition, random shear suppression of ETG turbulence by drift-ion temperature gradient (DITG) modes is studied, and it is found that streamers will be sensitive to shearing by short-wavelength DITG modes. An additional interaction mechanism, modulations of the electron temperature gradient induced by the DITG turbulence, is considered and shown to be quite significant. These considerations are used to motivate a discussion of the requirements for a credible theory of streamer transport

  4. Numerical simulation of ion temperature gradient driven modes in the presence of ion-ion collisions

    International Nuclear Information System (INIS)

    Xu, X.Q.

    1990-08-01

    Ion temperature gradient driven modes in the presence of ion-ion collisions in a toroidal geometry with trapped ions have been studied by using a 1 2/2 d linearized gyro-kinetic particle simulation code in the electrostatic limit. The purpose of the investigation is to try to understand the physics of flat density discharges, in order to test the marginal stability hypothesis. Results giving threshold conditions of L Ti /R 0 , an upper bound on k χ , and linear growth rates and mode frequencies over all wavelengths for the collisionless ion temperature gradient driven modes are obtained. The behavior of ion temperature gradient driven instabilities in the transition from slab to toroidal geometry, with trapped ions, is shown. A Monte Carlo scheme for the inclusion of ion-ion collisions, in which ions can undergo Coulomb collisional dynamical friction, velocity space diffusion and random walk of guiding centers, has been constructed. The effects of ion-ion collisions on the long wave length limit of the ion modes is discussed. 44 refs., 12 figs

  5. Temperature-Dependent Conformations of Model Viscosity Index Improvers

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Uma Shantini; Cosimbescu, Lelia; Martini, Ashlie

    2015-05-01

    Lubricants are comprised of base oils and additives where additives are chemicals that are deliberately added to the oil to enhance properties and inhibit degradation of the base oils. Viscosity index (VI) improvers are an important class of additives that reduce the decline of fluid viscosity with temperature [1], enabling optimum lubricant performance over a wider range of operating temperatures. These additives are typically high molecular weight polymers, such as, but not limited to, polyisobutylenes, olefin copolymer, and polyalkylmethacrylates, that are added in concentrations of 2-5% (w/w). Appropriate polymers, when dissolved in base oil, expand from a coiled to an uncoiled state with increasing temperature [2]. The ability of VI additives to increase their molar volume and improve the temperature-viscosity dependence of lubricants suggests there is a strong relationship between molecular structure and additive functionality [3]. In this work, we aim to quantify the changes in polymer size with temperature for four polyisobutylene (PIB) based molecular structures at the nano-scale using molecular simulation tools. As expected, the results show that the polymers adopt more conformations at higher temperatures, and there is a clear indication that the expandability of a polymer is strongly influenced by molecular structure.

  6. Temperature dependence of the electric field gradient in AgPd and AgPt alloys

    International Nuclear Information System (INIS)

    Krolas, K.

    1977-07-01

    The measurements of temperature dependence of the electric field gradient (EFG) on 111 Cd nuclei in AgPd and AgPt alloys were performed using the time dependent perturbed angular correlation method. The EFG caused by impurities distributed in further coordination shells decrease stronaer with increasing temperature than the EFG due to single impurity being the nearest neighbour of the probe atom. These results were explained assuming different modes of thermal vibrations of single impurity atoms and impurity complexes in silver host lattice. (author)

  7. Intensification of the meridional temperature gradient in the Great Barrier Reef following the Last Glacial Maximum

    OpenAIRE

    Felis, Thomas; McGregor, Helen V.; Linsley, Braddock K.; Tudhope, Alexander; Gagan, M. K.; Suzuki, Atsushi; Inoue, Mayuri; Thomas, Alex; Esat, T. M.; Thompson, William G.; Tiwari, Manish; Potts, Don; Mudelsee, Manfred; Yokoyama, Y.; Webster, Jody M.

    2014-01-01

    Tropical south-western Pacific temperatures are of vital importance to the Great Barrier Reef (GBR), but the role of sea surface temperatures (SSTs) in the growth of the GBR since the Last Glacial Maximum remains largely unknown. Here we present records of Sr/Ca and d18O for Last Glacial Maximum and deglacial corals that show a considerably steeper meridional SST gradient than the present day in the central GBR. We find a 1–2 C larger temperaturedecrease between 17 and 20S about 20,000 to 13,...

  8. A theoretical and numerical investigation of travelling wave induction microfluidic pumping in a temperature gradient

    International Nuclear Information System (INIS)

    Liu, Weiyu; Shao, Jinyou; Ding, Yucheng; Ren, Yukun; Jiang, Hongyuan

    2014-01-01

    The phenomenon of induction electrohydrodynamics (EHD) has recently received great attention as a promising driving mechanism for microfluidic pumping due to its miniaturization capability. To obtain a high working efficiency of induction micropumps, a vertical temperature gradient can be imposed along the depth of a pump channel. A travelling wave (TW) potential signal propagating along an electrode array at the channel substrate interacts with this conductive heat flux, resulting in a local free charge distribution inside the bulk fluid. The induced charge wave lags behind the voltage wave in the spatial phase, and this out-of-phase polarization based pumping effect exhibits a single structural dispersion at charge relaxation frequency of the dielectric system. The classical model of electrothermal flow has always been used to numerically obtain the flow field of TW pumps, but the effect of its small temperature gradient approximation has rarely been investigated. In this study, an enhanced treatment for induction EHD modelling is developed, in which the deflection of potential contour lines caused by large temperature gradients is successfully characterized by an advection–diffusion equation, and a more accurate expression of electrothermal body force is derived and introduced to fluid dynamics as a source term of electrical origin. For the calculation of a repulsion-type induction micropump, although both models present similar results in a small thermal gradient, the enhanced one can provide more exact frequency-dependence of the pump performance and spatial distribution of electrostatic force as well as the resulting velocity profile in an excessive heat flux. Furthermore, a model extension for Joule heating induced TW pumping is also presented, and surprisingly matches the unexpected nonlinear fluid flow behaviour at higher conductivities as reported in a pioneering literature. These results can provide valuable insights into induction pumping of lab

  9. Regional-scale directional changes in abundance of tree species along a temperature gradient in Japan.

    Science.gov (United States)

    Suzuki, Satoshi N; Ishihara, Masae I; Hidaka, Amane

    2015-09-01

    Climate changes are assumed to shift the ranges of tree species and forest biomes. Such range shifts result from changes in abundances of tree species or functional types. Owing to global warming, the abundance of a tree species or functional type is expected to increase near the colder edge of its range and decrease near the warmer edge. This study examined directional changes in abundance and demographic parameters of forest trees along a temperature gradient, as well as a successional gradient, in Japan. Changes in the relative abundance of each of four functional types (evergreen broad-leaved, deciduous broad-leaved, evergreen temperate conifer, and evergreen boreal conifer) and the demography of each species (recruitment rate, mortality, and population growth rate) were analyzed in 39 permanent forest plots across the Japanese archipelago. Directional changes in the relative abundance of functional types were detected along the temperature gradient. Relative abundance of evergreen broad-leaved trees increased near their colder range boundaries, especially in secondary forests, coinciding with the decrease in deciduous broad-leaved trees. Similarly, relative abundance of deciduous broad-leaved trees increased near their colder range boundaries, coinciding with the decrease in boreal conifers. These functional-type-level changes were mainly due to higher recruitment rates and partly to the lower mortality of individual species at colder sites. This is the first report to show that tree species abundances in temperate forests are changing directionally along a temperature gradient, which might be due to current or past climate changes as well as recovery from past disturbances. © 2015 John Wiley & Sons Ltd.

  10. Counter-gradient variation in respiratory performance of coral reef fishes at elevated temperatures.

    Directory of Open Access Journals (Sweden)

    Naomi M Gardiner

    Full Text Available The response of species to global warming depends on how different populations are affected by increasing temperature throughout the species' geographic range. Local adaptation to thermal gradients could cause populations in different parts of the range to respond differently. In aquatic systems, keeping pace with increased oxygen demand is the key parameter affecting species' response to higher temperatures. Therefore, respiratory performance is expected to vary between populations at different latitudes because they experience different thermal environments. We tested for geographical variation in respiratory performance of tropical marine fishes by comparing thermal effects on resting and maximum rates of oxygen uptake for six species of coral reef fish at two locations on the Great Barrier Reef (GBR, Australia. The two locations, Heron Island and Lizard Island, are separated by approximately 1200 km along a latitudinal gradient. We found strong counter-gradient variation in aerobic scope between locations in four species from two families (Pomacentridae and Apogonidae. High-latitude populations (Heron Island, southern GBR performed significantly better than low-latitude populations (Lizard Island, northern GBR at temperatures up to 5°C above average summer surface-water temperature. The other two species showed no difference in aerobic scope between locations. Latitudinal variation in aerobic scope was primarily driven by up to 80% higher maximum rates of oxygen uptake in the higher latitude populations. Our findings suggest that compensatory mechanisms in high-latitude populations enhance their performance at extreme temperatures, and consequently, that high-latitude populations of reef fishes will be less impacted by ocean warming than will low-latitude populations.

  11. An Investigation into the Effects of Temperature Gradient on the Soil Water–Salt Transfer with Evaporation

    Directory of Open Access Journals (Sweden)

    Rong Ren

    2017-06-01

    Full Text Available Temperature gradients exist in the field under brackish water irrigation conditions, especially in northern semi–arid areas of China. Although there are many investigators dedicated to studying the mechanism of brackish water irrigation and the effect of brackish water irrigation on crops, there are fewer investigations of the effects of temperature gradient on the water–salt transport. Based on the combination of a physical experiment and a mathematical model, this study was conducted to: (a build a physical model and observe the redistribution of soil water–heat–salt transfer; (b develop a mathematical model focused on the influence of a temperature gradient on soil water and salt redistribution based on the physical model and validate the proposed model using the measured data; and (c analyze the effects of the temperature gradient on the soil water–salt transport by comparing the proposed model with the traditional water–salt model in which the effects of temperature gradient on the soil water–salt transfer are neglected. Results show that the soil temperature gradient has a definite influence on the soil water–salt migration. Moreover, the effect of temperature gradient on salt migration was greater than that of water movement.

  12. THE MAXIMUM EFFECT OF DEEP LAKES ON TEMPERATURE PROFILES – DETERMINATION OF THE GEOTHERMAL GRADIENT

    Directory of Open Access Journals (Sweden)

    Eppelbaum L. V.

    2009-07-01

    Full Text Available Understanding the climate change processes on the basis of geothermal observations in boreholes is an important and at the same time high-intricate problem. Many non-climatic effects could cause changes in ground surface temperatures. In this study we investigate the effects of deep lakes on the borehole temperature profilesobserved within or in the vicinity of the lakes. We propose a method based on utilization of Laplace equation with nonuniform boundary conditions. The proposed method makes possible to estimate the maximum effect of deep lakes (here the term "deep lake" means that long term mean annual temperature of bottom sediments can beconsidered as a constant value on the borehole temperature profiles. This method also allows one to estimate an accuracy of the determination of the geothermal gradient.

  13. Low temperature magnetic behaviour of glass-covered magnetic microwires with gradient nanocrystalline microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, I. G.; Hernando, A.; Marín, P. [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, P.O. Box 155 las Rozas, Madrid 28230 (Spain)

    2014-01-21

    Slow nanocrystallization driving dynamics can be affected by the combination of two factors: sample residual stresses and sample geometry. This effect is evidenced at the initial stages of nanocrystallization of amorphous CoFeSiBCuNb magnetic microwires. Transmission electron microscopy observations indicate how crystallization at temperatures between 730 and 780 K results in a graded microstructure where the crystallization at the surface skin of the microwire, which remains almost amorphous, differs from that of the middle, where elongated grains are observed, and inner regions. However, samples annealed at higher temperatures present a homogeneous microstructure. The effect of gradient microstructure on magnetic properties has been also analyzed and a loss of bistable magnetic behaviour at low temperatures, from that obtained in the amorphous and fully nanocrystallized sample, has been observed and ascribed to changes in sign of magnetostriction for measuring temperatures below 100 K.

  14. Circulatory osmotic desalination driven by a mild temperature gradient based on lower critical solution temperature (LCST) phase transition materials.

    Science.gov (United States)

    Mok, Yeongbong; Nakayama, Daichi; Noh, Minwoo; Jang, Sangmok; Kim, Taeho; Lee, Yan

    2013-11-28

    Abrupt changes in effective concentration and osmotic pressure of lower critical solution temperature (LCST) mixtures facilitate the design of a continuous desalination method driven by a mild temperature gradient. We propose a prototype desalination system by circulating LCST mixtures between low and high temperature (low T and high T) units. Water molecules could be drawn from a high-salt solution to the LCST mixture through a semipermeable membrane at a temperature lower than the phase transition temperature, at which the effective osmotic pressure of the LCST mixture is higher than the high-salt solution. After transfer of water to the high T unit where the LCST mixture is phase-separated, the water-rich phase could release the drawn water into a well-diluted solution through the second membrane due to the significant decrease in effective concentration. The solute-rich phase could be recovered in the low T unit via a circulation process. The molar mass, phase transition temperature, and aqueous solubility of the LCST solute could be tuneable for the circulatory osmotic desalination system in which drawing, transfer, release of water, and the separation and recovery of the solutes could proceed simultaneously. Development of a practical desalination system that draws water molecules directly from seawater and produces low-salt water with high purity by mild temperature gradients, possibly induced by sunlight or waste heat, could be attainable by a careful design of the molecular structure and combination of the circulatory desalination systems based on low- and high-molar-mass LCST draw solutes.

  15. Tiny optical fiber temperature sensor based on temperature-dependent refractive index of zinc telluride film

    Science.gov (United States)

    Bian, Qiang; Song, Zhangqi; Song, Dongyu; Zhang, Xueliang; Li, Bingsheng; Yu, Yang; Chen, Yuzhong

    2018-03-01

    The temperature-dependent refractive index of zinc telluride film can be used to develop a tiny, low cost and film-coated optical fiber temperature sensor. Pulse reference-based compensation technique is used to largely reduce the background noise which makes it possible to detect the minor reflectivity change of the film in different temperatures. The temperature sensitivity is 0.0034dB/° and the background noise is measured to be 0.0005dB, so the resolution can achieve 0.2°.

  16. Winter temperatures over the Korean Peninsula and East Asia: development of a new index and its application to seasonal forecast

    Science.gov (United States)

    Kim, Seon Tae; Sohn, Soo-Jin; Kug, Jong-Seong

    2017-09-01

    This study proposes a new index for monitoring and predicting winter temperatures of the Korean Peninsula based on the dominant atmospheric winter teleconnection patterns. The utilization of this index is further extended to the East Asian Winter Monsoon (EAWM) index because the new index is found to well represent the main feature of the EAWM circulation. Among the teleconnection patterns, the East Atlantic (EA) and Western Pacific (WP) patterns are found to be most strongly correlated with winter temperatures via their partial association with changes in sea level pressure (SLP) around the Korean Peninsula, i.e., the EA and WP patterns are associated with SLP variation over the Siberian High region and the Kuroshio extension region to the east of Japan, respectively. On the basis of this relationship, the two regions representing the northwest-to-southeast SLP gradients are determined to define the new index. It is found that the new index can represent the Korean winter temperatures consistently well regardless of their considerable decadal changes. When compared with the existing SLP-based EAWM indices, the new index shows the best performance in delineating winter air temperatures, not only in the Korean Peninsula but also in the entire East Asian region. We also assess the prediction skill of the new index with seasonal coupled forecast models of the APEC Climate Center of Korea and its capability to predict winter temperatures. This assessment shows that the new index has potential for operationally predicting and monitoring winter temperatures in Korea and the whole of East Asia.

  17. Buoyancy-Marangoni convection in confined volatile binary fluids subject to a horizontal temperature gradient

    Science.gov (United States)

    Qin, Tongran; Grigoriev, Roman

    2017-11-01

    We consider convection in a layer of binary fluid with free surface subject to a horizontal temperature gradient in the presence of noncondensable gases, which is driven by a combination of three different forces: buoyancy, thermocapillarity, and solutocapillarity. Unlike buoyancy, both thermo- and solutocapillary stresses depend sensitively on the local phase equilibrium at the liquid-gas interface. In particular, thermocapillarity associated with the interfacial temperature gradient is controlled by the vapors' concentration along the interface, and solutocapillarity associated with the interfacial concentration gradient is controlled by differential phase change of two components of the liquid, which is strongly influenced by the presence of noncondensables. Therefore, flows in both phases, phase change, and effect of noncondensables all have to be considered. Numerical simulations based on a comprehensive model taking these effects into account show qualitative agreement with recent experiments which identified a number of flow regimes at various compositions of both phases. In particular,we find that the composition of both the gas and liquid phase have a significant effect on the observed convection patterns; this dependence can be understood using a simple analytical model. This material is based upon work supported by the National Science Foundation under Grant No. 1511470.

  18. Identifying Stream/Aquifer Exchange by Temperature Gradient in a Guarani Aquifer System Outcrop Zone

    Science.gov (United States)

    Wendland, E.; Rosa, D. M. S.; Anache, J. A. A.; Lowry, C.; Lin, Y. F. F.

    2017-12-01

    Recharge of the Guarani Aquifer System (GAS) in South America is supposed to occur mainly in the outcrop zones, where the GAS appears as an unconfined aquifer (10% of the 1.2 Million km2 aquifer extension). Previous evaluations of recharge are based essentially on water balance estimates for the whole aquifer area or water table fluctuations in monitoring wells. To gain a more detailed understanding of the recharge mechanisms the present work aimed to study the stream aquifer interaction in a watershed (Ribeirão da Onça) at an outcrop zone. Two Parshall flumes were installed 1.3 km apart for discharge measurement in the stream. Along this distance an optic fiber cable was deployed to identify stretches with gaining and losing behavior. In order to estimate groundwater discharge in specific locations, 8 temperature sticks were set up along the stream reach to measure continuously the vertical temperature gradient. A temperature probe with 4 thermistors was also used to map the shallow streambed temperature gradient manually along the whole distance. The obtained results show a discharge difference of 250 m3/h between both flumes. Since the last significant rainfall (15 mm) in the watershed occurred 3 months ago, this value can be interpreted as the base flow contribution to the stream during the dry season. Given the temperature difference between groundwater ( 24oC) and surface water ( 17oC) the fiber-optic distributed temperature sensing (FO-DTS) allowed the identification of stretches with gaining behavior. Temperature gradients observed at the streambed varied between 0.67 and 14.33 oC/m. The study demonstrated that heat may be used as natural tracer even in tropical conditions, where the groundwater temperature is higher than the surface water temperature during the winter. The obtained results show that the discharge difference between both flumes can not be extrapolated without detailed analysis. Gaining and loosing stretches have to be identified on order

  19. Gradient distribution of radial structure of PAN-based carbon fiber treated by high temperature

    Directory of Open Access Journals (Sweden)

    Haitao Wang

    2014-02-01

    Full Text Available High-performance graphite fibers were prepared and analyzed. The gradient distribution of radial structure of PAN-based carbon fibers was characterized by two different Raman test methods (incident laser beam perpendicular to and parallel to the fiber axis and studied by the distribution of graphitization degree. Meanwhile difference between the two Raman test methods was used to describe the orientation of the graphite crystallite along the fiber axis. The results showed that the radial structure of PAN-based carbon fiber presented different gradient distribution states at different heat treatment temperatures, and the graphitization degree in the skin region changed more rapidly compared with the core region since the skin region was more affected by temperature which resulted in the obvious difference between skin and core structures. The difference of graphitization degree (Δg characterized by two different Raman test methods increased with heat treatment temperature, indicating that the high temperature treatment (HTT promoted further stacking of graphite crystallite, and the orientation degree of the graphite crystallite along the fiber axis was continuously increased.

  20. Large diffusion anisotropy and orientation sorting of phosphorene nanoflakes under a temperature gradient.

    Science.gov (United States)

    Cheng, Yuan; Zhang, Gang; Zhang, Yingyan; Chang, Tienchong; Pei, Qing-Xiang; Cai, Yongqing; Zhang, Yong-Wei

    2018-01-25

    We perform molecular dynamics simulations to investigate the motion of phosphorene nanoflakes on a large graphene substrate under a thermal gradient. It is found that the atomic interaction between the graphene substrate and the phosphorene nanoflake generates distinct rates of motion for phosphorene nanoflakes with different orientations. Remarkably, for square phosphorene nanoflakes, the motion of zigzag-oriented nanoflakes is 2-fold faster than those of armchair-oriented and randomly-oriented nanoflakes. This large diffusion anisotropy suggests that sorting of phosphorene nanoflakes into specific orientations can be realized by a temperature gradient. The findings here provide interesting insights into strong molecular diffusion anisotropy and offer a novel route for manipulating two-dimensional materials.

  1. Investigation on multilayer failure mechanism of RPV with a high temperature gradient from core meltdown scenario

    Energy Technology Data Exchange (ETDEWEB)

    Jianfeng, Mao, E-mail: jianfeng-mao@163.com [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education (China); Xiangqing, Li [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Shiyi, Bao, E-mail: bsy@zjut.edu.cn [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education (China); Lijia, Luo [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Zengliang, Gao [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education (China)

    2016-12-15

    Highlights: • The multilayer failure mechanism is investigated for RPV under CHF. • Failure time and location of RPV are predicted under various SA scenarios. • The structural behaviors are analyzed in depth for creep and plasticity. • The effect of internal pressure and temperature gradient is considered. • The structural integrity of RPV is secured within the required 72 creep hours. - Abstract: The Fukushima accident shows that in-vessel retention (IVR) of molten core debris has not been appropriately assessed, and a certain pressure (up to 8.0 MPa) still exists inside the reactor pressure vessel (RPV). In the traditional concept of IVR, the pressure is supposed to successfully be released, and the temperature distributed among the wall thickness is assumed to be uniform. However, this concept is seriously challenged by reality of Fukushima accident with regard to the existence of both internal pressure and high temperature gradient. Therefore, in order to make the IVR mitigation strategy succeed, the numerical investigation of the lower head behavior and its failure has been performed for several internal pressures under high temperature gradient. According to some requirements in severe accident (SA) management of RPV, it should be ensured that the IVR mitigation takes effect in preventing the failure of the structure within a period of 72 h. Subsequently, the failure time and location have to be predicted under the critical heat flux (CHF) loading condition for lower head, since the CHF is limit thermal boundary before the melt-through of RPV. In illustrating the so called ‘multilayer failure mechanism’, the structural behaviors of RPV are analyzed in terms of the stress, creep strain, deformation, damage on selected paths.

  2. Investigation on multilayer failure mechanism of RPV with a high temperature gradient from core meltdown scenario

    International Nuclear Information System (INIS)

    Jianfeng, Mao; Xiangqing, Li; Shiyi, Bao; Lijia, Luo; Zengliang, Gao

    2016-01-01

    Highlights: • The multilayer failure mechanism is investigated for RPV under CHF. • Failure time and location of RPV are predicted under various SA scenarios. • The structural behaviors are analyzed in depth for creep and plasticity. • The effect of internal pressure and temperature gradient is considered. • The structural integrity of RPV is secured within the required 72 creep hours. - Abstract: The Fukushima accident shows that in-vessel retention (IVR) of molten core debris has not been appropriately assessed, and a certain pressure (up to 8.0 MPa) still exists inside the reactor pressure vessel (RPV). In the traditional concept of IVR, the pressure is supposed to successfully be released, and the temperature distributed among the wall thickness is assumed to be uniform. However, this concept is seriously challenged by reality of Fukushima accident with regard to the existence of both internal pressure and high temperature gradient. Therefore, in order to make the IVR mitigation strategy succeed, the numerical investigation of the lower head behavior and its failure has been performed for several internal pressures under high temperature gradient. According to some requirements in severe accident (SA) management of RPV, it should be ensured that the IVR mitigation takes effect in preventing the failure of the structure within a period of 72 h. Subsequently, the failure time and location have to be predicted under the critical heat flux (CHF) loading condition for lower head, since the CHF is limit thermal boundary before the melt-through of RPV. In illustrating the so called ‘multilayer failure mechanism’, the structural behaviors of RPV are analyzed in terms of the stress, creep strain, deformation, damage on selected paths.

  3. Nonlinear vacuum gas flow through a short tube due to pressure and temperature gradients

    Energy Technology Data Exchange (ETDEWEB)

    Pantazis, Sarantis; Naris, Steryios; Tantos, Christos [Department of Mechanical Engineering, University of Thessaly, Pedion Areos, 38334 Volos (Greece); Valougeorgis, Dimitris, E-mail: diva@mie.uth.gr [Department of Mechanical Engineering, University of Thessaly, Pedion Areos, 38334 Volos (Greece); André, Julien; Millet, Francois; Perin, Jean Paul [Service des Basses Températures, UMR-E CEA/UJF-Grenoble 1, INAC, Grenoble, F-38054 (France)

    2013-10-15

    The flow of a rarefied gas through a tube due to both pressure and temperature gradients has been studied numerically. The main objective is to investigate the performance of a mechanical vacuum pump operating at low temperatures in order to increase the pumped mass flow rate. This type of pump is under development at CEA-Grenoble. The flow is modelled by the Shakhov kinetic model equation, which is solved by the discrete velocity method. Results are presented for certain geometry and flow parameters. Since according to the pump design the temperature driven flow is in the opposite direction than the main pressure driven flow, it has been found that for the operating pressure range studied here the net mass flow rate through the pump may be significantly reduced.

  4. Effect of fast mold surface temperature evolution on iPP part morphology gradients

    Science.gov (United States)

    Liparoti, Sara; Sorrentino, Andrea; Guzman, Gustavo; Cakmak, Mukerrem; Titomanlio, Giuseppe

    2016-03-01

    The control of mold surface temperature is an important factor that affects the sample surface morphology as well as the structural gradients (orientation crystal size, and type) as well as cooling stresses. The frozen layer thickness formed during the filling stage also has a very significant effect on the flow resistance and thus on the resulting pressure drop and flow length in thin wall parts. The possibility to have a hot mold during filling and a quick cooling soon afterward is a significant process enhancement particularly for specialized applications such as micro injection molding and for the reproduction of micro structured surfaces. Up to now, several methods (electromagnetic, infrared, hot vapor fleshing etc,) were tried to achieve fast temperature evolution of the mold. Unfortunately, all these methods require a complex balance between thermal and mechanical problems, equipment cost, energy consumption, safety, molding cycle time and part quality achievable. In this work, a thin electrical resistance was designed and used to generate a fast and confined temperature variation on mold surface (by joule effect). Since the whole temperature evolution can take place in a few seconds, one can couple the advantages of a high surface temperature during filling with the advantages of a low mold temperature, fast cooling and low heating dissipation. Some experiments were performed with a commercial iPP resin. The effects of the surface temperature and of the heating time (under constant electric power) on surface finishing and on the final morphology (thickness and structure of the different layers) are explored and discussed.

  5. Comparison of potential temperature gradient estimates from various temperature profile data sources

    Science.gov (United States)

    2017-01-22

    From July through September 2015, concurrent and collocated measurements of temperature profiles from two passive radiometers and a RADAR-RASS (Radio Acoustic Sounding System) were made at a site near the ocean just to the west of Los Angeles Interna...

  6. A sandwich-designed temperature-gradient incubator for studies of microbial temperature responses

    DEFF Research Database (Denmark)

    Elsgaard, Lars; Jørgensen, Leif Wagner

    2002-01-01

    of 28-ml test tubes. An electric plate heats one end of the TGI end and the other end is cooled by thermoelectric Peltier elements in combination with a liquid cooling system. The TGI is equipped with 24 calibrated Pt-100 temperature sensors and insulated by polyurethane plates. A PC-operated SCADA...

  7. A STUDY OF SOLAR PHOTOSPHERIC TEMPERATURE GRADIENT VARIATION USING LIMB DARKENING MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Criscuoli, Serena [National Solar Observatory, Boulder, CO 80303 (United States); Foukal, Peter [192 Willow Road, Nahant, MA 01908 (United States)

    2017-01-20

    The variation in area of quiet magnetic network measured over the sunspot cycle should modulate the spatially averaged photospheric temperature gradient, since temperature declines with optical depth more gradually in magnetic flux tube atmospheres. Yet, limb darkening measurements show no dependence upon activity level, even at an rms precision of 0.04%. We study the sensitivity of limb darkening to changes in area filling factor using a 3D MHD model of the magnetized photosphere. The limb darkening change expected from the measured 11-year area variation lies below the level of measured limb darkening variations, for a reasonable range of magnetic flux in quiet network and internetwork regions. So the remarkably constant limb darkening observed over the solar activity cycle is not inconsistent with the measured 11-year change in area of quiet magnetic network. Our findings offer an independent constraint on photospheric temperature gradient changes reported from measurements of the solar spectral irradiance from the Spectral Irradiance Monitor, and recently, from wavelength-differential spectrophotometry using the Solar Optical Telescope aboard the HINODE spacecraft.

  8. Neutron diffraction in a quartz single crystal under the action of acoustic oscillations or a temperature gradient

    CERN Document Server

    Mkrtchyan, A R; Hunanyan, H A; Beglaryan, A G

    1986-01-01

    The paper deals with the problem of neutron diffraction in a quartz single crystal under the action of acoustic oscillations or a temperature gradient in the Laue geometry. Theoretical conclusions were compared with experimental results.

  9. Design and Fabrication of Large Diameter Gradient-Index Lenses for Dual-Band Visible to Short-Wave Infrared Imaging Applications

    Science.gov (United States)

    Visconti, Anthony Joseph

    The fabrication of gradient-index (GRIN) optical elements is quite challenging, which has traditionally restricted their use in many imaging systems; consequently, commercial-level GRIN components usually exist in one particular market or niche application space. One such fabrication technique, ion exchange, is a well-known process used in the chemical strengthening of glass, the fabrication of waveguide devices, and the production of small diameter GRIN optical relay systems. However, the manufacturing of large diameter ion-exchanged GRIN elements has historically been limited by long diffusion times. For example, the diffusion time for a 20 mm diameter radial GRIN lens in commercially available ion exchange glass for small diameter relays, is on the order of a year. The diffusion time can be dramatically reduced by addressing three key ion exchange process parameters; the composition of the glass, the diffusion temperature, and the composition of the salt bath. Experimental work throughout this thesis aims to (1) scale up the ion exchange diffusion process to 20 mm diameters for a fast-diffusing titania silicate glass family in both (2) sodium ion for lithium ion (Na+ for Li+) and lithium ion for sodium ion (Li+ for Na+) exchange directions, while (3) utilizing manufacturing friendly salt bath compositions. In addition, optical design studies have demonstrated that an important benefit of gradient-index elements in imaging systems is the added degree of freedom introduced with a gradient's optical power. However, these studies have not investigated the potential usefulness of GRIN materials in dual-band visible to short-wave infrared (vis-SWIR) imaging systems. The unique chromatic properties of the titania silicate ion exchange glass become a significant degree of freedom in the design process for these color-limited, broadband imaging applications. A single GRIN element can replace a cemented doublet or even a cemented triplet, without loss in overall system

  10. Comparisons of theoretically predicted transport from ion temperature gradient instabilities to L-mode tokamak experiments

    International Nuclear Information System (INIS)

    Kotschenreuther, M.; Wong, H.V.; Lyster, P.L.; Berk, H.L.; Denton, R.; Miner, W.H.; Valanju, P.

    1991-12-01

    The theoretical transport from kinetic micro-instabilities driven by ion temperature gradients is a sheared slab is compared to experimentally inferred transport in L-mode tokamaks. Low noise gyrokinetic simulation techniques are used to obtain the ion thermal transport coefficient X. This X is much smaller than in experiments, and so cannot explain L-mode confinement. Previous predictions based on fluid models gave much greater X than experiments. Linear and nonlinear comparisons with the fluid model show that it greatly overestimates transport for experimental parameters. In addition, disagreements among previous analytic and simulation calculations of X in the fluid model are reconciled

  11. Performance and application of controlled temperature-gradient lamps in atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Gough, D.S.; Sullivan, J.V.

    1981-01-01

    An improved design of controlled temperature-gradient lamp (CTGL) is suitable for arsenic, cadmium, phosphorus, potassium, rubidium, selenium, sodium, sulphur and zinc. Intensity and linewidth measurements indicate that the CTGL is significantly more intense than an electrodeless discharge lamp (EDL) at the same linewidth. CTGL's also compare favourably with EDL's when used as light sources for a.a.s. Arsenic and selenium can be determined at very low concentrations (ng ml -1 ) by the hydride generation technique. Sulphur and phosphorus can be detected in the vacuum ultra-violet region using nitrogen-separated flames; the limits of detection are 13 and 10 μg ml -1 , respectively. (Auth.)

  12. Effects of multiple-helicity fields on ion temperature gradient modes

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, T. [National Inst. for Fusion Science, Toki, Gifu (Japan); Sugama, H. [Graduate Univ. for Advanced Studies, Toki, Gigu (Japan)

    2001-04-01

    Effects of multiple-helicity magnetic fields on ion temperature gradient (ITG) modes in toroidal helical systems like the Large Helical Device (LHD) are studied by means of the linear gyrokinetic theory. Especially, dependence of the real frequency, growth rate, and the eigenfunction of the ITG mode on sideband-helicity fields added to the main helical component is investigated. Comparison between multiple-helicity effects on the ITG mode with those on the neoclassical ripple transport is presented, and optimization of the magnetic configuration for better plasma confinement is discussed. (author)

  13. A comparison of nutrient dynamics in forest ecosystems along with the Warmth Index Gradient

    International Nuclear Information System (INIS)

    Iwatsubo, Goro; Li Changhua; Katagiri, Shigeo.

    1993-01-01

    Nutrient elements contained in litter fall flux, that of uptake flux and turnover rate had generally tended to increase with the increase in the Warmth Index, while the amount of nutrient in the A 0 horizon and nutrient use efficiency did not. However, it is suggested that topographic and climatic aridity, and the amount of available and exchangeable phosphorus, calcium and magnesium greatly affect the nutrient dynamics in a each forest ecosystem as the Warmth Index increases. (J.P.N.)

  14. Air and ground temperatures along elevation and continentality gradients in Southern Norway

    Science.gov (United States)

    Farbrot, Herman; Hipp, Tobias; Etzelmüller, Bernd; Humlum, Ole; Isaksen, Ketil; Strand Ødegârd, Rune

    2010-05-01

    The modern southern boundary for Scandinavian permafrost is located in the mountains of Southern Norway. Permafrost and seasonal frost are considered key components of the cryosphere, and the climate-permafrost relation has acquired added importance with the increasing awareness and concern of rising air temperatures. The three-year research project CRYOLINK ("Permafrost and seasonal frost in southern Norway") aims at improving knowledge on past and present ground temperatures, seasonal frost, and distribution of mountain permafrost in Southern Norway by addressing the fundamental problem of heat transfer between the atmosphere and the ground surface. Hence, several shallow boreholes have been drilled, and a monitoring program to measure air and ground temperatures was started August 2008. The borehole areas (Juvvass, Jetta and Tron) are situated along a west-east transect and, hence, a continentality gradient, and each area provides boreholes at different elevations. Here we present the first year of air and ground temperatures from these sites and discuss the influence of air temperature and ground surface charcteristics (snow conditions, sediments/bedrock, vegetation) on ground temperatures.

  15. Assimilation of temperature and hydraulic gradients for quantifying the spatial variability of streambed hydraulics

    Science.gov (United States)

    Huang, Xiang; Andrews, Charles B.; Liu, Jie; Yao, Yingying; Liu, Chuankun; Tyler, Scott W.; Selker, John S.; Zheng, Chunmiao

    2016-08-01

    Understanding the spatial and temporal characteristics of water flux into or out of shallow aquifers is imperative for water resources management and eco-environmental conservation. In this study, the spatial variability in the vertical specific fluxes and hydraulic conductivities in a streambed were evaluated by integrating distributed temperature sensing (DTS) data and vertical hydraulic gradients into an ensemble Kalman filter (EnKF) and smoother (EnKS) and an empirical thermal-mixing model. The formulation of the EnKF/EnKS assimilation scheme is based on a discretized 1D advection-conduction equation of heat transfer in the streambed. We first systematically tested a synthetic case and performed quantitative and statistical analyses to evaluate the performance of the assimilation schemes. Then a real-world case was evaluated to calculate assimilated specific flux. An initial estimate of the spatial distributions of the vertical hydraulic gradients was obtained from an empirical thermal-mixing model under steady-state conditions using a constant vertical hydraulic conductivity. Then, this initial estimate was updated by repeatedly dividing the assimilated specific flux by estimates of the vertical hydraulic gradients to obtain a refined spatial distribution of vertical hydraulic gradients and vertical hydraulic conductivities. Our results indicate that optimal parameters can be derived with fewer iterations but greater simulation effort using the EnKS compared with the EnKF. For the field application in a stream segment of the Heihe River Basin in northwest China, the average vertical hydraulic conductivities in the streambed varied over three orders of magnitude (5 × 10-1 to 5 × 102 m/d). The specific fluxes ranged from near zero (qz fish spawning and other wildlife incubation, regional flow and hyporheic solute transport models in the Heihe River Basin, as well as in other similar hydrologic settings.

  16. Temperature responses of a coccolithophorid, Cricosphaera carterae, measured in a simple and inexpensive thermal-gradient device

    International Nuclear Information System (INIS)

    Blankley, W.F.; Lewin, R.A.

    1976-01-01

    An illuminated thermal-gradient device is described which is of simple construction, very low cost, and wide adaptability to various culture vessels. It can be readily adapted for use in crossed gradients with temperature along one axis. The thermal gradient produced depends on several factors including the heat source (one or more incandescent lamps), heat sink (cold air in a refrigerated box or room), and type of culture vessel. By use of the device, the temperature range for growth of Cricosphaera carterae was found to be 10-26 degrees C, with a maximal growth rate at 20 degrees C

  17. Glycemic index: effect of food storage under low temperature

    Directory of Open Access Journals (Sweden)

    Marina Cassab Carreira

    2004-08-01

    Full Text Available This study was carried out to evaluate the influence of food storage under low temperature (-20ºC and the resistant starch formation, both on the glycemic index (GI. The GI of only cooked and cooked and stored foods under -20ºC for 30 days was evaluated in short-term tests with humans. Significant increase on the RS content was evidenced for all the stored foods. The food storage resulted in a significant decrease on the GI of beans and chick-peas; the GI of pasta remained the same and the GI of corn meal increased. Thus, the RS formation showed reduced influence on the glycemic index. The storage of starchy foods under low temperature can collaborate to the RS intake but its effect on the GI will depend on the characteristics of the carbohydrates of each food.O estudo foi realizado para avaliar a influência do armazenamento de alimentos sob baixa temperatura e a formação de amido resistente sobre o índice glicêmico (IG. O IG de alimentos cozidos ou cozidos e armazenados a -20ºC por 30 dias foi avaliado em ensaios de curta duração com humanos. Aumento significativo no conteúdo de AR foi evidenciado para todos os alimentos armazenados. O armazenamento dos alimentos resultou em significativa redução no IG do feijão e do grão de bico. O IG do macarrão foi o mesmo e da polenta sofreu aumento. Desta forma, a evidenciada formação de AR mostrou reduzida influência no IG. O armazenamento de alimentos fonte de amido sob baixa temperatura pode colaborar com a ingestão de AR, mas o efeito sobre o IG vai depender das características dos carboidratos de cada alimento.

  18. Temperature adaptation of soil bacterial communities along an Antarctic climate gradient: predicting responses to climate warming

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Rousk, Johannes; Yergeau, Etienne

    2009-01-01

    the leucine incorporation technique, in order to predict future changes in temperature sensitivity of resident soil bacterial communities. Soil samples were collected along a climate gradient consisting of locations on the Antarctic Peninsula (Anchorage Island, 67 °34'S, 68 °08'W), Signy Island (60 °43'S, 45...... °38'W) and the Falkland Islands (51 °76'S 59 °03'W). At each location, experimental plots were subjected to warming by open top chambers (OTCs) and paired with control plots on vegetated and fell-field habitats. The bacterial communities were adapted to the mean annual temperature of their environment...

  19. Identification of the bacterial microflora in dairy products by temporal temperature gradient gel electrophoresis.

    Science.gov (United States)

    Ogier, Jean-Claude; Son, Olivier; Gruss, Alexandra; Tailliez, Patrick; Delacroix-Buchet, Agnes

    2002-08-01

    Numerous microorganisms, including bacteria, yeasts, and molds, are present in cheeses, forming a complex ecosystem. Among these organisms, bacteria are responsible for most of the physicochemical and aromatic transformations that are intrinsic to the cheesemaking process. Identification of the bacteria that constitute the cheese ecosystem is essential for understanding their individual contributions to cheese production. We used temporal temperature gradient gel electrophoresis (TTGE) to identify different bacterial species present in several dairy products, including members of the genera Lactobacillus, Lactococcus, Leuconostoc, Enterococcus, Pediococcus, Streptococcus, and Staphylococcus. The TTGE technique is based on electrophoretic separation of 16S ribosomal DNA (rDNA) fragments by using a temperature gradient. It was optimized to reveal differences in the 16S rDNA V3 regions of bacteria with low-G+C-content genomes. Using multiple control strains, we first set up a species database in which each species (or group of species) was characterized by a specific TTGE fingerprint. TTGE was then applied to controlled dairy ecosystems with defined compositions, including liquid (starter), semisolid (home-made fermented milk), and solid (miniature cheese models) matrices. Finally, the potential of TTGE to describe the bacterial microflora of unknown ecosystems was tested with various commercial dairy products. Subspecies, species, or groups of species of lactic acid bacteria were distinguished in dairy samples. In conclusion, TTGE was shown to distinguish bacterial species in vitro, as well as in both liquid and solid dairy products.

  20. Experimental study of electron temperature gradient influence on impurity turbulent transport in fusion plasmas

    International Nuclear Information System (INIS)

    Villegas, D.

    2010-01-01

    Understanding impurity transport is a key to an optimal regime for a future fusion device. In this thesis, the theoretical and experimental influence of the electron temperature gradient R/L Te on heavy impurity transport is analyzed both in Tore Supra and ASDEX Upgrade. The electron temperature profile is modified locally by heating the plasma with little ECRH power deposited at two different radii. Experimental results have been obtained with the impurity transport code (ITC) which has been completed with a genetic algorithm allowing to determine the transport coefficient profiles with more accuracy. Transport coefficient profiles obtained by a quasilinear gyrokinetic code named QuaLiKiz are consistent with the experimental ones despite experimental uncertainties on gradients. In the core dominated by electron modes, the lower R/L Te the lower the nickel diffusion coefficient. The latter tends linearly to the neoclassical level when the instability threshold is approached. The experimental threshold is in agreement with the one computed by QuaLiKiz. Further out, where the plasma is dominated by ITG, which are independent of R/L Te , both experimental and simulated results show no modification in the diffusion coefficient profile. Furthermore, the convection velocity profile is not modified. This is attributed to a very small contribution of the thermodiffusion (1/Z dependence) in the total convection. On ASDEX, the preliminary results, very different from the Tore Supra ones, show a internal transport barrier for impurities located at the same radius as the strong ECRH power deposit. (author) [fr

  1. Toroidal ion-temperature-gradient driven vortices in an inhomogeneous magnetoplasma with non-Maxwellian electrons

    Science.gov (United States)

    Mirza, Arshad M.; Masood, W.; Iqbal, Javed; Batool, Nazia

    2015-09-01

    Nonlinear equations which govern the dynamics of low-frequency toroidal ion-temperature-gradient driven modes (i.e., ω ≪ ω c i , where ωci is the ion gyro-frequency) are derived in the presence of equilibrium density, temperature, and magnetic field gradients. In the nonlinear case, solutions in the form of dipolar vortices and vortex street are presented for a plasma comprising of Maxwellian ions and nonthermal electrons that are embedded in an external magnetic field. By using Braginskii's transport equations for the Maxwellian ions and Kappa distributed electrons, the coupled mode equations for the system under consideration are derived. The results have been applied in Tokamak plasmas, and it has been observed that the scale lengths over which the nonlinear vortex structures form get modified in the presence of Kappa distributed electrons. The present study is also applicable to tokamaks and stellarators where non-Maxwellian population has been observed in resonant frequency heating, electron cyclotron heating experiments, and in runaway electrons.

  2. Variable but persistent coexistence of Prochlorococcus ecotypes along temperature gradients in the ocean's surface mixed layer.

    Science.gov (United States)

    Chandler, Jeremy W; Lin, Yajuan; Gainer, P Jackson; Post, Anton F; Johnson, Zackary I; Zinser, Erik R

    2016-04-01

    The vast majority of the phytoplankton communities in surface mixed layer of the oligotrophic ocean are numerically dominated by one of two ecotypes of Prochlorococcus, eMIT9312 or eMED4. In this study, we surveyed large latitudinal transects in the Atlantic and Pacific Ocean to determine if these ecotypes discretely partition the surface mixed layer niche, or if populations exist as a continuum along key environmental gradients, particularly temperature. Transitions of dominance occurred at approximately 19-21°C, with the eMED4 ecotype dominating the colder, and eMIT9312 ecotype dominating the warmer regions. Within these zones of regional dominance, however, the minority ecotype was not competed to extinction. Rather, a robust log-linear relationship between ecotype ratio and temperature characterized this stabilized coexistence: for every 2.5°C increase in temperature, the eMIT9312:eMED4 ratio increased by an order of magnitude. This relationship was observed in both quantitative polymerase chain reaction and in pyrosequencing assays. Water column stratification also contributed to the ecotype ratio along the basin-scale transects, but to a lesser extent. Finally, instances where the ratio of the eMED4 and eMIT9312 abundances did not correlate well with temperature were identified. Such occurrences are likely due to changes in water temperatures outpacing changes in community structure. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Elevational ranges of birds on a tropical montane gradient lag behind warming temperatures.

    Directory of Open Access Journals (Sweden)

    German Forero-Medina

    Full Text Available BACKGROUND: Species may respond to a warming climate by moving to higher latitudes or elevations. Shifts in geographic ranges are common responses in temperate regions. For the tropics, latitudinal temperature gradients are shallow; the only escape for species may be to move to higher elevations. There are few data to suggest that they do. Yet, the greatest loss of species from climate disruption may be for tropical montane species. METHODOLOGY/PRINCIPAL FINDINGS: We repeat a historical transect in Peru and find an average upward shift of 49 m for 55 bird species over a 41 year interval. This shift is significantly upward, but also significantly smaller than the 152 m one expects from warming in the region. To estimate the expected shift in elevation we first determined the magnitude of warming in the locality from historical data. Then we used the temperature lapse rate to infer the required shift in altitude to compensate for warming. The range shifts in elevation were similar across different trophic guilds. CONCLUSIONS: Endothermy may provide birds with some flexibility to temperature changes and allow them to move less than expected. Instead of being directly dependent on temperature, birds may be responding to gradual changes in the nature of the habitat or availability of food resources, and presence of competitors. If so, this has important implications for estimates of mountaintop extinctions from climate change.

  4. Intensification of the meridional temperature gradient in the Great Barrier Reef following the Last Glacial Maximum

    Science.gov (United States)

    Felis, Thomas; McGregor, Helen V.; Linsley, Braddock K.; Tudhope, Alexander W.; Gagan, Michael K.; Suzuki, Atsushi; Inoue, Mayuri; Thomas, Alexander L.; Esat, Tezer M.; Thompson, William G.; Tiwari, Manish; Potts, Donald C.; Mudelsee, Manfred; Yokoyama, Yusuke; Webster, Jody M.

    2014-01-01

    Tropical south-western Pacific temperatures are of vital importance to the Great Barrier Reef (GBR), but the role of sea surface temperatures (SSTs) in the growth of the GBR since the Last Glacial Maximum remains largely unknown. Here we present records of Sr/Ca and δ18O for Last Glacial Maximum and deglacial corals that show a considerably steeper meridional SST gradient than the present day in the central GBR. We find a 1–2 °C larger temperature decrease between 17° and 20°S about 20,000 to 13,000 years ago. The result is best explained by the northward expansion of cooler subtropical waters due to a weakening of the South Pacific gyre and East Australian Current. Our findings indicate that the GBR experienced substantial meridional temperature change during the last deglaciation, and serve to explain anomalous deglacial drying of northeastern Australia. Overall, the GBR developed through significant SST change and may be more resilient than previously thought. PMID:24937320

  5. Effects of population density and chemical environment on the behavior of Escherichia coli in shallow temperature gradients

    International Nuclear Information System (INIS)

    Demir, Mahmut; Yoney, Anna; Salman, Hanna; Douarche, Carine; Libchaber, Albert

    2011-01-01

    In shallow temperature gradients, changes in temperature that bacteria experience occur over long time scales. Therefore, slow processes such as adaptation, metabolism, chemical secretion and even gene expression become important. Since these are cellular processes, the cell density is an important parameter that affects the bacteria's response. We find that there are four density regimes with distinct behaviors. At low cell density, bacteria do not cause changes in their chemical environment; however, their response to the temperature gradient is strongly influenced by it. In the intermediate cell-density regime, the consumption of nutrients becomes significant and induces a gradient of nutrients opposing the temperature gradient due to higher consumption rate at the high temperature. This causes the bacteria to drift toward low temperature. In the high cell-density regime, interactions among bacteria due to secretion of an attractant lead to a strong local accumulation of bacteria. This together with the gradient of nutrients, resulted from the differential consumption rate, creates a fast propagating pulse of bacterial density. These observations are a result of classical nonlinear population dynamics. At extremely high cell density, a change in the physiological state of the bacteria is observed. The bacteria, at the individual level, become cold seeking. This appears initially as a result of a change in the methylation level of the two most abundant sensing receptors, Tsr and Tar. It is further enforced at an even higher cell density by a change in the expression level of these receptors. (perspective)

  6. Effects of temperature, temperature gradients, stress, and irradiation on migration of brine inclusions in a salt repository

    International Nuclear Information System (INIS)

    Jenks, G.H.

    1979-07-01

    Available experimental and theoretical information on brine migration in bedded salt are reviewed and analyzed. The effects of temperature, thermal gradients, stress, irradiation, and pressure in a salt repository are among the factors considered. The theoretical and experimental (with KCl) results of Anthony and Cline were used to correlate and explain the available data for rates of brine migration at temperatures up to 250 0 C in naturally occurring crystals of bedded salt from Lyons and Hutchinson, Kansas. Considerations of the effects of stressing crystals of bedded salt on the migratin properties of brine inclusions within the crystals led to the conclusion that the most probable effects are a small fractional increase in the solubility of the salt within the liquid and a concomitant and equal fractional increase in the rate of the thermal gradient-induced migration of the brine. The greatest uncertainty relative to the prediction of rates of migration of brine into a waste emplacement cavity in bedded salt is associated with questions concerning the effects of the grain boundaries (within the aggregates of single crystals which comprise a bedded salt deposit) on brine migration through the deposit. The results of some of the estimates of rates and total amounts of brine inflow to HLW and SURF waste packages emplaced in bedded salt were included to illustrate the inflow volumes which might occur in a repository. The results of the brine inflow estimates for 10-year-old HLW emplaced at 150 kW/acre indicated inflow rates starting at 0.7 liter/year and totaling 12 liters at 30 years after emplacement. The results of the estimates for 10-year-old PWR SURF emplaced at 60 kW/acre indicated a constant inflow of 0.035 liter/year for the first 35 years after emplacement

  7. Nocturnal variation of air-surface temperature gradients for typical urban and rural surfaces

    Science.gov (United States)

    Swaid, Hanna

    The nocturnal variation of the standard atmospheric air-ground surface temperature gradient under fair weather conditions is considered. A semi-analytical model in the form of an exponential response function is proposed and experimentally verified against field observations conducted by the author at Haifa ( ca 32°N) and by others at various geographical locations. The proposed model is intended to predict the sought gradient variation with the aid of an experimentally derived parameter (a time constant) which is directly proportional to the thermal inertia of the substrate matter beneath the surface in question. Among the impervious ground-cover types widely encountered in urban environments, concrete surfaces exhibit the highest time constant of about 10 h, while that of bare dry rural soil is 6.5 h. Turf and wet soil surfaces, common in rural environments, have time constants of 3.6 and 10.8 h, respectively. Applicability of the proposed model to the exterior surfaces of building-envelope elements is also discussed, as are the implications of the present findings regarding the causative factors of urban heat islands.

  8. On axial temperature gradients due to large pressure drops in dense fluid chromatography.

    Science.gov (United States)

    Colgate, Sam O; Berger, Terry A

    2015-03-13

    The effect of energy degradation (Degradation is the creation of net entropy resulting from irreversibility.) accompanying pressure drops across chromatographic columns is examined with regard to explaining axial temperature gradients in both high performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC). The observed effects of warming and cooling can be explained equally well in the language of thermodynamics or fluid dynamics. The necessary equivalence of these treatments is reviewed here to show the legitimacy of using whichever one supports the simpler determination of features of interest. The determination of temperature profiles in columns by direct application of the laws of thermodynamics is somewhat simpler than applying them indirectly by solving the Navier-Stokes (NS) equations. Both disciplines show that the preferred strategy for minimizing the reduction in peak quality caused by temperature gradients is to operate columns as nearly adiabatically as possible (i.e. as Joule-Thomson expansions). This useful fact, however, is not widely familiar or appreciated in the chromatography community due to some misunderstanding of the meaning of certain terms and expressions used in these disciplines. In fluid dynamics, the terms "resistive heating" or "frictional heating" have been widely used as synonyms for the dissipation function, Φ, in the NS energy equation. These terms have been widely used by chromatographers as well, but often misinterpreted as due to friction between the mobile phase and the column packing, when in fact Φ describes the increase in entropy of the system (dissipation, ∫TdSuniv>0) due to the irreversible decompression of the mobile phase. Two distinctly different contributions to the irreversibility are identified; (1) ΔSext, viscous dissipation of work done by the external surroundings driving the flow (the pump) contributing to its warming, and (2) ΔSint, entropy change accompanying decompression of

  9. Temperature Regimes Impact Coral Assemblages along Environmental Gradients on Lagoonal Reefs in Belize.

    Directory of Open Access Journals (Sweden)

    Justin H Baumann

    Full Text Available Coral reefs are increasingly threatened by global and local anthropogenic stressors such as rising seawater temperature, nutrient enrichment, sedimentation, and overfishing. Although many studies have investigated the impacts of local and global stressors on coral reefs, we still do not fully understand how these stressors influence coral community structure, particularly across environmental gradients on a reef system. Here, we investigate coral community composition across three different temperature and productivity regimes along a nearshore-offshore gradient on lagoonal reefs of the Belize Mesoamerican Barrier Reef System (MBRS. A novel metric was developed using ultra-high-resolution satellite-derived estimates of sea surface temperatures (SST to classify reefs as exposed to low (lowTP, moderate (modTP, or high (highTP temperature parameters over 10 years (2003 to 2012. Coral species richness, abundance, diversity, density, and percent cover were lower at highTP sites relative to lowTP and modTP sites, but these coral community traits did not differ significantly between lowTP and modTP sites. Analysis of coral life history strategies revealed that highTP sites were dominated by hardy stress-tolerant and fast-growing weedy coral species, while lowTP and modTP sites consisted of competitive, generalist, weedy, and stress-tolerant coral species. Satellite-derived estimates of Chlorophyll-a (chl-a were obtained for 13-years (2003-2015 as a proxy for primary production. Chl-a concentrations were highest at highTP sites, medial at modTP sites, and lowest at lowTP sites. Notably, thermal parameters correlated better with coral community traits between site types than productivity, suggesting that temperature (specifically number of days above the thermal bleaching threshold played a greater role in defining coral community structure than productivity on the MBRS. Dominance of weedy and stress-tolerant genera at highTP sites suggests that corals

  10. Constitutive relationships for ocean sediments subjected to stress and temperature gradients

    International Nuclear Information System (INIS)

    Davies, T.G.; Banerjee, P.K.

    1980-08-01

    The disposal of low-level nuclear wastes by burial in deep sea sediments is an option currently being considered. This report lays the groundwork for an investigation of the stability of canisters containing nuclear wastes against movement due to fluidisation of the surrounding sediments, where such fluidisation may result from thermally induced stresses. The requisite constitutive relationships for ocean sediments under stress and temperature gradients are derived from the theory of critical state soil mechanics. A parametric survey has been made of the behaviour of an element of soil in order to assess various models and the importance of the governing parameters, The formulation of a finite element algorithm is given for the solution of the sediment stability problem. (author)

  11. Transport through dissipative trapped electron mode and toroidal ion temperature gradient mode in TEXTOR

    International Nuclear Information System (INIS)

    Rogister, A.; Hasselberg, G.; Waelbroeck, F.; Weiland, J.

    1987-12-01

    A self-consistent transport code is used to evaluate how plasma confinement in tokamaks is influenced by the microturbulent fields which are excited by the dissipative trapped electron (DTE) instability. As shown previously, the saturation theory on which the code is based has been developed from first principles. The toroidal coupling resulting from the ion magnetic drifts is neglected; arguments are presented to justify this approximation. The numerical results reproduce well the neo-Alcator scaling law observed experimentally - e.g. in TEXTOR - in non detached ohmic discharges, the confinement degradation which results when auxiliary heating is applied, as well as a large number of other experimental observations. We also assess the possible impact of the toroidal ion temperature gradient mode on energy confinement by estimating the ion thermal flux with the help of the mixing length approximation. (orig./GG)

  12. Bifurcation Theory of the Transition to Collisionless Ion-temperature-gradient-driven Plasma Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Kolesnikov, R.A.; Krommes, J.A.

    2005-09-22

    The collisionless limit of the transition to ion-temperature-gradient-driven plasma turbulence is considered with a dynamical-systems approach. The importance of systematic analysis for understanding the differences in the bifurcations and dynamics of linearly damped and undamped systems is emphasized. A model with ten degrees of freedom is studied as a concrete example. A four-dimensional center manifold (CM) is analyzed, and fixed points of its dynamics are identified and used to predict a ''Dimits shift'' of the threshold for turbulence due to the excitation of zonal flows. The exact value of that shift in terms of physical parameters is established for the model; the effects of higher-order truncations on the dynamics are noted. Multiple-scale analysis of the CM equations is used to discuss possible effects of modulational instability on scenarios for the transition to turbulence in both collisional and collisionless cases.

  13. Sintering Characteristics of Multilayered Thermal Barrier Coatings Under Thermal Gradient and Isothermal High Temperature Annealing Conditions

    Science.gov (United States)

    Rai, Amarendra K.; Schmitt, Michael P.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    Pyrochlore oxides have most of the relevant attributes for use as next generation thermal barrier coatings such as phase stability, low sintering kinetics and low thermal conductivity. One of the issues with the pyrochlore oxides is their lower toughness and therefore higher erosion rate compared to the current state-of-the-art TBC material, yttria (6 to 8 wt%) stabilized zirconia (YSZ). In this work, sintering characteristics were investigated for novel multilayered coating consisted of alternating layers of pyrochlore oxide viz Gd2Zr2O7 and t' low k (rare earth oxide doped YSZ). Thermal gradient and isothermal high temperature (1316 C) annealing conditions were used to investigate sintering and cracking in these coatings. The results are then compared with that of relevant monolayered coatings and a baseline YSZ coating.

  14. The growth of single crystals of Ni-W alloy under conditions of high temperature gradient

    International Nuclear Information System (INIS)

    Azhazha, V.M.; Gorbenko, Yu.V.; Kovtun, G.P.; Ladygin, A.N.; Malykhin, D.G.; Rudycheva, T.Yu.; Sverdlov, V.Ya.; Shcherban', A.P.; Zhemanyuk, P.D.; Klochikhin, V.V.

    2004-01-01

    The structure of single crystals of the NV-4 nickel alloy containing 32-36 wt % W is investigated. The temperature gradient at the crystallization front and the velocity of the crystallization front are the variable parameters of directional crystallization. The degrees of structural perfection of the single crystals grown under different conditions are compared. The crystallization parameters providing growth of single crystals that have high structural perfection and can be successfully used as seeds for the growth of single-crystal blades are determined. Typical defects formed upon directional crystallization of single crystals of the Ni-W (35 wt %) alloy are examined. The studied defects are classified, and the factors responsible for the disturbance of the single-crystal structure are analyzed

  15. Near-field radiative heat transfer under temperature gradients and conductive transfer

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Weiliang; Rodriguez, Alejandro W. [Princeton Univ., NJ (United States). Dept. of Electrical Engineering; Messina, Riccardo [CNRS-Univ. de Montpellier (France). Lab. Charles Coulomb

    2017-05-01

    We describe a recently developed formulation of coupled conductive and radiative heat transfer (RHT) between objects separated by nanometric, vacuum gaps. Our results rely on analytical formulas of RHT between planar slabs (based on the scattering-matrix method) as well as a general formulation of RHT between arbitrarily shaped bodies (based on the fluctuating-volume current method), which fully captures the existence of temperature inhomogeneities. In particular, the impact of RHT on conduction, and vice versa, is obtained via self-consistent solutions of the Fourier heat equation and Maxwell's equations. We show that in materials with low thermal conductivities (e.g. zinc oxides and glasses), the interplay of conduction and RHT can strongly modify heat exchange, exemplified for instance by the presence of large temperature gradients and saturating flux rates at short (nanometric) distances. More generally, we show that the ability to tailor the temperature distribution of an object can modify the behaviour of RHT with respect to gap separations, e.g. qualitatively changing the asymptotic scaling at short separations from quadratic to linear or logarithmic. Our results could be relevant to the interpretation of both past and future experimental measurements of RHT at nanometric distances.

  16. Global gyrokinetic simulations of toroidal electron temperature gradient driven mode in reversed shear tokamaks

    International Nuclear Information System (INIS)

    Idomura, Y.; Tokuda, S.; Kishimoto, Y.

    2005-01-01

    Using a global gyrokinetic toroidal particle code, the toroidal electron temperature gradient driven (ETG) turbulence is studied in positive and reversed shear tokamaks. In the positive shear configuration, the ETG mode shows a ballooning structure, and its envelope width Δr/ρ te , which is limited by a global ω te *-shearing effect, is proportional to ρ* -1/2 , where ω te * is the electron diamagnetic frequency and ρ* is the electron Larmor radius ρ te divided by the minor radius a. In the reversed shear configuration, the mode width of a slab like ETG mode, which is determined by a global magnetic field structure around the q min surface, does not depend on ρ*. According to the mixing length theory, a ballooning mode gives a Bohm like ρ*-scaling, while a slab like mode shows a gyro-Bohm like ρ*-scaling. In realistic small ρ* tokamaks, the saturation level of the ETG mode in the positive shear configuration is order of magnitude higher than that in the reversed shear configuration. In the nolinear turbulent state, the ETG turbulence in the positive and reversed shear configurations show quite different structure formations. In the positive shear configuration, the ETG turbulence is dominated by streamers which have a ballooning type structure, and the electron temperature T e profile is quickly relaxed to the marginally stable state in a turbulent time scale. In the reversed shear configuration, quasi-steady zonal flows are produced in the negative shear region, while the positive shear region is characterized by streamers. Accordingly, the electron thermal diffusivity χ e has a gap structure across the q min surface, and the T e gradient is sustained above the marginal value for a long time in the quasi-steady phase. The results suggest a stiffness of the T e profile in positive shear tokamaks, and a possibility of the T e transport barrier in reversed shear tokamaks. (author)

  17. Gyrokinetic analysis of ion temperature gradient modes in the presence of sheared flows

    International Nuclear Information System (INIS)

    Artun, M.; Tang, W.M.

    1992-01-01

    The linearized gyrokinetic equation governing electrostatic microinstabilities in the presence of sheared equilibrium flow in both the z and y directions has been systematically derived for a sheared slab geometry, where in the large aspect ratio limit z and y directions correspond to the toroidal and poloidal directions respectively. In the familiar long perpendicular wavelength regime (κ perpendicular ρi > 1), the analysis leads to a comprehensive kinetic differential eigenmode equation which is solved numerically. The numerical results have been successfully cross-checked against analytic estimates in the fluid limit. For typical conditions, the Ion Temperature Gradient (ηi) modes are found to be stabilized for y-direction flows with a velocity shear scale comparable to that of the ion temperature gradient and velocities of a few percent of the sound speed. Sheared flows in the z-direction taken along are usually destabilizing, with the effect being independent of the sign of the flow. However, when both types are simultaneously considered, it is found that in the presence of shared z-direction flow, sheared y-direction flow can be either stabilizing or destabilizing depending on the relative sign of these flows. However, for sufficiently large values of υ' y the mode is completely stabilized regardless of the sign of υ' z υ' y . The importance of a proper kinetic treatment of this problem is supported by comparisons with fluid estimates. In particular, when such effects are favorable, significantly smaller values of sheared y-direction flow are required for stability than fluid estimates would indicate

  18. Migration of ThO2 kernels under the influence of a temperature gradient

    International Nuclear Information System (INIS)

    Smith, C.L.

    1976-11-01

    BISO coated ThO 2 fertile fuel kernels will migrate up the thermal gradients imposed across coated particles during HTGR operation. Thorium dioxide kernel migration has been studied as a function of temperature (1300 to 1700 0 C) and ThO 2 kernel burnup (0.9 to 5.8 percent FIMA) in out-of-pile, postirradiation thermal gradient heating experiments. The studies were conducted to obtain descriptions of migration rates that will be used in core design studies to evaluate the impact of ThO 2 migration on fertile fuel performance in an operating HTGR and to define characteristics needed by any comprehensive model describing ThO 2 kernel migration. The kinetics data generated in these postirradiation studies are consistent with in-pile data collected by investigators at Oak Ridge National Laboratory, which supports use of the more precise postirradiation heating results in HTGR core design studies. Observations of intergranular carbon deposits on the cool side of migrating kernels support the assumption that the kinetics of kernel migration are controlled by solid state diffusion within irradiated ThO 2 kernels. The migration is characterized by a period of no migration (incubation period) followed by migration at the equilibrium rate for ThO 2 . The incubation period decreases with increasing temperature and kernel burnup. The improved understanding of the kinetics of ThO 2 kernel migration provided by this work will contribute to an optimization of HTGR core design and an increased confidence in fuel performance predictions

  19. Redox systematics of a magma ocean with variable pressure-temperature gradients and composition.

    Science.gov (United States)

    Righter, K; Ghiorso, M S

    2012-07-24

    Oxygen fugacity in metal-bearing systems controls some fundamental aspects of the geochemistry of the early Earth, such as the FeO and siderophile trace element content of the mantle, volatile species that influence atmospheric composition, and conditions for organic compounds synthesis. Redox and metal-silicate equilibria in the early Earth are sensitive to oxygen fugacity (fO(2)), yet are poorly constrained in modeling and experimentation. High pressure and temperature experimentation and modeling in metal-silicate systems usually employs an approximation approach for estimating fO(2) that is based on the ratio of Fe and FeO [called "ΔIW (ratio)" hereafter]. We present a new approach that utilizes free energy and activity modeling of the equilibrium: Fe + SiO(2) + O(2) = Fe(2)SiO(4) to calculate absolute fO(2) and relative to the iron-wüstite (IW) buffer at pressure and temperature [ΔIW (P,T)]. This equilibrium is considered across a wide range of pressures and temperatures, including up to the liquidus temperature of peridotite (4,000 K at 50 GPa). Application of ΔIW (ratio) to metal-silicate experiments can be three or four orders of magnitude different from ΔIW (P,T) values calculated using free energy and activity modeling. We will also use this approach to consider the variation in oxygen fugacity in a magma ocean scenario for various thermal structures for the early Earth: hot liquidus gradient, 100 °C below the liquidus, hot and cool adiabatic gradients, and a cool subsolidus adiabat. The results are used to assess the effect of increasing P and T, changing silicate composition during accretion, and related to current models for accretion and core formation in the Earth. The fO(2) in a deep magma ocean scenario may become lower relative to the IW buffer at hotter and deeper conditions, which could include metal entrainment scenarios. Therefore, fO(2) may evolve from high to low fO(2) during Earth (and other differentiated bodies) accretion. Any

  20. Insect temperature-body size trends common to laboratory, latitudinal and seasonal gradients are not found across altitudes

    DEFF Research Database (Denmark)

    Horne, Curtis R.; Hirst, Andrew G.; Atkinson, David

    2018-01-01

    Body size affects rates of most biological and ecological processes, from individual performance to ecosystem function, and is fundamentally linked to organism fitness. Within species, size at maturity can vary systematically with environmental temperature in the laboratory and across seasons...... altitude. Although the general direction of body size clines along altitudinal gradients has been examined previously, to our knowledge altitude-body size (A-S) clines have never been synthesised quantitatively, nor compared with temperature-size (T-S) responses measured under controlled laboratory......, as well as over latitudinal gradients. Recent meta-analyses have revealed a close match in the magnitude and direction of these size gradients in various arthropod orders, suggesting that these size responses share common drivers. As with increasing latitude, temperature also decreases with increasing...

  1. The effect of meter-scale lateral oxygen gradients at the sediment-water interface on selected organic matter based alteration, productivity and temperature proxies

    Science.gov (United States)

    Bogus, K. A.; Zonneveld, K. A. F.; Fischer, D.; Kasten, S.; Bohrmann, G.; Versteegh, G. J. M.

    2012-04-01

    A valid assessment of selective aerobic degradation on organic matter (OM) and its impact on OM-based proxies is vital to produce accurate environmental reconstructions. However, most studies investigating these effects suffer from inherent environmental heterogeneities. In this study, we used surface samples collected along two meter-scale transects and one longer transect in the northeastern Arabian Sea to constrain initial OM heterogeneity, in order to evaluate selective aerobic degradation on temperature, productivity and alteration indices at the sediment-water interface. All of the studied alteration indices, the higher plant alkane index, alcohol preservation index, and diol oxidation index, demonstrated that they are sensitive indicators for changes in the oxygen regime. Several export production indices, a cholesterol-based stanol/stenol index and dinoflagellate lipid- and cyst-based ratios, showed significant (more than 20%) change only over the lateral oxygen gradients. Therefore, these compounds do not exclusively reflect surface water productivity, but are significantly altered after deposition. Two of the proxies, glycerol dibiphytanyl glycerol tetraether-based TEX86 sea surface temperature indices and indices based on phytol, phytane and pristane, did not show any trends related to oxygen. Nevertheless, unrealistic sea surface temperatures were obtained after application of the TEX86, TEX86L, and TEX86H proxies. The phytol-based ratios were likely affected by the sedimentary production of pristane. Our results demonstrate the selective impact of aerobic organic matter degradation on the lipid and palynomorph composition of surface sediments along a short lateral oxygen gradient and suggest that some of the investigated proxies may be useful tracers of changing redox conditions at the sediment-water interface.

  2. The effect of meter-scale lateral oxygen gradients at the sediment-water interface on selected organic matter based alteration, productivity and temperature proxies

    Directory of Open Access Journals (Sweden)

    K. A. Bogus

    2012-04-01

    Full Text Available A valid assessment of selective aerobic degradation on organic matter (OM and its impact on OM-based proxies is vital to produce accurate environmental reconstructions. However, most studies investigating these effects suffer from inherent environmental heterogeneities. In this study, we used surface samples collected along two meter-scale transects and one longer transect in the northeastern Arabian Sea to constrain initial OM heterogeneity, in order to evaluate selective aerobic degradation on temperature, productivity and alteration indices at the sediment-water interface. All of the studied alteration indices, the higher plant alkane index, alcohol preservation index, and diol oxidation index, demonstrated that they are sensitive indicators for changes in the oxygen regime. Several export production indices, a cholesterol-based stanol/stenol index and dinoflagellate lipid- and cyst-based ratios, showed significant (more than 20% change only over the lateral oxygen gradients. Therefore, these compounds do not exclusively reflect surface water productivity, but are significantly altered after deposition. Two of the proxies, glycerol dibiphytanyl glycerol tetraether-based TEX86 sea surface temperature indices and indices based on phytol, phytane and pristane, did not show any trends related to oxygen. Nevertheless, unrealistic sea surface temperatures were obtained after application of the TEX86, TEX86L, and TEX86H proxies. The phytol-based ratios were likely affected by the sedimentary production of pristane. Our results demonstrate the selective impact of aerobic organic matter degradation on the lipid and palynomorph composition of surface sediments along a short lateral oxygen gradient and suggest that some of the investigated proxies may be useful tracers of changing redox conditions at the sediment-water interface.

  3. Temperature sensitivity and enzymatic mechanisms of soil organic matter decomposition along an altitudinal gradient on Mount Kilimanjaro.

    Science.gov (United States)

    Blagodatskaya, Еvgenia; Blagodatsky, Sergey; Khomyakov, Nikita; Myachina, Olga; Kuzyakov, Yakov

    2016-02-29

    Short-term acceleration of soil organic matter decomposition by increasing temperature conflicts with the thermal adaptation observed in long-term studies. Here we used the altitudinal gradient on Mt. Kilimanjaro to demonstrate the mechanisms of thermal adaptation of extra- and intracellular enzymes that hydrolyze cellulose, chitin and phytate and oxidize monomers ((14)C-glucose) in warm- and cold-climate soils. We revealed that no response of decomposition rate to temperature occurs because of a cancelling effect consisting in an increase in half-saturation constants (Km), which counteracts the increase in maximal reaction rates (Vmax with temperature). We used the parameters of enzyme kinetics to predict thresholds of substrate concentration (Scrit) below which decomposition rates will be insensitive to global warming. Increasing values of Scrit, and hence stronger canceling effects with increasing altitude on Mt. Kilimanjaro, explained the thermal adaptation of polymer decomposition. The reduction of the temperature sensitivity of Vmax along the altitudinal gradient contributed to thermal adaptation of both polymer and monomer degradation. Extrapolating the altitudinal gradient to the large-scale latitudinal gradient, these results show that the soils of cold climates with stronger and more frequent temperature variation are less sensitive to global warming than soils adapted to high temperatures.

  4. Temperature sensitivity and enzymatic mechanisms of soil organic matter decomposition along an altitudinal gradient on Mount Kilimanjaro

    Science.gov (United States)

    Blagodatskaya, Еvgenia; Blagodatsky, Sergey; Khomyakov, Nikita; Myachina, Olga; Kuzyakov, Yakov

    2016-02-01

    Short-term acceleration of soil organic matter decomposition by increasing temperature conflicts with the thermal adaptation observed in long-term studies. Here we used the altitudinal gradient on Mt. Kilimanjaro to demonstrate the mechanisms of thermal adaptation of extra- and intracellular enzymes that hydrolyze cellulose, chitin and phytate and oxidize monomers (14C-glucose) in warm- and cold-climate soils. We revealed that no response of decomposition rate to temperature occurs because of a cancelling effect consisting in an increase in half-saturation constants (Km), which counteracts the increase in maximal reaction rates (Vmax with temperature). We used the parameters of enzyme kinetics to predict thresholds of substrate concentration (Scrit) below which decomposition rates will be insensitive to global warming. Increasing values of Scrit, and hence stronger canceling effects with increasing altitude on Mt. Kilimanjaro, explained the thermal adaptation of polymer decomposition. The reduction of the temperature sensitivity of Vmax along the altitudinal gradient contributed to thermal adaptation of both polymer and monomer degradation. Extrapolating the altitudinal gradient to the large-scale latitudinal gradient, these results show that the soils of cold climates with stronger and more frequent temperature variation are less sensitive to global warming than soils adapted to high temperatures.

  5. Wind directing correlation and vertical temperature gradient correlation with the wind direction amplitud variation at Angra dos Reis site

    International Nuclear Information System (INIS)

    Nicolli, D.

    1982-08-01

    Two studies are presented: an analysis of air flow characteristics at the Itaorna site, in Angra dos Reis by correlation of wind directions measured simultaneosly on four meteorological masts, and a tentative correlation of vertical temperature gradient with the wind fluctuation standard deviation. It's concluded that the wind directions change vertical and horizontally and the wind direction fluctuation amplitude holds no correlation with the vertical temperature gradient, and therefore it should not be used as an alternative for determination of stability categories. (Author) [pt

  6. Collisionless microinstabilities in stellarators. III. The ion-temperature-gradient mode

    Energy Technology Data Exchange (ETDEWEB)

    Plunk, G. G., E-mail: gplunk@ipp.mpg.de; Helander, P.; Xanthopoulos, P. [Max Planck Institute for Plasma Physics, EURATOM Association, Wendelsteinstr. 1, 17491 Greifswald (Germany); Max-Planck/Princeton Research Center for Plasma Physics, 17491 Greifswald (Germany); Connor, J. W. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2014-03-15

    We investigate the linear theory of the ion-temperature-gradient (ITG) mode, with the goal of developing a general understanding that may be applied to stellarators. We highlight the Wendelstein 7X (W7-X) device. Simple fluid and kinetic models that follow closely from existing literature are reviewed and two new first-principle models are presented and compared with results from direct numerical simulation. One model investigates the effect of regions of strong localized shear, which are generic to stellarator equilibria. These “shear spikes” are found to have a potentially significant stabilizing affect on the mode; however, the effect is strongest at short wavelengths perpendicular to the magnetic field, and it is found to be significant only for the fastest growing modes in W7-X. A second model investigates the long-wavelength limit for the case of negligible global magnetic shear. The analytic calculation reveals that the effect of the curvature drive enters at second order in the drift frequency, confirming conventional wisdom that the ITG mode is slab-like at long wavelengths. Using flux tube simulations of a zero-shear W7-X configuration, we observe a close relationship to an axisymmetric configuration at a similar parameter point. It is concluded that scale lengths of the equilibrium gradients constitute a good parameter space to characterize the ITG mode. Thus, to optimize the magnetic geometry for ITG mode stability, it may be fruitful to focus on local parameters, such as the magnitude of bad curvature, connection length, and local shear at locations of bad curvature (where the ITG mode amplitude peaks)

  7. Estimation of abnormal temperature effects on elderly mortality in South Korea using the temperature deviation index

    Science.gov (United States)

    Choi, Giehae; Bae, Hyun-Joo; Lim, Youn-Hee

    2017-07-01

    Recent studies have revealed that the effect of temperature on mortality has changed over time. One of the major contributors to the changes is adaptation. We aimed to understand the relationship between elderly mortality and temperature anomaly using the temperature deviation index (TDI), which considers exposure history. Summertime (May to September) mortality data from 1996 to 2014 and meteorological data from 1971 to 2014 were obtained for 16 regions covering South Korea. The TDI was defined as the target day's temperature abnormality compared to previous 25 years' apparent temperature (AT). The relationship between the TDI and elderly mortality for each region was examined by generalized linear modeling with Poisson distribution. Pooled estimates were computed to yield a national effect estimate. Stratified analyses were performed using the percentiles of AT and TDI. Most regions showed positive linear associations, and the associations ranged from 0.4 to 4.3% increase per unit increase of the TDI. In the pooled analyses, a unit increase of the TDI was associated with a 1.4% increase (95% confidence interval [CI] 0.93-1.87) in elderly mortality. In the stratified analysis, the relationship between the TDI and elderly mortality was significant at or above the 75th percentile of AT (1.32% increase; 95% CI 0.47-2.22). We suggest a positive association between the TDI and elderly mortality in South Korea. The association observed particularly in the highest percentile of AT in the stratified analysis suggests independent effects of temperature anomaly in addition to those of absolute AT.

  8. Estimation of abnormal temperature effects on elderly mortality in South Korea using the temperature deviation index.

    Science.gov (United States)

    Choi, Giehae; Bae, Hyun-Joo; Lim, Youn-Hee

    2017-07-01

    Recent studies have revealed that the effect of temperature on mortality has changed over time. One of the major contributors to the changes is adaptation. We aimed to understand the relationship between elderly mortality and temperature anomaly using the temperature deviation index (TDI), which considers exposure history. Summertime (May to September) mortality data from 1996 to 2014 and meteorological data from 1971 to 2014 were obtained for 16 regions covering South Korea. The TDI was defined as the target day's temperature abnormality compared to previous 25 years' apparent temperature (AT). The relationship between the TDI and elderly mortality for each region was examined by generalized linear modeling with Poisson distribution. Pooled estimates were computed to yield a national effect estimate. Stratified analyses were performed using the percentiles of AT and TDI. Most regions showed positive linear associations, and the associations ranged from 0.4 to 4.3% increase per unit increase of the TDI. In the pooled analyses, a unit increase of the TDI was associated with a 1.4% increase (95% confidence interval [CI] 0.93-1.87) in elderly mortality. In the stratified analysis, the relationship between the TDI and elderly mortality was significant at or above the 75th percentile of AT (1.32% increase; 95% CI 0.47-2.22). We suggest a positive association between the TDI and elderly mortality in South Korea. The association observed particularly in the highest percentile of AT in the stratified analysis suggests independent effects of temperature anomaly in addition to those of absolute AT.

  9. Empirically Derived and Simulated Sensitivity of Vegetation to Climate Across Global Gradients of Temperature and Precipitation

    Science.gov (United States)

    Quetin, G. R.; Swann, A. L. S.

    2017-12-01

    Successfully predicting the state of vegetation in a novel environment is dependent on our process level understanding of the ecosystem and its interactions with the environment. We derive a global empirical map of the sensitivity of vegetation to climate using the response of satellite-observed greenness and leaf area to interannual variations in temperature and precipitation. Our analysis provides observations of ecosystem functioning; the vegetation interactions with the physical environment, across a wide range of climates and provide a functional constraint for hypotheses engendered in process-based models. We infer mechanisms constraining ecosystem functioning by contrasting how the observed and simulated sensitivity of vegetation to climate varies across climate space. Our analysis yields empirical evidence for multiple physical and biological mediators of the sensitivity of vegetation to climate as a systematic change across climate space. Our comparison of remote sensing-based vegetation sensitivity with modeled estimates provides evidence for which physiological mechanisms - photosynthetic efficiency, respiration, water supply, atmospheric water demand, and sunlight availability - dominate the ecosystem functioning in places with different climates. Earth system models are generally successful in reproducing the broad sign and shape of ecosystem functioning across climate space. However, this general agreement breaks down in hot wet climates where models simulate less leaf area during a warmer year, while observations show a mixed response but overall more leaf area during warmer years. In addition, simulated ecosystem interaction with temperature is generally larger and changes more rapidly across a gradient of temperature than is observed. We hypothesize that the amplified interaction and change are both due to a lack of adaptation and acclimation in simulations. This discrepancy with observations suggests that simulated responses of vegetation to

  10. Heat index and adjusted temperature as surrogates for wet bulb globe temperature to screen for occupational heat stress.

    Science.gov (United States)

    Bernard, Thomas E; Iheanacho, Ivory

    2015-01-01

    Ambient temperature and relative humidity are readily ava-ilable and thus tempting metrics for heat stress assessment. Two methods of using air temperature and relative humidity to create an index are Heat Index and Adjusted Temperature. The purposes of this article are: (1) to examine how well Heat Index and Adjusted Temperature estimated the wet bulb globe temperature (WBGT) index, and (2) to suggest how Heat Index and Adjusted Temperature can be used to screen for heat stress level. Psychrometric relationships were used to estimate values of actual WBGT for conditions of air temperature, relative humidity, and radiant heat at an air speed of 0.5 m/s. A relationship between Heat Index [°F] and WBGT [°C] was described by WBGT = -0.0034 HI(2) + 0.96 HI - 34. At lower Heat Index values, the equation estimated WBGTs that were ± 2 °C-WBGT around the actual value, and to about ± 0.5 °C-WBGT for Heat Index values > 100 °F. A relationship between Adjusted Temperature [°F] and WBGT [°C] was described by WBGT = 0.45 Tadj - 16. The actual WBGT was between 1 °C-WBGT below the estimated value and 1.4 °C-WBGT above. That is, there was a slight bias toward overestimating WBGT from Adjusted Temperature. Heat stress screening tables were constructed for metabolic rates of 180, 300, and 450 W. The screening decisions were divided into four categories: (1) exposure limit at rest. The authors do not recommend using Heat Index or Adjusted Temperature instead of WBGT, but they may be used to screen for circumstances when a more detailed analysis using WBGT is appropriate. A particular weakness is accounting for radiant heat; and neither air speed nor clothing was considered.

  11. Tomographic reconstruction of the refractive index with hard X-rays: an efficient method based on the gradient vector-field approach.

    Science.gov (United States)

    Gasilov, Sergei; Mittone, Alberto; Brun, Emmanuel; Bravin, Alberto; Grandl, Susanne; Mirone, Alessandro; Coan, Paola

    2014-03-10

    The refractive-index gradient vector field approach establishes a connection between a tomographic data set of differential phase contrast images and the distribution of the partial spatial derivatives of the refractive index in an object. The reconstruction of the refractive index in a plane requires the integration of its gradient field. This work shows how this integration can be efficiently performed by converting the problem to the Poisson equation, which can be accurately solved even in the case of noisy and large datasets. The performance of the suggested method is discussed and demonstrated experimentally by computing the refractive index distribution in both a simple plastic phantom and a complex biological sample. The quality of the reconstruction is evaluated through the direct comparison with other commonly used methods. To this end, the refractive index is retrieved from the same data set using also (1) the filtered backprojection algorithm for gradient projections, and (2) the regularized phase-retrieval procedure. Results show that the gradient vector field approach combined with the developed integration technique provides a very accurate depiction of the sample internal structure. Contrary to the two other techniques, the considered method does not require a preliminary phase-retrieval and can be implemented with any advanced computer tomography algorithm. In this work, analyzer-based phase contrast images are used for demonstration. Results, however, are generally valid and can be applied for processing differential phase-contrast tomographic data sets obtained with other phase-contrast imaging techniques.

  12. Urine temperature as an index for the core temperature of industrial workers in hot or cold environments

    Science.gov (United States)

    Kawanami, Shoko; Horie, Seichi; Inoue, Jinro; Yamashita, Makiko

    2012-11-01

    Workers working in hot or cold environments are at risk for heat stroke and hypothermia. In Japan, 1718 people including 47 workers died of heat stroke in 2010 (Ministry of Health Labour and Welfare, Japan 2011). While the American Conference of Governmental Industrial Hygienists (ACGIH) recommendation lists the abnormal core temperature of workers as a criterion for halting work, no method has been established for reliably measuring core temperatures at workplaces. ISO 9886 (Ergonomics-evaluation of thermal strain by physiological measurements. ISO copyright office, Geneva, pp 3-14; 2004) recognizes urine temperature as an index of core temperature only at normal temperature. In this study we ascertained whether or not urine temperature could serve as an index for core temperature at temperatures above and below the ISO range. We measured urine temperature of 31 subjects (29.8 ± 11.9 years) using a thermocouple sensor placed in the toilet bowl at ambient temperature settings of 40, 20, and 5˚C, and compared them with rectal temperature. At all ambient temperature settings, urine temperature correlated closely with rectal temperature exhibiting small mean bias. Urine temperature changed in a synchronized manner with rectal temperature at 40˚C. A Bland and Altman analysis showed that the limits of agreement (mean bias ± 2SD) between rectal and urine temperatures were -0.39 to +0.15˚C at 40˚C (95%CI -0.44 to +0.20˚C) and -0.79 to +0.29˚C at 5˚C (-0.89 to +0.39˚C). Hence, urine temperature as measured by the present method is a practical surrogate index for rectal temperature and represents a highly reliable biological monitoring index for assessing hot and cold stresses of workers at actual workplaces.

  13. Temperature Gradient Effect on Gas Discrimination Power of a Metal-Oxide Thin-Film Sensor Microarray

    Directory of Open Access Journals (Sweden)

    Joachim Goschnick

    2004-05-01

    Full Text Available Abstract: The paper presents results concerning the effect of spatial inhomogeneous operating temperature on the gas discrimination power of a gas-sensor microarray, with the latter based on a thin SnO2 film employed in the KAMINA electronic nose. Three different temperature distributions over the substrate are discussed: a nearly homogeneous one and two temperature gradients, equal to approx. 3.3 oC/mm and 6.7 oC/mm, applied across the sensor elements (segments of the array. The gas discrimination power of the microarray is judged by using the Mahalanobis distance in the LDA (Linear Discrimination Analysis coordinate system between the data clusters obtained by the response of the microarray to four target vapors: ethanol, acetone, propanol and ammonia. It is shown that the application of a temperature gradient increases the gas discrimination power of the microarray by up to 35 %.

  14. Analyzing RNA and DNA folding using temperature gradient gel electrophoresis (TGGE) with application to in vitro selections.

    Science.gov (United States)

    Chadalavada, Durga M; Bevilacqua, Philip C

    2009-01-01

    Gel electrophoresis is a ubiquitous separation technique in nucleic acid biochemistry. Denaturing gel electrophoresis separates nucleic acids on the basis of length, while native gel electrophoresis separates nucleic acids on the basis of both shape and length. Temperature gradient gel electrophoresis (TGGE), in which a temperature gradient is present across the gel, combines the advantages of denaturing and native gel electrophoresis by having native gel-like properties at low temperatures and denaturing gel-like properties at high temperatures. We describe here the techniques of perpendicular and parallel TGGE and some of their applications. Isolation of stable and unstable RNA and DNA sequences from combinatorial libraries is accomplished with TGGE-SELEX, while thermodynamic characterization of an RNA tertiary motif is performed by perpendicular TGGE-melts. Specific examples are chosen from the literature to illustrate the methods. TGGE provides a powerful biophysical approach for analyzing RNA and DNA that complements more traditional methodologies. Copyright © 2009 Elsevier Inc. All rights reserved.

  15. Biological soil crust succession impact on soil moisture and temperature in the sub-surface along a rainfall gradient

    Science.gov (United States)

    Zaady, E.; Yizhaq, H.; Ashkenazy, Y.

    2012-04-01

    Biological soil crusts produce mucilage sheets of polysaccharides that cover the soil surface. This hydrophobic coating can seal the soil micro-pores and thus cause reduction of water permeability and may influence soil temperature. This study evaluates the impact of crust composition on sub-surface water and temperature over time. We hypothesized that the successional stages of biological soil crusts, affect soil moisture and temperature differently along a rainfall gradient throughout the year. Four experimental sites were established along a rainfall gradient in the western Negev Desert. At each site three treatments; crust removal, pure sand (moving dune) and natural crusted were monitored. Crust successional stage was measured by biophysiological and physical measurements, soil water permeability by field mini-Infiltrometer, soil moisture by neutron scattering probe and temperature by sensors, at different depths. Our main interim conclusions from the ongoing study along the rainfall gradient are: 1. the biogenic crust controls water infiltration into the soil in sand dunes, 2. infiltration was dependent on the composition of the biogenic crust. It was low for higher successional stage crusts composed of lichens and mosses and high with cyanobacterial crust. Thus, infiltration rate controlled by the crust is inverse to the rainfall gradient. Continuous disturbances to the crust increase infiltration rates, 3. despite the different rainfall amounts at the sites, soil moisture content below 50 cm is almost the same. We therefore predict that climate change in areas that are becoming dryer (desertification) will have a positive effect on soil water content and vice versa.

  16. Sea surface temperature control of taxon specific phytoplankton production along an oligotrophic gradient in the Mediterranean Sea

    NARCIS (Netherlands)

    van de Poll, W.H.V.; Boute, P.G.; Rozema, P.D.; Buma, A.; Kulk, G.; Rijkenberg, M.J.

    2015-01-01

    The current study aimed to assess changes in phytoplankton composition and productivity along an oligotrophic gradient in relation to changes in sea surface temperature (SST). Phytoplankton pigments, nutrients, and physical water column properties were studied along a longitudinal transect in the

  17. Aquaporin 0 plays a pivotal role in refractive index gradient development in mammalian eye lens to prevent spherical aberration

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, S. Sindhu [Physiology and Biophysics, Stony Brook University, Stony Brook, NY (United States); Varadaraj, Kulandaiappan, E-mail: kulandaiappan.varadaraj@stonybrook.edu [Physiology and Biophysics, Stony Brook University, Stony Brook, NY (United States); SUNY Eye Institute, New York, NY (United States)

    2014-10-03

    Highlights: • Intact AQP0 functions as fiber cell-to-fiber cell adhesion protein. • AQP0 facilitates reduction in extracellular space and lens water content. • AQP0 adhesion function aids in lens refractive index gradient (RING) formation. • AQP0 prevents lens spherical aberration by establishing RING. • AQP0 is critical for lens transparency and homeostasis. - Abstract: Aquaporin 0 (AQP0) is a transmembrane channel that constitutes ∼45% of the total membrane protein of the fiber cells in mammalian lens. It is critical for lens transparency and homeostasis as mutations and knockout cause autosomal dominant lens cataract. AQP0 functions as a water channel and as a cell-to-cell adhesion (CTCA) molecule in the lens. Our recent in vitro studies showed that the CTCA function of AQP0 could be crucial to establish lens refractive index gradient (RING). However, there is a lack of in vivo data to corroborate the role of AQP0 as a fiber CTCA molecule which is critical for creating lens RING. The present investigation is undertaken to gather in vivo evidence for the involvement of AQP0 in developing lens RING. Lenses of wild type (WT) mouse, AQP0 knockout (heterozygous, AQP0{sup +/−}) and AQP0 knockout lens transgenically expressing AQP1 (heterozygous AQP0{sup +/−}/AQP1{sup +/−}) mouse models were used for the study. Data on AQP0 protein profile of intact and N- and/or C-terminal cleaved AQP0 in the lens by MALDI-TOF mass spectrometry and SDS–PAGE revealed that outer cortex fiber cells have only intact AQP0 of ∼28 kDa, inner cortical and outer nuclear fiber cells have both intact and cleaved forms, and inner nuclear fiber cells have only cleaved forms (∼26–24 kDa). Knocking out of 50% of AQP0 protein caused light scattering, spherical aberration (SA) and cataract. Restoring the lost fiber cell membrane water permeability (P{sub f}) by transgene AQP1 did not reinstate complete lens transparency and the mouse lenses showed light scattering and SA

  18. High temperature thermo-physical properties of SPS-ed W–Cu functional gradient materials

    Science.gov (United States)

    Galatanu, Magdalena; Enculescu, Monica; Galatanu, Andrei

    2018-02-01

    The divertor of a fusion reactor like DEMO requires materials able to withstand high heat fluxes and neutron irradiation for several years. For the water cooling concept of this essential part of the reactor, the most likely plasma facing material will be W, while the heatsink material considered is CuCrZr or an improved version of such a Cu-based alloy. To realize W–Cu alloy joints able to withstand thousands of thermal cycles can be difficult due to the difference between the thermal expansion coefficients of these materials. In this work we investigate the possibility to realize such joints by using W–Cu functional gradient materials (FGMs) produced from nanometric and micrometric metallic powders mixtures and consolidated by spark plasma sintering at about 900 °C. Morphological and thermal properties investigations, performed for typical compositions, shows that the best results are obtained using powders with micrometric dimensions. A resulting 1 mm thick, 3 layers W–Cu FGM produced by this simple method shows a remarkable almost constant thermal conductivity value of 200 W m‑1 K‑1, from room temperature up to 1000 °C.

  19. Gyrokinetic global analysis of ion temperature gradient driven mode in reversed shear tokamaks

    International Nuclear Information System (INIS)

    Idomura, Y.; Tokuda, S.; Kishimoto, Y.

    2003-01-01

    A new toroidal gyrokinetic particle code has been developed to study the ion temperature gradient driven (ITG) turbulence in reactor relevant tokamak parameters. We use a new method based on a canonical Maxwellian distribution F CM (P φ , ε, μ), which is defined by three constants of motion in the axisymmetric toroidal system, the canonical angular momentum P φ , the energy ε, and the magnetic moment μ. A quasi-ballooning representation enables linear and nonlinear high-m,n global calculations with a good numerical convergence. Conservation properties are improved by using the optimized loading method. From comprehensive linear global analyses over a wide range of an unstable toroidal mode number spectrum (n=0∼100) in large tokamak parameters (a/ρ ti =320∼460), properties of the ITG modes in reversed shear tokamaks are discussed. In the nonlinear simulation, it is found that a new method based on F CM can simulate a zonal flow damping correctly, and spurious zonal flow oscillations, which are observed in a conventional method based on a local Maxwellian distribution F LM (ψ, ε, μ), do not appear in the nonlinear regime. (author)

  20. Return current instability driven by a temperature gradient in ICF plasmas

    Science.gov (United States)

    Rozmus, W.; Brantov, A. V.; Sherlock, M.; Bychenkov, V. Yu

    2018-01-01

    Hot plasmas with strong temperature gradients in inertial confinement fusion experiments are examined for ion acoustic instabilities produced by electron heat flow. The return current instability (RCI) due to a neutralizing current of cold electrons arising in response to a large electron heat flux has been considered. First, the linear threshold and growth rates are derived in the non-local regime of thermal transport. They are compared with the results of Vlasov–Fokker–Planck (VFP) simulations in one spatial dimension. Very good agreement has been found between kinetic VFP simulations and the linear theory of the RCI. A quasi-stationary state of ion acoustic turbulence (IAT) produced by the RCI is achieved in the VFP simulations. Saturation of the RCI involves heating of ions in the tail of the ion distribution function and convection of the enhanced ion acoustic fluctuations from the unstable region of the plasma. Further evolution of the IAT and its effects on absorption and transport are also discussed.

  1. Anomalous ion thermal transport in hot ion plasmas by the ion temperature gradient mode

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.Y.; Horton, W. (Texas Univ., Austin, TX (United States). Inst. for Fusion Studies); Coppi, B. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Research Lab. of Electronics)

    1992-01-01

    Experiments show that the observed radial profiles of the ion thermal conductivity {chi}{sub i} have the opposite shapes with those obtained from the ion temperature gradient mode ({eta}{sub i} mode) turbulence model by the traditional mixing length estimate. In this work, this radial profile problem is reconsidered with an electromagnetic study of the linear stability of the toroidal {eta}{sub i} mode and a new rule for choosing the mixing length. It is first shown that the electromagnetic effect gives a significant stabilizing effect on the toroidal {eta}{sub i} mode, and that the observed reduction of {chi}{sub i}(r) in the core region can be explained by this electromagnetic effect. Secondly, in view of earlier numerical simulations showing the transfer of fluctuation energy to larger scales that those for the fastest growth rate, as well as fluctuation measurements indicating longer radial correlation lengths, a new mixing length formula is proposed to explain the radial increase of the {chi}{sub i}. It is shown the new formula fits well the observed {chi}{sub i}(r) profiles in two TFTR supershot discharges and also gives the scaling law in the current and the magnetic field which agrees better with experiment than the conventional formula.

  2. Anomalous ion thermal transport in hot ion plasmas by the ion temperature gradient mode

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.Y.; Horton, W. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies; Coppi, B. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Research Lab. of Electronics

    1992-08-01

    Experiments show that the observed radial profiles of the ion thermal conductivity {chi}{sub i} have the opposite shapes with those obtained from the ion temperature gradient mode ({eta}{sub i} mode) turbulence model by the traditional mixing length estimate. In this work, this radial profile problem is reconsidered with an electromagnetic study of the linear stability of the toroidal {eta}{sub i} mode and a new rule for choosing the mixing length. It is first shown that the electromagnetic effect gives a significant stabilizing effect on the toroidal {eta}{sub i} mode, and that the observed reduction of {chi}{sub i}(r) in the core region can be explained by this electromagnetic effect. Secondly, in view of earlier numerical simulations showing the transfer of fluctuation energy to larger scales that those for the fastest growth rate, as well as fluctuation measurements indicating longer radial correlation lengths, a new mixing length formula is proposed to explain the radial increase of the {chi}{sub i}. It is shown the new formula fits well the observed {chi}{sub i}(r) profiles in two TFTR supershot discharges and also gives the scaling law in the current and the magnetic field which agrees better with experiment than the conventional formula.

  3. Anomalous ion thermal transport in hot ion plasmas by the ion temperature gradient mode

    International Nuclear Information System (INIS)

    Kim, J.Y.; Horton, W.; Coppi, B.

    1992-01-01

    Experiments show that the observed radial profiles of the ion thermal conductivity χ i have the opposite shapes with those obtained from the ion temperature gradient mode (η i mode) turbulence model by the traditional mixing length estimate. In this work, this radial profile problem is reconsidered with an electromagnetic study of the linear stability of the toroidal η i mode and a new rule for choosing the mixing length. It is first shown that the electromagnetic effect gives a significant stabilizing effect on the toroidal η i mode, and that the observed reduction of χ i (r) in the core region can be explained by this electromagnetic effect. Secondly, in view of earlier numerical simulations showing the transfer of fluctuation energy to larger scales that those for the fastest growth rate, as well as fluctuation measurements indicating longer radial correlation lengths, a new mixing length formula is proposed to explain the radial increase of the χ i . It is shown the new formula fits well the observed χ i (r) profiles in two TFTR supershot discharges and also gives the scaling law in the current and the magnetic field which agrees better with experiment than the conventional formula

  4. In situ correction of field errors induced by temperature gradient in cryogenic undulators

    Directory of Open Access Journals (Sweden)

    Takashi Tanaka

    2009-12-01

    Full Text Available A new technique of undulator field correction for cryogenic permanent magnet undulators (CPMUs is proposed to correct the phase error induced by temperature gradient. This technique takes advantage of two important instruments: one is the in-vacuum self-aligned field analyzer with laser instrumentation system to precisely measure the distribution of the magnetic field generated by the permanent magnet arrays placed in vacuum, and the other is the differential adjuster to correct the local variation of the magnet gap. The details of the two instruments are described together with the method of how to analyze the field measurement data and deduce the gap variation along the undulator axis. The correction technique was applied to the CPMU with a length of 1.7 m and a magnetic period of 14 mm. It was found that the phase error induced during the cooling process was attributable to local gap variations of around 30  μm, which were then corrected by the differential adjuster.

  5. Molecular dynamics simulation of Cu/Au thin films under temperature gradient

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qibin, E-mail: qibinli@cqu.edu.cn [College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030 (China); Chongqing Key Laboratory of Heterogeneous Material Mechanics, Chongqing University, Chongqing 400030 (China); Peng, Xianghe [College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030 (China); Peng, Tiefeng, E-mail: pengtiefeng@cqu.edu.cn [State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030 (China); Tang, Qizhong [College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); Zhang, Xiaomin [College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); Chongqing Key Laboratory of Heterogeneous Material Mechanics, Chongqing University, Chongqing 400030 (China); Huang, Cheng [College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China)

    2015-12-01

    Graphical abstract: Heat transportation in the thin films. - Highlights: • The coherent lattice interface is found at thin films after annealing. • The vacancies are observed clearly in the deposit thin films. • The defect and component will influence the energy transportation in the coatings. • The vacancies and lattice mismatch can enlarge the mobility of atoms. • The phonon transportation in thin films has no apparent rule. - Abstract: Three modulation period thin films, 1.8 nm Cu/3.6 nm Au, 2.7 nm Cu/2.7 nm Au and 3.6 nm Cu/1.8 nm Au, are obtained from deposition method and ideal modeling based on lattice constant, to examine their structures and thermophysical characteristics under temperature gradient. The coherent lattice interface is found both at deposit and ideal thin films after annealing. Also, the vacancies are observed clearly in the deposit thin films. The defect and component of thin films will influence the energy transportation in the coatings. The vacancies and lattice mismatch can enlarge the mobility of atoms and result in the failure of coating under the thermal stress. The power spectrum of atoms’ movement has no apparent rule for phonon transportation in thin films. The results are helpful to reveal the micro-mechanism and provide reasonable basis for the failure of metallic coatings.

  6. Bioinspired large-scale aligned porous materials assembled with dual temperature gradients.

    Science.gov (United States)

    Bai, Hao; Chen, Yuan; Delattre, Benjamin; Tomsia, Antoni P; Ritchie, Robert O

    2015-12-01

    Natural materials, such as bone, teeth, shells, and wood, exhibit outstanding properties despite being porous and made of weak constituents. Frequently, they represent a source of inspiration to design strong, tough, and lightweight materials. Although many techniques have been introduced to create such structures, a long-range order of the porosity as well as a precise control of the final architecture remain difficult to achieve. These limitations severely hinder the scale-up fabrication of layered structures aimed for larger applications. We report on a bidirectional freezing technique to successfully assemble ceramic particles into scaffolds with large-scale aligned, lamellar, porous, nacre-like structure and long-range order at the centimeter scale. This is achieved by modifying the cold finger with a polydimethylsiloxane (PDMS) wedge to control the nucleation and growth of ice crystals under dual temperature gradients. Our approach could provide an effective way of manufacturing novel bioinspired structural materials, in particular advanced materials such as composites, where a higher level of control over the structure is required.

  7. Untangling interactions: do temperature and habitat fragmentation gradients simultaneously impact biotic relationships?

    Science.gov (United States)

    Lakeman-Fraser, Poppy; Ewers, Robert M

    2014-07-22

    Gaining insight into the impact of anthropogenic change on ecosystems requires investigation into interdependencies between multiple drivers of ecological change and multiple biotic responses. Global environmental change drivers can act simultaneously to impact the abundance and diversity of biota, but few studies have also measured the impact across trophic levels. We firstly investigated whether climate (using temperature differences across a latitudinal gradient as a surrogate) interacts with habitat fragmentation (measured according to fragment area and distance to habitat edges) to impact a New Zealand tri-trophic food chain (plant, herbivore and natural enemy). Secondly, we examined how these interactions might differentially impact both the density and biotic processes of species at each of the three trophic levels. We found evidence to suggest that these drivers act non-additively across trophic levels. The nature of these interactions however varied: location synergistically interacted with fragmentation measures to exacerbate the detrimental effects on consumer density; and antagonistically interacted to ameliorate the impact on plant density and on the interactions between trophic levels (herbivory and parasitoid attack rate). Our findings indicate that the ecological consequences of multiple global change drivers are strongly interactive and vary according to the trophic level studied and whether density or ecological processes are investigated. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. Weak turbulence theory of ion temperature gradient modes for inverted density plasmas

    International Nuclear Information System (INIS)

    Hahm, T.S.; Tang, W.M.

    1989-09-01

    Typical profiles measured in H-mode (''high confinement'') discharges from tokamaks such as JET and DIII-D suggest that the ion temperature gradient instability threshold parameter η i (≡dlnT i /dlnn i ) could be negative in many cases. Previous linear theoretical calculations have established the onset conditions for these negative η i -modes and the fact that their growth rate is much smaller than their real frequency over a wide range of negative η i values. This has motivated the present nonlinear weak turbulence analysis to assess the relevance of such instabilities for confinement in H-mode plasmas. The nonlinear eigenmode equation indicates that the 3-wave coupling to shorter wavelength modes is the dominant nonlinear saturation mechanism. It is found that both the saturation level for these fluctuations and the magnitude of the associated ion thermal diffusivity are considerably smaller than the strong turbulence mixing length type estimates for the more conventional positive-η i -instabilities. 19 refs., 3 figs

  9. Effects of parallel dynamics on vortex structures in electron temperature gradient driven turbulence

    International Nuclear Information System (INIS)

    Nakata, M.; Watanabe, T.-H.; Sugama, H.; Horton, W.

    2011-01-01

    Vortex structures and related heat transport properties in slab electron temperature gradient (ETG) driven turbulence are comprehensively investigated by means of nonlinear gyrokinetic Vlasov simulations, with the aim of elucidating the underlying physical mechanisms of the transition from turbulent to coherent states. Numerical results show three different types of vortex structures, i.e., coherent vortex streets accompanied with the transport reduction, turbulent vortices with steady transport, and a zonal-flow-dominated state, depending on the relative magnitude of the parallel compression to the diamagnetic drift. In particular, the formation of coherent vortex streets is correlated with the strong generation of zonal flows for the cases with weak parallel compression, even though the maximum growth rate of linear ETG modes is relatively large. The zonal flow generation in the ETG turbulence is investigated by the modulational instability analysis with a truncated fluid model, where the parallel dynamics such as acoustic modes for electrons is incorporated. The modulational instability for zonal flows is found to be stabilized by the effect of the finite parallel compression. The theoretical analysis qualitatively agrees with secondary growth of zonal flows found in the slab ETG turbulence simulations, where the transition of vortex structures is observed.

  10. Effects of temperature gradient induced nanoparticle motion on conduction and convection of fluid

    International Nuclear Information System (INIS)

    Zhou Leping; Peterson, George P.; Yoda, Minani; Wang Buxuan

    2012-01-01

    The role of temperature gradient induced nanoparticle motion on conduction and convection was investigated. Possible mechanisms for variations resulting from variations in the thermophysical properties are theoretically and experimentally discussed. The effect of the nanoparticle motion on conduction is demonstrated through thermal conductivity measurement of deionized water with suspended CuO nanoparticles (50 nm in diameter) and correlated with the contributions of Brownian diffusion, thermophoresis, etc. The tendencies observed is that the magnitude of and the variation in the thermal conductivity increases with increasing volume fraction for a given temperature, which is due primarily to the Brownian diffusion of the nanoparticles. Using dimensional analysis, the thermal conductivity is correlated and both the interfacial thermal resistance and near-field radiation are found to be essentially negligible. A modification term that incorporates the contributions of Brownian motion and thermophoresis is proposed. The effect of nanoscale convection is illustrated through an experimental investigation that utilized fluorescent polystyrene nanoparticle tracers (200 nm in diameter) and multilayer nanoparticle image velocimetry. The results indicate that both the magnitude and the deviation of the fluid motion increased with increasing heat flux in the near-wall region. Meanwhile, the fluid motion tended to decrease with the off-wall distance for a given heating power. A corresponding numerical study of convection of pure deionized water shows that the velocity along the off-wall direction is several orders of magnitude lower than that of deionized water, which indicates that Brownian motion in the near-wall region is crucial for fluid with suspended nanoparticles in convection.

  11. Biogeography of pelagic bacterioplankton across an antagonistic temperature-salinity gradient in the Red Sea.

    Science.gov (United States)

    Ngugi, David Kamanda; Antunes, André; Brune, Andreas; Stingl, Ulrich

    2012-01-01

    The Red Sea is a unique marine ecosystem with contrasting gradients of temperature and salinity along its north-to-south axis. It is an extremely oligotrophic environment that is characterized by perpetual year-round water column stratification, high annual solar irradiation, and negligible riverine and precipitation inputs. In this study, we investigated whether the contemporary environmental conditions shape community assemblages by pyrosequencing 16S rRNA genes of bacteria in surface water samples collected from the northeastern half of this water body. A combined total of 1855 operational taxonomic units (OTUs) were recovered from the 'small-cell' and 'large-cell' fractions. Here, a few major OTUs affiliated with Cyanobacteria and Proteobacteria accounted for ∼93% of all sequences, whereas a tail of 'rare' OTUs represented most of the diversity. OTUs allied to Surface 1a/b SAR11 clades and Prochlorococcus related to the high-light-adapted (HL2) ecotype were the most widespread and predominant sequence types. Interestingly, the frequency of taxa that are typically found in the upper mesopelagic zone was significantly elevated in the northern transects compared with those in the central, presumably as a direct effect of deep convective mixing in the Gulf of Aqaba and water exchange with the northern Red Sea. Although temperature was the best predictor of species richness across all major lineages, both spatial and environmental distances correlated strongly with phylogenetic distances. Our results suggest that the bacterial diversity of the Red Sea is as high as in other tropical seas and provide evidence for fundamental differences in the biogeography of pelagic communities between the northern and central regions. © 2011 Blackwell Publishing Ltd.

  12. Biogeography of pelagic bacterioplankton across an antagonistic temperature-salinity gradient in the Red Sea

    KAUST Repository

    Ngugi, David

    2011-12-01

    The Red Sea is a unique marine ecosystem with contrasting gradients of temperature and salinity along its north-to-south axis. It is an extremely oligotrophic environment that is characterized by perpetual year-round water column stratification, high annual solar irradiation, and negligible riverine and precipitation inputs. In this study, we investigated whether the contemporary environmental conditions shape community assemblages by pyrosequencing 16S rRNA genes of bacteria in surface water samples collected from the northeastern half of this water body. A combined total of 1855 operational taxonomic units (OTUs) were recovered from the \\'small-cell\\' and \\'large-cell\\' fractions. Here, a few major OTUs affiliated with Cyanobacteria and Proteobacteria accounted for â93% of all sequences, whereas a tail of \\'rare\\' OTUs represented most of the diversity. OTUs allied to Surface 1a/b SAR11 clades and Prochlorococcus related to the high-light-adapted (HL2) ecotype were the most widespread and predominant sequence types. Interestingly, the frequency of taxa that are typically found in the upper mesopelagic zone was significantly elevated in the northern transects compared with those in the central, presumably as a direct effect of deep convective mixing in the Gulf of Aqaba and water exchange with the northern Red Sea. Although temperature was the best predictor of species richness across all major lineages, both spatial and environmental distances correlated strongly with phylogenetic distances. Our results suggest that the bacterial diversity of the Red Sea is as high as in other tropical seas and provide evidence for fundamental differences in the biogeography of pelagic communities between the northern and central regions. © 2011 Blackwell Publishing Ltd.

  13. The role of the meridional sea surface temperature gradient in controlling the Caribbean low-level jet

    Science.gov (United States)

    Maldonado, Tito; Rutgersson, Anna; Caballero, Rodrigo; Pausata, Francesco S. R.; Alfaro, Eric; Amador, Jorge

    2017-06-01

    The Caribbean low-level jet (CLLJ) is an important modulator of regional climate, especially precipitation, in the Caribbean and Central America. Previous work has inferred, due to their semiannual cycle, an association between CLLJ strength and meridional sea surface temperature (SST) gradients in the Caribbean Sea, suggesting that the SST gradients may control the intensity and vertical shear of the CLLJ. In addition, both the horizontal and vertical structure of the jet have been related to topographic effects via interaction with the mountains in Northern South America (NSA), including funneling effects and changes in the meridional geopotential gradient. Here we test these hypotheses, using an atmospheric general circulation model to perform a set of sensitivity experiments to examine the impact of both SST gradients and topography on the CLLJ. In one sensitivity experiment, we remove the meridional SST gradient over the Caribbean Sea and in the other, we flatten the mountains over NSA. Our results show that the SST gradient and topography have little or no impact on the jet intensity, vertical, and horizontal wind shears, contrary to previous works. However, our findings do not discount a possible one-way coupling between the SST and the wind over the Caribbean Sea through friction force. We also examined an alternative approach based on barotropic instability to understand the CLLJ intensity, vertical, and horizontal wind shears. Our results show that the current hypothesis about the CLLJ must be reviewed in order to fully understand the atmospheric dynamics governing the Caribbean region.

  14. Spatial and temporal variations in mango colour, acidity, and sweetness in relation to temperature and ethylene gradients within the fruit.

    Science.gov (United States)

    Nordey, Thibault; Léchaudel, Mathieu; Génard, Michel; Joas, Jacques

    2014-11-01

    Managing fruit quality is complex because many different attributes have to be taken into account, which are themselves subjected to spatial and temporal variations. Heterogeneous fruit quality has been assumed to be partly related to temperature and maturity gradients within the fruit. To test this assumption, we measured the spatial variability of certain mango fruit quality traits: colour of the peel and of the flesh, and sourness and sweetness, at different stages of fruit maturity using destructive methods as well as vis-NIR reflectance. The spatial variability of mango quality traits was compared to internal variations in thermal time, simulated by a physical model, and to internal variations in maturity, using ethylene content as an indicator. All the fruit quality indicators analysed showed significant spatial and temporal variations, regardless of the measurement method used. The heterogeneity of internal fruit quality traits was not correlated with the marked internal temperature gradient we modelled. However, variations in ethylene content revealed a strong internal maturity gradient which was correlated with the spatial variations in measured mango quality traits. Nonetheless, alone, the internal maturity gradient did not explain the variability of fruit quality traits, suggesting that other factors, such as gas, abscisic acid and water gradients, are also involved. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Behaviour of a pre-stressed concrete pressure-vessel subjected to a high temperature gradient

    International Nuclear Information System (INIS)

    Dubois, F.

    1965-01-01

    After a review of the problems presented by pressure-vessels for atomic reactors (shape of the vessel, pressures, openings, foundations, etc.) the advantages of pre-stressed concrete vessels with respect to steel ones are given. The use of pre-stressed concrete vessels however presents many difficulties connected with the properties of concrete. Thus, because of the absence of an exact knowledge of the material, it is necessary to place a sealed layer of steel against the concrete, to have a thermal insulator or a cooling circuit for limiting the deformations and stresses, etc. It follows that the study of the behaviour of pre-stressed concrete and of the vessel subjected- to a high temperature gradient can yield useful information. A one-tenth scale model of a pre-stressed concrete cylindrical vessel without any side openings and without a base has been built. Before giving a description of the tests the authors consider some theoretical aspects concerning 'scale model-actual structure' similitude conditions and the calculation of the thermal and mechanical effects. The pre-stressed concrete model was heated internally by a 'pyrotenax' element and cooled externally by a very strong air current. The concrete was pre-stressed using horizontal and vertical cables held at 80 kg/cm 2 ; the thermal gradient was 160 deg. C. During the various tests, measurements were made of the overall and local deformations, the changes in water content, the elasticity modulus, the stress and creep of the cables and the depths of the cracks. The overall deformations observed are in line with thermal deformation theories and the creep of the cables attained 20 to 30 per cent according to their position relative to the internal surface. The dynamic elasticity modulus decreased by half but the concrete keeps its good mechanical properties. Finally, cracks 8 to 12 cm deep and 2 to 3 mms wide appeared in that part of the concrete which was not pre-stressed. The results obtained make it

  16. Dual-capillary backscatter interferometry for high-sensitivity nanoliter-volume refractive index detection with density gradient compensation.

    Science.gov (United States)

    Wang, Zhanling; Bornhop, Darryl J

    2005-12-15

    A simple, stable, ultrasensitive dual-capillary dual-bicell (DCDB) microinterferometic backscattering detection (MIBD) system was developed. In DCDB MIBD, a He-Ne laser beam passes through a half-wave plate onto the cross section of two capillaries, one for reference and another for sensing analyte. The position of the backscattered fringe from each capillary, which are in proximity or essentially identical thermal environments, was detected with matched bicell photodetectors. The configuration was found to effectively compensate for thermal drift, which is normally the major source of noise in refractive index (RI) detection systems. It is shown that passive environmental compensation leads to greatly enhanced signal in nanoscale refractometry preformed by MIBD. An order of magnitude improvement in detection limits over single channel configurations is possible. Performance reaches the 10(-9) RIU level for like solvents in the presence in extremely large thermally induced RI gradients. At this level of detectability, DCDB MIBD could facilitate nanoliter-volume, femtomole-level universal detection in applications ranging from mu-HPLC and on-chip CE to scanning microcalorimetry.

  17. Characterization of gradient-index lens-fiber spacing toward applications in two-photon fluorescence endoscopy

    Science.gov (United States)

    Fu, Ling; Gan, Xiaosong; Gu, Min

    2005-12-01

    We report on the experimental investigation into the characterization of two-photon fluorescence microscopy based on the separation distance of a single-mode optical fiber coupler and a gradient-index (GRIN) rod lens. The collected two-photon fluorescence signal exhibits a maximum intensity at a defined separation distance (gap length) where the increasing effective excitation numerical aperture is balanced by the decreasing confocal emission collection. A maximum signal is found at gap lengths of approximately 2, 1.25, and 1.75 mm for GRIN lenses with pitches of 0.23, 0.25, and 0.29 wavelength at 830 nm. The maximum two-photon fluorescence signal collected corresponds to a threefold reduction of axial resolution (38.5 µm at 1.25 mm), compared with the maximum resolution (11.6 µm at 5.5 mm), as shown by the three-dimensional imaging of 10 µm beads. These results demonstrate an intrinsic trade-off between signal collection and axial resolution.

  18. A wide-angle gradient index optical model of the crystalline lens and eye of the octopus.

    Science.gov (United States)

    Jagger, W S; Sands, P J

    1999-08-01

    Cephalopods and fish have had no common ancestor since the Cambrian, and their eyes are a classic example of convergent evolution. The octopus has no cornea, and immerson renders the trout cornea optically ineffective. As a result, the nearly spherical lens is responsible for all refraction in these eyes. In spite of the fact that the octopus lens consists of two joined parts, while the trout lens consists of one part, we show here that their optical properties are very similar. An index gradient bends rays within these lenses, adding power and correcting spherical aberration. High spherical symmetry in both lenses strongly reduces other monochromatic aberrations and yields a wide field of vision, advantageous in attack and evasion. The octopus Mattheissen's ratio, 2.83, an inverse measure of light-gathering power, lies above the trout value of 2.38 but within the range of values reported for fish. Strong uncorrected longitudinal chromatic aberration is nearly identical in both animals as a result of similar lens protein optical properties, and will limit resolution. We discuss how animal lifestyle requirements and lens material properties influence the design of these eyes.

  19. Gradient-Index Optics

    Science.gov (United States)

    2010-03-31

    words, the global-optimization algorithm will be required to search a hyperspace having approximately 30 dimensions in order to find the design...order of 45. In other words, the global-optimization algorithm will be required to search a hyperspace having approximately 45 dimensions in order to...asphere/GRIN lenses, specifically cell phone cameras. Figure 17: Common cell phone camera lens design. Scale: 19.00 BLU 02-Oct-09

  20. Subduction factory in an ampoule: Experiments on sediment-peridotite interaction under temperature gradient conditions

    Science.gov (United States)

    Woodland, A. B.; Bulatov, V. K.; Brey, G. P.; Girnis, A. V.; Höfer, H. E.; Gerdes, A.

    2018-02-01

    To better understand processes above subducted oceanic slabs, we have undertaken experiments with juxtaposed sediment and peridotite layers at pressures of 7.5 and 10.5 GPa at a controlled temperature gradient from ∼100 to ∼500 °C per a sample length of ∼3 mm. The sediment starting material contains H2O (6.9 wt%) and CO2 (5.9 wt%) and has a major-element composition similar to GLOSS (Plank and Langmuir, 1998) doped with trace elements at 10-100 ppm levels. Several experiments were conducted with ∼0.5 wt% Cl or F. The peridotite layer is composed of natural olivine (66 wt%), orthopyroxene (27 wt%) and garnet (7 wt%) mixed with ∼15 wt% graphite. Several experimental configurations were investigated, but the "basic" setup has the sediment layer at the bottom in the cold zone (400-1200 °C) overlain by peridotite at 900-1500 °C. The temperature distribution was determined by two thermocouples and orthopyroxene-garnet thermometry. Features common to many experiments are (1) the development of multiple layers of various lithologies and a pool of hydrous silicate or carbonate-silicate melt in the hottest part of the capsule; (2) replacement of olivine by orthopyroxene in the metaperidotite; (3) preservation and growth of garnet and local development of magnesite in the metaperidotite layer; (4) enrichment in garnet within the metasediment layer at the contact with the metaperidotite; (5) formation of a clinopyroxene-garnet assemblage at the bottom (the coldest part); (6) presence of K-bearing phases (phlogopite or phengite) and carbonates in the metasediment layer only at temperatures variable SiO2, MgO, FeO and CaO contents and low Al2O3. The addition of Cl has almost no effect on element distribution, whereas the addition of F results in the appearance of humite-group minerals containing significant amounts of Ti. Trace-element distribution is controlled by pressure, temperature and mineral assemblages. At low temperatures in the sediment layer (<700 °C) Ba

  1. Steady-state nonequilibrium temperature gradients in hydrogen gas-metal systems: challenging the second law of thermodynamics

    Science.gov (United States)

    Sheehan, D. P.; Garamella, J. T.; Mallin, D. J.; Sheehan, W. F.

    2012-11-01

    Differences in gas reaction rates between disparate surfaces have been proposed as a means to achieve steady-state pressure and temperature gradients within a single blackbody cavity, thereby challenging the second law of thermodynamics (Sheehan 1998 Phys. Rev. E 57 6660; Sheehan 2001 Phys. Lett. A 280 185; Capek and Sheehan 2005 Challenges to the Second Law of Thermodynamics (Theory and Experiment) (Fundamental Theories of Physics Series vol 146) (Dordrecht: Springer)). This paper reports on laboratory tests of this hypothesis; specifically, molecular hydrogen is found to dissociate preferentially on rhenium surfaces versus tungsten at identical elevated temperatures and reduced pressures (T ⩽ 2100 K {\\cal P} \\leqslant 30\\,{ {Torr}} ). Steady-state nonequilibrium H/H2 ratios over the surfaces suggest that temperature gradients could be maintained under blackbody cavity conditions. Preliminary results from bimetallic blackbody cavity experiments are discussed.

  2. The transport phenomena during the growth of ZnTe crystal by the temperature gradient solution growth technique

    Science.gov (United States)

    Yin, Liying; Jie, Wanqi; Wang, Tao; Zhou, Boru; Yang, Fan

    2017-03-01

    A numerical model is developed to simulate the temperature field, the thermosolutal convection, the solute segregation and the growth interface morphology during the growth of ZnTe crystal from Te rich solution by the temperature gradient solution growth (TGSG) technique. Effects of the temperature gradient on the transport phenomena, the growth interface morphology and the growth rate are examined. The influences of the latent heat and the thermal conductivity of ZnTe crystal on the transport phenomena and the growth interface are also discussed. We find that the mass transfer of ZnTe in the solution is very slow because of the low diffusion coefficient and the lack of mixing in the lower part of the solution. During the growth, dilute solution with high density and low growth temperature accumulates in the central region of the growth interface, making the growth interface change into two distinct parts. The inner part is very concave, while the outer part is relatively flat. Growth conditions in front of the two parts of the growth interface are different. The crystalline quality of the inner part of the ingot is predicted to be worse than that of the outer part. High temperature gradient can significantly increase the growth rate, and avoid the diffusion controlled growth to some extent.

  3. Crustal temperature structure derived from a ground temperature gradient chart of Hokkaido; Hokkaido no chion kobaizu kara motometa chikakunai ondo kozo

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Y. [Geological Survey of Japan, Tsukuba (Japan); Akita, F. [Hokkaido Geological Survey, Sapporo (Japan); Nagumo, S. [Oyo Corp., Tokyo (Japan)

    1997-05-27

    The Hokkaido Underground Resources Investigation Institute has prepared in 1995 a detailed temperature gradient chart that shows local anomalies around volcanoes. This paper describes an attempt to derive crustal temperature structure of Hokkaido from the above data. The model was hypothesized as a primary model in which no thermal convection exists. In volcanic and geothermal areas which show a temperature gradient of more than 100 {degree}C km {sup -1}, a solidus temperature is reached at a depth shallower than 10 km. Below the volcanic chain forming the Chishima arc, a partially melted region exists in a width of about 100 km. Most of the areas in the southern Hokkaido have the temperature reached the solidus temperature in the crust. On the other hand, in most of the areas of the forefront side, no solidus temperature is reached in the crust. In the temperature structure of a cross section crossing almost orthogonally with the volcanic front passing through Mt. Daisetsu, a high temperature area reaches to a shallow portion beneath Mt. Daisetsu, where the depth at which the solidus temperature is reached is 10 km or shallower. The range of area where the solidus depth is shallower than 10 km has a south-west width of about 40 km. This means that a partially melted area with a size of 40 km in the horizontal direction exists at a depth of several kilometers. 20 refs., 3 figs.

  4. Optical performance of the SO/PHI full disk telescope due to temperature gradients effect on the heat rejection entrance window

    Science.gov (United States)

    Garranzo, D.; Núñez, A.; Zuluaga-Ramírez, P.; Barandiarán, J.; Fernández-Medina, A.; Belenguer, T.; Álvarez-Herrero, A.

    2017-11-01

    The Polarimetric Helioseismic Imager for Solar Orbiter (SO/PHI) is an instrument on board in the Solar Orbiter mission. The Full Disk Telescope (FDT) will have the capability of providing images of the solar disk in all orbital faces with an image quality diffraction-limited. The Heat Rejection Entrance Window (HREW) is the first optical element of the instrument. Its function is to protect the instrument by filtering most of the Solar Spectrum radiation. The HREW consists of two parallel-plane plates made from Suprasil and each surface has a coating with a different function: an UV shield coating, a low pass band filter coating, a high pass band filter coating and an IR shield coating, respectively. The temperature gradient on the HREW during the mission produces a distortion of the transmitted wave-front due to the dependence of the refractive index with the temperature (thermo-optic effect) mainly. The purpose of this work is to determine the capability of the PHI/FDT refocusing system to compensate this distortion. A thermal gradient profile has been considered for each surface of the plates and a thermal-elastic analysis has been done by Finite Element Analysis to determine the deformation of the optical elements. The Optical Path Difference (OPD) between the incident and transmitted wavefronts has been calculated as a function of the ray tracing and the thermo-optic effect on the optical properties of Suprasil (at the work wavelength of PHI) by means of mathematical algorithms based on the 3D Snell Law. The resultant wavefronts have been introduced in the optical design of the FDT to evaluate the performance degradation of the image at the scientific focal plane and to estimate the capability of the PHI refocusing system for maintaining the image quality diffraction-limited. The analysis has been carried out considering two different situations: thermal gradients due to on axis attitude of the instrument and thermal gradients due to 1° off pointing attitude

  5. Investigation of the effects of pressure gradient, temperature and wall temperature ratio on the stagnation point heat transfer for circular cylinders and gas turbine vanes

    Science.gov (United States)

    Nagamatsu, H. T.; Duffy, R. E.

    1984-01-01

    Low and high pressure shock tubes were designed and constructed for the purpose of obtaining heat transfer data over a temperature range of 390 to 2500 K, pressures of 0.3 to 42 atm, and Mach numbers of 0.15 to 1.5 with and without pressure gradient. A square test section with adjustable top and bottom walls was constructed to produce the favorable and adverse pressure gradient over the flat plate with heat gages. A water cooled gas turbine nozzle cascade which is attached to the high pressure shock tube was obtained to measuse the heat flux over pressure and suction surfaces. Thin-film platinum heat gages with a response time of a few microseconds were developed and used to measure the heat flux for laminar, transition, and turbulent boundary layers. The laminar boundary heat flux on the shock tube wall agreed with Mirel's flat plate theory. Stagnation point heat transfer for circular cylinders at low temperature compared with the theoretical prediction, but for a gas temperature of 922 K the heat fluxes were higher than the predicted values. Preliminary flat plate heat transfer data were measured for laminar, transition, and turbulent boundary layers with and without pressure gradients for free-stream temperatures of 350 to 2575 K and flow Mach numbers of 0.11 to 1.9. The experimental heat flux data were correlated with the laminar and turbulent theories and the agreement was good at low temperatures which was not the case for higher temperatures.

  6. Nanoscale steady-state temperature gradients within polymer nanocomposites undergoing continuous-wave photothermal heating from gold nanorods.

    Science.gov (United States)

    Maity, Somsubhra; Wu, Wei-Chen; Tracy, Joseph B; Clarke, Laura I; Bochinski, Jason R

    2017-08-17

    Anisotropically-shaped metal nanoparticles act as nanoscale heaters via excitation of a localized surface plasmon resonance, utilizing a photothermal effect which converts the optical energy into local heat. Steady-state temperatures within a polymer matrix embedded with gold nanorods undergoing photothermal heating using continuous-wave excitation are measured in the immediate spatial vicinity of the nanoparticle (referred to as the local temperature) from observing the rate of physical rotation of the asymmetric nanoparticles within the locally created polymer melt. Average temperatures across the entire (mostly solid) sample (referred to as the global temperature) are simultaneously observed using a fluorescence method from randomly dispersed molecular emitters. Comparing these two independent measurements in films having varying concentrations of nanorods reveals the interplay between the local and global temperatures, clearly demonstrating the capability of these material samples to sustain large steady-state spatial temperature gradients when experiencing continuous-wave excitation photothermal heating. These results are discussed quantitatively. Illustrative imaging studies of nanofibers under photothermal heating also support the presence of a large temperature gradient. Photothermal heating in this manner has potential utility in creating unique thermal processing conditions for outcomes such as driving chemical reactions, inducing crystallinity changes, or enhancing degradation processes in a manner unachievable by conventional heating methods.

  7. Improving the performance of temperature index snowmelt model of SWAT by using MODIS land surface temperature data.

    Science.gov (United States)

    Yang, Yan; Onishi, Takeo; Hiramatsu, Ken

    2014-01-01

    Simulation results of the widely used temperature index snowmelt model are greatly influenced by input air temperature data. Spatially sparse air temperature data remain the main factor inducing uncertainties and errors in that model, which limits its applications. Thus, to solve this problem, we created new air temperature data using linear regression relationships that can be formulated based on MODIS land surface temperature data. The Soil Water Assessment Tool model, which includes an improved temperature index snowmelt module, was chosen to test the newly created data. By evaluating simulation performance for daily snowmelt in three test basins of the Amur River, performance of the newly created data was assessed. The coefficient of determination (R (2)) and Nash-Sutcliffe efficiency (NSE) were used for evaluation. The results indicate that MODIS land surface temperature data can be used as a new source for air temperature data creation. This will improve snow simulation using the temperature index model in an area with sparse air temperature observations.

  8. Evaluation of Topographic wetness index and catchment characteristics on spatially and temporally variable streams across an elevation gradient

    Science.gov (United States)

    Martin, C.

    2017-12-01

    Topography can be used to delineate streams and quantify the topographic control on hydrological processes of a watershed because geomorphologic processes have shaped the topography and streams of a catchment over time. Topographic Wetness index (TWI) is a common index used for delineating stream networks by predicting location of saturation excess overland flow, but is also used for other physical attributes of a watershed such as soil moisture, groundwater level, and vegetation patterns. This study evaluates how well TWI works across an elevation gradient and the relationships between the active drainage network of four headwater watersheds at various elevations in the Colorado Front Range to topography, geology, climate, soils, elevation, and vegetation in attempt to determine the controls on streamflow location and duration. The results suggest that streams prefer to flow along a path of least resistance which including faults and permeable lithology. Permeable lithologies created more connectivity of stream networks during higher flows but during lower flows dried up. Streams flowing over impermeable lithologies had longer flow duration. Upslope soil hydraulic conductivity played a role on stream location, where soils with low hydraulic conductivity had longer flow duration than soils with higher hydraulic conductivity.Finally TWI thresholds ranged from 5.95 - 10.3 due to changes in stream length and to factors such as geology and soil. TWI had low accuracy for the lowest elevation site due to the greatest change of stream length. In conclusion, structural geology, upslope soil texture, and the permeability of the underlying lithology influenced where the stream was flowing and for how long. Elevation determines climate which influences the hydrologic processes occurring at the watersheds and therefore affects the duration and timing of streams at different elevations. TWI is an adequate tool for delineating streams because results suggest topography has a

  9. Vertically Resolved Weak Temperature Gradient Analysis of the Madden-Julian Oscillation

    Science.gov (United States)

    Wolding, Brandon

    Interactions between moisture, convection, and large-scale circulations are thought to play an important role in destabilizing the Madden-Julian Oscillation (MJO). A simplified framework for understanding such interactions is developed, building upon the work of Chikira (2014). Tropical weak temperature gradient (WTG) balance is used to diagnose intraseasonal variations in large-scale vertical velocity from variations in apparent heating, allowing intraseasonal variations in large-scale vertical moisture advection to be decomposed into contributions from various apparent heating processes (e.g. radiative heating, microphysical processes). The WTG diagnosis captures the vertical structure and magnitude of large-scale vertical velocity and vertical moisture advection with exceptional accuracy throughout the free troposphere. Moisture and moisture variance budgets are used to investigate the MJO in ERA- interim (ERAi) reanalysis and the Superparameterized Community Earth System Model (SP-CESM). Moisture budgets indicate that, during the enhanced phase of the MJO, anoma- lous moistening by large-scale vertical moisture advection exceeds anomalous drying by microphysical processes and sub-grid scale (SGS) eddy fluxes, such that the net effect of these large and opposing processes (hereafter the column process) is to further moisten regions that are anomalously moist. Moisture variance budgets indicate that the column process helps grow moisture variance, acting to destabilize the MJO. Horizontal advective damping of moisture variance, associated with the modulation of higher frequency convective variability on intraseasonal timescales, acts to stabilize the MJO. The vertically resolved WTG balance framework is used to assess the contribution various apparent heating processes make to the column process, and its ability to destabilize the MJO. Intraseasonal variations in longwave radiative heating enhance variations in large-scale vertical moisture advection at low and

  10. Differences in the Temperature Sensitivity of Soil Organic Carbon Decomposition in a Semi-Arid Ecosystem across an Elevational Gradient

    Science.gov (United States)

    Delvinne, H.; Flores, A. N.; Benner, S. G.; Feris, K. P.; De Graaff, M. A.

    2015-12-01

    Semi-arid ecosystems are a significant component of the global carbon (C) cycle as they store approximately 20% of global soil C. Yet, projected increases in mean annual temperatures might alter the amount of soil organic C (SOC) currently stored in these ecosystems. Uncertainties about the temperature sensitivity of SOC decomposition have hindered accurate predictions of C cycle feedbacks to climate change. This study aims to elucidate how the temperature sensitivity of SOC decomposition varies along an elevational (1000m) and climatic (i.e. mean annual temperature and precipitation) gradient. The study sites are located at Reynolds Creek Critical Zone Observatory in Owyhee Mountains of Idaho, USA. We conducted stratified random sampling of soil up to 0-5cm across sagebrush canopy and inter-canopy areas at four elevations. We hypothesized decomposition of SOC pools at lower elevations to have greater temperature sensitivity (more CO2 respired per unit C) compared to upper due to the quality of C that is inherently more temperature sensitive. To assess the temperature sensitivity of SOC decomposition, we used aerobic laboratory incubations (n=40) across a temperature gradient ((15, 20, 25, 30) oC) at constant soil moisture (60% water holding capacity) for 120 days and measured CO2 respired. Cumulative CO2 respired increased with increasing incubation temperature. Cumulative CO2 respired also increased with elevation as upper elevations support greater amounts of C. However, when normalized by SOC, we found that the temperature response of CO2 respiration was greater in soils derived from lower than higher elevations (pelevated temperatures differs strongly across the landscape in semi-arid ecosystems.

  11. Population dynamics of two antilisterial cheese surface consortia revealed by temporal temperature gradient gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Hasler Madlen

    2010-03-01

    Full Text Available Abstract Background Surface contamination of smear cheese by Listeria spp. is of major concern for the industry. Complex smear ecosystems have been shown to harbor antilisterial potential but the microorganisms and mechanisms involved in the inhibition mostly remain unclear, and are likely related to complex interactions than to production of single antimicrobial compounds. Bacterial biodiversity and population dynamics of complex smear ecosystems exhibiting antilisterial properties in situ were investigated by Temporal temperature gradient gel electrophoresis (TTGE, a culture independent technique, for two microbial consortia isolated from commercial Raclette type cheeses inoculated with defined commercial ripening cultures (F or produced with an old-young smearing process (M. Results TTGE revealed nine bacterial species common to both F and M consortia, but consortium F exhibited a higher diversity than consortium M, with thirteen and ten species, respectively. Population dynamics were studied after application of the consortia on fresh-produced Raclette cheeses. TTGE analyses revealed a similar sequential development of the nine species common to both consortia. Beside common cheese surface bacteria (Staphylococcus equorum, Corynebacterium spp., Brevibacterium linens, Microbacterium gubbeenense, Agrococcus casei, the two consortia contained marine lactic acid bacteria (Alkalibacterium kapii, Marinilactibacillus psychrotolerans that developed early in ripening (day 14 to 20, shortly after the growth of staphylococci (day 7. A decrease of Listeria counts was observed on cheese surface inoculated at day 7 with 0.1-1 × 102 CFU cm-2, when cheeses were smeared with consortium F or M. Listeria counts went below the detection limit of the method between day 14 and 28 and no subsequent regrowth was detected over 60 to 80 ripening days. In contrast, Listeria grew to high counts (105 CFU cm-2 on cheeses smeared with a defined surface culture

  12. Determination of the polarity of carrier traps in γ-irradiated polyethylene by temperature gradient thermally stimulated current

    International Nuclear Information System (INIS)

    Kato, Keizo; Iwamoto, Mitsumasa; Hino, Taro

    1986-01-01

    Theoretical analysis is made to show that the polarity of carrier traps produced by radiation can be determined based on measurements of temperature gradient thremally stimulated current. Observations are also made on γ-irradiated polyethylene to examine the polarity of carrier traps. Another investigation is conducted to determine whether a space-charge field is generated in the γ-irradiated polyethylene. In the apparatus used, a collecting voltage is applied to a γ-irradiated specimen to heat it under a temperature gradient while the current generated in an enternal circuit is measured. Theoretical examination, conducted concerning this temperature gradient thermally stimulated current, shows that polarity determination is possible under some conditions. Then, observation is actually carried out using γ-irradiated low-density polyethylene films with deposited gold electrodes. Characteristics of initial rise in thermally stimulated current and effects of the collecting voltage are examined. The polyethylene investigated shows a maximum in thermally stimulated current at about 80 deg C, which is found to have relations with electron traps. It is also revealed that space-charge field is not generated in the sample examined. (Nogami, K.)

  13. How important are internal temperature gradients in french straws during freezing of bovine sperm in nitrogen vapor?

    Science.gov (United States)

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    2013-01-01

    The subject of present work was to predict internal temperature gradients developed during freezing of bovine sperm diluted in extender, packaged in 0.5 ml French plastic straws and suspended in static liquid nitrogen vapor at -100 degree C. For this purpose, a mathematical heat transfer model previously developed to predict freezing times (phase change was considered) of semen/extender packaged in straw was extended to predict internal temperature gradients during the cooling/freezing process. Results showed maximum temperature differences between the centre and the periphery of semen/extender "liquid" column was 1.5 degree C for an external heat transfer coefficient, h = 15 W per (m(2) K), and only 0.5 degree C for h = 5 W per (m(2) K). It is concluded that if a thermocouple wire were inserted in a 0.5 ml plastic straw to monitor the freezing process in nitrogen vapor, its radial position would have little importance since expected internal gradients may be safely neglected. This finding facilitates the interpretation of freezing rates in 0.5 ml plastic straws immersed in nitrogen vapor over liquid nitrogen, a widely used method for cryopreservation of bovine spermatozoa.

  14. Eocene high-latitude temperature gradients over time and space based on d18O values of fossil shark teeth

    Science.gov (United States)

    Zeichner, S. S.; Kim, S.; Colman, A. S.

    2015-12-01

    Early-Mid Eocene (56.0-33.9Mya) is characterized by a temperate Antarctic climate and shallower latitudinal temperature gradients than those in present day. The warmer waters off the coast of the Antarctic Peninsula provided suitable habitats for taxa (i.e., sharks) that live today at lower latitudes. Stable isotope analysis of Eocene shark teeth provides a proxy to understand high latitude temperature gradients. However, shark ecology, in particular migration and occupation of tidal versus pelagic habitats, must be considered in the interpretation of stable isotope data. In this study, we analyze d18OPO4 values from the enameloid of Striatolamia (synonymized with Carcharias) shark teeth from the La Meseta formation (Seymour Island, Antarctica) to estimate paleotemperature in Early-Mid Eocene Antarctica, and assess the impact of ecology versus environmental signals on d18OPO4 values. We compare the ranges and offsets between our measured shark tooth d18OPO4 and published bivalve d18OCO3 values to test whether shark teeth record signals of migration across latitudinal temperature gradients, or instead reflect seasonal and long-term temporal variation across La Meseta stratigraphic units.

  15. Measurement of Linear Coefficient of Thermal Expansion and Temperature-Dependent Refractive Index Using Interferometric System

    Science.gov (United States)

    Corsetti, James A.; Green, William E.; Ellis, Jonathan D.; Schmidt, Greg R.; Moore, Duncan T.

    2017-01-01

    A system combining an interferometer with an environmental chamber for measuring both coefficient of thermal expansion (CTE) and temperature-dependent refractive index (dn/dT) simultaneously is presented. The operation and measurement results of this instrument are discussed.

  16. Heterostructured electrode with concentration gradient shell for highly efficient oxygen reduction at low temperature

    OpenAIRE

    Zhou, Wei; Liang, Fengli; Shao, Zongping; Chen, Jiuling; Zhu, Zhonghua

    2011-01-01

    Heterostructures of oxides have been widely investigated in optical, catalytic and electrochemical applications, because the heterostructured interfaces exhibit pronouncedly different transport, charge, and reactivity characteristics compared to the bulk of the oxides. Here we fabricated a three-dimensional (3D) heterostructured electrode with a concentration gradient shell. The concentration gradient shell with the composition of Ba0.5-xSr0.5-yCo0.8Fe0.2O3-? (BSCF-D) was prepared by simply t...

  17. Sign of inverse spin Hall voltages generated by ferromagnetic resonance and temperature gradients in yttrium iron garnet platinum bilayers

    International Nuclear Information System (INIS)

    Schreier, Michael; Lotze, Johannes; Gross, Rudolf; Goennenwein, Sebastian T B; Bauer, Gerrit E W; Uchida, Ken-ichi; Daimon, Shunsuke; Kikkawa, Takashi; Saitoh, Eiji; Vasyuchka, Vitaliy I; Lauer, Viktor; Chumak, Andrii V; Serga, Alexander A; Hillebrands, Burkard; Flipse, Joost; Van Wees, Bart J

    2015-01-01

    We carried out a concerted effort to determine the absolute sign of the inverse spin Hall effect voltage generated by spin currents injected into a normal metal. We focus on yttrium iron garnet (YIG)∣platinum bilayers at room temperature, generating spin currents by microwaves and temperature gradients. We find consistent results for different samples and measurement setups that agree with theory. We suggest a right-hand-rule to define a positive spin Hall angle corresponding to the voltage expected for the simple case of scattering of free electrons from repulsive Coulomb charges. (paper)

  18. Stomatal conductance, canopy temperature, and leaf area index estimation using remote sensing and OBIA techniques

    Science.gov (United States)

    S. Panda; D.M. Amatya; G. Hoogenboom

    2014-01-01

    Remotely sensed images including LANDSAT, SPOT, NAIP orthoimagery, and LiDAR and relevant processing tools can be used to predict plant stomatal conductance (gs), leaf area index (LAI), and canopy temperature, vegetation density, albedo, and soil moisture using vegetation indices like normalized difference vegetation index (NDVI) or soil adjusted...

  19. Mangrove expansion and contraction at a poleward range limit: climate extremes and land-ocean temperature gradients.

    Science.gov (United States)

    Osland, Michael J; Day, Richard H; Hall, Courtney T; Brumfield, Marisa D; Dugas, Jason L; Jones, William R

    2017-01-01

    Within the context of climate change, there is a pressing need to better understand the ecological implications of changes in the frequency and intensity of climate extremes. Along subtropical coasts, less frequent and warmer freeze events are expected to permit freeze-sensitive mangrove forests to expand poleward and displace freeze-tolerant salt marshes. Here, our aim was to better understand the drivers of poleward mangrove migration by quantifying spatiotemporal patterns in mangrove range expansion and contraction across land-ocean temperature gradients. Our work was conducted in a freeze-sensitive mangrove-marsh transition zone that spans a land-ocean temperature gradient in one of the world's most wetland-rich regions (Mississippi River Deltaic Plain; Louisiana, USA). We used historical air temperature data (1893-2014), alternative future climate scenarios, and coastal wetland coverage data (1978-2011) to investigate spatiotemporal fluctuations and climate-wetland linkages. Our analyses indicate that changes in mangrove coverage have been controlled primarily by extreme freeze events (i.e., air temperatures below a threshold zone of -6.3 to -7.6°C). We expect that in the past 121 yr, mangrove range expansion and contraction has occurred across land-ocean temperature gradients. Mangrove resistance, resilience, and dominance were all highest in areas closer to the ocean where temperature extremes were buffered by large expanses of water and saturated soil. Under climate change, these areas will likely serve as local hotspots for mangrove dispersal, growth, range expansion, and displacement of salt marsh. Collectively, our results show that the frequency and intensity of freeze events across land-ocean temperature gradients greatly influences spatiotemporal patterns of range expansion and contraction of freeze-sensitive mangroves. We expect that, along subtropical coasts, similar processes govern the distribution and abundance of other freeze

  20. Locomotor Activity and Body Temperature Patterns over a Temperature Gradient in the Highveld Mole-Rat (Cryptomys hottentotus pretoriae).

    Science.gov (United States)

    Haupt, Meghan; Bennett, Nigel C; Oosthuizen, Maria K

    2017-01-01

    African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily temperature fluctuations. Mole-rats therefore display a relatively wide range of thermoregulation abilities. Some species cannot maintain their body temperatures at a constant level, whereas others employ behavioural thermoregulation. Here we test the effect of ambient temperature on locomotor activity and body temperature, and the relationship between the two parameters, in the highveld mole-rat. We exposed mole-rats to a 12L:12D and a DD light cycle at ambient temperatures of 30°C, 25°C and 20°C while locomotor activity and body temperature were measured simultaneously. In addition, we investigated the endogenous rhythms of locomotor activity and body temperature at different ambient temperatures. Mole-rats displayed nocturnal activity at all three ambient temperatures and were most active at 20°C, but least active at 30°C. Body temperature was highest at 30°C and lowest at 20°C, and the daily cycle was highly correlated with locomotor activity. We show that the mole-rats have endogenous rhythms for both locomotor activity and body temperature. However, the endogenous body temperature rhythm appears to be less robust compared to the locomotor activity rhythm. Female mole-rats appear to be more sensitive to temperature changes than males, increased heterothermy is evident at lower ambient temperatures, whilst males show smaller variation in their body temperatures with changing ambient temperatures. Mole-rats may rely more heavily on behavioural thermoregulation as it is more energy efficient in an already challenging environment.

  1. Interferometer for Measuring Fast Changes of Refractive Index and Temperature in Transparent Liquids

    DEFF Research Database (Denmark)

    Miller, Arne; Hussmann, E. K.; McLaughlin, W. L.

    1975-01-01

    A double‐beam interferometer has been designed for detecting changes of refractive index in transparent liquids associated with the absorption of ionizing radiation energy, due to short electron beam pulses from an accelerator. The response time of the interferometer is less than 0.2 μsec......, and refractive index changes of the order of 10−7 can be measured, corresponding to a temperature change of ∼10−3  °C and an absorbed dose in water of ∼350 rad. The interferometer can be used as either a real‐time or integrating radiation dosimeter, if the temperature coefficient of the refractive index (dn...

  2. Probing temperature gradients within the GaN buffer layer of AlGaN/GaN high electron mobility transistors with Raman thermography

    International Nuclear Information System (INIS)

    Hodges, C.; Pomeroy, J.; Kuball, M.

    2014-01-01

    We demonstrate the ability of confocal Raman thermography using a spatial filter and azimuthal polarization to probe vertical temperature gradients within the GaN buffer layer of operating AlGaN/GaN high electron mobility transistors. Temperature gradients in the GaN layer are measured by using offset focal planes to minimize the contribution from different regions of the GaN buffer. The measured temperature gradient is in good agreement with a thermal simulation treating the GaN thermal conductivity as homogeneous throughout the layer and including a low thermal conductivity nucleation layer to model the heat flow between the buffer and substrate

  3. Probing temperature gradients within the GaN buffer layer of AlGaN/GaN high electron mobility transistors with Raman thermography

    Energy Technology Data Exchange (ETDEWEB)

    Hodges, C., E-mail: chris.hodges@bristol.ac.uk; Pomeroy, J.; Kuball, M. [H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom)

    2014-02-14

    We demonstrate the ability of confocal Raman thermography using a spatial filter and azimuthal polarization to probe vertical temperature gradients within the GaN buffer layer of operating AlGaN/GaN high electron mobility transistors. Temperature gradients in the GaN layer are measured by using offset focal planes to minimize the contribution from different regions of the GaN buffer. The measured temperature gradient is in good agreement with a thermal simulation treating the GaN thermal conductivity as homogeneous throughout the layer and including a low thermal conductivity nucleation layer to model the heat flow between the buffer and substrate.

  4. Impact of the temperature gradient between twin inclined jets and an oncoming crossflow on their resulting heat transfer

    International Nuclear Information System (INIS)

    Radhouane, Amina; Mahjoub, Nejla; Mhiri, Hatem; Le Palec, George; Bournot, Philippe

    2009-01-01

    This paper deals with the interaction of twin inclined jets in crossflow. The consideration of this particular configuration is of great interest due to its wide presence in various domains and applications and to its dependence in many parameters. These parameters may be geometric like the jets height, the jet nozzles separating distance, the jet nozzles, exit section, etc... It may also be based upon one of the reigning features like the velocity ratio, the temperature gradient, etc...The gradient between the jets and the crossflow temperatures is precisely the parameter we intend to handle in the present work due to its great relevance in several environmental concerns and in technical constraints as well. The evaluation of this parameter will be carried out numerically on the temperature distribution itself. This evaluation is likely to give a thorough idea about the cooling/heating process resulted from the jets interaction with the oncoming crossflow. Such an understanding is likely to give viable solutions to problems raised by this configuration like the acid rain engendered by too hot fumes or the deterioration of the combustors walls by too high temperature jets, etc...The numerically simulated model is based on the resolution of the Navier-Stokes equations by means of the finite volume method and the RSM second order turbulent model and is validated by confrontation to experimental data depicted on the same geometric replica

  5. Germination responses to current and future temperatures of four seeder shrubs across a latitudinal gradient in western Iberia.

    Science.gov (United States)

    Chamorro, Daniel; Luna, Belén; Moreno, José M

    2017-01-01

    Species differ in their temperature germination niche. Populations of a species may similarly differ across the distribution range of the species. Anticipating the impacts of climate variability and change requires understanding the differential sensitivity to germination temperature among and within species. Here we studied the germination responses of four hard-seeded Cistaceae seeders to a range of current and future temperatures. Seeds were collected at sites across the Iberian Peninsula and exposed or not exposed to a heat shock to break dormancy, then set to germinate under four temperature regimes. Temperatures were varied daily and seasonally, simulating the temperature range across the gradient, plus an increased temperature simulating future climate. Time to germination onset and cumulative germination at the end of each season were analyzed for the effects of temperature treatments, seasons, and local climate (temperature of the germination period, T gp ) at each site. T gp was a significant covariate of germination in all species but Cistus populifolius. Temperature treatments significantly affected Cistus ladanifer, C. salviifolius, and Halimium ocymoides. Germination occurred in simulated autumn conditions, with little germination occurring at later seasons, except in unheated seeds of H. ocymoides. Exposure to a heat shock changed the sensitivity to temperature treatments and the relationships with T gp . Germination responses to temperature differ not only among species but also within species across their latitudinal range. The responses were idiosyncratic and related to the local climate of the population. This germination variability complicates generalizing the impacts of climate variability and climate change. © 2017 Botanical Society of America.

  6. Advanced-fueled fusion reactors suitable for direct energy conversion. Project note: temperature-gradient enhancement of electrical fields in insulators

    International Nuclear Information System (INIS)

    Blum, A.S.; Mancebo, L.

    1976-01-01

    Direct energy converters for use on controlled fusion reactors utilize electrodes operated at elevated voltages and temperatures. The insulating elements that position these electrodes must support large voltages and under some circumstances large thermal gradients. It is shown that even modest thermal gradients can cause major alterations of the electric-field distribution within the insulating element

  7. Temperature adaptation of soil bacterial communities along an Antarctic climate gradient: predicting responses to climate warming.

    NARCIS (Netherlands)

    Rinnan, R.; Rousk, J.; Yergeau, E.; Kowalchuk, G.A.; Baath, E.

    2009-01-01

    Soil microorganisms, the central drivers of terrestrial Antarctic ecosystems, are being confronted with increasing temperatures as parts of the continent experience considerable warming. Here we determined short-term temperature dependencies of Antarctic soil bacterial community growth rates, using

  8. Temperature adaptation of soil bacterial communities along an Antarctic climate gradient: predicting responses to climate warming

    NARCIS (Netherlands)

    Rinnan, R.; Rousk, J.; Yergeau, E.; Kowalchuk, G.A.; Baath, E.

    2009-01-01

    Soil microorganisms, the central drivers of terrestrial Antarctic ecosystems, are being confronted with increasing temperatures as parts of the continent experience considerable warming. Here we determined short-term temperature dependencies of Antarctic soil bacterial community growth rates, using

  9. Characterization of Temperature Profiles in Skin and Transdermal Delivery System When Exposed to Temperature Gradients In Vivo and In Vitro.

    Science.gov (United States)

    Zhang, Qian; Murawsky, Michael; LaCount, Terri; Hao, Jinsong; Kasting, Gerald B; Newman, Bryan; Ghosh, Priyanka; Raney, Sam G; Li, S Kevin

    2017-07-01

    Performance of a transdermal delivery system (TDS) can be affected by exposure to elevated temperature, which can lead to unintended safety issues. This study investigated TDS and skin temperatures and their relationship in vivo, characterized the effective thermal resistance of skin, and identified the in vitro diffusion cell conditions that would correlate with in vivo observations. Experiments were performed in humans and in Franz diffusion cells with human cadaver skin to record skin and TDS temperatures at room temperature and with exposure to a heat flux. Skin temperatures were regulated with two methods: a heating lamp in vivo and in vitro, or thermostatic control of the receiver chamber in vitro. In vivo basal skin temperatures beneath TDS at different anatomical sites were not statistically different. The maximum tolerable skin surface temperature was approximately 42-43°C in vivo. The temperature difference between skin surface and TDS surface increased with increasing temperature, or with increasing TDS thermal resistance in vivo and in vitro. Based on the effective thermal resistance of skin in vivo and in vitro, the heating lamp method is an adequate in vitro method. However, the in vitro-in vivo correlation of temperature could be affected by the thermal boundary layer in the receiver chamber.

  10. Relation between local temperature gradients and the direction of heat flow in quantum driven systems

    Science.gov (United States)

    Caso, Alvaro; Arrachea, Liliana; Lozano, Gustavo S.

    2012-08-01

    We introduce thermometers to define the local temperature of an electronic system driven out-of-equilibrium by local ac fields. We discuss the behavior of the local temperature along the sample, showing that it exhibits spatial fluctuations following an oscillatory pattern. We show explicitly that the local temperature is the correct indicator for heat flow.

  11. Relation between local temperature gradients and the direction of heat flow in quantum driven systems

    Energy Technology Data Exchange (ETDEWEB)

    Caso, Alvaro; Arrachea, Liliana [Departamento de Fisica, FCEyN, Universidad de Buenos Aires, Pabellon 1, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Lozano, Gustavo S., E-mail: lozano@df.uba.ar [Departamento de Fisica, FCEyN, Universidad de Buenos Aires, Pabellon 1, Ciudad Universitaria, 1428 Buenos Aires (Argentina)

    2012-08-15

    We introduce thermometers to define the local temperature of an electronic system driven out-of-equilibrium by local ac fields. We discuss the behavior of the local temperature along the sample, showing that it exhibits spatial fluctuations following an oscillatory pattern. We show explicitly that the local temperature is the correct indicator for heat flow.

  12. Interactive Influence on Void Swelling in 300 Series Stainless Steels of Coupled Gradients in Temperature and DPA Rate

    International Nuclear Information System (INIS)

    Garner, F.

    2007-01-01

    Full text of publication follows: Recently, experimental evidence has accumulated that demonstrates that the dependence of swelling in austenitic steels on dpa rate has been strongly underestimated. In development of swelling correlations for both fusion and fission reactor applications the dpa rate is frequently but inadvertently incorporated into the temperature dependence. This inability to separate the separate dependencies of dpa rate and temperature is closely associated with the coupling of gradients in neutron flux-spectra and irradiation temperature along the axial length of components, especially for relatively small cores. In order to demonstrate the separate action of dpa rate and temperature, previously unpublished swelling data are presented from hexagonal ducts, fuel pins and pressurized tubes irradiated in EBR-II, all possessing both axial and radial gradients in dpa rate. Annealed AISI 304 components were chosen to avoid complications of precipitation found in other alloys such as AISI 316 or PCA. Since this steel never develops multiple-peak swelling behavior and experiences very little precipitation at high dpa rates, it use in this effort is ideal for separation of environmental variables. It is demonstrated that the transient regime of void selling is increased by increasing dpa rate and by decreasing temperature. It is also shown that the combined effect of dpa rate and temperature distribution along the length of any given structural component produces a well defined, scatter-free 'swelling loop' vs. dpa that uniquely allows estimation and separation of the separate dependencies of swelling on temperature and dpa rate. One consequence of the derived flux dependence is that components subject to a dpa rate gradient in general suffer much less distortion than predicted by equations that do not explicitly incorporate a dependence on dpa rate. It is also shown that over a wide range of irradiation conditions the terminal steady-state swelling

  13. Effect of a temperature gradient on Sphagnum fallax and its associated living microbial communities: a study under controlled conditions.

    Science.gov (United States)

    Jassey, Vincent E J; Gilbert, Daniel; Binet, Philippe; Toussaint, Marie-Laure; Chiapusio, Geneviève

    2011-03-01

    Microbial communities living in Sphagnum are known to constitute early indicators of ecosystem disturbances, but little is known about their response (including their trophic relationships) to climate change. A microcosm experiment was designed to test the effects of a temperature gradient (15, 20, and 25°C) on microbial communities including different trophic groups (primary producers, decomposers, and unicellular predators) in Sphagnum segments (0-3 cm and 3-6 cm of the capitulum). Relationships between microbial communities and abiotic factors (pH, conductivity, temperature, and polyphenols) were also studied. The density and the biomass of testate amoebae in Sphagnum upper segments increased and their community structure changed in heated treatments. The biomass of testate amoebae was linked to the biomass of bacteria and to the total biomass of other groups added and, thus, suggests that indirect effects on the food web structure occurred. Redundancy analysis revealed that microbial assemblages differed strongly in Sphagnum upper segments along a temperature gradient in relation to abiotic factors. The sensitivity of these assemblages made them interesting indicators of climate change. Phenolic compounds represented an important explicative factor in microbial assemblages and outlined the potential direct and (or) indirect effects of phenolics on microbial communities.

  14. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction.

    Science.gov (United States)

    García-Robledo, Carlos; Kuprewicz, Erin K; Staines, Charles L; Erwin, Terry L; Kress, W John

    2016-01-19

    The critical thermal maximum (CTmax), the temperature at which motor control is lost in animals, has the potential to determine if species will tolerate global warming. For insects, tolerance to high temperatures decreases with latitude, suggesting that similar patterns may exist along elevational gradients as well. This study explored how CTmax varies among species and populations of a group of diverse tropical insect herbivores, the rolled-leaf beetles, across both broad and narrow elevational gradients. Data from 6,948 field observations and 8,700 museum specimens were used to map the elevational distributions of rolled-leaf beetles on two mountains in Costa Rica. CTmax was determined for 1,252 individual beetles representing all populations across the gradients. Initial morphological identifications suggested a total of 26 species with populations at different elevations displaying contrasting upper thermal limits. However, compared with morphological identifications, DNA barcodes (cytochrome oxidase I) revealed significant cryptic species diversity. DNA barcodes identified 42 species and haplotypes across 11 species complexes. These 42 species displayed much narrower elevational distributions and values of CTmax than the 26 morphologically defined species. In general, species found at middle elevations and on mountaintops are less tolerant to high temperatures than species restricted to lowland habitats. Species with broad elevational distributions display high CTmax throughout their ranges. We found no significant phylogenetic signal in CTmax, geography, or elevational range. The narrow variance in CTmax values for most rolled-leaf beetles, especially high-elevation species, suggests that the risk of extinction of insects may be substantial under some projected rates of global warming.

  15. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status

    DEFF Research Database (Denmark)

    Sandholt, Inge; Rasmussen, Kjeld; Andersen, Jens Asger

    2002-01-01

    A simplified land surface dryness index (Temperature-Vegetation Dryness Index, TVDI) based on an empirical parameterisation of the relationship between surface temperature (T-s) and vegetation index (NDVI) is suggested. The index is related to soil moisture and, in comparison to existing interpre......A simplified land surface dryness index (Temperature-Vegetation Dryness Index, TVDI) based on an empirical parameterisation of the relationship between surface temperature (T-s) and vegetation index (NDVI) is suggested. The index is related to soil moisture and, in comparison to existing...... interpretations of the T-s/NDVI space, the index is conceptually and computationally straightforward. It is based on satellite derived information only, and the potential for operational application of the index is therefore large. The spatial pattern and temporal evolution in TVDI has been analysed using 37 NOAA...

  16. Land surface phenology and land surface temperature changes along an urban-rural gradient in Yangtze River Delta, china.

    Science.gov (United States)

    Han, Guifeng; Xu, Jianhua

    2013-07-01

    Using SPOT/VGT NDVI time series images (2002-2009) and MODIS/LST images (2002-2009) smoothed by a Savitzky-Golay filter, the land surface phenology (LSP) and land surface temperature (LST), respectively, are extracted for six cities in the Yangtze River Delta, China, including Shanghai, Hangzhou, Nanjing, Changzhou, Wuxi, and Suzhou. The trends of the averaged LSP and LST are analyzed, and the relationship between these values is revealed along the urban-rural gradient. The results show that urbanization advances the start of the growing season, postpones the end of the growing season, prolongs the growing season length (GSL), and reduces the difference between maximal NDVI and minimal NDVI in a year (NDVIamp). More obvious changes occur in surface vegetation phenology as the urbanized area is approached. The LST drops monotonously and logarithmically along the urban-rural gradient. Urbanization generally affects the LSP of the surrounding vegetation within 6 km to the urban edge. Except for GSL, the difference in the LSP between urban and rural areas has a significant logarithmic relationship with the distance to the urban edge. In addition, there is a very strong linear relationship between the LSP and the LST along the urban-rural gradient, especially within 6 km to the urban edge. The correlations between LSP and gross domestic product and population density reveal that human activities have considerable influence on the land surface vegetation growth.

  17. Tensile Adhesion Strength of Biomass Ash Deposits: Effect of the Temperature Gradient and Ash Chemistry

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Nair, Akhilesh Balachandran; Jensen, Peter Arendt

    2018-01-01

    the deposits. After sintering, the deposits were removed using an electrically controlled arm and the corresponding tensile adhesion strength was measured.The influence of the flue gas temperature (500–700 °C), steel surface temperature (500–650 °C), and deposit composition were investigated. The results...... revealed that increasing the flue gas temperature as well as the steel surface temperature led to a sharp increase in the tensile adhesion strength of the model deposits. The sharp increase was typically observed near the melting temperature (or deformation temperature) of the investigated model deposits......Replacing coal with biomass in power plants is a viable option for reducing net CO2 emissions and combating climate change. However, biomass combustion in boilers may exacerbate problems related to ash deposition and corrosion, demanding effective deposit removal. The tensile adhesion strength...

  18. Modulation of extreme temperatures in Europe under extreme values of the North Atlantic Oscillation Index.

    Science.gov (United States)

    Beniston, Martin

    2018-03-10

    This paper reports on the influence that extreme values in the tails of the North Atlantic Oscillation (NAO) Index probability density function (PDF) can exert on temperatures in Europe. When the NAO Index enters into its lowest (10% quantile or less) and highest (90% quantile or higher) modes, European temperatures often exhibit large negative or positive departures from their mean values, respectively. Analyses of the joint quantiles of the Index and temperatures (i.e., the simultaneous exceedance of particular quantile thresholds by the two variables) show that temperatures enter into the upper or lower tails of their PDF when the NAO Index also enters into its extreme tails, more often that could be expected from random statistics. Studies of this nature help further our understanding of the manner by which mechanisms of decadal-scale climate variability can influence extremes of temperature-and thus perhaps improve the forecasting of extreme temperatures in weather and climate models. © 2018 New York Academy of Sciences.

  19. Responses of Microbial Community Composition to Temperature Gradient and Carbon Steel Corrosion in Production Water of Petroleum Reservoir

    Directory of Open Access Journals (Sweden)

    Xiao-Xiao Li

    2017-12-01

    Full Text Available Oil reservoir production systems are usually associated with a temperature gradient and oil production facilities frequently suffer from pipeline corrosion failures. Both bacteria and archaea potentially contribute to biocorrosion of the oil production equipment. Here the response of microbial populations from the petroleum reservoir to temperature gradient and corrosion of carbon steel coupons were investigated under laboratory condition. Carbon steel coupons were exposed to production water from a depth of 1809 m of Jiangsu petroleum reservoir (China and incubated for periods of 160 and 300 days. The incubation temperatures were set at 37, 55, and 65°C to monitoring mesophilic, thermophilic and hyperthermophilic microorganisms associated with anaerobic carbon steel corrosion. The results showed that corrosion rate at 55°C (0.162 ± 0.013 mm year-1 and 37°C (0.138 ± 0.008 mm year-1 were higher than that at 65°C (0.105 ± 0.007 mm year-1, and a dense biofilm was observed on the surface of coupons under all biotic incubations. The microbial community analysis suggests a high frequency of bacterial taxa associated with families Porphyromonadaceae, Enterobacteriaceae, and Spirochaetaceae at all three temperatures. While the majority of known sulfate-reducing bacteria, in particular Desulfotignum, Desulfobulbus and Desulfovibrio spp., were predominantly observed at 37°C; Desulfotomaculum spp., Thermotoga spp. and Thermanaeromonas spp. as well as archaeal members closely related to Thermococcus and Archaeoglobus spp. were substantially enriched at 65°C. Hydrogenotrophic methanogens of the family Methanobacteriaceae were dominant at both 37 and 55°C; acetoclastic Methanosaeta spp. and methyltrophic Methanolobus spp. were enriched at 37°C. These observations show that temperature changes significantly alter the microbial community structure in production fluids and also affected the biocorrosion of carbon steel under anaerobic conditions.

  20. Numerical simulation of bubble behavior in subcooled flow boiling under velocity and temperature gradient

    International Nuclear Information System (INIS)

    Bahreini, Mohammad; Ramiar, Abas; Ranjbar, Ali Akbar

    2015-01-01

    Highlights: • Condensing bubble is numerically investigated using VOF model in OpenFOAM package. • Bubble mass reduces as it goes through condensation and achieves higher velocities. • At a certain time the slope of changing bubble diameter with time, varies suddenly. • Larger bubbles experience more lateral migration to higher velocity regions. • Bubbles migrate back to a lower velocity region for higher liquid subcooling rates. - Abstract: In this paper, numerical simulation of the bubble condensation in the subcooled boiling flow is performed. The interface between two-phase is tracked via the volume of fluid (VOF) method with continuous surface force (CSF) model, implemented in the open source OpenFOAM CFD package. In order to simulate the condensing bubble with the OpenFOAM code, the original energy equation and mass transfer model for phase change have been modified and a new solver is developed. The Newtonian flow is solved using the finite volume scheme based on the pressure implicit with splitting of operators (PISO) algorithm. Comparison of the simulation results with previous experimental data revealed that the model predicted well the behavior of the actual condensing bubble. The bubble lifetime is almost proportional to bubble initial size and is prolonged by increasing the system pressure. In addition, the initial bubble size, subcooling of liquid and velocity gradient play an important role in the bubble deformation behavior. Velocity gradient makes the bubble move to the higher velocity region and the subcooling rate makes it to move back to the lower velocity region.

  1. Heterostructured electrode with concentration gradient shell for highly efficient oxygen reduction at low temperature

    Science.gov (United States)

    Zhou, Wei; Liang, Fengli; Shao, Zongping; Chen, Jiuling; Zhu, Zhonghua

    2011-11-01

    Heterostructures of oxides have been widely investigated in optical, catalytic and electrochemical applications, because the heterostructured interfaces exhibit pronouncedly different transport, charge, and reactivity characteristics compared to the bulk of the oxides. Here we fabricated a three-dimensional (3D) heterostructured electrode with a concentration gradient shell. The concentration gradient shell with the composition of Ba0.5-xSr0.5-yCo0.8Fe0.2O3-δ (BSCF-D) was prepared by simply treating porous Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) backbone with microwave-plasma. Electrochemical impedance spectroscopy reveals that the oxygen surface exchange rate of the BSCF-D is enhanced by ~250% that of the pristine BSCF due to the appearance of the shell. The heterostructured electrode shows an interfacial resistance as low as 0.148 Ω cm2 at 550°C and an unchanged electrochemical performance after heating treatment for 200 h. This method offers potential to prepare heterostructured oxides not only for electrochemical devices but also for many other applications that use ceramic materials.

  2. Central-peripheral temperature gradient: an early diagnostic sign of late-onset neonatal sepsis in very low birth weight infants.

    Science.gov (United States)

    Leante-Castellanos, José Luis; Lloreda-García, José M; García-González, Ana; Llopis-Baño, Caridad; Fuentes-Gutiérrez, Carmen; Alonso-Gallego, José Ángel; Martínez-Gimeno, Antonio

    2012-04-22

    We assessed central-peripheral temperature gradient alteration for the diagnosis of late-onset neonatal sepsis and compared earliness detection of this sign with altered blood cell count and C-reactive protein. Thirty-one preterm babies (peripheral) temperatures were continuously monitored with a thermal probe (ThermoTracer; Dräger Medical AGF & Co. KgaA, Lübeck, Germany) adjusting incubator air temperature for a thermal gradient peripheral temperature alteration was defined as a thermal gradient >2°C that could not be corrected with protocolized air temperature modifications. Proven (positive blood culture) sepsis and probable late-onset sepsis were recorded. Late-onset sepsis was diagnosed in 11 neonates (proven, 9; probable, 2). Thermal gradient alteration was present in 12 cases, in association with the onset of sepsis in 10 and concomitantly with a ductus arteriosus and stage 1 necrotizing enterocolitis in 2. Thermal gradient alteration had a sensitivity of 90.9% [95% confidence interval (CI), 62.3-98.4] and specificity of 90% (95% CI, 69.9-97.2%), and in 80% of cases, it occurred before abnormal laboratory findings. Central-peripheral temperature gradient monitoring is a feasible, non-invasive, and simple tool easily applicable in daily practice. An increase of >2°C showed a high-sensitivity and specificity for the diagnosis of late-onset sepsis.

  3. Hybrid optical fiber Fabry-Perot interferometer for simultaneous measurement of gas refractive index and temperature.

    Science.gov (United States)

    Wang, Ruohui; Qiao, Xueguang

    2014-11-10

    We present a hybrid miniature optical fiber Fabry-Perot interferometer for simultaneous measurement of gas refractive index and temperature. The interferometer is fabricated by cascading two short sections of capillary tubes with different inner diameters. One extrinsic interferometer is based on the air gap cavity formed by the capillary tube with large diameter. Another section of capillary tube with small inner diameter performs as an intrinsic interferometer and also provides a channel enabling gas to enter and leave the extrinsic cavity freely. The experiment shows that the different dips or peaks in fringe exhibit different responses to the changes in gas refractive index and temperature. Owing to this feature, simultaneous measurement of the gas refractive index and temperature can be realized.

  4. Layout-Driven Post-Placement Techniques for Temperature Reduction and Thermal Gradient Minimization

    DEFF Research Database (Denmark)

    Liu, Wei; Calimera, Andrea; Macii, Alberto

    2013-01-01

    With the continuing scaling of CMOS technology, on-chip temperature and thermal-induced variations have become a major design concern. To effectively limit the high temperature in a chip equipped with a cost-effective cooling system, thermal specific approaches, besides low power techniques, are ...

  5. Ultra-high temperature chirped fiber Bragg gratings produced by gradient stretching of viscoelastic silica.

    Science.gov (United States)

    Gao, Shaorui; Canning, John; Cook, Kevin

    2013-12-15

    By applying a suitable quadratic temperature distribution at a temperature within the viscoelastic softening region for silica, a regenerated chirped grating with bandwidth of 9.8 nm is produced from a uniform grating using post strain-tuning under load. Simulated and experimental results are in good agreement.

  6. Research on early-warning index of the spatial temperature field in concrete dams.

    Science.gov (United States)

    Yang, Guang; Gu, Chongshi; Bao, Tengfei; Cui, Zhenming; Kan, Kan

    2016-01-01

    Warning indicators of the dam body's temperature are required for the real-time monitoring of the service conditions of concrete dams to ensure safety and normal operations. Warnings theories are traditionally targeted at a single point which have limitations, and the scientific warning theories on global behavior of the temperature field are non-existent. In this paper, first, in 3D space, the behavior of temperature field has regional dissimilarity. Through the Ward spatial clustering method, the temperature field was divided into regions. Second, the degree of order and degree of disorder of the temperature monitoring points were defined by the probability method. Third, the weight values of monitoring points of each regions were explored via projection pursuit. Forth, a temperature entropy expression that can describe degree of order of the spatial temperature field in concrete dams was established. Fifth, the early-warning index of temperature entropy was set up according to the calculated sequential value of temperature entropy. Finally, project cases verified the feasibility of the proposed theories. The early-warning index of temperature entropy is conducive to the improvement of early-warning ability and safety management levels during the operation of high concrete dams.

  7. Effects of charge non-neutrality and finite beta on the electron temperature gradient modes in Tokamaks

    Science.gov (United States)

    Hirose, A.; Liu, D. Z.; Livingstone, S.

    2004-03-01

    Local kinetic analysis of the electron temperature gradient (ETG) mode in Tokamaks indicates that the effects of charge non-neutrality are significant in the parameter regime of Tokamaks. The maximum growth rate occurs at (k/k(De))(2) 0.5 when the electron temperature and density are varied over a wide range. The growth rate becomes dependent on the beta factor even though the ETG mode is predominantly electrostatic. Finite beta stabilization of the ETG mode requires a large ballooning parameter so as to cause an effective drift reversal. Mixing length estimate yields an electron thermal diffusivity chi(e) qnu(Te) (c/omega(pe))(2) rootbeta(e) / L-n where c/omega(pe) is the electron skin depth.

  8. Latitudinal gradients in growth and spawning of sea bass, Dicentrarchus labrax, and their relationship with temperature and photoperiod

    Science.gov (United States)

    Vinagre, C.; Ferreira, T.; Matos, L.; Costa, M. J.; Cabral, H. N.

    2009-02-01

    0-group Sea bass, Dicentrarchus labrax, were captured in four estuarine nursery areas along the Portuguese coast, during the spring and summer of 2005. This coast has a North-South orientation which means that it is particularly suited for the investigation of latitudinal trends. Growth and hatch dates were estimated through otolith daily increment analysis. A clear latitudinal gradient in growth rates was detected. D. labrax mean growth rates were 0.48 mm d -1, 0.51 mm d -1, 0.56 mm d -1 and 0.61 mm d -1, from the Ria de Aveiro, the Mondego estuary, the Tagus estuary and the Mira estuary, respectively. A latitudinal gradient also existed in the spawning season of this species, particularly concerning its onset, which occurred earlier in the South. Analysis of sea surface temperature data from the adjacent coastal waters showed that spawning is not triggered by an increase in temperature, as has been argued in other coastal areas at higher latitudes. Photoperiod played a crucial role in the determination of spawning season at the Portuguese coast latitudinal range. The impact of future climate change on the observed patterns is also discussed.

  9. The effects of gender on circadian rhythm of human physiological indexes in high temperature environment

    Science.gov (United States)

    Zheng, G. Z.; Li, K.; Bu, W. T.; Lu, Y. Z.; Wang, Y. J.

    2018-03-01

    In the context of frequent high temperature weather in recent years, peoples’ physical health is seriously threatened by the indoor high temperature. The physiological activities of human body show a certain changes of circadian rhythm. In this paper, the circadian rhythms of the physiological indexes in indoor high temperature environment were quantified and compared between the male subjects and female subjects. Ten subjects (five males and five females) were selected. The temperature conditions were set at 28°C, 32°C, 36°C and 38°C, respectively. The blood pressure, heart rate, rectal temperature, eardrum temperature, forehead temperature and mean skin temperature were measured for 24 hours continuously. The medians, amplitudes and acrophases of the circadian rhythms were obtained by the cosinor analysis method. Then the effects of gender on the circadian rhythm of the human body in high temperature environment were analyzed. The results indicate that, compared with the female subjects, the male medians of the systolic pressure and diastolic pressure were higher, and the male medians of heart rate and rectal temperature were lower, however, no significant differences were found between eardrum temperature, forehead temperature and mean skin temperature. This study can provide scientific basis for the health protection of the indoor relevant personnel.

  10. Comparison of bacterial community changes in fermenting kimchi at two different temperatures using a denaturing gradient gel electrophoresis analysis.

    Science.gov (United States)

    Hong, Yeun; Yang, Hee-Seok; Chang, Hae-Choon; Kim, Hae-Yeong

    2013-01-01

    A polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique followed by sequencing of the 16S rDNA fragments eluted from the bands of interest on denaturing gradient gels was used to monitor changes in the bacterial microflora of two commercial kimchi, salted cabbage, and ingredient mix samples during 30 days of fermentation at 4°C and 10°C. Leuconostoc (Lc.) was the dominant lactic acid bacteria (LAB) over Lactobacillus (Lb.) species at 4°C. Weissella confusa was detected in the ingredient mix and also in kimchi samples throughout fermentation in both samples at 4°C and 10°C. Lc. gelidum was detected as the dominant LAB at 4°C in both samples. The temperature affected the LAB profile of kimchi by varing the pH, which was primarily caused by the temperature-dependent competition among different LAB species in kimchi. At 4°C, the sample variations in pH and titratable acidity were more conspicuous owing to the delayed growth of LAB. Temperature affected only initial decreases in pH and initial increases in viable cell counts, but affected both the initial increases and final values of titratable acidity. The initial microflora in the kimchi sample was probably determined by the microflora of the ingredient mix, not by that of the salted cabbage. The microbial distributions in the samples used in this study resembled across the different kimchi samples and the different fermentation temperatures as the numbers of LAB increased and titratable acidity decreased.

  11. Experimental study of thermo-mechanical behavior of SiC composite tubing under high temperature gradient using solid surrogate

    Energy Technology Data Exchange (ETDEWEB)

    Alva, Luis; Shapovalov, Kirill [University of South Carolina, Mechanical Engineering Department (United States); Jacobsen, George M.; Back, Christina A. [General Atomics (United States); Huang, Xinyu, E-mail: huangxin@mailbox.sc.edu [University of South Carolina, Mechanical Engineering Department (United States)

    2015-11-15

    Nuclear grade silicon carbide fiber (SiC{sub f}) reinforced silicon carbide matrix (SiC{sub m}) composite is a promising candidate material for accident tolerance fuel (ATF) cladding. A major challenge is ensuring the mechanical robustness of the ceramic cladding under accident conditions. In this work the high temperature mechanical response of a SiC{sub f}–SiC{sub m} composite tubing is studied using a novel thermo-mechanical test method. A solid surrogate tube is placed within and bonded to the SiC{sub f}–SiC{sub m} sample tube using a ceramic adhesive. The bonded tube pair is heated from the center using a ceramic glower. During testing, the outer surface temperature of the SiC sample tube rises up to 1274 K, and a steep temperature gradient develops through the thickness of the tube pair. Due to CTE mismatch and the temperature gradient, the solid surrogate tube induces high tensile stress in the SiC sample. During testing, 3D digital image correlation (DIC) method is used to map the strains on the outer surface of the SiC-composite, and acoustic emissions (AE) are monitored to detect the onset and progress of material damage. The thermo-mechanical behavior of SiC-composite sample is compared with that of monolithic SiC samples. Finite element models are developed to estimate stress–strain distribution within the tube assembly. Model predicted surface strain matches the measured surface strain using the DIC method. AE activities indicated a progressive damage process for SiC{sub f}–SiC{sub m} composite samples. For the composites tested in this study, the threshold mechanical hoop strain for matrix micro-cracking to initiate in SiC{sub f}–SiC{sub m} sample is found to be ∼300 microstrain.

  12. Magic angle spinning NMR below 6 K with a computational fluid dynamics analysis of fluid flow and temperature gradients

    Science.gov (United States)

    Sesti, Erika L.; Alaniva, Nicholas; Rand, Peter W.; Choi, Eric J.; Albert, Brice J.; Saliba, Edward P.; Scott, Faith J.; Barnes, Alexander B.

    2018-01-01

    We report magic angle spinning (MAS) up to 8.5 kHz with a sample temperature below 6 K using liquid helium as a variable temperature fluid. Cross polarization 13C NMR spectra exhibit exquisite sensitivity with a single transient. Remarkably, 1H saturation recovery experiments show a 1H T1 of 21 s with MAS below 6 K in the presence of trityl radicals in a glassy matrix. Leveraging the thermal spin polarization available at 4.2 K versus 298 K should result in 71 times higher signal intensity. Taking the 1H longitudinal relaxation into account, signal averaging times are therefore predicted to be expedited by a factor of >500. Computer assisted design (CAD) and finite element analysis were employed in both the design and diagnostic stages of this cryogenic MAS technology development. Computational fluid dynamics (CFD) models describing temperature gradients and fluid flow are presented. The CFD models bearing and drive gas maintained at 100 K, while a colder helium variable temperature fluid stream cools the center of a zirconia rotor. Results from the CFD were used to optimize the helium exhaust path and determine the sample temperature. This novel cryogenic experimental platform will be integrated with pulsed dynamic nuclear polarization and electron decoupling to interrogate biomolecular structure within intact human cells.

  13. Predicting the Impact of Temperature Change on the Future Distribution of Maize Stem Borers and Their Natural Enemies along East African Mountain Gradients Using Phenology Models.

    Directory of Open Access Journals (Sweden)

    Sizah Mwalusepo

    Full Text Available Lepidopteran stem borers are among the most important pests of maize in East Africa. The objective of the present study was to predict the impact of temperature change on the distribution and abundance of the crambid Chilo partellus, the noctuid Busseola fusca, and their larval parasitoids Cotesia flavipes and Cotesia sesamiae at local scale along Kilimanjaro and Taita Hills gradients in Tanzania and Kenya, respectively. Temperature-dependent phenology models of pests and parasitoids were used in a geographic information system for mapping. The three risk indices namely establishment, generation, and activity indices were computed using current temperature data record from local weather stations and future (i.e., 2055 climatic condition based on downscaled climate change data from the AFRICLIM database. The calculations were carried out using index interpolator, a sub-module of the Insect Life Cycle Modeling (ILCYM software. Thin plate algorithm was used for interpolation of the indices. Our study confirmed that temperature was a key factor explaining the distribution of stem borers and their natural enemies but other climatic factors and factors related to the top-down regulation of pests by parasitoids (host-parasitoid synchrony also played a role. Results based on temperature only indicated a worsening of stem borer impact on maize production along the two East African mountain gradients studied. This was attributed to three main changes occurring simultaneously: (1 range expansion of the lowland species C. partellus in areas above 1200 m.a.s.l.; (2 increase of the number of pest generations across all altitudes, thus by 2055 damage by both pests will increase in the most productive maize zones of both transects; (3 disruption of the geographical distribution of pests and their larval parasitoids will cause an improvement of biological control at altitude below 1200 m.a.s.l. and a deterioration above 1200 m.a.s.l. The predicted increase in

  14. Downscaling Satellite Land Surface Temperatures in Urban Regions for Surface Energy Balance Study and Heat Index Development

    Science.gov (United States)

    Norouzi, H.; Bah, A.; Prakash, S.; Nouri, N.; Blake, R.

    2017-12-01

    A great percentage of the world's population reside in urban areas that are exposed to the threats of global and regional climate changes and associated extreme weather events. Among them, urban heat islands have significant health and economic impacts due to higher thermal gradients of impermeable surfaces in urban regions compared to their surrounding rural areas. Therefore, accurate characterization of the surface energy balance in urban regions are required to predict these extreme events. High spatial resolution Land surface temperature (LST) in the scale of street level in the cities can provide wealth of information to study surface energy balance and eventually providing a reliable heat index. In this study, we estimate high-resolution LST maps using combination of LandSat 8 and infrared based satellite products such as Moderate Resolution Imaging Spectroradiometer (MODIS) and newly launched Geostationary Operational Environmental Satellite-R Series (GOES-R). Landsat 8 provides higher spatial resolution (30 m) estimates of skin temperature every 16 days. However, MODIS and GOES-R have lower spatial resolution (1km and 4km respectively) with much higher temporal resolution. Several statistical downscaling methods were investigated to provide high spatiotemporal LST maps in urban regions. The results reveal that statistical methods such as Principal Component Analysis (PCA) can provide reliable estimations of LST downscaling with 2K accuracy. Other methods also were tried including aggregating (up-scaling) the high-resolution data to a coarse one to examine the limitations and to build the model. Additionally, we deployed flux towers over distinct materials such as concrete, asphalt, and rooftops in New York City to monitor the sensible and latent heat fluxes through eddy covariance method. To account for the incoming and outgoing radiation, a 4-component radiometer is used that can observe both incoming and outgoing longwave and shortwave radiation. This

  15. Microzooplankton growth rates examined across a temperature gradient in the Barents Sea.

    Science.gov (United States)

    Franzè, Gayantonia; Lavrentyev, Peter J

    2014-01-01

    Growth rates (µ) of abundant microzooplankton species were examined in field experiments conducted at ambient sea temperatures (-1.8-9.0°C) in the Barents Sea and adjacent waters (70-78.5°N). The maximum species-specific µ of ciliates and athecate dinoflagellates (0.33-1.67 d(-1) and 0.52-1.14 d(-1), respectively) occurred at temperatures below 5°C and exceeded the µmax predicted by previously published, laboratory culture-derived equations. The opposite trend was found for thecate dinoflagellates, which grew faster in the warmer Atlantic Ocean water. Mixotrophic ciliates and dinoflagellates grew faster than their heterotrophic counterparts. At sub-zero temperatures, microzooplankton µmax matched those predicted for phytoplankton by temperature-dependent growth equations. These results indicate that microzooplankton protists may be as adapted to extreme Arctic conditions as their algal prey.

  16. Analisis Tingkat Kenyamanan Di DKI Jakarta Berdasarkan Indeks THI (Temperature Humidity Index

    Directory of Open Access Journals (Sweden)

    Trinah Wati

    2017-05-01

    Full Text Available ABSTRAK Fenomena iklim mempengaruhi kenyamanan fisiologis di daerah pemukiman. Analisa tingkat kenyamanan di DKI Jakarta dilakukan menggunakan THI (Temperature Humidity Index. Berdasarkan data iklim periode 1985 – 2012 stasiun Kemayoran, Tanjung Priok, Halim, Cengkareng dan Pondok Betung, hasil penelitian menunjukkan rata-rata prosentase tingkat kenyamanan harian dengan kategori tidak nyaman sebesar 22,1 % (81 hari per tahun, sebagian nyaman 71 % (259 hari per tahun dan nyaman 7,1% (26 hari per tahun. Tingkat kenyamanan menunjukkan semakin ke tengah kota semakin besar prosentase tidak nyaman. Selama periode tersebut terjadi kecenderungan peningkatan indeks THI dengan signifikansi > 50% menunjukkan tingkat kenyamanan di DKI Jakarta cenderung semakin tidak nyaman. Kata kunci: tingkat kenyamanan, temperature humidity index, urban heat island ABSTRACT Climate phenomenon affects physiological comfortableness in residential area. Analysis of thermal comfort level in DKI Jakarta were conducted using THI (Temperature Humidity Index.  Based on climate data stations in Kemayoran, Tanjung Priok, Halim, Cengkareng dan Pondok Betung during 1985-2012 showed that the average percentage of daily thermal comfort level with categories uncomfortable were 22,1% (81 days per year, half comfortable 71 % (259 days per year and comfortable 7,1% (26 days per year. The study showed that the greater percentage uncomfortable level, the closer into the center of the city and during 1985 to 2012 the THI index tend to increasing with significant level more than 50% meant that the thermal comfort level tend to more uncomfortable. Keywords: thermal comfort level, temperature humidity index, urban heat island Citation: Wati, T dan Fatkhuroyan. (2017. Analisis Tingkat Kenyamanan Di DKI Jakarta Berdasarkan Indeks THI (Temperature Humidity Index. Jurnal Ilmu Lingkungan, 15(1, 57-63, doi:10.14710/jil.15.1.57-63

  17. Temperature and vegetation effects on soil organic carbon quality along a forested mean annual temperature gradient in North America

    Science.gov (United States)

    Cinzia Fissore; Christian P. Giardina; Randall K. Kolka; Carl C. Trettin; Gary M. King; Martin F. Jurgensen; Christopher D. Barton; S. Douglas McDowell

    2008-01-01

    Both climate and plant species are hypothesized to influence soil organic carbon (SOC) quality, but accurate prediction of how SOC process rates respond to global change will require an improved understanding of how SOC quality varies with mean annual temperature (MAT) and forest type. We investigated SOC quality in paired hardwood and pine stands growing in coarse...

  18. Tomographic method for measurement of the gradient refractive index of the crystalline lens. I. The spherical fish lens.

    Science.gov (United States)

    Acosta, Eva; Vazquez, Daniel; Garner, Leon; Smith, George

    2005-03-01

    We present an iterative tomographic algorithm to reconstruct refractive-index profiles for meridional planes of the lens of the spherical fish eye from measurements of deflection angles of refracted rays. Numerical simulations show that the algorithm allows accuracy up to the fourth decimal place, provided that the refractive index can be regarded as an analytical function of the radial coordinate and the experimental errors are neglected. An experimental demonstration is given by applying the algorithm to retrieve the refractive-index profile of a spherical fish lens. The method is conceptually simple and does not require matching of the index of the surrounding medium to that of the surface of the lens, and the related iterative algorithm rapidly converges.

  19. The social gradient in birthweight at term: quantification of the mediating role of maternal smoking and body mass index

    DEFF Research Database (Denmark)

    Mortensen, Laust H; Diderichsen, Finn; Smith, George Davey

    2009-01-01

    Maternal education is associated with the birthweight of offspring. We sought to quantify the role of maternal body mass index (BMI) and smoking as intermediary variables between maternal education and birthweight at term.......Maternal education is associated with the birthweight of offspring. We sought to quantify the role of maternal body mass index (BMI) and smoking as intermediary variables between maternal education and birthweight at term....

  20. Thermocapillary migration of liquid droplets in a temperature gradient in a density matched system

    Science.gov (United States)

    Rashidnia, N.; Balasubramaniam, R.

    1991-01-01

    An experimental investigation of thermocapillary flow in droplets of a vegetable oil (partially hydrogenated soybean oil) immersed in silicone oil was conducted in a test cell with a heated top wall and a cooled bottom wall. The liquids are nearly immiscible and have equal densities at a temperature below the room temperature, thus providing a simulation of low-gravity conditions by reducing the buoyancy forces. The interfacial tension between the two oils was measured in the temperature range 20 to 50 C using a capillary tube and (d sigma)/(d T) was determined to be negative. Droplets ranging in sizes from 3 mm to 1 cm diameter were injected into the silicone oil. The vertical temperature profile in the bulk liquid (silicone oil) produces temperature variations along the interface which induce variations in the interfacial tension. The flow inside the droplet driven by the resulting interfacial shear stresses was observed using a laser light-sheet flow visualization technique. The flow direction is consistent with the sign of (d sigma)/(d T). The observed maximum surface velocities are compared to the theoretical predictions of Young et al. (1959).

  1. Environmental Temperature Affects Prevalence of Blood Parasites of Birds on an Elevation Gradient: Implications for Disease in a Warming Climate

    Science.gov (United States)

    Zamora-Vilchis, Itzel; Williams, Stephen E.; Johnson, Christopher N.

    2012-01-01

    Background The rising global temperature is predicted to expand the distribution of vector-borne diseases both in latitude and altitude. Many host communities could be affected by increased prevalence of disease, heightening the risk of extinction for many already threatened species. To understand how host communities could be affected by changing parasite distributions, we need information on the distribution of parasites in relation to variables like temperature and rainfall that are predicted to be affected by climate change. Methodology/Principal Findings We determined relations between prevalence of blood parasites, temperature, and seasonal rainfall in a bird community of the Australian Wet Tropics along an elevation gradient. We used PCR screening to investigate the prevalence and lineage diversity of four genera of blood parasites (Plasmodium, Haemoproteus, Leucocytozoon and Trypanosoma) in 403 birds. The overall prevalence of the four genera of blood parasites was 32.3%, with Haemoproteus the predominant genus. A total of 48 unique lineages were detected. Independent of elevation, parasite prevalence was positively and strongly associated with annual temperature. Parasite prevalence was elevated during the dry season. Conclusions/Significance Low temperatures of the higher elevations can help to reduce both the development of avian haematozoa and the abundance of parasite vectors, and hence parasite prevalence. In contrast, high temperatures of the lowland areas provide an excellent environment for the development and transmission of haematozoa. We showed that rising temperatures are likely to lead to increased prevalence of parasites in birds, and may force shifts of bird distribution to higher elevations. We found that upland tropical areas are currently a low-disease habitat and their conservation should be given high priority in management plans under climate change. PMID:22723966

  2. Environmental temperature affects prevalence of blood parasites of birds on an elevation gradient: implications for disease in a warming climate.

    Directory of Open Access Journals (Sweden)

    Itzel Zamora-Vilchis

    Full Text Available BACKGROUND: The rising global temperature is predicted to expand the distribution of vector-borne diseases both in latitude and altitude. Many host communities could be affected by increased prevalence of disease, heightening the risk of extinction for many already threatened species. To understand how host communities could be affected by changing parasite distributions, we need information on the distribution of parasites in relation to variables like temperature and rainfall that are predicted to be affected by climate change. METHODOLOGY/PRINCIPAL FINDINGS: We determined relations between prevalence of blood parasites, temperature, and seasonal rainfall in a bird community of the Australian Wet Tropics along an elevation gradient. We used PCR screening to investigate the prevalence and lineage diversity of four genera of blood parasites (Plasmodium, Haemoproteus, Leucocytozoon and Trypanosoma in 403 birds. The overall prevalence of the four genera of blood parasites was 32.3%, with Haemoproteus the predominant genus. A total of 48 unique lineages were detected. Independent of elevation, parasite prevalence was positively and strongly associated with annual temperature. Parasite prevalence was elevated during the dry season. CONCLUSIONS/SIGNIFICANCE: Low temperatures of the higher elevations can help to reduce both the development of avian haematozoa and the abundance of parasite vectors, and hence parasite prevalence. In contrast, high temperatures of the lowland areas provide an excellent environment for the development and transmission of haematozoa. We showed that rising temperatures are likely to lead to increased prevalence of parasites in birds, and may force shifts of bird distribution to higher elevations. We found that upland tropical areas are currently a low-disease habitat and their conservation should be given high priority in management plans under climate change.

  3. Microbial habitat connectivity across spatial scales and hydrothermal temperature gradients at Guaymas Basin

    Directory of Open Access Journals (Sweden)

    Stefanie eMeyer

    2013-07-01

    Full Text Available The Guaymas Basin (Gulf of California hydrothermal vent area is known as a dynamic and hydrothermally vented sedimentary system, where the advection and production of a variety of different metabolic substrates support a high microbial diversity and activity in the seafloor. The main objective of our study was to explore the role of temperature and other environmental factors on community diversity, such as the presence of microbial mats and seafloor bathymetry within one hydrothermally vented field of 200 × 250 m dimension. In this field, temperature increased strongly with sediment depth reaching the known limit to life within a few decimeters. Potential sulfate reduction rate as a key community activity parameter was strongly affected by in situ temperature and sediment depth, declining from high rates of 1-5 μmol ml-1 d-1 at the surface to the detection limit below 5 cm sediment depth, despite the presence of sulfate and hydrocarbons. Automated Ribosomal Intergenic Spacer Analysis yielded a high-resolution fingerprint of the dominant members of the bacterial community. Our analyses showed strong temperature and sediment depth effects on bacterial cell abundance and Operational Taxonomic Units (OTUs number, both declining by more than one order of magnitude below the top 5 cm of the sediment surface. Another fraction of the variation in diversity and community structure was explained by differences in the local bathymetry and spatial position within the vent field. Nevertheless, more than 80% of all detected OTUs were shared among the different temperature realms and sediment depths, after being classified as cold (T<10°C, medium (10°C≤T<40°C or hot (T≥40°C temperature conditions, with significant OTU overlap with the richer surface communities. Overall, this indicates a high connectivity of benthic bacterial habitats in this dynamic and heterogeneous marine ecosystem influenced by strong hydrothermalism.

  4. Heterotrophic respiration in drained tropical peat temperatures influenced by shading gradient

    Science.gov (United States)

    Jauhiainen, Jyrki; Kerojoki, Otto; Silvennoinen, Hanna; Limin, Suwido; Vasander, Harri

    2015-04-01

    Lowland peatlands in Southeast Asia constitute a highly concentrated carbon (C) pool of global significance. These peatlands have formed over periods of several millennia by forest vegetation tolerant to flooding and poor substrates. Uncontrollable drainage and reoccurring wild fires in lack of management after removal of forest cover has impaired the C-storing functions in large reclaimed areas. Intergovernmental Panel on Climate Change (IPCC) reporting sees drained tropical organic soils as one of the largest greenhouse gas emissions releasing terrestrial systems. Vast areas of deforested tropical peatlands do not receive noteworthy shading by vegetation, which increases the amount of solar radiation reaching the peat surface. We studied heterotrophic carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) fluxes in tropical peat in conditions, where; (i) peat temperatures were modified by artificial shading (no shade, 28%, 51% and 90% from the full sun exposure), (ii) root respiration was minimized, (iii) nutrient availability for peat decomposer community was changed (NPK fertilization of 0 and 313 kg ha-1). The experiment was repeated at two over 20 years ago drained fallow agricultural- and degraded sites in Central Kalimantan, Indonesia. Enhanced shading created a lasting decrease in peat temperatures, and decreased diurnal temperature fluctuations, in comparison to less shaded plots. The largest peat temperature difference was between the unshaded and 90% shaded peat surface, where the average temperatures within the topmost 50-cm peat profile differed 3 °C, and diurnal temperatures at 5 cm depth varied up to 4.2 °C in the unshaded and 0.4 °C in the 90% shaded conditions. Highest impacts on the heterotrophic CO2 fluxes caused by the treatments were on agricultural land, where 90% shading from the full exposure resulted in a 33% lower CO2 emission average on the unfertilised plots and a 66% lower emission average on the fertilised plots. Correlation

  5. Space charge build-up in XLPE-cable with temperature gradient

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens; Hjerrild, Jesper

    2000-01-01

    Space charge build-up in standard XLPE insulated AC cables has been studied under varying temperature and field conditions. The cables were triple-extruded with the inner semicon on a solid aluminum conductor, 5.5mm XLPE-insulation and an outer semicon. The cables were stressed up to 15kV/mm DC...

  6. Device for the measurement and recording of the vertical temperature gradient close to the ground

    International Nuclear Information System (INIS)

    Chassany, J. Ph.; Cottignies, S.

    1963-01-01

    The temperature measurement device described in this note is made of 2 series of 15 copper-constantan thermocouples each, disposed along a mast at 5 m and 20 m from the ground, respectively. Thermocouples are protected against direct sunlight and connected to a recorder

  7. Ammonia oxidizer populations vary with nitrogen cycling across a tropical montane mean annual temperature gradient

    Science.gov (United States)

    S. Pierre; I. Hewson; J. P. Sparks; C. M. Litton; C. Giardina; P. M. Groffman; T. J. Fahey

    2017-01-01

    Functional gene approaches have been used to better understand the roles of microbes in driving forest soil nitrogen (N) cycling rates and bioavailability. Ammonia oxidation is a rate limiting step in nitrification, and is a key area for understanding environmental constraints on N availability in forests. We studied how increasing temperature affects the role of...

  8. Electronic chemical response indexes at finite temperature in the canonical ensemble

    International Nuclear Information System (INIS)

    Franco-Pérez, Marco; Gázquez, José L.; Vela, Alberto

    2015-01-01

    Assuming that the electronic energy is given by a smooth function of the number of electrons and within the extension of density functional theory to finite temperature, the first and second order chemical reactivity response functions of the Helmholtz free energy with respect to the temperature, the number of electrons, and the external potential are derived. It is found that in all cases related to the first or second derivatives with respect to the number of electrons or the external potential, there is a term given by the average of the corresponding derivative of the electronic energy of each state (ground and excited). For the second derivatives, including those related with the temperature, there is a thermal fluctuation contribution that is zero at zero temperature. Thus, all expressions reduce correctly to their corresponding chemical reactivity expressions at zero temperature and show that, at room temperature, the corrections are very small. When the assumption that the electronic energy is given by a smooth function of the number of electrons is replaced by the straight lines behavior connecting integer values, as required by the ensemble theorem, one needs to introduce directional derivatives in most cases, so that the temperature dependent expressions reduce correctly to their zero temperature counterparts. However, the main result holds, namely, at finite temperature the thermal corrections to the chemical reactivity response functions are very small. Consequently, the present work validates the usage of reactivity indexes calculated at zero temperature to infer chemical behavior at room and even higher temperatures

  9. Mean Annual Temperature Drives Microbial Nitrogen Cycling and Fine Root Nutrient Foraging Across a Tropical Montane Wet Forest Elevation Gradient

    Science.gov (United States)

    Pierre, S.; Litton, C. L. M.; Giardina, C. P.; Sparks, J. P.; Groffman, P. M.; Hewson, I.; Fahey, T. J.

    2017-12-01

    Mean annual temperature (MAT) is positively correlated with rates of primary production and carbon (C) turnover in forests globally, but the underlying biotic drivers of these relationships remain poorly resolved. We hypothesized that (1) MAT increases nitrifier abundance and thereby nitrate (NO-) bioavailability in soils and (2) increased NO- bioavailability reduces fine root nitrogen (N) demand. We used an ecologically well-constrained natural elevation gradient (13˚C -18˚C) in a tropical wet motane forest on the Island of Hawaii to study to role of MAT in situ. Our previous work showed that MAT drives increased soil NO- bioavailability in situ (r²=0.79, P=0.003), and indicated that the abundance of ammonia oxidizing archaea is strongly and positively correlated with MAT in situ (r²=0.34, Pfertilized fine root ingrowth cores (+N, +P, +N+P, control) across the same MAT gradient, we found that increasing MAT and bulk soil NO- bioavailability produced a significant negative fine root response to the +N+P treatment (P=0.023), and no response to other fertilization treatments. Increasing MAT and soil NO- bioavailability led to increased percent arbuscular mycorrhizal (AM) colonization of fine roots (r²=0.43, P=0.004), but no treatment effect on AM colonization was observed. Our results suggest that N and P generally co-limit fine root foraging across the gradient, while higher MAT and bulk soil NO- bioavailability interact to reduce fine root foraging effort. Further, higher MAT and greater N fertility in soils may reduce the C limitation of AM fungal colonization. We conclude that MAT drives N-rich conditions, which allow for lower N foraging effort, but greater C investment in P acquisition through AM fine root colonization.

  10. Comparison of methods for estimating Wet-Bulb Globe Temperature index from standard meteorological measurements.

    Science.gov (United States)

    Patel, Tejash; Mullen, Stephen P; Santee, William R

    2013-08-01

    Environmental heat illness and injuries are a serious concern for the Army and Marines. Currently, the Wet-Bulb Globe Temperature (WBGT) index is used to evaluate heat injury risk. The index is a weighted average of dry-bulb temperature (Tdb), black globe temperature (Tbg), and natural wet-bulb temperature (Tnwb). The WBGT index would be more widely used if it could be determined using standard weather instruments. This study compares models developed by Liljegren at Argonne National Laboratory and by Matthew at the U.S. Army Institute of Environmental Medicine that calculate WBGT using standard meteorological measurements. Both models use air temperature (Ta), relative humidity, wind speed, and global solar radiation (RG) to calculate Tnwb and Tbg. The WBGT and meteorological data used for model validation were collected at Griffin, Georgia and Yuma Proving Ground (YPG), Arizona. Liljegren (YPG: R(2) = 0.709, p < 0.01; Griffin: R(2) = 0.854, p < 0.01) showed closer agreement between calculated and actual WBGT than Matthew (YPG: R(2) = 0.630, p < 0.01; Griffin: R(2) = 0.677, p < 0.01). Compared to actual WBGT heat categorization, the Matthew model tended to underpredict compared to Liljegren's classification. Results indicate Liljegren is an acceptable alternative to direct WBGT measurement, but verification under other environmental conditions is needed. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  11. Low temperature geomicrobiology follows host rock composition along a geochemical gradient in Lau Basin

    Directory of Open Access Journals (Sweden)

    Jason B Sylvan

    2013-03-01

    Full Text Available The East Lau Spreading Center (ELSC and Valu Fa Ridge (VFR comprise a ridge segment in the southwest Pacific Ocean where rapid transitions in the underlying mantle chemistry manifest themselves as gradients in seafloor rock geochemistry. We studied the geology and microbial diversity of three silicate rock samples and three inactive sulfide chimney samples collected, from north to south, at the vent fields Kilo Moana, ABE, Tui Malila and Mariner. This is the first study of microbial populations on basaltic andesite, which was sampled at Mariner vent field. Silicate rock geochemistry exhibits clear latitudinal trends that are mirrored by changes in bacterial community composition. α-proteobacteria, ε-proteobacteria and Bacteroidetes are most common on a silicate collected from Kilo Moana and their proportions decrease linearly on silicates collected further south. Conversely, a silicate from Mariner vent field hosts high proportions of a unique lineage of Chloroflexi unrelated (<90% sequence similarity to previously recovered environmental clones or isolates, which decrease at ABE and are absent at Kilo Moana. The exteriors of inactive sulfide structures are dominated by lineages of sulfur oxidizing α-proteobacteria, γ-proteobacteria and ε-proteobacteria while the interior of one chimney is dominated by putative sulfur-reducing δ-proteobacteria. A comparison of bacterial communities on inactive sulfides from this and previous studies reveals the presence of a clade of uncultured Bacteroidetes exclusive to sulfidic environments, and a high degree of heterogeneity in bacterial community composition from one sulfide structure to another. In light of the heterogeneous nature of bacterial communities observed here and in previous studies of both active and inactive hydrothermal sulfide structures, the presence of numerous niches may be detected on these structures in the future by finer scale sampling and analysis.

  12. The Impact of Tree Diversity on Different Aspects of Insect Herbivory along a Global Temperature Gradient - A Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Stephan Kambach

    Full Text Available Forests with higher tree diversity are often assumed to be more resistant to insect herbivores but whether this effect depends on climatic conditions is so far poorly understood. In particular, a forest's resistance to herbivory may depend on mean annual temperature (MAT as a key driver of plant and insect phenology. We carried out a global meta-analysis on regression coefficients between tree diversity and four aspects of insect herbivory, namely herbivore damage, abundance, incidence rate and species richness. To test for a potential shift of tree diversity effects along a global gradient of MAT we applied mixed-effects models and estimated grand mean effect sizes and the influence of MAT, experimental vs. observational studies and herbivores diet breadth. There was no overall effect of tree diversity on the pooled effect sizes of insect herbivore damage, abundance and incidence rate. However, when analysed separately, we found positive grand mean effect sizes for herbivore abundance and species richness. For herbivore damage and incidence rate we found a significant but opposing shift along a gradient of MAT indicating that with increasing MAT diversity effects on herbivore damage tend towards associational resistance whereas diversity effects on incidence rates tend towards associational susceptibility. Our results contradict previous meta-analyses reporting overall associational resistance to insect herbivores in mixed forests. Instead, we report that tree diversity effects on insect herbivores can follow a biogeographic pattern calling for further in-depth studies in this field.

  13. MHD flow of Kuvshinski fluid through porous medium with temperature gradient heat source

    International Nuclear Information System (INIS)

    Goyal, Mamta; Banshiwal, Anna

    2014-01-01

    MHD free convection time dependent flow of a viscous, dissipative, incompressible, electrically conducting, non Newtonian fluid name as Kuvshinski fluid past an infinite vertical plate is considered The plate is moving with uniform velocity in the direction of flow. Analytical solutions have been obtained for velocity, temperature and concentration using perturbation technique. The effects of governing parameter on flow quantities are discussed with the help of graphs. (author)

  14. Numerical simulations on the temperature gradient and thermal stress of a thermoelectric power generator

    International Nuclear Information System (INIS)

    Wu, Yongjia; Ming, Tingzhen; Li, Xiaohua; Pan, Tao; Peng, Keyuan; Luo, Xiaobing

    2014-01-01

    Highlights: • An appropriate ceramic plate thickness is effective in alleviating the thermal stress. • A smaller distance between thermo-pins can help prolong lifecycle of the TE module. • Either a thicker or a thinner copper conducting strip effectively reduces thermal stress. • A suitable tin soldering thickness will alleviate thermal stress intensity and increase thermal efficiency. - Abstract: Thermoelectric generator is a device taking advantage of the temperature difference in thermoelectric material to generate electric power, where the higher the temperature difference of the hot-cold ends, the higher the efficiency will be. However, higher temperature or higher heat flux upon the hot end will cause strong thermal stress which will negatively influence the lifecycle of the thermoelectric module. This phenomenon is very common in industrial applications but seldom has research work been reported. In this paper, numerical analysis on the thermodynamics and thermal stress performance of the thermoelectric module has been performed, considering the variation on the thickness of materials; the influence of high heat flux on thermal efficiency, power output, and thermal stress has been examined. It is found that under high heat flux imposing upon the hot end, the thermal stress is so strong that it has a decisive effect on the life expectation of the device. To improve the module’s working condition, different geometrical configurations are tested and the optimum sizes are achieved. Besides, the side effects on the efficiency, power output, and open circuit voltage output of the thermoelectric module are taken into consideration

  15. Linking diatom deposition in a deep lake with the spring temperature gradient (Tiefer See, NE Germany)

    Science.gov (United States)

    Kienel, Ulrike; Kirillin, Georgiy; Brademann, Brian; Plessen, Birgit; Brauer, Achim

    2015-04-01

    Monitoring of deep Lake Tiefer See showed a much larger deposition of diatoms following ice out and a rapid spring stratification in mid April 2013 compared to that following the gradual warming and stratification in mid April 2012. The manifold of diatom individuals in 2013 compared to 2012 amounted to calculated 2.0 compared to 0.15 g silica per square meter and day. The striking difference was the two orders of magnitude larger number of Stephanodiscus sp. in 2013, which were only a minor component in 2012. The monitored weather and lake conditions suggest the 2013-spring bloom was boosted by a quick succession of ice breakup, spring turnover, and stratification leading to nutrient recycling and rapidly improved light conditions. The comparatively longer mixing in spring 2012, calculated using the lake-temperature model FLake, caused population losses that impeded bloom development. To verify the exemplified inverse relation of diatom deposition and mixing duration in spring we use the subannually laminated, recent sediment record of Lake Tiefer See (AD 1924 - 2008), the instrumental series from the meteorological station in Schwerin, and model simulations of the spring mixing. The mixing duration was calculated as the period between water temperatures of 4°C and a mixing depth of 6 m were reached for the period 1951 - 2008. To cover the full sediment record a simple estimate of the mixing period was calculated from mean temperatures, i.e. the temperature duration from the first 5°C-day to the first of ≥5°C days. The annual diatom deposition was calculated as the annual average µXRF-counts of Si in the sediment record (AD 1924-2008), based on negligible amounts of detrital Si, low deposition of inorganic matter during winter, and a striking balance of IM deposition and Si deposition calculated from the diatom frustules deposited. We find support for the linear and inverse relation of diatom silica deposition with the duration of spring mixing using the

  16. Determination of charged particles and their polarity in XLPE by temperature gradient thermally stimulated surface potential measurement

    International Nuclear Information System (INIS)

    Iwamoto, Mitsumasa; Kato, Keizo; Kook, Sang-Hoon; Hino, Taro

    1985-01-01

    By the thermally stimulated surface potential measurement with a temperature gradient in the insulator specimen, various information not possible by the uniform heating is obtained. Determination of polarity of the carriers is capable of providing a knowledge on space charge in power cables, for example. For the cross-linked polyethylene (XLPE) film as cable insulation, polarity of the carriers trapped in it was determined, thereby demonstrating effectiveness of the method. The determination of polarity of mobile ions forming polarization of the ion space charge was also studied. In the ion C-peak appearing in the thermally stimulated current are involved straight-polarity mobile ions, and in the trap D-peak, hole carriers. (Mori, K.)

  17. Caseinomacropeptide index in UHT whole milk stored under different conditions of temperature and time

    Directory of Open Access Journals (Sweden)

    C.N.B.C. Villanoeva

    2014-02-01

    Full Text Available Caseinomacropeptide (CMP index is a method used to detect adulteration of milk by addition of cheese whey, since CMP is a glycopeptide characteristic produced during cheesemaking, and soluble in the whey phase. The objective of this work was to evaluate the caseinomacropeptide index of UHT milk stored under different temperatures. Six batches of recently processed UHT milk were collected and stored under three temperatures (21ºC, 6ºC, and -12ºC and analyzed by HPLC in the day of the milk collection (day 0 and at 30, 60, 90, and 120 days of storage. The experiment was run as a randomized block design with a 3x5 factorial arrangement, and the Student-Newman-Keuls (SNK method was used as the post-hoc test (p = 0.05. There was a progressive increase of the CMP index during the storage period of 120 days, and this indicates the possibility of false positive results if the CMP index is used as an adulteration test for long term stored UHT milk. The validity of the CMP index as an adulteration indicator is only possible soon after packaging, and sample freezing is the only alternative when immediate analysis is not possible. The method was found to be precise, with robust CV of 1.9% even with high CMP levels.

  18. Temperature effect on proximal to distal gradient of quantal release of acetylcholine at frog endplate

    Czech Academy of Sciences Publication Activity Database

    Samigullin, D.; Bukharaeva, E.; Nikolsky, E.; Vyskočil, František

    2003-01-01

    Roč. 28, 3-4 (2003), s. 507-514 ISSN 0364-3190 R&D Projects: GA AV ČR IAA7011902; GA ČR GA305/02/1333; GA ČR GA202/02/1213 Grant - others:RFBR(RU) 02/04/48901 Institutional research plan: CEZ:AV0Z5011922; CEZ:MSM 113100003 Keywords : neuromuscular junction * acetylcholine release * temperature Subject RIV: ED - Physiology Impact factor: 1.511, year: 2003

  19. Tensile Adhesion Strength of Biomass Ash Deposits: Effect of the Temperature Gradient and Ash Chemistry

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Nair, Akhilesh Balachandran; Jensen, Peter Arendt

    2018-01-01

    Replacing coal with biomass in power plants is a viable option for reducing net CO2 emissions and combating climate change. However, biomass combustion in boilers may exacerbate problems related to ash deposition and corrosion, demanding effective deposit removal. The tensile adhesion strength....... Furthermore, migration of molten/vapor species from the outer layer of the depositto the deposit–tube interface, causing liquid-state sintering, was observed at high flue gas temperatures, leading to an increase in the tensile adhesion strength. Varying the ash chemistry of the model deposits revealed...

  20. Phenotypic plasticity of leaf shape along a temperature gradient in Acer rubrum.

    Directory of Open Access Journals (Sweden)

    Dana L Royer

    2009-10-01

    Full Text Available Both phenotypic plasticity and genetic determination can be important for understanding how plants respond to environmental change. However, little is known about the plastic response of leaf teeth and leaf dissection to temperature. This gap is critical because these leaf traits are commonly used to reconstruct paleoclimate from fossils, and such studies tacitly assume that traits measured from fossils reflect the environment at the time of their deposition, even during periods of rapid climate change. We measured leaf size and shape in Acer rubrum derived from four seed sources with a broad temperature range and grown for two years in two gardens with contrasting climates (Rhode Island and Florida. Leaves in the Rhode Island garden have more teeth and are more highly dissected than leaves in Florida from the same seed source. Plasticity in these variables accounts for at least 6-19% of the total variance, while genetic differences among ecotypes probably account for at most 69-87%. This study highlights the role of phenotypic plasticity in leaf-climate relationships. We suggest that variables related to tooth count and leaf dissection in A. rubrum can respond quickly to climate change, which increases confidence in paleoclimate methods that use these variables.

  1. Electron-temperature-gradient-induced instability in tokamak scrape-off layers

    International Nuclear Information System (INIS)

    Berk, H.L.; Ryutov, D.D.; Tsidulko, Y.A.; Xu, X.Q.

    1992-08-01

    An electron temperature instability driven by the Kunkel-Guillory sheath impedance, has been applied to the scrape-off layer of tokamaks. The formalism has been generalized to more fully account for parallel wavelength dynamics, to differentiate between electromagnetic and electrostatic perturbations and to account for particle recycling effects. It is conjectured that this conducting wall instability leads to edge fluctuations in tokamaks that produce scrape-off widths of many ion Larmor radii ≅10. The predicted instability characteristics correlate somewhat with DIII-D edge fluctuation data, and the scrape-off layer width in the DIII-D experiment agrees with theoretical estimates that can be derived from mixing lenght theory

  2. Extension of SMAC scheme for variable density flows under strong temperature gradient

    Science.gov (United States)

    Anwer, S. F.; Khan, H. Naushad; Sanghi, S.; Ahmad, A.; Yahya, S. M.

    2012-06-01

    An extension of SMAC scheme is proposed for variable density flows under low Mach number approximation. The algorithm is based on a predictor-corrector time integration scheme that employs a projection method for the momentum equation. A constant-coefficient Poisson equation is solved for the pressure following both the predictor and corrector steps to satisfy the continuity equation at each time step. Spatial discretization is performed on a collocated grid system that offers computational simplicity and straight forward extension to curvilinear coordinate systems. To avoid the pressure odd-even decoupling that is typically encountered in such grids, a flux interpolation technique is introduced for the equations governing variable density flows. An important characteristic of the proposed algorithm is that it can be applied to flows in both open and closed domains. Its robustness and accuracy are illustrated with a non-isothermal, turbulent channel flow at temperature ratio of 1.01 and 2.

  3. Experimental measurement of variation of heat transfer coefficient and temperature gradients in 16'' deep fluidised beds

    International Nuclear Information System (INIS)

    Blacker, P.T.; McLain, D.R.

    1962-04-01

    The object of the experiments was to choose suitable particulate materials for a fluidised bed cooler, to test a deep fluidised bed for uniformity of heat transfer coefficient, and to explore the temperature distribution in a centrally heated annular fluidised bed. This memorandum records the techniques used and some of the practical aspects involved, together with the performance results obtained, for the assistance of other experimenters who may wish to use fluidised beds as a laboratory technique. Mathematical correlation of the results has not been attempted since some of the properties of the bed material were not known and to determine them was beyond the scope of the work programme. Rather, we have compared our results with those of other experimenters. Graphite tubes, for use in steady state thermal stress experiments, are to be heated by a graphite radiant heater situated in the bore and cooled on the outer surface. The tubes are 2 cm. bore, 8 cm. outside diameter and 48 cm. long. The outside temperature of the tubes is to be between 500 deg. C. and 1500 deg. C. It is estimated that the heat transfer rate required for fracture at the outer surface is 30 watts/cm 2 . This could readily be achieved by cooling with liquid metals, water or high velocity gas. However, serious problems of either materials compatibility or mechanical complexity make these undesirable. A water-cooled fluidised bed of compatible solids fluidised with nitrogen gas can overcome most of these problems and give heat transfer coefficients close to that required, vis. about 0.1 w/cm C . A coolant bed about 20'' long would be required and an annulus of about 2'' radial width round the specimen was considered to be practicable

  4. The use of chemical shift temperature gradients to establish the paramagnetic susceptibility tensor orientation: Implication for structure determination/refinement in paramagnetic metalloproteins

    International Nuclear Information System (INIS)

    Xia Zhicheng; Nguyen, Bao D.; La Mar, Gerd N.

    2000-01-01

    The use of dipolar shifts as important constraints in refining molecular structure of paramagnetic metalloproteins by solution NMR is now well established. A crucial initial step in this procedure is the determination of the orientation of the anisotropic paramagnetic susceptibility tensor in the molecular frame which is generated interactively with the structure refinement. The use of dipolar shifts as constraints demands knowledge of the diamagnetic shift, which, however, is very often not directly and easily accessible. We demonstrate that temperature gradients of dipolar shifts can serve as alternative constraints for determining the orientation of the magnetic axes, thereby eliminating the need to estimate the diamagnetic shifts. This approach is tested on low-spin, ferric sperm whale cyanometmyoglobin by determining the orientation, anisotropies and anisotropy temperature gradients by the alternate routes of using dipolar shifts and dipolar shift gradients as constraints. The alternate routes ultimately lead to very similar orientation of the magnetic axes, magnetic anisotropies and magnetic anisotropy temperature gradients which, by inference, would lead to an equally valid description of the molecular structure. It is expected that the use of the dipolar shift temperature gradients, rather than the dipolar shifts directly, as constraints will provide an accurate shortcut in a solution structure determination of a paramagnetic metalloprotein

  5. [Gradient elevation of temperature startup experiment of thermophilic ASBR treating thermal-hydrolyzed sewage sludge].

    Science.gov (United States)

    Ouyang, Er-Ming; Wang, Wei; Long, Neng; Li, Huai

    2009-04-15

    Startup experiment was conducted for thermophilic anaerobic sequencing batch reactor (ASBR) treating thermal-hydrolyzed sewage sludge using the strategy of the step-wise temperature increment: 35 degrees C-->40 degrees C-->47 degrees C-->53 degrees C. The results showed that the first step-increase (from 35 degrees C to 40 degrees C) and final step-increase (from 47 degrees C to 53 degrees C) had only a slight effect on the digestion process. The second step-increase (from 40 degrees C to 47 degrees C) resulted in a severe disturbance: the biogas production, methane content, CODeffluent and microorganism all have strong disturbance. At the steady stage of thermophilic ASBR treating thermal-hydrolyzed sewage sludge, the average daily gas production, methane content, specific methane production (CH4/CODinfluent), TCOD removal rate and SCOD removal rate were 2.038 L/d, 72.0%, 188.8 mL/g, 63.8%, 83.3% respectively. The results of SEM and DGGE indicated that the dominant species are obviously different at early stage and steady stage.

  6. Analysis of agricultural drought using vegetation temperature condition index (VTCI) from Terra/MODIS satellite data.

    Science.gov (United States)

    Patel, N R; Parida, B R; Venus, V; Saha, S K; Dadhwal, V K

    2012-12-01

    The most commonly used normalized difference vegetation index (NDVI) from remote sensing often fall short in real-time drought monitoring due to a lagged vegetation response to drought. Therefore, research recently emphasized on the use of combination of surface temperature and NDVI which provides vegetation and moisture conditions simultaneously. Since drought stress effects on agriculture are closely linked to actual evapotranspiration, we used a vegetation temperature condition index (VTCI) which is more closely related to crop water status and holds a key place in real-time drought monitoring and assessment. In this study, NDVI and land surface temperature (T (s)) from MODIS 8-day composite data during cloud-free period (September-October) were adopted to construct an NDVI-T (s) space, from which the VTCI was computed. The crop moisture index (based on estimates of potential evapotranspiration and soil moisture depletion) was calculated to represent soil moisture stress on weekly basis for 20 weather monitoring stations. Correlation and regression analysis were attempted to relate VTCI with crop moisture status and crop performance. VTCI was found to accurately access the degree and spatial extent of drought stress in all years (2000, 2002, and 2004). The temporal variation of VTCI also provides drought pattern changes over space and time. Results showed significant and positive relations between CMI (crop moisture index) and VTCI observed particularly during prominent drought periods which proved VTCI as an ideal index to monitor terminal drought at regional scale. VTCI had significant positive relationship with yield but weakly related to crop anomalies. Duration of terminal drought stress derived from VTCI has a significant negative relationship with yields of major grain and oilseeds crops, particularly, groundnut.

  7. Effect of the temperature-humidity index on body temperature and conception rate of lactating dairy cows in southwestern Japan.

    Science.gov (United States)

    Nabenishi, Hisashi; Ohta, Hiroshi; Nishimoto, Toshihumi; Morita, Tetsuo; Ashizawa, Koji; Tsuzuki, Yasuhiro

    2011-09-01

    In the present study, we investigated the relationship between the temperature-humidity index (THI) and the conception rate of lactating dairy cows in southwestern Japan, one of the hottest areas of the country. We also investigated the relationship between measurement of the vaginal temperature of lactating dairy cows as their core body temperature at one-hour intervals for 25 consecutive days in hot (August-September, n=6) and cool (January-February, n=5) periods and their THI. Furthermore, we discussed the above relationship using these vaginal temperatures, the conception rates and the THI. As a result, when the conception rates from day 2 to 0 before AI were classified into day 2, 1 and 0 groups by the six maximum THI values in each group (mTHI; 80), only the conception rate for the mTHI over 80 at 1 day before AI group was significantly lower (Pconception rate for days 15 to 17, but not days 19 to 22 and 30 to 35, after AI in the cows that experienced average mTHI over 80 (amTHI>80) was significantly lower (P80. There was a significant positive correlation (Pconception rates and vaginal temperatures for all mTHI classes, in the mTHI>80 at 1 day before AI group, the vaginal temperature increased by 0.6 C from 38.7 C, resulting in a reduction of 11.6% in the conception rate from 40.5%. In conclusion, these results suggest that one of the causes of the fall in conception rate of lactating dairy cows during the summer season in southwestern Japan may be an increase in their core body temperature with a higher mTHI than the critical mTHI of 69 at 1 day before AI.

  8. Chemical composition separation of a propylene-ethylene random copolymer by high temperature solvent gradient interaction chromatography.

    Science.gov (United States)

    Liu, Yonggang; Phiri, Mohau Justice; Ndiripo, Anthony; Pasch, Harald

    2017-11-03

    A propylene-ethylene random copolymer was fractionated by preparative temperature rising elution fractionation (TREF). The structural heterogeneity of the bulk sample and its TREF fractions was studied by high temperature liquid chromatography with a solvent gradient elution from 1-decanol to 1,2,4-trichlorobenzene. HPLC alone cannot resolve those propylene-ethylene copolymers with high ethylene content in the bulk sample, due to their low weight fractions in the bulk sample and a small response factor of these components in the ELSD detector, as well as their broad chemical composition distribution. These components can only be detected after being separated and enriched by TREF followed by HPLC analysis. Chemical composition separations were achieved for TREF fractions with average ethylene contents between 2.1 and 22.0mol%, showing that copolymers with higher ethylene contents were adsorbed stronger in the Hypercarb column and eluted later. All TREF fractions, except the 40°C fraction, were relatively homogeneous in both molar mass and chemical composition. The 40°C fraction was rather broad in both molar mass and chemical composition distributions. 2D HPLC showed that the molar masses of the components containing more ethylene units were getting lower for the 40°C fraction. HPLC revealed and confirmed that co-crystallization influences the separation in TREF of the studied propylene-ethylene copolymer. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Investigation of the Evolution of Central Defects in Ultra-Heavy Plate Rolled Using Gradient Temperature Process

    Science.gov (United States)

    Gaosheng, Li; Wei, Yu; Qingwu, Cai

    2015-04-01

    To eliminate flaws, such as shrinkage, porosity, and micro-cracks, in heavy plates, the slab or ingot needs to be subjected to a sufficiently large cumulative reduction in central area. Traditionally, a large slab size is considered to be necessary for thick plate rolling. The evolution of central cracks in heavy plate was investigated by finite element modeling using two different rolling processes: gradient temperature rolling (GTR) with 1073 K (800 °C) on the surface and 1373 K (1100 °C) in the core, and uniform temperature rolling (UTR). The results of simulation were confirmed by clad rolling experiments. Results reveal that, using GTR, the central crack closes easily because of increased central strain and stress. Clad plate produced by GTR has a good bonding interface and fine microstructure. Ferrite grains in GTR plate are refined to 22 µm and the quarter- and half thickness impact energies are increased by 25.8 and 50.1 pct, respectively, compared with UTR plate, the properties of central layer decrease slightly, compared with those of the base materials.

  10. Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming

    KAUST Repository

    Sawall, Yvonne

    2015-03-10

    Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12° latitudes featuring a steep temperature gradient between the northern (28.5°N, 21-27°C) and southern (16.5°N, 28-33°C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28-29°C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals.

  11. Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming

    Science.gov (United States)

    Sawall, Yvonne; Al-Sofyani, Abdulmoshin; Hohn, Sönke; Banguera-Hinestroza, Eulalia; Voolstra, Christian R.; Wahl, Martin

    2015-03-01

    Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12° latitudes featuring a steep temperature gradient between the northern (28.5°N, 21-27°C) and southern (16.5°N, 28-33°C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28-29°C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals.

  12. A Robust Inversion Algorithm for Surface Leaf and Soil Temperatures Using the Vegetation Clumping Index

    Directory of Open Access Journals (Sweden)

    Zunjian Bian

    2017-07-01

    Full Text Available The inversion of land surface component temperatures is an essential source of information for mapping heat fluxes and the angular normalization of thermal infrared (TIR observations. Leaf and soil temperatures can be retrieved using multiple-view-angle TIR observations. In a satellite-scale pixel, the clumping effect of vegetation is usually present, but it is not completely considered during the inversion process. Therefore, we introduced a simple inversion procedure that uses gap frequency with a clumping index (GCI for leaf and soil temperatures over both crop and forest canopies. Simulated datasets corresponding to turbid vegetation, regularly planted crops and randomly distributed forest were generated using a radiosity model and were used to test the proposed inversion algorithm. The results indicated that the GCI algorithm performed well for both crop and forest canopies, with root mean squared errors of less than 1.0 °C against simulated values. The proposed inversion algorithm was also validated using measured datasets over orchard, maize and wheat canopies. Similar results were achieved, demonstrating that using the clumping index can improve inversion results. In all evaluations, we recommend using the GCI algorithm as a foundation for future satellite-based applications due to its straightforward form and robust performance for both crop and forest canopies using the vegetation clumping index.

  13. Upper-Level Mediterranean Oscillation index and seasonal variability of rainfall and temperature

    Science.gov (United States)

    Redolat, Dario; Monjo, Robert; Lopez-Bustins, Joan A.; Martin-Vide, Javier

    2018-02-01

    The need for early seasonal forecasts stimulates continuous research in climate teleconnections. The large variability of the Mediterranean climate presents a greater difficulty in predicting climate anomalies. This article reviews teleconnection indices commonly used for the Mediterranean basin and explores possible extensions of one of them, the Mediterranean Oscillation index (MOi). In particular, the anomalies of the geopotential height field at 500 hPa are analyzed using segmentation of the Mediterranean basin in seven spatial windows: three at eastern and four at western. That is, different versions of an Upper-Level Mediterranean Oscillation index (ULMOi) were calculated, and monthly and annual variability of precipitation and temperature were analyzed for 53 observatories from 1951 to 2015. Best versions were selected according to the Pearson correlation, its related p value, and two measures of standardized error. The combination of the Balearic Sea and Libya/Egypt windows was the best for precipitation and temperature, respectively. The ULMOi showed the highest predictive ability in combination with the Atlantic Multidecadal Oscillation index (AMOi) for the annual temperature throughout the Mediterranean basin. The best model built from the indices presented a final mean error between 15 and 25% in annual precipitation for most of the studied area.

  14. Indexed

    CERN Document Server

    Hagy, Jessica

    2008-01-01

    Jessica Hagy is a different kind of thinker. She has an astonishing talent for visualizing relationships, capturing in pictures what is difficult for most of us to express in words. At indexed.blogspot.com, she posts charts, graphs, and Venn diagrams drawn on index cards that reveal in a simple and intuitive way the large and small truths of modern life. Praised throughout the blogosphere as “brilliant,” “incredibly creative,” and “comic genius,” Jessica turns her incisive, deadpan sense of humor on everything from office politics to relationships to religion. With new material along with some of Jessica’s greatest hits, this utterly unique book will thrill readers who demand humor that makes them both laugh and think.

  15. Calibration of the physiological equivalent temperature index for three different climatic regions

    Science.gov (United States)

    Krüger, E.; Rossi, F.; Drach, P.

    2017-07-01

    In human biometeorology, the integration of several microclimatic variables as a combined index facilitates the understanding of how users perceive thermal environments. Indices, such as the physiological equivalent temperature (PET) index, translate the combined effects of meteorological variables on humans in terms of thermal stress or comfort and serve as important aids to climate-responsive urban and regional planning as well as heat stress and thermal comfort analyses. However, there is a need for adjusting proposed comfort/stress ranges of a given index when using it in different climatic contexts. The purpose of this study is to present a preliminary calibration procedure for the PET index for three different climatic regions: Curitiba, Brazil, a subtropical location; Rio de Janeiro, Brazil, a tropical city; and Glasgow, UK, a high-latitude location. Field studies have been carried out by the authors according to a similar protocol and using similar equipment, yielding actual thermal sensation votes and microclimate data, post-processed as PET data. The calibration procedure uses exclusively thermal sensation data as reported by pedestrians during outdoor comfort campaigns and concurrent microclimatic data recorded during the interviews. PET comfort/stress classes differ among the three locations and, in general, are less restrictive as in the original ranges proposed by the index developers.

  16. High temperature, heat index, and mortality in 6 major cities in South Korea.

    Science.gov (United States)

    Kim, Ho; Ha, Jong-Sik; Park, Jeongim

    2006-01-01

    The authors conducted a time-series analysis to estimate the acute effects of high temperature in 6 cities in Korea and to compare thresholds of temperature on daily mortality among the cities. They examined the association between total mortality and the daily mean temperature and heat index during the summers in Korea from 1994 to 2003. The threshold temperature was estimated to be between 27.0 degrees C and 29.7 degrees C for 4 cities. For a daily mean temperature increase of 1 degrees C above the thresholds in Seoul, Daegu, Incheon, and Gwangju, estimated percentage increases in daily mortality were 16.3 (95% confidence interval [CI] = 14.2-18.4), 9.10 (CI = 5.12-13.2), 7.01 (CI = 4.42-9.66), and 6.73 (CI = 2.47-11.2), respectively. These city-specific threshold temperatures and the magnitude of the effects of hot temperature indicate that any analysis of the impact of climate change should take into account regional differences.

  17. Near-infrared refractive index of synthetic single crystal and polycrystalline diamonds at high temperatures

    Science.gov (United States)

    Yurov, V. Yu.; Bushuev, E. V.; Popovich, A. F.; Bolshakov, A. P.; Ashkinazi, E. E.; Ralchenko, V. G.

    2017-12-01

    We measured the refractive index n(T) and thermo-optical coefficient β(T) = (1/n)(dn/dT) of high quality synthetic diamonds from room temperature to high temperatures, up to 1520 K, in near-infrared spectral range at wavelength 1.56 μm, using a low-coherence interferometry. A type IIa single crystal diamond produced by high pressure-high temperature technique and a transparent polycrystalline diamond grown by chemical vapor deposition were tested and revealed a very close n(T) behavior, with n = 2.384 ± 0.001 at T = 300 K, monotonically increasing to 2.428 at 1520 K. The n(T) data corrected to thermal expansion of diamond are well fitted with 3rd order polynomials, and alternatively, with the Bose-Einstein model with an effective oscillator frequency of 970 cm-1. Almost linear n(T) dependence is observed above 800 K. The thermo-optical coefficient is found to increase monotonically from (0.6 ± 0.1) × 10-5 K-1 (300 K) to (2.0 ± 0.1) × 10-5 K-1 (1300 K) with a tendency to saturation at >1200 K. These β(T) values are an order of magnitude lower than those known for Si, GaAs, and InP. The obtained results significantly extend the temperature range, where the refractive index of diamond was previously measured.

  18. Refractive index and temperature sensing in anisotropic silver nanostructures with stable photo-physical properties

    Science.gov (United States)

    Biswas, Subrata; Kumbhakar, Pathik

    2018-01-01

    In this report, we have demonstrated the refractive index and temperature-sensing abilities of polyvinylpyrrolidone (PVP)-protected silver nanostructures of triangular, connected and plate-like shapes. Interestingly, these nanostructures even after 2 and ½ years of syntheses showed plasmonic-sensing ability of temperature in the temperature range of 283-333 K. Also, refractive index (R.I.) sensing has been demonstrated in the aged samples and obtained the highest R.I. sensitivity of 306 nm/RIU in one of the sample. The synthesized samples have been kept in dark (inside desiccators) intentionally for the extended period of 2 and ½ years after synthesis and monitored intermittently their UV-Vis absorption and photoluminescence (PL) emission characteristics to check the functionally of the aged silver nanostructures. It has been found the samples remain well dispersed in different solvents and can forbid agglomeration even in 0.25 M NaCl solution. We have also demonstrated here fabrication of a flexible and transparent thin film of the synthesized samples in polyvinyl alcohol (PVA) matrix and investigated its low power continuous-wave (CW) nonlinear optical properties using spatial self-phase modulation (SSPM) technique. The nonlinear refractive index ( n 2) value of the film has been determined to be 5.6 × 10- 6 cm2/W at the He-Ne laser wavelength of 632.8 nm. In this report we have demonstrated temperature and R.I. sensing and also it has been demonstrated that the synthesized samples remain functional even after 2 and ½ years of synthesis. Also, samples may find potential applications in nonlinear optical phase modulation devices.

  19. Effects of Withdrawal Rate and Temperature Gradient on the Microstructure Evolution in Directionally Solidified NiAl-36Cr-6Mo Hypereutectic Alloy

    Science.gov (United States)

    Shang, Zhao; Shen, Jun; Zhang, Jian-Fei; Wang, Lei; Qin, Ling; Fu, Heng-Zhi

    2014-09-01

    The effects of withdrawal rate and temperature gradient on the microstructure and growth interface morphology in directionally solidified Ni-29Al-36Cr-6Mo(at.%) hypereutectic alloy were investigated. Under the temperature gradient of 250 K/cm, well-aligned eutectic microstructure with lamellar morphology was obtained at the withdrawal rate of 6 μm/s. When the withdrawal rate was 10 μm/s, the microstructure changed to Cr(Mo) dendrites + eutectic lamellae. With the increasing withdrawal rate, the interdendritic eutectic growth interface changed from planar to cellular, the number of primary Cr(Mo) dendrites became greater, and the microstructure was refined. When the temperature gradient increased to 600 K/cm, the coupled eutectic growth zone of NiAl-Cr(Mo) alloy was expanded; a well-aligned eutectic microstructure could be obtained at higher rate of 10 μm/s. Furthermore, the planar/cellular transition rate of the interdendritic eutectic growth interface increased. Even at the same withdrawal rate, the number of primary Cr(Mo) dendrites was less and the microstructure was finer under the temperature gradient of 600 K/cm.

  20. Evaluation of a Phenology-Dependent Response Method for Estimating Leaf Area Index of Rice Across Climate Gradients

    Directory of Open Access Journals (Sweden)

    Bora Lee

    2016-12-01

    Full Text Available Accurate estimate of the seasonal leaf area index (LAI in croplands is required for understanding not only intra- and inter-annual crop development, but also crop management. Lack of consideration in different growth phases in the relationship between LAI and vegetation indices (VI often results in unsatisfactory estimation in the seasonal course of LAI. In this study, we partitioned the growing season into two phases separated by maximum VI ( VI max and applied the general regression model to the data gained from two phases. As an alternative method to capture the influence of seasonal phenological development on the LAI-VI relationship, we developed a consistent development curve method and compared its performance with the general regression approaches. We used the Normalized Difference VI (NDVI and the Enhanced VI (EVI from the rice paddy sites in Asia (South Korea and Japan and Europe (Spain to examine its applicability across different climate conditions and management cycles. When the general regression method was used, separating the season into two phases resulted in no better estimation than the estimation obtained with the entire season observation due to an abrupt change in seasonal LAI occurring during the transition between the before and after VI max . The consistent development curve method reproduced the seasonal patterns of LAI from both NDVI and EVI across all sites better than the general regression method. Despite less than satisfactory estimation of a local LAI max , the consistent development curve method demonstrates improvement in estimating the seasonal course of LAI. The method can aid in providing accurate seasonal LAI as an input into ecological process-based models.

  1. Gyrokinetic global three-dimensional simulations of linear ion-temperature-gradient modes in Wendelstein 7-X

    Science.gov (United States)

    Kornilov, V.; Kleiber, R.; Hatzky, R.; Villard, L.; Jost, G.

    2004-06-01

    Using a global approach for solving an ion gyrokinetic model in three-dimensional geometry the linear stability and structure of ion-temperature-gradient (ITG) modes in the configuration of the stellarator Wendelstein 7-X (W7-X) [G. Grieger et al., in Plasma Physics and Controlled Nuclear Fusion Research 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525.] is studied. The time evolution of electrostatic perturbations is solved as an initial value problem with a particle-in-cell δf method. The vacuum magnetohydrodynamic equilibrium is calculated by the code VMEC [S. P. Hirshman and D. K. Lee, Comput. Phys. Commun. 39, 161 (1986)]. In this work the most unstable ITG mode in W7-X is presented. This mode has a pronounced ballooning-type structure; however, it is not tokamak-like. A driving mechanism analysis using the energy transfer shows that the contribution of curvature effects is non-negligible. The growth rate and the mixing-length estimate for transport are compared with those for ITG modes found in axisymmetric geometries.

  2. Experimental observation of transient δ18O interaction between snow and advective airflow under various temperature gradient conditions

    Directory of Open Access Journals (Sweden)

    P. P. Ebner

    2017-07-01

    Full Text Available Stable water isotopes (δ18O obtained from snow and ice samples of polar regions are used to reconstruct past climate variability, but heat and mass transport processes can affect the isotopic composition. Here we present an experimental study on the effect of airflow on the snow isotopic composition through a snow pack in controlled laboratory conditions. The influence of isothermal and controlled temperature gradient conditions on the δ18O content in the snow and interstitial water vapour is elucidated. The observed disequilibrium between snow and vapour isotopes led to the exchange of isotopes between snow and vapour under non-equilibrium processes, significantly changing the δ18O content of the snow. The type of metamorphism of the snow had a significant influence on this process. These findings are pertinent to the interpretation of the records of stable isotopes of water from ice cores. These laboratory measurements suggest that a highly resolved climate history is relevant for the interpretation of the snow isotopic composition in the field.

  3. Evaluation of temperature gradient gel electrophoresis for the analysis of prey DNA within the guts of invertebrate predators.

    Science.gov (United States)

    Harper, G L; Sheppard, S K; Harwood, J D; Read, D S; Glen, D M; Bruford, M W; Symondson, W O C

    2006-06-01

    The utility of temperature gradient gel electrophoresis (TGGE) as a means of analysing the gut contents of predators was evaluated. Generalist predators consume multiple prey species and a species-specific primer approach may not always be a practical means of analysing predator responses to prey diversity in complex and biodiverse ecosystems. General invertebrate primers were used to amplify the gut contents of predators, generating banding patterns that identified component prey remains. There was no evidence of dominance of the polymerase chain reaction (PCR) by predator DNA. When applied to field samples of the carabid predator Pterostichus melanarius (Illiger) nine banding patterns were detected, including one for aphids. To further distinguish between species, group-specific primers were designed to separate species of earthworm and aphid. TGGE of the earthworm PCR products generated banding patterns that varied with haplotype in some species. Aphid and earthworm DNA could be detected in the guts of carabids for up to 24 h using TGGE. In P. melanarius, with low numbers of prey per insect gut (mean<3), interpretation of banding patterns proved to be tractable. Potential problems of interpretation of TGGE gels caused by multiple prey bands, cryptic bands, haplotype variation, taxonomic uncertainties (especially with regard to earthworms), secondary predation, scavenging and presence of parasites and parasitoids in the prey or the predators, are discussed. The results suggest that PCR, using combinations of general invertebrate and group-specific primers followed by TGGE, provides a potentially useful approach to the analysis of multiple uncharacterized prey in predators.

  4. Wood stakes as an index of soil organic matter decomposition in a climatic gradient along the Spanish Mediterranean Coast

    Science.gov (United States)

    Jurgensen, M. F.; Page-Dumroese, D. S.; Cerdà, A.; Úbeda, X.; M-Mena, M.; Rey, A.

    2009-04-01

    Organic matter (OM) decomposition is a critical factor in assessing the possible impacts of future climate change and management on soil carbon cycling and sequestration. Soil OM decomposition is a function of abiotic (e.g. moisture, temperature, nutrient content, pH), and biotic (microbial biomass, functional diversity) conditions, which makes this soil process ideally suited to study across a range of soil and climatic conditions. We used wood stakes of four tree species (Populus alba, Populus tremuloides, Pinus halenensis, Pinus taeda) as standard indices of OM decomposition rates on the soil surface and in the mineral soil of three sites along the Spanish Mediterranean Coast with different soils, land use and climatic conditions: 1) Quercus suber forest - 700 mm rainfall /year, 2) Quercus coccifera and Pinus halepenis forest - 300 mm rainfall/year, and 3) tussock grasses - 150 mm rainfall /year. Our results show significant differences in wood stake decomposition as a function of climatic conditions, land use management, and wood stake species.

  5. A temperature and vegetation adjusted NTL urban index for urban area mapping and analysis

    Science.gov (United States)

    Zhang, Xiya; Li, Peijun

    2018-01-01

    Accurate and timely information regarding the extent and spatial distribution of urban areas on regional and global scales is crucially important for both scientific and policy-making communities. Stable nighttime light (NTL) data from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) provides a unique proxy of human settlement and activity, which has been used in the mapping and analysis of urban areas and urbanization dynamics. However, blooming and saturation effects of DMSP/OLS NTL data are two unresolved problems in regional urban area mapping and analysis. This study proposed a new urban index termed the Temperature and Vegetation Adjusted NTL Urban Index (TVANUI). It is intended to reduce blooming and saturation effects and to enhance urban features by combining DMSP/OLS NTL data with Normalized Difference Vegetation Index (NDVI) and land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer onboard the Terra satellite. The proposed index was evaluated in two study areas by comparison with established urban indices. The results demonstrated the proposed TVANUI was effective in enhancing the variation of DMSP/OLS light in urban areas and in reducing blooming and saturation effects, showing better performance than three established urban indices. The TVANUI also significantly outperformed the established urban indices in urban area mapping using both the global-fixed threshold and the local-optimal threshold methods. Thus, the proposed TVANUI provides a useful variable for urban area mapping and analysis on regional scale, as well as for urbanization dynamics using time-series DMSP/OLS and related satellite data.

  6. Refractive Index of Alkali Halides and Its Wavelength and Temperature Derivatives.

    Science.gov (United States)

    1975-05-01

    LiCl was made for one spectral line, the sodium D line, by Spangenberg [45] in 1923 using the immer- sion method. For molten LiC1, Zarzyski and Naudin ...for one spectral line, the sodium D line, by Spangenberg [45] using the immersion method. For molten LiBr, Zarzyski and Naudin [441 determined the index...infrared region by Randall [511. Zarzyski and Naudin [44] obtained n for molten NaF at the Hg green line at a temperature of 1273 K. After carefully

  7. Periodical rocking long period gratings in PANDA fibers for high temperature and refractive index sensing

    Science.gov (United States)

    Jin, Wa; Bi, Wei-hong; Fu, Xing-hu; Fu, Guang-wei

    2017-09-01

    We report periodical rocking long period gratings (PR-LPGs) in PANDA fibers fabricated with CO2 laser. The PR-LPGs achieve very high coupling efficiency of 19 dB with 12 periods and a 3.5° twist angle in just one scanning cycle, which is much more effective than the conventional CO2 laser fabrication technique. This type of LPGs exhibits polarization-selective resonance dips which demonstrate different sensitivities to environmental parameters. The high temperature and external refractive index sensitivities are measured simultaneously, so it can be used as a wavelength-selective polarization filter and sensor.

  8. Socioeconomic gradients in body mass index (BMI) in US immigrants during the transition to adulthood: examining the roles of parental education and intergenerational educational mobility.

    Science.gov (United States)

    Albrecht, Sandra S; Gordon-Larsen, Penny

    2014-09-01

    Despite comparatively lower socioeconomic status (SES), immigrants tend to have lower body weight and weaker SES gradients relative to US-born individuals. Yet, it is unknown how changes in SES over the life-course relate to body weight in immigrants versus US-born individuals. We used longitudinal data from a nationally representative, diverse sample of 13 701 adolescents followed into adulthood to investigate whether associations between SES mobility categories (educational attainment reported by individuals as adults and by their parents during adolescence) and body mass index (BMI) measured in adulthood varied by immigrant generation. Weighted multivariable linear regression models were adjusted for age, sex, race/ethnicity and immigrant generation. Among first-generation immigrants, although parental education was not associated with adult BMI, an immigrant's own education attainment was inversely associated with BMI (β=-2.6 kg/m(2); SE=0.9, peducational mobility was associated with lower adult mean BMI than remaining low SES (β=-2.5 kg/m(2); SE=1.2, peducation in adulthood did not attenuate the negative association between parental education and adult BMI. Although an SES gradient emerged in adulthood for immigrants, remaining low SES from adolescence to adulthood was not associated with loss of health advantage relative to US-born respondents of US-born parents of similar SES. Immigrants were able to translate higher SES in adulthood into a lower adult mean BMI regardless of childhood SES, whereas the consequences of lower childhood SES had a longer reach even among the upwardly mobile US born. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Heat-Electric Power Conversion Without Temperature Difference Using Only n-Type Ba8Au x Si46-x Clathrate with Au Compositional Gradient

    Science.gov (United States)

    Osakabe, Yuki; Tatsumi, Shota; Kotsubo, Yuichi; Iwanaga, Junpei; Yamasoto, Keita; Munetoh, Shinji; Furukimi, Osamu; Nakashima, Kunihiko

    2018-02-01

    Thermoelectric power generation is typically based on the Seebeck effect under a temperature gradient. However, the heat flux generated by the temperature difference results in low conversion efficiency. Recently, we developed a heat-electric power conversion mechanism using a material consisting of a wide-bandgap n-type semiconductor, a narrow-bandgap intrinsic semiconductor, and a wide-bandgap p-type semiconductor. In this paper, we propose a heat-electric power conversion mechanism in the absence of a temperature difference using only n-type Ba8Au x Si46-x clathrate. Single-crystal Ba8Au x Si46-x clathrate with a Au compositional gradient was synthesized by Czochralski method. Based on the results of wavelength-dispersive x-ray spectroscopy and Seebeck coefficient measurements, the presence of a Au compositional gradient in the sample was confirmed. It also observed that the electrical properties changed gradually from wide-bandgap n-type to narrow-bandgap n-type. When the sample was heated in the absence of a temperature difference, the voltage generated was approximately 0.28 mV at 500°C. These results suggest that only an n-type semiconductor with a controlled bandgap can generate electric power in the absence of a temperature difference.

  10. How do two Lupinus species respond to temperature along an altitudinal gradient in the Venezuelan Andes? ¿Cómo responden dos especies de Lupinus a la temperatura en un gradiente altitudinal en los Andes venezolanos?

    Directory of Open Access Journals (Sweden)

    FERMÍN RADA

    2008-09-01

    Full Text Available Temperature determines plant formations and species distribution along altitudinal gradients. Plants in the tropical high Andes, through different physiological and morphological characteristics, respond to freezing night temperatures and high daytime energy inputs which occur anytime of the year. The main objective of this study was to characterize day and night temperature related responses of two Lupinus species with different altitudinal ranges (L. meridanus, 1,800-3,600 and L. eromonomos, 3,700-4,300 m of altitude. Are there differences in night low temperature resistance mechanisms between the species along the gradient? How do these species respond, in terms of optimum temperature for photosynthesis, to increasing altitude? Lupinus meridanus shows frost avoidance, in contrast to L. eromonomos, which tolerates freezing at higher altitudes. Optimum temperature for photosynthesis decreases along the gradient for both species. Maximum C0(2 assimilation rates were higher in L. meridanus, while L. eromonomos showed decreasing C0(2 assimilation rates at the higher altitude. In most cases, measured daily leaf temperature is always within the 80 % of optimum for photosynthesis. L. meridanus7 upper distribution limit seems to be restricted by cold resistance mechanisms, while L. eromonomos7 to a combination of both cold resistance and to C0(2 assimilation responses at higher altitudes.La temperatura determina las formaciones vegetales y la distribución de especies a lo largo de gradientes altitudinales. Las plantas en los altos Andes tropicales, a través de diferentes características morfológicas y fisiológicas, responden a temperaturas congelantes nocturnas y altas entradas energéticas durante el día en cualquier momento del año. El objetivo principal de este estudio fue caracterizar las respuestas relacionadas con temperaturas diurnas y nocturnas en dos especies de Lupinus con diferente distribución altitudinal (L. meridanus, 1

  11. Application of 3-D Urbanization Index to Assess Impact of Urbanization on Air Temperature.

    Science.gov (United States)

    Wu, Chih-Da; Lung, Shih-Chun Candice

    2016-04-15

    The lack of appropriate methodologies and indicators to quantify three-dimensional (3-D) building constructions poses challenges to authorities and urban planners when formulating polices to reduce health risks due to heat stress. This study evaluated the applicability of an innovative three-dimensional Urbanization Index (3DUI), based on remote sensing database, with a 5 m spatial resolution of 3-D man-made constructions to representing intra-urban variability of air temperature by assessing correlation of 3DUI with air temperature from a 3-D perspective. The results showed robust high correlation coefficients, ranging from 0.83 to 0.85, obtained within the 1,000 m circular buffer around weather stations regardless of season, year, or spatial location. Our findings demonstrated not only the strength of 3DUI in representing intra-urban air-temperature variability, but also its great potential for heat stress assessment within cities. In view of the maximum correlation between building volumes within the 1,000 m circular buffer and ambient air temperature, urban planning should consider setting ceilings for man-made construction volume in each 2 × 2 km(2) residential community for thermal environment regulation, especially in Asian metropolis with high population density in city centers.

  12. p53 mutations in ovarian tumors, detected by temperature-gradient gel electrophoresis, direct sequencing and immunohistochemistry.

    Science.gov (United States)

    Kappes, S; Milde-Langosch, K; Kressin, P; Passlack, B; Dockhorn-Dworniczak, B; Röhlke, P; Löning, T

    1995-02-20

    Samples from 94 ovarian tumors, comprising 24 cystadenomas/adenofibromas, among them 6 benign and 18 borderline tumors, one benign Brenner tumor, 39 carcinomas, 17 sex-cord stromal tumors, 5 germ-cell tumors and 8 metastatic or recurrent neoplasms were screened for p53 aberrations by polymerase chain reaction (PCR), temperature-gradient gel electrophoresis (TGGE), direct sequencing and immunohistochemistry. All sex-cord stromal and germ-cell tumors showed wild-type p53, except for a heterozygous silent germ-line mutation in one androblastoma. Somatic p53 mutations were detected in only one tumor of the cystadenoma/adenofibroma series (4.2%), in contrast to 38.5% of the carcinomas, among them 57.1% of serous papillary carcinomas, and 12.5 to 22.2% of endometrioid and mucinous carcinomas. By direct sequencing, the mutations of 13 cases were qualified as mis-sense mutations (n = 10), or 1 to 2-bp deletions (n = 3). Only 2 cases were immunohistochemically positive in the absence of detectable p53-gene abnormalities. The presence of p53 aberrations was significantly correlated with high grade, but not with stage of disease. For 21 bilateral tumors and/or tumors spread to the peritoneum, samples from both ovaries and/or ascites were analyzed. Among these, 16 cases were identical as to the p53 genotype, 5 cases showed discordant p53 states in ovary and/or in ascites DNA. We conclude that somatic p53 mutations are very frequent in serous papillary carcinomas, particularly in tumors of high grade, bilaterality, and peritoneal spread, less frequent in other carcinoma types and extremely rare in borderline and benign tumors of the ovary.

  13. Using the Weak-Temperature Gradient Approximation to Evaluate Parameterizations: An Example of the Transition From Suppressed to Active Convection

    Science.gov (United States)

    Daleu, C. L.; Plant, R. S.; Woolnough, S. J.

    2017-10-01

    Two single-column models are fully coupled via the weak-temperature gradient approach. The coupled-SCM is used to simulate the transition from suppressed to active convection under the influence of an interactive large-scale circulation. The sensitivity of this transition to the value of mixing entrainment within the convective parameterization is explored. The results from these simulations are compared with those from equivalent simulations using coupled cloud-resolving models. Coupled-column simulations over nonuniform surface forcing are used to initialize the simulations of the transition, in which the column with suppressed convection is forced to undergo a transition to active convection by changing the local and/or remote surface forcings. The direct contributions from the changes in surface forcing are to induce a weakening of the large-scale circulation which systematically modulates the transition. In the SCM, the contributions from the large-scale circulation are dominated by the heating effects, while in the CRM the heating and moistening effects are about equally divided. A transition time is defined as the time when the rain rate in the dry column is halfway to the value at equilibrium after the transition. For the control value of entrainment, the order of the transition times is identical to that obtained in the CRM, but the transition times are markedly faster. The locally forced transition is strongly delayed by a higher entrainment. A consequence is that for a 50% higher entrainment the transition times are reordered. The remotely forced transition remains fast while the locally forced transition becomes slow, compared to the CRM.

  14. El Nino-Southern Oscillation, rainfall, temperature and Normalized Difference Vegetation Index fluctuations in the Mara-Serengeti ecosystem

    NARCIS (Netherlands)

    Ogutu, J. O.; Piepho, H. -P.; Dublin, H. T.; Bhola, N.; Reid, R. S.

    Understanding long-term climatic variability is basic to wise management and conservation of biodiversity. We analysed temporal variations in the local rainfall, temperature, Normalized Difference Vegetation Index and the hemispheric El Nino-Southern Oscillation (ENSO), using the Southern

  15. The Great Wedge: A Spectral Intensity Standard to Quantify Chromatic Aberration and Validate Temperature Gradient Measurements in the Laser Heated Diamond Cell

    Science.gov (United States)

    Benedetti, L. R.; Kavner, A.

    2006-12-01

    Temperature governs many important properties of Earth and planetary materials, including electrical and thermal conductivity, phase stability and equation of state. Much of what we understand about the physical and chemical properties of the deep Earth must be determined experimentally at the conditions of its interior. Laser heating samples in a diamond anvil cell (DAC), especially in conjunction with synchrotron-based X-ray diffraction, is a valuable tool to examine mineral behavior at the relevant high pressures and temperatures. Unfortunately, data interpretation is limited because of difficulties in temperature measurement. Small sample size coupled with the severe heat flow boundary condition due to the high thermal mass of the diamonds results in steep temperature gradients that complicate the interpretation of experimental data. Much effort has been invested in mitigating these effects, including attempts to increase the size of the laser-induced hotspot. However, without a method to quantify temperature gradients, these methods cannot be evaluated. In addition, accurate measurement of temperature gradients makes direct measurement of transport properties, such as thermal conductivity, possible. Attempts to measure temperature gradients by spectroradiometric techniques are compromised by the chromatic effects of the optical elements between the hot sample and the spectrometer. A source of known temperature gradient, can be used to calibrate chromatic errors in an optical system. However, the engineering of such a device has been elusive. Here we present a new technique to quantify the chromatic aberration of any spectroradiometric system, in order to validate the suitability of an optical system for measuring temperatures in the laser-heated DAC, enabling precise measurement of radial temperature gradients of a laser-heated hotspot. Our method employs a material with known spectral intensity variations over spatial scales consistent with hotspot sizes of

  16. Molecular composition of soil organic matter with land-use change along a bi-continental mean annual temperature gradient.

    Science.gov (United States)

    Pisani, Oliva; Haddix, Michelle L; Conant, Richard T; Paul, Eldor A; Simpson, Myrna J

    2016-12-15

    Soil organic matter (SOM) is critical for maintaining soil fertility and long-term agricultural sustainability. The molecular composition of SOM is likely altered due to global climate and land-use change; but rarely are these two aspects studied in tandem. Here we used molecular-level techniques to examine SOM composition along a bi-continental (from North to South America) mean annual temperature (MAT) gradient from seven native grassland/forest and cultivated/pasture sites. Biomarker methods included solvent extraction, base hydrolysis and cupric (II) oxide oxidation for the analysis of free lipids of plant and microbial origin, ester-bound lipids from cutin and suberin, and lignin-derived phenols, respectively. Solid-state 13 C nuclear magnetic resonance (NMR) was used to examine the overall composition of SOM. Soil cultivation was found to increase the amount of microbial-derived compounds at warmer temperatures (up to 17% increase). The cultivated soils were characterized by much lower contributions of plant-derived SOM components compared to the native soils (up to 64% lower at the coldest site). In addition, cultivation caused an increase in lignin and cutin degradation (up to 68 and 15% increase, respectively), and an increase in the amount of suberin-derived inputs (up to 54% increase). Clear differences in the molecular composition of SOM due to soil cultivation were observed in soils of varying mineral composition and were attributed to disturbance, different vegetation inputs, soil aggregate destruction and MAT. A high organic allophanic tropical soil was characterized by its protection of carbohydrates and nitrogen-containing compounds. The conversion of native to cultivated land shows significant shifts in the degradation stage of SOM. In particular, cutin-derived compounds which are believed to be part of the stable SOM pool may undergo enhanced degradation with long-term cultivation and disruption of soil aggregates. On a per year basis, the total

  17. Correlations of the energy-momentum tensor via gradient flow in SU(3) Yang-Mills theory at finite temperature

    Science.gov (United States)

    Kitazawa, Masakiyo; Iritani, Takumi; Asakawa, Masayuki; Hatsuda, Tetsuo

    2017-12-01

    Euclidean two-point correlators of the energy-momentum tensor (EMT) in SU(3) gauge theory on the lattice are studied on the basis of the Yang-Mills gradient flow. The entropy density and the specific heat obtained from the two-point correlators are shown to be in good agreement with those from the one-point functions of EMT. These results constitute a first step toward the first principle simulations of the transport coefficients with the gradient flow.

  18. Spatio-Temporal Analyses of Symbiodinium Physiology of the Coral Pocillopora verrucosa along Large-Scale Nutrient and Temperature Gradients in the Red Sea

    KAUST Repository

    Sawall, Yvonne

    2014-08-19

    Algal symbionts (zooxanthellae, genus Symbiodinium) of scleractinian corals respond strongly to temperature, nutrient and light changes. These factors vary greatly along the north-south gradient in the Red Sea and include conditions, which are outside of those typically considered optimal for coral growth. Nevertheless, coral communities thrive throughout the Red Sea, suggesting that zooxanthellae have successfully acclimatized or adapted to the harsh conditions they experience particularly in the south (high temperatures and high nutrient supply). As such, the Red Sea is a region, which may help to better understand how zooxanthellae and their coral hosts successfully acclimatize or adapt to environmental change (e. g. increased temperatures and localized eutrophication). To gain further insight into the physiology of coral symbionts in the Red Sea, we examined the abundance of dominant Symbiodinium types associated with the coral Pocillopora verrucosa, and measured Symbiodinium physiological characteristics (i.e. photosynthetic processes, cell density, pigmentation, and protein composition) along the latitudinal gradient of the Red Sea in summer and winter. Despite the strong environmental gradients from north to south, our results demonstrate that Symbiodinium microadriaticum (type A1) was the predominant species in P. verrucosa along the latitudinal gradient. Furthermore, measured physiological characteristics were found to vary more with prevailing seasonal environmental conditions than with region-specific differences, although the measured environmental parameters displayed much higher spatial than temporal variability. We conclude that our findings might present the result of long-term acclimatization or adaptation of S. microadriaticum to regionally specific conditions within the Red Sea. Of additional note, high nutrients in the South correlated with high zooxanthellae density indicating a compensation for a temperature-driven loss of photosynthetic

  19. Disaggregation of SMOS soil moisture over West Africa using the Temperature and Vegetation Dryness Index based on SEVIRI land surface parameters

    DEFF Research Database (Denmark)

    Tagesson, T.; Horion, S.; Nieto, H.

    2018-01-01

    The overarching objective of this study was to produce a disaggregated SMOS Soil Moisture (SM) product using land surface parameters from a geostationary satellite in a region covering a diverse range of ecosystem types. SEVIRI data at 15 minute temporal resolution were used to derive the Tempera...... resolution of SMOS SM, with potential application for local drought/flood monitoring of importance for the livelihood of the population of West Africa....... the Temperature and Vegetation Dryness Index (TVDI) that served as SM proxy within the disaggregation process. West Africa (3 N, 26 W; 28 N, 26 E) was selected as a case study as it presents both an important North-South climate gradient and a diverse range of ecosystem types. The main challenge was to set up...

  20. Ion-temperature-gradient driven modes in pinch configurations within a linear gyrokinetic particle-in-cell simulation of ions and electrons

    Science.gov (United States)

    Sorge, Stefan; Hatzky, Roman

    2002-11-01

    The influence of trapped electrons on ion-temperature-gradient driven plasma instabilities is investigated in the bumpy pinch configuration as a simplified model of the Wendelstein 7-X stellarator. For these investigations a gyrokinetic global linear particle-in-cell simulation of the plasma ions and electrons was done with the GYrokinetic Global Linear Equation Solver (GYGLES) code (Fivaz M et al 1998 Comp. Phys. Comm. 111 27, Hatzky R and Fivaz M 1998 Proc. EPS 25th Conf. on Controlled Fusion and Plasma Physics (Prague, 1998) (Petit-Lancy: European Physical Society) p 1804). For this purpose, the code was modified by replacing the adiabatic response of the electrons with a gyrokinetic treatment. The growth rates of the modes considered were found to increase owing to the trapped electrons and the gradient of the electron temperature. However, the effect is small in relation to that of trapped electrons in typical tokamak configurations.

  1. The transport of a radio-active species by adsorption and diffusion through a porous medium in the presence of a temperature gradient

    International Nuclear Information System (INIS)

    Faircloth, R.L.; Thomas, R.B.

    1976-01-01

    A theoretical treatment is given of the migration of fission products through a porous medium in the presence of a temperature gradient. The system is simplified by considering the behaviour in an idealised single pore in which movement is occurring by a combination of gas phase and surface diffusion, the distribution between these modes of transfer being governed by the adsorption isotherm constant. The effect of carrier gas flow within the pore is also considered. (author)

  2. Vapor flux and recrystallization during dry snow metamorphism under a steady temperature gradient as observed by time-lapse micro-tomography

    Directory of Open Access Journals (Sweden)

    B. R. Pinzer

    2012-10-01

    Full Text Available Dry snow metamorphism under an external temperature gradient is the most common type of recrystallization of snow on the ground. The changes in snow microstructure modify the physical properties of snow, and therefore an understanding of this process is essential for many disciplines, from modeling the effects of snow on climate to assessing avalanche risk. We directly imaged the microstructural changes in snow during temperature gradient metamorphism (TGM under a constant gradient of 50 K m−1, using in situ time-lapse X-ray micro-tomography. This novel and non-destructive technique directly reveals the amount of ice that sublimates and is deposited during metamorphism, in addition to the exact locations of these phase changes. We calculated the average time that an ice volume stayed in place before it sublimated and found a characteristic residence time of 2–3 days. This means that most of the ice changes its phase from solid to vapor and back many times in a seasonal snowpack where similar temperature conditions can be found. Consistent with such a short timescale, we observed a mass turnover of up to 60% of the total ice mass per day. The concept of hand-to-hand transport for the water vapor flux describes the observed changes very well. However, we did not find evidence for a macroscopic vapor diffusion enhancement. The picture of {temperature gradient metamorphism} produced by directly observing the changing microstructure sheds light on the micro-physical processes and could help to improve models that predict the physical properties of snow.

  3. Temperature and concentration dependence af energy gap and refrective index in certain mixed crystals and semiconductors

    Science.gov (United States)

    Reddy, R. R.; Kumar, M. Ravi; Rao, T. V. R.

    1993-02-01

    Variations of energy gap ( Eg) and refractive index ( n) with the concentration have been studied through a set of simple empirical equations proposed in the case of certain mixed crystals of technological importance. Similarly, another set of equations has been proposed to explain the temperature dependence of the energy gap in semiconductors such as GaS, GaSe, GaTe, SnS 2 and SnSe 2. The results obtained in both cases are found to be in excellent agreement with the experimental values. The proposed equations are proved to be simple and advantageous over others in the sense that less computational work is involved in the calculations of Eg and n.

  4. Color temperature tunable white-light LED cluster with extrahigh color rendering index.

    Science.gov (United States)

    Zhang, Minhao; Chen, Yu; He, Guoxing

    2014-01-01

    The correlated color temperature (CCT) tunable white-light LED cluster with extrahigh color rendering property has been found by simulation and fabricated, which consists of three WW LEDs (CCT = 3183 K), one red LED (634.1 nm), one green LED (513.9 nm), and one blue LED (456.2 nm). The experimental results show that this cluster can realize the CCT tunable white-lights with a color rendering index (CRI) above 93, special CRI R9 for strong red above 90, average value of the special CRIs of R9 to R12 for the four saturated colors (red, yellow, green, and blue) above 83, and luminous efficacies above 70 lm/W at CCTs of 2719 K to 6497 K.

  5. Reconstructions of Climatic and Topographic Gradients in the Sierra Nevada during the early Eocene using compound-specific stable isotopes and organic molecular temperature proxies

    Science.gov (United States)

    Hren, M. T.; Pagani, M.; Brandon, M.; Erwin, D. M.

    2008-12-01

    Terrestrial sediments from the early Cenozoic provide important records of continental temperature gradients during periods of high global temperatures and PCO2, yet these records are often interpreted in terms of either climatic or orographic effects. As a result, linking models of past global climate with terrestrial temperature information is hampered by a lack of detailed information on paleoelevation. Organic molecular proxies provide new tools to help distinguish between climatic and orographic information in terrestrial sediments. For this study, we used organic molecular proxies to determine paleoelevation and paleotemperature gradients in the Sierra Nevada during the early Eocene warm period. Specifically, we analyzed the hydrogen and carbon isotopes of n-alkanes in bulk sediments and fossil angiosperm leaf cuticle in overbank deposits of major drainages of the Eocene Sierra Nevada to quantify the changes in the isotopic composition of leaf water that potentially reflect changes in paleoelevation. We coupled this data with paleotemperature measurements across this landscape using the MBT/CBT organic molecular temperature proxy, as well as thermodynamic models of the isotopic evolution of rainwater during orographic ascent. Hydrogen isotopes of n-alkanes systematically decrease by more than 30 per mil with distance from the Eocene shoreline and temperature data show a decrease of more than 8 degrees across this ancient range, with temperatures near the ocean margin exceeding 22 degrees. Isotopic and temperature data provide evidence for steep topography and high temperature lapse rates at the California margin during the early Eocene. These results support model estimates of temperature and relative humidity for the early Eocene based on a four time doubling of atmospheric CO2.

  6. An enhanced temperature index model for debris-covered glaciers accounting for thickness effect

    Science.gov (United States)

    Carenzo, M.; Pellicciotti, F.; Mabillard, J.; Reid, T.; Brock, B. W.

    2016-08-01

    Debris-covered glaciers are increasingly studied because it is assumed that debris cover extent and thickness could increase in a warming climate, with more regular rockfalls from the surrounding slopes and more englacial melt-out material. Debris energy-balance models have been developed to account for the melt rate enhancement/reduction due to a thin/thick debris layer, respectively. However, such models require a large amount of input data that are not often available, especially in remote mountain areas such as the Himalaya, and can be difficult to extrapolate. Due to their lower data requirements, empirical models have been used extensively in clean glacier melt modelling. For debris-covered glaciers, however, they generally simplify the debris effect by using a single melt-reduction factor which does not account for the influence of varying debris thickness on melt and prescribe a constant reduction for the entire melt across a glacier. In this paper, we present a new temperature-index model that accounts for debris thickness in the computation of melt rates at the debris-ice interface. The model empirical parameters are optimized at the point scale for varying debris thicknesses against melt rates simulated by a physically-based debris energy balance model. The latter is validated against ablation stake readings and surface temperature measurements. Each parameter is then related to a plausible set of debris thickness values to provide a general and transferable parameterization. We develop the model on Miage Glacier, Italy, and then test its transferability on Haut Glacier d'Arolla, Switzerland. The performance of the new debris temperature-index (DETI) model in simulating the glacier melt rate at the point scale is comparable to the one of the physically based approach, and the definition of model parameters as a function of debris thickness allows the simulation of the nonlinear relationship of melt rate to debris thickness, summarised by the

  7. Unprecedented quality factors at accelerating gradients up to 45 MVm-1 in niobium superconducting resonators via low temperature nitrogen infusion

    Science.gov (United States)

    Grassellino, A.; Romanenko, A.; Trenikhina, Y.; Checchin, M.; Martinello, M.; Melnychuk, O. S.; Chandrasekaran, S.; Sergatskov, D. A.; Posen, S.; Crawford, A. C.; Aderhold, S.; Bice, D.

    2017-09-01

    We report the finding of new surface treatments that permits one to manipulate the niobium resonator nitrogen content in the first few nanometers in a controlled way, and the resonator fundamental Mattis-Bardeen surface resistance and residual resistance accordingly. In particular, we find surface ‘infusion’ conditions that systematically (a) increase the quality factor of these 1.3 GHz superconducting radio frequency (SRF) bulk niobium resonators, up to very high gradients; (b) increase the achievable accelerating gradient of the cavity compared to its own baseline with state-of-the-art surface processing. Cavities subject to the new surface process have more than two times the state-of-the-art Q at 2 K for accelerating fields >35 MVm-1. Moreover, very high accelerating gradients ˜45 MVm-1 are repeatedly reached, which correspond to peak magnetic surface fields of 190 mT, among the highest measured for bulk niobium cavities. These findings open the opportunity to tailor the surface impurity content distribution to maximize performance in Q and gradients, and have therefore very important implications on future performance and cost of SRF based accelerators. They also help deepen the understanding of the physics of the RF niobium cavity surface.

  8. EUROMECH colloquium 377. Stability and control of shear flows with strong temperature or density gradients. Book of abstracts

    International Nuclear Information System (INIS)

    1998-10-01

    The topics discussed comprise the onset of instability in heated free jets and jets with density gradients, flow past heated/cooled boundaries, atmospheric shear flow, and mathematical modeling of laminar-turbulent transition phenomena. Three contributions have been input to INIS. (P.A.)

  9. Constraints on Paleocene and Eocene Tropical Sea-Surface Temperatures and Meridional Temperature Gradients From Mg/Ca and Oxygen Isotope Ratios of Foraminifera in Sediments Recovered by the Ocean Drilling Program

    Science.gov (United States)

    Tripati, A.; Elderfield, H.; Wade, B.; Kelly, D. C.; Anderson, L. D.; Sindrey, C.

    2005-12-01

    Accurate reconstructions of tropical sea surface temperatures (SST) during the Paleocene and Eocene are needed to understand the contribution of greenhouse gases to past climate variability. When combined with constraints on high-latitude SST, tropical SST can be used to estimate past meridional temperature gradients. The traditional tool applied to reconstructing surface temperatures utilizes the temperature-dependant incorporation of oxygen isotopes into calcium carbonate. However, changes in the oxygen isotope composition of foraminiferal calcite also record variations in the isotopic composition of seawater, complicating temperature reconstructions. The magnesium to calcium (Mg/Ca) ratio of foraminiferal carbonate provides an alternative method for reconstructing temperatures in the past that is insensitive to variations in the oxygen isotopic composition of seawater. Here, we present constraints on tropical temperatures from Mg/Ca ratios of planktonic foraminifera in cores recovered by the Ocean Drilling Program during intervals characterized by large changes in atmospheric carbon dioxide levels, including the Paleocene-Eocene Thermal Maximum and the middle to late Eocene "greenhouse-icehouse" transition. Records are for mixed-layer dwellers belonging to the genus Morozovella and Acaranina, and for the thermocline dwelling taxa Subbotina. We combine these results with constraints on high-latitude SST from other proxies, including foraminiferal Mg/Ca and oxygen isotope ratios, to reconstruct changes in the pole-to-equator temperature gradient during these major climate transitions.

  10. Investigation of microstructure and V-defect formation inInxGa1-xN/GaN MQW grown using temperature-gradient MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M.C.; Liliental-Weber, Z.; Zakharov, D.N.; McCready,D.E.; Jorgenson, R.J.; Wu, J.; Shan, W.; Bourret-Courchesne, E.D.

    2004-11-19

    Temperature-gradient Metalorganic Chemical Vapor Deposition was used to deposit In{sub x}Ga{sub 1-x}N/GaN multiple quantum well structures with a concentration gradient of indium across the wafer. These multiple quantum well structures were deposited on low defect density (2 x 10{sup 8} cm{sup -2}) GaN template layers for investigation of microstructural properties and V-defect (pinhole) formation. Room temperature photoluminescence and photomodulated transmission were used for optical characterization which show a systematic decrease in emission energy for a decrease in growth temperature. Triple-axis X-ray diffraction, scanning electron microscopy and cross-section transmission electron microscopy were used to obtain microstructural properties of different regions across the wafer. Results show that there is a decrease in crystal quality and an increase in V-defect formation with increasing indium concentration. A direct correlation was found between V-defect density and growth temperature due to increased strain and indium segregation for increasing indium concentration.

  11. Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Stefani, Alessio

    2016-01-01

    We have fabricated the first single-mode step-index and humidity insensitive polymer optical fiber operating in the 850 nm wavelength ranges. The step-index preform is fabricated using injection molding, which is an efficient method for cost effective, flexible and fast preparation of the fiber...... preform. The fabricated single-mode step-index (SI) polymer optical fiber (POF) has a 4.8µm core made from TOPAS grade 5013S-04 with a glass transition temperature of 134°C and a 150 µm cladding made from ZEONEX grade 480R with a glass transition temperature of 138°C. The key advantages of the proposed...... SIPOF are low water absorption, high operating temperature and chemical inertness to acids and bases and many polar solvents as compared to the conventional poly-methyl-methacrylate (PMMA) and polystyrene based POFs. In addition, the fiber Bragg grating writing time is short compared to microstructured...

  12. Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors.

    Science.gov (United States)

    Woyessa, Getinet; Fasano, Andrea; Stefani, Alessio; Markos, Christos; Nielsen, Kristian; Rasmussen, Henrik K; Bang, Ole

    2016-01-25

    We have fabricated the first single-mode step-index and humidity insensitive polymer optical fiber operating in the 850 nm wavelength ranges. The step-index preform is fabricated using injection molding, which is an efficient method for cost effective, flexible and fast preparation of the fiber preform. The fabricated single-mode step-index (SI) polymer optical fiber (POF) has a 4.8µm core made from TOPAS grade 5013S-04 with a glass transition temperature of 134°C and a 150 µm cladding made from ZEONEX grade 480R with a glass transition temperature of 138°C. The key advantages of the proposed SIPOF are low water absorption, high operating temperature and chemical inertness to acids and bases and many polar solvents as compared to the conventional poly-methyl-methacrylate (PMMA) and polystyrene based POFs. In addition, the fiber Bragg grating writing time is short compared to microstructured POFs.

  13. Core temperature variation is associated with heart rate variability independent of cardiac index: a study of 278 trauma patients.

    Science.gov (United States)

    Mowery, Nathan T; Morris, John A; Jenkins, Judith M; Ozdas, Asli; Norris, Patrick R

    2011-10-01

    The purpose of this study is to determine if temperature extremes are associated with reduced heart rate variability (HRV) and "cardiac uncoupling." This was a retrospective, observational cohort study performed on 278 trauma intensive care unit admissions that had continuous HR, cardiac index (CI), and core temperature data from "thermodilution" Swan-Ganz catheter. Dense (captured second-by-second) physiologic data were divided into 5-minute intervals (N = 136 133; 11 344 hours of data). Mean CI, mean temperature, and integer HR SD were computed for each interval. Critically low HRV was defined as HR SD from 0.3 to 0.6 beats per minute. Temperature extremes were defined as less than 36°C or greater than 39°C. Low HRV and CI vary with temperature. Temperature extremes are associated with increased risk for critically low HRV (odds ratio, >1.8). Cardiac index increases with temperature until hyperthermia (>40°C). At temperature extremes, changes in CI were not explained solely by changes in HR. The conclusions of this study are (1) temperature extremes are associated with low HRV, potentially reflecting cardiac autonomic dysfunction; (2) CI increases with temperature; and (3) HRV provides additional physiologic information unobtainable via current invasive cardiac monitoring and current vital signs. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Constraining snowmelt in a temperature-index model using simulated snow densities

    KAUST Repository

    Bormann, Kathryn J.

    2014-09-01

    Current snowmelt parameterisation schemes are largely untested in warmer maritime snowfields, where physical snow properties can differ substantially from the more common colder snow environments. Physical properties such as snow density influence the thermal properties of snow layers and are likely to be important for snowmelt rates. Existing methods for incorporating physical snow properties into temperature-index models (TIMs) require frequent snow density observations. These observations are often unavailable in less monitored snow environments. In this study, previous techniques for end-of-season snow density estimation (Bormann et al., 2013) were enhanced and used as a basis for generating daily snow density data from climate inputs. When evaluated against 2970 observations, the snow density model outperforms a regionalised density-time curve reducing biases from -0.027gcm-3 to -0.004gcm-3 (7%). The simulated daily densities were used at 13 sites in the warmer maritime snowfields of Australia to parameterise snowmelt estimation. With absolute snow water equivalent (SWE) errors between 100 and 136mm, the snow model performance was generally lower in the study region than that reported for colder snow environments, which may be attributed to high annual variability. Model performance was strongly dependent on both calibration and the adjustment for precipitation undercatch errors, which influenced model calibration parameters by 150-200%. Comparison of the density-based snowmelt algorithm against a typical temperature-index model revealed only minor differences between the two snowmelt schemes for estimation of SWE. However, when the model was evaluated against snow depths, the new scheme reduced errors by up to 50%, largely due to improved SWE to depth conversions. While this study demonstrates the use of simulated snow density in snowmelt parameterisation, the snow density model may also be of broad interest for snow depth to SWE conversion. Overall, the

  15. The green alga Dictyosphaerium chlorelloides biomass and polysaccharides production determined using cultivation in crossed gradients of temperature and light

    Czech Academy of Sciences Publication Activity Database

    Kumar, D.; Kvíderová, J.; Kaštánek, P.; Lukavský, Jaromír

    2017-01-01

    Roč. 17, č. 9 (2017), s. 1030-1038 ISSN 1618-0240 R&D Projects: GA TA ČR TE01020080 Institutional support: RVO:67985939 Keywords : Dictyosphaerium chlorelloides * Biomass * Crossed gradients Subject RIV: EI - Biotechnology ; Bionics OBOR OECD: Bioproducts (products that are manufactured using biological material as feedstock) biomaterials, bioplastics, biofuels, bioderived bulk and fine chemicals, bio-derived novel materials Impact factor: 1.698, year: 2016

  16. Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors

    OpenAIRE

    Woyessa, Getinet; Fasano, Andrea; Stefani, Alessio; Markos, Christos; Nielsen, Kristian; Rasmussen, Henrik K.; Bang, Ole

    2016-01-01

    We have fabricated the first single-mode step-index and humidity insensitive polymer optical fiber operating in the 850 nm wavelength ranges. The step-index preform is fabricated using injection molding, which is an efficient method for cost effective, flexible and fast preparation of the fiber preform. The fabricated single-mode step-index (SI) polymer optical fiber (POF) has a 4.8µm core made from TOPAS grade 5013S-04 with a glass transition temperature of 134°C and a 150 µm cladding made f...

  17. Nonlinear intersubband absorption and refractive index changes in square and graded quantum well modulated by temperature and Hydrostatic pressure

    International Nuclear Information System (INIS)

    Ozturk, Emine; Sokmen, Ismail

    2013-01-01

    In this study, the effects of hydrostatic pressure and temperature on the linear and nonlinear intersubband transitions and the refractive index changes in the conduction band of square and graded quantum well (QW) are theoretically calculated within the framework of effective mass approximation. Results obtained show that the energy levels in different QWs and intersubband properties can be modified and controlled by the hydrostatic pressure and temperature. The modulation of the absorption coefficients and the refractive index changes which can be suitable for good performance optical modulators and various infrared optical device applications can be easily obtained by tuning the temperature and the hydrostatic pressure. - Highlights: ► Linear and nonlinear optical processes can be changed by pressure and temperature. ► Magnitude and energy of absorption peaks decrease as pressure increases. ► Refractive index changes in magnitude and energy decrease by increasing pressure. ► Energy differences are dependent on pressure, temperature and QW shapes. ► By increasing pressure we can obtain redshift in the optical transitions. ► For SQW, the absorption spectrum shows blueshift as the temperature increases. ► For GQW, the absorption spectrum shows redshift by temperature.

  18. Temperature and sowing date affect the linear increase of sunflower harvest index

    International Nuclear Information System (INIS)

    Bange, M.P.; Hammer, G.L.; Rickert, K.G.

    1998-01-01

    The linearity of daily linear harvest index (HI) increase can provide a simple means to predict grain growth and yield in field crops. However, the stability of the rate of increase across genotypes and environments is uncertain. Data from three field experiments were collated to investigate the phase of linear HI increase of sunflower (Helianthus annuus L.) across environments by changing genotypes, sowing time, N level, and solar irradiation level. Linear increase in HI was similar among different genotypes, N levels, and radiation treatments (mean 0.0125 d-1), but significant differences occurred between sowings. The linear increase in HI was not stable at very low temperatures (down to 9 degrees C) during grain filling, due to possible limitations to biomass accumulation and translocation (mean 0.0091 d-1). Using the linear increase in HI to predict grain yield requires predictions of the duration from an thesis to the onset of linear HI increase (lag phase) and the cessation of linear HI increase. These studies showed that the lag phase differed, and the linear HI increase ceased when 91% of the anthesis to physiological maturity period had been completed

  19. Joint spatiotemporal variability of global sea surface temperatures and global Palmer drought severity index values

    Science.gov (United States)

    Apipattanavis, S.; McCabe, G.J.; Rajagopalan, B.; Gangopadhyay, S.

    2009-01-01

    Dominant modes of individual and joint variability in global sea surface temperatures (SST) and global Palmer drought severity index (PDSI) values for the twentieth century are identified through a multivariate frequency domain singular value decomposition. This analysis indicates that a secular trend and variability related to the El Niño–Southern Oscillation (ENSO) are the dominant modes of variance shared among the global datasets. For the SST data the secular trend corresponds to a positive trend in Indian Ocean and South Atlantic SSTs, and a negative trend in North Pacific and North Atlantic SSTs. The ENSO reconstruction shows a strong signal in the tropical Pacific, North Pacific, and Indian Ocean regions. For the PDSI data, the secular trend reconstruction shows high amplitudes over central Africa including the Sahel, whereas the regions with strong ENSO amplitudes in PDSI are the southwestern and northwestern United States, South Africa, northeastern Brazil, central Africa, the Indian subcontinent, and Australia. An additional significant frequency, multidecadal variability, is identified for the Northern Hemisphere. This multidecadal frequency appears to be related to the Atlantic multidecadal oscillation (AMO). The multidecadal frequency is statistically significant in the Northern Hemisphere SST data, but is statistically nonsignificant in the PDSI data.

  20. Applications of Optical Interferometer Techniques for Precision Measurements of Changes in Temperature, Growth and Refractive Index of Materials

    Directory of Open Access Journals (Sweden)

    Rami Reddy Bommareddi

    2014-05-01

    Full Text Available Optical metrology techniques used to measure changes in thickness; temperature and refractive index are surveyed. Optical heterodyne detection principle and its applications for precision measurements of changes in thickness and temperature are discussed. Theoretical formulations are developed to estimate crystal growth rate, surface roughness and laser cooling/heating of solids. Applications of Michelson and Mach-Zehnder interferometers to measure temperature changes in laser heating of solids are described. A Mach-Zehnder interferometer is used to measure refractive index and concentration variations of solutions in crystal growth experiments. Additionally, fluorescence lifetime sensing and fluorescence ratio method are described for temperature measurement. For all the above techniques, uncertainty calculations are included.

  1. Modeling the effects of the vertical temperature gradient in the furnace in an edge-defined film-fed growth technique

    International Nuclear Information System (INIS)

    Epure, S.; Braescu, L.; Balint, St.

    2006-01-01

    In this paper, the mathematical model for the growth of cylindrical bars described elsewhere is considered. Using MathCAD 11 Enterprise Edition and mathematical tools, the asymptotically stable steady-states (r*, h*) of the nonlinear system of differential equations which governs the evolution of the bar radius r=r(t) and the meniscus height h=h(t), for different values of the pulling rate v, the melt temperature T 0 at the meniscus basis and the vertical temperature gradient k in the furnace, respectively, are found. For a given k, the range of the stable growth regions in the (v, T 0 ) plane (i.e. those couples (v, T 0 ) for which (r*, h*) has physical sense) are determined. The effects of the changes of the vertical temperature gradient k are investigated and it is shown that if v and T 0 are constant, and k increases, then the bar radius r increases and the meniscus height h decreases. Numerical results are given for the silicon bar grown in an edge-defined film-fed growth (E.F.G.) system with a die radius r 0e =20(cmx10 -2 )

  2. Effect of temperature gradient in the solution on spiral growth of YBa2Cu3O7-x bulk single crystals

    International Nuclear Information System (INIS)

    Kanamori, Y.; Shiohara, Y.

    1996-01-01

    Bulk single crystals of Y123 are required to clarify the superconductivity phenomena and develop electronic devices using unique superconductive properties. Only the Solute Rich Liquid endash Crystal Pulling (SRL-CP) method has succeeded in continuous growth of the Y123 single crystal. In this paper, we investigated the growth of Y123 single crystals under different temperature gradients in the solution in order to understand the growth mechanism of Y123. It was revealed that Y123 single crystals grow with a spiral growth mode, which is in good agreement with the BCF theory. copyright 1996 Materials Research Society

  3. Near-surface temperature gradients and their effects on thermal-infrared emission spectra of particulate planetary surfaces

    Science.gov (United States)

    Henderson, B. G.; Jakosky, B. M.

    1993-01-01

    The infrared energy emitted from a planetary surface is generated within a finite depth determined by the material's absorption skin depth. This parameter varies significantly with wavelength in the infrared but has an average value of around 50 microns for most geologic materials. In solid rock, heat transfer is efficient enough so that this 50 micron zone of the near surface from which the radiation emanates will be more or less isothermal. In particulate materials, however, heat transfer is more complicated and occurs via a combination of mechanisms, including solid conduction within grains and across grain contacts, conduction through the interstitial gas, and thermal radiation within individual particles and across the void spaces in between grains. On planets with substantial atmospheres, the gas component dominates the heat transfer and tends to mitigate near-surface thermal gradients. However, on airless bodies, the gas component is absent and heat transfer occurs via solid conductions and radiation. If the particles are small relative to the average absorption skin depth, then the top 50-100 microns or so of the surface will be cooled by radiation to space allowing the creation of significant near-surface thermal gradients. In those regions of the spectrum where the absorption coefficient is low, the emission will come from the deeper, warmer parts of the medium, whereas in regions of high absorption, the emission will emanate from shallower, cooler parts of the medium. The resulting emission spectrum will show non-compositional features as a result of the thermal structure in the material. We have modeled the heat transfer in a particulate medium in order to determine the magnitude of near-surface thermal gradients for surfaces on airless bodies and on Mars. We use the calculated thermal structure to determine the effects it has on the infrared emission spectrum of the surface.

  4. Can a canopy temperature-based stress index enhance water use efficiency in irrigated wine grape under arid conditions?

    Science.gov (United States)

    Enhancement of irrigation water use efficiency and water productivity in arid wine grape production regions is hindered by a lack of automated, real-time methods for monitoring and interpreting vine water status. A normalized, water stress index calculated from real-time vine canopy temperature meas...

  5. THE EFFECTS OF EXPERIMENTAL CONDITIONS ON THE REFRACTIVE INDEX AND DENSITY OF LOW-TEMPERATURE ICES: SOLID CARBON DIOXIDE

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, M. J.; Moore, M. H.; Gerakines, P. A. [Astrochemistry Laboratory, Code 691, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-08-20

    We present the first study on the effects of the deposition technique on the measurements of the visible refractive index and the density of a low-temperature ice using solid carbon dioxide (CO{sub 2}) at 14–70 K as an example. While our measurements generally agree with previous studies that show a dependence of index and density on temperature below 50 K, we also find that the measured values depend on the method used to create each sample. Below 50 K, we find that the refractive index varied by as much as 4% and the density by as much as 16% at a single temperature depending on the deposition method. We also show that the Lorentz–Lorenz approximation is valid for solid CO{sub 2} across the full 14–70 K temperature range, regardless of the deposition method used. Since the refractive index and density are important in calculations of optical constants and infrared (IR) band strengths of materials, our results suggest that the deposition method must be considered in cases where n {sub vis} and ρ are not measured in the same experimental setup where the IR spectral measurements are made.

  6. Effect of strain rate on sooting limits in counterflow diffusion flames of gaseous hydrocarbon fuels: Sooting temperature index and sooting sensitivity index

    KAUST Repository

    Wang, Yu

    2014-05-01

    The effect of the strain rate on the sooting limits in counterflow diffusion flames was investigated in various gaseous hydrocarbon fuels by varying the nitrogen dilution in the fuel and oxidizer streams. The sooting limit was defined as the critical fuel and oxygen mole fraction at which soot started to appear in the elastic light scattering signal. The sooting region for normal alkane fuels at a specified strain rate, in terms of the fuel and oxygen mole fraction, expanded as the number of carbon atoms increased. The alkene fuels (ethylene, propene) tested had a higher propensity for sooting as compared with alkane fuels with the same carbon numbers (ethane, propane). Branched iso-butane had a higher propensity for sooting than did n-butane. An increase in the strain rate reduced the tendency for sooting in all the fuels tested. The sensitivity of the sooting limit to the strain rate was more pronounced for less sooting fuels. When plotted in terms of calculated flame temperature, the critical oxygen mole fraction exhibited an Arrhenius form under sooting limit conditions, which can be utilized to significantly reduce the effort required to determine sooting limits at different strain rates. We found that the limiting temperatures of soot formation flames are viable sooting metrics for quantitatively rating the sooting tendency of various fuels, based on comparisons with threshold soot index and normalized smoke point data. We also introduce a sooting temperature index and a sooting sensitivity index, two quantitative measures to describe sooting propensity and its dependence on strain rate. © 2013 The Combustion Institute.

  7. Hatching response to temperature along a latitudinal gradient by the fairy shrimp Branchinecta lindahli (Crustacea; Branchiopoda; Anostraca in culture conditions

    Directory of Open Access Journals (Sweden)

    D. Christopher Rogers

    2014-08-01

    Full Text Available Branchinecta lindahli is a broadly distributed fairy shrimp, reported from a range of temporary wetland habitat types in arid western North America. This species’ eggs hatch after the habitat dries, refills from seasonal rain, and receives a strong cold shock during the winter low temperatures. I studied phenotypic variation in temperature responses in cultures collected from four populations across 8° of latitude with low average temperatures ranging from -8 to 8°C. Time to maturation, mature body size and first clutch size decreased, as temperature increased, with only minor body size variability at mortality, regardless of culture origin. No variation in individual egg size was observed, demonstrating that body size is sacrificed to produce at least a few normal eggs during unfavourable years. Latitudinal variation in hatching temperature demonstrated a pattern of adaptive significance, with some overlap between regional temperature hatching cues.  Phenotypic hatching temperature and growth rate responses may cause genetic segregation, selecting one cohort for warmer, dryer years and one cohort for cooler, wetter years.  Drier year selected cohorts can exploit habitats that have shorter hydroperiods even in wet years. This may lead to population specialisation and speciation by adapting to more extreme habitats

  8. Local melting/solidification during peritectic solidification in a steep temperature gradient: analysis of a directionally solidified Al-25at%Ni

    Science.gov (United States)

    Liu, Dongmei; Li, Xinzhong; Su, Yanqing; Rettenmayr, Markus; Guo, Jingjie; Fu, Hengzhi

    2014-09-01

    Melting of primary Al3Ni2 phase and solidification of Al3Ni peritectic phase during directional solidification of an Al-25at%Ni peritectic alloy have been investigated. In a steep temperature gradient of up to 50 K/mm and at a pulling rate of 20 μm/s, an incomplete coverage of peritectic Al3Ni phase on the surface of the primary Al3Ni2 phase has been observed. Below the peritectic temperature in the presence of the incomplete coverage, melting of primary Al3Ni2 on the one side and solidification to the Al3Ni peritectic phase on the other side proceed swiftly via diffusion through the interphase liquid layer. Theoretical calculations based on an incomplete-coverage-related melting/solidification model are in close agreement with the experimental measurements.

  9. Isotopologue data reveal denitrification as the primary source of nitrous oxide along a fertilization gradient in a temperature agricultural field

    Science.gov (United States)

    Ostrom, N. E.; Ostrom, P. H.; Gandhi, H.; Millar, N.; Robertson, G. P.

    2009-12-01

    The microbial source of nitrous oxide in terrestrial ecosystems has long been debated. Both nitrification and denitrification produce nitrous oxide but their relative importance remains uncertain. Here we apply site preference, SP, (the difference in δ15N between the central and outer N atom in nitrous oxide), to estimate production of nitrous oxide from bacterial denitrification (including nitrifier denitrification). Soil flux chambers were deployed within 3 agricultural plots planted with wheat in corn-soybean wheat rotation as part of ongoing studies at the Kellogg Biological Stations Long-Term Ecosystem Research site. Distinct levels of urea-ammonium nitrate (28%) fertilizer were applied to each plot in the spring of 2007 to obtain totals of 0, 134, and 246 kg-N ha-1. Samples for nitrous oxide flux and isotopologue composition were collected approximately 4 times per week from May through December, 2007, in each of the plots. The average annual nitrous oxide flux weighted N isotope values increased along the fertilization gradient (-14.7, -12.3 and -9.1 ‰, for the no, medium and high N additions, respectively) whereas O isotope values decreased (33.2, 28.7 and 25.3 ‰, respectively). Flux weighted SP values along the fertilization gradient (0.7, 4.0 and 3.8 ‰, respectively) were low and consistent with an origin predominantly from denitrification based on SP values found for nitrification and denitrification in pure culture studies. Consequently, we find that irregardless of the level of fertilizer applied denitrification was the predominant source of nitrous oxide.

  10. Magic angle spinning NMR below 6 K with a computational fluid dynamics analysis of fluid flow and temperature gradients.

    Science.gov (United States)

    Sesti, Erika L; Alaniva, Nicholas; Rand, Peter W; Choi, Eric J; Albert, Brice J; Saliba, Edward P; Scott, Faith J; Barnes, Alexander B

    2018-01-01

    We report magic angle spinning (MAS) up to 8.5 kHz with a sample temperature below 6 K using liquid helium as a variable temperature fluid. Cross polarization 13 C NMR spectra exhibit exquisite sensitivity with a single transient. Remarkably, 1 H saturation recovery experiments show a 1 H T 1 of 21 s with MAS below 6 K in the presence of trityl radicals in a glassy matrix. Leveraging the thermal spin polarization available at 4.2 K versus 298 K should result in 71 times higher signal intensity. Taking the 1 H longitudinal relaxation into account, signal averaging times are therefore predicted to be expedited by a factor of >500. Computer assisted design (CAD) and finite element analysis were employed in both the design and diagnostic stages of this cryogenic MAS technology development. Computational fluid dynamics (CFD) models describing temperature gradients and fluid flow are presented. The CFD models bearing and drive gas maintained at 100 K, while a colder helium variable temperature fluid stream cools the center of a zirconia rotor. Results from the CFD were used to optimize the helium exhaust path and determine the sample temperature. This novel cryogenic experimental platform will be integrated with pulsed dynamic nuclear polarization and electron decoupling to interrogate biomolecular structure within intact human cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The sensitivity of tropical leaf litter decomposition to temperature: results from a large-scale leaf translocation experiment along an elevation gradient in Peruvian forests.

    Science.gov (United States)

    Salinas, N; Malhi, Y; Meir, P; Silman, M; Roman Cuesta, R; Huaman, J; Salinas, D; Huaman, V; Gibaja, A; Mamani, M; Farfan, F

    2011-03-01

    • We present the results from a litter translocation experiment along a 2800-m elevation gradient in Peruvian tropical forests. The understanding of the environmental factors controlling litter decomposition is important in the description of the carbon and nutrient cycles of tropical ecosystems, and in predicting their response to long-term increases in temperature. • Samples of litter from 15 species were transplanted across all five sites in the study, and decomposition was tracked over 448 d. • Species' type had a large influence on the decomposition rate (k), most probably through its influence on leaf quality and morphology. When samples were pooled across species and elevations, soil temperature explained 95% of the variation in the decomposition rate, but no direct relationship was observed with either soil moisture or rainfall. The sensitivity of the decay rate to temperature (κ(T)) varied seven-fold across species, between 0.024 and 0.169 °C⁻¹, with a mean value of 0.118 ± 0.009 °C⁻¹ (SE). This is equivalent to a temperature sensitivity parameter (Q₁₀) for litter decay of 3.06 ± 0.28, higher than that frequently assumed for heterotrophic processes. • Our results suggest that the warming of approx. 0.9 °C experienced in the region in recent decades may have increased decomposition and nutrient mineralization rates by c. 10%. © 2010 The Authors. New Phytologist © 2010 New Phytologist Trust.

  12. Complex terrain alters temperature and moisture limitations of forest soil respiration across a semiarid to subalpine gradient

    Science.gov (United States)

    Berryman, Erin Michele; Barnard, H.R.; Adams, H.R.; Burns, M.A.; Gallo, E.; Brooks, P.D.

    2015-01-01

    Forest soil respiration is a major carbon (C) flux that is characterized by significant variability in space and time. We quantified growing season soil respiration during both a drought year and a nondrought year across a complex landscape to identify how landscape and climate interact to control soil respiration. We asked the following questions: (1) How does soil respiration vary across the catchments due to terrain-induced variability in moisture availability and temperature? (2) Does the relative importance of moisture versus temperature limitation of respiration vary across space and time? And (3) what terrain elements are important for dictating the pattern of soil respiration and its controls? Moisture superseded temperature in explaining watershed respiration patterns, with wetter yet cooler areas higher up and on north facing slopes yielding greater soil respiration than lower and south facing areas. Wetter subalpine forests had reduced moisture limitation in favor of greater seasonal temperature limitation, and the reverse was true for low-elevation semiarid forests. Coincident climate poorly predicted soil respiration in the montane transition zone; however, antecedent precipitation from the prior 10 days provided additional explanatory power. A seasonal trend in respiration remained after accounting for microclimate effects, suggesting that local climate alone may not adequately predict seasonal variability in soil respiration in montane forests. Soil respiration climate controls were more strongly related to topography during the drought year highlighting the importance of landscape complexity in ecosystem response to drought.

  13. Vector competence of northern and southern European Culex pipiens pipiens mosquitoes for West Nile virus across a gradient of temperatures

    NARCIS (Netherlands)

    Vogels, C.B.F.; Göertz, G.P.; Pijlman, G.P.; Koenraadt, C.J.M.

    2017-01-01

    In Europe, West Nile virus (WNV) outbreaks have been limited to southern and central European countries. However, competent mosquito vectors and susceptible bird hosts are present in northern Europe. Differences in temperature and vector competence of mosquito populations may explain the absence

  14. Phytoplankton chlorophyll a biomass, composition, and productivity along a temperature and stratification gradient in the northeast Atlantic Ocean

    NARCIS (Netherlands)

    van de Poll, W. H.; Kulk, G.; Timmermans, K. R.; Brussaard, C. P. D.; van der Woerd, H. J.; Kehoe, M. J.; Mojica, K. D. A.; Visser, R. J. W.; Rozema, P. D.; Buma, A. G. J.

    2013-01-01

    Relationships between sea surface temperature (SST, > 10 m) and vertical density stratification, nutrient concentrations, and phytoplankton biomass, composition, and chlorophyll a (Chl a) specific absorption were assessed in spring and summer from latitudes 29 to 63 degrees N in the northeast

  15. Phytoplankton chlorophyll a biomass, composition, and productivity along a temperature and stratification gradient in the northeast Atlantic Ocean

    NARCIS (Netherlands)

    van de Poll, W.H.; Kulk, G.; Timmermans, K.R.; Brussaard, C.P.D.; van der Woerd, H.J.; Kehoe, M.J.; Mojica, K.D.A.; Visser, R.J.W.; Rozema, P.D.; Buma, A.G.J.

    2013-01-01

    Relationships between sea surface temperature (SST, > 10 m) and vertical density stratification, nutrient concentrations, and phytoplankton biomass, composition, and chlorophyll a (Chl a) specific absorption were assessed in spring and summer from latitudes 29 to 63° N in the northeast Atlantic

  16. Physical modelling of globe and natural wet bulb temperatures to predict WBGT heat stress index in outdoor environments.

    Science.gov (United States)

    Gaspar, Adélio R; Quintela, Divo A

    2009-05-01

    The present paper describes a physical model that estimates the globe and the natural wet bulb temperatures from the main parameters generally recorded at meteorological weather stations, in order to predict the wet bulb globe temperature (WBGT) heat stress index for outdoor environments. The model is supported by a thermal analysis of the globe and the natural wet bulb temperature sensors. The results of simultaneous measurements of the WBGT and climatological parameters (solar radiation, wind velocity, humidity, etc.) are presented and used to validate the model. The final comparison between calculated and measured values shows a good agreement with the experimental data, with a maximum absolute deviation of 2.8% for the globe temperature and 2.6% for the natural wet bulb temperature and the WBGT index. The model is applied to the design reference year for Coimbra, Portugal, in order to illustrate its preventative capabilities from a practical point of view. The results clearly show that during the summer there is a critical daily period (1200-1600 hours, local standard time) during which people working outdoors should not be allowed to perform their normal activities.

  17. Water stress index for alkaline fen habitat based on UAV and continuous tower measurements of canopy infrared temperature

    Science.gov (United States)

    Ciężkowski, Wojciech; Jóźwiak, Jacek; Chormański, Jarosław; Szporak-Wasilewska, Sylwia; Kleniewska, Małgorzata

    2017-04-01

    This study is focused on developing water stress index for alkaline fen, to evaluate water stress impact on habitat protected within Natura 2000 network: alkaline fens (habitat code:7230). It is calculated based on continuous measurements of air temperature, relative humidity and canopy temperature from meteorological tower and several UAV flights for canopy temperature registration. Measurements were taken during the growing season in 2016 in the Upper Biebrza Basin in north-east Poland. Firstly methodology of the crop water stress index (CWSI) determination was used to obtained non-water stress base line based on continuous measurements (NWSBtower). Parameters of NWSBtower were directly used to calculate spatial variability of CWSI for UAV thermal infrared (TIR) images. Then for each UAV flight day at least 3 acquisition were performed to define NWSBUAV. NWSBUAV was used to calculate canopy waters stress for whole image relative to the less stressed areas. The spatial distribution of developed index was verified using remotely sensed indices of vegetation health. Results showed that in analysed area covered by sedge-moss vegetation NWSB cannot be used directly. The proposed modification of CWSI allows identifying water stress in alkaline fen habitats and was called as Sedge-Moss Water Stress Index (SMWSI). The study shows possibility of usage remotely sensed canopy temperature data to detect areas exposed to the water stress on wetlands. This research has been carried out under the Biostrateg Programme of the Polish National Centre for Research and Development (NCBiR), project No.: DZP/BIOSTRATEG-II/390/2015: The innovative approach supporting monitoring of non-forest Natura 2000 habitats, using remote sensing methods (HabitARS).

  18. Simultaneous interferometric measurement of linear coefficient of thermal expansion and temperature-dependent refractive index coefficient of optical materials.

    Science.gov (United States)

    Corsetti, James A; Green, William E; Ellis, Jonathan D; Schmidt, Greg R; Moore, Duncan T

    2016-10-10

    Characterizing the thermal properties of optical materials is necessary for understanding how to design an optical system for changing environmental conditions. A method is presented for simultaneously measuring both the linear coefficient of thermal expansion and the temperature-dependent refractive index coefficient of a sample interferometrically in air. Both the design and fabrication of the interferometer is presented as well as a discussion of the results of measuring both a steel and a CaF2 sample.

  19. Enrichment of magnetic particles using temperature and magnetic field gradients induced by benchtop fabricated micro-electromagnets.

    Science.gov (United States)

    Hosseini, A; Philpott, D N; Soleymani, L

    2017-11-21

    The active transport of analytes inside biosensing systems is important for reducing the response time and enhancing the limit-of-detection of these systems. Due to the ease of functionalization with bio-recognition agents and manipulation with magnetic fields, magnetic particles are widely used for active and directed transport of biological analytes. On-chip active electromagnets are ideally suited for manipulating magnetic particles in an automated and miniaturized fashion inside biosensing systems. Unfortunately, the magnetic force exerted by these devices decays rapidly as we move away from the device edges, and increasing the generated force to the levels necessary for particle manipulation requires a parallel increase in the applied current and the resultant Joule heating. In this paper, we designed a study to understand the combined role of thermal and magnetic forces on the movement of magnetic particles in order to extend the interaction distance of on-chip magnetic devices beyond the device edges. For this purpose, we used a rapid prototyping method to create an active/passive on-chip electromagnet with a micro/nano-structured active layer and a patterned ferromagnetic passive layer. We demonstrated that the measured terminal velocities of particles positioned near the electromagnet edge (∼5.5 μm) closely reflect the values obtained by multi-physics modelling. Interestingly, we observed a two orders of magnitude deviation between the experimental and modelling results for the terminal velocities of particles far from the electromagnet edge (∼55.5 μm). Heat modelling of the system using experimentally-measured thermal gradients indicates that this discrepancy is related to the enhanced fluid movement caused by thermal forces. This study enables the rational design of thermo-magnetic systems for thermally driving and magnetically capturing particles that are positioned at distances tens to hundreds of microns away from the edges of on-chip magnetic

  20. Estimating index of refraction for material identification in comparison to existing temperature emissivity separation algorithms

    Science.gov (United States)

    Martin, Jacob A.; Gross, Kevin C.

    2016-05-01

    As off-nadir viewing platforms become increasingly prevalent in remote sensing, material identification techniques must be robust to changing viewing geometries. Current identification strategies generally rely on estimating reflectivity or emissivity, both of which vary with viewing angle. Presented here is a technique, leveraging polarimetric and hyperspectral imaging (P-HSI), to estimate index of refraction which is invariant to viewing geometry. Results from a quartz window show that index of refraction can be retrieved to within 0.08 rms error from 875-1250 cm-1 for an amorphous material. Results from a silicon carbide (SiC) wafer, which has much sharper features than quartz glass, show the index of refraction can be retrieved to within 0.07 rms error. The results from each of these datasets show an improvement when compared with a maximum smoothness TES algorithm.

  1. Buckling and free vibration of shallow curved micro/nano-beam based on strain gradient theory under thermal loading with temperature-dependent properties

    Science.gov (United States)

    Rahmani, O.; Hosseini, S. A. H.; Ghoytasi, I.; Golmohammadi, H.

    2017-01-01

    In this study, influences of a uniform thermomechanical loading in buckling and free vibration of a curved FG microbeam have been investigated, based on strain gradient theory (SGT) theory and Timoshenko beam model. Distribution of structural materials varies continuously in thickness direction due to power-law exponent. Unlike classical models, this novel model employs three length scale parameters which can capture the size effect. This work is based on SGT theory and Timoshenko beam model. Governing equation of motion and associated boundary condition have been developed based on Hamilton's principle, which is the specified case of virtual work theorem. In continuance, final differential equations were solved by Navier's solution method and the results have been presented. Moreover, influences of dimensionless length-to-thickness ratio (aspect ratio), dimensionless length scale parameter, power-law exponent, temperature difference and arc angle for various values of mode numbers on natural frequency and critical temperature by considering temperature-dependent material properties have been investigated. In order to validate accomplished study, some of the results were compared with those of previous works. It has been concluded that applying a thermomechanical loading on a FG microbeam causes the natural frequency to become more sensitive about variations of geometrical, physical and mechanical properties and characteristics.

  2. Temperature gradient compatibility tests of some refractory metals and alloys in bismuth and bismuth--lithium solutions

    International Nuclear Information System (INIS)

    DiStefano, J.R.; Cavin, O.B.

    1976-11-01

    Quartz, T-111, and Mo thermal-convection loop tests were conducted at temperatures up to 700 0 C (100 0 C ΔT) to determine the compatibility of several refractory metals/alloys with bismuth and bismuth-lithium solutions for molten salt breeder reactor applications. Methods of evaluation included weight change measurements, metallographic examination, chemical and electron microprobe analysis, and mechanical properties tests. Molybdenum, T-111, and TA--10 percent W appear to be the most promising containment materials, while niobium and iron-based alloys are unacceptable

  3. Simultaneous multipoint measurements of density gradients and temperature in a flame. Progress report, July 1, 1982-January 31, 1983

    International Nuclear Information System (INIS)

    Chang, R.K.; Chu, B.T.; Long, M.B.

    1983-02-01

    An account is given of recent progress in the development of nonintrusive optical diagnostic techniques and the application of these techniques to turbulent combustion systems. The primary focus of the work over the past year has been in: (1) the use of a broadband rotational CARS technique for the measurement of temperature in flames, and (2) the use of spontaneous Raman scattering to simultaneously map out the fuel gas concentration in a turbulent diffusion flame at 2500 points in a plane intersecting the flow. A summary of new results in each of these areas is given

  4. Constraints on Alpine Fault (New Zealand) Mylonitization Temperatures and Geothermal Gradient from Ti-in-quartz Thermobarometry

    OpenAIRE

    Kidder, Steven; Toy, Virginia; Prior, Dave; Little, Tim; MacRae, Colin

    2018-01-01

    We constrain the thermal state of the central Alpine Fault using approximately 750 Ti-in-quartz SIMS analyses from a suite of variably deformed mylonites. Ti-in-quartz concentrations span more than an order of magnitude from 0.24 to ~5 ppm, suggesting recrystallization of quartz over a 300° range in temperature. Most Ti-in-quartz concentrations in mylonites, protomylonites, and the Alpine Schist protolith are between 2 and 4 ppm and do not vary as a function of grain size or bul...

  5. Long-chain alkaenone unsaturation index as sea surface temperature proxy in southwest Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, N.S.; Pasha, S.K.G.; SriRamKrishna, M.; Shirodkar, P.V.; Yadava, M.G.; Rao, K.M.

    . The LCA unsaturation index (U k minute37 ) d e- fined by eq. (1) 6 is a new proxy that is frequently an a- lysed at present globally, as the i n dex does not suffer from disadvantages associated with other methods, e.g. melt water 1 and salinity...

  6. Effect of nano-silica on dielectric properties and space charge behavior of epoxy resin under temperature gradient

    Science.gov (United States)

    Li, Yuanyuan; Tian, Muqin; Lei, Zhipeng; Zhang, Jianhua

    2018-03-01

    Epoxy resin (EP) nanodielectrics with the mass fraction of nano-silica (SiO2) between 0 and 5 wt% were manufactured. The influence of SiO2 content on the dielectric properties of EP nanodielectrics was studied. It is found that the dielectric properties are the best when the SiO2 content is 0.5 wt%. We further tested and analyzed the dielectric properties of pure EP and EP nanodielectrics with 0.5 wt% SiO2 at the temperature ranging from 40 to 200 °C. The results show that the complexity permittivity and space charge accumulation of the samples increase significantly at low frequency and the temperature above T g. The complexity permittivity and space charge accumulation of the nanocomposites with the loading of 0.5 wt%, however, are smaller than that of pure EP. These results indicate that the interface area between nano-silica and EP matrix suppresses the motions of molecular chains and the migration of charge carriers.

  7. A novel temperature-gradient Na±β-alumina solid electrolyte based SOx gas sensor without gaseous reference electrode

    DEFF Research Database (Denmark)

    Rao, N.; Bleek, C.M. Van den; Schoonman, J.

    1992-01-01

    An electrochemical SOx ps sensor with a tubular Na+-beta"-alumina solid electrolyte has been fabricated and tested under non-isothermal conditions. The temperature difference between the reference and working electrode of the sensor cell is about 100-degrees-C, which causes a serious deviation...... of the experimental EMF response from the value as calculated using the Nernst equation for an isothermal system. The experimental results are Consistent with the theoretical prediction for a non-isothermal system. The response time is usually less then 10 min. SEM and EDX have been employed to investigate the sensor...... material before and after use, confirming the formation of a glassy phase of Na2SO4 by an electrochemical reaction at the interface of the platinum electrodes and Na+-beta"-alumina. According to this new theoretical derivation, the sensor design could be simplified by applying the same SO2 ps at the two...

  8. Seasonality of Rotavirus in South Asia: A Meta-Analysis Approach Assessing Associations with Temperature, Precipitation, and Vegetation Index

    Science.gov (United States)

    Jagai, Jyotsna S.; Sarkar, Rajiv; Castronovo, Denise; Kattula, Deepthi; McEntee, Jesse; Ward, Honorine; Kang, Gagandeep; Naumova, Elena N.

    2012-01-01

    Background Rotavirus infection causes a significant proportion of diarrhea in infants and young children worldwide leading to dehydration, hospitalization, and in some cases death. Rotavirus infection represents a significant burden of disease in developing countries, such as those in South Asia. Methods We conducted a meta-analysis to examine how patterns of rotavirus infection relate to temperature and precipitation in South Asia. Monthly rotavirus data were abstracted from 39 published epidemiological studies and related to monthly aggregated ambient temperature and cumulative precipitation for each study location using linear mixed-effects models. We also considered associations with vegetation index, gathered from remote sensing data. Finally, we assessed whether the relationship varied in tropical climates and humid mid-latitude climates. Results Overall, as well as in tropical and humid mid-latitude climates, low temperature and precipitation levels are significant predictors of an increased rate of rotaviral diarrhea. A 1°C decrease in monthly ambient temperature and a decrease of 10 mm in precipitation are associated with 1.3% and 0.3% increase above the annual level in rotavirus infections, respectively. When assessing lagged relationships, temperature and precipitation in the previous month remained significant predictors and the association with temperature was stronger in the tropical climate. The same association was seen for vegetation index; a seasonal decline of 0.1 units results in a 3.8% increase in rate of rotavirus. Conclusions In South Asia the highest rate of rotavirus was seen in the colder, drier months. Meteorological characteristics can be used to better focus and target public health prevention programs. PMID:22693594

  9. Temperature Dependent Sellmeier Equation for the Refractive Index of GaP (Postprint)

    Science.gov (United States)

    2018-02-01

    ADDRESS. 1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To) 30 January 2018 Interim 30 July 2015 – 30 December 2017 4. TITLE...0.7 and 12.5 μm over a temperature range of 78 to 450 K, is presented. The temperature dependence values of the generated wavelengths in nonlinear...frequency conversion calculated using this equation match well the experimentally measured values . 15. SUBJECT TERMS Nonlinear optical materials

  10. Cell cycle analysis of brain cells as a growth index in larval cod at different feeding conditions and temperatures

    Directory of Open Access Journals (Sweden)

    Rafael González-Quirós

    2007-09-01

    Full Text Available The percentage of cells dividing in a specific tissue of individual larvae can be estimated by analyzing DNA per cell by flow cytometry. An experimental test was carried out with cod (Gadus morhua larvae, with brain as the target tissue, to validate this technique as an appropriate growth index for larval fish. Standard length (SL, myotome height, and %S-phase (% of cells in the S-phase of the cell-division cycle variability were analyzed, with temperature (6 and 10°C, food level (high- and no-food and larval developmental stage (first feeding, pre-metamorphosis and post-metamorphosis as independent factors. Cod larvae grew faster (in SL and presented a higher %S-phase under high-food conditions. Larval SL increased with temperature in rearing and experimental tanks. However, there was a significant interaction between temperature and food in the %S-phase. There were no significant differences in the %S-phase between 6 and 10°C at high-food levels. We suggest that this result is a consequence of temperature-dependency of the duration of the cell cycle. In the absence of food, larvae at 10ºC had a lower %S-phase than larvae at 6°C, which may be related to increased metabolic costs with increasing temperature. Considering the effect of temperature, the mean % S-phase explained 74% of the variability in the estimated standard growth rate.

  11. Perfusion index as a possible predictor for postanesthetic shivering.

    Science.gov (United States)

    Kuroki, Chiharu; Godai, Kohei; Hasegawa-Moriyama, Maiko; Kuniyoshi, Tamotsu; Matsunaga, Akira; Kanmura, Yuichi; Kuwaki, Tomoyuki

    2014-02-01

    Postanesthetic shivering can be triggered by surgical stress and several aspects of anesthetic management and is frequently preceded by a decrease in peripheral blood flow due to thermoregulatory vasoconstriction. As perfusion index correlates with peripheral blood flow, we examined whether perioperative perfusion index, measured using pulse oximetry, might be correlated with postanesthetic shivering. Twenty-eight patients presenting for elective abdominal surgery were enrolled. Core (esophagus) and peripheral (finger) temperatures and perfusion index were recorded in the perioperative periods. Correlations between perfusion index and peripheral temperature and core-to-peripheral temperature gradient were then explored. Plasma levels of epinephrine and norepinephrine were also measured. The extent of shivering was graded after emergence from anesthesia. Perfusion index declined before emergence from anesthesia in patients who then developed postanesthetic shivering. This coincided with the time at which the difference between core and peripheral temperature became dissociated and peripheral temperature declined. Perioperative perfusion index was correlated with peripheral temperature and peripheral-core temperature gradient. Perfusion index at closure of the peritoneum predicted postanesthetic shivering and was significantly correlated with the extent of shivering. Plasma levels of both epinephrine and norepinephrine were significantly elevated after shivering events. Perfusion index was significantly lower in patients with postanesthetic shivering before emergence from anesthesia, indicating that measurement of perfusion index during and before the end of anesthesia might be a useful means of predicting postanesthetic shivering.

  12. Trends in extreme daily temperatures and humidex index in the United Arab Emirates over 1948-2014.

    Science.gov (United States)

    Yang, H. W.; Ouarda, T.

    2015-12-01

    This study deals with the analysis of the characteristics of extreme temperature events in the Middle East, using NCEP reanalysis gridded data, for the summer (May-October) and winter (November-April) seasons. Trends in the occurrences of three types of heat spells during 1948-2014 are studied by both Linear Regression (LR) and Mann-Kendall (MK) test. Changes in the diurnal temperature range (DTR) are also investigated. To better understand the effects of heat spells on public health, the Humidex, a combination index of ambient temperature and relative humidity, is also used. Using percentile threshold, temperature (Humidex) Type-A and Type-B heat spells are defined respectively by daily maximum and minimum temperature (Humidex). Type-C heat spells are defined as the joint occurrence of Type-A and Type-B heat spells at the same time. In the Middle East, it is found that no coherent trend in temperature Type-A heat spells is observed. However, the occurrences of temperature Type-B and C heat spells have consistently increased since 1948. For Humidex heat spells, coherently increased activities of all three types of heat spells are observed in the area. During the summer, the magnitude of the positive trends in Humidex heat spells are generally stronger than temperature heat spells. More than half of the locations in the area show significantly negative DTR trends in the summer, but the trends vary according to the region in the winter. Annual mean temperature has increased an average by 0.5°C, but it is mainly associated with the daily minimum temperature which has warmed up by 0.84°C.Daily maximum temperature showed no significant trends. The warming is hence stronger in minimum temperatures than in maximum temperatures resulting in a decrease in DTR by 0.16 °C per decade. This study indicates hence that the UAE has not become hotter, but it has become less cold during 1948 to 2014.

  13. Wet-bulb globe temperature index estimation using meteorological data from São Paulo State, Brazil

    Science.gov (United States)

    Maia, Paulo Alves; Ruas, Álvaro Cézar; Bitencourt, Daniel Pires

    2015-10-01

    It is well known that excessive heat exposure causes heat disorders and can lead to death in some situations. Evaluation of heat stress on workers performing indoor and outdoor activities is, nowadays, conducted worldwide by wet-bulb globe temperature (WBGT) index, which calculation parameters are dry-bulb, natural wet-bulb, and globe temperatures, which must be measured at the same time and in location where the worker is conducting his/her activities. However, for some activities performed in large outdoor areas such as those of agricultural ones, it is not feasible to measure directly those temperatures in all work periods and locations where there are workers. Taking this into account, this work aims to introduce a WBGT index estimation using atmospheric variables observed by automatic meteorological stations. In order to support our estimation method, we used, as a test-bed, data recorded in the State of São Paulo (SP), Brazil. By adding the cloudiness factor in the calculation through measurement of solar radiation, the algorithm proved to be as efficient as those mentioned in this work. It was found that this method is viable, with WBGT-estimated values obtained from meteorological data measured by stations with a distance of less than 80 km. This estimate can be used for monitoring heat stress in real time as well as to investigate heat-related disorders and agricultural work.

  14. Wet-bulb globe temperature index estimation using meteorological data from São Paulo State, Brazil.

    Science.gov (United States)

    Maia, Paulo Alves; Ruas, Álvaro Cézar; Bitencourt, Daniel Pires

    2015-10-01

    It is well known that excessive heat exposure causes heat disorders and can lead to death in some situations. Evaluation of heat stress on workers performing indoor and outdoor activities is, nowadays, conducted worldwide by wet-bulb globe temperature (WBGT) index, which calculation parameters are dry-bulb, natural wet-bulb, and globe temperatures, which must be measured at the same time and in location where the worker is conducting his/her activities. However, for some activities performed in large outdoor areas such as those of agricultural ones, it is not feasible to measure directly those temperatures in all work periods and locations where there are workers. Taking this into account, this work aims to introduce a WBGT index estimation using atmospheric variables observed by automatic meteorological stations. In order to support our estimation method, we used, as a test-bed, data recorded in the State of São Paulo (SP), Brazil. By adding the cloudiness factor in the calculation through measurement of solar radiation, the algorithm proved to be as efficient as those mentioned in this work. It was found that this method is viable, with WBGT-estimated values obtained from meteorological data measured by stations with a distance of less than 80 km. This estimate can be used for monitoring heat stress in real time as well as to investigate heat-related disorders and agricultural work.

  15. The influence of small-scale sea surface temperature gradients on surface vector winds and subsequent impacts on oceanic Ekman pumping

    Science.gov (United States)

    Hughes, Paul J.

    Satellite observations have revealed a small-scale (air--sea coupling in regions of strong sea surface temperature (SST) gradients (e.g., fronts, currents, eddies, and tropical instability waves), where the surface wind and wind stress are modified. Surface winds and wind stresses are persistently higher over the warm side of the SST front compared to the cool side, causing perturbations in the dynamically and thermodynamically curl and divergence fields. Capturing this small-scale SST--wind variability is important because it can significantly impact both local and remote (i.e., large scale) oceanic and atmospheric processes. The SST--wind relationship is not well represented in numerical weather prediction (NWP) and climate models, and the relative importance of the physical processes that are proposed to be responsible for this relationship is actively and vehemently debated. This study focuses on the physical mechanisms that are primarily responsible for the SST-induced changes in surface wind and wind stress, and on the physical implication on ocean forcing through Ekman pumping. The roles that SST-induced atmospheric baroclinicity and boundary-layer stability play in modifying the surface vector wind in regions of strong SST gradients are examined with an idealized model. Modeled changes in surface wind speed due to changes in atmospheric boundary-layer stability and baroclinicity are largely between -2.0 and 2.0 m s-1, which is consistent with past observational findings. The baroclinic-related changes in the surface vector wind are found to have a largely linear dependence on the SST gradient, whereas the stability-related changes are highly non-linear. The linearity of the baroclinic impacts matches that of the observed (satellite and in situ) SST--wind relationship. This result suggests that the baroclinic-related mechanism is the leading factor in driving the observed surface wind response to strong open ocean SST fronts on scales greater than 25 km

  16. Thermal comfort index and infrared temperatures for lambs subjected to different environmental conditions

    Directory of Open Access Journals (Sweden)

    Tiago do Prado Paim

    2014-10-01

    Full Text Available There is an abundance of thermal indices with different input parameters and applicabilities. Infrared thermography is a promising technique for evaluating the response of animals to the environment and differentiating between genetic groups. Thus, the aim of this study was to evaluate superficial body temperatures of lambs from three genetic groups under different environmental conditions, correlating these with thermal comfort indices. Forty lambs (18 males and 22 females from three genetic groups (Santa Inês, Ile de France × Santa Inês and Dorper × Santa Inês were exposed to three climatic conditions: open air, housed and artificial heating. Infrared thermal images were taken weekly at 6h, 12h and 21h at the neck, front flank, rear flank, rump, nose, skull, trunk and eye. Four thermal comfort indices were calculated using environmental measurements including black globe temperature, air humidity and wind speed. Artificial warming, provided by infrared lamps and wind protection, conserved and increased the superficial body temperature of the lambs, thus providing lower daily thermal ranges. Artificial warming did not influence daily weight gain or mortality. Skin temperatures increased along with increases in climatic indices. Again, infrared thermography is a promising technique for evaluating thermal stress conditions and differentiating environments. However, the use of thermal imaging for understanding animal responses to environmental conditions requires further study.

  17. Thermodynamic study of three pharmacologically significant drugs: Density, viscosity, and refractive index measurements at different temperatures

    International Nuclear Information System (INIS)

    Iqbal, Muhammad Javed; Chaudhry, Mansoora Ahmed

    2009-01-01

    Measurements of density, viscosity, and refractive index of three pharmacologically significant drugs, i.e. diclofenac sodium, cetrizine, and doxycycline have been carried in aqueous medium at T = (293.15 to 313.15) K. An automated vibrating-tube densimeter, viscometer, and refractometer are used in a concentration range from (7.5) . 10 -3 to 25 . 10 -3 ) mol . kg -1 . The precise density results are used to evaluate the apparent molar volume, partial molar volume, thermal expansion coefficient, partial molar expansivity, and the Hepler's constant. Viscosity results are used to calculate the Jones-Dole viscosity B-coefficient, free energy of activation of the solute and solvent, activation enthalpy, and activation entropy. The molar refractive indices of the drug solutions can be employed to calculate molar refraction. It is inferred from these results that the above mentioned drugs act as structure-making compounds due to hydrophobic hydration of the molecules in the drugs

  18. Trends and other statistical characteristics of a temperature-humidity index (ITU) in the southern part of Romania

    Science.gov (United States)

    Manea, A.; Boroneant, C.; Ralita, I.; Dumitrescu, Al.

    2009-04-01

    During the last decades a growing number of heat waves have been observed in Romania during summer. The current index used in the National Meteorological Administration in Bucharest for quantifying human comfort is a temperature-humidity index (ITU). The heat warning is issued by the National Forecasting Center in two stages: warning stage 1 (alert stage) when the ITU value is between 66 and 79 units and, warning stage 2 (risk stage) when the ITU value is greater than 80 units. This paper presents the trends of the number of days with warnings (alert and risk, separately) at 15 stations located in the south and south - east of Romania's territory during summer for the period 1961-2007. Hourly data of air temperature and relative humidity for the interval 12-18 local time have been used for the study. The frequency of warnings during that hourly interval is assessed for each month (June, July and August) based on ITU thresholds. Finally, the spatial distribution of the warning frequencies is drawn as useful information for tourism and other environmental activities.

  19. Thermodynamic study of three pharmacologically significant drugs: Density, viscosity, and refractive index measurements at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Javed [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan)], E-mail: mjiqauchem@yahoo.com; Chaudhry, Mansoora Ahmed [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2009-02-15

    Measurements of density, viscosity, and refractive index of three pharmacologically significant drugs, i.e. diclofenac sodium, cetrizine, and doxycycline have been carried in aqueous medium at T = (293.15 to 313.15) K. An automated vibrating-tube densimeter, viscometer, and refractometer are used in a concentration range from (7.5) . 10{sup -3} to 25 . 10{sup -3}) mol . kg{sup -1}. The precise density results are used to evaluate the apparent molar volume, partial molar volume, thermal expansion coefficient, partial molar expansivity, and the Hepler's constant. Viscosity results are used to calculate the Jones-Dole viscosity B-coefficient, free energy of activation of the solute and solvent, activation enthalpy, and activation entropy. The molar refractive indices of the drug solutions can be employed to calculate molar refraction. It is inferred from these results that the above mentioned drugs act as structure-making compounds due to hydrophobic hydration of the molecules in the drugs.

  20. Energy conservation in a nonlinear gyrokinetic particle-in-cell code for ion-temperature-gradient-driven modes in θ-pinch geometry

    Science.gov (United States)

    Hatzky, Roman; Tran, Trach Minh; Könies, Axel; Kleiber, Ralf; Allfrey, Simon J.

    2002-03-01

    A global nonlinear simulation code for the time evolution of ion-temperature-gradient-driven modes in θ-pinch geometry as a first approximation to the stellarator Wendelstein 7-X (W7-X) [Grieger et al., Proceedings of the 13th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Washington, DC, 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525] has been developed. A δf particle-in-cell (PIC) method is used to solve the coupled system of gyrokinetic equations for the ions, in the electrostatic approximation, and the quasineutrality equation, assuming adiabatically responding electrons. The focus has been on adherence to conservation laws, i.e., particle number and energy conservation. Besides other improvements it has been shown that a well-chosen initial distribution of the markers in reduced phase space makes optimal use of the δf PIC method to reduce the statistical noise for a given number of markers. In a model including all (1351) physically relevant modes, it has been possible to achieve energy conservation beyond the saturation of the instability.

  1. A selective and sensitive optical sensor for dissolved ammonia detection via agglomeration of fluorescent Ag nanoclusters and temperature gradient headspace single drop microextraction.

    Science.gov (United States)

    Dong, Jiang Xue; Gao, Zhong Feng; Zhang, Ying; Li, Bang Lin; Li, Nian Bing; Luo, Hong Qun

    2017-05-15

    In this paper, a simple sensor platform is presented for highly selective and sensitive detection of dissolved ammonia in aqueous solutions without pretreatment based on temperature gradient headspace single drop microextraction (HS-SDME) technique, and fluorescence and UV-vis spectrophotometry are utilized with the Ag nanoclusters (Ag NCs) functioned by citrate and glutathione as the probe. The sensing mechanism is based on the volatility of ammonia gas and the active response of Ag NCs to pH change caused by the introduction of ammonia. High pH can make the Ag NCs agglomerate and lead to the obvious decrease of fluorescence intensity and absorbance of Ag NCs solution. Moreover, the presented method exhibits a remarkably high selectivity toward dissolved ammonia over most of inorganic ions and amino acid, and shows a good linear range of 10-350μM (0.14-4.9mgNL -1 ) with a low detection limit of 336nM (4.70μgNL -1 ) at a signal-to-noise ratio of 3. In addition, the practical applications of the sensor have been successfully demonstrated by detecting dissolved ammonia in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A Reconstruction of Sea Surface Temperature Gradients and an Assessment of the Suspected Presence of Continental Ice During the Cold Mid-Paleocene (61-57 Ma)

    Science.gov (United States)

    Bijl, P.; Cramwinckel, M.; Frieling, J.; Peterse, F.

    2016-12-01

    The early Eocene `hothouse' climate experienced paratropical vegetation on high latitudes and high (>1100 ppmv) atmospheric CO2 concentrations. It is generally considered as analogous to the endmember climate state should we use up all available fossil fuels. However, we do not know exactly through which processes this long-term warm episode came to be nor do we understand what the initial climate state was at the onset of this long-term climate. Deep-sea warming towards early Eocene hothouse conditions started in the mid-Paleocene, ending a 2 Myr time interval of relatively cold deep ocean temperatures. Reconstructed pCO2 concentrations of the mid-Paleocene seem to have been close to those of present-day, although data is scarce. The mid-Paleocene is notoriously sparsely represented in shelf sedimentary records, as most records show a conspicuous hiatus between 58 and 60 Mys. This gives the suggestion of a major global low in sea level, which is inconsistent with estimates of global ocean spreading rates, which suggest a relatively high sea level on long time scales for the Cretaceous-early Paleogene. The cold deep-sea temperatures, the conspicuously low sea level and low atmospheric CO2 during the mid-Paleocene have stimulated suggestions of the presence of major ice sheets on the poles, yet the absence of any trace for continental ice, either direct ice-proximal evidence or from benthic foraminiferal oxygen isotope records, calls the presence of such ice sheets into question. I will present a number of high resolution sea surface temperature records (based mostly on organic geochemical biomarker proxies) which start to reveal a latitudinal temperature gradient for the mid-Paleocene. Reconstructions come from shelf sediments from Tasmania, Australia, Tanzania, Tropical Atlantic Ocean, New Jersey). With these new records, I put Paleogene climate evolution into context. I will further present a review of shelf sedimentary records across the mid-paleocene to assess

  3. Comparing MODIS and near-surface vegetation indexes for monitoring tropical dry forest phenology along a successional gradient using optical phenology towers

    Science.gov (United States)

    Rankine, C.; Sánchez-Azofeifa, G. A.; Guzmán, J. Antonio; Espirito-Santo, M. M.; Sharp, Iain

    2017-10-01

    Tropical dry forests (TDFs) present strong seasonal greenness signals ideal for tracking phenology and primary productivity using remote sensing techniques. The tightly synchronized relationship these ecosystems have with water availability offer a valuable natural experiment for observing the complex interactions between the atmosphere and the biosphere in the tropics. To investigate how well the MODIS vegetation indices (normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI)) represented the phenology of different successional stages of naturally regenerating TDFs, within a widely conserved forest fragment in the semi-arid southeast of Brazil, we installed several canopy towers with radiometric sensors to produce high temporal resolution near-surface vegetation greenness indices. Direct comparison of several years of ground measurements with a combined Aqua/Terra 8 day satellite product showed similar broad temporal trends, but MODIS often suffered from cloud contamination during the onset of the growing season and occasionally during the peak growing season. The strength of the in-situ and MODIS linear relationship was greater for NDVI than for EVI across sites but varied with forest stand age. Furthermore, we describe the onset dates and duration of canopy development phases for three years of in-situ monitoring. A seasonality analysis revealed significant discrepancies between tower and MODIS phenology transitions dates, with up to five weeks differences in growing season length estimation. Our results indicate that 8 and 16 day MODIS satellite vegetation monitoring products are suitable for tracking general patterns of tropical dry forest phenology in this region but are not temporally sufficient to characterize inter-annual differences in phenology phase onset dates or changes in productivity due to mid-season droughts. Such rapid transitions in canopy greenness are important indicators of climate change sensitivity of these

  4. Short communication: Comparison of ambient temperature, relative humidity, and temperature-humidity index between on-farm measurements and official meteorological data.

    Science.gov (United States)

    Schüller, L K; Burfeind, O; Heuwieser, W

    2013-01-01

    The objectives of the study were to compare the climate conditions of 7 dairy farms with the climate recorded at the closest official meteorological station. Specifically, we set out to compare the ambient temperature, relative humidity, and the resulting temperature-humidity index (THI) from 7 different barns with those data obtained from the closest official meteorological stations and to compare the climate conditions between 4 different locations within 1 barn. Measures of correlation and agreement demonstrated that climate conditions differ significantly between the barn and the corresponding official meteorological stations as well as between 4 different locations inside 1 barn. The ambient temperature was higher (6.4±3.6°C) in the barn than at the official meteorological station. The relative humidity was higher at the official meteorological station (0.2±7.2%) than in the barn. The THI was higher (11.1±6.5) in the barn than at the official meteorological station. Days with an average THI≥72 were 64 and 4 out of 756 experimental d in the barn and at the official meteorological station, respectively. Also, in a comparison of 7 different barns, ambient temperature and THI were significantly higher than at the closest corresponding official meteorological station. These results indicate that climate conditions should be obtained from on-farm measurements to evaluate potential heat stress and to develop effective measures to abate heat stress of dairy cows. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Electron velocity distribution function in a plasma with temperature gradient and in the presence of suprathermal electrons: application to incoherent-scatter plasma lines

    Directory of Open Access Journals (Sweden)

    P. Guio

    1998-10-01

    Full Text Available The plasma dispersion function and the reduced velocity distribution function are calculated numerically for any arbitrary velocity distribution function with cylindrical symmetry along the magnetic field. The electron velocity distribution is separated into two distributions representing the distribution of the ambient electrons and the suprathermal electrons. The velocity distribution function of the ambient electrons is modelled by a near-Maxwellian distribution function in presence of a temperature gradient and a potential electric field. The velocity distribution function of the suprathermal electrons is derived from a numerical model of the angular energy flux spectrum obtained by solving the transport equation of electrons. The numerical method used to calculate the plasma dispersion function and the reduced velocity distribution is described. The numerical code is used with simulated data to evaluate the Doppler frequency asymmetry between the up- and downshifted plasma lines of the incoherent-scatter plasma lines at different wave vectors. It is shown that the observed Doppler asymmetry is more dependent on deviation from the Maxwellian through the thermal part for high-frequency radars, while for low-frequency radars the Doppler asymmetry depends more on the presence of a suprathermal population. It is also seen that the full evaluation of the plasma dispersion function gives larger Doppler asymmetry than the heat flow approximation for Langmuir waves with phase velocity about three to six times the mean thermal velocity. For such waves the moment expansion of the dispersion function is not fully valid and the full calculation of the dispersion function is needed.Key words. Non-Maxwellian electron velocity distribution · Incoherent scatter plasma lines · EISCAT · Dielectric response function

  6. Electron velocity distribution function in a plasma with temperature gradient and in the presence of suprathermal electrons: application to incoherent-scatter plasma lines

    Directory of Open Access Journals (Sweden)

    P. Guio

    Full Text Available The plasma dispersion function and the reduced velocity distribution function are calculated numerically for any arbitrary velocity distribution function with cylindrical symmetry along the magnetic field. The electron velocity distribution is separated into two distributions representing the distribution of the ambient electrons and the suprathermal electrons. The velocity distribution function of the ambient electrons is modelled by a near-Maxwellian distribution function in presence of a temperature gradient and a potential electric field. The velocity distribution function of the suprathermal electrons is derived from a numerical model of the angular energy flux spectrum obtained by solving the transport equation of electrons. The numerical method used to calculate the plasma dispersion function and the reduced velocity distribution is described. The numerical code is used with simulated data to evaluate the Doppler frequency asymmetry between the up- and downshifted plasma lines of the incoherent-scatter plasma lines at different wave vectors. It is shown that the observed Doppler asymmetry is more dependent on deviation from the Maxwellian through the thermal part for high-frequency radars, while for low-frequency radars the Doppler asymmetry depends more on the presence of a suprathermal population. It is also seen that the full evaluation of the plasma dispersion function gives larger Doppler asymmetry than the heat flow approximation for Langmuir waves with phase velocity about three to six times the mean thermal velocity. For such waves the moment expansion of the dispersion function is not fully valid and the full calculation of the dispersion function is needed.

    Key words. Non-Maxwellian electron velocity distribution · Incoherent scatter plasma lines · EISCAT · Dielectric response function

  7. Irradiance gradients

    International Nuclear Information System (INIS)

    Ward, G.J.; Heckbert, P.S.; Technische Hogeschool Delft

    1992-04-01

    A new method for improving the accuracy of a diffuse interreflection calculation is introduced in a ray tracing context. The information from a hemispherical sampling of the luminous environment is interpreted in a new way to predict the change in irradiance as a function of position and surface orientation. The additional computation involved is modest and the benefit is substantial. An improved interpolation of irradiance resulting from the gradient calculation produces smoother, more accurate renderings. This result is achieved through better utilization of ray samples rather than additional samples or alternate sampling strategies. Thus, the technique is applicable to a variety of global illumination algorithms that use hemicubes or Monte Carlo sampling techniques

  8. The Effects of Forest Area Changes on Extreme Temperature Indexes between the 1900s and 2010s in Heilongjiang Province, China

    Directory of Open Access Journals (Sweden)

    Lijuan Zhang

    2017-12-01

    Full Text Available Land use and land cover changes (LUCC are thought to be amongst the most important impacts exerted by humans on climate. However, relatively little research has been carried out so far on the effects of LUCC on extreme climate change other than on regional temperatures and precipitation. In this paper, we apply a regional weather research and forecasting (WRF climate model using LUCC data from Heilongjiang Province, that was collected between the 1900s and 2010s, to explore how changes in forest cover influence extreme temperature indexes. Our selection of extreme high, low, and daily temperature indexes for analysis in this study enables the calculation of a five-year numerical integration trail with changing forest space. Results indicate that the total forested area of Heilongjiang Province decreased by 28% between the 1900s and 2010s. This decrease is most marked in the western, southwestern, and northeastern parts of the province. Our results also reveal a remarkable correlation between change in forested area and extreme high and low temperature indexes. Further analysis enabled us to determine that the key factor explaining increases in extreme high temperature indexes (i.e., calculated using the number of warm days, warm nights, as well as tropical nights, and summer days is decreasing forest area; data also showed that this factor caused a decrease in extreme low temperature indexes (i.e., calculated using the number of cold days and cold nights, as well as frost days, and ice days and an increase in the maximum value of daily minimum temperature. Spatial data demonstrated that there is a significant correlation between forest-to-farmland conversion and extreme temperature indexes throughout most of our study period. Spatial data demonstrated that there is a significant correlation between forest-to-farmland conversion and extreme temperature indexes throughout most of our study period. Positive correlations are also present between

  9. Impact of temperature-humidity index on egg-laying characteristics and related stress and immunity parameters of Japanese quails

    Science.gov (United States)

    El-Tarabany, Mahmoud Salah

    2016-07-01

    The aim of this study was to investigate the effect of temperature-humidity index (THI) level on productive parameters, welfare, and immunity in Japanese quails. One hundred and eighty (180) birds of Japanese quail, 14 weeks old, were used. Birds were divided randomly into three equal groups, control (at low THI, less than 70), H1 (at moderate THI, 70-75), and H2 (at high THI, 76-80). Birds in the control group had higher body weight (281.2 g, p = 0.001), egg mass (745 g, p = 0.001), fertility (85.4 %, p = 0.039), hatchability (80.4 %, p = 0.001), and immune response titer to Newcastle disease virus ( p = 0.031), compared with H2 group. Furthermore, the thermoneutral group had higher internal egg quality score [albumen height (5.14 mm, p = 0.001), yolk height (10.88 mm, p = 0.015), yolk index (42.32 %, p = 0.039), and Haugh unit (92.67, p = 0.001)]. Nevertheless, there were no significant differences in fertility percentage, immune response, and corticosterone concentration between control and H1 group. Birds in the H2 group had the lowest total leucocytic count and lymphocyte percentage ( p = 0.001 and 0.020, respectively) but the highest H/L ratio (0.83, p = 0.001). Corticosterone concentration was lower in control and H1 groups (5.49 and 6.41 ng/mL, respectively, p = 0.024) than that in H2 group. Japanese quail exposed to heat stress revealed drop in production and immunological parameters, as well as a detrimental effects on welfare. Thus, practical approaches might be used to reduce the detrimental effects of greater THI level.

  10. Using daily air temperature thresholds to evaluate snow melting occurrence and amount on Alpine glaciers by T-index models: the case study of the Forni Glacier (Italy)

    Science.gov (United States)

    Senese, A.; Maugeri, M.; Vuillermoz, E.; Smiraglia, C.; Diolaiuti, G.

    2014-10-01

    Glacier melt conditions (i.e., null surface temperature and positive energy budget) can be assessed by analyzing data acquired by a supraglacial automatic weather station (AWS), such as the station installed on the surface of Forni Glacier (Italian Alps). When an AWS is not present, the assessment of actual melt conditions and the evaluation of the melt amount is more difficult and simple methods based on T-index (or degree days) models are generally applied. These models require the choice of a correct temperature threshold. In fact, melt does not necessarily occur at daily air temperatures higher than 0 °C. In this paper, we applied both energy budget and T-index approaches with the aim of solving this issue. We start by distinguishing between the occurrence of snowmelt and the reduction in snow depth due to actual ablation (from snow depth data recorded by a sonic ranger). Then we find the daily average temperature thresholds (by analyzing temperature data acquired by an AWS on Forni Glacier) which, on the one hand, best capture the occurrence of significant snowmelt conditions and, on the other, make it possible, using the T-index, to quantify the actual snow ablation amount. Finally we investigated the applicability of the mean tropospheric lapse rate to reproduce air temperature conditions at the glacier surface starting from data acquired by weather stations located outside the glacier area. We found that the mean tropospheric lapse rate allows for a good and reliable reconstruction of glacier air temperatures and that the choice of an appropriate temperature threshold in T-index models is a very important issue. From our study, the application of the +0.5 °C temperature threshold allows for a consistent quantification of snow ablation while, instead, for detecting the beginning of the snow melting processes a suitable threshold has proven to be at least -4.6 °C.

  11. Effects of an experimental increase of temperature and drought on the photosynthetic performance of two ericaceous shrub species along a north-south European gradient

    DEFF Research Database (Denmark)

    Llorens, L.; Penuelas, J.; Beier, C.

    2004-01-01

    over 6-10 weeks during the growing season. We measured leaf gas exchange, chlorophyll a fluorescence, and leaf carbon isotope ratio (delta(13)C) during the growing seasons of 1999 and 2000. Leaf net photosynthetic rates clearly followed a gradient from northern to southern countries in agreement...... with the geographical gradient in water availability. Accordingly, there was a strong correlation between net photosynthetic rates and the accumulated rainfall over the growing season. Droughted plants showed lower leaf gas exchange rates than control plants in the four sites. Interestingly, although leaf...... photosynthetic rates decreased along the precipitation gradient and in response to drought treatment, droughted plants were able to maintain higher leaf photosynthetic rates than control plants in relation to the accumulated rainfall over the months previous to the measurements. Droughted plants also showed...

  12. Thermal maturity and burial history modelling of shale is enhanced by use of Arrhenius time-temperature index and memetic optimizer

    Directory of Open Access Journals (Sweden)

    David A. Wood

    2018-03-01

    Full Text Available Thermal maturity indices and modelling based on Arrhenius-equation reaction kinetics have played an important role in oil and gas exploration and provided petroleum generation insight for many kerogen-rich source rocks. Debate continues concerning how best to integrate the Arrhenius equation and which activation energies (E and frequency factors (A values to apply. A case is made for the strong theoretical basis and practical advantages of the time-temperature index (∑TTIARR method, first published in 1998, using a single, carefully selected E-A set (E = 218 kJ/mol (52.1 kcal/mol; A = 5.45E+26/my from the well-established A-E trend for published kerogen kinetics. An updated correlation between ∑TTIARR and vitrinite reflectance (Ro is provided in which the ∑TTIARR scale spans some 18 orders of magnitude. The method is readily calculated in spreadsheets and can be further enhanced by visual basic for application code to provide optimization. Optimization is useful for identifying possible geothermal gradients and erosion intervals covering multiple burial intervals that can match calculated thermal maturities with measured Ro data. A memetic optimizer with firefly and dynamic local search memes is described that flexibly conducts exploration and exploitation of the feasible, multi-dimensional, thermal history solution space to find high-performing solutions to complex burial and thermal histories. A complex deep burial history example, with several periods of uplift and erosion and fluctuating heat flow is used to demonstrate what can be achieved with the memetic optimizer. By carefully layering in constraints to the models specific insights to episodes in their thermal history can be exposed, leading to better characterization of the timing of petroleum generation. The objective function found to be most effective for this type of optimization is the mean square error (MSE of multiple burial intervals for the difference between

  13. Comparisons between high-resolution profiles of squared refractive index gradient M2 measured by the Middle and Upper Atmosphere Radar and unmanned aerial vehicles (UAVs during the Shigaraki UAV-Radar Experiment 2015 campaign

    Directory of Open Access Journals (Sweden)

    H. Luce

    2017-03-01

    Full Text Available New comparisons between the square of the generalized potential refractive index gradient M2, estimated from the very high-frequency (VHF Middle and Upper Atmosphere (MU Radar, located at Shigaraki, Japan, and unmanned aerial vehicle (UAV measurements are presented. These comparisons were performed at unprecedented temporal and range resolutions (1–4 min and  ∼  20 m, respectively in the altitude range  ∼  1.27–4.5 km from simultaneous and nearly collocated measurements made during the ShUREX (Shigaraki UAV-Radar Experiment 2015 campaign. Seven consecutive UAV flights made during daytime on 7 June 2015 were used for this purpose. The MU Radar was operated in range imaging mode for improving the range resolution at vertical incidence (typically a few tens of meters. The proportionality of the radar echo power to M2 is reported for the first time at such high time and range resolutions for stratified conditions for which Fresnel scatter or a reflection mechanism is expected. In more complex features obtained for a range of turbulent layers generated by shear instabilities or associated with convective cloud cells, M2 estimated from UAV data does not reproduce observed radar echo power profiles. Proposed interpretations of this discrepancy are presented.

  14. Modified temperature index model for estimating the melt water discharge from debris-covered Lirung Glacier, Nepal

    Directory of Open Access Journals (Sweden)

    A. Parajuli

    2015-05-01

    Full Text Available In the Nepalese Himalayas, the complex topography, occurrence of debris covered glaciers, and limited data availability creates substantial difficulties for modelling glacier melt. The proper recognition of melt processes governs the accurate estimation of melt water from glacier dominated systems, even in the presence of debris-covered glaciers. This paper presents a glacier melt model developed for the Lirung sub-basin of Langtang valley, which has both a clean glacier area, 5.86 km2, and a debris-covered glacier area, 1.13 km2. We use a temperature index approach to estimate sub-daily melt water discharge for a two week period at the end of monsoon, and the melt factor is varied according to the aspect and distributed to each grid processed from the digital elevation model. The model uses easily available data and simple extrapolation techniques capable of generating melt with limited data. The result obtained from this method provides accurate estimate with an R2 value of 0.89, bias of 0.9% and Nash-Sutcliffe efficiency of 0.86, and suitable in Himalaya where data availability is major issue.

  15. Effects of vegetation types on soil moisture estimation from the normalized land surface temperature versus vegetation index space

    Science.gov (United States)

    Zhang, Dianjun; Zhou, Guoqing

    2015-12-01

    Soil moisture (SM) is a key variable that has been widely used in many environmental studies. Land surface temperature versus vegetation index (LST-VI) space becomes a common way to estimate SM in optical remote sensing applications. Normalized LST-VI space is established by the normalized LST and VI to obtain the comparable SM in Zhang et al. (Validation of a practical normalized soil moisture model with in situ measurements in humid and semiarid regions [J]. International Journal of Remote Sensing, DOI: 10.1080/01431161.2015.1055610). The boundary conditions in the study were set to limit the point A (the driest bare soil) and B (the wettest bare soil) for surface energy closure. However, no limitation was installed for point D (the full vegetation cover). In this paper, many vegetation types are simulated by the land surface model - Noah LSM 3.2 to analyze the effects on soil moisture estimation, such as crop, grass and mixed forest. The locations of point D are changed with vegetation types. The normalized LST of point D for forest is much lower than crop and grass. The location of point D is basically unchanged for crop and grass.

  16. Monolithic Gradient Index Phase Plate Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The "piston errors" and aberrations of the mirror segments used in large telescopes, are typically measured with on-board optical instruments, usually a dispersed...

  17. Unprecedented quality factors at accelerating gradients up to 45 MVm -1 in niobium superconducting resonators via low temperature nitrogen infusion

    Energy Technology Data Exchange (ETDEWEB)

    Grassellino, A.; Romanenko, A.; Trenikhina, Y.; Checchin, M.; Martinello, M.; Melnychuk, O. S.; Chandrasekaran, S.; Sergatskov, D. A.; Posen, S.; Crawford, A. C.; Aderhold, S.; Bice, D.

    2017-08-14

    We report the finding of new surface treatments that permit to manipulate the niobium resonator nitrogen content in the first few nanometers in a controlled way, and the resonator fundamental Mattis-Bardeen surface resistance and residual resistance accordingly. In particular, we find surface infusion conditions that systematically a) increase the quality factor of these 1.3 GHz superconducting radio frequency (SRF) bulk niobium resonators, up to very high gradients; b) increase the achievable accelerating gradient of the cavity compared to its own baseline with state-of-the-art surface processing. Cavities subject to the new surface process have larger than two times the state of the art Q at 2K for accelerating fields > 35 MV/m. Moreover, very high accelerating gradients ~ 45 MV/m are repeatedly reached, which correspond to peak magnetic surface fields of 190 mT, among the highest measured for bulk niobium cavities. These findings open the opportunity to tailor the surface impurity content distribution to maximize performance in Q and gradients, and have therefore very important implications on future performance and cost of SRF based accelerators. They also help deepen the understanding of the physics of the RF niobium cavity surface.

  18. Water/rock interactions and mass transport within a thermal gradient Application to the confinement of high level nuclear waste; Interactions solide/solution et transferts de matiere dans un gradient de temperature. Application au confinement des dechets nucleaires de haute-activite

    Energy Technology Data Exchange (ETDEWEB)

    Poinssot, Ch. [CEA Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Entreposage et de Stockage des Dechets]|[Ecole Normale Superieure, 92 - Fontenay-aux-Roses (France). Laboratoire de Geologie

    1998-12-31

    The initial stage of a high level nuclear waste disposal will be characterised by a large heat release within the near-field environment of the canisters. This heat flux caused by radioactive decay will lead to an increase of temperature and a subsequent thermal gradient between the `hot` canisters and the `cold`geological medium. In addition, this thermal gradient will decrease with time due to the heat decay although it could last hundred years. What will be the consequences of such a thermal field varying both on space and time for the alteration of the different constituents of the near field environment. In particular, what could be the effects on the radionuclides migration in the accidental case of an early breach of a canister during the thermal stage? This study brings significant answers to these questions in the light of a performance assessment study. This work is supported by a triple methodological approach involving experimental studies, modelling calculations and a natural analogues study. This complete work demonstrates that a thermal gradient leads to a large re-distribution of elements within the system: some elements are incorporated in the solid phases of the hot end (Si, Zr, Ca) whereas some others are in those of the cold end (Fe, Al, Zn). The confrontation of the results of very simple experiments with the results of a model built on equilibrium thermodynamics allow us to evidence the probable mechanisms causing this mass transport: out-of-equilibrium thermodiffusion processes coupled to irreversible precipitation. Moreover, the effects of the variation of temperatures with time is studied by the way of a natural system which underwent a similar temperature evolution as a disposal and which was initially rich in uranium: the Jurassic Alpine bauxites. In addition, part of the initial bauxite escaped this temperature transformations due to their incorporation in outer thrusting nappes. They are used as a reference. (author)

  19. Evidence of counter-gradient growth in western pond turtles (Actinemys marmorata) across thermal gradients

    Science.gov (United States)

    Snover, Melissa; Adams, Michael J.; Ashton, Donald T.; Bettaso, Jamie B.; Welsh, Hartwell H.

    2015-01-01

    Counter-gradient growth, where growth per unit temperature increases as temperature decreases, can reduce the variation in ectothermic growth rates across environmental gradients. Understanding how ectothermic species respond to changing temperatures is essential to their conservation and management due to human-altered habitats and changing climates.

  20. Tree growth and its climate signal along latitudinal and altitudinal gradients: comparison of tree rings between Finland and the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    L. Lyu

    2017-06-01

    Full Text Available Latitudinal and altitudinal gradients can be utilized to forecast the impact of climate change on forests. To improve the understanding of how these gradients impact forest dynamics, we tested two hypotheses: (1 the change of the tree growth–climate relationship is similar along both latitudinal and altitudinal gradients, and (2 the time periods during which climate affects growth the most occur later towards higher latitudes and altitudes. To address this, we utilized tree-ring data from a latitudinal gradient in Finland and from two altitudinal gradients on the Tibetan Plateau. We analysed the latitudinal and altitudinal growth patterns in tree rings and investigated the growth–climate relationship of trees by correlating ring-width index chronologies with climate variables, calculating with flexible time windows, and using daily-resolution climate data. High latitude and altitude plots showed higher correlations between tree-ring chronologies and growing season temperature. However, the effects of winter temperature showed contrasting patterns for the gradients. The timing of the highest correlation with temperatures during the growing season at southern sites was approximately 1 month ahead of that at northern sites in the latitudinal gradient. In one out of two altitudinal gradients, the timing for the strongest negative correlation with temperature at low-altitude sites was ahead of treeline sites during the growing season, possibly due to differences in moisture limitation. Mean values and the standard deviation of tree-ring width increased with increasing mean July temperatures on both types of gradients. Our results showed similarities of tree growth responses to increasing seasonal temperature between latitudinal and altitudinal gradients. However, differences in climate–growth relationships were also found between gradients due to differences in other factors such as moisture conditions. Changes in the timing of the most

  1. Influence of breed, milk yield, and temperature-humidity index on dairy cow lying time, neck activity, reticulorumen temperature, and rumination behavior.

    Science.gov (United States)

    Stone, A E; Jones, B W; Becker, C A; Bewley, J M

    2017-03-01

    The objective of this study was to compare weekly mean lying time (LT), neck activity (NA), reticulorumen temperature (RT), and rumination time (RU) among 3 breed groups, milk yield (MY), and temperature-humidity index (THI). Cows (n = 36; 12 Holstein, 12 crossbred, and 12 Jersey) were blocked by parity group (primiparous or multiparous), days in milk, and MY. Lying time, NA, RT, RU, and MY were recorded and averaged by day and then by week for each cow. For study inclusion, each cow was required to have 10 wk of LT, NA, RT, and RU data. Maximum THI were recorded and averaged daily. Mean (±SE) days in milk, LT, MY, RT, RU, NA, and maximum THI were 159.0 ± 6.0 d, 11.1 ± 0.1 h/d, 28.7 ± 0.5 kg/d, 38.8 ± 0.0°C, 6.4 ± 0.1 h/d, 323.8 ± 3.8 activity units, and 56.5 ± 0.6, respectively. The MIXED Procedure of SAS (SAS Institute Inc., Cary, NC) was used to evaluate fixed effects of breed, MY, parity, THI, and their interactions on LT, NA, RT, and RU with cow nested within breed as subject. All main effects remained in each model regardless of significance level. Stepwise backward elimination was used to remove nonsignificant interactions. The interactions of breed × parity group and maximum THI × parity group were associated with RT. Increasing THI coincided with increasing RT. Least squares means LT for multiparous cows was significantly greater than LT for primiparous cows (11.4 ± 0.3 and 10.5 ± 0.5 h/d, respectively). Least squares means NA for primiparous cows was greater than for multiparous cows of all breeds (372.1 ± 10.9 and 303.4 ± 7.8, respectively). The CORR Procedure of SAS was used to evaluate relationships among RT, RU, LT, NA, and MY. Rumination time was positively correlated with MY (r = 0.30) and negatively correlated with LT (r = -0.14). Reticulorumen temperature was negatively correlated with MY (r = -0.11). Rumination time was positively correlated with NA (r = 0.18) and negatively correlated with LT (r = -0.14). Lying time and NA were

  2. Crack propagation under thermal cycling loading inducing a thermal gradient in the specimen thickness; Etude de la propagation d'une fissure sous chargement thermique cyclique induisant un gradient de temperature dans l'epaisseur

    Energy Technology Data Exchange (ETDEWEB)

    Le, H.N.

    2009-05-15

    This study aims to figure out the crack growth phenomenon by thermal fatigue induced by thermal gradient through thickness of specimen. Firstly, an experimental facility has been developed: a rectangular parallelepiped specimen is subjected to thermal cycling between 350 C and 100 C; the specimen is freed to expand and contract. Two semi-circular notches (0,1 mm depth and 4 mm length) have been machined on the surface of the specimen. A series of interrupted tests has been carried out to characterize and quantify the crack growth in depth and surface of the pre-existing crack. Next, a three-dimensional crack growth simulation has been implemented in ABAQUS. Automation using Python was used to simulate the propagation of a crack under thermal cycling, with re-meshing at crack front after each calculation step. No assumption has been taken on the crack front during the crack propagation. A comparison with test results showed very good agreement on the evolution of crack front shape and on the kinetics of propagation on the edge and the heart of pre-existing crack. An analytical approach was also developed based on the calculation of stress intensity factors (SIC). A two-dimensional approach was first introduced enabling us to better understand the influence of various thermal and geometric parameters. Finally, a three dimensional approach, with an elliptical assumption crack shape during the propagation, leading to a prediction of crack growth on the surface and in depth which is very similar to that obtained numerically, but with computational time much lower. (author)

  3. Absorption coefficient and refractive index changes of a quantum ring in the presence of spin-orbit couplings: Temperature and Zeeman effects

    Science.gov (United States)

    Zamani, A.; Azargoshasb, T.; Niknam, E.

    2017-10-01

    Effects of applied magnetic field, temperature and dimensions on the optical absorption coefficients (AC) and refractive index (RI) changes of a GaAs quantum ring are investigated in the presence of both Rashba and Dresselhaus spin-orbit interactions (SOI). To this end, the finite difference method (FDM) is used in order to numerically calculate the energy eigenvalues and eigenstates of the system while the compact density matrix approach is hired to calculate the optical properties. It is shown that application of magnetic field, temperature as well as the geometrical size in the presence of spin-orbit interactions, alter the electronic structure and consequently influence the linear and third-order nonlinear optical absorption coefficients as well as the refractive index changes of the system. Results show an obvious blue shift in optical curves with enhancing external magnetic field and temperature while the increment of dimensions result in red shift.

  4. Temperature sensisivity of long-period gratings inscribed with a CO.sub.2./sub. laser in optical fiber with graded-index cladding

    Czech Academy of Sciences Publication Activity Database

    Chomát, Miroslav; Čtyroký, Jiří; Berková, Daniela; Matějec, Vlastimil; Kaňka, Jiří; Skokánková, Jana; Todorov, Filip; Jančárek, A.; Bittner, P.

    2006-01-01

    Roč. 119, č. 2 (2006), s. 642-650 ISSN 0925-4005 R&D Projects: GA ČR(CZ) GA102/03/0475; GA MŠk(CZ) OC 288.001 Institutional research plan: CEZ:AV0Z20670512 Keywords : temperature * fibre optic sensors * optical fibre s * refractive index * diffraction gratings Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 2.331, year: 2006

  5. Temperature-Dependent Refractive Index Measurements of Caf2, Suprasil 3001, and S-FTM16 for the Euclid Near Infrared Spectrometer and Photometer

    Science.gov (United States)

    Leviton, Douglas B.; Miller, Kevin H.; Quijada, Manuel A.; Grupp, Frank D.

    2015-01-01

    Using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, we measured absolute refractive indices at temperatures from 100 to 310 K at wavelengths from 0.42 to 3.6 microns for CaF2, Suprasil 3001 fused silica, and S-FTM16 glass in support of lens designs for the Near Infrared Spectrometer and Photometer (NISP) for ESA's Euclid dark energy mission. We report absolute refractive index, dispersion (dn/d?), and thermo-optic coefficient (dn/dT) for these materials. In this study, materials from different melts were procured to understand index variability in each material. We provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures. For calcium fluoride (CaF2) and S-FTM16, we compare our current measurements with CHARMS measurements of these materials made in the recent past for other programs. We also compare Suprasil 3001's indices to those of other forms of fused silica we have measured in CHARMS.

  6. The low temperature oxidation of Athabasca oil sand asphaltene observed from {sup 13}C, {sup 19}F, and pulsed field gradient spin-echo proton n.m.r. spectra

    Energy Technology Data Exchange (ETDEWEB)

    Desando, M.A.; Lahanjar, G.; Ripmeester, J.A.; Zupancic, I. [National Research Council of Canada, Ottawa, ON (Canada). Division of Chemistry

    1999-01-01

    Carbon-13 and fluorine-19 nuclear magnetic resonance spectra of chemically derivatized, by phase transfer methylation and trifluoroacetylation, Athabasca oil sand asphaltene, reveal a broad site distribution of different types of hydroxyl-containing functional groups, viz., carboxylic acids, phenols, and alcohols. The low temperature air oxidation of asphaltene, at ca. 130{degree}C for 3 days, generates a few additional carboxyl and phenolic groups. These results are consistent with a mechanism in which diaryl methylene and ether moieties react with oxygen. Self-diffusion coefficients, from the pulsed field gradient spin-echo proton magnetic resonance technique, suggest that low temperature oxidation does not appreciably alter the average particle size and diffusion properties of asphaltene in deuterochloroform. 55 refs., 9 figs., 3 tabs.

  7. [Translaminar Gradient and Glaucoma].

    Science.gov (United States)

    Čmelo, J

    2017-01-01

    The cribriform plate is a threshold of the intraocular pressure (VOT) and of the intracranial pressure (IKT). The difference between the VOT and IKT is referred to as translaminar gradient (TLG). The goal was to evaluate the Glaucoma progression (visual field, fundus examination, HRT) with / without topical anti-glaucomatous therapy) in relation to the TLG. the significance of TLG has been studied in two groups. I. Group: 57 patients diagnosed and treatment of Primary Open-Angle Glaucoma (PGOU), 10 patients with Ocular hypertension (OH), 7 patients with Normal-Tension Glaucoma (NTG), and 75 healthy without glaucoma. The examinations of TLG were carried out once and retrospectively. In II. group there were prospectively studied 14 patients with OH and 24 patients with newly detected PGOU without local therapy. The examinations were performed 4 times at intervals of 10 to 11 months. All tests included a basic eye examination, ORA tonometry, HRT examination, gonioscopy, Color Doppler sonography of blood vessels of the eye and orbit. Venous pulsation pressure (VPT) has been recorded by the Ophthalmodynamometer Meditron (D-ODM). In case of spontaneous retinal venous pulsation, VPT was considered as the same pressure as the VOT. The TLG was calculated with formula of Querfurth: ICT = 0.29 + 0.74 (VOT / PI (AO)). [PI(AO) - Pulsatility index of the Ophthalmic artery (AO)]. I. group: TLG was in the control group without Glaucoma: 12.2 ± 2.0 torr. The NTG group: 9.0 ± 1.70 mm Hg. PGOU: 11.1 ± 1.91 mm Hg. OH: 12.6 ± 0.85 mm Hg. IKT alone does not show a significant relationship to the presence of glaucoma, ocular hypertension. II. Group: The average TLG in Ocular Hypertension (14 patients) has been 3.8 ± 1.2 torr. 2 patients (OH) had TLG 10 torr. and 15 torr. After 4 years in one of them (TLG = 15 torr.) there was recorded Glaucoma progression. In the PGOU group before antiglaucoma therapy, TLG was 15.0 ± 4.8 torr for all patients. After setting up local anti

  8. Synthesis and characterization of erbium-doped SiO{sub 2}-TiO{sub 2} thin films prepared by sol-gel and dip-coating techniques onto commercial glass substrates as a route for obtaining active GRadient-INdex materials

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Varela, Ana I. [Microoptics and GRIN Optics Group, Department of Applied Physics, Faculty of Optics and Optometry and Faculty of Physics, Universidade de Santiago de Compostela, Campus Vida s/n, Santiago de Compostela E-15782 (Spain); Castro, Yolanda, E-mail: castro@icv.csic.es [Instituto de Cerámica y Vidrio (CSIC), Kelsen 5, Campus de Cantoblanco, Madrid 28049 (Spain); Durán, Alicia [Instituto de Cerámica y Vidrio (CSIC), Kelsen 5, Campus de Cantoblanco, Madrid 28049 (Spain); De Beule, Pieter A.A. [Applied Nano-Optics Laboratory, International Iberian Nanotechnology Laboratory, Braga 4715-330 (Portugal); Flores-Arias, María T. [Microoptics and GRIN Optics Group, Department of Applied Physics, Faculty of Optics and Optometry and Faculty of Physics, Universidade de Santiago de Compostela, Campus Vida s/n, Santiago de Compostela E-15782 (Spain); Bao-Varela, Carmen, E-mail: carmen.bao@usc.es [Microoptics and GRIN Optics Group, Department of Applied Physics, Faculty of Optics and Optometry and Faculty of Physics, Universidade de Santiago de Compostela, Campus Vida s/n, Santiago de Compostela E-15782 (Spain)

    2015-05-29

    In this work, SiO{sub 2}-TiO{sub 2} films doped with erbium were prepared by dip-coating sol-gel process onto commercial glass substrates. The surface morphology of the films was characterized using atomic force microscopy, while thickness, refractive index, extinction coefficient and porosity of the films were determined by ellipsometric measurements in a wavelength region of 400-1000 nm. Optical constants and porosity were found to vary with erbium concentration. The proof of principle presented in this paper is applicable to systems of different nature by tailoring the sol-gel precursors in such a way that active GRadient-INdex media described by a complex, parabolic-like refractive index distribution for beam shaping purposes is obtained. - Highlights: • Sol-gel route for preparation of active GRadient-INdex materials is proposed. • SiO{sub 2}-TiO{sub 2} films doped with erbium were prepared by dipping onto commercial glasses. • Morphological and optical characterization of the samples was performed. • Optical constants and porosity were found to vary with erbium concentration. • Refractive index diminishes with dopant content; the contrary occurs for porosity.

  9. Reproductive capacity of the grey pine aphid and allocation response of Scots pine seedlings across temperature gradients: a test of hypotheses predicting outcomes of global warming

    Energy Technology Data Exchange (ETDEWEB)

    Holopainen, J. K.; Kainulainen, P. [University of Kuopio, Dept, of Ecology and Environmental Science, Kuopio (Finland)

    2004-01-01

    The research described in this paper had two objectives. The first objective was to test if Schizolachnus pineti, a pine specialist aphid and a potential defoliator of Scots pine in nursery conditions, could increase reproduction rate and reduce development time on Scots pine seedlings under the moderate increase in temperature expected by the current climatic change scenarios. The second objective was to explore two hypotheses predicting host-plant quality under elevated temperatures. Specifically, the study sought to establish whether increase in temperature will result in higher plant growth and lower concentration of carbon-based secondary metabolites, or alternatively, whether the concentration of total phenolics will remain the same with small temperature increases. Results showed that S. pineti females had the highest number of offsprings at a daytime temperature of 24 degrees C. Rate of population increase and relative growth rates were significantly higher at 26 degrees C than at 20 degrees C. Reproductive ability and the intrinsic rate of population increase were significantly affected by temperature and were negatively correlated with total phenolic concentration in needles. Concentration of some individual resin acids in needles and stems were affected by temperature. Concentration of monoterpenes, total phenolics, starch and total nitrogen in needles were not affected by temperature. Greatest biomass growth was shown to occur at 24 degrees C. Overall results supported the protein competition hypothesis, which predicts no changes in the concentration of plant phenolics with small changes in temperature. Reproductive ability of aphids was highest at 26 degree C; this was considered to be the result of the low starch/nitrogen ratio and low phenolic concentration in the host needles. 50 refs., 4 tabs., 3 figs.

  10. Increasing minimum daily temperatures are associated with enhanced pesticide use in cultivated soybean along a latitudinal gradient in the mid-western United States.

    Science.gov (United States)

    Ziska, Lewis H

    2014-01-01

    Assessments of climate change and food security often do not consider changes to crop production as a function of altered pest pressures. Evaluation of potential changes may be difficult, in part, because management practices are routinely utilized in situ to minimize pest injury. If so, then such practices, should, in theory, also change with climate, although this has never been quantified. Chemical (pesticide) applications remain the primary means of managing pests in industrialized countries. While a wide range of climate variables can influence chemical use, minimum daily temperature (lowest 24 h recorded temperature in a given year) can be associated with the distribution and thermal survival of many agricultural pests in temperate regions. The current study quantifies average pesticide applications since 1999 for commercial soybean grown over a 2100 km North-South latitudinal transect for seven states that varied in minimum daily temperature (1999-2013) from -28.6°C (Minnesota) to -5.1°C (Louisiana). Although soybean yields (per hectare) did not vary by state, total pesticide applications (kg of active ingredient, ai, per hectare) increased from 4.3 to 6.5 over this temperature range. Significant correlations were observed between minimum daily temperatures and kg of ai for all pesticide classes. This suggested that minimum daily temperature could serve as a proxy for pesticide application. Longer term temperature data (1977-2013) indicated greater relative increases in minimum daily temperatures for northern relative to southern states. Using these longer-term trends to determine short-term projections of pesticide use (to 2023) showed a greater comparative increase in herbicide use for soybean in northern; but a greater increase in insecticide and fungicide use for southern states in a warmer climate. Overall, these data suggest that increases in pesticide application rates may be a means to maintain soybean production in response to rising minimum daily

  11. Increasing minimum daily temperatures are associated with enhanced pesticide use in cultivated soybean along a latitudinal gradient in the mid-western United States.

    Directory of Open Access Journals (Sweden)

    Lewis H Ziska

    Full Text Available Assessments of climate change and food security often do not consider changes to crop production as a function of altered pest pressures. Evaluation of potential changes may be difficult, in part, because management practices are routinely utilized in situ to minimize pest injury. If so, then such practices, should, in theory, also change with climate, although this has never been quantified. Chemical (pesticide applications remain the primary means of managing pests in industrialized countries. While a wide range of climate variables can influence chemical use, minimum daily temperature (lowest 24 h recorded temperature in a given year can be associated with the distribution and thermal survival of many agricultural pests in temperate regions. The current study quantifies average pesticide applications since 1999 for commercial soybean grown over a 2100 km North-South latitudinal transect for seven states that varied in minimum daily temperature (1999-2013 from -28.6°C (Minnesota to -5.1°C (Louisiana. Although soybean yields (per hectare did not vary by state, total pesticide applications (kg of active ingredient, ai, per hectare increased from 4.3 to 6.5 over this temperature range. Significant correlations were observed between minimum daily temperatures and kg of ai for all pesticide classes. This suggested that minimum daily temperature could serve as a proxy for pesticide application. Longer term temperature data (1977-2013 indicated greater relative increases in minimum daily temperatures for northern relative to southern states. Using these longer-term trends to determine short-term projections of pesticide use (to 2023 showed a greater comparative increase in herbicide use for soybean in northern; but a greater increase in insecticide and fungicide use for southern states in a warmer climate. Overall, these data suggest that increases in pesticide application rates may be a means to maintain soybean production in response to rising

  12. Air temperature thresholds to evaluate snow melting at the surface of Alpine glaciers by T-index models: the case study of Forni Glacier (Italy)

    Science.gov (United States)

    Senese, A.; Maugeri, M.; Vuillermoz, E.; Smiraglia, C.; Diolaiuti, G.

    2014-03-01

    The glacier melt conditions (i.e.: null surface temperature and positive energy budget) can be assessed by analyzing meteorological and energy data acquired by a supraglacial Automatic Weather Station (AWS). In the case this latter is not present the assessment of actual melting conditions and the evaluation of the melt amount is difficult and simple methods based on T-index (or degree days) models are generally applied. These models require the choice of a correct temperature threshold. In fact, melt does not necessarily occur at daily air temperatures higher than 273.15 K. In this paper, to detect the most indicative threshold witnessing melt conditions in the April-June period, we have analyzed air temperature data recorded from 2006 to 2012 by a supraglacial AWS set up at 2631 m a.s.l. on the ablation tongue of the Forni Glacier (Italian Alps), and by a weather station located outside the studied glacier (at Bormio, a village at 1225 m a.s.l.). Moreover we have evaluated the glacier energy budget and the Snow Water Equivalent (SWE) values during this time-frame. Then the snow ablation amount was estimated both from the surface energy balance (from supraglacial AWS data) and from T-index method (from Bormio data, applying the mean tropospheric lapse rate and varying the air temperature threshold) and the results were compared. We found that the mean tropospheric lapse rate permits a good and reliable reconstruction of glacier air temperatures and the major uncertainty in the computation of snow melt is driven by the choice of an appropriate temperature threshold. From our study using a 5.0 K lower threshold value (with respect to the largely applied 273.15 K) permits the most reliable reconstruction of glacier melt.

  13. Microinstabilities in weak density gradient tokamak systems

    International Nuclear Information System (INIS)

    Tang, W.M.; Rewoldt, G.; Chen, L.

    1986-04-01

    A prominent characteristic of auxiliary-heated tokamak discharges which exhibit improved (''H-mode type'') confinement properties is that their density profiles tend to be much flatter over most of the plasma radius. Depsite this favorable trend, it is emphasized here that, even in the limit of zero density gradient, low-frequency microinstabilities can persist due to the nonzero temperature gradient

  14. SUBJECT INDEX

    Indian Academy of Sciences (India)

    Unknown

    SUBJECT INDEX. Absorption. Effect of NaCl on the spectral and kinetic properties of cresyl violet (CV)-sodium dodecyl sulphate (SDS) complex. 299. Acid catalysts. Temperature-programmed desorption of water and ammonia on sulphated zirconia catalysts for measuring their strong acidity and acidity distribution. 281.

  15. RESPONSE OF HATCHLING AND YEARLING TURTLES TO THERMAL GRADIENTS: COMPARISON OF CHELYDRA SERPENTINA AND TRACHEMYS SCRIPTA

    Science.gov (United States)

    In laboratory test, young Chelydra serpentina and Trachemys scripta altered their distribution in the presence of a temperature gradient. Selection of temperatures in the gradient for hatchlings and yearlings showed that body temperature (Tbs) of C. serpentina were lower tha...

  16. Cryogenic refractive index of Heraeus homosil glass

    Science.gov (United States)

    Miller, Kevin H.; Quijada, Manuel A.; Leviton, Douglas B.

    2017-08-01

    This paper reports measurements of the refractive index of Homosil (Heraeus) over the wavelength range of 0.34—3.16 μm and temperature range of 120—335 K. These measurements were performed by using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) facility at the NASA's Goddard Space Flight Center. These measurements were in support of an integrated Structural-Thermal-Optical-Performance (STOP) model that was developed for a fieldwidened Michelson interferometer that is being built and tested for the High Spectral Resolution Lidar (HSRL) project at the NASA Langley Research Center (LaRC). The cryogenic refractive index measurements were required in order to account for the highly sensitive performance of the HSRL instrument to changes in refractive index with temperature, temperature gradients, thermal expansion, and deformation due to mounting stresses. A dense coverage of the absolute refractive index over the aforementioned wavelength and temperature ranges was used to determine the thermo-optic coefficient (dn/dT) and dispersion relation (dn/dλ) as a function of wavelength and temperature. Our measurements of Homosil will be compared with measurements of other glasses from the fused silica family studied in CHARMS as well as measurements reported elsewhere in the literature.

  17. Community and ecosystem responses to elevational gradients

    DEFF Research Database (Denmark)

    Sundqvist, Maja K.; Sanders, Nate; Wardle, David A.

    2013-01-01

    elevational gradients for understanding community and ecosystem responses to global climate change at much larger spatial and temporal scales than is possible through conventional ecological experiments. However, future studies that integrate elevational gradient approaches with experimental manipulations...... will provide powerful information that can improve predictions of climate change impacts within and across ecosystems.......Community structure and ecosystem processes often vary along elevational gradients. Their responses to elevation are commonly driven by changes in temperature, and many community- and ecosystem-level variables therefore frequently respond similarly to elevation across contrasting gradients...

  18. Vertically aligned CNT growth on a microfabricated silicon heater with integrated temperature control—determination of the activation energy from a continuous thermal gradient

    DEFF Research Database (Denmark)

    Engstrøm, Daniel Southcott; Rupesinghe, Nalin L; Teo, Kenneth B K

    2011-01-01

    Silicon microheaters for local growth of a vertically aligned carbon nanotube (VACNT) were fabricated. The microheaters had a four-point-probe structure that measured the silicon conductivity variations in the heated region which is a measure of the temperature. Through FEM simulations the temper...

  19. The perceived temperature - a versatile index for the assessment of the human thermal environment. Part A: scientific basics.

    Science.gov (United States)

    Staiger, Henning; Laschewski, Gudrun; Grätz, Angelika

    2012-01-01

    The Perceived Temperature (PT) is an equivalent temperature based on a complete heat budget model of the human body. It has proved its suitability for numerous applications across a wide variety of scales from micro to global and is successfully used both in daily forecasts and climatological studies. PT is designed for staying outdoors and is defined as the air temperature of a reference environment in which the thermal perception would be the same as in the actual environment. The calculation is performed for a reference subject with an internal heat production of 135 W m(-2) (who is walking at 4 km h(-1) on flat ground). In the reference environment, the mean radiant temperature equals the air temperature and wind velocity is reduced to a slight draught. The water vapour pressure remains unchanged. Under warm/humid conditions, however, it is implicitly related to a relative humidity of 50%. Clothing is adapted in order to achieve thermal comfort. If this is impossible, cold or heat stress will occur, respectively. The assessment of thermal perception by means of PT is based on Fanger's Predicted Mean Vote (PMV) together with additional model extensions taking account of stronger deviations from thermal neutrality. This is performed using a parameterisation based on a two-node model. In the cold, it allows the mean skin temperature to drop below the comfort value. In the heat, it assesses additionally the enthalpy of sweat-moistened skin and of wet clothes. PT has the advantages of being self-explanatory due to its deviation from air temperature and being--via PMV--directly linked to a thermo-physiologically-based scale of thermal perception that is widely used and has stood the test of time. This paper explains in detail the basic equations of the human heat budget and the coefficients of the parameterisations.

  20. The perceived temperature - a versatile index for the assessment of the human thermal environment. Part A: scientific basics

    Science.gov (United States)

    Staiger, Henning; Laschewski, Gudrun; Grätz, Angelika

    2012-01-01

    The Perceived Temperature (PT) is an equivalent temperature based on a complete heat budget model of the human body. It has proved its suitability for numerous applications across a wide variety of scales from micro to global and is successfully used both in daily forecasts and climatological studies. PT is designed for staying outdoors and is defined as the air temperature of a reference environment in which the thermal perception would be the same as in the actual environment. The calculation is performed for a reference subject with an internal heat production of 135 W m-2 (who is walking at 4 km h-1 on flat ground). In the reference environment, the mean radiant temperature equals the air temperature and wind velocity is reduced to a slight draught. The water vapour pressure remains unchanged. Under warm/humid conditions, however, it is implicitly related to a relative humidity of 50%. Clothing is adapted in order to achieve thermal comfort. If this is impossible, cold or heat stress will occur, respectively. The assessment of thermal perception by means of PT is based on Fanger's Predicted Mean Vote (PMV) together with additional model extensions taking account of stronger deviations from thermal neutrality. This is performed using a parameterisation based on a two-node model. In the cold, it allows the mean skin temperature to drop below the comfort value. In the heat, it assesses additionally the enthalpy of sweat-moistened skin and of wet clothes. PT has the advantages of being self-explanatory due to its deviation from air temperature and being—via PMV—directly linked to a thermo-physiologically-based scale of thermal perception that is widely used and has stood the test of time. This paper explains in detail the basic equations of the human heat budget and the coefficients of the parameterisations.

  1. Stability of gradient semigroups under perturbations

    Science.gov (United States)

    Aragão-Costa, E. R.; Caraballo, T.; Carvalho, A. N.; Langa, J. A.

    2011-07-01

    In this paper we prove that gradient-like semigroups (in the sense of Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) are gradient semigroups (possess a Lyapunov function). This is primarily done to provide conditions under which gradient semigroups, in a general metric space, are stable under perturbation exploiting the known fact (see Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) that gradient-like semigroups are stable under perturbation. The results presented here were motivated by the work carried out in Conley (1978 Isolated Invariant Sets and the Morse Index (CBMS Regional Conference Series in Mathematics vol 38) (RI: American Mathematical Society Providence)) for groups in compact metric spaces (see also Rybakowski (1987 The Homotopy Index and Partial Differential Equations (Universitext) (Berlin: Springer)) for the Morse decomposition of an invariant set for a semigroup on a compact metric space).

  2. Metabolic cold adaptation and aerobic performance of blue mussels (Mytilus edulis) along a temperature gradient into the High Arctic region

    DEFF Research Database (Denmark)

    Thyrring, Jakob; Rysgaard, Søren; Blicher, Martin

    2015-01-01

    window (−1 to 25 °C), whereas Q10 values in the Arctic populations were 1.9 (Subarctic) and 2.3 (High Arctic), with a thermal window of −1 to 21 °C. Aerobic scope increased with rising temperatures, reaching a maximum at 14 °C (temperate) and 7 °C (Subarctic and High Arctic, respectively), after which...

  3. The Global Land-Ocean Temperature Index in Relation to Sunspot Number, the Atlantic Multidecadal Oscillation Index, the Mauna Loa Atmospheric Concentration of CO2, and Anthropogenic Carbon Emissions

    Science.gov (United States)

    Wilson, Robert M.

    2013-01-01

    Global warming/climate change has been a subject of scientific interest since the early 19th century. In particular, increases in the atmospheric concentration of carbon dioxide (CO2) have long been thought to account for Earth's increased warming, although the lack of a dependable set of observational data was apparent as late as the mid 1950s. However, beginning in the late 1950s, being associated with the International Geophysical Year, the opportunity arose to begin accurate continuous monitoring of the Earth's atmospheric concentration of CO2. Consequently, it is now well established that the atmospheric concentration of CO2, while varying seasonally within any particular year, has steadily increased over time. Associated with this rising trend in the atmospheric concentration of CO2 is a rising trend in the surface-air and sea-surface temperatures (SSTs). This Technical Publication (TP) examines the statistical relationships between 10-year moving averages (10-yma) of the Global Land-Ocean Temperature Index (GLOTI), sunspot number (SSN), the Atlantic Multidecadal Oscillation (AMO) index, and the Mauna Loa CO2 (MLCO2) index for the common interval 1964-2006, where the 10-yma values are used to indicate trends in the data. Scatter plots using the 10-yma values between GLOTI and each of the other parameters are determined, both as single-variate and multivariate fits. Scatter plots are also determined for MLCO2 using single-variate and bivariate (BV) fits, based on the GLOTI alone and the GLOTI in combination with the AMO index. On the basis of the inferred preferential fits for MLCO2, estimates for MLCO2 are determined for the interval 1885-1964, thereby yielding an estimate of the preindustrial level of atmospheric concentration of CO2. Lastly, 10-yma values of MLCO2 are compared against 10-yma estimates of the total carbon emissions (TCE) to determine the likelihood that manmade sources of carbon emissions are indeed responsible for the recent warming now

  4. temperature

    Directory of Open Access Journals (Sweden)

    G. Polt

    2015-10-01

    Full Text Available In-situ X-ray diffraction was applied to isotactic polypropylene with a high volume fraction of α-phase (α-iPP while it has been compressed at temperatures below and above its glass transition temperature Tg. The diffraction patterns were evaluated by the Multi-reflection X-ray Profile Analysis (MXPA method, revealing microstructural parameters such as the density of dislocations and the size of coherently scattering domains (CSD-size. A significant difference in the development of the dislocation density was found compared to compression at temperatures above Tg, pointing at a different plastic deformation mechanism at these temperatures. Based on the individual evolutions of the dislocation density and CSD-size observed as a function of compressive strain, suggestions for the deformation mechanisms occurring below and above Tg are made.

  5. Spatial gradients of temperature, accumulation and δ18O-ice in Greenland over a series of Dansgaard–Oeschger events

    Directory of Open Access Journals (Sweden)

    M. Guillevic

    2013-05-01

    Full Text Available Air and water stable isotope measurements from four Greenland deep ice cores (GRIP, GISP2, NGRIP and NEEM are investigated over a series of Dansgaard–Oeschger events (DO 8, 9 and 10, which are representative of glacial millennial scale variability. Combined with firn modeling, air isotope data allow us to quantify abrupt temperature increases for each drill site (1σ = 0.6 °C for NEEM, GRIP and GISP2, 1.5 °C for NGRIP. Our data show that the magnitude of stadial–interstadial temperature increase is up to 2 °C larger in central and North Greenland than in northwest Greenland: i.e., for DO 8, a magnitude of +8.8 °C is inferred, which is significantly smaller than the +11.1 °C inferred at GISP2. The same spatial pattern is seen for accumulation increases. This pattern is coherent with climate simulations in response to reduced sea-ice extent in the Nordic seas. The temporal water isotope (δ18O–temperature relationship varies between 0.3 and 0.6 (±0.08 ‰ °C−1 and is systematically larger at NEEM, possibly due to limited changes in precipitation seasonality compared to GISP2, GRIP or NGRIP. The gas age−ice age difference of warming events represented in water and air isotopes can only be modeled when assuming a 26% (NGRIP to 40% (GRIP lower accumulation than that derived from a Dansgaard–Johnsen ice flow model.

  6. Evaluating Stars Temperature Through the B-V Index Using a Virtual Real Experiment from Distance: A Case Scenario for Secondary Education.

    Directory of Open Access Journals (Sweden)

    Nikolaos Dintsios

    2018-01-01

    Full Text Available In this paper we propose a scenario for secondary education at which students could estimate the temperature, the radius and the age of stars. To achieve this, we built a virtual real experiment which can be performed from distance on any portable device. Students can connect to a webpage and choose a star from a list. After applying B and V filters they obtain the B and V magnitude. Consequently, they calculate the B-V index of a star and using a simple formula they estimate the star’s surface temperature. Furthermore, guided through a worksheet and with the use of Hertzsprung–Russell diagram they can estimate the radius and the age of the star.

  7. Measurement of tracheal temperature is not a reliable index of total respiratory heat loss in mechanically ventilated patients

    OpenAIRE

    Thomachot, Laurent; Viviand, Xavier; Lagier, Pierre; Marc Dejode, Jean; Albanèse, Jacques; Martin, Claude

    2000-01-01

    Background: Minimizing total respiratory heat loss is an important goal during mechanical ventilation. The aim of the present study was to evaluate whether changes in tracheal temperature (a clinical parameter that is easy to measure) are reliable indices of total respiratory heat loss in mechanically ventilated patients. Method: Total respiratory heat loss was measured, with three different methods of inspired gas conditioning, in 10 sedated patients. The study was randomized and of a crosso...

  8. Simultaneous measurement of refractive index, strain, and temperature based on a four-core fiber combined with a fiber Bragg grating

    Science.gov (United States)

    Li, Chao; Ning, Tigang; Li, Jing; Pei, Li; Zhang, Chan; Zhang, Chuanbiao; Lin, Heng; Wen, Xiaodong

    2017-05-01

    A fiber optic sensor capable of measuring refractive index (RI), strain, and temperature simultaneously is proposed and demonstrated. The sensor is formed by the integration of a four-core fiber (FCF) with a fiber Bragg grating (FBG). When the FCF is kept straight, a pronounced interference pattern appears in the transmission spectrum. Compared with previously reported optical fiber modal interferometers, higher fringe visibility can be obtained in our scheme. The maximum fringe visibility of the interference resonance dips exceeds 21 dB. By monitoring the wavelength shifts of three dips, simultaneous measurement of RI, strain, and temperature can be achieved. For 10 pm wavelength resolution, the resolution of the sensor is 0.0004 RIU, 11.06 με, and 0.17 °C in RI, strain, and temperature, respectively. The proposed sensor has the advantages of easy to construct, higher fringe visibility, and the capability to measure RI, strain, and temperature simultaneously, which are desirable features in RI measurement.

  9. The Past and Future Trends of Heat Stress Based On Wet Bulb Globe Temperature Index in Outdoor Environment of Tehran City, Iran.

    Science.gov (United States)

    Habibi Mohraz, Majid; Ghahri, Asghar; Karimi, Mehrdad; Golbabaei, Farideh

    2016-06-01

    The workers who are working in the open and warm environments are at risk of health effects of climate and heat changes. It is expected that the risk is increase with global warming. This study aimed to investigate the changes of Wet Bulb Globe Temperature (WBGT) index in the past and to predict their trend of future changes in Tehran, capital of Iran. The meteorological data recorded in Tehran, Iran during the statistical period between 1961 and 2009 were obtained from the Iran Meteorological Organization and based on them, WBGT index was calculated and processed using Man-Kendall correlation test. The results of Man-Kendall correlation test showed that the trend of changes of annual mean WBGT during the statistical period under study (1961-2009) has been significantly increasing. In addition, the result of proposed predictive model estimated that an increase of about 1.55 degree in WBGT index will be seen over 40 years from 2009 to 2050 in Tehran. Climate change in Tehran has had an effect on person's exposure to heat stresses consistent with global warming.

  10. Pricing Weather Index Insurance Based on Artificial Controlled Experiment - A Case Study of Cold Temperature for Early Rice in Jiangxi, China

    Science.gov (United States)

    SUN, Q.; Yang, Z.

    2017-12-01

    The growth of early rice is often threated by a phenomenon known as Grain Buds Cold, a period of anomalously cold temperature that occurs during the booting and flowering stage. Therefore, quantifying the impact of weather on crop yield is a core issue in design of weather index insurance. A high yield loss will lead to an increasing premium rate. In this paper, we explored a new way to investigate the relationship between yield loss rate and cold temperature durations. A two-year artificial controlled experiment was used to build logarithm and linear yield loss model. Moreover, an information diffusion model was applied to calculate the probability of different durations which lasting for 3-20 days. The results show that pure premium rates of logarithm yield loss model had better premium rates performance than that of linear yield loss model. The premium rates of Grain Buds Cold Weather Index Insurance fluctuated between 7.085% and 10.151% in Jiangxi Province. Compared with common statistical methods, the artificial controlled experiment provides an easier and more robust way to determine the relationship between yield and single meteorological factor. Meanwhile, this experiment would be very important for some regions where were lacking in historical yield data and climate data and could help farmers cope with extreme cold weather risks under varying weather conditions.

  11. The pulsation index, effective temperature, and thickness of the hydrogen layer in the pulsating DA white dwarf G117-B15A

    Science.gov (United States)

    Robinson, E. L.; Mailloux, T. M.; Zhang, E.; Koester, D.; Stiening, R. F.; Bless, R. C.; Percival, J. W.; Taylor, M. J.; Van Citters, G. W.

    1995-01-01

    We have measured the amplitude of the 215 s pulsation of the pulsating DA white dwarf, or ZZ Ceti star, G117-B15A in six passbands with effective wavelengths from 1570 to 6730 A. We find that the index of the pulsation is l = 1 with a high degree of confidence, the first unambiguous determination of l for a pulsation of a ZZ Ceti star. We also find that log g and T(sub eff) are tightly correlated for model atmospheres that fit the data, such that at log g = 7.5 the temperature is 11,750 K and at log g = 8.0 the temperature is 12,375 K. Adopting log g = 7.97 +/- 0.06 from published observations of the optical spectrum of G117-B15A, the correlation yields T(sub eff) = 12,375 +/- 125 K. This temperature is free of flux calibration errors and should be substantially more reliable than temperatures derived for IUE spectra. Since G117-B15A is thought to lie close to the blue edge of the ZZ Ceti instability strip, this low temperature also implies a low temperature for the blue edge. Using pulsation models calculated by Fontaine et al. (1992) and Bradley (1994), we find that the mass of the hydrogen layer in G117-B15A lies between 1.0 x 10(exp -6) solar mass (for k = 1) and 8 x 10(exp -5) solar mass (for k = 2). This range of masses is (barely) consistent with the masses predicted by recent models for the ejection of planetary nebulae, (8-13) x 10(exp -5) solar mass. The mass is too large to be consistent with models invoking thin hydrogen layers to explain the spectral evolution of white dwarfs.

  12. Dynamic miniature lighting system with low correlated colour temperature and high colour rendering index for museum lighting of fragile artefacts

    DEFF Research Database (Denmark)

    Thorseth, Anders; Corell, Dennis Dan; Poulsen, Peter Behrensdorff

    2013-01-01

    of historical artefacts in display cases at museums and other exhibitions, which can replace 3-5 Watt incandescent light bulbs with a correlated colour temperature (CCT) from 2000 K to 2400 K. The solution decreases the energy consumption by up to 80 %, while maintaining colour rendering indices (Ra) above 90......Illumination of fragile and irreplaceable historical objects exhibited to the public presents challenges with regards to: good colour rendering, low photochemical degradation of sensitive materials and general energy consumption. We present a dynamic tri-colour LED lighting system for illumination...

  13. Temperature Physiology of the Sea Snake Pelamis platurus: An Index of Its Colonization Potential in the Atlantic Ocean.

    Science.gov (United States)

    Graham, J B; Rubinoff, I; Hecht, M K

    1971-06-01

    The yellow-bellied sea snake Pelamis platurus occurs throughout the tropical Indian and Pacific Oceans from east Africa to Central America. Its latitudinal distribution limits coincide with the 18 degrees C surface isotherm. P. platurus has upper and lower thermal tolerances of 36.0 and 11.7 degrees C. With rapid cooling, P. platurus stops feeding at 16-18 degrees C; however, it has a high resistance to cold temperature and can withstand 5 degrees C for 1 hr. After 10 days' exposure, P. platurus does not acclimate to 17 degrees C and, thus, would not be able to survive for long periods in water this cold.In the event of its transit through the proposed Central American Sea-Level Canal, P. platurus would colonize the Atlantic Ocean and, during the summer months, would be able to extend its north Atlantic distribution to as far as Cape Cod and the English Channel.

  14. High NDVI and Potential Canopy Photosynthesis of South American Subtropical Forests despite Seasonal Changes in Leaf Area Index and Air Temperature

    Directory of Open Access Journals (Sweden)

    Piedad M. Cristiano

    2014-02-01

    Full Text Available The canopy photosynthesis and carbon balance of the subtropical forests are not well studied compared to temperate and tropical forest ecosystems. The main objective of this study was to assess the seasonal dynamics of Normalized Difference Vegetation Index (NDVI and potential canopy photosynthesis in relation to seasonal changes in leaf area index (LAI, chlorophyll concentration, and air temperatures of NE Argentina subtropical forests throughout the year. We included in the analysis several tree plantations (Pinus, Eucalyptus and Araucaria species that are known to have high productivity. Field studies in native forests and tree plantations were conducted; stem growth rates, LAI and leaf chlorophyll concentration were measured. MODIS satellite-derived LAI (1 km SIN Grid and NDVI (250m SIN Grid from February 2000 to 2012 were used as a proxy of seasonal dynamics of potential photosynthetic activity at the stand level. The remote sensing LAI of the subtropical forests decreased every year from 6 to 5 during the cold season, similar to field LAI measurements, when temperatures were 10 °C lower than during the summer. The yearly maximum NDVI values were observed during a few months in autumn and spring (March through May and November, respectively because high and low air temperatures may have a small detrimental effect on photosynthetic activity during both the warm and the cold seasons. Leaf chlorophyll concentration was higher during the cold season than the warm season which may have a compensatory effect on the seasonal variation of the NDVI values. The NDVI of the subtropical forest stands remained high and fairly constant throughout the year (the intra-annual coefficient of variation was 1.9%, and were comparable to the values of high-yield tree plantations. These results suggest that the humid subtropical forests in NE Argentina potentially could maintain high canopy photosynthetic activity throughout the year and thus this ecosystem may

  15. On the influence of debris in glacier melt modelling: a new temperature-index model accounting for the debris thickness feedback

    Science.gov (United States)

    Carenzo, Marco; Mabillard, Johan; Pellicciotti, Francesca; Reid, Tim; Brock, Ben; Burlando, Paolo

    2013-04-01

    The increase of rockfalls from the surrounding slopes and of englacial melt-out material has led to an increase of the debris cover extent on Alpine glaciers. In recent years, distributed debris energy-balance models have been developed to account for the melt rate enhancing/reduction due to a thin/thick debris layer, respectively. However, such models require a large amount of input data that are not often available, especially in remote mountain areas such as the Himalaya. Some of the input data such as wind or temperature are also of difficult extrapolation from station measurements. Due to their lower data requirement, empirical models have been used in glacier melt modelling. However, they generally simplify the debris effect by using a single melt-reduction factor which does not account for the influence of debris thickness on melt. In this paper, we present a new temperature-index model accounting for the debris thickness feedback in the computation of melt rates at the debris-ice interface. The empirical parameters (temperature factor, shortwave radiation factor, and lag factor accounting for the energy transfer through the debris layer) are optimized at the point scale for several debris thicknesses against melt rates simulated by a physically-based debris energy balance model. The latter has been validated against ablation stake readings and surface temperature measurements. Each parameter is then related to a plausible set of debris thickness values to provide a general and transferable parameterization. The new model is developed on Miage Glacier, Italy, a debris cover glacier in which the ablation area is mantled in near-continuous layer of rock. Subsequently, its transferability is tested on Haut Glacier d'Arolla, Switzerland, where debris is thinner and its extension has been seen to expand in the last decades. The results show that the performance of the new debris temperature-index model (DETI) in simulating the glacier melt rate at the point scale

  16. Elemental gradients in macrophytes from a reactor effluent gradient

    International Nuclear Information System (INIS)

    Grace, J.B.; Tilly, L.J.

    1978-01-01

    The tissues of submersed macrophtes from along the thermal gradient were analyzed for phosphorus to determine whether any pattern correspondent to standing crop distributions could be detected. Although water concentrations of phosphorus showed no detectable relationship to the thermal effluent, tissue concentrations of this element in submersed macrophytes declined with distance from the effluent entry point. The occurrence of this concentration pattern suggests that phosphorus availability is greater near the discharge. Because phosphorus is the element most often determined to limit aquatic productivity, its greater availability may partially account for the apparent enhancement of macrophte growth near the thermal discharge. A patter of macrophyte abundance which indicated enchancement related to the discharge gradient in the reactor-cooling reservoir, Par Pond is reported. Correlative data tended to implicate light and temperature as important in influencing the differential abundance pattern

  17. Metabolic rates and tissue composition of the coral Pocillopora verrucosa over 12 latitudes in the Red Sea characterized by strong temperature and nutrient gradient, supplement to: Sawall, Yvonne; Al-Sofyani, A; Hohn, S; Banguera-Hinestroza, E; Voolstra, Christian R; Wahl, Martin (2015): Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming. Scientific Reports, 5, 8940

    KAUST Repository

    Sawall, Yvonne

    2015-01-01

    Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12 degrees latitudes featuring a steep temperature gradient between the northern (28.5 degrees N, 21-27 degrees C) and southern (16.5 degrees N, 28-33 degrees C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28-29 degrees C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals

  18. Denaturing gradient gel electrophoresis

    International Nuclear Information System (INIS)

    Kocherginskaya, S.A.; Cann, I.K.O.; Mackie, R.I.

    2005-01-01

    It is worthwhile considering that only some 30 species make up the bulk of the bacterial population in human faeces at any one time based on the classical cultivation-based approach. The situation in the rumen is similar. Thus, it is practical to focus on specific groups of interest within the complex community. These may be the predominant or the most active species, specific physiological groups or readily identifiable (genetic) clusters of phylogenetically related organisms. Several 16S rDNA fingerprinting techniques can be invaluable for selecting and monitoring sequences or phylogenetic groups of interest and are described below. Over the past few decades, considerable attention was focussed on the identification of pure cultures of microbes on the basis of genetic polymorphisms of DNA encoding rRNA such as ribotyping, amplified fragment length polymorphism and randomly amplified polymorphic DNA. However, many of these methods require prior cultivation and are less suitable for use in analysis of complex mixed populations although important in describing cultivated microbial diversity in molecular terms. Much less attention was given to molecular characterization of complex communities. In particular, research into diversity and community structure over time has been revolutionized by the advent of molecular fingerprinting techniques for complex communities. Denaturing or temperature gradient gel electrophoresis (DGGE/TGGE) methods have been successfully applied to the analysis of human, pig, cattle, dog and rodent intestinal populations

  19. Development and application of artificial neural network models to estimate values of a complex human thermal comfort index associated with urban heat and cool island patterns using air temperature data from a standard meteorological station.

    Science.gov (United States)

    Moustris, Konstantinos; Tsiros, Ioannis X; Tseliou, Areti; Nastos, Panagiotis

    2018-04-11

    The present study deals with the development and application of artificial neural network models (ANNs) to estimate the values of a complex human thermal comfort-discomfort index associated with urban heat and cool island conditions inside various urban clusters using as only inputs air temperature data from a standard meteorological station. The index used in the study is the Physiologically Equivalent Temperature (PET) index which requires as inputs, among others, air temperature, relative humidity, wind speed, and radiation (short- and long-wave components). For the estimation of PET hourly values, ANN models were developed, appropriately trained, and tested. Model results are compared to values calculated by the PET index based on field monitoring data for various urban clusters (street, square, park, courtyard, and gallery) in the city of Athens (Greece) during an extreme hot weather summer period. For the evaluation of the predictive ability of the developed ANN models, several statistical evaluation indices were applied: the mean bias error, the root mean square error, the index of agreement, the coefficient of determination, the true predictive rate, the false alarm rate, and the Success Index. According to the results, it seems that ANNs present a remarkable ability to estimate hourly PET values within various urban clusters using only hourly values of air temperature. This is very important in cases where the human thermal comfort-discomfort conditions have to be analyzed and the only available parameter is air temperature.

  20. Microinstabilities in weak density gradient tokamak systems

    Energy Technology Data Exchange (ETDEWEB)

    Tang, W.M.; Rewoldt, G.; Chen, L.

    1986-04-01

    A prominent characteristic of auxiliary-heated tokamak discharges which exhibit improved (''H-mode type'') confinement properties is that their density profiles tend to be much flatter over most of the plasma radius. Depsite this favorable trend, it is emphasized here that, even in the limit of zero density gradient, low-frequency microinstabilities can persist due to the nonzero temperature gradient.

  1. Gonadosomatic index and some hematological parameters in African catfish Clarias gariepinus (Burchell, 1822 as affected by feed type and temperature level

    Directory of Open Access Journals (Sweden)

    Waleed A. Al-Deghayem

    Full Text Available ABSTRACT The purpose of the current study was to examine the effects of different feeds/nutrients and temperature on the gonadal development of Clarias gariepinus. The gonadosomatic index (GSI and blood parameters including red blood cell count (RBCs, white blood cell count (WBCs, hemoglobin (Hgb level, hematocrit (HCT, platelets (PLT and mean corpuscular volume (MCV were investigated. Four types of fish feed of 36% protein content [D1(fish meal, D2 (soybean meal, D3 (peameal and D4 (commercial tilapia feed] and 3 different levels of temperature (T1(24℃, T2(28℃ and T3(32℃ were tried in this study for a duration of 4 months. The mean values were as follows: female GSI (14.68 ± 4.86, male GSI (0.70 ± 0.32, RBCs x 106(2.45± 0.64, WBCs x 103(9.28 ± 2.34, Hgb (12.42± 2.21g/dl, HCT (29.06 ± 3.54%, PLT (90.75 ± 9.18/mm3, and MCV (118.08 ± 10.3 g/l. Fish meal diet revealed the most significant (p<0.05 increase in weight gain, female GSI, and also exerted significant increases on most of the blood parameters. This study revealed that animal-based protein diet and temperature around 28℃ were the critical requirements for the physiological performance and relative gonadal weight of C. gariepinus. GSI and blood parameters were useful indicators of stress exerted by nutrition and temperature on fish, and their study is critical for fish health and mass production of viable seeds for aquaculture enterprise.

  2. Multivariate assimilation of coarse scale soil moisture, cosmic-ray soil moisture, land surface temperature and leaf area index in CLM4.5

    Science.gov (United States)

    Han, Xujun; Hendricks Franssen, Harrie-Jan; Schalge, Bernd; Baroni, Gabriele; Rihani, Jehan; Kollet, Stefan; Vereecken, Harry; Simmer, Clemens

    2017-04-01

    The land surface plays a central role in the atmosphere - land surface - subsurface continuum. Surface soil moisture for instance impacts the partitioning of absorbed radiation in heating ground and atmosphere and thus impacts resulting evapotranspiration. The land surface also drives partitioning of rainfall between infiltration which ends up as groundwater recharge and surface runoff contributing to stream discharge. It is therefore expected that the use of observations for characterizing and predicting the land surface state also leads to improved state estimations and predictions in all the other sub-compartments of the system we consider: groundwater, stream discharge and atmosphere. To test this hypothesis requires efficient data assimilation schemes that are capable to take up specific requirements of different compartments, such as different time windows of observations. In this study we will derive such data assimilation methods and quantify the improvement of predictions in the different compartments due to assimilation of multiple observations, and evaluate to what extent assimilation of land surface observations will also improve predictions of land surface states and fluxes for atmosphere and groundwater. We argue that improvements can be achieved by implementing a data assimilation methodology that is capable of simultaneous assimilation of many data sources (remote sensing soil moisture, cosmic-ray measurement for soil moisture, land surface temperature and leaf area index) at different spatial scales ranging from 102 m to 104 m. The multivariate data assimilation system for the land-surface component will be developed and extended to assimilate the coarse scale remote sensing soil moisture, cosmic-ray soil moisture, land surface temperature and leaf area index, and their different combinations using the local ensemble transform Kalman filter. The multivariate data assimilation will be evaluated using a synthetic study which mimics the Neckar

  3. Estimating the Mean Annual Surface Air Temperature at Armagh Observatory, Northern Ireland, and the Global Land-Ocean Temperature Index for Sunspot Cycle 24, the Current Ongoing Sunspot Cycle

    Science.gov (United States)

    Wilson, Robert M.

    2013-01-01

    surface air temperature (ASAT) and the Global Land-Ocean Temperature Index (GLOTI) in relation to SSN and the SC in order to determine their likely values during SC24. Hence, it may provide insight as to whether solar forcing of global temperature is now lessening as a contributor to global warming, thereby indicating a possible cooling in the near term immediate future that potentially could ameliorate the effect of increased anthropogenic warming.

  4. Intersubband optical absorption coefficients and refractive index changes in a graded quantum well under intense laser field: Effects of hydrostatic pressure, temperature and electric field

    International Nuclear Information System (INIS)

    Ungan, F.; Restrepo, R.L.; Mora-Ramos, M.E.; Morales, A.L.; Duque, C.A.

    2014-01-01

    The effects of hydrostatic pressure, temperature, and electric field on the optical absorption coefficients and refractive index changes associated with intersubband transition in a typical GaAs/Ga 0.7 Al 0.3 As graded quantum well under intense laser field have been investigated theoretically. The electron energy eigenvalues and the corresponding eigenfunctions of the graded quantum well are calculated within the effective mass approximation and envelope wave function approach. The analytical expressions of the optical properties are obtained using the compact density-matrix approach and the iterative method. The numerical results show that the linear and nonlinear optical properties depend strongly on the intense laser field and electric field but weakly on the hydrostatic pressure and temperature. Additionally, it has been found that the electronic and optical properties in a GaAs/Ga 0.7 Al 0.3 As graded quantum well under the intense laser field can be tuned by changing these external inputs. Thus, these results give a new degree of freedom in the devices applications

  5. Travelling gradient thermocouple calibration

    International Nuclear Information System (INIS)

    Broomfield, G.H.

    1975-01-01

    A short discussion of the origins of the thermocouple EMF is used to re-introduce the idea that the Peltier and Thompson effects are indistinguishable from one another. Thermocouples may be viewed as devices which generate an EMF at junctions or as integrators of EMF's developed in thermal gradients. The thermal gradient view is considered the more appropriate, because of its better accord with theory and behaviour, the correct approach to calibration, and investigation of service effects is immediately obvious. Inhomogeneities arise in thermocouples during manufacture and in service. The results of travelling gradient measurements are used to show that such effects are revealed with a resolution which depends on the length of the gradient although they may be masked during simple immersion calibration. Proposed tests on thermocouples irradiated in a nuclear reactor are discussed

  6. Flexoelectricity: strain gradient effects in ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Ma Wenhui [Department of Physics, Shantou Unversity, Shantou, Guangdong 515063 (China)

    2007-12-15

    Mechanical strain gradient induced polarization effect or flexoelectricity in perovskite-type ferroelectric and relaxor ferroelectric ceramics was investigated. The flexoelectric coefficients measured at room temperature ranged from about 1 {mu} C m{sup -1} for lead zirconate titanate to 100 {mu} C m{sup -1} for barium strontium titanate. Flexoelectric effects were discovered to be sensitive to chemical makeup, phase symmetry, and domain structures. Based on phenomenological discussion and experimental data on flexoelectricity, the present study proposed that mechanical strain gradient field could influence polarization responses in a way analogous to electric field. Flexoelectric coefficients were found to be nonlinearly enhanced by dielectric permittivity and strain gradient. Interfacial mismatch in epitaxial thin films can give rise to high strain gradients, enabling flexoelectric effects to make a significant impact in properly engineered ferroelectric heterostructure systems.

  7. Flexoelectricity: strain gradient effects in ferroelectrics

    International Nuclear Information System (INIS)

    Ma Wenhui

    2007-01-01

    Mechanical strain gradient induced polarization effect or flexoelectricity in perovskite-type ferroelectric and relaxor ferroelectric ceramics was investigated. The flexoelectric coefficients measured at room temperature ranged from about 1 μ C m -1 for lead zirconate titanate to 100 μ C m -1 for barium strontium titanate. Flexoelectric effects were discovered to be sensitive to chemical makeup, phase symmetry, and domain structures. Based on phenomenological discussion and experimental data on flexoelectricity, the present study proposed that mechanical strain gradient field could influence polarization responses in a way analogous to electric field. Flexoelectric coefficients were found to be nonlinearly enhanced by dielectric permittivity and strain gradient. Interfacial mismatch in epitaxial thin films can give rise to high strain gradients, enabling flexoelectric effects to make a significant impact in properly engineered ferroelectric heterostructure systems

  8. Temperature dependence of refractive index and of electrical impedance of grape seed (Vitis vinifera, Vitis labrusca oils extracted by Soxhlet and mechanical pressing

    Directory of Open Access Journals (Sweden)

    Vieira, D. S.

    2015-09-01

    Full Text Available In this report, the temperature dependence of the refractive index and electric impedance of vegetable oil grape seeds extracted from Vitis vinifera (v. Cabernet and Vitis labrusca (v. Bordo are investigated by means of experimental techniques. The seeds were collected from wineries located in two cities in the south of Brazil. In both extraction methods, the seeds were dried at 40.0 °C and at 80.0 °C, respectively, before the oil extraction. From optical microscopy and refractometry results, one can see that the grape seed oil extracted by mechanical pressing shows a linear dependence between the refractive index and temperature and has no birefringent residues. From the fitting of the EIS (Electrical Impedance Spectroscopy data, an equivalent electric circuit composed of a parallel RC in series with a resistor is proposed. The circuit model is in good agreement with the experimental data and provides the electrical permittivity of the vegetable oils investigated.Se investiga mediante técnicas experimentales la dependencia del índice de refracción y la impedancia eléctrica de aceites vegetales extraídos de semillas de uva Vitis vinifera (v. Cabernet y Vitis labrusca (v. Bordo. Las semillas fueron recolectadas de bodegas situadas en dos ciudades al sur de Brasil. Antes de la extracción del aceite, mediante dos métodos de extracción, las semillas fueron secadas a 40,0 °C y 80,0 °C. De los resultados de refractometria y microscopía óptica, se comprueba que el aceite de semilla de uva extraída por prensado mecánico obedece a una relación lineal del índice de refracción con la temperatura y no presentan resíduos birrefringentes. Con los datos de impedancia eléctrica, se propone un circuito eléctrico equivalente formado por una resistencia y un condensador en paralelo, a su vez ligado a otra resistencia en serie. El modelo de circuito tiene una alta correlación con los datos experimentales y permite obtener la constante diel

  9. Gradient Alloy for Optical Packaging

    Data.gov (United States)

    National Aeronautics and Space Administration — Advances in additive manufacturing, such as Laser Engineered Net Shaping (LENS), enables the fabrication of compositionally gradient microstructures, i.e. gradient...

  10. Seasonal variation in coat characteristics, tick loads, cortisol levels, some physiological parameters and temperature humidity index on Nguni cows raised in low- and high-input farms.

    Science.gov (United States)

    Katiyatiya, C L F; Muchenje, V; Mushunje, A

    2015-06-01

    Seasonal variations in hair length, tick loads, cortisol levels, haematological parameters (HP) and temperature humidity index (THI) in Nguni cows of different colours raised in two low-input farms, and a commercial stud was determined. The sites were chosen based on their production systems, climatic characteristics and geographical locations. Zazulwana and Komga are low-input, humid-coastal areas, while Honeydale is a high-input, dry-inland Nguni stud farm. A total of 103 cows, grouped according to parity, location and coat colour, were used in the study. The effects of location, coat colour, hair length and season were used to determine tick loads on different body parts, cortisol levels and HP in blood from Nguni cows. Highest tick loads were recorded under the tail and the lowest on the head of each of the animals (P cows recorded the highest tick loads under the tails of all the cows used in the study from the three farms (P tick loads were recorded for cows with long hairs. Hair lengths were longest during the winter season in the coastal areas of Zazulwana and Honeydale (P cows had significantly longer (P tick loads on different body parts and heat stress in Nguni cows.

  11. Seasonal variation in coat characteristics, tick loads, cortisol levels, some physiological parameters and temperature humidity index on Nguni cows raised in low- and high-input farms

    Science.gov (United States)

    Katiyatiya, C. L. F.; Muchenje, V.; Mushunje, A.

    2015-06-01

    Seasonal variations in hair length, tick loads, cortisol levels, haematological parameters (HP) and temperature humidity index (THI) in Nguni cows of different colours raised in two low-input farms, and a commercial stud was determined. The sites were chosen based on their production systems, climatic characteristics and geographical locations. Zazulwana and Komga are low-input, humid-coastal areas, while Honeydale is a high-input, dry-inland Nguni stud farm. A total of 103 cows, grouped according to parity, location and coat colour, were used in the study. The effects of location, coat colour, hair length and season were used to determine tick loads on different body parts, cortisol levels and HP in blood from Nguni cows. Highest tick loads were recorded under the tail and the lowest on the head of each of the animals ( P winter season in the coastal areas of Zazulwana and Honeydale ( P coat colour and season had effects on hair length, cortisol levels, THI, HP and tick loads on different body parts and heat stress in Nguni cows.

  12. Refractive index engineering of poly (vinyl alcohol)/Li2ZnO2 nanocomposites: Effect of filler content and annealing temperature

    Science.gov (United States)

    Subramani, Nithin Kundachira; Shivanna, Sachhidananda; Nagaraj, Shilpa Kasargod; Siddaramaiah, Hatna

    2018-04-01

    Herein, we report the successful formulation and refractive index (RI) engineering of poly (vinyl alcohol) (PVA) films with varying amounts viz., 0.5, 1, 2 and 4 wt% lithium zincate (Li2ZnO2) nanoparticles. The as developed nanocomposite (NC) films were structurally characterized by powder X-ray diffraction (P-XRD) studies, that validate the presence of Li2ZnO2 nanofillers in PVA host. While, Li2ZnO2 nanofiller induced changes in morphological behaviors were validated from scanning electron microscopic (SEM) studies. The UV - visible transmittance studies narrate excellent UV ( 400 nm) transmittance. The transmittance intensity was found to exhibit a monotonic decrease with nanofiller content, especially in the UV regions. The absorption edges were found to be down-shifted towards lower energy values exhibiting a minimum of 4.42 eV for PVA/4 wt% Li2ZnO2 NC film. Further, the RI of the PVA films showed a gradual increase from 1.72 to 2.21 with an increase in filling levels (FLs) from 0 to 4 wt%. The effect of annealing on optical transmittance and RI of PVA films were also studied at different temperatures. The PVA/Li2ZnO2 NC films were also studied for their light emitting functionalities.

  13. Index Bioclimatic "Wind-Chill"

    Directory of Open Access Journals (Sweden)

    Teodoreanu Elena

    2015-05-01

    Full Text Available This paper presents an important bioclimatic index which shows the influence of wind on the human body thermoregulation. When the air temperature is high, the wind increases thermal comfort. But more important for the body is the wind when the air temperature is low. When the air temperature is lower and wind speed higher, the human body is threatening to freeze faster. Cold wind index is used in Canada, USA, Russia (temperature "equivalent" to the facial skin etc., in the weather forecast every day in the cold season. The index can be used and for bioclimatic regionalization, in the form of skin temperature index.

  14. Uniform gradient expansions

    Directory of Open Access Journals (Sweden)

    Massimo Giovannini

    2015-06-01

    Full Text Available Cosmological singularities are often discussed by means of a gradient expansion that can also describe, during a quasi-de Sitter phase, the progressive suppression of curvature inhomogeneities. While the inflationary event horizon is being formed the two mentioned regimes coexist and a uniform expansion can be conceived and applied to the evolution of spatial gradients across the protoinflationary boundary. It is argued that conventional arguments addressing the preinflationary initial conditions are necessary but generally not sufficient to guarantee a homogeneous onset of the conventional inflationary stage.

  15. Uniform gradient expansions

    CERN Document Server

    Giovannini, Massimo

    2015-01-01

    Cosmological singularities are often discussed by means of a gradient expansion that can also describe, during a quasi-de Sitter phase, the progressive suppression of curvature inhomogeneities. While the inflationary event horizon is being formed the two mentioned regimes coexist and a uniform expansion can be conceived and applied to the evolution of spatial gradients across the protoinflationary boundary. It is argued that conventional arguments addressing the preinflationary initial conditions are necessary but generally not sufficient to guarantee a homogeneous onset of the conventional inflationary stage.

  16. High gradient superconducting quadrupoles

    International Nuclear Information System (INIS)

    Lundy, R.A.; Brown, B.C.; Carson, J.A.; Fisk, H.E.; Hanft, R.H.; Mantsch, P.M.; McInturff, A.D.; Remsbottom, R.H.

    1987-07-01

    Prototype superconducting quadrupoles with a 5 cm aperture and gradient of 16 kG/cm have been built and tested as candidate magnets for the final focus at SLC. The magnets are made from NbTi Tevatron style cable with 10 inner and 14 outer turns per quadrant. Quench performance and multipole data are presented. Design and data for a low current, high gradient quadrupole, similar in cross section but wound with a cable consisting of five insulated conductors are also discussed

  17. Thermal gradients in Southwestern United States and the effect on bridge bearing loads : final report.

    Science.gov (United States)

    2017-05-01

    Thermal gradients became a component of bridge design after soffit cracking in prestressed concrete bridges was attributed to nonlinear temperature distribution through the depth of the bridge. While the effect of thermal gradient on stress distribut...

  18. Complex Surface Concentration Gradients by Stenciled "Electro Click Chemistry"

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Lind, Johan Ulrik; Daugaard, Anders Egede

    2010-01-01

    Complex one- or two-dimensional concentration gradients of alkynated molecules are produced on azidized conducting polymer substrates by stenciled "electro click chemistry". The latter describes the local electrochemical generation of catalytically active Cu(I) required to complete a "click...... reaction" between alkynes and azides at room temperature. A stencil on the counter electrode defines the shape and multiplicity of the gradient(s) on the conducting polymer substrate, while the specific reaction conditions control gradient steepness and the maximum concentration deposited. Biologically...

  19. Jupiter's evolution with primordial composition gradients

    Science.gov (United States)

    Vazan, Allona; Helled, Ravit; Guillot, Tristan

    2018-02-01

    Recent formation and structure models of Jupiter suggest that the planet can have composition gradients and not be fully convective (adiabatic). This possibility directly affects our understanding of Jupiter's bulk composition and origin. In this Letter we present Jupiter's evolution with a primordial structure consisting of a relatively steep heavy-element gradient of 40 M⊕. We show that for a primordial structure with composition gradients, most of the mixing occurs in the outer part of the gradient during the early evolution (several 107 yr), leading to an adiabatic outer envelope (60% of Jupiter's mass). We find that the composition gradient in the deep interior persists, suggesting that 40% of Jupiter's mass can be non-adiabatic with a higher temperature than the one derived from Jupiter's atmospheric properties. The region that can potentially develop layered convection in Jupiter today is estimated to be limited to 10% of the mass. Movies associated to Figs. 1-3 are available at http://https://www.aanda.org

  20. Traits and climate are associated with first flowering day in herbaceous species along elevational gradients.

    Science.gov (United States)

    Bucher, Solveig Franziska; König, Patrizia; Menzel, Annette; Migliavacca, Mirco; Ewald, Jörg; Römermann, Christine

    2018-01-01

    Phenological responses to changing temperatures are known as "fingerprints of climate change," yet these reactions are highly species specific. To assess whether different plant characteristics are related to these species-specific responses in flowering phenology, we observed the first flowering day (FFD) of ten herbaceous species along two elevational gradients, representing temperature gradients. On the same populations, we measured traits being associated with (1) plant performance (specific leaf area), (2) leaf biochemistry (leaf C, N, P, K, and Mg content), and (3) water-use efficiency (stomatal pore area index and stable carbon isotopes concentration). We found that as elevation increased, FFD was delayed for all species with a highly species-specific rate. Populations at higher elevations needed less temperature accumulation to start flowering than populations of the same species at lower elevations. Surprisingly, traits explained a higher proportion of variance in the phenological data than elevation. Earlier flowering was associated with higher water-use efficiency, higher leaf C, and lower leaf P content. In addition to that, the intensity of shifts in FFD was related to leaf N and K. These results propose that traits have a high potential in explaining phenological variations, which even surpassed the effect of temperature changes in our study. Therefore, they have a high potential to be included in future analyses studying the effects of climate change and will help to improve predictions of vegetation changes.