WorldWideScience

Sample records for temperature global

  1. Global temperatures and the global warming ``debate''

    Science.gov (United States)

    Aubrecht, Gordon

    2009-04-01

    Many ordinary citizens listen to pronouncements on talk radio casting doubt on anthropogenic global warming. Some op-ed columnists likewise cast doubts, and are read by credulous citizens. For example, on 8 March 2009, the Boston Globe published a column by Jeff Jacoby, ``Where's global warming?'' According to Jacoby, ``But it isn't such hints of a planetary warming trend that have been piling up in profusion lately. Just the opposite.'' He goes on to write, ``the science of climate change is not nearly as important as the religion of climate change,'' and blamed Al Gore for getting his mistaken views accepted. George Will at the Washington Post also expressed denial. As a result, 44% of U.S. voters, according to the January 19 2009 Rasmussen Report, blame long-term planetary trends for global warming, not human beings. Is there global cooling, as skeptics claim? We examine the temperature record.

  2. MGS SAMPLER THERMAL EMISSION SPECTROMETER GLOBAL TEMPERATURE

    Data.gov (United States)

    National Aeronautics and Space Administration — This archive contains Thermal Emission Spectrometer (TES) 25-micron global surface temperature data, collected during the ANS portion of the Mars Global Surveyor...

  3. NOAA Global Surface Temperature (NOAAGlobalTemp)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Global Surface Temperature Dataset (NOAAGlobalTemp) is a merged land–ocean surface temperature analysis (formerly known as MLOST) (link is external). It is...

  4. Global patterns in lake surface temperature trends

    Science.gov (United States)

    O'Reilly, C.; Sharma, S.; Gray, D.; Hampton, S. E.; Read, J. S.; Rowley, R.; McIntyre, P. B.; Lenters, J. D.; Schneider, P.; Hook, S. J.

    2014-12-01

    Temperature profoundly affects dynamics in the water bodieson which human societies depend worldwide. Even relatively small water temperature changes can alter lake thermal structure with implications for water level, nutrient cycling, ecosystem productivity, and food web dynamics. As air temperature increases with climate change and human land use transforms watersheds, rising water temperatures have been reported for individual lakes or regions, but a global synthesis is lacking; such a synthesis is foundational for understanding the state of freshwater resources. We investigated global patterns in lake surface water temperatures between 1985 and 2009 using in-situ and satellite data from 236 lakes. We demonstrate that lakes are warming significantly around the globe, at an average rate of 0.34 °C per decade. The breadth of lakes in this study allowed examination of the diversity of drivers across global lakes, and highlighted the importance of ice cover in determining the suite of morphological and climate drivers for lake temperature dynamics. These empirical results are consistent with modeled predictions of climate change, taking into account the extent to which water warming can be modulated by local environmental conditions and thus defy simple correlations with air temperature. The water temperature changes we report have fundamental importance for thermal structure and ecosystem functioning in global water resources; recognition of the extent to which lakes are currently in transition should have broad implications for regional and global models as well as for management.

  5. Analysed foundation sea surface temperature, global

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The through-cloud capabilities of microwave radiometers provide a valuable picture of global sea surface temperature (SST). To utilize this, scientists at Remote...

  6. Global perceptions of local temperature change

    Science.gov (United States)

    Howe, Peter D.; Markowitz, Ezra M.; Lee, Tien Ming; Ko, Chia-Ying; Leiserowitz, Anthony

    2013-04-01

    It is difficult to detect global warming directly because most people experience changes only in local weather patterns, which are highly variable and may not reflect long-term global climate trends. However, local climate-change experience may play an important role in adaptation and mitigation behaviour and policy support. Previous research indicates that people can perceive and adapt to aspects of climate variability and change based on personal observations. Experience with local weather may also influence global warming beliefs. Here we examine the extent to which respondents in 89 countries detect recent changes in average local temperatures. We demonstrate that public perceptions correspond with patterns of observed temperature change from climate records: individuals who live in places with rising average temperatures are more likely than others to perceive local warming. As global climate change intensifies, changes in local temperatures and weather patterns may be increasingly detected by the global public. These findings also suggest that public opinion of climate change may shift, at least in part, in response to the personal experience of climate change.

  7. Joint variability of global runoff and global sea surface temperatures

    Science.gov (United States)

    McCabe, G.J.; Wolock, D.M.

    2008-01-01

    Global land surface runoff and sea surface temperatures (SST) are analyzed to identify the primary modes of variability of these hydroclimatic data for the period 1905-2002. A monthly water-balance model first is used with global monthly temperature and precipitation data to compute time series of annual gridded runoff for the analysis period. The annual runoff time series data are combined with gridded annual sea surface temperature data, and the combined dataset is subjected to a principal components analysis (PCA) to identify the primary modes of variability. The first three components from the PCA explain 29% of the total variability in the combined runoff/SST dataset. The first component explains 15% of the total variance and primarily represents long-term trends in the data. The long-term trends in SSTs are evident as warming in all of the oceans. The associated long-term trends in runoff suggest increasing flows for parts of North America, South America, Eurasia, and Australia; decreasing runoff is most notable in western Africa. The second principal component explains 9% of the total variance and reflects variability of the El Ni??o-Southern Oscillation (ENSO) and its associated influence on global annual runoff patterns. The third component explains 5% of the total variance and indicates a response of global annual runoff to variability in North Aflantic SSTs. The association between runoff and North Atlantic SSTs may explain an apparent steplike change in runoff that occurred around 1970 for a number of continental regions.

  8. Global Cooling: Effect of Urban Albedo on Global Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Menon, Surabi; Rosenfeld, Arthur

    2007-05-22

    In many urban areas, pavements and roofs constitute over 60% of urban surfaces (roof 20-25%, pavements about 40%). The roof and the pavement albedo can be increased by about 0.25 and 0.10, respectively, resulting in a net albedo increase for urban areas of about 0.1. Many studies have demonstrated building cooling-energy savings in excess of 20% upon raising roof reflectivity from an existing 10-20% to about 60%. We estimate U.S. potential savings in excess of $1 billion (B) per year in net annual energy bills. Increasing albedo of urban surfaces can reduce the summertime urban temperature and improve the urban air quality. Increasing the urban albedo has the added benefit of reflecting more of the incoming global solar radiation and countering the effect of global warming. We estimate that increasing albedo of urban areas by 0.1 results in an increase of 3 x 10{sup -4} in Earth albedo. Using a simple global model, the change in air temperature in lowest 1.8 km of the atmosphere is estimated at 0.01K. Modelers predict a warming of about 3K in the next 60 years (0.05K/year). Change of 0.1 in urban albedo will result in 0.01K global cooling, a delay of {approx}0.2 years in global warming. This 0.2 years delay in global warming is equivalent to 10 Gt reduction in CO2 emissions.

  9. Trend patterns in global sea surface temperature

    DEFF Research Database (Denmark)

    Barbosa, S.M.; Andersen, Ole Baltazar

    2009-01-01

    to isolate low-frequency variability from time series of SST anomalies for the 1982-2006 period. The first derived trend pattern reflects a systematic decrease in SST during the 25-year period in the equatorial Pacific and an increase in most of the global ocean. The second trend pattern reflects mainly ENSO......Isolating long-term trend in sea surface temperature (SST) from El Nino southern oscillation (ENSO) variability is fundamental for climate studies. In the present study, trend-empirical orthogonal function (EOF) analysis, a robust space-time method for extracting trend patterns, is applied...... variability in the Pacific Ocean. The examination of the contribution of these low-frequency modes to the globally averaged SST fluctuations indicates that they are able to account for most (>90%) of the variability observed in global mean SST. Trend-EOFs perform better than conventional EOFs when...

  10. Satellite Global and Hemispheric Lower Tropospheric Temperature Annual Temperature Cycle

    Directory of Open Access Journals (Sweden)

    Michael A. Brunke

    2010-11-01

    Full Text Available Previous analyses of the Earth’s annual cycle and its trends have utilized surface temperature data sets. Here we introduce a new analysis of the global and hemispheric annual cycle using a satellite remote sensing derived data set during the period 1979–2009, as determined from the lower tropospheric (LT channel of the MSU satellite. While the surface annual cycle is tied directly to the heating and cooling of the land areas, the tropospheric annual cycle involves additionally the gain or loss of heat between the surface and atmosphere. The peak in the global tropospheric temperature in the 30 year period occurs on 10 July and the minimum on 9 February in response to the larger land mass in the Northern Hemisphere. The actual dates of the hemispheric maxima and minima are a complex function of many variables which can change from year to year thereby altering these dates.Here we examine the time of occurrence of the global and hemispheric maxima and minima lower tropospheric temperatures, the values of the annual maxima and minima, and the slopes and significance of the changes in these metrics.  The statistically significant trends are all relatively small. The values of the global annual maximum and minimum showed a small, but significant trend. Northern and Southern Hemisphere maxima and minima show a slight trend toward occurring later in the year. Most recent analyses of trends in the global annual cycle using observed surface data have indicated a trend toward earlier maxima and minima.

  11. Global warming: Temperature estimation in annealers

    Directory of Open Access Journals (Sweden)

    Jack Raymond

    2016-11-01

    Full Text Available Sampling from a Boltzmann distribution is NP-hard and so requires heuristic approaches. Quantum annealing is one promising candidate. The failure of annealing dynamics to equilibrate on practical time scales is a well understood limitation, but does not always prevent a heuristically useful distribution from being generated. In this paper we evaluate several methods for determining a useful operational temperature range for annealers. We show that, even where distributions deviate from the Boltzmann distribution due to ergodicity breaking, these estimates can be useful. We introduce the concepts of local and global temperatures that are captured by different estimation methods. We argue that for practical application it often makes sense to analyze annealers that are subject to post-processing in order to isolate the macroscopic distribution deviations that are a practical barrier to their application.

  12. Global Temperature and Salinity Profile Programme (GTSPP) Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Temperature-Salinity Profile Programme (GTSPP) develops and maintains a global ocean temperature and salinity resource with data that are both up-to-date...

  13. Global Summer Land Surface Temperature (LST) Grids, 2013

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Summer Land Surface Temperature (LST) Grids, 2013, represent daytime maximum temperature and nighttime minimum temperature in degree Celsius at a spatial...

  14. Global circuit response to seasonal variations in global surface air temperature

    Science.gov (United States)

    Williams, Earle R.

    1994-01-01

    Comparisons are made between the seasonal behavior of the global electrical circuit and the surface air temperature for the Tropics and for the globe. Positive correlations between global circuit parameters and temperature are identified on both semiannual and annual timescales. Lightning is the global circuit quantity found most responsive to temperature, with a sensitivity of the order of 10% per 1 C. These findings lend further validity to the use of global circuit measurements as a diagnostic for global change.

  15. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 2 Daily

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global land surface temperature databank contains monthly timescale mean, max, and min temperature for approximately 40,000 stations globally. It was developed...

  16. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 2 Monthly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global land surface temperature databank contains monthly timescale mean, max, and min temperature for approximately 40,000 stations globally. It was developed...

  17. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 1 Monthly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global land surface temperature databank contains monthly timescale mean, max, and min temperature for approximately 40,000 stations globally. It was developed...

  18. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 3 Monthly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Land Surface Temperature Databank contains monthly timescale mean, maximum, and minimum temperature for approximately 40,000 stations globally. It was...

  19. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 1 Daily

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global land surface temperature databank contains monthly timescale mean, max, and min temperature for approximately 40,000 stations globally. It was developed...

  20. NOAA Global Surface Temperature Dataset, Version 4.0

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Global Surface Temperature Dataset (NOAAGlobalTemp) is derived from two independent analyses: the Extended Reconstructed Sea Surface Temperature (ERSST)...

  1. Climate Prediction Center (CPC) Global Temperature Time Series

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global temperature time series provides time series charts using station based observations of daily temperature. These charts provide information about the...

  2. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment

  3. Global Stream Temperatures and Flows under Climate Change

    Science.gov (United States)

    van Vliet, M. T.; Yearsley, J. R.; Franssen, W. H.; Ludwig, F.; Haddeland, I.; Lettenmaier, D. P.; Kabat, P.

    2012-12-01

    Climate change will affect thermal and hydrologic regimes of rivers, having a direct impact on human water use and freshwater ecosystems. Here we assess the impact of climate change on stream temperature and streamflow globally. We used a physically-based stream temperature river basin model (RBM) linked to the Variable Infiltration Capacity (VIC) model. The modelling framework was adapted for global application including impacts of reservoirs and thermal heat discharges, and was validated using observed water temperature and river discharge records in large river basins globally. VIC-RBM was forced with an ensemble of bias-corrected Global Climate Model (GCM) output resulting in global projections of daily streamflow and water temperature for the 21st century. Global mean and high (95th percentile) stream temperatures are projected to increase on average by 0.8-1.6 (1.0-2.2)°C for the SRES B1-A2 scenario for 2071-2100 relative to 1971-2000. The largest water temperature increases are projected for Europe, North America, Southeast Asia, South Africa and parts of Australia. In these regions, the sensitivities for warming are exacerbated by projected decreases in summer low flows. Large increases in water temperature combined with decreases in low flows are found for the southeastern U.S., Europe and eastern China. These regions could potentially be affected by increased deterioration of water quality and freshwater habitats, and reduced water available for beneficial uses such as thermoelectric power production.

  4. Global 1-km Sea Surface Temperature (G1SST)

    Data.gov (United States)

    National Aeronautics and Space Administration — JPL OurOcean Portal: A daily, global Sea Surface Temperature (SST) data set is produced at 1-km (also known as ultra-high resolution) by the JPL ROMS (Regional Ocean...

  5. Global and hemispheric temperature reconstruction from glacier length fluctuations

    NARCIS (Netherlands)

    Leclercq, P.W.|info:eu-repo/dai/nl/339579951; Oerlemans, J.|info:eu-repo/dai/nl/06833656X

    2012-01-01

    Temperature reconstructions for recent centuries provide a historical context for the warming over the twentieth century. We reconstruct annual averaged surface temperatures of the past 400 years on hemispherical and global scale from glacier length fluctuations. We use the glacier length records of

  6. Local warming: daily temperature change influences belief in global warming.

    Science.gov (United States)

    Li, Ye; Johnson, Eric J; Zaval, Lisa

    2011-04-01

    Although people are quite aware of global warming, their beliefs about it may be malleable; specifically, their beliefs may be constructed in response to questions about global warming. Beliefs may reflect irrelevant but salient information, such as the current day's temperature. This replacement of a more complex, less easily accessed judgment with a simple, more accessible one is known as attribute substitution. In three studies, we asked residents of the United States and Australia to report their opinions about global warming and whether the temperature on the day of the study was warmer or cooler than usual. Respondents who thought that day was warmer than usual believed more in and had greater concern about global warming than did respondents who thought that day was colder than usual. They also donated more money to a global-warming charity if they thought that day seemed warmer than usual. We used instrumental variable regression to rule out some alternative explanations.

  7. Global non-linear effect of temperature on economic production.

    Science.gov (United States)

    Burke, Marshall; Hsiang, Solomon M; Miguel, Edward

    2015-11-12

    Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.

  8. Unabated global surface temperature warming: evaluating the evidence

    Science.gov (United States)

    Karl, T. R.; Arguez, A.

    2015-12-01

    New insights related to time-dependent bias corrections in global surface temperatures have led to higher rates of warming over the past few decades than previously reported in the IPCC Fifth Assessment Report (2014). Record high global temperatures in the past few years have also contributed to larger trends. The combination of these factors and new analyses of the rate of temperature change show unabated global warming since at least the mid-Twentieth Century. New time-dependent bias corrections account for: (1) differences in temperatures measured from ships and drifting buoys; (2) improved corrections to ship measured temperatures; and (3) the larger rates of warming in polar regions (particularly the Arctic). Since 1951, the period over which IPCC (2014) attributes over half of the observed global warming to human causes, it is shown that there has been a remarkably robust and sustained warming, punctuated with inter-annual and decadal variability. This finding is confirmed through simple trend analysis and Empirical Mode Decomposition (EMD). Trend analysis however, especially for decadal trends, is sensitive to selection bias of beginning and ending dates. EMD has no selection bias. Additionally, it can highlight both short- and long-term processes affecting the global temperature times series since it addresses both non-linear and non-stationary processes. For the new NOAA global temperature data set, our analyses do not support the notion of a hiatus or slowing of long-term global warming. However, sub-decadal periods of little (or no warming) and rapid warming can also be found, clearly showing the impact of inter-annual and decadal variability that previously has been attributed to both natural and human-induced non-greenhouse forcings.

  9. Global and hemispheric temperature reconstruction from glacier length fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Leclercq, Paul Willem; Oerlemans, Johannes [Universiteit Utrecht, IMAU, Utrecht (Netherlands)

    2012-03-15

    Temperature reconstructions for recent centuries provide a historical context for the warming over the twentieth century. We reconstruct annual averaged surface temperatures of the past 400 years on hemispherical and global scale from glacier length fluctuations. We use the glacier length records of 308 glaciers. The reconstruction is a temperature proxy with decadal resolution that is completely independent of other temperature records. Temperatures are derived from glacier length changes using a linear response equation and an analytical glacier model that is calibrated on numerical model results. The global and hemispherical temperatures reconstructed from glacier length fluctuations are in good agreement with the instrumental record of the last century. Furthermore our results agree with existing multi-proxy reconstructions of temperature in the pre-instrumental period. The temperature record obtained from glacier fluctuations confirms the pronounced warming of the twentieth century, giving a global cumulative warming of 0.94 {+-} 0.31 K over the period 1830-2000 and a cumulative warming of 0.84 {+-} 0.35 K over the period 1600-2000. (orig.)

  10. Global Surface Temperature Change and Uncertainties Since 1861

    Science.gov (United States)

    Shen, Samuel S. P.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    The objective of this talk is to analyze the warming trend and its uncertainties of the global and hemi-spheric surface temperatures. By the method of statistical optimal averaging scheme, the land surface air temperature and sea surface temperature observational data are used to compute the spatial average annual mean surface air temperature. The optimal averaging method is derived from the minimization of the mean square error between the true and estimated averages and uses the empirical orthogonal functions. The method can accurately estimate the errors of the spatial average due to observational gaps and random measurement errors. In addition, quantified are three independent uncertainty factors: urbanization, change of the in situ observational practices and sea surface temperature data corrections. Based on these uncertainties, the best linear fit to annual global surface temperature gives an increase of 0.61 +/- 0.16 C between 1861 and 2000. This lecture will also touch the topics on the impact of global change on nature and environment. as well as the latest assessment methods for the attributions of global change.

  11. Scenario and modelling uncertainty in global mean temperature change derived from emission driven Global Climate Models

    OpenAIRE

    B. B. B. Booth; D. Bernie; D. McNeall; E. Hawkins; J. Caesar; C. Boulton; P. Friedlingstein; D. Sexton

    2012-01-01

    We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission driven rather than concentration driven perturbed parameter ensemble of a Global Climate Model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concen...

  12. Analysis of global and hemispheric temperature records and prognosis

    Science.gov (United States)

    Werner, Rolf; Valev, Dimitar; Danov, Dimitar; Guineva, Veneta; Kirillov, Andrey

    2015-06-01

    Climate changes are connected to long term variations of global and hemispheric temperatures, which are important for the work out of socio-political strategy for the near future. In the paper the annual temperature time series are modeled by linear multiple regression to identify important climate forcings including external climate factors such as atmospheric CO2 content, volcanic emissions, and the total solar irradiation as well as internal factors such as El Niño-Southern oscillation, Pacific decadal oscillation and Atlantic multidecadal oscillation. Adjusted temperatures were determined by removal of all significant influences except CO2. The adjusted temperatures follow a linear dependence toward the logarithm of the CO2 content, and the coefficient of determination is about 0.91. The evolution of the adjusted temperatures suggests that the warming due to CO2 from the beginning of the studied here time interval in 1900 has never stopped and is going on up to now. The global warming rate deduced from the adjusted temperatures since 1980 is about 0.14 ± 0.02 °C/decade. The warming rate reported in the IPCC assessment report 4 based on observed global surface temperature set is about 20% higher, due to the warming by the Atlantic multidecadal oscillation additional to the anthropogenic warming. The predicted temperature evolution based on long time changes of CO2 and the Atlantic multidecadal oscillation index shows that the Northern Hemispheric temperatures are modulated by the Atlantic multidecadal oscillation influence and will not change significantly to about 2040, after that they will increase speedily, just like during the last decades of the past century. The temperatures of the Southern Hemisphere will increase almost linearly and don't show significant periodic changes due to Atlantic multidecadal oscillation. The concrete warming rates of course are strongly depending on the future atmospheric CO2 content.

  13. Increasing Temperature Extremes during the Recent Global Warming Hiatus

    Science.gov (United States)

    Johnson, N. C.; Kosaka, Y.; Xie, S. P.

    2015-12-01

    Although the recent global warming hiatus has featured a slowdown in the annual, global mean surface air temperature trend, temperature extremes have exhibited contrasting changes, as both wintertime cold and summertime hot extremes have increased over Northern Hemisphere (NH) land from 2002-2014. To investigate the sources of NH temperature extreme variability, we use multiple linear regression analysis that includes as predictors the typical drivers of global-scale climate variability - tropical Pacific sea surface temperatures (SST), volcanic aerosols, solar variability, and the linear time trend. This analysis suggests that natural forcings, including tropical SSTs and solar variations, have contributed to the recent increase in NH winter cold extremes. The magnitude of the recent increase in summer hot extremes is only captured after including an additional SST predictor for a pattern that resembles the Atlantic Multidecadal Oscillation, which suggests the importance of Atlantic Ocean SSTs for recent increases in hot extremes. When the regression models are applied to local, grid point scales, they indicate the promise for substantial skill in seasonal predictions of extreme temperature over some NH regions. Overall, this work reveals important sources of natural variability in extreme temperature trends superimposed upon the long-term increase of hot extremes and decrease of cold extremes.

  14. Climate Prediction Center (CPC) Global Land Surface Air Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A station observation-based global land monthly mean surface air temperature dataset at 0.5 x 0.5 latitude-longitude resolution for the period from 1948 to the...

  15. Global increase in record-breaking monthly-mean temperatures

    NARCIS (Netherlands)

    Coumou, Dim; Robinson, Alexander; Rahmstorf, Stefan

    The last decade has produced record-breaking heat waves in many parts of the world. At the same time, it was globally the warmest since sufficient measurements started in the 19th century. Here we show that, worldwide, the number of local record-breaking monthly temperature extremes is now on

  16. Mean global ocean temperatures during the last glacial transition.

    Science.gov (United States)

    Bereiter, Bernhard; Shackleton, Sarah; Baggenstos, Daniel; Kawamura, Kenji; Severinghaus, Jeff

    2018-01-03

    Little is known about the ocean temperature's long-term response to climate perturbations owing to limited observations and a lack of robust reconstructions. Although most of the anthropogenic heat added to the climate system has been taken up by the ocean up until now, its role in a century and beyond is uncertain. Here, using noble gases trapped in ice cores, we show that the mean global ocean temperature increased by 2.57 ± 0.24 degrees Celsius over the last glacial transition (20,000 to 10,000 years ago). Our reconstruction provides unprecedented precision and temporal resolution for the integrated global ocean, in contrast to the depth-, region-, organism- and season-specific estimates provided by other methods. We find that the mean global ocean temperature is closely correlated with Antarctic temperature and has no lead or lag with atmospheric CO 2 , thereby confirming the important role of Southern Hemisphere climate in global climate trends. We also reveal an enigmatic 700-year warming during the early Younger Dryas period (about 12,000 years ago) that surpasses estimates of modern ocean heat uptake.

  17. Climate Prediction Center (CPC) Global Land Surface Air Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A station observation-based global land monthly mean surface air temperature dataset at 0.5 0.5 latitude-longitude resolution for the period from 1948 to the present...

  18. Upper temperature limits of tropical marine ectotherms: global warming implications.

    Directory of Open Access Journals (Sweden)

    Khanh Dung T Nguyen

    Full Text Available Animal physiology, ecology and evolution are affected by temperature and it is expected that community structure will be strongly influenced by global warming. This is particularly relevant in the tropics, where organisms are already living close to their upper temperature limits and hence are highly vulnerable to rising temperature. Here we present data on upper temperature limits of 34 tropical marine ectotherm species from seven phyla living in intertidal and subtidal habitats. Short term thermal tolerances and vertical distributions were correlated, i.e., upper shore animals have higher thermal tolerance than lower shore and subtidal animals; however, animals, despite their respective tidal height, were susceptible to the same temperature in the long term. When temperatures were raised by 1°C hour(-1, the upper lethal temperature range of intertidal ectotherms was 41-52°C, but this range was narrower and reduced to 37-41°C in subtidal animals. The rate of temperature change, however, affected intertidal and subtidal animals differently. In chronic heating experiments when temperature was raised weekly or monthly instead of every hour, upper temperature limits of subtidal species decreased from 40°C to 35.4°C, while the decrease was more than 10°C in high shore organisms. Hence in the long term, activity and survival of tropical marine organisms could be compromised just 2-3°C above present seawater temperatures. Differences between animals from environments that experience different levels of temperature variability suggest that the physiological mechanisms underlying thermal sensitivity may vary at different rates of warming.

  19. Upper Temperature Limits of Tropical Marine Ectotherms: Global Warming Implications

    Science.gov (United States)

    Nguyen, Khanh Dung T.; Morley, Simon A.; Lai, Chien-Houng; Clark, Melody S.; Tan, Koh Siang; Bates, Amanda E.; Peck, Lloyd S.

    2011-01-01

    Animal physiology, ecology and evolution are affected by temperature and it is expected that community structure will be strongly influenced by global warming. This is particularly relevant in the tropics, where organisms are already living close to their upper temperature limits and hence are highly vulnerable to rising temperature. Here we present data on upper temperature limits of 34 tropical marine ectotherm species from seven phyla living in intertidal and subtidal habitats. Short term thermal tolerances and vertical distributions were correlated, i.e., upper shore animals have higher thermal tolerance than lower shore and subtidal animals; however, animals, despite their respective tidal height, were susceptible to the same temperature in the long term. When temperatures were raised by 1°C hour−1, the upper lethal temperature range of intertidal ectotherms was 41–52°C, but this range was narrower and reduced to 37–41°C in subtidal animals. The rate of temperature change, however, affected intertidal and subtidal animals differently. In chronic heating experiments when temperature was raised weekly or monthly instead of every hour, upper temperature limits of subtidal species decreased from 40°C to 35.4°C, while the decrease was more than 10°C in high shore organisms. Hence in the long term, activity and survival of tropical marine organisms could be compromised just 2–3°C above present seawater temperatures. Differences between animals from environments that experience different levels of temperature variability suggest that the physiological mechanisms underlying thermal sensitivity may vary at different rates of warming. PMID:22242115

  20. Surface air temperature variability in global climate models

    CERN Document Server

    Davy, Richard

    2012-01-01

    New results from the Coupled Model Inter-comparison Project phase 5 (CMIP5) and multiple global reanalysis datasets are used to investigate the relationship between the mean and standard deviation in the surface air temperature. A combination of a land-sea mask and orographic filter were used to investigate the geographic region with the strongest correlation and in all cases this was found to be for low-lying over-land locations. This result is consistent with the expectation that differences in the effective heat capacity of the atmosphere are an important factor in determining the surface air temperature response to forcing.

  1. Simultaneous stabilization of global temperature and precipitation through cocktail geoengineering

    Science.gov (United States)

    Cao, Long; Duan, Lei; Bala, Govindasamy; Caldeira, Ken

    2017-07-01

    Solar geoengineering has been proposed as a backup plan to offset some aspects of anthropogenic climate change if timely CO2 emission reductions fail to materialize. Modeling studies have shown that there are trade-offs between changes in temperature and hydrological cycle in response to solar geoengineering. Here we investigate the possibility of stabilizing both global mean temperature and precipitation simultaneously by combining two geoengineering approaches: stratospheric sulfate aerosol increase (SAI) that deflects sunlight to space and cirrus cloud thinning (CCT) that enables more longwave radiation to escape to space. Using the slab ocean configuration of National Center for Atmospheric Research Community Earth System Model, we simulate SAI by uniformly adding sulfate aerosol in the upper stratosphere and CCT by uniformly increasing cirrus cloud ice particle falling speed. Under an idealized warming scenario of abrupt quadrupling of atmospheric CO2, we show that by combining appropriate amounts of SAI and CCT geoengineering, global mean (or land mean) temperature and precipitation can be restored simultaneously to preindustrial levels. However, compared to SAI, cocktail geoengineering by mixing SAI and CCT does not markedly improve the overall similarity between geoengineered climate and preindustrial climate on regional scales. Some optimal spatially nonuniform mixture of SAI with CCT might have the potential to better mitigate climate change at both the global and regional scales.

  2. Scale-dependency of the global mean surface temperature trend and its implication for the recent hiatus of global warming

    OpenAIRE

    Yong Lin; Christian L. E. Franzke

    2015-01-01

    Studies of the global mean surface temperature trend are typically conducted at a single (usually annual or decadal) time scale. The used scale does not necessarily correspond to the intrinsic scales of the natural temperature variability. This scale mismatch complicates the separation of externally forced temperature trends from natural temperature fluctuations. The hiatus of global warming since 1999 has been claimed to show that human activities play only a minor role in global warming. Mo...

  3. Is the global mean temperature trend too low?

    Science.gov (United States)

    Venema, Victor; Lindau, Ralf

    2015-04-01

    The global mean temperature trend may be biased due to similar technological and economic developments worldwide. In this study we want to present a number of recent results that suggest that the global mean temperature trend might be steeper as generally thought. In the Global Historical Climate Network version 3 (GHCNv3) the global land surface temperature is estimated to have increased by about 0.8°C between 1880 and 2012. In the raw temperature record, the increase is 0.6°C; the 0.2°C difference is due to homogenization adjustments. Given that homogenization can only reduce biases, this 0.2°C stems from a partial correction of bias errors and it seems likely that the real non-climatic trend bias will be larger. Especially in regions with sparser networks, homogenization will not be able to improve the trend much. Thus if the trend bias in these regions is similar to the bias for more dense networks (industrialized countries), one would expect the real bias to be larger. Stations in sparse networks are representative for a larger region and are given more weight in the computation of the global mean temperature. If all stations are given equal weight, the homogenization adjustments of the GHCNv3 dataset are about 0.4°C per century. In the subdaily HadISH dataset one break with mean size 0.12°C is found every 15 years for the period 1973-2013. That would be a trend bias of 0.78°C per century on a station by station basis. Unfortunately, these estimates strongly focus on Western countries having more stations. It is known from the literature that rich countries have a (statistically insignificant) stronger trend in the global datasets. Regional datasets can be better homogenized than global ones, the main reason being that global datasets do not contain all stations known to the weather services. Furthermore, global datasets use automatic homogenization methods and have less or no metadata. Thus while regional data can be biased themselves, comparing them

  4. Temperature dependence of the Brewer global UV measurements

    Science.gov (United States)

    Fountoulakis, Ilias; Redondas, Alberto; Lakkala, Kaisa; Berjon, Alberto; Bais, Alkiviadis F.; Doppler, Lionel; Feister, Uwe; Heikkila, Anu; Karppinen, Tomi; Karhu, Juha M.; Koskela, Tapani; Garane, Katerina; Fragkos, Konstantinos; Savastiouk, Volodya

    2017-11-01

    Spectral measurements of global UV irradiance recorded by Brewer spectrophotometers can be significantly affected by instrument-specific optical and mechanical features. Thus, proper corrections are needed in order to reduce the associated uncertainties to within acceptable levels. The present study aims to contribute to the reduction of uncertainties originating from changes in the Brewer internal temperature, which affect the performance of the optical and electronic parts, and subsequently the response of the instrument. Until now, measurements of the irradiance from various types of lamps at different temperatures have been used to characterize the instruments' temperature dependence. The use of 50 W lamps was found to induce errors in the characterization due to changes in the transmissivity of the Teflon diffuser as it warms up by the heat of the lamp. In contrast, the use of 200 or 1000 W lamps is considered more appropriate because they are positioned at longer distances from the diffuser so that warming is negligible. Temperature gradients inside the instrument can cause mechanical stresses which can affect the instrument's optical characteristics. Therefore, during the temperature-dependence characterization procedure warming or cooling must be slow enough to minimize these effects. In this study, results of the temperature characterization of eight different Brewer spectrophotometers operating in Greece, Finland, Germany and Spain are presented. It was found that the instruments' response changes differently in different temperature regions due to different responses of the diffusers' transmittance. The temperature correction factors derived for the Brewer spectrophotometers operating at Thessaloniki, Greece, and Sodankylä, Finland, were evaluated and were found to remove the temperature dependence of the instruments' sensitivity.

  5. Possible forcing of global temperature by the oceanic tides

    Science.gov (United States)

    Keeling, Charles D.; Whorf, Timothy P.

    1997-01-01

    An approximately decadal periodicity in surface air temperature is discernable in global observations from A.D. 1855 to 1900 and since A.D. 1945, but with a periodicity of only about 6 years during the intervening period. Changes in solar irradiance related to the sunspot cycle have been proposed to account for the former, but cannot account for the latter. To explain both by a single mechanism, we propose that extreme oceanic tides may produce changes in sea surface temperature at repeat periods, which alternate between approximately one-third and one-half of the lunar nodal cycle of 18.6 years. These alternations, recurring at nearly 90-year intervals, reflect varying slight degrees of misalignment and departures from the closest approach of the Earth with the Moon and Sun at times of extreme tide raising forces. Strong forcing, consistent with observed temperature periodicities, occurred at 9-year intervals close to perihelion (solar perigee) for several decades centered on A.D. 1881 and 1974, but at 6-year intervals for several decades centered on A.D. 1923. As a physical explanation for tidal forcing of temperature we propose that the dissipation of extreme tides increases vertical mixing of sea water, thereby causing episodic cooling near the sea surface. If this mechanism correctly explains near-decadal temperature periodicities, it may also apply to variability in temperature and climate on other times-scales, even millennial and longer. PMID:11607740

  6. Emergent constraint on equilibrium climate sensitivity from global temperature variability

    Science.gov (United States)

    Cox, Peter M.; Huntingford, Chris; Williamson, Mark S.

    2018-01-01

    Equilibrium climate sensitivity (ECS) remains one of the most important unknowns in climate change science. ECS is defined as the global mean warming that would occur if the atmospheric carbon dioxide (CO2) concentration were instantly doubled and the climate were then brought to equilibrium with that new level of CO2. Despite its rather idealized definition, ECS has continuing relevance for international climate change agreements, which are often framed in terms of stabilization of global warming relative to the pre-industrial climate. However, the ‘likely’ range of ECS as stated by the Intergovernmental Panel on Climate Change (IPCC) has remained at 1.5–4.5 degrees Celsius for more than 25 years. The possibility of a value of ECS towards the upper end of this range reduces the feasibility of avoiding 2 degrees Celsius of global warming, as required by the Paris Agreement. Here we present a new emergent constraint on ECS that yields a central estimate of 2.8 degrees Celsius with 66 per cent confidence limits (equivalent to the IPCC ‘likely’ range) of 2.2–3.4 degrees Celsius. Our approach is to focus on the variability of temperature about long-term historical warming, rather than on the warming trend itself. We use an ensemble of climate models to define an emergent relationship between ECS and a theoretically informed metric of global temperature variability. This metric of variability can also be calculated from observational records of global warming, which enables tighter constraints to be placed on ECS, reducing the probability of ECS being less than 1.5 degrees Celsius to less than 3 per cent, and the probability of ECS exceeding 4.5 degrees Celsius to less than 1 per cent.

  7. UAH Version 6 global satellite temperature products: Methodology and results

    Science.gov (United States)

    Spencer, Roy W.; Christy, John R.; Braswell, William D.

    2017-02-01

    Version 6 of the UAH MSU/AMSU global satellite temperature dataset represents an extensive revision of the procedures employed in previous versions of the UAH datasets. The two most significant results from an end-user perspective are (1) a decrease in the global-average lower tropospheric temperature (LT) trend from +0.14°C decade-1 to +0.11°C decade-1 (Jan. 1979 through Dec. 2015); and (2) the geographic distribution of the LT trends, including higher spatial resolution, owing to a new method for computing LT. We describe the major changes in processing strategy, including a new method for monthly gridpoint averaging which uses all of the footprint data yet eliminates the need for limb correction; a new multi-channel (rather than multi-angle) method for computing the lower tropospheric (LT) temperature product which requires an additional tropopause (TP) channel to be used; and a new empirical method for diurnal drift correction. We show results for LT, the midtroposphere (MT, from MSU2/AMSU5), and lower stratosphere (LS, from MSU4/AMSU9). A 0.03°C decade-1 reduction in the global LT trend from the Version 5.6 product is partly due to lesser sensitivity of the new LT to land surface skin temperature (est. 0.01°C decade-1), with the remainder of the reduction (0.02°C decade-1) due to the new diurnal drift adjustment, the more robust method of LT calculation, and other changes in processing procedures.

  8. Glacier fluctuations, global temperature and sea-level change

    Science.gov (United States)

    Leclercq, P. W.

    2012-02-01

    The current world-wide glacier retreat is a clear sign of global warming. In addition, glaciers contribute to sea-level rise as a consequence of the current retreat. In this thesis we use records of past glacier fluctuations to reconstruct past climate variations and the glacier contribution to sea-level change. Firstly, a coherent data set of world-wide glacier fluctuations over the past centuries is compiled. Most available information of glacier fluctuations concerns glacier length fluctuations. There is currently a large number of sources available, varying from field observations, satellite images and aerial photography to reconstructions from historical documents and geological evidence. The data set, resulting from the compilation of available data, contains 374 length records of glaciers from all continents and is described in Chapter 2. In Chapter 3, a climatic interpretation of the length fluctuations of Glaciar Frías is presented. This glacier in North Patagonia has the longest detailed length record in southern South America. The glacier behaviour is modelled with a simplified mass balance model that is coupled with a flow line model. A warming of North Patagonian climate with 1.16 °Csince the mid 17th century, or a decrease in precipitation of 34%, would best explain the observed retreat since 1639. Driving the glacier model with existing climate reconstructions shows that the uncertainties in these reconstructions are rather large. In addition, it appears that the length fluctuations are mainly driven by variations in temperature rather than variations in precipitation. The development of such detailed models is not feasible for all glaciers in the length fluctuations data set. In the next chapter a simplified approach is used to reconstruct global and hemispheric temperature for the period 1600-2000 from world-wide glacier length fluctuations. The reconstructions show that global temperature was more or less constant from 1600 until the middle of

  9. Global Patterns in Leaf Respiration and its Temperature Response

    Science.gov (United States)

    Heskel, M.; Atkin, O. K.; O'Sullivan, O. S.; Reich, P. B.; Tjoelker, M. G.; Weerasinghe, L. K.; Penillard, A.; Egerton, J. J. G.; Creek, D.; Bloomfield, K. J.; Xiang, J.; Sinca, F.; Stangl, Z.; Martinez-de la Torre, A.; Griffin, K. L.; Huntingford, C.; Hurry, V.; Meir, P.; Turnbull, M.

    2015-12-01

    Leaf respiration (R) represents a massive flux of carbon to the atmosphere. Currently, neither physiological models nor terrestrial biosphere models are able to disentangle sources of variation in leaf R among different plant species and contrasting environments. Similarly, such models do not adequately describe the short-term temperature (T) response of R, which can lead to inaccurate representation of leaf R in simulation models of regional and global terrestrial carbon cyling. Even minor differences in the underlying basal rate of leaf R and/or shape of the T-response curve can significantly impact estimates of carbon released and stored in ecosystems. Given this, we recently assembled and analyzed two new global databases (arctic-to-tropics) of leaf R and its short-term T-dependence. The results highlight variation in basal leaf R among species and across global gradients in T and aridity, with leaf R at a standard T (e.g. 25°C) being greatest in plants growing in the cold, dry Arctic and lowest in the warm, moist tropics. Arctic plants also exhibit higher rates of leaf R at a given photosynthetic capacity or leaf N concentration than their tropical counterparts. The results also point to convergence in the short-term temperature response of respiration across biomes and plant functional types. The applicability and significance of the short-term T-response of R for simulation models of plant and ecosystem carbon fluxes will be discussed.

  10. Global and quantum risks of extreme temperature fluctuations in Moscow

    Directory of Open Access Journals (Sweden)

    Mogiljuk Zhanna

    2017-01-01

    Full Text Available The article discusses topical problems of legal support for construction activities in relation to global climate change. Therefore, the results of high-resolution studies were treated. These studies tracked the pattern of fluctuation intensity changes of maximum and minimum temperatures in Moscow in the period of 1973 to 2009. The article highlights methodology elements for the statistical analysis of technical risks for implementing extreme temperature loads. A quantitative predictive risk assessment of extreme high and low temperatures and thawing risks for the entire life cycle of buildings are given. These estimates are intended to take account of the thermal loads on the ecological systems of urban areas as well as to design buildings and engineering systems that form microclimate of premises. The paper presents for the first time the obtained by the authors and previously unknown quantum regularities of the air temperature variations in the surface layer of the atmosphere. It also contains graphic materials for statistical studies of the fluctuation intensity evolution of maximum and minimum daily temperatures in the city of Moscow.

  11. The influence of global sea surface temperature variability on the large-scale land surface temperature

    Science.gov (United States)

    Tyrrell, Nicholas L.; Dommenget, Dietmar; Frauen, Claudia; Wales, Scott; Rezny, Mike

    2015-04-01

    In global warming scenarios, global land surface temperatures () warm with greater amplitude than sea surface temperatures (SSTs), leading to a land/sea warming contrast even in equilibrium. Similarly, the interannual variability of is larger than the covariant interannual SST variability, leading to a land/sea contrast in natural variability. This work investigates the land/sea contrast in natural variability based on global observations, coupled general circulation model simulations and idealised atmospheric general circulation model simulations with different SST forcings. The land/sea temperature contrast in interannual variability is found to exist in observations and models to a varying extent in global, tropical and extra-tropical bands. There is agreement between models and observations in the tropics but not the extra-tropics. Causality in the land-sea relationship is explored with modelling experiments forced with prescribed SSTs, where an amplification of the imposed SST variability is seen over land. The amplification of to tropical SST anomalies is due to the enhanced upper level atmospheric warming that corresponds with tropical moist convection over oceans leading to upper level temperature variations that are larger in amplitude than the source SST anomalies. This mechanism is similar to that proposed for explaining the equilibrium global warming land/sea warming contrast. The link of the to the dominant mode of tropical and global interannual climate variability, the El Niño Southern Oscillation (ENSO), is found to be an indirect and delayed connection. ENSO SST variability affects the oceans outside the tropical Pacific, which in turn leads to a further, amplified and delayed response of.

  12. Scenario and modelling uncertainty in global mean temperature change derived from emission driven Global Climate Models

    Science.gov (United States)

    Booth, B. B. B.; Bernie, D.; McNeall, D.; Hawkins, E.; Caesar, J.; Boulton, C.; Friedlingstein, P.; Sexton, D.

    2012-09-01

    We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission driven rather than concentration driven perturbed parameter ensemble of a Global Climate Model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration driven simulations (with 10-90 percentile ranges of 1.7 K for the aggressive mitigation scenario up to 3.9 K for the high end business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 degrees (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission driven experiments, they do not change existing expectations (based on previous concentration driven experiments) on the timescale that different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration pathways used to drive GCM ensembles lies towards the lower end of our simulated distribution. This design decision (a legecy of previous assessments) is likely to lead concentration driven experiments to under-sample strong feedback responses in concentration driven projections. Our ensemble of emission driven simulations span the global temperature response of other multi-model frameworks except at the low end, where combinations of low climate sensitivity and low carbon cycle feedbacks lead to responses outside our ensemble range. The ensemble simulates a number of high end responses which lie above the CMIP5 carbon

  13. Impact of Atlantic sea surface temperatures on the warmest global surface air temperature of 1998

    Science.gov (United States)

    Lu, Riyu

    2005-03-01

    The year 1998 is the warmest year in the record of instrumental measurements. In this study, an atmospheric general circulation model is used to investigate the role of sea surface temperatures (SSTs) in this warmth, with a focus on the role of the Atlantic Ocean. The model forced with the observed global SSTs captures the main features of land surface air temperature anomalies in 1998. A sensitivity experiment shows that in comparison with the global SST anomalies, the Atlantic SST anomalies can explain 35% of the global mean surface air temperature (GMAT) anomaly, and 57% of the land surface air temperature anomaly in 1998. The mechanisms through which the Atlantic Ocean influences the GMAT are likely different from season to season. Possible detailed mechanisms involve the impact of SST anomalies on local convection in the tropical Atlantic region, the consequent excitation of a Rossby wave response that propagates into the North Atlantic and the Eurasian continent in winter and spring, and the consequent changes in tropical Walker circulation in summer and autumn that induce changes in convection over the tropical Pacific. This in turn affects climate in Asia and Australia. The important role of the Atlantic Ocean suggests that attention should be paid not only to the tropical Pacific Ocean, but also to the tropical Atlantic Ocean in understanding the GMAT variability and its predictability.

  14. Skillful predictions of decadal trends in global mean surface temperature

    Science.gov (United States)

    Fyfe, J. C.; Merryfield, W. J.; Kharin, V.; Boer, G. J.; Lee, W.-S.; von Salzen, K.

    2011-11-01

    We compare observed decadal trends in global mean surface temperature with those predicted using a modelling system that encompasses observed initial condition information, externally forced response (due to anthropogenic greenhouse gases and aerosol precursors), and internally generated variability. We consider retrospective decadal forecasts for nine cases, initiated at five year intervals, with the first beginning in 1961 and the last in 2001. Forecast ensembles of size thirty are generated from differing but similar initial conditions. We concentrate on the trends that remain after removing the following natural signals in observations and hindcasts: dynamically induced atmospheric variability, El Niño-Southern Oscillation (ENSO), and the effects of explosive volcanic eruptions. We show that ensemble mean errors in the decadal trend hindcasts are smaller than in a parallel set of uninitialized free running climate simulations. The ENSO signal, which is skillfully predicted out to a year or so, has little impact on our decadal trend predictions, and our modelling system possesses skill, independent of ENSO, in predicting decadal trends in global mean surface temperature.

  15. Estimating trends in the global mean temperature record

    Science.gov (United States)

    Poppick, Andrew; Moyer, Elisabeth J.; Stein, Michael L.

    2017-06-01

    Given uncertainties in physical theory and numerical climate simulations, the historical temperature record is often used as a source of empirical information about climate change. Many historical trend analyses appear to de-emphasize physical and statistical assumptions: examples include regression models that treat time rather than radiative forcing as the relevant covariate, and time series methods that account for internal variability in nonparametric rather than parametric ways. However, given a limited data record and the presence of internal variability, estimating radiatively forced temperature trends in the historical record necessarily requires some assumptions. Ostensibly empirical methods can also involve an inherent conflict in assumptions: they require data records that are short enough for naive trend models to be applicable, but long enough for long-timescale internal variability to be accounted for. In the context of global mean temperatures, empirical methods that appear to de-emphasize assumptions can therefore produce misleading inferences, because the trend over the twentieth century is complex and the scale of temporal correlation is long relative to the length of the data record. We illustrate here how a simple but physically motivated trend model can provide better-fitting and more broadly applicable trend estimates and can allow for a wider array of questions to be addressed. In particular, the model allows one to distinguish, within a single statistical framework, between uncertainties in the shorter-term vs. longer-term response to radiative forcing, with implications not only on historical trends but also on uncertainties in future projections. We also investigate the consequence on inferred uncertainties of the choice of a statistical description of internal variability. While nonparametric methods may seem to avoid making explicit assumptions, we demonstrate how even misspecified parametric statistical methods, if attuned to the

  16. Joint spatiotemporal variability of global sea surface temperatures and global Palmer drought severity index values

    Science.gov (United States)

    Apipattanavis, S.; McCabe, G.J.; Rajagopalan, B.; Gangopadhyay, S.

    2009-01-01

    Dominant modes of individual and joint variability in global sea surface temperatures (SST) and global Palmer drought severity index (PDSI) values for the twentieth century are identified through a multivariate frequency domain singular value decomposition. This analysis indicates that a secular trend and variability related to the El Niño–Southern Oscillation (ENSO) are the dominant modes of variance shared among the global datasets. For the SST data the secular trend corresponds to a positive trend in Indian Ocean and South Atlantic SSTs, and a negative trend in North Pacific and North Atlantic SSTs. The ENSO reconstruction shows a strong signal in the tropical Pacific, North Pacific, and Indian Ocean regions. For the PDSI data, the secular trend reconstruction shows high amplitudes over central Africa including the Sahel, whereas the regions with strong ENSO amplitudes in PDSI are the southwestern and northwestern United States, South Africa, northeastern Brazil, central Africa, the Indian subcontinent, and Australia. An additional significant frequency, multidecadal variability, is identified for the Northern Hemisphere. This multidecadal frequency appears to be related to the Atlantic multidecadal oscillation (AMO). The multidecadal frequency is statistically significant in the Northern Hemisphere SST data, but is statistically nonsignificant in the PDSI data.

  17. An Open and Transparent Databank of Global Land Surface Temperature

    Science.gov (United States)

    Rennie, J.; Thorne, P.; Lawrimore, J. H.; Gleason, B.; Menne, M. J.; Williams, C.

    2013-12-01

    The International Surface Temperature Initiative (ISTI) consists of an effort to create an end-to-end process for land surface air temperature analyses. The foundation of this process is the establishment of a global land surface databank. The databank builds upon the groundbreaking efforts of scientists who led efforts to construct global land surface datasets in the 1980's and 1990's. A primary aim of the databank is to improve aspects including data provenance, version control, temporal and spatial coverage, and improved methods for bringing dozens of source data together into an integrated dataset. The databank consists of multiple stages, with each successive stage providing a higher level of processing, quality and integration. Currently more than 50 sources of data have been added to the databank. An automated algorithm has been developed that merges these sources into one complete dataset by removing duplicate station records, identifying two or more station records that can be merged into a single record, and incorporating new and unique stations. The program runs iteratively through all the sources which are ordered based upon criteria established by the ISTI. The highest preferred source, known as the target, runs through all the candidate sources, calculating station comparisons that are acceptable for merging. The process is probabilistic in approach, and the final fate of a candidate station is based upon metadata matching and data equivalence criteria. If there is not enough information, the station is withheld for further investigation. The algorithm has been validated using a pseudo-source of stations with a known time of observation bias, and correct matches have been made nearly 95% of the time. The final product, endorsed and recommended by ISTI, contains over 30,000 stations, however slight changes in the algorithm can perturb results. Subjective decisions, such as the ordering of the sources, or changing metadata and data matching thresholds

  18. Scale-dependency of the global mean surface temperature trend and its implication for the recent hiatus of global warming.

    Science.gov (United States)

    Lin, Yong; Franzke, Christian L E

    2015-08-11

    Studies of the global mean surface temperature trend are typically conducted at a single (usually annual or decadal) time scale. The used scale does not necessarily correspond to the intrinsic scales of the natural temperature variability. This scale mismatch complicates the separation of externally forced temperature trends from natural temperature fluctuations. The hiatus of global warming since 1999 has been claimed to show that human activities play only a minor role in global warming. Most likely this claim is wrong due to the inadequate consideration of the scale-dependency in the global surface temperature (GST) evolution. Here we show that the variability and trend of the global mean surface temperature anomalies (GSTA) from January 1850 to December 2013, which incorporate both land and sea surface data, is scale-dependent and that the recent hiatus of global warming is mainly related to natural long-term oscillations. These results provide a possible explanation of the recent hiatus of global warming and suggest that the hiatus is only temporary.

  19. GHRSST Level 4 MW_OI Global Foundation Sea Surface Temperature analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) global Level 4 sea surface temperature analysis produced daily on a 0.25 degree grid at Remote Sensing...

  20. Global river temperatures and sensitivity to atmospheric warming and changes in river flow

    NARCIS (Netherlands)

    Vliet, van M.T.H.; Ludwig, F.; Zwolsman, J.J.G.; Weedon, G.P.; Kabat, P.

    2011-01-01

    This study investigates the impact of both air temperature and river discharge changes on daily water temperatures for river stations globally. A nonlinear water temperature regression model was adapted to include discharge as a variable in addition to air temperature, and a time lag was

  1. Carbon inventories and atmospheric temperatures: A global and regional perspective

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.

    stream_size 3 stream_content_type text/plain stream_name Proc_Natl_Conf_Global_Temp_Rise_2007_133.pdf.txt stream_source_info Proc_Natl_Conf_Global_Temp_Rise_2007_133.pdf.txt Content-Encoding ISO-8859-1 Content-Type text...

  2. Global Warming and Changing Temperature Patterns over Mauritius ...

    African Journals Online (AJOL)

    This paper discusses the changing temperature pattern over Mauritius. We observe an increase of the annual mean temperature at Pamplemousses since 1876 with an average rate of 0.009oC per year with a significant correlation coefficient of 0.67. Compared to the mean temperature for the period of 1951 to 1960, we ...

  3. Global Warming and Changing Temperature Patterns over Mauritius

    African Journals Online (AJOL)

    User

    This paper discusses the changing temperature pattern over Mauritius. We observe an increase of the annual mean temperature at Pamplemousses since 1876 with an average rate of 0.009oC per year with a significant correlation coefficient of 0.67. Compared to the mean temperature for the period of 1951 to 1960, we ...

  4. Global surface temperature change analysis based on MODIS data in recent twelve years

    Science.gov (United States)

    Mao, K. B.; Ma, Y.; Tan, X. L.; Shen, X. Y.; Liu, G.; Li, Z. L.; Chen, J. M.; Xia, L.

    2017-01-01

    Global surface temperature change is one of the most important aspects in global climate change research. In this study, in order to overcome shortcomings of traditional observation methods in meteorology, a new method is proposed to calculate global mean surface temperature based on remote sensing data. We found that (1) the global mean surface temperature was close to 14.35 °C from 2001 to 2012, and the warmest and coldest surface temperatures of the global in the recent twelve years occurred in 2005 and 2008, respectively; (2) the warmest and coldest surface temperatures on the global land surface occurred in 2005 and 2001, respectively, and on the global ocean surface in 2010 and 2008, respectively; and (3) in recent twelve years, although most regions (especially the Southern Hemisphere) are warming, global warming is yet controversial because it is cooling in the central and eastern regions of Pacific Ocean, northern regions of the Atlantic Ocean, northern regions of China, Mongolia, southern regions of Russia, western regions of Canada and America, the eastern and northern regions of Australia, and the southern tip of Africa. The analysis of daily and seasonal temperature change indicates that the temperature change is mainly caused by the variation of orbit of celestial body. A big data model based on orbit position and gravitational-magmatic change of celestial body with the solar or the galactic system should be built and taken into account for climate and ecosystems change at a large spatial-temporal scale.

  5. eMODIS Global Land Surface Temperature Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The EROS Moderate Resolution Imaging Spectroradiometer (eMODIS) Aqua Land Surface Temperature (LST) product is similar to the Land Processes Distributed Active...

  6. Glacier fluctuations, global temperature and sea-level change

    NARCIS (Netherlands)

    Leclercq, P.W.

    2012-01-01

    The current world-wide glacier retreat is a clear sign of global warming. In addition, glaciers contribute to sea-level rise as a consequence of the current retreat. In this thesis we use records of past glacier fluctuations to reconstruct past climate variations and the glacier contribution to

  7. Glacier fluctuations, global temperature and sea-level change

    OpenAIRE

    P. W. Leclercq

    2012-01-01

    The current world-wide glacier retreat is a clear sign of global warming. In addition, glaciers contribute to sea-level rise as a consequence of the current retreat. In this thesis we use records of past glacier fluctuations to reconstruct past climate variations and the glacier contribution to sea-level change. Firstly, a coherent data set of world-wide glacier fluctuations over the past centuries is compiled. Most available information of glacier fluctuations concerns glacier length fluctua...

  8. Symmetric scaling properties in global surface air temperature anomalies

    Science.gov (United States)

    Varotsos, Costas A.; Efstathiou, Maria N.

    2015-08-01

    We have recently suggested "long-term memory" or internal long-range correlation within the time-series of land-surface air temperature (LSAT) anomalies in both hemispheres. For example, an increasing trend in the LSAT anomalies is followed by another one at a different time in a power-law fashion. However, our previous research was mainly focused on the overall long-term persistence, while in the present study, the upward and downward scaling dynamics of the LSAT anomalies are analysed, separately. Our results show that no significant fluctuation differences were found between the increments and decrements in LSAT anomalies, over the whole Earth and over each hemisphere, individually. On the contrary, the combination of land-surface air and sea-surface water temperature anomalies seemed to cause a departure from symmetry and the increments in the land and sea surface temperature anomalies appear to be more persistent than the decrements.

  9. Population and trends in the global mean temperature

    NARCIS (Netherlands)

    Tol, Richard S.J.

    2017-01-01

    The Fisher ideal index, developed to measure price inflation, is applied to define a population-weighted temperature trend. This method has the advantages that the trend is representative for the population distribution throughout the sample but without conflating the trend in the population

  10. Emission pathways consitent with 2C global temperature limit

    NARCIS (Netherlands)

    Rogeli, J.; Hare, W.; Lowe, J.; van Vuuren, D.P.|info:eu-repo/dai/nl/11522016X; Riahi, K.; Matthews, B.; Hanaoka, T.; Jiang, K.; Meinshausen, M.

    2011-01-01

    In recent years, international climate policy has increasingly focused on limiting temperature rise, as opposed to achieving greenhouse-gas-concentration-related objectives. The agreements reached at the United Nations Framework Convention on Climate Change conference in Cancun in 2010 recognize

  11. NODC Standard Product: Global ocean temperature and salinity profiles (2 disc set) (NODC Accession 0098058)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This set of CD-ROMs contains global ocean temperature and salinity profiles derived from NODC archive data files. It includes oceanographic station (bottle) data,...

  12. Climate change, global warming and coral reefs: modelling the effects of temperature.

    Science.gov (United States)

    Crabbe, M James C

    2008-10-01

    Climate change and global warming have severe consequences for the survival of scleractinian (reef-building) corals and their associated ecosystems. This review summarizes recent literature on the influence of temperature on coral growth, coral bleaching, and modelling the effects of high temperature on corals. Satellite-based sea surface temperature (SST) and coral bleaching information available on the internet is an important tool in monitoring and modelling coral responses to temperature. Within the narrow temperature range for coral growth, corals can respond to rate of temperature change as well as to temperature per se. We need to continue to develop models of how non-steady-state processes such as global warming and climate change will affect coral reefs.

  13. Climate change impact of livestock CH4emission in India: Global temperature change potential (GTP) and surface temperature response.

    Science.gov (United States)

    Kumari, Shilpi; Hiloidhari, Moonmoon; Kumari, Nisha; Naik, S N; Dahiya, R P

    2018-01-01

    Two climate metrics, Global surface Temperature Change Potential (GTP) and the Absolute GTP (AGTP) are used for studying the global surface temperature impact of CH 4 emission from livestock in India. The impact on global surface temperature is estimated for 20 and 100 year time frames due to CH 4 emission. The results show that the CH 4 emission from livestock, worked out to 15.3 Tg in 2012. In terms of climate metrics GTP of livestock-related CH 4 emission in India in 2012 were 1030 Tg CO 2 e (GTP 20 ) and 62 Tg CO 2 e (GTP 100 ) at the 20 and 100 year time horizon, respectively. The study also illustrates that livestock-related CH 4 emissions in India can cause a surface temperature increase of up to 0.7mK and 0.036mK over the 20 and 100 year time periods, respectively. The surface temperature response to a year of Indian livestock emission peaks at 0.9mK in the year 2021 (9 years after the time of emission). The AGTP gives important information in terms of temperature change due to annual CH 4 emissions, which is useful when comparing policies that address multiple gases. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Pliocene three-dimensional global ocean temperature reconstruction

    Directory of Open Access Journals (Sweden)

    H. J. Dowsett

    2009-12-01

    Full Text Available The thermal structure of the mid-Piacenzian ocean is obtained by combining the Pliocene Research, Interpretation and Synoptic Mapping Project (PRISM3 multiproxy sea-surface temperature (SST reconstruction with bottom water temperature estimates from 27 locations produced using Mg/Ca paleothermometry based upon the ostracod genus Krithe. Deep water temperature estimates are skewed toward the Atlantic Basin (63% of the locations and represent depths from 1000 m to 4500 m. This reconstruction, meant to serve as a validation data set as well as an initialization for coupled numerical climate models, assumes a Pliocene water mass framework similar to that which exists today, with several important modifications. The area of formation of present day North Atlantic Deep Water (NADW was expanded and extended further north toward the Arctic Ocean during the mid-Piacenzian relative to today. This, combined with a deeper Greenland-Scotland Ridge, allowed a greater volume of warmer NADW to enter the Atlantic Ocean. In the Southern Ocean, the Polar Front Zone was expanded relative to present day, but shifted closer to the Antarctic continent. This, combined with at least seasonal reduction in sea ice extent, resulted in decreased Antarctic Bottom Water (AABW production (relative to present day as well as possible changes in the depth of intermediate waters. The reconstructed mid-Piacenzian three-dimensional ocean was warmer overall than today, and the hypothesized aerial extent of water masses appears to fit the limited stable isotopic data available for this time period.

  15. Evaluation of the Global Land Data Assimilation System (GLDAS) air temperature data products

    Science.gov (United States)

    Ji, Lei; Senay, Gabriel B.; Verdin, James P.

    2015-01-01

    There is a high demand for agrohydrologic models to use gridded near-surface air temperature data as the model input for estimating regional and global water budgets and cycles. The Global Land Data Assimilation System (GLDAS) developed by combining simulation models with observations provides a long-term gridded meteorological dataset at the global scale. However, the GLDAS air temperature products have not been comprehensively evaluated, although the accuracy of the products was assessed in limited areas. In this study, the daily 0.25° resolution GLDAS air temperature data are compared with two reference datasets: 1) 1-km-resolution gridded Daymet data (2002 and 2010) for the conterminous United States and 2) global meteorological observations (2000–11) archived from the Global Historical Climatology Network (GHCN). The comparison of the GLDAS datasets with the GHCN datasets, including 13 511 weather stations, indicates a fairly high accuracy of the GLDAS data for daily temperature. The quality of the GLDAS air temperature data, however, is not always consistent in different regions of the world; for example, some areas in Africa and South America show relatively low accuracy. Spatial and temporal analyses reveal a high agreement between GLDAS and Daymet daily air temperature datasets, although spatial details in high mountainous areas are not sufficiently estimated by the GLDAS data. The evaluation of the GLDAS data demonstrates that the air temperature estimates are generally accurate, but caution should be taken when the data are used in mountainous areas or places with sparse weather stations.

  16. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale.

    Science.gov (United States)

    Hursh, Andrew; Ballantyne, Ashley; Cooper, Leila; Maneta, Marco; Kimball, John; Watts, Jennifer

    2017-05-01

    Soil respiration (Rs) is a major pathway by which fixed carbon in the biosphere is returned to the atmosphere, yet there are limits to our ability to predict respiration rates using environmental drivers at the global scale. While temperature, moisture, carbon supply, and other site characteristics are known to regulate soil respiration rates at plot scales within certain biomes, quantitative frameworks for evaluating the relative importance of these factors across different biomes and at the global scale require tests of the relationships between field estimates and global climatic data. This study evaluates the factors driving Rs at the global scale by linking global datasets of soil moisture, soil temperature, primary productivity, and soil carbon estimates with observations of annual Rs from the Global Soil Respiration Database (SRDB). We find that calibrating models with parabolic soil moisture functions can improve predictive power over similar models with asymptotic functions of mean annual precipitation. Soil temperature is comparable with previously reported air temperature observations used in predicting Rs and is the dominant driver of Rs in global models; however, within certain biomes soil moisture and soil carbon emerge as dominant predictors of Rs. We identify regions where typical temperature-driven responses are further mediated by soil moisture, precipitation, and carbon supply and regions in which environmental controls on high Rs values are difficult to ascertain due to limited field data. Because soil moisture integrates temperature and precipitation dynamics, it can more directly constrain the heterotrophic component of Rs, but global-scale models tend to smooth its spatial heterogeneity by aggregating factors that increase moisture variability within and across biomes. We compare statistical and mechanistic models that provide independent estimates of global Rs ranging from 83 to 108 Pg yr(-1) , but also highlight regions of uncertainty

  17. Annual Global Mean Temperature explains reproductive success in a marine vertebrate from 1955-2010.

    Science.gov (United States)

    Mauck, Robert A; Dearborn, Donald C; Huntington, Charles E

    2017-11-15

    The salient feature of anthropogenic climate change over the last century has been the rise in global mean temperature. However, global mean temperature is not used as an explanatory variable in studies of population-level response to climate change, perhaps because the signal to noise ratio of this gross measure makes its effect difficult to detect in any but the longest of datasets. Using a population of Leach's storm-petrels breeding in the Bay of Fundy, we tested whether local, regional, or global temperature measures are the best index of reproductive success in the face of climate change in species that travel widely between and within seasons. With a 56-year dataset, we found that Annual Global Mean Temperature (AGMT) was the single most important predictor of hatching success, more so than regional sea surface temperatures (breeding season or winter) and local air temperatures at the nesting colony. Storm-petrel reproductive success showed a quadratic response to rising temperatures, in that hatching success increased up to some critical temperature, then declined when AGMT exceeded that temperature. The year at which AGMT began to consistently exceed that critical temperature was 1988. Importantly, in this population of known-age individuals, the impact of changing climate was greatest on inexperienced breeders: reproductive success of inexperienced birds increased more rapidly as temperatures rose and declined more rapidly after the tipping point than did reproductive success of experienced individuals. The generality of our finding that AGMT is the best predictor of reproductive success in this system may hinge on two things. First, an integrative global measure may be best for species in which individuals move across an enormous spatial range, especially within seasons. Second, the length of our dataset and our capacity to account for individual- and age-based variation in reproductive success increase our ability to detect a noisy signal. This article

  18. Evaluation of temperature-based global solar radiation models in China

    DEFF Research Database (Denmark)

    Liu, Xiaoying; Mei, Xurong; Li, Yuzhong

    2009-01-01

    Estimation of global solar radiation (Rs) from the daily range of air temperature (¿T) offers an important alternative in the absence of measured Rs or sunshine duration because of the wide availability of air temperature data. In this paper, we assessed 16 Rs models including modified versions...

  19. Temperature Increase Reduces Global Yields of Major Crops in Four Independent Estimates

    Science.gov (United States)

    Zhao, Chuang; Liu, Bing; Piao, Shilong; Wang, Xuhui; Lobell, David B.; Huang, Yao; Huang, Mengtian; Yao, Yitong; Bassu, Simona; Ciais, Philippe; hide

    2017-01-01

    Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multi-method analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population.

  20. ATSR sea surface temperature data in a global analysis with TOPEX/POSEIDON altimetry

    DEFF Research Database (Denmark)

    Knudsen, Per; Andersen, Ole Baltazar; Knudsen, Thomas

    1996-01-01

    Along Track Scanning Radiometer (ATSR) data from the ERS 1 satellite mission are used in a global analysis of the surface temperature of the oceans. The data are the low resolution 0.5 degrees by 0.5 degrees average temperatures and cover about 24 months. At global scales a significant seasonal...... variability is found. On each of the hemispheres the surface temperatures reach their maximum after summer heating. The seasonal sea level variability, as observed from TOPEX/POSEIDON, reaches its maximum 1.1-1.4 months later....

  1. Simultaneous Global Pressure and Temperature Measurement Technique for Hypersonic Wind Tunnels

    Science.gov (United States)

    Buck, Gregory M.

    2000-01-01

    High-temperature luminescent coatings are being developed and applied for simultaneous pressure and temperature mapping in conventional-type hypersonic wind tunnels, providing global pressure as well as Global aeroheating measurements. Together, with advanced model fabrication and analysis methods, these techniques will provide a more rapid and complete experimental aerodynamic and aerothermodynamic database for future aerospace vehicles. The current status in development of simultaneous pressure- and temperature-sensitive coatings and measurement techniques for hypersonic wind tunnels at Langley Research Center is described. and initial results from a feasibility study in the Langley 31-Inch Mach 10 Tunnel are presented.

  2. Scenario and modelling uncertainty in global mean temperature change derived from emission-driven global climate models

    Directory of Open Access Journals (Sweden)

    B. B. B. Booth

    2013-04-01

    Full Text Available We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission-driven rather than concentration-driven perturbed parameter ensemble of a global climate model (GCM. These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration-driven simulations (with 10–90th percentile ranges of 1.7 K for the aggressive mitigation scenario, up to 3.9 K for the high-end, business as usual scenario. A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 K (RCP8.5 and even under aggressive mitigation (RCP2.6 temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission-driven experiments, they do not change existing expectations (based on previous concentration-driven experiments on the timescales over which different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in the case of SRES A1B and the Representative Concentration Pathways (RCPs, the concentration scenarios used to drive GCM ensembles, lies towards the lower end of our simulated distribution. This design decision (a legacy of previous assessments is likely to lead concentration-driven experiments to under-sample strong feedback responses in future projections. Our ensemble of emission-driven simulations span the global temperature response of the CMIP5 emission-driven simulations, except at the low end. Combinations of low climate sensitivity and low carbon cycle feedbacks lead to a number of CMIP5 responses to lie below our ensemble range. The ensemble simulates a number of high

  3. Evidence on a link between the intensity of Schumann resonance and global surface temperature

    Directory of Open Access Journals (Sweden)

    M. Sekiguchi

    2006-08-01

    Full Text Available A correlation is investigated between the intensity of the global electromagnetic oscillations (Schumann resonance with the planetary surface temperature. The electromagnetic signal was monitored at Moshiri (Japan, and temperature data were taken from surface meteorological observations. The series covers the period from November 1998 to May 2002. The Schumann resonance intensity is found to vary coherently with the global ground temperature in the latitude interval from 45° S to 45° N: the relevant cross-correlation coefficient reaches the value of 0.9. It slightly increases when the high-latitude temperature is incorporated. Correspondence among the data decreases when we reduce the latitude interval, which indicates the important role of the middle-latitude lightning in the Schumann resonance oscillations. We apply the principal component (or singular spectral analysis to the electromagnetic and temperature records to extract annual, semiannual, and interannual variations. The principal component analysis (PCA clarifies the links between electromagnetic records and meteorological data.

  4. A globally applicable, season-specific model for estimating the weighted mean temperature of the atmosphere

    Science.gov (United States)

    Yao, YiBin; Zhu, Shuang; Yue, ShunQiang

    2012-12-01

    In GPS meteorology, the weighted mean temperature is usually obtained by using a linear function of the surface temperature T s. However, not every GPS station can measure the surface temperature. The current study explores the characteristics of surface temperature and weighted mean temperature based on the global pressure and temperature model (GPT) and the Bevis T m- T s relationship ( T m = a + bT s). A new global weighted mean temperature (GWMT) model has been built which directly uses three-dimensional coordinates and day of the year to calculate the weighted mean temperature. The data of year 2005-2009 from 135 radiosonde stations provided by the Integrated Global Radiosonde Archive were used to calculate the model coefficients, which have been validated through examples. The result shows that the GWMT model is generally better than the existing liner models in most areas according to the statistic indexes (namely, mean absolute error and root mean square). Then we calculated precipitable water vapor, and the result shows that GWMT model can also yield high precision PWV.

  5. Coral reef bleaching and sea surface temperature anomalies: 1991-1996 global patterns

    Energy Technology Data Exchange (ETDEWEB)

    Goreau, T.J.; Hayes, R.L.; Strong, A.

    1997-12-31

    Global spatio-temporal patterns of mass coral reef bleaching during the first half of the 1990s continued to show the strong temperature correlations which first became established in the 1980s. Satellite sea surface temperature data and field observations were used to track thermal bleaching events in real time. Most bleaching events followed warm season sea surface temperature anomalies of around +1 degree celsius above historical means. Global bleaching patterns appear to have been strongly affected by worldwide cooling which followed eruption of Mount Pinatubo in June 1991. High water temperatures and mass coral reef bleaching took place in the Caribbean, Indian Ocean, and South Pacific in 1991, but there were few thermal anomalies or bleaching events in 1992 and 1993, years which were markedly cooler worldwide. Following the settling of Mount Pinatubo aerosols and resumption of global warming trends, extensive ocean thermal hot spots and bleaching events resumed in the South Pacific, South Atlantic, and Indian Oceans in 1994. Bleaching again took place in hot spots in the Indian Ocean and Caribbean in 1995, and in the South Atlantic, Caribbean, South Pacific, North Pacific, and Persian Gulf in 1996. Coral reefs worldwide are now very close to their upper temperature tolerance limits. This sensitivity, and the fact that the warmest ecosystems have no source of immigrant species pre-adapted to warmer conditions, may make coral reef ecosystems the first to be severely impacted if global temperatures and sea levels remain at current values or increase further.

  6. Impact of Environmental Changes and Global Warming on Temperature in Pakistan

    Directory of Open Access Journals (Sweden)

    Ishtiaq Hassan

    2011-01-01

    Full Text Available Environmental changes and global warming have direct impact on human life. Estimation of these changes in various parameters of hydrologic cycle is necessary for future planning and development of a country. In this paper the impact of environmental changes and global warming on temperatures of Pakistan has been studied. The temperature changes in Pakistan have been extracted from simulations made using EdGCM model developed at Columbia University. Simulation study to the end of 21st century is executed using the model for GHG (Greenhouse Gases scenario with doubled_CO2 and scenario of Modern_Predicted SST (Sea Surface Temperature. The model analysis has been carried out for seasonal and annual changes for an average of last 5 years period from 2096-2100. Maps are generated to depict global temperature variations. The study divides Pakistan into five (05 main areas for twenty six (26 stations. A part-plan of globe focusing Pakistan is generated showing the five divisions for twenty six (26 data stations of Pakistan. This part plan is made compatible with grid-box resolution of EdGCM. Eagle-Point Engineering software has been used to generate isohyets of interval (0.5oC for downscaling GCM (Global Climate Model grid data to data stations. The station values of different seasons and annual changes are then compared with the values of base period data to determine changes in temperature. It is observed that impact of global environmental changes on temperature are higher (i.e. there is an increase in annual temperature for double_CO2 experiment at places near the Arabian Sea than areas located away from this sea. It is also observed that the temperature increase will be more in winter than that in other seasons for Pakistan.

  7. Global and regional temperature-change potentials for near-term climate forcers

    Directory of Open Access Journals (Sweden)

    W. J. Collins

    2013-03-01

    Full Text Available We examine the climate effects of the emissions of near-term climate forcers (NTCFs from 4 continental regions (East Asia, Europe, North America and South Asia using results from the Task Force on Hemispheric Transport of Air Pollution Source-Receptor global chemical transport model simulations. We address 3 aerosol species (sulphate, particulate organic matter and black carbon and 4 ozone precursors (methane, reactive nitrogen oxides (NOx, volatile organic compounds and carbon monoxide. We calculate the global climate metrics: global warming potentials (GWPs and global temperature change potentials (GTPs. For the aerosols these metrics are simply time-dependent scalings of the equilibrium radiative forcings. The GTPs decrease more rapidly with time than the GWPs. The aerosol forcings and hence climate metrics have only a modest dependence on emission region. The metrics for ozone precursors include the effects on the methane lifetime. The impacts via methane are particularly important for the 20 yr GTPs. Emissions of NOx and VOCs from South Asia have GWPs and GTPs of higher magnitude than from the other Northern Hemisphere regions. The analysis is further extended by examining the temperature-change impacts in 4 latitude bands, and calculating absolute regional temperature-change potentials (ARTPs. The latitudinal pattern of the temperature response does not directly follow the pattern of the diagnosed radiative forcing. We find that temperatures in the Arctic latitudes appear to be particularly sensitive to BC emissions from South Asia. The northern mid-latitude temperature response to northern mid-latitude emissions is approximately twice as large as the global average response for aerosol emission, and about 20–30% larger than the global average for methane, VOC and CO emissions.

  8. Synoptic monthly gridded Global Temperature and Salinity Profile Programme (GTSPP) water temperature and salinity from January 1990 to December 2009 (NCEI Accession 0138647)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The synoptic gridded Global Temperature and Salinity Profile Programme (SG-GTSPP) provides world ocean 3D gridded temperature and salinity data in monthly increment...

  9. Global Sea Surface Temperature and Sea Level Rise Estimation with Optimal Historical Time Lag Data

    Directory of Open Access Journals (Sweden)

    Mustafa M. Aral

    2016-11-01

    Full Text Available Prediction of global temperatures and sea level rise (SLR is important for sustainable development planning of coastal regions of the world and the health and safety of communities living in these regions. In this study, climate change effects on sea level rise is investigated using a dynamic system model (DSM with time lag on historical input data. A time-invariant (TI-DSM and time-variant dynamic system model (TV-DSM with time lag is developed to predict global temperatures and SLR in the 21st century. The proposed model is an extension of the DSM developed by the authors. The proposed model includes the effect of temperature and sea level states of several previous years on the current temperature and sea level over stationary and also moving scale time periods. The optimal time lag period used in the model is determined by minimizing a synthetic performance index comprised of the root mean square error and coefficient of determination which is a measure for the reliability of the predictions. Historical records of global temperature and sea level from 1880 to 2001 are used to calibrate the model. The optimal time lag is determined to be eight years, based on the performance measures. The calibrated model was then used to predict the global temperature and sea levels in the 21st century using a fixed time lag period and moving scale time lag periods. To evaluate the adverse effect of greenhouse gas emissions on SLR, the proposed model was also uncoupled to project the SLR based on global temperatures that are obtained from the Intergovernmental Panel on Climate Change (IPCC emission scenarios. The projected SLR estimates for the 21st century are presented comparatively with the predictions made in previous studies.

  10. GLOBAL CHANGES IN THE SEA ICE COVER AND ASSOCIATED SURFACE TEMPERATURE CHANGES

    Directory of Open Access Journals (Sweden)

    J. C. Comiso

    2016-06-01

    Full Text Available The trends in the sea ice cover in the two hemispheres have been observed to be asymmetric with the rate of change in the Arctic being negative at −3.8 % per decade while that of the Antarctic is positive at 1.7 % per decade. These observations are confirmed in this study through analyses of a more robust data set that has been enhanced for better consistency and updated for improved statistics. With reports of anthropogenic global warming such phenomenon appears physically counter intuitive but trend studies of surface temperature over the same time period show the occurrence of a similar asymmetry. Satellite surface temperature data show that while global warming is strong and dominant in the Arctic, it is relatively minor in the Antarctic with the trends in sea ice covered areas and surrounding ice free regions observed to be even negative. A strong correlation of ice extent with surface temperature is observed, especially during the growth season, and the observed trends in the sea ice cover are coherent with the trends in surface temperature. The trend of global averages of the ice cover is negative but modest and is consistent and compatible with the positive but modest trend in global surface temperature. A continuation of the trend would mean the disappearance of summer ice by the end of the century but modelling projections indicate that the summer ice could be salvaged if anthropogenic greenhouse gases in the atmosphere are kept constant at the current level.

  11. Climate change and temperature-linked hatchling mortality at a globally important sea turtle nesting site.

    Science.gov (United States)

    Laloë, Jacques-Olivier; Cozens, Jacquie; Renom, Berta; Taxonera, Albert; Hays, Graeme C

    2017-11-01

    The study of temperature-dependent sex determination (TSD) in vertebrates has attracted major scientific interest. Recently, concerns for species with TSD in a warming world have increased because imbalanced sex ratios could potentially threaten population viability. In contrast, relatively little attention has been given to the direct effects of increased temperatures on successful embryonic development. Using 6603 days of sand temperature data recorded across 6 years at a globally important loggerhead sea turtle rookery-the Cape Verde Islands-we show the effects of warming incubation temperatures on the survival of hatchlings in nests. Incorporating published data (n = 110 data points for three species across 12 sites globally), we show the generality of relationships between hatchling mortality and incubation temperature and hence the broad applicability of our findings to sea turtles in general. We use a mechanistic approach supplemented by empirical data to consider the linked effects of warming temperatures on hatchling output and on sex ratios for these species that exhibit TSD. Our results show that higher temperatures increase the natural growth rate of the population as more females are produced. As a result, we project that numbers of nests at this globally important site will increase by approximately 30% by the year 2100. However, as incubation temperatures near lethal levels, the natural growth rate of the population decreases and the long-term survival of this turtle population is threatened. Our results highlight concerns for species with TSD in a warming world and underline the need for research to extend from a focus on temperature-dependent sex determination to a focus on temperature-linked hatchling mortalities. © 2017 John Wiley & Sons Ltd.

  12. Quality-controlled sea surface temperature, salinity and other measurements from the NCEI Global Thermosalinographs Database (NCEI-TSG)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection contains global in-situ sea surface temperature (SST), salinity (SSS) and other measurements from the NOAA NCEI Global Thermosalinographs Database...

  13. A probabilistic analysis of human influence on recent record global mean temperature changes

    Directory of Open Access Journals (Sweden)

    Philip Kokic

    2014-01-01

    Full Text Available December 2013 was the 346th consecutive month where global land and ocean average surface temperature exceeded the 20th century monthly average, with February 1985 the last time mean temperature fell below this value. Even given these and other extraordinary statistics, public acceptance of human induced climate change and confidence in the supporting science has declined since 2007. The degree of uncertainty as to whether observed climate changes are due to human activity or are part of natural systems fluctuations remains a major stumbling block to effective adaptation action and risk management. Previous approaches to attribute change include qualitative expert-assessment approaches such as used in IPCC reports and use of ‘fingerprinting’ methods based on global climate models. Here we develop an alternative approach which provides a rigorous probabilistic statistical assessment of the link between observed climate changes and human activities in a way that can inform formal climate risk assessment. We construct and validate a time series model of anomalous global temperatures to June 2010, using rates of greenhouse gas (GHG emissions, as well as other causal factors including solar radiation, volcanic forcing and the El Niño Southern Oscillation. When the effect of GHGs is removed, bootstrap simulation of the model reveals that there is less than a one in one hundred thousand chance of observing an unbroken sequence of 304 months (our analysis extends to June 2010 with mean surface temperature exceeding the 20th century average. We also show that one would expect a far greater number of short periods of falling global temperatures (as observed since 1998 if climate change was not occurring. This approach to assessing probabilities of human influence on global temperature could be transferred to other climate variables and extremes allowing enhanced formal risk assessment of climate change.

  14. Interactions between temperature and drought in global and regional crop yield variability during 1961-2014

    Science.gov (United States)

    Matiu, Michael; Ankerst, Donna P.; Menzel, Annette

    2017-01-01

    Inter-annual crop yield variation is driven in large parts by climate variability, wherein the climate components of temperature and precipitation often play the biggest role. Nonlinear effects of temperature on yield as well as interactions among the climate variables have to be considered. Links between climate and crop yield variability have been previously studied, both globally and at regional scales, but typically with additive models with no interactions, or when interactions were included, with implications not fully explained. In this study yearly country level yields of maize, rice, soybeans, and wheat of the top producing countries were combined with growing season temperature and SPEI (standardized precipitation evapotranspiration index) to determine interaction and intensification effects of climate variability on crop yield variability during 1961–2014. For maize, soybeans, and wheat, heat and dryness significantly reduced yields globally, while global effects for rice were not significant. But because of interactions, heat was more damaging in dry than in normal conditions for maize and wheat, and temperature effects were not significant in wet conditions for maize, soybeans, and wheat. Country yield responses to climate variability naturally differed between the top producing countries, but an accurate description of interaction effects at the country scale required sub-national data (shown only for the USA). Climate intensification, that is consecutive dry or warm years, reduced yields additionally in some cases, however, this might be linked to spillover effects of multiple growing seasons. Consequently, the effect of temperature on yields might be underestimated in dry conditions: While there were no significant global effects of temperature for maize and soybeans yields for average SPEI, the combined effects of high temperatures and drought significantly decreased yields of maize, soybeans, and wheat by 11.6, 12.4, and 9.2%, respectively. PMID

  15. Quantitative assessment of drivers of recent global temperature variability: an information theoretic approach

    Science.gov (United States)

    Bhaskar, Ankush; Ramesh, Durbha Sai; Vichare, Geeta; Koganti, Triven; Gurubaran, S.

    2017-12-01

    Identification and quantification of possible drivers of recent global temperature variability remains a challenging task. This important issue is addressed adopting a non-parametric information theory technique, the Transfer Entropy and its normalized variant. It distinctly quantifies actual information exchanged along with the directional flow of information between any two variables with no bearing on their common history or inputs, unlike correlation, mutual information etc. Measurements of greenhouse gases: CO2, CH4 and N2O; volcanic aerosols; solar activity: UV radiation, total solar irradiance ( TSI) and cosmic ray flux ( CR); El Niño Southern Oscillation ( ENSO) and Global Mean Temperature Anomaly ( GMTA) made during 1984-2005 are utilized to distinguish driving and responding signals of global temperature variability. Estimates of their relative contributions reveal that CO2 ({˜ } 24 %), CH4 ({˜ } 19 %) and volcanic aerosols ({˜ }23 %) are the primary contributors to the observed variations in GMTA. While, UV ({˜ } 9 %) and ENSO ({˜ } 12 %) act as secondary drivers of variations in the GMTA, the remaining play a marginal role in the observed recent global temperature variability. Interestingly, ENSO and GMTA mutually drive each other at varied time lags. This study assists future modelling efforts in climate science.

  16. Uncertainty in runoff based on Global Climate Model precipitation and temperature data - Part 1: Assessment of Global Climate Models

    Science.gov (United States)

    McMahon, T. A.; Peel, M. C.; Karoly, D. J.

    2014-05-01

    Two key sources of uncertainty in projections of future runoff for climate change impact assessments are uncertainty between Global Climate Models (GCMs) and within a GCM. Uncertainty between GCM projections of future climate can be assessed through analysis of runs of a given scenario from a wide range of GCMs. Within GCM uncertainty is the variability in GCM output that occurs when running a scenario multiple times but each run has slightly different, but equally plausible, initial conditions. The objective of this, the first of two complementary papers, is to reduce between-GCM uncertainty by identifying and removing poorly performing GCMs prior to the analysis presented in the second paper. Here we assess how well 46 runs from 22 Coupled Model Intercomparison Project phase 3 (CMIP3) GCMs are able to reproduce observed precipitation and temperature climatological statistics. The performance of each GCM in reproducing these statistics was ranked and better performing GCMs identified for later analyses. Observed global land surface precipitation and temperature data were drawn from the CRU 3.10 gridded dataset and re-sampled to the resolution of each GCM for comparison. Observed and GCM based estimates of mean and standard deviation of annual precipitation, mean annual temperature, mean monthly precipitation and temperature and Köppen climate type were compared. The main metrics for assessing GCM performance were the Nash-Sutcliffe efficiency index and RMSE between modelled and observed long-term statistics. This information combined with a literature review of the performance of the CMIP3 models identified the following five models as the better performing models for the next phase of our analysis in assessing the uncertainty in runoff estimated from GCM projections of precipitation and temperature: HadCM3 (Hadley Centre for Climate Prediction and Research), MIROCM (Center for Climate System Research (The University of Tokyo), National Institute for

  17. Changes in regional climate extremes as a function of global mean temperature: an interactive plotting framework

    Science.gov (United States)

    Wartenburger, Richard; Hirschi, Martin; Donat, Markus G.; Greve, Peter; Pitman, Andy J.; Seneviratne, Sonia I.

    2017-09-01

    This article extends a previous study Seneviratne et al. (2016) to provide regional analyses of changes in climate extremes as a function of projected changes in global mean temperature. We introduce the DROUGHT-HEAT Regional Climate Atlas, an interactive tool to analyse and display a range of well-established climate extremes and water-cycle indices and their changes as a function of global warming. These projections are based on simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5). A selection of example results are presented here, but users can visualize specific indices of interest using the online tool. This implementation enables a direct assessment of regional climate changes associated with global mean temperature targets, such as the 2 and 1.5° limits agreed within the 2015 Paris Agreement.

  18. Similar estimates of temperature impacts on global wheat yield by three independent methods

    DEFF Research Database (Denmark)

    Liu, Bing; Asseng, Senthold; Müller, Christoph

    2016-01-01

    The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produce...... China, India, USA and France, but less so for Russia. Point-based and grid-based simulations, and to some extent the statistical regressions, were consistent in projecting that warmer regions are likely to suffer more yield loss with increasing temperature than cooler regions. By forming a multi......-method ensemble, it was possible to quantify ‘method uncertainty’ in addition to model uncertainty. This significantly improves confidence in estimates of climate impacts on global food security....

  19. Compensatory water effects link yearly global land CO2 sink changes to temperature

    Science.gov (United States)

    Jung, Martin; Reichstein, Markus; Schwalm, Christopher R.; Huntingford, Chris; Sitch, Stephen; Ahlström, Anders; Arneth, Almut; Camps-Valls, Gustau; Ciais, Philippe; Friedlingstein, Pierre; Gans, Fabian; Ichii, Kazuhito; Jain, Atul K.; Kato, Etsushi; Papale, Dario; Poulter, Ben; Raduly, Botond; Rödenbeck, Christian; Tramontana, Gianluca; Viovy, Nicolas; Wang, Ying-Ping; Weber, Ulrich; Zaehle, Sönke; Zeng, Ning

    2017-01-01

    Large interannual variations in the measured growth rate of atmospheric carbon dioxide (CO2) originate primarily from fluctuations in carbon uptake by land ecosystems. It remains uncertain, however, to what extent temperature and water availability control the carbon balance of land ecosystems across spatial and temporal scales. Here we use empirical models based on eddy covariance data and process-based models to investigate the effect of changes in temperature and water availability on gross primary productivity (GPP), terrestrial ecosystem respiration (TER) and net ecosystem exchange (NEE) at local and global scales. We find that water availability is the dominant driver of the local interannual variability in GPP and TER. To a lesser extent this is true also for NEE at the local scale, but when integrated globally, temporal NEE variability is mostly driven by temperature fluctuations. We suggest that this apparent paradox can be explained by two compensatory water effects. Temporal water-driven GPP and TER variations compensate locally, dampening water-driven NEE variability. Spatial water availability anomalies also compensate, leaving a dominant temperature signal in the year-to-year fluctuations of the land carbon sink. These findings help to reconcile seemingly contradictory reports regarding the importance of temperature and water in controlling the interannual variability of the terrestrial carbon balance. Our study indicates that spatial climate covariation drives the global carbon cycle response.

  20. Compensatory Water Effects Link Yearly Global Land CO2 Sink Changes to Temperature

    Science.gov (United States)

    Jung, Martin; Reichstein, Markus; Tramontana, Gianluca; Viovy, Nicolas; Schwalm, Christopher R.; Wang, Ying-Ping; Weber, Ulrich; Weber, Ulrich; Zaehle, Soenke; Zeng, Ning; hide

    2017-01-01

    Large interannual variations in the measured growth rate of atmospheric carbon dioxide (CO2) originate primarily from fluctuations in carbon uptake by land ecosystems13. It remains uncertain, however, to what extent temperature and water availability control the carbon balance of land ecosystems across spatial and temporal scales314. Here we use empirical models based on eddy covariance data15 and process-based models16,17 to investigate the effect of changes in temperature and water availability on gross primary productivity (GPP), terrestrial ecosystem respiration (TER) and net ecosystem exchange (NEE) at local and global scales. We find that water availability is the dominant driver of the local interannual variability in GPP and TER. To a lesser extent this is true also for NEE at the local scale, but when integrated globally, temporal NEE variability is mostly driven by temperature fluctuations. We suggest that this apparent paradox can be explained by two compensatory water effects. Temporal water-driven GPP and TER variations compensate locally, dampening water-driven NEE variability. Spatial water availability anomalies also compensate, leaving a dominant temperature signal in the year-to-year fluctuations of the land carbon sink. These findings help to reconcile seemingly contradictory reports regarding the importance of temperature and water in controlling the interannual variability of the terrestrial carbon balance36,9,11,12,14. Our study indicates that spatial climate covariation drives the global carbon cycle response.

  1. The nonstationary impact of local temperature changes and ENSO on extreme precipitation at the global scale

    Science.gov (United States)

    Sun, Qiaohong; Miao, Chiyuan; Qiao, Yuanyuan; Duan, Qingyun

    2017-12-01

    The El Niño-Southern Oscillation (ENSO) and local temperature are important drivers of extreme precipitation. Understanding the impact of ENSO and temperature on the risk of extreme precipitation over global land will provide a foundation for risk assessment and climate-adaptive design of infrastructure in a changing climate. In this study, nonstationary generalized extreme value distributions were used to model extreme precipitation over global land for the period 1979-2015, with ENSO indicator and temperature as covariates. Risk factors were estimated to quantify the contrast between the influence of different ENSO phases and temperature. The results show that extreme precipitation is dominated by ENSO over 22% of global land and by temperature over 26% of global land. With a warming climate, the risk of high-intensity daily extreme precipitation increases at high latitudes but decreases in tropical regions. For ENSO, large parts of North America, southern South America, and southeastern and northeastern China are shown to suffer greater risk in El Niño years, with more than double the chance of intense extreme precipitation in El Niño years compared with La Niña years. Moreover, regions with more intense precipitation are more sensitive to ENSO. Global climate models were used to investigate the changing relationship between extreme precipitation and the covariates. The risk of extreme, high-intensity precipitation increases across high latitudes of the Northern Hemisphere but decreases in middle and lower latitudes under a warming climate scenario, and will likely trigger increases in severe flooding and droughts across the globe. However, there is some uncertainties associated with the influence of ENSO on predictions of future extreme precipitation, with the spatial extent and risk varying among the different models.

  2. GHRSST Level 4 MW_IR_OI Global Foundation Sea Surface Temperature analysis (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) global Level 4 sea surface temperature analysis produced daily on a 0.81 degree grid at Remote Sensing...

  3. MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Day V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Day (MYD21A1D.006). A new suite of MODIS Land Surface Temperature (LST) and...

  4. MODIS/Terra Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Night V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Terra Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Night (MOD21A1N.006). A new suite of MODIS Land Surface Temperature (LST) and...

  5. MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Night V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Night (MYD21A1N.006). A new suite of MODIS Land Surface Temperature (LST) and...

  6. MODIS/Terra Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Day V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Terra Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Day (MOD21A1D.006). A new suite of MODIS Land Surface Temperature (LST) and...

  7. Downscaling the Impacts of Large-Scale LUCC on Surface Temperature along with IPCC RCPs: A Global Perspective

    National Research Council Canada - National Science Library

    Xiangzheng Deng; Chunhong Zhao; Yingzhi Lin; Tao Zhang; Yi Qu; Fan Zhang; Zhan Wang; Feng Wu

    2014-01-01

    ...) on surface temperature from a global perspective. As important types of LUCC, urbanization, deforestation, cultivated land reclamation, and grassland degradation have effects on the climate, the potential changes of the surface temperature caused...

  8. Global-mean surface temperature variability: space-time perspective from rotated EOFs

    Science.gov (United States)

    Chen, Xianyao; Tung, Ka-Kit

    2017-10-01

    The observed global-mean surface temperature (GST) has been warming in the presence of increasing atmospheric concentration of greenhouse gases, but its rise has not been monotonic. Attention has increasingly been focused on the prominent variations about the linear trend in GST, especially on interdecadal and multidecadal time scales. When the sea-surface temperature (SST) and the land- plus-ocean surface temperature (ST) are averaged globally to yield the global-mean SST (GSST) and the GST, respectively, spatial information is lost. Information on both space and time is needed to properly identify the modes of variability on interannual, decadal, interdecadal and multidecadal time scales contributing to the GSST and GST variability. Empirical Orthogonal Function (EOF) analysis is usually employed to extract the space-time modes of climate variability. Here we use the method of pair-wise rotation of the principal components (PCs) to extract the modes in these time-scale bands and obtain global spatial EOFs that correspond closely with regionally defined climate modes. Global averaging these clearly identified global modes allows us to reconstruct GSST and GST, and in the process identify their components. The results are: Pacific contributes to the global mean variation mostly on the interannual time scale through El Nino-Southern Oscillation (ENSO) and its teleconnections, while the Atlantic contributes strongly to the global mean on the multidecadal time scale through the interhemispheric mode called the Atlantic Multidecadal Oscillation (AMO). The Pacific Decadal Oscillation (PDO) has twice as large a variance as the AMO, but its contribution to GST is only 1/10 that of the AMO because of its compensating patterns of cold and warm SST in northwest and northeast Pacific. Its teleconnection pattern, the Pacific/North America (PNA) pattern over land, is also found to be self-cancelling when globally averaged because of its alternating warm and cold centers. The

  9. Physiological constraints on the global distribution of Trichodesmium – effect of temperature on diazotrophy

    Directory of Open Access Journals (Sweden)

    E. Breitbarth

    2007-01-01

    Full Text Available The cyanobacterium Trichodesmium is an important link in the global nitrogen cycle due to its significant input of atmospheric nitrogen to the ocean. Attempts to incorporate Trichodesmium in ocean biogeochemical circulation models have, so far, relied on the observed correlation between temperature and Trichodesmium abundance. This correlation may result in part from a direct effect of temperature on Trichodesmium growth rates through the control of cellular biochemical processes, or indirectly through temperature influence on mixed layer depth, light and nutrient regimes. Here we present results indicating that the observed correlation of Trichodesmium with temperature in the field reflects primarily the direct physiological effects of temperature on diazotrophic growth of Trichodesmium. Trichodesmium IMS-101 (an isolate of Trichodesmium could acclimate and grow at temperatures ranging from 20 to 34°C. Maximum growth rates (μmax=0.25 day–1 and maximum nitrogen fixation rates (0.13 mmol N mol POC−1 h–1 were measured within 24 to 30°C. Combining this empirical relationship with global warming scenarios derived from state-of-the-art climate models sets a physiological constraint on the future distribution of Trichodesmium that could significantly affect the future nitrogen input into oligotrophic waters by this diazotroph.

  10. The role of natural climatic variation in perturbing the observed global mean temperature trend

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, B.G. [CSIRO Marine and Atmospheric Research, Aspendale, VIC (Australia)

    2011-02-15

    Controversy continues to prevail concerning the reality of anthropogenically-induced climatic warming. One of the principal issues is the cause of the hiatus in the current global warming trend. There appears to be a widely held view that climatic change warming should exhibit an inexorable upwards trend, a view that implies there is no longer any input by climatic variability in the existing climatic system. The relative roles of climatic change and climatic variability are examined here using the same coupled global climatic model. For the former, the model is run using a specified CO{sub 2} growth scenario, while the latter consisted of a multi-millennial simulation where any climatic variability was attributable solely to internal processes within the climatic system. It is shown that internal climatic variability can produce global mean surface temperature anomalies of {+-}0.25 K and sustained positive and negative anomalies sufficient to account for the anomalous warming of the 1940s as well as the present hiatus in the observed global warming. The characteristics of the internally-induced negative temperature anomalies are such that if this internal natural variability is the cause of the observed hiatus, then a resumption of the observed global warming trend is to be expected within the next few years. (orig.)

  11. Human-experienced temperature changes exceed global average climate changes for all income groups

    Science.gov (United States)

    Hsiang, S. M.; Parshall, L.

    2009-12-01

    Global climate change alters local climates everywhere. Many climate change impacts, such as those affecting health, agriculture and labor productivity, depend on these local climatic changes, not global mean change. Traditional, spatially averaged climate change estimates are strongly influenced by the response of icecaps and oceans, providing limited information on human-experienced climatic changes. If used improperly by decision-makers, these estimates distort estimated costs of climate change. We overlay the IPCC’s 20 GCM simulations on the global population distribution to estimate local climatic changes experienced by the world population in the 21st century. The A1B scenario leads to a well-known rise in global average surface temperature of +2.0°C between the periods 2011-2030 and 2080-2099. Projected on the global population distribution in 2000, the median human will experience an annual average rise of +2.3°C (4.1°F) and the average human will experience a rise of +2.4°C (4.3°F). Less than 1% of the population will experience changes smaller than +1.0°C (1.8°F), while 25% and 10% of the population will experience changes greater than +2.9°C (5.2°F) and +3.5°C (6.2°F) respectively. 67% of the world population experiences temperature changes greater than the area-weighted average change of +2.0°C (3.6°F). Using two approaches to characterize the spatial distribution of income, we show that the wealthiest, middle and poorest thirds of the global population experience similar changes, with no group dominating the global average. Calculations for precipitation indicate that there is little change in average precipitation, but redistributions of precipitation occur in all income groups. These results suggest that economists and policy-makers using spatially averaged estimates of climate change to approximate local changes will systematically and significantly underestimate the impacts of climate change on the 21st century population. Top: The

  12. Assessment of precipitation and temperature data from CMIP3 global climate models for hydrologic simulation

    Science.gov (United States)

    McMahon, T. A.; Peel, M. C.; Karoly, D. J.

    2015-01-01

    The objective of this paper is to identify better performing Coupled Model Intercomparison Project phase 3 (CMIP3) global climate models (GCMs) that reproduce grid-scale climatological statistics of observed precipitation and temperature for input to hydrologic simulation over global land regions. Current assessments are aimed mainly at examining the performance of GCMs from a climatology perspective and not from a hydrology standpoint. The performance of each GCM in reproducing the precipitation and temperature statistics was ranked and better performing GCMs identified for later analyses. Observed global land surface precipitation and temperature data were drawn from the Climatic Research Unit (CRU) 3.10 gridded data set and re-sampled to the resolution of each GCM for comparison. Observed and GCM-based estimates of mean and standard deviation of annual precipitation, mean annual temperature, mean monthly precipitation and temperature and Köppen-Geiger climate type were compared. The main metrics for assessing GCM performance were the Nash-Sutcliffe efficiency (NSE) index and root mean square error (RMSE) between modelled and observed long-term statistics. This information combined with a literature review of the performance of the CMIP3 models identified the following better performing GCMs from a hydrologic perspective: HadCM3 (Hadley Centre for Climate Prediction and Research), MIROCm (Model for Interdisciplinary Research on Climate) (Center for Climate System Research (The University of Tokyo), National Institute for Environmental Studies, and Frontier Research Center for Global Change), MIUB (Meteorological Institute of the University of Bonn, Meteorological Research Institute of KMA, and Model and Data group), MPI (Max Planck Institute for Meteorology) and MRI (Japan Meteorological Research Institute). The future response of these GCMs was found to be representative of the 44 GCM ensemble members which confirms that the selected GCMs are reasonably

  13. Sources of global warming in upper ocean temperature during El Niño

    Science.gov (United States)

    White, Warren B.; Cayan, Daniel R.; Dettinger, Mike; Auad, Guillermo

    2001-01-01

    Global average sea surface temperature (SST) from 40°S to 60°N fluctuates ±0.3°C on interannual period scales, with global warming (cooling) during El Niño (La Niña). About 90% of the global warming during El Niño occurs in the tropical global ocean from 20°S to 20°N, half because of large SST anomalies in the tropical Pacific associated with El Niño and the other half because of warm SST anomalies occurring over ∼80% of the tropical global ocean. From examination of National Centers for Environmental Prediction [Kalnay et al., 1996] and Comprehensive Ocean-Atmosphere Data Set [Woodruff et al., 1993] reanalyses, tropical global warming during El Niño is associated with higher troposphere moisture content and cloud cover, with reduced trade wind intensity occurring during the onset phase of El Niño. During this onset phase the tropical global average diabatic heat storage tendency in the layer above the main pycnocline is 1–3 W m−2above normal. Its principal source is a reduction in the poleward Ekman heat flux out of the tropical ocean of 2–5 W m−2. Subsequently, peak tropical global warming during El Niño is dissipated by an increase in the flux of latent heat to the troposphere of 2–5 W m−2, with reduced shortwave and longwave radiative fluxes in response to increased cloud cover tending to cancel each other. In the extratropical global ocean the reduction in poleward Ekman heat flux out of the tropics during the onset of El Niño tends to be balanced by reduction in the flux of latent heat to the troposphere. Thus global warming and cooling during Earth's internal mode of interannual climate variability arise from fluctuations in the global hydrological balance, not the global radiation balance. Since it occurs in the absence of extraterrestrial and anthropogenic forcing, global warming on decadal, interdecadal, and centennial period scales may also occur in association with Earth's internal modes of climate variability on those scales.

  14. Global patterns in lake ecosystem responses to warming based on the temperature dependence of metabolism.

    Science.gov (United States)

    Kraemer, Benjamin M; Chandra, Sudeep; Dell, Anthony I; Dix, Margaret; Kuusisto, Esko; Livingstone, David M; Schladow, S Geoffrey; Silow, Eugene; Sitoki, Lewis M; Tamatamah, Rashid; McIntyre, Peter B

    2017-05-01

    Climate warming is expected to have large effects on ecosystems in part due to the temperature dependence of metabolism. The responses of metabolic rates to climate warming may be greatest in the tropics and at low elevations because mean temperatures are warmer there and metabolic rates respond exponentially to temperature (with exponents >1). However, if warming rates are sufficiently fast in higher latitude/elevation lakes, metabolic rate responses to warming may still be greater there even though metabolic rates respond exponentially to temperature. Thus, a wide range of global patterns in the magnitude of metabolic rate responses to warming could emerge depending on global patterns of temperature and warming rates. Here we use the Boltzmann-Arrhenius equation, published estimates of activation energy, and time series of temperature from 271 lakes to estimate long-term (1970-2010) changes in 64 metabolic processes in lakes. The estimated responses of metabolic processes to warming were usually greatest in tropical/low-elevation lakes even though surface temperatures in higher latitude/elevation lakes are warming faster. However, when the thermal sensitivity of a metabolic process is especially weak, higher latitude/elevation lakes had larger responses to warming in parallel with warming rates. Our results show that the sensitivity of a given response to temperature (as described by its activation energy) provides a simple heuristic for predicting whether tropical/low-elevation lakes will have larger or smaller metabolic responses to warming than higher latitude/elevation lakes. Overall, we conclude that the direct metabolic consequences of lake warming are likely to be felt most strongly at low latitudes and low elevations where metabolism-linked ecosystem services may be most affected. © 2016 John Wiley & Sons Ltd.

  15. Hiatus in global warming - example of water temperature of the Danube River at Bogojevo gauge (Serbia

    Directory of Open Access Journals (Sweden)

    Ducić Vladan

    2015-01-01

    Full Text Available The research included trends in water temperature of the Danube River at Bogojevo gauge and surface air temperature at the nearby meteorological station Sombor, as well as an analysis of the results obtained in relation to the claims of the existence of the hiatus in global air temperature increase in the period 1998-2012. In the period 1961-2013, there was a statistically significant increase in the mean annual water temperature (0.039°C/year, as well as all the average monthly values. However, with annual values for the period 1998-2013, there was a decrease. The longest periods of negative trend (27 years were recorded for January and February. A high correlation was found between the surface air temperature and water temperature for all monthly and seasonal values. In the mean annual air temperature the presence of the hiatus is not observed, but a negative trend is recorded in March (32 years, December (43 years and February (49 years. The highest correlations between water temperature and North Atlantic Oscillation (NAO, Arctic Oscillation (AO and Atlantic Multidecadal Oscillation (AMO were obtained for the NAO in January (0.60, the AMO in autumn (0.52 and the NAO in winter (0.51. For surface air temperature, the highest correlations were registered for the AMO in summer (0.49 and the NAO in winter (0.42. The results indicate the dominant role of natural factors in the decrease of winter air temperature and water temperature of the Danube. [Projekat Ministarstva nauke Republike Srbije, br. III47007

  16. Vectorial capacity of Aedes aegypti: effects of temperature and implications for global dengue epidemic potential.

    Directory of Open Access Journals (Sweden)

    Jing Liu-Helmersson

    Full Text Available Dengue is a mosquito-borne viral disease that occurs mainly in the tropics and subtropics but has a high potential to spread to new areas. Dengue infections are climate sensitive, so it is important to better understand how changing climate factors affect the potential for geographic spread and future dengue epidemics. Vectorial capacity (VC describes a vector's propensity to transmit dengue taking into account human, virus, and vector interactions. VC is highly temperature dependent, but most dengue models only take mean temperature values into account. Recent evidence shows that diurnal temperature range (DTR plays an important role in influencing the behavior of the primary dengue vector Aedes aegypti. In this study, we used relative VC to estimate dengue epidemic potential (DEP based on the temperature and DTR dependence of the parameters of A. aegypti. We found a strong temperature dependence of DEP; it peaked at a mean temperature of 29.3°C when DTR was 0°C and at 20°C when DTR was 20°C. Increasing average temperatures up to 29°C led to an increased DEP, but temperatures above 29°C reduced DEP. In tropical areas where the mean temperatures are close to 29°C, a small DTR increased DEP while a large DTR reduced it. In cold to temperate or extremely hot climates where the mean temperatures are far from 29°C, increasing DTR was associated with increasing DEP. Incorporating these findings using historical and predicted temperature and DTR over a two hundred year period (1901-2099, we found an increasing trend of global DEP in temperate regions. Small increases in DEP were observed over the last 100 years and large increases are expected by the end of this century in temperate Northern Hemisphere regions using climate change projections. These findings illustrate the importance of including DTR when mapping DEP based on VC.

  17. Alpha-MSH decreases core and brain temperature during global cerebral ischemia in rats

    DEFF Research Database (Denmark)

    Spulber, S.; Moldovan, Mihai; Oprica, M.

    2005-01-01

    -vessel occlusion forebrain ischemia on core temperature (CT) and brain temperature (BT), respectively. After 10 min cerebral ischemia, BT was lower in alpha-MSH- than in saline-injected animals. After 10 min reperfusion, both CT and BT were lower than the corresponding pre-ischemic levels after injection of alpha......-MSH. alpha-MSH did not influence CT or BT in sham-operated rats. The alpha-MSH-induced hypothermia and its potentiation of reduction in BT during global cerebral ischemia, may contribute to neuroprotective effects of alpha-MSH....

  18. Significant influences of global mean temperature and ENSO on extreme rainfall over Southeast Asia

    Science.gov (United States)

    Villafuerte, Marcelino, II; Matsumoto, Jun

    2014-05-01

    Along with the increasing concerns on the consequences of global warming, and the accumulating records of disaster related to heavy rainfall events in Southeast Asia, this study investigates whether a direct link can be detected between the rising global mean temperature, as well as the El Niño-Southern Oscillation (ENSO), and extreme rainfall over the region. The maximum likelihood modeling that allows incorporating covariates on the location parameter of the generalized extreme value (GEV) distribution is employed. The GEV model is fitted to annual and seasonal rainfall extremes, which were taken from a high-resolution gauge-based gridded daily precipitation data covering a span of 57 years (1951-2007). Nonstationarities in extreme rainfall are detected over the central parts of Indochina Peninsula, eastern coasts of central Vietnam, northwest of the Sumatra Island, inland portions of Borneo Island, and on the northeastern and southwestern coasts of the Philippines. These nonstationarities in extreme rainfall are directly linked to near-surface global mean temperature and ENSO. In particular, the study reveals that a kelvin increase in global mean temperature anomaly can lead to an increase of 30% to even greater than 45% in annual maximum 1-day rainfall, which were observed pronouncedly over central Vietnam, southern coast of Myanmar, northwestern sections of Thailand, northwestern tip of Sumatra, central portions of Malaysia, and the Visayas island in central Philippines. Furthermore, a pronounced ENSO influence manifested on the seasonal maximum 1-day rainfall; a northward progression of 10%-15% drier condition over Southeast Asia as the El Niño develops from summer to winter is revealed. It is important therefore, to consider the results obtained here for water resources management as well as for adaptation planning to minimize the potential adverse impact of global warming, particularly on extreme rainfall and its associated flood risk over the region

  19. Global and Regional Temperature-change Potentials for Near-term Climate Forcers

    Science.gov (United States)

    Collins, W.J.; Fry, M. M.; Yu, H.; Fuglestvedt, J. S.; Shindell, D. T.; West, J. J.

    2013-01-01

    The emissions of reactive gases and aerosols can affect climate through the burdens of ozone, methane and aerosols, having both cooling and warming effects. These species are generally referred to near-term climate forcers (NTCFs) or short-lived climate pollutants (SLCPs), because of their short atmospheric residence time. The mitigation of these would be attractive for both air quality and climate on a 30-year timescale, provided it is not at the expense of CO2 mitigation. In this study we examine the climate effects of the emissions of NTCFs from 4 continental regions (East Asia, Europe, North America and South Asia) using results from the Task Force on Hemispheric Transport of Air Pollution Source-Receptor global chemical transport model simulations. We address 3 aerosol species (sulphate, particulate organic matter and black carbon - BC) and 4 ozone precursors (methane, reactive nitrogen oxides - NOx, volatile organic compounds VOC, and carbon monoxide - CO). For the aerosols the global warming potentials (GWPs) and global temperature change potentials (GTPs) are simply time-dependent scaling of the equilibrium radiative forcing, with the GTPs decreasing more rapidly with time than the GWPs. While the aerosol climate metrics have only a modest dependence on emission region, emissions of NOx and VOCs from South Asia have GWPs and GTPs of higher magnitude than from the other northern hemisphere regions. On regional basis, the northern mid-latitude temperature response to northern mid-latitude emissions is approximately twice as large as the global average response for aerosol emission, and about 20-30% larger than the global average for methane, VOC and CO emissions. We also found that temperatures in the Arctic latitudes appear to be particularly sensitive to black carbon emissions from South Asia.

  20. Global estimates of gravity wave parameters from GPS radio occultation temperature data

    Science.gov (United States)

    Wang, L.; Alexander, M. J.

    2010-11-01

    Gravity waves (GWs) play critical roles in the global circulation and the temperature and constituent structures in the middle atmosphere. They also play significant roles in the dynamics and transport and mixing processes in the upper troposphere and lower stratosphere and can affect tropospheric weather. Despite significant advances in our understanding of GWS and their effects in different regions of the atmosphere in the past few decades, observational constraints on GW parameters including momentum flux and propagation direction are still sorely lacking. Global Positioning System (GPS) radio occultation (RO) technique provides global, all-weather, high vertical resolution temperature profiles in the stratosphere and troposphere. The unprecedentedly large number of combined temperature soundings from the Constellation Observing System for Meteorology, Ionosphere, and Climate and Challenging Minisatellite Payload GPS RO missions allows us to obtain GW perturbations by removing the gravest zonal modes using the wavelet method for each day. We extended the GW analysis method of Alexander et al. (2008) to three dimensions to estimate the complete set of GW parameters (including momentum flux and horizontal propagation direction) from the GW temperature perturbations thus derived. To demonstrate the effectiveness of the analysis, we showed global estimates of GW temperature amplitudes, vertical and horizontal wavelengths, intrinsic frequency, and vertical flux of horizontal momentum in the altitude range of 17.5-22.5 km during December 2006 to February 2007. Consistent with many previous studies, GW temperature amplitudes are a maximum in the tropics and are generally larger over land, likely reflecting convection and topography as main GW sources. GW vertical wavelengths are a minimum at equator, likely due to wave refraction, whereas GW horizontal wavelengths are generally longer in the tropics. Most of the waves captured in the analysis of the GPS data are low

  1. Interannual to decadal summer drought variability over Europe and its relationship to global sea surface temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ionita, M.; Lohmann, G. [Alfred Wegener Institute for Polar and Marine Research, Bremerhaven (Germany); University of Bremen, MARUM, Bremen (Germany); Rimbu, N. [Alfred Wegener Institute for Polar and Marine Research, Bremerhaven (Germany); Climed Norad, Bucharest (Romania); Bucharest University, Faculty of Physics, Bucharest (Romania); Chelcea, S. [National Institute of Hydrology and Water Management, Bucharest (Romania); Dima, M. [Alfred Wegener Institute for Polar and Marine Research, Bremerhaven (Germany); Bucharest University, Faculty of Physics, Bucharest (Romania)

    2012-01-15

    Interannual to decadal variability of European summer drought and its relationship with global sea surface temperature (SST) is investigated using the newly developed self calibrated Palmer drought severity index (scPDSI) and global sea surface temperature (SST) field for the period 1901-2002. A European drought severity index defined as the average of scPDSI over entire Europe shows quasiperiodic variations in the 2.5-5 year band as well as at 12-13 years suggesting a possible potential predictability of averaged drought conditions over Europe. A Canonical Correlation Analysis between summer scPDSI anomalies over Europe and global SST anomalies reveals the existence of three modes of coupled summer drought scPDSI patterns and winter global SST anomalies. The first scPDSI-SST coupled mode represents the long-term trends in the data which manifest in SST as warming over all oceans. The associated long-term trend in scPDSI suggests increasing drought conditions over the central part of Europe. The second mode is related to the inter-annual ENSO and decadal PDO influence on the European climate and the third one captures mainly the drought pattern associated to Atlantic Multidecadal Oscillation. The lag relationships between winter SST and summer drought conditions established in this study can provide a valuable skill for the prediction of drought conditions over Europe on interannual to decadal time scales. (orig.)

  2. Interannual to decadal summer drought variability over Europe and its relationship to global sea surface temperature

    Science.gov (United States)

    Ionita, M.; Lohmann, G.; Rimbu, N.; Chelcea, S.; Dima, M.

    2012-01-01

    Interannual to decadal variability of European summer drought and its relationship with global sea surface temperature (SST) is investigated using the newly developed self calibrated Palmer drought severity index (scPDSI) and global sea surface temperature (SST) field for the period 1901-2002. A European drought severity index defined as the average of scPDSI over entire Europe shows quasiperiodic variations in the 2.5-5 year band as well as at 12-13 years suggesting a possible potential predictability of averaged drought conditions over Europe. A Canonical Correlation Analysis between summer scPDSI anomalies over Europe and global SST anomalies reveals the existence of three modes of coupled summer drought scPDSI patterns and winter global SST anomalies. The first scPDSI-SST coupled mode represents the long-term trends in the data which manifest in SST as warming over all oceans. The associated long-term trend in scPDSI suggests increasing drought conditions over the central part of Europe. The second mode is related to the inter-annual ENSO and decadal PDO influence on the European climate and the third one captures mainly the drought pattern associated to Atlantic Multidecadal Oscillation. The lag relationships between winter SST and summer drought conditions established in this study can provide a valuable skill for the prediction of drought conditions over Europe on interannual to decadal time scales.

  3. Western US high June 2015 temperatures and their relation to global warming and soil moisture

    Science.gov (United States)

    Philip, Sjoukje Y.; Kew, Sarah F.; Hauser, Mathias; Guillod, Benoit P.; Teuling, Adriaan J.; Whan, Kirien; Uhe, Peter; Oldenborgh, Geert Jan van

    2017-06-01

    The Western US states Washington (WA), Oregon (OR) and California (CA) experienced extremely high temperatures in June 2015. The temperature anomalies were so extreme that they cannot be explained with global warming alone. We investigate the hypothesis that soil moisture played an important role as well. We use a land surface model and a large ensemble from the weather@home modelling effort to investigate the coupling between soil moisture and temperature in a warming world. Both models show that May was anomalously dry, satisfying a prerequisite for the extreme heat wave, and they indicate that WA and OR are in a wet-to-dry transitional soil moisture regime. We use two different land surface-atmosphere coupling metrics to show that there was strong coupling between temperature, latent heat flux and the effect of soil moisture deficits on the energy balance in June 2015 in WA and OR. June temperature anomalies conditioned on wet/dry conditions show that both the mean and extreme temperatures become hotter for dry soils, especially in WA and OR. Fitting a Gaussian model to temperatures using soil moisture as a covariate shows that the June 2015 temperature values fit well in the extrapolated empirical temperature/drought lines. The high temperature anomalies in WA and OR are thus to be expected, given the dry soil moisture conditions and that those regions are in the transition from a wet to a dry regime. CA is already in the dry regime and therefore the necessity of taking soil moisture into account is of lower importance.

  4. Climate change impacts in the Mediterranean resulting from a 2C global temperature rise

    Energy Technology Data Exchange (ETDEWEB)

    Giannakopoulos, C.; Tin, T. [National Observatory of Athens, Athens (Greece); Bindi, M.; Moriondo, M. [Department of Agronomy and Land Management, Florence (Italy)

    2005-07-01

    The goal of the present study is to provide the first piece of the puzzle in understanding the impacts of a 2C global temperature rise on the Mediterranean region, using high temporal resolution climate model output that has been made newly available. The analysis has been based on the temperature, precipitation and wind daily outputs of the HadCM3 model using the IPCC SRES A2 and B2 emission scenarios. The study is focussed on the thirty-year period (2031-2060) centred on the time that global temperature is expected to reach 2C above pre-industrial levels, as defined by an earlier companion study. Changes in both the mean (temperature, precipitation) and the extremes (heatwaves, drought) under the different scenarios were assessed. The impacts of these climatic changes on energy demand, forest fire, tourism and agriculture were subsequently investigated either using existing numerical models or an expertbased approach. Based on recent studies, the impacts on biodiversity, water resources and sea level rise in the region were also discussed.

  5. A global multiproxy database for temperature reconstructions of the Common Era

    Science.gov (United States)

    Emile-Geay, Julian; McKay, Nicholas P.; Kaufman, Darrell S.; von Gunten, Lucien; Wang, Jianghao; Anchukaitis, Kevin J.; Abram, Nerilie J.; Addison, Jason A.; Curran, Mark A.J.; Evans, Michael N.; Henley, Benjamin J.; Hao, Zhixin; Martrat, Belen; McGregor, Helen V.; Neukom, Raphael; Pederson, Gregory T.; Stenni, Barbara; Thirumalai, Kaustubh; Werner, Johannes P.; Xu, Chenxi; Divine, Dmitry V.; Dixon, Bronwyn C.; Gergis, Joelle; Mundo, Ignacio A.; Nakatsuka, T.; Phipps, Steven J.; Routson, Cody C.; Steig, Eric J.; Tierney, Jessica E.; Tyler, Jonathan J.; Allen, Kathryn J.; Bertler, Nancy A. N.; Bjorklund, Jesper; Chase, Brian M.; Chen, Min-Te; Cook, Ed; de Jong, Rixt; DeLong, Kristine L.; Dixon, Daniel A.; Ekaykin, Alexey A.; Ersek, Vasile; Filipsson, Helena L.; Francus, Pierre; Freund, Mandy B.; Frezzotti, M.; Gaire, Narayan P.; Gajewski, Konrad; Ge, Quansheng; Goosse, Hugues; Gornostaeva, Anastasia; Grosjean, Martin; Horiuchi, Kazuho; Hormes, Anne; Husum, Katrine; Isaksson, Elisabeth; Kandasamy, Selvaraj; Kawamura, Kenji; Koc, Nalan; Leduc, Guillaume; Linderholm, Hans W.; Lorrey, Andrew M.; Mikhalenko, Vladimir; Mortyn, P. Graham; Motoyama, Hideaki; Moy, Andrew D.; Mulvaney, Robert; Munz, Philipp M.; Nash, David J.; Oerter, Hans; Opel, Thomas; Orsi, Anais J.; Ovchinnikov, Dmitriy V.; Porter, Trevor J.; Roop, Heidi; Saenger, Casey; Sano, Masaki; Sauchyn, David; Saunders, K.M.; Seidenkrantz, Marit-Solveig; Severi, Mirko; Shao, X.; Sicre, Marie-Alexandrine; Sigl, Michael; Sinclair, Kate; St. George, Scott; St. Jacques, Jeannine-Marie; Thamban, Meloth; Thapa, Udya Kuwar; Thomas, E.; Turney, Chris; Uemura, Ryu; Viau, A.E.; Vladimirova, Diana O.; Wahl, Eugene; White, James W. C.; Yu, Z.; Zinke, Jens

    2017-01-01

    Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850–2014. Global temperature composites show a remarkable degree of coherence between high- and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python.

  6. An updated global grid point surface air temperature anomaly data set: 1851--1990

    Energy Technology Data Exchange (ETDEWEB)

    Sepanski, R.J.; Boden, T.A.; Daniels, R.C.

    1991-10-01

    This document presents land-based monthly surface air temperature anomalies (departures from a 1951--1970 reference period mean) on a 5{degree} latitude by 10{degree} longitude global grid. Monthly surface air temperature anomalies (departures from a 1957--1975 reference period mean) for the Antarctic (grid points from 65{degree}S to 85{degree}S) are presented in a similar way as a separate data set. The data were derived primarily from the World Weather Records and the archives of the United Kingdom Meteorological Office. This long-term record of temperature anomalies may be used in studies addressing possible greenhouse-gas-induced climate changes. To date, the data have been employed in generating regional, hemispheric, and global time series for determining whether recent (i.e., post-1900) warming trends have taken place. This document also presents the monthly mean temperature records for the individual stations that were used to generate the set of gridded anomalies. The periods of record vary by station. Northern Hemisphere station data have been corrected for inhomogeneities, while Southern Hemisphere data are presented in uncorrected form. 14 refs., 11 figs., 10 tabs.

  7. A Temperature-Based Model for Estimating Monthly Average Daily Global Solar Radiation in China

    Directory of Open Access Journals (Sweden)

    Huashan Li

    2014-01-01

    Full Text Available Since air temperature records are readily available around the world, the models based on air temperature for estimating solar radiation have been widely accepted. In this paper, a new model based on Hargreaves and Samani (HS method for estimating monthly average daily global solar radiation is proposed. With statistical error tests, the performance of the new model is validated by comparing with the HS model and its two modifications (Samani model and Chen model against the measured data at 65 meteorological stations in China. Results show that the new model is more accurate and robust than the HS, Samani, and Chen models in all climatic regions, especially in the humid regions. Hence, the new model can be recommended for estimating solar radiation in areas where only air temperature data are available in China.

  8. Statistical analysis of global surface temperature and sea level using cointegration methods

    DEFF Research Database (Denmark)

    Schmidt, Torben; Johansen, Søren; Thejll, Peter

    2012-01-01

    , semi-empirical models have been applied as an alternative for projecting of future sea levels. There is in this, however, potential pitfalls due to the trending nature of the time series. We apply a statistical method called cointegration analysis to observed global sea level and land-ocean surface air...... temperature, capable of handling such peculiarities. We find a relationship between sea level and temperature and find that temperature causally depends on the sea level, which can be understood as a consequence of the large heat capacity of the ocean. We further find that the warming episode in the 1940s...... is exceptional in the sense that sea level and warming deviates from the expected relationship. This suggests that this warming episode is mainly due to internal dynamics of the ocean rather than external radiative forcing. On the other hand, the present warming follows the expected relationship, suggesting...

  9. Meeting global temperature targets—the role of bioenergy with carbon capture and storage

    Science.gov (United States)

    Azar, Christian; Johansson, Daniel J. A.; Mattsson, Niclas

    2013-09-01

    In order to meet stringent temperature targets, active removal of CO2 from the atmosphere may be required in the long run. Such negative emissions can be materialized when well-performing bioenergy systems are combined with carbon capture and storage (BECCS). Here, we develop an integrated global energy system and climate model to evaluate the role of BECCS in reaching ambitious temperature targets. We present emission, concentration and temperature pathways towards 1.5 and 2 ° C targets. Our model results demonstrate that BECCS makes it feasible to reach temperature targets that are otherwise out of reach, provided that a temporary overshoot of the target is accepted. Additionally, stringent temperature targets can be met at considerably lower cost if BECCS is available. However, the economic benefit of BECCS nearly vanishes if an overshoot of the temperature target is not allowed. Finally, the least-cost emission pathway over the next 50 years towards a 1.5 ° C overshoot target with BECCS is almost identical to a pathway leading to a 2 ° C ceiling target.

  10. Decadal slowdown in global air temperature rise triggered by variability in the Atlantic Meridional Overturning Circulation

    Science.gov (United States)

    England, Matthew H.

    2015-04-01

    Various explanations have been proposed for the recent slowdown in global surface air temperature (SAT) rise, either involving enhanced ocean heat uptake or reduced radiation reaching Earth's surface. Among the mechanisms postulated involving enhanced ocean heat uptake, past work has argued for both a Pacific and Atlantic origin, with additional contributions from the Southern Ocean. Here we examine the mechanisms driving 'hiatus' periods originating out of the Atlantic Ocean. We show that while Atlantic-driven hiatuses are entirely plausible and consistent with known climate feedbacks associated with variability in the Atlantic Meridional Overturning Circulation (AMOC), the present climate state is configured to enhance global-average SAT, not reduce it. We show that Atlantic hiatuses are instead characterised by anomalously cool fresh oceanic conditions in the North Atlantic, with the atmosphere advecting the cool temperature signature zonally. Compared to the 1980s and 1990s, however, the mean climate since 2001 has been characterised by a warm saline North Atlantic, suggesting the AMOC cannot be implicated as a direct driver of the current hiatus. We further discuss the impacts of a warm tropical Atlantic on the unprecedented trade wind acceleration in the Pacific Ocean, and propose that this is the main way that the Atlantic has contributed to the present "false pause" in global warming.

  11. Bias correction in Global Mean Temperature comparisons between Global Climate Models and implications for the deterministic and stochastic dynamics

    Science.gov (United States)

    Chapman, Sandra; Stainforth, David; Watkins, Nicholas

    2017-04-01

    Global mean temperature (GMT) provides a simple means of benchmarking a broad ensemble of global climate models (GCMs) against past observed GMT which in turn provide headline assessments of the consequences of possible future forcing scenarios. The slow variations of past changes in GMT seen in different GCMs track each other [1] and the observed GMT reasonably closely. However, the different GCMs tend to generate GMT time-series which have absolute values that are offset with respect to each other [2]. Subtracting these offsets is an integral part of comparisons between ensembles of GCMs and observed past GMT. We will discuss how this constrains how the GCMs are related to each other. The GMT of a given GCM is a macroscopic reduced variable that tracks a subset of the full information contained in the time evolving solution of that GCM. If the GMT slow timescale dynamics of different GCMs is to a good approximation the same, subject to a linear translation, then the phenomenology captured by this dynamics is essentially linear; any feedback is to leading order linear in GMT. It then follows that a linear energy balance evolution equation for GMT is sufficient to reproduce the slow timescale GMT dynamics, provided that the appropriate effective heat capacity and feedback parameters are known. As a consequence, the GCM's GMT timeseries may underestimate the impact of, and uncertainty in, the outcomes of future forcing scenarios. The offset subtraction procedure identifies a slow time-scale dynamics in model generated GMT. Fluctuations on much faster timescales do not typically track each other from one GCM to another, with the exception of major forcing events such as volcanic eruptions. This suggests that the GMT time-series can be decomposed into a slow and fast timescale which naturally leads to stochastic reduced energy balance models for GMT. [1] IPCC Chapter 9 P743 and fig 9.8,IPCC TS.1 [2] see e.g. [Mauritsen et al., Tuning the Climate of a Global Model

  12. Analysis and prediction of global climate temperature change based on multiforced observational statistics.

    Science.gov (United States)

    Schönwiese, C D

    1994-01-01

    The response of the climate system to increasing greenhouse gases was simulated by a number of climate model projections. There is an urgent need to verify or falsify these projections against observational climate data. Therefore, in this contribution, surface air temperature data are considered covering on a global average the period 1861-1990 and on a northern hemisphere average 1670-1990 (including proxy data). Based on a multiple correlation and coherence analysis a regression model is evaluated which is simultaneously forced by the observed or reconstructed atmospheric CO(2) or equivalent CO(2) concentration increase, volcanic activity, solar variations, and the ENSO (El Niño/southern oscillation) mechanism including phase shifts between cause and effect. This model reveals a greenhouse-gas-induced mean global temperature rise of 0.6-0.8 K since preindustrial time (c. 1800-1990). Following the IPCC business-as-usual scenario (trend extrapolation) this would lead to a hypothetical 3.8 K temperature rise in 2100 (best estimate, uncertainty + 0.7/-0.4 K compared to the 1985 value.

  13. Change in the magnitude and mechanisms of global temperature variability with warming

    Science.gov (United States)

    Brown, Patrick T.; Ming, Yi; Li, Wenhong; Hill, Spencer A.

    2017-10-01

    Natural unforced variability in global mean surface air temperature (GMST) can mask or exaggerate human-caused global warming, and thus a complete understanding of this variability is highly desirable. Significant progress has been made in elucidating the magnitude and physical origins of present-day unforced GMST variability, but it has remained unclear how such variability may change as the climate warms. Here we present modelling evidence that indicates that the magnitude of low-frequency GMST variability is likely to decline in a warmer climate and that its generating mechanisms may be fundamentally altered. In particular, a warmer climate results in lower albedo at high latitudes, which yields a weaker albedo feedback on unforced GMST variability. These results imply that unforced GMST variability is dependent on the background climatological conditions, and thus climate model control simulations run under perpetual pre-industrial conditions may have only limited relevance for understanding the unforced GMST variability of the future.

  14. How Much Global Burned Area Can Be Forecast on Seasonal Time Scales Using Sea Surface Temperatures?

    Science.gov (United States)

    Chen, Yang; Morton, Douglas C.; Andela, Niels; Giglio, Louis; Randerson, James T.

    2016-01-01

    Large-scale sea surface temperature (SST) patterns influence the interannual variability of burned area in many regions by means of climate controls on fuel continuity, amount, and moisture content. Some of the variability in burned area is predictable on seasonal timescales because fuel characteristics respond to the cumulative effects of climate prior to the onset of the fire season. Here we systematically evaluated the degree to which annual burned area from the Global Fire Emissions Database version 4 with small fires (GFED4s) can be predicted using SSTs from 14 different ocean regions. We found that about 48 of global burned area can be forecast with a correlation coefficient that is significant at a p forecasts may be possible with the aim of improving ecosystem management.

  15. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission

    Science.gov (United States)

    2014-01-01

    Background Dengue is a disease that has undergone significant expansion over the past hundred years. Understanding what factors limit the distribution of transmission can be used to predict current and future limits to further dengue expansion. While not the only factor, temperature plays an important role in defining these limits. Previous attempts to analyse the effect of temperature on the geographic distribution of dengue have not considered its dynamic intra-annual and diurnal change and its cumulative effects on mosquito and virus populations. Methods Here we expand an existing modelling framework with new temperature-based relationships to model an index proportional to the basic reproductive number of the dengue virus. This model framework is combined with high spatial and temporal resolution global temperature data to model the effects of temperature on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Results Our model predicted areas where temperature is not expected to permit transmission and/or Aedes persistence throughout the year. By reanalysing existing experimental data our analysis indicates that Ae. albopictus, often considered a minor vector of dengue, has comparable rates of virus dissemination to its primary vector, Ae. aegypti, and when the longer lifespan of Ae. albopictus is considered its competence for dengue virus transmission far exceeds that of Ae. aegypti. Conclusions These results can be used to analyse the effects of temperature and other contributing factors on the expansion of dengue or its Aedes vectors. Our finding that Ae. albopictus has a greater capacity for dengue transmission than Ae. aegypti is contrary to current explanations for the comparative rarity of dengue transmission in established Ae. albopictus populations. This suggests that the limited capacity of Ae. albopictus to transmit DENV is more dependent on its ecology than vector competence. The recommendations, which we

  16. Global equatorial sea-surface temperatures over the last 150,000 years: An update from foraminiferal elemental analysis

    Digital Repository Service at National Institute of Oceanography (India)

    Saraswat, R.

    Solar insolation changes are amongst various factors that affect sea-surface temperature (SST) which in turn modulate global climate. Out of all the oceanic regions, equatorial region receives the maximum solar insolation and thus is the locale...

  17. MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V005

    Data.gov (United States)

    National Aeronautics and Space Administration — The level-3 MODIS global Land Surface Temperature (LST) and Emissivity 8-day data are composed from the daily 1-kilometer LST product (MOD11A1) and stored on a...

  18. Data compilation of soil respiration, moisture, and temperature measurements from global warming experiments from 1994-2014

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset is the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3800 observations representing 27...

  19. Possible Contribution of Variations in the Galactic Cosmic Ray Flux to the Global Temperature Rise in Recent Decades

    Science.gov (United States)

    Ogurtsov, M. G.; Veretenenko, S. V.

    2017-12-01

    The field area of the Earth's lower (climate model is used to estimate the possible contribution of lower clouds to the globally averaged temperature in the indicated period. It is shown that the consideration of lower clouds as a radiative forcing allows one to explain the global warming of the last 30 years without employing the hypothesis of anthropogenic greenhouse heating.

  20. Distinct global warming rates tied to multiple ocean surface temperature changes

    Science.gov (United States)

    Yao, Shuai-Lei; Luo, Jing-Jia; Huang, Gang; Wang, Pengfei

    2017-07-01

    The globally averaged surface temperature has shown distinct multi-decadal fluctuations since 1900, characterized by two weak slowdowns in the mid-twentieth century and early twenty-first century and two strong accelerations in the early and late twentieth century. While the recent global warming (GW) hiatus has been particularly ascribed to the eastern Pacific cooling, causes of the cooling in the mid-twentieth century and distinct intensity differences between the slowdowns and accelerations remain unclear. Here, our model experiments with multiple ocean sea surface temperature (SST) forcing reveal that, although the Pacific SSTs play essential roles in the GW rates, SST changes in other basins also exert vital influences. The mid-twentieth-century cooling results from the SST cooling in the tropical Pacific and Atlantic, which is partly offset by the Southern Ocean warming. During the recent hiatus, the tropical Pacific-induced strong cooling is largely compensated by warming effects of other oceans. In contrast, during the acceleration periods, ubiquitous SST warming across all the oceans acts jointly to exaggerate the GW. Multi-model simulations with separated radiative forcing suggest diverse causes of the SST changes in multiple oceans during the GW acceleration and slowdown periods. Our results highlight the importance of multiple oceans on the multi-decadal GW rates.

  1. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots

    Science.gov (United States)

    Reich, Peter B.; Lou, Yunjian; Bradford, John B.; Poorter, Hendrik; Perry, Charles H.; Oleksyn, Jacek

    2014-01-01

    Whether the fraction of total forest biomass distributed in roots, stems, or leaves varies systematically across geographic gradients remains unknown despite its importance for understanding forest ecology and modeling global carbon cycles. It has been hypothesized that plants should maintain proportionally more biomass in the organ that acquires the most limiting resource. Accordingly, we hypothesize greater biomass distribution in roots and less in stems and foliage in increasingly arid climates and in colder environments at high latitudes. Such a strategy would increase uptake of soil water in dry conditions and of soil nutrients in cold soils, where they are at low supply and are less mobile. We use a large global biomass dataset (>6,200 forests from 61 countries, across a 40 °C gradient in mean annual temperature) to address these questions. Climate metrics involving temperature were better predictors of biomass partitioning than those involving moisture availability, because, surprisingly, fractional distribution of biomass to roots or foliage was unrelated to aridity. In contrast, in increasingly cold climates, the proportion of total forest biomass in roots was greater and in foliage was smaller for both angiosperm and gymnosperm forests. These findings support hypotheses about adaptive strategies of forest trees to temperature and provide biogeographically explicit relationships to improve ecosystem and earth system models. They also will allow, for the first time to our knowledge, representations of root carbon pools that consider biogeographic differences, which are useful for quantifying whole-ecosystem carbon stocks and cycles and for assessing the impact of climate change on forest carbon dynamics.

  2. Global temperature change potential of nitrogen use in agriculture: A 50-year assessment

    Science.gov (United States)

    Fagodiya, R. K.; Pathak, H.; Kumar, A.; Bhatia, A.; Jain, N.

    2017-01-01

    Nitrogen (N) use in agriculture substantially alters global N cycle with the short- and long-term effects on global warming and climate change. It increases emission of nitrous oxide, which contributes 6.2%, while carbon dioxide and methane contribute 76% and 16%, respectively of the global warming. However, N causes cooling due to emission of NOx, which alters concentrations of tropospheric ozone and methane. NOx and NH3 also form aerosols with considerable cooling effects. We studied global temperature change potential (GTP) of N use in agriculture. The GTP due to N2O was 396.67 and 1168.32 Tg CO2e on a 20-year (GTP20) and 439.94 and 1295.78 Tg CO2e on 100-year scale (GTP100) during years 1961 and 2010, respectively. Cooling effects due to N use were 92.14 and 271.39 Tg CO2e (GTP20) and 15.21 and 44.80 Tg CO2e (GTP100) during 1961 and 2010, respectively. Net GTP20 was 369.44 and 1088.15 Tg CO2e and net GTP100 was 429.17 and 1264.06 Tg CO2e during 1961 and 2010, respectively. Thus net GTP20 is lower by 6.9% and GTP100 by 2.4% compared to the GTP considering N2O emission alone. The study shows that both warming and cooling effects should be considered to estimate the GTP of N use. PMID:28322322

  3. Extended Reconstruction of Global Sea Surface Temperatures Based on COADS Data (1854-1997).

    Science.gov (United States)

    Smith, Thomas M.; Reynolds, Richard W.

    2003-05-01

    A monthly extended reconstruction of global SST (ERSST) is produced based on Comprehensive Ocean-Atmosphere Data Set (COADS) release 2 observations from the 1854-1997 period. Improvements come from the use of updated COADS observations with new quality control procedures and from improved reconstruction methods. In addition error estimates are computed, which include uncertainty from both sampling and analysis errors. Using this method, little global variance can be reconstructed before the 1880s because data are too sparse to resolve enough modes for that period. Error estimates indicate that except in the North Atlantic ERSST is of limited value before 1880, when the uncertainty of the near-global average is almost as large as the signal. In most regions, the uncertainty decreases through most of the period and is smallest after 1950.The large-scale variations of ERSST are broadly consistent with those associated with the Hadley Centre Global Sea Ice and Sea Surface Temperature (HadISST) reconstruction produced by the Met Office. There are differences due to both the use of different historical bias corrections as well as different data and analysis procedures, but these differences do not change the overall character of the SST variations. Procedures used here produce a smoother analysis compared to HadISST. The smoother ERSST has the advantage of filtering out more noise at the possible cost of filtering out some real variations when sampling is sparse. A rotated EOF analysis of the ERSST anomalies shows that the dominant modes of variation include ENSO and modes associated with trends. Projection of the HadISST data onto the rotated eigenvectors produces time series similar to those for ERSST, indicating that the dominant modes of variation are consistent in both.

  4. MODIS/Terra Land Surface Temperature/3-Band Emissivity 8-Day L3 Global 1km SIN Grid V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Terra Land Surface Temperature/3-Band Emissivity 8-Day L3 Global 1km SIN Grid (MOD21A2.006). A new suite of MODIS Land Surface Temperature (LST) and Emissivity...

  5. MODIS/Aqua Land Surface Temperature/3-Band Emissivity 8-Day L3 Global 1km SIN Grid V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Aqua Land Surface Temperature/3-Band Emissivity 8-Day L3 Global 1km SIN Grid (MYD21A2.006). A new suite of MODIS Land Surface Temperature (LST) and Emissivity...

  6. AVHRR Pathfinder version 5.3 level 3 collated (L3C) global 4km sea surface temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The AVHRR Pathfinder Version 5.3 (PFV53) L3C Sea Surface Temperature data set is a collection of global, twice-daily (Day and Night) 4km sea surface temperature...

  7. Global land carbon sink response to temperature and precipitation varies with ENSO phase

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yuanyuan [Carnegie Inst. of Science, Stanford, CA (United States); Michalak, Anna M. [Carnegie Inst. of Science, Stanford, CA (United States); Schwalm, Christopher R. [Woods Hole Research Center, Falmouth, MA (United States); Huntzinger, Deborah N. [Northern Arizona Univ., Flagstaff, AZ (United States); Berry, Joseph A. [Carnegie Inst. of Science, Stanford, CA (United States); Ciais, Philippe [Alternative Energies and Atomic Energy Commission (CEA), Gif sur Yvette (France); Piao, Shilong [Peking Univ., Beijing (China); Poulter, Benjamin [Montana State Univ., Bozeman, MT (United States); Fisher, Joshua B. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Cook, Robert B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hayes, Daniel [Univ. of Maine, Orno, ME (United States); Huang, Maoyi [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ito, Akihiko [National Inst. for Environmental Studies, Tsukuba (Japan); Jain, Atul [Univ. of Illinois, Urbana-Champaign, IL (United States); Lei, Huimin [Tsinghua Univ., Beijing (China); Lu, Chaoqun [Ames Lab. and Iowa State Univ., Ames, IA (United States); Mao, Jiafu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Parazoo, Nicholas C. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Peng, Shushi [Peking Univ., Beijing (China); Ricciuto, Daniel M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shi, Xiaoying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tao, Bo [Univ. of Kentucky, Lexington, KY (United States); Tian, Hanqin [Auburn Univ., AL (United States); Wang, Weile [NASA Ames Research Center (ARC), Moffett Field, Mountain View, CA (United States); Wei, Yaxing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yang, Jia [Auburn Univ., AL (United States)

    2017-06-01

    Climate variability associated with the El Niño-Southern Oscillation (ENSO) and its consequent impacts on land carbon sink interannual variability have been used as a basis for investigating carbon cycle responses to climate variability more broadly, and to inform the sensitivity of the tropical carbon budget to climate change. Past studies have presented opposing views about whether temperature or precipitation is the primary factor driving the response of the land carbon sink to ENSO. We show that the dominant driver varies with ENSO phase. And whereas tropical temperature explains sink dynamics following El Niño conditions (r TG,P = 0.59, p < 0.01), the post La Niña sink is driven largely by tropical precipitation (r PG,T= -0.46, p = 0.04). This finding points to an ENSO-phase-dependent interplay between water availability and temperature in controlling the carbon uptake response to climate variations in tropical ecosystems. Furthermore, we find that none of a suite of ten contemporary terrestrial biosphere models captures these ENSO-phase-dependent responses, highlighting a key uncertainty in modeling climate impacts on the future of the global land carbon sink.

  8. Globalization

    Directory of Open Access Journals (Sweden)

    Tulio Rosembuj

    2006-12-01

    Full Text Available There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  9. Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers.

    Science.gov (United States)

    Follstad Shah, Jennifer J; Kominoski, John S; Ardón, Marcelo; Dodds, Walter K; Gessner, Mark O; Griffiths, Natalie A; Hawkins, Charles P; Johnson, Sherri L; Lecerf, Antoine; LeRoy, Carri J; Manning, David W P; Rosemond, Amy D; Sinsabaugh, Robert L; Swan, Christopher M; Webster, Jackson R; Zeglin, Lydia H

    2017-08-01

    Streams and rivers are important conduits of terrestrially derived carbon (C) to atmospheric and marine reservoirs. Leaf litter breakdown rates are expected to increase as water temperatures rise in response to climate change. The magnitude of increase in breakdown rates is uncertain, given differences in litter quality and microbial and detritivore community responses to temperature, factors that can influence the apparent temperature sensitivity of breakdown and the relative proportion of C lost to the atmosphere vs. stored or transported downstream. Here, we synthesized 1025 records of litter breakdown in streams and rivers to quantify its temperature sensitivity, as measured by the activation energy (Ea , in eV). Temperature sensitivity of litter breakdown varied among twelve plant genera for which Ea could be calculated. Higher values of Ea were correlated with lower-quality litter, but these correlations were influenced by a single, N-fixing genus (Alnus). Ea values converged when genera were classified into three breakdown rate categories, potentially due to continual water availability in streams and rivers modulating the influence of leaf chemistry on breakdown. Across all data representing 85 plant genera, the Ea was 0.34 ± 0.04 eV, or approximately half the value (0.65 eV) predicted by metabolic theory. Our results indicate that average breakdown rates may increase by 5-21% with a 1-4 °C rise in water temperature, rather than a 10-45% increase expected, according to metabolic theory. Differential warming of tropical and temperate biomes could result in a similar proportional increase in breakdown rates, despite variation in Ea values for these regions (0.75 ± 0.13 eV and 0.27 ± 0.05 eV, respectively). The relative proportions of gaseous C loss and organic matter transport downstream should not change with rising temperature given that Ea values for breakdown mediated by microbes alone and microbes plus detritivores were similar at the global

  10. Temperature and precipitation changes in the Altai Mountains against the background of global climate changes

    Science.gov (United States)

    Syromyatina, M. V.; Moskalenko, I. G.; Chistyakov, K. V.

    2009-04-01

    Climate change in the Altai Mountains located over the central Eurasia in a distance from the ocean requires consideration against the background of climate changes in the Northern Hemisphere, high and middle latitudes. This research focuses on compare climate changes in regional and global scale and on search an impact of the atmospheric circulation and cloud-radiation factor on climate change in the Altai region. The 1935-2004 time series of the seasonal air temperature and precipitation from 14 weather stations were statistically analyzed. To extend the time series over the past 400 years, mean summer temperature was reconstructed applying dendroclimatological methods and using the Swiss Federal University dendro data set and ARSTAN program. Comparing to the Northern Hemisphere, over the Altai Mountains the tendency of air temperature increase in the second half of 1900s has been observed generally earlier, since 1950s in winter and transitional seasons. From the mid-1950s the warming rate in the Altai Mountains region ranges from 0.21°C in summer to 0.77°C in winter with spring and fall seasons in between. High statistically significant correlation between seasonal mean temperature time series over the Altai region and the middle and high latitudes as well as over the entire Northern Hemisphere was revealed in summer and spring from the mid-1970s. In winter when the meridional air exchange is most intensive, there are several years of abrupt cooling over the Altai Mountains corresponding to the low zonal circulation in 60°- 80°N. During summer the role of radiation factor comes to the fore that controls statistically significant negative correlation between temperature and precipitation with correlation ranging from -0,36 to - 0,63 for the different station locations. The dendrochronological analysis was employed to range the tendency of the mean summer air temperature over the pre-instrumental period. There were intervals with similar warming rate as

  11. A GLOBAL TWO-TEMPERATURE CORONA AND INNER HELIOSPHERE MODEL: A COMPREHENSIVE VALIDATION STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Jin, M.; Manchester, W. B.; Van der Holst, B.; Gruesbeck, J. R.; Frazin, R. A.; Landi, E.; Toth, G.; Gombosi, T. I. [Atmospheric Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Vasquez, A. M. [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA) and FCEN (UBA), CC 67, Suc 28, Ciudad de Buenos Aires (Argentina); Lamy, P. L.; Llebaria, A.; Fedorov, A., E-mail: jinmeng@umich.edu [Laboratoire d' Astrophysique de Marseille, Universite de Provence, Marseille (France)

    2012-01-20

    The recent solar minimum with very low activity provides us a unique opportunity for validating solar wind models. During CR2077 (2008 November 20 through December 17), the number of sunspots was near the absolute minimum of solar cycle 23. For this solar rotation, we perform a multi-spacecraft validation study for the recently developed three-dimensional, two-temperature, Alfven-wave-driven global solar wind model (a component within the Space Weather Modeling Framework). By using in situ observations from the Solar Terrestrial Relations Observatory (STEREO) A and B, Advanced Composition Explorer (ACE), and Venus Express, we compare the observed proton state (density, temperature, and velocity) and magnetic field of the heliosphere with that predicted by the model. Near the Sun, we validate the numerical model with the electron density obtained from the solar rotational tomography of Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph C2 data in the range of 2.4 to 6 solar radii. Electron temperature and density are determined from differential emission measure tomography (DEMT) of STEREO A and B Extreme Ultraviolet Imager data in the range of 1.035 to 1.225 solar radii. The electron density and temperature derived from the Hinode/Extreme Ultraviolet Imaging Spectrometer data are also used to compare with the DEMT as well as the model output. Moreover, for the first time, we compare ionic charge states of carbon, oxygen, silicon, and iron observed in situ with the ACE/Solar Wind Ion Composition Spectrometer with those predicted by our model. The validation results suggest that most of the model outputs for CR2077 can fit the observations very well. Based on this encouraging result, we therefore expect great improvement for the future modeling of coronal mass ejections (CMEs) and CME-driven shocks.

  12. A new global reconstruction of temperature changes at the Last Glacial Maximum

    Directory of Open Access Journals (Sweden)

    J. D. Annan

    2013-02-01

    Full Text Available Some recent compilations of proxy data both on land and ocean (MARGO Project Members, 2009; Bartlein et al., 2011; Shakun et al., 2012, have provided a new opportunity for an improved assessment of the overall climatic state of the Last Glacial Maximum. In this paper, we combine these proxy data with the ensemble of structurally diverse state of the art climate models which participated in the PMIP2 project (Braconnot et al., 2007 to generate a spatially complete reconstruction of surface air (and sea surface temperatures. We test a variety of approaches, and show that multiple linear regression performs well for this application. Our reconstruction is significantly different to and more accurate than previous approaches and we obtain an estimated global mean cooling of 4.0 ± 0.8 °C (95% CI.

  13. Statistical analysis of global surface air temperature and sea level using cointegration methods

    DEFF Research Database (Denmark)

    Schmith, Torben; Johansen, Søren; Thejll, Peter

    of future sea levels. There is in this, however, potential pitfalls due to the trending nature of the time series. We apply a statistical method called cointegration analysis to observed global sea level and surface air temperature, capable of handling such peculiarities. We find a relationship between sea...... relationship. This suggests that this warming episode is mainly due to internal dynamics of the ocean rather than external radiative forcing. On the other hand, the present warming follows the expected relationship, suggesting that it is mainly due to radiative forcing. In a second step, we use the total...... radiative forcing as an explanatory variable, but unexpectedly find that the sea level does not depend on the forcing. We hypothesize that this is due to a long adjustment time scale of the ocean and show that the number of years of data needed to build statistical models that have the relationship expected...

  14. Global warming and coral reefs: modelling the effect of temperature on Acropora palmata colony growth.

    Science.gov (United States)

    Crabbe, M James C

    2007-08-01

    Data on colony growth of the branching coral Acropora palmata from fringing reefs off Discovery Bay on the north coast of Jamaica have been obtained over the period 2002-2007 using underwater photography and image analysis by both SCUBA and remotely using an ROV incorporating twin lasers. Growth modelling shows that while logarithmic growth is an approximate model for growth, a 3:3 rational polynomial function provides a significantly better fit to growth data for this coral species. Over the period 2002-2007, involving several cycles of sea surface temperature (SST) change, the rate of growth of A. palmata was largely proportional to rate of change of SST, with R(2)=0.935. These results have implications for the influence of global warming and climate change on coral reef ecosystems.

  15. An evaluation of temperature and precipitation from global and regional climate models over Scandinavia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Precipitation and temperature from global (GCMs) and regional (RCMs) climate models are compared with reanalysis and observations over Scandinavia. Also projections for the next 50-100 years are considered. The climate development is visualised as moving averages (1920-2100). Box plots are used to illuminate how well GCM runs capture the observed seasonal cycle. Maps show the seasonal difference between results from control runs (RCM) and observations (E-OBS dataset) for the reference period 1981-2000. Plots illustrate the RCM-representation of seasonal temperature and precipitations cycle for five locations in Norway and Sweden: Oslo, Bergen, Trondheim, Tromsoe and Oestersund. The results show rather large differences between control runs and observations, demonstrating the need for bias correction of results from climate models. To get an indicator of which GC M-RCM-combination give the best representation of present climate over Scandinavia, a model ranking is provided. The performance measure used is the root-mean-square deviation of mean monthly and seasonal values. The data is compared both in an area-weighted spatial average of the whole domain as well as for the selected locations. The results indicate that the regional models RACMO2 and RCA show the smallest deviations from observed climate. Among the top ranking GCM-RCM combinations, most were driven by the global model ECHAM5 and some by a version of HadCM3. These two GCMs are also present among the worst performing GCM-RCM combinations indicating that selection of RCMs is crucial. (Author)

  16. A model–data comparison of the Holocene global sea surface temperature evolution

    Directory of Open Access Journals (Sweden)

    G. Lohmann

    2013-08-01

    Full Text Available We compare the ocean temperature evolution of the Holocene as simulated by climate models and reconstructed from marine temperature proxies. We use transient simulations from a coupled atmosphere–ocean general circulation model, as well as an ensemble of time slice simulations from the Paleoclimate Modelling Intercomparison Project. The general pattern of sea surface temperature (SST in the models shows a high-latitude cooling and a low-latitude warming. The proxy dataset comprises a global compilation of marine alkenone- and Mg/Ca-derived SST estimates. Independently of the choice of the climate model, we observe significant mismatches between modelled and estimated SST amplitudes in the trends for the last 6000 yr. Alkenone-based SST records show a similar pattern as the simulated annual mean SSTs, but the simulated SST trends underestimate the alkenone-based SST trends by a factor of two to five. For Mg/Ca, no significant relationship between model simulations and proxy reconstructions can be detected. We test if such discrepancies can be caused by too simplistic interpretations of the proxy data. We explore whether consideration of different growing seasons and depth habitats of the planktonic organisms used for temperature reconstruction could lead to a better agreement of model results with proxy data on a regional scale. The extent to which temporal shifts in growing season or vertical shifts in depth habitat can reduce model–data misfits is determined. We find that invoking shifts in the living season and habitat depth can remove some of the model–data discrepancies in SST trends. Regardless whether such adjustments in the environmental parameters during the Holocene are realistic, they indicate that when modelled temperature trends are set up to allow drastic shifts in the ecological behaviour of planktonic organisms, they do not capture the full range of reconstructed SST trends. Results indicate that modelled and reconstructed

  17. How Much Global Burned Area Can Be Forecast on Seasonal Time Scales Using Sea Surface Temperatures?

    Science.gov (United States)

    Chen, Yang; Morton, Douglas C.; Andela, Niels; Giglio, Louis; Randerson, James T.

    2016-01-01

    Large-scale sea surface temperature (SST) patterns influence the interannual variability of burned area in many regions by means of climate controls on fuel continuity, amount, and moisture content. Some of the variability in burned area is predictable on seasonal timescales because fuel characteristics respond to the cumulative effects of climate prior to the onset of the fire season. Here we systematically evaluated the degree to which annual burned area from the Global Fire Emissions Database version 4 with small fires (GFED4s) can be predicted using SSTs from 14 different ocean regions. We found that about 48 of global burned area can be forecast with a correlation coefficient that is significant at a p < 0.01 level using a single ocean climate index (OCI) 3 or more months prior to the month of peak burning. Continental regions where burned area had a higher degree of predictability included equatorial Asia, where 92% of the burned area exceeded the correlation threshold, and Central America, where 86% of the burned area exceeded this threshold. Pacific Ocean indices describing the El Nino-Southern Oscillation were more important than indices from other ocean basins, accounting for about 1/3 of the total predictable global burned area. A model that combined two indices from different oceans considerably improved model performance, suggesting that fires in many regions respond to forcing from more than one ocean basin. Using OCI-burned area relationships and a clustering algorithm, we identified 12 hotspot regions in which fires had a consistent response to SST patterns. Annual burned area in these regions can be predicted with moderate confidence levels, suggesting operational forecasts may be possible with the aim of improving ecosystem management.

  18. Ambient temperature as a contributor to kidney stone formation: implications of global warming.

    Science.gov (United States)

    Fakheri, Robert J; Goldfarb, David S

    2011-06-01

    Nephrolithiasis is a common disease across the world that is becoming more prevalent. Although the underlying cause for most stones is not known, a body of literature suggests a role of heat and climate as significant risk factors for lithogenesis. Recently, estimates from computer models predicted up to a 10% increase in the prevalence rate in the next half century secondary to the effects of global warming, with a coinciding 25% increase in health-care expenditures. Our aim here is to critically review the medical literature relating stones to ambient temperature. We have categorized the body of evidence by methodology, consisting of comparisons between geographic regions, comparisons over time, and comparisons between people in specialized environments. Although most studies are confounded by other factors like sunlight exposure and regional variation in diet that share some contribution, it appears that heat does play a role in pathogenesis in certain populations. Notably, the role of heat is much greater in men than in women. We also hypothesize that the role of a significant human migration (from rural areas to warmer, urban locales beginning in the last century and projected to continue) may have a greater impact than global warming on the observed worldwide increasing prevalence rate of nephrolithiasis. At this time the limited data available cannot substantiate this proposed mechanism but further studies to investigate this effect are warranted.

  19. An interaction network perspective on the relation between patterns of sea surface temperature variability and global mean surface temperature

    NARCIS (Netherlands)

    Tantet, A.J.J.; Dijkstra, H.A.

    2014-01-01

    On interannual- to multidecadal timescales variability in sea surface temperature appears to be organized in large-scale spatiotemporal patterns. In this paper, we investigate these patterns by studying the community structure of interaction networks constructed from sea surface temperature

  20. Compressing an Ensemble with Statistical Models: An Algorithm for Global 3D Spatio-Temporal Temperature

    KAUST Repository

    Castruccio, Stefano

    2015-04-02

    One of the main challenges when working with modern climate model ensembles is the increasingly larger size of the data produced, and the consequent difficulty in storing large amounts of spatio-temporally resolved information. Many compression algorithms can be used to mitigate this problem, but since they are designed to compress generic scientific data sets, they do not account for the nature of climate model output and they compress only individual simulations. In this work, we propose a different, statistics-based approach that explicitly accounts for the space-time dependence of the data for annual global three-dimensional temperature fields in an initial condition ensemble. The set of estimated parameters is small (compared to the data size) and can be regarded as a summary of the essential structure of the ensemble output; therefore, it can be used to instantaneously reproduce the temperature fields in an ensemble with a substantial saving in storage and time. The statistical model exploits the gridded geometry of the data and parallelization across processors. It is therefore computationally convenient and allows to fit a non-trivial model to a data set of one billion data points with a covariance matrix comprising of 10^18 entries.

  1. Global climate change: impact of diurnal temperature range on mortality in Guangzhou, China.

    Science.gov (United States)

    Yang, Jun; Liu, Hua-Zhang; Ou, Chun-Quan; Lin, Guo-Zhen; Zhou, Qin; Shen, Gi-Chuan; Chen, Ping-Yan; Guo, Yuming

    2013-04-01

    Diurnal temperature range (DTR) is an important meteorological indicator associated with global climate change, but little is known about the effects of DTR on mortality. We examined the effects of DTR on cause-/age-/education-specific mortality in Guangzhou, a subtropical city in China during 2003-2010. A quasi-Poisson regression model combined with distributed lag non-linear model was used to examine the effects of DTR, after controlling for daily mean temperature, air pollutants, season and day of the week. A 1 °C increase in DTR at lag 0-4 days was associated with a 0.47% (95% confidence interval: 0.01%-0.93%) increase in non-accidental mortality. Stroke mortality was most sensitive to DTR. Female, the elderly and those with low education were more susceptible to DTR than male, the youth and those with high education, respectively. Our findings suggest that vulnerable subpopulations should pay more attention to protect themselves from unstable daily weather. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Global cold curve. New representation for zero-temperature isotherm in whole density range

    CERN Document Server

    Iosilevskiy, Igor

    2014-01-01

    Non-standard representation for so-called "cold curve" of matter (i.e. isotherm $T = 0$) is proposed as Global Cold Curve (GCC). The main point is that chemical potential of substance, $\\mu$, plays role of ruling parameter in basic GCC-dependence of internal energy under compression, $U = U(\\mu)$, in contrast to the standard form $U = U(\\rho)$. This substitution changes radically low-density ("gaseous") part of GCC. Namely: ($i$) - physically meaningless part of standard cold curve $(U(\\rho)$ at $T \\rightarrow 0)$ disappears totally from new version of GCC. This deleted part corresponded to absolutely thermodynamically unstable states in standard representation $U(\\rho)$; ($ii$) - new gaseous branch of cold curve, $U = U(\\mu)$, comes in GCC. It describes in simple, schematic way thermodynamics of whole gas-like plasma in low-temperature limit (Iosilevskiy: arXiv:0902.3708) as combination of all ionization and dissociation processes available for equilibrium plasma at finite temperature. This gaseous branch co...

  3. Long-Term Instrumental and Reconstructed Temperature Records Contradict Anthropogenic Global Warming

    CERN Document Server

    Lüdecke, Horst-Joachim

    2011-01-01

    Monthly instrumental temperature records from 5 stations in the northern hemisphere are analyzed, each of which is local and over 200 years in length, as well as two reconstructed long-range yearly records - from a stalagmite and from tree rings that are about 2000 years long. In the instrumental records, the steepest 100-year temperature fall happened in the 19th century and the steepest rise in the 20th century, both events being of about the same magnitude. Evaluation by the detrended fluctuation analysis (DFA) yields Hurst exponents that are in good agreement with the literature. DFA, Monte Carlo simulations, and synthetic records reveal that both 100-year events were caused by external trends. In contrast to this, the reconstructed records show stronger 100-year rises and falls as quite common during the last 2000 years. These results contradict the hypothesis of an unusual (anthropogenic) global warming during the 20th century. As a hypothesis, the sun's magnetic field, which is correlated with sunspot ...

  4. Implementation of Globally Simulated Dust within a Physical Sea Surface Temperature Retrievals for Numerical Weather Prediction

    Science.gov (United States)

    Oyola, M. I.; Nalli, N. R.; Lu, C. H.; Joseph, E.; Morris, V. R.; Campbell, J. R.

    2016-12-01

    Aerosols are not the only source of error in sea surface temperature (SST) retrievals; however, it is nontrivial problem that requires attention. Simulation and validation of aerosol in radiative transfer models (RTM) is considered extremely challenging, especially in the infrared (IR); this is because brightness temperatures (BTs) retrievals -which are converted into SSTs- are highly influenced by changes in atmospheric composition. Tropospheric aerosols seem to have a persistent impact that may result in negative SST biases of 1K or more. Several questions arise around this topic, but most importantly: is it even possible to simulate aerosols using a RTM for a SST retrieval application? If so, what are the implications? This works presents the results for the first study to ever attempt to analyze the full potential and limitations of incorporating aerosols within a truly physical SST retrieval for operational weather forecasting purposes. This is accomplished through the application of a satellite sea surface temperature (SST) physical retrieval for split-window and hyperspectral infrared (IR) sensors that allows a better representation of the atmospheric state under aerosol-laden conditions. The new algorithm includes 1) accurate specification of the emissivity that characterizes the surface leaving radiance and 2) transmittance and physical characterization of the atmosphere by using the Community Radiative Transfer Model (CRTM). This project includes application of the NEMS-Global Forecasting System Aerosol Component (NGAC) fields, which corresponds to the first global interactive atmosphere-aerosol forecast system ever implemented at NOAA's National Center for Environmental Prediction (NCEP). SST outputs are validated against a bulk and a parameterized SST derived from operational products and partly against observed measurements from the eastern Atlantic Ocean, which is dominated by Saharan dust throughout most of the year and that is also a genesis region

  5. Uncertainties in Global Warming Temperature-Trend and Their Impacts on Agricultural Production: an Econometric Evaluation

    OpenAIRE

    Ashraf, Mohammad A

    2008-01-01

    IndonesianMakalah ini membahas kecenderungan dampak pemanasan global yang terjadi akhir-akhir ini. Estimasi dilakukan dengan parameter fraksional dari catatan relatif panjang menggunakan tehnik outlier aditif sebagai pengamatan bebas yang dihasilkan di atmosfer karena pemanasan global. Selanjutnya penelitian ini mengamati secara empiris dampak pemanasan global terhadap aspek tertentu produksi pertanian global. Berdasarkan simulasi Monte Carlo, proses menghasilkan data diterapkan dimana outlie...

  6. On the time-varying trend in global-mean surface temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhaohua [Florida State University, Department of Meteorology and Center for Ocean-Atmospheric Prediction Studies, Tallahassee, FL (United States); Huang, Norden E. [National Central University, Research Center for Adaptive Data Analysis Center, Chungli (China); Wallace, John M.; Smoliak, Brian V. [University of Washington, Department of Atmospheric Sciences, Seattle, WA (United States); Chen, Xianyao [State Oceanic Administration, The First Institute of Oceanography, Qingdao (China)

    2011-08-15

    The Earth has warmed at an unprecedented pace in the decades of the 1980s and 1990s (IPCC in Climate change 2007: the scientific basis, Cambridge University Press, Cambridge, 2007). In Wu et al. (Proc Natl Acad Sci USA 104:14889-14894, 2007) we showed that the rapidity of the warming in the late twentieth century was a result of concurrence of a secular warming trend and the warming phase of a multidecadal ({proportional_to}65-year period) oscillatory variation and we estimated the contribution of the former to be about 0.08 C per decade since {proportional_to}1980. Here we demonstrate the robustness of those results and discuss their physical links, considering in particular the shape of the secular trend and the spatial patterns associated with the secular trend and the multidecadal variability. The shape of the secular trend and rather globally-uniform spatial pattern associated with it are both suggestive of a response to the buildup of well-mixed greenhouse gases. In contrast, the multidecadal variability tends to be concentrated over the extratropical Northern Hemisphere and particularly over the North Atlantic, suggestive of a possible link to low frequency variations in the strength of the thermohaline circulation. Depending upon the assumed importance of the contributions of ocean dynamics and the time-varying aerosol emissions to the observed trends in global-mean surface temperature, we estimate that up to one third of the late twentieth century warming could have been a consequence of natural variability. (orig.)

  7. The global SMOS Level 3 daily soil moisture and brightness temperature maps

    Directory of Open Access Journals (Sweden)

    A. Al Bitar

    2017-06-01

    Full Text Available The objective of this paper is to present the multi-orbit (MO surface soil moisture (SM and angle-binned brightness temperature (TB products for the SMOS (Soil Moisture and Ocean Salinity mission based on a new multi-orbit algorithm. The Level 3 algorithm at CATDS (Centre Aval de Traitement des Données SMOS makes use of MO retrieval to enhance the robustness and quality of SM retrievals. The motivation of the approach is to make use of the longer temporal autocorrelation length of the vegetation optical depth (VOD compared to the corresponding SM autocorrelation in order to enhance the retrievals when an acquisition occurs at the border of the swath. The retrieval algorithm is implemented in a unique operational processor delivering multiple parameters (e.g. SM and VOD using multi-angular dual-polarisation TB from MO. A subsidiary angle-binned TB product is provided. In this study the Level 3 TB V310 product is showcased and compared to SMAP (Soil Moisture Active Passive TB. The Level 3 SM V300 product is compared to the single-orbit (SO retrievals from the Level 2 SM processor from ESA with aligned configuration. The advantages and drawbacks of the Level 3 SM product (L3SM are discussed. The comparison is done on a global scale between the two datasets and on the local scale with respect to in situ data from AMMA-CATCH and USDA ARS Watershed networks. The results obtained from the global analysis show that the MO implementation enhances the number of retrievals: up to 9 % over certain areas. The comparison with the in situ data shows that the increase in the number of retrievals does not come with a decrease in quality, but rather at the expense of an increased time lag in product availability from 6 h to 3.5 days, which can be a limiting factor for applications like flood forecast but reasonable for drought monitoring and climate change studies. The SMOS L3 soil moisture and L3 brightness temperature products are delivered using an

  8. The global SMOS Level 3 daily soil moisture and brightness temperature maps

    Science.gov (United States)

    Bitar, Ahmad Al; Mialon, Arnaud; Kerr, Yann H.; Cabot, François; Richaume, Philippe; Jacquette, Elsa; Quesney, Arnaud; Mahmoodi, Ali; Tarot, Stéphane; Parrens, Marie; Al-Yaari, Amen; Pellarin, Thierry; Rodriguez-Fernandez, Nemesio; Wigneron, Jean-Pierre

    2017-06-01

    The objective of this paper is to present the multi-orbit (MO) surface soil moisture (SM) and angle-binned brightness temperature (TB) products for the SMOS (Soil Moisture and Ocean Salinity) mission based on a new multi-orbit algorithm. The Level 3 algorithm at CATDS (Centre Aval de Traitement des Données SMOS) makes use of MO retrieval to enhance the robustness and quality of SM retrievals. The motivation of the approach is to make use of the longer temporal autocorrelation length of the vegetation optical depth (VOD) compared to the corresponding SM autocorrelation in order to enhance the retrievals when an acquisition occurs at the border of the swath. The retrieval algorithm is implemented in a unique operational processor delivering multiple parameters (e.g. SM and VOD) using multi-angular dual-polarisation TB from MO. A subsidiary angle-binned TB product is provided. In this study the Level 3 TB V310 product is showcased and compared to SMAP (Soil Moisture Active Passive) TB. The Level 3 SM V300 product is compared to the single-orbit (SO) retrievals from the Level 2 SM processor from ESA with aligned configuration. The advantages and drawbacks of the Level 3 SM product (L3SM) are discussed. The comparison is done on a global scale between the two datasets and on the local scale with respect to in situ data from AMMA-CATCH and USDA ARS Watershed networks. The results obtained from the global analysis show that the MO implementation enhances the number of retrievals: up to 9 % over certain areas. The comparison with the in situ data shows that the increase in the number of retrievals does not come with a decrease in quality, but rather at the expense of an increased time lag in product availability from 6 h to 3.5 days, which can be a limiting factor for applications like flood forecast but reasonable for drought monitoring and climate change studies. The SMOS L3 soil moisture and L3 brightness temperature products are delivered using an open licence and

  9. Long-term trend in potential vorticity intrusion events over the Pacific Ocean: Role of global mean temperature rise

    Science.gov (United States)

    Nath, Debashis; Chen, Wen; Lan, Xiaoqing

    2017-10-01

    In this study, we examine a long-term increasing trend in subtropical potential vorticity (PV) intrusion events over the Pacific Ocean in relation to the global mean temperature rise, based on multiple reanalysis datasets. The frequency of the PV intrusions is closely related to the upper-tropospheric equatorial westerly duct and the subtropical jet (STJ). An overall strengthening of the westerly duct and weakening of the STJ are found to be driven by the warming-induced strengthening of Walker circulation and regional changes in Hadley circulation on multi-decadal timescale, leading to an increase in the PV intrusion frequency over the tropics. The results are robust in all datasets. The multi-decadal strengthening in the Pacific Walker circulation is consistent with the global mean temperature rise. In this way, the PV intrusions are correlated with the warming related global mean temperuate rise. When the interannual variability of ENSO is removed from the intrusion time series, the long-term trend in PV intrusions due to external forcing associated with anthropogenic warming (global mean temperature rise) becomes clearer. The link between the global mean temperature rise and intrusion frequency is further verified by performing a correlation analysis between the two. The significant (> 95%) correlation coefficient is 0.85, 0.94, 0.84, 0.83, and 0.84 for ERA-40, ERA-Interim, NCEP-NCAR, JRA-55, and JRA-25, respectively. This unequivocally indicates that the global mean temperature rise can explain around 69%-88% of the variance related to the long-term increase in PV intrusion frequency over the Pacific Ocean.

  10. Global temperature response to the major volcanic eruptions in multiple reanalysis data sets

    Directory of Open Access Journals (Sweden)

    M. Fujiwara

    2015-12-01

    Full Text Available The global temperature responses to the eruptions of Mount Agung in 1963, El Chichón in 1982, and Mount Pinatubo in 1991 are investigated using nine currently available reanalysis data sets (JRA-55, MERRA, ERA-Interim, NCEP-CFSR, JRA-25, ERA-40, NCEP-1, NCEP-2, and 20CR. Multiple linear regression is applied to the zonal and monthly mean time series of temperature for two periods, 1979–2009 (for eight reanalysis data sets and 1958–2001 (for four reanalysis data sets, by considering explanatory factors of seasonal harmonics, linear trends, Quasi-Biennial Oscillation, solar cycle, and El Niño Southern Oscillation. The residuals are used to define the volcanic signals for the three eruptions separately, and common and different responses among the older and newer reanalysis data sets are highlighted for each eruption. In response to the Mount Pinatubo eruption, most reanalysis data sets show strong warming signals (up to 2–3 K for 1-year average in the tropical lower stratosphere and weak cooling signals (down to −1 K in the subtropical upper troposphere. For the El Chichón eruption, warming signals in the tropical lower stratosphere are somewhat smaller than those for the Mount Pinatubo eruption. The response to the Mount Agung eruption is asymmetric about the equator with strong warming in the Southern Hemisphere midlatitude upper troposphere to lower stratosphere. Comparison of the results from several different reanalysis data sets confirms the atmospheric temperature response to these major eruptions qualitatively, but also shows quantitative differences even among the most recent reanalysis data sets. The consistencies and differences among different reanalysis data sets provide a measure of the confidence and uncertainty in our current understanding of the volcanic response. The results of this intercomparison study may be useful for validation of climate model responses to volcanic forcing and for assessing proposed

  11. Simply obtained global radiation, soil temperature and soil moisture in an alley cropping system in semi-arid Kenya

    NARCIS (Netherlands)

    Mungai, D.N.; Stigter, C.J.; Coulson, C.L.; Ng'ang'a, J.K.

    2000-01-01

    Global radiation, soil temperature and soil moisture data were obtained from a 4-6 year old Cassia siamea/maize (CM) alley cropping (or hedgerow intercropping) system, at a semi-arid site at Machakos, Kenya, in the late eighties. With the growing need to explore and manage variations in

  12. Globalization

    DEFF Research Database (Denmark)

    Plum, Maja

    Globalization is often referred to as external to education - a state of affair facing the modern curriculum with numerous challenges. In this paper it is examined as internal to curriculum; analysed as a problematization in a Foucaultian sense. That is, as a complex of attentions, worries, ways...... of reasoning, producing curricular variables. The analysis is made through an example of early childhood curriculum in Danish Pre-school, and the way the curricular variable of the pre-school child comes into being through globalization as a problematization, carried forth by the comparative practices of PISA...

  13. Optimal estimation of areal values of near-land-surface temperatures for testing global and local spatio-temporal trends

    Science.gov (United States)

    Wang, Hong; Pardo-Igúzquiza, Eulogio; Dowd, Peter A.; Yang, Yongguo

    2017-09-01

    This paper provides a solution to the problem of estimating the mean value of near-land-surface temperature over a relatively large area (here, by way of example, applied to mainland Spain covering an area of around half a million square kilometres) from a limited number of weather stations covering a non-representative (biased) range of altitudes. As evidence mounts for altitude-dependent global warming, this bias is a significant problem when temperatures at high altitudes are under-represented. We correct this bias by using altitude as a secondary variable and using a novel clustering method for identifying geographical regions (clusters) that maximize the correlation between altitude and mean temperature. In addition, the paper provides an improved regression kriging estimator, which is optimally determined by the cluster analysis. The optimal areal values of near-land-surface temperature are used to generate time series of areal temperature averages in order to assess regional changes in temperature trends. The methodology is applied to records of annual mean temperatures over the period 1950-2011 across mainland Spain. The robust non-parametric Theil-Sen method is used to test for temperature trends in the regional temperature time series. Our analysis shows that, over the 62-year period of the study, 78% of mainland Spain has had a statistically significant increase in annual mean temperature.

  14. Stabilization of Global Temperature and Polar Sea-ice cover via seeding of Maritime Clouds

    Science.gov (United States)

    Chen, Jack; Gadian, Alan; Latham, John; Launder, Brian; Neukermans, Armand; Rasch, Phil; Salter, Stephen

    2010-05-01

    The marine cloud albedo enhancement (cloud whitening) geoengineering technique (Latham1990, 2002, Bower et al. 2006, Latham et al. 2008, Salter et al. 2008, Rasch et al. 2009) involves seeding maritime stratocumulus clouds with seawater droplets of size (at creation) around 1 micrometer, causing the droplet number concentration to increase within the clouds, thereby enhancing their albedo and possibly longevity. GCM modeling indicates that (subject to satisfactory resolution of specified scientific and technological problems) the technique could produce a globally averaged negative forcing of up to about -4W/m2, adequate to hold the Earth's average temperature constant as the atmospheric carbon dioxide concentration increases to twice the current value. This idea is being examined using GCM modeling, LES cloud modeling, technological development (practical and theoretical), and analysis of data from the recent, extensive VOCALS field study of marine stratocumulus clouds. We are also formulating plans for a possible limited-area field test of the technique. Recent general circulation model computations using a fully coupled ocean-atmosphere model indicate that increasing cloud reflectivity by seeding maritime boundary layer clouds may compensate for some effects on climate of increasing greenhouse gas concentrations. The chosen seeding strategy (one of many possible scenarios), when employed in an atmosphere where the CO2 concentration is doubled, can restore global averages of temperature, precipitation and polar sea-ice to present day values, but not simultaneously. The response varies nonlinearly with the extent of seeding, and geoengineering generates local changes to important climatic features. Our computations suggest that for the specimen cases examined there is no appreciable reduction of rainfall over land, as a consequence of seeding. This result is in agreement with one separate study but not another. Much further work is required to explain these

  15. The relative contributions of tropical Pacific sea surface temperatures and atmospheric internal variability to the recent global warming hiatus

    Science.gov (United States)

    Deser, Clara; Guo, Ruixia; Lehner, Flavio

    2017-08-01

    The recent slowdown in global mean surface temperature (GMST) warming during boreal winter is examined from a regional perspective using 10-member initial-condition ensembles with two global coupled climate models in which observed tropical Pacific sea surface temperature anomalies (TPAC SSTAs) and radiative forcings are specified. Both models show considerable diversity in their surface air temperature (SAT) trend patterns across the members, attesting to the importance of internal variability beyond the tropical Pacific that is superimposed upon the response to TPAC SSTA and radiative forcing. Only one model shows a close relationship between the realism of its simulated GMST trends and SAT trend patterns. In this model, Eurasian cooling plays a dominant role in determining the GMST trend amplitude, just as in nature. In the most realistic member, intrinsic atmospheric dynamics and teleconnections forced by TPAC SSTA cause cooling over Eurasia (and North America), and contribute equally to its GMST trend.

  16. GHRSST Level 2P Global Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-17 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Level 2P Group for High Resolution Sea Surface Temperature (GHRSST) dataset based on multi-channel sea surface temperature (SST) retrievals from the...

  17. GHRSST Level 4 AVHRR_OI Global Blended Sea Surface Temperature Analysis (GDS version 2) from NCEI (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) global Level 4 sea surface temperature analysis produced daily on a 0.25 degree grid at the NOAA...

  18. AVHRR Pathfinder Version 5.2 Level 3 Collated (L3C) Global 4km Sea Surface Temperature for 1981-2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The AVHRR Pathfinder Version 5.2 Sea Surface Temperature data set (PFV52) is a collection of global, twice-daily 4km sea surface temperature data produced in a...

  19. GHRSST Level 2P Global Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-17 satellite produced by NAVO (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  20. GHRSST Level 2P Global Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-16 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Level 2P Group for High Resolution Sea Surface Temperature (GHRSST) dataset based on multi-channel sea surface temperature (SST) retrievals from the...

  1. The Coral Reef Temperature Anomaly Database (CoRTAD) Version 5 - Global, 4 km Sea Surface Temperature and Related Thermal Stress Metrics for 1982-2012 (NCEI Accession 0126774)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Version 5 of the Coral Reef Temperature Anomaly Database (CoRTAD) is a global, 4 km, sea surface temperature (SST) and related thermal stress metrics dataset for...

  2. The Global Historical Climatology Network: Long-term monthly temperature, precipitation, sea level pressure, and station pressure data

    Energy Technology Data Exchange (ETDEWEB)

    Vose, R.S. [Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center; Schmoyer, R.L. [Oak Ridge National Lab., TN (United States); Steurer, P.M.; Peterson, T.C.; Heim, R.; Karl, T.R. [National Climatic Data Center, Asheville, NC (United States); Eischeid, J.K. [Colorado Univ., Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences

    1992-07-01

    Interest in global climate change has risen dramatically during the last several years. In a similar fashion, the number of data sets available to study global change has also increased. Unfortunately, these data sets have been compiled by many different organizations/researchers, making it confusing and time consuming for individual researchers to acquire the ``best`` data. In response to this rapid growth in the number of global data sets, the Carbon Dioxide Information Analysis Center (CDIAC) and the National Climatic Data Center (NCDC) commenced the Global Historical Climatology Network (GHCN) project. The purpose of this project is to compile an improved global base-line data set of long-term monthly mean temperature, precipitation, sea level pressure, and station pressure for a dense network. of worldwide meteorological stations. Specifically, the GHCN project seeks to consolidate the numerous preexisting national-, regional-, and global-scale data sets into a single global climate data base that can be updated, enhanced, and distributed at regular intervals. The first version of the GHCN data base was completed during the summer of 1992. It contains 6039 temperature, 7533 precipitation, 1883 sea level pressure, and 1873 station pressure stations. All stations have at least 10 years of data, 40% have more than 50 years of data, and 10% have more than 100 years of data. Spatial coverage is good over most of the globe, particularly for the United States and central Europe. In comparison to other major global data sets, dramatic improvements are evident over South America, Africa, and Asia. The GHCN data base is available as a Numeric Data Package (NDP) from CDIAC. The NDP consists of this document and two magnetic tapes that contain machine-readable data files and accompanying retrieval codes. This document describes, in detail, both the GHCN data base and the contents of the magnetic tap

  3. The Global Historical Climatology Network: Long-term monthly temperature, precipitation, sea level pressure, and station pressure data

    Energy Technology Data Exchange (ETDEWEB)

    Vose, R.S. (Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center); Schmoyer, R.L. (Oak Ridge National Lab., TN (United States)); Steurer, P.M.; Peterson, T.C.; Heim, R.; Karl, T.R. (National Climatic Data Center, Asheville, NC (United States)); Eischeid, J.K. (Colorado Univ., Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences)

    1992-07-01

    Interest in global climate change has risen dramatically during the last several years. In a similar fashion, the number of data sets available to study global change has also increased. Unfortunately, these data sets have been compiled by many different organizations/researchers, making it confusing and time consuming for individual researchers to acquire the best'' data. In response to this rapid growth in the number of global data sets, the Carbon Dioxide Information Analysis Center (CDIAC) and the National Climatic Data Center (NCDC) commenced the Global Historical Climatology Network (GHCN) project. The purpose of this project is to compile an improved global base-line data set of long-term monthly mean temperature, precipitation, sea level pressure, and station pressure for a dense network. of worldwide meteorological stations. Specifically, the GHCN project seeks to consolidate the numerous preexisting national-, regional-, and global-scale data sets into a single global climate data base that can be updated, enhanced, and distributed at regular intervals. The first version of the GHCN data base was completed during the summer of 1992. It contains 6039 temperature, 7533 precipitation, 1883 sea level pressure, and 1873 station pressure stations. All stations have at least 10 years of data, 40% have more than 50 years of data, and 10% have more than 100 years of data. Spatial coverage is good over most of the globe, particularly for the United States and central Europe. In comparison to other major global data sets, dramatic improvements are evident over South America, Africa, and Asia. The GHCN data base is available as a Numeric Data Package (NDP) from CDIAC. The NDP consists of this document and two magnetic tapes that contain machine-readable data files and accompanying retrieval codes. This document describes, in detail, both the GHCN data base and the contents of the magnetic tap

  4. On the role of rising global temperatures on 2015-2016 Caribbean drought

    Science.gov (United States)

    Herrera, D. A.; Ault, T.

    2016-12-01

    In 2015 the Caribbean faced one of the worst droughts ever recorded. On some islands, like Cuba, the event represents the worst in over 100 years. Although this exceptional drought has been linked primarily to the recent El Niño, it is unclear whether its severity could have been enhanced by anthropogenic climate change. In this work, an analysis of the role played by anthropogenic warming on the 2015-2016 drought in the Caribbean is presented, using high-resolution drought datasets based on the self-calibrated Palmer Drought Severity Index (scPDSI), with the Penman-Monteith approximation of evapotranspiration. This effort further uses statistically-downscaled reanalysis products that span 1950 to the near present to establish an historical baseline for characterizing and monitoring drought in real time. The relative contribution of global warming is estimated by comparing the scPDSI calculated using detrended temperatures, against the scPDSI computed with the observed trend while holding all other terms at their historical or climatological values. Results indicate that during 2015, 70% of the Caribbean was affected by mild drought (-2 to -3 scPDSI units), 43% by moderate drought (-4 to -3) and 14% by severe drought (<-4). Consequently, this event was the most regionally-widespread since at least 1950. In contrast, during the 1997 drought, 47% of the region was under mild drought, 25% moderate drought and 8% severe drought. The approximate relative contribution of warmth on the 2015-2016 event varies substantially along the Caribbean, ranging from 8-12% in Puerto Rico and Lesser Antilles, to 14-29 % in Cuba and the Hispaniola Island. The inherent insular nature of the Caribbean island make them especially vulnerable to drought because water cannot be collected, moved, and stored on large spatial scales, like it can in the US Southwest. These results underscore the likely role climate change is playing in exacerbating regional drought impacts by favoring higher

  5. The Relationship between Atmospheric Carbon Dioxide Concentration and Global Temperature for the Last 425 Million Years

    Directory of Open Access Journals (Sweden)

    W. Jackson Davis

    2017-09-01

    Full Text Available Assessing human impacts on climate and biodiversity requires an understanding of the relationship between the concentration of carbon dioxide (CO2 in the Earth’s atmosphere and global temperature (T. Here I explore this relationship empirically using comprehensive, recently-compiled databases of stable-isotope proxies from the Phanerozoic Eon (~540 to 0 years before the present and through complementary modeling using the atmospheric absorption/transmittance code MODTRAN. Atmospheric CO2 concentration is correlated weakly but negatively with linearly-detrended T proxies over the last 425 million years. Of 68 correlation coefficients (half non-parametric between CO2 and T proxies encompassing all known major Phanerozoic climate transitions, 77.9% are non-discernible (p > 0.05 and 60.0% of discernible correlations are negative. Marginal radiative forcing (ΔRFCO2, the change in forcing at the top of the troposphere associated with a unit increase in atmospheric CO2 concentration, was computed using MODTRAN. The correlation between ΔRFCO2 and linearly-detrended T across the Phanerozoic Eon is positive and discernible, but only 2.6% of variance in T is attributable to variance in ΔRFCO2. Of 68 correlation coefficients (half non-parametric between ΔRFCO2 and T proxies encompassing all known major Phanerozoic climate transitions, 75.0% are non-discernible and 41.2% of discernible correlations are negative. Spectral analysis, auto- and cross-correlation show that proxies for T, atmospheric CO2 concentration and ΔRFCO2 oscillate across the Phanerozoic, and cycles of CO2 and ΔRFCO2 are antiphasic. A prominent 15 million-year CO2 cycle coincides closely with identified mass extinctions of the past, suggesting a pressing need for research on the relationship between CO2, biodiversity extinction, and related carbon policies. This study demonstrates that changes in atmospheric CO2 concentration did not cause temperature change in the ancient climate.

  6. Limits to global and Australian temperature change this century based on expert judgment of climate sensitivity

    Science.gov (United States)

    Grose, Michael R.; Colman, Robert; Bhend, Jonas; Moise, Aurel F.

    2017-05-01

    The projected warming of surface air temperature at the global and regional scale by the end of the century is directly related to emissions and Earth's climate sensitivity. Projections are typically produced using an ensemble of climate models such as CMIP5, however the range of climate sensitivity in models doesn't cover the entire range considered plausible by expert judgment. Of particular interest from a risk-management perspective is the lower impact outcome associated with low climate sensitivity and the low-probability, high-impact outcomes associated with the top of the range. Here we scale climate model output to the limits of expert judgment of climate sensitivity to explore these limits. This scaling indicates an expanded range of projected change for each emissions pathway, including a much higher upper bound for both the globe and Australia. We find the possibility of exceeding a warming of 2 °C since pre-industrial is projected under high emissions for every model even scaled to the lowest estimate of sensitivity, and is possible under low emissions under most estimates of sensitivity. Although these are not quantitative projections, the results may be useful to inform thinking about the limits to change until the sensitivity can be more reliably constrained, or this expanded range of possibilities can be explored in a more formal way. When viewing climate projections, accounting for these low-probability but high-impact outcomes in a risk management approach can complement the focus on the likely range of projections. They can also highlight the scale of the potential reduction in range of projections, should tight constraints on climate sensitivity be established by future research.

  7. An improved empirical dynamic control system model of global mean sea level rise and surface temperature change

    Science.gov (United States)

    Wu, Qing; Luu, Quang-Hung; Tkalich, Pavel; Chen, Ge

    2017-03-01

    Having great impacts on human lives, global warming and associated sea level rise are believed to be strongly linked to anthropogenic causes. Statistical approach offers a simple and yet conceptually verifiable combination of remotely connected climate variables and indices, including sea level and surface temperature. We propose an improved statistical reconstruction model based on the empirical dynamic control system by taking into account the climate variability and deriving parameters from Monte Carlo cross-validation random experiments. For the historic data from 1880 to 2001, we yielded higher correlation results compared to those from other dynamic empirical models. The averaged root mean square errors are reduced in both reconstructed fields, namely, the global mean surface temperature (by 24-37%) and the global mean sea level (by 5-25%). Our model is also more robust as it notably diminished the unstable problem associated with varying initial values. Such results suggest that the model not only enhances significantly the global mean reconstructions of temperature and sea level but also may have a potential to improve future projections.

  8. Global-mean temperature change from shipping toward 2050: improved representation of the indirect aerosol effect in simple climate models.

    Science.gov (United States)

    Lund, Marianne Tronstad; Eyring, Veronika; Fuglestvedt, Jan; Hendricks, Johannes; Lauer, Axel; Lee, David; Righi, Mattia

    2012-08-21

    We utilize a range of emission scenarios for shipping to determine the induced global-mean radiative forcing and temperature change. Ship emission scenarios consistent with the new regulations on nitrogen oxides (NO(x)) and sulfur dioxide (SO(2)) from the International Maritime Organization and two of the Representative Concentration Pathways are used as input to a simple climate model (SCM). Based on a complex aerosol-climate model we develop and test new parametrizations of the indirect aerosol effect (IAE) in the SCM that account for nonlinearities in radiative forcing of ship-induced IAE. We find that shipping causes a net global cooling impact throughout the period 1900-2050 across all parametrizations and scenarios. However, calculated total net global-mean temperature change in 2050 ranges from -0.03[-0.07,-0.002]°C to -0.3[-0.6,-0.2]°C in the A1B scenario. This wide range across parametrizations emphasizes the importance of properly representing the IAE in SCMs and to reflect the uncertainties from complex global models. Furthermore, our calculations show that the future ship-induced temperature response is likely a continued cooling if SO(2) and NO(x) emissions continue to increase due to a strong increase in activity, despite current emission regulations. However, such cooling does not negate the need for continued efforts to reduce CO(2) emissions, since residual warming from CO(2) is long-lived.

  9. Temperature alters reproductive life history patterns in Batrachochytrium dendrobatidis, a lethal pathogen associated with the global loss of amphibians.

    Science.gov (United States)

    Voyles, Jamie; Johnson, Leah R; Briggs, Cheryl J; Cashins, Scott D; Alford, Ross A; Berger, Lee; Skerratt, Lee F; Speare, Rick; Rosenblum, Erica Bree

    2012-09-01

    Understanding how pathogens respond to changing environmental conditions is a central challenge in disease ecology. The environmentally sensitive fungal pathogen Batrachochytrium dendrobatidis (Bd), which causes the amphibian disease chytridiomycosis, has spread globally causing amphibian extirpations in a wide variety of climatic regions. To gain an in-depth understanding of Bd's responses to temperature, we used an integrative approach, combining empirical laboratory experiments with mathematical modeling. First, we selected a single Bd isolate and serially propagated two lineages of the isolate for multiple generations in two stable thermal conditions: 4°C (cold-adapted lineage) and 23°C (warm-adapted lineage). We quantified the production of infectious zoospores (fecundity), the timing of zoospore release, and zoospore activity in reciprocal temperature transplant experiments in which both Bd lineages were grown in either high or low temperature conditions. We then developed population growth models for the Bd lineages under each set of temperature conditions. We found that Bd had lower population growth rates, but longer periods of zoospore activity in the low temperature treatment (4°C) compared to the high temperature treatment (23°C). This effect was more pronounced in Bd lineages that were propagated in the low temperature treatment (4°C), suggesting a shift in Bd's response to low temperature conditions. Our results provide novel insights into the mechanisms by which Bd can thrive in a wide variety of temperature conditions, potentially altering the dynamics of chytridiomycosis and thus, the propensity for Bd to cause amphibian population collapse. We also suggest that the adaptive responses of Bd to thermal conditions warrant further investigation, especially in the face of global climate change.

  10. GHRSST Level 4 GAMSSA Global Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Australian Bureau...

  11. GHRSST Level 4 OSPO Global Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Office of...

  12. GHRSST Level 4 ODYSSEA Global Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at Ifremer/CERSAT...

  13. GHRSST Level 4 OSPO Global Nighttime Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Office of...

  14. GHRSST Level 4 DMI_OI Global Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis by the Danish...

  15. GHRSST Level 4 OSTIA Global Foundation Sea Surface Temperature Analysis (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the UK Met Office...

  16. GHRSST Level 4 K10_SST Global 1 meter Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Naval...

  17. GHRSST Level 4 G1SST Global Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis by the JPL OurOcean...

  18. The Global Drifter Program Currents, Sea Surface Temperature, Atmospheric Pressure and Waves in the World's OceanThe Global Drifter Program Currents, Sea Surface Temperature, Atmospheric Pressure and Waves in the World's Ocean

    Science.gov (United States)

    Centurioni, Luca

    2017-04-01

    The Global Drifter Program is the principal component of the Global Surface Drifting Buoy Array, a branch of NOAA's Global Ocean Observing System and a scientific project of the Data Buoy Cooperation Panel (DBCP). The DBCP is an international program coordinating the use of autonomous data buoys to observe atmospheric and oceanographic conditions over ocean areas where few other measurements are taken. The Global Drifter Program maintains an array of over 1,250 Lagrangian drifters, reporting in near real-time and designed measure 15 m depth Lagrangian currents, sea surface temperature (SST) and sea level atmospheric pressure (SLP), among others, to fulfill the needs to observe the air-sea interface at temporal and spatial scales adequate to support short to medium-range weather forecasting, ocean state estimates and climate science. This overview talk will discuss the main achievements of the program, the main impacts for satellite SST calibration and validation, for numerical weather prediction, and it will review the main scientific findings based on the use of Lagrangian currents. Finally, we will present new developments in Lagrangian drifter technology, which include special drifters designed to measure sea surface salinity, wind and directional wave spectra. New opportunities for expanding the scope of the Global Drifter Program will be discussed.

  19. Development of a global rainbow refractometry technique to measure the temperature of spray droplets in a large containment vessel

    Science.gov (United States)

    Lemaitre, P.; Porcheron, E.; Grehan, G.; Bouilloux, L.

    2006-06-01

    In order to study the heat and mass transfers between a spray of droplets and the atmosphere in thermal-hydraulics conditions representative of a severe accident in a Pressurized Water Nuclear Reactor, the French Institute for Radioprotection and Nuclear Safety (IRSN) developed the TOSQAN facility. The present paper presents the development and the quantification of an optical diagnostic, global rainbow refractometry, in order to measure falling droplet temperature.

  20. A new integrated and homogenized global monthly land surface air temperature dataset for the period since 1900

    Science.gov (United States)

    Xu, Wenhui; Li, Qingxiang; Jones, Phil; Wang, Xiaolan L.; Trewin, Blair; Yang, Su; Zhu, Chen; Zhai, Panmao; Wang, Jinfeng; Vincent, Lucie; Dai, Aiguo; Gao, Yun; Ding, Yihui

    2017-06-01

    A new dataset of integrated and homogenized monthly surface air temperature over global land for the period since 1900 [China Meteorological Administration global Land Surface Air Temperature (CMA-LSAT)] is developed. In total, 14 sources have been collected and integrated into the newly developed dataset, including three global (CRUTEM4, GHCN, and BEST), three regional and eight national sources. Duplicate stations are identified, and those with the higher priority are chosen or spliced. Then, a consistency test and a climate outlier test are conducted to ensure that each station series is quality controlled. Next, two steps are adopted to assure the homogeneity of the station series: (1) homogenized station series in existing national datasets (by National Meteorological Services) are directly integrated into the dataset without any changes (50% of all stations), and (2) the inhomogeneities are detected and adjusted for in the remaining data series using a penalized maximal t test (50% of all stations). Based on the dataset, we re-assess the temperature changes in global and regional areas compared with GHCN-V3 and CRUTEM4, as well as the temperature changes during the three periods of 1900-2014, 1979-2014 and 1998-2014. The best estimates of warming trends and there 95% confidence ranges for 1900-2014 are approximately 0.102 ± 0.006 °C/decade for the whole year, and 0.104 ± 0.009, 0.112 ± 0.007, 0.090 ± 0.006, and 0.092 ± 0.007 °C/decade for the DJF (December, January, February), MAM, JJA, and SON seasons, respectively. MAM saw the most significant warming trend in both 1900-2014 and 1979-2014. For an even shorter and more recent period (1998-2014), MAM, JJA and SON show similar warming trends, while DJF shows opposite trends. The results show that the ability of CMA-LAST for describing the global temperature changes is similar with other existing products, while there are some differences when describing regional temperature changes.

  1. New climatic targets against global warming: will the maximum 2 °C temperature rise affect estuarine benthic communities?

    Science.gov (United States)

    Crespo, Daniel; Grilo, Tiago Fernandes; Baptista, Joana; Coelho, João Pedro; Lillebø, Ana Isabel; Cássio, Fernanda; Fernandes, Isabel; Pascoal, Cláudia; Pardal, Miguel Ângelo; Dolbeth, Marina

    2017-06-20

    The Paris Agreement signed by 195 countries in 2015 sets out a global action plan to avoid dangerous climate change by limiting global warming to remain below 2 °C. Under that premise, in situ experiments were run to test the effects of 2 °C temperature increase on the benthic communities in a seagrass bed and adjacent bare sediment, from a temperate European estuary. Temperature was artificially increased in situ and diversity and ecosystem functioning components measured after 10 and 30 days. Despite some warmness effects on the analysed components, significant impacts were not verified on macro and microfauna structure, bioturbation or in the fluxes of nutrients. The effect of site/habitat seemed more important than the effects of the warmness, with the seagrass habitat providing more homogenous results and being less impacted by warmness than the adjacent bare sediment. The results reinforce that most ecological responses to global changes are context dependent and that ecosystem stability depends not only on biological diversity but also on the availability of different habitats and niches, highlighting the role of coastal wetlands. In the context of the Paris Agreement it seems that estuarine benthic ecosystems will be able to cope if global warming remains below 2 °C.

  2. Effect of Temperature Rising on the Stygobitic Crustacean Species Diacyclops belgicus: Does Global Warming Affect Groundwater Populations?

    Directory of Open Access Journals (Sweden)

    Tiziana Di Lorenzo

    2017-12-01

    Full Text Available The average global temperature is predicted to increase by 3 °C by the end of this century due to human-induced climate change. The overall metabolism of the aquatic biota will be directly affected by rising temperatures and associated changes. Since thermal stability is a characteristic of groundwater ecosystems, global warming is expected to have a profound effect on the groundwater fauna. The prediction that stygobitic (obligate groundwater dweller species are vulnerable to climate change includes assumptions about metabolic effects that can only be tested by comparisons across a thermal gradient. To this end, we investigated the effects of two different thermal regimes on the metabolism of the stygobitic copepod species Diacyclops belgicus (Kiefer, 1936. We measured the individual-based oxygen consumption of this species as a proxy of possible metabolic reactions to temperature rising from 14 to 17 °C. We used a sealed glass microplate equipped with planar oxygen sensor spots with optical isolation glued onto the bottom of 80-μL wells integrated with a 24-channel fluorescence-based respirometry system. The tests have provided controversial results according to which the D. belgicus populations should be prudently considered at risk under a global warming scenario.

  3. AMSR-E/Aqua Daily Global Quarter-Degree Gridded Brightness Temperatures

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) instrument on the NASA EOS Aqua satellite provides global passive microwave measurements...

  4. Near-Real Time Monthly Global Temperature and Salinity Gridded Data from New Ocean Exploration by Argo Floats

    Science.gov (United States)

    Chu, P. C.; Sun, L.; Fan, C.

    2010-12-01

    New ocean exploration by Argo floats provides sufficient spatial and temporal coverage for sampling the global ocean temperature and salinity. Currently, there are 3193 Argo floats all over the world oceans. Combined with traditionally sampled data, they are included into the Global Temperature and Salinity Profile Program (GTSPP). To fully understanding the variability in ocean thermohaline structure and then its effects on climate variability needs a sufficient resolution in space and, especially, in time, gridded ocean temperature and salinity (T, S) dataset. We analyzed observational profiles (from Argo and traditional technologies) from the GTSPP and produced a T-S data set to meet the above need. GTSPP is a joint programme of the International Oceanographic Data and Information Exchange committee (IODE) and the Joint Commission on Oceanography and Marine Meteorology (JCOMM). IODE and JCOMM are technical committees of the Intergovernmental Oceanographic Commission and the World Meteorological Organization. The quality control procedures used in GTSPP were developed by the Marine Environmental Data Service (MEDS), now the Integrated Science Data Management (ISDM), of Canada. The GTSPP handles all temperature and salinity profile data. This includes observations collected using water samplers, continuous profiling instruments such as Argo, CTDs, thermistor chain data and observations acquired using thermosalinographs. These data will reach data processing centres of the Program through the real-time channels of the IGOSS program or in delayed mode through the IODE system. Real-time data in GTSPP are acquired from the Global Telecommunications System in the bathythermal (BATHY) and temperature, salinity & current (TESAC) codes forms supported by the WMO. Delayed mode data are contributed directly by member states of IOC. Any variable (temperature, salinity, or velocity) can be decomposed into generalized Fourier series using the recently developed optimal

  5. Apparent limitations in the ability of CMIP5 climate models to simulate recent multi-decadal change in surface temperature: implications for global temperature projections

    Science.gov (United States)

    Power, Scott; Delage, François; Wang, Guomin; Smith, Ian; Kociuba, Greg

    2017-07-01

    Observed surface temperature trends over the period 1998-2012/2014 have attracted a great deal of interest because of an apparent slowdown in the rate of global warming, and contrasts between climate model simulations and observations of such trends. Many studies have addressed the statistical significance of these relatively short-trends, whether they indicate a possible bias in the model values and the implications for global warming generally. Here we re-examine these issues, but as they relate to changes over much longer-term changes. We find that on multi- decadal time scales there is little evidence for any change in the observed global warming rate, but some evidence for a recent temporary slowdown in the warming rate in the Pacific. This multi-decadal slowdown can be partly explained by a cool phase of the Interdecadal Pacific Oscillation and a short-term excess of La Niña events. We also analyse historical and projected changes in 38 CMIP climate models. All of the model simulations examined simulate multi-decadal warming in the Pacific over the past half-century that exceeds observed values. This difference cannot be fully explained by observed internal multi-decadal climate variability, even if allowance is made for an apparent tendency for models to underestimate internal multi-decadal variability in the Pacific. Models which simulate the greatest global warming over the past half-century also project warming that is among the highest of all models by the end of the twenty-first century, under both low and high greenhouse gas emission scenarios. Given that the same models are poorest in representing observed multi-decadal temperature change, confidence in the highest projections is reduced.

  6. Application of the singular spectrum analysis technique to study the recent hiatus on the global surface temperature record.

    Science.gov (United States)

    Macias, Diego; Stips, Adolf; Garcia-Gorriz, Elisa

    2014-01-01

    Global surface temperature has been increasing since the beginning of the 20th century but with a highly variable warming rate, and the alternation of rapid warming periods with 'hiatus' decades is a constant throughout the series. The superimposition of a secular warming trend with natural multidecadal variability is the most accepted explanation for such a pattern. Since the start of the 21st century, the surface global mean temperature has not risen at the same rate as the top-of-atmosphere radiative energy input or greenhouse gas emissions, provoking scientific and social interest in determining the causes of this apparent discrepancy. Multidecadal natural variability is the most commonly proposed cause for the present hiatus period. Here, we analyze the HadCRUT4 surface temperature database with spectral techniques to separate a multidecadal oscillation (MDV) from a secular trend (ST). Both signals combined account for nearly 88% of the total variability of the temperature series showing the main acceleration/deceleration periods already described elsewhere. Three stalling periods with very little warming could be found within the series, from 1878 to 1907, from 1945 to 1969 and from 2001 to the end of the series, all of them coincided with a cooling phase of the MDV. Henceforth, MDV seems to be the main cause of the different hiatus periods shown by the global surface temperature records. However, and contrary to the two previous events, during the current hiatus period, the ST shows a strong fluctuation on the warming rate, with a large acceleration (0.0085°C year(-1) to 0.017°C year(-1)) during 1992-2001 and a sharp deceleration (0.017°C year(-1) to 0.003°C year(-1)) from 2002 onwards. This is the first time in the observational record that the ST shows such variability, so determining the causes and consequences of this change of behavior needs to be addressed by the scientific community.

  7. Deconvolving temperature and substrate effects on soil heterotrophic respiration under multiple global change factors in mixed grass prairie

    Science.gov (United States)

    Tucker, C.; Nie, M.; Pendall, E. G.

    2013-12-01

    in temperature sensitivity of SOM decomposition. Overall, the temperature sensitivity of the fast pool was highly sensitive to global change factors and their interactions. On the other hand, there were no differences in temperature sensitivity of the slow pool in response to the global change factors. Similarly, the base rate of the fast pool was sensitive to the global change factors, while the slow pool base rate was not. However, the overall size of the slow pool was significantly affected by the global change factors. Vegetation removal reduced the slow pool by ~19% across all warming x CO2 treatments. This effect was greatest under elevated CO2 (both warmed and control), but non-significant under ambient CO2 and temperature. Importantly, effects mediated through the vegetation were the primary factor determining whether slow pool C was gained or lost under elevated CO2 and warming. Our data-model fusion approach allowed us to deconvolve the effect of reduced substrate availability from temperature sensitivity, and to demonstrate that global change may lead to strong positive C cycling feedbacks.

  8. Extracting and Analyzing the Warming Trend in Global and Hemispheric Temperatures

    NARCIS (Netherlands)

    Estrada, Francisco; Perron, Pierre

    2017-01-01

    This article offers an updated and extended attribution analysis based on recently published versions of temperature and forcing datasets. It shows that both temperature and radiative forcing variables can be best represented as trend stationary processes with structural changes occurring in the

  9. Downscaling the Impacts of Large-Scale LUCC on Surface Temperature along with IPCC RCPs: A Global Perspective

    Directory of Open Access Journals (Sweden)

    Xiangzheng Deng

    2014-04-01

    Full Text Available This study focuses on the potential impacts of large-scale land use and land cover changes (LUCC on surface temperature from a global perspective. As important types of LUCC, urbanization, deforestation, cultivated land reclamation, and grassland degradation have effects on the climate, the potential changes of the surface temperature caused by these four types of large-scale LUCC from 2010 to 2050 are downscaled, and this issue analyzed worldwide along with Representative Concentration Pathways (RCPs of the Intergovernmental Panel on Climate Change (IPCC. The first case study presents some evidence of the effects of future urbanization on surface temperature in the Northeast megalopolis of the United States of America (USA. In order to understand the potential climatological variability caused by future forest deforestation and vulnerability, we chose Brazilian Amazon region as the second case study. The third selected region in India as a typical region of cultivated land reclamation where the possible climatic impacts are explored. In the fourth case study, we simulate the surface temperature changes caused by future grassland degradation in Mongolia. Results show that the temperature in built-up area would increase obviously throughout the four land types. In addition, the effects of all four large-scale LUCC on monthly average temperature change would vary from month to month with obviously spatial heterogeneity.

  10. Classification of indoor-outdoor location using combined global positioning system (GPS) and temperature data for personal exposure assessment.

    Science.gov (United States)

    Lee, B; Lim, C; Lee, K

    2017-04-04

    The objectives of this study was to determine the accuracy of indoor-outdoor classification based on GPS and temperature data in three different seasons. In the present study, a global positioning system (GPS) was used alongside temperature data collected in the field by a technician who visited 53 different indoor locations during summer, autumn and winter. The indoor-outdoor location was determined by GPS data alone, and in combination with temperature data. Determination of location by the GPS signal alone, based on the loss of GPS signal and using the used number of satellites (NSAT) signal factor, simple percentage agreements of 73.6 ± 2.9%, 72.9 ± 3.4%, and 72.1 ± 3.1% were obtained for summer, autumn, and winter, respectively. However, when temperature and GPS data were combined, simple percentage agreements were significantly improved (87.9 ± 3.3%, 84.1 ± 2.8%, and 86.3 ± 3.1%, respectively). A temperature criterion for indoor-outdoor determination of ~ Δ 2°C for 2 min could be applied during all three seasons. The results showed that combining GPS and temperature data improved the accuracy of indoor-outdoor determination.

  11. The Impacts of a 2-Degree Rise in Global Temperatures upon Gas-Phase Air Pollutants in Europe

    Science.gov (United States)

    Watson, Laura; Josse, Béatrice; Marecal, Virginie; Lacressonnière, Gwendoline; Vautard, Robert; Gauss, Michael; Engardt, Magnuz; Nyiri, Agnes; Siour, Guillaume

    2014-05-01

    The 15th session of the Conference of Parties (COP 15) in 2009 ratified the Copenhagen Accord, which "recognises the scientific view that" global temperature rise should be held below 2 degrees C above pre-industrial levels in order to limit the impacts of climate change. Due to the fact that a 2-degree limit has been frequently referred to by policy makers in the context of the Copenhagen Accord and many other high-level policy statements, it is important that the impacts of this 2-degree increase in temperature are adequately analysed. To this end, the European Union sponsored the project IMPACT2C, which uses a multi-disciplinary international team to assess a wide variety of impacts of a 2-degree rise in global temperatures. For example, this future increase in temperature is expected to have a significant influence upon meteorological conditions such as temperature, precipitation, and wind direction and intensity; which will in turn affect the production, deposition, and distribution of air pollutants. For the first part of the air quality analysis within the IMPACT2C project, the impact of meteorological forcings on gas phase air pollutants over Europe was studied using four offline atmospheric chemistry transport models. Two sets of meteorological forcings were used for each model: reanalysis of past observation data and global climate model output. Anthropogenic emissions of ozone precursors for the year 2005 were used for all simulations in order to isolate the impact of meteorology and assess the robustness of the results across the different models. The differences between the simulations that use reanalysis of past observation data and the simulations that use global climate model output show how global climate models modify climate hindcasts by boundary conditions inputs: information that is necessary in order to interpret simulations of future climate. The baseline results were assessed by comparison with AirBase (Version 7) measurement data, and were

  12. Characterization of the daily evolutions of global solar radiation and temperature in six climatic areas of the Madeira archipelago (Portugal)

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, P.; Vazquez, M. [Solar Energy Lab, Univ. of Vigo, ETSI Industriales, Vigo (Spain); Magro, C. [Lab. Regional de Engenharia Civil, Governo Regional da Madeira, Sao Martinho, Funchal (Portugal)

    2008-07-01

    The aim of the paper is to characterize the daily evolution of horizontal global solar radiation and temperature in six climatic areas of the Madeira archipelago, from the daily data recorded in six corresponding meteorological stations. An average characteristic day is obtained for each month of the year in the four-year data period 2002-2005. In relation to solar radiation, a characteristic day is defined as the day of the month with the Sun trajectory closest to the daily average Sun trajectory of the month and the daily global horizontal solar irradiation equal to the daily average of the month. It is assumed a sine-type evolution of the global irradiances along the day. In relation to temperature, a characteristic day is also assumed to have a sine-type evolution along the daylight hours of the day, with the minimum and maximum values at sunrise and two hours after noon, respectively. The characteristic minimum and maximum values are obtained averaging the daily minimum and maximum values of the month, respectively. (orig.)

  13. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission

    National Research Council Canada - National Science Library

    Brady, Oliver J; Golding, Nick; Pigott, David M; Kraemer, Moritz U G; Messina, Jane P; Reiner, Jr, Robert C; Scott, Thomas W; Smith, David L; Gething, Peter W; Hay, Simon I

    2014-01-01

    ... and virus populations. Here we expand an existing modelling framework with new temperature-based relationships to model an index proportional to the basic reproductive number of the dengue virus...

  14. Temperature Changes In Poland In 21st Century – Results Of Global Simulation And Regional Downscaling

    Directory of Open Access Journals (Sweden)

    Pilarski Michał

    2015-09-01

    Full Text Available The main source of information about future climate changes are the results of numerical simulations performed in scientific institutions around the world. Present projections from global circulation models (GCMs are too coarse and are only usefulness for the world, hemisphere or continent spatial analysis. The low horizontal resolution of global models (100–200 km, does not allow to assess climate changes at regional or local scales. Therefore it is necessary to lead studies concerning how to detail the GCMs information. The problem of information transfer from the GCMs to higher spatial scale solve: dynamical and statistical downscaling. The dynamical downscaling method based on “nesting” global information in a regional models (RCMs, which solve the equations of motion and the thermodynamic laws in a small spatial scale (10–50 km. However, the statistical downscaling models (SDMs identify the relationship between large-scale variable (predictor and small-scale variable (predictand implementing linear regression. The main goal of the study was to compare the global model scenarios of thermal condition in Poland in XXI century with the more accurate statistical and dynamical regional models outcomes. Generally studies confirmed usefulness of statistical downscaling to detail information from GCMs. Basic results present that regional models captured local aspects of thermal conditions variability especially in coastal zone.

  15. Implementation of Coupled Skin Temperature Analysis and Bias Correction in a Global Atmospheric Data Assimilation System

    Science.gov (United States)

    Radakovich, Jon; Bosilovich, M.; Chern, Jiun-dar; daSilva, Arlindo

    2004-01-01

    The NASA/NCAR Finite Volume GCM (fvGCM) with the NCAR CLM (Community Land Model) version 2.0 was integrated into the NASA/GMAO Finite Volume Data Assimilation System (fvDAS). A new method was developed for coupled skin temperature assimilation and bias correction where the analysis increment and bias correction term is passed into the CLM2 and considered a forcing term in the solution to the energy balance. For our purposes, the fvDAS CLM2 was run at 1 deg. x 1.25 deg. horizontal resolution with 55 vertical levels. We assimilate the ISCCP-DX (30 km resolution) surface temperature product. The atmospheric analysis was performed 6-hourly, while the skin temperature analysis was performed 3-hourly. The bias correction term, which was updated at the analysis times, was added to the skin temperature tendency equation at every timestep. In this presentation, we focus on the validation of the surface energy budget at the in situ reference sites for the Coordinated Enhanced Observation Period (CEOP). We will concentrate on sites that include independent skin temperature measurements and complete energy budget observations for the month of July 2001. In addition, MODIS skin temperature will be used for validation. Several assimilations were conducted and preliminary results will be presented.

  16. On the contribution of lakes in predicting near-surface temperature in a global weather forecasting model

    Directory of Open Access Journals (Sweden)

    T. Stockdale

    2012-02-01

    Full Text Available The impact of lakes in numerical weather prediction is investigated in a set of global simulations performed with the ECMWF Integrated Forecasting System (IFS. A Fresh shallow-water Lake model (FLake is introduced allowing the coupling of both resolved and subgrid lakes (those that occupy less than 50% of a grid-box to the IFS atmospheric model. Global fields for the lake ancillary conditions (namely lake cover and lake depth, as well as initial conditions for the lake physical state, have been derived to initialise the forecast experiments. The procedure for initialising the lake variables is described and verified with particular emphasis on the importance of surface water temperature and freezing conditions. The response of short-range near surface temperature to the representation of lakes is examined in a set of forecast experiments covering one full year. It is shown that the impact of subgrid lakes is beneficial, reducing forecast error over the Northern territories of Canada and over Scandinavia particularly in spring and summer seasons. This is mainly attributed to the lake thermal effect, which delays the temperature response to seasonal radiation forcing.

  17. Global analysis of the pressure adjustment mechanism over sea surface temperature fronts using AIRS/Aqua data

    Science.gov (United States)

    Shimada, Teruhisa; Minobe, Shoshiro

    2011-03-01

    We investigate the signatures of atmospheric pressure adjustment mechanism for surface wind convergence/divergence over major sea surface temperature (SST) frontal regions using global observations of satellite sounding and scatterometer. Lower tropospheric air thickness, which includes a sea-level pressure component modified by air temperature in the marine atmospheric boundary layer, is analyzed, and the relation between the Laplacian of the thickness and wind convergence are examined. Among four SST frontal regions in mid-latitudes, correlation between the thickness Laplacian and wind convergence is the largest over the Gulf Stream followed by those for the Agulhas Return Current and for the Brazil/Malvinas Current, and relatively small but still significant over the Kuroshio-Oyashio Extension. These correlations strongly suggest that the pressure adjustment mechanism ubiquitously plays an important role in air-sea interaction over the global SST frontal regions. Furthermore, air temperatures in the first two regions exhibit SST-relating signatures even in the mid-troposphere.

  18. Response of tropical sea surface temperature, precipitation, and tropical cyclone-related variables to changes in global and local forcing

    Science.gov (United States)

    Emanuel, Kerry; Sobel, Adam

    2013-06-01

    A single-column model is used to estimate the equilibrium response of sea surface temperature (SST), precipitation, and several variables related to tropical cyclone (TC) activity to changes in both local and global forcing. Response to local forcing is estimated using the weak temperature gradient (WTG) approximation. The surface temperature is calculated using a thin slab ocean so as to maintain surface energy balance. Forcing is varied by changing the solar constant, atmospheric CO2 concentration, surface wind speed, and the convergence of upper ocean heat flux. These experiments show that precipitation and variables related to TC activity are not unique functions of SST on time scales long enough for surface energy balance to be maintained. Precipitation varies inversely with SST in experiments in which the surface wind speed is varied. At low wind speed, the WTG experiments reveal a regime of high relative SST and low precipitation, which is maintained by increased transmission of longwave radiation from the surface directly to space through a dry troposphere. In general, TC potential intensity and genesis potential vary much more rapidly with SST in response to varying surface wind speed than in response to other forcings. Local changes in TC potential intensity are highly correlated with local changes in SST, showing that relative SST is a good proxy for potential intensity when forcing is strictly local, but it cannot capture potentially important changes in potential intensity that arise from global-scale changes in forcing.

  19. Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century

    Science.gov (United States)

    Coffel, Ethan D.; Horton, Radley M.; de Sherbinin, Alex

    2018-01-01

    As a result of global increases in both temperature and specific humidity, heat stress is projected to intensify throughout the 21st century. Some of the regions most susceptible to dangerous heat and humidity combinations are also among the most densely populated. Consequently, there is the potential for widespread exposure to wet bulb temperatures that approach and in some cases exceed postulated theoretical limits of human tolerance by mid- to late-century. We project that by 2080 the relative frequency of present-day extreme wet bulb temperature events could rise by a factor of 100–250 (approximately double the frequency change projected for temperature alone) in the tropics and parts of the mid-latitudes, areas which are projected to contain approximately half the world’s population. In addition, population exposure to wet bulb temperatures that exceed recent deadly heat waves may increase by a factor of five to ten, with 150–750 million person-days of exposure to wet bulb temperatures above those seen in today’s most severe heat waves by 2070–2080. Under RCP 8.5, exposure to wet bulb temperatures above 35 °C—the theoretical limit for human tolerance—could exceed a million person-days per year by 2080. Limiting emissions to follow RCP 4.5 entirely eliminates exposure to that extreme threshold. Some of the most affected regions, especially Northeast India and coastal West Africa, currently have scarce cooling infrastructure, relatively low adaptive capacity, and rapidly growing populations. In the coming decades heat stress may prove to be one of the most widely experienced and directly dangerous aspects of climate change, posing a severe threat to human health, energy infrastructure, and outdoor activities ranging from agricultural production to military training.

  20. The science; global temperature is on the rise and the dangers are real and significant

    Energy Technology Data Exchange (ETDEWEB)

    Hengeveld, H. G. [Environment Canada, Atmospheric Environment Service, Ottawa, ON (Canada)

    2000-03-31

    Several decades of focused research into the behaviour of the global climate system have led to warnings by the scientific community to the effect that human activities might have a major impact on greenhouse gas concentrations and of the concern that such uncontrolled 'experimentation' with the Earth's life support system might be dangerous. The latest assessment by the Intergovernmental Panel on Climate Change (IPCC) released in 1995 concluded that human interference with the climate system will indeed contribute substantially to a warmer global climate, and that there is already substantial evidence of related changes in natural global systems. The report also stated that there is sound rationale for taking mitigative measures to reduce related risks. Despite the many uncertainties that still remain, there is now a solid body of scientific information to suggest that future climate changes will be real, significant, and potentially dangerous. This article provides summary descriptions of the major components of this scientific evidence, confirming the high probability of climatic change. It also describes the expected consequences of warmer climate in terms of increased precipitation, rising sea levels, retreating alpine glaciers, and changes in the ecological behaviour of bird nesting, insect migration and crop growing seasons.

  1. Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers

    Science.gov (United States)

    Jennifer J. Follstad Shah; John S. Kominoski; Marcelo Ardón; Walter K. Dodds; Mark O. Gessner; Natalie A. Griffiths; Charles P. Hawkins; Sherri L. Johnson; Antoine Lecerf; Carri J. LeRoy; David W. P. Manning; Amy D. Rosemond; Robert L. Sinsabaugh; Christopher M. Swan; Jackson R. Webster; Lydia H. Zeglin

    2017-01-01

    Streams and rivers are important conduits of terrestrially derived carbon (C) to atmospheric and marine reservoirs. Leaf litter breakdown rates are expected to increase as water temperatures rise in response to climate change. The magnitude of increase in breakdown rates is uncertain, given differences in litter quality and microbial and detritivore community...

  2. Characterization of the global impact of low temperature gas plasma on vegetative microorganisms.

    NARCIS (Netherlands)

    Winter, T.; Winter, J.; Polak, M.; Kusch, K.; Mader, U.; Sietmann, R.; Ehlbeck, J.; Hijum, S.A.F.T. van; Weltmann, K.D.; Hecker, M.; Kusch, H.

    2011-01-01

    Plasma medicine and also decontamination of bacteria with physical plasmas is a promising new field of life science with huge interest especially for medical applications. Despite numerous successful applications of low temperature gas plasmas in medicine and decontamination, the fundamental nature

  3. Global Hemispheric Temperature Trends and Co–Shifting: A Shifting Mean Vector Autoregressive Analysis

    DEFF Research Database (Denmark)

    Holt, Matthew T.; Teräsvirta, Timo

    This paper examines trends in annual temperature data for the northern and southern hemisphere (1850-2010) by using variants of the shifting-mean autoregressive (SM-AR) model of Gonzalez and Terasvirta (2008). Univariate models are first fitted to each series by using the so called Quick...

  4. Global Hemispheric Temperatures and Co–Shifting: A Vector Shifting–Mean Autoregressive Analysis

    DEFF Research Database (Denmark)

    Holt, Matthew T.; Terasvirta, Timo

    This paper examines local changes in annual temperature data for the northern and southern hemispheres (1850-2014) by using a multivariate generalisation of the shifting-mean autoregressive model of González and Teräsvirta (2008). Univariate models are first fitted to each series by using the Quick...

  5. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores

    NARCIS (Netherlands)

    Bale, J.S.; Masters, G.J.; Hodkinson, I.D.; Awmack, C.; Bezemer, T.M.; Brown, V.K.; Butterfield, J.; Buse, A.; Coulson, J.C.; Farrar, J.; Good, J.E.G.; Harrington, R.; Hartley, S.; Jones, T.H.; Lindroth, R.L.; Press, M.C.; Symrnioudis, I.; Watt, A.D.; Whittaker, J.B.

    2002-01-01

    This review examines the direct effects of climate change on insect herbivores. Temperature is identified as the dominant abiotic factor directly affecting herbivorous insects. There is little evidence of any direct effects Of CO2 or UVB. Direct impacts of precipitation have been largely neglected

  6. GHRSST Level 2P 1 m Depth Global Sea Surface Temperature from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on retrievals from the Visible Infrared Imaging Radiometer Suite (VIIRS)....

  7. GHRSST Level 3P Global Subskin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the MetOp-A satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Level 3 Group for HIgh Resolution Sea Surface Temperature (GHRSST) dataset from the Advanced Very High Resolution Radiometer (AVHRR) on the MetOp-A platform...

  8. Isolating the Roles of Different Forcing Agents in Global Stratospheric Temperature Changes Using Model Integrations with Incrementally Added Single Forcings

    Science.gov (United States)

    Aquila, V.; Swartz, W. H.; Waugh, D. W.; Colarco, P. R.; Pawson, S.; Polvani, L. M.; Stolarski, R. S.

    2016-01-01

    Satellite instruments show a cooling of global stratospheric temperatures over the whole data record (1979-2014). This cooling is not linear and includes two descending steps in the early 1980s and mid-1990s. The 1979-1995 period is characterized by increasing concentrations of ozone depleting substances (ODS) and by the two major volcanic eruptions of El Chichon (1982) and Mount Pinatubo (1991). The 1995-present period is characterized by decreasing ODS concentrations and by the absence of major volcanic eruptions. Greenhouse gas (GHG) concentrations increase over the whole time period. In order to isolate the roles of different forcing agents in the global stratospheric temperature changes, we performed a set of AMIP-style simulations using the NASA Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). We find that in our model simulations the cooling of the stratosphere from 1979 to present is mostly driven by changes in GHG concentrations in the middle and upper stratosphere and by GHG and ODS changes in the lower stratosphere. While the cooling trend caused by increasing GHGs is roughly constant over the satellite era, changing ODS concentrations cause a significant stratospheric cooling only up to the mid-1990s, when they start to decrease because of the implementation of the Montreal Protocol. Sporadic volcanic events and the solar cycle have a distinct signature in the time series of stratospheric temperature anomalies but do not play a statistically significant role in the long-term trends from 1979 to 2014. Several factors combine to produce the step-like behavior in the stratospheric temperatures: in the lower stratosphere, the flattening starting in the mid-1990s is due to the decrease in ozone-depleting substances; Mount Pinatubo and the solar cycle cause the abrupt steps through the aerosol-associated warming and the volcanically induced ozone depletion. In the middle and upper stratosphere, changes in solar irradiance are largely

  9. Incorporating temperature-sensitive Q10 and foliar respiration acclimation algorithms modifies modeled ecosystem responses to global change

    Science.gov (United States)

    Wythers, Kirk R.; Reich, Peter B.; Bradford, John B.

    2013-03-01

    Evidence suggests that respiration acclimation (RA) to temperature in plants can have a substantial influence on ecosystem carbon balance. To assess the influence of RA on ecosystem response variables in the presence of global change drivers, we incorporated a temperature-sensitive Q10 of respiration and foliar basal RA into the ecosystem model PnET-CN. We examined the new algorithms' effects on modeled net primary production (NPP), total canopy foliage mass, foliar nitrogen concentration, net ecosystem exchange (NEE), and ecosystem respiration/gross primary production ratios. This latter ratio more closely matched eddy covariance long-term data when RA was incorporated in the model than when not. Averaged across four boreal ecotone sites and three forest types at year 2100, the enhancement of NPP in response to the combination of rising [CO2] and warming was 9% greater when RA algorithms were used, relative to responses using fixed respiration parameters. The enhancement of NPP response to global change was associated with concomitant changes in foliar nitrogen and foliage mass. In addition, impacts of RA algorithms on modeled responses of NEE closely paralleled impacts on NPP. These results underscore the importance of incorporating temperature-sensitive Q10 and basal RA algorithms into ecosystem models. Given the current evidence that atmospheric [CO2] and surface temperature will continue to rise, and that ecosystem responses to those changes appear to be modified by RA, which is a common phenotypic adjustment, the potential for misleading results increases if models fail to incorporate RA into their carbon balance calculations.

  10. Consequences of Global Warming of 1.5 ?C and 2 ?C for Regional Temperature and Precipitation Changes in the Contiguous United States

    OpenAIRE

    Karmalkar, Ambarish V.; Bradley, Raymond S.

    2017-01-01

    The differential warming of land and ocean leads to many continental regions in the Northern Hemisphere warming at rates higher than the global mean temperature. Adaptation and conservation efforts will, therefore, benefit from understanding regional consequences of limiting the global mean temperature increase to well below 2°C above pre-industrial levels, a limit agreed upon at the United Nations Climate Summit in Paris in December 2015. Here, we analyze climate model simulations from the C...

  11. Growth and physiological responses of canola (Brassica napus) to three components of global climate change: temperature, carbon dioxide and drought

    Energy Technology Data Exchange (ETDEWEB)

    Qaderi, M.M.; Kurepin, L.V.; Reid, D.M. [Univ. of Calgary, Dept. of Biological Sciences, Calgary, Alberta (Canada)

    2006-12-15

    Elevated CO{sub 2} appears to be a significant factor in global warming, which will likely lead to drought conditions in many areas. Few studies have considered the interactive effects of higher CO{sub 2}, temperature and drought on plant growth and physiology. We grew canola (Brassica napus cv. 45H72) plants under lower (22/18 deg. C) and higher (28/24 deg. C) temperature regimes in controlled-environment chambers at ambient (370 {mu}mol mol-1) and elevated (740 {mu}mol mol-1) CO{sub 2} levels. One half of the plants were watered to field capacity and the other half at wilting point. In three separate experiments, we determined growth, various physiological parameters and content of abscisic acid (ABA), indole-3-acetic acid and ethylene. Drought-stressed plants grown under higher temperature at ambient CO{sub 2} had decreased stem height and diameter, leaf number and area, dry matter, leaf area ratio, shoot/root weight ratio, net CO{sub 2} assimilation and chlorophyll fluorescence. However, these plants had increased specific leaf weight, leaf weight ratio and chlorophyll concentration. Elevated CO{sub 2} generally had the opposite effect. and partially reversed the inhibitory effects of higher temperature and drought on leaf dry weight accumulation. This study showed that higher temperature and drought inhibit many processes but elevated CO{sub 2} partially mitigate some adverse effects. As expected, drought stress increased ABA but higher temperature inhibited the ability of plants to produce ABA in response to drought. (au)

  12. Mediating Water Temperature Increases Due to Livestock and Global Change in High Elevation Meadow Streams of the Golden Trout Wilderness.

    Science.gov (United States)

    Nusslé, Sébastien; Matthews, Kathleen R; Carlson, Stephanie M

    2015-01-01

    Rising temperatures due to climate change are pushing the thermal limits of many species, but how climate warming interacts with other anthropogenic disturbances such as land use remains poorly understood. To understand the interactive effects of climate warming and livestock grazing on water temperature in three high elevation meadow streams in the Golden Trout Wilderness, California, we measured riparian vegetation and monitored water temperature in three meadow streams between 2008 and 2013, including two "resting" meadows and one meadow that is partially grazed. All three meadows have been subject to grazing by cattle and sheep since the 1800s and their streams are home to the imperiled California golden trout (Oncorhynchus mykiss aguabonita). In 1991, a livestock exclosure was constructed in one of the meadows (Mulkey), leaving a portion of stream ungrazed to minimize the negative effects of cattle. In 2001, cattle were removed completely from two other meadows (Big Whitney and Ramshaw), which have been in a "resting" state since that time. Inside the livestock exclosure in Mulkey, we found that riverbank vegetation was both larger and denser than outside the exclosure where cattle were present, resulting in more shaded waters and cooler maximal temperatures inside the exclosure. In addition, between meadows comparisons showed that water temperatures were cooler in the ungrazed meadows compared to the grazed area in the partially grazed meadow. Finally, we found that predicted temperatures under different global warming scenarios were likely to be higher in presence of livestock grazing. Our results highlight that land use can interact with climate change to worsen the local thermal conditions for taxa on the edge and that protecting riparian vegetation is likely to increase the resiliency of these ecosystems to climate change.

  13. Mediating Water Temperature Increases Due to Livestock and Global Change in High Elevation Meadow Streams of the Golden Trout Wilderness.

    Directory of Open Access Journals (Sweden)

    Sébastien Nusslé

    Full Text Available Rising temperatures due to climate change are pushing the thermal limits of many species, but how climate warming interacts with other anthropogenic disturbances such as land use remains poorly understood. To understand the interactive effects of climate warming and livestock grazing on water temperature in three high elevation meadow streams in the Golden Trout Wilderness, California, we measured riparian vegetation and monitored water temperature in three meadow streams between 2008 and 2013, including two "resting" meadows and one meadow that is partially grazed. All three meadows have been subject to grazing by cattle and sheep since the 1800s and their streams are home to the imperiled California golden trout (Oncorhynchus mykiss aguabonita. In 1991, a livestock exclosure was constructed in one of the meadows (Mulkey, leaving a portion of stream ungrazed to minimize the negative effects of cattle. In 2001, cattle were removed completely from two other meadows (Big Whitney and Ramshaw, which have been in a "resting" state since that time. Inside the livestock exclosure in Mulkey, we found that riverbank vegetation was both larger and denser than outside the exclosure where cattle were present, resulting in more shaded waters and cooler maximal temperatures inside the exclosure. In addition, between meadows comparisons showed that water temperatures were cooler in the ungrazed meadows compared to the grazed area in the partially grazed meadow. Finally, we found that predicted temperatures under different global warming scenarios were likely to be higher in presence of livestock grazing. Our results highlight that land use can interact with climate change to worsen the local thermal conditions for taxa on the edge and that protecting riparian vegetation is likely to increase the resiliency of these ecosystems to climate change.

  14. Global gene expression analysis of the muscle tissues of medaka acclimated to low and high environmental temperatures.

    Science.gov (United States)

    Ikeda, Daisuke; Koyama, Hiroki; Mizusawa, Nanami; Kan-No, Nobuhiro; Tan, Engkong; Asakawa, Shuichi; Watabe, Shugo

    2017-12-01

    Medaka (Oryzias latipes) is a temperate eurythermal fish that is able to survive over a wide range of water temperatures ranging from near zero to over 30°C throughout the year; it maintains its normal physiological and biochemical processes through temperature acclimation. To determine the mechanisms involved in temperature acclimation of fish, the fast skeletal muscle tissues of medaka underwent global gene expression analysis using next-generation sequencing. Ten individuals were placed into two aquariums at 24°C. While the water temperature of one aquarium was decreased to 10°C, that of the other aquarium was increased to 30°C; these temperatures were subsequently maintained for 5weeks. RNA sequencing (RNA-Seq) analyses revealed that 11 genes involved in energy metabolism and muscle atrophy were significantly highly expressed in the 10°C-acclimated fish. Meanwhile, significantly higher expression levels were observed for 20 genes encoding myofibrillar proteins and heat shock proteins in the 30°C-acclimated fish. Moreover, 1103 genes had at least fourfold differential expression between the acclimation groups. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses provided important information: although the expression of genes related to metabolic processes were activated, muscle atrophy occurred in the 10°C-acclimated fish, and muscle cells divided actively in the 30°C-acclimated fish and avoided thermal stress by expressing heat shock proteins. Therefore, RNA-Seq analyses with the available genome database will be useful for better understanding the molecular mechanisms involved in the temperature acclimation of fish. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Soil Temperature Manipulation to Study Global Warming Effects in Arable Land

    DEFF Research Database (Denmark)

    Patil, R H; Laegdsmand, M; Olesen, Jørgen E

    2013-01-01

    clearly showed the efficacy of buried heating-cable technique in simulating soil temperature, and thus offers a simple, effective and alternative technique to study soil biogeochemical processes under warmer climates. This technique, however, decouples below-ground soil responses from that of above......-ground vegetation response as this method heats only the soil. Therefore, using infrared heaters seems to represent natural climate warming (both air and soil) much more closely and may be used for future climate manipulation field studies....

  16. Parameter extraction using global particle swarm optimization approach and the influence of polymer processing temperature on the solar cell parameters

    Science.gov (United States)

    Kumar, S.; Singh, A.; Dhar, A.

    2017-08-01

    The accurate estimation of the photovoltaic parameters is fundamental to gain an insight of the physical processes occurring inside a photovoltaic device and thereby to optimize its design, fabrication processes, and quality. A simulative approach of accurately determining the device parameters is crucial for cell array and module simulation when applied in practical on-field applications. In this work, we have developed a global particle swarm optimization (GPSO) approach to estimate the different solar cell parameters viz., ideality factor (η), short circuit current (Isc), open circuit voltage (Voc), shunt resistant (Rsh), and series resistance (Rs) with wide a search range of over ±100 % for each model parameter. After validating the accurateness and global search power of the proposed approach with synthetic and noisy data, we applied the technique to the extract the PV parameters of ZnO/PCDTBT based hybrid solar cells (HSCs) prepared under different annealing conditions. Further, we examine the variation of extracted model parameters to unveil the physical processes occurring when different annealing temperatures are employed during the device fabrication and establish the role of improved charge transport in polymer films from independent FET measurements. The evolution of surface morphology, optical absorption, and chemical compositional behaviour of PCDTBT co-polymer films as a function of processing temperature has also been captured in the study and correlated with the findings from the PV parameters extracted using GPSO approach.

  17. Global Clear-Sky Surface Skin Temperature from Multiple Satellites Using a Single-Channel Algorithm with Angular Anisotropy Corrections

    Science.gov (United States)

    Scarino, Benjamin R.; Minnis, Patrick; Chee, Thad; Bedka, Kristopher M.; Yost, Christopher R.; Palikonda, Rabindra

    2017-01-01

    Surface skin temperature (T(sub s)) is an important parameter for characterizing the energy exchange at the ground/water-atmosphere interface. The Satellite ClOud and Radiation Property retrieval System (SatCORPS) employs a single-channel thermal-infrared (TIR) method to retrieve T(sub s) over clear-sky land and ocean surfaces from data taken by geostationary Earth orbit (GEO) and low Earth orbit (LEO) satellite imagers. GEO satellites can provide somewhat continuous estimates of T(sub s) over the diurnal cycle in non-polar regions, while polar T(sub s) retrievals from LEO imagers, such as the Advanced Very High Resolution Radiometer (AVHRR), can complement the GEO measurements. The combined global coverage of remotely sensed T(sub s), along with accompanying cloud and surface radiation parameters, produced in near-realtime and from historical satellite data, should be beneficial for both weather and climate applications. For example, near-realtime hourly T(sub s) observations can be assimilated in high-temporal-resolution numerical weather prediction models and historical observations can be used for validation or assimilation of climate models. Key drawbacks to the utility of TIR-derived T(sub s) data include the limitation to clear-sky conditions, the reliance on a particular set of analyses/reanalyses necessary for atmospheric corrections, and the dependence on viewing and illumination angles. Therefore, T(sub s) validation with established references is essential, as is proper evaluation of T(sub s) sensitivity to atmospheric correction source. This article presents improvements on the NASA Langley GEO satellite and AVHRR TIR-based T(sub s) product that is derived using a single-channel technique. The resulting clear-sky skin temperature values are validated with surface references and independent satellite products. Furthermore, an empirically adjusted theoretical model of satellite land surface temperature (LST) angular anisotropy is tested to improve

  18. Low global sensitivity of metabolic rate to temperature in calcified marine invertebrates.

    Science.gov (United States)

    Watson, Sue-Ann; Morley, Simon A; Bates, Amanda E; Clark, Melody S; Day, Robert W; Lamare, Miles; Martin, Stephanie M; Southgate, Paul C; Tan, Koh Siang; Tyler, Paul A; Peck, Lloyd S

    2014-01-01

    Metabolic rate is a key component of energy budgets that scales with body size and varies with large-scale environmental geographical patterns. Here we conduct an analysis of standard metabolic rates (SMR) of marine ectotherms across a 70° latitudinal gradient in both hemispheres that spanned collection temperatures of 0-30 °C. To account for latitudinal differences in the size and skeletal composition between species, SMR was mass normalized to that of a standard-sized (223 mg) ash-free dry mass individual. SMR was measured for 17 species of calcified invertebrates (bivalves, gastropods, urchins and brachiopods), using a single consistent methodology, including 11 species whose SMR was described for the first time. SMR of 15 out of 17 species had a mass-scaling exponent between 2/3 and 1, with no greater support for a 3/4 rather than a 2/3 scaling exponent. After accounting for taxonomy and variability in parameter estimates among species using variance-weighted linear mixed effects modelling, temperature sensitivity of SMR had an activation energy (Ea) of 0.16 for both Northern and Southern Hemisphere species which was lower than predicted under the metabolic theory of ecology (Ea 0.2-1.2 eV). Northern Hemisphere species, however, had a higher SMR at each habitat temperature, but a lower mass-scaling exponent relative to SMR. Evolutionary trade-offs that may be driving differences in metabolic rate (such as metabolic cold adaptation of Northern Hemisphere species) will have important impacts on species abilities to respond to changing environments.

  19. Soil temperature manipulation to study global warming effects in arable land

    DEFF Research Database (Denmark)

    Patil, Raveendra H.; Laegdsmand, Mette; Olesen, Jørgen Eivind

    2013-01-01

    -Apr). This study clearly showed the efficacy of buried heating-cable technique in simulating soil temperature, and thus offers a simple, effective and alternative technique to study soil biogeochemical processes under warmer climates. This technique, however, decouples below-ground soil responses from...... that of above-ground vegetation response as this method heats only the soil. Therefore, using infrared heaters seems to represent natural climate warming (both air and soil) much more closely and may be used for future climate manipulation field studies....

  20. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction.

    Science.gov (United States)

    García-Robledo, Carlos; Kuprewicz, Erin K; Staines, Charles L; Erwin, Terry L; Kress, W John

    2016-01-19

    The critical thermal maximum (CTmax), the temperature at which motor control is lost in animals, has the potential to determine if species will tolerate global warming. For insects, tolerance to high temperatures decreases with latitude, suggesting that similar patterns may exist along elevational gradients as well. This study explored how CTmax varies among species and populations of a group of diverse tropical insect herbivores, the rolled-leaf beetles, across both broad and narrow elevational gradients. Data from 6,948 field observations and 8,700 museum specimens were used to map the elevational distributions of rolled-leaf beetles on two mountains in Costa Rica. CTmax was determined for 1,252 individual beetles representing all populations across the gradients. Initial morphological identifications suggested a total of 26 species with populations at different elevations displaying contrasting upper thermal limits. However, compared with morphological identifications, DNA barcodes (cytochrome oxidase I) revealed significant cryptic species diversity. DNA barcodes identified 42 species and haplotypes across 11 species complexes. These 42 species displayed much narrower elevational distributions and values of CTmax than the 26 morphologically defined species. In general, species found at middle elevations and on mountaintops are less tolerant to high temperatures than species restricted to lowland habitats. Species with broad elevational distributions display high CTmax throughout their ranges. We found no significant phylogenetic signal in CTmax, geography, or elevational range. The narrow variance in CTmax values for most rolled-leaf beetles, especially high-elevation species, suggests that the risk of extinction of insects may be substantial under some projected rates of global warming.

  1. Linkage between global sea surface temperature and hydroclimatology of a major river basin of India before and after 1980

    Science.gov (United States)

    Pattanayak, Sonali; Nanjundiah, Ravi S.; Nagesh Kumar, D.

    2017-12-01

    The frequent occurrence of flood and drought worldwide has drawn attention to assessing whether the hydroclimatology of major river basins has changed. The Mahanadi river basin (MRB) is the major source of fresh water for both Chattisgarh and Odisha states (71 million people approximately) in India. The MRB (141 600 km2 area) is one of the most vulnerable to climate change and variations in temperature and precipitation. In recent years, it has repeatedly faced adverse hydrometeorological conditions. Large-scale ocean–atmospheric phenomena have a substantial influence on river hydroclimatology. Hence global sea surface temperature (SST) linkage with the precipitation and surface temperature of the MRB was analyzed over the period 1950–2012. Significant changes in seasonal correlation patterns were witnessed from 1950–1980 (PR-80) to 1981–2012 (PO-80). The correlation was higher during PR-80 compared to PO-80 between the El Niño region SST versus the maximum temperature (T max) in all seasons except the pre-monsoon season and the minimum temperature (T min) in all seasons except the monsoon season. However, precipitation correlation changes are not prominent. Like the SST, the correlation patterns of sea level pressure with precipitation, T max and T min shifted conspicuously from PR-80 to PO-80. These shifts could be related to change in Pacific decadal SST patterns and anthropogenic effects. Fingerprint-based detection and attribution analysis revealed that the observed changes in T min (pre-monsoon and monsoon season) during the second half of the 20th century cannot be explained solely by natural variability and can be attributed to an anthropogenic effect.

  2. Does the correlation between solar cycle lengths and Northern Hemisphere land temperatures rule out any significant global warming from greenhouse gases?

    DEFF Research Database (Denmark)

    Laut, Peter; Gundermann, Jesper

    1998-01-01

    Since the discovery of a striking correlation between solar cycle lengths and Northern Hemisphere land temperatures there have been widespread speculations as to whether these findings would rule out any significant contributions to global warming from the enhanced concentrations of greenhouse...... gases. The present analysis shows that a similar degree of correlation is obtained when testing the solar data against a couple of fictitious temperature series representing different global warming trends. Therefore, the correlation cannot be used to estimate the magnitude of a possible contribution...... to global warming from human activities, nor to rule out a sizable contribution from that source....

  3. Influence of global temperature change on the geochemical processes in the Plitvice Lakes waters - a case study

    Science.gov (United States)

    Sironić, Andreja; Barešić, Jadranka; Horvatinčić, Nada; Brozinčević, Andrijana; Vurnek, Maja; Kapelj, Sanja

    2016-04-01

    One of the major reasons for the global air temperature increase, recorded as the highest in the last decade, is considered to be the increase of the atmospheric CO2 concentration. However, in calculation of the global carbon budget a certain unknown carbon sink is identified, and karst relief is considered to be an important candidate for it, as well as being a source of carbon. Aquatic systems on karst enable carbon exchange between karst and atmosphere, often through groundwater geochemical carbonate rock dissolution (carbon sink) and in form of secondary calcium carbonate precipitation (carbon source). Protected area of the Plitvice Lakes National Park, settled in the karst area of Croatia, was chosen as a case study of karst geochemical processes. The Lakes are also specific for its tufa precipitation in form of tufa barriers. Physical and chemical data of water collected on 8 locations (2 springs and 6 lakes) in the last 30 years were studied. The data records were not systematic for all 30 years, so first the seasonal periodicity of all data was assessed and temporal change was investigated in each calendar month, and then the change was studied by comparing two distinct periods: 1981-1986 and 2010-2014. On all selected locations we observed temporal increase of air and water temperature, Ca2+ and HCO3- concentrations, calcite saturation index (SIcalc) and of calcite dissolution ionic ratio (IRcalc,) and a decrease in Mg/Ca ratio, though the intensity of this changes differ locally. No statistically significant change was observed for pH and CO2(aq) and Mg2+ concentrations. Discharge rates did not show significant change in the last 30 years; however there is a change in their seasonal distribution and more extreme values were recorded in recent period. Comparison of mean monthly air and water temperature for two periods implies more influence of groundwater inflow at all locations in recent period, which is probably a result of seasonal change in water

  4. First-order coupling of paleogeography and CO sub 2 , with global surface temperature and its latitudinal contrast

    Energy Technology Data Exchange (ETDEWEB)

    Worsley, T.R.; Kidder, D.L. (Ohio Univ., Athens (United States))

    1991-12-01

    The authors propose that for any geography, halving the amount of emergent land area will elevate CO{sub 2} levels enough to raise land surface temperature 10C and vice versa. They have evaluated this relation by specifying latitude and level of emergence for six end-member continental configurations. They show that a world with polar continents (capworld) will be warmest, whereas a world dominated by tropical ones (ringworld) will be coldest - a result superficially counterintuitive to established climate dogma. A meridional configuration (sliceworld) will have intermediate temperatures. The model is consistent with modern, Pleistocene maximum-emergence and mid-Cretaceous minimum-emergence climates. It also predicts a cool global climate for the half-emergent mid-Cambrian ringworld and a very warm, equable climate for the half-emergent mid-Silurian capworld. Furthermore, the relations among latitude, land area, temperature, and CO{sub 2} levels predict that a Late Proterozoic, equator-straddling land mass could have been glaciated. A strong point of the model is that it yields realistic results with no knowledge of paleolongitude, sea-floor-generation rates, or orogeny (or, by implication, degassing and erosion rates), non of which is obtainable for pre-Mesozoic paleogeographies.

  5. Citizen science shows systematic changes in the temperature difference between air and inland waters with global warming.

    Science.gov (United States)

    Weyhenmeyer, Gesa A; Mackay, Murray; Stockwell, Jason D; Thiery, Wim; Grossart, Hans-Peter; Augusto-Silva, Pétala B; Baulch, Helen M; de Eyto, Elvira; Hejzlar, Josef; Kangur, Külli; Kirillin, Georgiy; Pierson, Don C; Rusak, James A; Sadro, Steven; Woolway, R Iestyn

    2017-03-06

    Citizen science projects have a long history in ecological studies. The research usefulness of such projects is dependent on applying simple and standardized methods. Here, we conducted a citizen science project that involved more than 3500 Swedish high school students to examine the temperature difference between surface water and the overlying air (T w -T a ) as a proxy for sensible heat flux (Q H ). If Q H is directed upward, corresponding to positive T w -T a , it can enhance CO 2 and CH 4 emissions from inland waters, thereby contributing to increased greenhouse gas concentrations in the atmosphere. The students found mostly negative T w -T a across small ponds, lakes, streams/rivers and the sea shore (i.e. downward Q H ), with T w -T a becoming increasingly negative with increasing T a . Further examination of T w -T a using high-frequency temperature data from inland waters across the globe confirmed that T w -T a is linearly related to T a . Using the longest available high-frequency temperature time series from Lake Erken, Sweden, we found a rapid increase in the occasions of negative T w -T a with increasing annual mean T a since 1989. From these results, we can expect that ongoing and projected global warming will result in increasingly negative T w -T a , thereby reducing CO 2 and CH 4 transfer velocities from inland waters into the atmosphere.

  6. A model for global diversity in response to temperature change over geological time scales, with reference to planktic organisms.

    Science.gov (United States)

    De Blasio, Fabio Vittorio; Liow, Lee Hsiang; Schweder, Tore; De Blasio, Birgitte Freiesleben

    2015-01-21

    There are strong propositions in the literature that abiotic factors override biotic drivers of diversity on time scales of the fossil record. In order to study the interaction of biotic and abiotic forces on long term changes, we devise a spatio-temporal discrete-time Markov process model of macroevolution featuring population formation, speciation, migration and extinction, where populations are free to migrate. In our model, the extinction probability of these populations is controlled by latitudinally and temporally varying environment (temperature) and competition. Although our model is general enough to be applicable to disparate taxa, we explicitly address planktic organisms, which are assumed to disperse freely without barriers over the Earth's oceans. While rapid and drastic environmental changes tend to eliminate many species, generalists preferentially survive and hence leave generalist descendants. In other words, environmental fluctuations result in generalist descendants which are resilient to future environmental changes. Periods of stable or slow environmental changes lead to more specialist species and higher population numbers. Simulating Cenozoic diversity dynamics with both competition and the environmental component of our model produces diversity curves that reflect current empirical knowledge, which cannot be obtained with just one component. Our model predicts that the average temperature optimum at which planktic species thrive best has declined over the Neogene, following the trend of global average temperatures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. NCEI-TSG: A Global in situ Sea-surface Salinity and Temperature Database of Thermosalinograph (TSG) Observations

    Science.gov (United States)

    Zhang, H. M.; Wang, Z.; Boyer, T.; Bayler, E. J.; Biddle, M.; Baker-Yeboah, S.; Zhang, Y.

    2016-12-01

    The NOAA National Centers for Environmental Information (NCEI) has constructed a Global Thermosalinograph Database (NCEI-TSG) to facilitate access to these in situ sea-surface salinity and temperature measurements. This database provides a comprehensive set of quality-controlled in situ sea-surface salinity (SSS) and temperature (SST) measurements collected from over 200 vessels during the period 1989 to the present. Compared to other TSG datasets, these data have several advantages. 1) The NCEI-TSG is the world's most complete TSG dataset, containing all data from the different TSG data assembly centers, e.g. Shipboard Automated Meteorological and Oceanographic System (SAMOS), Global Ocean Surface Underway Data (GOSUD) and Atlantic Oceanographic and Meteorological Laboratory (AOML), with more historical data from NCEI's archive to be added. 2) When different versions of a dataset are available, the dataset with the highest resolution is always chosen. 3) All data are converted to a common NetCDF format, employing enhanced metadata, following Attribute Convention for Dataset Discovery (ACDD) and Climate and Forecast (CF) conventions, to increase the overall quality and searchability of both the data and metadata. 4) All data are processed using the same 11-step quality control procedures and criteria and flagged using a two-level flag system to provide a well-organized, uniformly quality-controlled TSG dataset for the user community. The NCEI-TSG, a unique dataset for in situ sea-surface observations, serves as a significant resource for establishing match-ups with satellite SST and SSS observations for validation and comparisons. The NCEI-TSG database will significantly contribute to the in situ component of the NOAA Satellite SSS Quality Monitor (4SQM) project (under development). This dataset facilitates assessments of global SST and SSS variability and the analysis of patterns and trends at various regional and temporal scales, enabling new insights in climate

  8. Trends in Mars Thermospheric Density and Temperature Structure Obtained from MAVEN In-situ Datasets: Interpretation Using Global Models

    Science.gov (United States)

    Bougher, Stephen W.; Tolson, Robert H.; Mahaffy, Paul R.; Johnston, Timothy E.; Olsen, Kirk; Bell, Jared M.

    2015-04-01

    The Mars thermosphere-ionosphere-exosphere (TIE) system constitutes the atmospheric reservoir (i.e. available cold and hot planetary neutral and thermal ion species) that regulates present day escape processes from the planet. Without knowledge of the physics and chemistry creating this TIE region and driving its variations (e.g., solar cycle, seasonal), it is not possible to constrain either the short-term or long-term histories of atmosphere escape. The characterization of this upper atmosphere reservoir is one of the major science objectives of the MAVEN mission.We investigate both in-situ Neutral Gas and Ion Mass Spectrometer (NGIMS) neutral densities/temperatures and Accelerometer Experiment (ACC) reaction wheel (RW) derived mass densities/temperatures obtained over the first ~400 orbits. This sampling occurs when periapsis latitudes ranged from about 32° to 74°N periapsis local mean solar times (LMST) ranged from about 15:00 to 06:00; and corresponding periapsis altitudes ranged from ~200 km down to ~150 km. This dayside in-situ sampling lasted until about 17-December-2014, after which the periapsis began moving Southward toward nightside Northern mid-latitudes. During this dayside period, monthly mean solar EUV-UV fluxes corresponded to F10.7 ~ 150-160 at Earth (solar moderate conditions) and the Martian season was approaching perihelion (Ls ~ 205 to 254°).Thermospheric trends (e.g. latitude, local time, diurnal) of extracted densities and inferred temperatures will be compared with corresponding 3-D Mars Global Ionosphere-Thermosphere Model (M-GITM) simulated outputs in order to understand the variations observed, and probe the underlying physical processes responsible. Solar rotation variations in EUV fluxes and their impacts on dayside temperatures will also be examined.

  9. Global Distribution and Variability of Surface Skin and Surface Air Temperatures as Depicted in the AIRS Version-6 Data Set

    Science.gov (United States)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2014-01-01

    In this presentation, we will briefly describe the significant improvements made in the AIRS Version-6 retrieval algorithm, especially as to how they affect retrieved surface skin and surface air temperatures. The global distribution of seasonal 1:30 AM and 1:30 PM local time 12 year climatologies of Ts,a will be presented for the first time. We will also present the spatial distribution of short term 12 year anomaly trends of Ts,a at 1:30 AM and 1:30 PM, as well as the spatial distribution of temporal correlations of Ts,a with the El Nino Index. It will be shown that there are significant differences between the behavior of 1:30 AM and 1:30 PM Ts,a anomalies in some arid land areas.

  10. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers

    Science.gov (United States)

    Kraaijenbrink, P. D. A.; Bierkens, M. F. P.; Lutz, A. F.; Immerzeel, W. W.

    2017-09-01

    Glaciers in the high mountains of Asia (HMA) make a substantial contribution to the water supply of millions of people, and they are retreating and losing mass as a result of anthropogenic climate change at similar rates to those seen elsewhere. In the Paris Agreement of 2015, 195 nations agreed on the aspiration to limit the level of global temperature rise to 1.5 degrees Celsius ( °C) above pre-industrial levels. However, it is not known what an increase of 1.5 °C would mean for the glaciers in HMA. Here we show that a global temperature rise of 1.5 °C will lead to a warming of 2.1 ± 0.1 °C in HMA, and that 64 ± 7 per cent of the present-day ice mass stored in the HMA glaciers will remain by the end of the century. The 1.5 °C goal is extremely ambitious and is projected by only a small number of climate models of the conservative IPCC’s Representative Concentration Pathway (RCP)2.6 ensemble. Projections for RCP4.5, RCP6.0 and RCP8.5 reveal that much of the glacier ice is likely to disappear, with projected mass losses of 49 ± 7 per cent, 51 ± 6 per cent and 64 ± 5 per cent, respectively, by the end of the century; these projections have potentially serious consequences for regional water management and mountain communities.

  11. The Impact of Tree Diversity on Different Aspects of Insect Herbivory along a Global Temperature Gradient - A Meta-Analysis.

    Science.gov (United States)

    Kambach, Stephan; Kühn, Ingolf; Castagneyrol, Bastien; Bruelheide, Helge

    2016-01-01

    Forests with higher tree diversity are often assumed to be more resistant to insect herbivores but whether this effect depends on climatic conditions is so far poorly understood. In particular, a forest's resistance to herbivory may depend on mean annual temperature (MAT) as a key driver of plant and insect phenology. We carried out a global meta-analysis on regression coefficients between tree diversity and four aspects of insect herbivory, namely herbivore damage, abundance, incidence rate and species richness. To test for a potential shift of tree diversity effects along a global gradient of MAT we applied mixed-effects models and estimated grand mean effect sizes and the influence of MAT, experimental vs. observational studies and herbivores diet breadth. There was no overall effect of tree diversity on the pooled effect sizes of insect herbivore damage, abundance and incidence rate. However, when analysed separately, we found positive grand mean effect sizes for herbivore abundance and species richness. For herbivore damage and incidence rate we found a significant but opposing shift along a gradient of MAT indicating that with increasing MAT diversity effects on herbivore damage tend towards associational resistance whereas diversity effects on incidence rates tend towards associational susceptibility. Our results contradict previous meta-analyses reporting overall associational resistance to insect herbivores in mixed forests. Instead, we report that tree diversity effects on insect herbivores can follow a biogeographic pattern calling for further in-depth studies in this field.

  12. Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming

    Science.gov (United States)

    Thirumalai, Kaustubh; Dinezio, Pedro N.; Okumura, Yuko; Deser, Clara

    2017-06-01

    In April 2016, southeast Asia experienced surface air temperatures (SATs) that surpassed national records, exacerbated energy consumption, disrupted agriculture and caused severe human discomfort. Here we show using observations and an ensemble of global warming simulations the combined impact of the El Niño/Southern Oscillation (ENSO) phenomenon and long-term warming on regional SAT extremes. We find a robust relationship between ENSO and southeast Asian SATs wherein virtually all April extremes occur during El Niño years. We then quantify the relative contributions of long-term warming and the 2015-16 El Niño to the extreme April 2016 SATs. The results indicate that global warming increases the likelihood of record-breaking April extremes where we estimate that 29% of the 2016 anomaly was caused by warming and 49% by El Niño. These post-Niño Aprils can potentially be anticipated a few months in advance, and thus, help societies prepare for the projected continued increases in extremes.

  13. Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming

    Science.gov (United States)

    Thirumalai, Kaustubh; DiNezio, Pedro N.; Okumura, Yuko; Deser, Clara

    2017-01-01

    In April 2016, southeast Asia experienced surface air temperatures (SATs) that surpassed national records, exacerbated energy consumption, disrupted agriculture and caused severe human discomfort. Here we show using observations and an ensemble of global warming simulations the combined impact of the El Niño/Southern Oscillation (ENSO) phenomenon and long-term warming on regional SAT extremes. We find a robust relationship between ENSO and southeast Asian SATs wherein virtually all April extremes occur during El Niño years. We then quantify the relative contributions of long-term warming and the 2015–16 El Niño to the extreme April 2016 SATs. The results indicate that global warming increases the likelihood of record-breaking April extremes where we estimate that 29% of the 2016 anomaly was caused by warming and 49% by El Niño. These post-Niño Aprils can potentially be anticipated a few months in advance, and thus, help societies prepare for the projected continued increases in extremes. PMID:28585927

  14. Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming.

    Science.gov (United States)

    Thirumalai, Kaustubh; DiNezio, Pedro N; Okumura, Yuko; Deser, Clara

    2017-06-06

    In April 2016, southeast Asia experienced surface air temperatures (SATs) that surpassed national records, exacerbated energy consumption, disrupted agriculture and caused severe human discomfort. Here we show using observations and an ensemble of global warming simulations the combined impact of the El Niño/Southern Oscillation (ENSO) phenomenon and long-term warming on regional SAT extremes. We find a robust relationship between ENSO and southeast Asian SATs wherein virtually all April extremes occur during El Niño years. We then quantify the relative contributions of long-term warming and the 2015-16 El Niño to the extreme April 2016 SATs. The results indicate that global warming increases the likelihood of record-breaking April extremes where we estimate that 29% of the 2016 anomaly was caused by warming and 49% by El Niño. These post-Niño Aprils can potentially be anticipated a few months in advance, and thus, help societies prepare for the projected continued increases in extremes.

  15. Detection and Attribution of Climate Change : From global mean temperature change to climate extremes and high impact weather.

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    This talk will describe how evidence has grown in recent years for a human influence on climate and explain how the Fifth Assessment Report of the Intergovernmental Panel on Climate Change concluded that it is extremely likely (>95% probability) that human influence on climate has been the dominant cause of the observed global-mean warming since the mid-20th century. The fingerprint of human activities has also been detected in warming of the ocean, in changes in the global water cycle, in reductions in snow and ice, and in changes in some climate extremes. The strengthening of evidence for the effects of human influence on climate extremes is in line with long-held basic understanding of the consequences of mean warming for temperature extremes and for atmospheric moisture. Despite such compelling evidence this does not mean that every instance of high impact weather can be attributed to anthropogenic climate change, because climate variability is often a major factor in many locations, especially for rain...

  16. A New Global Empirical Model of the Electron Temperature with the Inclusion of the Solar Activity Variations for IRI

    Science.gov (United States)

    Truhlik, V.; Triskova, L.

    2012-01-01

    A data-base of electron temperature (T(sub e)) comprising of most of the available LEO satellite measurements in the altitude range from 350 to 2000 km has been used for the development of a new global empirical model of T(sub e) for the International Reference Ionosphere (IRI). For the first time this will include variations with solar activity. Variations at five fixed altitude ranges centered at 350, 550, 850, 1400, and 2000 km and three seasons (summer, winter, and equinox) were represented by a system of associated Legendre polynomials (up to the 8th order) in terms of magnetic local time and the earlier introduced in vdip latitude. The solar activity variations of T(sub e) are represented by a correction term of the T(sub e) global pattern and it has been derived from the empirical latitudinal profiles of T(sub e) for day and night (Truhlik et al., 2009a). Comparisons of the new T(sub e) model with data and with the IRI 2007 Te model show that the new model agrees well with the data generally within standard deviation limits and that the model performs better than the current IRI T(sub e) model.

  17. The Impact of Tree Diversity on Different Aspects of Insect Herbivory along a Global Temperature Gradient - A Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Stephan Kambach

    Full Text Available Forests with higher tree diversity are often assumed to be more resistant to insect herbivores but whether this effect depends on climatic conditions is so far poorly understood. In particular, a forest's resistance to herbivory may depend on mean annual temperature (MAT as a key driver of plant and insect phenology. We carried out a global meta-analysis on regression coefficients between tree diversity and four aspects of insect herbivory, namely herbivore damage, abundance, incidence rate and species richness. To test for a potential shift of tree diversity effects along a global gradient of MAT we applied mixed-effects models and estimated grand mean effect sizes and the influence of MAT, experimental vs. observational studies and herbivores diet breadth. There was no overall effect of tree diversity on the pooled effect sizes of insect herbivore damage, abundance and incidence rate. However, when analysed separately, we found positive grand mean effect sizes for herbivore abundance and species richness. For herbivore damage and incidence rate we found a significant but opposing shift along a gradient of MAT indicating that with increasing MAT diversity effects on herbivore damage tend towards associational resistance whereas diversity effects on incidence rates tend towards associational susceptibility. Our results contradict previous meta-analyses reporting overall associational resistance to insect herbivores in mixed forests. Instead, we report that tree diversity effects on insect herbivores can follow a biogeographic pattern calling for further in-depth studies in this field.

  18. PEMANASAN GLOBAL

    Directory of Open Access Journals (Sweden)

    Vivi Triana

    2008-03-01

    Full Text Available Pemanasan global (global warming pada dasarnya merupakan fenomena peningkatan temperature global dari tahun ke tahun karena terjadinya efek rumah kaca (greenhouse effect yang disebabkan oleh meningkatnya emisi gas-gas seperti karbondioksida (CO2, metana (CH4, dinitrooksida (N2O dan CFC sehingga energy matahari terperangkap dalam atmosfer bumi. Berbagai literatur menunjukkan kenaikan temperatur global termasuk Indonesia yang terjadi pada kisaran 1,5 – 40 °C pada akhir abad 21.

  19. Global-Scale Associations of Vegetation Phenology with Rainfall and Temperature at a High Spatio-Temporal Resolution

    Directory of Open Access Journals (Sweden)

    Nicholas Clinton

    2014-08-01

    Full Text Available Phenology response to climatic variables is a vital indicator for understanding changes in biosphere processes as related to possible climate change. We investigated global phenology relationships to precipitation and land surface temperature (LST at high spatial and temporal resolution for calendar years 2008–2011. We used cross-correlation between MODIS Enhanced Vegetation Index (EVI, MODIS LST and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN gridded rainfall to map phenology relationships at 1-km spatial resolution and weekly temporal resolution. We show these data to be rich in spatiotemporal information, illustrating distinct phenology patterns as a result of complex overlapping gradients of climate, ecosystem and land use/land cover. The data are consistent with broad-scale, coarse-resolution modeled ecosystem limitations to moisture, temperature and irradiance. We suggest that high-resolution phenology data are useful as both an input and complement to land use/land cover classifiers and for understanding climate change vulnerability in natural and anthropogenic landscapes.

  20. Tropical cyclones in a year of rising global temperatures and a strengthening El Niño

    Science.gov (United States)

    Shultz, James M; Shepherd, J Marshall; Bagrodia, Rohini; Espinel, Zelde

    2014-01-01

    The year 2015 is notable for the coincidence of several strong climate indicators that having bearing on the occurrence and intensity of tropical cyclones worldwide. This year, 2015, is clearly on track to become the warmest on record in terms of global temperatures. During the latter half of 2015, a very strong El Niño has formed and is predicted to build impressively, perhaps rivaling the memorable El Niño of 1997/1998. Warm Pacific Ocean temperatures, coupled with a strengthening El Niño, have supported the proliferation of Western North Pacific basin typhoons and Eastern/Central North Pacific Hurricanes. Most notable among these, Hurricane Patricia formed on October 20, 2015 and experienced extremely rapid intensification to become the strongest hurricane in the history of the Western Hemisphere and then weakened just as abruptly before dissipating on October 24, 2015. Rather than an aberration, these climate patterns of 2015 represent an ongoing trend with implications for the disaster health of coastal populations worldwide. PMID:28229010

  1. Simply Obtained Global Radiation, Soil Temperature and SoilMoisture in an Alley Cropping System in Semi-Arid Kenya

    Science.gov (United States)

    Mungai, D. N.; Stigter, C. J.; Coulson, C. L.; Ng'ang'a, J. K.

    Global radiation, soil temperature and soil moisture data were obtained from a 4-6 year old Cassia siamea/maize (CM) alley cropping (or hedgerow intercropping) system, at a semi-arid site at Machakos, Kenya, in the late eighties. With the growing need to explore and manage variations in agro-ecosystems these results deserve new attention. They quantify, in a simple but detailed manner, the influence of hedgerows on the microclimate of their intercrop and for comparison provide a sole maize (SM) control. Due to inhomogeneity of Cassia and maize, as well as limited budgets, the sampling methodology and the choice of appropriate equipment, including the sensors, demanded special attention. The diurnal patterns of soil temperatures at 7.5cm depth represented well the shading patterns of the hedgerows. This can be developed into an operational auxiliary methodology of integrated shade quantification. With proper precautions, the developed sampling methodologies showed appropriately the time integrated values of the three microclimatic parameters with enough detail to understand yield differences between treatments and between rows. This approach may therefore be recommended for on-farm quantification of even greater spatial variability of parameters. The limitations of the selected methods are highlighted. Experiences with some alternative methods are also discussed.

  2. Assimilation of Global Radar Backscatter and Radiometer Brightness Temperature Observations to Improve Soil Moisture and Land Evaporation Estimates

    Science.gov (United States)

    Lievens, H.; Martens, B.; Verhoest, N. E. C.; Hahn, S.; Reichle, R. H.; Miralles, D. G.

    2017-01-01

    Active radar backscatter (s?) observations from the Advanced Scatterometer (ASCAT) and passive radiometer brightness temperature (TB) observations from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated either individually or jointly into the Global Land Evaporation Amsterdam Model (GLEAM) to improve its simulations of soil moisture and land evaporation. To enable s? and TB assimilation, GLEAM is coupled to the Water Cloud Model and the L-band Microwave Emission from the Biosphere (L-MEB) model. The innovations, i.e. differences between observations and simulations, are mapped onto the model soil moisture states through an Ensemble Kalman Filter. The validation of surface (0-10 cm) soil moisture simulations over the period 2010-2014 against in situ measurements from the International Soil Moisture Network (ISMN) shows that assimilating s? or TB alone improves the average correlation of seasonal anomalies (Ran) from 0.514 to 0.547 and 0.548, respectively. The joint assimilation further improves Ran to 0.559. Associated enhancements in daily evaporative flux simulations by GLEAM are validated based on measurements from 22 FLUXNET stations. Again, the singular assimilation improves Ran from 0.502 to 0.536 and 0.533, respectively for s? and TB, whereas the best performance is observed for the joint assimilation (Ran = 0.546). These results demonstrate the complementary value of assimilating radar backscatter observations together with brightness temperatures for improving estimates of hydrological variables, as their joint assimilation outperforms the assimilation of each observation type separately.

  3. Supplementary Material for: Compressing an Ensemble With Statistical Models: An Algorithm for Global 3D Spatio-Temporal Temperature

    KAUST Repository

    Castruccio, Stefano

    2016-01-01

    One of the main challenges when working with modern climate model ensembles is the increasingly larger size of the data produced, and the consequent difficulty in storing large amounts of spatio-temporally resolved information. Many compression algorithms can be used to mitigate this problem, but since they are designed to compress generic scientific datasets, they do not account for the nature of climate model output and they compress only individual simulations. In this work, we propose a different, statistics-based approach that explicitly accounts for the space-time dependence of the data for annual global three-dimensional temperature fields in an initial condition ensemble. The set of estimated parameters is small (compared to the data size) and can be regarded as a summary of the essential structure of the ensemble output; therefore, it can be used to instantaneously reproduce the temperature fields in an ensemble with a substantial saving in storage and time. The statistical model exploits the gridded geometry of the data and parallelization across processors. It is therefore computationally convenient and allows to fit a nontrivial model to a dataset of 1 billion data points with a covariance matrix comprising of 1018 entries. Supplementary materials for this article are available online.

  4. Correlations of the first and second derivatives of atmospheric CO2 with global surface temperature and the El Nino-Southern Oscillation respectively

    CERN Document Server

    Leggett, L M W

    2014-01-01

    Understanding current global climate requires an understanding of trends both in Earth's atmospheric temperature and the El Nino-Southern Oscillation (ENSO), a characteristic large-scale distribution of warm water in the tropical Pacific Ocean and the dominant mode of year-to-year climate variability (Holbrook et al. 2009. However, despite much effort, the average projection of current climate models has become statistically significantly different from the observed 21st century global surface temperature trend (Fyfe 2013)and has failed to reflect the statistically significant evidence that annual-mean global temperature has not risen in the 21st century (Fyfe 2013, Kosaka 2013). Modelling also provides a wide range of predictions for future ENSO variability, some showing an increase, others a decrease and some no change (Guilyardi, et al. 2012; Bellenger, 2013). Here we present correlations which include the current era and do not have these drawbacks. The correlations arise as follows. First it has been sho...

  5. A Holocene temperature reconstruction from northern New Zealand: a test of North Atlantic Holocene climate patterns as a global template

    Science.gov (United States)

    van den Bos, Valerie; Rees, Andrew; Newnham, Rewi; Augustinus, Paul

    2017-04-01

    Holocene climate variability has been well defined in the North Atlantic (Walker et al., 2012), but the global extent of this climate change stratigraphy is debatable. If the North Atlantic serves as a global template for Holocene climate, then New Zealand (NZ) is ideally positioned to test this assertion, as it is distal from the northern drivers. Additionally, it is one of the few landmasses in the Southern Hemisphere that is influenced by both sub-tropical and extra-tropical climatic regimes, which may be more important controls in the southern mid-latitudes. Although much work has been done to characterise the Holocene in NZ using pollen, most of these records lack the resolution or sensitivity to determine whether abrupt or short-lived events occurred. The NZ-INTIMATE climate event stratigraphy lacks a type section for the Holocene (Alloway et al., 2007). Records from northern NZ typically show little change, other than a possible early Holocene warming. Here, we present a combined pollen and chironomid temperature reconstruction from Lake Pupuke (northern NZ), the first of its kind in NZ that covers the entire Holocene. By comparing mean annual temperatures reconstructed from fossil pollen and mean summer temperatures inferred from chironomid remains, we can assess changes in seasonality. Mean summer temperature was reconstructed from the chironomid record using a weighted averaging partial least squares (WA-PLS) model (n comp = 2, r2booth = 0.77, RMSEP = 1.4°C) developed from an expanded version of Dieffenbacher-Krall et al. (2007)'s chironomid training set. Preliminary results show evidence for cool summers during the early Holocene as well as around the period of the Little Ice Age as defined in the North Atlantic region. These and other climate patterns determined from the Pupuke chironomid and pollen records will be compared with other evidence from northern New Zealand and with the North Atlantic record of Holocene climate variability. References

  6. Direct assimilation of Chinese FY-3C Microwave Temperature Sounder-2 radiances in the global GRAPES system

    Science.gov (United States)

    Li, Juan; Liu, Guiqing

    2016-07-01

    FengYun-3C (FY-3C) is an operational polar-orbiting satellite carrying the new-generation microwave sounding instruments in China. This paper describes the assimilation of the FY-3C Microwave Temperature Sounder-2 (MWTS-2) radiances in the Global and Regional Assimilation and PrEdiction System (GRAPES) of China Meteorological Administration. A quality control (QC) procedure for the assimilation of MWTS-2 radiance is proposed. Extensive monitoring before assimilation shows that MWTS-2 observations exhibit a clear striping pattern. A technique combining principal component analysis (PCA) and ensemble empirical mode decomposition (EEMD) is applied to the observations to remove the striping noise. Cloudy field-of-views (FOVs) are identified by applying the Visible and InfrarRed Radiometer (VIRR) cloud fraction threshold of 76 %. Other QC steps are conducted in the follow order: (i) coastal FOVs are removed, (ii) eight outmost FOVs are not used, (iii) channel 5 data over sea ice and land are not used, (iv) channel 6 observations are not used if the terrain altitudes are higher than 500 m, and (v) outliers with large differences between observations and model simulations are removed. Approximately 83, 75, 40, and 40 % of the observations are removed by the proposed QC for channels 5-8, respectively. After QC, the global biases and standard deviations are reduced significantly. The assimilation of the MWTS-2 radiances shows a positive impact when the control experiment assimilates only conventional observations. The experiments also show that the analysis and forecast errors are slightly reduced when the striping noise is removed from the observations. The quality control scheme of extracting the striping noise may contribute to the analysis and forecast accuracy. The impact of MWTS-2 is neutral when the conventional data and other satellite data are all assimilated.

  7. Shifts in Köppen-Geiger climate zones over southern Africa in relation to key global temperature goals

    Science.gov (United States)

    Engelbrecht, Christien J.; Engelbrecht, Francois A.

    2016-01-01

    Potential changes in Köppen-Geiger climate zones over southern Africa (Africa south of 22 °S) under future climate change are investigated using an ensemble of high-resolution projections of a regional climate model. The projections are performed under the A2 scenario of the Special Report on Emission Scenarios (SRES), and changes are presented for those times in the future when the increase in global average surface temperature reaches thresholds of 1, 2, and 3 °C, relative to the present-day baseline climatology. Widespread shifts in climate regimes are projected, of which the southern and eastern expansion of the hot desert and hot steppe zones is the most prominent. From occupying 33.1 and 19.4 % of southern Africa under present-day climate, these regions are projected to occupy between 47.3 and 59.7 % (hot desert zone) and 24.9 and 29.9 % (hot steppe zone) of the region in a future world where the global temperature has increased by 3 °C. The cold desert and cold steppe zones are projected to decrease correspondingly. The temperate regions of eastern South Africa, the Cape south coast, and winter rainfall region of the southwestern Cape are also projected to contract. An expansion of the hot steppe zone into the cold steppe and temperate zones may favor the intrusion of trees (and therefore the savanna biome) into the most pristine grasslands of southern Africa. However, the correlative climate-vegetation approach of using projected changes in Köppen-Geiger zones to infer future vegetation patterns is of limited value in the savanna complex of southern Africa, where complex feedbacks occur between carbon dioxide (CO2) concentrations, trees, C4 grasses, fire, and climate. The present-day temperate Cape Fynbos regime may come under increasing pressure as the encompassing temperate zone is invaded mainly from the east by the hot steppe climate regime under climate change, with the incidence of Fynbos fires also becoming more likely in a generally warmer and

  8. On the Relationship Between Global Land-Ocean Temperature and Various Descriptors of Solar-Geomagnetic Activity and Climate

    Science.gov (United States)

    Wilson, Robert M.

    2014-01-01

    Examined are sunspot cycle- (SC-) length averages of the annual January-December values of the Global Land-Ocean Temperature Index () in relation to SC-length averages of annual values of various descriptors of solar-geomagnetic activity and climate, incorporating lags of 0-5 yr. For the overall interval SC12-SC23, the is inferred to correlate best against the parameter incorporating lag = 5 yr, where the parameter refers to the resultant aa value having removed that portion of the annual aa average value due to the yearly variation of sunspot number (SSN). The inferred correlation between the and is statistically important at confidence level cl > 99.9%, having a coefficient of linear correlation r = 0.865 and standard error of estimate se = 0.149 degC. Excluding the most recent cycles SC22 and SC23, the inferred correlation is stronger, having r = 0.969 and se = 0.048 degC. With respect to the overall trend in the , which has been upwards towards warmer temperatures since SC12 (1878-1888), solar-geomagnetic activity parameters are now trending downwards (since SC19). For SC20-SC23, in contrast, comparison of the against SC-length averages of the annual value of the Mauna Loa carbon dioxide () index is found to be highly statistically important (cl >> 99.9%), having r = 0.9994 and se = 0.012 degC for lag = 2 yr. On the basis of the inferred preferential linear correlation between the and , the current ongoing SC24 is inferred to have warmer than was seen in SC23 (i.e., >0.526 degC), probably in excess of 0.68 degC (relative to the 1951-1980 base period).

  9. Daily global solar radiation prediction from air temperatures using kernel extreme learning machine: A case study for Iran

    Science.gov (United States)

    Shamshirband, Shahaboddin; Mohammadi, Kasra; Chen, Hui-Ling; Narayana Samy, Ganthan; Petković, Dalibor; Ma, Chao

    2015-11-01

    Lately, the kernel extreme learning machine (KELM) has gained considerable importance in the scientific area due to its great efficiency, easy implementation and fast training speed. In this paper, for the first time the potential of KELM to predict the daily horizontal global solar radiation from the maximum and minimum air temperatures (Tmax and Tmin) is appraised. The effectiveness of the proposed KELM method is evaluated against the grid search based support vector regression (SVR), as a robust methodology. Three KELM and SVR models are developed using different input attributes including: (1) Tmin and Tmax, (2) Tmin and Tmax-Tmin, and (3) Tmax and Tmax-Tmin. The achieved results reveal that the best predictions precision is achieved by models (3). The achieved results demonstrate that KELM offers favorable predictions and outperforms the SVR. For the KELM (3) model, the obtained statistical parameters of mean absolute bias error, root mean square error, relative root mean square error and correlation coefficient are 1.3445 MJ/m2, 2.0164 MJ/m2, 11.2464% and 0.9057%, respectively for the testing data. As further examination, a month-by-month evaluation is conducted and found that in six months from May to October the KELM (3) model provides further accuracy than overall accuracy. Based upon the relative root mean square error, the KELM (3) model shows excellent capability in the period of April to October while in the remaining months represents good performance.

  10. The Coral Reef Temperature Anomaly Database (CoRTAD) - Global, 4 km, Sea Surface Temperature and Related Thermal Stress Metrics for 1985-2005 (NODC Accession 0044419)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coral Reef Temperature Anomaly Database (CoRTAD) is a collection of sea surface temperature (SST) and related thermal stress metrics, developed specifically for...

  11. Toxicity of a metal(loid)-polluted agricultural soil to Enchytraeus crypticus changes under a global warming perspective: Variations in air temperature and soil moisture content

    NARCIS (Netherlands)

    Gonzalez Alcaraz, M.N.; van Gestel, C.A.M.

    2016-01-01

    This study aimed to assess how the current global warming perspective, with increasing air temperature (20 °C vs. 25 °C) and decreasing soil moisture content (50% vs. 30% of the soil water holding capacity, WHC), affected the toxicity of a metal(loid)-polluted agricultural soil to Enchytraeus

  12. GHRSST Level 2P Global skin Sea Surface Temperature from the Infrared Atmospheric Sounding Interferometer (IASI) on the Metop-A satellite (GDS V2) produced by OSI SAF (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global 1 km Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated...

  13. GHRSST Level 2P Global 1m Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-19 satellite produced by NAVO (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  14. GHRSST Level 2P Global 1m Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-18 satellite produced by NAVO (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  15. GHRSST Level 2P Global 1m Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the MetOp-B satellite produced by NAVO (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  16. GHRSST Level 2P Global Skin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the MetOp-A satellite produced by EUMETSAT (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global 1 km Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated...

  17. GHRSST Level 2P Global 1m Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the MetOp-A satellite produced by NAVO (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  18. Forecasting Temperatures from Global to Single Station Scales Using the Stochastic Seasonal to Interannual Prediction System (StocSIPS)

    Science.gov (United States)

    Del Rio Amador, L.; Lovejoy, S.

    2016-12-01

    Over the past ten years, a key advance in our understanding of atmospheric variability is the discovery that between the weather and climate regime lies an intermediate "macroweather" regime, spanning the range of scales from ≈ 10 days to ≈30 years. Macroweather statistics are characterized by two fundamental symmetries: scaling and the factorization of the joint space-time statistics. In the time domain, the scaling has low intermittency with the additional property that successive fluctuations tend to cancel. In space, on the contrary the scaling has high (multifractal) intermittency corresponding to the existence of different climate zones. These properties have fundamental implications for macroweather forecasting: first, the temporal scaling implies that the system has a long range memory that can be exploited for forecasting; second, the low temporal intermittency implies that mathematically well-established (Gaussian) forecasting techniques can be used; and third, the statistical factorization property implies that although spatial correlations (including teleconnections) may be large, if long enough time series are available, they are not necessarily useful in making forecasts. In addition, they imply the existence of stochastic predictability limits which should also apply to GCM's. In this work we present the basis and advantages of the Stochastic Seasonal and Interannual Prediction System (StocSIPS) showing its direct application to the forecast of monthly todecadal temperatures at different spatial resolutions expanding the range from global to individual stations. The results are validated by a comparison with well-established GCM's especially the Canadian Seasonal to Interannual Prediction System (CanSIPS), the North American Multi-Model Ensemble (NMME), and some products from downscaling. Obtaining Skill Scores based on hindcasts we have found that, for most of the cases, for horizons beyond about one month, StocSIPS is significantly more

  19. The Influence of Stratospheric Sulphate Aerosol Deployment on the Surface Air Temperature and the Risk of an Abrupt Global Warming

    Directory of Open Access Journals (Sweden)

    Roland von Glasow

    2010-12-01

    Full Text Available We used the ‘Radiative-Convective Model of the Earth-atmosphere system’ (OGIM to investigate the cooling effects induced by sulphur injections into the stratosphere. The ensemble of numerical calculations was based on the A1B scenario from the IPCC Special Report on Emissions Scenarios (SRES. Several geoengineered scenarios were analysed, including the abrupt interruption of these injections in different scenarios and at different dates. We focused on the surface air temperature (SAT anomalies induced by stratospheric sulphate aerosol generated in order to compensate future warming. Results show that continuous deployment of sulphur into the stratosphere could induce a lasting decrease in SAT. Retaining a constant aerosol loading equivalent to 6 TgS would delay the expected global warming by 53 years. Keeping the SAT constant in a context of increasing greenhouse gases (GHGs means that the aerosol loading needs to be increased by 1.9% annually. This would offset the effect of increasing GHG under the A1B scenario. A major focus of this study was on the heating rates of SAT that would arise in different scenarios in case of an abrupt cessation of sulphur injections into the stratosphere. Our model results show that heating rates after geoengineering interruption would be 15–28 times higher than in a case without geoengineering, with likely important consequences for life on Earth. Larger initial sulphate loadings induced more intense warming rates when the geoengineering was stopped at the same time. This implies that, if sulphate loading was increased to maintain constant SAT in the light of increasing GHG concentrations, the later the geoengineering interruption was to occur, the higher the heating rates would be. Consequently, geoengineering techniques like this should only be regarded as last-resort measures and require intense further research should they ever become necessary.

  20. Multiple effects and uncertainties of emission control policies in China: Implications for public health, soil acidification, and global temperature.

    Science.gov (United States)

    Zhao, Yu; McElroy, Michael B; Xing, Jia; Duan, Lei; Nielsen, Chris P; Lei, Yu; Hao, Jiming

    2011-11-15

    Policies to control emissions of criteria pollutants in China may have conflicting impacts on public health, soil acidification, and climate. Two scenarios for 2020, a base case without anticipated control measures and a more realistic case including such controls, are evaluated to quantify the effects of the policies on emissions and resulting environmental outcomes. Large benefits to public health can be expected from the controls, attributed mainly to reduced emissions of primary PM and gaseous PM precursors, and thus lower ambient concentrations of PM2.5. Approximately 4% of all-cause mortality in the country can be avoided (95% confidence interval: 1-7%), particularly in eastern and north-central China, regions with large population densities and high levels of PM2.5. Surface ozone levels, however, are estimated to increase in parts of those regions, despite NOX reductions. This implies VOC-limited conditions. Even with significant reduction of SO2 and NOX emissions, the controls will not significantly mitigate risks of soil acidification, judged by the exceedance levels of critical load (CL). This is due to the decrease in primary PM emissions, with the consequent reduction in deposition of alkaline base cations. Compared to 2005, even larger CL exceedances are found for both scenarios in 2020, implying that PM control may negate any recovery from soil acidification due to SO2 reductions. Noting large uncertainties, current polices to control emissions of criteria pollutants in China will not reduce climate warming, since controlling SO2 emissions also reduces reflective secondary aerosols. Black carbon emission is an important source of uncertainty concerning the effects of Chinese control policies on global temperature change. Given these conflicts, greater consideration should be paid to reconciling varied environmental objectives, and emission control strategies should target not only criteria pollutants but also species such as VOCs and CO2. Copyright

  1. GHRSST Level 4 CMC0.2deg Global Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature (SST) analysis produced daily on an operational basis at the Canadian...

  2. GHRSST Level 4 MUR Global Foundation Sea Surface Temperature Analysis (v4.1) (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced as a retrospective dataset (four day latency) and...

  3. MODIS/Aqua Land Surface Temperature/Emissivity Monthly L3 Global 0.05Deg CMG V005

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS/Aqua LST/E Monthly L3 Global CMG product (Short name: MYD11C3) is a monthly composited average, derived from the MYD11C1 daily global product, and stored...

  4. An Analysis of Simulated and Observed Global Mean Near-Surface Air Temperature Anomalies from 1979 to 1999: Trends and Attribution of Causes

    Science.gov (United States)

    MacKay, R. M.; Ko, M. K. W.

    2001-01-01

    The 1979 - 1999 response of the climate system to variations in solar spectral irradiance is estimated by comparing the global averaged surface temperature anomalies simulated by a 2D (two dimensional) energy balance climate model to observed temperature anomalies. We perform a multiple regression of southern oscillation index and the individual model responses to solar irradiance variations, stratospheric and tropospheric aerosol loading, stratospheric ozone trends, and greenhouse gases onto each of five near-surface temperature anomaly data sets. We estimate the observed difference in global mean near surface air temperature attributable to the solar irradiance difference between solar maximum and solar minimum to be between 0.06 and 0.11 K, and that 1.1 - 3.8% of the total variance in monthly mean near-surface air temperature data is attributable to nations in solar spectral irradiance. For the five temperature data sets used in our analysis, the trends in raw monthly mean temperature anomaly data have a large range, spanning a factor of 3 from 0.06 to 0.17 K/decade. However. our analysis suggests that trends in monthly temperature anomalies attributable to the combination of greenhouse gas, stratospheric ozone, and tropospheric sulfate aerosol variations are much more consistent among data sets, ranging from 0.16 to 0.24 K/decade. Our model results suggest that roughly half of the warming from greenhouse gases is cancelled by the cooling from changes in stratospheric ozone. Tropospheric sulfate aerosol loading in the present day atmospheric contributes significantly to the net radiative forcing of the present day climate system. However, because the change in magnitude and latitudinal distribution of tropospheric sulfate aerosol has been small over the past 20 years, the change in the direct radiative forcing attributable to changes in aerosol loading over this time is also small.

  5. Insolation data manual: long-term monthly averages of solar radiation, temperature, degree-days and global anti K/sub T/ for 248 national weather service stations

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, C L; Stoffel, T L; Whitaker, S D

    1980-10-01

    Monthly averaged data is presented which describes the availability of solar radiation at 248 National Weather Service stations. Monthly and annual average daily insolation and temperature values have been computed from a base of 24 to 25 years of data. Average daily maximum, minimum, and monthly temperatures are provided for most locations in both Celsius and Fahrenheit. Heating and cooling degree-days were computed relative to a base of 18.3/sup 0/C (65/sup 0/F). For each station, global anti K/sub T/ (cloudiness index) were calculated on a monthly and annual basis. (MHR)

  6. Estimating the Mean Annual Surface Air Temperature at Armagh Observatory, Northern Ireland, and the Global Land-Ocean Temperature Index for Sunspot Cycle 24, the Current Ongoing Sunspot Cycle

    Science.gov (United States)

    Wilson, Robert M.

    2013-01-01

    As noted by Gray et al., Sir William Herschel was the first to suggest a possible close connection between the Sun and the Earth’s climate. The Sun, being the source of energy that impacts and drives the Earth’s climate system, displays a variety of changes over both short and long term time scales, the most obvious examples being the somewhat regular waxing and waning of sunspots with time (i.e., the sunspot cycle (SC)), first described by Samuel Heinrich Schwabe, a German apothecary and amateur astronomer who observed the Sun from Dessau, Germany, and the now well established variation of the Sun’s irradiance over the SC. Other factors related to the SC have been linked to changes in climate as well. Some of these other factors include the role of cosmic rays and the solar wind (i.e., the geomagnetic cycle) on climate, as well as the apparent close association between trends in global and northern hemispheric temperature and the length of the SC, although some investigators have described the inferred association between climate and, in particular, SC length as now being weak. More recently, Solheim et al. have reported on the relation between SC length and the average temperature in the same and immediately following SC for a number of meteorological stations in Norway and in the North Atlantic region. They noted that while they found no significant trend (correlation) between SC length and the average temperature when measured for the same cycle, in contrast, they found a significant negative trend when SC length was compared with the following cycle’s average temperature. From this observation, they suggested that average northern hemispheric temperature during the present ongoing SC (SC24) will be lower by about 0.9 °C than was seen in SC23 (spanning 1996–2007, based on yearly averages of sunspot number (SSN), and onset for SC24 occurring in 2008). The purpose of this Technical Publication (TP) is to examine the annual variations of the Armagh

  7. Consideration of soil types for the calibration of molecular proxies for soil pH and temperature using global soil datasets and Vietnamese soil profiles

    OpenAIRE

    Davtian, N.; Ménot, G.; Bard, E.; Poulenard, J.; Podwojewski, Pascal

    2016-01-01

    Distribution of branched glycerol dialkyl glycerol tetraethers (brGDGTs) in soils depends on environmental parameters such as mean annual air temperature (MAAT) and soil pH. MBT'/MBT'5ME (methylation index of branched tetraethers) and CBT/CBT' (cyclization ratio of branched tetraethers) are ratios based on the relative abundances of brGDGTs. Using these ratios, global and regional/local calibrations have been established using surface soils, but generally without any preliminary study of soil...

  8. Changes and variability of precipitation and temperature in the Ganges-Brahmaputra-Meghna River Basin based on global high-resolution reanalyses

    OpenAIRE

    Khandu, .; Awange, Joseph L.; Kuhn, M.; Anyah, R.; Forootan, Ehsan

    2017-01-01

    Previous studies suggest that climate change impacts significantly on the hydro-climatic processes within the Ganges–Brahmaputra–Meghna (GBM) River Basin (RB). This study examines the observed climate characteristics and potential strengths and limitations of three global high-resolution reanalyses and satellite remote-sensing products over the GBM RB for period 1980–2013 by (1) estimating trends and interannual variations of precipitation and temperature, and (2) isolating precipitation vari...

  9. Global Daily High-Resolution Satellite-Based Foundation Sea Surface Temperature Dataset: Development and Validation against Two Definitions of Foundation SST

    OpenAIRE

    Kohtaro Hosoda; Futoki Sakaida

    2016-01-01

    This paper describes a global, daily sea surface temperature (SST) analysis based on satellite microwave and infrared measurements. The SST analysis includes a diurnal correction method to estimate foundation SST (SST free from diurnal variability) using satellite sea surface wind and solar radiation data, frequency splitting to reproduce intra-seasonal variability and a quality control procedure repeated twice to avoid operation errors. An optimal interpolation method designed for foundation...

  10. A modified impulse-response representation of the global near-surface air temperature and atmospheric concentration response to carbon dioxide emissions

    Directory of Open Access Journals (Sweden)

    R. J. Millar

    2017-06-01

    Full Text Available Projections of the response to anthropogenic emission scenarios, evaluation of some greenhouse gas metrics, and estimates of the social cost of carbon often require a simple model that links emissions of carbon dioxide (CO2 to atmospheric concentrations and global temperature changes. An essential requirement of such a model is to reproduce typical global surface temperature and atmospheric CO2 responses displayed by more complex Earth system models (ESMs under a range of emission scenarios, as well as an ability to sample the range of ESM response in a transparent, accessible and reproducible form. Here we adapt the simple model of the Intergovernmental Panel on Climate Change 5th Assessment Report (IPCC AR5 to explicitly represent the state dependence of the CO2 airborne fraction. Our adapted model (FAIR reproduces the range of behaviour shown in full and intermediate complexity ESMs under several idealised carbon pulse and exponential concentration increase experiments. We find that the inclusion of a linear increase in 100-year integrated airborne fraction with cumulative carbon uptake and global temperature change substantially improves the representation of the response of the climate system to CO2 on a range of timescales and under a range of experimental designs.

  11. A modified impulse-response representation of the global near-surface air temperature and atmospheric concentration response to carbon dioxide emissions

    Science.gov (United States)

    Millar, Richard J.; Nicholls, Zebedee R.; Friedlingstein, Pierre; Allen, Myles R.

    2017-06-01

    Projections of the response to anthropogenic emission scenarios, evaluation of some greenhouse gas metrics, and estimates of the social cost of carbon often require a simple model that links emissions of carbon dioxide (CO2) to atmospheric concentrations and global temperature changes. An essential requirement of such a model is to reproduce typical global surface temperature and atmospheric CO2 responses displayed by more complex Earth system models (ESMs) under a range of emission scenarios, as well as an ability to sample the range of ESM response in a transparent, accessible and reproducible form. Here we adapt the simple model of the Intergovernmental Panel on Climate Change 5th Assessment Report (IPCC AR5) to explicitly represent the state dependence of the CO2 airborne fraction. Our adapted model (FAIR) reproduces the range of behaviour shown in full and intermediate complexity ESMs under several idealised carbon pulse and exponential concentration increase experiments. We find that the inclusion of a linear increase in 100-year integrated airborne fraction with cumulative carbon uptake and global temperature change substantially improves the representation of the response of the climate system to CO2 on a range of timescales and under a range of experimental designs.

  12. Sea surface temperature and salinity from the Global Ocean Surface Underway Data (GOSUD) from 1980-01-03 to present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection contains the Global Ocean Surface Underway Data (GOSUD) from 1980-01-03 to present as submitted to NOAA/NCEI. The data includes information about sea...

  13. Flexible parameter-sparse global temperature time profiles that stabilise at 1.5 and 2.0 °C

    Science.gov (United States)

    Huntingford, Chris; Yang, Hui; Harper, Anna; Cox, Peter M.; Gedney, Nicola; Burke, Eleanor J.; Lowe, Jason A.; Hayman, Garry; Collins, William J.; Smith, Stephen M.; Comyn-Platt, Edward

    2017-07-01

    The meeting of the United Nations Framework Convention on Climate Change (UNFCCC) in December 2015 committed parties at the convention to hold the rise in global average temperature to well below 2.0 °C above pre-industrial levels. It also committed the parties to pursue efforts to limit warming to 1.5 °C. This leads to two key questions. First, what extent of emissions reduction will achieve either target? Second, what is the benefit of the reduced climate impacts from keeping warming at or below 1.5 °C? To provide answers, climate model simulations need to follow trajectories consistent with these global temperature limits. It is useful to operate models in an inverse mode to make model-specific estimates of greenhouse gas (GHG) concentration pathways consistent with the prescribed temperature profiles. Further inversion derives related emissions pathways for these concentrations. For this to happen, and to enable climate research centres to compare GHG concentrations and emissions estimates, common temperature trajectory scenarios are required. Here we define algebraic curves that asymptote to a stabilised limit, while also matching the magnitude and gradient of recent warming levels. The curves are deliberately parameter-sparse, needing the prescription of just two parameters plus the final temperature. Yet despite this simplicity, they can allow for temperature overshoot and for generational changes, for which more effort to decelerate warming change needs to be made by future generations. The curves capture temperature profiles from the existing Representative Concentration Pathway (RCP2.6) scenario projections by a range of different Earth system models (ESMs), which have warming amounts towards the lower levels of those that society is discussing.

  14. Flexible parameter-sparse global temperature time profiles that stabilise at 1.5 and 2.0  °C

    Directory of Open Access Journals (Sweden)

    C. Huntingford

    2017-07-01

    Full Text Available The meeting of the United Nations Framework Convention on Climate Change (UNFCCC in December 2015 committed parties at the convention to hold the rise in global average temperature to well below 2.0 °C above pre-industrial levels. It also committed the parties to pursue efforts to limit warming to 1.5 °C. This leads to two key questions. First, what extent of emissions reduction will achieve either target? Second, what is the benefit of the reduced climate impacts from keeping warming at or below 1.5 °C? To provide answers, climate model simulations need to follow trajectories consistent with these global temperature limits. It is useful to operate models in an inverse mode to make model-specific estimates of greenhouse gas (GHG concentration pathways consistent with the prescribed temperature profiles. Further inversion derives related emissions pathways for these concentrations. For this to happen, and to enable climate research centres to compare GHG concentrations and emissions estimates, common temperature trajectory scenarios are required. Here we define algebraic curves that asymptote to a stabilised limit, while also matching the magnitude and gradient of recent warming levels. The curves are deliberately parameter-sparse, needing the prescription of just two parameters plus the final temperature. Yet despite this simplicity, they can allow for temperature overshoot and for generational changes, for which more effort to decelerate warming change needs to be made by future generations. The curves capture temperature profiles from the existing Representative Concentration Pathway (RCP2.6 scenario projections by a range of different Earth system models (ESMs, which have warming amounts towards the lower levels of those that society is discussing.

  15. Assessing the relationship between global warming and mortality: Lag effects of temperature fluctuations by age and mortality categories

    Energy Technology Data Exchange (ETDEWEB)

    Yu Weiwei, E-mail: weiwei.yu@qut.edu.au [School of Public Health and Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD 4050, Brisbane (Australia); Mengersen, Kerrie [Discipline of Mathematical Sciences, Faculty of Science and Technology, Queensland University of Technology, Brisbane (Australia); Hu Wenbiao [School of Population Health and Institute of Health and Biomedical Innovation, University of Queensland, Brisbane (Australia); Guo Yuming [School of Public Health and Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD 4050, Brisbane (Australia); Pan Xiaochuan [School of Public Health, Peking University, Beijing 100191 (China); Tong Shilu, E-mail: s.tong@qut.edu.au [School of Public Health and Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD 4050, Brisbane (Australia)

    2011-07-15

    Although interests in assessing the relationship between temperature and mortality have arisen due to climate change, relatively few data are available on lag structure of temperature-mortality relationship, particularly in the Southern Hemisphere. This study identified the lag effects of mean temperature on mortality among age groups and death categories using polynomial distributed lag models in Brisbane, Australia, a subtropical city, 1996-2004. For a 1 deg. C increase above the threshold, the highest percent increase in mortality on the current day occurred among people over 85 years (7.2% (95% CI: 4.3%, 10.2%)). The effect estimates among cardiovascular deaths were higher than those among all-cause mortality. For a 1 deg. C decrease below the threshold, the percent increases in mortality at 21 lag days were 3.9% (95% CI: 1.9%, 6.0%) and 3.4% (95% CI: 0.9%, 6.0%) for people aged over 85 years and with cardiovascular diseases, respectively. These findings may have implications for developing intervention strategies to reduce and prevent temperature-related mortality. - Highlights: > A longer lag effects in cold days and shorter lag effects in hot days. > The very old people were most vulnerable to temperature stress. > The cardiovascular mortality was also sensitive to the temperature variation. - In Brisbane, the lag effects lasted longer for cold temperatures, and shorter for hot temperatures. Elderly people and cardiovascular mortality were vulnerable to temperature stress.

  16. Consequences of Global Warming of 1.5 °C and 2 °C for Regional Temperature and Precipitation Changes in the Contiguous United States.

    Science.gov (United States)

    Karmalkar, Ambarish V; Bradley, Raymond S

    2017-01-01

    The differential warming of land and ocean leads to many continental regions in the Northern Hemisphere warming at rates higher than the global mean temperature. Adaptation and conservation efforts will, therefore, benefit from understanding regional consequences of limiting the global mean temperature increase to well below 2°C above pre-industrial levels, a limit agreed upon at the United Nations Climate Summit in Paris in December 2015. Here, we analyze climate model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to determine the timing and magnitude of regional temperature and precipitation changes across the contiguous United States (US) for global warming of 1.5 and 2°C and highlight consensus and uncertainties in model projections and their implications for making decisions. The regional warming rates differ considerably across the contiguous US, but all regions are projected to reach 2°C about 10-20 years before the global mean temperature. Although there is uncertainty in the timing of exactly when the 1.5 and 2°C thresholds will be crossed regionally, over 80% of the models project at least 2°C warming by 2050 for all regions for the high emissions scenario. This threshold-based approach also highlights regional variations in the rate of warming across the US. The fastest warming region in the contiguous US is the Northeast, which is projected to warm by 3°C when global warming reaches 2°C. The signal-to-noise ratio calculations indicate that the regional warming estimates remain outside the envelope of uncertainty throughout the twenty-first century, making them potentially useful to planners. The regional precipitation projections for global warming of 1.5°C and 2°C are uncertain, but the eastern US is projected to experience wetter winters and the Great Plains and the Northwest US are projected to experience drier summers in the future. The impact of different scenarios on regional precipitation projections is

  17. Consequences of Global Warming of 1.5 °C and 2 °C for Regional Temperature and Precipitation Changes in the Contiguous United States.

    Directory of Open Access Journals (Sweden)

    Ambarish V Karmalkar

    Full Text Available The differential warming of land and ocean leads to many continental regions in the Northern Hemisphere warming at rates higher than the global mean temperature. Adaptation and conservation efforts will, therefore, benefit from understanding regional consequences of limiting the global mean temperature increase to well below 2°C above pre-industrial levels, a limit agreed upon at the United Nations Climate Summit in Paris in December 2015. Here, we analyze climate model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5 to determine the timing and magnitude of regional temperature and precipitation changes across the contiguous United States (US for global warming of 1.5 and 2°C and highlight consensus and uncertainties in model projections and their implications for making decisions. The regional warming rates differ considerably across the contiguous US, but all regions are projected to reach 2°C about 10-20 years before the global mean temperature. Although there is uncertainty in the timing of exactly when the 1.5 and 2°C thresholds will be crossed regionally, over 80% of the models project at least 2°C warming by 2050 for all regions for the high emissions scenario. This threshold-based approach also highlights regional variations in the rate of warming across the US. The fastest warming region in the contiguous US is the Northeast, which is projected to warm by 3°C when global warming reaches 2°C. The signal-to-noise ratio calculations indicate that the regional warming estimates remain outside the envelope of uncertainty throughout the twenty-first century, making them potentially useful to planners. The regional precipitation projections for global warming of 1.5°C and 2°C are uncertain, but the eastern US is projected to experience wetter winters and the Great Plains and the Northwest US are projected to experience drier summers in the future. The impact of different scenarios on regional precipitation

  18. Consequences of Global Warming of 1.5 °C and 2 °C for Regional Temperature and Precipitation Changes in the Contiguous United States

    Science.gov (United States)

    Bradley, Raymond S.

    2017-01-01

    The differential warming of land and ocean leads to many continental regions in the Northern Hemisphere warming at rates higher than the global mean temperature. Adaptation and conservation efforts will, therefore, benefit from understanding regional consequences of limiting the global mean temperature increase to well below 2°C above pre-industrial levels, a limit agreed upon at the United Nations Climate Summit in Paris in December 2015. Here, we analyze climate model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to determine the timing and magnitude of regional temperature and precipitation changes across the contiguous United States (US) for global warming of 1.5 and 2°C and highlight consensus and uncertainties in model projections and their implications for making decisions. The regional warming rates differ considerably across the contiguous US, but all regions are projected to reach 2°C about 10-20 years before the global mean temperature. Although there is uncertainty in the timing of exactly when the 1.5 and 2°C thresholds will be crossed regionally, over 80% of the models project at least 2°C warming by 2050 for all regions for the high emissions scenario. This threshold-based approach also highlights regional variations in the rate of warming across the US. The fastest warming region in the contiguous US is the Northeast, which is projected to warm by 3°C when global warming reaches 2°C. The signal-to-noise ratio calculations indicate that the regional warming estimates remain outside the envelope of uncertainty throughout the twenty-first century, making them potentially useful to planners. The regional precipitation projections for global warming of 1.5°C and 2°C are uncertain, but the eastern US is projected to experience wetter winters and the Great Plains and the Northwest US are projected to experience drier summers in the future. The impact of different scenarios on regional precipitation projections is

  19. Causality of global warming seen from observations: a scale analysis of driving force of the surface air temperature time series in the Northern Hemisphere

    Science.gov (United States)

    Yang, Peicai; Wang, Geli; Zhang, Feng; Zhou, Xiuji

    2016-05-01

    By using the slow feature analysis, we reconstructed the driving force for an observed monthly surface air temperature anomaly time series in the northern hemisphere. Wavelet transformation technique was then used to analyze the scale structure of the derived driving force and its causal relationship with global warming. Results showed that the driving force for the analyzed temperature climate system included two independent degrees of freedom which respectively represented the effects of 22-year solar cycle and Atlantic Multidecadal Oscillation on the climate. More importantly, the driving force is modulated in amplitude by signals with much longer time periods. The modulation controls the energy input to the climate system and its effect on the global warming is decisive. In addition, through analyzing phase transitions from zero to extremes of the modulating signals, we provide a projection for the future trend of the surface air temperature. In specific, in the next 45-65 years, the driving force will continue to rise which will drive the air temperature even warmer. This is a long term natural trend determined by the modulating amplitude signals, but not directly related to human activity.

  20. Global climate change

    Science.gov (United States)

    Levine, Joel S.

    1991-01-01

    Present processes of global climate change are reviewed. The processes determining global temperature are briefly described and the concept of effective temperature is elucidated. The greenhouse effect is examined, including the sources and sinks of greenhouse gases.

  1. On depth and temperature biases in bathythermograph data: Development of a new correction scheme based on analysis of a global ocean database

    Science.gov (United States)

    Gouretski, Viktor; Reseghetti, Franco

    2010-06-01

    The World Ocean Database 2005 as of May 2009 is used to estimate temperature and sample depth biases of expendable (XBT) and mechanical (MBT) bathythermographs by comparing bathythermograph temperature profiles with more accurate bottle and conductivity/temperature/depth (CTD) data. It is shown that the application of depth corrections estimated earlier from side-by-side XBT/CTD inter-comparisons, without accounting for a pure thermal bias, leads to even larger disagreement with the CTD and bottle reference temperatures. Our calculations give evidence for a depth-variable XBT fall-rate correction with the manufacturer-derived depth being underestimated in the upper 200 m and overestimated below this depth. These results are in agreement with side-by-side inter-comparisons and direct fall-rate estimates. Correcting XBT sample depths by a multiplicative factor which is constant with depth does not allow an effective elimination of the total temperature bias throughout the whole water column. The analysis further suggests a dependence of the fall rate on the water temperature which was reported earlier in the literature. Comparison among different correction schemes implies a significant impact of systematic biases on the estimates of the global ocean heat content anomaly.

  2. Are global warming and ocean acidification conspiring against marine ectotherms? A meta-analysis of the respiratory effects of elevated temperature, high CO2 and their interaction.

    Science.gov (United States)

    Lefevre, Sjannie

    2016-01-01

    With the occurrence of global change, research aimed at estimating the performance of marine ectotherms in a warmer and acidified future has intensified. The concept of oxygen- and capacity-limited thermal tolerance, which is inspired by the Fry paradigm of a bell-shaped increase-optimum-decrease-type response of aerobic scope to increasing temperature, but also includes proposed negative and synergistic effects of elevated CO2 levels, has been suggested as a unifying framework. The objectives of this meta-analysis were to assess the following: (i) the generality of a bell-shaped relationship between absolute aerobic scope (AAS) and temperature; (ii) to what extent elevated CO2 affects resting oxygen uptake MO2rest and AAS; and (iii) whether there is an interaction between elevated temperature and CO2. The behavioural effects of CO2 are also briefly discussed. In 31 out of 73 data sets (both acutely exposed and acclimated), AAS increased and remained above 90% of the maximum, whereas a clear thermal optimum was observed in the remaining 42 data sets. Carbon dioxide caused a significant rise in MO2rest in only 18 out of 125 data sets, and a decrease in 25, whereas it caused a decrease in AAS in four out of 18 data sets and an increase in two. The analysis did not reveal clear evidence for an overall correlation with temperature, CO2 regime or duration of CO2 treatment. When CO2 had an effect, additive rather than synergistic interactions with temperature were most common and, interestingly, they even interacted antagonistically on MO2rest and AAS. The behavioural effects of CO2 could complicate experimental determination of respiratory performance. Overall, this meta-analysis reveals heterogeneity in the responses to elevated temperature and CO2 that is not in accordance with the idea of a single unifying principle and which cannot be ignored in attempts to model and predict the impacts of global warming and ocean acidification on marine ectotherms.

  3. MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 1km SIN Grid V004

    Data.gov (United States)

    National Aeronautics and Space Administration — The MOD11A1.004 dataset was decommissioned as of October 20, 2017. Users are encouraged to use Version 6 of MODIS/Terra Land Surface Temperature and Emissivity Daily...

  4. MODIS/Aqua Land Surface Temperature/Emissivity Daily L3 Global 5km SIN Grid V004

    Data.gov (United States)

    National Aeronautics and Space Administration — The MYD11B1.004 dataset was decommissioned as of October 27, 2017. Users are encouraged to use Version 6 of MODIS/Aqua Land Surface Temperature and Emissivity Daily...

  5. MODIS/Aqua Land Surface Temperature/Emissivity Monthly L3 Global 0.05Deg CMG V004

    Data.gov (United States)

    National Aeronautics and Space Administration — The MYD11C3.004 dataset was decommissioned as of October 20, 2017. Users are encouraged to use Version 6 of MODIS/Aqua Land Surface Temperature and Emissivity Daily...

  6. MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 0.05Deg CMG V004

    Data.gov (United States)

    National Aeronautics and Space Administration — The MOD11C1.004 dataset was decommissioned as of October 19, 2017. Users are encouraged to use Version 6 of MODIS/Terra Land Surface Temperature and Emissivity Daily...

  7. MODIS/Aqua Land Surface Temperature/Emissivity Daily L3 Global 0.05Deg CMG V004

    Data.gov (United States)

    National Aeronautics and Space Administration — The MYD11C1.004 dataset was decommissioned as of October 18, 2017. Users are encouraged to use Version 6 of MODIS/Aqua Land Surface Temperature and Emissivity Daily...

  8. MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 1km SIN Grid V041

    Data.gov (United States)

    National Aeronautics and Space Administration — The MOD11A1.041 dataset was decommissioned as of October 30, 2017. Users are encouraged to use Version 6 of MODIS/Terra Land Surface Temperature and Emissivity Daily...

  9. MODIS/Terra Land Surface Temperature/Emissivity Monthly L3 Global 0.05Deg CMG V004

    Data.gov (United States)

    National Aeronautics and Space Administration — The MOD11C3.004 dataset was decommissioned as of October 19, 2017. Users are encouraged to use Version 6 of MODIS/Terra Land Surface Temperature and Emissivity Daily...

  10. MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 0.05Deg CMG V004

    Data.gov (United States)

    National Aeronautics and Space Administration — The MOD11C2.004 dataset was decommissioned as of October 19, 2017. Users are encouraged to use Version 6 of MODIS/Terra Land Surface Temperature and Emissivity Daily...

  11. MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 0.05Deg CMG V005

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS/Terra V5 LST/E L3 Global CMG (Short name: MOD11C1) products incorporate 0.05º (5600 meters at the equator) pixels, which are derived from the MOD11B1 daily...

  12. MODIS/Aqua Land Surface Temperature/Emissivity Daily L3 Global 6km SIN Grid V005

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS/Aqua LST/E L3 Global 1 km Grid (Short name: MYD11B1) products incorporate 6 km pixels (4.63 km pixels for versions prior to V005), which are produced daily...

  13. MODIS/Aqua Land Surface Temperature/Emissivity Daily L3 Global 1km SIN Grid V005

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS/Aqua LST/E L3 Global 1 Km Grid (Short name: MYD11A1) products incorporate 1-km pixels, which are produced daily using the generalized split-window LST...

  14. MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 6km SIN Grid V005

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS/Terra V5 LST/E L3 Global 1 Km Grid (Short name: MOD11B1) products incorporate 6 km pixels, which are produced daily using the day/night LST algorithm (Wan...

  15. MODIS/Aqua Land Surface Temperature/Emissivity Daily L3 Global 0.05Deg CMG V041

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS/Aqua V41 LST/E L3 Global CMG (Short name: MYD11C1) products incorporate 0.05º (5600 meters at the equator) pixels, which are derived from the MOD11B1 daily...

  16. Global gene expression profiling related to temperature-sensitive growth abnormalities in interspecific crosses between tetraploid wheat and Aegilops tauschii.

    Science.gov (United States)

    Matsuda, Ryusuke; Iehisa, Julio Cesar Masaru; Sakaguchi, Kouhei; Ohno, Ryoko; Yoshida, Kentaro; Takumi, Shigeo

    2017-01-01

    Triploid wheat hybrids between tetraploid wheat and Aegilops tauschii sometimes show abnormal growth phenotypes, and the growth abnormalities inhibit generation of wheat synthetic hexaploids. In type II necrosis, one of the growth abnormalities, necrotic cell death accompanied by marked growth repression occurs only under low temperature conditions. At normal temperature, the type II necrosis lines show grass-clump dwarfism with no necrotic symptoms, excess tillers, severe dwarfism and delayed flowering. Here, we report comparative expression analyses to elucidate the molecular mechanisms of the temperature-dependent phenotypic plasticity in the triploid wheat hybrids. We compared gene and small RNA expression profiles in crown tissues to characterize the temperature-dependent phenotypic plasticity. No up-regulation of defense-related genes was observed under the normal temperature, and down-regulation of wheat APETALA1-like MADS-box genes, considered to act as flowering promoters, was found in the grass-clump dwarf lines. Some microRNAs, including miR156, were up-regulated, whereas the levels of transcripts of the miR156 target genes SPLs, known to inhibit tiller and branch number, were reduced in crown tissues of the grass-clump dwarf lines at the normal temperature. Unusual expression of the miR156/SPLs module could explain the grass-clump dwarf phenotype. Dramatic alteration of gene expression profiles, including miRNA levels, in crown tissues is associated with the temperature-dependent phenotypic plasticity in type II necrosis/grass-clump dwarf wheat hybrids.

  17. Climate Change in Alpine Regions - Regional Characteristics of a Global Phenomenon by the Example of Air Temperature

    Science.gov (United States)

    Lang, Erich; Stary, Ulrike

    2017-04-01

    For nearly 50 years the Austrian Research Centre for Forests (BFW) has been engaged in research in the Alpine region recording measuring data at extreme sites. Data series of this duration provide already a good insight into the evolution of climate parameters. Extrapolations derived from it are suitable for comparison with results from climate change models or supplement them with regard to their informative value. This is useful because climate change models describe a simplified picture of reality based on the size of the data grid they use. Analysis of time series of two air temperature measuring stations in different torrent catchment areas indicate that 1) predictions of temperature rise for the Alpine region in Austria will have to be revised upwards, and 2) only looking at the data of seasons (or shorter time periods), reveals the real dramatic effect of climate change. Considering e.g. the annual average data of air temperature of the years 1969-2016 at the climate station "Fleissner" (altitude 1210m a.s.l; Upper Mölltal, Carinthia) a significant upward trend is visible. Using a linear smoothing function an increase of the average annual air temperature of about 2.2°C within 50 years emerges. The calculated temperature rise thus confirms the general fear of an increase of more than 2.0°C till the middle of the 21st century. Looking at the seasonal change of air temperature, significant positive trends are shown in all four seasons. But the level of the respective temperature increase varies considerably and indicates the highest increase in spring (+3.3°C), and the lowest one in autumn (+1.3°C, extrapolated for a time period of 50 years). The maximum increase of air temperature at the measuring station "Pumpenhaus" (altitude 980m a.s.l), which is situated in the "Karnische Alpen" in the south of Austria, is even stronger. From a time series of 28 years (with data recording starting in 1989) the maximum rise of temperature was 5.4°C detected for the

  18. ENSO Effects on Land Skin Temperature Variations: A Global Study from Satellite Remote Sensing and NCEP/NCAR Reanalysis

    Directory of Open Access Journals (Sweden)

    Henry Bartholomew

    2013-08-01

    Full Text Available Non-lag and lag correlation coefficients between Niño 3 indices derived from sea-surface temperature (SST anomalies and land surface variables from satellite based Moderate Resolution Imaging Spectroradiometer (MODIS data, as well as National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR Reanalysis data are analyzed for 2001–2010. Strong positive correlations between January Niño 3 indices and skin temperature (Tskin occur over the northwest USA, western Canada, and southern Alaska, suggesting that an El Niño event is associated with warmer winter temperatures over these regions, consistent with previous studies based on 2 m surface air temperature measurements (Tair. In addition, in January, strong negative correlations exist over central and northern Europe (meaning colder than normal winters with positive correlations present over central Siberia (suggesting warmer than normal winters. Despite the different physical meaning between Tair and Tskin, the general response of the two surface temperatures to changes in ENSO is similar. Nevertheless, satellite observations of Tskin provide more rich information and higher spatial resolution than Tair data.

  19. On the assessment of near-surface global temperature and North Atlantic multi-decadal variability in the ENSEMBLES decadal hindcast

    Science.gov (United States)

    García-Serrano, J.; Doblas-Reyes, F. J.

    2012-10-01

    The ENSEMBLES multi-model and perturbed-parameter decadal re-forecasts are used to assess multi-year forecast quality for global-mean surface air temperature (SAT) and North Atlantic multi-decadal sea surface temperature variability (AMV). Two issues for near-term climate prediction, not discussed so far, are addressed with these two examples: the impact of the choice of the observational reference period, and of the number of years included in the forecast average. Taking into account only years when both observational and model data are available, instead of using the full record, to estimate observed climatologies produces systematically (although not statistically significantly different) higher ensemble-mean correlations and lower root mean square errors in all forecast systems. These differences are more apparent in the second half of the decadal prediction, which suggests an influence of non-stationary long-term trends. Also, as the forecast period averaged increases, the correlation for both global-mean SAT and AMV is generally higher. This also suggests an increasing role for the variable external forcing as when forecast period averaged increases, unpredictable internal variability is smoothed out. The results show that predicting El Niño-Southern Oscillation beyond one year is a hurdle for current global forecast systems, which explains the positive impact of the forecast period averaging. By comparing initialized and uninitialized re-forecasts, the skill assessment confirms that variations of the global-mean SAT are largely controlled by the prescribed variable external forcing. By contrast, the initialization improves the skill of the AMV during the first half of the forecast period. In an operational context, this would lead to improved predictions of the AMV from initializing internal climate fluctuations. The coherence between the multi-model and perturbed-parameter ensemble supports that conclusion for boreal summer and annual means, while the

  20. On the assessment of near-surface global temperature and North Atlantic multi-decadal variability in the ENSEMBLES decadal hindcast

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Serrano, J. [Institut Catala de Ciencies del Clima (IC3), Barcelona (Spain); Doblas-Reyes, F.J. [Institut Catala de Ciencies del Clima (IC3), Barcelona (Spain); Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain)

    2012-10-15

    The ENSEMBLES multi-model and perturbed-parameter decadal re-forecasts are used to assess multi-year forecast quality for global-mean surface air temperature (SAT) and North Atlantic multi-decadal sea surface temperature variability (AMV). Two issues for near-term climate prediction, not discussed so far, are addressed with these two examples: the impact of the choice of the observational reference period, and of the number of years included in the forecast average. Taking into account only years when both observational and model data are available, instead of using the full record, to estimate observed climatologies produces systematically (although not statistically significantly different) higher ensemble-mean correlations and lower root mean square errors in all forecast systems. These differences are more apparent in the second half of the decadal prediction, which suggests an influence of non-stationary long-term trends. Also, as the forecast period averaged increases, the correlation for both global-mean SAT and AMV is generally higher. This also suggests an increasing role for the variable external forcing as when forecast period averaged increases, unpredictable internal variability is smoothed out. The results show that predicting El Nino-Southern Oscillation beyond one year is a hurdle for current global forecast systems, which explains the positive impact of the forecast period averaging. By comparing initialized and uninitialized re-forecasts, the skill assessment confirms that variations of the global-mean SAT are largely controlled by the prescribed variable external forcing. By contrast, the initialization improves the skill of the AMV during the first half of the forecast period. In an operational context, this would lead to improved predictions of the AMV from initializing internal climate fluctuations. The coherence between the multi-model and perturbed-parameter ensemble supports that conclusion for boreal summer and annual means, while the

  1. Using Pressure- and Temperature-Sensitive Paint for Global Surface Pressure and Temperature Measurements on the Aft-Body of a Capsule Reentry Vehicle

    Science.gov (United States)

    Watkins, A. Neal; Buck, Gregory M.; Leighty, Bradley D.; Lipford, William E.; Oglesby, Donald M.

    2008-01-01

    Pressure Sensitive Paint (PSP) and Temperature Sensitive Paint (TSP) were used to visualize and quantify the surface interactions of reaction control system (RCS) jets on the aft body of capsule reentry vehicle shapes. The first model tested was an Apollo-like configuration and was used to focus primarily on the effects of the forward facing roll and yaw jets. The second model tested was an early Orion Crew Module configuration blowing only out of its forward-most yaw jet, which was expected to have the most intense aerodynamic heating augmentation on the model surface. This paper will present the results from the experiments, which show that with proper system design, both PSP and TSP are effective tools for studying these types of interaction in hypersonic testing environments.

  2. Modeling the contributions of global air temperature, synoptic-scale phenomena and soil moisture to near-surface static energy variability using artificial neural networks

    Science.gov (United States)

    Pryor, Sara C.; Sullivan, Ryan C.; Schoof, Justin T.

    2017-12-01

    The static energy content of the atmosphere is increasing on a global scale, but exhibits important subglobal and subregional scales of variability and is a useful parameter for integrating the net effect of changes in the partitioning of energy at the surface and for improving understanding of the causes of so-called warming holes (i.e., locations with decreasing daily maximum air temperatures (T) or increasing trends of lower magnitude than the global mean). Further, measures of the static energy content (herein the equivalent potential temperature, θe) are more strongly linked to excess human mortality and morbidity than air temperature alone, and have great relevance in understanding causes of past heat-related excess mortality and making projections of possible future events that are likely to be associated with negative human health and economic consequences. New nonlinear statistical models for summertime daily maximum and minimum θe are developed and used to advance understanding of drivers of historical change and variability over the eastern USA. The predictor variables are an index of the daily global mean temperature, daily indices of the synoptic-scale meteorology derived from T and specific humidity (Q) at 850 and 500 hPa geopotential heights (Z), and spatiotemporally averaged soil moisture (SM). SM is particularly important in determining the magnitude of θe over regions that have previously been identified as exhibiting warming holes, confirming the key importance of SM in dictating the partitioning of net radiation into sensible and latent heat and dictating trends in near-surface T and θe. Consistent with our a priori expectations, models built using artificial neural networks (ANNs) out-perform linear models that do not permit interaction of the predictor variables (global T, synoptic-scale meteorological conditions and SM). This is particularly marked in regions with high variability in minimum and maximum θe, where more complex models

  3. Uncertainty in regional temperatures inferred from sparse global observations: Application to a probabilistic classification of El Niño

    Science.gov (United States)

    Ilyas, Maryam; Brierley, Christopher M.; Guillas, Serge

    2017-09-01

    Instrumental records showing increases in surface temperature are some of the robust and iconic evidence of climate change. But how much should we trust regional temperature estimates interpolated from sparse observations? Here we quantify the uncertainty in the instrumental record by applying multiresolution lattice kriging, a recently developed interpolation technique that leverages the multiple spatial scales of temperature anomalies. The probability of monthly anomalies across the globe is represented by an ensemble, based on HadCRUT4 and accounting for observational and coverage uncertainties. To demonstrate the potential of these new data, we investigate the area-averaged temperature anomalies over the Niño 3.4 region in the equatorial Pacific. Having developed a definition of the El Niño-Southern Oscillation (ENSO) able to cope with probability distribution functions, we classify the ENSO state for each year since 1851. We find that for many years it is ambiguous as to whether there was an El Niño or not from the Niño 3.4 region alone. These years are mainly before 1920, but also just after World War II.

  4. Delayed CTD and XBT data assembled and submitted by the Canada Department of Fisheries and Oceans (DFO) for the Global Temperature-Salinity Profile Program (GTSPP), dates range from 06/08/1979 - 05/25/2010 (NODC Accession 0065272)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Integrated Science Data Management (ISDM) office processes oceanographic profiles for the world oceans and submits these data to the Global Temperature and...

  5. Upper ocean currents and sea surface temperatures (SST) from Satellite-tracked drifting buoys (drifters) as part of the Global Drifter Program for Hawaii region 1980/02/01 - 2009/03/31 (NODC Accession 0063296)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Satellite-tracked drifting buoys ("drifters") collect measurements of upper ocean currents and sea surface temperatures (SST) around the world as part of the Global...

  6. GHRSST L3C global sub-skin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on Metop satellites (currently Metop-B) (GDS V2) produced by OSI SAF (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 3 Collated (L3C) dataset derived from the Advanced Very High Resolution Radiometer (AVHRR)...

  7. Delayed XBT data collected by Commonwealth Scientific Industrial Research Organization (CSIRO) for the Global Temperature-Salinity Profile Program (GTSPP), dates range from 22 March 2003 to 07 October 2003 (NODC Accession 0001380)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts in the Indian Ocean. Data were collected from 22 March 2003 to 07 October 2003 in support of the Global...

  8. GHRSST L3C global sub-skin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on Metop satellites (currently Metop-A) (GDS V2) produced by OSI SAF (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 3 Collated (L3C) dataset derived from the Advanced Very High Resolution Radiometer (AVHRR)...

  9. Five-years of microenvironment data along an urban-rural transect; temperature and CO2 concentrations in urban area at levels expected globally with climate change.

    Energy Technology Data Exchange (ETDEWEB)

    George, Kate; Ziska, Lewis H; Bunce, James A; Quebedeaux, Bruno

    2007-11-01

    The heat island effect and the high use of fossil fuels in large city centers is well documented, but by how much fossil fuel consumption is elevating atmospheric CO2 concentrations and whether elevations in both atmospheric CO2 and air temperature are consistent from year to year are less well known. Our aim was to record atmospheric CO2 concentrations, air temperature and other environmental variables in an urban area and compare it to suburban and rural sites to see if urban sites are experiencing climates expected globally in the future with climate change. A transect was established from Baltimore city center (Urban site), to the outer suburbs of Baltimore (suburban site) and out to an organic farm (rural site). At each site a weather station was set-up to monitor environmental variables annually for five years. Atmospheric CO2 was significantly increased on average by 66 ppm from the rural to the urban site over the five years of the study. Air temperature was significantly higher at the urban site (14.8 oC) compared to the suburban (13.6 oC) and rural (12.7 oC) sites. Relative humidity was not different between sites but vapor pressure deficit (VPD) was significantly higher at the urban site compared to the suburban and rural sites. During wet years relative humidity was significantly increased and VPD significantly reduced. Increased nitrogen deposition at the rural site (2.1 % compared to 1.8 and 1.2 % at the suburban and urban sites) was small enough not to affect soil nitrogen content. Dense urban areas with large populations and high vehicular traffic have significantly different microclimates compared to outlying suburban and rural areas. The increases in atmospheric CO2 and air temperature are similar to changes predicted in the short term with global climate change, therefore providing an environment suitable for studying future effects of climate change on terrestrial ecosystems.

  10. Global observed long-term changes in temperature and precipitation extremes: A review of progress and limitations in IPCC assessments and beyond

    Directory of Open Access Journals (Sweden)

    Lisa V. Alexander

    2016-03-01

    Full Text Available The Intergovernmental Panel on Climate Change (IPCC first attempted a global assessment of long-term changes in temperature and precipitation extremes in its Third Assessment Report in 2001. While data quality and coverage were limited, the report still concluded that heavy precipitation events had increased and that there had been, very likely, a reduction in the frequency of extreme low temperatures and increases in the frequency of extreme high temperatures. That overall assessment had changed little by the time of the IPCC Special Report on Extremes (SREX in 2012 and the IPCC Fifth Assessment Report (AR5 in 2013, but firmer statements could be added and more regional detail was possible. Despite some substantial progress throughout the IPCC Assessments in terms of temperature and precipitation extremes analyses, there remain major gaps particularly regarding data quality and availability, our ability to monitor these events consistently and our ability to apply the complex statistical methods required. Therefore this article focuses on the substantial progress that has taken place in the last decade, in addition to reviewing the new progress since IPCC AR5 while also addressing the challenges that still lie ahead.

  11. Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids

    Science.gov (United States)

    Naafs, B. D. A.; Inglis, G. N.; Zheng, Y.; Amesbury, M. J.; Biester, H.; Bindler, R.; Blewett, J.; Burrows, M. A.; del Castillo Torres, D.; Chambers, F. M.; Cohen, A. D.; Evershed, R. P.; Feakins, S. J.; Gałka, M.; Gallego-Sala, A.; Gandois, L.; Gray, D. M.; Hatcher, P. G.; Honorio Coronado, E. N.; Hughes, P. D. M.; Huguet, A.; Könönen, M.; Laggoun-Défarge, F.; Lähteenoja, O.; Lamentowicz, M.; Marchant, R.; McClymont, E.; Pontevedra-Pombal, X.; Ponton, C.; Pourmand, A.; Rizzuti, A. M.; Rochefort, L.; Schellekens, J.; De Vleeschouwer, F.; Pancost, R. D.

    2017-07-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) are membrane-spanning lipids from Bacteria and Archaea that are ubiquitous in a range of natural archives and especially abundant in peat. Previous work demonstrated that the distribution of bacterial branched GDGTs (brGDGTs) in mineral soils is correlated to environmental factors such as mean annual air temperature (MAAT) and soil pH. However, the influence of these parameters on brGDGT distributions in peat is largely unknown. Here we investigate the distribution of brGDGTs in 470 samples from 96 peatlands around the world with a broad mean annual air temperature (-8 to 27 °C) and pH (3-8) range and present the first peat-specific brGDGT-based temperature and pH calibrations. Our results demonstrate that the degree of cyclisation of brGDGTs in peat is positively correlated with pH, pH = 2.49 × CBTpeat + 8.07 (n = 51, R2 = 0.58, RMSE = 0.8) and the degree of methylation of brGDGTs is positively correlated with MAAT, MAATpeat (°C) = 52.18 × MBT5me‧ - 23.05 (n = 96, R2 = 0.76, RMSE = 4.7 °C). These peat-specific calibrations are distinct from the available mineral soil calibrations. In light of the error in the temperature calibration (∼4.7 °C), we urge caution in any application to reconstruct late Holocene climate variability, where the climatic signals are relatively small, and the duration of excursions could be brief. Instead, these proxies are well-suited to reconstruct large amplitude, longer-term shifts in climate such as deglacial transitions. Indeed, when applied to a peat deposit spanning the late glacial period (∼15.2 kyr), we demonstrate that MAATpeat yields absolute temperatures and relative temperature changes that are consistent with those from other proxies. In addition, the application of MAATpeat to fossil peat (i.e. lignites) has the potential to reconstruct terrestrial climate during the Cenozoic. We conclude that there is clear potential to use brGDGTs in peats and lignites to

  12. A fractal climate response function can explain global temperature trends of the modern era and the past millennium

    CERN Document Server

    van Hateren, J H

    2013-01-01

    A climate response function is introduced that consists of six exponential (low-pass) filters with weights depending as a power law on their e-folding times. The response of this function to the combined forcings of solar irradiance, greenhouse gases, and SO2-related aerosols is fitted simultaneously to reconstructed temperatures of the past millennium, the response to solar cycles, the response to the 1991 Pinatubo volcanic eruption, and the modern 1850-2010 temperature trend. The quite adequate fit produces a climate response function with an equilibrium response to doubling of CO2 concentration of 2.0 \\pm 0.3 ^{\\circ}C (mean \\pm standard error), of which about 50% is realized with e-folding times of 0.5 and 2 years, about 30% with e-folding times of 8 and 32 years, and about 20% with e-folding times of 128 and 512 years. The transient climate response (response after 70 years of 1% yearly rise of CO2 concentration) is 1.5 \\pm 0.2 ^{\\circ}C. The temperature rise from 1820-1950 can be attributed for about 70...

  13. Relationship between wine composition and temperature: Impact on Bordeaux wine typicity in the context of global warming-Review.

    Science.gov (United States)

    Drappier, Julie; Thibon, Cécile; Rabot, Amélie; Geny-Denis, Laurence

    2017-10-24

    Weather conditions throughout the year have a greater influence than other factors (such as soil and cultivars) on grapevine development and berry composition. Temperature affects gene expression and enzymatic activity of primary and secondary metabolism which determine grape ripening and wine characteristics. In the context of the climate change, temperatures will probably rise between 0.3°C and 1.7°C over the next 20 years. They are already rising and the physiology of grapevines is already changing. These modifications exert a profound shift in primary (sugar and organic acid balance) and secondary (phenolic and aromatic compounds) berry metabolisms and the resulting composition of wine. For example, some Bordeaux wines have a tendency toward reduced freshness and a modification of their ruby color. In this context it is necessary to understand the impact of higher temperatures on grape development, harvest procedures, and wine composition in order to preserve the typicity of the wines and to adapt winemaking processes.

  14. The influence of composition and final pyrolysis temperature variations on global kinetics of combustion of segregated municipal solid waste

    Science.gov (United States)

    Pranoto; Himawanto, D. A.; Arifin, N. A.

    2017-04-01

    The combustion of segregated municipal solid waste (MSW) and the resulted char from the pyrolysis process were investigated in this research. The segregated MSW that was collected and used can be divided into organic and inorganic waste materials. The organic materials were bamboo and banana leaves and the inorganic materials were Styrofoam and snack wrappings. The composition ratio of the waste was based on the percentage of weight of each sample. The thermal behaviour of the segregated MSW was investigated by thermo gravimetric analysis. For the pyrolysis process the prepared samples of 200gram were heated from ambient temperature until a variance of final pyrolysis temperature of 550°C, 650°C and 750°C at a constant heating rate of 25°C/min. It was found that the highest activation energy of the raw materials is achieved from sample CC1 (Char with 100% inorganic materials). The activation energy of the raw materials is relatively lower than that of the char. The higher the final pyrolysis temperature, the lower the calorific value of char. The calorific value gradually increases with the amount of inorganic materials.

  15. Northern range expansion of European populations of the wasp spider Argiope bruennichi is associated with global warming-correlated genetic admixture and population-specific temperature adaptations.

    Science.gov (United States)

    Krehenwinkel, Henrik; Tautz, Diethard

    2013-04-01

    Poleward range expansions are observed for an increasing number of species, which may be an effect of global warming during the past decades. However, it is still not clear in how far these expansions reflect simple geographical shifts of species ranges, or whether new genetic adaptations play a role as well. Here, we analyse the expansion of the wasp spider Argiope bruennichi into Northern Europe during the last century. We have used a range-wide sampling of contemporary populations and historical specimens from museums to trace the phylogeography and genetic changes associated with the range shift. Based on the analysis of mitochondrial, microsatellite and SNP markers, we observe a higher level of genetic diversity in the expanding populations, apparently due to admixture of formerly isolated lineages. Using reciprocal transplant experiments for testing overwintering tolerance, as well as temperature preference and tolerance tests in the laboratory, we find that the invading spiders have possibly shifted their temperature niche. This may be a key adaptation for survival in Northern latitudes. The museum samples allow a reconstruction of the invasion's genetic history. A first, small-scale range shift started around 1930, in parallel with the onset of global warming. A more massive invasion of Northern Europe associated with genetic admixture and morphological changes occurred in later decades. We suggest that the latter range expansion into far Northern latitudes may be a consequence of the admixture that provided the genetic material for adaptations to new environmental regimes. Hence, global warming could have facilitated the initial admixture of populations and this resulted in genetic lineages with new habitat preferences. © 2013 Blackwell Publishing Ltd.

  16. Natural blood feeding and temperature shift modulate the global transcriptional profile of Rickettsia rickettsii infecting its tick vector.

    Directory of Open Access Journals (Sweden)

    Maria Fernanda B M Galletti

    Full Text Available Rickettsia rickettsii is an obligate intracellular tick-borne bacterium that causes Rocky Mountain Spotted Fever (RMSF, the most lethal spotted fever rickettsiosis. When an infected starving tick begins blood feeding from a vertebrate host, R. rickettsii is exposed to a temperature elevation and to components in the blood meal. These two environmental stimuli have been previously associated with the reactivation of rickettsial virulence in ticks, but the factors responsible for this phenotype conversion have not been completely elucidated. Using customized oligonucleotide microarrays and high-throughput microfluidic qRT-PCR, we analyzed the effects of a 10°C temperature elevation and of a blood meal on the transcriptional profile of R. rickettsii infecting the tick Amblyomma aureolatum. This is the first study of the transcriptome of a bacterium in the genus Rickettsia infecting a natural tick vector. Although both stimuli significantly increased bacterial load, blood feeding had a greater effect, modulating five-fold more genes than the temperature upshift. Certain components of the Type IV Secretion System (T4SS were up-regulated by blood feeding. This suggests that this important bacterial transport system may be utilized to secrete effectors during the tick vector's blood meal. Blood feeding also up-regulated the expression of antioxidant enzymes, which might correspond to an attempt by R. rickettsii to protect itself against the deleterious effects of free radicals produced by fed ticks. The modulated genes identified in this study, including those encoding hypothetical proteins, require further functional analysis and may have potential as future targets for vaccine development.

  17. Global effects of the DEAD-box RNA helicase DeaD (CsdA) on gene expression over a broad range of temperatures

    Science.gov (United States)

    Vakulskas, Christopher A.; Pannuri, Archana; Cortés-Selva, Diana; Zere, Tesfalem R.; Ahmer, Brian M.; Babitzke, Paul; Romeo, Tony

    2014-01-01

    Summary In Escherichia coli, activity of the global regulatory RNA binding protein CsrA is antagonized by two noncoding sRNAs, CsrB and CsrC, which sequester it away from its lower affinity mRNA targets. Transcription of csrB/C requires the BarA-UvrY two component signal transduction system, which responds to short chain carboxylates. We show that two DEAD-box RNA helicases, DeaD and SrmB, activate csrB/C expression by different pathways. DeaD facilitates uvrY translation by counteracting the inhibitory effect of long distance basepairing between the uvrY mRNA leader and coding region, while SrmB does not affect UvrY or UvrY-phosphate levels. Contrary to the prevailing notion that these helicases act primarily at low temperatures, DeaD and SrmB activated csrB expression over a wide temperature range. High-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP) revealed in vivo interactions of DeaD with 39 mRNAs, including those of uvrY and 9 other regulatory genes. Studies on the expression of several of the identified genes revealed regulatory effects of DeaD in all cases and diverse temperature response patterns. Our findings uncover an expanded regulatory role for DeaD, which is mediated through novel mRNA targets, important global regulators and under physiological conditions that were considered to be incompatible with its function. PMID:24708042

  18. Global Phenological Response to Climate Change in Crop Areas using Satellite Remote Sensing of Vegetation, Humidity and Temperature over 26 years

    Science.gov (United States)

    Brown, M. E.; de Beurs, K. M.

    2012-12-01

    The recent increase in food prices has revealed that climate, combined with an expanding population and a widespread change in diet, may result in an end to an era of predictable abundance of global cereal crops. The objective of this paper is to estimate changes of agriculturally-relevant growing season parameters, including the start of the season, length of the growing period and the position of the height or peak of the season, in the primary regions with rainfed agriculture during the past 26 years. Our analysis found that globally, 27% of cereal crop areas have experienced changes in the length of the growing season since 1981, the majority of which had seasons that were at least 2.3 days per year longer on average. We also found both negative and positive trends in the start of season globally, with different effects of changing temperature and humidity being isolated depending on the country and region. We investigated the correlation between the peak timing of the growing season and agricultural production statistics for rain fed agriculture. We found that two thirds of the countries investigated had at least 25% of pixels with crop production that behaved differently than expected from the null hypothesis of no correlation. The results show that variations in the peak of the growing season have a strong effect on global food production in these countries. We show that northern hemisphere countries and states appear to have improved model fit when using phenological models based on humidity while southern hemisphere countries and states have improved model fit by phenological models based on accumulated growing degree days, showing the impact of climate variability during the past two and a half decades.

  19. Effects of an assumed cosmic ray-modulated low global cloud cover on the Earth's temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, J.; Mendoza, B. [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Mendoza, V.; Adem, J. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)]. E-mail: victor@atmosfera.unam.mx

    2006-07-15

    We have used the Thermodynamic Model of the Climate to estimate the effect of variations in the low cloud cover on the surface temperature of the Earth in the Northern Hemisphere during the period 1984-1994. We assume that the variations in the low cloud cover are proportional to the variation of the cosmic ray flux measured during the same period. The results indicate that the effect in the surface temperature is more significant in the continents, where for July of 1991, we have found anomalies of the order of 0.7 degrees Celsius for the southeastern of Asia and 0.5 degrees Celsius for the northeast of Mexico. For an increase of 0.75% in the low cloud cover, the surface temperature computed by the model in the North Hemisphere presents a decrease of {approx} 0.11 degrees Celsius; however, for a decrease of 0.90% in the low cloud cover, the model gives an increase in the surface temperature of {approx} 0.15 degrees Celsius, these two cases correspond to a climate sensitivity factor for the case of forcing by duplication of atmospheric CO{sub 2}. These decreases or increases in surface temperature by increases of decreases in low clouds cover are ten times greater than the overall variability of the non-forced model time series. [Spanish] Hemos usado el Modelo Termodinamico del Clima para estimar el efecto de variaciones en la cubierta de nubes bajas sobre la temperatura superficial de la Tierra en el Hemisferio Norte durante el periodo 1984 - 1994. Suponemos que las variaciones en la cubierta de nubes bajas son proporcionales a las variaciones del flujo de rayos cosmicos medido durante el mismo periodo. Los resultados indican que el efecto en la temperatura es mas significativo en los continentes, donde para julio de 1991, hemos encontrado anomalias del orden de 0.7 grados Celsius sobre el sureste de Asia y 0.5 grados Celsius al noreste de Mexico. Para un incremento de 0.75% en la cubierta de nubes bajas, la temperatura de la superficie calculada por el modelo en

  20. Collaborative Research: Process-Resolving Decomposition of the Global Temperature Response to Modes of Low Frequency Variability in a Changing Climate

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yi [Georgia Inst. of Technology, Atlanta, GA (United States)

    2014-11-24

    DOE-GTRC-05596 11/24/2104 Collaborative Research: Process-Resolving Decomposition of the Global Temperature Response to Modes of Low Frequency Variability in a Changing Climate PI: Dr. Yi Deng (PI) School of Earth and Atmospheric Sciences Georgia Institute of Technology 404-385-1821, yi.deng@eas.gatech.edu El Niño-Southern Oscillation (ENSO) and Annular Modes (AMs) represent respectively the most important modes of low frequency variability in the tropical and extratropical circulations. The projection of future changes in the ENSO and AM variability, however, remains highly uncertain with the state-of-the-science climate models. This project conducted a process-resolving, quantitative evaluations of the ENSO and AM variability in the modern reanalysis observations and in climate model simulations. The goal is to identify and understand the sources of uncertainty and biases in models’ representation of ENSO and AM variability. Using a feedback analysis method originally formulated by one of the collaborative PIs, we partitioned the 3D atmospheric temperature anomalies and surface temperature anomalies associated with ENSO and AM variability into components linked to 1) radiation-related thermodynamic processes such as cloud and water vapor feedbacks, 2) local dynamical processes including convection and turbulent/diffusive energy transfer and 3) non-local dynamical processes such as the horizontal energy transport in the oceans and atmosphere. In the past 4 years, the research conducted at Georgia Tech under the support of this project has led to 15 peer-reviewed publications and 9 conference/workshop presentations. Two graduate students and one postdoctoral fellow also received research training through participating the project activities. This final technical report summarizes key scientific discoveries we made and provides also a list of all publications and conference presentations resulted from research activities at Georgia Tech. The main findings include

  1. Global temperature estimates in the troposphere and stratosphere: a validation study of COSMIC/FORMOSAT-3 measurements

    Directory of Open Access Journals (Sweden)

    P. Kishore

    2009-02-01

    Full Text Available This paper mainly focuses on the validation of temperature estimates derived with the newly launched Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC/Formosa Satellite 3 (FORMOSAT-3 system. The analysis is based on the radio occultation (RO data samples collected during the first year observation from April 2006 to April 2007. For the validation, we have used the operational stratospheric analyses including the National Centers for Environmental Prediction - Reanalysis (NCEP, the Japanese 25-year Reanalysis (JRA-25, and the United Kingdom Met Office (MetO data sets. Comparisons done in different formats reveal good agreement between the COSMIC and reanalysis outputs. Spatially, the largest deviations are noted in the polar latitudes, and height-wise, the tropical tropopause region noted the maximum differences (2–4 K. We found that among the three reanalysis data sets the NCEP data sets have the best resemblance with the COSMIC measurements.

  2. The 2 °C Global Temperature Target and the Evolution of the Long-Term Goal of Addressing Climate Change—From the United Nations Framework Convention on Climate Change to the Paris Agreement

    Directory of Open Access Journals (Sweden)

    Yun Gao

    2017-04-01

    Full Text Available The Paris Agreement proposed to keep the increase in global average temperature to well below 2 °C above pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5 °C above pre-industrial levels. It was thus the first international treaty to endow the 2 °C global temperature target with legal effect. The qualitative expression of the ultimate objective in Article 2 of the United Nations Framework Convention on Climate Change (UNFCCC has now evolved into the numerical temperature rise target in Article 2 of the Paris Agreement. Starting with the Second Assessment Report (SAR of the Intergovernmental Panel on Climate Change (IPCC, an important task for subsequent assessments has been to provide scientific information to help determine the quantified long-term goal for UNFCCC negotiation. However, due to involvement in the value judgment within the scope of non-scientific assessment, the IPCC has never scientifically affirmed the unacceptable extent of global temperature rise. The setting of the long-term goal for addressing climate change has been a long process, and the 2 °C global temperature target is the political consensus on the basis of scientific assessment. This article analyzes the evolution of the long-term global goal for addressing climate change and its impact on scientific assessment, negotiation processes, and global low-carbon development, from aspects of the origin of the target, the series of assessments carried out by the IPCC focusing on Article 2 of the UNFCCC, and the promotion of the global temperature goal at the political level.

  3. Response of the global surface ozone distribution to Northern Hemisphere sea surface temperature changes: implications for long-range transport

    Science.gov (United States)

    Yi, Kan; Liu, Junfeng; Ban-Weiss, George; Zhang, Jiachen; Tao, Wei; Cheng, Yanli; Tao, Shu

    2017-07-01

    The response of surface ozone (O3) concentrations to basin-scale warming and cooling of Northern Hemisphere oceans is investigated using the Community Earth System Model (CESM). Idealized, spatially uniform sea surface temperature (SST) anomalies of ±1 °C are individually superimposed onto the North Pacific, North Atlantic, and North Indian oceans. Our simulations suggest large seasonal and regional variability in surface O3 in response to SST anomalies, especially in the boreal summer. The responses of surface O3 associated with basin-scale SST warming and cooling have similar magnitude but are opposite in sign. Increasing the SST by 1 °C in one of the oceans generally decreases the surface O3 concentrations from 1 to 5 ppbv. With fixed emissions, SST increases in a specific ocean basin in the Northern Hemisphere tend to increase the summertime surface O3 concentrations over upwind regions, accompanied by a widespread reduction over downwind continents. We implement the integrated process rate (IPR) analysis in CESM and find that meteorological O3 transport in response to SST changes is the key process causing surface O3 perturbations in most cases. During the boreal summer, basin-scale SST warming facilitates the vertical transport of O3 to the surface over upwind regions while significantly reducing the vertical transport over downwind continents. This process, as confirmed by tagged CO-like tracers, indicates a considerable suppression of intercontinental O3 transport due to increased tropospheric stability at lower midlatitudes induced by SST changes. Conversely, the responses of chemical O3 production to regional SST warming can exert positive effects on surface O3 levels over highly polluted continents, except South Asia, where intensified cloud loading in response to North Indian SST warming depresses both the surface air temperature and solar radiation, and thus photochemical O3 production. Our findings indicate a robust linkage between basin-scale SST

  4. Response of the global surface ozone distribution to Northern Hemisphere sea surface temperature changes: implications for long-range transport

    Directory of Open Access Journals (Sweden)

    K. Yi

    2017-07-01

    Full Text Available The response of surface ozone (O3 concentrations to basin-scale warming and cooling of Northern Hemisphere oceans is investigated using the Community Earth System Model (CESM. Idealized, spatially uniform sea surface temperature (SST anomalies of ±1 °C are individually superimposed onto the North Pacific, North Atlantic, and North Indian oceans. Our simulations suggest large seasonal and regional variability in surface O3 in response to SST anomalies, especially in the boreal summer. The responses of surface O3 associated with basin-scale SST warming and cooling have similar magnitude but are opposite in sign. Increasing the SST by 1 °C in one of the oceans generally decreases the surface O3 concentrations from 1 to 5 ppbv. With fixed emissions, SST increases in a specific ocean basin in the Northern Hemisphere tend to increase the summertime surface O3 concentrations over upwind regions, accompanied by a widespread reduction over downwind continents. We implement the integrated process rate (IPR analysis in CESM and find that meteorological O3 transport in response to SST changes is the key process causing surface O3 perturbations in most cases. During the boreal summer, basin-scale SST warming facilitates the vertical transport of O3 to the surface over upwind regions while significantly reducing the vertical transport over downwind continents. This process, as confirmed by tagged CO-like tracers, indicates a considerable suppression of intercontinental O3 transport due to increased tropospheric stability at lower midlatitudes induced by SST changes. Conversely, the responses of chemical O3 production to regional SST warming can exert positive effects on surface O3 levels over highly polluted continents, except South Asia, where intensified cloud loading in response to North Indian SST warming depresses both the surface air temperature and solar radiation, and thus photochemical O3 production. Our findings indicate a robust linkage

  5. Global Monitoring RSEM System for Crop Production by Incorporating Satellite-based Photosynthesis Rates and Anomaly Data of Sea Surface Temperature

    Science.gov (United States)

    Kaneko, D.; Sakuma, H.

    2014-12-01

    The first author has been developing RSEM crop-monitoring system using satellite-based assessment of photosynthesis, incorporating meteorological conditions. Crop production comprises of several stages and plural mechanisms based on leaf photosynthesis, surface energy balance, and the maturing of grains after fixation of CO2, along with water exchange through soil vegetation-atmosphere transfer. Grain production in prime countries appears to be randomly perturbed regionally and globally. Weather for crop plants reflects turbulent phenomena of convective and advection flows in atmosphere and surface boundary layer. It has been difficult for scientists to simulate and forecast weather correctly for sufficiently long terms to crop harvesting. However, severely poor harvests related to continental events must originate from a consistent mechanism of abnormal energetic flow in the atmosphere through both land and oceans. It should be remembered that oceans have more than 100 times of energy storage compared to atmosphere and ocean currents represent gigantic energy flows, strongly affecting climate. Anomalies of Sea Surface Temperature (SST), globally known as El Niño, Indian Ocean dipole, and Atlantic Niño etc., affect the seasonal climate on a continental scale. The authors aim to combine monitoring and seasonal forecasting, considering such mechanisms through land-ocean biosphere transfer. The present system produces assessments for all continents, specifically monitoring agricultural fields of main crops. Historical regions of poor and good harvests are compared with distributions of SST anomalies, which are provided by NASA GSFC. Those comparisons fairly suggest that the Worst harvest in 1993 and the Best in 1994 relate to the offshore distribution of low temperature anomalies and high gaps in ocean surface temperatures. However, high-temperature anomalies supported good harvests because of sufficient solar radiation for photosynthesis, and poor harvests because

  6. A binary genetic programing model for teleconnection identification between global sea surface temperature and local maximum monthly rainfall events

    Science.gov (United States)

    Danandeh Mehr, Ali; Nourani, Vahid; Hrnjica, Bahrudin; Molajou, Amir

    2017-12-01

    The effectiveness of genetic programming (GP) for solving regression problems in hydrology has been recognized in recent studies. However, its capability to solve classification problems has not been sufficiently explored so far. This study develops and applies a novel classification-forecasting model, namely Binary GP (BGP), for teleconnection studies between sea surface temperature (SST) variations and maximum monthly rainfall (MMR) events. The BGP integrates certain types of data pre-processing and post-processing methods with conventional GP engine to enhance its ability to solve both regression and classification problems simultaneously. The model was trained and tested using SST series of Black Sea, Mediterranean Sea, and Red Sea as potential predictors as well as classified MMR events at two locations in Iran as predictand. Skill of the model was measured in regard to different rainfall thresholds and SST lags and compared to that of the hybrid decision tree-association rule (DTAR) model available in the literature. The results indicated that the proposed model can identify potential teleconnection signals of surrounding seas beneficial to long-term forecasting of the occurrence of the classified MMR events.

  7. Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: From Earth history to global change

    Science.gov (United States)

    PöRtner, Hans O.; Langenbuch, Martina; Michaelidis, Basile

    2005-09-01

    Currently rising CO2 levels in atmosphere and marine surface waters as well as projected scenarios of CO2 disposal in the ocean emphasize that CO2 sensitivities need to be investigated in aquatic organisms, especially in animals which may well be the most sensitive. Moreover, to understand causes and effects, we need to identify the physiological processes that are sensitive to CO2 beyond the current emphasis on calcification. Few animals may be acutely sensitive to moderate CO2 increases, but subtle changes due to long-term exposure may already have started to be felt in a wide range of species. CO2 effects identified in invertebrate fauna from habitats characterized by oscillating CO2 levels include depressed metabolic rates and reduced ion exchange and protein synthesis rates. These result in shifts in metabolic equilibria and slowed growth. Long-term moderate hypercapnia has been observed to produce enhanced mortality with as yet unidentified cause and effect relationships. During future climate change, simultaneous shifts in temperature, CO2, and hypoxia levels will enhance sensitivity to environmental extremes relative to a change in just one of these variables. Some interactions between these variables result from joint effects on the same physiological mechanisms. Such interactions need to be considered in terms of future increases in atmospheric CO2 and its uptake by the ocean as well as in terms of currently proposed mitigation scenarios. These include purposeful injection of CO2 in the deep ocean or Fe fertilization of the surface ocean, which reduces subsurface O2 levels. The resulting ecosystem shifts could develop progressively, rather than beyond specific thresholds, such that effects parallel CO2 oscillations. It is unsure to what extent and how quickly species may adapt to permanently elevated CO2 levels by microevolutionary compensatory processes.

  8. Modeling and evaluation of the global sea-salt aerosol distribution: sensitivity to size-resolved and sea-surface temperature dependent emission schemes

    Directory of Open Access Journals (Sweden)

    M. Spada

    2013-12-01

    Full Text Available One of the major sources of uncertainty in model estimates of the global sea-salt aerosol distribution is the emission parameterization. We evaluate a new sea-salt aerosol life cycle module coupled to the online multiscale chemical transport model NMMB/BSC-CTM. We compare 5 yr global simulations using five state-of-the-art sea-salt open-ocean emission schemes with monthly averaged coarse aerosol optical depth (AOD from selected AERONET sun photometers, surface concentration measurements from the University of Miami's Ocean Aerosol Network, and measurements from two NOAA/PMEL cruises (AEROINDOEX and ACE1. Model results are highly sensitive to the introduction of sea-surface-temperature (SST-dependent emissions and to the accounting of spume particles production. Emission ranges from 3888 Tg yr−1 to 8114 Tg yr−1, lifetime varies between 7.3 h and 11.3 h, and the average column mass load is between 5.0 Tg and 7.2 Tg. Coarse AOD is reproduced with an overall correlation of around 0.5 and with normalized biases ranging from +8.8% to +38.8%. Surface concentration is simulated with normalized biases ranging from −9.5% to +28% and the overall correlation is around 0.5. Our results indicate that SST-dependent emission schemes improve the overall model performance in reproducing surface concentrations. On the other hand, they lead to an overestimation of the coarse AOD at tropical latitudes, although it may be affected by uncertainties in the comparison due to the use of all-sky model AOD, the treatment of water uptake, deposition and optical properties in the model and/or an inaccurate size distribution at emission.

  9. Temperature and Salinity profile data from globally distributed Argo profiling floats for the week of 2008-09-25 for the Global Argo Data Repository from 2000-01-25 to 2008-10-01 (NODC Accession 0046091)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR) as the long-term archive for the International Global Argo Project...

  10. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2010-07-01 for the Global Argo Data Repository, date ranged from 2005-09-20 to 2010-07-07 (NODC Accession 0065608)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository(GADR as the long-term archive for the International Global Argo Project...

  11. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2010-05-27 for the Global Argo Data Repository, date ranged from 2002-03-08 to 2010-06-02 (NODC Accession 0064761)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository(GADR as the long-term archive for the International Global Argo Project...

  12. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2010-06-03 for the Global Argo Data Repository, date ranged from 2002-03-24 to 2010-06-09 (NODC Accession 0064949)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository(GADR as the long-term archive for the International Global Argo Project...

  13. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2010-06-17 for the Global Argo Data Repository, date ranged from 2002-01-02 to 2010-06-23 (NODC Accession 0065273)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository(GADR as the long-term archive for the International Global Argo Project...

  14. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2010-06-24 for the Global Argo Data Repository, date ranged from 2003-04-16 to 2010-06-30 (NODC Accession 0065607)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository(GADR as the long-term archive for the International Global Argo Project...

  15. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2005-10-02 for the Global Argo Data Repository, date ranged from 2000-12-08 to 2005-10-08 (NODC Accession 0002398)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR) as the long-term archive for the International Global Argo Project...

  16. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2006-04-16 for the Global Argo Data Repository, date ranged from 1999-07-01 to 2006-04-22 (NODC Accession 0002646)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR) as the long-term archive for the International Global Argo Project...

  17. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2009-01-22 for the Global Argo Data Repository, date ranged from 2001-02-10 to 2009-01-28 (NODC Accession 0050189)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR) as the long-term archive for the International Global Argo Project...

  18. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2007-09-16 for the Global Argo Data Repository, date ranged from 2002-10-15 to 2007-09-22 (NODC Accession 0033531)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR) as the long-term archive for the International Global Argo Project...

  19. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2007-08-19 for the Global Argo Data Repository, date ranged from 2000-05-09 to 2007-08-25 (NODC Accession 0032359)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR) as the long-term archive for the International Global Argo Project...

  20. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2007-04-15 for the Global Argo Data Repository, date ranged from 2003-06-08 to 2007-04-21 (NODC Accession 0014907)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR) as the long-term archive for the International Global Argo Project...

  1. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2008-05-08 for the Global Argo Data Repository, date ranged from 1999-10-22 to 2008-05-14 (NODC Accession 0042233)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR)as the long-term archive for the International Global Argo Project...

  2. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2003-07-06 for the Global Argo Data Repository, date ranged from 1997-07-28 to 2003-07-12 (NODC Accession 0001095)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR) as the long-term archive for the International Global Argo Project...

  3. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2010-07-08 for the Global Argo Data Repository, date ranged from 2005-01-19 to 2010-07-14 (NODC Accession 0065728)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository(GADR as the long-term archive for the International Global Argo Project...

  4. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2008-02-24 for the Global Argo Data Repository, date ranged from 1979-05-15 to 2008-03-01 (NODC Accession 0039348)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR)as the long-term archive for the International Global Argo Project...

  5. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2007-07-22 for the Global Argo Data Repository, date ranged from 2002-05-16 to 2007-07-28 (NODC Accession 0031203)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR) as the long-term archive for the International Global Argo Project...

  6. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2007-07-29 for the Global Argo Data Repository, date ranged from 2000-08-03 to 2007-08-04 (NODC Accession 0031344)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR) as the long-term archive for the International Global Argo Project...

  7. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2003-11-30 for the Global Argo Data Repository, date ranged from 2003-05-11 to 2003-12-06 (NODC Accession 0001258)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR) as the long-term archive for the International Global Argo Project...

  8. Temperature and salinity profile data from globally distributed Argo profiling floats for the month of September 2004 for the Global Argo Data Repository, 1996-01-05 to 2004-09-30 (NODC Accession 0001735)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR) as the long-term archive for the International Global Argo Project...

  9. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2010-04-22 for the Global Argo Data Repository, date ranged from 2000-07-01 to 2010-04-28 (NODC Accession 0063915)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR) as the long-term archive for the International Global Argo Project...

  10. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2009-01-15 for the Global Argo Data Repository, date ranged from 2002-03-01 to 2009-01-21 (NODC Accession 0049908)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR) as the long-term archive for the International Global Argo Project...

  11. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2007-10-28 for the Global Argo Data Repository, date ranged from 2000-09-22 to 2007-11-03 (NODC Accession 0036203)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR) as the long-term archive for the International Global Argo...

  12. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2008-12-11 for the Global Argo Data Repository, date ranged from 2002-08-06 to 2008-12-17 (NODC Accession 0049548)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR) as the long-term archive for the International Global Argo Project...

  13. Temperature and salinity profile data from globally distributed Argo profiling floats for the month of December 2005 for the Global Argo Data Repository, 1996-01-05 to 2005-12-31 (NODC Accession 0002485)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR) as the long-term archive for the International Global Argo Project...

  14. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2003-11-02 for the Global Argo Data Repository, date ranged from 2003-10-12 to 2003-11-08 (NODC Accession 0001222)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR) as the long-term archive for the International Global Argo Project...

  15. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2008-12-18 for the Global Argo Data Repository, date ranged from 2002-07-17 to 2008-12-24 (NODC Accession 0049890)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR) as the long-term archive for the International Global Argo Project...

  16. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2007-12-02 for the Global Argo Data Repository, date ranged from 1999-10-22 to 2007-12-08 (NODC Accession 0037064)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR)as the long-term archive for the International Global Argo Project...

  17. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2008-04-17 for the Global Argo Data Repository, date ranged from 2004-01-01 to 2008-04-23 (NODC Accession 0041687)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR)as the long-term archive for the International Global Argo Project...

  18. Temperature and salinity profile data from globally distributed Argo profiling floats for the month of June 2006 for the Global Argo Data Repository, 1996-01-05 to 2006-07-01 (NODC Accession 0002734)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR) as the long-term archive for the International Global Argo Project...

  19. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2006-04-30 for the Global Argo Data Repository, date ranged from 2002-03-08 to 2006-05-06 (NODC Accession 0002664)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR) as the long-term archive for the International Global Argo Project...

  20. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2006-06-11 for the Global Argo Data Repository, date ranged from 2002-11-05 to 2006-06-17 (NODC Accession 0002719)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR) as the long-term archive for the International Global Argo Project...

  1. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2007-10-21 for the Global Argo Data Repository, date ranged from 2001-06-04 to 2007-10-27 (NODC Accession 0036107)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR)as the long-term archive for the International Global Argo Project...

  2. Temperature and salinity profile data from globally distributed Argo profiling floats for the month of September 2005 for the Global Argo Data Repository, 1901-12-13 to 2005-09-30 (NODC Accession 0002390)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR) as the long-term archive for the International Global Argo Project...

  3. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2007-05-27 for the Global Argo Data Repository, date ranged from 2000-12-28 to 2007-06-02 (NODC Accession 0019909)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR) as the long-term archive for the International Global Argo Project...

  4. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2004-12-26 for the Global Argo Data Repository, 2004-12-06 to 2005-01-01 (NODC Accession 0001956)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR) as the long-term archive for the International Global Argo Project...

  5. Temperature and salinity profile data from globally distributed Argo profiling floats for the month of July 2005 for the Global Argo Data Repository, 1996-01-05 to 2005-07-31 (NODC Accession 0002306)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR) as the long-term archive for the International Global Argo Project...

  6. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2004-01-25 for the Global Argo Data Repository, date ranged from 2004-01-05 to 2004-01-31 (NODC Accession 0001358)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR) as the long-term archive for the International Global Argo Project...

  7. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2010-06-10 for the Global Argo Data Repository, date ranged from 2004-06-08 to 2010-06-16 (NODC Accession 0065228)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository(GADR as the long-term archive for the International Global Argo Project...

  8. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2003-11-16 for the Global Argo Data Repository, date ranged from 2003-06-28 to 2003-11-22 (NODC Accession 0001240)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR) as the long-term archive for the International Global Argo Project...

  9. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2003-05-04 for the Global Argo Data Repository, date ranged from 2003-04-03 to 2003-05-10 (NODC Accession 0001020)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR) as the long-term archive for the International Global Argo Project...

  10. Temperature and Salinity profile data from globally distributed Argo profiling floats for the week of 2008-10-09 for the Global Argo Data Repository, date ranged from 1999-10-21 to 2008-10-15 (NODC Accession 0046551)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR)as the long-term archive for the International Global Argo Project...

  11. Temperature and salinity profile data from globally distributed Argo profiling floats for the week of 2004-10-24 for the Global Argo Data Repository, date ranged from 1999-09-08 to 2004-10-30 (NODC Accession 0001761)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR) as the long-term archive for the International Global Argo Project...

  12. A Quasi-Global Approach to Improve Day-Time Satellite Surface Soil Moisture Anomalies through the Land Surface Temperature Input

    Directory of Open Access Journals (Sweden)

    Robert M. Parinussa

    2016-10-01

    Full Text Available Passive microwave observations from various spaceborne sensors have been linked to the soil moisture of the Earth’s surface layer. A new generation of passive microwave sensors are dedicated to retrieving this variable and make observations in the single theoretically optimal L-band frequency (1–2 GHz. Previous generations of passive microwave sensors made observations in a range of higher frequencies, allowing for simultaneous estimation of additional variables required for solving the radiative transfer equation. One of these additional variables is land surface temperature, which plays a unique role in the radiative transfer equation and has an influence on the final quality of retrieved soil moisture anomalies. This study presents an optimization procedure for soil moisture retrievals through a quasi-global precipitation-based verification technique, the so-called Rvalue metric. Various land surface temperature scenarios were evaluated in which biases were added to an existing linear regression, specifically focusing on improving the skills to capture the temporal variability of soil moisture. We focus on the relative quality of the day-time (01:30 pm observations from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E, as these are theoretically most challenging due to the thermal equilibrium theory, and existing studies indicate that larger improvements are possible for these observations compared to their night-time (01:30 am equivalent. Soil moisture data used in this study were retrieved through the Land Parameter Retrieval Model (LPRM, and in line with theory, both satellite paths show a unique and distinct degradation as a function of vegetation density. Both the ascending (01:30 pm and descending (01:30 am paths of the publicly available and widely used AMSR-E LPRM soil moisture products were used for benchmarking purposes. Several scenarios were employed in which the land surface temperature input for

  13. A Quasi-Global Approach to Improve Day-Time Satellite Surface Soil Moisture Anomalies through the Land Surface Temperature Input

    Science.gov (United States)

    Parinussa, Robert M.; de Jeu, Richard A. M.; van Der Schalie, Robin; Crow, Wade T.; Lei, Fangni; Holmes, Thomas R. H.

    2016-01-01

    Passive microwave observations from various spaceborne sensors have been linked to the soil moisture of the Earth's surface layer. A new generation of passive microwave sensors are dedicated to retrieving this variable and make observations in the single theoretically optimal L-band frequency (1-2 GHz). Previous generations of passive microwave sensors made observations in a range of higher frequencies, allowing for simultaneous estimation of additional variables required for solving the radiative transfer equation. One of these additional variables is land surface temperature, which plays a unique role in the radiative transfer equation and has an influence on the final quality of retrieved soil moisture anomalies. This study presents an optimization procedure for soil moisture retrievals through a quasi-global precipitation-based verification technique, the so-called Rvalue metric. Various land surface temperature scenarios were evaluated in which biases were added to an existing linear regression, specifically focusing on improving the skills to capture the temporal variability of soil moisture. We focus on the relative quality of the day-time (01:30 pm) observations from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), as these are theoretically most challenging due to the thermal equilibrium theory, and existing studies indicate that larger improvements are possible for these observations compared to their night-time (01:30 am) equivalent. Soil moisture data used in this study were retrieved through the Land Parameter Retrieval Model (LPRM), and in line with theory, both satellite paths show a unique and distinct degradation as a function of vegetation density. Both the ascending (01:30 pm) and descending (01:30 am) paths of the publicly available and widely used AMSR-E LPRM soil moisture products were used for benchmarking purposes. Several scenarios were employed in which the land surface temperature input for the radiative

  14. Assimilation of Chinese Fengyun-3B Microwave Temperature Sounder radiances into the Global GRAPES system with an improved cloud detection threshold

    Science.gov (United States)

    Li, Juan; Liu, Guiqing

    2016-03-01

    Fengyun-3B (FY-3B) is the second polar-orbiting satellite in the new Fengyun-three series. This paper describes the assimilation of the FY-3B Microwave Temperature Sounder (MWTS) radiances in the Chinese Numerical Weather prediction system — the Global and Regional Assimilation and PrEdiction System (GRAPES). A quality control procedure for the assimilation of the FY-3B MWTS radiance was proposed. Extensive monitoring before assimilation shows that the observations of channel 4 are notably contaminated. Channels 2 and 3 are used in this research. A cloud detection algorithm with an improved cloud-detection threshold is determined and incorporated into the impact experiments. The clear field-of-view (FOV) percentage increased from 42% to 57% with the new threshold. In addition, the newly added FOVs are located in the clear region, as demonstrated by the cloud liquid water path data from NOAA-18. The impact of the MWTS radiances on the prediction of GRAPES was researched. The observation biases of FY-3B MWTS O-B (differences between satellite observations and model simulations) significantly decreased after an empirical bias correction procedure. After assimilation, the residual biases are small. The assimilation of the FY-3B MWTS radiances shows a positive impact in the Northern Hemisphere and a neutral impact in the Southern Hemisphere.

  15. Global Daily High-Resolution Satellite-Based Foundation Sea Surface Temperature Dataset: Development and Validation against Two Definitions of Foundation SST

    Directory of Open Access Journals (Sweden)

    Kohtaro Hosoda

    2016-11-01

    Full Text Available This paper describes a global, daily sea surface temperature (SST analysis based on satellite microwave and infrared measurements. The SST analysis includes a diurnal correction method to estimate foundation SST (SST free from diurnal variability using satellite sea surface wind and solar radiation data, frequency splitting to reproduce intra-seasonal variability and a quality control procedure repeated twice to avoid operation errors. An optimal interpolation method designed for foundation SST is applied to blend the microwave and infrared satellite measurements. Although in situ SST measurements are not used for bias correction adjustments in the analysis, the output product, with a spatial grid size of 0.1°, has an accuracy of 0.48 ∘ C and 0.46 ∘ C compared to the in situ foundation SST measurements derived by drifting buoys and Argo floats, respectively. The same quality against the two types of in situ foundation SST (drifters and Argo suggests that the two definitions of foundation SST proposed by past studies can provide same-quality information about the sea surface state underlying the diurnal thermocline.

  16. Global changes and animal phenotypic responses: melanin-based plumage redness of scops owls increased with temperature and rainfall during the last century

    Science.gov (United States)

    Galeotti, Paolo; Rubolini, Diego; Sacchi, Roberto; Fasola, Mauro

    2009-01-01

    The ecological effects of global climate changes include shifts of species' distribution and changes in migration strategies and phenotype. Colour polymorphism, which can be envisaged as a species' evolutionary response to alternating conditions or to a wide range of habitats, may be affected by climate changes as well. The scops owl (Otus scops) shows two main colour morphs, dark- and pale-reddish, as well as intermediate morphs. We investigated temporal trends in an index of plumage colour of Italian scops owls from museum collections (1870–2007). We found a significant increase in plumage redness over the last century, which was correlated with an increase in temperature and rainfall of the years before specimen collection. However, the temporal increase in plumage redness persisted after controlling for climatic variables, suggesting that other environmental factors could be involved. Our study indicates that ongoing climate changes might have either shifted the selective balance between colour morphs, or differentially affected migration and movement patterns of colour morphs. PMID:19411274

  17. The role of low-temperature (off-axis) alteration of the oceanic crust in the global Li-cycle: Insights from the Troodos ophiolite

    Science.gov (United States)

    Coogan, L. A.; Gillis, K. M.; Pope, M.; Spence, J.

    2017-04-01

    Changes in the global Li-cycle, as recorded in the Li concentration and/or isotopic composition of seawater, have the potential to provide important insight into the controls on the long-term C-cycle. Understanding the magnitude and isotopic composition of the fluxes of Li into and out-of the ocean, and the controls on any variability in these, is necessary if we are to correctly interpret the paleo-record of the Li-cycle. Here the low-temperature (off-axis) hydrothermal sink is investigated using the volcanic section of the exceptionally preserved Troodos ophiolite. Using glass to define the protolith Li content, the uptake flux of Li is determined using bulk-rock analyses from four hydrologically distinct sections through the lava pile of the ophiolite. Differences in paleo-hydrological conditions in the crust appear to have played a significant role in controlling the uptake flux of Li with an 'average' uptake flux of equivalent to 14-21 × 109 mol yr-1 - this is considerably larger than generally assumed. Bulk-rock samples that contain a large seawater Li component have δ7Li of ∼10 ± 2‰. Celadonite separates have a δ7Li of ∼6 ± 1‰, considerably lighter than bulk-rock samples with the same Li content. Because celadonite is a significant repository for Li within the Troodos upper crust this means that another phase(s) must have markedly heavier δ7Li than the average bulk-rock; i.e. changes in the average mineralogy of altered crust will lead to changes in the bulk isotopic fractionation between the Li added to the upper oceanic crust and seawater (ΔSW-lava). The shallowest samples in three of the four studied sections are isotopically lighter than deeper samples (but do not contain significant celadonite), again indicating that variations in alteration conditions and/or mineralogy can lead to variations in ΔSW-lava. Comparison with other studies of altered upper oceanic crust suggests that changes in alteration conditions lead to significant

  18. Using Global Positioning Systems (GPS) and temperature data to generate time-activity classifications for estimating personal exposure in air monitoring studies: an automated method.

    Science.gov (United States)

    Nethery, Elizabeth; Mallach, Gary; Rainham, Daniel; Goldberg, Mark S; Wheeler, Amanda J

    2014-05-08

    Personal exposure studies of air pollution generally use self-reported diaries to capture individuals' time-activity data. Enhancements in the accuracy, size, memory and battery life of personal Global Positioning Systems (GPS) units have allowed for higher resolution tracking of study participants' locations. Improved time-activity classifications combined with personal continuous air pollution sampling can improve assessments of location-related air pollution exposures for health studies. Data was collected using a GPS and personal temperature from 54 children with asthma living in Montreal, Canada, who participated in a 10-day personal air pollution exposure study. A method was developed that incorporated personal temperature data and then matched a participant's position against available spatial data (i.e., road networks) to generate time-activity categories. The diary-based and GPS-generated time-activity categories were compared and combined with continuous personal PM2.5 data to assess the impact of exposure misclassification when using diary-based methods. There was good agreement between the automated method and the diary method; however, the automated method (means: outdoors = 5.1%, indoors other =9.8%) estimated less time spent in some locations compared to the diary method (outdoors = 6.7%, indoors other = 14.4%). Agreement statistics (AC1 = 0.778) suggest 'good' agreement between methods over all location categories. However, location categories (Outdoors and Transit) where less time is spent show greater disagreement: e.g., mean time "Indoors Other" using the time-activity diary was 14.4% compared to 9.8% using the automated method. While mean daily time "In Transit" was relatively consistent between the methods, the mean daily exposure to PM2.5 while "In Transit" was 15.9 μg/m3 using the automated method compared to 6.8 μg/m3 using the daily diary. Mean times spent in different locations as categorized by a GPS-based method were

  19. Joint influence of the Indo-Pacific Warm Pool and Northern Arabian Sea Temperatures on the Indian Summer Monsoon in a Global Climate Model Simulation

    Science.gov (United States)

    Befort, Daniel J.; Leckebusch, Gregor C.; Cubasch, Ulrich

    2016-04-01

    Proxy-based studies confirmed that the Indian Summer Monsoon (ISM) shows large variations during the Holocene. These changes might be explained by changes in orbital conditions and solar insolation but are also thought to be associated to changes in oceanic conditions, e.g. over the Indo-Pacific-Warm-Pool region. However, due to the nature of these (proxy-based) analyses no conclusion about atmospheric circulation changes during dry and wet epochs are possible. Here, a fully-coupled global climate simulation (AOGCM) covering the past 6000 years is analysed regarding ISM variability. Several dry and wet epochs are found, the most striking around 2ka BP (dry) and 1.7ka BP (wet). As only orbital parameters change during integration, we expect these "shorter-term" changes to be associated with changes in oceanic conditions. During 1.7ka BP the sea surface temperatures (SST) over the Northern Arabian Sea (NARAB) are significantly warmer compared to 2ka BP, whereas cooler conditions are found over the western Pacific Ocean. Additionally, significant differences are found over large parts of the North Atlantic. To explain in how far these different ocean basins are responsible for anomalous conditions during 1.7ka BP, several sensitivity experiments with changed SST/SIC conditions are carried out. It is found that neither the SST's in the Pacific nor in the Indian Ocean are able to reproduce the anomalous rainfall and atmospheric circulation patterns during 1.7ka on its own. Instead, anomalous dry conditions during 2ka BP and wet conditions during 1.7ka BP are associated with a shift of the Indo-Pacific-Warm-Pool (IPWP) and simultaneous anomalous sea-surface temperatures over the NARAB region. Eventually, it is tested in how far this hypothesis holds true for other dry and wet events in the AOGCM data during the whole 6000 years. In general, a shift of the IPWP without anomalous SST conditions over the NARAB region (and vice versa) is not sufficient to cause long

  20. Toxicity of a metal(loid)-polluted agricultural soil to Enchytraeus crypticus changes under a global warming perspective: Variations in air temperature and soil moisture content.

    Science.gov (United States)

    González-Alcaraz, M Nazaret; van Gestel, Cornelis A M

    2016-12-15

    This study aimed to assess how the current global warming perspective, with increasing air temperature (20°C vs. 25°C) and decreasing soil moisture content (50% vs. 30% of the soil water holding capacity, WHC), affected the toxicity of a metal(loid)-polluted agricultural soil to Enchytraeus crypticus. Enchytraeids were exposed for 21d to a dilution series of the agricultural soil with Lufa 2.2 control soil under four climate situations: 20°C+50% WHC (standard conditions), 20°C+30% WHC, 25°C+50% WHC, and 25°C+30% WHC. Survival, reproduction and bioaccumulation of As, Cd, Co, Cu, Fe, Mn, Ni, Pb and Zn were obtained as endpoints. Reproduction was more sensitive to both climate factors and metal(loid) pollution. High soil salinity (electrical conductivity~3dSm(-1)) and clay texture, even without the presence of high metal(loid) concentrations, affected enchytraeid performance especially at drier conditions (≥80% reduction in reproduction). The toxicity of the agricultural soil increased at drier conditions (10% reduction in EC10 and EC50 values for the effect on enchytraeid reproduction). Changes in enchytraeid performance were accompanied by changes in As, Fe, Mn, Pb and Zn bioaccumulation, with lower body concentrations at drier conditions probably due to greater competition with soluble salts in the case of Fe, Mn, Pb and Zn. This study shows that apart from high metal(loid) concentrations other soil properties (e.g. salinity and texture) may be partially responsible for the toxicity of metal(loid)-polluted soils to soil invertebrates, especially under changing climate conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Combined oxygen- and carbon-isotope records through the Early Jurassic: multiple global events and two modes of carbon-cycle/temperature coupling

    DEFF Research Database (Denmark)

    Hesselbo, Stephen P.; Korte, Christoph

    2010-01-01

    environmental changes were global has been strongly debated. Nevertheless, partly as a result of the international effort to define Global Stratotype Sections and Points (GSSPs), much more is now being discovered about environmental changes taking place at and around the other Jurassic Age (Stage) boundaries...

  2. The Coral Reef Temperature Anomaly Database (CoRTAD) Version 1 - Global, 4 km, Sea Surface Temperature and Related Thermal Stress Metrics for 1985-2005 (NODC Accession 0044419)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coral Reef Temperature Anomaly Database (CoRTAD) is a collection of sea surface temperature (SST) and related thermal stress metrics, developed specifically for...

  3. The Coral Reef Temperature Anomaly Database (CoRTAD) Version 2 - Global, 4 km Sea Surface Temperature and Related Thermal Stress Metrics for 1982-2008 (NODC Accession Number 0054501)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coral Reef Temperature Anomaly Database (CoRTAD) is a collection of sea surface temperature (SST) and related thermal stress metrics, developed specifically for...

  4. The Coral Reef Temperature Anomaly Database (CoRTAD) Version 2 - Global, 4 km Sea Surface Temperature and Related Thermal Stress Metrics for 1982-2008 (NODC Accession 0054501)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coral Reef Temperature Anomaly Database (CoRTAD) is a collection of sea surface temperature (SST) and related thermal stress metrics, developed specifically for...

  5. The Coral Reef Temperature Anomaly Database (CoRTAD) Version 4 - Global, 4 km Sea Surface Temperature and Related Thermal Stress Metrics for 1981-10-31 to 2010-12-31 (NODC Accession 0087989)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coral Reef Temperature Anomaly Database (CoRTAD) is a collection of sea surface temperature (SST) and related thermal stress metrics, developed specifically for...

  6. The Coral Reef Temperature Anomaly Database (CoRTAD) Version 3 - Global, 4 km Sea Surface Temperature and Related Thermal Stress Metrics for 1982-2009 (NODC Accession 0068999)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coral Reef Temperature Anomaly Database (CoRTAD) is a collection of sea surface temperature (SST) and related thermal stress metrics, developed specifically for...

  7. Global comparisons between the modified Pathfinder derived sea surface temperature and skin temperatures from the along-track scanning radiometer on board ERS-2: how close are we getting?

    Science.gov (United States)

    Vazquez, J.

    2001-01-01

    Sea Surface Temperatures (SST) as derived from the Pathfinder Sea Surface Temperature Data Set and the Along-Track Scanning Radiometer on-board the European Remote Sensing Satellite provide a unique opportunity for comparing two independent SST data sets.

  8. GISS Surface Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The GISTEMP dataset is a global 2x2 gridded temperature anomaly dataset. Temperature data is updated around the middle of every month using current data files from...

  9. GHRSST Level 2P Global Subskin Sea Surface Temperature from the Advanced Microwave Scanning Radiometer 2 on the GCOM-W satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Microwave Scanning Radiometer 2 (AMSR2) was launched on 18 May 2012, onboard the Global Change Observation Mission - Water (GCOM-W) satellite developed...

  10. Global Warming: A Myth?

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 6. Global Warming: A Myth? - Anomalous Temperature Trends Recorded from Satellites and Radiosondes. Deepanjan Majumdar. General Article Volume 6 Issue 6 June 2001 pp 43-52 ...

  11. HOW ARE PLANT SPECIES IN CENTRAL EUROPEAN BEECH (FAGUS SYLVATICA L. FORESTS AFFECTED BY TEMPERATURE CHANGES? SHIFT OF POTENTIAL SUITABLE HABITATS UNDER GLOBAL WARMING

    Directory of Open Access Journals (Sweden)

    M. C. Jantsch

    2013-10-01

    Full Text Available This study reveals which temperature range is favoured or avoided by 156 forest plant species and how the distribution of potential suitable habitats of species in beech forests may change in the future. We performed 140 phytosociological relevés along a temperature gradient (4.1 to 9.8 °C in Bavaria, southern Germany, on south exposed slopes. One half of the plots were located on acidic substrate, the other half on base-rich substrate. Generalized linear models (GLM were used to analyse species occurrence along the temperature gradient and to model habitats for species in beech forests under a present (1971-2000 and a future climate (2071-2100 scenario assuming a temperature increase of 1.8 °C. Herb species of beech forests are more adapted to lower temperatures and tree species more to higher temperatures. Current habitats will clearly change under increasing temperatures. We found large habitat losses for Luzula sylvatica (Huds. Gaudin, Maianthemum bifolium (L. F. W. Schmidt, Picea abies (L. H. Karst., Prenanthes purpurea L. and large habitat gains for Carpinus betulus L., Impatiens parviflora DC., Prunus avium (L. L. and Quercus petraea (Matt. Liebl. on both substrates. Forestry will be affected positively as well as negatively with a change in tree cultivation. Losses in biodiversity might be strong for mountainous forests and must also be considered in future conservation plans.

  12. Reproductive capacity of the grey pine aphid and allocation response of Scots pine seedlings across temperature gradients: a test of hypotheses predicting outcomes of global warming

    Energy Technology Data Exchange (ETDEWEB)

    Holopainen, J. K.; Kainulainen, P. [University of Kuopio, Dept, of Ecology and Environmental Science, Kuopio (Finland)

    2004-01-01

    The research described in this paper had two objectives. The first objective was to test if Schizolachnus pineti, a pine specialist aphid and a potential defoliator of Scots pine in nursery conditions, could increase reproduction rate and reduce development time on Scots pine seedlings under the moderate increase in temperature expected by the current climatic change scenarios. The second objective was to explore two hypotheses predicting host-plant quality under elevated temperatures. Specifically, the study sought to establish whether increase in temperature will result in higher plant growth and lower concentration of carbon-based secondary metabolites, or alternatively, whether the concentration of total phenolics will remain the same with small temperature increases. Results showed that S. pineti females had the highest number of offsprings at a daytime temperature of 24 degrees C. Rate of population increase and relative growth rates were significantly higher at 26 degrees C than at 20 degrees C. Reproductive ability and the intrinsic rate of population increase were significantly affected by temperature and were negatively correlated with total phenolic concentration in needles. Concentration of some individual resin acids in needles and stems were affected by temperature. Concentration of monoterpenes, total phenolics, starch and total nitrogen in needles were not affected by temperature. Greatest biomass growth was shown to occur at 24 degrees C. Overall results supported the protein competition hypothesis, which predicts no changes in the concentration of plant phenolics with small changes in temperature. Reproductive ability of aphids was highest at 26 degree C; this was considered to be the result of the low starch/nitrogen ratio and low phenolic concentration in the host needles. 50 refs., 4 tabs., 3 figs.

  13. Quality Assurance statistics for AVHRR Pathfinder Version 5.2 L3-Collated (L3C) sea surface temperature in global and selected regions (NODC Accession 0111871)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These quality monitoring data for Pathfinder Version 5.2 (PFV5.2) Sea Surface Temperature (SST) are based on the concept of a Rich Inventory developed by the...

  14. NODC Standard Product: World Ocean Circulation Program (WOCE) Global Data, Version 2: Satellite sea surface temperature data on CD-ROM (NODC Accession 0000317)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea surface temperature and sea level data were collected from the AVHRR and Topex/Poseidon altimeter in a world-wide distribution from January 1, 1990 to December...

  15. A KNOWLEDGE DISCOVERY STRATEGY FOR RELATING SEA SURFACE TEMPERATURES TO FREQUENCIES OF TROPICAL STORMS AND GENERATING PREDICTIONS OF HURRICANES UNDER 21ST-CENTURY GLOBAL WARMING SCENARIOS

    Data.gov (United States)

    National Aeronautics and Space Administration — A KNOWLEDGE DISCOVERY STRATEGY FOR RELATING SEA SURFACE TEMPERATURES TO FREQUENCIES OF TROPICAL STORMS AND GENERATING PREDICTIONS OF HURRICANES UNDER 21ST-CENTURY...

  16. Historical bottle temperature and salinity data collected globally by multiple platforms from 1868 to 1959, submitted by the German Data Center (BSH) (NODC Accession 0071062)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Historical bottle temperature and salinity data from the German data center, Bundesamt fur Seeschifffahrt und Hydrographie (BSH) in Hamburg. The data contain...

  17. nowCOAST's Map Service for NOAA NWS NCEP Real-Time Global and NASA SPoRT Sea Surface Temperature Analyses (Time Enabled)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Map Information: This nowCOAST time-enabled map service provides a map depicting the latest daily sea surface temperature analyses from both the NOAA/NWS/NCEP...

  18. Global Near Real-Time Temperature and Salinity Profile Data from the GTSPP project from 9/1/1999 - 11/30/1999 (NODC Accession 0000059)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using moored buoy, profiling floats, and XBT casts in a world wide distribution from 01 September 1999 to 30 November 1999....

  19. GHRSST Level 2P Gridded Global Subskin Sea Surface Temperature from WindSat polarimetric radiometer on the Coriolis satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains sea surface temperature derived from observations made by the WindSat Polarimetric Radiometer developed by the Naval Research Laboratory (NRL)...

  20. Numerical analysis of the impact of the ion threshold, ion stiffness and temperature pedestal on global confinement and fusion performance in JET and in ITER plasmas

    DEFF Research Database (Denmark)

    Baiocchi, B.; Mantica, P.; Tala, T.

    2012-01-01

    Understanding the impact of micro-instabilities on the global plasma performance is essential in order to make realistic predictions for relevant tokamak scenarios. The semi-empirical transport model CGM is a useful tool to this scope because it depends explicitly on the threshold and the stiffne...

  1. Aeolian process and climatic changes in loess records from the northeastern Tibetan Plateau: Response to global temperature forcing since 30 ka

    NARCIS (Netherlands)

    Wang, X.; Yi, S; Lu, H.; Vandenberghe, J.F.; Han, Z.

    The response of surface processes to global climatic changes since the last glacial is critical to understanding the mechanism of climatic changes on the Tibetan Plateau. In this study, loess from the northeastern Tibetan Plateau (NETP) was closely spaced dated to provide an independent

  2. Effect of pH and temperature on the global compactness, structure, and activity of cellobiohydrolase Cel7A from Trichoderma harzianum.

    Science.gov (United States)

    Colussi, Francieli; Garcia, Wanius; Rosseto, Flávio Rodolfo; de Mello, Bruno Luan Soares; de Oliveira Neto, Mário; Polikarpov, Igor

    2012-01-01

    Due to its elevated cellulolytic activity, the filamentous fungus Trichoderma harzianum (T. harzianum) has considerable potential in biomass hydrolysis application. Cellulases from Trichoderma reesei have been widely used in studies of cellulose breakdown. However, cellulases from T. harzianum are less-studied enzymes that have not been characterized biophysically and biochemically as yet. Here, we examined the effects of pH and temperature on the secondary and tertiary structures, compactness, and enzymatic activity of cellobiohydrolase Cel7A from T. harzianum (Th Cel7A) using a number of biophysical and biochemical techniques. Our results show that pH and temperature perturbations affect Th Cel7A stability by two different mechanisms. Variations in pH modify protonation of the enzyme residues, directly affecting its activity, while leading to structural destabilization only at extreme pH limits. Temperature, on the other hand, has direct influence on mobility, fold, and compactness of the enzyme, causing unfolding of Th Cel7A just above the optimum temperature limit. Finally, we demonstrated that incubation with cellobiose, the product of the reaction and a competitive inhibitor, significantly increased the thermal stability of Th Cel7A. Our studies might provide insights into understanding, at a molecular level, the interplay between structure and activity of Th Cel7A at different pH and temperature conditions.

  3. Soil temperature response to 21st century global warming: the role of and some implications for peat carbon in thawing permafrost soils in North America

    Directory of Open Access Journals (Sweden)

    D. Wisser

    2011-06-01

    Full Text Available Northern peatlands contain a large terrestrial carbon pool that plays an important role in the Earth's carbon cycle. A considerable fraction of this carbon pool is currently in permafrost and is biogeochemically relatively inert; this will change with increasing soil temperatures as a result of climate warming in the 21st century. We use a geospatially explicit representation of peat areas and peat depth from a recently-compiled database and a geothermal model to estimate northern North America soil temperature responses to predicted changes in air temperature. We find that, despite a widespread decline in the areas classified as permafrost, soil temperatures in peatlands respond more slowly to increases in air temperature owing to the insulating properties of peat. We estimate that an additional 670 km3 of peat soils in North America, containing ~33 Pg C, could be seasonally thawed by the end of the century, representing ~20 % of the total peat volume in Alaska and Canada. Warming conditions result in a lengthening of the soil thaw period by ~40 days, averaged over the model domain. These changes have potentially important implications for the carbon balance of peat soils.

  4. Soil temperature response to 21st century global warming: the role of and some implications for peat carbon in thawing permafrost soils in North America

    NARCIS (Netherlands)

    Wisser, D.; Marchenko, S.; Talbot, J.; Treat, C.; Frolking, S.

    2011-01-01

    Northern peatlands contain a large terrestrial carbon pool that plays an important role in the Earth’s carbon cycle. A considerable fraction of this carbon pool is currently in permafrost and is biogeochemically relatively inert; this will change with increasing soil temperatures as a result

  5. The effects of temperature, salinity, and the carbonate system on Mg/Ca in Globigerinoides ruber (white): A global sediment trap calibration

    Science.gov (United States)

    Gray, William R.; Weldeab, Syee; Lea, David W.; Rosenthal, Yair; Gruber, Nicolas; Donner, Barbara; Fischer, Gerhard

    2018-01-01

    The Mg/Ca of planktic foraminifera Globigerinoides ruber (white) is a widely applied proxy for tropical and sub-tropical sea-surface temperature. The accuracy with which temperature can be reconstructed depends on how accurately relationships between Mg/Ca and temperature and the multiple secondary controls on Mg/Ca are known; however, these relationships remain poorly quantified under oceanic conditions. Here, we present new calibrations based on 440 sediment trap/plankton tow samples from the Atlantic, Pacific and Indian Oceans, including 130 new samples from the Bay of Bengal/Arabian Sea and the tropical Atlantic Ocean. Our results indicate temperature, salinity and the carbonate system all significantly influence Mg/Ca in G. ruber (white). We propose two calibration models: The first model assumes pH is the controlling carbonate system parameter. In this model, Mg/Ca has a temperature sensitivity of 6.0 ± 0.8%/°C (2σ), a salinity sensitivity of 3.3 ± 2.2%/PSU and a pH sensitivity of - 8.3 ± 7.7%/0.1 pH units; The second model assumes carbonate ion concentration ([3 2-CO]) is the controlling carbonate system parameter. In this model, Mg/Ca has a temperature sensitivity of 6.7 ± 0.8%/°C, a salinity sensitivity of 5.0 ± 3.0%/PSU and a [3 2-CO] sensitivity of - 0.24 ± 0.11%/μmol kg-1. In both models, the temperature sensitivity is significantly lower than the widely-applied sensitivity of 9.0 ± 0.6%/°C. Application of our new calibrations to down-core data from the Last Glacial Maximum, considering whole ocean changes in salinity and carbonate chemistry, indicate a cooling of 2.4 ± 1.6°C in the tropical oceans if pH is the controlling parameter and 1.5 ± 1.4°C if [3 2-CO] is the controlling parameter.

  6. NOAA Daily 25km Global Optimally Interpolated Sea Surface Temperature (OISST) in situ and AVHRR analysis supplemented with AVHRR Pathfinder Version 5.0 climatological SST for inland and coastal pixels, 1981-09-01 through 2010-12-31 (NODC Accession 0071180)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains the daily 25km global Optimally Interpolated Sea Surface Temperature (OISST) in situ and AVHRR analysis, supplemented with AVHRR Pathfinder...

  7. Delayed CTD and XBT data assembled and submitted by the Canada Department of Fisheries and Oceans (DFO) for the Global Temperature-Salinity Profile Program (GTSPP), dates range from 04-08-1929 to 08-18-2004 (NODC Accession 0001869)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Integrated Science Data Management (ISDM) office processes oceanographic profiles for the world oceans and submits these data to the Global Temperature and...

  8. The Effects of Temperature and Salinity on Mg Incorporation in Planktonic Foraminifera Globigerinoides ruber (white): Results from a Global Sediment Trap Mg/Ca Database

    Science.gov (United States)

    Gray, W. R.; Weldeab, S.; Lea, D. W.

    2015-12-01

    Mg/Ca in Globigerinoides ruber is arguably the most important proxy for sea surface temperature (SST) in tropical and sub tropical regions, and as such guides our understanding of past climatic change in these regions. However, the sensitivity of Mg/Ca to salinity is debated; while analysis of foraminifera grown in cultures generally indicates a sensitivity of 3 - 6% per salinity unit, core-top studies have suggested a much higher sensitivity of between 15 - 27% per salinity unit, bringing the utility of Mg/Ca as a SST proxy into dispute. Sediment traps circumvent the issues of dissolution and post-depositional calcite precipitation that hamper core-top calibration studies, whilst allowing the analysis of foraminifera that have calcified under natural conditions within a well constrained period of time. We collated previously published sediment trap/plankton tow G. ruber (white) Mg/Ca data, and generated new Mg/Ca data from a sediment trap located in the highly-saline tropical North Atlantic, close to West Africa. Calcification temperature and salinity were calculated for the time interval represented by each trap/tow sample using World Ocean Atlas 2013 data. The resulting dataset comprises >240 Mg/Ca measurements (in the size fraction 150 - 350 µm), that span a temperature range of 18 - 28 °C and 33.6 - 36.7 PSU. Multiple regression of the dataset reveals a temperature sensitivity of 7 ± 0.4% per °C (p < 2.2*10-16) and a salinity sensitivity of 4 ± 1% per salinity unit (p = 2*10-5). Application of this calibration has significant implications for both the magnitude and timing of glacial-interglacial temperature changes when variations in salinity are accounted for.

  9. Methane emissions from six crop species exposed to three components of global climate change: temperature, ultraviolet-B radiation and water stress.

    Science.gov (United States)

    Qaderi, Mirwais M; Reid, David M

    2009-10-01

    We examined the effects of temperature, ultraviolet-B (UVB) radiation and watering regime on aerobic methane (CH(4)) emission from six crops-faba bean, sunflower, pea, canola, barley and wheat. Plants were grown in controlled-environment growth chambers under two temperature regimes (24/20 and 30/26 degrees C), three levels of UVB radiation [0 (zero), 5 (ambient) and 10 (enhanced) kJ m(-2) d(-1)] and two watering regimes (well watered and water stressed). A gas chromatograph with a flame ionization detector was used to measure CH(4) emission rates [ng g(-1) dry weight (DW) h(-1)] from detached fresh leaves of each species and attached leaves of pea plants. Plant growth [stem height, leaf area (LA) and aboveground dry matter (AG biomass)] and gas exchange [net CO(2) assimilation (A(N)), transpiration (E) and water use efficiency (WUE)] were also determined. We found that higher temperature, water stress and UVB radiation at the zero and enhanced levels significantly enhanced CH(4) emissions. Crop species varied in CH(4) emission, which was highest for pea and lowest for barley. Higher temperature and water stress reduced all growth parameters, whereas ambient and enhanced UVB decreased stem height but increased LA and AG biomass. Higher temperature decreased A(N) and WUE but increased E, whereas water stress decreased A(N) but increased E and WUE. Zero and enhanced UVB reduced A(N) and E. Growth and gas exchange varied with species. Overall, CH(4) emission was negatively correlated with stem height and AG biomass. We conclude that CH(4) emissions may increase under climatic stress conditions and this extra source might contribute to the 'greenhouse effect'.

  10. Estimativa da produtividade de arroz irrigado em função da radiação solar global e da temperatura mínima do ar Rice yield estimates based on global solar radiation and minimum air temperature

    Directory of Open Access Journals (Sweden)

    Silvio Steinmetz

    2013-02-01

    temperature using procedures of linear simple and multiple regression. A field experiment was conducted at the district of Capão do Leão, State of Rio Grande do Sul, Brazil, during three growing seasons. Six sowing dates and eight cultivars of distinct groups of cycle lengths were used in each crop season. Ten main culms of each cultivar were marked to determine the main stages of development. The dependent variable (Y was the average grain yield of four repetitions of each sowing date and the independent variables were: the average of global solar radiation (X¹, the average minimum air temperature (X² and the average of squared minimum air temperature (X³, computed for four periods of plant development for global solar radiation and for three periods for minimum air temperature. Most of the variables, when tested isolately, presented a significant linear relationship with grain yield, but the coefficients of determination (r² were higher in multiple linear regressions involving the main variables. Regression models that use global solar radiation and minimum air temperature in distinct physiological periods of plant development as predicting variables, are suitable for estimating grain yields of irrigated rice.

  11. The role of long-lived greenhouse gases as principal LW control knob that governs the global surface temperature for past and future climate change

    Directory of Open Access Journals (Sweden)

    Andrew A. Lacis

    2013-11-01

    Full Text Available The climate system of the Earth is endowed with a moderately strong greenhouse effect that is characterised by non-condensing greenhouse gases (GHGs that provide the core radiative forcing. Of these, the most important is atmospheric CO2. There is a strong feedback contribution to the greenhouse effect by water vapour and clouds that is unique in the solar system, exceeding the core radiative forcing due to the non-condensing GHGs by a factor of three. The significance of the non-condensing GHGs is that once they have been injected into the atmosphere, they remain there virtually indefinitely because they do not condense and precipitate from the atmosphere, their chemical removal time ranging from decades to millennia. Water vapour and clouds have only a short lifespan, with their distribution determined by the locally prevailing meteorological conditions, subject to Clausius–Clapeyron constraint. Although solar irradiance is the ultimate energy source that powers the terrestrial greenhouse effect, there has been no discernable long-term trend in solar irradiance since precise monitoring began in the late 1970s. This leaves atmospheric CO2 as the effective control knob driving the current global warming trend. Over geological time scales, volcanoes are the principal source of atmospheric CO2, and the weathering of rocks is the principal sink, with the biosphere participating as both a source and a sink. The problem at hand is that human industrial activity is causing atmospheric CO2, to increase by 2 ppm yr−1, whereas the interglacial rate has been 0.005 ppm yr−1. This is a geologically unprecedented rate to turn the CO2 climate control knob. This is causing the global warming that threatens the global environment.

  12. The Role of Long-Lived Greenhouse Gases as Principal LW Control Knob that Governs the Global Surface Temperature for Past and Future Climate Change

    Science.gov (United States)

    Lacis, Andrew A.; Hansen, James E.; Russell, Gary L.; Oinas, Valdar; Jonas, Jeffrey

    2013-01-01

    The climate system of the Earth is endowed with a moderately strong greenhouse effect that is characterized by non-condensing greenhouse gases (GHGs) that provide the core radiative forcing. Of these, the most important is atmospheric CO2. There is a strong feedback contribution to the greenhouse effect by water vapor and clouds that is unique in the solar system, exceeding the core radiative forcing due to the non-condensing GHGs by a factor of three. The significance of the non-condensing GHGs is that once they have been injected into the atmosphere, they remain there virtually indefinitely because they do not condense and precipitate from the atmosphere, their chemical removal time ranging from decades to millennia. Water vapor and clouds have only a short lifespan, with their distribution determined by the locally prevailing meteorological conditions, subject to Clausius-Clapeyron constraint. Although solar irradiance is the ultimate energy source that powers the terrestrial greenhouse effect, there has been no discernible long-term trend in solar irradiance since precise monitoring began in the late 1970s. This leaves atmospheric CO2 as the effective control knob driving the current global warming trend. Over geological time scales, volcanoes are the principal source of atmospheric CO2, and the weathering of rocks is the principal sink, with the biosphere participating as both a source and a sink. The problem at hand is that human industrial activity is causing atmospheric CO2, to increase by 2 ppm per year, whereas the interglacial rate has been 0.005 ppm per year. This is a geologically unprecedented rate to turn the CO2 climate control knob. This is causing the global warming that threatens the global environment.

  13. Characterisation of the transcriptomes of genetically diverse Listeria monocytogenes exposed to hyperosmotic and low temperature conditions reveal global stress-adaptation mechanisms.

    Directory of Open Access Journals (Sweden)

    Juliana Durack

    Full Text Available The ability of Listeria monocytogenes to adapt to various food and food- processing environments has been attributed to its robustness, persistence and prevalence in the food supply chain. To improve the present understanding of molecular mechanisms involved in hyperosmotic and low-temperature stress adaptation of L. monocytogenes, we undertook transcriptomics analysis on three strains adapted to sub-lethal levels of these stress stimuli and assessed functional gene response. Adaptation to hyperosmotic and cold-temperature stress has revealed many parallels in terms of gene expression profiles in strains possessing different levels of stress tolerance. Gene sets associated with ribosomes and translation, transcription, cell division as well as fatty acid biosynthesis and peptide transport showed activation in cells adapted to either cold or hyperosmotic stress. Repression of genes associated with carbohydrate metabolism and transport as well as flagella was evident in stressed cells, likely linked to activation of CodY regulon and consequential cellular energy conservation.

  14. Spatio-temporal characteristics of global warming in the Tibetan Plateau during the last 50 years based on a generalised temperature zone-elevation model.

    Science.gov (United States)

    Wei, Yanqiang; Fang, Yiping

    2013-01-01

    Temperature is one of the primary factors influencing the climate and ecosystem, and examining its change and fluctuation could elucidate the formation of novel climate patterns and trends. In this study, we constructed a generalised temperature zone elevation model (GTEM) to assess the trends of climate change and temporal-spatial differences in the Tibetan Plateau (TP) using the annual and monthly mean temperatures from 1961-2010 at 144 meteorological stations in and near the TP. The results showed the following: (1) The TP has undergone robust warming over the study period, and the warming rate was 0.318°C/decade. The warming has accelerated during recent decades, especially in the last 20 years, and the warming has been most significant in the winter months, followed by the spring, autumn and summer seasons. (2) Spatially, the zones that became significantly smaller were the temperature zones of -6°C and -4°C, and these have decreased 499.44 and 454.26 thousand sq km from 1961 to 2010 at average rates of 25.1% and 11.7%, respectively, over every 5-year interval. These quickly shrinking zones were located in the northwestern and central TP. (3) The elevation dependency of climate warming existed in the TP during 1961-2010, but this tendency has gradually been weakening due to more rapid warming at lower elevations than in the middle and upper elevations of the TP during 1991-2010. The higher regions and some low altitude valleys of the TP were the most significantly warming regions under the same categorizing criteria. Experimental evidence shows that the GTEM is an effective method to analyse climate changes in high altitude mountainous regions.

  15. Spatio-temporal characteristics of global warming in the Tibetan Plateau during the last 50 years based on a generalised temperature zone-elevation model.

    Directory of Open Access Journals (Sweden)

    Yanqiang Wei

    Full Text Available Temperature is one of the primary factors influencing the climate and ecosystem, and examining its change and fluctuation could elucidate the formation of novel climate patterns and trends. In this study, we constructed a generalised temperature zone elevation model (GTEM to assess the trends of climate change and temporal-spatial differences in the Tibetan Plateau (TP using the annual and monthly mean temperatures from 1961-2010 at 144 meteorological stations in and near the TP. The results showed the following: (1 The TP has undergone robust warming over the study period, and the warming rate was 0.318°C/decade. The warming has accelerated during recent decades, especially in the last 20 years, and the warming has been most significant in the winter months, followed by the spring, autumn and summer seasons. (2 Spatially, the zones that became significantly smaller were the temperature zones of -6°C and -4°C, and these have decreased 499.44 and 454.26 thousand sq km from 1961 to 2010 at average rates of 25.1% and 11.7%, respectively, over every 5-year interval. These quickly shrinking zones were located in the northwestern and central TP. (3 The elevation dependency of climate warming existed in the TP during 1961-2010, but this tendency has gradually been weakening due to more rapid warming at lower elevations than in the middle and upper elevations of the TP during 1991-2010. The higher regions and some low altitude valleys of the TP were the most significantly warming regions under the same categorizing criteria. Experimental evidence shows that the GTEM is an effective method to analyse climate changes in high altitude mountainous regions.

  16. A mathematical model of the global processes of plastic degradation in the World Ocean with account for the surface temperature distribution

    Science.gov (United States)

    Bartsev, S. I.; Gitelson, J. I.

    2016-02-01

    The suggested model of plastic garbage degradation allows us to obtain an estimate of the stationary density of their distribution over the surface of the World Ocean with account for the temperature dependence on the degradation rate. The model also allows us to estimate the characteristic time periods of degradation of plastic garbage and the dynamics of the mean density variation as the mean rate of plastic garbage entry into the ocean varies

  17. Spatio-Temporal Characteristics of Global Warming in the Tibetan Plateau during the Last 50 Years Based on a Generalised Temperature Zone - Elevation Model

    Science.gov (United States)

    Wei, Yanqiang; Fang, Yiping

    2013-01-01

    Temperature is one of the primary factors influencing the climate and ecosystem, and examining its change and fluctuation could elucidate the formation of novel climate patterns and trends. In this study, we constructed a generalised temperature zone elevation model (GTEM) to assess the trends of climate change and temporal-spatial differences in the Tibetan Plateau (TP) using the annual and monthly mean temperatures from 1961–2010 at 144 meteorological stations in and near the TP. The results showed the following: (1) The TP has undergone robust warming over the study period, and the warming rate was 0.318°C/decade. The warming has accelerated during recent decades, especially in the last 20 years, and the warming has been most significant in the winter months, followed by the spring, autumn and summer seasons. (2) Spatially, the zones that became significantly smaller were the temperature zones of −6°C and −4°C, and these have decreased 499.44 and 454.26 thousand sq km from 1961 to 2010 at average rates of 25.1% and 11.7%, respectively, over every 5-year interval. These quickly shrinking zones were located in the northwestern and central TP. (3) The elevation dependency of climate warming existed in the TP during 1961–2010, but this tendency has gradually been weakening due to more rapid warming at lower elevations than in the middle and upper elevations of the TP during 1991–2010. The higher regions and some low altitude valleys of the TP were the most significantly warming regions under the same categorizing criteria. Experimental evidence shows that the GTEM is an effective method to analyse climate changes in high altitude mountainous regions. PMID:23565182

  18. Global atmospheric change and herbivory: Effects of elevated levels of UV-B radiation, atmospheric CO{sub 2} and temperature on boreal woody plants and their herbivores

    Energy Technology Data Exchange (ETDEWEB)

    Veteli, T.

    2003-07-01

    The aim of this study was to assess the effects of elevated ultraviolet-B radiation (UV-B, 280- 320 nm), atmospheric CO{sub 2}, temperature and soil nitrogen level on the growth and chemical quality of boreal deciduous woody plants and on performance of the herbivorous insects feeding on them. Eggs and larvae of Operophtera brumata (L.) (Lepidoptera, Geometridae) were subjected to elevated UV-B radiation in the laboratory. Two willow species, Salix phylicifolia L. (Salicaceae) and S. myrsinifolia Salisb., were grown in an UV-B irradiation field where the responses of both plants and their herbivorous insects were monitored. S. myrsinifolia, Betula pendula Ehrh. (Betulaceae) and B. pubescens Roth. were subjected to elevated CO{sub 2} and temperature and different fertilisation levels in closed-top climatic chambers. To assess the indirect effects of the different treatments, the leaves of experimental willows and birches were fed to larvae of Phratora vitellinae (L.) (Coleoptera, Chrysomelidae) and adults of Agellastica alni L. in the laboratory. Elevated UV-B radiation significantly decreased the survival and performance of eggs and larvae of O. brumata. It also increased concentrations of some flavonoids and phenolic acids in S. myrsinifolia and S. phylicifolia, while the low-UV-B- absorbing phenolics, e. g. condensed tannins, gallic acid derivatives and salicylates, either decreased or remained unaffected. Both the height growth and biomass of one S. phylicifolia clone was sensitive to elevated levels of UV-B radiation. Abundance of adults and larvae of a willow- feeding leaf beetle, P. vitellinae, was increased under elevated UV-B; but this did not lead to increased leaf damage on the host plants. There were no significant differences in performance of the larvae feeding on differentially treated willow leaves, but adult A. alni preferred UV-B-treated leaves to ambient control leaves. Elevated CO{sub 2} and temperature significantly increased the height growth

  19. Against Globalization

    DEFF Research Database (Denmark)

    Philipsen, Lotte; Baggesgaard, Mads Anders

    2013-01-01

    In order to understand globalization, we need to consider what globalization is not. That is, in order to understand the mechanisms and elements that work toward globalization, we must, in a sense, read against globalization, highlighting the limitations of the concept and its inherent conflicts...

  20. Comparative Global Gene Expression Profiles of Wild-Type Yersinia pestis CO92 and Its Braun Lipoprotein Mutant at Flea and Human Body Temperatures

    Directory of Open Access Journals (Sweden)

    Cristi L. Galindo

    2010-01-01

    Full Text Available Braun/murein lipoprotein (Lpp is involved in inflammatory responses and septic shock. We previously characterized a Δlpp mutant of Yersinia pestis CO92 and found that this mutant was defective in surviving in macrophages and was attenuated in a mouse inhalation model of plague when compared to the highly virulent wild-type (WT bacterium. We performed global transcriptional profiling of WT Y. pestis and its Δlpp mutant using microarrays. The organisms were cultured at 26 and 37 degrees Celsius to simulate the flea vector and mammalian host environments, respectively. Our data revealed vastly different effects of lpp mutation on the transcriptomes of Y. pestis grown at 37 versus 26C. While the absence of Lpp resulted mainly in the downregulation of metabolic genes at 26C, the Y. pestis Δlpp mutant cultured at 37C exhibited profound alterations in stress response and virulence genes, compared to WT bacteria. We investigated one of the stress-related genes (htrA downregulated in the Δlpp mutant relative to WT Y. pestis. Indeed, complementation of the Δlpp mutant with the htrA gene restored intracellular survival of the Y. pestis Δlpp mutant. Our results support a role for Lpp in Y. pestis adaptation to the host environment, possibly via transcriptional activation of htrA.

  1. Global distribution of vertical wavenumber spectra in the lower stratosphere observed using high-vertical-resolution temperature profiles from COSMIC GPS radio occultation

    Directory of Open Access Journals (Sweden)

    Noersomadi

    2016-02-01

    Full Text Available We retrieved temperature (T profiles with a high vertical resolution using the full spectrum inversion (FSI method from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC GPS radio occultation (GPS-RO data from January 2007 to December 2009. We studied the characteristics of temperature perturbations in the stratosphere at 20–27 km altitude. This height range does not include a sharp jump in the background Brunt–Väisälä frequency squared (N2 near the tropopause, and it was reasonably stable regardless of season and latitude. We analyzed the vertical wavenumber spectra of gravity waves (GWs with vertical wavelengths ranging from 0.5 to 3.5 km, and we integrated the (total potential energy EpT. Another integration of the spectra from 0.5 to 1.75 km was defined as EpS for short vertical wavelength GWs, which was not studied with the conventional geometrical optics (GO retrievals. We also estimated the logarithmic spectral slope (p for the saturated portion of spectra with a linear regression fitting from 0.5 to 1.75 km.Latitude and time variations in the spectral parameters were investigated in two longitudinal regions: (a 90–150° E, where the topography was more complicated, and (b 170–230° E, which is dominated by oceans. We compared EpT, EpS, and p, with the mean zonal winds (U and outgoing longwave radiation (OLR. We also show a ratio of EpS to EpT and discuss the generation source of EpS. EpT and p clearly showed an annual cycle, with their maximum values in winter at 30–50° N in region (a, and 50–70° N in region (b, which was related to the topography. At 30–50° N in region (b, EpT and p exhibited some irregular variations in addition to an annual cycle. In the Southern Hemisphere, we also found an annual oscillation in EpT and p, but it showed a time lag of about 2 months relative to U. Characteristics of EpTand p in the tropical region seem to be related to

  2. Global distribution of vertical wavenumber spectra in the lower stratosphere observed using high-vertical-resolution temperature profiles from COSMIC GPS radio occultation

    Science.gov (United States)

    Noersomadi; Tsuda, T.

    2016-02-01

    We retrieved temperature (T) profiles with a high vertical resolution using the full spectrum inversion (FSI) method from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) GPS radio occultation (GPS-RO) data from January 2007 to December 2009. We studied the characteristics of temperature perturbations in the stratosphere at 20-27 km altitude. This height range does not include a sharp jump in the background Brunt-Väisälä frequency squared (N2) near the tropopause, and it was reasonably stable regardless of season and latitude. We analyzed the vertical wavenumber spectra of gravity waves (GWs) with vertical wavelengths ranging from 0.5 to 3.5 km, and we integrated the (total) potential energy EpT. Another integration of the spectra from 0.5 to 1.75 km was defined as EpS for short vertical wavelength GWs, which was not studied with the conventional geometrical optics (GO) retrievals. We also estimated the logarithmic spectral slope (p) for the saturated portion of spectra with a linear regression fitting from 0.5 to 1.75 km.Latitude and time variations in the spectral parameters were investigated in two longitudinal regions: (a) 90-150° E, where the topography was more complicated, and (b) 170-230° E, which is dominated by oceans. We compared EpT, EpS, and p, with the mean zonal winds (U) and outgoing longwave radiation (OLR). We also show a ratio of EpS to EpT and discuss the generation source of EpS. EpT and p clearly showed an annual cycle, with their maximum values in winter at 30-50° N in region (a), and 50-70° N in region (b), which was related to the topography. At 30-50° N in region (b), EpT and p exhibited some irregular variations in addition to an annual cycle. In the Southern Hemisphere, we also found an annual oscillation in EpT and p, but it showed a time lag of about 2 months relative to U. Characteristics of EpTand p in the tropical region seem to be related to convective activity. The ratio of EpT to the

  3. Global Strategy

    DEFF Research Database (Denmark)

    Li, Peter Ping

    2013-01-01

    Global strategy differs from domestic strategy in terms of content and process as well as context and structure. The content of global strategy can contain five key elements, while the process of global strategy can have six major stages. These are expounded below. Global strategy is influenced...... by rich and complementary local contexts with diverse resource pools and game rules at the national level to form a broad ecosystem at the global level. Further, global strategy dictates the interaction or balance between different entry strategies at the levels of internal and external networks....

  4. Global analysis of gene expression in maize leaves treated with low temperature. II. Combined effect of severe cold (8 °C) and circadian rhythm.

    Science.gov (United States)

    Jończyk, M; Sobkowiak, A; Trzcinska-Danielewicz, J; Skoneczny, M; Solecka, D; Fronk, J; Sowiński, P

    2017-10-01

    In maize seedlings, severe cold results in dysregulation of circadian pattern of gene expression causing profound modulation of transcription of genes related to photosynthesis and other key biological processes. Plants live highly cyclic life and their response to environmental stresses must allow for underlying biological rhythms. To study the interplay of a stress and a rhythmic cue we investigated transcriptomic response of maize seedlings to low temperature in the context of diurnal gene expression. Severe cold stress had pronounced effect on the circadian rhythm of a substantial proportion of genes. Their response was strikingly dual, comprising either flattening (partial or complete) of the diel amplitude or delay of expression maximum/minimum by several hours. Genes encoding central oscillator components behaved in the same dual manner, unlike their Arabidopsis counterparts reported earlier to cease cycling altogether upon cold treatment. Also numerous genes lacking circadian rhythm responded to the cold by undergoing up- or down-regulation. Notably, the transcriptome changes preceded major physiological manifestations of cold stress. In silico analysis of metabolic processes likely affected by observed gene expression changes indicated major down-regulation of photosynthesis, profound and multifarious modulation of plant hormone levels, and of chromatin structure, transcription, and translation. A role of trehalose and stachyose in cold stress signaling was also suggested. Meta-analysis of published transcriptomic data allowed discrimination between general stress response of maize and that unique to severe cold. Several cis- and trans-factors likely involved in the latter were predicted, albeit none of them seemed to have a major role. These results underscore a key role of modulation of diel gene expression in maize response to severe cold and the unique character of the cold-response of the maize circadian clock.

  5. EFFECTS OF GLOBAL WARMING

    OpenAIRE

    Dr. Basanti Jain

    2017-01-01

    The abnormal increase in the concentration of the greenhouse gases is resulting in higher temperatures. We call this effect is global warming. The average temperature around the world has increased about 1'c over 140 years, 75% of this has risen just over the past 30 years. The solar radiation, as it reaches the earth, produces "greenhouse effect" in the atmosphere. The thick atmospheric layers over the earth behaves as a glass surface, as it permits short wave radiations from coming in, but ...

  6. The coastal ocean response to the global warming acceleration and hiatus

    National Research Council Canada - National Science Library

    Liao, Enhui; Lu, Wenfang; Yan, Xiao-Hai; Jiang, Yuwu; Kidwell, Autumn

    2015-01-01

    .... Many coastal ecosystem disasters, caused by extreme sea surface temperature (SST), were reported when the global climate shifted from global warming to global surface warming hiatus after 1998...

  7. Globalization & technology

    DEFF Research Database (Denmark)

    Narula, Rajneesh

    Technology and globalization are interdependent processes. Globalization has a fundamental influence on the creation and diffusion of technology, which, in turn, affects the interdependence of firms and locations. This volume examines the international aspect of this interdependence at two levels...

  8. Plio-Pleistocene sea level and temperature fluctuations in the northwestern Pacific promoted speciation in the globally-distributed flathead mullet Mugil cephalus

    Directory of Open Access Journals (Sweden)

    Durand Jean-Dominique

    2011-03-01

    among these three lineages, indicating that speciation has been achieved. Conclusions This study successfully identified three cryptic species in M. cephalus inhabiting the NW Pacific, using a combination of microsatellites and mitochondrial genetic markers. The current genetic architecture of the M. cephalus species complex in the NW Pacific is the result of a complex interaction of contemporary processes and historical events. Sea level and temperature fluctuations during Plio-Pleistocene epochs probably played a major role in creating the marine species diversity of the NW Pacific that is found today.

  9. Global usability

    CERN Document Server

    Douglas, Ian

    2011-01-01

    The concept of usability has become an increasingly important consideration in the design of all kinds of technology. As more products are aimed at global markets and developed through internationally distributed teams, usability design needs to be addressed in global terms. Interest in usability as a design issue and specialist area of research and education has developed steadily in North America and Europe since the 1980's. However, it is only over the last ten years that it has emerged as a global concern. Global Usability provides an introduction to the important issues in globalizing des

  10. Effects of Global Warming on Vibrio Ecology

    National Research Council Canada - National Science Library

    Vezzulli, Luigi; Pezzati, Elisabetta; Brettar, Ingrid; Höfle, Manfred; Pruzzo, Carla

    2015-01-01

    .... Rise in global sea surface temperature (SST), which is approximately 1 °C higher now than 140 years ago and is one of the primary physical impacts of global warming, has been linked to such increases...

  11. Global Surface Warming Hiatus Analysis Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were used to conduct the study of the global surface warming hiatus, an apparent decrease in the upward trend of global surface temperatures since 1998....

  12. Some coolness concerning global warming

    Science.gov (United States)

    Lindzen, Richard S.

    1990-01-01

    The greenhouse effect hypothesis is discussed. The effects of increasing CO2 levels in the atmosphere on global temperature changes are analyzed. The problems with models currently used to predict climatic changes are examined.

  13. Surface Temperature Data Analysis

    Science.gov (United States)

    Hansen, James; Ruedy, Reto

    2012-01-01

    Small global mean temperature changes may have significant to disastrous consequences for the Earth's climate if they persist for an extended period. Obtaining global means from local weather reports is hampered by the uneven spatial distribution of the reliably reporting weather stations. Methods had to be developed that minimize as far as possible the impact of that situation. This software is a method of combining temperature data of individual stations to obtain a global mean trend, overcoming/estimating the uncertainty introduced by the spatial and temporal gaps in the available data. Useful estimates were obtained by the introduction of a special grid, subdividing the Earth's surface into 8,000 equal-area boxes, using the existing data to create virtual stations at the center of each of these boxes, and combining temperature anomalies (after assessing the radius of high correlation) rather than temperatures.

  14. How China's Options Will Determine Global Warming

    National Research Council Canada - National Science Library

    Clifford Singer; Timothy Milligan; TS Gopi Rethinaraj

    2014-01-01

      Carbon dioxide emissions, global average temperature, atmospheric CO2 concentrations, and surface ocean mixed layer acidity are extrapolated using analyses calibrated against extensive time series...

  15. The Global Land-Ocean Temperature Index in Relation to Sunspot Number, the Atlantic Multidecadal Oscillation Index, the Mauna Loa Atmospheric Concentration of CO2, and Anthropogenic Carbon Emissions

    Science.gov (United States)

    Wilson, Robert M.

    2013-01-01

    Global warming/climate change has been a subject of scientific interest since the early 19th century. In particular, increases in the atmospheric concentration of carbon dioxide (CO2) have long been thought to account for Earth's increased warming, although the lack of a dependable set of observational data was apparent as late as the mid 1950s. However, beginning in the late 1950s, being associated with the International Geophysical Year, the opportunity arose to begin accurate continuous monitoring of the Earth's atmospheric concentration of CO2. Consequently, it is now well established that the atmospheric concentration of CO2, while varying seasonally within any particular year, has steadily increased over time. Associated with this rising trend in the atmospheric concentration of CO2 is a rising trend in the surface-air and sea-surface temperatures (SSTs). This Technical Publication (TP) examines the statistical relationships between 10-year moving averages (10-yma) of the Global Land-Ocean Temperature Index (GLOTI), sunspot number (SSN), the Atlantic Multidecadal Oscillation (AMO) index, and the Mauna Loa CO2 (MLCO2) index for the common interval 1964-2006, where the 10-yma values are used to indicate trends in the data. Scatter plots using the 10-yma values between GLOTI and each of the other parameters are determined, both as single-variate and multivariate fits. Scatter plots are also determined for MLCO2 using single-variate and bivariate (BV) fits, based on the GLOTI alone and the GLOTI in combination with the AMO index. On the basis of the inferred preferential fits for MLCO2, estimates for MLCO2 are determined for the interval 1885-1964, thereby yielding an estimate of the preindustrial level of atmospheric concentration of CO2. Lastly, 10-yma values of MLCO2 are compared against 10-yma estimates of the total carbon emissions (TCE) to determine the likelihood that manmade sources of carbon emissions are indeed responsible for the recent warming now

  16. Global Mindset

    DEFF Research Database (Denmark)

    Sørensen, Olav Jull

    2016-01-01

    way of thinking about the global business reality. The other extreme is a GM as an organizational capability and process with a GM in a continuous state of becoming – and thus in a continuously alignment with a dynamic context. In addition, we argue for what we call “situational capabilities”, i......The concept of Global Mindset (GM) – the way to think about the global reality – is on the agenda of multinational companies concomitant with the increase in global complexity, uncertainty and diversity. In spite of a number of studies, the concept is still fluid and far from a managerial...

  17. Temperature, global climate change and food security

    Science.gov (United States)

    Accelerated climate change is expected to have a significant, but variable impact on the world’s major cropping zones. Crops will experience increasingly warmer, drier and more variable growing conditions in the temperate to subtropical latitudes towards 2050 and beyond. Short-term (1-5 day) spikes ...

  18. Global Uddannelse

    DEFF Research Database (Denmark)

    Jensen, Niels Rosendal

    Antologien handler om "demokratiproblemer i den globale sammenhæng" (del I) og "demokratiproblemer i uddannelse og for de offentligt ansatte" (del II), bundet sammen af et mellemstykke, der rækker ud mod begge poler både det globale og det lokale ved at knytte det til forholdet mellem marked...

  19. Developing Globalization

    DEFF Research Database (Denmark)

    Hansen, Annette Skovsted

    2017-01-01

    This chapter is the first qualitative micro case study of one aspect of globalization: personal networks as a concrete outcome of development assistance spending. The empirical findings related in this paper present circumstantial evidence that Japanese foreign aid has contributed to globalization...

  20. Gendering Globalization

    DEFF Research Database (Denmark)

    Siim, Birte

    2009-01-01

    The current global financial situation bluntly and brutally brings home the fact that the global and local are closely connected in times of opportunity as well as crises. The articles in this issue of Asia Insights are about ontra-action between Asia, particularly China, and the Nordic countries...

  1. Global Mindsets

    DEFF Research Database (Denmark)

    Global Mindsets: Exploration and Perspectives seeks to tackle a topic that is relatively new in research and practice, and is considered by many to be critical for firms seeking to conduct global business. It argues that multiple mindsets exist (across and within organizations), that they operate...... in a global context, and that they are dynamic and undergo change and action. Part of the mindset(s) may depend upon place, situation and context where individuals and organizations operate. The book will examine the notion of "mindset" is situational and dynamic, especially in a global setting, why...... it is important for future scholars and managers and how it could be conceptualized. Global Mindsets: Exploration and Perspectives is split into two major sections; the first examines where the literature currently is with respect to the knowledge in the field and what conceptual frameworks guide the thinking...

  2. Update on global climate change.

    Science.gov (United States)

    Weber, Carol J

    2010-01-01

    Global climate change brings new challenges to the control of infectious diseases. Since many waterborne and vector-borne pathogens are highly sensitive to temperature and rainfall, health risks resulting from a warming and more variable climate are potentially huge. Global climate change involves the entire world, but the poorest countries will suffer the most. Nations are coming together to address what can be done to reduce greenhouse gas emissions and cope with inevitable temperature increases. A key component of any comprehensive mitigation and adaptation plan is a strong public health infrastructure across the world. Nothing less than global public health security is at stake.

  3. Coping With Global Warming

    OpenAIRE

    Jan-Erik Lane

    2015-01-01

    The process of globalization that has framed developments in the societies on Planet Earth the last decades will be supplanted by the climate change process, which no country can evade. It amounts to a set of giant forces shaping the environment, the economies and the politics of the world. It is somehow believed that the process of change can be controlled by halting the increase in greenhouse gases so that average global temperature would only augment by 2 degrees. This is a dire illusion, ...

  4. Global Content in Global Coursebooks

    Directory of Open Access Journals (Sweden)

    Mimoun Melliti

    2013-10-01

    Full Text Available This study aims at exploring the issue of “globality” in global coursebooks as manifested in investing features of connectedness, avoiding inappropriacy, and preserving inclusivity. To do this exploration, two research methods, content analysis and the questionnaire, were adopted. The content of an example of global coursebooks, Headway Intermediate (H/I, in addition to the perception of 251 of its users at Institute Bourguiba for Living Languages (IBLV were investigated. The results obtained revealed that “globality,” in terms of connectedness, inappropriacy, and inclusivity is partial in H/I as learners’ perceptions of it do not map with the content in the coursebook. This study raises questions about the suitability of global coursebooks to globally diverse learners and reveals the necessity of taking measures in the direction of localizing the content of English as a foreign language (EFL coursebooks.

  5. Going Global

    DEFF Research Database (Denmark)

    Harrington, Brooke

    2015-01-01

    This study links theories of relationality and institutional change to deepen understanding of professionals’ role in globalization. In previous institutional research, it has been conventional to treat professionals as agents of firms or transnational organizations, and institutional change...... environment. It also broadens the model of agency to include invention and improvisation by individual professionals, as a counterpart to collective strategic action. The argument is based on data from a 16-nation study exploring the emergence of a particular ‘globalized localism’: the transformation...... to specify a new, more detailed model of the ways local practices and ideas develop into global institutions....

  6. Global Managers

    DEFF Research Database (Denmark)

    Barakat, Livia L.; Lorenz, Melanie P.; Ramsey, Jase R.

    2016-01-01

    . Practical implications: – Results imply that global managers should increase their CQ in order to improve their job satisfaction and ultimately perform better in an international context. Originality/value: – The authors make three primary contributions to the international business literature. First......Purpose: – The purpose of this paper is to examine the effect of cultural intelligence (CQ) on the job performance of global managers. Design/methodology/approach: – In total, 332 global managers were surveyed from multinational companies operating in Brazil. The mediating effect of job...... satisfaction was tested on the CQ-job performance relationship. Findings: – The findings suggest that job satisfaction transmits the effect of CQ to job performance, such that global managers high in CQ exhibit more job satisfaction in an international setting, and therefore perform better at their jobs...

  7. Gendered globalization

    DEFF Research Database (Denmark)

    Milwertz, Cecilia Nathansen; Cai, Yiping

    2017-01-01

    Both the People’s Republic of China (PRC) and Nordic countries (Sweden, Iceland, Denmark, Norway and Finland) view gender equality as a social justice issue and are politically committed towards achieving gender equality nationally and internationally. Since China has taken a proactive position o...... on globalization and global governance, gender equality is possibly an area that China may wish to explore in collaboration with the Nordic countries....

  8. Global warming

    CERN Document Server

    Hulme, M

    1998-01-01

    Global warming-like deforestation, the ozone hole and the loss of species- has become one of the late 20the century icons of global environmental damage. The threat, is not the reality, of such a global climate change has motivated governments. businesses and environmental organisations, to take serious action ot try and achieve serious control of the future climate. This culminated last December in Kyoto in the agreement for legally-binding climate protocol. In this series of three lectures I will provide a perspective on the phenomenon of global warming that accepts the scientific basis for our concern, but one that also recognises the dynamic interaction between climate and society that has always exited The future will be no different. The challenge of global warning is not to pretend it is not happening (as with some pressure groups), nor to pretend it threatens global civilisation (as with other pressure groups), and it is not even a challenge to try and stop it from happening-we are too far down the ro...

  9. Global Derivatives

    DEFF Research Database (Denmark)

    Andersen, Torben Juul

    approaches to dealing in the global business environment." - Sharon Brown-Hruska, Commissioner, Commodity Futures Trading Commission, USA. "This comprehensive survey of modern risk management using derivative securities is a fine demonstration of the practical relevance of modern derivatives theory to risk......""In Global Derivatives: A Strategic Risk Management Perspective", Torben Juul Andersen has succeeded to gather in one book a complete and thorough summary and an easy-to-read explanation of all types of derivative instruments and their background, and their use in modern management of risk......." - Steen Parsholt, Chairman and CEO, Aon Nordic Region. "Andersen has done a wonderful job of developing a comprehensive text that deals with risk management in global markets. I would recommend this book to any student or businessman who has a need to better understand the risks and risk management...

  10. Global Inequality

    DEFF Research Database (Denmark)

    Niño-Zarazúa, Miguel; Roope, Laurence; Tarp, Finn

    2017-01-01

    This paper measures trends in global interpersonal inequality during 1975–2010 using data from the most recent version of the World Income Inequality Database (WIID). The picture that emerges using ‘absolute,’ and even ‘centrist’ measures of inequality, is very different from the results obtained...... using standard ‘relative’ inequality measures such as the Gini coefficient or Coefficient of Variation. Relative global inequality has declined substantially over the decades. In contrast, ‘absolute’ inequality, as captured by the Standard Deviation and Absolute Gini, has increased considerably...... and unabated. Like these ‘absolute’ measures, our ‘centrist’ inequality indicators, the Krtscha measure and an intermediate Gini, also register a pronounced increase in global inequality, albeit, in the case of the latter, with a decline during 2005 to 2010. A critical question posed by our findings is whether...

  11. Global overeksponering

    DEFF Research Database (Denmark)

    Rosenstand, Claus A. Foss

    2007-01-01

    ved begyndelsen til en ny global verden, som vi bliver nød til at indrette som sådan, og jeg tror at den nye ungdomskulter er ekstremt sensible overfor de globale strømninger, og vi gør klogt i at tænke over, hvad det er, der egentligt er på færre i stedet for at pege på sagesløse forældre om skyldige....

  12. Global Warming on Triton

    Science.gov (United States)

    Elliot, J. L.; Hammel, H. B.; Wasserman, L. H.; Franz, O. G.; McDonald, S. W.; Person, M. J.; Olkin, C. B.; Dunham, E. J.; Spencer, J. R.; Stansberry, J. A.; hide

    1998-01-01

    Triton, Neptune's largest moon, has been predicted to undergo significant seasonal changes that would reveal themselves as changes in its mean frost temperature. But whether this temperature should at the present time be increasing, decreasing or constant depends on a number of parameters (such as the thermal properties of the surface, and frost migration patterns) that are unknown. Here we report observations of a recent stellar occultation by Triton which, when combined with earlier results, show that Triton has undergone a period of global warming since 1989. Our most conservative estimates of the rate of temperature and surface-pressure increase during this period imply that the atmosphere is doubling in bulk every 10 years, significantly faster than predicted by any published frost model for Triton. Our result suggests that permanent polar caps on Triton play a c dominant role in regulating seasonal atmospheric changes. Similar processes should also be active on Pluto.

  13. GHRSST Level 2P Global skin Sea Surface Temperature from the Infrared Atmospheric Sounding Interferometer (IASI) on the Metop-B satellite (GDS V2) produced by OSI SAF (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in real-time...

  14. Globalizing America

    DEFF Research Database (Denmark)

    Brewer, Thomas L.; Boyd, Gavin

    An argument that globalization is an ungoverned integration process in which US firms are agents of structural change. It describes the benefits and costs (for example, generating pressure for protection of US home markets), and reviews the expansion of interdependencies between the US and others....

  15. Global Rome

    DEFF Research Database (Denmark)

    Is 21st-century Rome a global city? Is it part of Europe's core or periphery? This volume examines the “real city” beyond Rome's historical center, exploring the diversity and challenges of life in neighborhoods affected by immigration, neoliberalism, formal urban planning, and grassroots social ...

  16. Global Games

    NARCIS (Netherlands)

    van Bottenburg, Maarten

    2001-01-01

    Why is soccer the sport of choice in South America, while baseball has soared to popularity in the Carribean? How did cricket become India's national sport, while China is a stronghold of table tennis? In Global Games, Maarten van Bottenburg asserts that it is the 'hidden competition' of social and

  17. GODAE, SFCOBS - Surface Temperature Observations, 1998-present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GODAE, SFCOBS - Surface Temperature Observations: Ship, fixed/drifting buoy, and CMAN in-situ surface temperature. Global Telecommunication System (GTS) Data. The...

  18. Panwapa: Global Kids, Global Connections

    Science.gov (United States)

    Berson, Ilene R.; Berson, Michael J.

    2009-01-01

    Panwapa, created by the Sesame Street Workshop of PBS, is an example of an initiative on the Internet designed to enhance students' learning by exposing them to global communities. Panwapa means "Here on Earth" in Tshiluba, a Bantu language spoken in the Democratic Republic of Congo. At the Panwapa website, www.panwapa.org, children aged…

  19. The Impact Of Climate Change On Water Resources: Global And ...

    African Journals Online (AJOL)

    GHGs) is increasing and this has resulted to changing global climate with increasing temperature. The rise in global average temperatures since 1860 now exceeds 0.6OC. The effect of the GHGs concentration on global warming as at 2100 is ...

  20. Global Warming Estimation From Microwave Sounding Unit

    Science.gov (United States)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.; Dalu, G.

    1998-01-01

    Microwave Sounding Unit (MSU) Ch 2 data sets, collected from sequential, polar-orbiting, Sun-synchronous National Oceanic and Atmospheric Administration operational satellites, contain systematic calibration errors that are coupled to the diurnal temperature cycle over the globe. Since these coupled errors in MSU data differ between successive satellites, it is necessary to make compensatory adjustments to these multisatellite data sets in order to determine long-term global temperature change. With the aid of the observations during overlapping periods of successive satellites, we can determine such adjustments and use them to account for the coupled errors in the long-term time series of MSU Ch 2 global temperature. In turn, these adjusted MSU Ch 2 data sets can be used to yield global temperature trend. In a pioneering study, Spencer and Christy (SC) (1990) developed a procedure to derive the global temperature trend from MSU Ch 2 data. Such a procedure can leave unaccounted residual errors in the time series of the temperature anomalies deduced by SC, which could lead to a spurious long-term temperature trend derived from their analysis. In the present study, we have developed a method that avoids the shortcomings of the SC procedure, the magnitude of the coupled errors is not determined explicitly. Furthermore, based on some assumptions, these coupled errors are eliminated in three separate steps. Such a procedure can leave unaccounted residual errors in the time series of the temperature anomalies deduced by SC, which could lead to a spurious long-term temperature trend derived from their analysis. In the present study, we have developed a method that avoids the shortcomings of the SC procedures. Based on our analysis, we find there is a global warming of 0.23+/-0.12 K between 1980 and 1991. Also, in this study, the time series of global temperature anomalies constructed by removing the global mean annual temperature cycle compares favorably with a similar

  1. On Globalization

    Directory of Open Access Journals (Sweden)

    Charles Hanly

    2010-06-01

    Full Text Available É impressionante como, num curto período de tempo, o site da internet “Facebook” fortaleceu o conceito de McLuhan sobre “aldeia global” com o de “lugar de encontro” e ainda criou as bases potenciais para a existência de uma vizinhança global. Todos os principais avanços em tecnologia da comunicação fizeram do mundo, desde McLuhan, algo muito mais aldeão do que foi antes, mesmo no tempo de McLuhan duas décadas atrás. Mas a globalização é um processo e é preciso compreender sua estrutura e seu dinamismo à maneira dos analistas que procuram, com o intuito de melhorar a vida dos indivíduos, entender a psique humana. Pode, pois, a psicanálise contribuir para a compreensão da aldeia global? Podemos ter a esperança de que a aldeia global formada pelas tecnologias comunicacionais nos pacifiquem e nos unam?

  2. Real-time profile data assembled by Canada Department of Fisheries and Oceans (DFO) for the Global Temperature-Salinity Profile Program (GTSPP) and submitted on 2015-10-27 (NCEI Accession 0137365)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Integrated Science Data Management (ISDM) office processes oceanographic profiles reported for the world oceans in near real-time from the Global...

  3. Real-time profile data assembled by Canada Department of Fisheries and Oceans (DFO) for the Global Temperature-Salinity Profile Program (GTSPP) and submitted on 2015-11-05 (NCEI Accession 0137763)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Integrated Science Data Management (ISDM) office processes oceanographic profiles reported for the world oceans in near real-time from the Global...

  4. Real-time profile data assembled by Canada Department of Fisheries and Oceans (DFO) for the Global Temperature-Salinity Profile Program (GTSPP) and submitted on 09/27/2011 (NCEI Accession 0077807)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Integrated Science Data Management (ISDM) office processes oceanographic profiles reported for the world oceans in near real-time from the Global...

  5. Real-time profile data assembled by Canada Department of Fisheries and Oceans (DFO) for the Global Temperature-Salinity Profile Program (GTSPP) and submitted on 09/26/2013 (NODC Accession 0113334)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Integrated Science Data Management (ISDM) office processes oceanographic profiles reported for the world oceans in near real-time from the Global...

  6. Real-time profile data assembled by Canada Department of Fisheries and Oceans (DFO) for the Global Temperature-Salinity Profile Program (GTSPP) and submitted on 2013-10-24 (NODC Accession 0113793)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Integrated Science Data Management (ISDM) office processes oceanographic profiles reported for the world oceans in near real-time from the Global...

  7. Real-time profile data assembled by Canada Department of Fisheries and Oceans (DFO) for the Global Temperature-Salinity Profile Program (GTSPP) and submitted on 07/04/2012 (NCEI Accession 0092436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Integrated Science Data Management (ISDM) office processes oceanographic profiles reported for the world oceans in near real-time from the Global...

  8. Real-time profile data assembled by Canada Department of Fisheries and Oceans (DFO) for the Global Temperature-Salinity Profile Program (GTSPP) and submitted on 2015-10-08 (NCEI Accession 0136646)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Integrated Science Data Management (ISDM) office processes oceanographic profiles reported for the world oceans in near real-time from the Global...

  9. Real-time profile data assembled by Canada Department of Fisheries and Oceans (DFO) for the Global Temperature-Salinity Profile Program (GTSPP) and submitted on 2015-02-17 (NODC Accession 0125920)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Integrated Science Data Management (ISDM) office processes oceanographic profiles reported for the world oceans in near real-time from the Global...

  10. Real-time profile data assembled by Canada Department of Fisheries and Oceans (DFO) for the Global Temperature-Salinity Profile Program (GTSPP) and submitted on 2013-11-01 (NODC Accession 0113982)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Integrated Science Data Management (ISDM) office processes oceanographic profiles reported for the world oceans in near real-time from the Global...

  11. Real-time profile data assembled by Canada Department of Fisheries and Oceans (DFO) for the Global Temperature-Salinity Profile Program (GTSPP) and submitted on 2013-11-22 (NODC Accession 0114471)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Integrated Science Data Management (ISDM) office processes oceanographic profiles reported for the world oceans in near real-time from the Global...

  12. Real-time profile data assembled by Canada Department of Fisheries and Oceans (DFO) for the Global Temperature-Salinity Profile Program (GTSPP) and submitted on 2014-11-04 (NODC Accession 0123116)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Integrated Science Data Management (ISDM) office processes oceanographic profiles reported for the world oceans in near real-time from the Global...

  13. Real-time profile data assembled by Canada Department of Fisheries and Oceans (DFO) for the Global Temperature-Salinity Profile Program (GTSPP) and submitted on 2014-01-23 (NODC Accession 0116026)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Integrated Science Data Management (ISDM) office processes oceanographic profiles reported for the world oceans in near real-time from the Global...

  14. Real-time profile data assembled by Canada Department of Fisheries and Oceans (DFO) for the Global Temperature-Salinity Profile Program (GTSPP) and submitted on 2015-07-21 (NCEI Accession 0129906)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Integrated Science Data Management (ISDM) office processes oceanographic profiles reported for the world oceans in near real-time from the Global...

  15. Real-time profile data assembled by Canada Department of Fisheries and Oceans (DFO) for the Global Temperature-Salinity Profile Program (GTSPP) and submitted on 02/28/2012 (NCEI Accession 0086083)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Integrated Science Data Management (ISDM) office processes oceanographic profiles reported for the world oceans in near real-time from the Global...

  16. Real-time profile data assembled by Canada Department of Fisheries and Oceans (DFO) for the Global Temperature-Salinity Profile Program (GTSPP) and submitted on 2014-12-23 (NODC Accession 0124256)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Integrated Science Data Management (ISDM) office processes oceanographic profiles reported for the world oceans in near real-time from the Global...

  17. Real-time profile data assembled by Canada Department of Fisheries and Oceans (DFO) for the Global Temperature-Salinity Profile Program (GTSPP) and submitted on 2013-10-29 (NODC Accession 0113945)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Integrated Science Data Management (ISDM) office processes oceanographic profiles reported for the world oceans in near real-time from the Global...

  18. Real-time profile data assembled by Canada Department of Fisheries and Oceans (DFO) for the Global Temperature-Salinity Profile Program (GTSPP) and submitted on 2014-04-29 (NODC Accession 0117941)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Integrated Science Data Management (ISDM) office processes oceanographic profiles reported for the world oceans in near real-time from the Global...

  19. Real-time profile data assembled by Canada Department of Fisheries and Oceans (DFO) for the Global Temperature-Salinity Profile Program (GTSPP) and submitted on 02/27/2012 (NCEI Accession 0086050)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Integrated Science Data Management (ISDM) office processes oceanographic profiles reported for the world oceans in near real-time from the Global...

  20. Real-time profile data assembled by Canada Department of Fisheries and Oceans (DFO) for the Global Temperature-Salinity Profile Program (GTSPP) and submitted the month of June 2000 (NODC Accession 0000256)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Integrated Science Data Management (ISDM) office processes oceanographic profiles reported for the world oceans in near real-time from the Global...