WorldWideScience

Sample records for temperature gas sensing

  1. Plasmonic nanocomposite thin film enabled fiber optic sensors for simultaneous gas and temperature sensing at extreme temperatures.

    Science.gov (United States)

    Ohodnicki, Paul R; Buric, Michael P; Brown, Thomas D; Matranga, Christopher; Wang, Congjun; Baltrus, John; Andio, Mark

    2013-10-07

    Embedded sensors capable of operation in extreme environments including high temperatures, high pressures, and highly reducing, oxidizing and/or corrosive environments can make a significant impact on enhanced efficiencies and reduced greenhouse gas emissions of current and future fossil-based power generation systems. Relevant technologies can also be leveraged in a wide range of other applications with similar needs including nuclear power generation, industrial process monitoring and control, and aviation/aerospace. Here we describe a novel approach to embedded sensing under extreme temperature conditions by integration of Au-nanoparticle based plasmonic nanocomposite thin films with optical fibers in an evanescent wave absorption spectroscopy configuration. Such sensors can potentially enable simultaneous temperature and gas sensing at temperatures approaching 900-1000 °C in a manner compatible with embedded and distributed sensing approaches. The approach is demonstrated using the Au/SiO2 system deposited on silica-based optical fibers. Stability of optical fibers under relevant high temperature conditions and interactions with changing ambient gas atmospheres is an area requiring additional investigation and development but the simplicity of the sensor design makes it potentially cost-effective and may offer a potential for widespread deployment.

  2. Temperature dependence of gas sensing behaviour of TiO2 doped PANI composite thin films

    Science.gov (United States)

    Srivastava, Subodh; Sharma, S. S.; Sharma, Preetam; Sharma, Vinay; Rajura, Rajveer Singh; Singh, M.; Vijay, Y. K.

    2014-04-01

    In the present work we have reported the effect of temperature on the gas sensing properties of TiO2 doped PANI composite thin film based chemiresistor type gas sensors for hydrogen gas sensing application. PANI and TiO2 doped PANI composite were synthesized by in situ chemical oxidative polymerization of aniline at low temperature. The electrical properties of these composite thin films were characterized by I-V measurements as function of temperature. The I-V measurement revealed that conductivity of composite thin films increased as the temperature increased. The changes in resistance of the composite thin film sensor were utilized for detection of hydrogen gas. It was observed that at room temperature TiO2 doped PANI composite sensor shows higher response value and showed unstable behavior as the temperature increased. The surface morphology of these composite thin films has also been characterized by scanning electron microscopy (SEM) measurement.

  3. Synthesis, characterization and gas sensing performance

    Indian Academy of Sciences (India)

    For the first time, this study reports the gas sensing performance of aluminosilicate azide cancrinite. The effect of annealing andoperating temperature on gas sensing characteristic of azide cancrinite thick film is investigated systematically for various gases at different operating temperatures. This sensor was observed to be ...

  4. High-Temperature Piezoelectric Sensing

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2013-12-01

    Full Text Available Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  5. Indium oxide octahedrons based on sol–gel process enhance room temperature gas sensing performance

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Xiaohui [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong (China); Chen, Changlong, E-mail: chem.chencl@hotmail.com [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong (China); Han, Liuyuan [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong (China); Shao, Baiqi [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Wei, Yuling [Instrumental Analysis Center, Qilu University of Technology, Jinan 250353, Shandong (China); Liu, Qinglong; Zhu, Peihua [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong (China)

    2015-07-15

    Highlights: • In{sub 2}O{sub 3} octahedron films are prepared based on sol–gel technique for the first time. • The preparation possesses merits of low temperature, catalyst-free and large production. • It was found that the spin-coating process in film fabrication was key to achieve the octahedrons. • The In{sub 2}O{sub 3} octahedrons could significantly enhance room temperature NO{sub 2} gas sensing performance. - Abstract: Indium oxide octahedrons were prepared on glass substrates through a mild route based on sol–gel technique. The preparation possesses characteristics including low temperature, catalyst-free and large production, which is much distinguished from the chemical-vapor-deposition based methods that usually applied to prepare indium oxide octahedrons. Detailed characterization revealed that the indium oxide octahedrons were single crystalline, with {1 1 1} crystal facets exposed. It was found that the spin-coating technique was key for achieving the indium oxide crystals with octahedron morphology. The probable formation mechanism of the indium oxide octahedrons was proposed based on the experiment results. Room temperature NO{sub 2} gas sensing measurements exhibited that the indium oxide octahedrons could significantly enhance the sensing performance in comparison with the plate-like indium oxide particles that prepared from the dip-coated gel films, which was attributed to the abundant sharp edges and tips as well as the special {1 1 1} crystal facets exposed that the former possessed. Such a simple wet-chemical based method to prepare indium oxide octahedrons with large-scale production is promising to provide the advanced materials that can be applied in wide fields like gas sensing, solar energy conversion, field emission, and so on.

  6. Indium oxide octahedrons based on sol–gel process enhance room temperature gas sensing performance

    International Nuclear Information System (INIS)

    Mu, Xiaohui; Chen, Changlong; Han, Liuyuan; Shao, Baiqi; Wei, Yuling; Liu, Qinglong; Zhu, Peihua

    2015-01-01

    Highlights: • In 2 O 3 octahedron films are prepared based on sol–gel technique for the first time. • The preparation possesses merits of low temperature, catalyst-free and large production. • It was found that the spin-coating process in film fabrication was key to achieve the octahedrons. • The In 2 O 3 octahedrons could significantly enhance room temperature NO 2 gas sensing performance. - Abstract: Indium oxide octahedrons were prepared on glass substrates through a mild route based on sol–gel technique. The preparation possesses characteristics including low temperature, catalyst-free and large production, which is much distinguished from the chemical-vapor-deposition based methods that usually applied to prepare indium oxide octahedrons. Detailed characterization revealed that the indium oxide octahedrons were single crystalline, with {1 1 1} crystal facets exposed. It was found that the spin-coating technique was key for achieving the indium oxide crystals with octahedron morphology. The probable formation mechanism of the indium oxide octahedrons was proposed based on the experiment results. Room temperature NO 2 gas sensing measurements exhibited that the indium oxide octahedrons could significantly enhance the sensing performance in comparison with the plate-like indium oxide particles that prepared from the dip-coated gel films, which was attributed to the abundant sharp edges and tips as well as the special {1 1 1} crystal facets exposed that the former possessed. Such a simple wet-chemical based method to prepare indium oxide octahedrons with large-scale production is promising to provide the advanced materials that can be applied in wide fields like gas sensing, solar energy conversion, field emission, and so on

  7. Selective Sensing of Gas Mixture via a Temperature Modulation Approach: New Strategy for Potentiometric Gas Sensor Obtaining Satisfactory Discriminating Features.

    Science.gov (United States)

    Li, Fu-An; Jin, Han; Wang, Jinxia; Zou, Jie; Jian, Jiawen

    2017-03-12

    A new strategy to discriminate four types of hazardous gases is proposed in this research. Through modulating the operating temperature and the processing response signal with a pattern recognition algorithm, a gas sensor consisting of a single sensing electrode, i.e., ZnO/In₂O₃ composite, is designed to differentiate NO₂, NH₃, C₃H₆, CO within the level of 50-400 ppm. Results indicate that with adding 15 wt.% ZnO to In₂O₃, the sensor fabricated at 900 °C shows optimal sensing characteristics in detecting all the studied gases. Moreover, with the aid of the principle component analysis (PCA) algorithm, the sensor operating in the temperature modulation mode demonstrates acceptable discrimination features. The satisfactory discrimination features disclose the future that it is possible to differentiate gas mixture efficiently through operating a single electrode sensor at temperature modulation mode.

  8. Room temperature ferromagnetism and CH{sub 4} gas sensing of titanium oxynitride induced by milling and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Bolokang, Amogelang S., E-mail: Sylvester.Bolokang@transnet.net [DST/CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria, 0001 (South Africa); Transnet Engineering, Product Development, Private Bag X 528, Kilnerpark, 0127 (South Africa); Tshabalala, Zamaswazi P. [DST/CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria, 0001 (South Africa); Malgas, Gerald F. [Department of Physics, University of the Western Cape, Private Bag X17, Bellville, 7535 (South Africa); Kortidis, Ioannis [DST/CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria, 0001 (South Africa); West Virginia University, Department of Mechanical & Aerospace Engineering, Evansdale Campus, Morgantown, WV, 26506 (United States); Swart, Hendrik C. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA9300 (South Africa); Motaung, David E., E-mail: dmotaung@csir.co.za [DST/CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria, 0001 (South Africa)

    2017-06-01

    We report on the room temperature ferromagnetism and CH{sub 4} gas sensing of titanium oxynitride prepared by milling and annealing at 1100 °C in a nitrogen gas environment. Structural analyses revealed a metastable orthorhombic TiO{sub 2} phase after milling for 120 h. The 120 h milled TiO{sub 2} particles and subsequently annealed in nitrogen gas at 1100 °C showed the formation of titanium oxynitride (TiO{sub x}N{sub y}) with a tetragonal crystal structure. An FCC metastable TiO{sub x}N{sub y} phase was also observed with a lattice parameter a = 4.235 Å. The vibrating sample magnetometer and electron paramagnetic analyses showed that the milled and TiO{sub x}N{sub y} samples possess room temperature ferromagnetism. Gas sensing measurements were carried out toward CH{sub 4} and H{sub 2} gases. The TiO{sub x}N{sub y} nanostructures demonstrated higher sensing response and selectivity to CH{sub 4} gas at room temperature. The enhanced response of 1010 and sensitivity of 50.12 ppm{sup -1} at a concentration of 20 ppm CH{sub 4} are associated with higher surface area, pore diameter and surface defects such as oxygen vacancies and Ti{sup 3+}, as evidenced from the Brunauer–Emmet–Teller, photoluminescence, electron paramagnetic resonance and x-ray photoelectron analyses. - Highlights: • Ball milled of TiO{sub 2} structure revealed metastable orthorhombic phase. • Upon nitridation tetragonal and FCC TiO{sub x}N{sub y} crystal structures were induced. • The magnetic properties of TiO{sub 2} nanoparticles was transformed by milling. • TiO{sub x}N{sub y} sensing response for CH{sub 4} gas at room temperature was high.

  9. Room temperature H2S gas sensing property of indium oxide thin films obtained by pulsed D.C. magnetron sputtering

    International Nuclear Information System (INIS)

    Nisha, R.; Madhusoodanan, K.N.; Karthikeyan, Sreejith; Hill, Arthur E.; Pilkington, Richard D.

    2013-01-01

    Indium oxide thin films were prepared by pulsed dc magnetron sputtering technique with no substrate heating. X-ray diffraction was used to investigate the structural properties and AFM was used to study the surface morphology gas sensing performance were conducted using a static gas sensing system. Room temperature gas sensing performance was conducted in range of 17 to 286 ppm. The sensitivity, response and recovery time of the sensor was also determined. (author)

  10. Pt-decorated GaN nanowires with significant improvement in H2 gas-sensing performance at room temperature.

    Science.gov (United States)

    Abdullah, Q N; Yam, F K; Hassan, Z; Bououdina, M

    2015-12-15

    Superior sensitivity towards H2 gas was successfully achieved with Pt-decorated GaN nanowires (NWs) gas sensor. GaN NWs were fabricated via chemical vapor deposition (CVD) route. Morphology (field emission scanning electron microscopy and transmission electron microscopy) and crystal structure (high resolution X-ray diffraction) characterizations of the as-synthesized nanostructures demonstrated the formation of GaN NWs having a wurtzite structure, zigzaged shape and an average diameter of 30-166nm. The Pt-decorated GaN NWs sensor shows a high response of 250-2650% upon exposure to H2 gas concentration from 7 to 1000ppm respectively at room temperature (RT), and then increases to about 650-4100% when increasing the operating temperature up to 75°C. The gas-sensing measurements indicated that the Pt-decorated GaN NWs based sensor exhibited efficient detection of H2 at low concentration with excellent sensitivity, repeatability, and free hysteresis phenomena over a period of time of 100min. The large surface-to-volume ratio of GaN NWs and the catalytic activity of Pt metal are the most influential factors leading to the enhancement of H2 gas-sensing performances through the improvement of the interaction between the target molecules (H2) and the sensing NWs surface. The attractive low-cost, low power consumption and high-performance of the resultant decorated GaN NWs gas sensor assure their uppermost potential for H2 gas sensor working at low operating temperature. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Simonkolleite nano-platelets: Synthesis and temperature effect on hydrogen gas sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Sithole, J. [NANOAFNET, MRD-iThemba LABS, National Research Foundation,1 Old Faure road, Somerset West 7129 (South Africa); Dept. of Physics, University of Western Cape, Private Bag X 17, Belleville (South Africa); Ngom, B.D., E-mail: bdngom@tlabs.ac.za [NANOAFNET, MRD-iThemba LABS, National Research Foundation,1 Old Faure road, Somerset West 7129 (South Africa) and African Laser Centre, CSIR campus, P.O. Box 395, Pretoria (South Africa); Laboratoire de Photonique et de Nano-Fabrication, Groupe de Physique du Solide et Sciences des Materiaux, Departement de Physique Facultes des Sciences et Technique Universite Cheikh Anta Diop de Dakar, Dakar (Senegal); Khamlich, S. [NANOAFNET, MRD-iThemba LABS, National Research Foundation,1 Old Faure road, Somerset West 7129 (South Africa); African Laser Centre, CSIR campus, P.O. Box 395, Pretoria (South Africa); Manikanadan, E. [National Centre for Nano-Structured Materials (NCNSM), Council for Scientific and Industrial Research, Pretoria (South Africa); Manyala, N. [Department of Physics, SARCHI Chair in Carbon Technology and Materials, Institute of Applied Materials, University of Pretoria, Pretoria 0028 (South Africa); Saboungi, M.L. [Centre de Recherche sur la Matiere Divisee, CNRS-Orleans, Orleans (France); Knoessen, D. [Dept. of Physics, University of Western Cape, Private Bag X 17, Belleville (South Africa); Nemutudi, R.; Maaza, M. [NANOAFNET, MRD-iThemba LABS, National Research Foundation,1 Old Faure road, Somerset West 7129 (South Africa)

    2012-08-01

    In this work, the new refined mineral platelets-like morphology of simonkolleite based particles described by Shemetzer et al. (1985) were synthesized in zinc nitrate aqueous solution by a moderate solution process. The morphological and structural properties of the platelets-like Zn{sub 5}(OH){sub 8}Cl{sub 2}{center_dot}H{sub 2}O were characterized by scanning electron microscope energy dispersed X-ray spectroscopy, transmission electron microscope, powder X-ray diffraction and selected area electron diffraction as well as attenuated total reflection infrared spectroscopy. The morphology as well as the size in both basal and transversal directions of the simonkolleite Zn{sub 5}(OH){sub 8}Cl{sub 2}{center_dot}H{sub 2}O nano/micro crystals was found to be significantly depending on the specific concentration of 0.1 M of Zn{sup 2+}/Cl{sup -} ions in the precursor solution. The simonkolleite Zn{sub 5}(OH){sub 8}Cl{sub 2}{center_dot}H{sub 2}O nano-platelets revealed a significant and singular H{sub 2} gas sensing characteristics. The operating temperature was found to play a key role on the sensing properties of simonkolleite. The effect of temperature on the simonkolleite sample as a hydrogen gas sensor was studied by recording the change in resistivity of the film in presence of the test gas. The results on the sensitivity and response time as per comparison to earlier reported ZnO based sensors are indicated and discussed.

  12. Room-Temperature H2 Gas Sensing Characterization of Graphene-Doped Porous Silicon via a Facile Solution Dropping Method

    Directory of Open Access Journals (Sweden)

    Nu Si A. Eom

    2017-11-01

    Full Text Available In this study, a graphene-doped porous silicon (G-doped/p-Si substrate for low ppm H2 gas detection by an inexpensive synthesis route was proposed as a potential noble graphene-based gas sensor material, and to understand the sensing mechanism. The G-doped/p-Si gas sensor was synthesized by a simple capillary force-assisted solution dropping method on p-Si substrates, whose porosity was generated through an electrochemical etching process. G-doped/p-Si was fabricated with various graphene concentrations and exploited as a H2 sensor that was operated at room temperature. The sensing mechanism of the sensor with/without graphene decoration on p-Si was proposed to elucidate the synergetic gas sensing effect that is generated from the interface between the graphene and p-type silicon.

  13. Metal oxide nanostructures as gas sensing devices

    CERN Document Server

    Eranna, G

    2016-01-01

    Metal Oxide Nanostructures as Gas Sensing Devices explores the development of an integrated micro gas sensor that is based on advanced metal oxide nanostructures and is compatible with modern semiconductor fabrication technology. This sensor can then be used to create a compact, low-power, handheld device for analyzing air ambience. The book first covers current gas sensing tools and discusses the necessity for miniaturized sensors. It then focuses on the materials, devices, and techniques used for gas sensing applications, such as resistance and capacitance variations. The author addresses the issues of sensitivity, concentration, and temperature dependency as well as the response and recovery times crucial for sensors. He also presents techniques for synthesizing different metal oxides, particularly those with nanodimensional structures. The text goes on to highlight the gas sensing properties of many nanostructured metal oxides, from aluminum and cerium to iron and titanium to zinc and zirconium. The final...

  14. Room temperature, ppb-level NO2 gas sensing of multiple-networked ZnSe nanowire sensors under UV illumination

    Directory of Open Access Journals (Sweden)

    Sunghoon Park

    2014-10-01

    Full Text Available Reports of the gas sensing properties of ZnSe are few, presumably because of the decomposition and oxidation of ZnSe at high temperatures. In this study, ZnSe nanowires were synthesized by the thermal evaporation of ZnSe powders and the sensing performance of multiple-networked ZnSe nanowire sensors toward NO2 gas was examined. The results showed that ZnSe might be a promising gas sensor material if it is used at room temperature. The response of the ZnSe nanowires to 50 ppb–5 ppm NO2 at room temperature under dark and UV illumination conditions were 101–102% and 113–234%, respectively. The responses of the ZnSe nanowires to 5 ppm NO2 increased from 102 to 234% with increasing UV illumination intensity from 0 to 1.2 mW/cm2. The response of the ZnSe nanowires was stronger than or comparable to that of typical metal oxide semiconductors reported in the literature, which require higher NO2 concentrations and operate at higher temperatures. The origin of the enhanced response of the ZnSe nanowires towards NO2 under UV illumination is also discussed.

  15. Polyaniline-Cadmium Ferrite Nanostructured Composite for Room-Temperature Liquefied Petroleum Gas Sensing

    Science.gov (United States)

    Kotresh, S.; Ravikiran, Y. T.; Tiwari, S. K.; Vijaya Kumari, S. C.

    2017-08-01

    We introduce polyaniline-cadmium ferrite (PANI-CdFe2O4) nanostructured composite as a room-temperature-operable liquefied petroleum gas (LPG) sensor. The structure of PANI and the composite prepared by chemical polymerization was characterized by Fourier-transform infrared (FT-IR) spectroscopy, x-ray diffraction (XRD) analysis, and field-emission scanning electron microscopy. Comparative XRD and FT-IR analysis confirmed CdFe2O4 embedded in PANI matrix with mutual interfacial interaction. The nanostructure of the composite was confirmed by transmission electron microscopy. A simple LPG sensor operable at room temperature, exclusively based on spin-coated PANI-CdFe2O4 nanocomposite, was fabricated with maximum sensing response of 50.83% at 1000 ppm LPG. The response and recovery time of the sensor were 50 s and 110 s, respectively, and it was stable over a period of 1 month with slight degradation of 4%. The sensing mechanism is discussed on the basis of the p- n heterojunction barrier formed at the interface of PANI and CdFe2O4.

  16. γ-irradiation induced zinc ferrites and their enhanced room-temperature ammonia gas sensing properties

    Science.gov (United States)

    Raut, S. D.; Awasarmol, V. V.; Ghule, B. G.; Shaikh, S. F.; Gore, S. K.; Sharma, R. P.; Pawar, P. P.; Mane, R. S.

    2018-03-01

    Zinc ferrite (ZnFe2O4) nanoparticles (NPs), synthesized using a facile and cost-effective sol-gel auto-combustion method, were irradiated with 2 and 5 kGy γ-doses using 60Co as a radioactive source. Effect of γ-irradiation on the structure, morphology, pore-size and pore-volume and room-temperature (300 K) gas sensor performance has been measured and reported. Both as-synthesized and γ-irradiated ZnFe2O4 NPs reveal remarkable gas sensor activity to ammonia in contrast to methanol, ethanol, acetone and toluene volatile organic gases. The responses of pristine, 2 and 5 kGy γ-irradiated ZnFe2O4 NPs are respectively 55%, 66% and 81% @100 ppm concentration of ammonia, signifying an importance of γ-irradiation for enhancing the sensitivity, selectivity and stability of ZnFe2O4 NPs as ammonia gas sensors. Thereby, due to increase in surface area and crystallinity on γ-doses, the γ-irradiation improves the room-temperature ammonia gas sensing performance of ZnFe2O4.

  17. Pt/ZnO nanoarray nanogenerator as self-powered active gas sensor with linear ethanol sensing at room temperature.

    Science.gov (United States)

    Zhao, Yayu; Lai, Xuan; Deng, Ping; Nie, Yuxin; Zhang, Yan; Xing, Lili; Xue, Xinyu

    2014-03-21

    A self-powered gas sensor that can actively detect ethanol at room temperature has been realized from a Pt/ZnO nanoarray nanogenerator. Pt nanoparticles are uniformly distributed on the whole surface of ZnO nanowires. The piezoelectric output of Pt/ZnO nanoarrays can act not only as a power source, but also as a response signal to ethanol at room temperature. Upon exposure to dry air and 1500 ppm ethanol at room temperature, the piezoelectric output of the device under the same compressive strain is 0.672 and 0.419 V, respectively. Moreover, a linear dependence of the sensitivity on the ethanol concentration is observed. Such a linear ethanol sensing at room temperature can be attributed to the atmosphere-dependent variety of the screen effect on the piezoelectric output of ZnO nanowires, the catalytic properties of Pt nanoparticles, and the Schottky barriers at Pt/ZnO interfaces. The present results can stimulate research in the direction of designing new material systems for self-powered room-temperature gas sensing.

  18. Room temperature CO and H2 sensing with carbon nanoparticles

    International Nuclear Information System (INIS)

    Kim, Daegyu; Pikhitsa, Peter V; Yang, Hongjoo; Choi, Mansoo

    2011-01-01

    We report on a shell-shaped carbon nanoparticle (SCNP)-based gas sensor that reversibly detects reducing gas molecules such as CO and H 2 at room temperature both in air and inert atmosphere. Crystalline SCNPs were synthesized by laser-assisted reactions in pure acetylene gas flow, chemically treated to obtain well-dispersed SCNPs and then patterned on a substrate by the ion-induced focusing method. Our chemically functionalized SCNP-based gas sensor works for low concentrations of CO and H 2 at room temperature even without Pd or Pt catalysts commonly used for splitting H 2 molecules into reactive H atoms, while metal oxide gas sensors and bare carbon-nanotube-based gas sensors for sensing CO and H 2 molecules can operate only at elevated temperatures. A pristine SCNP-based gas sensor was also examined to prove the role of functional groups formed on the surface of functionalized SCNPs. A pristine SCNP gas sensor showed no response to reducing gases at room temperature but a significant response at elevated temperature, indicating a different sensing mechanism from a chemically functionalized SCNP sensor.

  19. A mechanistic study of hydrogen gas sensing by PdO nanoflake thin films at temperatures below 250 °C.

    Science.gov (United States)

    Chiang, Yu-Ju; Li, Kuang-Chung; Lin, Yi-Chieh; Pan, Fu-Ming

    2015-02-07

    We prepared PdO nanoflake thin films on the SiO2 substrate by reactive sputter deposition, and studied their sensing response to H2 at temperatures between 25 and 250 °C. In addition to the oxygen ionosorption model, which is used to describe the early H2 sensing response over the temperature range studied, the H2 sensing kinetics of the PdO thin films can be separated into three temperature regimes: temperatures below 100 °C, around 150 °C and above 200 °C. At temperatures below 100 °C, PdO reduction is the dominant reaction affecting the H2 sensing behavior. At temperatures around 150 °C, Pd reoxidation kinetically competes with PdO reduction leading to a complicated sensing characteristic. Active PdO reduction by H2 promotes the continuing growth of Pd nanoislands, facilitating dissociative oxygen adsorption and thus the subsequent Pd reoxidation in the H2-dry air gas mixture. The kinetic competition between the PdO reduction and reoxidation at 150 °C leads to the observation of an inverse of the increase in the sensor conductivity. At temperatures above 200 °C, the PdO sensor exhibits a sensor signal monotonically increasing with the H2 concentration, and the H2 sensing behavior is consistent with the Mars-van-Krevelen redox mechanism.

  20. Optical Fiber Chemical Sensor with Sol-Gel Derived Refractive Material as Transducer for High Temperature Gas Sensing in Clean Coal Technology

    Energy Technology Data Exchange (ETDEWEB)

    Shiquan Tao

    2006-12-31

    The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fiber optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second group of

  1. Methods for Gas Sensing with Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Kaul, Anupama B. (Inventor)

    2013-01-01

    Methods for gas sensing with single-walled carbon nanotubes are described. The methods comprise biasing at least one carbon nanotube and exposing to a gas environment to detect variation in temperature as an electrical response.

  2. Structural properties and gas sensing behavior of sol-gel grown nanostructured zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Rajyaguru, Bhargav; Gadani, Keval; Kansara, S. B.; Pandya, D. D.; Shah, N. A.; Solanki, P. S., E-mail: piyush.physics@gmail.com [Department of Physics, Saurashtra University, Rajkot – 360 005 (India); Rathod, K. N.; Solanki, Sapana [Department of Physics, Saurashtra University, Rajkot – 360 005 (India); V.V.P. Engineering College, Gujarat Technological University, Rajkot – 360 005 (India)

    2016-05-06

    In this communication, we report the results of the studies on structural properties and gas sensing behavior of nanostructured ZnO grown using acetone precursor based modified sol-gel technique. Final product of ZnO was sintered at different temperatures to vary the crystallite size while their structural properties have been studied using X-ray diffraction (XRD) measurement performed at room temperature. XRD results suggest the single phasic nature of all the samples and crystallite size increases from 11.53 to 20.96 nm with increase in sintering temperature. Gas sensing behavior has been studied for acetone gas which indicates that lower sintered samples are more capable to sense the acetone gas and related mechanism has been discussed in the light of crystallite size, crystal boundary density, defect mechanism and possible chemical reaction between gas traces and various oxygen species.

  3. Facile synthesis of improved room temperature gas sensing properties of TiO2 nanostructures: Effect of acid treatment

    CSIR Research Space (South Africa)

    Tshabalala, Zamaswazi P

    2016-03-01

    Full Text Available and Actuators B: Chemical Facile synthesis of improved room temperature gas sensing properties of TiO2 nanostructures: Effect of acid treatment Z.P. Tshabalalaa,b, D.E. Motaunga,∗, G.H. Mhlongoa,∗, O.M. Ntwaeaborwab,∗ a DST/CSIR, National Centre...

  4. Effect of Annealing Temperature on Gas Sensing Performance of SnO2 Thin Films Prepared by Spray Pyrolysis

    Directory of Open Access Journals (Sweden)

    G. E. PATIL

    2010-12-01

    Full Text Available The effect of variation of annealing temperature on the gas sensing characteristics of SnO2 thin films, which have been prepared by spray pyrolysis on alumina substrate at 350 oC, is investigated systematically for various gases at different operating temperature. The XRD, UV-visible spectroscopy and SEM techniques were employed to establish the structural, optical and morphological characteristics of the materials, resp. The X-ray diffraction results showed an increase in the crystallinity at higher annealing temperature. A high value of sensitivity is obtained for H2S gas at an optimum temperature of 100 oC is improved considerably. A SnO2 gas sensor annealed at 950 oC with sensitivity as high as 24 %, 4 times higher than that of sensor annealed at 550oC, are obtained for 80 ppm of H2S. The degree of crystallinity and grain size calculated from the XRD patterns has been found increasing with annealing temp

  5. Photo-Induced Room-Temperature Gas Sensing with a-IGZO Based Thin-Film Transistors Fabricated on Flexible Plastic Foil.

    Science.gov (United States)

    Knobelspies, Stefan; Bierer, Benedikt; Daus, Alwin; Takabayashi, Alain; Salvatore, Giovanni Antonio; Cantarella, Giuseppe; Ortiz Perez, Alvaro; Wöllenstein, Jürgen; Palzer, Stefan; Tröster, Gerhard

    2018-01-26

    We present a gas sensitive thin-film transistor (TFT) based on an amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) semiconductor as the sensing layer, which is fabricated on a free-standing flexible polyimide foil. The photo-induced sensor response to NO₂ gas at room temperature and the cross-sensitivity to humidity are investigated. We combine the advantages of a transistor based sensor with flexible electronics technology to demonstrate the first flexible a-IGZO based gas sensitive TFT. Since flexible plastic substrates prohibit the use of high operating temperatures, the charge generation is promoted with the help of UV-light absorption, which ultimately triggers the reversible chemical reaction with the trace gas. Furthermore, the device fabrication process flow can be directly implemented in standard TFT technology, allowing for the parallel integration of the sensor and analog or logical circuits.

  6. Photo-Induced Room-Temperature Gas Sensing with a-IGZO Based Thin-Film Transistors Fabricated on Flexible Plastic Foil

    Directory of Open Access Journals (Sweden)

    Stefan Knobelspies

    2018-01-01

    Full Text Available We present a gas sensitive thin-film transistor (TFT based on an amorphous Indium–Gallium–Zinc–Oxide (a-IGZO semiconductor as the sensing layer, which is fabricated on a free-standing flexible polyimide foil. The photo-induced sensor response to NO2 gas at room temperature and the cross-sensitivity to humidity are investigated. We combine the advantages of a transistor based sensor with flexible electronics technology to demonstrate the first flexible a-IGZO based gas sensitive TFT. Since flexible plastic substrates prohibit the use of high operating temperatures, the charge generation is promoted with the help of UV-light absorption, which ultimately triggers the reversible chemical reaction with the trace gas. Furthermore, the device fabrication process flow can be directly implemented in standard TFT technology, allowing for the parallel integration of the sensor and analog or logical circuits.

  7. Abnormal gas sensing characteristics arising from catalyzed morphological changes of ionsorbed oxygen

    International Nuclear Information System (INIS)

    Xue Xinyu; Chen Zhaohui; Ma Chunhua; Xing Lili; Chen Yujin; Wang Yanguo; Wang Taihong

    2010-01-01

    Abnormal gas sensing characteristics are observed at low temperature in uniformly loaded Pt-SnO 2 nanorod gas sensors. The sensors operated at 200 deg. C exhibit opposite variations of resistances, and the change of resistance decreases with increasing ethanol concentration. In contrast, the sensors operated at 300 deg. C show regular behavior and the sensitivity is extremely high. Such behaviors are ascribed to Pt-catalyzed morphological changes of ionsorbed oxygen at low temperature. The present results are the bases for further investigating the effect of ionsorbed oxygen morphologies on gas sensing.

  8. UV-assisted room temperature gas sensing of GaN-core/ZnO-shell nanowires

    International Nuclear Information System (INIS)

    Park, Sunghoon; Ko, Hyunsung; Kim, Soohyun; Lee, Chongmu

    2014-01-01

    GaN is highly sensitive to low concentrations of H 2 in ambient air and is almost insensitive to most other common gases. However, enhancing the sensing performance and the detection limit of GaN is a challenge. This study examined the H 2 -gas-sensing properties of GaN nanowires encapsulated with ZnO. GaN-core/ZnO-shell nanowires were fabricated by using a two-step process comprising the thermal evaporation of GaN powders and the atomic layer deposition of ZnO. The core-shell nanowires ranged from 80 to 120 nm in diameter and from a few tens to a few hundreds of micrometers in length, with a mean shell layer thickness of ∼8 nm. Multiple-networked pristine GaN nanowire and ZnO-encapsulated GaN (or GaN-core/ZnO-shell) nanowire sensors showed responses of 120 - 147% and 179 - 389%, respectively, to 500 - 2,500 ppm of H 2 at room temperature under UV (254 nm) illumination. The underlying mechanism of the enhanced response of the GaN nanowire to H 2 gas when using ZnO encapsulation and UV irradiation is discussed.

  9. Integrated Wavelength-Tunable Light Source for Optical Gas Sensing Systems

    Directory of Open Access Journals (Sweden)

    Bin Li

    2015-01-01

    Full Text Available A compact instrument consisting of a distributed feedback laser (DFB at 1.65 μm was developed as a light source for gas sensing systems using tunable diode laser absorption spectroscopy (TDLAS technique. The wavelength of laser is tuned by adjusting the laser working temperature and injection current, which are performed by self-developed temperature controller and current modulator respectively. Stability test shows the fluctuation of the laser temperature is within the range of ±0.02°C. For gas detection experiments, the wavelength is tuned around the gas absorption line by adjusting laser temperature and is then shifted periodically to scan across the absorption line by the laser current modulator, which generates a 10 Hz saw wave signal. In addition, the current modulator is able to generate sine wave signal for gas sensing systems using wavelength modulation spectroscopy (WMS technique involving extraction of harmonic signals. The spectrum test proves good stability that the spectrum was measured 6 times every 10 minutes at the constant temperature and current condition. This standalone instrument can be applied as a light source for detection systems of different gases by integrating lasers at corresponding wavelength.

  10. Room temperature NO2 gas sensing of Au-loaded tungsten oxide nanowires/porous silicon hybrid structure

    International Nuclear Information System (INIS)

    Wang Deng-Feng; Liang Ji-Ran; Li Chang-Qing; Yan Wen-Jun; Hu Ming

    2016-01-01

    In this work, we report an enhanced nitrogen dioxide (NO 2 ) gas sensor based on tungsten oxide (WO 3 ) nanowires/porous silicon (PS) decorated with gold (Au) nanoparticles. Au-loaded WO 3 nanowires with diameters of 10 nm–25 nm and lengths of 300 nm–500 nm are fabricated by the sputtering method on a porous silicon substrate. The high-resolution transmission electron microscopy (HRTEM) micrographs show that Au nanoparticles are uniformly distributed on the surfaces of WO 3 nanowires. The effect of the Au nanoparticles on the NO 2 -sensing performance of WO 3 nanowires/porous silicon is investigated over a low concentration range of 0.2 ppm–5 ppm of NO 2 at room temperature (25 °C). It is found that the 10-Å Au-loaded WO 3 nanowires/porous silicon-based sensor possesses the highest gas response characteristic. The underlying mechanism of the enhanced sensing properties of the Au-loaded WO 3 nanowires/porous silicon is also discussed. (paper)

  11. Room temperature ammonia and VOC sensing properties of CuO nanorods

    International Nuclear Information System (INIS)

    Bhuvaneshwari, S.; Gopalakrishnan, N.

    2016-01-01

    Here, we report a NH 3 and Volatile Organic Compounds (VOCs) sensing prototype of CuO nanorods with peculiar sensing characteristics at room temperature. High quality polycrystalline nanorods were synthesized by a low temperature hydrothermal method. The rods are well oriented with an aspect ratio of 5.71. Luminescence spectrum of CuO nanorods exhibited a strong UV-emission around 415 nm (2.98 eV) which arises from the electron-hole recombination phenomenon. The absence of further deep level emissions establishes the lack of defects such as oxygen vacancies and Cu interstitials. At room temperature, the sensor response was recorded over a range of gas concentrations from 100-600 ppm of ammonia, ethanol and methanol. The sensor response showed power law dependence with the gas concentration. This low temperature sensing can be validated by the lower value of calculated activation energy of 1.65 eV observed from the temperature dependent conductivity measurement.

  12. Room temperature ammonia and VOC sensing properties of CuO nanorods

    Science.gov (United States)

    Bhuvaneshwari, S.; Gopalakrishnan, N.

    2016-05-01

    Here, we report a NH3 and Volatile Organic Compounds (VOCs) sensing prototype of CuO nanorods with peculiar sensing characteristics at room temperature. High quality polycrystalline nanorods were synthesized by a low temperature hydrothermal method. The rods are well oriented with an aspect ratio of 5.71. Luminescence spectrum of CuO nanorods exhibited a strong UV-emission around 415 nm (2.98 eV) which arises from the electron-hole recombination phenomenon. The absence of further deep level emissions establishes the lack of defects such as oxygen vacancies and Cu interstitials. At room temperature, the sensor response was recorded over a range of gas concentrations from 100-600 ppm of ammonia, ethanol and methanol. The sensor response showed power law dependence with the gas concentration. This low temperature sensing can be validated by the lower value of calculated activation energy of 1.65 eV observed from the temperature dependent conductivity measurement.

  13. Room temperature ammonia and VOC sensing properties of CuO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Bhuvaneshwari, S.; Gopalakrishnan, N., E-mail: ngk@nitt.edu [Thin film laboratory, National Institute of Technology, Tiruchirappalli-620015 (India)

    2016-05-23

    Here, we report a NH{sub 3} and Volatile Organic Compounds (VOCs) sensing prototype of CuO nanorods with peculiar sensing characteristics at room temperature. High quality polycrystalline nanorods were synthesized by a low temperature hydrothermal method. The rods are well oriented with an aspect ratio of 5.71. Luminescence spectrum of CuO nanorods exhibited a strong UV-emission around 415 nm (2.98 eV) which arises from the electron-hole recombination phenomenon. The absence of further deep level emissions establishes the lack of defects such as oxygen vacancies and Cu interstitials. At room temperature, the sensor response was recorded over a range of gas concentrations from 100-600 ppm of ammonia, ethanol and methanol. The sensor response showed power law dependence with the gas concentration. This low temperature sensing can be validated by the lower value of calculated activation energy of 1.65 eV observed from the temperature dependent conductivity measurement.

  14. Gas sensing behaviour of cerium oxide and magnesium aluminate

    Indian Academy of Sciences (India)

    Gas sensing behaviour of cerium oxide and magnesium aluminate composites ... A lone pairof the electron state was identified from the electro paramagnetic ... carbon monoxide (CO) (at 0.5, 1.0 and 1.5 bar) and ethanol (at 50 and 100 ppm) was ... The magnitude of the temperature varied linearly regardless of the gas ...

  15. Microstructure actuation and gas sensing by the Knudsen thermal force

    Energy Technology Data Exchange (ETDEWEB)

    Strongrich, Andrew; Alexeenko, Alina, E-mail: alexeenk@purdue.edu [School of Aeronautics and Astronautics and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States)

    2015-11-09

    The generation of forces and moments on structures immersed in rarefied non-isothermal gas flows has received limited practical implementation since first being discovered over a century ago. The formation of significant thermal stresses requires both large thermal gradients and characteristic dimensions which are comparable to the gas molecular mean free path. For macroscopic geometries, this necessitates impractically high temperatures and very low pressures. At the microscale, however, these conditions are easily achieved, allowing the effects to be exploited, namely, for gas-property sensing and microstructure actuation. In this letter, we introduce and experimentally evaluate performance of a microelectromechanical in-plane Knudsen radiometric actuator, a self-contained device having Knudsen thermal force generation, sensing, and tuning mechanisms integrated onto the same platform. Sensitivity to ambient pressure, temperature gradient, as well as gas composition is demonstrated. Results are presented in terms of a non-dimensional force coefficient, allowing measurements to be directly compared to the previous experimental and computational data on out-of-plane cantilevered configurations.

  16. Controllable synthesis of Co3O4/polyethyleneimine-carbon nanotubes nanocomposites for CO and NH3 gas sensing at room temperature

    International Nuclear Information System (INIS)

    Lin, Yufei; Kan, Kan; Song, Wanzhen; Zhang, Guo; Dang, Lifang; Xie, Yu; Shen, Peikang; Li, Li; Shi, Keying

    2015-01-01

    Graphical abstract: Co 3 O 4 /polyethyleneimine-carbon nanotubes composites (CoPCNTs) have been successfully controllable synthesized via hydrothermal method at different temperature. The CoPCNTs sensors exhibited the highest response to CO and NH 3 gases with response time of 4 s and 4.3 s, low detection limit of 5 ppm and 1 ppm at room temperature, respectively. The enhanced gas sensing could be ascribed to the synergistic effect between the tiny size of Co 3 O 4 and good conductivity of carbon nanotubes functionalized by polyethyleneimine. - Highlights: • The CNTs functionalized by polyethyleneimine provided a new functional structural. • The novel 1D structure could capture and migrate electrons quickly. • The Co 3 O 4 nanoparticles liked a snake winding around CNTs. • The gas sensor could work at room temperatures, which suit to practical application. - Abstract: A novel 1D Co 3 O 4 /polyethyleneimine-carbon nanotubes composites (CoPCNTs) have been successfully synthesized via hydrothermal method at different temperature. The CNTs functionalized by polyethyleneimine (PCNTs) provided a new material with new structural and functional properties. The PCNTs was used as loading guider and electron transfer path. The Co 3 O 4 nanoparticles (NPs) loaded on the PCNTs surface liked a snake winding around CNTs, and the size was about 5–10 nm. The gas sensing characteristics of the CoPCNTs sensors to carbon monoxide (CO) and ammonia (NH 3 ) were evaluated with different gas concentration. The CoPCNTs sensors grown at 160 °C exhibited the highest response to CO and NH 3 gases with response time of 4 s and 4.3 s at room temperature (RT), respectively. Hence, the approach developed in this work would be important for the low-cost and large-scale production of the CoPCNTs materials with highly promising applications in gas sensors

  17. A Silicon Carbide Wireless Temperature Sensing System for High Temperature Applications

    Science.gov (United States)

    Yang, Jie

    2013-01-01

    In this article, an extreme environment-capable temperature sensing system based on state-of-art silicon carbide (SiC) wireless electronics is presented. In conjunction with a Pt-Pb thermocouple, the SiC wireless sensor suite is operable at 450 °C while under centrifugal load greater than 1,000 g. This SiC wireless temperature sensing system is designed to be non-intrusively embedded inside the gas turbine generators, acquiring the temperature information of critical components such as turbine blades, and wirelessly transmitting the information to the receiver located outside the turbine engine. A prototype system was developed and verified up to 450 °C through high temperature lab testing. The combination of the extreme temperature SiC wireless telemetry technology and integrated harsh environment sensors will allow for condition-based in-situ maintenance of power generators and aircraft turbines in field operation, and can be applied in many other industries requiring extreme environment monitoring and maintenance. PMID:23377189

  18. Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperature.

    Science.gov (United States)

    Li, Lei; He, Shuijian; Liu, Minmin; Zhang, Chunmei; Chen, Wei

    2015-02-03

    A facile and cost-efficient hydrothermal and lyophilization two-step strategy has been developed to prepare three-dimensional (3D) SnO2/rGO composites as NO2 gas sensor. In the present study, two different metal salt precursors (Sn(2+) and Sn(4+)) were used to prepare the 3D porous composites. It was found that the products prepared from different tin salts exhibited different sensing performance for NO2 detection. The scanning electron microscopy and transmission electron microscopy characterizations clearly show the macroporous 3D hybrids, nanoporous structure of reduce graphene oxide (rGO), and the supported SnO2 nanocrystals with an average size of 2-7 nm. The specific surface area and porosity properties of the 3D mesoporous composites were analyzed by Braunauer-Emmett-Teller method. The results showed that the SnO2/rGO composite synthesized from Sn(4+) precursor (SnO2/rGO-4) has large surface area (441.9 m(2)/g), which is beneficial for its application as a gas sensing material. The gas sensing platform fabricated from the SnO2/rGO-4 composite exhibited a good linearity for NO2 detection, and the limit of detection was calculated to be as low as about 2 ppm at low temperature. The present work demonstrates that the 3D mesoporous SnO2/rGO composites with extremely large surface area and stable nanostructure are excellent candidate materials for gas sensing.

  19. Gas sensing in 2D materials

    Science.gov (United States)

    Yang, Shengxue; Jiang, Chengbao; Wei, Su-huai

    2017-06-01

    Two-dimensional (2D) layered inorganic nanomaterials have attracted huge attention due to their unique electronic structures, as well as extraordinary physical and chemical properties for use in electronics, optoelectronics, spintronics, catalysts, energy generation and storage, and chemical sensors. Graphene and related layered inorganic analogues have shown great potential for gas-sensing applications because of their large specific surface areas and strong surface activities. This review aims to discuss the latest advancements in the 2D layered inorganic materials for gas sensors. We first elaborate the gas-sensing mechanisms and introduce various types of gas-sensing devices. Then, we describe the basic parameters and influence factors of the gas sensors to further enhance their performance. Moreover, we systematically present the current gas-sensing applications based on graphene, graphene oxide (GO), reduced graphene oxide (rGO), functionalized GO or rGO, transition metal dichalcogenides, layered III-VI semiconductors, layered metal oxides, phosphorene, hexagonal boron nitride, etc. Finally, we conclude the future prospects of these layered inorganic materials in gas-sensing applications.

  20. Synthesis, Characterization, and Gas Sensing Applications of WO3 Nanobricks

    Science.gov (United States)

    Xiao, Jingkun; Song, Chengwen; Dong, Wei; Li, Chen; Yin, Yanyan; Zhang, Xiaoni; Song, Mingyan

    2015-08-01

    WO3 nanobricks are fabricated by a simple hydrothermal method. Morphology and structure of the WO3 nanobricks are characterized by scanning electron microscopy and x-ray diffraction. Gas sensing properties of the as-prepared WO3 sensor are systematically investigated by a static gas sensing system. The results show that the WO3 nanobricks with defect corners demonstrate good crystallinity, and the mean edge length and wall thickness are 1-1.5 and 400 nm, respectively. The WO3 sensor achieves its maximum sensitivity to 100 ppm ethanol at the optimal operating temperature of 300 °C. Ultra-fast response time (2-3 s) and fast recovery time (4-11 s) of the WO3 sensor toward 100 ppm ethanol are also observed at this optimal operating temperature. Moreover, the WO3 sensor exhibits high selectivity to other gases such as methanol, benzene, hexane, and dichloromethane, indicating its excellent potential application as a gas sensor for ethanol detection.

  1. Hydrogen gas sensing feature of polyaniline/titania (rutile) nanocomposite at environmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Milani Moghaddam, Hossain, E-mail: hossainmilani@yahoo.com [Solid State Physics Department, University of Mazandaran, Babolsar (Iran, Islamic Republic of); Nasirian, Shahruz [Solid State Physics Department, University of Mazandaran, Babolsar (Iran, Islamic Republic of); Basic Sciences Department, Mazandaran University of Science and Technology, Babol (Iran, Islamic Republic of)

    2014-10-30

    Graphical abstract: - Highlights: • Polyaniline/titania (rutile) nanocomposite (TPNC) was synthesized by a chemical oxidative polymerization method. • Surface morphology and titania (rutile) wt% in TPNC sensors were significant factors for H{sub 2} gas sensing. • TPNC sensors could be used for H{sub 2} gas sensing at different R.H. humidity. • TPNC Sensors exhibited considerable sensitive, reversible and repeatable response to H{sub 2} gas at environmental conditions. - Abstract: The resistance-based sensors of polyaniline/titania (rutile) nanocomposite (TPNC) were prepared by spin coating technique onto an epoxy glass substrate with Cu-interdigited electrodes to study their hydrogen (H{sub 2}) gas sensing features. Our findings are that the change of the surface morphology, porosity and wt% of titania in TPNCs have a significant effect on H{sub 2} gas sensing of sensors. All of the sensors had a reproducibility response toward 0.8 vol% H{sub 2} gas at room temperature, air pressure and 50% relative humidity. A sensor with 40 wt% of titania nanoparticles had better response/recovery time and the response than other sensors. Moreover, H{sub 2} gas sensing mechanism of TPNC sensors based contact areas and the correlation of energy levels between PANI chains and the titania grains were studied.

  2. Tungsten Oxide Photonic Crystals as Optical Transducer for Gas Sensing.

    Science.gov (United States)

    Amrehn, Sabrina; Wu, Xia; Wagner, Thorsten

    2018-01-26

    Some metal oxide semiconductors, such as tungsten trioxide or tin dioxide, are well-known as resistive transducers for gas sensing and offer high sensitivities down to the part per billion level. Electrical signal read-out, however, limits the information obtained on the electronic properties of metal oxides to a certain frequency range and its application because of the required electrical contacts. Therefore, a novel approach for building an optical transducer for gas reactions utilizing metal oxide photonic crystals is presented here. By the rational design of the structure and composition it is possible to synthesize a functional material which allows one to obtain insight into its electronic properties in the optical frequency range with simple experimental measures. The concept is demonstrated by tungsten trioxide inverse opal structure as optical transducer material for hydrogen sensing. The sensing behavior is analyzed in a temperature range from room temperature to 500 °C and in a wide hydrogen concentration range (3000 ppm to 10%). The sensing mechanism is mainly the refractive index change resulting from hydrogen intercalation in tungsten trioxide, but the back reaction has also impact on the optical properties of this system. Detailed chemical reaction studies provide suggestions for specific sensing conditions.

  3. Hydrogen gas sensing feature of polyaniline/titania (rutile) nanocomposite at environmental conditions

    Science.gov (United States)

    Milani Moghaddam, Hossain; Nasirian, Shahruz

    2014-10-01

    The resistance-based sensors of polyaniline/titania (rutile) nanocomposite (TPNC) were prepared by spin coating technique onto an epoxy glass substrate with Cu-interdigited electrodes to study their hydrogen (H2) gas sensing features. Our findings are that the change of the surface morphology, porosity and wt% of titania in TPNCs have a significant effect on H2 gas sensing of sensors. All of the sensors had a reproducibility response toward 0.8 vol% H2 gas at room temperature, air pressure and 50% relative humidity. A sensor with 40 wt% of titania nanoparticles had better response/recovery time and the response than other sensors. Moreover, H2 gas sensing mechanism of TPNC sensors based contact areas and the correlation of energy levels between PANI chains and the titania grains were studied.

  4. Titanium dioxide thin films for high temperature gas sensors

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, Zachary Mark; Bandyopadhyay, Amit; Bose, Susmita, E-mail: sbose@wsu.ed

    2010-10-29

    Titanium dioxide (TiO{sub 2}) thin film gas sensors were fabricated via the sol-gel method from a starting solution of titanium isopropoxide dissolved in methoxyethanol. Spin coating was used to deposit the sol on electroded aluminum oxide (Al{sub 2}O{sub 3}) substrates forming a film 1 {mu}m thick. The influence of crystallization temperature and operating temperature on crystalline phase, grain size, electronic conduction activation energy, and gas sensing response toward carbon monoxide (CO) and methane (CH{sub 4}) was studied. Pure anatase phase was found with crystallization temperatures up to 800 {sup o}C, however, rutile began to form by 900 {sup o}C. Grain size increased with increasing calcination temperature. Activation energy was dependent on crystallite size and phase. Sensing response toward CO and CH{sub 4} was dependent on both calcination and operating temperatures. Films crystallized at 650 {sup o}C and operated at 450 {sup o}C showed the best selectivity toward CO.

  5. Novel High Temperature Materials for In-Situ Sensing Devices

    Energy Technology Data Exchange (ETDEWEB)

    Florian Solzbacher; Anil Virkar; Loren Rieth; Srinivasan Kannan; Xiaoxin Chen; Hannwelm Steinebach

    2009-12-31

    The overriding goal of this project was to develop gas sensor materials and systems compatible with operation at temperatures from 500 to 700 C. Gas sensors operating at these temperatures would be compatible with placement in fossil-energy exhaust streams close to the combustion chamber, and therefore have advantages for process regulation, and feedback for emissions controls. The three thrusts of our work included investigating thin film gas sensor materials based on metal oxide materials and electroceramic materials, and also development of microhotplate devices to support the gas sensing films. The metal oxide materials NiO, In{sub 2}O{sub 3}, and Ga{sub 2}O{sub 3} were investigated for their sensitivity to H{sub 2}, NO{sub x}, and CO{sub 2}, respectively, at high temperatures (T > 500 C), where the sensing properties of these materials have received little attention. New ground was broken in achieving excellent gas sensor responses (>10) for temperatures up to 600 C for NiO and In{sub 2}O{sub 3} materials. The gas sensitivity of these materials was decreasing as temperatures increased above 500 C, which indicates that achieving strong sensitivities with these materials at very high temperatures (T {ge} 650 C) will be a further challenge. The sensitivity, selectivity, stability, and reliability of these materials were investigated across a wide range of deposition conditions, temperatures, film thickness, as using surface active promoter materials. We also proposed to study the electroceramic materials BaZr{sub (1-x)}Y{sub x}O{sub (3-x/2)} and BaCe{sub (2-x)}Ca{sub x}S{sub (4-x/2)} for their ability to detect H{sub 2}O and H{sub 2}S, respectively. This report focuses on the properties and gas sensing characteristics of BaZr{sub (1-x)}Y{sub x}O{sub (3-x/2)} (Y-doped BaZrO{sub 3}), as significant difficulties were encounter in generating BaCe{sub (2-x)}Ca{sub x}S{sub (4-x/2)} sensors. Significant new results were achieved for Y-doped BaZrO{sub 3}, including

  6. Hydrogen Gas Sensing Characteristics of Nanostructured NiO Thin Films Synthesized by SILAR Method

    Science.gov (United States)

    Karaduman, Irmak; Çorlu, Tugba; Yıldırım, M. Ali; Ateş, Aytunç; Acar, Selim

    2017-07-01

    Nanostructured NiO thin films have been synthesized by a facile, low-cost successive ionic layer adsorption and reaction (SILAR) method, and the effects of the film thickness on their hydrogen gas sensing properties investigated. The samples were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD) analysis, and energy-dispersive x-ray analysis. The XRD results revealed that the crystallinity improved with increasing thickness, exhibiting polycrystalline structure. SEM studies showed that all the films covered the glass substrate well. According to optical absorption measurements, the optical bandgap decreased with increasing film thickness. The gas sensing properties of the nanostructured NiO thin films were studied as a function of operating temperature and gas concentration. The samples showed good sensing performance of H2 gas with high response. The maximum response was 75% at operating temperature of 200°C for hydrogen gas concentration of 40 ppm. These results demonstrate that nanostructured NiO thin films synthesized by the SILAR method have potential for application in hydrogen detection.

  7. Sensing characteristics of nanocrystalline bismuth oxide clad-modified fiber optic gas sensor

    Science.gov (United States)

    Manjula, M.; Karthikeyan, B.; Sastikumar, D.

    2017-08-01

    Gas sensing properties of nanocrystalline bismuth oxide clad - modified fiber optic sensor is reported for ammonia, ethanol, methanol and acetone gasses at room temperature. The output of sensor increases or decreases for certain gasses when the concentration of the gas is increased. The sensor exhibits high response and good selectivity to methanol gas. Time response characteristics of the sensor are also reported.

  8. Room temperature H{sub 2}S gas sensing characteristics of platinum (Pt) coated porous alumina (PoAl) thick films

    Energy Technology Data Exchange (ETDEWEB)

    More, P.S., E-mail: p_smore@yahoo.co.in [Department of Physics, Institute of Science, Mumbai 400 032 (India); Raut, R.W. [Department of Botany, Institute of Science, Mumbai 400 032 (India); Ghuge, C.S. [Department of Physics, Institute of Science, Mumbai 400 032 (India)

    2014-02-14

    The study reports H{sub 2}S gas sensing characteristics of platinum (Pt) coated porous alumina (PoAl) films. The porous alumina (PoAl) thick layers were formed in the dark on aluminum substrates using an electrochemical anodization method. Thin semitransparent platinum (Pt) films were deposited on PoAl samples using chemical bath deposition (CBD) method. The films were characterized using energy dispersive X-ray analysis (EDAX) and scanning electron microscopy (SEM). The thicknesses of coated and bare films were measured using ellipsometry. The sensing properties such as sensitivity factor (S.F.), response time, recovery time and repeatability were measured using a static gas sensing system for H{sub 2}S gas. The EDAX studies confirmed the purity of Pt–PoAl film and indicated the formation of pure platinum (Pt) phase. The ellipsometry studies revealed the thickness of PoAl layer of about 15–17 μm on aluminum substrates. The SEM studies demonstrated uniform distribution of spherical pores with a size between 0.250 and 0.500 μm for PoAl film and nearly spherical platinum particles with average particle size ∼100 nm for Pt–PoAl film. The gas-sensing properties of these samples were studied in a home-built static gas characterization system. The H{sub 2}S gas sensing properties of Pt–PoAl at 1000 ppm of H{sub 2}S gave maximum sensitivity factor (S.F.) = 1200. The response time and recovery time were found to be 2–3 min and ∼1 min respectively. Further, the measurement of H{sub 2}S gas sensing properties clearly indicated the repeatability of gas sensing response of Pt–PoAl film. The present study indicated the significant potential of Pt coated PoAl films for H{sub 2}S gas sensing applications in diverse areas. - Highlights: • Electrochemical anodization, cheap and effective method for fabrication of PoAl. • Chemical bath deposition, a simple and effective method for deposition of Pt on PoAl. • A nano-composite film sensor with high sensitivity

  9. Zinc oxide nanostructured layers for gas sensing applications

    Science.gov (United States)

    Caricato, A. P.; Cretí, A.; Luches, A.; Lomascolo, M.; Martino, M.; Rella, R.; Valerini, D.

    2011-03-01

    Various kinds of zinc oxide (ZnO) nanostructures, such as columns, pencils, hexagonal pyramids, hexagonal hierarchical structures, as well as smooth and rough films, were grown by pulsed laser deposition using KrF and ArF excimer lasers, without use of any catalyst. ZnO films were deposited at substrate temperatures from 500 to 700°C and oxygen background pressures of 1, 5, 50, and 100 Pa. Quite different morphologies of the deposited films were observed using scanning electron microscopy when different laser wavelengths (248 or 193 nm) were used to ablate the bulk ZnO target. Photoluminescence studies were performed at different temperatures (down to 7 K). The gas sensing properties of the different nanostructures were tested against low concentrations of NO2. The variation in the photoluminescence emission of the films when exposed to NO2 was used as transduction mechanism to reveal the presence of the gas. The nanostructured films with higher surface-to-volume ratio and higher total surface available for gas adsorption presented higher responses, detecting NO2 concentrations down to 3 ppm at room temperature.

  10. Study of Room Temperature H2S Gas Sensing Behavior of CuO-modified BSST Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    H. M. Baviskar

    2008-05-01

    Full Text Available Thick films of (Ba0.1Sr0.9(Sn0.5Ti0.5O3 referred as BSST, were prepared by screen-printing technique. The preparation, characterization and gas sensing properties of pure and CuO-BSST mixed oxide semiconductors have been investigated. The mixed oxides were obtained by dipping the pure BSST thick films into 0.01 M aqueous solution of CuCl2, for different intervals of time. Pure BSST was observed to be less sensitive to H2S gas. However, mixed oxides of CuO and BSST were observed to be highly sensitive to H2S gas. Upon exposure to H2S gas, the barrier height of CuO-BSST intergranular regions decreases markedly due to the chemical transformation of CuO into well conducting CuS leading to a drastic decrease in resistance. The crucial gas response was found to H2S gas at room temperature and no cross sensitivity was observed to other hazardous and polluting gases. The effects of microstructure and doping concentration on the gas response, selectivity, response and recovery of the sensor in the presence of H2S gas were studied and discussed.

  11. Optical Thin Films for Gas Sensing in Advanced Coal Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ohodnicki, Paul; Brown, Thomas; Baltrus John; Chorpening, Benjamin

    2012-08-09

    Even for existing coal based plants, the opportunity for sensors and controls to improve efficiency is great. A wide range of gas species are of interest for relevant applications. Functional sensor layers for embedded sensing must be compatible with extreme conditions (temperature, pressure, corrosive). Au incorporated metal oxides have been looked at by a number of other authors previously for gas sensing, but have often focused on temperatures below 500{degree}C. Au nanoparticle incorporated metal oxide thin films have shown enhanced gas sensing response. In prior work, we have demonstrated that material systems such as Au nanoparticle incorporated TiO{sub 2} films exhibit a potentially useful optical response to changing gas atmospheres at temperatures up to ~800-850{degree}C. Current work is focused on sputter-deposited Au/TiO{sub 2} films. Au and Ti are multi-layered sputter deposited, followed by a 950{degree}C oxidation step. Increasing Au layer thickness yields larger particles. Interband electronic transitions significantly modify the optical constants of Au as compared to the damped free electron theory. A high temperature oxidation (20%O{sub 2}/N{sub 2}) treatment was performed at 700{degree}C followed by a reduction (4%H{sub 2}/N{sub 2}) treatment to illustrate the shift in both absorption and scattering with exposure to reducing gases. Shift of localized surface plasmon resonance (LSPR) absorption peak in changing gas atmospheres is well documented, but shift in the peak associated with diffuse scattering is a new observation. Increasing Au layer-thickness results in an increase in LSPR absorption and a shift to longer wavelengths. Diffuse scattering associated with the LSPR resonance of Au shows a similar trend with increasing Au thickness. To model the temperature dependence of LSPR, the modification to the plasmon frequency, the damping frequency, and the dielectric constant of the oxide matrix must be accounted for. Thermal expansion of Au causes

  12. Temperature and saturation dependence in the vapor sensing of butterfly wing scales

    Energy Technology Data Exchange (ETDEWEB)

    Kertész, K., E-mail: kertesz.krisztian@ttk.mta.hu [Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, 1525 Budapest, PO Box 49 (Hungary); Piszter, G. [Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, 1525 Budapest, PO Box 49 (Hungary); Jakab, E. [Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1525 Budapest, P O Box 17 (Hungary); Bálint, Zs. [Hungarian Natural History Museum, H-1088, Budapest, Baross utca 13 (Hungary); Vértesy, Z.; Biró, L.P. [Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, 1525 Budapest, PO Box 49 (Hungary)

    2014-06-01

    The sensing of gasses/vapors in the ambient air is the focus of attention due to the need to monitor our everyday environment. Photonic crystals are sensing materials of the future because of their strong light-manipulating properties. Natural photonic structures are well-suited materials for testing detection principles because they are significantly cheaper than artificial photonic structures and are available in larger sizes. Additionally, natural photonic structures may provide new ideas for developing novel artificial photonic nanoarchitectures with improved properties. In the present paper, we discuss the effects arising from the sensor temperature and the vapor concentration in air during measurements with a photonic crystal-type optical gas sensor. Our results shed light on the sources of discrepancy between simulated and experimental sensing behaviors of photonic crystal-type structures. Through capillary condensation, the vapors will condensate to a liquid state inside the nanocavities. Due to the temperature and radius of curvature dependence of capillary condensation, the measured signals are affected by the sensor temperature as well as by the presence of a nanocavity size distribution. The sensing materials used are natural photonic nanoarchitectures present in the wing scales of blue butterflies. - Highlights: • We report optical gas sensing on blue butterfly wing scale nanostructures. • The sample temperature decrease effects a reversible break-down in the measured spectra. • The break-down is connected with the vapor condensation in the scales and wing surface. • Capillary condensation occurs in the wing scales.

  13. Temperature and saturation dependence in the vapor sensing of butterfly wing scales

    International Nuclear Information System (INIS)

    Kertész, K.; Piszter, G.; Jakab, E.; Bálint, Zs.; Vértesy, Z.; Biró, L.P.

    2014-01-01

    The sensing of gasses/vapors in the ambient air is the focus of attention due to the need to monitor our everyday environment. Photonic crystals are sensing materials of the future because of their strong light-manipulating properties. Natural photonic structures are well-suited materials for testing detection principles because they are significantly cheaper than artificial photonic structures and are available in larger sizes. Additionally, natural photonic structures may provide new ideas for developing novel artificial photonic nanoarchitectures with improved properties. In the present paper, we discuss the effects arising from the sensor temperature and the vapor concentration in air during measurements with a photonic crystal-type optical gas sensor. Our results shed light on the sources of discrepancy between simulated and experimental sensing behaviors of photonic crystal-type structures. Through capillary condensation, the vapors will condensate to a liquid state inside the nanocavities. Due to the temperature and radius of curvature dependence of capillary condensation, the measured signals are affected by the sensor temperature as well as by the presence of a nanocavity size distribution. The sensing materials used are natural photonic nanoarchitectures present in the wing scales of blue butterflies. - Highlights: • We report optical gas sensing on blue butterfly wing scale nanostructures. • The sample temperature decrease effects a reversible break-down in the measured spectra. • The break-down is connected with the vapor condensation in the scales and wing surface. • Capillary condensation occurs in the wing scales

  14. Porous screen printed indium tin oxide (ITO) for NOx gas sensing

    International Nuclear Information System (INIS)

    Mbarek, H.; Saadoun, M.; Bessais, B.

    2007-01-01

    Tin-doped Indium Oxide (ITO) films were prepared by the screen printing method. Transparent and conductive ITO thin films were obtained from an organometallic based paste fired in an Infrared furnace. The Screen printed ITO films were found to be granular and porous. This specific morphology was found to be suitable for sensing different gaseous species. This work investigates the possibility of using screen printed (ITO) films as a specific material for efficient NO x gas sensing. It was found that screen printed ITO is highly sensitive and stable towards NO x , especially for gas concentration higher than 50 ppm and starting from a substrate working temperature of about 180 C. The sensitivity of the ITO films increases with increasing NO x concentration and temperature. The sensitivity and stability of the screen printed ITO based sensors were studied within time. The ITO crystallite grain size dimension was found to be a key parameter that influences the gas response characteristics. Maximum gas sensitivity and minimum response time were observed for ITO films having lower crystallite size dimensions. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Gas Sensing Properties of Pure and Cr Activated WO3 Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    V. B. GAIKWAD

    2010-09-01

    Full Text Available Thick films of WO3 (Tungsten Oxide were prepared by screen-printing techniques. The surfaces of the films were modified by dipping them into an aqueous solution of Chromium Oxide (CrO3 for different intervals of time, followed by firing at 550 oC for 30 min. The gas sensing performance of the pure and Cr2O3-modified films was tested for various gases at different temperatures. The unmodified films showed response to H2S, ethanol and cigar smoke. However Cr2O3- modified films suppresses gas sensing response to all gases except H2S. The surface modification, using dipping process, altered the adsorbate-adsorbent interactions, which gave the specific selectivity and enhanced sensitivity to H2S gas. The gas response, selectivity, thermal stability and recovery time of the sensor were measured and presented. The role played by surface chromium species to improve gas sensing performance is discussed.

  16. Engineering of Highly Susceptible Paramagnetic Nanostructures of Gd2S3:Eu3+: Potentially an Efficient Material for Room Temperature Gas Sensing Applications

    Directory of Open Access Journals (Sweden)

    Muhammed M. Radhi

    2010-11-01

    Full Text Available This research papers throws light into the compositional, morphological and structural properties of novel nanoparticles of Gd2S3:Eu3+ synthesized by a simple co-precipitation technique. Furthermore, we also prognosticate that this material could be useful for gas sensing applications at room temperature. Nanostructures formulation by this method resulted in the formation of orthorhombic crystal structure with primitive lattice having space group Pnma. The material characterizations are performed using X-ray diffraction (XRD, energy dispersive X-ray analysis (EDX, thermo-gravimetric analysis/differential thermal analysis (TGA/DTA and transmission electron microscope (TEM. The calculated crystallite sizes are ~ 2-5 nm and are in well accordance with the HRTEM results. EDX result confirms the presence and homogeneous distribution of Gd and Eu throughout the nanoparticle. The prepared nanoparticles exhibit strong paramagnetic nature with paramagnetic term, susceptibility c = 8.2 ´ 10-5 emg/g Gauss. TGA/DTA analysis shows 27 % weight loss with rise in temperature. The gas sensing capability of the prepared Gd2S3:Eu3+ magnetic nanoparticles are investigated using the amperometric method. These nanoparticles show good I-V characteristics with ideal semiconducting nature at room temperature with and without ammonia dose. The observed room temperature sensitivity with increasing dose of ammonia indicates applicability of Gd2S3 nanoparticles as room temperature ammonia sensors.

  17. Synthesis of ZnO Nanostructures for Low Temperature CO and UV Sensing

    Directory of Open Access Journals (Sweden)

    Nazar Abbas Shah

    2012-10-01

    Full Text Available In this paper, synthesis and results of the low temperature sensing of carbon monoxide (CO gas and room temperature UV sensors using one dimensional (1-D ZnO nanostructures are presented. Comb-like structures, belts and rods, and needle-shaped nanobelts were synthesized by varying synthesis temperature using a vapor transport method. Needle-like ZnO nanobelts are unique as, according to our knowledge, there is no evidence of such morphology in previous literature. The structural, morphological and optical characterization was carried out using X-ray diffraction, scanning electron microscopy and diffused reflectance spectroscopy techniques. It was observed that the sensing response of comb-like structures for UV light was greater as compared to the other grown structures. Comb-like structure based gas sensors successfully detect CO at 75 °C while other structures did not show any response.

  18. Synthesis and evaluation of gas sensing properties of PANI based graphene oxide nanocomposites

    International Nuclear Information System (INIS)

    Gaikwad, Ganesh; Patil, Pritam; Patil, Devidas; Naik, Jitendra

    2017-01-01

    Highlights: • Developed GO, ZnO, PANI nanocomposites. • Evaluated for effect of GO addition on gas sensing performance. • Performed ammonia gas sensing at room temperature. • Obtained excellent recovery time of gas sensor. - Abstract: Polyaniline (PANI) nanofibers and Polyaniline/Graphene Oxide (PANI/GO), Polyaniline/Graphene Oxide/Zinc Oxide (PANI/GO/ZnO) nanocomposites were successfully prepared by nanoemulsion method. The synthesized nanofibers and nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Field emission scanning electron microscope (FE-SEM), has showed the evidence of interaction between PANI nanofibers, GO nanosheets and ZnO nanoparticles, respectively. PANI nanofibers and nanocomposites were used for the sensing of NH_3_, LPG, CO_2 and H_2S gases respectively at room temperature. It was observed that the PANI nanofibers and PANI/GO, PANI/GO/ZnO nanocomposites with different weight ratios of ZnO and GO had better selectivity and sensitivity towards NH_3 at room temperature. Best performance was shown by PANI/GO/ZnO nanocomposite response of 5.706 (10.3 times better response than PANI sensor) for 1000 ppm NH_3 at 80 ± 1 °C with the recovery time of 1 min 30 s only.

  19. Synthesis and evaluation of gas sensing properties of PANI based graphene oxide nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Gaikwad, Ganesh [Department of Chemical Engineering, University Institute of Chemical Technology, North Maharashtra University, Jalgaon 425001, Maharashtra (India); Patil, Pritam [SVMIT, College of Engineering, Bharuch 392001, Gujarat (India); Patil, Devidas [Bulk and Nanomaterials Research Laboratory, Rani Laxmibai Mahavidyalaya Parola, Jalgaon 425111, Maharashtra (India); Naik, Jitendra, E-mail: jbnaik@nmu.ac.in [Department of Chemical Engineering, University Institute of Chemical Technology, North Maharashtra University, Jalgaon 425001, Maharashtra (India)

    2017-04-15

    Highlights: • Developed GO, ZnO, PANI nanocomposites. • Evaluated for effect of GO addition on gas sensing performance. • Performed ammonia gas sensing at room temperature. • Obtained excellent recovery time of gas sensor. - Abstract: Polyaniline (PANI) nanofibers and Polyaniline/Graphene Oxide (PANI/GO), Polyaniline/Graphene Oxide/Zinc Oxide (PANI/GO/ZnO) nanocomposites were successfully prepared by nanoemulsion method. The synthesized nanofibers and nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Field emission scanning electron microscope (FE-SEM), has showed the evidence of interaction between PANI nanofibers, GO nanosheets and ZnO nanoparticles, respectively. PANI nanofibers and nanocomposites were used for the sensing of NH{sub 3,} LPG, CO{sub 2} and H{sub 2}S gases respectively at room temperature. It was observed that the PANI nanofibers and PANI/GO, PANI/GO/ZnO nanocomposites with different weight ratios of ZnO and GO had better selectivity and sensitivity towards NH{sub 3} at room temperature. Best performance was shown by PANI/GO/ZnO nanocomposite response of 5.706 (10.3 times better response than PANI sensor) for 1000 ppm NH{sub 3} at 80 ± 1 °C with the recovery time of 1 min 30 s only.

  20. A Portable Array-Type Optical Fiber Sensing Instrument for Real-Time Gas Detection

    Directory of Open Access Journals (Sweden)

    San-Shan Hung

    2016-12-01

    Full Text Available A novel optical fiber array-type of sensing instrument with temperature compensation for real-time detection was developed to measure oxygen, carbon dioxide, and ammonia simultaneously. The proposed instrument is multi-sensing array integrated with real-time measurement module for portable applications. The sensing optical fibers were etched and polished before coating to increase sensitivities. The ammonia and temperature sensors were each composed of a dye-coated single-mode fiber with constructing a fiber Bragg grating and a long-period filter grating for detecting light intensity. Both carbon dioxide and oxygen sensing structures use multimode fibers where 1-hydroxy-3,6,8-pyrene trisulfonic acid trisodium salt is coated for carbon dioxide sensing and Tris(2,2′-bipyridyl dichlororuthenium(II hexahydrate and Tris(bipyridineruthenium(II chloride are coated for oxygen sensing. Gas-induced fluorescent light intensity variation was applied to detect gas concentration. The portable gas sensing array was set up by integrating with photo-electronic measurement modules and a human-machine interface to detect gases in real time. The measured data have been processed using piecewise-linear method. The sensitivity of the oxygen sensor were 1.54%/V and 9.62%/V for concentrations less than 1.5% and for concentrations between 1.5% and 6%, respectively. The sensitivity of the carbon dioxide sensor were 8.33%/V and 9.62%/V for concentrations less than 2% and for concentrations between 2% and 5%, respectively. For the ammonia sensor, the sensitivity was 27.78%/V, while ammonia concentration was less than 2%.

  1. A Portable Array-Type Optical Fiber Sensing Instrument for Real-Time Gas Detection.

    Science.gov (United States)

    Hung, San-Shan; Chang, Hsing-Cheng; Chang, I-Nan

    2016-12-08

    A novel optical fiber array-type of sensing instrument with temperature compensation for real-time detection was developed to measure oxygen, carbon dioxide, and ammonia simultaneously. The proposed instrument is multi-sensing array integrated with real-time measurement module for portable applications. The sensing optical fibers were etched and polished before coating to increase sensitivities. The ammonia and temperature sensors were each composed of a dye-coated single-mode fiber with constructing a fiber Bragg grating and a long-period filter grating for detecting light intensity. Both carbon dioxide and oxygen sensing structures use multimode fibers where 1-hydroxy-3,6,8-pyrene trisulfonic acid trisodium salt is coated for carbon dioxide sensing and Tris(2,2'-bipyridyl) dichlororuthenium(II) hexahydrate and Tris(bipyridine)ruthenium(II) chloride are coated for oxygen sensing. Gas-induced fluorescent light intensity variation was applied to detect gas concentration. The portable gas sensing array was set up by integrating with photo-electronic measurement modules and a human-machine interface to detect gases in real time. The measured data have been processed using piecewise-linear method. The sensitivity of the oxygen sensor were 1.54%/V and 9.62%/V for concentrations less than 1.5% and for concentrations between 1.5% and 6%, respectively. The sensitivity of the carbon dioxide sensor were 8.33%/V and 9.62%/V for concentrations less than 2% and for concentrations between 2% and 5%, respectively. For the ammonia sensor, the sensitivity was 27.78%/V, while ammonia concentration was less than 2%.

  2. Nanogenerators for Self-Powered Gas Sensing

    Science.gov (United States)

    Wen, Zhen; Shen, Qingqing; Sun, Xuhui

    2017-10-01

    Looking toward world technology trends over the next few decades, self-powered sensing networks are a key field of technological and economic driver for global industries. Since 2006, Zhong Lin Wang's group has proposed a novel concept of nanogenerators (NGs), including piezoelectric nanogenerator and triboelectric nanogenerator, which could convert a mechanical trigger into an electric output. Considering motion ubiquitously exists in the surrounding environment and for any most common materials used every day, NGs could be inherently served as an energy source for our daily increasing requirements or as one of self-powered environmental sensors. In this regard, by coupling the piezoelectric or triboelectric properties with semiconducting gas sensing characterization, a new research field of self-powered gas sensing has been proposed. Recent works have shown promising concept to realize NG-based self-powered gas sensors that are capable of detecting gas environment without the need of external power sources to activate the gas sensors or to actively generate a readout signal. Compared with conventional sensors, these self-powered gas sensors keep the approximate performance. Meanwhile, these sensors drastically reduce power consumption and additionally reduce the required space for integration, which are significantly suitable for the wearable devices. This paper gives a brief summary about the establishment and latest progress in the fundamental principle, updated progress and potential applications of NG-based self-powered gas sensing system. The development trend in this field is envisaged, and the basic configurations are also introduced.

  3. Preparation of nanostructured PbS thin films as sensing element for NO{sub 2} gas

    Energy Technology Data Exchange (ETDEWEB)

    Kaci, S., E-mail: k_samira05@yahoo.fr [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE) Division Couches Minces et Interfaces, 02 Bd Frantz Fanon, B.P. 140, 7 Merveilles, 16038 Algiers (Algeria); Keffous, A.; Hakoum, S. [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE) Division Couches Minces et Interfaces, 02 Bd Frantz Fanon, B.P. 140, 7 Merveilles, 16038 Algiers (Algeria); Trari, M. [Université des Sciences et Technologies Houari Boumediene (USTHB), Laboratoire de Stockage et de Valorisation des Eneriges Renouvelables, Faculté de Chimie, BP 32, EL Alia, 16111 Bab Ezzouar, Algiers (Algeria); Mansri, O.; Menari, H. [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE) Division Couches Minces et Interfaces, 02 Bd Frantz Fanon, B.P. 140, 7 Merveilles, 16038 Algiers (Algeria)

    2014-06-01

    In this work, we demonstrate that semiconducting films of A{sub IV}B{sub VI} compounds, in particular, of nanostructured lead sulfide (PbS) which prepared by chemical bath deposition (CBD), can be used as a sensing element for nitrogen dioxide (NO{sub 2}) gas. The CBD method is versatile, simple in implementation and gives homogeneous semiconductor structures. We have prepared PbS nanocrystalline thin film at different reaction baths and temperatures. In the course of deposition, variable amounts of additives, such as organic substances among them, were introduced into the baths. The energy dispersive analysis (EDX) confirms the chemical composition of PbS films. A current–voltage (I–V) characterization of Pd/nc-PbS/a-SiC:H pSi(100)/Al Schottky diode structures were studied in the presence of NO{sub 2} gas. The gas sensing behavior showed that the synthesized PbS nanocrystalline thin films were influenced by NO{sub 2} gas at room temperature. The results can be used for developing an experimental sensing element based on chemically deposited nanostructured PbS films which can be applicable in gas sensors.

  4. Bimodular high temperature planar oxygen gas sensor

    Directory of Open Access Journals (Sweden)

    Xiangcheng eSun

    2014-08-01

    Full Text Available A bimodular planar O2 sensor was fabricated using NiO nanoparticles (NPs thin film coated yttria-stabilized zirconia (YSZ substrate. The thin film was prepared by radio frequency (r.f. magnetron sputtering of NiO on YSZ substrate, followed by high temperature sintering. The surface morphology of NiO nanoparticles film was characterized by atomic force microscopy (AFM and scanning electron microscopy (SEM. X-ray diffraction (XRD patterns of NiO NPs thin film before and after high temperature O2 sensing demonstrated that the sensing material possesses a good chemical and structure stability. The oxygen detection experiments were performed at 500 °C, 600 °C and 800 °C using the as-prepared bimodular O2 sensor under both potentiometric and resistance modules. For the potentiometric module, a linear relationship between electromotive force (EMF output of the sensor and the logarithm of O2 concentration was observed at each operating temperature, following the Nernst law. For the resistance module, the logarithm of electrical conductivity was proportional to the logarithm of oxygen concentration at each operating temperature, in good agreement with literature report. In addition, this bimodular sensor shows sensitive, reproducible and reversible response to oxygen under both sensing modules. Integration of two sensing modules into one sensor could greatly enrich the information output and would open a new venue in the development of high temperature gas sensors.

  5. Controllable synthesis of Co{sub 3}O{sub 4}/polyethyleneimine-carbon nanotubes nanocomposites for CO and NH{sub 3} gas sensing at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yufei [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China); Kan, Kan [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China); Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150000 (China); Song, Wanzhen; Zhang, Guo; Dang, Lifang [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China); Xie, Yu [Department of Materials Chemistry, Nanchang Hangkong University, Nanchang 330063 (China); Shen, Peikang [Department of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Li, Li, E-mail: llwjjhlju@sina.cn [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China); Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China); Shi, Keying, E-mail: shikeying2008@163.com [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China)

    2015-08-05

    Graphical abstract: Co{sub 3}O{sub 4}/polyethyleneimine-carbon nanotubes composites (CoPCNTs) have been successfully controllable synthesized via hydrothermal method at different temperature. The CoPCNTs sensors exhibited the highest response to CO and NH{sub 3} gases with response time of 4 s and 4.3 s, low detection limit of 5 ppm and 1 ppm at room temperature, respectively. The enhanced gas sensing could be ascribed to the synergistic effect between the tiny size of Co{sub 3}O{sub 4} and good conductivity of carbon nanotubes functionalized by polyethyleneimine. - Highlights: • The CNTs functionalized by polyethyleneimine provided a new functional structural. • The novel 1D structure could capture and migrate electrons quickly. • The Co{sub 3}O{sub 4} nanoparticles liked a snake winding around CNTs. • The gas sensor could work at room temperatures, which suit to practical application. - Abstract: A novel 1D Co{sub 3}O{sub 4}/polyethyleneimine-carbon nanotubes composites (CoPCNTs) have been successfully synthesized via hydrothermal method at different temperature. The CNTs functionalized by polyethyleneimine (PCNTs) provided a new material with new structural and functional properties. The PCNTs was used as loading guider and electron transfer path. The Co{sub 3}O{sub 4} nanoparticles (NPs) loaded on the PCNTs surface liked a snake winding around CNTs, and the size was about 5–10 nm. The gas sensing characteristics of the CoPCNTs sensors to carbon monoxide (CO) and ammonia (NH{sub 3}) were evaluated with different gas concentration. The CoPCNTs sensors grown at 160 °C exhibited the highest response to CO and NH{sub 3} gases with response time of 4 s and 4.3 s at room temperature (RT), respectively. Hence, the approach developed in this work would be important for the low-cost and large-scale production of the CoPCNTs materials with highly promising applications in gas sensors.

  6. Electrical conduction and NO{sub 2} gas sensing properties of ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Şahin, Yasin [Council of Forensic Medicine, Bahçelievler, 34196 Istanbul (Turkey); Öztürk, Sadullah, E-mail: sadullahozturk@gyte.edu.tr [Gebze Institute of Technology, Science Faculty, Department of Physics, 41400 Gebze, Kocaeli (Turkey); Kılınç, Necmettin [Gebze Institute of Technology, Science Faculty, Department of Physics, 41400 Gebze, Kocaeli (Turkey); Koc University, Department of Electrical and Electronics Engineering, Sariyer, 34450 Istanbul (Turkey); Kösemen, Arif [Gebze Institute of Technology, Science Faculty, Department of Physics, 41400 Gebze, Kocaeli (Turkey); Mus Alparslan University, Department of Physics, 49100 Mus (Turkey); Erkovan, Mustafa [SAKARYA University, Engineering Faculty, Department of Metallurgical and Materials Engineering, Esentepe Campus, 54187 Sakarya (Turkey); Öztürk, Zafer Ziya [Gebze Institute of Technology, Science Faculty, Department of Physics, 41400 Gebze, Kocaeli (Turkey); TÜBİTAK-Marmara Research Center, Materials Institute, 41470 Gebze, Kocaeli (Turkey)

    2014-06-01

    Thermally stimulated current (TSC), photoresponse and gas sensing properties of zinc oxide (ZnO) nanorods were investigated depending on heating rates, illumination and dark aging times with using sandwich type electrode system. Vertically aligned ZnO nanorods were grown on indium tin oxide (ITO) coated glass substrate by hydrothermal process. TSC measurements were performed at different heating rates under constant potential. Photoresponse and gas sensing properties were investigated in dry air ambient at 200 °C. For gas sensing measurements, ZnO nanorods were exposed to NO{sub 2} (100 ppb to 1 ppm) in dark and illuminated conditions and the resulting resistance transient was recorded. It was found from dark electrical measurements that the dependence of the dc conductivity on temperature followed Mott's variable range hopping (VRH) model. In addition, response time and recovery times of ZnO nanorods to NO{sub 2} gas decreased by exposing to white light.

  7. Investigation of Pristine Graphite Oxide as Room-Temperature Chemiresistive Ammonia Gas Sensing Material

    Directory of Open Access Journals (Sweden)

    Alexander G. Bannov

    2017-02-01

    Full Text Available Graphite oxide has been investigated as a possible room-temperature chemiresistive sensor of ammonia in a gas phase. Graphite oxide was synthesized from high purity graphite using the modified Hummers method. The graphite oxide sample was investigated using scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, thermogravimetry and differential scanning calorimetry. Sensing properties were tested in a wide range of ammonia concentrations in air (10–1000 ppm and under different relative humidity levels (3%–65%. It was concluded that the graphite oxide–based sensor possessed a good response to NH3 in dry synthetic air (ΔR/R0 ranged from 2.5% to 7.4% for concentrations of 100–500 ppm and 3% relative humidity with negligible cross-sensitivity towards H2 and CH4. It was determined that the sensor recovery rate was improved with ammonia concentration growth. Increasing the ambient relative humidity led to an increase of the sensor response. The highest response of 22.2% for 100 ppm of ammonia was achieved at a 65% relative humidity level.

  8. Study the gas sensing properties of boron nitride nanosheets

    International Nuclear Information System (INIS)

    Sajjad, Muhammad; Feng, Peter

    2014-01-01

    Graphical abstract: - Highlights: • We synthesized boron nitride nanosheets (BNNSs) on silicon substrate. • We analyzed gas sensing properties of BNNSs-based gas-sensor device. • CH 4 gas is used to measure gas-sensing properties of the device. • Quick response and recovery time of the device is recorded. • BNNSs showed excellent sensitivity to the working gas. - Abstract: In the present communication, we report on the synthesis of boron nitride nanosheets (BNNSs) and study of their gas sensing properties. BNNSs are synthesized by irradiating pyrolytic hexagonal boron nitride (h-BN) target using CO 2 laser pulses. High resolution transmission electron microscopic measurements (HRTEM) revealed 2-dientional honeycomb crystal lattice structure of BNNSs. HRTEM, electron diffraction, XRD and Raman scattering measurements clearly identified h-BN. Gas sensing properties of synthesized BNNSs were analyzed with prototype gas sensor using methane as working gas. A systematic response curve of the sensor is recorded in each cycle of gas “in” and “out”; suggesting excellent sensitivity and high performance of BNNSs-based gas-sensor

  9. A High-Sensitivity Gas Sensor Toward Methanol Using ZnO Microrods: Effect of Operating Temperature

    Science.gov (United States)

    Sinha, M.; Mahapatra, R.; Mondal, B.; Ghosh, R.

    2017-04-01

    In the present work, zinc oxide (ZnO) microrods with the average diameter of 350 nm have been synthesized on fluorine doped tin oxide (FTO) substrate using a hydrothermal reaction process at a low temperature of 90°C. The methanol gas sensing behaviour of as-synthesized ZnO microrods have been studied at different operating temperatures (100-300°C). The gas sensing results show that the ZnO microrods exhibit excellent sensitivity, selectivity, and stability toward methanol gas at 300°C. The as-grown ZnO microrods sensor also shows the good sensitivity for methanol even at a low operating temperature of 100°C. The ultra-high sensitivity of 4.41 × 104% [gas sensitivity, S g = ( I g - I a)/ I a × 100%] and 5.11 × 102% to 100 ppm methanol gas at a temperature of 300°C and 100°C, respectively, has been observed. A fast response time of 200 ms and 270 ms as well as a recovery time of 120 ms and 1330 ms to methanol gas have also been found at an operating temperature of 300°C and 100°C, respectively. The response and recovery time decreases with increasing operation temperature of the sensor.

  10. A Single-Walled Carbon Nanotube Network Gas Sensing Device

    Directory of Open Access Journals (Sweden)

    I-Ju Teng

    2011-08-01

    Full Text Available The goal of this research was to develop a chemical gas sensing device based on single-walled carbon nanotube (SWCNT networks. The SWCNT networks are synthesized on Al2O3-deposted SiO2/Si substrates with 10 nm-thick Fe as the catalyst precursor layer using microwave plasma chemical vapor deposition (MPCVD. The development of interconnected SWCNT networks can be exploited to recognize the identities of different chemical gases by the strength of their particular surface adsorptive and desorptive responses to various types of chemical vapors. The physical responses on the surface of the SWCNT networks cause superficial changes in the electric charge that can be converted into electronic signals for identification. In this study, we tested NO2 and NH3 vapors at ppm levels at room temperature with our self-made gas sensing device, which was able to obtain responses to sensitivity changes with a concentration of 10 ppm for NO2 and 24 ppm for NH3.

  11. Highly selective room temperature NO2 gas sensor based on rGO-ZnO composite

    Science.gov (United States)

    Jyoti, Kanaujiya, Neha; Varma, G. D.

    2018-05-01

    Blending metal oxide nanoparticles with graphene or its derivatives can greatly enhance gas sensing characteristics. In the present work, ZnO nanoparticles have been synthesized via reflux method. Thin films of reduced graphene oxide (rGO) and composite of rGO-ZnO have been fabricated by drop casting method for gas sensing application. The samples have been characterized by X-ray diffraction (XRD) and Field-emission scanning electron microscope (FESEM) for the structural and morphological studies respectively. Sensing measurements have been carried out for the composite film of rGO-ZnO for different concentrations of NO2 ranging from 4 to 100 ppm. Effect of increasing temperature on the sensing performance has also been studied and the rGO-ZnO composite sensor shows maximum percentage response at room temperature. The limit of detection (LOD) for rGO-ZnO composite sensor is 4ppm and it exhibits a high response of 48.4% for 40 ppm NO2 at room temperature. To check the selectivity of the composite sensor, sensor film has been exposed to 40 ppm different gases like CO, NH3, H2S and Cl2 at room temperature and the sensor respond negligibly to these gases. The present work suggests that rGO-ZnO composite material can be a better candidate for fabrication of highly selective room temperature NO2 gas sensor.

  12. Structural transformation and enhanced gas sensing characteristics of TiO2 nanostructures induced by annealing

    Science.gov (United States)

    Tshabalala, Zamaswazi P.; Motaung, David E.; Swart, Hendrik C.

    2018-04-01

    The improved sensitivity and selectivity, and admirable stability are fundamental features required for the current age gas sensing devices to appease future humanity and environmental requirements. Therefore, herein, we report on the room temperature gas sensing behaviour of TiO2 nanotubes with significance response and sensitivity towards 60 ppm NO2 gas. Improved sensitivity of 29.44 ppm-1 and admirable selectivity towards NO2, among other gases ensuring adequate safety in monitoring NO2 in automobile and food industries. The improved sensitivity of TiO2 nanotubes was attributed to larger surface area provided by the hollow nanotubes resulting to improved gas adsorption and the relatively high concentration of oxygen vacancies.

  13. Fabrication and gas sensing properties of vertically aligned Si nanowires

    Science.gov (United States)

    Mirzaei, Ali; Kang, Sung Yong; Choi, Sun-Woo; Kwon, Yong Jung; Choi, Myung Sik; Bang, Jae Hoon; Kim, Sang Sub; Kim, Hyoun Woo

    2018-01-01

    In this study, a peculiar configuration for a gas sensor consisting of vertically aligned silicon nanowires (VA-Si NWs) synthesized by metal-assisted chemical etching (MACE) is reported. Si NWs were prepared via a facile MACE method and subsequent thermal annealing. Etching was performed by generation of silver nanoparticles (Ag NPs) and subsequent etching in HF/H2O2 aqueous solution; the growth conditions were optimized by changing the process parameters. Highly vertically oriented arrays of Si NWs with a straight-line morphology were obtained, and a top-top electrode configuration was applied. The VA-Si NW gas sensor showed good sensing performance, and the VA-Si NWs exhibited a remarkable response (Rg/Ra = 11.5 ∼ 17.1) to H2 gas (10-50 ppm) at 100 °C which was the optimal working temperature. The formation mechanism and gas sensing mechanism of VA-Si NWs are described. The obtained results can suggest new approaches to making inexpensive, versatile, and portable sensors based on Si NWs having a novel top-top electrode structure that are fully compatible with well-developed Si technologies.

  14. Nanoscale Metal Oxide Semiconductors for Gas Sensing

    Science.gov (United States)

    Hunter, Gary W.; Evans, Laura; Xu, Jennifer C.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Michael J.

    2011-01-01

    A report describes the fabrication and testing of nanoscale metal oxide semiconductors (MOSs) for gas and chemical sensing. This document examines the relationship between processing approaches and resulting sensor behavior. This is a core question related to a range of applications of nanotechnology and a number of different synthesis methods are discussed: thermal evaporation- condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed, providing a processing overview to developers of nanotechnology- based systems. The results of a significant amount of testing and comparison are also described. A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. The TECsynthesized single-crystal nanowires offer uniform crystal surfaces, resistance to sintering, and their synthesis may be done apart from the substrate. The TECproduced nanowire response is very low, even at the operating temperature of 200 C. In contrast, the electrospun polycrystalline nanofiber response is high, suggesting that junction potentials are superior to a continuous surface depletion layer as a transduction mechanism for chemisorption. Using a catalyst deposited upon the surface in the form of nanoparticles yields dramatic gains in sensitivity for both nanostructured, one-dimensional forms. For the nanowire materials, the response magnitude and response rate uniformly increase with increasing operating temperature. Such changes are interpreted in terms of accelerated surface diffusional processes, yielding greater access to chemisorbed oxygen species and faster dissociative chemisorption, respectively. Regardless of operating temperature, sensitivity of the nanofibers is a factor of 10 to 100 greater than that of nanowires with the same catalyst for the same test condition. In summary, nanostructure appears critical to governing the reactivity, as measured by electrical

  15. Gas-sensing properties of SnO2-TiO2-based sensor for volatile organic compound gas and its sensing mechanism

    International Nuclear Information System (INIS)

    Zeng Wen; Liu Tianmo

    2010-01-01

    We report the microstructure and gas-sensing properties of the SnO 2 -TiO 2 composite oxide dope with Ag ion prepared by the sol-gel method. Of all various volatile organic compounds (VOCs) such as ethanol, methanol, acetone and formaldehyde were examined, the sensor exhibits remarkable selectivity to each VOCs at different operating temperature. Further investigations based on quantum chemistry calculation show that difference orbital energy of VOCs molecule may be a qualitative factor to affect the selectivity of the sensor.

  16. Individual hollow and mesoporous aero-graphitic microtube based devices for gas sensing applications

    Science.gov (United States)

    Lupan, Oleg; Postica, Vasile; Marx, Janik; Mecklenburg, Matthias; Mishra, Yogendra K.; Schulte, Karl; Fiedler, Bodo; Adelung, Rainer

    2017-06-01

    In this work, individual hollow and mesoporous graphitic microtubes were integrated into electronic devices using a FIB/SEM system and were investigated as gas and vapor sensors by applying different bias voltages (in the range of 10 mV-1 V). By increasing the bias voltage, a slight current enhancement is observed, which is mainly attributed to the self-heating effect. A different behavior of ammonia NH3 vapor sensing by increasing the applied bias voltage for hollow and mesoporous microtubes with diameters down to 300 nm is reported. In the case of the hollow microtube, an increase in the response was observed, while a reverse effect has been noticed for the mesoporous microtube. It might be explained on the basis of the higher specific surface area (SSA) of the mesoporous microtube compared to the hollow one. Thus, at room temperature when the surface chemical reaction rate (k) prevails on the gas diffusion rate (DK) the structures with a larger SSA possess a higher response. By increasing the bias voltage, i.e., the overall temperature of the structure, DK becomes a limiting step in the gas response. Therefore, at higher bias voltages the larger pores will facilitate an enhanced gas diffusion, i.e., a higher gas response. The present study demonstrates the importance of the material porosity towards gas sensing applications.

  17. Ammonia Gas Sensing Behavior of Tanninsulfonic Acid Doped Polyaniline-TiO2 Composite

    Directory of Open Access Journals (Sweden)

    Venu Gopal Bairi

    2015-10-01

    Full Text Available A highly active tannin doped polyaniline-TiO2 composite ammonia gas sensor was developed and the mechanism behind the gas sensing activity was reported for the first time. A tanninsulfonic acid doped polyaniline (TANIPANI-titanium dioxide nanocomposite was synthesized by an in situ polymerization of aniline in the presence of tanninsulfonic acid and titanium dioxide nanoparticles. X-ray diffraction and thermogravimetric analysis were utilized to determine the incorporation of TiO2 in TANIPANI matrix. UV-Visible and infrared spectroscopy studies provided information about the electronic interactions among tannin, polyaniline, and TiO2. Scanning electron microscopy (SEM along with energy dispersive X-ray spectroscopy (EDS and atomic force microscopy (AFM surface analysis techniques were used to investigate the metal oxide dispersions inside polyaniline matrix. Gas sensors were prepared by spin coating solutions of TANIPANI-TiO2 and TANIPANI composites onto glass slides. Sensors were tested at three different concentrations (20 ppm, 40 ppm, and 60 ppm of ammonia gas at ambient temperature conditions by measuring the changes in surface resistivity of the films with respect to time. Ammonia gas sensing plots are presented showing the response values, response times and recovery times. The TANIPANI-TiO2 composite exhibited better response and shorter recovery times when compared to TANIPANI control and other polyaniline composites that have been reported in the literature. For the first time a proposed mechanism of gas sensing basing on the polaron band localization and its effects on the gas sensing behavior of polyaniline are reported.

  18. Liquid petroleum gas sensing application of ZnO/CdO:ZnO nanocomposites at low temperature

    Science.gov (United States)

    Rajput, Jeevitesh K.; Pathak, T. K.; Kumar, V.; Swart, H. C.; Purohit, L. P.

    2018-04-01

    ZnO and CdO:ZnO nanoparticles are synthesized by sol-gel precipitation method. The structural analysis shows composite structure for CdO:ZnO nanoparticles with (002) and (111) phase. The SEM images show wedge like morphology and 3-D hexagonal morphology with ˜110 nm in size. The uniform growth of CdO:ZnO nanoparticles were observed in EDS element mapping image. LPG sensing was observed for CdO:ZnO nanoparticle with rapid sensing response 8.69% at operating temperature 50°C. This sensing response can be accounted due by absorption ions reactions at low operating temperature.

  19. Synthesis of ZnO thin film by sol-gel spin coating technique for H2S gas sensing application

    Science.gov (United States)

    Nimbalkar, Amol R.; Patil, Maruti G.

    2017-12-01

    In this present work, zinc oxide (ZnO) thin film synthesized by a simple sol-gel spin coating technique. The structural, morphology, compositional, microstructural, optical, electrical and gas sensing properties of the film were studied by using XRD, FESEM, EDS, XPS, HRTEM, Raman, FTIR and UV-vis techniques. The ZnO thin film shows hexagonal wurtzite structure with a porous structured morphology. Gas sensing performance of synthesized ZnO thin film was tested initially for H2S gas at different operating temperatures as well as concentrations. The maximum gas response is achieved towards H2S gas at 300 °C operating temperature, at 100 ppm gas concentration as compared to other gases like CH3OH, Cl2, NH3, LPG, CH3COCH3, and C2H5OH with a good stability.

  20. Au sensitized ZnO nanorods for enhanced liquefied petroleum gas sensing properties

    International Nuclear Information System (INIS)

    Nakate, U.T.; Bulakhe, R.N.; Lokhande, C.D.; Kale, S.N.

    2016-01-01

    Highlights: • We studied ZnO nanorods film for liquefied petroleum gas (LPG) sensing. • The Au sensitization on ZnO nanorods gives improved LPG sensing response. • The Au–ZnO shows 48% LPG response for 1040 ppm with fast response time of 50 S. • We proposed schematic for sensing mechanism using band diagram. - Abstract: The zinc oxide (ZnO) nanorods have grown on glass substrate by spray pyrolysis deposition (SPD) method using zinc acetate solution. The phase formation, surface morphology and elemental composition of ZnO films have been investigated using X-ray diffraction, field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and energy dispersive X-ray (EDX) techniques. The liquefied petroleum gas (LPG) sensing response was remarkably improved by sensitization of gold (Au) surface noble metal on ZnO nanorods film. Maximum LPG response of 21% was observed for 1040 ppm of LPG, for pure ZnO nanorods sample. After Au sensitization on ZnO nanorods film sample, the LPG response greatly improved up to 48% at operating temperature 623 K. The improved LPG response is attributed Au sensitization with spill-over mechanism. Proposed model for LPG sensing mechanism discussed.

  1. Au sensitized ZnO nanorods for enhanced liquefied petroleum gas sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Nakate, U.T., E-mail: umesh.nakate@gmail.com [Department of Applied Physics, Defence Institute of Advanced Technology, Deemed University, Pune 411025 (India); Bulakhe, R.N.; Lokhande, C.D. [Department of Physics, Thin films Physics Laboratory, Shivaji University Kolhapur 416004 (India); Kale, S.N. [Department of Applied Physics, Defence Institute of Advanced Technology, Deemed University, Pune 411025 (India)

    2016-05-15

    Highlights: • We studied ZnO nanorods film for liquefied petroleum gas (LPG) sensing. • The Au sensitization on ZnO nanorods gives improved LPG sensing response. • The Au–ZnO shows 48% LPG response for 1040 ppm with fast response time of 50 S. • We proposed schematic for sensing mechanism using band diagram. - Abstract: The zinc oxide (ZnO) nanorods have grown on glass substrate by spray pyrolysis deposition (SPD) method using zinc acetate solution. The phase formation, surface morphology and elemental composition of ZnO films have been investigated using X-ray diffraction, field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and energy dispersive X-ray (EDX) techniques. The liquefied petroleum gas (LPG) sensing response was remarkably improved by sensitization of gold (Au) surface noble metal on ZnO nanorods film. Maximum LPG response of 21% was observed for 1040 ppm of LPG, for pure ZnO nanorods sample. After Au sensitization on ZnO nanorods film sample, the LPG response greatly improved up to 48% at operating temperature 623 K. The improved LPG response is attributed Au sensitization with spill-over mechanism. Proposed model for LPG sensing mechanism discussed.

  2. Controlled Synthesis of Hierarchically Assembled Porous ZnO Microspheres with Enhanced Gas-Sensing Properties

    Directory of Open Access Journals (Sweden)

    Shengsheng You

    2015-01-01

    Full Text Available The ZnO microspheres constructed by porous nanosheets were successfully synthesized by calcinating zinc hydroxide carbonate (ZHC microspheres obtained by a sample hydrothermal method. The samples were characterized in detail with scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD, and thermogravimetric and differential scanning calorimetry (TG-DSC. The results indicated that the prepared ZnO microspheres were well crystalline with wurtzite hexagonal phase. The effects of reaction time, temperature, the amount of trisodium citrate, and urea on the morphology of ZnO microspheres were studied. The formation mechanism of porous ZnO microspheres was discussed. Furthermore, the gas-sensing properties for detection of organic gas of the prepared porous ZnO microspheres were investigated. The results indicated that the prepared porous ZnO microspheres exhibited high gas-sensing properties for detection of ethanol gas.

  3. Disposable, Paper-Based, Inkjet-Printed Humidity and H2S Gas Sensor for Passive Sensing Applications

    Science.gov (United States)

    Quddious, Abdul; Yang, Shuai; Khan, Munawar M.; Tahir, Farooq A.; Shamim, Atif; Salama, Khaled N.; Cheema, Hammad M.

    2016-01-01

    An inkjet-printed, fully passive sensor capable of either humidity or gas sensing is presented herein. The sensor is composed of an interdigitated electrode, a customized printable gas sensitive ink and a specialized dipole antenna for wireless sensing. The interdigitated electrode printed on a paper substrate provides the base conductivity that varies during the sensing process. Aided by the porous nature of the substrate, a change in relative humidity from 18% to 88% decreases the electrode resistance from a few Mega-ohms to the kilo-ohm range. For gas sensing, an additional copper acetate-based customized ink is printed on top of the electrode, which, upon reaction with hydrogen sulphide gas (H2S) changes, both the optical and the electrical properties of the electrode. A fast response time of 3 min is achieved at room temperature for a H2S concentration of 10 ppm at a relative humidity (RH) of 45%. The passive wireless sensing is enabled through an antenna in which the inner loop takes care of conductivity changes in the 4–5 GHz band, whereas the outer-dipole arm is used for chipless identification in the 2–3 GHz band. PMID:27929450

  4. Disposable, Paper-Based, Inkjet-Printed Humidity and H2S Gas Sensor for Passive Sensing Applications

    Directory of Open Access Journals (Sweden)

    Abdul Quddious

    2016-12-01

    Full Text Available An inkjet-printed, fully passive sensor capable of either humidity or gas sensing is presented herein. The sensor is composed of an interdigitated electrode, a customized printable gas sensitive ink and a specialized dipole antenna for wireless sensing. The interdigitated electrode printed on a paper substrate provides the base conductivity that varies during the sensing process. Aided by the porous nature of the substrate, a change in relative humidity from 18% to 88% decreases the electrode resistance from a few Mega-ohms to the kilo-ohm range. For gas sensing, an additional copper acetate-based customized ink is printed on top of the electrode, which, upon reaction with hydrogen sulphide gas (H2S changes, both the optical and the electrical properties of the electrode. A fast response time of 3 min is achieved at room temperature for a H2S concentration of 10 ppm at a relative humidity (RH of 45%. The passive wireless sensing is enabled through an antenna in which the inner loop takes care of conductivity changes in the 4–5 GHz band, whereas the outer-dipole arm is used for chipless identification in the 2–3 GHz band.

  5. Disposable, Paper-Based, Inkjet-Printed Humidity and H2S Gas Sensor for Passive Sensing Applications

    KAUST Repository

    Quddious, Abdul; Yang, Shuai; Khan, Munawar M.; Tahir, Farooq A.; Shamim, Atif; Salama, Khaled N.; Cheema, Hammad M.

    2016-01-01

    An inkjet-printed, fully passive sensor capable of either humidity or gas sensing is presented herein. The sensor is composed of an interdigitated electrode, a customized printable gas sensitive ink and a specialized dipole antenna for wireless sensing. The interdigitated electrode printed on a paper substrate provides the base conductivity that varies during the sensing process. Aided by the porous nature of the substrate, a change in relative humidity from 18% to 88% decreases the electrode resistance from a few Mega-ohms to the kilo-ohm range. For gas sensing, an additional copper acetate-based customized ink is printed on top of the electrode, which, upon reaction with hydrogen sulphide gas (HS) changes, both the optical and the electrical properties of the electrode. A fast response time of 3 min is achieved at room temperature for a HS concentration of 10 ppm at a relative humidity (RH) of 45%. The passive wireless sensing is enabled through an antenna in which the inner loop takes care of conductivity changes in the 4-5 GHz band, whereas the outer-dipole arm is used for chipless identification in the 2-3 GHz band.

  6. Disposable, Paper-Based, Inkjet-Printed Humidity and H2S Gas Sensor for Passive Sensing Applications

    KAUST Repository

    Quddious, Abdul

    2016-12-06

    An inkjet-printed, fully passive sensor capable of either humidity or gas sensing is presented herein. The sensor is composed of an interdigitated electrode, a customized printable gas sensitive ink and a specialized dipole antenna for wireless sensing. The interdigitated electrode printed on a paper substrate provides the base conductivity that varies during the sensing process. Aided by the porous nature of the substrate, a change in relative humidity from 18% to 88% decreases the electrode resistance from a few Mega-ohms to the kilo-ohm range. For gas sensing, an additional copper acetate-based customized ink is printed on top of the electrode, which, upon reaction with hydrogen sulphide gas (HS) changes, both the optical and the electrical properties of the electrode. A fast response time of 3 min is achieved at room temperature for a HS concentration of 10 ppm at a relative humidity (RH) of 45%. The passive wireless sensing is enabled through an antenna in which the inner loop takes care of conductivity changes in the 4-5 GHz band, whereas the outer-dipole arm is used for chipless identification in the 2-3 GHz band.

  7. Au@NiO core-shell nanoparticles as a p-type gas sensor: Novel synthesis, characterization, and their gas sensing properties with sensing mechanism

    KAUST Repository

    Majhi, Sanjit Manohar

    2018-04-25

    In this work, Au@NiO core-shell nanoparticles (C-S NPs) as a p-type gas sensing material was synthesized by a facile wet-chemical method, and evaluated their gas sensing properties as compared to the pristine NiO NPs gas sensors. Transmission electron microscope (TEM) results exhibited the well-dispersed formation of Au@NiO C-S NPs having the total size of 70–120 nm and NiO shells having 30–50 nm thickness. The C-S morphology as well as the overall particle sizes are unchanged even at 500 °C. The gas sensing result reveals that the response of Au@NiO C-S NPs gas sensor is higher than pristine NiO NPs gas sensor for 100 ppm of ethanol at 200 °C operating temperature. The baseline resistance in the air for Au@NiO C-S NPs sensor is lowered as compared to pristine NiO NPs, which is due to the increased number of holes as charge carriers in Au@NiO C-S NPs. The high response of Au@NiO core-shell NPs as compared to pristine NiO NPs is attributed to electronic and chemical sensitization effects of Au. In Au@NiO C-S structure, the contact between metal (Au) and semiconductor (NiO) formed a Schottky junction since Au metal acted as electron acceptor, a withdrawal of electrons from NiO by Au metal core leaved behind number of holes as charge carriers in Au@NiO C-S NPs. Therefore, the baseline resistance of Au@NiO C-S NPs greatly decreased than pristine NiO NPs, as a result the Au@NiO C-S NPs showed higher response. On the other hand, in chemical sensitization effect, Au NPs catalyzed to dissociate O2 molecules into ionic species. This work will give some clue to the researchers for the further development of p-type based C-S NPs sensors.

  8. Decoration of vertical graphene with aerosol nanoparticles for gas sensing

    International Nuclear Information System (INIS)

    Cui, Shumao; Guo, Xiaoru; Ren, Ren; Zhou, Guihua; Chen, Junhong

    2015-01-01

    A facile method was demonstrated to decorate aerosol Ag nanoparticles onto vertical graphene surfaces using a mini-arc plasma reactor. The vertical graphene was directly grown on a sensor electrode using a plasma-enhanced chemical vapor deposition (PECVD) method. The aerosol Ag nanoparticles were synthesized by a simple vapor condensation process using a mini-arc plasma source. Then, the nanoparticles were assembled on the surface of vertical graphene through the assistance of an electric field. Based on our observation, nonagglomerated Ag nanoparticles formed in the gas phase and were assembled onto vertical graphene sheets. Nanohybrids of Ag nanoparticle-decorated vertical graphene were characterized for ammonia gas detection at room temperature. The vertical graphene served as the conductance channel, and the conductance change upon exposure to ammonia was used as the sensing signal. The sensing results show that Ag nanoparticles significantly improve the sensitivity, response time, and recovery time of the sensor. (paper)

  9. Ethanol gas sensing properties of Al2 O3 -doped ZnO thick film ...

    Indian Academy of Sciences (India)

    WINTEC

    ing temperature can affect the microstructure and gas sensing performance of the sensor. The efforts ... Amongst the women, the chances of breast cancer increase with alco- ... The aim of the present work is to develop the sensor by modifying ...

  10. LPG ammonia and nitrogen dioxide gas sensing properties of nanostructured polypyrrole thin film

    Science.gov (United States)

    Bagul, Sagar B.; Upadhye, Deepak S.; Sharma, Ramphal

    2016-05-01

    Nanostructured Polypyrrole thin film was synthesized by easy and economic chemical oxidative polymerization technique on glass at room temperature. The prepared thin film of Polypyrrole was characterized by optical absorbance study by UV-visible spectroscopy and electrical study by I-V measurement system. The optical absorbance spectrum of Polypyrrole shows two fundamental peaks in region of 420 and 890 nm, which confirms the formation of Polypyrrole on glass substrate. The I-V graph of nanostructured Polypyrrole represents the Ohmic nature. Furthermore, the thin film of Polypyrrole was investigated by Scanning electron microscopy for surface morphology study. The SEM micrograph represents spherical nanostructured morphology of Polypyrrole on glass substrate. In order to investigate gas sensing properties, 100 ppm of LPG, Ammonia and Nitrogen Dioxide were injected in the gas chamber and magnitude of resistance has been recorded as a function of time in second. It was observed that nanostructured Polypyrrole thin film shows good sensing behavior at room temperature.

  11. LPG ammonia and nitrogen dioxide gas sensing properties of nanostructured polypyrrole thin film

    Energy Technology Data Exchange (ETDEWEB)

    Bagul, Sagar B., E-mail: nano.sbbagul@gmail.com; Upadhye, Deepak S.; Sharma, Ramphal, E-mail: rps.phy@gmail.com [Thin Film and Nanotechnology Laboratory, Department of Nanotechnology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (India)

    2016-05-06

    Nanostructured Polypyrrole thin film was synthesized by easy and economic chemical oxidative polymerization technique on glass at room temperature. The prepared thin film of Polypyrrole was characterized by optical absorbance study by UV-visible spectroscopy and electrical study by I-V measurement system. The optical absorbance spectrum of Polypyrrole shows two fundamental peaks in region of 420 and 890 nm, which confirms the formation of Polypyrrole on glass substrate. The I-V graph of nanostructured Polypyrrole represents the Ohmic nature. Furthermore, the thin film of Polypyrrole was investigated by Scanning electron microscopy for surface morphology study. The SEM micrograph represents spherical nanostructured morphology of Polypyrrole on glass substrate. In order to investigate gas sensing properties, 100 ppm of LPG, Ammonia and Nitrogen Dioxide were injected in the gas chamber and magnitude of resistance has been recorded as a function of time in second. It was observed that nanostructured Polypyrrole thin film shows good sensing behavior at room temperature.

  12. Influence of crystallinity on CO gas sensing for TiO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, Zachary Mark [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920 (United States); Bandyopadhyay, Amit [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920 (United States)], E-mail: amitband@wsu.edu; Bose, Susmita [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920 (United States)

    2009-08-15

    In the present research, carbon monoxide (CO) gas sensing response was studied for TiO{sub 2} thick films calcined and sintered between 700 and 900 deg. C. Crystalline phase, crystallite size, surface area, particle size, and amorphous content were measured for the calcined powder. Crystallinity of the powder was found to affect sensing response significantly towards CO. Anatase phase of TiO{sub 2} thick film was stable up to 900 deg. C however, as calcination temperature increased from 700 to 900 deg. C, surface area and amorphous phase content decreased. Films calcined and sintered at 700 deg. C showed a lower response towards CO than those calcined at 800 deg. C. Upon increasing the calcination temperature further, particle growth and reduced surface area hindered the sensing response. A calcination temperature of 800 deg. C was necessary to achieve sufficient order in the crystal structure leading to more efficient adsorption and desorption of oxygen ions on the surface of TiO{sub 2}.

  13. Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing in Aerospace Applications

    Science.gov (United States)

    VanderWal, Randy L.; Berger, Gordon M.; Kulis, Michael J.; Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.

    2009-01-01

    A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine an activation energy for the catalyst-assisted systems.

  14. NO{sub 2} gas sensing of flame-made Pt-loaded WO{sub 3} thick films

    Energy Technology Data Exchange (ETDEWEB)

    Samerjai, Thanittha [Nanoscience and Nanotechnology Program, Faculty of Graduate School, Chiang Mai University, Chiang Mai 50200 (Thailand); Tamaekong, Nittaya [Program in Materials Science, Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Liewhiran, Chaikarn [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wisitsoraat, Anurat [Nanoelectronics and MEMS Laboratory, National Electronics and Computer Technology Center, Klong Luang, Pathumthani 12120 (Thailand); Phanichphant, Sukon, E-mail: sphanichphant@yahoo.com [Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-06-01

    Unloaded WO{sub 3} and 0.25–1.0 wt% Pt-loaded WO{sub 3} nanoparticles for NO{sub 2} gas detection were synthesized by flame spray pyrolysis (FSP) and characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The BET surface area (SSA{sub BET}) of the nanoparticles was measured by nitrogen adsorption. The NO{sub 2} sensing properties of the sensors based on unloaded and Pt-loaded WO{sub 3} nanoparticles were investigated. The results showed that the gas sensing properties of the Pt-loaded WO{sub 3} sensors were excellent to those of the unloaded one. Especially, 0.25 wt% Pt-loaded WO{sub 3} sensor showed highest response to NO{sub 2} than the others at low operating temperature of 150 °C. - Graphical abstract: The response of 0.25 wt% Pt-loaded WO3 sensor was 637 towards NO{sub 2} concentration of 10 ppm at 150 °C. - Highlights: • Unloaded and Pt-loaded WO{sub 3} nanoparticles for NO{sub 2} gas detection were synthesized by flame spray pyrolysis (FSP). • Gas sensing properties of the Pt-loaded WO{sub 3} sensors were excellent to those of the unloaded one. • 0.25 wt% Pt-loaded WO{sub 3} sensor showed highest response to NO{sub 2} at low operating temperature of 150 °C.

  15. A Smart Gas Sensor Insensitive to Humidity and Temperature Variations

    International Nuclear Information System (INIS)

    Hajmirzaheydarali, Mohammadreza; Ghafarinia, Vahid

    2011-01-01

    The accuracy of the quantitative sensing of volatile organic compounds by chemoresistive gas sensors suffers from the fluctuations in the background atmospheric conditions. This is caused by the drift-like terms introduced in the responses by these instabilities, which should be identified and compensated. Here, a mathematical model is presented for a specific chemoresistive gas sensor, which facilitates these identification and compensation processes. The resistive gas sensor was considered as a multi-input-single-output system. Along with the steady state value of the measured sensor resistance, the ambient humidity and temperature are the inputs to the system, while the concentration level of the target gas is the output. The parameters of the model were calculated based on the experimental database. The model was simulated by the utilization of an artificial neural network. This was connected to the sensor and could deliver the correct contamination level upon receiving the measured gas response, ambient humidity and temperature.

  16. Ferrite thin films: Synthesis, characterization and gas sensing properties towards LPG

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Pratibha; Godbole, R.V. [Department of Physics, Abasaheb Garware College, Karve Road, Pune 411 004 (India); Phase, D.M. [UGC-DAE CSR Centre, Indore (India); Chikate, R.C. [Department of Chemistry, Abasaheb Garware College, Karve Road, Pune 411 004 (India); Bhagwat, Sunita, E-mail: smb.agc@gmail.com [Department of Physics, Abasaheb Garware College, Karve Road, Pune 411 004 (India)

    2015-01-15

    Nanocrystalline (Co, Cu, Ni, Zn) ferrite thin films have been deposited onto the Si (100) and alumina substrates by spray pyrolysis deposition technique. Respective metal chlorides and iron chloride were used as precursors. The structural properties of (Co, Cu, Ni, Zn) ferrite thin films were investigated by X-ray diffraction (XRD) technique which confirms polycrystalline nature and single phase spinel structure. The surface morphology was studied using scanning electron microscopy (SEM) which reveals spherical morphology for these films except NiFe{sub 2}O{sub 4} films that exhibit petal like structure. The optical transmittance and reflectance measurements were recorded using a double beam spectrophotometer. The optical studies reveal that the transition is direct band gap energy. The VSM analyzes reveal the predominant ferrimagnetic nature for CuFe{sub 2}O{sub 4} films. The gas sensing properties towards Liquid Petroleum Gas (LPG) revealed that ZnFe{sub 2}O{sub 4} films are sensitive at lower temperature while NiFe{sub 2}O{sub 4} films show steep rise at higher temperature. - Highlights: • (Co, Cu, Ni, Zn) ferrite thin films are synthesized by simple spray pyrolysis technique. • Homogenization of substituent within ferrite structure. • CuFe{sub 2}O{sub 4} film exhibits predominantly ferrimagnetic nature. • LPG sensing at lower temperature for ZnFe{sub 2}O{sub 4} film. • High sensitivity for NiFe{sub 2}O{sub 4} film at higher temperature due to defects created in the structure.

  17. Functionalized Ga2O3 nanowires as active material in room temperature capacitance-based gas sensors.

    Science.gov (United States)

    Mazeina, Lena; Perkins, F Keith; Bermudez, Victor M; Arnold, Stephen P; Prokes, S M

    2010-08-17

    We report the first evidence for functionalization of Ga(2)O(3) nanowires (NWs), which have been incorporated as the active material in room temperature capacitance gas-sensing devices. An adsorbed layer of pyruvic acid (PA) was successfully formed on Ga(2)O(3) NWs by simple room temperature vapor transport, which was confirmed by Fourier transform infrared spectroscopy. The effect of the adsorbed PA on the surface properties was demonstrated by the change in the response of the NW gas-sensing devices. Results indicate that the adsorption of PA reduced the sensitivity of the Ga(2)O(3) NW device to common hydrocarbons such as nitromethane and acetone while improving the response to triethylamine by an order of magnitude. Taking into account the simplicity of this functionalization together with the ease of producing these capacitance-based gas-sensing devices, this approach represents a viable technique for sensor development.

  18. Synthesis, characterization and performance of zinc ferrite nanorods for room temperature sensing applications

    International Nuclear Information System (INIS)

    Singh, Archana; Singh, Ajendra; Singh, Satyendra; Tandon, Poonam; Yadav, B.C.; Yadav, R.R.

    2015-01-01

    Highlights: • Fabrication of zinc ferrite thin film LPG and CO 2 gas sensors. • Morphological growth of nanorods. • Significant advancement towards the fabrication of a reliable LPG sensor. • A new pathway to produce nanorods as sensorial material. - Abstract: In the present communication, nanorods of zinc ferrite was synthesized and fabricated by employing sol–gel spin coating process. The synthesized material was characterized using X-ray diffraction, scanning electron microscopy, acoustic particle sizer, atomic force microscopy, UV–visible absorption and infrared spectroscopic techniques. Thermal properties were investigated using differential scanning calorimetry. The XRD reveals cubic spinel structure with minimum crystallite size 10 nm. SEM image of the film shows porous surface morphology with uniform distribution of nanorods. The band gap of the zinc ferrite nanorods was found 3.80 eV using the Tauc plot. ZnFe 2 O 4 shows weak super paramagnetic behavior at room temperature investigated using the vibrating sample magnetometer. Further, the liquefied petroleum gas (LPG) and carbon dioxide gas (CO 2 ) sensing properties of the fabricated film were investigated at room temperature (25 °C). More variations in electrical resistance were observed for LPG in comparison to CO 2 gas. The parameters such as lattice constant, X-ray density, porosity and specific surface area were also calculated for the better understanding of the observed gas sensing properties. High sensitivity and percentage sensor response, small response and recovery times, good reproducibility and stability characterized the fabricated sensor for the detection of LPG at room temperature

  19. Synthesis, characterization and performance of zinc ferrite nanorods for room temperature sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Archana; Singh, Ajendra [Macromolecular Research Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, U.P. (India); Singh, Satyendra, E-mail: satyendra_nano84@rediffmail.com [Department of Physics, University of Allahabad, Allahabad 211002, U.P. (India); Tandon, Poonam [Macromolecular Research Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, U.P. (India); Yadav, B.C. [Department of Applied Physics, School for Physical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, U.P. (India); Yadav, R.R. [Department of Physics, University of Allahabad, Allahabad 211002, U.P. (India)

    2015-01-05

    Highlights: • Fabrication of zinc ferrite thin film LPG and CO{sub 2} gas sensors. • Morphological growth of nanorods. • Significant advancement towards the fabrication of a reliable LPG sensor. • A new pathway to produce nanorods as sensorial material. - Abstract: In the present communication, nanorods of zinc ferrite was synthesized and fabricated by employing sol–gel spin coating process. The synthesized material was characterized using X-ray diffraction, scanning electron microscopy, acoustic particle sizer, atomic force microscopy, UV–visible absorption and infrared spectroscopic techniques. Thermal properties were investigated using differential scanning calorimetry. The XRD reveals cubic spinel structure with minimum crystallite size 10 nm. SEM image of the film shows porous surface morphology with uniform distribution of nanorods. The band gap of the zinc ferrite nanorods was found 3.80 eV using the Tauc plot. ZnFe{sub 2}O{sub 4} shows weak super paramagnetic behavior at room temperature investigated using the vibrating sample magnetometer. Further, the liquefied petroleum gas (LPG) and carbon dioxide gas (CO{sub 2}) sensing properties of the fabricated film were investigated at room temperature (25 °C). More variations in electrical resistance were observed for LPG in comparison to CO{sub 2} gas. The parameters such as lattice constant, X-ray density, porosity and specific surface area were also calculated for the better understanding of the observed gas sensing properties. High sensitivity and percentage sensor response, small response and recovery times, good reproducibility and stability characterized the fabricated sensor for the detection of LPG at room temperature.

  20. Gas sensing with gold-decorated vertically aligned carbon nanotubes.

    Science.gov (United States)

    Mudimela, Prasantha R; Scardamaglia, Mattia; González-León, Oriol; Reckinger, Nicolas; Snyders, Rony; Llobet, Eduard; Bittencourt, Carla; Colomer, Jean-François

    2014-01-01

    Vertically aligned carbon nanotubes of different lengths (150, 300, 500 µm) synthesized by thermal chemical vapor deposition and decorated with gold nanoparticles were investigated as gas sensitive materials for detecting nitrogen dioxide (NO2) at room temperature. Gold nanoparticles of about 6 nm in diameter were sputtered on the top surface of the carbon nanotube forests to enhance the sensitivity to the pollutant gas. We showed that the sensing response to nitrogen dioxide depends on the nanotube length. The optimum was found to be 300 µm for getting the higher response. When the background humidity level was changed from dry to 50% relative humidity, an increase in the response to NO2 was observed for all the sensors, regardless of the nanotube length.

  1. Gas sensing with gold-decorated vertically aligned carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Prasantha R. Mudimela

    2014-06-01

    Full Text Available Vertically aligned carbon nanotubes of different lengths (150, 300, 500 µm synthesized by thermal chemical vapor deposition and decorated with gold nanoparticles were investigated as gas sensitive materials for detecting nitrogen dioxide (NO2 at room temperature. Gold nanoparticles of about 6 nm in diameter were sputtered on the top surface of the carbon nanotube forests to enhance the sensitivity to the pollutant gas. We showed that the sensing response to nitrogen dioxide depends on the nanotube length. The optimum was found to be 300 µm for getting the higher response. When the background humidity level was changed from dry to 50% relative humidity, an increase in the response to NO2 was observed for all the sensors, regardless of the nanotube length.

  2. Screen-printed Tin-doped indium oxide (ITO) films for NH3 gas sensing

    International Nuclear Information System (INIS)

    Mbarek, Hedia; Saadoun, Moncef; Bessais, Brahim

    2006-01-01

    Gas sensors using metal oxides have several advantageous features such as simplicity in device structure and low cost fabrication. In this work, Tin-doped indium oxide (ITO) films were prepared by the screen printing technique onto glass substrates. The granular and porous structure of screen-printed ITO are suitable for its use in gas sensing devices. The resistance of the ITO films was found to be strongly dependent on working temperatures and the nature and concentration of the ambient gases. We show that screen-printed ITO films have good sensing properties toward NH 3 vapours. The observed behaviors are explained basing on the oxidizing or the reducer nature of the gaseous species that react on the surface of the heated semi-conducting oxide

  3. Preparation of Pr-doped SnO{sub 2} hollow nanofibers by electrospinning method and their gas sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.Q.; Ma, S.Y., E-mail: lwq19891013@126.com; Li, Y.F.; Li, X.B.; Wang, C.Y.; Yang, X.H.; Cheng, L.; Mao, Y.Z.; Luo, J.; Gengzang, D.J.; Wan, G.X.; Xu, X.L.

    2014-08-25

    Highlights: • Pr-doped SnO{sub 2} hollow nanofibers were fabricated by electrospinning. • The crystal structures, surface morphology, chemical state and gas sensing performance were investigated. • The Pr-doped SnO{sub 2} hollow structure exhibited good gas-sensing properties to ethanol at 300 °C. • The relationships between response time (recovery time) and temperature, response time (recovery time) and concentration were investigated. • A sensor mechanism of hollow nanofibers depend on temperature was discussed. - Abstract: Pure and Pr-doped SnO{sub 2} hollow nanofibers were fabricated through a facile single capillary electrospinning and followed by calcination. The properties of as-synthesized nanofibers were characterized by scanning electron microscopy, Brunauer–Emmett–Teller, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Compared with pure fibers, Pr-doped SnO{sub 2} nanofibers exhibited excellent ethanol sensing properties at the optimum temperature of 300 °C. Maximum sensing response to ethanol was received in the fibers with 0.6 wt% Pr. The relationships between response time (recovery time) and temperature, response time (recovery time) and concentration were investigated. The results demonstrated that the high response and relatively short response/recovery time were related to surface area, adsorbed oxygen species and oxygen vacancies.

  4. The Electrostatically Formed Nanowire: A Novel Platform for Gas-Sensing Applications

    Directory of Open Access Journals (Sweden)

    Gil Shalev

    2017-02-01

    Full Text Available The electrostatically formed nanowire (EFN gas sensor is based on a multiple-gate field-effect transistor with a conducting nanowire, which is not defined physically; rather, the nanowire is defined electrostatically post-fabrication, by using appropriate biasing of the different surrounding gates. The EFN is fabricated by using standard silicon processing technologies with relaxed design rules and, thereby, supports the realization of a low-cost and robust gas sensor, suitable for mass production. Although the smallest lithographic definition is higher than half a micrometer, appropriate tuning of the biasing of the gates concludes a conducting channel with a tunable diameter, which can transform the conducting channel into a nanowire with a diameter smaller than 20 nm. The tunable size and shape of the nanowire elicits tunable sensing parameters, such as sensitivity, limit of detection, and dynamic range, such that a single EFN gas sensor can perform with high sensitivity and a broad dynamic range by merely changing the biasing configuration. The current work reviews the design of the EFN gas sensor, its fabrication considerations and process flow, means of electrical characterization, and preliminary sensing performance at room temperature, underlying the unique and advantageous tunable capability of the device.

  5. Crystalline Microporous Organosilicates with Reversed Functionalities of Organic and Inorganic Components for Room-Temperature Gas Sensing.

    Science.gov (United States)

    Fabbri, Barbara; Bonoldi, Lucia; Guidi, Vincenzo; Cruciani, Giuseppe; Casotti, Davide; Malagù, Cesare; Bellussi, Giuseppe; Millini, Roberto; Montanari, Luciano; Carati, Angela; Rizzo, Caterina; Montanari, Erica; Zanardi, Stefano

    2017-07-26

    A deepened investigation on an innovative organic-inorganic hybrid material, referred to as ECS-14 (where ECS = Eni carbon silicates), revealed the possibility to use them as gas sensors. Indeed, among ECS phases, the crystalline state and the hexagonal microplateletlike morphology characteristic of ECS-14 seemed favorable properties to obtain continuous and uniform films. ECS-14 phase was used as functional material in screen-printable compositions and was thus deposited by drop coating for morphological, structural, thermal, and electrical characterizations. Possible operation at room temperature was investigated as technological progress, offering intrinsic safety in sensors working in harsh or industrial environments and avoiding high power consumption of most common sensors based on metal oxide semiconductors. Electrical characterization of the sensors based on ECS-14 versus concentrations of gaseous analytes gave significant results at room temperature in the presence of humidity, thereby demonstrating fundamental properties for a good quality sensor (speed, reversibility, and selectivity) that make them competitive with respect to systems currently in use. Remarkably, we observed functionality reversal of the organic and inorganic components; that is, in contrast to other hybrids, for ECS-14 the functional site has been ascribed to the inorganic phase while the organic component provided structural stability to the material. The sensing mechanism for humidity was also investigated.

  6. Highly sensitive and selective room-temperature NO_2 gas sensor based on bilayer transferred chemical vapor deposited graphene

    International Nuclear Information System (INIS)

    Seekaew, Yotsarayuth; Phokharatkul, Ditsayut; Wisitsoraat, Anurat; Wongchoosuk, Chatchawal

    2017-01-01

    Highlights: • Simple and low-cost fabrication of bilayer graphene gas sensor was presented. • Layer effects of graphene on NO_2 gas-sensing properties were investigated. • Bilayer graphene sensor exhibited a high linear NO_2 sensitivity of 1.409 ppm"−"1. • The NO_2-sensing mechanisms based on band diagram were highlighted. - Abstract: This work presents a highly sensitive room-temperature gas sensor based on bilayer graphene fabricated by an interfacial transfer of chemical vapor deposited graphene onto nickel interdigitated electrodes. Scanning electron microscopic and Raman spectroscopic characterizations confirm the presence of graphene on interdigitated nickel electrodes with varying numbers of graphene layers. The NO_2 detection performances of bilayer graphene gas sensor have been investigated in comparison with those of monolayer and multilayer graphene gas sensors at room temperature. From results, the bilayer graphene gas sensor exhibits higher response, sensitivity and selectivity to NO_2 than monolayer and multilayer graphene. The sensitivity of bilayer graphene gas sensor is 1.409 ppm"−"1 towards NO_2 over a concentration range of 1–25 ppm, which is more than twice higher than that of monolayer graphene. The NO_2-sensing mechanism of graphene sensing film has been explained based on the direct charge transfer process due to the adsorption of NO_2 molecules.

  7. Precipitated nickel doped ZnO nanoparticles with enhanced low temperature ethanol sensing properties

    Directory of Open Access Journals (Sweden)

    Umadevi Godavarti

    2017-12-01

    Full Text Available The Zn1-xNixO nanoparticles have been synthesized by novel co-precipitation method and systematically characterized by XRD, SEM, TEM and photo luminescence. The XRD patterns confirm the hexagonal wurzite structure without secondary phases in Ni substituted ZnO samples. SEM and TEM are used for the estimation of particle shape and size. In PL study there is a peak in the range of 380–390 nm in all samples that is attributed to the oxygen vacancies. Gas sensing tests reveal that Ni doped ZnO sensor has remarkably enhanced performance compared to pure ZnO detected at an optimum temperature 100 °C. It could detect ethanol gas in a wide concentration range with very high response, fast response–recovery time, good selectivity and stable repeatability. The possible sensing mechanism is discussed. The high response of ZnO Nanoparticles was attributed to large contacting surface area for electrons, oxygen, target gas molecule, and abundant channels for gas diffusion. The superior sensing features indicate the present Ni doped ZnO as a promising nanomaterial for gas sensors. The response time and recovery time of undoped is 75 s and 60 s and 0.25 at% Ni are found to be 60 s and 45 s at 100 °C respectively.

  8. Fabrication of a gas sensor array with micro-wells for VOCs gas sensing based on polymer/carbon nanotube thin films

    Science.gov (United States)

    Xie, Guangzhong; Xie, Tao; Zhu, Tao; Jiang, Yadong; Tai, Huiling

    2014-08-01

    In this paper, gas sensor array with micro-well was designed and prepared by Micro Electro-Mechanical Systems (MEMS) technology. The micro-well and interdigital electrodes of sensor array were prepared using photolithography process, reactive ion etching (RIE) process, wet etching and conventional vacuum evaporation. In the manufacture process of the gas sensor array, KOH wet etching process was mainly discussed. The optimum etching processing parameters were as follows: 30 wt% KOH solution at 80 °C, a cooling back-flow device and a magnetic stirrer. The multi-walled carbon nanotubes (MWCNTs)-polyethyleneoxide (PEO) and MWNTs-Polyvinylpyrrolidone (PVP) composite films were utilized as sensitive layers to test gas-sensing properties. Response performances of MWCNTs- PEO and MWNTs-PVP composite films to toluene vapor and methanol vapor at room temperature were investigated. The results revealed that the sensor array showed a larger sensitivity to toluene vapor than to methanol vapor. In addition, the sensing mechanisms were studied as well.

  9. Nitrogen Dioxide-Sensing Properties at Room Temperature of Metal Oxide-Modified Graphene Composite via One-Step Hydrothermal Method

    Science.gov (United States)

    Zhang, Dongzhi; Liu, Jingjing; Xia, Bokai

    2016-08-01

    A metal oxide/graphene composite film-based sensor toward room-temperature detection of ppm-level nitrogen dioxide (NO2) gas has been demonstrated. The sensor prototype was constructed on a PCB substrate with microelectrodes, and a tin oxide-reduced graphene oxide (SnO2-rGO) composite as sensing film was prepared by one-step hydrothermal synthesis of tin tetrachloride pentahydrate solution in the presence of graphene oxide (GO). The SnO2-rGO hybrid composite was examined by scanning electron microscope and x-ray diffraction (XRD). The gas sensing properties of the SnO2-rGO composite were investigated at room temperature by exposing it to a wide concentration ranging from 1 ppm to 2000 ppm toward NO2 gas. The experiment results showed that the sensor exhibited a high response, superior selectivity, good repeatability, rapid response/recovery characteristics and low detection limit of 1 ppm, which exceeded that of a pure rGO sensor. The gas sensing mechanisms of the proposed sensor toward NO2 were possibly attributed to the nano-hybrid structures and n- p heterojunctions created at the interface of the SnO2 nanocrystals and rGO nanosheets.

  10. UV-light-assisted ethanol sensing characteristics of g-C3N4/ZnO composites at room temperature

    Science.gov (United States)

    Zhai, Jiali; Wang, Tao; Wang, Chuang; Liu, Dechen

    2018-05-01

    A highly efficient UV-light-assisted room temperature sensor based on g-C3N4/ZnO composites were prepared by an in situ precipitation method. The thermostability, composition, structure, and morphology properties of the as-prepared g-C3N4/ZnO composites were characterized by TGA, XRD, FT-IR, TEM, and XPS, respectively. And then, we studied the ethanol (C2H5OH) sensing performance of the g-C3N4/ZnO composites at the room temperature. Compared with pure ZnO and g-C3N4, the gas sensing activity of g-C3N4/ZnO composites was greatly improved at room temperature, for example, the g-C3N4/ZnO-8% composites showed an obvious response of 121-40 ppm C2H5OH at room temperature, which was 60 times higher than the pure ZnO based on the sensors under the same condition. The great enhancement of the C2H5OH sensing properties of composites can be understood by the efficient separation of photogenerated charge carriers of g-C3N4/ZnO heterogeneous and the UV-light catalytic effect. Finally, a possible mechanism for the gas sensing activity was proposed.

  11. Metal oxide nanostructures and their gas sensing properties: a review.

    Science.gov (United States)

    Sun, Yu-Feng; Liu, Shao-Bo; Meng, Fan-Li; Liu, Jin-Yun; Jin, Zhen; Kong, Ling-Tao; Liu, Jin-Huai

    2012-01-01

    Metal oxide gas sensors are predominant solid-state gas detecting devices for domestic, commercial and industrial applications, which have many advantages such as low cost, easy production, and compact size. However, the performance of such sensors is significantly influenced by the morphology and structure of sensing materials, resulting in a great obstacle for gas sensors based on bulk materials or dense films to achieve highly-sensitive properties. Lots of metal oxide nanostructures have been developed to improve the gas sensing properties such as sensitivity, selectivity, response speed, and so on. Here, we provide a brief overview of metal oxide nanostructures and their gas sensing properties from the aspects of particle size, morphology and doping. When the particle size of metal oxide is close to or less than double thickness of the space-charge layer, the sensitivity of the sensor will increase remarkably, which would be called "small size effect", yet small size of metal oxide nanoparticles will be compactly sintered together during the film coating process which is disadvantage for gas diffusion in them. In view of those reasons, nanostructures with many kinds of shapes such as porous nanotubes, porous nanospheres and so on have been investigated, that not only possessed large surface area and relatively mass reactive sites, but also formed relatively loose film structures which is an advantage for gas diffusion. Besides, doping is also an effective method to decrease particle size and improve gas sensing properties. Therefore, the gas sensing properties of metal oxide nanostructures assembled by nanoparticles are reviewed in this article. The effect of doping is also summarized and finally the perspectives of metal oxide gas sensor are given.

  12. Synthesis of the cactus-like silicon nanowires/tungsten oxide nanowires composite for room-temperature NO{sub 2} gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiyi, E-mail: zhangweiyi@tju.edu.cn [School of Electronic Information Engineering, Tianjin University, Tianjin, 300072 (China); Hu, Ming [School of Electronic Information Engineering, Tianjin University, Tianjin, 300072 (China); Key Laboratory for Advanced Ceramics and Machining Technology, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Liu, Xing; Wei, Yulong; Li, Na [School of Electronic Information Engineering, Tianjin University, Tianjin, 300072 (China); Qin, Yuxiang, E-mail: qinyuxiang@tju.edu.cn [School of Electronic Information Engineering, Tianjin University, Tianjin, 300072 (China); Key Laboratory for Advanced Ceramics and Machining Technology, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2016-09-15

    In the present work, the tungsten oxide (WO{sub 3}) nanowires functionalized silicon nanowires (SiNWs) with cactus-like structure has been successfully synthesized for room-temperature NO{sub 2} detection. The novel nanocomposite was fabricated by metal-assisted chemical etching (MACE) and thermal annealing of tungsten film. The WO{sub 3} nanowires were evenly distributed from the upper to the lower part of the SiNWs, indicating excellent uniformity which is conducive to adsorption and desorption of gas molecules. The gas-sensing properties have been examined by measuring the resistance change towards 0.25–5 ppm NO{sub 2} gas. At room temperature, which is the optimum working temperature, the SiNWs/WO{sub 3} nanowires composite showed two-times higher NO{sub 2} response than that of the bare SiNWs at 2 ppm NO{sub 2}. On the contrary, the responses of composite sensors to high concentrations of other reducing gases were very low, indicating excellent selectivity. Simultaneously, the composite sensors exhibited good sensing repeatability and stability. The enhancement in gas sensing properties may be attributed to the change in width of the space charge region, which is similar to the behavior of p-n junctions under forward bias, in the high-density p-n heterojunction structure formed between SiNWs and WO{sub 3} nanowires. - Highlights: • SiNWs/WO{sub 3} nanowires composite with cactus-like structure is synthesized. • The morphology of WO{sub 3} nanowires depends on the thermal annealing temperature. • The nanocomposite sensor exhibit better gas response than that of bare SiNWs. • The gas sensing mechanism is discussed using p-n heterojunction theory.

  13. Gas sensing performance at room temperature of nanogap interdigitated electrodes for detection of acetone at low concentration

    NARCIS (Netherlands)

    Minh, Q. Nguyen; Tong, H.D.; Kuijk, A.; van de Bent, F.; Beekman, Pepijn; Van Rijn, C. J.M.

    2017-01-01

    A facile approach for the fabrication of large-scale interdigitated nanogap electrodes (nanogap IDEs) with a controllable gap was demonstrated with conventional micro-fabrication technology to develop chemocapacitors for gas sensing applications. In this work, interdigitated nanogap electrodes

  14. High resolution temperature mapping of gas turbine combustor simulator exhaust with femtosecond laser induced fiber Bragg gratings

    Science.gov (United States)

    Walker, Robert B.; Yun, Sangsig; Ding, Huimin; Charbonneau, Michel; Coulas, David; Lu, Ping; Mihailov, Stephen J.; Ramachandran, Nanthan

    2017-04-01

    Femtosecond infrared (fs-IR) laser written fiber Bragg gratings (FBGs), have demonstrated great potential for extreme sensing. Such conditions are inherent in advanced gas turbine engines under development to reduce greenhouse gas emissions; and the ability to measure temperature gradients in these harsh environments is currently limited by the lack of sensors and controls capable of withstanding the high temperature, pressure and corrosive conditions present. This paper discusses fabrication and deployment of several fs-IR written FBG arrays, for monitoring exhaust temperature gradients of a gas turbine combustor simulator. Results include: contour plots of measured temperature gradients, contrast with thermocouple data.

  15. Acetylene Gas-Sensing Properties of Layer-by-Layer Self-Assembled Ag-Decorated Tin Dioxide/Graphene Nanocomposite Film

    Directory of Open Access Journals (Sweden)

    Chuanxing Jiang

    2017-09-01

    Full Text Available This paper demonstrates an acetylene gas sensor based on an Ag-decorated tin dioxide/reduced graphene oxide (Ag–SnO2/rGO nanocomposite film, prepared by layer-by-layer (LbL self-assembly technology. The as-prepared Ag–SnO2/rGO nanocomposite was characterized by scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD and Raman spectrum. The acetylene sensing properties were investigated using different working temperatures and gas concentrations. An optimal temperature of 90 °C was determined, and the Ag–SnO2/rGO nanocomposite sensor exhibited excellent sensing behaviors towards acetylene, in terms of response, repeatability, stability and response/recovery characteristics, which were superior to the pure SnO2 and SnO2/rGO film sensors. The sensing mechanism of the Ag–SnO2/rGO sensor was attributed to the synergistic effect of the ternary nanomaterials, and the heterojunctions created at the interfaces between SnO2 and rGO. This work indicates that the Ag–SnO2/rGO nanocomposite is a good candidate for constructing a low-temperature acetylene sensor.

  16. Acetylene Gas-Sensing Properties of Layer-by-Layer Self-Assembled Ag-Decorated Tin Dioxide/Graphene Nanocomposite Film

    Science.gov (United States)

    Jiang, Chuanxing; Yin, Nailiang; Yao, Yao; Shaymurat, Talgar; Zhou, Xiaoyan

    2017-01-01

    This paper demonstrates an acetylene gas sensor based on an Ag-decorated tin dioxide/reduced graphene oxide (Ag–SnO2/rGO) nanocomposite film, prepared by layer-by-layer (LbL) self-assembly technology. The as-prepared Ag–SnO2/rGO nanocomposite was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectrum. The acetylene sensing properties were investigated using different working temperatures and gas concentrations. An optimal temperature of 90 °C was determined, and the Ag–SnO2/rGO nanocomposite sensor exhibited excellent sensing behaviors towards acetylene, in terms of response, repeatability, stability and response/recovery characteristics, which were superior to the pure SnO2 and SnO2/rGO film sensors. The sensing mechanism of the Ag–SnO2/rGO sensor was attributed to the synergistic effect of the ternary nanomaterials, and the heterojunctions created at the interfaces between SnO2 and rGO. This work indicates that the Ag–SnO2/rGO nanocomposite is a good candidate for constructing a low-temperature acetylene sensor. PMID:28927021

  17. Structural, optical and gas sensing properties of screen-printed nanostructured Sr-doped SnO2 thick film sensor

    International Nuclear Information System (INIS)

    Shaikh, F.I.; Chikhale, L.P.; Patil, J.Y.; Rajgure, A.V.; Suryavanshi, S.S.; Mulla, I.S.

    2013-01-01

    The nanocrystalline materials of strontium doped tin oxide powders were synthesized by conventional co-precipitation method. Synthesized nanophase SnO 2 powders were used to fabricate thick films of pure and Sr-doped SnO 2 using screen-printing technology and investigated for their gas sensing properties towards LPG, ethanol, ammonia and acetone vapor. The crystal structure and phase of the sintered powders were characterized by X-ray diffractometer (XRD) and microstructure by scanning electron microscopy (SEM). All the doped and undoped SnO 2 compositions revealed single phase and solid solution formation. X-ray diffractometer (XRD) results indicated that well crystallized Sr-doped SnO 2 particles of size about 10 nm were obtained at sintering temperature 700℃. The optical properties viz. UV-Vis, FTIR and Raman were used to characterize various physico-chemical properties of samples. The reduction of grain size in metal oxide is a key factor to enhance the gas sensing properties. The doping of Sr in SnO 2 has reduced the grain size and improved the gas response. The results of gas sensing measurements showed that the thick films deposited on alumina substrates using screen-printing technique exhibited high gas response, quick response time and fast recovery time to acetone gas at a working temperature of 250℃. Further, the selectivity of sensor towards acetone with respect to other reducing gases (LPG, ethanol, ammonia) was studied. (author)

  18. Highly sensitive and selective room-temperature NO{sub 2} gas sensor based on bilayer transferred chemical vapor deposited graphene

    Energy Technology Data Exchange (ETDEWEB)

    Seekaew, Yotsarayuth [Department of Physics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900 (Thailand); Phokharatkul, Ditsayut; Wisitsoraat, Anurat [Nanoelectronics and MEMS Laboratory, National Electronics and Computer Technology Center, Klong Luang, Pathumthani 12120 (Thailand); Wongchoosuk, Chatchawal, E-mail: chatchawal.w@ku.ac.th [Department of Physics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900 (Thailand)

    2017-05-15

    Highlights: • Simple and low-cost fabrication of bilayer graphene gas sensor was presented. • Layer effects of graphene on NO{sub 2} gas-sensing properties were investigated. • Bilayer graphene sensor exhibited a high linear NO{sub 2} sensitivity of 1.409 ppm{sup −1}. • The NO{sub 2}-sensing mechanisms based on band diagram were highlighted. - Abstract: This work presents a highly sensitive room-temperature gas sensor based on bilayer graphene fabricated by an interfacial transfer of chemical vapor deposited graphene onto nickel interdigitated electrodes. Scanning electron microscopic and Raman spectroscopic characterizations confirm the presence of graphene on interdigitated nickel electrodes with varying numbers of graphene layers. The NO{sub 2} detection performances of bilayer graphene gas sensor have been investigated in comparison with those of monolayer and multilayer graphene gas sensors at room temperature. From results, the bilayer graphene gas sensor exhibits higher response, sensitivity and selectivity to NO{sub 2} than monolayer and multilayer graphene. The sensitivity of bilayer graphene gas sensor is 1.409 ppm{sup −1} towards NO{sub 2} over a concentration range of 1–25 ppm, which is more than twice higher than that of monolayer graphene. The NO{sub 2}-sensing mechanism of graphene sensing film has been explained based on the direct charge transfer process due to the adsorption of NO{sub 2} molecules.

  19. Effects of Operating Temperature on Droplet Casting of Flexible Polymer/Multi-Walled Carbon Nanotube Composite Gas Sensors

    Directory of Open Access Journals (Sweden)

    Jin-Chern Chiou

    2016-12-01

    Full Text Available This study examined the performance of a flexible polymer/multi-walled carbon nanotube (MWCNT composite sensor array as a function of operating temperature. The response magnitudes of a cost-effective flexible gas sensor array equipped with a heater were measured with respect to five different operating temperatures (room temperature, 40 °C, 50 °C, 60 °C, and 70 °C via impedance spectrum measurement and sensing response experiments. The selected polymers that were droplet cast to coat a MWCNT conductive layer to form two-layer polymer/MWCNT composite sensing films included ethyl cellulose (EC, polyethylene oxide (PEO, and polyvinylpyrrolidone (PVP. Electrical characterization of impedance, sensing response magnitude, and scanning electron microscope (SEM morphology of each type of polymer/MWCNT composite film was performed at different operating temperatures. With respect to ethanol, the response magnitude of the sensor decreased with increasing operating temperatures. The results indicated that the higher operating temperature could reduce the response and influence the sensitivity of the polymer/MWCNT gas sensor array. The morphology of polymer/MWCNT composite films revealed that there were changes in the porous film after volatile organic compound (VOC testing.

  20. Influence of sol concentration on CdO nanostructure with gas sensing application

    Energy Technology Data Exchange (ETDEWEB)

    Rajput, Jeevitesh K. [Semiconductor Research Lab, Department of Physics, Gurukula Kangri University, Haridwar (India); Pathak, Trilok K. [Department of Physics, University of the Free State, Bloemfontein (South Africa); Kumar, Vinod [Photovoltaic Laboratory, Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi (India); Purohit, L.P., E-mail: lppurohit@gmail.com [Semiconductor Research Lab, Department of Physics, Gurukula Kangri University, Haridwar (India)

    2017-07-01

    Highlights: • CdO thin films are prepared by spin coater of precursor solution of different molarity. • Nano-structure of CdO is cauliflower like change with concentration. • Relation of strain and crystal size with conductivity as a function of molarity. • A CdO thin film shows nitrogen sensing at room temperature. - Abstract: The effect of sol concentration has been investigated on the sol-gel derived CdO nanostructures to optimize the optical and electrical properties enhancing gas sensing properties at low temperatures. X-ray diffraction patterns show that 0.5 M CdO film has cubic structure (111) preferred orientation with 34 nm particle size. Scanning electron micrographs indicated concentration dependent surface morphology. The optical band gap energy for highly transparent thin films increases from 1.9 eV to 2.34 eV as molarity was increased from 0.2 M to 1.0 M. The photoluminescence spectra of the samples have a violet to blue emission peak centred at 435 nm. J-V characteristics show that thin film of 0.5 M has conductivity 1.41 × 10{sup −3} S/m. The sensor characteristic such as response curve, sensor response, response time and recovery time were measured for optimized thin film at different operating temperatures. The sensor response was found 20% near room temperature (32 °C) and proportional to temperature. Fastest response time 10 s and recovery time 20 s were observed near room temperature. The resistivity of sensor was found to decrease in presence of gas attribute to more charge carriers with flower like morphology. Our study is encouraging to get faster response by CdO thin films near room temperature.

  1. CO gas sensing of CuO nanostructures, synthesized by an assisted solvothermal wet chemical route

    International Nuclear Information System (INIS)

    Aslani, Alireza; Oroojpour, Vahid

    2011-01-01

    CuO nanostructures with different morphologies and sizes were grown in a controlled manner using a simple low-temperature hydrothermal technique. By controlling the pH of reaction mixture, spherical nanoparticles and cloudlike CuO structures were synthesized at 100-150 o C with excellent efficiency. These CuO nanostructures have been tested for CO gas monitoring by depositing them as thick films on an interdigitated alumina substrate and evaluated the surface resistance of the deposited layer as a function of operating temperature and CO concentrations. The gas sensitivity tests have demonstrated that the CuO nanostructures, especially cloudlike morphology, exhibit high sensitivity to CO proving their applicability in gas sensors. The role of the nanostructure on the sensing properties of CuO is also discussed.

  2. Gas sensing properties of magnesium ferrite prepared by co-precipitation method

    International Nuclear Information System (INIS)

    Hankare, P.P.; Jadhav, S.D.; Sankpal, U.B.; Patil, R.P.; Sasikala, R.; Mulla, I.S.

    2009-01-01

    Polycrystalline magnesium ferrite (MgFe 2 O 4 ) was prepared by the co-precipitation method. The synthesized compound was characterized for their phase and morphology by X-ray diffraction and scanning electron microscopy, respectively. Conductance responses of the (MgFe 2 O 4 ) were measured towards gases like hydrogen sulfide (H 2 S), liquefied petroleum gas (LPG), ethanol vapors (C 2 H 5 OH), SO x , H 2 , NO x , NH 3, methanol, acetone and petrol. The gas sensing characterstics were obtained by measuring the sensitivity as a function of various controlling factors like operating temperatures and concentrations of gases. It was found that the sensor exhibited various responses towards these gases at different operating temperatures. Furthermore; the MgFe 2 O 4 based sensor exhibited a fast response and a good recovery towards petrol at temperature 250 deg. C. The results of the response towards petrol reveal that (MgFe 2 O 4 ) synthesized by a simple co-precipitation method, would be a suitable material for the fabrication of the petrol sensor.

  3. Design and Development of Polysilicon-based Microhotplate for Gas Sensing Application

    Directory of Open Access Journals (Sweden)

    Mahanth PRASAD

    2009-04-01

    Full Text Available The paper presents the design and development of a polysilicon-based microhotplate (MHP on a SiO2 membrane formed by bulk micromachining in orientation P-type silicon. The chip comprises four microheater cells, which can be used separately or in series combination. The chip size is 2.1 × 2.1 sq. mm. The design and simulation of a single-cell microhotplate is carried out using ANSYS. The complete fabrication process is described in this paper. The temperature coefficient of resistance (TCR of polysilicon resistors of values 5.7 kW and 3.36 kW has been measured as 0.69 × 10-3 and 0.5 × 10-3 per °C respectively. These values are used to estimate the temperature of the polysilicon heater by measuring the change in resistance value of the resistor on applying a voltage to it. Temperatures up to 367 °C have been calculated at low bias voltages. As the sensitivity of the gas sensing film is temperature dependent, the developed hotplate will be used as a platform for fabricating the gas sensors.

  4. Sensing the gas metal arc welding process

    Science.gov (United States)

    Carlson, N. M.; Johnson, J. A.; Smartt, H. B.; Watkins, A. D.; Larsen, E. D.; Taylor, P. L.; Waddoups, M. A.

    1994-01-01

    Control of gas metal arc welding (GMAW) requires real-time sensing of the process. Three sensing techniques for GMAW are being developed at the Idaho National Engineering Laboratory (INEL). These are (1) noncontacting ultrasonic sensing using a laser/EMAT (electromagnetic acoustic transducer) to detect defects in the solidified weld on a pass-by-pass basis, (2) integrated optical sensing using a CCD camera and a laser stripe to obtain cooling rate and weld bead geometry information, and (3) monitoring fluctuations in digitized welding voltage data to detect the mode of metal droplet transfer and assure that the desired mass input is achieved.

  5. Ethylene Gas Sensing Properties of Tin Oxide Nanowires Synthesized via CVD Method

    Science.gov (United States)

    Akhir, Maisara A. M.; Mohamed, Khairudin; Rezan, Sheikh A.; Arafat, M. M.; Haseeb, A. S. M. A.; Uda, M. N. A.; Nuradibah, M. A.

    2018-03-01

    This paper studies ethylene gas sensing performance of tin oxide (SnO2) nanowires (NWs) as sensing material synthesized using chemical vapor deposition (CVD) technique. The effect of NWs diameter on ethylene gas sensing characteristics were investigated. SnO2 NWs with diameter of ∼40 and ∼240 nm were deposited onto the alumina substrate with printed gold electrodes and tested for sensing characteristic toward ethylene gas. From the finding, the smallest diameter of NWs (42 nm) exhibit fast response and recovery time and higher sensitivity compared to largest diameter of NWs (∼240 nm). Both sensor show good reversibility features for ethylene gas sensor.

  6. Simple Synthesis of ZnCo2O4 Nanoparticles as Gas-sensing Materials

    Directory of Open Access Journals (Sweden)

    S. V. Bangale

    2011-11-01

    Full Text Available Semiconductive nanometer-size material ZnCo2O4 was synthesized by a solution combustion reaction of inorganic reagents of Zn(NO33. 6H2O, Co(NO33.6H2O and glycine as a fuel. The process was a convenient, environment friendly, inexpensive and efficient preparation method for the ZnCo2O4 nanomaterial. The synthesized materials were characterized by TG/DTA, XRD, EDX, SEM, and TEM. Conductance responses of the nanocrystalline ZnCo2O4 thick film were measured by exposing the film to reducing gases like Acetone, Ethanol, Ammonia (NH3, Hydrogen (H2, Hydrogen sulphide (H2S, Chlorine (Cl2 and Liquefied petroleum gas (LPG. It was found that the sensors exhibited various sensing responses to these gases at different operating temperature. Furthermore, the sensor exhibited a fast response and a good recovery. The results demonstrated that ZnCo2O4 can be used as a new type of gas-sensing material which has a high sensitivity and good selectivity to Liquefied petroleum gas (LPG at 100 ppm.

  7. Gas sensing behaviour of Cr{sub 2}O{sub 3} and W{sup 6+}: Cr{sub 2}O{sub 3} nanoparticles towards acetone

    Energy Technology Data Exchange (ETDEWEB)

    Kohli, Nipin, E-mail: nipinkohli82@yahoo.com; Hastir, Anita; Singh, Ravi Chand [Department of Physics, Guru Nanak Dev University, Amritsar-143005 (India)

    2016-05-23

    This paper reports the acetone gas sensing properties of Cr{sub 2}O{sub 3} and 2% W{sup 6+} doped Cr{sub 2}O{sub 3} nanoparticles. The simple cost-effective hydrolysis assisted co-precipitation method was adopted. Synthesized samples were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) techniques. XRD revealed that synthesized nanoparticles have corundum structure. The lattice parameters have been calculated by Rietveld refinement; and strain and crystallite size have been calculated by using the Williamson-Hall plots. For acetone gas sensing properties, the nanoparticles were applied as thick film onto alumina substrate and tested at different operating temperatures. The results showed that the optimum operating temperature of both the gas sensors is 250°C. At optimum operating temperature, the response of Cr{sub 2}O{sub 3} and 2% W{sup 6+} doped Cr{sub 2}O{sub 3} gas sensor towards 100 ppm acetone was found to be 25.5 and 35.6 respectively. The investigations revealed that the addition of W{sup 6+} as a dopant enhanced the sensing response of Cr{sub 2}O{sub 3} nanoparticles appreciably.

  8. Novel low-temperature growth of SnO2 nanowires and their gas-sensing properties

    International Nuclear Information System (INIS)

    Kumar, R. Rakesh; Parmar, Mitesh; Narasimha Rao, K.; Rajanna, K.; Phani, A.R.

    2013-01-01

    Graphical abstract: -- A simple thermal evaporation method is presented for the growth of crystalline SnO 2 nanowires at a low substrate temperature of 450 °C via an gold-assisted vapor–liquid–solid mechanism. The as-grown nanowires were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction, and were also tested for methanol vapor sensing. Transmission electron microscopy studies revealed the single-crystalline nature of the each nanowire. The fabricated sensor shows good response to methanol vapor at an operating temperature of 450 °C.

  9. Gas Sensing Properties of ZnO-SnO2 Nanostructures.

    Science.gov (United States)

    Chen, Weigen; Li, Qianzhu; Xu, Lingna; Zeng, Wen

    2015-02-01

    One-dimensional (1D) semiconductor metal oxide nanostructures have attracted increasing attention in electrochemistry, optics, magnetic, and gas sensing fields for the good properties. N-type low dimensional semiconducting oxides such as SnO2 and ZnO have been known for the detection of inflammable or toxic gases. In this paper, we fabricated the ZnO-SnO2 and SnO2 nanoparticles by hydrothermal synthesis. Microstructure characterization was performed using X-ray diffraction (XRD) and surface morphologies for both the pristine and doped samples were observed using field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Then we made thin film gas sensor to study the gas sensing properties of ZnO-SnO2 and SnO2 gas sensor to H2 and CO. A systematic comparison study reveals an enhanced gas sensing performance for the sensor made of SnO2 and ZnO toward H2 and CO over that of the commonly applied undecorated SnO2 nanoparticles. The improved gas sensing properties are attributed to the size of grains and pronounced electron transfer between the compound nanostructures and the absorbed oxygen species as well as to the heterojunctions of the ZnO nanoparticles to the SnO2 nanoparticles, which provide additional reaction rooms. The results represent an advance of compound nanostructures in further enhancing the functionality of gas sensors, and this facile method could be applicable to many sensing materials, offering a new avenue and direction to detect gases of interest based on composite tin oxide nanoparticles.

  10. Infrared laser spectroscopic trace gas sensing

    Science.gov (United States)

    Sigrist, Markus

    2016-04-01

    Chemical sensing and analyses of gas samples by laser spectroscopic methods are attractive owing to several advantages such as high sensitivity and specificity, large dynamic range, multi-component capability, and lack of pretreatment or preconcentration procedures. The preferred wavelength range comprises the fundamental molecular absorption range in the mid-infared between 3 and 15 μm, whereas the near-infrared range covers the (10-100 times weaker) higher harmonics and combination bands. The availability of near-infrared and, particularly, of broadly tunable mid-infrared sources like external cavity quantum cascade lasers (EC-QCLs), interband cascade lasers (ICLs), difference frequency generation (DFG), optical parametric oscillators (OPOs), recent developments of diode-pumped lead salt semiconductor lasers, of supercontinuum sources or of frequency combs have eased the implementation of laser-based sensing devices. Sensitive techniques for molecular absorption measurements include multipass absorption, various configurations of cavity-enhanced techniques such as cavity ringdown (CRD), or of photoacoustic spectroscopy (PAS) including quartz-enhanced (QEPAS) or cantilever-enhanced (CEPAS) techniques. The application requirements finally determine the optimum selection of laser source and detection scheme. In this tutorial talk I shall discuss the basic principles, present various experimental setups and illustrate the performance of selected systems for chemical sensing of selected key atmospheric species. Applications include an early example of continuous vehicle emission measurements with a mobile CO2-laser PAS system [1]. The fast analysis of C1-C4 alkanes at sub-ppm concentrations in gas mixtures is of great interest for the petrochemical industry and was recently achieved with a new type of mid-infrared diode-pumped piezoelectrically tuned lead salt vertical external cavity surface emitting laser (VECSEL) [2]. Another example concerns measurements on short

  11. Hepatitis B virus evasion from cGAS sensing in human hepatocytes.

    Science.gov (United States)

    Verrier, Eloi R; Yim, Seung-Ae; Heydmann, Laura; El Saghire, Houssein; Bach, Charlotte; Turon-Lagot, Vincent; Mailly, Laurent; Durand, Sarah C; Lucifora, Julie; Durantel, David; Pessaux, Patrick; Manel, Nicolas; Hirsch, Ivan; Zeisel, Mirjam B; Pochet, Nathalie; Schuster, Catherine; Baumert, Thomas F

    2018-04-20

    Chronic hepatitis B virus (HBV) infection is a major cause of chronic liver disease and cancer worldwide. The mechanisms of viral genome sensing and the evasion of innate immune responses by HBV infection are still poorly understood. Recently, the cyclic GMP-AMP synthase (cGAS) was identified as a DNA sensor. In this study, we aimed to investigate the functional role of cGAS in sensing of HBV infection and elucidate the mechanisms of viral evasion. We performed functional studies including loss- and gain-of-function experiments combined with cGAS effector gene expression profiling in an infectious cell culture model, primary human hepatocytes and HBV-infected human liver chimeric mice. Here we show that cGAS is expressed in the human liver, primary human hepatocytes and human liver chimeric mice. While naked relaxed-circular HBV DNA is sensed in a cGAS-dependent manner in hepatoma cell lines and primary human hepatocytes, host cell recognition of viral nucleic acids is abolished during HBV infection, suggesting escape from sensing, likely during packaging of the genome into the viral capsid. While the hepatocyte cGAS pathway is functionally active, as shown by reduction of viral cccDNA levels in gain-of-function studies, HBV infection suppressed cGAS expression and function in cell culture models and humanized mice. HBV exploits multiple strategies to evade sensing and antiviral activity of cGAS and its effector pathways. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.

  12. Gas sensor with multiple internal reference electrodes and sensing electrodes

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a potentiometric gas sensor, or potentiometric gas detection element, with multiple internal reference electrodes and multiple sensing electrodes for determining the concentrations of gas components in a gaseous mixture. The sensor for gas detection comprises: a solid...

  13. Distributed temperature and distributed acoustic sensing for remote and harsh environments

    Science.gov (United States)

    Mondanos, Michael; Parker, Tom; Milne, Craig H.; Yeo, Jackson; Coleman, Thomas; Farhadiroushan, Mahmoud

    2015-05-01

    Advances in opto-electronics and associated signal processing have enabled the development of Distributed Acoustic and Temperature Sensors. Unlike systems relying on discrete optical sensors a distributed system does not rely upon manufactured sensors but utilises passive custom optical fibre cables resistant to harsh environments, including high temperature applications (600°C). The principle of distributed sensing is well known from the distributed temperature sensor (DTS) which uses the interaction of the source light with thermal vibrations (Raman scattering) to determine the temperature at all points along the fibre. Distributed Acoustic Sensing (DAS) uses a novel digital optical detection technique to precisely capture the true full acoustic field (amplitude, frequency and phase) over a wide dynamic range at every point simultaneously. A number of signal processing techniques have been developed to process a large array of acoustic signals to quantify the coherent temporal and spatial characteristics of the acoustic waves. Predominantly these systems have been developed for the oil and gas industry to assist reservoir engineers in optimising the well lifetime. Nowadays these systems find a wide variety of applications as integrity monitoring tools in process vessels, storage tanks and piping systems offering the operator tools to schedule maintenance programs and maximize service life.

  14. Flexible Transparent Films Based on Nanocomposite Networks of Polyaniline and Carbon Nanotubes for High-Performance Gas Sensing.

    Science.gov (United States)

    Wan, Pengbo; Wen, Xuemei; Sun, Chaozheng; Chandran, Bevita K; Zhang, Han; Sun, Xiaoming; Chen, Xiaodong

    2015-10-28

    A flexible, transparent, chemical gas sensor is assembled from a transparent conducting film of carbon nanotube (CNT) networks that are coated with hierarchically nanostructured polyaniline (PANI) nanorods. The nanocomposite film is synthesized by in-situ, chemical oxidative polymerization of aniline in a functional multiwalled CNT (FMWCNT) suspension and is simultaneously deposited onto a flexible polyethylene terephthalate (PET) substrate. An as-prepared flexible transparent chemical gas sensor exhibits excellent transparency of 85.0% at 550 nm using the PANI/FMWCNT nanocomposite film prepared over a reaction time of 8 h. The sensor also shows good flexibility, without any obvious decrease in performance after 500 bending/extending cycles, demonstrating high-performance, portable gas sensing at room temperature. This superior performance could be attributed to the improved electron transport and collection due to the CNTs, resulting in reliable and efficient sensing, as well as the high surface-to-volume ratio of the hierarchically nanostructured composites. The excellent transparency, improved sensing performance, and superior flexibility of the device, may enable the integration of this simple, low-cost, gas sensor into handheld flexible transparent electronic circuitry and optoelectronic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synthesis and gas-sensing characteristics of α-Fe2O3 hollow balls

    Directory of Open Access Journals (Sweden)

    Chu Manh Hung

    2016-03-01

    Full Text Available The synthesis of porous metal-oxide semiconductors for gas-sensing application is attracting increased interest. In this study, α-Fe2O3 hollow balls were synthesized using an inexpensive, scalable, and template-free hydrothermal method. The gas-sensing characteristics of the semiconductors were systematically investigated. Material characterization by XRD, SEM, HRTEM, and EDS reveals that single-phase α-Fe2O3 hollow balls with an average diameter of 1.5 μm were obtained. The hollow balls were formed by self assembly of α-Fe2O3 nanoparticles with an average diameter of 100 nm. The hollow structure and nanopores between the nanoparticles resulted in the significantly high response of the α-Fe2O3 hollow balls to ethanol at working temperatures ranging from 250 °C to 450 °C. The sensor also showed good selectivity over other gases, such as CO and NH3 promising significant application.

  16. Preparation of nanostructured ZrO2 thin films by using spray pyrolysis technique for gas sensing application

    International Nuclear Information System (INIS)

    Deshmukh, S.B.; Bari, R.H.; Jain, G.H.

    2013-01-01

    In present work the nano-structured pure ZrO 2 thin films were prepared using spray pyrolysis techniques. The aqueous solution of ZrCl 4 , was used as a precursor with flow rate controlled 5 mI/min. The films were synthesized on glass substrate between temperature 250-400℃ and subjected to different analytical characterization like SEM, XRD, TEM, FTIR, UV, TGA-DTA/DSC. The gas sensing performances of various gases were tested in different operating temperature range. The sensitivity, selectivity, response and recovery time for H 2 S gas was discussed. Also nano structured grain size discussed. (author)

  17. Evaluation of gas-sensing properties of ZnO nanostructures electrochemically doped with Au nanophases

    Directory of Open Access Journals (Sweden)

    Elena Dilonardo

    2016-01-01

    Full Text Available A one-step electrochemical method based on sacrificial anode electrolysis (SAE was used to deposit stabilized gold nanoparticles (Au NPs directly on the surface of nanostructured ZnO powders, previously synthesized through a sol–gel process. The effect of thermal annealing temperatures (300 and 550 °C on chemical, morphological, and structural properties of pristine and Au-doped ZnO nancomposites (Au@ZnO was investigated. Transmission and scanning electron microscopy (TEM and SEM, as well as X-ray photoelectron spectroscopy (XPS, revealed the successful deposition of nanoscale gold on the surface of spherical and rod-like ZnO nanostructures, obtained after annealing at 300 and 550 °C, respectively. The pristine ZnO and Au@ZnO nanocomposites are proposed as active layer in chemiresistive gas sensors for low-cost processing. Gas-sensing measurements towards NO2 were collected at 300 °C, evaluating not only the Au-doping effect, but also the influence of the different ZnO nanostructures on the gas-sensing properties.

  18. Gas sensing properties of graphene–WO3 composites prepared by hydrothermal method

    International Nuclear Information System (INIS)

    Chu, Xiangfeng; Hu, Tao; Gao, Feng; Dong, Yongping; Sun, Wenqi; Bai, Linshan

    2015-01-01

    Graphical abstract: - Highlights: • The amount of graphene had an effect on the morphology of graphene–WO 3 composites. • The optimum temperature of 0.1 wt% graphene–WO 3 sensor to acetaldehyde was 100 °C. • 0.1 wt% graphene–WO 3 sensor exhibited good selectivity to acetaldehyde at 100 °C. - Abstract: Graphene–WO 3 composites mixed with different amounts of graphene (0, 0.1, 0.5, 1 and 3 wt%) were prepared by hydrothermal method at 180 °C for 24 h. The as-prepared graphite oxide, graphene and graphene–WO 3 composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectra (FT-IR) and Raman spectroscopy, respectively. The effect of the amount of graphene in the composites on the gas-sensing responses and the gas-sensing selectivity of the materials was investigated. The experimental results revealed that the sensor based on 0.1 wt% graphene–WO 3 composite exhibited high response and good selectivity to acetaldehyde vapor at 100 °C, the optimum operating temperature of this sensor to 1000 ppm acetaldehyde vapor decreased from 180 °C to 100 °C comparing with that of pure WO 3 . The response time and the recovery time for 100 ppm acetaldehyde vapor were 250 s and 225 s, respectively

  19. Study of sensing properties of SnO2 prepared by spray-pyrolysis deposition towards ethanol gas

    Science.gov (United States)

    Saadaldin, Nasser M.; Hussain, Nabiha; AlZouabi, Abla

    2018-05-01

    Ethanol is widely used in all kinds of products with direct exposure to the human skin (e.g. medicinal products like hand disinfectants in occupational settings, cosmetics like hairsprays or mouthwashes, in this study, thin films of (SnO2) were deposited by using the thermal spray method (SPD) on quartz at 450°C substrate temperature using tin chloride SnCl2.2H2O, (1.0M). A gas sensor was constructed with the prepared SnO2, used to detect ethanol gas and some other gases. The films were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM). The grain size was calculated the results showed nanostructure polycrystalline and crystallize in a tetragonal, S.G:P42/m nm, reaching grain Size approximately 27nm. The sensing properties of the films were studied towards ethanol at different concentrations ranging within (1-200 ppm,) the results showed that the sensitivity of the film increases with the concentration of ethanol, the best operating temperature reached about 300 °C, We studied the sensing properties of the films towards Ethanol alcohol gas, The first and foremost concerns of topical ethanol applications for public health are its carcinogenic effects, high selectivity and sensitivity of the film towards ethanol gas was found compared to other tested toxic gases such as methanol gas, acetone and methylbenzene. Yet an upto-date risk assessment of ethanol application on the skin and inside the oral cavity is currently lacking.

  20. Study on Gas Sensing Performance of TiO2 Screen Printed Thick Films

    Directory of Open Access Journals (Sweden)

    C. G. DIGHAVKAR

    2009-02-01

    Full Text Available Titanium dioxide (TiO2 thick films were prepared on alumina substrate by using screen printing technique. After preparation, the films were fired at temperature range 600 -1000 ºC for two hour. Morphological, compositional and structural properties of the film samples were performed by means of several techniques, including scanning electron microscopy (SEM, Energy dispersive spectroscopy (EDS, X-ray diffraction techniques. We explore the various gases to study the sensing performance of the TiO2 thick films. The maximum response was reported to film fired at 800 0C for LPG gas at 350 0C operating temperature.

  1. Fabrication, characterization and gas sensing properties of gold ...

    Indian Academy of Sciences (India)

    Calixarenes are a group of materials that are widely used for gas sensing studies because of their simple synthesis, conformational flexibility, binding group tunability, variability in their cavity sizes and improved selectivity to different gas molecules. In recent years it has been shown that incorporation of gold nanoparticles ...

  2. TiO2 Nanotubes: Recent Advances in Synthesis and Gas Sensing Properties

    Directory of Open Access Journals (Sweden)

    Giorgio Sberveglieri

    2013-10-01

    Full Text Available Synthesis—particularly by electrochemical anodization-, growth mechanism and chemical sensing properties of pure, doped and mixed titania tubular arrays are reviewed. The first part deals on how anodization parameters affect the size, shape and morphology of titania nanotubes. In the second part fabrication of sensing devices based on titania nanotubes is presented, together with their most notable gas sensing performances. Doping largely improves conductivity and enhances gas sensing performances of TiO2 nanotubes

  3. Ethanol gas sensing performance of high-dimensional fuzz metal oxide nanostructure

    Science.gov (United States)

    Ibano, Kenzo; Kimura, Yoshihiro; Sugahara, Tohru; Lee, Heun Tae; Ueda, Yoshio

    2018-04-01

    Gas sensing ability of the He plasma induced fiber-like nanostructure, so-called fuzz structure, was firstly examined. A thin Mo layer deposited on a quartz surface was irradiated by He plasma to form the fuzz structure and oxidized by annealing in a quartz furnace. Electric conductivity of the fuzz Mo oxide layer was then measured through the Au electrodes deposited on the layer. Changes in electric conductivity by C2H5OH gas flow were examined as a function of temperature from 200 to 400 °C. Improved sensitivities were observed for the specimens after a fuzz nanostructure formation. However, the sensor developed in this study showed lower sensitivities than previously reported MoO3 nano-rod sensor, further optimization of oxidation is needed to improve the sensitivity.

  4. Preparation and Study the Electrical, Structural and Gas Sensing Properties of ZnO Thick Film Resistor

    Directory of Open Access Journals (Sweden)

    M. K. DEORE

    2010-08-01

    Full Text Available Thick films of AR grade ZnO were prepared on glass substrate by screen-printing technique. These films were dried and fired at different temperatures between 550 oC, 600 oC and 650 oC for one hour in air atmosphere. The gas sensing performance of thick films was tested for various gases. ZnO films showed larger response (sensitivity to H2S gas (100 ppm at 250 oC for firing temperature 650 oC. The Morphological, Compositional and Structural properties of the ZnO thick films were performed by Scanning electron microscopy (SEM, Energy dispersive spectroscopy (EDX and XRD technique respectively. Chemical composition of ZnO film samples changes with firing temperature showing non-stoichiometric behaviours. XRD study indicated the formation of polycrystalline ZnO films with hexagonal wurtzite structure. The gas response (sensitivity, selectivity, response and recovery time of the sensor were measured and presented.

  5. Facile Synthesis, Microstructure, and Gas Sensing Properties of NdCoO3 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Lorenzo Gildo-Ortiz

    2017-01-01

    Full Text Available NdCoO3 nanoparticles were successfully synthesized by a simple, inexpensive, and reproducible solution method for gas sensing applications. Cobalt nitrate, neodymium nitrate, and ethylenediamine were used as precursors and distilled water as solvent. The solvent was evaporated later by means of noncontinuous microwave radiation at 290 W. The obtained precursor powders were calcined at 200, 500, 600, and 700°C in a standard atmosphere. The oxide crystallized in an orthorhombic crystal system with space group Pnma (62 and cell parameters a=5.33 Å, b=7.52 Å, and c=5.34 Å. The nanoparticles showed a diffusional growth to form a network-like structure and porous adsorption configuration. Pellets prepared from NdCoO3 were tested as gas sensors in atmospheres of carbon monoxide and propane at different temperatures. The oxide nanoparticles were clearly sensitive to changes in gas concentrations (0–300 ppm. The sensitivity increased with increasing concentration of the gases and operating temperatures (25, 100, 200, and 300°C.

  6. Acetylene Gas-Sensing Properties of Layer-by-Layer Self-Assembled Ag-Decorated Tin Dioxide/Graphene Nanocomposite Film

    OpenAIRE

    Jiang, Chuanxing; Zhang, Dongzhi; Yin, Nailiang; Yao, Yao; Shaymurat, Talgar; Zhou, Xiaoyan

    2017-01-01

    This paper demonstrates an acetylene gas sensor based on an Ag-decorated tin dioxide/reduced graphene oxide (Ag–SnO2/rGO) nanocomposite film, prepared by layer-by-layer (LbL) self-assembly technology. The as-prepared Ag–SnO2/rGO nanocomposite was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectrum. The acetylene sensing properties were investigated using different working temperatures and gas concentrations. A...

  7. Capacitive Structures for Gas and Biological Sensing

    KAUST Repository

    Sapsanis, Christos

    2015-04-01

    The semiconductor industry was benefited by the advances in technology in the last decades. This fact has an impact on the sensors field, where the simple transducer was evolved into smart miniaturized multi-functional microsystems. However, commercially available gas and biological sensors are mostly bulky, expensive, and power-hungry, which act as obstacles to mass use. The aim of this work is gas and biological sensing using capacitive structures. Capacitive sensors were selected due to its design simplicity, low fabrication cost, and no DC power consumption. In the first part, the dominant structure among interdigitated electrodes (IDEs), fractal curves (Peano and Hilbert) and Archimedean spiral was investigated from capacitance density perspective. The investigation consists of geometrical formula calculations, COMSOL Multiphysics simulations and cleanroom fabrication of the capacitors on a silicon substrate. Moreover, low-cost fabrication on flexible plastic PET substrate was conducted outside cleanroom with rapid prototyping using a maskless laser etching. The second part contains the humidity, Volatile Organic compounds (VOCs) and Ammonia sensing of polymers, Polyimide and Nafion, and metal-organic framework (MOF), Cu(bdc)2.xH2O using IDEs and tested in an automated gas setup for experiment control and data extraction. The last part includes the biological sensing of C - reactive protein (CRP) quantification, which is considered as a biomarker of being prone to cardiac diseases and Bovine serum albumin (BSA) protein quantification, which is used as a reference for quantifying unknown proteins.

  8. Nanostructured ZrO2 Thick Film Resistors as H2-Gas Sensors Operable at Room Temperature

    Directory of Open Access Journals (Sweden)

    K. M. GARADKAR

    2009-11-01

    Full Text Available Nanostructured ZrO2 powder was synthesized by microwave assisted sol-gel method. The material was characterized by XRD and SEM techniques. X-Ray diffraction studies confirm that a combination of tetragonal and monoclinic zirconia nanoparticles is obtained by using microwave-assisted method. The nanopowder was calcined at an optimized temperature of 400 °C for 3 h. The prepared powder had crystalline size about 25 nm. Thick films of synthesized ZrO2 powder were prepared by screen printing technique. The gas sensing performances of these films for various gases were tested. Films showed highest response to H2 (50 ppm gas at room temperature with poor responses to others (1000 ppm. The quick response and fast recovery are the main features of this sensor. The effects of microstructure, operating temperature and gas concentration on the gas response, selectivity, response time and recovery time of the sensor in the presence of H2 gas and others were studied and discussed.

  9. Development of a Room Temperature SAW Methane Gas Sensor Incorporating a Supramolecular Cryptophane A Coating

    Directory of Open Access Journals (Sweden)

    Wen Wang

    2016-01-01

    Full Text Available A new room temperature supra-molecular cryptophane A (CrypA-coated surface acoustic wave (SAW sensor for sensing methane gas is presented. The sensor is composed of differential resonator-oscillators, a supra-molecular CrypA coated along the acoustic propagation path, and a frequency signal acquisition module (FSAM. A two-port SAW resonator configuration with low insertion loss, single resonation mode, and high quality factor was designed on a temperature-compensated ST-X quartz substrate, and as the feedback of the differntial oscillators. Prior to development, the coupling of modes (COM simulation was conducted to predict the device performance. The supramolecular CrypA was synthesized from vanillyl alcohol using a double trimerisation method and deposited onto the SAW propagation path of the sensing resonators via different film deposition methods. Experiential results indicate the CrypA-coated sensor made using a dropping method exhibits higher sensor response compared to the unit prepared by the spinning approach because of the obviously larger surface roughness. Fast response and excellent repeatability were observed in gas sensing experiments, and the estimated detection limit and measured sensitivity are ~0.05% and ~204 Hz/%, respectively.

  10. Temperature sensing by primary roots of maize

    Science.gov (United States)

    Poff, K. L.

    1990-01-01

    Zea mays L. seedlings, grown on agar plates at 26 degrees C, reoriented the original vertical direction of their primary root when exposed to a thermal gradient applied perpendicular to the gravity vector. The magnitude and direction of curvature can not be explained simply by either a temperature or a humidity effect on root elongation. It is concluded that primary roots of maize sense temperature gradients in addition to sensing the gravitational force.

  11. High-resolution fast temperature mapping of a gas turbine combustor simulator with femtosecond infrared laser written fiber Bragg gratings

    Science.gov (United States)

    Walker, Robert B.; Yun, Sangsig; Ding, Huimin; Charbonneau, Michel; Coulas, David; Ramachandran, Nanthan; Mihailov, Stephen J.

    2017-02-01

    Femtosecond infrared (fs-IR) written fiber Bragg gratings (FBGs), have demonstrated great potential for extreme sensing. Such conditions are inherent to the advanced gas turbine engines under development to reduce greenhouse gas emissions; and the ability to measure temperature gradients in these harsh environments is currently limited by the lack of sensors and controls capable of withstanding the high temperature, pressure and corrosive conditions present. This paper discusses fabrication and deployment of several fs-IR written FBG arrays, for monitoring the sidewall and exhaust temperature gradients of a gas turbine combustor simulator. Results include: contour plots of measured temperature gradients contrasted with thermocouple data, discussion of deployment strategies and comments on reliability.

  12. Tungsten sulfide nanoflakes. Synthesis by electrospinning and their gas sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ke; Qin, Xiang; Deng, Da-Shen; Feng, Xu; Zhang, Chao [Chongqing Univ. of Technology, Chongqing (China). Dept. of Physics and Energy; Feng, Wen-Lin [Chongqing Univ. of Technology, Chongqing (China). Dept. of Physics and Energy; Chongqing Key Laboratory of Modern Photoelectric Detection Technology and Instrument, Chongqing (China).

    2017-07-01

    Tungsten sulfide (WS{sub 2}) nanoflakes were successfully prepared via electrospinning with polyvinylpyrrolidone (PVP) as organic solvent. In addition, Ag-deposited WS{sub 2} (Ag-WS{sub 2}) was obtained by chemical blending/calcination method. The structure and morphology of as-prepared materials were characterised by powder X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The XRD result shows that the prepared WS{sub 2} has a graphene-like structure with P{sub 63/mmc} space group symmetry. The SEM illuminates that the sensing samples have nanoflake appearance. Furthermore, heater-type gas sensors were fabricated based on WS{sub 2} and Ag-WS{sub 2} nanomaterials. The sensing responses of WS{sub 2} and Ag-WS{sub 2} on the ammonia (NH{sub 3}), ethanol (C{sub 2}H{sub 5}OH), and acetone (C{sub 3}H{sub 6}O) were investigated at about 220 C. The results indicate that gas sensor based on WS{sub 2} and Ag-WS{sub 2} nanoflakes has 60 ppm sensing threshold value for ammonia. One possible gas sensing mechanism of WS{sub 2} and Ag-WS{sub 2} gas sensors is surface control via charge transfer.

  13. Substitutionally doped phosphorene: electronic properties and gas sensing.

    Science.gov (United States)

    Suvansinpan, Nawat; Hussain, Fayyaz; Zhang, Gang; Chiu, Cheng Hsin; Cai, Yongqing; Zhang, Yong-Wei

    2016-02-12

    Phosphorene, a new elemental two-dimensional material, has attracted increasing attention owing to its intriguing electronic properties. In particular, pristine phospohorene, due to its ultrahigh surface-volume ratio and high chemical activity, has been shown to be promising for gas sensing (Abbas et al 2015 ACS Nano 9 5618). To further enhance its sensing ability, we perform first-principles calculations based on density functional theory to study substitutionally doped phosphorene with 17 different atoms, focusing on structures, energetics, electronic properties and gas sensing. Our calculations reveal that anionic X (X = O, C and S) dopants have a large binding energy and highly dispersive electronic states, signifying the formation of covalent X-P bonds and thus strong structural stability. Alkali atom (Li and Na) doping is found to donate most of the electrons in the outer s-orbital by forming ionic bonds with P, and the band gap decreases by pushing down the conduction band, suggesting that the optical and electronic properties of the doped phosphorene can be tailored. For doping with VIIIB-group (Fe, Co and Ni) elements, a strong affinity is predicted and the binding energy and charge transfer are correlated strongly with their electronegativity. By examining NO molecule adsorption, we find that these metal doped phosphorenes (MDPs) in general exhibit a significantly enhanced chemical activity compared with pristine phosphorene. Our study suggests that substitutionally doped phosphorene shows many intriguing electronic and optic properties different from pristine phosphorene and MDPs are promising in chemical applications involving molecular adsorption and desorption processes, such as materials growth, catalysis, gas sensing and storage.

  14. Effect of post-deposition annealing treatment on the structural, optical and gas sensing properties of TiO/sub 2/ thin films

    International Nuclear Information System (INIS)

    Haidry, A.A.; Durina, P.; Tomasek, M.; Gregus, J.; Schlosser, P.; Mikula, M.; Truhly, M.; Roch, T.; Plecenik, T.; Pidik, A.; Zahoran, M.; Kus, P.; Plecenik, A.

    2011-01-01

    One of the potential applications of TiO/sub 2/ is its use in gas sensor technology. The aim of this work was to study the gas sensing properties of TiO/sub 2/ thin films in combination with the effect of post-deposition annealing treatment. Titanium dioxide thin films with thickness 100 nm were prepared by the reactive dc magnetron sputtering. The thin films were deposited on sapphire substrate from a titanium target in an oxygen atmosphere. The samples were then post-annealed in air in the temperature range 600 deg. C 1000 deg. C. Crystal structure, surface topography and absorption edge of the thin films have been studied by X-ray Diffraction technique, Atomic Force Microscopy and UV-VIS Spectroscopy. It was found that the phase gradually changed from anatase to rutile, the grain size and roughness tended to increase with increasing post-annealing temperature. The effect of these factors on gas sensing properties was discussed. For electrical measurements comb-like Pt electrodes were prepared by standard photolithography and the films were exposed to different concentrations of H/sub 2/ gas up to 10000 ppm in synthetic air at various operating temperatures from 200 deg. C to 350 deg. C. (author)

  15. Sensing of low concentration of ammonia at room temperature by decorated multi-walled carbon nanotube: fabrication and characteristics

    Science.gov (United States)

    Hasnahena, S. T.; Roy, M.

    2018-01-01

    A chemical sensor based on multi-walled carbon nanotube (MWCNT) decorated with densely populated thiol-capped gold nanoparticles (AuNPs) with sizes smaller than 3 nm for sensing low concentrations of ammonia gas is reported. The functionalized MWCNTs, subsequently decorated with AuNPs following an easy fabrication route were exposed to NH3 gas at the room temperature and the electrical resistance of the sensor changed upon exposure. The sensor also partially recovered the initial state after sensing in the normal air environment (without any dry air or N2 gas purge). The gold nanoparticles decoration is found to enhance the sensitivity and selectivity of MWCNT towards NH3 gas under ambient conditions with a reduced response and recovery time. The material was structurally characterized by Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy. Thermal stability of the sensor till 574 °C was demonstrated by TGA analysis. This papers describes how thiol-capped AuNPs are uniformly decorated on the outer walls of the MWCNTs with a separation of 2-3 nm making use of the ionic nature of Au and how this uniform distribution of AuNPs increases the active sites for absorption of NH3 gas molecules leading to sensing its low concentrations.

  16. Temperature of gas delivered from ventilators.

    Science.gov (United States)

    Chikata, Yusuke; Onodera, Mutsuo; Imanaka, Hideaki; Nishimura, Masaji

    2013-01-01

    Although heated humidifiers (HHs) are the most efficient humidifying device for mechanical ventilation, some HHs do not provide sufficient humidification when the inlet temperature to the water chamber is high. Because portable and home-care ventilators use turbines, blowers, pistons, or compressors to inhale in ambient air, they may have higher gas temperature than ventilators with piping systems. We carried out a bench study to investigate the temperature of gas delivered from portable and home-care ventilators, including the effects of distance from ventilator outlet, fraction of inspiratory oxygen (FIO2), and minute volume (MV). We evaluated five ventilators equipped with turbine, blower, piston, or compressor system. Ambient air temperature was adjusted to 24°C ± 0.5°C, and ventilation was set at FIO2 0.21, 0.6, and 1.0, at MV 5 and 10 L/min. We analyzed gas temperature at 0, 40, 80, and 120 cm from ventilator outlet and altered ventilator settings. While temperature varied according to ventilators, the outlet gas temperature of ventilators became stable after, at the most, 5 h. Gas temperature was 34.3°C ± 3.9°C at the ventilator outlet, 29.5°C ± 2.2°C after 40 cm, 25.4°C ± 1.2°C after 80 cm and 25.1°C ± 1.2°C after 120 cm (P < 0.01). FIO2 and MV did not affect gas temperature. Gas delivered from portable and home-care ventilator was not too hot to induce heated humidifier malfunctioning. Gas soon declined when passing through the limb.

  17. Synthesis and integration of one-dimensional nanostructures for chemical gas sensing applications

    Science.gov (United States)

    Parthangal, Prahalad Madhavan

    The need for improved measurement technology for the detection and monitoring of gases has increased tremendously for maintenance of domestic and industrial health and safety, environmental surveys, national security, food-processing, medical diagnostics and various other industrial applications. Among the several varieties of gas sensors available in the market, solid-state sensors are the most popular owing to their excellent sensitivity, ruggedness, versatility and low cost. Semiconducting metal oxides such as tin oxide (SnO2), zinc oxide (ZnO), and tungsten oxide (WO3) are routinely employed as active materials in these sensors. Since their performance is directly linked to the exposed surface area of the sensing material, one-dimensional nanostructures possessing very high surface to volume ratios are attractive candidates for designing the next generation of sensors. Such nano-sensors also enable miniaturization thereby reducing power consumption. The key to achieve success in one-dimensional nanotechnologies lies in assembly. While synthesis techniques and capabilities continue to expand rapidly, progress in controlled assembly has been sluggish due to numerous technical challenges. In this doctoral thesis work, synthesis and characterization of various one-dimensional nanostructures including nanotubes of SnO2, and nanowires of WO3 and ZnO, as well as their direct integration into miniature sensor platforms called microhotplates have been demonstrated. The key highlights of this research include devising elegant strategies for growing metal oxide nanotubes using carbon nanotubes as templates, substantially reducing process temperatures to enable growth of WO3 nanowires on microhotplates, and successfully fabricating a ZnO nanowire array based sensor using a hybrid nanowire-nanoparticle assembly approach. In every process, the gas-sensing properties of one-dimensional nanostructures were observed to be far superior in comparison with thin films of the same

  18. Simulation of a thermoelectric gas sensor that determines hydrocarbon concentrations in exhausts and the light-off temperature of catalyst materials

    Directory of Open Access Journals (Sweden)

    T. Ritter

    2017-12-01

    Full Text Available Catalyst materials can be characterized with a thermoelectric gas sensor. Screen-printed thermopiles measure the temperature difference between an inert part of the planar sensor and a part that is coated with the catalyst material to be analyzed. If the overall sensor temperature is modulated, the catalytic activity of the material can be varied. Exothermic reactions that occur at the catalyst layer cause a temperature increase that can then be measured as a sensor voltage due to the Seebeck coefficient of the thermopiles. This mechanism can also be employed at stationary conditions at constant sensor temperature to measure gas concentrations. Then, the sensor signal changes linearly with the analyte concentration. Many variables influence the sensing performance, for example, the offset voltage due to asymmetric inflow and the resulting inhomogeneous temperature distributions are an issue. For even better understanding of the whole sensing principle, it is simulated in this study by a 3-D finite element model. By coupling all influencing physical effects (fluid flow, gas diffusion, heat transfer, chemical reactions, and electrical properties a model was set up that is able to mirror the sensor behavior precisely, as the comparison with experimental data shows. A challenging task was to mesh the geometry due to scaling problems regarding the resolution of the thin catalyst layer in the much larger gas tube. Therefore, a coupling of a 3-D and a 1-D geometry is shown. This enables to calculate the overall temperature distribution, fluid flow, and gas concentration distribution in the 3-D model, while a very accurate calculation of the chemical reactions is possible in a 1-D dimension. This work does not only give insight into the results at stationary conditions for varying feed gas concentrations and used substrate materials but shows also how various exhaust gas species behave under transient temperature modulation.

  19. Metal-core@metal oxide-shell nanomaterials for gas-sensing applications: a review

    Energy Technology Data Exchange (ETDEWEB)

    Mirzaei, A.; Janghorban, K.; Hashemi, B. [Shiraz University, Department of Materials Science and Engineering (Iran, Islamic Republic of); Neri, G., E-mail: gneri@unime.it [University of Messina, Department of Electronic Engineering, Chemistry and Industrial Engineering (Italy)

    2015-09-15

    With an ever-increasing number of applications in many advanced fields, gas sensors are becoming indispensable devices in our daily life. Among different types of gas sensors, conductometric metal oxide semiconductor (MOS) gas sensors are found to be the most appealing for advanced applications in the automotive, biomedical, environmental, and safety sectors because of the their high sensitivity, reduced size, and low cost. To improve their sensing characteristics, new metal oxide-based nanostructures have thus been proposed in recent years as sensing materials. In this review, we extensively review gas-sensing properties of core@ shell nanocomposites in which metals as the core and metal oxides as the shell structure, both of nanometer sizes, are assembled into a single metal@metal oxide core–shell. These nanostructures not only combine the properties of both noble metals and metal oxides, but also bring unique synergetic functions in comparison with single-component materials. Up-dated achievements in the synthesis and characterization of metal@metal oxide core–shell nanostructures as well as their use in MOS sensors are here reported with the main objective of providing an overview about their gas-sensing properties.

  20. An Easy to Manufacture Micro Gas Preconcentrator for Chemical Sensing Applications.

    Science.gov (United States)

    McCartney, Mitchell M; Zrodnikov, Yuriy; Fung, Alexander G; LeVasseur, Michael K; Pedersen, Josephine M; Zamuruyev, Konstantin O; Aksenov, Alexander A; Kenyon, Nicholas J; Davis, Cristina E

    2017-08-25

    We have developed a simple-to-manufacture microfabricated gas preconcentrator for MEMS-based chemical sensing applications. Cavities and microfluidic channels were created using a wet etch process with hydrofluoric acid, portions of which can be performed outside of a cleanroom, instead of the more common deep reactive ion etch process. The integrated heater and resistance temperature detectors (RTDs) were created with a photolithography-free technique enabled by laser etching. With only 28 V DC (0.1 A), a maximum heating rate of 17.6 °C/s was observed. Adsorption and desorption flow parameters were optimized to be 90 SCCM and 25 SCCM, respectively, for a multicomponent gas mixture. Under testing conditions using Tenax TA sorbent, the device was capable of measuring analytes down to 22 ppb with only a 2 min sample loading time using a gas chromatograph with a flame ionization detector. Two separate devices were compared by measuring the same chemical mixture; both devices yielded similar peak areas and widths (fwhm: 0.032-0.033 min), suggesting reproducibility between devices.

  1. Distributed gas sensing with optical fibre photothermal interferometry.

    Science.gov (United States)

    Lin, Yuechuan; Liu, Fei; He, Xiangge; Jin, Wei; Zhang, Min; Yang, Fan; Ho, Hoi Lut; Tan, Yanzhen; Gu, Lijuan

    2017-12-11

    We report the first distributed optical fibre trace-gas detection system based on photothermal interferometry (PTI) in a hollow-core photonic bandgap fibre (HC-PBF). Absorption of a modulated pump propagating in the gas-filled HC-PBF generates distributed phase modulation along the fibre, which is detected by a dual-pulse heterodyne phase-sensitive optical time-domain reflectometry (OTDR) system. Quasi-distributed sensing experiment with two 28-meter-long HC-PBF sensing sections connected by single-mode transmission fibres demonstrated a limit of detection (LOD) of ∼10 ppb acetylene with a pump power level of 55 mW and an effective noise bandwidth (ENBW) of 0.01 Hz, corresponding to a normalized detection limit of 5.5ppb⋅W/Hz. Distributed sensing experiment over a 200-meter-long sensing cable made of serially connected HC-PBFs demonstrated a LOD of ∼ 5 ppm with 62.5 mW peak pump power and 11.8 Hz ENBW, or a normalized detection limit of 312ppb⋅W/Hz. The spatial resolution of the current distributed detection system is limited to ∼ 30 m, but it is possible to reduce down to 1 meter or smaller by optimizing the phase detection system.

  2. Hydrothermal synthesis of h-MoO3 microrods and their gas sensing properties to ethanol

    International Nuclear Information System (INIS)

    Liu, Yueli; Yang, Shuang; Lu, Yu; Podval’naya, Natal’ya V.; Chen, Wen; Zakharova, Galina S.

    2015-01-01

    Highlights: • A simple hydrothermal acid-free method for the synthesis of h-MoO 3 microrods with the hexagonal cross-section is reported. • The h-MoO 3 phase is transformed to α-MoO 3 at 439 °C. • The h-MoO 3 microrods were employed to fabricate gas sensors to detect ethanol. • Sensor showed highest response with a sensitivity of 8.24–500 ppm C 2 H 5 OH at operating temperature of 332 °C. - Abstract: Hexagonal molybdenum trioxide (h-MoO 3 ) microrods were successfully synthesized via a novel and facile hydrothermal route from peroxomolybdate solution with the presence of NH 4 Cl as the mineralizer. A variety of the techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry combined with the thermal gravimetric analysis (DSC–TG) were used to characterize the product. The gas sensing test indicates that h-MoO 3 microrods have a good response to 5–500 ppm ethanol in the range of 273–380 °C, and the optimum operating temperature is 332 °C with a high sensitivity of 8.24 to 500 ppm ethanol. Moreover, it also has a good selectivity toward ethanol gas if compared with other gases, such as ammonia, methanol and toluene. The sensing mechanism of h-MoO 3 microrods to ethanol was also discussed.

  3. Development of Polymethylmethacrylate Based Composite for Gas Sensing Application

    OpenAIRE

    Devikala, S.; Kamaraj, P.

    2011-01-01

    Gas detection instruments are increasingly needed for industrial health and safety, environmental monitoring and process control. Conductive polymer composites have various industrial applications. The composite prepared by mixing carbon black with polymethylmethacrylate (PMMA) has very good gas sensing applications. The gas sensors based on carbon nanotube/polymer, ceramic and metal oxide composites such as epoxy, polyimide, PMMA / Barium titanate and tin oxide have also been developed. In t...

  4. Improving Gas Sensing Properties of Tin Oxide Nanowires Palladium-Coated Using a Low Cost Technique

    Directory of Open Access Journals (Sweden)

    M. Barzegar

    2012-12-01

    Full Text Available Thin films of SnO2 nanowires were successfully prepared by using chemical vapor deposition (CVD process on quartz substrates. Afterwards, a thin  layer of palladium (Pd as a catalyst was coated on top of nanowires. For the deposition of Pd, a simple and low cost technique of spray pyrolysis was employed, which caused an intensive enhancement on the sensing response of fabricated sensors. Prepared sensor devices were exposed to liquid petroleum gas (LPG and vapor of ethanol (C2H5OH. Results indicate that SnO2 nanowires sensors coated with Pd as a catalyst show decreasing in response time (~40s to 1000ppm of LPG at a relatively low operating temperature (200o C. SnO2 /Pd nanowire devices show gas sensing response time and recovery time as short as 50s and 10s respectively with a high sensitivity value of ~120 for C2H5OH, that is remarkable in comparison with other reports.

  5. Global versus local mechanisms of temperature sensing in ion channels.

    Science.gov (United States)

    Arrigoni, Cristina; Minor, Daniel L

    2018-05-01

    Ion channels turn diverse types of inputs, ranging from neurotransmitters to physical forces, into electrical signals. Channel responses to ligands generally rely on binding to discrete sensor domains that are coupled to the portion of the channel responsible for ion permeation. By contrast, sensing physical cues such as voltage, pressure, and temperature arises from more varied mechanisms. Voltage is commonly sensed by a local, domain-based strategy, whereas the predominant paradigm for pressure sensing employs a global response in channel structure to membrane tension changes. Temperature sensing has been the most challenging response to understand and whether discrete sensor domains exist for pressure and temperature has been the subject of much investigation and debate. Recent exciting advances have uncovered discrete sensor modules for pressure and temperature in force-sensitive and thermal-sensitive ion channels, respectively. In particular, characterization of bacterial voltage-gated sodium channel (BacNa V ) thermal responses has identified a coiled-coil thermosensor that controls channel function through a temperature-dependent unfolding event. This coiled-coil thermosensor blueprint recurs in other temperature sensitive ion channels and thermosensitive proteins. Together with the identification of ion channel pressure sensing domains, these examples demonstrate that "local" domain-based solutions for sensing force and temperature exist and highlight the diversity of both global and local strategies that channels use to sense physical inputs. The modular nature of these newly discovered physical signal sensors provides opportunities to engineer novel pressure-sensitive and thermosensitive proteins and raises new questions about how such modular sensors may have evolved and empowered ion channel pores with new sensibilities.

  6. Effect of oxygen partial pressure on the microstructural, optical and gas sensing characterization of nanostructured Gd doped ceria thin films deposited by pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    Nagaraju P.

    2017-12-01

    Full Text Available Microstructural properties of 10 mol% gadolinium doped ceria (CeO2 thin films that were deposited on quartz substrate at substrate temperature of 1023 K by using pulsed laser deposition with different oxygen partial pressures in the range of 50–200 mTorr. The influence of oxygen partial pressure on microstructural, morphological, optical and gas sensing characterization of the thin films was systematically studied. The microstructure of the thin films was investigated using X-ray diffraction, atomic force microscopy and Raman spectroscopy. Morphological studies have been carried out using scanning electron microscope. The experimental results confirmed that the films were polycrystalline in nature with cubic fluorite structure. Optical properties of the thin films were examined using UV–vis spectrophotometer. The optical band gap calculated from Tauc’s relation. Gas sensing characterization has been carried at different operating temperatures (room temperature to 523 K for acetone gas. Response and recovery times of the sensor were calculated using transient response plot.

  7. Enhancement of NH3 gas sensitivity at room temperature by carbon nanotube-based sensor coated with Co nanoparticles.

    Science.gov (United States)

    Nguyen, Lich Quang; Phan, Pho Quoc; Duong, Huyen Ngoc; Nguyen, Chien Duc; Nguyen, Lam Huu

    2013-01-30

    Multi-walled carbon nanotube (MWCNT) film has been fabricated onto Pt-patterned alumina substrates using the chemical vapor deposition method for NH(3) gas sensing applications. The MWCNT-based sensor is sensitive to NH(3) gas at room temperature. Nanoclusters of Co catalysts have been sputtered on the surface of the MWCNT film to enhance gas sensitivity with respect to unfunctionalized CNT films. The gas sensitivity of Co-functionalized MWCNT-based gas sensors is thus significantly improved. The sensor exhibits good repeatability and high selectivity towards NH(3), compared with alcohol and LPG.

  8. Gas Sensing Properties of Ordered Mesoporous SnO2

    Directory of Open Access Journals (Sweden)

    Michael Tiemann

    2006-04-01

    Full Text Available We report on the synthesis and CO gas-sensing properties of mesoporoustin(IV oxides (SnO2. For the synthesis cetyltrimethylammonium bromide (CTABr wasused as a structure-directing agent; the resulting SnO2 powders were applied as films tocommercially available sensor substrates by drop coating. Nitrogen physisorption showsspecific surface areas up to 160 m2·g-1 and mean pore diameters of about 4 nm, as verifiedby TEM. The film conductance was measured in dependence on the CO concentration inhumid synthetic air at a constant temperature of 300 °C. The sensors show a high sensitivityat low CO concentrations and turn out to be largely insensitive towards changes in therelative humidity. We compare the materials with commercially available SnO2-basedsensors.

  9. Feasibility of Locating Leakages in Sewage Pressure Pipes Using the Distributed Temperature Sensing Technology

    OpenAIRE

    Apperl, Benjamin; Pressl, Alexander; Schulz, Karsten

    2017-01-01

    The cost effective maintenance of underwater pressure pipes for sewage disposal in Austria requires the detection and localization of leakages. Extrusion of wastewater in lakes can heavily influence the water and bathing quality of surrounding waters. The Distributed Temperature Sensing (DTS) technology is a widely used technique for oil and gas pipeline leakage detection. While in pipeline leakage detection, fiber optic cables are installed permanently at the outside or within the protective...

  10. Surface Modification of Carbon Nanotube Networked Films with Au Nanoclusters for Enhanced NO2 Gas Sensing Applications

    Directory of Open Access Journals (Sweden)

    M. Penza

    2008-01-01

    Full Text Available Multiwalled carbon nanotube (MWCNT films have been deposited by using plasma-enhanced chemical vapor deposition (PECVD system onto alumina substrates, provided with 6 nm thick cobalt (Co growth catalyst for remarkably improved NO2 gas sensing, at working temperature in the range of 100–250∘C. Functionalization of the MWCNTs with nanoclusters of gold (Au sputtering has been performed to modify the surface of carbon nanotube networked films for enhanced and specific NO2 gas detection up to sub-ppm level. It is demonstrated that the NO2 gas sensitivity of the MWCNT-based sensors depends on Au-loading used as surface-catalyst. The gas response of MWCNT-based chemiresistor is attributed to p-type conductivity in the Au-modified semiconducting MWCNTs with a very good short-term repeatability and faster recovery. The sensor temperature of maximum NO2 sensitivity of the Au-functionalized MWCNTs is found to decrease with increasing Au-loading on their surface, and continuous gas monitoring at ppb level of NO2 is effectively performed with Au-modified MWCNT chemiresistors.

  11. Synthesis, characterization and liquefied petroleum gas (LPG) sensing properties of WO3 nano-particles

    Science.gov (United States)

    Singh, Subhash; Majumder, S. B.

    2018-05-01

    Metal oxide sensors, such as ZnO, SnO2, and WO3 etc. have been utilized for several decades for low-costd etection of combustible and toxic gases. In the present work tungsten oxide (WO3) nanoparticles have been prepared by using an economic wet chemical synthesis route. To understand the phase formation behavior of the synthesized powders, X-ray diffraction analysis has been performed. The microstructure evolution of the synthesized powders was characterized by field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The calcined phase pure WO3 nanoparticles are investigated in terms of LPG gas sensing properties. The gas sensing measurements has been done in two different mode of operation (namely static and dynamic measurements). The degree of oxygen deficiency in the WO3 sensor also affected the sensor properties and the optimum oxygen content of WO3 was necessary to get high sensitivity for LPG. The WO3 sensor shows the excellent sensor properties for LPG at the operating temperature of 250°C.

  12. Broadly tunable mid-infrared VECSEL for multiple components hydrocarbon gas sensing

    Science.gov (United States)

    Rey, J. M.; Fill, M.; Felder, F.; Sigrist, M. W.

    2014-12-01

    A new sensing platform to simultaneously identify and quantify volatile C1 to C4 alkanes in multi-component gas mixtures is presented. This setup is based on an optically pumped, broadly tunable mid-infrared vertical-external-cavity surface-emitting laser (VECSEL) developed for gas detection. The lead-chalcogenide VECSEL is the key component of the presented optical sensor. The potential of the proposed sensing setup is illustrated by experimental absorption spectra obtained from various mixtures of volatile hydrocarbons and water vapor. The sensor has a sub-ppm limit of detection for each targeted alkane in a hydrocarbon gas mixture even in the presence of a high water vapor content.

  13. Method for determining waveguide temperature for acoustic transceiver used in a gas turbine engine

    Science.gov (United States)

    DeSilva, Upul P.; Claussen, Heiko; Ragunathan, Karthik

    2018-04-17

    A method for determining waveguide temperature for at least one waveguide of a transceiver utilized for generating a temperature map. The transceiver generates an acoustic signal that travels through a measurement space in a hot gas flow path defined by a wall such as in a combustor. The method includes calculating a total time of flight for the acoustic signal and subtracting a waveguide travel time from the total time of flight to obtain a measurement space travel time. A temperature map is calculated based on the measurement space travel time. An estimated wall temperature is obtained from the temperature map. An estimated waveguide temperature is then calculated based on the estimated wall temperature wherein the estimated waveguide temperature is determined without the use of a temperature sensing device.

  14. Sapphire-fiber-based distributed high-temperature sensing system.

    Science.gov (United States)

    Liu, Bo; Yu, Zhihao; Hill, Cary; Cheng, Yujie; Homa, Daniel; Pickrell, Gary; Wang, Anbo

    2016-09-15

    We present, for the first time to our knowledge, a sapphire-fiber-based distributed high-temperature sensing system based on a Raman distributed sensing technique. High peak power laser pulses at 532 nm were coupled into the sapphire fiber to generate the Raman signal. The returned Raman Stokes and anti-Stokes signals were measured in the time domain to determine the temperature distribution along the fiber. The sensor was demonstrated from room temperature up to 1200°C in which the average standard deviation is about 3.7°C and a spatial resolution of about 14 cm was achieved.

  15. Room temperature NO2-sensing properties of porous silicon/tungsten oxide nanorods composite

    International Nuclear Information System (INIS)

    Wei, Yulong; Hu, Ming; Wang, Dengfeng; Zhang, Weiyi; Qin, Yuxiang

    2015-01-01

    Highlights: • Porous silicon/WO 3 nanorods composite is synthesized via hydrothermal method. • The morphology of WO 3 nanorods depends on the amount of oxalic acid (pH value). • The sensor can detect ppb level NO 2 at room temperature. - Abstract: One-dimensional single crystalline WO 3 nanorods have been successfully synthesized onto the porous silicon substrates by a seed-induced hydrothermal method. The controlled morphology of porous silicon/tungsten oxide nanorods composite was obtained by using oxalic acid as an organic inducer. The reaction was carried out at 180 °C for 2 h. The influence of oxalic acid (pH value) on the morphology of porous silicon/tungsten oxide nanorods composite was investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The NO 2 -sensing properties of the sensor based on porous silicon/tungsten oxide nanorods composite were investigated at different temperatures ranging from room temperature (∼25 °C) to 300 °C. At room temperature, the sensor behaved as a typical p-type semiconductor and exhibited high gas response, good repeatability and excellent selectivity characteristics toward NO 2 gas due to its high specific surface area, special structure, and large amounts of oxygen vacancies

  16. Enhancement of NH3 Gas Sensitivity at Room Temperature by Carbon Nanotube-Based Sensor Coated with Co Nanoparticles

    Directory of Open Access Journals (Sweden)

    Lich Quang Nguyen

    2013-01-01

    Full Text Available Multi-walled carbon nanotube (MWCNT film has been fabricated onto Pt-patterned alumina substrates using the chemical vapor deposition method for NH3 gas sensing applications. The MWCNT-based sensor is sensitive to NH3 gas at room temperature. Nanoclusters of Co catalysts have been sputtered on the surface of the MWCNT film to enhance gas sensitivity with respect to unfunctionalized CNT films. The gas sensitivity of Co-functionalized MWCNT-based gas sensors is thus significantly improved. The sensor exhibits good repeatability and high selectivity towards NH3, compared with alcohol and LPG.

  17. Fabrication of Titania Nanotubes for Gas Sensing Applications

    Science.gov (United States)

    Dzilal, A. A.; Muti, M. N.; John, O. D.

    2010-03-01

    Detection of hydrogen is needed for industrial process control and medical applications where presence of hydrogen indicates different type of health problems. Titanium dioxide nanotube structure is chosen as an active component in the gas sensor because of its highly sensitive electrical resistance to hydrogen over a wide range of concentrations. The objective of the work is to fabricate good quality titania nanotubes suitable for hydrogen sensing applications. The fabrication method used is anodizing method. The anodizing parameters namely the voltage, time duration, concentration of hydrofluoric acid in water, separation between the electrodes and the ambient temperature are varied accordingly to find the optimum anodizing conditions for production of good quality titania nanotubes. The highly ordered porous titania nanotubes produced by this method are in tabular shape and have good uniformity and alignment over large areas. From the investigation done, certain set of anodizing parameters have been found to produce good quality titania nanotubes with diameter ranges from 47 nm to 94 nm.

  18. Terahertz Active Photonic Crystals for Condensed Gas Sensing

    Directory of Open Access Journals (Sweden)

    Karl Unterrainer

    2011-06-01

    Full Text Available The terahertz (THz spectral region, covering frequencies from 1 to 10 THz, is highly interesting for chemical sensing. The energy of rotational and vibrational transitions of molecules lies within this frequency range. Therefore, chemical fingerprints can be derived, allowing for a simple detection scheme. Here, we present an optical sensor based on active photonic crystals (PhCs, i.e., the pillars are fabricated directly from an active THz quantum-cascade laser medium. The individual pillars are pumped electrically leading to laser emission at cryogenic temperatures. There is no need to couple light into the resonant structure because the PhC itself is used as the light source. An injected gas changes the resonance condition of the PhC and thereby the laser emission frequency. We achieve an experimental frequency shift of 10−3 times the center lasing frequency. The minimum detectable refractive index change is 1.6 × 10−5 RIU.

  19. Surface functionalization of epitaxial graphene on SiC by ion irradiation for gas sensing application

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, Priya Darshni, E-mail: kaushik.priyadarshni@gmail.com [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Department of Physics, Jamia Millia Islamia, New Delhi, 110025 (India); Ivanov, Ivan G.; Lin, Pin-Cheng [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Kaur, Gurpreet [Department of Physics and Astrophysics, University of Delhi, Delhi, 110007 (India); Eriksson, Jens [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Lakshmi, G.B.V.S. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi, 110067 (India); Avasthi, D.K. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi, 110067 (India); Amity Institute of Nanotechnology, Noida 201313 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi, 110007 (India); Aziz, Anver; Siddiqui, Azher M. [Department of Physics, Jamia Millia Islamia, New Delhi, 110025 (India); Syväjärvi, Mikael [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Yazdi, G. Reza, E-mail: yazdi@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden)

    2017-05-01

    Highlights: • For the first time the gas sensing application of SHI irradiated epitaxial graphene on SiC is explored. • Surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles. • Existence of an optimal fluence which maximize the gas sensing response towards NO{sub 2} and NH{sub 3} gases. - Abstract: In this work, surface functionalization of epitaxial graphene grown on silicon carbide was performed by ion irradiation to investigate their gas sensing capabilities. Swift heavy ion irradiation using 100 MeV silver ions at four varying fluences was implemented on epitaxial graphene to investigate morphological and structural changes and their effects on the gas sensing capabilities of graphene. Sensing devices are expected as one of the first electronic applications using graphene and most of them use functionalized surfaces to tailor a certain function. In our case, we have studied irradiation as a tool to achieve functionalization. Morphological and structural changes on epitaxial graphene layers were investigated by atomic force microscopy, Raman spectroscopy, Raman mapping and reflectance mapping. The surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles at highest fluence (2 × 10{sup 13} ions/cm{sup 2}). Raman spectra analysis shows that the graphene defect density is increased with increasing fluence, while Raman mapping and reflectance mapping show that there is also a reduction of monolayer graphene coverage. The samples were investigated for ammonia and nitrogen dioxide gas sensing applications. Sensors fabricated on pristine and irradiated samples showed highest gas sensing response at an optimal fluence. Our work provides new pathways for introducing defects in controlled manner in epitaxial graphene, which can be used not only for gas sensing application but also for other applications, such as electrochemical, biosensing, magnetosensing and

  20. Surface functionalization of epitaxial graphene on SiC by ion irradiation for gas sensing application

    International Nuclear Information System (INIS)

    Kaushik, Priya Darshni; Ivanov, Ivan G.; Lin, Pin-Cheng; Kaur, Gurpreet; Eriksson, Jens; Lakshmi, G.B.V.S.; Avasthi, D.K.; Gupta, Vinay; Aziz, Anver; Siddiqui, Azher M.; Syväjärvi, Mikael; Yazdi, G. Reza

    2017-01-01

    Highlights: • For the first time the gas sensing application of SHI irradiated epitaxial graphene on SiC is explored. • Surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles. • Existence of an optimal fluence which maximize the gas sensing response towards NO_2 and NH_3 gases. - Abstract: In this work, surface functionalization of epitaxial graphene grown on silicon carbide was performed by ion irradiation to investigate their gas sensing capabilities. Swift heavy ion irradiation using 100 MeV silver ions at four varying fluences was implemented on epitaxial graphene to investigate morphological and structural changes and their effects on the gas sensing capabilities of graphene. Sensing devices are expected as one of the first electronic applications using graphene and most of them use functionalized surfaces to tailor a certain function. In our case, we have studied irradiation as a tool to achieve functionalization. Morphological and structural changes on epitaxial graphene layers were investigated by atomic force microscopy, Raman spectroscopy, Raman mapping and reflectance mapping. The surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles at highest fluence (2 × 10"1"3 ions/cm"2). Raman spectra analysis shows that the graphene defect density is increased with increasing fluence, while Raman mapping and reflectance mapping show that there is also a reduction of monolayer graphene coverage. The samples were investigated for ammonia and nitrogen dioxide gas sensing applications. Sensors fabricated on pristine and irradiated samples showed highest gas sensing response at an optimal fluence. Our work provides new pathways for introducing defects in controlled manner in epitaxial graphene, which can be used not only for gas sensing application but also for other applications, such as electrochemical, biosensing, magnetosensing and spintronic

  1. Temperature-compensated Love wave based gas sensor on waveguide structure of SiO2/36° YX LiTaO3

    International Nuclear Information System (INIS)

    Wang, Wen; Xie, Xiao; Chen, Gui; Liu, Jiuling; He, Shitang

    2015-01-01

    A temperature-compensated Love wave device was proposed for gas sensing utilizing a waveguide structure of SiO 2 /36° YX LiTaO 3 . Significant improvement in the temperature stability of the hybrid Love wave device was implemented by varying the guiding layer thickness. The optimal values yielding low cross-sensitivity to temperature and high mass sensitivity in gas sorption were determined theoretically by solving the coupled electromechanical field equation in layered media. The theoretical analysis was confirmed experimentally in dimethylmethylphosphonate (DMMP) detection by using a fluoroalcoholpolysiloxane (SXFA) coated Love wave sensor. The experimental results indicate that better sensitivity and excellent temperature stability were obtained from the developed Love wave gas sensor over the Rayleigh surface acoustic wave (R-SAW) sensors. (paper)

  2. The gas-sensing properties of thick film sensors based on nano-ZnFe2O4 prepared by hydrothermal method

    International Nuclear Information System (INIS)

    Chu Xiangfeng; Jiang Dongli; Zheng Chenmou

    2006-01-01

    ZnFe 2 O 4 sensors were fabricated from nano-ZnFe 2 O 4 powders prepared by hydrothermal method and their gas-sensing properties were investigated. It was found that the phase composition of the product and the gas-sensing properties greatly depend on the reaction pH value and the reaction temperature. Nano-ZnFe 2 O 4 powders could be obtained at a pH of 8-10 and the sensor based on the nano-ZnFe 2 O 4 powder prepared at 220 deg. C exhibited the best performance, characterized by high sensitivity to low concentrations of C 2 H 5 OH at 180 deg. C, especially, the sensitivity to 100 ppm C 2 H 5 OH was as high as 76

  3. Room Temperature Gas Sensing Properties of Sn-Substituted Nickel Ferrite (NiFe2O4) Thin Film Sensors Prepared by Chemical Co-Precipitation Method

    Science.gov (United States)

    Manikandan, V.; Li, Xiaogan; Mane, R. S.; Chandrasekaran, J.

    2018-04-01

    Tin (Sn) substituted nickel ferrite (NiFe2O4) thin film sensors were prepared by a simple chemical co-precipitation method, which initially characterized their structure and surface morphology with the help of x-ray diffraction and scanning electron microscopy. Surface morphology of the sensing films reveals particles stick together with nearer particles and this formation leads to a large specific area as a large specific area is very useful for easy adsorption of gas molecules. Transmission electron microscopy and selected area electron diffraction pattern images confirm particle size and nanocrystallnity as due to formation of circular rings. Fourier transform infrared analysis has supported the presence of functional groups. The 3.69 eV optical band gap of the film was found which enabled better gas sensing. Gas sensors demonstrate better response and recovery characteristics, and the maximum response was 68.43%.

  4. Formation Mechanism and Gas-Sensing Performance of La/ZnO Nanoplates Synthesized by a Facile Hydrothermal Method

    Science.gov (United States)

    Li, Yan; Chen, Li-Li; Lian, Xiao-Xue; Li, Jiao

    2018-03-01

    La/ZnO nanoplates were successfully synthesized by a facile hydrothermal method. The structure and morphology of the products were characterized using x-ray diffraction and scanning electron microscopy. The gas-sensing properties of the as-prepared La/ZnO were also tested with a series of target gases, and a possible gas sensing mechanism was discussed. The results show that the as-prepared La/ZnO nanoparticles are mainly composde of a wurtzite ZnO and a little La2O3 phase with face-centered structure, showing a uniform plate-like morphology with a thickness of about 50 nm. The La/ZnO nanoplate-based sensors display a significantly better sensing performance than pure ZnO for the detection of acetone and ethanol. The 3 mol.% La/ZnO sensor shows high sensitivity (127) to 200 ppm acetone at a low working temperature (330°C), and 120-200 ppm ethanol at 300°C. Moreover, its response and recovery time for acetone and ethanol were 3 s and 4 s, 18 s and 11 s, respectively. This work demonstrates that La/ZnO nanoplate-based sensors have potential applications as practical sensors for acetone and ethanol.

  5. Zn doped MoO3 nanobelts and the enhanced gas sensing properties to ethanol

    Science.gov (United States)

    Yang, Shuang; Liu, Yueli; Chen, Tao; Jin, Wei; Yang, Tingqiang; Cao, Minchi; Liu, Shunshun; Zhou, Jing; Zakharova, Galina S.; Chen, Wen

    2017-01-01

    Zn doped MoO3 nanobelts with the thickness of 120-275 nm, width of 0.3-1.4 μm and length of more than 100 μm are prepared by hydrothermal reaction. The operating temperature of sensors based on Zn doped MoO3 nanobelts is 100-380 °C with a better response to low concentration of ethanol. The highest response value of sensors based on Zn doped MoO3 to 1000 ppm ethanol at 240 °C is 321, which is about 15 times higher than that of pure MoO3 nanobelts. The gas sensors based on Zn doped MoO3 nanobelts possess good selectivity to ethanol compared with methanol, ammonia, acetone and toluene, which implies that it would be a good candidate in the potential application. The improvement of gas sensing properties may be attributed to the increasing absorbed ethanol, the decreasing probability of ethoxy recombination, the promoted dehydrogenation progress at lower temperature, and the narrowed band gap by Zn doping.

  6. Application of Notched Long-Period Fiber Grating Based Sensor for CO2 Gas Sensing

    Science.gov (United States)

    Wu, Chao-Wei; Chiang, Chia-Chin

    2016-01-01

    An inductively coupled plasma etching process to fabricate notched long-period fiber gratings for CO2 gas sensing is proposed in this article. In the gas sensing test, the 15% mixed CO2 gas was used for characterization of CO2 adsorption by the amine-modified nanoporous silica foams of the notched long-period fiber grating sensor. The results shows the spectra were changed with the CO2 gas flow within 13 min. During the absorption process, the transmission of the resonant dip was decreased by 2.884 dB. Therefore, the proposed notched long-period fiber grating gas sensor shows good performance and is suitable as a gas sensor for monitoring the CO2 adsorption process.

  7. Gas Temperature Measurement in a Glow Discharge Plasma

    Science.gov (United States)

    Sloneker, Kenneth; Podder, Nirmol; McCurdy, William E.; Shi, Shi

    2009-10-01

    In this study a relatively inexpensive quartz protected thermocouple is used to measure the gas temperature in the positive column of a glow discharge plasma. For simplicity a K-type thermocouple is used to interpret the gas temperature from the sensor voltage at pressures from 0.5 Torr to 15 Torr and discharge currents from 5 mA to 120 mA. Gas temperature is investigated as a function of the gas pressure at fixed discharge currents and as a function of discharge current at fixed gas pressures in three different gas species (Ar, N2, and He). An infinite cylinder model is used to compute the average gas temperature of the discharge from joule heating and gas thermal conductivity. The model and measurement data agree within 1% to 10% depending on plasma parameters. Data for all three gases have a similar quasi-linear increasing error as compared to the model.

  8. Medium temperature carbon dioxide gas turbine reactor

    International Nuclear Information System (INIS)

    Kato, Yasuyoshi; Nitawaki, Takeshi; Muto, Yasushi

    2004-01-01

    A carbon dioxide (CO 2 ) gas turbine reactor with a partial pre-cooling cycle attains comparable cycle efficiencies of 45.8% at medium temperature of 650 deg. C and pressure of 7 MPa with a typical helium (He) gas turbine reactor of GT-MHR (47.7%) at high temperature of 850 deg. C. This higher efficiency is ascribed to: reduced compression work around the critical point of CO 2 ; and consideration of variation in CO 2 specific heat at constant pressure, C p , with pressure and temperature into cycle configuration. Lowering temperature to 650 deg. C provides flexibility in choosing materials and eases maintenance through the lower diffusion leak rate of fission products from coated particle fuel by about two orders of magnitude. At medium temperature of 650 deg. C, less expensive corrosion resistant materials such as type 316 stainless steel are applicable and their performance in CO 2 have been proven during extensive operation in AGRs. In the previous study, the CO 2 cycle gas turbomachinery weight was estimated to be about one-fifth compared with He cycles. The proposed medium temperature CO 2 gas turbine reactor is expected to be an alternative solution to current high-temperature He gas turbine reactors

  9. Wide band gap materials and devices for NO{sub x}, H{sub 2} and O{sub 2} gas sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Majdeddin

    2008-01-22

    In this thesis, field effect gas sensors (Schottky diodes, MOS capacitors, and MOSFET transistors) based on wide band gap semiconductors like silicon carbide (SiC) and gallium nitride (GaN), as well as resistive gas sensors based on indium oxide (In{sub 2}O{sub 3}), have been developed for the detection of reducing gases (H{sub 2}, D{sub 2}) and oxidising gases (NO{sub x}, O{sub 2}). The development of the sensors has been performed at the Institute for Micro- and Nanoelectronic, Technical University Ilmenau in cooperation with (GE) General Electric Global Research (USA) and Umwelt-Sensor- Technik GmbH (Geschwenda). Chapter 1: serves as an introduction into the scientific fields related to this work. The theoretical fundamentals of solid-state gas sensors are provided and the relevant properties of wide band gap materials (SiC and GaN) are summarized. In chapter 2: The performance of Pt/GaN Schottky diodes with different thickness of the catalytic metal were investigated as hydrogen gas detectors. The area as well as the thickness of the Pt were varied between 250 {proportional_to} 250 {mu}m{sup 2} and 1000 {proportional_to} 1000 {mu}m{sup 2}, 8 and 40 nm, respectively. The response to hydrogen gas was investigated in dependence on the active area, the Pt thickness and the operating temperature for 1 vol.% hydrogen in synthetic air. We observed a significant increase of the sensitivity and a decrease of the response and recovery times by increasing the temperature of operation to about 350{sup o}C and by decreasing the Pt thickness down to 8 nm. Electron microscopy of the microstructure showed that the thinner platinum had a higher grain boundary density. The increase in sensitivity with decreasing Pt thickness points to the dissociation of molecular hydrogen on the surface, the diffusion of atomic hydrogen along the platinum grain boundaries and the adsorption of hydrogen at the Pt/GaN interface as a possible mechanism of sensing hydrogen by Schottky diodes. The

  10. Gas sensing properties of indium–gallium–zinc–oxide gas sensors in different light intensity

    Directory of Open Access Journals (Sweden)

    Kuen-Lin Chen

    2015-06-01

    Full Text Available We have successfully observed the change in indium–gallium–zinc–oxide (IGZO gas sensor sensitivity by controlling the light emitting diode (LED power under the same gas concentrations. The light intensity dependence of sensor properties is discussed. Different LED intensities obviously affected the gas sensor sensitivity, which decays with increasing LED intensity. High LED intensity decreases not only gas sensor sensitivity but also the response time (T90, response time constant (τres and the absorption rate per second. Low intensity irradiated to sensor causes high sensitivity, but it needs larger response time. Similar results were also observed in other kinds of materials such as TiO2. According to the results, the sensing properties of gas sensors can be modulated by controlling the light intensity.

  11. Effect of the sheet thickness of hierarchical SnO_2 on the gas sensing performance

    International Nuclear Information System (INIS)

    Zhang, Wenlong; Zeng, Wen; BinMiao; Wang, Zhongchang

    2015-01-01

    Graphical abstract: - Highlights: • A unique flower-like SnO_2 hierarchical architecture assembled with nanosheets were successfully synthesized. • The thickness of the unique hierarchical nanoflowers was precisely controlled. • The nanoflowers composed of thinner nanosheets show a significantly enhanced gas sensing properties. • A possible growth mechanism for the unique hierarchical SnO_2 nanoflower assembled with nanosheets of different thickness is proposed. - Abstract: A unique hierarchical SnO_2 nanoflower was successfully synthesized via a facile one-step hydrothermal method. The nanoflower was analyzed in detail using X ray diffraction, field-emission electron microscope and transmission electron microscope. It was found that the nanoflowers are all assembled from nanosheets. The nanosheet thickness could be precisely controlled by tuning the dosage of NaOH. Gas sensing tests demonstrated that the thickness of the sheet significantly affects the gas sensing performance. The improved gas sensing properties are attributed to the thinned petals as well as their pores and defects. These results show that the thickness and morphology of hierarchical nanostructures affect the functionality of gas sensors.

  12. Characterization of Mixed xWO3(1-xY2O3 Nanoparticle Thick Film for Gas Sensing Application

    Directory of Open Access Journals (Sweden)

    M. H. Shahrokh Abadi

    2010-05-01

    Full Text Available Microstructural, topology, inner morphology, and gas-sensitivity of mixed xWO3(1-xY2O3 nanoparticles (x = 1, 0.95, 0.9, 0.85, 0.8 thick-film semiconductor gas sensors were studied. The surface topography and inner morphological properties of the mixed powder and sensing film were characterized with X-ray diffraction (XRD, atomic force microscopy (AFM, transmission electron microscopy (TEM, and scanning electron microscopy (SEM. Also, gas sensitivity properties of the printed films were evaluated in the presence of methane (CH4 and butane (C4H10 at up to 500 °C operating temperature of the sensor. The results show that the doping agent can modify some structural properties and gas sensitivity of the mixed powder.

  13. From Modeling to Fabrication of Double Side Microstructured Silicon Windows for Infrared Gas Sensing in Harsh Environments

    DEFF Research Database (Denmark)

    Bergmann, René; Ivinskaya, Aliaksandra; Kafka, Jan Robert

    2014-01-01

    (∅1") were manufactured. The windows show high temperature resistant sub-wavelength anti-reflective surface microstructures on both side faces. Thus, a peak transmittance of 100% for a defined main wavelength (5 μm) and more than 90 % average transmittance for the wavelength range of 5-7 μm......Commercial infrared windows used for gas sensing in the mid-IR range usually possess an anti-reflective coating. Those coatings can normally not withstand harsh environments, particularly not high temperatures. With a simple “3-step” fabrication process, high temperature resistant silicon windows...... was achieved. The modeling of the anti-reflective microstructures, their fabrication process and final transmittance analysis of the windows is discussed....

  14. Detecting Liquefied Petroleum Gas (LPG) at Room Temperature Using ZnSnO3/ZnO Nanowire Piezo-Nanogenerator as Self-Powered Gas Sensor.

    Science.gov (United States)

    Fu, Yongming; Nie, Yuxin; Zhao, Yayu; Wang, Penglei; Xing, Lili; Zhang, Yan; Xue, Xinyu

    2015-05-20

    High sensitivity, selectivity, and reliability have been achieved from ZnSnO3/ZnO nanowire (NW) piezo-nanogenerator (NG) as self-powered gas sensor (SPGS) for detecting liquefied petroleum gas (LPG) at room temperature (RT). After being exposed to 8000 ppm LPG, the output piezo-voltage of ZnSnO3/ZnO NW SPGS under compressive deformation is 0.089 V, much smaller than that in air ambience (0.533 V). The sensitivity of the SPGS against 8000 ppm LPG is up to 83.23, and the low limit of detection is 600 ppm. The SPGS has lower sensitivity against H2S, H2, ethanol, methanol and saturated water vapor than LPG, indicating good selectivity for detecting LPG. After two months, the decline of the sensing performance is less than 6%. Such piezo-LPG sensing at RT can be ascribed to the new piezo-surface coupling effect of ZnSnO3/ZnO nanocomposites. The practical application of the device driven by human motion has also been simply demonstrated. This work provides a novel approach to fabricate RT-LPG sensors and promotes the development of self-powered sensing system.

  15. Ratiometric fluorescent nanoparticles for sensing temperature

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Hong-Shang, E-mail: hillphs@yahoo.com.cn; Huang, Shi-Hua [Beijing Jiaotong University, Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology (China); Wolfbeis, Otto S. [University of Regensburg, Institute of Analytical Chemistry, Chemo- and Biosensors (Germany)

    2010-10-15

    A ratiometric type of fluorescent nanoparticle was prepared via an encapsulation-reprecipitation method. By introducing an alkoxysilanized dye as a reference, the nanoparticles (NPs) give both a green and a red fluorescence under one single-wavelength excitation. The resulted ratiometric fluorescence is found to be highly temperature-dependent in the physiological range (25-45 {sup o}C), with an intensity temperature sensitivity of -4.0%/{sup o}C. Given the small size (20-30 nm in diameter) and biocompatible nature (silica out layer), such kind of NPs were very promising as temperature nanosensors for cellular sensing and imaging.

  16. Nano Ag-Doped In2O3 Thick Film: A Low-Temperature H2S Gas Sensor

    Directory of Open Access Journals (Sweden)

    D. N. Chavan

    2011-01-01

    Full Text Available Thick films of AR grade In2O3 were prepared by standard screen-printing technique. The gas sensing performances of thick films were tested for various gases. It showed maximum sensitivity to ethanol vapour at 350°C for 80 ppm concentration. To improve the sensitivity and selectivity of the film towards a particular gas, In2O3 sensors were surface-modified by dipping them in a solution of 2% nanosilver for different intervals of time. Obtained results indicated that spherical nano-Ag grains are highly dispersed on the surface of In2O3sensor. The surface area of the nano-Ag/ In2O3 sensor is several times larger than that of pure In2O3 sensor. In comparison with pure In2O3 sensor, all of the nano-Ag-doped sensors showed better sensing performance in respect of response, selectivity, and optimum operating temperature. The surface-modified (30 min In2O3 sensor showed larger sensitivity to H2S gas (10 ppm at 100°C. Nano silver on the surface of the film shifts the reactivity of film from ethanol vapour to H2S gas. A systematic study of gas sensing performance of the sensor indicates the key role played by the nano silver species on the surface. The sensitivity, selectivity, response, and recovery time of the sensor were measured and presented.

  17. Controlled synthesis of ZnO hollow microspheres via precursor-template method and its gas sensing property

    International Nuclear Information System (INIS)

    Tian, Yu; Li, Jinchai; Xiong, Hui; Dai, Jiangnan

    2012-01-01

    Highlights: ► Zn powder as precursor template for synthesis ZnO hollow spheres. ► Different precursor templates result in different ZnO nanostructures. ► Different experimental conditions enable growth of different surface morphologies of ZnO sphere. ► ZnO hollow sphere materials have good gas sensing performance for detecting ethanol gas. - Abstract: Using Zn powder as precursor templates, ZnO hollow microspheres were successfully prepared by thermal evaporation method and characterized by X-ray diffraction analysis, scanning electron microscope and transmission electron microscope. It was found that different size and shape of precursor resulted in different ZnO nanostructures. When varying experimental conditions, such as air flow rate and working pressure, ZnO hollow spheres with different surface morphologies could be obtained. The advantages of the present synthetic technology are simple, relatively low cost, and high reproducibility. A gas sensor was fabricated from the as-prepared ZnO hollow microspheres and tested to the ethanol gas at different operating temperatures.

  18. Rio Vista gas leak study: Belleaire Gas Field, California

    International Nuclear Information System (INIS)

    Wilkey, P.L.

    1992-08-01

    The Rio Vista gas leak study evaluated methods for remotely sensing gas leaks from buried pipelines and developed methods to elucidate methane transport and microbial oxidation in soils. Remote-sensing methods were evaluated by singing gas leaks along an abandoned Pacific Gas and Electric (PG ampersand E) gas field collection line in northern California and applying surface-based and airborne remote-sensing techniques in the field, including thermal imaging, laser imaging, and multispectral imagery. The remote-sensing techniques exhibited limitations in range and in their ability to correlate with ground truth data. To elucidate methane transport and microbial oxidation in soils, a study of a controlled leak permitted field testing of methods so that such processes could be monitored and evaluated. Monitoring and evaluation techniques included (1) field measurement of soil-gas concentrations, temperatures, and pressures; (2) laboratory measurement of soil physical/chemical properties and activity of methane-oxidizing microorganisms by means of field samples; and (3) development of a preliminary numerical analysis technique for combined soil-gas transport/methane oxidation. Soil-gas concentrations at various depths responded rapidly to the high rate of gas leakage. The number of methane-oxidizing microorganisms in site soils rapidly increased when the gas leak was initiated and decreased after the leak was terminated. The preliminary field, laboratory, and numerical analysis techniques tested for this study of a controlled gas leak could be successfully applied to future studies of gas leaks. Because soil-gas movement is rapid and temporally variable, the use of several complementary techniques that permit generalization of site-specific results is favored

  19. Gas temperature of capacitance spark discharge in air

    International Nuclear Information System (INIS)

    Ono, Ryo; Nifuku, Masaharu; Fujiwara, Shuzo; Horiguchi, Sadashige; Oda, Tetsuji

    2005-01-01

    Capacitance spark discharge has been widely used for studying the ignition of flammable gas caused by electrostatic discharge. In the present study, the gas temperature of capacitance spark discharge is measured. The gas temperature is an important factor in understanding the electrostatic ignition process because it influences the reaction rate of ignition. Spark discharge is generated in air with a pulse duration shorter than 100 ns. The discharge energy is set to 0.03-1 mJ. The rotational and vibrational temperatures of the N 2 molecule are measured using the emission spectrum of the N 2 second positive system. The rotational and vibrational temperatures are estimated to be 500 and 5000 K, respectively, which are independent of the discharge energy. This result indicates that most of the electron energy is consumed in the excitation of vibrational levels of molecules rather than the heating of the gas. The gas temperature after discharge is also measured by laser-induced fluorescence of OH radicals. It is shown that the gas temperature increases after discharge and reaches approximately 1000 K at 3 μs after discharge. Then the temperature decreases at a rate in the range of 8-35 K/μs depending on the discharge energy

  20. Soil temperature variability in complex terrain measured using fiber-optic distributed temperature sensing

    Science.gov (United States)

    Soil temperature (Ts) exerts critical controls on hydrologic and biogeochemical processes but magnitude and nature of Ts variability in a landscape setting are rarely documented. Fiber optic distributed temperature sensing systems (FO-DTS) potentially measure Ts at high density over a large extent. ...

  1. Enhanced transduction of photonic crystal dye lasers for gas sensing via swelling polymer film

    DEFF Research Database (Denmark)

    Smith, Cameron; Lind, Johan Ulrik; Christiansen, Mads Brøkner

    2011-01-01

    We present the enhanced transduction of a photonic crystal dye laser for gas sensing via deposition of an additional swelling polymer film. Device operation involves swelling of the polymer film during exposure to specific gases, leading to a change in total effective refractive index. Experimental...... in its application to other intracavity-based detection schemes to enable gas sensing. © 2011 Optical Society of America....

  2. Nano-Hydroxyapatite Thick Film Gas Sensors

    International Nuclear Information System (INIS)

    Khairnar, Rajendra S.; Mene, Ravindra U.; Munde, Shivaji G.; Mahabole, Megha P.

    2011-01-01

    In the present work pure and metal ions (Co and Fe) doped hydroxyapatite (HAp) thick films have been successfully utilized to improve the structural, morphological and gas sensing properties. Nanocrystalline HAp powder is synthesized by wet chemical precipitation route, and ion exchange process is employed for addition of Co and Fe ions in HAp matrix. Moreover, swift heavy ion irradiation (SHI) technique is used to modify the surface of pure and metal ion exchanged HAp with various ion fluence. The structural investigation of pure and metal ion exchanged HAp thick films are carried out using X-ray diffraction and the presence of functional group is observed by means FTIR spectroscopy. Furthermore, surface morphology is visualized by means of SEM and AFM analysis. CO gas sensing study is carried out for, pure and metal ions doped, HAp thick films with detail investigation on operating temperature, response/recovery time and gas uptake capacity. The surface modifications of sensor matrix by SHI enhance the gas response, response/recovery and gas uptake capacity. The significant observation is here to note that, addition of Co and Fe in HAp matrix and surface modification by SHI improves the sensing properties of HAp films drastically resulting in gas sensing at relatively lower temperatures.

  3. Facile Synthesis of Polyaniline Nanotubes Using Self-Assembly Method Based on the Hydrogen Bonding: Mechanism and Application in Gas Sensing

    Directory of Open Access Journals (Sweden)

    Changqing Yin

    2017-10-01

    Full Text Available Based on hydrogen bonding, the highly uniform polyaniline (PANI nanotubes were synthesized by self-assembly method using citric acid (CA as the dopant and the structure-directing agent by optimizing the molar ratio of CA to aniline monomer (Ani. Synthesis conditions like reaction temperature and mechanical stirring were considered to explore the effects of hydrogen bonding on the morphologies. The effects of CA on the final morphology of the products were also investigated. The as-synthesized CA doped polyaniline (PANI nanomaterials were further deposited on the plate electrodes for the test of gas sensing performance to ammonia (NH3. The sensitivity to various concentrations of NH3, the repeatability, and the stability of the sensors were also tested and analyzed. As a result, it was found that the PANI nanomaterial synthesized at the CA/Ani molar ratio of 0.5 has highly uniform tubular morphology and shows the best sensing performance to NH3. It makes the PANI nanotubes a promising material for high performance gas sensing to NH3.

  4. Low-Temperature Synthesis and Gas Sensitivity of Perovskite-Type LaCoO3 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Lorenzo Gildo Ortiz

    2014-01-01

    Full Text Available LaCoO3 nanoparticles with perovskite-type structure were prepared by a microwave-assisted colloidal method. Lanthanum nitrate, cobalt nitrate, and ethylenediamine were used as precursors and ethyl alcohol as solvent. The thermal decomposition of the precursors leads to the formation of LaCoO3 from a temperature of 500°C. The structural, morphological, and compositional properties of LaCoO3 nanoparticles were studied in this work by X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and atomic force microscopy (AFM. Pellets were manufactured in order to test the gas sensing properties of LaCoO3 powders in carbon monoxide (CO and propane (C3H8 atmospheres. Agglomerates of nanoparticles with high connectivity, forming a porous structure, were observed from SEM and TEM analysis. LaCoO3 pellets presented a high sensitivity in both CO and C3H8 at different concentrations and operating temperatures. As was expected, sensitivity increased with the gas concentration and operation temperature increase.

  5. TRIM56-mediated monoubiquitination of cGAS for cytosolic DNA sensing.

    Science.gov (United States)

    Seo, Gil Ju; Kim, Charlotte; Shin, Woo-Jin; Sklan, Ella H; Eoh, Hyungjin; Jung, Jae U

    2018-02-09

    Intracellular nucleic acid sensors often undergo sophisticated modifications that are critical for the regulation of antimicrobial responses. Upon recognition of DNA, the cytosolic sensor cyclic GMP-AMP (cGAMP) synthase (cGAS) produces the second messenger cGAMP, which subsequently initiates downstream signaling to induce interferon-αβ (IFNαβ) production. Here we report that TRIM56 E3 ligase-induced monoubiquitination of cGAS is important for cytosolic DNA sensing and IFNαβ production to induce anti-DNA viral immunity. TRIM56 induces the Lys335 monoubiquitination of cGAS, resulting in a marked increase of its dimerization, DNA-binding activity, and cGAMP production. Consequently, TRIM56-deficient cells are defective in cGAS-mediated IFNαβ production upon herpes simplex virus-1 (HSV-1) infection. Furthermore, TRIM56-deficient mice show impaired IFNαβ production and high susceptibility to lethal HSV-1 infection but not to influenza A virus infection. This adds TRIM56 as a crucial component of the cytosolic DNA sensing pathway that induces anti-DNA viral innate immunity.

  6. Integrated Microfibre Device for Refractive Index and Temperature Sensing

    Directory of Open Access Journals (Sweden)

    Sulaiman W. Harun

    2012-08-01

    Full Text Available A microfibre device integrating a microfibre knot resonator in a Sagnac loop reflector is proposed for refractive index and temperature sensing. The reflective configuration of this optical structure offers the advantages of simple fabrication and ease of sensing. To achieve a balance between responsiveness and robustness, the entire microfibre structure is embedded in low index Teflon, except for the 0.5–2 mm diameter microfibre knot resonator sensing region. The proposed sensor has exhibited a linear spectral response with temperature and refractive index. A small change in free spectral range is observed when the microfibre device experiences a large refractive index change in the surrounding medium. The change is found to be in agreement with calculated results based on dispersion relationships.

  7. Proof of concept : Temperature-sensing waders for environmental sciences

    NARCIS (Netherlands)

    Hut, R.W.; Tyler, S.; Van Emmerik, T.H.M.

    2016-01-01

    A prototype temperature-sensing pair of waders is introduced and tested. The water temperature at the streambed is interesting both for scientists studying the hyporheic zone and for, e.g., fishers spotting good fishing locations. A temperature sensor incorporated into waders worn by members of the

  8. Highly Sensitive Temperature Sensors Based on Fiber-Optic PWM and Capacitance Variation Using Thermochromic Sensing Membrane

    Directory of Open Access Journals (Sweden)

    Md. Rajibur Rahaman Khan

    2016-07-01

    Full Text Available In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM and an interdigitated capacitor (IDC-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R2 ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system.

  9. Ammonia Gas Sensing Properties of Nanocrystalline Zn1-xCuxFe2O4 Doped with Noble Metal

    Directory of Open Access Journals (Sweden)

    S. V. JAGTAP

    2010-11-01

    Full Text Available The sensors are required basically for monitoring of trace gases in environment. In order to detect, measure and control these gases; one should know the amount and type of gases present in the environment. Among the most toxic and hazardous gases, it is necessary to detect and monitor the ammonia gas because this is enhance in the agricultural sector by the addition of large amounts of NH3 to cultivated farmland in the form of fertilizers. Nanocrystalline spinel type Zn1-xCuxFe2O4 (x=0, 0.2, 0.4 0.6 & 0.8 has been synthesized by sol-gel citrate method. The synthesized powders were characterized by XRD and SEM. The results revealed that the particle size is in the range of 40–45 nm for Cu–Zn ferrite with good crystallinity. The gas sensing properties were studied towards reducing gases like CO, LPG, NH3 and H2S and it is observed that Cu–Zn ferrite shows high response to ammonia gas at relatively lower operating temperature. The Zn0.6Cu0.4Fe2O4 nanomaterial shows better sensitivity towards NH3 gas at an operating temperature 300 0C. Incorporation of Pd improved the sensitivity, selectivity, response time and reduced the operating temperature from 300 0C to 250 0C for NH3 sensor.

  10. Proof of concept : Temperature sensing waders for environmental sciences

    NARCIS (Netherlands)

    Hut, R.W.; Tyler, S.; Van Emmerik, T.H.M.

    2015-01-01

    A prototype temperature sensing pair of waders is introduced and tested. The water temperature at the stream-bed is interesting both for scientist studying the hyporheic zone as well as for, e.g., fishers spotting good fishing locations. A temperature sensor incorporated in waders worn by members of

  11. Al2O3- BSST Based Chemical Sensors for Ammonia Gas Sensing

    Directory of Open Access Journals (Sweden)

    L. A. Patil

    2009-10-01

    Full Text Available Gas sensing behaviour of pure and modified (Ba0.9Sr0.1(Sn0.5Ti0.5O3 (BSST thick films is reported in this article. The surface of the BSST thick film was modified by dipping it into aqueous solution of AlCl3, for different intervals of time. These films were then dried at 500 0C for 24 hours in air ambient for transformation of AlCl3 into Al2O3, for the evaporation of organic binders and also to improve the texture of the film. The gas response, selectivity, response and recovery time of the sensors were measured and presented. The role played by the aluminium species to improve the gas sensing performance of the sensors is discussed.

  12. cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein-DNA ladders.

    Science.gov (United States)

    Andreeva, Liudmila; Hiller, Björn; Kostrewa, Dirk; Lässig, Charlotte; de Oliveira Mann, Carina C; Jan Drexler, David; Maiser, Andreas; Gaidt, Moritz; Leonhardt, Heinrich; Hornung, Veit; Hopfner, Karl-Peter

    2017-09-21

    Cytosolic DNA arising from intracellular pathogens triggers a powerful innate immune response. It is sensed by cyclic GMP-AMP synthase (cGAS), which elicits the production of type I interferons by generating the second messenger 2'3'-cyclic-GMP-AMP (cGAMP). Endogenous nuclear or mitochondrial DNA can also be sensed by cGAS under certain conditions, resulting in sterile inflammation. The cGAS dimer binds two DNA ligands shorter than 20 base pairs side-by-side, but 20-base-pair DNA fails to activate cGAS in vivo and is a poor activator in vitro. Here we show that cGAS is activated in a strongly DNA length-dependent manner both in vitro and in human cells. We also show that cGAS dimers form ladder-like networks with DNA, leading to cooperative sensing of DNA length: assembly of the pioneering cGAS dimer between two DNA molecules is ineffective; but, once formed, it prearranges the flanking DNA to promote binding of subsequent cGAS dimers. Remarkably, bacterial and mitochondrial nucleoid proteins HU and mitochondrial transcription factor A (TFAM), as well as high-mobility group box 1 protein (HMGB1), can strongly stimulate long DNA sensing by cGAS. U-turns and bends in DNA induced by these proteins pre-structure DNA to nucleate cGAS dimers. Our results suggest a nucleation-cooperativity-based mechanism for sensitive detection of mitochondrial DNA and pathogen genomes, and identify HMGB/TFAM proteins as DNA-structuring host factors. They provide an explanation for the peculiar cGAS dimer structure and suggest that cGAS preferentially binds incomplete nucleoid-like structures or bent DNA.

  13. Characterization and hydrogen gas sensing properties of TiO{sub 2} thin films prepared by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Haidry, Azhar Ali [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava (Slovakia); Puskelova, Jarmila [Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava (Slovakia); Plecenik, Tomas; Durina, Pavol; Gregus, Jan; Truchly, Martin; Roch, Tomas; Zahoran, Miroslav [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava (Slovakia); Vargova, Melinda [Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava (Slovakia); Kus, Peter; Plecenik, Andrej [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava (Slovakia); Plesch, Gustav, E-mail: plesch@fns.uniba.sk [Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava (Slovakia)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Preparation and characterization of hydrogen sensing TiO{sub 2} thin films by sol-gel method. Black-Right-Pointing-Pointer The annealing effect on the structure, electrical, optical and sensing properties was studied. Black-Right-Pointing-Pointer The best sensitivity show the films composed of rutile with grain size of {approx}100 nm. - Abstract: Thin films of titanium dioxide with thickness of about 150 nm were deposited by spin coating method on a sapphire substrate from a sol-gel and annealed at various temperatures (from 600 Degree-Sign C to 1000 Degree-Sign C). Structural, optical and hydrogen gas sensing properties of the films were investigated. The annealing temperatures from 600 to 800 Degree-Sign C led to anatase phase with grain size in the range of 14-28 nm. Further increase of the annealing temperature resulted in transformation to rutile phase with larger grain size of about 100-120 nm. The optical band gap tended to decrease with increasing annealing temperature. The estimated values of activation energy for charge transport were in the range of 0.6-1.0 eV for films annealed at temperatures from 600 Degree-Sign C to 800 Degree-Sign C and 0.37-0.38 eV for films annealed at 900 Degree-Sign C and 1000 Degree-Sign C. The films annealed at 900 Degree-Sign C and 1000 Degree-Sign C showed better hydrogen sensitivity, what can be at least partially caused by their higher surface roughness.

  14. Inhomogeneous Oxygen Vacancy Distribution in Semiconductor Gas Sensors: Formation, Migration and Determination on Gas Sensing Characteristics.

    Science.gov (United States)

    Liu, Jianqiao; Gao, Yinglin; Wu, Xu; Jin, Guohua; Zhai, Zhaoxia; Liu, Huan

    2017-08-10

    The density of oxygen vacancies in semiconductor gas sensors was often assumed to be identical throughout the grain in the numerical discussion of the gas-sensing mechanism of the devices. In contrast, the actual devices had grains with inhomogeneous distribution of oxygen vacancy under non-ideal conditions. This conflict between reality and discussion drove us to study the formation and migration of the oxygen defects in semiconductor grains. A model of the gradient-distributed oxygen vacancy was proposed based on the effects of cooling rate and re-annealing on semiconductive thin films. The model established the diffusion equations of oxygen vacancy according to the defect kinetics of diffusion and exclusion. We described that the steady-state and transient-state oxygen vacancy distributions, which were used to calculate the gas-sensing characteristics of the sensor resistance and response to reducing gases under two different conditions. The gradient-distributed oxygen vacancy model had the applications in simulating the sensor performances, such as the power law, the grain size effect and the effect of depletion layer width.

  15. Inhomogeneous Oxygen Vacancy Distribution in Semiconductor Gas Sensors: Formation, Migration and Determination on Gas Sensing Characteristics

    Directory of Open Access Journals (Sweden)

    Jianqiao Liu

    2017-08-01

    Full Text Available The density of oxygen vacancies in semiconductor gas sensors was often assumed to be identical throughout the grain in the numerical discussion of the gas-sensing mechanism of the devices. In contrast, the actual devices had grains with inhomogeneous distribution of oxygen vacancy under non-ideal conditions. This conflict between reality and discussion drove us to study the formation and migration of the oxygen defects in semiconductor grains. A model of the gradient-distributed oxygen vacancy was proposed based on the effects of cooling rate and re-annealing on semiconductive thin films. The model established the diffusion equations of oxygen vacancy according to the defect kinetics of diffusion and exclusion. We described that the steady-state and transient-state oxygen vacancy distributions, which were used to calculate the gas-sensing characteristics of the sensor resistance and response to reducing gases under two different conditions. The gradient-distributed oxygen vacancy model had the applications in simulating the sensor performances, such as the power law, the grain size effect and the effect of depletion layer width.

  16. Enhanced gas sensing performance of TiO2 functionalized magneto-optical SPR sensors

    OpenAIRE

    Manera, Maria Grazia; Montagna, G.; Ferreiro-Vila, Elías; González-García, Lola; Sánchez-Valencia, J.R.; González-Elipe, Agustín R.; Cebollada, Alfonso; García-Martín, José Miguel; García-Martín, Antonio; Armelles Reig, Gaspar; Rella, Roberto

    2011-01-01

    Porous TiO2 thin films deposited by glancing angle deposition are used as sensing layers to monitor their sensing capabilities towards Volatile Organic Compounds both in a standard Surface Plasmon Resonance (SPR) sensor and in Magneto-Optical Surface Plasmon Resonance (MO-SPR) configuration in order to compare their sensing performances. Here our results on the enhanced sensing capability of these TiO2 functionalized MO-SPR sensors with Au/Co/Au transducers with respect to traditional SPR gas...

  17. Influence of Pt Gate Electrode Thickness on the Hydrogen Gas Sensing Characteristics of Pt/In2O3/SiC Hetero-Junction Devices

    Directory of Open Access Journals (Sweden)

    S. Kandasamy

    2007-09-01

    Full Text Available Hetero-junction Pt/In2O3/SiC devices with different Pt thickness (30, 50 and 90nm were fabricated and their hydrogen gas sensing characteristics have been studied. Pt and In2O3 thin films were deposited by laser ablation. The hydrogen sensitivity was found to increase with decreasing Pt electrode thickness. For devices with Pt thickness of 30 nm, the sensitivity gradually increased with increasing temperature and reached a maximum of 390 mV for 1% hydrogen in air at 530°C. Atomic force microscopy (AFM analysis revealed a decrease in Pt grain size and surface roughness for increasing Pt thickness. The relationship between the gas sensing performance and the Pt film thickness and surface morphology is discussed.

  18. Development Of Test Rig System For Calibration Of Temperature Sensing Fabric

    Directory of Open Access Journals (Sweden)

    Husain Muhammad Dawood

    2017-09-01

    Full Text Available A test rig is described, for the measurement of temperature and resistance parameters of a Temperature Sensing Fabric (TSF for calibration purpose. The equipment incorporated a temperature-controlled hotplate, two copper plates, eight thermocouples, a temperature data-logger and a four-wire high-resolution resistance measuring multimeter. The copper plates were positioned above and below the TSF and in physical contact with its surfaces, so that a uniform thermal environment might be provided. The temperature of TSF was estimated by the measurement of temperature profiles of the two copper plates. Temperature-resistance graphs were created for all the tests, which were carried out over the range of 20 to 50°C, and they showed that the temperature and resistance values were not only repeatable but also reproducible, with only minor variations. The comparative analysis between the temperature-resistance test data and the temperature-resistance reference profile showed that the error in estimation of temperature of the sensing element was less than ±0.2°C. It was also found that the rig not only provided a stable and homogenous thermal environment but also offered the capability of accurately measuring the temperature and resistance parameters. The Temperature Sensing Fabric is suitable for integration into garments for continuous measurement of human body temperature in clinical and non-clinical settings.

  19. Synthesis of star-shaped lead sulfide (PbS) nanomaterials and theirs gas-sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chengwen; Sun, Menghan; Yin, Yanyan; Xiao, Jingkun; Dong, Wei; Li, Chen; Zhang, Li, E-mail: chengwensong@dlmu.edu.cn [College of Environmental Science and Engineering, Dalian Maritime University, Dalian(China)

    2016-11-15

    Star-shaped PbS nanomaterials are synthesized by a hydrothermal method. Morphology and structure of the PbS nanomaterials are analyzed by SEM, HRTEM and XRD. Gas-sensing properties of the as-prepared PbS sensor are also systematically investigated. The results show star-shaped PbS nanostructure consists of four symmetric arms in the same plane and demonstrate good crystallinity. With the increase of ethanol concentration, the sensitivity of the PbS sensor significantly increases and demonstrates an almost linear relationship at the optimal operating temperature of 400 deg C. Moreover, the fast response-recovery towards ethanol is also observed, which indicates its great potential on ethanol detection. (author)

  20. Synthesis of star-shaped lead sulfide (PbS) nanomaterials and theirs gas-sensing properties

    International Nuclear Information System (INIS)

    Song, Chengwen; Sun, Menghan; Yin, Yanyan; Xiao, Jingkun; Dong, Wei; Li, Chen; Zhang, Li

    2016-01-01

    Star-shaped PbS nanomaterials are synthesized by a hydrothermal method. Morphology and structure of the PbS nanomaterials are analyzed by SEM, HRTEM and XRD. Gas-sensing properties of the as-prepared PbS sensor are also systematically investigated. The results show star-shaped PbS nanostructure consists of four symmetric arms in the same plane and demonstrate good crystallinity. With the increase of ethanol concentration, the sensitivity of the PbS sensor significantly increases and demonstrates an almost linear relationship at the optimal operating temperature of 400 deg C. Moreover, the fast response-recovery towards ethanol is also observed, which indicates its great potential on ethanol detection. (author)

  1. Spectroscopic and electrical sensing mechanism in oxidant-mediated polypyrrole nanofibers/nanoparticles for ammonia gas

    International Nuclear Information System (INIS)

    Ishpal; Kaur, Amarjeet

    2013-01-01

    Ammonia gas sensing mechanism in oxidant-mediated polypyrrole (PPy) nanofibers/nanoparticles has been studied through spectroscopic and electrical investigations. PPy nanofibers/nanoparticles have been synthesized by chemical oxidation method in the presence of various oxidizing agents such as ammonium persulfate (APS), potassium persulfate (PPS), vanadium pentoxide (V 2 O 5 ), and iron chloride (FeCl 3 ). Scanning electron microscopy study revealed that PPy nanofibers of about 63, 71 and 79 nm diameters were formed in the presence of APS, PPS, V 2 O 5 , respectively, while PPy nanoparticles of about 100–110 nm size were obtained in the presence of FeCl 3 as an oxidant. The structural investigations and confirmation of synthesis of PPy were established through Fourier transform infrared and Raman spectroscopy. The gas sensing behavior of the prepared PPy samples is investigated by measuring the electrical resistance in ammonia environment. The observed gas sensing response (ΔR/Rx100) at 100 ppm level of ammonia is ∼4.5 and 18 % for the samples prepared with oxidizing agents FeCl 3 and APS, respectively, and by changing the ammonia level from 50 to 300 ppm, the sensing response varies from ∼4.5 to 11 % and ∼10 to 39 %, respectively. Out of all four samples, the PPy nanofibers prepared in the presence of APS have shown the best sensing response. The mechanism of gas sensing response of the PPy samples has been investigated through Raman spectroscopy study. The decrease of charge carrier concentration through reduction of polymeric chains has been recognized through Raman spectroscopic measurements recorded in ammonia environment.

  2. Optical backscatter probe for sensing particulate in a combustion gas stream

    Science.gov (United States)

    Parks, James E; Partridge, William P

    2013-05-28

    A system for sensing particulate in a combustion gas stream is disclosed. The system transmits light into a combustion gas stream, and thereafter detects a portion of the transmitted light as scattered light in an amount corresponding to the amount of particulates in the emissions. Purge gas may be supplied adjacent the light supply and the detector to reduce particles in the emissions from coating or otherwise compromising the transmission of light into the emissions and recovery of scattered light from the emissions.

  3. Thiourea-treated graphene aerogel as a highly selective gas sensor for sensing of trace level of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Taher, E-mail: talizadeh@ut.ac.ir [Department of Analytical Chemistry, Faculty of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran (Iran, Islamic Republic of); Ahmadian, Farzaneh [Department of Applied Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Daneshgah Street, P.B179, 56199-11367 Ardabil (Iran, Islamic Republic of)

    2015-10-15

    As a result of this study, a new and simple method was proposed for the fabrication of an ultra sensitive, robust and reversible ammonia gas sensor. The sensing mechanism was based upon the change in electrical resistance of a graphene aerogel as a result of sensor exposing to ammonia. Three-dimensional graphene hydrogel was first synthesized via hydrothermal method in the absence or presence of various amounts of thiourea. The obtained material was heated to obtain aerogel and then it was used as ammonia gas sensor. The materials obtained were characterized using different techniques such as Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The thiourea-treated graphene aerogel was more porous (389 m{sup 2} g{sup −1}) and thermally unstable and exhibited higher sensitivity, shorter response time and better selectivity toward ammonia gas, compared to the aerogel produced in the absence of thiourea. Thiourea amount, involved in the hydrogel synthesis step, was found to be highly effective factor in the sensing properties of finally obtained aerogel. The sensor response time to ammonia was short (100 s) and completely reversible (recovery time of about 500 s) in ambient temperature. The sensor response to ammonia was linear between 0.02 and 85 ppm and its detection limit was found to be 10 ppb (3S/N). - Highlights: • An ammonia gas sensor with ppb level determination capability was proposed. • A new procedure has been introduced for gas sensor fabrication by graphene hydrogel. • Thiourea-treated graphene aerogel was used as excellent ammonia gas sensor.

  4. Temperature Modulation with Specified Detection Point on Metal Oxide Semiconductor Gas Sensors for E-Nose Application

    Directory of Open Access Journals (Sweden)

    Arief SUDARMAJI

    2015-03-01

    Full Text Available Temperature modulation technique, some called dynamic measurement mode, on Metal-Oxide Semiconductor (MOS/MOX gas sensor has been widely observed and employed in many fields. We present its development, a Specified Detection Point (SDP on modulated sensing element of MOS sensor is applied which associated to its temperature modulation, temperature modulation-SDP so-named. We configured the rectangular modulation signal for MOS gas sensors (TGSs and FISs using PSOC CY8C28445-24PVXI (Programmable System on Chip which also functioned as acquisition unit and interface to a computer. Initial responses and selectivity evaluations were performed using statistical tool and Principal Component Analysis (PCA to differ sample gases (Toluene, Ethanol and Ammonia on dynamic chamber measurement under various frequencies (0.25 Hz, 1 Hz, 4 Hz and duty-cycles (25 %, 50 %, 75 %. We found that at lower frequency the response waveform of the sensors becomes more sloping and distinct, and selected modulations successfully increased the selectivity either on singular or array sensors rather than static temperature measurement.

  5. High-temperature CO / HC gas sensors to optimize firewood combustion in low-power fireplaces

    Directory of Open Access Journals (Sweden)

    B. Ojha

    2017-06-01

    Full Text Available In order to optimize firewood combustion in low-power firewood-fuelled fireplaces, a novel combustion airstream control concept based on the signals of in situ sensors for combustion temperature, residual oxygen concentration and residual un-combusted or partly combusted pyrolysis gas components (CO and HC has been introduced. A comparison of firing experiments with hand-driven and automated airstream-controlled furnaces of the same type showed that the average CO emissions in the high-temperature phase of the batch combustion can be reduced by about 80 % with the new control concept. Further, the performance of different types of high-temperature CO / HC sensors (mixed-potential and metal oxide types, with reference to simultaneous exhaust gas analysis by a high-temperature FTIR analysis system, was investigated over 20 batch firing experiments (∼ 80 h. The distinctive sensing behaviour with respect to the characteristically varying flue gas composition over a batch firing process is discussed. The calculation of the Pearson correlation coefficients reveals that mixed-potential sensor signals correlate more with CO and CH4; however, different metal oxide sensitive layers correlate with different gas species: 1 % Pt / SnO2 designates the presence of CO and 2 % ZnO / SnO2 designates the presence of hydrocarbons. In the case of a TGS823 sensor element, there was no specific correlation with one of the flue gas components observed. The stability of the sensor signals was evaluated through repeated exposure to mixtures of CO, N2 and synthetic air after certain numbers of firing experiments and exhibited diverse long-term signal instabilities.

  6. Development of Polymethylmethacrylate Based Composite for Gas Sensing Application

    Directory of Open Access Journals (Sweden)

    S. Devikala

    2011-01-01

    Full Text Available Gas detection instruments are increasingly needed for industrial health and safety, environmental monitoring and process control. Conductive polymer composites have various industrial applications. The composite prepared by mixing carbon black with polymethylmethacrylate (PMMA has very good gas sensing applications. The gas sensors based on carbon nanotube/polymer, ceramic and metal oxide composites such as epoxy, polyimide, PMMA / Barium titanate and tin oxide have also been developed. In the present work, a new composite has been prepared by using PMMA and ammonium dihydrogen phosphate (ADP. The PMMA/Ammonium dihydrogen phosphate (PMADP composites PMADP 1 and PMADP 2 were characterized by using Powder XRD. The thick films of the composite on glass plates were prepared by using a spin coating unit at 9000 rpm. The application of the thick film as gas sensor has been studied between 0 and 2000 seconds. The results reveal that the thick film of PMADP composite can function as a very good gas sensor.

  7. One-Dimensional Vanadium Dioxide Nanostructures for Room Temperature Hydrogen Sensors

    Directory of Open Access Journals (Sweden)

    Aline Simo

    2015-06-01

    Full Text Available In relation to hydrogen (H2 economy in general and gas sensing in particular, an extensive set of one dimensional (1-D nano-scaled oxide materials are being investigated as ideal candidates for potential gas sensing applications. This is correlated to their set of singular surface characteristics, shape anisotropy and readiness for integrated devices. Nanostructures of well- established gas sensing materials such as Tin Oxide (SnO2, Zinc Oxide (ZnO, Indium (III Oxide (In2O3, and Tungsten Trioxide (WO3 have shown higher sensitivity and gas selectivity, quicker response, faster time recovery, as well as an enhanced capability to detect gases at low concentrations. While the overall sensing characteristics of these so called 1-D nanomaterials are superior, they are efficient at high temperature; generally above 200 0C. This operational impediment results in device complexities in integration that limit their technological applications, specifically in their miniaturized arrangements. Unfortunately, for room temperature applications, there is a necessity to dope the above mentioned nano-scaled oxides with noble metals such as Platinum (Pt, Palladium (Pd, Gold (Au, Ruthenium (Ru. This comes at a cost. This communication reports, for the first time, on the room temperature enhanced H2 sensing properties of a specific phase of pure Vanadium Dioxide (VO2 phase A in their nanobelt form. The relatively observed large H2 room temperature sensing in this Mott type specific oxide seems to reach values as low as 14 ppm H2 which makes it an ideal gas sensing in H2 fuelled systems.

  8. Sensing Properties of Multiwalled Carbon Nanotubes Grown in MW Plasma Torch: Electronic and Electrochemical Behavior, Gas Sensing, Field Emission, IR Absorption

    Directory of Open Access Journals (Sweden)

    Petra Majzlíková

    2015-01-01

    Full Text Available Vertically aligned multi-walled carbon nanotubes (VA-MWCNTs with an average diameter below 80 nm and a thickness of the uniform VA-MWCNT layer of about 16 µm were grown in microwave plasma torch and tested for selected functional properties. IR absorption important for a construction of bolometers was studied by Fourier transform infrared spectroscopy. Basic electrochemical characterization was performed by cyclic voltammetry. Comparing the obtained results with the standard or MWCNT‑modified screen-printed electrodes, the prepared VA-MWCNT electrodes indicated their high potential for the construction of electrochemical sensors. Resistive CNT gas sensor revealed a good sensitivity to ammonia taking into account room temperature operation. Field emission detected from CNTs was suitable for the pressure sensing application based on the measurement of emission current in the diode structure with bending diaphragm. The advantages of microwave plasma torch growth of CNTs, i.e., fast processing and versatility of the process, can be therefore fully exploited for the integration of surface-bound grown CNTs into various sensing structures.

  9. Temperature dependency of silicon structures for magnetic field gradient sensing

    Science.gov (United States)

    Dabsch, Alexander; Rosenberg, Christoph; Stifter, Michael; Keplinger, Franz

    2018-02-01

    This work describes the temperature dependence of two sensors for magnetic field gradient sensors and demonstrates a structure to compensate for the drift of resonance frequency over a wide temperature range. The temperature effect of the sensing element is based on internal stresses induced by the thermal expansion of material, therefore FEM is used to determine the change of the eigenvalues of the sensing structure. The experimental setup utilizes a Helmholtz coil system to generate the magnetic field and to excite the MEMS structure with Lorentz forces. The MEMS structure is placed on a plate heated with resistors and cooled by a Peltier element to control the plate temperature. In the second part, we describe how one can exploit temperature sensitivity for temperature measurements and we show the opportunity to include the temperature effect to increase the sensitivity of single-crystal silicon made flux density gradient sensors.

  10. A plastic optical fiber sensor for the dual sensing of temperature and oxygen

    Science.gov (United States)

    Lo, Yu-Lung; Chu, Chen-Shane

    2008-04-01

    This study presents a low-cost plastic optical fiber sensor for the dual sensing of temperature and oxygen. The sensor features a commercially available epoxy glue coated on the side-polished fiber surface for temperature sensing and a fluorinated xerogel doped with platinum tetrakis pentrafluoropheny porphine (PtTFPP) coated on the fiber end for oxygen sensing. The temperature and oxygen indicators are both excited using a UV LED light source with a wavelength of 380 nm. The luminescence emission spectra of the two indicators are well resolved and exhibit no cross-talk effects. Overall, the results indicate that the dual sensor presented in this study provides an ideal solution for the non-contact, simultaneous sensing of temperature and oxygen in general biological and medical applications.

  11. A model for the impact of the nanostructure size on its gas sensing properties

    DEFF Research Database (Denmark)

    Alenezi, Mohammad R.; Alzanki, T.H.; Almeshal, A.M.

    2015-01-01

    The size of a metal oxide nanostructure plays a key role in its performance as a gas sensor. ZnO nanostructures with different morphologies including nanowires at different diameters and nanodisks at different thicknesses were synthesized hydrothermally. Gas sensors based on individual...... of the surface to volume ratio as well as the depletion region of the nanostructure. This work can be simply generalized for other metal oxides to enhance their performance as gas sensors....... nanostructures with different sizes were fabricated and their sensing properties were compared and investigated. Nanowires with smaller diameter size and higher surface to volume ratio showed enhanced gas sensing performance. Also, as the nanodisk thickness gets closer to the thickness of the ZnO depletion layer...

  12. X3 expansion tube driver gas spectroscopy and temperature measurements

    Science.gov (United States)

    Parekh, V.; Gildfind, D.; Lewis, S.; James, C.

    2018-07-01

    The University of Queensland's X3 facility is a large, free-piston driven expansion tube used for super-orbital and high Mach number scramjet aerothermodynamic studies. During recent development of new scramjet test flow conditions, experimentally measured shock speeds were found to be significantly lower than that predicted by initial driver performance calculations. These calculations were based on ideal, isentropic compression of the driver gas and indicated that loss mechanisms, not accounted for in the preliminary analysis, were significant. The critical determinant of shock speed is peak driver gas sound speed, which for a given gas composition depends on the peak driver gas temperature. This temperature may be inaccurately estimated if an incorrect fill temperature is assumed, or if heat losses during driver gas compression are significant but not accounted for. For this study, the ideal predicted peak temperature was 3750 K, without accounting for losses. However, a much lower driver temperature of 2400 K is suggested based on measured experimental shock speeds. This study aimed to measure initial and peak driver gas temperatures for a representative X3 operating condition. Examination of the transient temperatures of the driver gas and compression tube steel wall during the initial fill process showed that once the filling process was complete, the steady-state driver gas temperature closely matched the tube wall temperature. Therefore, while assuming the gas is initially at the ambient laboratory temperature is not a significant source of error, it can be entirely mitigated by simply monitoring tube wall temperature. Optical emission spectroscopy was used to determine the driver gas spectra after diaphragm rupture; the driver gas emission spectrum exhibited a significant continuum radiation component, with prominent spectral lines attributed to contamination of the gas. A graybody approximation of the continuum suggested a peak driver gas temperature of

  13. X3 expansion tube driver gas spectroscopy and temperature measurements

    Science.gov (United States)

    Parekh, V.; Gildfind, D.; Lewis, S.; James, C.

    2017-11-01

    The University of Queensland's X3 facility is a large, free-piston driven expansion tube used for super-orbital and high Mach number scramjet aerothermodynamic studies. During recent development of new scramjet test flow conditions, experimentally measured shock speeds were found to be significantly lower than that predicted by initial driver performance calculations. These calculations were based on ideal, isentropic compression of the driver gas and indicated that loss mechanisms, not accounted for in the preliminary analysis, were significant. The critical determinant of shock speed is peak driver gas sound speed, which for a given gas composition depends on the peak driver gas temperature. This temperature may be inaccurately estimated if an incorrect fill temperature is assumed, or if heat losses during driver gas compression are significant but not accounted for. For this study, the ideal predicted peak temperature was 3750 K, without accounting for losses. However, a much lower driver temperature of 2400 K is suggested based on measured experimental shock speeds. This study aimed to measure initial and peak driver gas temperatures for a representative X3 operating condition. Examination of the transient temperatures of the driver gas and compression tube steel wall during the initial fill process showed that once the filling process was complete, the steady-state driver gas temperature closely matched the tube wall temperature. Therefore, while assuming the gas is initially at the ambient laboratory temperature is not a significant source of error, it can be entirely mitigated by simply monitoring tube wall temperature. Optical emission spectroscopy was used to determine the driver gas spectra after diaphragm rupture; the driver gas emission spectrum exhibited a significant continuum radiation component, with prominent spectral lines attributed to contamination of the gas. A graybody approximation of the continuum suggested a peak driver gas temperature of

  14. Correlation of Chemisorption and Electronic Effects for Metal Oxide Interfaces: Transducing Principles for Temperature Programmed Gas Microsensors. Final Report

    International Nuclear Information System (INIS)

    Semancik, S.; Cavicchi, R. E.; DeVoe, D. L.; McAvoy, T. J.

    2001-01-01

    This Final Report describes efforts and results for a 3-year DoE/OST-EMSP project centered at NIST. The multidisciplinary project investigated scientific and technical concepts critical for developing tunable, MEMS-based, gas and vapor microsensors that could be applied for monitoring the types of multiple analytes (and differing backgrounds) encountered at DoE waste sites. Micromachined ''microhotplate'' arrays were used as platforms for fabricating conductometric sensor prototypes, and as microscale research tools. Efficient microarray techniques were developed for locally depositing and then performance evaluating thin oxide films, in order to correlate gas sensing characteristics with properties including composition, microstructure, thickness and surface modification. This approach produced temperature-dependent databases on the sensitivities of sensing materials to varied analytes (in air) which enable application-specific tuning of microsensor arrays. Mechanistic studies on adsorb ate transient phenomena were conducted to better understand the ways in which rapid temperature programming schedules can be used to produce unique response signatures and increase information density in microsensor signals. Chemometric and neural network analyses were also employed in our studies for recognition and quantification of target analytes

  15. Study on Gas Sensing Performance of In2O3 Thick Film Resistors Prepared by Screen Printing Technique

    Directory of Open Access Journals (Sweden)

    S. C. KULKARNI

    2011-02-01

    Full Text Available Indium Oxide (In2O3 thick films were prepared on alumina substrate by using standard screen printing technique. These films were dried and fired at temperatures between 750 0C to 950 0C for two hours in air atmosphere. The compositional, morphological and structural properties of In2O3 films were performed by Energy Dispersive Spectroscopy (EDX, XRD, and Scanning electron Microscopy respectively. We explore the various gases to study sensing performance of In2O3 thick films. The maximum response was reported to film fired at 750 0C for H2S gas at 150 0C operating temperature.

  16. Fabrication of ultra-high sensitive and selective CH4 room temperature gas sensing of TiO2nanorods: Detailed study on the annealing temperature

    CSIR Research Space (South Africa)

    Tshabalala, Zamaswazi P

    2016-07-01

    Full Text Available Applications of ultra-highly sensitive and selective methane (CH(sub4)) room temperature gas sensors are important for various operations especially in underground mining environment. Therefore, this study is set out to investigate the effect...

  17. Combining Remote Temperature Sensing with in-Situ Sensing to Track Marine/Freshwater Mixing Dynamics.

    Science.gov (United States)

    McCaul, Margaret; Barland, Jack; Cleary, John; Cahalane, Conor; McCarthy, Tim; Diamond, Dermot

    2016-08-31

    The ability to track the dynamics of processes in natural water bodies on a global scale, and at a resolution that enables highly localised behaviour to be visualized, is an ideal scenario for understanding how local events can influence the global environment. While advances in in-situ chem/bio-sensing continue to be reported, costs and reliability issues still inhibit the implementation of large-scale deployments. In contrast, physical parameters like surface temperature can be tracked on a global scale using satellite remote sensing, and locally at high resolution via flyovers and drones using multi-spectral imaging. In this study, we show how a much more complete picture of submarine and intertidal groundwater discharge patterns in Kinvara Bay, Galway can be achieved using a fusion of data collected from the Earth Observation satellite (Landsat 8), small aircraft and in-situ sensors. Over the course of the four-day field campaign, over 65,000 in-situ temperatures, salinity and nutrient measurements were collected in parallel with high-resolution thermal imaging from aircraft flyovers. The processed in-situ data show highly correlated patterns between temperature and salinity at the southern end of the bay where freshwater springs can be identified at low tide. Salinity values range from 1 to 2 ppt at the southern end of the bay to 30 ppt at the mouth of the bay, indicating the presence of a freshwater wedge. The data clearly show that temperature differences can be used to track the dynamics of freshwater and seawater mixing in the inner bay region. This outcome suggests that combining the tremendous spatial density and wide geographical reach of remote temperature sensing (using drones, flyovers and satellites) with ground-truthing via appropriately located in-situ sensors (temperature, salinity, chemical, and biological) can produce a much more complete and accurate picture of the water dynamics than each modality used in isolation.

  18. A novel snowflake-like SnO2 hierarchical architecture with superior gas sensing properties

    Science.gov (United States)

    Li, Yanqiong

    2018-02-01

    Snowflake-like SnO2 hierarchical architecture has been synthesized via a facile hydrothermal method and followed by calcination. The SnO2 hierarchical structures are assembled with thin nanoflakes blocks, which look like snowflake shape. A possible mechanism for the formation of the SnO2 hierarchical structures is speculated. Moreover, gas sensing tests show that the sensor based on snowflake-like SnO2 architectures exhibited excellent gas sensing properties. The enhancement may be attributed to its unique structures, in which the porous feature on the snowflake surface could further increase the active surface area of the materials and provide facile pathways for the target gas.

  19. Effect of Annealing and Operating Substrate Temperature on Methanol Gas Sensing Properties of SnO2 Thin Films

    Directory of Open Access Journals (Sweden)

    Priyanka Kakoty

    2017-04-01

    Full Text Available SnO2 based sensing nano-material have been synthesized by simple chemical route using Stannic (IV chloride-pentahydrate (SnCl4.5H2O as precursor. The structural properties of the prepared SnO2 nano-particles annealed at different temperatures have been characterized by X-ray diffraction (XRD analysis. The XRD patterns showed pure bulk SnO2 with a tetragonal rutile structure in the nano-powders. By increasing the annealing temperatures, the size of crystals were seen to increase, the diffraction peaks were found narrower and the intensity was higher. SnO2 films prepared by spin coating the prepared nano-material solution was tested at different temperatures for methanol vapour and it showed that the film prepared from SnO2 powder annealed at 500 0C shows the higher sensitivity to methanol vapour at 150 0C substrate temperature with significantly low response and recovery time.

  20. C59N Peapods Sensing the Temperature

    Directory of Open Access Journals (Sweden)

    Toshiro Kaneko

    2013-01-01

    Full Text Available We report the novel photoresponse of nanodevices made from azafullerene (C59N-encapsulated single-walled carbon nanotubes (C59N@SWNTs, so called peapods. The photoconducting properties of a C59N@SWNT are measured over a temperature range of 10 to 300 K under a field-effect transistor configuration. It is found that the photosensitivity of C59N@SWNTs depends very sensitively on the temperature, making them an attractive candidate as a component of nanothermometers covering a wide temperature range. Our results indicate that it is possible to read the temperature by monitoring the optoelectronics signal of C59N@SWNTs. In particular, sensing low temperatures would become more convenient and easy by giving a simple light pulse.

  1. Highly sensitive room temperature ammonia gas sensor based on Ir-doped Pt porous ceramic electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenlong [College of pharmacy and biological engineering, Chengdu University, Chengdu, 610106 (China); Department of chemical and materials engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Liu, Yen-Yu [Department of chemical and materials engineering, Tunghai University, Taichung 407, Taiwan (China); Do, Jing-Shan, E-mail: jsdo@ncut.edu.tw [Department of chemical and materials engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Li, Jing, E-mail: lijing@cdu.edu.cn [College of pharmacy and biological engineering, Chengdu University, Chengdu, 610106 (China)

    2016-12-30

    Highlights: • Water vapors seem to hugely improve the electrochemical activity of the Pt and Pt-Ir porous ceramic electrodes. • The gas sensors based on the Pt and Pt-Ir alloy electrodes possess good sensing performances. • The reaction path of the ammonia on platinum has been discussed. - Abstract: Room temperature NH{sub 3} gas sensors based on Pt and Pt-Ir (Ir doping Pt) porous ceramic electrodes have been fabricated by both electroplating and sputtering methods. The properties of the gaseous ammonia sensors have been examined by polarization and chronoamperometry techniques. The influence of humidity on the features of the resulting sensors in the system has also been discussed, and the working potential was optimized. Water vapors seem to hugely improve the electrochemical activity of the electrode. With increasing the relative humidity, the response of the Pt-Ir(E)/Pt(S)/PCP sensor to NH{sub 3} gas could be enhanced remarkably, and the sensitivity increases from 1.14 to 12.06 μA ppm{sup −1} cm{sup −2} .Then we have also discussed the sensing mechanism of the Pt-Ir sensor and the result has been confirmed by X-ray photoelectron spectroscopy of the electrode surface before and after reaction in the end.

  2. Synthesis and Characterization of Pure and Al Modified BaSnO3 Thick Film Resistor and Studies of its Gas Sensing Performance

    Directory of Open Access Journals (Sweden)

    N. U. PATIL

    2013-02-01

    Full Text Available In this work we report the synthesis, microstructure, electric properties and sensing performance of BaSnO3 (BS powder, it was prepared by solid state mechano-chemical method. As prepared powder is calcinated at temperatures 1000 °C and 1200 °C and tested for crystallization. Thick films were prepared using simple yet effective screen-printing technology. Structural and electrical analyses were performed and the results have been correlated. The pure BS film shows good response (S=9.8 to NH3 at elevated temperature up to 500 °C along with response other gases with lower sensitivity such as CO2, CO, H2S for various gas concentrations, when the pure film is surface modified with Al2O3, film improves the selectivity and sensitivity. Maximum response (S=21.2 was found to H2S gas at temperature of 300 °C for gas concentration as low as up to 100 ppm. The characterization of the films was done by XRD, SEM and TGA. Crystallite size, surface area, electric properties and gas sensitivity of the films were measured and presented.

  3. Surface Acoustic Wave Devices for Harsh Environment Wireless Sensing

    Directory of Open Access Journals (Sweden)

    David W. Greve

    2013-05-01

    Full Text Available Langasite surface acoustic wave devices can be used to implement harsh-environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensor with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity.

  4. All-soft, battery-free, and wireless chemical sensing platform based on liquid metal for liquid- and gas-phase VOC detection.

    Science.gov (United States)

    Kim, Min-Gu; Alrowais, Hommood; Kim, Choongsoon; Yeon, Pyungwoo; Ghovanloo, Maysam; Brand, Oliver

    2017-06-27

    Lightweight, flexible, stretchable, and wireless sensing platforms have gained significant attention for personal healthcare and environmental monitoring applications. This paper introduces an all-soft (flexible and stretchable), battery-free, and wireless chemical microsystem using gallium-based liquid metal (eutectic gallium-indium alloy, EGaIn) and poly(dimethylsiloxane) (PDMS), fabricated using an advanced liquid metal thin-line patterning technique based on soft lithography. Considering its flexible, stretchable, and lightweight characteristics, the proposed sensing platform is well suited for wearable sensing applications either on the skin or on clothing. Using the microfluidic sensing platform, detection of liquid-phase and gas-phase volatile organic compounds (VOC) is demonstrated using the same design, which gives an opportunity to have the sensor operate under different working conditions and environments. In the case of liquid-phase chemical sensing, the wireless sensing performance and microfluidic capacitance tunability for different dielectric liquids are evaluated using analytical, numerical, and experimental approaches. In the case of gas-phase chemical sensing, PDMS is used both as a substrate and a sensing material. The gas sensing performance is evaluated and compared to a silicon-based, solid-state gas sensor with a PDMS sensing film.

  5. Terahertz gas sensing based on a simple one-dimensional photonic crystal cavity with high-quality factors

    DEFF Research Database (Denmark)

    Chen, T.; Han, Z. H.; Liu, J. J.

    2014-01-01

    We report in this paper terahertz gas sensing using a simple 1D photonic crystal cavity. The resonant frequencies of the cavity depend linearly on the refractive index of the ambient gas, which can then be measured by monitoring the resonance shift. Although quite easy to manufacture, this cavity...... exhibits high-quality factors, facilitating the realization of high sensitivity in the gas refractive index sensing. In our experiment, 6% of the change of hydrogen concentration in air, which corresponds to a refractive index change of 1.4 x 10(-5), can be steadily detected, and different gas samples can...

  6. Flexible camphor sulfonic acid-doped PAni/α-Fe{sub 2}O{sub 3} nanocomposite films and their room temperature ammonia sensing activity

    Energy Technology Data Exchange (ETDEWEB)

    Bandgar, D.K. [Functional Materials Research Laboratory (FMRL), School of Physical Sciences, Solapur University, Solapur 413 255, M.S. (India); Navale, S.T. [College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060 (China); Navale, Y.H.; Ingole, S.M. [Functional Materials Research Laboratory (FMRL), School of Physical Sciences, Solapur University, Solapur 413 255, M.S. (India); Stadler, F.J. [College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060 (China); Ramgir, N.; Aswal, D.K.; Gupta, S.K. [Technical Physics Division, Babha Atomic Research Centre, Mumbai, M.S. (India); Mane, R.S. [School of Physical Sciences, SRTM University, Nanded 431606 (India); Patil, V.B., E-mail: drvbpatil@gmail.com [Functional Materials Research Laboratory (FMRL), School of Physical Sciences, Solapur University, Solapur 413 255, M.S. (India)

    2017-03-01

    Composite nanostructures play a crucial role in gas sensing applications owing to their tunable properties and sizes. The main goal of this article is to prepare camphor sulfonic acid (10–50 wt%)-doped PAni/α-Fe{sub 2}O{sub 3} (PFC) composite nanostructured films on flexible polyethylene terephthalate (PET) substrate through in-situ polymerization process and study their gas sensing activity towards various gases. Structural and morphological measurements along with gas sensing properties in terms of selectivity, response, stability, and response-recovery times are investigated and reported. The gas selectivity tests of flexible PFC nanostructured composite films are performed towards different gases such as NO{sub 2}, NH{sub 3}, LPG, CH{sub 3}OH, and C{sub 2}H{sub 5}OH etc., wherein all the flexible PFC (10–50%) films demonstrate a superior selectivity towards NH{sub 3} gas even in the presence of other test gases. Among the different compositions, 30% PFC flexible film exhibits highest response of 72% to 100 ppm NH{sub 3} with good response time of 65 s. The systematic study between PFC flexible nanocomposite films and NH{sub 3} gas is conducted and reported. In addition, the interfacial charge transfer kinetics across NH{sub 3} and PFC film interface was investigated by means of impendence spectroscopy study. - Highlights: • Novel route of preparation of camphor sulfonic acid doped PAni-Fe{sub 2}O{sub 3} (PFC) flexible films. • XRD, FTIR, and RAMAN analysis confirms the formation of PFC composites. • PFC films are highly selective towards NH{sub 3} gas at room temperature. • PFC films able to detect as low as 2.5 ppm concentration of NH{sub 3} gas. • 30% PFC flexible film exhibits highest response of 72%–100 ppm NH{sub 3} gas with good response time of 65 s.

  7. Fabrication, characterization and gas sensing studies of PPy/MWCNT/SLS nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, D. C., E-mail: dctiwari2001@yahoo.com; Atri, Priyanka, E-mail: dctiwari2001@yahoo.com [SOS Electronics, Jiwaji University, Gwalior (M.P.)-474011 (India); Sharma, R. [CSIR-CEERI, Pilani (Rajasthan)-333031 (India)

    2014-04-24

    Multiwall carbon nanotubes (MWCNT) coated with polypyrrole nanocomposite was prepared by in-situ chemical oxidative polymerization method in the presence of surfactant (SLS). The scanning electron microscope (SEM) pictures indicate the core shell structure of PPy/MWCNT/SLS nanocomposite. Nature of the prepared material was investigated by X-ray diffraction spectroscopy. This nanocomposite shows the excellent gas sensing behaviour for ammonia gas at 150 ppm and 300 ppm levels.

  8. PDMS membranes as sensing element in optical sensors for gas detection in water

    Directory of Open Access Journals (Sweden)

    Stefania Torino

    2017-11-01

    Full Text Available Polydimethylsiloxane (PDMS has been introduced the first time about 20years ago. This polymer is worldwide used for the rapid prototyping of microfluidic device through a replica molding process. However, the great popularity of PDMS is not only related to its easy processability, but also to its chemical and physical properties. For its interesting properties, the polymer has been implied for several applications, including sensing. In this work, we investigated how to use functionalized PDMS membranes as sensing elements in optical sensors for gas detection in water samples. Keywords: Polydimethylsiloxane (PDMS, Surface Plasmon Resonance (SPR sensors, Gas sensor

  9. Temperature sensing of micron scale polymer fibers using fiber Bragg gratings

    KAUST Repository

    Zhou, Jian

    2015-07-02

    Highly conductive polymer fibers are key components in the design of multifunctional textiles. Measuring the voltage/temperature relationships of these fibers is very challenging due to their very small diameters, making it impossible to rely on classical temperature sensing techniques. These fibers are also so fragile that they cannot withstand any perturbation from external measurement systems. We propose here, a non-contact temperature measurement technique based on fiber Bragg gratings (FBGs). The heat exchange is carefully controlled between the probed fibers and the sensing FBG by promoting radiation and convective heat transfer rather than conduction, which is known to be poorly controlled. We demonstrate our technique on a highly conductive Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS)-based fiber. A non-phenomenological model of the sensing system based on meaningful physical parameters is validated towards experimental observations. The technique reliably measures the temperature of the polymer fibers when subjected to electrical loading. © 2015 IOP Publishing Ltd.

  10. A Plasmonic Temperature-Sensing Structure Based on Dual Laterally Side-Coupled Hexagonal Cavities

    Directory of Open Access Journals (Sweden)

    Yiyuan Xie

    2016-05-01

    Full Text Available A plasmonic temperature-sensing structure, based on a metal-insulator-metal (MIM waveguide with dual side-coupled hexagonal cavities, is proposed and numerically investigated by using the finite-difference time-domain (FDTD method in this paper. The numerical simulation results show that a resonance dip appears in the transmission spectrum. Moreover, the full width of half maximum (FWHM of the resonance dip can be narrowed down, and the extinction ratio can reach a maximum value by tuning the coupling distance between the waveguide and two cavities. Based on a linear relationship between the resonance dip and environment temperature, the temperature-sensing characteristics are discussed. The temperature sensitivity is influenced by the side length and the coupling distance. Furthermore, for the first time, two concepts—optical spectrum interference (OSI and misjudge rate (MR—are introduced to study the temperature-sensing resolution based on spectral interrogation. This work has some significance in the design of nanoscale optical sensors with high temperature sensitivity and a high sensing resolution.

  11. Remote sensing of land surface temperature: The directional viewing effect

    International Nuclear Information System (INIS)

    Smith, J.A.; Schmugge, T.J.; Ballard, J.R. Jr.

    1997-01-01

    Land Surface Temperature (LST) is an important parameter in understanding global environmental change because it controls many of the underlying processes in the energy budget at the surface and heat and water transport between the surface and the atmosphere. The measurement of LST at a variety of spatial and temporal scales and extension to global coverage requires remote sensing means to achieve these goals. Land surface temperature and emissivity products are currently being derived from satellite and aircraft remote sensing data using a variety of techniques to correct for atmospheric effects. Implicit in the commonly employed approaches is the assumption of isotropy in directional thermal infrared exitance. The theoretical analyses indicate angular variations in apparent infrared temperature will typically yield land surface temperature errors ranging from 1 to 4 C unless corrective measures are applied

  12. Gas Sensing Performance of Pure and Modified BST Thick Film Resistor

    Directory of Open Access Journals (Sweden)

    G. H. JAIN

    2008-04-01

    Full Text Available Barium Strontium Titanate (BST-(Ba0.87Sr0.13TiO3 ceramic powder was prepared by mechanochemical process. The thick films of different thicknesses of BST were prepared by screen-printing technique and gas-sensing performance of these films was tested for various gases. The films showed highest response and selectivity to ammonia gas. The pure BST film was surface modified by surfactant CrO3 by using dipping technique. The surface modified film suppresses the response to ammonia and enhances to H2S gas. The surface modification of films changes the adsorption-desorption relationship with the target gas and shifts its selectivity. The gas response, selectivity, response and recovery time of the pure and modified films were measured and presented.

  13. Modern gas-based temperature and pressure measurements

    CERN Document Server

    Pavese, Franco

    2013-01-01

    This 2nd edition volume of Modern Gas-Based Temperature and Pressure Measurements follows the first publication in 1992. It collects a much larger set of information, reference data, and bibliography in temperature and pressure metrology of gaseous substances, including the physical-chemical issues related to gaseous substances. The book provides solutions to practical applications where gases are used in different thermodynamic conditions. Modern Gas-Based Temperature and Pressure Measurements, 2nd edition is the only comprehensive survey of methods for pressure measurement in gaseous media used in the medium-to-low pressure range closely connected with thermometry. It assembles current information on thermometry and manometry that involve the use of gaseous substances which are likely to be valid methods for the future. As such, it is an important resource for the researcher. This edition is updated through the very latest scientific and technical developments of gas-based temperature and pressure measurem...

  14. Anchoring ultrafine Pd nanoparticles and SnO2 nanoparticles on reduced graphene oxide for high-performance room temperature NO2 sensing.

    Science.gov (United States)

    Wang, Ziying; Zhang, Tong; Zhao, Chen; Han, Tianyi; Fei, Teng; Liu, Sen; Lu, Geyu

    2018-03-15

    In this paper, we demonstrate room-temperature NO 2 gas sensors using Pd nanoparticles (NPs) and SnO 2 NPs decorated reduced graphene oxide (Pd-SnO 2 -RGO) hybrids as sensing materials. It is found that ultrafine Pd NPs and SnO 2 NPs with particle sizes of 3-5 nm are attached to RGO nanosheets. Compared to SnO 2 -RGO hybrids, the sensor based on Pd-SnO 2 -RGO hybrids exhibited higher sensitivity at room temperature, where the response to 1 ppm NO 2 was 3.92 with the response time and recovery time being 13 s and 105 s. Moreover, such sensor exhibited excellent selectivity, and low detection limit (50 ppb). In addition to high transport capability of RGO as well as excellent NO 2 adsorption ability derived from ultrafine SnO 2 NPs and Pd NPs, the superior sensing performances of the hybrids were attributed to the synergetic effect of Pd NPs, SnO 2 NPs and RGO. Particularly, the excellent sensing performances were related to high conductivity and catalytic activity of Pd NPs. Finally, the sensing mechanism for NO 2 sensing and the reason for enhanced sensing performances by introduction of Pd NPs are also discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Working gas temperature and pressure changes for microscale thermal creep-driven flow caused by discontinuous wall temperatures

    International Nuclear Information System (INIS)

    Han, Yen-Lin

    2010-01-01

    Microscale temperature gradient-driven (thermal creep/transpiration) gas flows have attracted significant interest during the past decade. For free molecular and transitional conditions, applying temperature gradients to a flow channel's walls induces the thermal creep effect. This results in a working gas flowing through the channel from cold to hot, which is generally accompanied by a rising pressure from cold to hot in the channel. Working gas temperature and pressure distributions can vary significantly, depending on a flow channel's configuration and wall temperature distribution. Understanding working gas temperature excursions, both increases and decreases, is essential to ensure the effective use of thermal creep flows in microscale applications. In this study, the characterizations of working gas temperature variations, due to both temperature discontinuities and more gradual changes, on a variety of flow channel walls, were systematically investigated using the direct simulation Monte Carlo (DSMC) method. A micro/meso-scale pump, the Knudsen compressor, was chosen to illustrate the importance of controlling working gas temperature in thermal creep-driven flows. Gas pressure and temperature variations, through several Knudsen compressor stage configurations, were studied to determine the most advantageous flow phenomena for the efficient operation of Knudsen compressors.

  16. Facial development of high performance room temperature NO2 gas sensors based on ZnO nanowalls decorated rGO nanosheets

    Science.gov (United States)

    Liu, Zongyuan; Yu, Lingmin; Guo, Fen; Liu, Sheng; Qi, Lijun; Shan, Minyu; Fan, Xinhui

    2017-11-01

    A highly sensitive NO2 gas sensor based on ZnO nanowalls decorated rGO nanosheets was fabricated using a thermal reduction and soft solution process. The highly developed interconnected microporous networks of ZnO nanowalls were anchored homogeneously on the surface of reduced graphene oxide (rGO). Sensors fabricated with heterojunction structures achieved a higher response (S = 9.61) and shorter response-recovery (25 s, 15 s) behavior at room temperature to 50 ppm level NO2 effectively in contrast to those sensors based on net ZnO nanowalls or rGO layers. The stability and selectivity of ZnO/rGO heterojunction were carried out. Meanwhile, the effects of humidity on ZnO/rGO heterojunction gas sensor were investigated. The more preferable sensing performance of ZnO/rGO heterojunction to NO2 was discussed. It can be surmised that this NO2 gas sensor has potential for use as a portable room temperature gas sensor.

  17. Co-doped phosphorene: Enhanced sensitivity of CO gas sensing

    Science.gov (United States)

    Lei, S. Y.; Luan, S.; Yu, H.

    2018-03-01

    First-principle calculation was carried out to systematically investigate carbon monoxide (CO) adsorption on pristine and cobalt (Co)-doped phosphorenes (Co-bP). Whether or not CO is adsorped, pristine phosphorene is a direct-band-gap semiconductor. However, the bandgap of Co-bP experiences direct-to-indirect transition after CO molecule adsorption, which will affect optical absorption considerably, implying that Co doping can enhance the sensitivity of phosphorene as a CO gas sensor. Moreover, Co doping can improve an adsorption energy of CO to 1.31 eV, as compared with pristine phosphorene (0.12 eV), also indicating that Co-bP is energetically favorable for CO gas sensing.

  18. High temperature gas-cooled reactor: gas turbine application study

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The high-temperature capability of the High-Temperature Gas-Cooled Reactor (HTGR) is a distinguishing characteristic which has long been recognized as significant both within the US and within foreign nuclear energy programs. This high-temperature capability of the HTGR concept leads to increased efficiency in conventional applications and, in addition, makes possible a number of unique applications in both electrical generation and industrial process heat. In particular, coupling the HTGR nuclear heat source to the Brayton (gas turbine) Cycle offers significant potential benefits to operating utilities. This HTGR-GT Application Study documents the effort to evaluate the appropriateness of the HTGR-GT as an HTGR Lead Project. The scope of this effort included evaluation of the HTGR-GT technology, evaluation of potential HTGR-GT markets, assessment of the economics of commercial HTGR-GT plants, and evaluation of the program and expenditures necessary to establish HTGR-GT technology through the completion of the Lead Project.

  19. High temperature gas-cooled reactor: gas turbine application study

    International Nuclear Information System (INIS)

    1980-12-01

    The high-temperature capability of the High-Temperature Gas-Cooled Reactor (HTGR) is a distinguishing characteristic which has long been recognized as significant both within the US and within foreign nuclear energy programs. This high-temperature capability of the HTGR concept leads to increased efficiency in conventional applications and, in addition, makes possible a number of unique applications in both electrical generation and industrial process heat. In particular, coupling the HTGR nuclear heat source to the Brayton (gas turbine) Cycle offers significant potential benefits to operating utilities. This HTGR-GT Application Study documents the effort to evaluate the appropriateness of the HTGR-GT as an HTGR Lead Project. The scope of this effort included evaluation of the HTGR-GT technology, evaluation of potential HTGR-GT markets, assessment of the economics of commercial HTGR-GT plants, and evaluation of the program and expenditures necessary to establish HTGR-GT technology through the completion of the Lead Project

  20. Novel silica membranes for high temperature gas separations

    KAUST Repository

    Bighane, Neha; Koros, William J.

    2011-01-01

    and pure gas separation performance in the temperature range 35-80°C is presented. It is observed that the membranes exhibit activated transport for small gas penetrants such as He, H 2 and CO 2. The membranes can withstand temperatures up to 350°C in air

  1. Studies on Gas Sensing Performance of Pure and Surface Chrominated Indium Oxide Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    D. N. CHAVAN

    2010-12-01

    Full Text Available The thick films of AR grade In2O3 were prepared by standard screen-printing technique. The gas sensing performance of thick film was tested for various gases. It showed maximum gas response to ethanol vapor at 350 oC for 80 ppm. To improve the gas response and selectivity of the film towards a particular gas, In2O3 thick films were modified by dipping them in an aqueous solution of 0.1 M CrO3 for different intervals of time. The surface chrominated (20 min In2O3 thick film showed maximum response to H2S gas (40 ppm than pure In2O3 thick film at 250 oC. Chromium oxide on the surface of the film shifts the gas response from ethanol vapor to H2S gas. A systematic study of sensing performance of the sensor indicates the key role played by chromium oxide on the surface of thick film. The selectivity, gas response and recovery time of the sensor were measured and presented.

  2. Measuring gas temperature during spin-exchange optical pumping process

    Science.gov (United States)

    Normand, E.; Jiang, C. Y.; Brown, D. R.; Robertson, L.; Crow, L.; Tong, X.

    2016-04-01

    The gas temperature inside a Spin-Exchange Optical Pumping (SEOP) laser-pumping polarized 3He cell has long been a mystery. Different experimental methods were employed to measure this temperature but all were based on either modelling or indirect measurement. To date there has not been any direct experimental measurement of this quantity. Here we present the first direct measurement using neutron transmission to accurately determine the number density of 3He, the temperature is obtained using the ideal gas law. Our result showed a surprisingly high gas temperature of 380°C, compared to the 245°C of the 3He cell wall temperature and 178°C of the optical pumping oven temperature. This experiment result may be used to further investigate the unsolved puzzle of the "X-factor" in the SEOP process which places an upper bound to the 3He polarization that can be achieved. Additional spin relaxation mechanisms might exist due to the high gas temperature, which could explain the origin of the X-factor.

  3. Combining Remote Temperature Sensing with in-Situ Sensing to Track Marine/Freshwater Mixing Dynamics

    Directory of Open Access Journals (Sweden)

    Margaret McCaul

    2016-08-01

    Full Text Available The ability to track the dynamics of processes in natural water bodies on a global scale, and at a resolution that enables highly localised behaviour to be visualized, is an ideal scenario for understanding how local events can influence the global environment. While advances in in-situ chem/bio-sensing continue to be reported, costs and reliability issues still inhibit the implementation of large-scale deployments. In contrast, physical parameters like surface temperature can be tracked on a global scale using satellite remote sensing, and locally at high resolution via flyovers and drones using multi-spectral imaging. In this study, we show how a much more complete picture of submarine and intertidal groundwater discharge patterns in Kinvara Bay, Galway can be achieved using a fusion of data collected from the Earth Observation satellite (Landsat 8, small aircraft and in-situ sensors. Over the course of the four-day field campaign, over 65,000 in-situ temperatures, salinity and nutrient measurements were collected in parallel with high-resolution thermal imaging from aircraft flyovers. The processed in-situ data show highly correlated patterns between temperature and salinity at the southern end of the bay where freshwater springs can be identified at low tide. Salinity values range from 1 to 2 ppt at the southern end of the bay to 30 ppt at the mouth of the bay, indicating the presence of a freshwater wedge. The data clearly show that temperature differences can be used to track the dynamics of freshwater and seawater mixing in the inner bay region. This outcome suggests that combining the tremendous spatial density and wide geographical reach of remote temperature sensing (using drones, flyovers and satellites with ground-truthing via appropriately located in-situ sensors (temperature, salinity, chemical, and biological can produce a much more complete and accurate picture of the water dynamics than each modality used in isolation.

  4. Apparatus using radioactive particles for measuring gas temperatures

    International Nuclear Information System (INIS)

    Compton, W.A.; Duffy, T.E.; Seegall, M.I.

    1975-01-01

    Apparatus for producing a signal indicative of the temperature of a heated gas is described comprising a beta particle source; a beta particle detector which intercepts particles emitted from said source; circuitry for converting the detector output to a signal indicative of the density of the gas; a pressure transducer for generating a signal indicative of the pressure on the gas; and circuitry for dividing the pressure signal by the density signal to produce a signal indicative of the average temperature of the gas along the path between the beta particle source and the beta particle detector. (auth)

  5. Gas sensing of ruthenium implanted tungsten oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tesfamichael, T., E-mail: t.tesfamichael@qut.edu.au [Institute for Future Environments, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000 (Australia); Ahsan, M. [William A. Cook Australia, 95 Brandl Street Eight Mile Plains, Brisbane, QLD 4113 (Australia); Notarianni, M. [Institute for Future Environments, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000 (Australia); Groß, A.; Hagen, G.; Moos, R. [University of Bayreuth, Faculty of Engineering Science, Department of Functional Materials, Universitätsstr. 30, 95440 Bayreuth (Germany); Ionescu, M. [ANSTO, Institute for Environmental Research, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Bell, J. [Institute for Future Environments, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000 (Australia)

    2014-05-02

    Different amounts of Ru were implanted into thermally evaporated WO{sub 3} thin films by ion implantation. The films were subsequently annealed at 600 °C for 2 h in air to remove defects generated during the ion implantation. The Ru concentrations of four samples have been quantified by Rutherford Backscattering Spectrometry as 0.8, 5.5, 9 and 11.5 at.%. The un-implanted WO{sub 3} films were highly porous but the porosity decreased significantly after ion implantation as observed by Transmission Electron Microscopy and Scanning Electron Microscopy. The thickness of the films also decreased with increasing Ru-ion dose, which is mainly due to densification of the porous films during ion implantation. From Raman Spectroscopy two peaks at 408 and 451 cm{sup −1} (in addition to the typical vibrational peaks of the monoclinic WO{sub 3} phase) associated with Ru were observed. Their intensity increased with increasing Ru concentration. X-ray Photoelectron Spectroscopy showed a metallic state of Ru with binding energy of Ru 3d{sub 5/2} at 280.1 eV. This peak position remained almost unchanged with increasing Ru concentration. The resistances of the Ru-implanted films were found to increase in the presence of NO{sub 2} and NO with higher sensor response to NO{sub 2}. The effect of Ru concentration on the sensing performance of the films was not explicitly observed due to reduced film thickness and porosity with increasing Ru concentration. However, the results indicate that the implantation of Ru into WO{sub 3} films with sufficient film porosity and film thickness can be beneficial for NO{sub 2} sensing at temperatures in the range of 250 °C to 350 °C. - Highlights: • Densification of WO{sub 3} thin films has occurred after Ru ion implantation. • Thickness and porosity of the films decrease with increasing Ru ion dose. • The amount of oxygen vacancies and defects increases with increasing Ru ion dose. • Ru has shown a crucial role in enhancing sensor response

  6. Fabrication of a P3HT-ZnO Nanowires Gas Sensor Detecting Ammonia Gas

    Directory of Open Access Journals (Sweden)

    Chin-Guo Kuo

    2017-12-01

    Full Text Available In this study, an organic-inorganic semiconductor gas sensor was fabricated to detect ammonia gas. An inorganic semiconductor was a zinc oxide (ZnO nanowire array produced by atomic layer deposition (ALD while an organic material was a p-type semiconductor, poly(3-hexylthiophene (P3HT. P3HT was suitable for the gas sensing application due to its high hole mobility, good stability, and good electrical conductivity. In this work, P3HT was coated on the zinc oxide nanowires by the spin coating to form an organic-inorganic heterogeneous interface of the gas sensor for detecting ammonia gas. The thicknesses of the P3HT were around 462 nm, 397 nm, and 277 nm when the speeds of the spin coating were 4000 rpm, 5000 rpm, and 6000 rpm, respectively. The electrical properties and sensing characteristics of the gas sensing device at room temperature were evaluated by Hall effect measurement and the sensitivity of detecting ammonia gas. The results of Hall effect measurement for the P3HT-ZnO nanowires semiconductor with 462 nm P3HT film showed that the carrier concentration and the mobility were 2.7 × 1019 cm−3 and 24.7 cm2∙V−1∙s−1 respectively. The gas sensing device prepared by the P3HT-ZnO nanowires semiconductor had better sensitivity than the device composed of the ZnO film and P3HT film. Additionally, this gas sensing device could reach a maximum sensitivity around 11.58 per ppm.

  7. Ultra-High Temperature Sensors Based on Optical Property

    Energy Technology Data Exchange (ETDEWEB)

    Nabeel Riza

    2008-09-30

    In this program, Nuonics, Inc. has studied the fundamentals of a new Silicon Carbide (SiC) materials-based optical sensor technology suited for extreme environments of coal-fired engines in power production. The program explored how SiC could be used for sensing temperature, pressure, and potential gas species in a gas turbine environment. The program successfully demonstrated the optical designs, signal processing and experimental data for enabling both temperature and pressure sensing using SiC materials. The program via its sub-contractors also explored gas species sensing using SiC, in this case, no clear commercially deployable method was proven. Extensive temperature and pressure measurement data using the proposed SiC sensors was acquired to 1000 deg-C and 40 atms, respectively. Importantly, a first time packaged all-SiC probe design was successfully operated in a Siemens industrial turbine rig facility with the probe surviving the harsh chemical, pressure, and temperature environment during 28 days of test operations. The probe also survived a 1600 deg-C thermal shock test using an industrial flame.

  8. Measured gas and particle temperatures in VTT's entrained flow reactor

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Sørensen, L.H.

    2006-01-01

    Particle and gas temperature measurements were carried out in experiments on VTTs entrained flow reactor with 5% and 10% oxygen using Fourier transform infrared emission spectroscopy (FTIR). Particle temperature measurements were performed on polish coal,bark, wood, straw particles, and bark...... and wood particles treated with additive. A two-color technique with subtraction of the background light was used to estimate particle temperatures during experiments. A transmission-emission technique was used tomeasure the gas temperature in the reactor tube. Gas temperature measurements were in good...... agreement with thermocouple readings. Gas lines and bands from CO, CO2 and H2O can be observed in the spectra. CO was only observed at the first measuring port (100ms) with the strongest CO-signal seen during experiments with straw particles. Variations in gas concentration (CO2 and H2O) and the signal from...

  9. The improvement of gas-sensing properties of SnO2/zeolite-assembled composite

    Science.gov (United States)

    Sun, Yanhui; Wang, Jing; Li, Xiaogan; Du, Haiying; Huang, Qingpan

    2018-05-01

    SnO2-impregnated zeolite composites were used as gas-sensing materials to improve the sensitivity and selectivity of the metal oxide-based resistive-type gas sensors. Nanocrystalline MFI type zeolite (ZSM-5) was prepared by hydrothermal synthesis. Highly dispersive SnO2 nanoparticles were then successfully assembled on the surface of the ZSM-5 nanoparticles by using the impregnation methods. The SnO2 nanoparticles are nearly spherical with the particle size of 10 nm. An enhanced formaldehyde sensing of as-synthesized SnO2-ZSM-5-based sensor was observed whereas a suppression on the sensor response to other volatile organic vapors (VOCs) such as acetone, ethanol, and methanol was noticed. The possible reasons for this contrary observation were proposed to be related to the amount of the produced water vapor during the sensing reactions assisted by the ZSM-5 nanoparticles. This provides a possible new strategy to improve the selectivity of the gas sensors. The effect of the humidity on the sensor response to formaldehyde was investigated and it was found the higher humidity would decrease the sensor response. A coating layer of the ZSM-5 nanoparticles on top of the SnO2-ZSM-5-sensing film was thus applied to further improve the sensitivity and selectivity of the sensor through the strong adsorption ability to polar gases and the "filtering effect" by the pores of ZSM-5.

  10. Sn-doped ZnO nanopetal networks for efficient photocatalytic degradation of dye and gas sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, Sonik, E-mail: sonikbhatia@gmail.com [Department of Physics, Kanya Maha Vidyalaya, Vidyalaya Marg, Jalandhar, 144004 (India); Verma, Neha [Department of Physics, Kanya Maha Vidyalaya, Vidyalaya Marg, Jalandhar, 144004 (India); Bedi, R.K. [Satyam Institute of Engineering and Technology, Amritsar, 143107, Punjab (India)

    2017-06-15

    Highlights: • Tin doped ZnO nanoparticles were synthesized by simple combustion method and doctor blade technique. • Different concentrations of Sn (0.5 at. wt%, 1.0 at. wt%, 2.0 at. wt%, 3.0 at. wt%) were used as dopants. • 2.0% of Sn-doped ZnO nanoparticles exhibiting complete photodegradation of DR-31 dye under UV irradiation. Photocatalytic activities for all the samples were observed in 60 min. • The sensing performance showed 5% volume of ethanol and acetone and gases could be detected with sensitivity of 86.80% and 84.40% respectively. - Abstract: Nowadays, tremendous increase in environmental issue is an alarming threat to the ecosystem. This paper reports, rapid synthesis and characterization for tin doped ZnO nanoparticles prepared by simple combustion method and doctor blade technique. The prepared nanoparticles were characterized by several techniques in terms of their morphological, structural, compositional, optical, photocatalytic and gas sensing properties. These detailed characterization confirmed that all the synthesized nanoparticles are well crystalline and having good optoelectronic properties. Herein, different concentrations of Sn (0.5 at. wt%, 1.0 at. wt%, 2.0 at. wt%, 3.0 at. wt%) were used as dopants (SZ1–SZ4). The morphology of synthesized technique confirmed that the petal-shaped nanoparticles has high surface area and are well crystalline. In order to develop smart and functional nano-device, the prepared powder was coated on glass substrate by doctor blade technique and fabricated device was sensed for ethanol and acetone gas at different operating temperatures (300–500{sup °}C). It is noteworthy that morphology of the nanoparticles of the sensitive layer is maintained after different concentration of Sn. High sensitivity is the main cause of high surface area and tin doping. PL intensity near 598 nm of SZ3 is greater than other Sn-doped ZnO which indicates more oxygen vacancies of SZ3 is responsible for enhanced gas

  11. LPG sensing characteristics of electrospray deposited SnO2 nanoparticles

    International Nuclear Information System (INIS)

    Gürbüz, Mevlüt; Günkaya, Göktuğ; Doğan, Aydın

    2014-01-01

    Highlights: • SnO 2 nanopowder was deposited on conductive substrates using ESD technique. • Solution flow rate, coating time, substrate–nozzle distance and solid/alcohol ratio were studied to optimize SnO 2 film structure. • The gas sensing properties of tin oxide films were investigated using LPG. • The sensitivity of the films was increased with operating temperature. • The best sensitivity was observed for 20 LEL LPG at 450 °C operating temperature. - Abstract: In this study, SnO 2 films were fabricated on conductive substrate such as aluminum and platinum coated alumina using electro-spray deposition (ESD) method for gas sensor applications. Solution flow rate, coating time, substrate–nozzle distance and solid/alcohol ratio were studied to optimize SnO 2 film structure. The morphology of the deposited films was characterized by stereo and scanning electron microscopy (SEM). The gas sensing properties of tin oxide films were investigated using liquid petroleum gas (LPG) for various lower explosive limit (LEL). The results obtained from microscopic analyses show that optimum SnO 2 films were evaluated at flow rate of 0.05 ml/min, at distance of 6 cm, for 10 min deposition time, for 20 gSnO 2 /L ethanol ratio and at 7 kV DC electric field. By the results obtained from the gas sensing behavior, the sensitivity of the films was increased with operating temperature. The films showed better sensitivity for 20 LEL LPG concentration at 450 °C operating temperature

  12. Titanium dioxide-based carbon monoxide gas sensors: Effects of crystallinity and chemistry on sensitivity

    Science.gov (United States)

    Seeley, Zachary Mark

    Among metal-oxide gas sensors which change electrical resistive properties upon exposure to target gasses, titanium dioxide (TiO2) has received attention for its sensitivity and stability during high temperature (>500°C) operation. However, due to the sensing mechanism sensitivity, selectivity, and stability remain as critical deficiencies to be resolved before these sensors reach commercial use. In this study, TiO2 thick films of approximately 30mum and thin films of approximately 1mum thick were fabricated to assess the influence of their material properties on gas sensing mechanism. Increased calcination temperature of TiO2 thick films led to grain growth, reduction in specific surface area, and particle-particle necking. These properties are known to degrade sensitivity; however the measured carbon monoxide (CO) gas response improved with increasing calcination temperature up to 800°C. It was concluded that the sensing improvement was due to increased crystallinity within the films. Sensing properties of TiO2 thin films of were also dependent on crystallization, however; due to the smaller volume of material, they reached optimized crystallization at lower temperatures of 650°C, compared to 800°C for thick films. Incorporation of tungsten (W) and nickel (Ni) ions into the films created donor and acceptor defect sites, respectively, within the electronic band gap of TiO2. The additional n-type defects in W-doped TiO 2 improved n-type CO response, while p-type defects in Ni-doped TiO 2 converted the gas response to p-type. Chemistry of thin films had a more significant impact on the electrical properties and gas response than did microstructure or crystallinity. Doped films could be calcined at higher temperatures and yet remain highly sensitive to CO. Thin films with p-n bi-layer structure were fabricated to determine the influence of a p-n junction on gas sensing properties. No effect of the junction was observed and the sensing response neared the average

  13. One-pot electrospinning and gas-sensing properties of LaMnO3 perovskite/SnO2 heterojunction nanofibers

    Science.gov (United States)

    Chen, Dongdong; Yi, Jianxin

    2018-03-01

    Using nanostructured composite materials is an effective way to obtain high-performance gas sensors. This work used p-type LaMnO3 perovskite-structured semiconductor as a novel promoter for SnO2 nanofibers and studied the gas-sensing characteristics. Nanofibers of 0-2.5-mol% LaMnO3/SnO2 were synthesized via one-pot electrospinning. Compared with pristine SnO2, LaMnO3/SnO2 composite nanofibers exhibited smaller particle size (10-30 nm) and higher BET surface area. XPS revealed that oxygen surface absorption decreased with increasing LaMnO3 content. 0.3-mol% LaMnO3/SnO2 exhibited significantly enhanced ethanol sensitivity relative to pristine SnO2. A response of 20 was obtained at the optimum temperature of 260 °C for 100-ppm ethanol. Higher LaMnO3 loading led to decrease of the ethanol response. The impact of LaMnO3 loading on the sensing behavior of SnO2 nanofibers was discussed in terms of p-n heterojunction formation and changes in the microstructure and catalytic properties.

  14. Measurement of Turbulent Pressure and Temperature Fluctuations in a Gas Turbine Combustor

    Science.gov (United States)

    Povinelli, Louis (Technical Monitor); LaGraff, John E.; Bramanti, Cristina; Pldfield, Martin; Passaro, Andrea; Biagioni, Leonardo

    2004-01-01

    The report summarizes the results of the redesign efforts directed towards the gas-turbine combustor rapid-injector flow diagnostic probe developed under sponsorship of NASA-GRC and earlier reported in NASA-CR-2003-212540. Lessons learned during the theoretical development, developmental testing and field-testing in the previous phase of this research were applied to redesign of both the probe sensing elements and of the rapid injection device. This redesigned probe (referred to herein as Turboprobe) has been fabricated and is ready, along with the new rapid injector, for field-testing. The probe is now designed to capture both time-resolved and mean total temperatures, total pressures and, indirectly, one component of turbulent fluctuations.

  15. Synthesis, characterization and gas sensing performance of SnO2 ...

    Indian Academy of Sciences (India)

    Synthesis, characterization and gas sensing performance of SnO2 thin films prepared by spray pyrolysis. GANESH E PATIL, D D KAJALE, D N CHAVAN†, N K PAWAR††, P T AHIRE, S D SHINDE#,. V B GAIKWAD# and G H JAIN. ∗. Materials Research Laboratory, Arts, Commerce and Science College, Nandgaon 423 106, ...

  16. Novel silica membranes for high temperature gas separations

    KAUST Repository

    Bighane, Neha

    2011-04-01

    This article describes fabrication of novel silica membranes derived via controlled oxidative thermolysis of polydimethylsiloxane and their gas separation performance. The optimized protocol for fabrication of the silica membranes is described and pure gas separation performance in the temperature range 35-80°C is presented. It is observed that the membranes exhibit activated transport for small gas penetrants such as He, H 2 and CO 2. The membranes can withstand temperatures up to 350°C in air and may ultimately find use in H 2/CO 2 separations to improve efficiency in the water-gas shift reactor process. © 2011 Elsevier B.V.

  17. Photoluminescent properties of complex metal oxide nanopowders for gas sensing

    Science.gov (United States)

    Bovhyra, R. V.; Mudry, S. I.; Popovych, D. I.; Savka, S. S.; Serednytski, A. S.; Venhryn, Yu. I.

    2018-03-01

    This work carried out research on the features of photoluminescence of the mixed and complex metal oxide nanopowders (ZnO/TiO2, ZnO/SnO2, Zn2SiO4) in vacuum and gaseous ambient. The nanopowders were obtained using pulsed laser reactive technology. The synthesized nanoparticles were characterized by X-ray diffractometry, energy-dispersive X-ray analysis, and scanning and transmission electron microscopy analysis for their sizes, shapes and collocation. The influence of gas environment on the photoluminescence intensity was investigated. A change of ambient gas composition leads to a rather significant change in the intensity of the photoluminescence spectrum and its deformation. The most significant changes in the photoluminescent spectrum were observed for mixed ZnO/TiO2 nanopowders. This obviously is the result of a redistribution of existing centers of luminescence and the appearance of new adsorption centers of luminescence on the surface of nanopowders. The investigated nanopowders can be effectively used as sensing materials for the construction of the multi-component photoluminescent sensing matrix.

  18. Sputtered PdO Decorated TiO2 Sensing Layer for a Hydrogen Gas Sensor

    Directory of Open Access Journals (Sweden)

    Jeong Hoon Lee

    2018-01-01

    Full Text Available We report a sputtered PdO decorated TiO2 sensing layer by radiofrequency (RF sputtering methods and demonstrated gas sensing performance for H2 gas. We prepared sputtered anatase TiO2 sensing films with 200 nm thickness and deposited a Pd layer on top of the TiO2 films with a thickness ranging from 3 nm to 13 nm. Using an in situ TiO2/Pd multilayer annealing process at 550°C for 1 hour, we observed that Pd turns into PdO by Auger electron spectroscopy (AES depth profile and confirmed decorated PdO on TiO2 sensing layer from scanning electron microscope (SEM and atomic-force microscope (AFM. We also observed a positive sensing signal for 3, 4.5, and 6.5 nm PdO decorated TiO2 sensor while we observed negative output signal for a 13.5 nm PdO decorated one. Using a microheater platform, we acquired fast response time as ~11 sec and sensitivity as 6 μV/ppm for 3 nm PdO under 33 mW power.

  19. On the dependence of structural and sensing properties of sputtered MoO{sub 3} thin films on argon gas flow

    Energy Technology Data Exchange (ETDEWEB)

    Khojier, K., E-mail: k_khojier@yahoo.com [Department of Physics, Chalous Branch, Islamic Azad University, Chalous (Iran, Islamic Republic of); Savaloni, H. [Department of Physics, University of Tehran, North Kargar Street, Tehran (Iran, Islamic Republic of); Zolghadr, S. [Department of Physics, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2014-11-30

    environments in the temperature range of 150–350 K. All samples showed Ohmic behavior and the electrical resistances of the films measured in the CO environment were lower than those measured in vacuum. This study showed that the sensing ability of MoO{sub 3} for CO improves with increasing the argon gas flow.

  20. Sensing disks for slug-type calorimeters have higher temperature stability

    Science.gov (United States)

    1967-01-01

    Graphite sensing disk for slug-type radiation calorimeters exhibits better performance at high temperatures than copper and nickel disks. The graphite is heat-soaked to stabilize its emittance and the thermocouple is protected from the graphite so repeated temperature cycling does not change its sensitivity.

  1. Fiber optic gas sensor

    Science.gov (United States)

    Chen, Peng (Inventor); Buric, Michael P. (Inventor); Swinehart, Philip R. (Inventor); Maklad, Mokhtar S. (Inventor)

    2010-01-01

    A gas sensor includes an in-fiber resonant wavelength device provided in a fiber core at a first location. The fiber propagates a sensing light and a power light. A layer of a material is attached to the fiber at the first location. The material is able to absorb the gas at a temperature dependent gas absorption rate. The power light is used to heat the material and increases the gas absorption rate, thereby increasing sensor performance, especially at low temperatures. Further, a method is described of flash heating the gas sensor to absorb more of the gas, allowing the sensor to cool, thereby locking in the gas content of the sensor material, and taking the difference between the starting and ending resonant wavelengths as an indication of the concentration of the gas in the ambient atmosphere.

  2. Silicon Carbide-Based Hydrogen Gas Sensors for High-Temperature Applications

    Directory of Open Access Journals (Sweden)

    Sangchoel Kim

    2013-10-01

    Full Text Available We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5 layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures.

  3. Hydrolysis and ion exchange of titania nanoparticles towards large-scale titania and titanate nanobelts for gas sensing applications

    International Nuclear Information System (INIS)

    Bela, Somaiah; Ho, Ghim Wei; Wong, Andrew See Weng

    2010-01-01

    One-dimensional titanate and titania nanostructures are prepared by hydrothermal method from titania nanoparticles precursor via hydrolysis and ion exchange processes. The formation mechanism and the reaction process of the nanobelts are elucidated. The effects of the NaOH concentration, HCl leaching duration and the calcination temperature on the morphology and chemical composition of the produced nanobelts are investigated. Na + ions of the titanate nanobelts can be effectively removed by longer acid leaching and neutralization process and transformed into metastable hydrogen titanate compound. A hybrid hydrogen titanate and anatase titania nanobelts can be obtained under dehydration process of 500 0 C. The nanobelts are produced in gram quantities and easily made into nanostructure paper for the bulk study on their electrical and sensing properties. The sensing properties of the nanobelts sheet are tested and exhibited response to H 2 gas.

  4. Towards realization of quantitative atmospheric and industrial gas sensing using THz wave electronics

    Science.gov (United States)

    Tekawade, Aniket; Rice, Timothy E.; Oehlschlaeger, Matthew A.; Mansha, Muhammad Waleed; Wu, Kefei; Hella, Mona M.; Wilke, Ingrid

    2018-06-01

    The potential of THz wave electronics for miniaturized non-intrusive sensors for atmospheric, environmental, and industrial gases is explored. A THz wave spectrometer is developed using a radio-frequency multiplier source and a Schottky-diode detector. Spectral absorption measurements were made in a gas cell within a frequency range of 220-330 GHz at room temperature and subatmospheric pressures. Measurements are reported for pure acetonitrile (CH3CN), methanol (CH3OH), and ethanol (C2H5OH) vapors at 5 and 10 Torr and for methanol dilute in the air (0.75-3.0 mol%) at a pressure of 500 Torr. An absorbance noise floor of 10-3 was achieved for a single 10 s scan of the 220-330 GHz frequency domain. Measured absorption spectra for methanol/air agree well at collisional-broadened conditions with spectral simulations carried out using literature spectroscopic parameters. In contrast to the previous submillimeter wave research that has focused on spectral absorbance at extremely low pressures (mTorr), where transitions are in the Doppler limit, and the present study illustrates the applicability of THz electronics for gas sensing at pressures approaching those found in atmospheric and industrial environments.

  5. Ammonia gas sensors based on In2O3/PANI hetero-nanofibers operating at room temperature

    Directory of Open Access Journals (Sweden)

    Qingxin Nie

    2016-09-01

    Full Text Available Indium nitrate/polyvinyl pyrrolidone (In(NO33/PVP composite nanofibers were synthesized via electrospinning, and then hollow structure indium oxide (In2O3 nanofibers were obtained through calcination with PVP as template material. In situ polymerization was used to prepare indium oxide/polyaniline (In2O3/PANI composite nanofibers with different mass ratios of In2O3 to aniline. The structure and morphology of In(NO33/PVP, In2O3/PANI composite nanofibers and pure PANI were investigated by scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, transmission electron microscopy (TEM and current–voltage (I–V measurements. The gas sensing properties of these materials towards NH3 vapor (100 to 1000 ppm were measured at room temperature. The results revealed that the gas sensing abilities of In2O3/PANI composite nanofibers were better than pure PANI. In addition, the mass ratio of In2O3 to aniline and the p–n heterostructure between In2O3 and PANI influences the sensing performance of the In2O3/PANI composite nanofibers. In this paper, In2O3/PANI composite nanofibers with a mass ratio of 1:2 exhibited the highest response values, excellent selectivity, good repeatability and reversibility.

  6. The Integration Of Process Heat Applications To High Temperature Gas Reactors

    International Nuclear Information System (INIS)

    McKellar, Michael G.

    2011-01-01

    A high temperature gas reactor, HTGR, can produce industrial process steam, high-temperature heat-transfer gases, and/or electricity. In conventional industrial processes, these products are generated by the combustion of fossil fuels such as coal and natural gas, resulting in significant emissions of greenhouse gases such as carbon dioxide. Heat or electricity produced in an HTGR could be used to supply process heat or electricity to conventional processes without generating any greenhouse gases. Process heat from a reactor needs to be transported by a gas to the industrial process. Two such gases were considered in this study: helium and steam. For this analysis, it was assumed that steam was delivered at 17 MPa and 540 C and helium was delivered at 7 MPa and at a variety of temperatures. The temperature of the gas returning from the industrial process and going to the HTGR must be within certain temperature ranges to maintain the correct reactor inlet temperature for a particular reactor outlet temperature. The returning gas may be below the reactor inlet temperature, ROT, but not above. The optimal return temperature produces the maximum process heat gas flow rate. For steam, the delivered pressure sets an optimal reactor outlet temperature based on the condensation temperature of the steam. ROTs greater than 769.7 C produce no additional advantage for the production of steam.

  7. Unmanned Aerial System Aids Dry-season Stream Temperature Sensing

    Science.gov (United States)

    Chung, M.; Detweiler, C.; Higgins, J.; Ore, J. P.; Dralle, D.; Thompson, S. E.

    2016-12-01

    In freshwater ecosystems, temperature affects biogeochemistry and ecology, and is thus a primary physical determinant of habitat quality. Measuring temperatures in spatially heterogeneous water bodies poses a serious challenge to researchers due to constraints associated with currently available methods: in situ loggers record temporally continuous temperature measurements but are limited to discrete spatial locations, while distributed temperature and remote sensing provide fine-resolution spatial measurements that are restricted to only two-dimensions (i.e. streambed and surface, respectively). Using a commercially available quadcopter equipped with a 6m cable and temperature-pressure sensor system, we measured stream temperatures at two confluences at the South Fork Eel River, where cold water inputs from the tributary to the mainstem create thermal refugia for juvenile salmonids during the dry season. As a mobile sensing platform, unmanned aerial systems (UAS) can facilitate quick and repeated sampling with minimal disturbance to the ecosystem, and their datasets can be interpolated to create a three-dimensional thermal map of a water body. The UAS-derived data was compared to data from in situ data loggers to evaluate whether the UAS is better able to capture fine-scale temperature dynamics at each confluence. The UAS has inherent limitations defined by battery life and flight times, as well as operational constraints related to maneuverability under wind and streamflow conditions. However, the platform is able to serve as an additional field tool for researchers to capture complex thermal structures in water bodies.

  8. A new algorithm predicts pressure and temperature profiles of gas/gas-condensate transmission pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Mokhatab, Saied [OIEC - Oil Industries' Engineering and Construction Group, Tehran (Iran, Islamic Republic of); Vatani, Ali [University of Tehran (Iran, Islamic Republic of)

    2003-07-01

    The main objective of the present study has been the development of a relatively simple analytical algorithm for predicting flow temperature and pressure profiles along the two-phase, gas/gas-condensate transmission pipelines. Results demonstrate the ability of the method to predict reasonably accurate pressure gradient and temperature gradient profiles under operating conditions. (author)

  9. A Review of Ocean/Sea Subsurface Water Temperature Studies from Remote Sensing and Non-Remote Sensing Methods

    Directory of Open Access Journals (Sweden)

    Elahe Akbari

    2017-12-01

    Full Text Available Oceans/Seas are important components of Earth that are affected by global warming and climate change. Recent studies have indicated that the deeper oceans are responsible for climate variability by changing the Earth’s ecosystem; therefore, assessing them has become more important. Remote sensing can provide sea surface data at high spatial/temporal resolution and with large spatial coverage, which allows for remarkable discoveries in the ocean sciences. The deep layers of the ocean/sea, however, cannot be directly detected by satellite remote sensors. Therefore, researchers have examined the relationships between salinity, height, and temperature of the oceans/Seas to estimate their subsurface water temperature using dynamical models and model-based data assimilation (numerical based and statistical approaches, which simulate these parameters by employing remotely sensed data and in situ measurements. Due to the requirements of comprehensive perception and the importance of global warming in decision making and scientific studies, this review provides comprehensive information on the methods that are used to estimate ocean/sea subsurface water temperature from remotely and non-remotely sensed data. To clarify the subsurface processes, the challenges, limitations, and perspectives of the existing methods are also investigated.

  10. Effect of temperature on crack initiation in gas formed structures

    Energy Technology Data Exchange (ETDEWEB)

    Gohari, S.; Vrcelj, Z.; Sharifi, S.; Sharifishourabi, G.; Abadi, R. [Universiti Teknlogi Malaysia, Skudai (Malaysia)

    2013-12-15

    In the gas forming process, the work piece is formed by applying gas pressure. However, the gas pressure and the accompanying gas temperature can result in crack initiation and unstable crack growth. Thus, it is vital to determine the critical values of applied gas pressure and temperature to avoid crack and fracture failure. We studied the mechanism of fracture using an experimental approach and finite element simulations of a perfect aluminum sheet containing no inclusions and voids. The definition of crack was based on ductile damage mechanics. For inspection of initiation of crack and rupture in gas-metal forming, the ABAQUS/EXPLICIT simulation was used. In gas forming, the applied load is the pressure applied rather than the punching force. The results obtained from both the experimental approach and finite element simulations were compared. The effects of various parameters, such as temperature and gas pressure value on crack initiation, were taken into account.

  11. Gas Sensors Based on Electrodeposited Polymers

    Directory of Open Access Journals (Sweden)

    Boris Lakard

    2015-07-01

    Full Text Available Electrochemically deposited polymers, also called “synthetic metals”, have emerged as potential candidates for chemical sensing due to their interesting and tunable chemical, electrical, and structural properties. In particular, most of these polymers (including polypyrrole, polyaniline, polythiophene and their derivatives can be used as the sensitive layer of conductimetric gas sensors because of their conducting properties. An important advantage of polymer-based gas sensors is their efficiency at room temperature. This characteristic is interesting since most of the commercially-available sensors, usually based on metal oxides, work at high temperatures (300–400 °C. Consequently, polymer-based gas sensors are playing a growing role in the improvement of public health and environment control because they can lead to gas sensors operating with rapid detection, high sensitivity, small size, and specificity in atmospheric conditions. In this review, the recent advances in electrodeposited polymer-based gas sensors are summarized and discussed. It is shown that the sensing characteristics of electrodeposited polymers can be improved by chemical functionalization, nanostructuration, or mixing with other functional materials to form composites or hybrid materials.

  12. Temperature and the Ideal Gas

    Science.gov (United States)

    Daisley, R. E.

    1973-01-01

    Presents some organized ideas in thermodynamics which are suitable for use with high school (GCE A level or ONC) students. Emphases are placed upon macroscopic observations and intimate connection of the modern definition of temperature with the concept of ideal gas. (CC)

  13. Toward high value sensing: monolayer-protected metal nanoparticles in multivariable gas and vapor sensors.

    Science.gov (United States)

    Potyrailo, Radislav A

    2017-08-29

    For detection of gases and vapors in complex backgrounds, "classic" analytical instruments are an unavoidable alternative to existing sensors. Recently a new generation of sensors, known as multivariable sensors, emerged with a fundamentally different perspective for sensing to eliminate limitations of existing sensors. In multivariable sensors, a sensing material is designed to have diverse responses to different gases and vapors and is coupled to a multivariable transducer that provides independent outputs to recognize these diverse responses. Data analytics tools provide rejection of interferences and multi-analyte quantitation. This review critically analyses advances of multivariable sensors based on ligand-functionalized metal nanoparticles also known as monolayer-protected nanoparticles (MPNs). These MPN sensing materials distinctively stand out from other sensing materials for multivariable sensors due to their diversity of gas- and vapor-response mechanisms as provided by organic and biological ligands, applicability of these sensing materials for broad classes of gas-phase compounds such as condensable vapors and non-condensable gases, and for several principles of signal transduction in multivariable sensors that result in non-resonant and resonant electrical sensors as well as material- and structure-based photonic sensors. Such features should allow MPN multivariable sensors to be an attractive high value addition to existing analytical instrumentation.

  14. Stainless steel component with compressed fiber Bragg grating for high temperature sensing applications

    Science.gov (United States)

    Jinesh, Mathew; MacPherson, William N.; Hand, Duncan P.; Maier, Robert R. J.

    2016-05-01

    A smart metal component having the potential for high temperature strain sensing capability is reported. The stainless steel (SS316) structure is made by selective laser melting (SLM). A fiber Bragg grating (FBG) is embedded in to a 3D printed U-groove by high temperature brazing using a silver based alloy, achieving an axial FBG compression of 13 millistrain at room temperature. Initial results shows that the test component can be used for up to 700°C for sensing applications.

  15. Methanol Gas-Sensing Properties of SWCNT-MIP Composites

    Science.gov (United States)

    Zhang, Jin; Zhu, Qin; Zhang, Yumin; Zhu, Zhongqi; Liu, Qingju

    2016-11-01

    The single-walled carbon nanotube (SWCNT)-molecularly imprinted powder (MIP) composites in this paper were prepared by mixing SWCNTs with MIPs. The structure and micrograph of the as-prepared SWCNTs-MIPs samples were characterized by XRD and TEM. The gas-sensing properties were tested through indirect-heating sensors based on SWCNT-MIP composites fabricating on an alumina tube with Au electrodes and Pt wires. The results showed that the structure of SWCNTs-MIPs is of orthogonal perovskite and the average particle size of the SWCNTs-MIPs was in the range of 10-30 nm. SWCNTs-MIPs exhibit good methanol gas-sensitive properties. At 90 °C, the response to 1 ppm methanol is 19.7, and the response to the interferent is lower than 5 to the other interferent gases (ethanol, formaldehyde, toluene, acetone, ammonia, and gasoline). The response time and recovery time are 50 and 58 s, respectively.

  16. Fluorescent carbon nanodots facilely extracted from Coca Cola for temperature sensing

    Science.gov (United States)

    Li, Feiming; Chen, Qiaoling; Cai, Zhixiong; Lin, Fangyuan; Xu, Wei; Wang, Yiru; Chen, Xi

    2017-12-01

    A novel method for the fabrication of carbon nanodots (CDs) is introduced: extracting CDs from the well-known soft drink Coca Cola via dialysis. The obtained CDs are of good monodispersity with a narrow size distribution (average diameter of 3.0 nm), good biocompatibility, high solubility (about 180 mg ml-1) and stable fluorescence even at a high salt concentration. Furthermore, they are sensitive to the temperature change with a linear relationship between the fluorescence intensity and temperature from 5 °C-95 °C. The CDs have been applied in high stable temperature sensing. This protocol is quite simple, green, cost-effective and technologically simple, which might be used for a range of applications including sensing, catalysts, drug and gene delivery, and so on.

  17. Study on Method of Ultrasonic Gas Temperature Measure Based on FPGA

    Energy Technology Data Exchange (ETDEWEB)

    Wen, S H; Xu, F R [Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004 (China)

    2006-10-15

    It is always a problem to measure instantaneous temperature of high-temperature and high-pressure gas. There is difficulty for the conventional method of measuring temperature to measure quickly and exactly, and the measuring precision is low, the ability of anti-jamming is bad, etc. So the article introduces a method of measuring burning gas temperature using ultrasonic based on Field-Programmable Gate Array (FPGA). The mathematic model of measuring temperature is built with the relation of velocity of ultrasonic transmitting and gas Kelvin in the ideal gas. The temperature can be figured out by measuring the difference of ultrasonic frequency {delta}f. FPGA is introduced and a high-precision data acquisition system based on digital phase-shift technology is designed. The feasibility of proposed above is confirmed more by measuring pressure of burning gas timely. Experimental result demonstrates that the error is less than 12.. and the precision is heightened to 0.8%.

  18. Ultrathin SnO2 nanorods: template- and surfactant-free solution phase synthesis, growth mechanism, optical, gas-sensing, and surface adsorption properties.

    Science.gov (United States)

    Xi, Guangcheng; Ye, Jinhua

    2010-03-01

    A novel template- and surfactant-free low temperature solution-phase method has been successfully developed for the controlled synthesis of ultrathin SnO(2) single-crystalline nanorods for the first time. The ultrathin SnO(2) single-crystalline nanorods are 2.0 +/- 0.5 nm in diameter, which is smaller than its exciton Bohr radius. The ultrathin SnO(2) nanorods show a high specific area (191.5 m(2) g(-1)). Such a thin SnO(2) single-crystalline nanorod is new in the family of SnO(2) nanostrucures and presents a strong quantum confinement effect. Its formation depends on the reaction temperature as well as on the concentration of the urea solution. A nonclassical crystallization process, Ostwald ripening process followed by an oriented attachment mechanism, is proposed based on the detailed observations from a time-dependent crystal evolution process. Importantly, such structured SnO(2) has shown a strong structure-induced enhancement of gas-sensing properties and has exhibited greatly enhanced gas-sensing property for the detection of ethanol than that of other structured SnO(2), such as the powders of nanobelts and microrods. Moreover, these ultrathin SnO(2) nanorods exhibit excellent ability to remove organic pollutant in wastewater by enormous surface adsorption. These properties are mainly attributed to its higher surface-to-volume ratio and ultrathin diameter. This work provides a novel low temperature, green, and inexpensive pathway to the synthesis of ultrathin nanorods, offering a new material form for sensors, solar cells, catalysts, water treatments, and other applications.

  19. EGFET pH Sensor Performance Dependence on Sputtered TiO2 Sensing Membrane Deposition Temperature

    Directory of Open Access Journals (Sweden)

    Khairul Aimi Yusof

    2016-01-01

    Full Text Available Titanium dioxide (TiO2 thin films were sputtered by radio frequency (RF magnetron sputtering method and have been employed as the sensing membrane of an extended gate field effect transistor (EGFET for pH sensing detection application. The TiO2 thin films were deposited onto indium tin oxide (ITO coated glass substrates at room temperature and 200°C, respectively. The effect of deposition temperature on thin film properties and pH detection application was analyzed. The TiO2 samples used as the sensing membrane for EGFET pH-sensor and the current-voltage (I-V, hysteresis, and drift characteristics were examined. The sensitivity of TiO2 EGFET sensing membrane was obtained from the transfer characteristic (I-V curves for different substrate heating temperatures. TiO2 thin film sputtered at room temperature achieved higher sensitivity of 59.89 mV/pH compared to the one deposited at 200°C indicating lower sensitivity of 37.60 mV/pH. Moreover the hysteresis and the drift of TiO2 thin film deposited at room temperature showed lower values compared to the one at 200°C. We have also tested the effect of operating temperature on the performance of the EGFET pH-sensing and found that the temperature effect was very minimal.

  20. Feasibility of Locating Leakages in Sewage Pressure Pipes Using the Distributed Temperature Sensing Technology.

    Science.gov (United States)

    Apperl, Benjamin; Pressl, Alexander; Schulz, Karsten

    2017-01-01

    The cost effective maintenance of underwater pressure pipes for sewage disposal in Austria requires the detection and localization of leakages. Extrusion of wastewater in lakes can heavily influence the water and bathing quality of surrounding waters. The Distributed Temperature Sensing (DTS) technology is a widely used technique for oil and gas pipeline leakage detection. While in pipeline leakage detection, fiber optic cables are installed permanently at the outside or within the protective sheathing of the pipe; this paper aims at testing the feasibility of detecting leakages with temporary introduced fiber optic cable inside the pipe. The detection and localization were tested in a laboratory experiment. The intrusion of water from leakages into the pipe, producing a local temperature drop, served as indicator for leakages. Measurements were taken under varying measurement conditions, including the number of leakages as well as the positioning of the fiber optic cable. Experiments showed that leakages could be detected accurately with the proposed methodology, when measuring resolution, temperature gradient and measurement time were properly selected. Despite the successful application of DTS for leakage detection in this lab environment, challenges in real system applications may arise from temperature gradients within the pipe system over longer distances and the placement of the cable into the real pipe system.

  1. A Harsh Environment Wireless Pressure Sensing Solution Utilizing High Temperature Electronics

    Science.gov (United States)

    Yang, Jie

    2013-01-01

    Pressure measurement under harsh environments, especially at high temperatures, is of great interest to many industries. The applicability of current pressure sensing technologies in extreme environments is limited by the embedded electronics which cannot survive beyond 300 °C ambient temperature as of today. In this paper, a pressure signal processing and wireless transmission module based on the cutting-edge Silicon Carbide (SiC) devices is designed and developed, for a commercial piezoresistive MEMS pressure sensor from Kulite Semiconductor Products, Inc. Equipped with this advanced high-temperature SiC electronics, not only the sensor head, but the entire pressure sensor suite is capable of operating at 450 °C. The addition of wireless functionality also makes the pressure sensor more flexible in harsh environments by eliminating the costly and fragile cable connections. The proposed approach was verified through prototype fabrication and high temperature bench testing from room temperature up to 450 °C. This novel high-temperature pressure sensing technology can be applied in real-time health monitoring of many systems involving harsh environments, such as military and commercial turbine engines. PMID:23447006

  2. Estimation of the under-surface temperature pattern by dynamic remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Inamura, M [Univ. of Tokyo; Tao, R; Katsuma, T; Toyota, H

    1977-10-01

    There are three basic classifications of remote sensing: passive RS, which involves measurement of reflected solar radiation; active RS, which involves the use of microwaves or laser radar; and infrared scanning. These methods make possible the determination of an object's surface temperature, its effective emissivity, and its effective reflectivity. The surface temperature, in effect, contains information concerning the structure below the surface. Fundamental experiments were conducted to extract sub-surface information by means of 'dynamic remote sensing.' Aluminum objects were embedded in a container filled with sand, and the container was heated from below. First, the spatial transfer function of the medium (sand) was determined, the surface temperature pattern was filtered, and the subsurface temperature pattern was calculated, allowing the subsurface forms of the aluminum objects to be estimated. The relationship between the thermal input (bottom temperature) and the thermal output (surface temperature) was expressed in terms of electrical circuit analogs, and the heat capacity and thermal conductivity of the sample were calculated, permitting estimation of its composition. This technique will be useful for groundwater and mineral exploration and for nondestructive testing.

  3. The Effect of Zeolite Composition and Grain Size on Gas Sensing Properties of SnO2/Zeolite Sensor

    Directory of Open Access Journals (Sweden)

    Yanhui Sun

    2018-01-01

    Full Text Available In order to improve the sensing properties of tin dioxide gas sensor, four kinds of different SiO2/Al2O3 ratio, different particle size of MFI type zeolites (ZSM-5 were coated on the SnO2 to prepared zeolite modified gas sensors, and the gas sensing properties were tested. The measurement results showed that the response values of ZSM-5 zeolite (SiO2/Al2O3 = 70, grain size 300 nm coated SnO2 gas sensors to formaldehyde vapor were increased, and the response to acetone decreased compared with that of SnO2 gas sensor, indicating an improved selectivity property. The other three ZSM-5 zeolites with SiO2/Al2O3 70, 150 and 470, respectively, and grain sizes all around 1 μm coated SnO2 sensors did not show much difference with SnO2 sensor for the response properties to both formaldehyde and acetone. The sensing mechanism of ZSM-5 modified sensors was briefly analyzed.

  4. Carbon dioxide sensing with sulfonated polyaniline

    NARCIS (Netherlands)

    Doan, D.C.T.; Ramaneti, R.; Baggerman, J.; Bent, van der J.; Marcelis, A.T.M.; Tong, H.D.; Rijn, van C.J.M.

    2012-01-01

    The use of polyaniline and especially sulfonated polyaniline (SPAN) is explored for sensing carbon dioxide (CO2) at room temperature. Frequency-dependent AC measurements were carried out to detect changes in impedance of the polymer, drop casted on interdigitated electrodes, when exposed to CO2 gas.

  5. The temperature distribution in a gas core fission reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E.; Dam, H. van; Kuijper, J.C. (Interuniversitair Reactor Inst., Delft (Netherlands)); Kistemaker, J.; Boersma-Klein, W.; Vitalis, F. (FOM-Instituut voor Atoom-en Molecuulfysica, Amsterdam (Netherlands))

    1991-01-01

    A model is proposed for the heat transport in a nuclear reactor with gaseous fuel at high temperatures taking into account radiative and kinetic heat transfer. A derivation is given of the equation determining the temperature distribution in a gas core reactor and different numerical solution methods are discussed in detail. Results are presented of the temperature distribution. The influence of the kinetic heat transport and of dissociation of the gas molecules is shown. Also discussed is the importance of the temperature gradient at the reactor wall and its dependence on system parameters. (author).

  6. The temperature distribution in a gas core fission reactor

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.; Dam, H. van; Kuijper, J.C.; Kistemaker, J.; Boersma-Klein, W.; Vitalis, F.

    1991-01-01

    A model is proposed for the heat transport in a nuclear reactor with gaseous fuel at high temperatures taking into account radiative and kinetic heat transfer. A derivation is given of the equation determining the temperature distribution in a gas core reactor and different numerical solution methods are discussed in detail. Results are presented of the temperature distribution. The influence of the kinetic heat transport and of dissociation of the gas molecules is shown. Also discussed is the importance of the temperature gradient at the reactor wall and its dependence on system parameters. (author)

  7. Hierarchical porous ZnO microflowers with ultra-high ethanol gas-sensing at low concentration

    Science.gov (United States)

    Song, Liming; Yue, He; Li, Haiying; Liu, Li; Li, Yu; Du, Liting; Duan, Haojie; Klyui, N. I.

    2018-05-01

    Hierarchical porous and non-porous ZnO microflowers have been successfully fabricated by hydrothermal method. Their crystal structure, morphology and gas-sensing properties were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and chemical gas sensing intelligent analysis system (CGS). Compared with hierarchical non-porous ZnO microflowers, hierarchical porous ZnO microflowers exhibited ultra-high sensitivity with 50 ppm ethanol at 260 °C and the response is 110, which is 1.8 times higher than that of non-porous ZnO microflowers. Moreover, the lowest concentration limit of hierarchical porous ZnO microflowers (non-porous ZnO microflowers) to ethanol is 0.1 (1) ppm, the response value is 1.6 (1).

  8. Influence of Gas-Liquid Interface on Temperature Wave of Pulsating Heat Pipe

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2018-01-01

    Full Text Available The influence of the interface on the amplitude and phase of the temperature wave and the relationship between the attenuation of the temperature wave and the gas-liquid two-phase physical parameters are studied during the operation of the pulsating heat pipe. The numerical simulation shows that the existence of the phase interface changes the direction of the temperature gradient during the propagation of the temperature wave, which increases the additional “thermal resistance.” The relative size of the gas-liquid two-phase thermal conductivity affects the propagation direction of heat flow at phase interface directly. The blockage of the gas plug causes hysteresis in the phase of the temperature wave, the relative size of the gas-liquid two-phase temperature coefficient will gradually increase the phase of the temperature wave, and the time when the heat flow reaches the peak value is also advanced. The attenuation of the temperature wave is almost irrelevant to the absolute value of the density, heat capacity, and thermal conductivity of the gas-liquid two phases, and the ratio of the thermal conductivity of the gas-liquid two phases is related. When the temperature of the heat pipe was changed, the difference of heat storage ability between gas and liquid will lead to the phenomenon of heat reflux and becomes more pronounced with the increases of the temperature wave.

  9. Effects of Loading Rate on Gas Seepage and Temperature in Coal and Its Potential for Coal-Gas Disaster Early-Warning

    Directory of Open Access Journals (Sweden)

    Chong Zhang

    2017-08-01

    Full Text Available The seepage velocity and temperature externally manifest the changing structure, gas desorption and energy release that occurs in coal containing gas failure under loading. By using the system of coal containing gas failure under loading, this paper studies the law of seepage velocity and temperature under different loading rates and at 1.0 MPa confining pressure and 0.5 MPa gas pressure, and combined the on-site results of gas pressure and temperature. The results show that the stress directly affects the seepage velocity and temperature of coal containing gas, and the pressure and content of gas have the most sensitivity to mining stress. Although the temperature is not sensitive to mining stress, it has great correlation with mining stress. Seepage velocity has the characteristic of critically slowing down under loading. This is demonstrated by the variance increasing before the main failure of the samples. Therefore, the variance of seepage velocity with time and temperature can provide an early warning for coal containing gas failing and gas disasters in a coal mine.

  10. Gas sensing with AlGaN/GaN 2DEG channels

    NARCIS (Netherlands)

    Offermans, P.; Vitushinsky, R.; Crego-Calama, M.; Brongersma, S.H.

    2011-01-01

    AlGaN/GaN shows great promise as a generic platform for (bio-)chemical sensing because of its robustness and intrinsic sensitivity to surface charge or dipoles. Here, we employ the two-dimensional electron gas (2DEG) formed at the interface of AlGaN/GaN layers grown on Si substrates for the

  11. Gas-sensing behaviour of ZnO/diamond nanostructures.

    Science.gov (United States)

    Davydova, Marina; Laposa, Alexandr; Smarhak, Jiri; Kromka, Alexander; Neykova, Neda; Nahlik, Josef; Kroutil, Jiri; Drahokoupil, Jan; Voves, Jan

    2018-01-01

    Microstructured single- and double-layered sensor devices based on p-type hydrogen-terminated nanocrystalline diamond (NCD) films and/or n-type ZnO nanorods (NRs) have been obtained via a facile microwave-plasma-enhanced chemical vapour deposition process or a hydrothermal growth procedure. The morphology and crystal structure of the synthesized materials was analysed with scanning electron microscopy, X-ray diffraction measurements and Raman spectroscopy. The gas sensing properties of the sensors based on i) NCD films, ii) ZnO nanorods, and iii) hybrid ZnO NRs/NCD structures were evaluated with respect to oxidizing (i.e., NO 2 , CO 2 ) and reducing (i.e., NH 3 ) gases at 150 °C. The hybrid ZnO NRs/NCD sensor showed a remarkably enhanced NO 2 response compared to the ZnO NRs sensor. Further, inspired by this special hybrid structure, the simulation of interaction between the gas molecules (NO 2 and CO 2 ) and hybrid ZnO NRs/NCD sensor was studied using DFT calculations.

  12. Liquid-Phase Co-Exfoliated Graphene/MoS2 Nanocomposite for Methanol Gas Sensing.

    Science.gov (United States)

    Zhang, Shao-Lin; Yue, Hongyan; Liang, Xishuang; Yang, Woo-Chul

    2015-10-01

    We developed an efficient method to co-exfoliate graphite and MoS2 to fabricate graphene/MoS2 nanocomposite. The size, morphology, and crystal structure of the graphene/MoS2 nanocomposite were carefully examined. The as-prepared graphene/MoS2 nanocomposite was fabricated into thin film sensor by a facile drop casting method and tested with methanol gas in various concentrations. The sensitivity, response time, and repeatability of the graphene/MoS2 nanocomposite sensor towards methanol gas were systematically investigated. A pure MoS2 based thin film sensor was also prepared and compared with the nanocomposite sensor to better understand the synergetic effect in the sensing performance. Our research demonstrated that compositing MoS2 with graphene could overcome the shortcoming of MoS2 as a sensor material and bring in a promising gas-sensing performance with a quicker response/recovery time and an enhanced sensitivity. Moreover, this composited material with a distinct structure and an excellent electronic property is expected to have potential application in various fields, such as optoelectronic.

  13. Method for high temperature mercury capture from gas streams

    Science.gov (United States)

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2006-04-25

    A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

  14. High Temperature Gas-cooled Reactor Projected Markets and Scoping Economics

    Energy Technology Data Exchange (ETDEWEB)

    Larry Demick

    2010-08-01

    The NGNP Project has the objective of developing the high temperature gas-cooled reactor (HTGR) technology to supply high temperature process heat to industrial processes as a substitute for burning of fossil fuels, such as natural gas. Applications of the HTGR technology that have been evaluated by the NGNP Project for supply of process heat include supply of electricity, steam and high-temperature gas to a wide range of industrial processes, and production of hydrogen and oxygen for use in petrochemical, refining, coal to liquid fuels, chemical, and fertilizer plants.

  15. Electron temperature and density measurement of tungsten inert gas arcs with Ar-He shielding gas mixture

    Science.gov (United States)

    Kühn-Kauffeldt, M.; Marques, J.-L.; Forster, G.; Schein, J.

    2013-10-01

    The diagnostics of atmospheric welding plasma is a well-established technology. In most cases the measurements are limited to processes using pure shielding gas. However in many applications shielding gas is a mixture of various components including metal vapor in gas metal arc welding (GMAW). Shielding gas mixtures are intentionally used for tungsten inert gas (TIG) welding in order to improve the welding performance. For example adding Helium to Argon shielding gas allows the weld geometry and porosity to be influenced. Yet thermal plasmas produced with gas mixtures or metal vapor still require further experimental investigation. In this work coherent Thomson scattering is used to measure electron temperature and density in these plasmas, since this technique allows independent measurements of electron and ion temperature. Here thermal plasmas generated by a TIG process with 50% Argon and 50% Helium shielding gas mixture have been investigated. Electron temperature and density measured by coherent Thomson scattering have been compared to the results of spectroscopic measurements of the plasma density using Stark broadening of the 696.5 nm Argon spectral line. Further investigations of MIG processes using Thomson scattering technique are planned.

  16. Electron temperature and density measurement of tungsten inert gas arcs with Ar-He shielding gas mixture

    International Nuclear Information System (INIS)

    Kühn-Kauffeldt, M; Marques, J-L; Forster, G; Schein, J

    2013-01-01

    The diagnostics of atmospheric welding plasma is a well-established technology. In most cases the measurements are limited to processes using pure shielding gas. However in many applications shielding gas is a mixture of various components including metal vapor in gas metal arc welding (GMAW). Shielding gas mixtures are intentionally used for tungsten inert gas (TIG) welding in order to improve the welding performance. For example adding Helium to Argon shielding gas allows the weld geometry and porosity to be influenced. Yet thermal plasmas produced with gas mixtures or metal vapor still require further experimental investigation. In this work coherent Thomson scattering is used to measure electron temperature and density in these plasmas, since this technique allows independent measurements of electron and ion temperature. Here thermal plasmas generated by a TIG process with 50% Argon and 50% Helium shielding gas mixture have been investigated. Electron temperature and density measured by coherent Thomson scattering have been compared to the results of spectroscopic measurements of the plasma density using Stark broadening of the 696.5 nm Argon spectral line. Further investigations of MIG processes using Thomson scattering technique are planned

  17. Determination of gas temperature in the plasmatron channel according to the known distribution of electronic temperature

    Directory of Open Access Journals (Sweden)

    Gerasimov Alexander V.

    2013-01-01

    Full Text Available An analytical method to calculate the temperature distribution of heavy particles in the channel of the plasma torch on the known distribution of the electronic temperature has been proposed. The results can be useful for a number of model calculations in determining the most effective conditions of gas blowing through the plasma torch with the purpose of heating the heavy component. This approach allows us to understand full details about the heating of cold gas, inpouring the plasma, and to estimate correctly the distribution of the gas temperature inside the channel.

  18. Methodological aspects of using remote sensing data in oil and gas exploration

    Energy Technology Data Exchange (ETDEWEB)

    Kostriukov, M I; Tsarenko, P T

    1981-01-01

    The use of remote sensing data for oil and gas exploration in the central part of the western Siberian plain is considered. Techniques to increase the efficiency of interpretation of deep structures are examined, and the necessity of augmenting the development of automated interpretation systems is emphasized.

  19. Application of ion beam analysis to the selective sublimation processing of thin films for gas sensing

    International Nuclear Information System (INIS)

    Vomiero, A.; Scian, C.; Della Mea, G.; Guidi, V.; Martinelli, G.; Schiffrer, G.; Comini, E.; Ferroni, M.; Sberveglieri, G.

    2006-01-01

    Ion beam analysis was successfully applied to a novel technique, named selective sublimation process (SSP), for deposition of nanostructured gas-sensing films through reactive sputtering. The method consists of the co-deposition of a mixed oxide, one of which has a relatively low sublimation temperature. Annealing at suitable temperature causes the sublimation of the most volatile compound, leaving a layer with adjustable composition. The appropriate choice of thermal treatments and the consequent tailoring of the composition play a crucial role in the determination of the microstructural properties. We developed a model based on diffusion equations that provides a useful guide to control the deposition and processing parameters and we applied the model on the systems TiO 2 -WO 3 and TiO 2 -MoO 3 . Rutherford backscattering (RBS) was demonstrated to be effective for the characterization of the diffusion and sublimation processes during SSP. Experimental results fully agree with theoretical prediction, and allowed the calculation of all the parameters involved in SSP

  20. Enhancement of methane gas sensing characteristics of graphene oxide sensor by heat treatment and laser irradiation.

    Science.gov (United States)

    Assar, Mohammadreza; Karimzadeh, Rouhollah

    2016-12-01

    The present study uses a rapid, easy and practical method for cost-effective fabrication of a methane gas sensor. The sensor was made by drop-casting a graphene oxide suspension onto an interdigital circuit surface. The electrical conductivity and gas-sensing characteristics of the sensor were determined and then heat treatment and in situ laser irradiation were applied to improve the device conductivity and gas sensitivity. Real-time monitoring of the evolution of the device current as a function of heat treatment time revealed significant changes in the conductance of the graphene oxide sensor. The use of low power laser irradiation enhanced both the electrical conductivity and sensing response of the graphene oxide sensor. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Zigzag GaN/Ga2O3 heterogeneous nanowires: Synthesis, optical and gas sensing properties

    Directory of Open Access Journals (Sweden)

    Li-Wei Chang

    2011-09-01

    Full Text Available Zigzag GaN/Ga2O3 heterogeneous nanowires (NWs were fabricated, and the optical properties and NO gas sensing ability of the NWs were investigated. We find that NWs are most effective at 850 °C at a switching process once every 10 min (on/off = 10 min per each with a mixture flow of NH3 and Ar. The red shift of the optical bandgap (0.66 eV is observed from the UV-vis spectrum as the GaN phase forms. The gas sensing characteristics of the developed sensor are significantly replaced to those of other types of NO sensors reported in literature.

  2. PANI and Graphene/PANI Nanocomposite Films — Comparative Toluene Gas Sensing Behavior

    Directory of Open Access Journals (Sweden)

    Mitesh Parmar

    2013-12-01

    Full Text Available The present work discusses and compares the toluene sensing behavior of polyaniline (PANI and graphene/polyaniline nanocomposite (C-PANI films. The graphene–PANI ratio in the nanocomposite polymer film is optimized at 1:2. For this, N-methyl-2-pyrrolidone (NMP solvent is used to prepare PANI-NMP solution as well as graphene-PANI-NMP solution. The films are later annealed at 230 °C, characterized using scanning electron microscopy (SEM as well Fourier transform infrared spectroscopy (FTIR and tested for their sensing behavior towards toluene. The sensing behaviors of the films are analyzed at different temperatures (30, 50 and 100 °C for 100 ppm toluene in air. The nanocomposite C-PANI films have exhibited better overall toluene sensing behavior in terms of sensor response, response and recovery time as well as repeatability. Although the sensor response of PANI (12.6 at 30 °C, 38.4 at 100 °C is comparatively higher than that of C-PANI (8.4 at 30 °C, 35.5 at 100 °C, response and recovery time of PANI and C-PANI varies with operating temperature. C-PANI at 50 °C seems to have better toluene sensing behavior in terms of response time and recovery time.

  3. In situ gas temperature measurements by UV-absorption spectroscopy

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    2009-01-01

    The absorption spectrum of the NO A(2)Sigma(+) uniform and stable gas temperatures over a 0.533 m path....... The accuracy of both methods is discussed. Validation of the classical Lambert-Beer law has been demonstrated at NO concentrations up to 500 ppm and gas temperatures up to 1,500 degrees C over an optical absorption path length of 0.533 m....

  4. Reduced one-body density matrix of Tonks–Girardeau gas at finite temperature

    International Nuclear Information System (INIS)

    Fu Xiao-Chen; Hao Ya-Jiang

    2015-01-01

    With thermal Bose–Fermi mapping method, we investigate the Tonks–Girardeau gas at finite temperature. It is shown that at low temperature, the Tonks gas displays the Fermi-like density profiles, and with the increase in temperature, the Tonks gas distributes in wider region. The reduced one-body density matrix is diagonal dominant in the whole temperature region, and the off-diagonal elements shall vanish rapidly with the deviation from the diagonal part at high temperature. (paper)

  5. IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes.

    Science.gov (United States)

    Almine, Jessica F; O'Hare, Craig A J; Dunphy, Gillian; Haga, Ismar R; Naik, Rangeetha J; Atrih, Abdelmadjid; Connolly, Dympna J; Taylor, Jordan; Kelsall, Ian R; Bowie, Andrew G; Beard, Philippa M; Unterholzner, Leonie

    2017-02-13

    Many human cells can sense the presence of exogenous DNA during infection though the cytosolic DNA receptor cyclic GMP-AMP synthase (cGAS), which produces the second messenger cyclic GMP-AMP (cGAMP). Other putative DNA receptors have been described, but whether their functions are redundant, tissue-specific or integrated in the cGAS-cGAMP pathway is unclear. Here we show that interferon-γ inducible protein 16 (IFI16) cooperates with cGAS during DNA sensing in human keratinocytes, as both cGAS and IFI16 are required for the full activation of an innate immune response to exogenous DNA and DNA viruses. IFI16 is also required for the cGAMP-induced activation of STING, and interacts with STING to promote STING phosphorylation and translocation. We propose that the two DNA sensors IFI16 and cGAS cooperate to prevent the spurious activation of the type I interferon response.

  6. A low-temperature (4-300K) constant volume gas thermometer

    International Nuclear Information System (INIS)

    Combarieu, A. de

    1976-01-01

    A constant volume gas thermometer was built to calibrate the various secondary thermometers used at low temperature. This gas thermometer is placed in a cryostat where any stable temperature between 4 and 300K may be obtained. The principle is outlined, then the gas thermometer and its auxiliary equipment are briefly described; the corrections to be applied to the results are given and a table shows the values obtained [fr

  7. Experimental optimization of temperature distribution in the hot-gas duct through the installation of internals in the hot-gas plenum of a high-temperature reactor

    International Nuclear Information System (INIS)

    Henssen, J.; Mauersberger, R.

    1990-01-01

    The flow conditions in the hot-gas plenum and in the adjacent hot-gas ducts and hot-gas pipes for the high-temperature reactor project PNP-1000 (nuclear process heat project for 1000 MW thermal output) have been examined experimentally. The experiments were performed in a closed loop in which the flow model to be analyzed, representing a 60deg sector of the core bottom of the PNP-1000 with connecting hot-gas piping and diverting arrangements, was installed. The model scale was approx. 1:5.6. The temperature and flow velocity distribution in the hot-gas duct was registered by means of 14 dual hot-wire flowmeters. Through structural changes and/or the installation of internals into the hot-gas plenum of the core bottom offering little flow resistance coolant gas temperature differentials produced in the core could be reduced to such an extent that a degree of mixture amounting to over 80% was achieved at the entrance of the connected heat exchanger systems. Thereby the desired goal of an adequate degree of mixture of the hot gas involving an acceptable pressure loss was reached. (orig.)

  8. Improving methane gas sensing properties of multi-walled carbonnanotubes by vanadium oxide filling

    CSIR Research Space (South Africa)

    Chimowa, George

    2017-08-01

    Full Text Available Manipulation of electrical properties and hence gas sensing properties of multi-walled carbon nanotubes (MWNTs) by filling the inner wall with vanadium oxide is presented. Using a simple capillary technique, MWNTs are filled with vanadium metal...

  9. One-step synthesis of multi-emission carbon nanodots for ratiometric temperature sensing

    Science.gov (United States)

    Nguyen, Vanthan; Yan, Lihe; Xu, Huanhuan; Yue, Mengmeng

    2018-01-01

    Measuring temperature with greater precision at localized small length scales or in a nonperturbative manner is a necessity in widespread applications, such as integrated photonic devices, micro/nano electronics, biology, and medical diagnostics. To this context, use of nanoscale fluorescent temperature probes is regarded as the most promising method for temperature sensing because they are noninvasive, accurate, and enable remote micro/nanoscale imaging. Here, we propose a novel ratiometric fluorescent sensor for nanothermometry using carbon nanodots (C-dots). The C-dots were synthesized by one-step method using femtosecond laser ablation and exhibit unique multi-emission property due to emissions from abundant functional groups on its surface. The as-prepared C-dots demonstrate excellent ratiometric temperature sensing under single wavelength excitation that achieves high temperature sensitivity with a 1.48% change per °C ratiometric response over wide-ranging temperature (5-85 °C) in aqueous buffer. The ratiometric sensor shows excellent reversibility and stability, holding great promise for the accurate measurement of temperature in many practical applications.

  10. Applications of a Mid-IR Quantum Cascade Laser in Gas Sensing Research

    KAUST Repository

    Sajid, Muhammad Bilal

    2015-05-01

    Laser absorption based sensors are extensively used in a variety of gas sensing areas such as combustion, atmospheric research, human breath analysis, and high resolution infrared spectroscopy. Quantum cascade lasers have recently emerged as high resolution, high power laser sources operating in mid infrared region and can have wide tunability range. These devices provide an opportunity to access stronger fundamental and combination vibrational bands located in mid infrared region than previously accessible weaker overtone vibrational bands located in near infrared region. Spectroscopic region near 8 µm contains strong vibrational bands of methane, acetylene, hydrogen peroxide, water vapor and nitrous oxide. These molecules have important applications in a wide range of applications. This thesis presents studies pertaining to spectroscopy and combustion applications. Advancements in combustion research are imperative to achieve lower emissions and higher efficiency in practical combustion devices such as gas turbines and engines. Accurate chemical kinetic models are critical to achieve predictive models which contain several thousand reactions and hundreds of species. These models need highly reliable experimental data for validation and improvements. Shock tubes are ideal devices to obtain such information. A shock tube is a homogenous, nearly constant volume, constant pressure, adiabatic and 0-D reactor. In combination with laser absorption sensors, shock tubes can be used to measure reaction rates and species time histories of several intermediates and products formed during pyrolysis and oxidation of fuels. This work describes measurement of the decomposition rate of hydrogen peroxide which is an important intermediate species controlling reactivity of combustion system in the intermediate temperature range. Spectroscopic parameters (linestrengths, broadening coefficients and temperature dependent coefficients) are determined for various transitions of

  11. Optimized Feature Extraction for Temperature-Modulated Gas Sensors

    Directory of Open Access Journals (Sweden)

    Alexander Vergara

    2009-01-01

    Full Text Available One of the most serious limitations to the practical utilization of solid-state gas sensors is the drift of their signal. Even if drift is rooted in the chemical and physical processes occurring in the sensor, improved signal processing is generally considered as a methodology to increase sensors stability. Several studies evidenced the augmented stability of time variable signals elicited by the modulation of either the gas concentration or the operating temperature. Furthermore, when time-variable signals are used, the extraction of features can be accomplished in shorter time with respect to the time necessary to calculate the usual features defined in steady-state conditions. In this paper, we discuss the stability properties of distinct dynamic features using an array of metal oxide semiconductors gas sensors whose working temperature is modulated with optimized multisinusoidal signals. Experiments were aimed at measuring the dispersion of sensors features in repeated sequences of a limited number of experimental conditions. Results evidenced that the features extracted during the temperature modulation reduce the multidimensional data dispersion among repeated measurements. In particular, the Energy Signal Vector provided an almost constant classification rate along the time with respect to the temperature modulation.

  12. Temperature dependence of the particle/gas partition coefficient: An application to predict indoor gas-phase concentrations of semi-volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wenjuan, E-mail: Wenjuan.Wei@cstb.fr [University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2 (France); Mandin, Corinne [University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2 (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); Blanchard, Olivier [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Mercier, Fabien [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Pelletier, Maud [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Le Bot, Barbara [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); and others

    2016-09-01

    The indoor gas-phase concentrations of semi-volatile organic compounds (SVOCs) can be predicted from their respective concentrations in airborne particles by applying the particle/gas partitioning equilibrium. The temperature used for partitioning is often set to 25 °C. However, indoor temperatures frequently differ from this reference value. This assumption may result in errors in the predicted equilibrium gas-phase SVOC concentrations. To improve the prediction model, the temperature dependence of the particle/gas partition coefficient must be addressed. In this paper, a theoretical relationship between the particle/gas partition coefficient and temperature was developed based on the SVOC absorptive mechanism. The SVOC particle/gas partition coefficients predicted by employing the derived theoretical relationship agree well with the experimental data retrieved from the literature (R > 0.93). The influence of temperature on the equilibrium gas-phase SVOC concentration was quantified by a dimensionless analysis of the derived relationship between the SVOC particle/gas partition coefficient and temperature. The predicted equilibrium gas-phase SVOC concentration decreased by between 31% and 53% when the temperature was lowered by 6 °C, while it increased by up to 750% when the indoor temperature increased from 15 °C to 30 °C. - Highlights: • A theoretical relationship between K{sub p} and temperature was developed. • The relationship was based on the SVOC absorptive mechanism. • The temperature impact was quantified by a dimensionless analysis.

  13. Electrospray-printed nanostructured graphene oxide gas sensors

    Science.gov (United States)

    Taylor, Anthony P.; Velásquez-García, Luis F.

    2015-12-01

    We report low-cost conductometric gas sensors that use an ultrathin film made of graphene oxide (GO) nanoflakes as transducing element. The devices were fabricated by lift-off metallization and near-room temperature, atmospheric pressure electrospray printing using a shadow mask. The sensors are sensitive to reactive gases at room temperature without requiring any post heat treatment, harsh chemical reduction, or doping with metal nanoparticles. The sensors’ response to humidity at atmospheric pressure tracks that of a commercial sensor, and is linear with changes in humidity in the 10%-60% relative humidity range while consuming recipes yielded nearly identical response characteristics, suggesting that intrinsic properties of the film control the sensing mechanism. The gas sensors successfully detected ammonia at concentrations down to 500 ppm (absolute partial pressure of ˜5 × 10-4 T) at ˜1 T pressure, room temperature conditions. The sensor technology can be used in a great variety of applications including air conditioning and sensing of reactive gas species in vacuum lines and abatement systems.

  14. Gas dependent sensing mechanism in ZnO nanobelt sensor

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Manmeet, E-mail: manmeet@barc.gov.in [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai (India); Kailasaganapathi, S.; Ramgir, Niranjan; Datta, Niyanta [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai (India); Kumar, Sushil [Heavy Water Plant (Manuguru), Gautaminagar, Dist. Khammam, Telangana (India); Debnath, A.K.; Aswal, D.K.; Gupta, S.K. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai (India)

    2017-02-01

    Highlights: • ZnO nanobelts exhibit an appreciable response towards H{sub 2}S and NO. • At room temperature, sensor recovers completely after exposure to NO (1 to 60 ppm). • At room temperature, incomplete recovery observed on exposure to higher concentrations of H{sub 2}S (> 5 ppm). • Complete recovery on exposure to concentrations higher than 5 ppm H{sub 2}S is achieved by heating the sensor films at 250 °C. • Incomplete recovery after exposure to higher concentrations of H{sub 2}S is due to formation of ZnS. - Abstract: Gas sensing properties of ZnO nanobelts synthesized using carbothermal reduction method has been investigated. At room temperature (28 °C), the sensor films exhibit an appreciable response towards H{sub 2}S and NO and response of these two gases were studied as a function of concentration. For NO the sensor films exhibit a complete reversible curve for the concentration range between 1 and 60 ppm. However, for H{sub 2}S a complete recovery was obtained for concentration <5 ppm and for higher concentration a partial recovery of the baseline resistance was observed. The reason for the incomplete recovery was investigated using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) studies of the sample before and after the H{sub 2}S exposure. After exposure, appearance of an additional peak at 26.6° corresponding to the formation of ZnS was observed in XRD. Formation of additional phase was further corroborated using the results of XPS. H{sub 2}S exposure causes decrease in the intensity of O 1s peak and appearance of sulphide peaks at binding energies of 162.8 and 161.8 eV corresponding to S-2p peaks – 2p{sub 3/2} and 2p{sub 1/2}, confirms the formation of ZnS upon exposure.

  15. Some problems on materials tests in high temperature hydrogen base gas mixture

    International Nuclear Information System (INIS)

    Shikama, Tatsuo; Tanabe, Tatsuhiko; Fujitsuka, Masakazu; Yoshida, Heitaro; Watanabe, Ryoji

    1980-01-01

    Some problems have been examined on materials tests (creep rupture tests and corrosion tests) in high temperature mixture gas of hydrogen (80%H 2 + 15%CO + 5%CO 2 ) simulating the reducing gas for direct steel making. H 2 , CO, CO 2 and CH 4 in the reducing gas interact with each other at elevated temperature and produce water vapor (H 2 O) and carbon (soot). Carbon deposited on the walls of retorts and the water condensed at pipings of the lower temperature gas outlet causes blocking of gas flow. The gas reactions have been found to be catalyzed by the retort walls, and appropriate selection of the materials for retorts has been found to mitigate the problems caused by water condensation and carbon deposition. Quartz has been recognized to be one of the most promising materials for minimizing the gas reactions. And ceramic coating, namely, BN (born nitride) on the heat resistant superalloy, MO-RE II, has reduced the amounts of water vapor and deposited carbon (sooting) produced by gas reactions and has kept dew points of outlet gas below room temperature. The well known emf (thermo-electromotive force) deterioration of Alumel-Chromel thermocouples in the reducing gases at elevated temperatures has been also found to be prevented by the ceramic (BN) coating. (author)

  16. Cu-Doped ZnO Thin Films Deposited by a Sol-Gel Process Using Two Copper Precursors: Gas-Sensing Performance in a Propane Atmosphere

    Directory of Open Access Journals (Sweden)

    Heberto Gómez-Pozos

    2016-01-01

    Full Text Available A study on the propane gas-sensing properties of Cu-doped ZnO thin films is presented in this work. The films were deposited on glass substrates by sol-gel and dip coating methods, using zinc acetate as a zinc precursor, copper acetate and copper chloride as precursors for doping. For higher sensitivity values, two film thickness values are controlled by the six and eight dippings, whereas for doping, three dippings were used, irrespective of the Cu precursor. The film structure was analyzed by X-ray diffractometry, and the analysis of the surface morphology and film composition was made through scanning electron microscopy (SEM and secondary ion mass spectroscopy (SIMS, respectively. The sensing properties of Cu-doped ZnO thin films were then characterized in a propane atmosphere, C3H8, at different concentration levels and different operation temperatures of 100, 200 and 300 °C. Cu-doped ZnO films doped with copper chloride presented the highest sensitivity of approximately 6 × 104, confirming a strong dependence on the dopant precursor type. The results obtained in this work show that the use of Cu as a dopant in ZnO films processed by sol-gel produces excellent catalysts for sensing C3H8 gas.

  17. ZnO:Al Thin Film Gas Sensor for Detection of Ethanol Vapor

    Directory of Open Access Journals (Sweden)

    Min Hsiung Hon

    2006-10-01

    Full Text Available The ZnO:Al thin films were prepared by RF magnetron sputtering on Si substrateusing Pt as interdigitated electrodes. The structure was characterized by XRD and SEManalyses, and the ethanol vapor gas sensing as well as electrical properties have beeninvestigated and discussed. The gas sensing results show that the sensitivity for detecting400 ppm ethanol vapor was ~20 at an operating temperature of 250°C. The high sensitivity,fast recovery, and reliability suggest that ZnO:Al thin film prepared by RF magnetronsputtering can be used for ethanol vapor gas sensing.

  18. Determining noncondensible gas fractions at elevated temperatures and pressures using wet and dry bulb temperature measurements

    International Nuclear Information System (INIS)

    Griffith, P.; Bowman, J.

    1987-01-01

    The work reported in this note was undertaken to provide a method of determining the noncondensible gas fractions in a steam-gas mixture such as might be found in large reactor safety experiment like LOFT. In essence, the method used involves measuring the wet and dry bulb temperatures and using an algorithm, in place of the psychometric chart, to determine the partial pressure of the noncondensible gas in the mixture. In accomplishing this, the authors did the following: (1) extended the use of wet and dry-bulb temperature readings to determine mixture composition up to a temperature of 589 K and a pressure of 4.13 x 10 6 Pa. (2) developed an algorithm to reduce the data (3) found which materials would survive those temperatures

  19. Elevated temperature and high pressure large helium gas loop

    International Nuclear Information System (INIS)

    Sakasai, Minoru; Midoriyama, Shigeru; Miyata, Toyohiko; Nakase, Tsuyoshi; Izaki, Makoto

    1979-01-01

    The development of high temperature gas-cooled reactors especially aiming at the multi-purpose utilization of nuclear heat energy is carried out actively in Japan and West Germany. In Japan, the experimental HTGR of 50 MWt and 1000 deg C outlet temperature is being developed by Japan Atomic Energy Research Institute and others since 1969, and the development of direct iron-making technology utilizing high temperature reducing gas was started in 1973 as the large project of Ministry of Internalional Trade and Industry. Kawasaki Heavy Industries, Ltd., Has taken part in these development projects, and has developed many softwares for nuclear heat design, system design and safety design of nuclear reactor system and heat utilization system. In hardwares also, efforts have been exerted to develop the technologies of design and manufacture of high temperature machinery and equipments. The high temperature, high pressure, large helium gas loop is under construction in the technical research institute of the company, and it is expected to be completed in December, 1979. The tests planned are that of proving the dynamic performances of the loop and its machinery and equipments and the verification of analysis codes. The loop is composed of the main circulation system, the objects of testing, the helium gas purifying system, the helium supplying and evacuating system, instruments and others. (Kako, I.)

  20. Assembly of ZIF-67 Metal-Organic Framework over Tin Oxide Nanoparticles for Synergistic Chemiresistive CO2 Gas Sensing.

    Science.gov (United States)

    DMello, Marilyn Esclance; Sundaram, Nalini G; Kalidindi, Suresh Babu

    2018-05-03

    Metal-organic frameworks (MOFs) are widely known for their record storage capacities of small gas molecules (H 2 , CO 2 , and CH 4 ). Assembly of such porous materials onto well-known chemiresistive gas sensing elements such as SnO 2 could be an attractive prospect to achieve novel sensing properties as this affects the surface chemistry of SnO 2 . Cobalt-imidazole based ZIF-67 MOF was grown onto preformed SnO 2 nanoparticles to realize core-shell like architecture and explored for greenhouse gas CO 2 sensing. CO 2 sensing over SnO 2 is a challenge because its interaction with SnO 2 surface is minimal. The ZIF-67 coating over SnO 2 improved the response of SnO 2 up to 12-fold (for 50 % CO 2 ). The SnO 2 @ZIF-67 also showed a response of 16.5±2.1 % for 5000 ppm CO 2 (threshold limit value (TLV)) at 205 °C, one of the best values reported for a SnO 2 -based sensor. The observed novel CO 2 sensing characteristics are assigned to electronic structure changes at the interface of ZIF-67 and SnO 2 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Utilization of multi-purpose high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Kawada, Osamu; Onuki, Yoshiaki; Wasaoka, Takeshi.

    1974-01-01

    Concerning the utilization of multi-purpose high temperature gas-cooled reactors, the electric power generation with gas turbines is described: features of HTR-He gas turbine power plants; the state of development of He gas turbines; and combined cycle with gas turbines and steam turbines. The features of gas turbines concern heat dissipation into the environment and the mode of load operation. Outstanding work in the development of He gas turbines is that in Hochtemperatur Helium-Turbine Project in West Germany. The power generation with combined gas turbines and steam turbines appears to be superior to that with gas turbines alone. (Mori, K.)

  2. Studies on Gas Sensing Performance of Pure and Surface Modified SrTiO3 Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    V. B. Gaikwad

    2009-08-01

    Full Text Available Strontium Titanate (SrTiO3 (ST was prepared mechanochemically from Sr(OH2 and TiO2. XRD confirms the Perovskite phase of material. Thick films of ST were prepared by screen-printing technique. The gas sensing performances of thick films were tested for various gases. It showed maximum sensitivity to CO gas at 350 oC for 100 ppm gas concentration. To improve the sensitivity and selectivity of the film towards a particular gas, ST thick films were surface modified by dipping them in a solution of nano copper for different intervals of time. These surface modified ST films showed larger sensitivity to H2S gas (100 ppm at 300 oC than pure ST film. A systematic study, of sensing performance of the sensor, indicates the key role-played by the nano copper species on the surface .The sensitivity, selectivity, response and recovery time of the sensor were measured and presented.

  3. Temperature Control of Gas Chromatograph Based on Switched Delayed System Techniques

    Directory of Open Access Journals (Sweden)

    Xiao-Liang Wang

    2014-01-01

    Full Text Available We address the temperature control problem of the gas chromatograph. We model the temperature control system of the gas chromatograph into a switched delayed system and analyze the stability by common Lyapunov functional technique. The PI controller parameters can be given based on the proposed linear matrix inequalities (LMIs condition and the designed controller can make the temperature of gas chromatograph track the reference signal asymptotically. An experiment is given to illustrate the effectiveness of the stability criterion.

  4. Conditions for lowering the flue gas temperature; Foerutsaettning foer saenkning av roekgastemperatur

    Energy Technology Data Exchange (ETDEWEB)

    Nordling, Magnus

    2012-02-15

    In heat and power production, the efficiency of the power plant increases the larger share of heat from the flue gas that is converted to power. However, this also implies that the temperature of the heat exchanging surfaces is lowered. If the temperature is lowered to a temperature below the dew point of the flue gas, this would result in condensation of the gas, which in turn elevates the risk of serious corrosion attack on the surfaces where condensation occurs. Thus, it is important to determine the dew point temperature. One way of determining the dew point temperature is to use data on composition of the fuel together with operation parameters of the plant, thus calculating the dew point temperature. However, this calculation of the dew point is not so reliable, especially if hygroscopic salts are present. Therefore, for safety reasons, the temperature of the flue gas is kept well above the dew point temperature. This results in lowered over-all efficiency of the plant. It could also be expected that for a certain plant, some construction materials under certain operation conditions would have corrosion characteristics that may allow condensation on the surface without severe and unpredictable corrosion attack. However, by only using operation parameters and fuel composition, it is even harder to predict the composition of the condensate at different operation temperatures than to calculate the dew point temperature. If the dew point temperature was known with a greater certainty, the temperature of the flue gas could be kept lower, just above the estimated value of the dew point, without any increased risk for condensation. If, in addition, also the resulting composition of the condensate at different temperatures below the dew point is known, it can be predicted if the construction materials of the flue gas channel were compatible with the formed condensate. If they are compatible, the flue gas temperature can be further lowered from the dew point

  5. Low Power Operation of Temperature-Modulated Metal Oxide Semiconductor Gas Sensors.

    Science.gov (United States)

    Burgués, Javier; Marco, Santiago

    2018-01-25

    Mobile applications based on gas sensing present new opportunities for low-cost air quality monitoring, safety, and healthcare. Metal oxide semiconductor (MOX) gas sensors represent the most prominent technology for integration into portable devices, such as smartphones and wearables. Traditionally, MOX sensors have been continuously powered to increase the stability of the sensing layer. However, continuous power is not feasible in many battery-operated applications due to power consumption limitations or the intended intermittent device operation. This work benchmarks two low-power, duty-cycling, and on-demand modes against the continuous power one. The duty-cycling mode periodically turns the sensors on and off and represents a trade-off between power consumption and stability. On-demand operation achieves the lowest power consumption by powering the sensors only while taking a measurement. Twelve thermally modulated SB-500-12 (FIS Inc. Jacksonville, FL, USA) sensors were exposed to low concentrations of carbon monoxide (0-9 ppm) with environmental conditions, such as ambient humidity (15-75% relative humidity) and temperature (21-27 °C), varying within the indicated ranges. Partial Least Squares (PLS) models were built using calibration data, and the prediction error in external validation samples was evaluated during the two weeks following calibration. We found that on-demand operation produced a deformation of the sensor conductance patterns, which led to an increase in the prediction error by almost a factor of 5 as compared to continuous operation (2.2 versus 0.45 ppm). Applying a 10% duty-cycling operation of 10-min periods reduced this prediction error to a factor of 2 (0.9 versus 0.45 ppm). The proposed duty-cycling powering scheme saved up to 90% energy as compared to the continuous operating mode. This low-power mode may be advantageous for applications that do not require continuous and periodic measurements, and which can tolerate slightly higher

  6. An effective temperature compensation approach for ultrasonic hydrogen sensors

    Science.gov (United States)

    Tan, Xiaolong; Li, Min; Arsad, Norhana; Wen, Xiaoyan; Lu, Haifei

    2018-03-01

    Hydrogen is a kind of promising clean energy resource with a wide application prospect, which will, however, cause a serious security issue upon the leakage of hydrogen gas. The measurement of its concentration is of great significance. In a traditional approach of ultrasonic hydrogen sensing, a temperature drift of 0.1 °C results in a concentration error of about 250 ppm, which is intolerable for trace amount of gas sensing. In order to eliminate the influence brought by temperature drift, we propose a feasible approach named as linear compensation algorithm, which utilizes the linear relationship between the pulse count and temperature to compensate for the pulse count error (ΔN) caused by temperature drift. Experimental results demonstrate that our proposed approach is capable of improving the measurement accuracy and can easily detect sub-100 ppm of hydrogen concentration under variable temperature conditions.

  7. Nanoscale temperature sensing using single defects in diamond

    International Nuclear Information System (INIS)

    Philipp Neumann

    2014-01-01

    We experimentally demonstrate a novel nanoscale temperature sensing technique that is based on single atomic defects in diamonds, namely nitrogen vacancy color centers. Sample sizes range from millimeter down to a few tens of nanometers. In particular nanodiamonds were used as dispersed probes to acquire spatially resolved temperature profiles utilizing the sensitivity of the optically accessible electron spin level structure we achieve a temperature noise floor of 5mK/Mhz for bulk diamond and 130mK/Mhz for nanodiamonds and accuracies of 1mK. To this end we have developed a new decoupling technique in order to suppress to otherwise limiting effect of magnetic field fluctuations. In addition, high purity isotopically enriched 12C artificial diamonds is used. The high sensitivity to temperature changes adds to the well studied sensitivities to magnetic and electric fields and makes NV diamond a multipurpose nanoprobe. (author)

  8. Developing upconversion nanoparticle-based smart substrates for remote temperature sensing

    Science.gov (United States)

    Coker, Zachary; Marble, Kassie; Alkahtani, Masfer; Hemmer, Philip; Yakovlev, Vladislav V.

    2018-02-01

    Recent developments in understanding of nanomaterial behaviors and synthesis have led to their application across a wide range of commercial and scientific applications. Recent investigations span from applications in nanomedicine and the development of novel drug delivery systems to nanoelectronics and biosensors. In this study, we propose the application of a newly engineered temperature sensitive water-based bio-compatible core/shell up-conversion nanoparticle (UCNP) in the development of a smart substrate for remote temperature sensing. We developed this smart substrate by dispersing functionalized nanoparticles into a polymer solution and then spin-coating the solution onto one side of a microscope slide to form a thin film substrate layer of evenly dispersed nanoparticles. By using spin-coating to deposit the particle solution we both create a uniform surface for the substrate while simultaneously avoid undesired particle agglomeration. Through this investigation, we have determined the sensitivity and capabilities of this smart substrate and conclude that further development can lead to a greater range of applications for this type smart substrate and use in remote temperature sensing in conjunction with other microscopy and spectroscopy investigations.

  9. Characterization and gas sensing properties of CuO synthesized by DC directly applying voltage

    International Nuclear Information System (INIS)

    Klinbumrung, Arrak; Thongtem, Titipun; Thongtem, Somchai

    2014-01-01

    Highlights: • CuO as a p-type semiconductor. • It was synthesized by directly applying voltage. • A promising material for ammonia detection. - Abstract: CuO microstructure was successfully synthesized by 50 A and 3.6 V DC directly applying voltage. Crystalline structure was characterized by X-ray diffraction (XRD), morphology by scanning and transmission electron microscopy (SEM, TEM). The sample of the 15 min processing time has an irregular shape with diameter about several hundreds of nanometer. Fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible (UV–vis) absorption spectroscopy and photoluminescence (PL) were used to determine vibrational modes and optical properties of the as-synthesized samples: 529 and 585 cm −1 vibrational modes, 3.95 eV band gap, and 402 nm emitting wavelength in violet region of CuO. X-ray photoelectron (XPS) spectroscopy was used to determine chemical composition, Cu(II)O, of the metal oxide surface. Gas sensing performance exposing to NH 3 mixed with air at various working temperatures and NH 3 concentrations of the as-synthesized CuO has the best response at the optimal working temperature of 250 °C: sensitivity of 56.6% exposed to 5275 ppm NH 3

  10. Utilizing the response patterns of a temperature modulated chemoresistive gas sensor for gas diagnosis

    International Nuclear Information System (INIS)

    Amini, Amir; Ghafarinia, Vahid

    2011-01-01

    The observed features in the temporal response patterns of a temperature-modulated chemoresistive gas sensor were used for gas diagnosis. The patterns were recorded for clean air and air contaminated with different levels of some volatile organic compounds while a staircase heating voltage waveform had been applied to the microheater of a tin oxide gas sensor that modulated its operating temperature. Combining the steady-state and transient parameters of the recorded responses in the 50-400 deg. C range resulted in discriminatory feature vectors which were utilized for contaminant classification. The information content of these feature vectors was proved sufficient for discrimination of methanol, ethanol, 1-butanol, and acetone contaminations in a wide concentration range.

  11. Utilizing the response patterns of a temperature modulated chemoresistive gas sensor for gas diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Amini, Amir [Jannatabad College, Sama Organization, Islamic Azad University, Tehran (Iran, Islamic Republic of); Ghafarinia, Vahid, E-mail: amir.amini.elec@gmail.com, E-mail: ghafarinia@ee.kntu.ac.ir [Electrical Engineering Department, K. N. Toosi University of Technology, Tehran (Iran, Islamic Republic of)

    2011-02-15

    The observed features in the temporal response patterns of a temperature-modulated chemoresistive gas sensor were used for gas diagnosis. The patterns were recorded for clean air and air contaminated with different levels of some volatile organic compounds while a staircase heating voltage waveform had been applied to the microheater of a tin oxide gas sensor that modulated its operating temperature. Combining the steady-state and transient parameters of the recorded responses in the 50-400 deg. C range resulted in discriminatory feature vectors which were utilized for contaminant classification. The information content of these feature vectors was proved sufficient for discrimination of methanol, ethanol, 1-butanol, and acetone contaminations in a wide concentration range.

  12. Finely Tuned SnO2 Nanoparticles for Efficient Detection of Reducing and Oxidizing Gases: The Influence of Alkali Metal Cation on Gas-Sensing Properties.

    Science.gov (United States)

    Lee, Szu-Hsuan; Galstyan, Vardan; Ponzoni, Andrea; Gonzalo-Juan, Isabel; Riedel, Ralf; Dourges, Marie-Anne; Nicolas, Yohann; Toupance, Thierry

    2018-03-28

    Tin dioxide (SnO 2 ) nanoparticles were straightforwardly synthesized using an easily scaled-up liquid route that involves the hydrothermal treatment, either under acidic or basic conditions, of a commercial tin dioxide particle suspension including potassium counterions. After further thermal post-treatment, the nanomaterials have been thoroughly characterized by Fourier transform infrared and Raman spectroscopy, powder X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and nitrogen sorption porosimetry. Varying pH conditions and temperature of the thermal treatment provided cassiterite SnO 2 nanoparticles with crystallite sizes ranging from 7.3 to 9.7 nm and Brunauer-Emmett-Teller surface areas ranging from 61 to 106 m 2 ·g -1 , acidic conditions favoring potassium cation removal. Upon exposure to a reducing gas (H 2 , CO, and volatile organic compounds such as ethanol and acetone) or oxidizing gas (NO 2 ), layers of these SnO 2 nanoparticles led to highly sensitive, reversible, and reproducible responses. The sensing results were discussed in regard to the crystallite size, specific area, valence band energy, Debye length, and chemical composition. Results highlight the impact of the counterion residuals, which affect the gas-sensing performance to an extent much higher than that of size and surface area effects. Tin dioxide nanoparticles prepared under acidic conditions and calcined in air showed the best sensing performances because of lower amount of potassium cations and higher crystallinity, despite the lower surface area.

  13. A Review of Hybrid Fiber-Optic Distributed Simultaneous Vibration and Temperature Sensing Technology and Its Geophysical Applications

    Directory of Open Access Journals (Sweden)

    Khalid Miah

    2017-11-01

    Full Text Available Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS and distributed temperature sensing (DTS systems have been developed for various applications with varied spatial resolution, and spectral and sensing range. Rayleigh scattering-based phase optical time domain reflectometry (OTDR for vibration and Raman/Brillouin scattering-based OTDR for temperature and strain measurements have been developed over the past two decades. The key challenge has been to find a methodology that would enable the physical parameters to be determined at any point along the sensing fiber with high sensitivity and spatial resolution, yet within acceptable frequency range for dynamic vibration, and temperature detection. There are many applications, especially in geophysical and mining engineering where simultaneous measurements of vibration and temperature are essential. In this article, recent developments of different hybrid systems for simultaneous vibration, temperature and strain measurements are analyzed based on their operation principles and performance. Then, challenges and limitations of the systems are highlighted for geophysical applications.

  14. A Review of Hybrid Fiber-Optic Distributed Simultaneous Vibration and Temperature Sensing Technology and Its Geophysical Applications.

    Science.gov (United States)

    Miah, Khalid; Potter, David K

    2017-11-01

    Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS) and distributed temperature sensing (DTS) systems have been developed for various applications with varied spatial resolution, and spectral and sensing range. Rayleigh scattering-based phase optical time domain reflectometry (OTDR) for vibration and Raman/Brillouin scattering-based OTDR for temperature and strain measurements have been developed over the past two decades. The key challenge has been to find a methodology that would enable the physical parameters to be determined at any point along the sensing fiber with high sensitivity and spatial resolution, yet within acceptable frequency range for dynamic vibration, and temperature detection. There are many applications, especially in geophysical and mining engineering where simultaneous measurements of vibration and temperature are essential. In this article, recent developments of different hybrid systems for simultaneous vibration, temperature and strain measurements are analyzed based on their operation principles and performance. Then, challenges and limitations of the systems are highlighted for geophysical applications.

  15. Hierarchical assembly of urchin-like alpha-iron oxide hollow microspheres and molybdenum disulphide nanosheets for ethanol gas sensing.

    Science.gov (United States)

    Zhang, Dongzhi; Fan, Xin; Yang, Aijun; Zong, Xiaoqi

    2018-08-01

    In this paper, we fabricated a high-performance ethanol sensor using layer-by-layer self-assembled urchin-like alpha-iron oxide (α-Fe 2 O 3 ) hollow microspheres/molybdenum disulphide (MoS 2 ) nanosheets heterostructure as sensitive materials. The nanostructural, morphological, and compositional properties of the as-prepared α-Fe 2 O 3 /MoS 2 heterostructure were characterized by X-ray diffraction (XRD), energy dispersive spectrometer (EDS), scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS), which confirmed its successful preparation and rationality. The α-Fe 2 O 3 /MoS 2 nanocomposite sensor shows good selectivity, excellent reproducibility, fast response/recovery time and low detection limit towards ethanol gas at room temperature, which is superior to the single component of α-Fe 2 O 3 hollow microspheres and MoS 2 nanosheets. Furthermore, the response of the α-Fe 2 O 3 /MoS 2 nanocomposite sensor as a function of ethanol gas concentration was also demonstrated. The enhanced ethanol sensing properties of the α-Fe 2 O 3 /MoS 2 nanocomposite sensor were ascribed to the synergistic effect and heterojunction between the urchin-Like α-Fe 2 O 3 hollow microspheres and MoS 2 nanosheets. This work verifies that the hierarchical α-Fe 2 O 3 /MoS 2 nanoheterostructure is a potential candidate for fabricating room-temperature ethanol gas sensor. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Moderate temperature gas purification system: Application to high calorific coal-derived fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, M.; Shirai, H.; Nunokawa, M. [Central Research Institute of Electric Power Industry, Kanagawa (Japan)

    2008-01-15

    Simultaneous removal of dust, alkaline and alkaline-earth metals, halides and sulfur compounds is required to enlarge application of coal-derived gas to the high-temperature fuel cells and the fuel synthesis through chemical processing. Because high calorific fuel gas, such as oxygen-blown coal gas, has high carbon monoxide content, high-temperature (above 450{sup o}C) gas purification system is always subjected to the carbon deposition. We suggest moderate temperature (around 300{sup o}C) operation of the gas purification system to avoid the harmful disproportionation reaction and efficient removal of the various contaminants. Because the reaction rate is predominant to the performance of contaminant removal in the moderate temperature gas purification system, we evaluated the chemical removal processes; performance of the removal processes for halides and sulfur compounds was experimentally evaluated. The halide removal process with sodium aluminate sorbent had potential performance at around 300{sup o}C. The sulfur removal process with zinc ferrite sorbent was also applicable to the temperature range, though the reaction kinetics of the sorbent is essential to be approved.

  17. Spatial separation of electrons and holes for enhancing the gas-sensing property of a semiconductor: ZnO/ZnSnO3 nanorod arrays prepared by a hetero-epitaxial growth

    Science.gov (United States)

    Wang, Ying; Gao, Peng; Sha, Linna; Chi, Qianqian; Yang, Lei; Zhang, Jianjiao; Chen, Yujin; Zhang, Milin

    2018-04-01

    The construction of semiconductor composites is known as a powerful method used to realize the spatial separation of electrons and the holes in them, which can result in more electrons or holes and increase the dispersion of oxygen ions ({{{{O}}}2}- and O - ) (one of the most critical factors for their gas-sensing properties) on the surface of the semiconductor gas sensor. In this work, using 1D ZnO/ZnSnO3 nanoarrays as an example, which are prepared through a hetero-epitaxial growing process to construct a chemically bonded interface, the above strategy to attain a better semiconductor gas-sensing property has been realized. Compared with single ZnSnO3 nanotubes and no-matching ZnO/ZnSnO3 nanoarrays gas sensors, it has been proven by x-ray photoelectron spectroscopy and photoluminescence spectrum examination that the as-obtained ZnO/ZnSnO3 sensor showed a greatly increased quantity of active surface electrons with exceptional responses to trace target gases and much lower optimum working temperatures (less than about 170 °C). For example, the as-obtained ZnO/ZnSnO3 sensor exhibited an obvious response and short response/recovery time (less than 10 s) towards trace H2S gas (a detection limit down to 700 ppb). The high responses and dynamic repeatability observed in these sensors reveal that the strategy based on the as-presented electron and hole separation is reliable for improving the gas-sensing properties of semiconductors.

  18. Study of CMOS-SOI Integrated Temperature Sensing Circuits for On-Chip Temperature Monitoring.

    Science.gov (United States)

    Malits, Maria; Brouk, Igor; Nemirovsky, Yael

    2018-05-19

    This paper investigates the concepts, performance and limitations of temperature sensing circuits realized in complementary metal-oxide-semiconductor (CMOS) silicon on insulator (SOI) technology. It is shown that the MOSFET threshold voltage ( V t ) can be used to accurately measure the chip local temperature by using a V t extractor circuit. Furthermore, the circuit's performance is compared to standard circuits used to generate an accurate output current or voltage proportional to the absolute temperature, i.e., proportional-to-absolute temperature (PTAT), in terms of linearity, sensitivity, power consumption, speed, accuracy and calibration needs. It is shown that the V t extractor circuit is a better solution to determine the temperature of low power, analog and mixed-signal designs due to its accuracy, low power consumption and no need for calibration. The circuit has been designed using 1 µm partially depleted (PD) CMOS-SOI technology, and demonstrates a measurement inaccuracy of ±1.5 K across 300 K⁻500 K temperature range while consuming only 30 µW during operation.

  19. Effects of cold temperatures on the excitability of rat trigeminal ganglion neurons that are not for cold-sensing

    Science.gov (United States)

    Kanda, Hirosato; Gu, Jianguo G.

    2016-01-01

    Except a small population of primary afferent neurons for sensing cold to generate the sensations of innocuous and noxious cold, it is generally believed that cold temperatures suppress the excitability of other primary afferent neurons that are not for cold-sensing. These not-for-cold-sensing neurons include the majority of non-nociceptive and nociceptive afferent neurons. In the present study we have found that not-for-cold-sensing neurons of rat trigeminal ganglia (TG) change their excitability in several ways at cooling temperatures. In nearly 70% of not-for-cold-sensing TG neurons, the cooling temperature of 15°C increases their membrane excitability. We regard these neurons as cold-active neurons. For the remaining 30% of not-for-cold-sensing TG neurons, the cooling temperature of 15°C either has no effect (regarded as cold-ineffective neurons) or suppress (regarded as cold-suppressive neurons) their membrane excitability. For cold-active neurons, the cold temperature of 15°C increases their excitability as is evidenced by the increases in action potential (AP) firing numbers and/or reduction of AP rheobase when these neurons are depolarized electrically. The cold temperature of 15°C significantly inhibits M-currents and increases membrane input resistance of cold-active neurons. Retigabine, an M-current activator, abolishes the effect of cold temperatures on AP firing but not the effect of cold temperature on AP rheobase levels. The inhibition of M-currents and the increases of membrane input resistance are likely two mechanisms by which cooling temperatures increase the excitability of not-for-cold-sensing TG neurons. PMID:26709732

  20. Triboelectric-based harvesting of gas flow energy and powerless sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Taghavi, Majid, E-mail: majid.taghavi@iit.it [Micro-BioRobotics Center, Istituto Italiano di Tecnologia, Pontedera (Italy); Biorobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Pisa (Italy); Sadeghi, Ali; Mazzolai, Barbara [Micro-BioRobotics Center, Istituto Italiano di Tecnologia, Pontedera (Italy); Beccai, Lucia, E-mail: lucia.beccai@iit.it [Micro-BioRobotics Center, Istituto Italiano di Tecnologia, Pontedera (Italy); Mattoli, Virgilio, E-mail: virgilio.mattoli@iit.it [Micro-BioRobotics Center, Istituto Italiano di Tecnologia, Pontedera (Italy)

    2014-12-30

    Highlights: • The mechanical energy of both pure and impure gases can be harvested by the introduced system. • The blown gas vibrates a non conductive sheet between two surfaces, generating the triboelectric charges. • The system is able to measure the flow rate of the blown gas. • The existence of dust in the blown air can be detected without external powering. • A self powered smoke detector is introduced. - Abstract: In this work, we propose an approach that can convert gas flow energy to electric energy by using the triboelectric effect, in a structure integrating at least two conductive parts (i.e. electrodes) and one non-conductive sheet. The gas flow induces vibration of the cited parts. Therefore, the frequent attaching and releasing between a non-conductive layer with at least one electrode generates electrostatic charges on the surfaces, and then an electron flow between the two electrodes. The effect of blown gas on the output signals is studied to evaluate the gas flow sensing. We also illustrate that the introduced system has an ability to detect micro particles driven by air into the system. Finally we show how we can use this approach for a self sustainable system demonstrating smoke detection and LED lightening.

  1. Triboelectric-based harvesting of gas flow energy and powerless sensing applications

    International Nuclear Information System (INIS)

    Taghavi, Majid; Sadeghi, Ali; Mazzolai, Barbara; Beccai, Lucia; Mattoli, Virgilio

    2014-01-01

    Highlights: • The mechanical energy of both pure and impure gases can be harvested by the introduced system. • The blown gas vibrates a non conductive sheet between two surfaces, generating the triboelectric charges. • The system is able to measure the flow rate of the blown gas. • The existence of dust in the blown air can be detected without external powering. • A self powered smoke detector is introduced. - Abstract: In this work, we propose an approach that can convert gas flow energy to electric energy by using the triboelectric effect, in a structure integrating at least two conductive parts (i.e. electrodes) and one non-conductive sheet. The gas flow induces vibration of the cited parts. Therefore, the frequent attaching and releasing between a non-conductive layer with at least one electrode generates electrostatic charges on the surfaces, and then an electron flow between the two electrodes. The effect of blown gas on the output signals is studied to evaluate the gas flow sensing. We also illustrate that the introduced system has an ability to detect micro particles driven by air into the system. Finally we show how we can use this approach for a self sustainable system demonstrating smoke detection and LED lightening

  2. Optical techniques for sensing and measurement in hostile environments

    International Nuclear Information System (INIS)

    Gillespie, C.H.; Greenwell, R.A.

    1987-01-01

    These proceedings collect papers on optical sensing and measurement in hostile environments. Topic include: nuclear waste storage facility monitoring, monitoring of nuclear and chemical explosions, exhaust gas monitoring, fiber-optic monitoring, temperature and radiation effects on optical fibers, and interferometers

  3. Characterization and Gas Sensing Properties of Copper-doped Tin Oxide Thin Films Deposited by Ultrasonic Spray Pyrolysis

    Directory of Open Access Journals (Sweden)

    Zhaoxia ZHAI

    2016-05-01

    Full Text Available Tin oxide-based thin films are deposited by ultrasonic spray pyrolysis technology, in which Cu addition is introduced to enhance the gas sensing performance by H2S detection. The thin films are porous and comprise nano-sized crystallites. One of the Cu-containing thin film sensors demonstrates a fast and significant response to H2S gas. The values of power law exponent n are calculated to discuss the sensitivity of the sensors, which is significantly promoted by Cu additive. The sensitivity of Cu-doped SnO2 gas sensors is determined by two mechanisms. One is the normal gas sensing mechanism of SnO2 grains, and the other is the promoted mechanism caused by the transformation between CuO and CuS in the H2S detection. DOI: http://dx.doi.org/10.5755/j01.ms.22.2.12917

  4. A study of silver behavior in Gas-turbine High Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Sawa, Kazuhiro; Tanaka, Toshiyuki

    1995-11-01

    A Gas-turbine High Temperature Gas-cooled Reactor (GT-HTGR) is one of the promising reactor systems of future HTGRs. In the design of GT-HTGR, behavior of fission products, especially of silver, is considered to be important from the view point of maintenance of gas-turbine. A study of silver behavior in the GT-HTGR was carried out based on current knowledge. The purposes of this study were to determine an importance of the silver problem quantitatively, countermeasures to the problem and items of future research and development which will be needed. In this study, inventory, fractional release from fuel, plateout in the primary circuit and radiation dose were evaluated, respectively. Based on this study, it is predicted that gamma-ray from plateout silver in gas-turbine system contributes about a half of total radiation dose after reactor shutdown. In future, more detail data for silver release from fuel, plateout behavior, etc. using the High Temperature Engineering Test Reactor (HTTR), for example, will be needed to carry out reasonable design. (author)

  5. Superior selectivity and sensitivity of blue phosphorus nanotubes in gas sensing applications

    KAUST Repository

    Montes Muñoz, Enrique

    2017-05-23

    On the basis of first principles calculations, we study the adsorption of CO, CO2, NH3, NO, and NO2 molecules on armchair and zigzag blue phosphorus nanotubes. The nanotubes are found to surpass the gas sensing performance of other one-dimensional materials, in particular Si nanowires and carbon nanotubes, and two-dimensional materials, in particular graphene, phosphorene, and MoS2. Investigation of the energetics of the gas adsorption and induced charge transfers indicates that blue phosphorus nanotubes are highly sensitive to N-based molecules, in particular NO2, due to covalent bonding. The current–voltage characteristics of nanotubes connected to Au electrodes are derived by the non-equilibrium Green\\'s function formalism and used to quantitatively evaluate the change in resistivity upon gas adsorption. The observed selectivity and sensitivity properties make blue phosphorus nanotubes superior gas sensors for a wide range of applications.

  6. The effect of noble metal additives on the optimum operating temperature of SnO2 gas sensors

    Science.gov (United States)

    Mohammad-Yousefi, S.; Rahbarpour, S.; Ghafoorifard, H.

    2017-12-01

    The effect of Pd and Au additives on gas sensing properties of SnO2 was investigated. SnO2 pallets were fabricated and sintered at 900 °C for 90 minutes. Several nanometer layers of Pd and Au were deposited on separate SnO2 pallets and were intentionally dispersed into the SnO2 pallets by long heat treatment (400 °C for 1 Day). All metal loaded samples showed significant enhancement in response level and optimum operating temperature compare to pure SnO2 gas sensors. The amount of enhancement was strongly dependent on the material and the thickness of deposited metal layer. Studying butanol response showed that increasing the thickness of metal causes the response level to increase. Further thickness increase caused contrary effect and decreased the performance of sensors. Best results were achieved at 10 nm-thick Au and 7 nm-thick Pd. Generally, Pd-SnO2 samples demonstrated better performance than Au-SnO2 ones, however, Au-SnO2 samples were proved to be good candidate to sense reducing gases with lower hydrogen atoms in their formula. Given experimental results were also good evidence of chemical activity of gold and simply confirms the relation between chemical activity and gold particle size. Results were qualitatively described by gas diffusion theory and surface reactions take place on metal particles.The first section in your paper

  7. Application of gas-coupled laser acoustic detection to gelatins and underwater sensing

    International Nuclear Information System (INIS)

    Caron, James N.; Kunapareddy, Pratima

    2014-01-01

    Gas-coupled Laser Acoustic Detection (GCLAD) has been used as a method to sense ultrasound waves in materials without contact of the material surface. To sense the waveform, a laser beam is directed parallel to the material surface and displaced or deflected when the radiated waveform traverses the beam. We present recent tests that demonstrate the potential of using this technique for detecting ultrasound in gelatin phantoms and in water. As opposed to interferometric detection, GCLAD operates independently of the optical surface properties of the material. This allows the technique to be used in cases where the material is transparent or semi-transparent. We present results on sensing ultrasound in gelatin phantoms that are used to mimic biological materials. As with air-coupled transducers, the frequency response of GCLAD at high frequencies is limited by the high attenuation of ultrasound in air. In contrast, water has a much lower attenuation. Here we demonstrate the use of a GCLAD-like system in water, measuring the directivity response at 1 MHz and sensing waveforms with higher frequency content

  8. Chirped laser dispersion spectroscopy for remote open-path trace-gas sensing.

    Science.gov (United States)

    Nikodem, Michal; Wysocki, Gerard

    2012-11-28

    In this paper we present a prototype instrument for remote open-path detection of nitrous oxide. The sensor is based on a 4.53 μm quantum cascade laser and uses the chirped laser dispersion spectroscopy (CLaDS) technique for molecular concentration measurements. To the best of our knowledge this is the first demonstration of open-path laser-based trace-gas detection using a molecular dispersion measurement. The prototype sensor achieves a detection limit down to the single-ppbv level and exhibits excellent stability and robustness. The instrument characterization, field deployment performance, and the advantages of applying dispersion sensing to sensitive trace-gas detection in a remote open-path configuration are presented.

  9. On the second-order temperature jump coefficient of a dilute gas

    Science.gov (United States)

    Radtke, Gregg A.; Hadjiconstantinou, N. G.; Takata, S.; Aoki, K.

    2012-09-01

    We use LVDSMC simulations to calculate the second-order temperature jump coefficient for a dilute gas whose temperature is governed by the Poisson equation with a constant forcing term. Both the hard sphere gas and the BGK model of the Boltzmann equation are considered. Our results show that the temperature jump coefficient is different from the well known linear and steady case where the temperature is governed by the homogeneous heat conduction (Laplace) equation.

  10. Exploitation of low-temperature energy sources from cogeneration gas engines

    International Nuclear Information System (INIS)

    Caf, A.; Urbancl, D.; Trop, P.; Goricanec, D.

    2016-01-01

    This paper describes an original and innovative technical solution for exploiting low-temperature energy sources from cogeneration gas reciprocating engines installed within district heating systems. This solution is suitable for those systems in which the heat is generated by the use of reciprocating engines powered by gaseous fuel for combined heat and power production. This new technical solution utilizes low-temperature energy sources from a reciprocating gas engine which is used for a combined production of heat and power. During the operation of the cogeneration system low-temperature heat is released, which can be raised to as much as 85 °C with the use of a high-temperature heat-pump, thus enabling a high-temperature regime for heating commercial buildings, district heating or in industrial processes. In order to demonstrate the efficiency of utilizing low-temperature heat sources in the cogeneration system, an economic calculation is included which proves the effectiveness and rationality of integrating high-temperature heat-pumps into new or existing systems for combined heat and power production with reciprocating gas engines. - Highlights: • The use of low-temperature waste heat from the CHP is described. • Total energy efficiency of the CHP can be increased to more than 103.3%. • Low-temperature heat is exploited with high-temperature heat pump. • High-temperature heat pump allows temperature rise to up to 85 °C. • Exploitation of low-temperature waste heat increases the economics of the CHP.

  11. Quantum dots as mediators in gas sensing: A case study of CdS sensitized WO{sub 3} sensing composites

    Energy Technology Data Exchange (ETDEWEB)

    Concina, Isabella, E-mail: concina@sensor.ing.unibs.it [CNR-INO SENSOR Laboratory, via Branze, 45, 25131 Brescia (Italy); SENSOR, Department of Information Engineering, Brescia University, via Valotti, 9, 25133 Brescia (Italy); Comini, Elisabetta [CNR-INO SENSOR Laboratory, via Branze, 45, 25131 Brescia (Italy); SENSOR, Department of Information Engineering, Brescia University, via Valotti, 9, 25133 Brescia (Italy); Kaciulis, Saulius [CNR-ISMN, Institute for the Study of Nanostructured Materials, Via dei Taurini, 19, 00185 Roma (Italy); Sberveglieri, Giorgio [CNR-INO SENSOR Laboratory, via Branze, 45, 25131 Brescia (Italy); SENSOR, Department of Information Engineering, Brescia University, via Valotti, 9, 25133 Brescia (Italy)

    2014-01-30

    In this study the proof of principle of the use of naked semiconductor directly generated on metal oxide surface as mediators in gas sensing is provided. Successive ionic layer absorption and reaction (SILAR) technique has been applied to sensitize a WO{sub 3} thin film with CdS quantum dots. Response to gases of bare WO{sub 3} is deeply modified: quantum dots dramatically increase the metal oxide conductance, otherwise rather poor, and modify the capability of detecting environmental pollutants, such as CO and NO{sub 2}. A modified sensing mechanism is proposed to rationalize the mediation exerted by the semiconducting active layer on the interaction between gaseous species and WO{sub 3} surface.

  12. Design and development of gas turbine high temperature reactor 300

    International Nuclear Information System (INIS)

    Kunitomi, Kazuhiko; Katanishi, Shoji; Takada, Shoji; Yan, Xing; Takizuka, Takakazu

    2003-01-01

    JAERI (Japan Atomic Energy Research Institute) has been designing a Japan's original gas turbine high temperature reactor, GTHTR300 (Gas Turbine High Temperature Reactor 300). The greatly simplified design based on salient features of the HTGR (High Temperature Gas-cooled reactor) with a closed helium gas turbine enables the GTHTR300 a high efficient and economically competitive reactor to be deployed in early 2010s. Also, the GTHTR300 fully taking advantage of various experiences accumulated in design, construction and operation of the HTTR (High Temperature Engineering Test Reactor) and fossil gas turbine systems reduces technological development concerning a reactor system and electric generation system. Original features of this system are core design with two-year refueling interval, conventional steel material usage for a reactor pressure vessel, innovative plant flow scheme and horizontally installed gas turbine unit. Due to these salient features, the capital cost of the GTHTR300 is less than a target cost of 200 thousands Yen/kWe, and the electric generation cost is close to a target cost of 4 Yen/kWh. This paper describes the original design features focusing on reactor core design, fuel design, in-core structure design and reactor pressure vessel design except PCU design. Also, R and D for developing the power conversion unit is briefly described. The present study is entrusted from the Ministry of Education, Culture, Sports, Science and Technology of Japan. (author)

  13. High temperature gas cooled nuclear reactor

    International Nuclear Information System (INIS)

    Hosegood, S.B.; Lockett, G.E.

    1975-01-01

    For high-temperature gas cooled reactors it is considered advantageous to design the core so that the moderator blocks can be removed and replaced by some means of standpipes normally situated in the top of the reactor vessel. An arrangement is here described to facilitate these operations. The blocks have end faces shaped as irregular hexagons with three long sides of equal length and three short sides also of equal length, one short side being located between each pair of adjacent long sides, and the long sides being inclined towards one another at 60 0 . The block defines a number of coolant channels located parallel to its sides. Application of the arrangement to a high temperature gas-cooled reactor with refuelling standpipes is described. The standpipes are located in the top of the reactor vessel above the tops of the columns and are disposed coaxially above the hexagonal channels, with diameters that allow the passage of the blocks. (U.K.)

  14. Analysis and improvement of gas turbine blade temperature measurement error

    International Nuclear Information System (INIS)

    Gao, Shan; Wang, Lixin; Feng, Chi; Daniel, Ketui

    2015-01-01

    Gas turbine blade components are easily damaged; they also operate in harsh high-temperature, high-pressure environments over extended durations. Therefore, ensuring that the blade temperature remains within the design limits is very important. In this study, measurement errors in turbine blade temperatures were analyzed, taking into account detector lens contamination, the reflection of environmental energy from the target surface, the effects of the combustion gas, and the emissivity of the blade surface. In this paper, each of the above sources of measurement error is discussed, and an iterative computing method for calculating blade temperature is proposed. (paper)

  15. Analysis and improvement of gas turbine blade temperature measurement error

    Science.gov (United States)

    Gao, Shan; Wang, Lixin; Feng, Chi; Daniel, Ketui

    2015-10-01

    Gas turbine blade components are easily damaged; they also operate in harsh high-temperature, high-pressure environments over extended durations. Therefore, ensuring that the blade temperature remains within the design limits is very important. In this study, measurement errors in turbine blade temperatures were analyzed, taking into account detector lens contamination, the reflection of environmental energy from the target surface, the effects of the combustion gas, and the emissivity of the blade surface. In this paper, each of the above sources of measurement error is discussed, and an iterative computing method for calculating blade temperature is proposed.

  16. Modeling of Aerobrake Ballute Stagnation Point Temperature and Heat Transfer to Inflation Gas

    Science.gov (United States)

    Bahrami, Parviz A.

    2012-01-01

    A trailing Ballute drag device concept for spacecraft aerocapture is considered. A thermal model for calculation of the Ballute membrane temperature and the inflation gas temperature is developed. An algorithm capturing the most salient features of the concept is implemented. In conjunction with the thermal model, trajectory calculations for two candidate missions, Titan Explorer and Neptune Orbiter missions, are used to estimate the stagnation point temperature and the inflation gas temperature. Radiation from both sides of the membrane at the stagnation point and conduction to the inflating gas is included. The results showed that the radiation from the membrane and to a much lesser extent conduction to the inflating gas, are likely to be the controlling heat transfer mechanisms and that the increase in gas temperature due to aerodynamic heating is of secondary importance.

  17. Multi-spectral temperature measurement method for gas turbine blade

    Science.gov (United States)

    Gao, Shan; Feng, Chi; Wang, Lixin; Li, Dong

    2016-02-01

    One of the basic methods to improve both the thermal efficiency and power output of a gas turbine is to increase the firing temperature. However, gas turbine blades are easily damaged in harsh high-temperature and high-pressure environments. Therefore, ensuring that the blade temperature remains within the design limits is very important. There are unsolved problems in blade temperature measurement, relating to the emissivity of the blade surface, influences of the combustion gases, and reflections of radiant energy from the surroundings. In this study, the emissivity of blade surfaces has been measured, with errors reduced by a fitting method, influences of the combustion gases have been calculated for different operational conditions, and a reflection model has been built. An iterative computing method is proposed for calculating blade temperatures, and the experimental results show that this method has high precision.

  18. TiO2 Nanorods Decorated with Pd Nanoparticles for Enhanced Liquefied Petroleum Gas Sensing Performance.

    Science.gov (United States)

    Dhawale, Dattatray S; Gujar, Tanaji P; Lokhande, Chandrakant D

    2017-08-15

    Development of highly sensitive and selective semiconductor-based metal oxide sensor devices to detect toxic, explosive, flammable, and pollutant gases is still a challenging research topic. In the present work, we systematically enhanced the liquefied petroleum gas (LPG) sensing performance of chemical bath deposited TiO 2 nanorods by decorating Pd nanoparticle catalyst. Surface morphology with elemental mapping, crystal structure, composition and oxidation states, and surface area measurements of pristine TiO 2 and Pd:TiO 2 nanorods was examined by high resolution transmission electron microscopy with energy-dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and nitrogen adsorption-desorption characterization techniques. LPG sensing performance of pristine TiO 2 and Pd:TiO 2 nanorods was investigated in different LPG concentration and operating temperature ranges. The LPG response of 21% for pristine TiO 2 nanorods is enhanced to 49% after Pd catalyst decoration with reasonably fast response and recovery times. Further, the sensor exhibited long-term stability, which could be due to the strong metal support (Pd:TiO 2 ) interaction and catalytic properties offered by the Pd nanoparticle catalyst. The work described herein demonstrates a general and scalable approach that provides a promising route for rational design of variety of sensor devices for LPG detection.

  19. Moderate temperature gas purification system: application to high calorific coal derived fuel

    Energy Technology Data Exchange (ETDEWEB)

    M. Kobayashi; H. Shirai; M. Nunokawa [Central Research Institute of Electric Power Industry (CRIEPI), Kanagawa (Japan)

    2005-07-01

    Simultaneous removal of dust, alkaline and alkaline-earth metals, halides and sulfur compounds is required to enlarge application of coal-derived gas to the high temperature fuel cells and the fuel synthesis through chemical processing. Because high calorific fuel gas, such as oxygen-blown coal gas, has high carbon monoxide content, high temperature gas purification system is always subjected to the carbon deposition and slippage of contaminant of high vapor pressure. It was suggested that moderate temperature operation of the gas purification system is applied to avoid the harmful disproportionation reaction and efficient removal of the various contaminants. To establish the moderate temperature gas purification system, the chemical-removal processes where the reaction rate is predominant to the performance of contaminant removal should be evaluated. Performance of the removal processes for halides and sulfur compounds were experimentally evaluated. The halide removal process with sodium based sorbent had potential good performance at around 300{sup o}C. The sulfur removal process was also applicable to the temperature range, although the improvement of the sulfidation reaction rate is considered to be essential. 11 refs., 8 figs., 1 tab.

  20. Rotational temperature determinations in molecular gas lasers

    International Nuclear Information System (INIS)

    Weaver, L.A.; Taylor, L.H.; Denes, L.J.

    1975-01-01

    The small-signal gain expressions for vibrational-rotational transitions are examined in detail to determine possible methods of extracting the rotational temperature from experimental gain measurements in molecular gas lasers. Approximate values of T/subr/ can be deduced from the rotational quantum numbers for which the P- and R-branch gains are maximum. Quite accurate values of T/subr/ and the population inversion density (n/subv//sub prime/-n/subv//sub double-prime/) can be determined by fitting data to suitably linearized gain relationships, or by performing least-squares fits of the P- and R-branch experimental data to the full gain expressions. Experimental gain measurements for 15 P-branch and 12 R-branch transitions in the 10.4-μm CO 2 band have been performed for pulsed uv-preionized laser discharges in CO 2 : N 2 : He=1 : 2 : 3 mixtures at 600 Torr. These data are subjected to the several gain analyses described herein, yielding a rotational temperature of 401plus-or-minus10 degreeK and an inversion density of (3.77plus-or-minus0.07) times10 17 cm -3 for conditions of maximum gain. These techniques provide accurate values of the gas temperature in molecular gas lasers with excellent temporal and spatial resolution, and should be useful in extending the conversion efficiency and arcing limits of high-energy electrically exc []ted lasers

  1. Effects of different petal thickness on gas sensing properties of flower-like WO3·H2O hierarchical architectures

    International Nuclear Information System (INIS)

    Zeng, Wen; Zhang, He; Wang, Zhongchang

    2015-01-01

    Graphical abstract: In this work, we prepare four different petal thicknesses of hierarchical WO 3 ·H 2 O architectures via a simple hydrothermal process, and systematically report their formation mechanisms and gas-sensing properties. - Highlights: • Flower-like WO 3 ·H 2 O architectures with different petal thickness were reported. • The WO 3 ·H 2 O sheet-flower sensor shows a significantly enhanced gas response. • A possible growth mechanism for the flower-like architectures is proposed. - Abstract: Hierarchical architectures consisting of two-dimensional (2D) nanostructures are of great interest for potential use in recent year. Here, we report the successful synthesis of four hierarchical tungsten oxide flower-like architectures via a simple yet facile hydrothermal method. The as-prepared WO 3 ·H 2 O hierarchical architectures are in fact assembled with numerous nanosheets or nanoplates. Through a comprehensive characterization of microstructures and morphologies of the as-prepared products, we find that petal thickness is a key factor for affecting gas-sensing performances. We further propose a possible growth mechanism for the four flower-like architectures. Moreover, gas-sensing measurements showed that the well-defined sheet-flower WO 3 ·H 2 O hierarchical architectures exhibited the excellent gas-sensing properties to ethanol owing to their largest amount of thin petal structures and pores

  2. Correlation between lateral size and gas sensing performance of MoSe2 nanosheets

    Science.gov (United States)

    Zhang, Shaolin; Nguyen, Thuy Hang; Zhang, Weibin; Park, Youngsin; Yang, Woochul

    2017-10-01

    We demonstrate a facile synthetic method to prepare lateral size controlled molybdenum diselenide (MoSe2) nanosheets using liquid phase exfoliated few-layer MoSe2 nanosheets as a starting material. By precisely controlling the centrifugation condition, preparation of MoSe2 nanosheets with a narrow size distribution ranging from several hundred nanometers to several micrometers could be realized. The accurate size control of MoSe2 nanosheets offers us a great opportunity to examine the size dependent sensing properties. The sensing test results demonstrate that the MoSe2 nanosheets provide competitive advantages compared with conventional graphene based sensors. A tradeoff phenomenon on sensing response and recovery as the lateral size of MoSe2 nanosheets varies is observed. First principles calculations reveal that the ratio of edge-surface sites is responsible for this phenomenon. The correlation between the lateral size and gas sensing performance of MoSe2 nanosheets is established.

  3. Electrical and gas sensing properties of novel cobalt(II), copper(II), manganese(III) phthalocyanines carrying ethyl 7-oxy-4,8-dimethylcoumarin-3-propanoate moieties

    Science.gov (United States)

    Köksoy, Baybars; Aygün, Meryem; Çapkin, Aylin; Dumludağ, Fatih; Bulut, Mustafa

    The synthesis of metallophthalocyanines (M = Co, Cu, Mn) bearing four ethyl 7-oxy-4,8-dimethylcoumarin-3-propanoate moieties was performed. These novel compounds were characterized by elemental analysis, 1H-NMR spectroscopy, FT-IR, UV-vis and mass spectral data. DC and AC electrical properties of the films of metallophthalocyanines were investigated in the temperature range of 295-523 K. AC measurements were performed in the frequency range of 40-105 Hz. Activation energy values of the films took place between 0.55 eV-0.93 eV. Impedance spectroscopy measurements revealed that bulk resistance decreases with increasing temperature, indicating semiconductor properties. DC conductivity results also supported this result. Their gas sensing properties were also investigated for the vapors of Volatile Organic Compounds (VOCs), n-butyl acetate (200-3200 ppm) and ammonia (7000-56000 ppm) between temperatures 25-100°C. Sensitivity and response times of the films for the tested vapors were reported. The results were found to be reversible and sensitive to the vapors of n-butyl acetate and ammonia. It was found that Mn(OAc)Pc showed better sensitivity than CoPc and CuPc for n-butyl acetate vapors at all measured vapor concentrations and temperatures. Mn(OAc)Pc also showed better sensitivity than CoPc and CuPc for ammonia vapors at 22°C. Co(II), Cu(II), Mn(III)OAc phthalocyanines bearing four ethyl 7-oxy-4,8-dimethyl-coumarin-3-propanoate moieties were prepared and characterized. DC and AC (40-105 Hz) electrical properties of the films of metallophthalocyanines were investigated in the temperature range of 295-523 K. Impedance spectroscopy measurements revealed that bulk resistance decreases with increasing temperature indicating semiconductor property. Their gas sensing properties were also investigated for the vapors of VOCs, n-butyl acetate (200-3200 ppm) and ammonia (7000-56000 ppm) between temperatures 25-100°C.

  4. Water level sensor and temperature profile detector

    Science.gov (United States)

    Tokarz, Richard D.

    1983-01-01

    A temperature profile detector comprising a surrounding length of metal tubing and an interior electrical conductor both constructed of high temperature high electrical resistance materials. A plurality of gas-filled expandable bellows made of electrically conductive material is electrically connected to the interior electrical conductor and positioned within the length of metal tubing. The bellows are sealed and contain a predetermined volume of a gas designed to effect movement of the bellows from an open circuit condition to a closed circuit condition in response to monitored temperature changes sensed by each bellows.

  5. Water-level sensor and temperature-profile detector

    Science.gov (United States)

    Not Available

    1981-01-29

    A temperature profile detector is described which comprises a surrounding length of metal tubing and an interior electrical conductor both constructed of high temperature high electrical resistance materials. A plurality of gas-filled expandable bellows made of electrically conductive material are positioned at spaced locations along a length of the conductors. The bellows are sealed and contain a predetermined volume of a gas designed to effect movement of the bellows from an open circuit condition to a closed circuit condition in response to monitored temperature changes sensed by each bellows.

  6. Water level sensor and temperature profile detector

    International Nuclear Information System (INIS)

    Tokarz, R.D.

    1983-01-01

    A temperature profile detector comprising a surrounding length of metal tubing and an interior electrical conductor both constructed of high temperature high electrical resistance materials. A plurality of gas-filled expandable bellows made of electrically conductive material is electrically connected to the interior electrical conductor and positioned within the length of metal tubing. The bellows are sealed and contain a predetermined volume of a gas designed to effect movement of the bellows from an open circuit condition to a closed circuit condition in response to monitored temperature changes sensed by each bellows

  7. LPG and NH3 sensing characteristics of DC electrochemically deposited Co3O4 films

    Science.gov (United States)

    Shelke, P. N.; Khollam, Y. B.; Gunjal, S. D.; Koinkar, P. M.; Jadkar, S. R.; Mohite, K. C.

    2015-03-01

    Present communication reports the LPG and NH3 sensing properties of Co3O4 films prepared on throughly cleaned stainless steel (SS) and copper (CU) substrates by using DC electrochemical deposition method followed by air annealing at 350°C/2 h. The resultant films are characterized by using X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM). The LPG and NH3 gas sensing properties of these films are measured at room temperature (RT) by using static gas sensing system at different concentrations of test gas ranging from 25 ppm to 350 ppm. The XRD and Raman spectroscopy studies clearly indicated the formation of pure cubic spinel Co3O4 in all films. The LPG and NH3 gas sensing properties of films showed (i) the increase in sensitivity factor (S.F.) with gas concentrations and (ii) more sensibility to LPG as compared to NH3 gas. In case of NH3 gas (conc. 150 ppm) and LPG gas (conc. 60 ppm) sensing, the maximum S.F. = 270 and 258 are found for the films deposited on CU substrates, respectively. For all films, the response time (3-5 min.) is found to be much higher than the recovery time (30-50 sec). For all films, the response and recovery time are found to be higher for LPG as compared to NH3 gas. Further, repeatability-reproducibility in gas sensing properties is clearly noted by analysis of data for number of cycles recorded for all films from different set of depositions.

  8. Optimization of Temperature Sensing with Polymer-Embedded Luminescent Ru(II Complexes

    Directory of Open Access Journals (Sweden)

    Nelia Bustamante

    2018-02-01

    Full Text Available Temperature is a key parameter in many fields and luminescence-based temperature sensing is a solution for those applications in which traditional (mechanical, electrical, or IR-based thermometers struggle. Amongst the indicator dyes for luminescence thermometry, Ru(II polyazaheteroaromatic complexes are an appealing option to profit from the widespread commercial technologies for oxygen optosensing based on them. Six ruthenium dyes have been studied, engineering their structure for both photostability and highest temperature sensitivity of their luminescence. The most apt Ru(II complex turned out to be bis(1,10-phenanthroline(4-chloro-1,10-phenanthrolineruthenium(II, due to the combination of two strong-field chelating ligands (phen and a substituent with electron withdrawing effect on a conjugated position of the third ligand (4-Clphen. In order to produce functional sensors, the dye has been best embedded into poly(ethyl cyanoacrylate, due to its low permeability to O2, high temperature sensitivity of the indicator dye incorporated into this polymer, ease of fabrication, and excellent optical quality. Thermosensitive elements have been fabricated thereof as optical fiber tips for macroscopic applications (water courses monitoring and thin spots for microscopic uses (temperature measurements in cell culture-on-a-chip. With such dye/polymer combination, temperature sensing based on luminescence lifetime measurements allows 0.05 °C resolution with linear response in the range of interest (0–40 °C.

  9. High-sweeping-speed optically synchronized dual-channel terahertz-signal generator for driving a superconducting tunneling mixer and its application to active gas sensing.

    Science.gov (United States)

    Oh, Kyoung-Hwan; Shimizu, Naofumi; Kohjiro, Satoshi; Kikuchi, Ken'ichi; Wakatsuki, Atsushi; Kukutsu, Naoya; Kado, Yuichi

    2009-10-12

    We propose a high-sweeping-speed optically synchronized dual-channel terahertz (THz) signal generator for an active gas-sensing system with a superconductor-insulator-superconductor (SIS) mixer. The generator can sweep a frequency range from 200 to 500 GHz at a speed of 375 GHz/s and a frequency resolution of 500 MHz. With the developed gas-sensing system, a gas-absorption-line measurement was successfully carried out with N(2)O gas in that frequency range.

  10. Organic Vapour Sensing Properties of Area-Ordered and Size-Controlled Silicon Nanopillar

    Directory of Open Access Journals (Sweden)

    Wei Li

    2016-11-01

    Full Text Available Here, a silicon nanopillar array (Si-NPA was fabricated. It was studied as a room-temperature organic vapour sensor, and the ethanol and acetone gas sensing properties were detected with I-V curves. I-V curves show that these Si-NPA gas sensors are sensitive to ethanol and acetone organic vapours. The turn-on threshold voltage is about 0.5 V and the operating voltage is 3 V. With 1% ethanol gas vapour, the response time is 5 s, and the recovery time is 15 s. Furthermore, an evaluation of the gas sensor stability for Si-NPA was performed. The gas stability results are acceptable for practical detections. These excellent sensing characteristics can mainly be attributed to the change of the overall dielectric constant of Si-NPA caused by the physisorption of gas molecules on the pillars, and the filling of the gas vapour in the voids.

  11. High temperature humidity sensing materials

    International Nuclear Information System (INIS)

    Tsai, P.P.; Tanase, S.; Greenblatt, M.

    1989-01-01

    This paper reports on new proton conducting materials prepared and characterized for potential applications in humidity sensing at temperatures higher than 100 degrees C by complex impedance or galvanic cell type techniques. Calcium metaphosphate, β-Ca(PO 3 ) 2 as a galvanic cell type sensor material yields reproducible signals in the range from 5 to 200 mm Hg water vapor pressure at 578 degrees C, with short response time (∼ 30 sec). Polycrystalline samples of α-Zr(HPO 4 ) 2 and KMo 3 P 5.8 Si 2 O 25 , and the gel converted ceramic, 0.10Li 2 O-0.25P 2 O 5 -0.65SiO 2 as impedance sensor materials show decreases in impedance with increasing humidity in the range from 9 mm Hg to 1 atm water vapor pressure at 179 degrees C

  12. Electrospray-printed nanostructured graphene oxide gas sensors

    International Nuclear Information System (INIS)

    Taylor, Anthony P; Velásquez-García, Luis F

    2015-01-01

    We report low-cost conductometric gas sensors that use an ultrathin film made of graphene oxide (GO) nanoflakes as transducing element. The devices were fabricated by lift-off metallization and near-room temperature, atmospheric pressure electrospray printing using a shadow mask. The sensors are sensitive to reactive gases at room temperature without requiring any post heat treatment, harsh chemical reduction, or doping with metal nanoparticles. The sensors’ response to humidity at atmospheric pressure tracks that of a commercial sensor, and is linear with changes in humidity in the 10%–60% relative humidity range while consuming <6 μW. Devices with GO layers printed by different deposition recipes yielded nearly identical response characteristics, suggesting that intrinsic properties of the film control the sensing mechanism. The gas sensors successfully detected ammonia at concentrations down to 500 ppm (absolute partial pressure of ∼5 × 10"−"4 T) at ∼1 T pressure, room temperature conditions. The sensor technology can be used in a great variety of applications including air conditioning and sensing of reactive gas species in vacuum lines and abatement systems. (paper)

  13. Remote sensing of temperature and wind using acoustic travel-time measurements

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Manuela; Fischer, Gabi; Raabe, Armin; Weisse, Frank [Leipzig Univ. (Germany). Inst. fuer Meteorologie; Ziemann, Astrid [Technische Univ. Dresden (Germany). Professur fuer Meteorologie

    2013-04-15

    A remote sensing technique to detect area-averaged temperature and flow properties within an area under investigation, utilizing acoustic travel-time measurements, is introduced. This technique uses the dependency of the speed of acoustic signals on the meteorological parameters temperature and wind along the propagation path. The method itself is scalable: It is applicable for investigation areas with an extent of some hundred square metres as well as for small-scale areas in the range of one square metre. Moreover, an arrangement of the acoustic transducers at several height levels makes it possible to determine profiles and gradients of the meteorological quantities. With the help of two examples the potential of this remote sensing technique for simultaneously measuring averaged temperature and flow fields is demonstrated. A comparison of time histories of temperature and wind values derived from acoustic travel-time measurements with point measurements shows a qualitative agreement whereas calculated root-mean-square errors differ for the two example applications. They amount to 1.4 K and 0.3 m/s for transducer distances of 60 m and 0.4 K and 0.2 m/s for transducer distances in the range of one metre. (orig.)

  14. A high performance hydrogen sulfide gas sensor based on porous α-Fe{sub 2}O{sub 3} operates at room-temperature

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanwu; Chen, Weimei; Zhang, Shouchao; Kuang, Zhong; Ao, Dongyi [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, 610054 (China); Alkurd, Nooraldeen Rafat; Zhou, Weilie [Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148 (United States); Liu, Wei [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, 610054 (China); Shen, Wenzhong [Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 (China); Li, Zhijie, E-mail: zhijieli@uestc.edu.cn [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, 610054 (China)

    2015-10-01

    Highlights: • Novel porous α-Fe{sub 2}O{sub 3} nanoparticles were prepared by a facile hydrothermal method. • The sensor based on porous α-Fe{sub 2}O{sub 3} exhibits high sensitivity towards H{sub 2}S gas. • The detection limit towards H{sub 2}S gas was as low as 50 ppb at room temperature. • The sensor exhibits excellent selectivity against other toxic and noxious gases. - Abstract: Porous α-Fe{sub 2}O{sub 3} nanoparticles were synthesized by simple annealing of β-FeOOH precursor derived from a facile hydrothermal route, the structures and morphologies of the as-prepared product were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that the average crystallite size of the obtained porous α-Fe{sub 2}O{sub 3} was 34 nm and exits numerous irregularly distributed pores with a diameter varying from 2 nm to 10 nm on the particle surface. The gas-sensing properties of the sensor based on porous α-Fe{sub 2}O{sub 3} nanoparticles were investigated, and the result showed that the sensor exhibited a high performance in hydrogen sulfide (H{sub 2}S) detection at room temperature. The highest sensitivity reached 38.4 for 100 ppm H{sub 2}S, and the detection limit was as low as 50 ppb. In addition, the response of the sensor towards other gases including C{sub 2}H{sub 5}OH, CO, H{sub 2} and NH{sub 3} indicates the sensor has an excellent selectivity to detection H{sub 2}S gas. Finally, the sensing mechanism of the sensor towards H{sub 2}S was also discussed.

  15. A porous cadmium(II) framework. Synthesis, crystal structure, gas adsorption, and fluorescence sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Pingping [College of Sciences, Agricultural University of Hebei, Baoding (China)

    2017-05-18

    The Cd{sup II} compound, namely [Cd(Tppa)(SO{sub 4})(H{sub 2}O)]{sub n} (1) [Tppa = tris(4-(pyridyl)phenyl) amine], was synthesized by the reaction of CdSO{sub 4}.8H{sub 2}O and Tppa under solvothermal conditions. Single crystal X-ray diffraction analysis revealed that compound 1 features a 3D porous framework based on 1D inorganic -[Cd-SO{sub 4}-Cd]{sub n}- chains. Topological analysis reveals that compound 1 represents a trinodal (3,4,6)-connected topological network with the point symbol of {6.7"2}{sub 2}{6"4.7.10}{6"4.7"5.8"4.10"2}. Gas adsorption properties investigations indicate that compound 1 exhibits moderate adsorption capacities for light hydrocarbons at room temperature. Luminescence property studies revealed that this Cd{sup II} compound exhibits high fluorescence sensitivity for sensing of CS{sub 2} molecule. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Synthesis, Characterization and Gas Sensing Properties of Ag@α-Fe2O3 Core–Shell Nanocomposites

    Directory of Open Access Journals (Sweden)

    Ali Mirzaei

    2015-05-01

    Full Text Available Ag@α-Fe2O3 nanocomposite having a core–shell structure was synthesized by a two-step reduction-sol gel approach, including Ag nanoparticles synthesis by sodium borohydride as the reducing agent in a first step and the subsequent mixing with a Fe+3 sol for α-Fe2O3 coating. The synthesized Ag@α-Fe2O3 nanocomposite has been characterized by various techniques, such as SEM, TEM and UV-Vis spectroscopy. The electrical and gas sensing properties of the synthesized composite towards low concentrations of ethanol have been evaluated. The Ag@α-Fe2O3 nanocomposite showed better sensing characteristics than the pure α-Fe2O3. The peculiar hierarchical nano-architecture and the chemical and electronic sensitization effect of Ag nanoparticles in Ag@α-Fe2O3 sensors were postulated to play a key role in modulating gas-sensing properties in comparison to pristine α-Fe2O3 sensors.

  17. Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies.

    Science.gov (United States)

    Gurlo, Aleksander

    2011-01-01

    Anisotropy is a basic property of single crystals. Dissimilar facets/surfaces have different geometric and electronic structure that results in dissimilar functional properties. Several case studies unambiguously demonstrated that the gas sensing activity of metal oxides is determined by the nature of surfaces exposed to ambient gas. Accordingly, a control over crystal morphology, i.e. over the angular relationships, size and shape of faces in a crystal, is required for the development of better sensors with increased selectivity and sensitivity in the chemical determination of gases. The first step toward this nanomorphological control of the gas sensing properties is the design and synthesis of well-defined nanocrystals which are uniform in size, shape and surface structure. These materials possess the planes of the symmetrical set {hkl} and must therefore behave identically in chemical reactions and adsorption processes. Because of these characteristics, the form-controlled nanocrystals are ideal candidates for fundamental studies of mechanisms of gas sensing which should involve (i) gas sensing measurements on specific surfaces, (ii) their atomistic/quantum chemical modelling and (ii) spectroscopic information obtained on same surfaces under operation conditions of sensors.

  18. CdO Doped Indium Oxide Thick Film as a Low Temperature H2S Gas Sensor

    Directory of Open Access Journals (Sweden)

    D. N. CHAVAN

    2011-06-01

    Full Text Available The thick films of AR grade In2O3 were prepared by standard screen-printing technique. The gas sensing performance of thick film was tested for various gases. It showed maximum gas response to ethanol vapor at 350 oC for 80 ppm. To improve the gas response and selectivity of the film towards a particular gas, In2O3 thick films were modified by dipping them in an aqueous solution of 0.1 M CdCl2 for different intervals of time. The surface modified (10 min In2O3 thick film showed maximum response to H2S gas (10 ppm than pure In2O3 thick film at 150 oC. Cadmium oxide on the surface of the film shifts the gas response from ethanol vapor to H2S gas. A systematic study of sensing performance of the thick films indicates the key role played by cadmium oxide on the surface of thick films. The selectivity, gas response and recovery time of the thick films were measured and presented.

  19. Optimization of a radiative membrane for gas sensing applications

    Science.gov (United States)

    Lefebvre, Anthony; Boutami, Salim; Greffet, Jean-Jacques; Benisty, Henri

    2014-05-01

    To engineer a cheap, portable and low-power optical gas sensor, incandescent sources are more suitable than expensive quantum cascade lasers and low-efficiency light-emitting diodes. Such sources of radiation have already been realized, using standard MEMS technology, consisting in free standing circular micro-hotplates. This paper deals with the design of such membranes in order to maximize their wall-plug efficiency. Specification constraints are taken into account, including available energy per measurement and maximum power delivered by the electrical supply source. The main drawback of these membranes is known to be the power lost through conduction to the substrate, thus not converted in (useful) radiated power. If the membrane temperature is capped by technological requirements, radiative flux can be favored by increasing the membrane radius. However, given a finite amount of energy, the larger the membrane and its heat capacity, the shorter the time it can be turned on. This clearly suggests that an efficiency optimum has to be found. Using simulations based on a spatio-temporal radial profile, we demonstrate how to optimally design such membrane systems, and provide an insight into the thermo-optical mechanisms governing this kind of devices, resulting in a nontrivial design with a substantial benefit over existing systems. To further improve the source, we also consider tailoring the membrane stack spectral emissivity to promote the infrared signal to be sensed as well as to maximize energy efficiency.

  20. Thermocouple-based Temperature Sensing System for Chemical Cell Inside Micro UAV Device

    Science.gov (United States)

    Han, Yanhui; Feng, Yue; Lou, Haozhe; Zhang, Xinzhao

    2018-03-01

    Environmental temperature of UAV system is crucial for chemical cell component inside. Once the temperature of this chemical cell is over 259 °C and keeps more than 20 min, the high thermal accumulation would result in an explosion, which seriously damage the whole UAV system. Therefore, we develop a micro temperature sensing system for monitoring the temperature of chemical cell thermally influenced by UAV device deployed in a 300 °C temperature environment, which is quite useful for insensitive munitions and UAV safety enhancement technologies.

  1. Fiber-ring laser-based intracavity photoacoustic spectroscopy for trace gas sensing.

    Science.gov (United States)

    Wang, Qiang; Wang, Zhen; Chang, Jun; Ren, Wei

    2017-06-01

    We demonstrated a novel trace gas sensing method based on fiber-ring laser intracavity photoacoustic spectroscopy. This spectroscopic technique is a merging of photoacoustic spectroscopy (PAS) with a fiber-ring cavity for sensitive and all-fiber gas detection. A transmission-type PAS gas cell (resonant frequency f0=2.68  kHz) was placed inside the fiber-ring laser to fully utilize the intracavity laser power. The PAS signal was excited by modulating the laser wavelength at f0/2 using a custom-made fiber Bragg grating-based modulator. We used this spectroscopic technique to detect acetylene (C2H2) at 1531.6 nm as a proof of principle. With a low Q-factor (4.9) of the PAS cell, our sensor achieved a good linear response (R2=0.996) to C2H2 concentration and a minimum detection limit of 390 ppbv at 2-s response time.

  2. Thermodynamics of a classical ideal gas at arbitrary temperatures

    OpenAIRE

    Pal, Palash B.

    2002-01-01

    We propose a fundamental relation for a classical ideal gas that is valid at all temperatures with remarkable accuracy. All thermodynamical properties of classical ideal gases can be deduced from this relation at arbitrary temperature.

  3. A review of helium gas turbine technology for high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    No, Hee Cheon; Kim, Ji Hwan; Kim, Hyeun Min

    2007-01-01

    Current High-Temperature Gas-cooled Reactors (HTGRs) are based on a closed brayton cycle with helium gas as the working fluid. Thermodynamic performance of the axial-flow helium gas turbines is of critical concern as it considerably affects the overall cycle efficiency. Helium gas turbines pose some design challenges compared to steam or air turbomachinery because of the physical properties of helium and the uniqueness of the operating conditions at high pressure with low pressure ratio. This report present a review of the helium Brayton cycle experiences in Germany and in Japan. The design and availability of helium gas turbines for HTGR are also presented in this study. We have developed a new throughflow calculation code to calculate the design-point performance of helium gas turbines. Use of the method has been illustrated by applying it to the GTHTR300 reference

  4. Atomic and molecular hydrogen gas temperatures in a low-pressure helicon plasma

    Science.gov (United States)

    Samuell, Cameron M.; Corr, Cormac S.

    2015-08-01

    Neutral gas temperatures in hydrogen plasmas are important for experimental and modelling efforts in fusion technology, plasma processing, and surface modification applications. To provide values relevant to these application areas, neutral gas temperatures were measured in a low pressure (radiofrequency helicon discharge using spectroscopic techniques. The atomic and molecular species were not found to be in thermal equilibrium with the atomic temperature being mostly larger then the molecular temperature. In low power operation (measurements near a graphite target demonstrated localised cooling near the sample surface. The temporal evolution of the molecular gas temperature during a high power 1.1 ms plasma pulse was also investigated and found to vary considerably as a function of pressure.

  5. Gas Temperature and Radiative Heat Transfer in Oxy-fuel Flames

    DEFF Research Database (Denmark)

    Bäckström, Daniel; Johansson, Robert; Andersson, Klas

    This work presents measurements of the gas temperature, including fluctuations, and its influence on the radiative heat transfer in oxy-fuel flames. The measurements were carried out in the Chalmers 100 kW oxy-fuel test unit. The in-furnace gas temperature was measured by a suction pyrometer...... on the radiative heat transfer shows no effect of turbulence-radiation interaction. However, by comparing with temperature fluctuations in other flames it can be seen that the fluctuations measured here are relatively small. Further research is needed to clarify to which extent the applied methods can account...

  6. Temperature-insensitive fiber Bragg grating dynamic pressure sensing system.

    Science.gov (United States)

    Guo, Tuan; Zhao, Qida; Zhang, Hao; Zhang, Chunshu; Huang, Guiling; Xue, Lifang; Dong, Xiaoyi

    2006-08-01

    Temperature-insensitive dynamic pressure measurement using a single fiber Bragg grating (FBG) based on reflection spectrum bandwidth modulation and optical power detection is proposed. A specifically designed double-hole cantilever beam is used to provide a pressure-induced axial strain gradient along the sensing FBG and is also used to modulate the reflection bandwidth of the grating. The bandwidth modulation is immune to spatially uniform temperature effects, and the pressure can be unambiguously determined by measuring the reflected optical power, avoiding the complex wavelength interrogation system. The system acquisition time is up to 85 Hz for dynamic pressure measurement, and the thermal fluctuation is kept less than 1.2% full-scale for a temperature range of -10 degrees C to 80 degrees C.

  7. Enhanced NH3 gas sensing performance based on electrospun alkaline-earth metals composited SnO2 nanofibers

    International Nuclear Information System (INIS)

    Xu, Shuang; Kan, Kan; Yang, Ying; Jiang, Chao; Gao, Jun; Jing, Liqiang; Shen, Peikang; Li, Li

    2015-01-01

    Highlights: • The small-sized SnO 2 (5–7 nm) were obtained by adding the alkaline-earth. • Sr-composited SnO 2 nanofibers showed uniform nanotubes structure (Sr/SnO 2 ). • Sr/SnO 2 showed an excellent sensing performance to NH 3 at room temperature. - Abstract: One-dimensional alkaline-earth metals composited SnO 2 (Ae/SnO 2 ) nanofibres were fabricated via electrospinning technique, followed by thermal treatment at 600 °C for 5 h. Transmission electron microscopy (TEM) studies showed that the nanoparticles size of Ae/SnO 2 was 5–7 nm, which was smaller than the pristine SnO 2 nanorods attached by 20 nm nanoparticles. Moreover, Sr/SnO 2 nanocomposites showed uniform nanotubes structure with the wall thickness of about 30 nm, in which all the nanoparticles were connected to their neighbors by necks. The Sr/SnO 2 nanotubes exhibited an excellent sensing response toward NH 3 gas at room temperature, lower detection limit (10 ppm), faster response time (6 s towards 2000 ppm∼16 s towards 10 ppm) and better reversibility compared to the pristine SnO 2 nanorods. The enhanced sensor performances were attributed to the higher conductivity of the Sr/SnO 2 . Mott–Schottky plots (M–S) and electrochemical impedance spectroscopy (EIS) measurements indicated that the carrier density of Sr/SnO 2 nanotubes was 3 fold of that pristine SnO 2

  8. Ferroelectric Zinc Oxide Nanowire Embedded Flexible Sensor for Motion and Temperature Sensing.

    Science.gov (United States)

    Shin, Sung-Ho; Park, Dae Hoon; Jung, Joo-Yun; Lee, Min Hyung; Nah, Junghyo

    2017-03-22

    We report a simple method to realize multifunctional flexible motion sensor using ferroelectric lithium-doped ZnO-PDMS. The ferroelectric layer enables piezoelectric dynamic sensing and provides additional motion information to more precisely discriminate different motions. The PEDOT:PSS-functionalized AgNWs, working as electrode layers for the piezoelectric sensing layer, resistively detect a change of both movement or temperature. Thus, through the optimal integration of both elements, the sensing limit, accuracy, and functionality can be further expanded. The method introduced here is a simple and effective route to realize a high-performance flexible motion sensor with integrated multifunctionalities.

  9. A flexible sensor based on polyaniline hybrid using ZnO as template and sensing properties to triethylamine at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Le [State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemicals Analysis, Beijing University of Chemical Technology, Beijing 100029 (China); Sun, Jianhua [State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemicals Analysis, Beijing University of Chemical Technology, Beijing 100029 (China); Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004 (China); Bai, Shouli, E-mail: baisl@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemicals Analysis, Beijing University of Chemical Technology, Beijing 100029 (China); Luo, Ruixian [State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemicals Analysis, Beijing University of Chemical Technology, Beijing 100029 (China); Li, Dianqing, E-mail: lidq@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemicals Analysis, Beijing University of Chemical Technology, Beijing 100029 (China); Chen, Aifan [State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemicals Analysis, Beijing University of Chemical Technology, Beijing 100029 (China); Liu, Chung Chiun [Department of Chemical and Biomolecule Engineering, Case Western Reserve University, Cleveland, OH 44106 (United States)

    2017-03-31

    Highlights: • Rapid synthesis of PANI has novelty, which is different with that reported before. • Enhancement of gas sensing is attributed to synergistic effect and heterojunction. • PET film is used as substrate to obtain a flexible, wearable and smart sensor. • Room temperature operating of sensor leads to save energy, safety and long life. - Abstract: A network structure of PANI/SnO{sub 2} hybrid was synthesized by an in situ chemical oxidative polymerization using cheaper ZnO nanorods as sacrificial template and the hybrid was loaded on a flexible polyethylene terephthalate (PET) thin film to construct a flexible smart sensor. The sensor not only exhibits high sensitivity which is 20 times higher than that of pure PANI to 10 ppm triethylamine, good selectivity and linear response at room temperature but also has flexible, structure simple, economical and portable characters compared with recently existing sensors. Room temperature operating of the sensor is also particularly interesting, which leads to low power consumption, environmental safety and long life times. The improvement of sensing properties is attributed to the network structure of hybrid and formation of p-n heterojunction at the interface between the PANI and SnO{sub 2}. The research is expected to open a new window for development of a kind of wearable electronic devices based on the hybrid of conducting polymer and metal oxides.

  10. Novel sensing approach for LPG leakage detection: Part I: Operating Mechanism and Preliminary Results

    KAUST Repository

    Mukhopadhyay, Subhas; Nag, Anindya; Zia, Asif; Li, Xie; Kosel, Jü rgen

    2015-01-01

    Gas sensing technology has been among the topical research work for quite some time. This paper showcases the research done on the detection mechanism of leakage of domestic cooking gas at ambient conditions. MEMS-based interdigital sensors were fabricated on oxidized single crystal silicon surfaces by maskless photolithography technique. The electrochemical impedance analysis of these sensors was done to detect liquefied petroleum gas (LPG) with and without coated particles of tin oxide (SnO2) in form of thin layer.A thin-film of SnO2 was spin-coated on the sensing surface of the interdigital sensor to induce selectivity to LPG that consists of a 60/40 mixture of propane and butane respectively. The paper reports a novel strategy for gas detection under ambient temperature and humidity conditions. The response time of the coated sensor was encouraging and own a promising potential to the development of a complete efficient gas sensing system.

  11. Novel sensing approach for LPG leakage detection: Part I: Operating Mechanism and Preliminary Results

    KAUST Repository

    Mukhopadhyay, Subhas

    2015-10-30

    Gas sensing technology has been among the topical research work for quite some time. This paper showcases the research done on the detection mechanism of leakage of domestic cooking gas at ambient conditions. MEMS-based interdigital sensors were fabricated on oxidized single crystal silicon surfaces by maskless photolithography technique. The electrochemical impedance analysis of these sensors was done to detect liquefied petroleum gas (LPG) with and without coated particles of tin oxide (SnO2) in form of thin layer.A thin-film of SnO2 was spin-coated on the sensing surface of the interdigital sensor to induce selectivity to LPG that consists of a 60/40 mixture of propane and butane respectively. The paper reports a novel strategy for gas detection under ambient temperature and humidity conditions. The response time of the coated sensor was encouraging and own a promising potential to the development of a complete efficient gas sensing system.

  12. Development history of the gas turbine modular high temperature reactor

    International Nuclear Information System (INIS)

    Brey, H.L.

    2001-01-01

    The development of the high temperature gas cooled reactor (HTGR) as an environmentally agreeable and efficient power source to support the generation of electricity and achieve a broad range of high temperature industrial applications has been an evolutionary process spanning over four decades. This process has included ongoing major development in both the HTGR as a nuclear energy source and associated power conversion systems from the steam cycle to the gas turbine. This paper follows the development process progressively through individual plant designs from early research of the 1950s to the present focus on the gas turbine modular HTGR. (author)

  13. Fast temperature programming in gas chromatography using resistive heating

    NARCIS (Netherlands)

    Dallüge, J.; Ou-Aissa, R.; Vreuls, J.J.; Brinkman, U.A.T.; Veraart, J.R.

    1999-01-01

    The features of a resistive-heated capillary column for fast temperature-programmed gas chromatography (GC) have been evaluated. Experiments were carried out using a commercial available EZ Flash GC, an assembly which can be used to upgrade existing gas chromatographs. The capillary column is placed

  14. Elucidating the impact of temperature variability and extremes on cereal croplands through remote sensing.

    Science.gov (United States)

    Duncan, John M A; Dash, Jadunandan; Atkinson, Peter M

    2015-04-01

    Remote sensing-derived wheat crop yield-climate models were developed to highlight the impact of temperature variation during thermo-sensitive periods (anthesis and grain-filling; TSP) of wheat crop development. Specific questions addressed are: can the impact of temperature variation occurring during the TSP on wheat crop yield be detected using remote sensing data and what is the impact? Do crop critical temperature thresholds during TSP exist in real world cropping landscapes? These questions are tested in one of the world's major wheat breadbaskets of Punjab and Haryana, north-west India. Warming average minimum temperatures during the TSP had a greater negative impact on wheat crop yield than warming maximum temperatures. Warming minimum and maximum temperatures during the TSP explain a greater amount of variation in wheat crop yield than average growing season temperature. In complex real world cereal croplands there was a variable yield response to critical temperature threshold exceedance, specifically a more pronounced negative impact on wheat yield with increased warming events above 35 °C. The negative impact of warming increases with a later start-of-season suggesting earlier sowing can reduce wheat crop exposure harmful temperatures. However, even earlier sown wheat experienced temperature-induced yield losses, which, when viewed in the context of projected warming up to 2100 indicates adaptive responses should focus on increasing wheat tolerance to heat. This study shows it is possible to capture the impacts of temperature variation during the TSP on wheat crop yield in real world cropping landscapes using remote sensing data; this has important implications for monitoring the impact of climate change, variation and heat extremes on wheat croplands. © 2014 John Wiley & Sons Ltd.

  15. Study of functional properties of gas-sensitive cobalt-containing polyacrylonitrile films

    Science.gov (United States)

    Semenistaya, T. V.; Voronova, A. A.

    2017-11-01

    The design of the sensor materials with challenging gas-sensitivity can be solved by materials selection and their compatibility with the manufacturing technologies that allows to operate the process of formation of nanocomposite structure and to receive the required material. The polyacrylonitrile (PAN) as the conducting polymer with a highly π-conjugated polymeric chain due to flexibility for tailoring the structure of the final products by the pyrolysis method under the influence of incoherent IR-radiation is chosen. The aim of the work was to study the peculiarities of formation procedure of cobalt-containing PAN films. The gas-sensing Co-containing PAN films have been fabricated. The different temperature and time have been used to form the films. Depending on intensity and exposure time of IR-radiation the thermostructured PAN films with resistance values of · 108 Ω to 1010 Ω have been fabricated. It is shown that the heat-treated PAN is the p-type semiconductor. Irrespective of the level of the modifying additive in film-forming solution and the time-temperature modes little change of film resistance has been found. It has been found that the Co-containing PAN films are gas-sensing films and have high selectivity to Cl2 and NO2. A stationary state gas distribution method was used for testing gas-sensing properties. Obtained the Co-containing PAN films are perspective for low-temperature applications as Cl2 and NO2 sensors.

  16. Characterization and gas sensing properties of CuO synthesized by DC directly applying voltage

    Energy Technology Data Exchange (ETDEWEB)

    Klinbumrung, Arrak [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Titipun [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Somchai, E-mail: schthongtem@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-09-15

    Highlights: • CuO as a p-type semiconductor. • It was synthesized by directly applying voltage. • A promising material for ammonia detection. - Abstract: CuO microstructure was successfully synthesized by 50 A and 3.6 V DC directly applying voltage. Crystalline structure was characterized by X-ray diffraction (XRD), morphology by scanning and transmission electron microscopy (SEM, TEM). The sample of the 15 min processing time has an irregular shape with diameter about several hundreds of nanometer. Fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible (UV–vis) absorption spectroscopy and photoluminescence (PL) were used to determine vibrational modes and optical properties of the as-synthesized samples: 529 and 585 cm{sup −1} vibrational modes, 3.95 eV band gap, and 402 nm emitting wavelength in violet region of CuO. X-ray photoelectron (XPS) spectroscopy was used to determine chemical composition, Cu(II)O, of the metal oxide surface. Gas sensing performance exposing to NH{sub 3} mixed with air at various working temperatures and NH{sub 3} concentrations of the as-synthesized CuO has the best response at the optimal working temperature of 250 °C: sensitivity of 56.6% exposed to 5275 ppm NH{sub 3}.

  17. Simulation of temperature-pressure profiles and wax deposition in gas-lift wells

    Directory of Open Access Journals (Sweden)

    Sevic Snezana

    2017-01-01

    Full Text Available Gas-lift is an artificial lift method in which gas is injected down the tubing- -casing annulus and enters the production tubing through the gas-lift valves to reduce the hydrostatic pressure of the formation fluid column. The gas changes pressure, temperature and fluid composition profiles throughout the production tubing string. Temperature and pressure drop along with the fluid composition changes throughout the tubing string can lead to wax, asphaltenes and inorganic salts deposition, increased emulsion stability and hydrate formation. This paper presents a new model that can sucesfully simulate temperature and pressure profiles and fluid composition changes in oil well that operates by means of gas-lift. This new model includes a pipe-in-pipe segment (production tubing inside production casing, countercurrent flow of gas-lift gas and producing fluid, heat exchange between gas-lift gas and the surrounding ambient – ground; and gas-lift gas with the fluid in the tubing. The model enables a better understanding of the multiphase fluid flow up the production tubing. Model was used to get insight into severity and locations of wax deposition. The obtained information on wax deposition can be used to plan the frequency and depth of wax removing operations. Model was developed using Aspen HYSYS software.

  18. Gas Sensing Analysis of Ag-Decorated Graphene for Sulfur Hexafluoride Decomposition Products Based on the Density Functional Theory

    Directory of Open Access Journals (Sweden)

    Xiaoxing Zhang

    2016-11-01

    Full Text Available Detection of decomposition products of sulfur hexafluoride (SF6 is one of the best ways to diagnose early latent insulation faults in gas-insulated equipment, and the occurrence of sudden accidents can be avoided effectively by finding early latent faults. Recently, functionalized graphene, a kind of gas sensing material, has been reported to show good application prospects in the gas sensor field. Therefore, calculations were performed to analyze the gas sensing properties of intrinsic graphene (Int-graphene and functionalized graphene-based material, Ag-decorated graphene (Ag-graphene, for decomposition products of SF6, including SO2F2, SOF2, and SO2, based on density functional theory (DFT. We thoroughly investigated a series of parameters presenting gas-sensing properties of adsorbing process about gas molecule (SO2F2, SOF2, SO2 and double gas molecules (2SO2F2, 2SOF2, 2SO2 on Ag-graphene, including adsorption energy, net charge transfer, electronic state density, and the highest and lowest unoccupied molecular orbital. The results showed that the Ag atom significantly enhances the electrochemical reactivity of graphene, reflected in the change of conductivity during the adsorption process. SO2F2 and SO2 gas molecules on Ag-graphene presented chemisorption, and the adsorption strength was SO2F2 > SO2, while SOF2 absorption on Ag-graphene was physical adsorption. Thus, we concluded that Ag-graphene showed good selectivity and high sensitivity to SO2F2. The results can provide a helpful guide in exploring Ag-graphene material in experiments for monitoring the insulation status of SF6-insulated equipment based on detecting decomposition products of SF6.

  19. Gas sensing behaviour of cerium oxide and magnesium aluminate ...

    Indian Academy of Sciences (India)

    2017-07-26

    Jul 26, 2017 ... sis techniques are used to prepare a CeO2 thin sensor sample. However, these synthesis ... with CO2 and ethanol gas sensors at room temperature as well as at ... NaCl, KCl, hydrochloric acid (HCl) and ethanol were used as.

  20. Simulation for temperature changing investigation at RSG-GAS cooling system

    International Nuclear Information System (INIS)

    Utaja

    2002-01-01

    The RSG-GAS cooling system considers of primary and secondary system, is used for heat rejection from reactor core to the atmosphere. For temperature changing investigation cause by atmospherics condition changing or coolant flow rate changing, is more safe done by simulation. This paper describes the simulation for determine the RSG-GAS coolant temperature changing base on heat exchange and cooling tower characteristic. The simulation is done by computer programme running under WINDOWS 95 or higher. The temperature changing is based on heat transfer process on heat exchanger and cooling tower. The simulation will show the water tank temperature changing caused by the temperature and humidity of the atmosphere or by coolant flow rate changing. For example the humidity changing from 60% to 80% atmospherics temperature 30 oC and 32400 k Watt power will change the tank temperature from 37,97 oC to 40,03 oC

  1. Microstrip patch antenna for simultaneous strain and temperature sensing

    Science.gov (United States)

    Mbanya Tchafa, F.; Huang, H.

    2018-06-01

    A patch antenna, consisting of a radiation patch, a dielectric substrate, and a ground plane, resonates at distinct fundamental frequencies that depend on the substrate dielectric constant and the dimensions of the radiation patch. Since these parameters change with the applied strain and temperature, this study investigates simultaneous strain and temperature sensing using a single antenna that has two fundamental resonant frequencies. The theoretical relationship between the antenna resonant frequency shifts, the temperature, and the applied strain was first established to guide the selection of the dielectric substrate, based on which an antenna sensor with a rectangular radiation patch was designed and fabricated. A tensile test specimen instrumented with the antenna sensor was subjected to thermo-mechanical tests. Experiment results validated the theoretical predictions that the normalized antenna resonant frequency shifts are linearly proportional to the applied strain and temperature changes. An inverse method was developed to determine the strain and temperature changes from the normalized antenna resonant frequency shifts, yielding measurement uncertainty of 0.4 °C and 17.22 μ \\varepsilon for temperature and strain measurement, respectively.

  2. Temperature profile and producer gas composition of high temperature air gasification of oil palm fronds

    International Nuclear Information System (INIS)

    Guangul, F M; Sulaiman, S A; Ramli, A

    2013-01-01

    Environmental pollution and scarcity of reliable energy source are the current pressing global problems which need a sustainable solution. Conversion of biomass to a producer gas through gasification process is one option to alleviate the aforementioned problems. In the current research the temperature profile and composition of the producer gas obtained from the gasification of oil palm fronds by using high temperature air were investigated and compared with unheated air. By preheating the gasifying air at 500°C the process temperature were improved and as a result the concentration of combustible gases and performance of the process were improved. The volumetric percentage of CO, CH4 and H2 were improved from 22.49, 1.98, and 9.67% to 24.98, to 2.48% and 13.58%, respectively. In addition, HHV, carbon conversion efficiency and cold gas efficiency were improver from 4.88 MJ/Nm3, 83.8% and 56.1% to 5.90 MJ/Nm3, 87.3% and 62.4%, respectively.

  3. Parallel Planar-Processed and Ion-Induced Electrically Isolated Future Generation AlGaN/GaN HEMT for Gas Sensing and Opto-Telecommunication Applications

    International Nuclear Information System (INIS)

    Ahmed, S; Bokhari, S H; Amin, F; Khan, L A; Hussain, Z

    2013-01-01

    Ion-implanted AlGaN/GaN High Electron Mobility Transistors (HEMT) devices were studied thoroughly to look into the possibilities of enhancing efficiency for high-power and high-frequency electronic and gas sensing applications. A dedicated experimental design was created in order to study the influence of the physical parameters in response to high energy (by virtue of in-situ beam heating due to highly energetic implantation) ion implantation to the active device regions in nitride HEMT structures. Disorder or damage created in the HEMT structure was then studied carefully with electrical characterization techniques such as Hall, I-V and G-V measurements. The evolution of the electrical characteristics affecting the high-power, high-frequency and ultra-high efficiency gas sensing operations were also analyzed by subjecting the HEMT active device regions to progressive time-temperature annealing cycles. Our suggested model can also provide a functional process engineering window to control the extent of 2D Electron mobility in AlGaN/GaN HEMT devices undergoing a full cycle of thermal impact (i.e. from a desirable conductive region to a highly compensated one)

  4. A ground temperature map of the North Atlantic permafrost region based on remote sensing and reanalysis data

    DEFF Research Database (Denmark)

    Westermann, S.; Østby, T. I.; Gisnås, K.

    2015-01-01

    Permafrost is a key element of the terrestrial cryosphere which makes mapping and monitoring of its state variables an imperative task. We present a modeling scheme based on remotely sensed land surface temperatures and reanalysis products from which mean annual ground temperatures (MAGT) can be ...... with gradually decreasing permafrost probabilities. The study exemplifies the unexploited potential of remotely sensed data sets in permafrost mapping if they are employed in multi-sensor multi-source data fusion approaches.......Permafrost is a key element of the terrestrial cryosphere which makes mapping and monitoring of its state variables an imperative task. We present a modeling scheme based on remotely sensed land surface temperatures and reanalysis products from which mean annual ground temperatures (MAGT) can...

  5. Rapid synthesis and characterization of hybrid ZnO@Au core–shell nanorods for high performance, low temperature NO{sub 2} gas sensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Ponnuvelu, Dinesh Veeran [Nanosensor Laboratory, PSG Institute of Advanced Studies, Coimbatore 641 004 (India); Pullithadathil, Biji, E-mail: bijuja123@yahoo.co.in [Nanosensor Laboratory, PSG Institute of Advanced Studies, Coimbatore 641 004 (India); Prasad, Arun K.; Dhara, Sandip [Surface and Nanoscience Division, Indira Gandhi Center for Atomic Research, Kalpakkam (India); Ashok, Anuradha [Nanosensor Laboratory, PSG Institute of Advanced Studies, Coimbatore 641 004 (India); Mohamed, Kamruddin; Tyagi, Ashok Kumar [Surface and Nanoscience Division, Indira Gandhi Center for Atomic Research, Kalpakkam (India); Raj, Baldev [Nanosensor Laboratory, PSG Institute of Advanced Studies, Coimbatore 641 004 (India)

    2015-11-15

    Graphical abstract: - Highlights: • Hybrid ZnO@Au core–shell nanorods were developed using rapid chemical method that can be used as a high performance, low temperature NO{sub 2} gas sensor. • Surface defect analysis (PL and XPS) clearly illustrates the presence of surface oxygen species and Zn interstitials involved in charge transport properties in-turn affecting gas sensing properties. • Hybrid ZnO@Au core–shell nanorods establish enhanced gas sensing performance at 150 °C compared to ZnO (300 °C) with a lower detection limit of 500 ppb using conventional electrodes. • The enhanced performance of ZnO@Au core–shell nanorods based sensor was owing to the presence of Au nanoclusters on the surface of ZnO nanorods which is attributed to the formation of Schottky contacts at the interfaces leading to sensitization effects. • The hybrid material found to be selective toward NO{sub 2} gas and highly stable in nature. - Abstract: A rapid synthesis route for hybrid ZnO@Au core–shell nanorods has been realized for ultrasensitive, trace-level NO{sub 2} gas sensor applications. ZnO nanorods and hybrid ZnO@Au core–shell nanorods are structurally analyzed using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Optical characterization using UV–visible (UV–vis), photoluminescence (PL) and Raman spectroscopies elucidate alteration in the percentage of defect and charge transport properties of ZnO@Au core–shell nanorods. The study reveals the accumulation of electrons at metal–semiconductor junctions leading to upward band bending for ZnO and thus favors direct electron transfer from ZnO to Au nanoclusters, which mitigates charge carrier recombination process. The operating temperature of ZnO@Au core–shell nanorods based sensor significantly decreased to 150 °C compared to alternate NO{sub 2} sensors (300 °C). Moreover, a linear sensor response in the range of 0.5–5

  6. Size-controlled synthesis of SnO2 quantum dots and their gas-sensing performance

    Science.gov (United States)

    Du, Jianping; Zhao, Ruihua; Xie, Yajuan; Li, Jinping

    2015-08-01

    Tin dioxide quantum dots (TQDs) with controllable size were synthesized by changing the amount of alkaline reagent in the hydrothermal process. The gas-sensing properties were investigated by operating chemoresistor type sensor. The morphology and structure were characterized by X-ray diffraction, scanning/transmission electron microscopy, UV-vis and Raman spectrometry. The as-synthesized SnO2 shows the characteristics of quantum dots and the narrowest size distribution is about 2-3 nm. The gas-sensing results indicate that the responses are strongly dependent on the size of quantum dots. TQDs with different sizes exhibit different sensitivities and selectivities to volatile toxic chemicals such as aldehyde, acetone, methanol, ethanol and amine. Especially, when the sensors are exposed to 100 ppm triethylamine (TEA), the sensing response value of TQDs with small size is two times higher than that of the large-size TQDs. The maximum response values of TQDs to 1 ppm and 100 ppm TEA are 15 and 153, respectively. The response time is 1 s and the recovery time is 47 s upon exposure to 1 ppm TEA. The results suggest that it is an effective method by regulating the size of SnO2 quantum dots to detect low-concentration hazardous volatile compounds.

  7. Rotational temperature measurement of NO gas using two-photon excitation spectrum

    Science.gov (United States)

    Ozaki, Tadao; Matsui, Yoshihiko; Ohsawa, Toshihiko

    1981-04-01

    The rotational temperature of nitric oxide gas has been measured by means of a single-beam two-photon excitation spectrum method using a pulsed continuously tunable dye laser. The nitric oxide gas was enclosed at about 40 Torr in a quartz cell which was put in an electric oven. The NO γ (0-0) band and R11+Q21 branches were used to obtain the two-photon excitation spectrum. The rotational temperatures were determined using the fact that molecules are distributed in the rotational levels according to the Boltzmann law. The temperature range was from room temperature to about 470 K. Observed temperatures were in good agreement with cell temperatures which were obtained by using a thermocouple.

  8. Optical temperature sensing on flexible polymer foils

    Science.gov (United States)

    Sherman, Stanislav; Xiao, Yanfen; Hofmann, Meike; Schmidt, Thomas; Gleissner, Uwe; Zappe, Hans

    2016-04-01

    In contrast to established semiconductor waveguide-based or glass fiber-based integrated optical sensors, polymerbased optical systems offer tunable material properties, such as refractive index or viscosity, and thus provide additional degrees of freedom for sensor design and fabrication. Of particular interest in sensing applications are fully-integrated optical waveguide-based temperature sensors. These typically rely on Bragg gratings which induce a periodic refractive index variation in the waveguide so that a resonant wavelength of the structure is reflected.1,2 With broad-band excitation, a dip in the spectral output of the waveguide is thus generated at a precisely-defined wavelength. This resonant wavelength depends on the refractive index of the waveguide and the grating period, yet both of these quantities are temperature dependent by means of the thermo-optic effect (change in refractive index with temperature) and thermal expansion (change of the grating period with temperature). We show the design and fabrication of polymer waveguide-integrated temperature sensors based on Bragggratings, fabricated by replication technology on flexible PMMA foil substrates. The 175 μm thick foil serves as lower cladding for a polymeric waveguide fabricated from a custom-made UV-crosslinkable co-monomer composition. The fabrication of the grating structure includes a second replication step into a separate PMMA-foil. The dimensions of the Bragg-gratings are determined by simulations to set the bias point into the near infrared wavelength range, which allows Si-based detectors to be used. We present design considerations and performance data for the developed structures. The resulting sensor's signal is linear to temperature changes and shows a sensitivity of -306 nm/K, allowing high resolution temperature measurements.

  9. Size-controlled synthesis of SnO2 quantum dots and their gas-sensing performance

    International Nuclear Information System (INIS)

    Du, Jianping; Zhao, Ruihua; Xie, Yajuan; Li, Jinping

    2015-01-01

    Graphical abstract: The gas-sensing property of quantum dots is related to their sizes. SnO 2 quantum dots (TQDs) were synthesized and the sizes were controlled by a simple strategy. The results show that controlling QDs size is efficient to detect low-concentration hazardous volatile compounds selectively. - Highlights: • SnO 2 quantum dots with controllable size were synthesized by hydrothermal route. • The sizes of SnO 2 quantum dots (TQDs) were controlled by a simple strategy. • The responses to volatile chemicals strongly depend on the size of quantum dots. • Small-size TQDs exhibit a good selectivity and response to triethylamine. • Controlling size is efficient to detect low-concentration toxic gases selectively. - Abstract: Tin dioxide quantum dots (TQDs) with controllable size were synthesized by changing the amount of alkaline reagent in the hydrothermal process. The gas-sensing properties were investigated by operating chemoresistor type sensor. The morphology and structure were characterized by X-ray diffraction, scanning/transmission electron microscopy, UV–vis and Raman spectrometry. The as-synthesized SnO 2 shows the characteristics of quantum dots and the narrowest size distribution is about 2–3 nm. The gas-sensing results indicate that the responses are strongly dependent on the size of quantum dots. TQDs with different sizes exhibit different sensitivities and selectivities to volatile toxic chemicals such as aldehyde, acetone, methanol, ethanol and amine. Especially, when the sensors are exposed to 100 ppm triethylamine (TEA), the sensing response value of TQDs with small size is two times higher than that of the large-size TQDs. The maximum response values of TQDs to 1 ppm and 100 ppm TEA are 15 and 153, respectively. The response time is 1 s and the recovery time is 47 s upon exposure to 1 ppm TEA. The results suggest that it is an effective method by regulating the size of SnO 2 quantum dots to detect low-concentration hazardous

  10. Theoretical modeling and design of photonic structures in zeolite nanocomposites for gas sensing. Part I: surface relief gratings.

    Science.gov (United States)

    Cody, D; Naydenova, I

    2017-12-01

    The suitability of holographic structures fabricated in zeolite nanoparticle-polymer composite materials for gas sensing applications has been investigated. Theoretical modeling of the sensor response (i.e., change in hologram readout due to a change in refractive index modulation or thickness as a result of gas adsorption) of different sensor designs was carried out using Raman-Nath theory and Kogelnik's coupled wave theory. The influence of a range of parameters on the sensor response of holographically recorded surface and volume photonic grating structures has been studied, namely the phase difference between the diffracted and probe beam introduced by the grating, grating geometry, thickness, spatial frequency, reconstruction wavelength, and zeolite nanoparticle refractive index. From this, the optimum fabrication conditions for both surface and volume holographic gas sensor designs have been identified. Here, in part I, results from theoretical modeling of the influence of design on the sensor response of holographically inscribed surface relief structures for gas sensing applications is reported.

  11. Low Power Operation of Temperature-Modulated Metal Oxide Semiconductor Gas Sensors

    Directory of Open Access Journals (Sweden)

    Javier Burgués

    2018-01-01

    Full Text Available Mobile applications based on gas sensing present new opportunities for low-cost air quality monitoring, safety, and healthcare. Metal oxide semiconductor (MOX gas sensors represent the most prominent technology for integration into portable devices, such as smartphones and wearables. Traditionally, MOX sensors have been continuously powered to increase the stability of the sensing layer. However, continuous power is not feasible in many battery-operated applications due to power consumption limitations or the intended intermittent device operation. This work benchmarks two low-power, duty-cycling, and on-demand modes against the continuous power one. The duty-cycling mode periodically turns the sensors on and off and represents a trade-off between power consumption and stability. On-demand operation achieves the lowest power consumption by powering the sensors only while taking a measurement. Twelve thermally modulated SB-500-12 (FIS Inc. Jacksonville, FL, USA sensors were exposed to low concentrations of carbon monoxide (0–9 ppm with environmental conditions, such as ambient humidity (15–75% relative humidity and temperature (21–27 °C, varying within the indicated ranges. Partial Least Squares (PLS models were built using calibration data, and the prediction error in external validation samples was evaluated during the two weeks following calibration. We found that on-demand operation produced a deformation of the sensor conductance patterns, which led to an increase in the prediction error by almost a factor of 5 as compared to continuous operation (2.2 versus 0.45 ppm. Applying a 10% duty-cycling operation of 10-min periods reduced this prediction error to a factor of 2 (0.9 versus 0.45 ppm. The proposed duty-cycling powering scheme saved up to 90% energy as compared to the continuous operating mode. This low-power mode may be advantageous for applications that do not require continuous and periodic measurements, and which can tolerate

  12. Effect of Mg doping in the gas-sensing performance of RF-sputtered ZnO thin films

    Science.gov (United States)

    Vinoth, E.; Gowrishankar, S.; Gopalakrishnan, N.

    2018-06-01

    Thin films of Mg-free and Mg-doped (3, 10 and 20 mol%) ZnO thin films have been deposited on Si (100) substrates by RF magnetron sputtering for gas-sensing application. Preferential orientation along (002) plane with hexagonal wurtzite structure has been observed in X-ray diffraction analysis. The conductivity, resistivity, and mobility of the deposited films have been measured by Hall effect measurement. The bandgap of the films has been calculated from the UV-Vis-NIR spectroscopy. It has been found that the bandgap was increased from 3.35 to 3.91 eV with Mg content in ZnO due to the radiative recombination of excitons. The change in morphology of the grown films has been investigated by scanning electron microscope. Gas-sensing measurements have been conducted for fabricated films. The sensor response, selectivity, and stability measurement were done for the fabricated films. Though better response was found towards ethanol, methanol, and ammonia for MZ2 (Mg at 10 mol%) film and maximum gas response was observed towards ammonia. The selectivity measurement reveals maximum sensitivity about 42% for ammonia. The low response time of 123 s and recovery time of 152 s towards ammonia were observed for MZ2 (Mg at 10 mol%). Stability of the Mg-doped ZnO thin film confirmed by the continuous sensing measurements for 4 months.

  13. Industrial Raman gas sensing for real-time system control

    Science.gov (United States)

    Buric, M.; Mullen, J.; Chorpening, B.; Woodruff, S.

    2014-06-01

    Opportunities exist to improve on-line process control in energy applications with a fast, non-destructive measurement of gas composition. Here, we demonstrate a Raman sensing system which is capable of reporting the concentrations of numerous species simultaneously with sub-percent accuracy and sampling times below one-second for process control applications in energy or chemical production. The sensor is based upon a hollow-core capillary waveguide with a 300 micron bore with reflective thin-film metal and dielectric linings. The effect of using such a waveguide in a Raman process is to integrate Raman photons along the length of the sample-filled waveguide, thus permitting the acquisition of very large Raman signals for low-density gases in a short time. The resultant integrated Raman signals can then be used for quick and accurate analysis of a gaseous mixture. The sensor is currently being tested for energy applications such as coal gasification, turbine control, well-head monitoring for exploration or production, and non-conventional gas utilization. In conjunction with an ongoing commercialization effort, the researchers have recently completed two prototype instruments suitable for hazardous area operation and testing. Here, we report pre-commercialization testing of those field prototypes for control applications in gasification or similar processes. Results will be discussed with respect to accuracy, calibration requirements, gas sampling techniques, and possible control strategies of industrial significance.

  14. Gas sensing at the nanoscale: engineering SWCNT-ITO nano-heterojunctions for the selective detection of NH3 and NO2 target molecules

    Science.gov (United States)

    Rigoni, F.; Drera, G.; Pagliara, S.; Perghem, E.; Pintossi, C.; Goldoni, A.; Sangaletti, L.

    2017-01-01

    The gas response of single-wall carbon nanotubes (SWCNT) functionalized with indium tin oxide (ITO) nanoparticles (NP) has been studied at room temperature and an enhanced sensitivity to ammonia and nitrogen dioxide is demonstrated. The higher sensitivity in the functionalized sample is related to the creation of nano-heterojunctions at the interface between SWCNT bundles and ITO NP. Furthermore, the different response of the two devices upon NO2 exposure provides a way to enhance also the selectivity. This behavior is rationalized by considering a gas sensing mechanism based on the build-up of space-charge layers at the junctions. Finally, full recovery of the signal after exposure to NO2 is achieved by UV irradiation for the functionalized sample, where the ITO NP can play a role to hinder the poisoning effects on SWCNT due to NO2 chemisorption.

  15. IAEA high temperature gas-cooled reactor activities

    International Nuclear Information System (INIS)

    Kendall, J.M.

    2000-01-01

    The IAEA activities on high temperature gas-cooled reactors are conducted with the review and support of the Member states, primarily through the International Working Group on Gas-Cooled Reactors (IWG-GCR). This paper summarises the results of the IAEA gas-cooled reactor project activities in recent years along with ongoing current activities through a review of Co-ordinated Research Projects (CRPs), meetings and other international efforts. A series of three recently completed CRPs have addressed the key areas of reactor physics for LEU fuel, retention of fission products and removal of post shutdown decay heat through passive heat transport mechanisms. These activities along with other completed and ongoing supporting CRPs and meetings are summarised with reference to detailed documentation of the results. (authors)

  16. IAEA high temperature gas cooled reactor activities

    International Nuclear Information System (INIS)

    Kendall, J.M.

    2001-01-01

    IAEA activities on high temperature gas cooled reactors are conducted with the review and support of Member States, primarily through the International Working Group on Gas Cooled Reactors (IWGGCR). This paper summarises the results of the IAEA gas cooled reactor project activities in recent years along with ongoing current activities through a review of Co-ordinated Research Projects (CRPs), meetings and other international efforts. A series of three recently completed CRPs have addressed the key areas of reactor physics for LEU fuel, retention of fission products, and removal of post shutdown decay heat through passive heat transport mechanisms. These activities along with other completed and ongoing supporting CRPs and meetings are summarised with reference to detailed documentation of the results. (author)

  17. ZnO–PDMS Nanohybrids: A Novel Optical Sensing Platform for Ethanol Vapor Detection at Room Temperature

    KAUST Repository

    Klini, Argyro

    2015-01-08

    © 2014 American Chemical Society. A new optical gas sensor platform based on highly luminescent ZnO-polymer nanohybrids is demonstrated. The nanohybrids consist of ZnO nanoparticles, typically 125 (±25) nm in size, dispersed in an inert cross-linked polydimethylsiloxane (PDMS) matrix. Upon exposure to ethanol-enriched air at room temperature, the nanocomposites exhibit a clear increase in their photoluminescence (PL) emission, which shows a nearly Langmuir dependence on the alcohol vapor pressure. The response time is on the order of 50 s, particularly at low ethanol concentrations. The limit of ethanol vapor detection (LOD) is as low as 0.4 Torr, while the sensor remains unaffected by the presence of water vapor, demonstrating the potential of the ZnO-PDMS system as an optical gas sensing device. The interaction of the ZnO nanoparticles with molecular oxygen plays an essential role on the overall performance of the sensor, as shown in comparative experiments performed in the presence and absence of atmospheric air. Notably, O2 was found to be quite effective in accelerating the sensor recovery process compared to N2 or vacuum.

  18. Thermal regime of a continental permafrost associated gas hydrate occurrence a continuous temperature profile record after drilling

    Science.gov (United States)

    Henninges, J.; Huenges, E.; Mallik Working Group

    2003-04-01

    Both the size and the distribution of natural methane hydrate occurrences, as well as the release of gaseous methane through the dissociation of methane hydrate, are affected by the subsurface pressure and temperature conditions. During a field experiment, which was carried out in the Mackenzie Delta, NWT, Canada, within the framework of the Mallik 2002 Production Research Well Program*, the variation of temperature within three 40 m spaced, 1200 m deep wells was measured deploying the Distributed Temperature Sensing (DTS) technology. An innovative experimental design for the monitoring of spatial and temporal variations of temperature along boreholes was developed and successfully applied under extreme arctic conditions. A special feature is the placement of the fibre-optic sensor cable inside the cement annulus between the casing and the wall of the borehole. Temperature profiles were recorded with a sampling interval of 0.25 m and 5 min, and temperatures can be determined with a resolution of 0.3 °C. The observed variation of temperature over time shows the decay of the thermal disturbances caused by the drilling and construction of the wells. An excellent indicator for the location of the base of the ice-bonded permafrost layer, which stands out as a result of the latent heat of the frozen pore fluid, is a sharp rise in temperature at 604 m depth during the period of equilibration. A similar effect can be detected in the depth interval between 1105 m and 1110 m, which is interpreted as an indicator for the depth to the base of the methane hydrate stability zone. Nine months after the completion of the wells the measured borehole temperatures are close to equilibrium. The mean temperature gradient rises from 9.4 K/km inside the permafrost to 25.4 K/km in the ice-free sediment layers underneath. The zone of the gas hydrate occurrences between 900 m and 1100 m shows distinct variations of the geothermal gradient, which locally rises up to 40 K/km. At the lower

  19. cGAS Senses Human Cytomegalovirus and Induces Type I Interferon Responses in Human Monocyte-Derived Cells.

    Directory of Open Access Journals (Sweden)

    Jennifer Paijo

    2016-04-01

    Full Text Available Human cytomegalovirus (HCMV infections of healthy individuals are mostly unnoticed and result in viral latency. However, HCMV can also cause devastating disease, e.g., upon reactivation in immunocompromised patients. Yet, little is known about human immune cell sensing of DNA-encoded HCMV. Recent studies indicated that during viral infection the cyclic GMP/AMP synthase (cGAS senses cytosolic DNA and catalyzes formation of the cyclic di-nucleotide cGAMP, which triggers stimulator of interferon genes (STING and thus induces antiviral type I interferon (IFN-I responses. We found that plasmacytoid dendritic cells (pDC as well as monocyte-derived DC and macrophages constitutively expressed cGAS and STING. HCMV infection further induced cGAS, whereas STING expression was only moderately affected. Although pDC expressed particularly high levels of cGAS, and the cGAS/STING axis was functional down-stream of STING, as indicated by IFN-I induction upon synthetic cGAMP treatment, pDC were not susceptible to HCMV infection and mounted IFN-I responses in a TLR9-dependent manner. Conversely, HCMV infected monocyte-derived cells synthesized abundant cGAMP levels that preceded IFN-I production and that correlated with the extent of infection. CRISPR/Cas9- or siRNA-mediated cGAS ablation in monocytic THP-1 cells and primary monocyte-derived cells, respectively, impeded induction of IFN-I responses following HCMV infection. Thus, cGAS is a key sensor of HCMV for IFN-I induction in primary human monocyte-derived DC and macrophages.

  20. Self-Evaluation of PANDA-FBG Based Sensing System for Dynamic Distributed Strain and Temperature Measurement.

    Science.gov (United States)

    Zhu, Mengshi; Murayama, Hideaki; Wada, Daichi

    2017-10-12

    A novel method is introduced in this work for effectively evaluating the performance of the PANDA type polarization-maintaining fiber Bragg grating (PANDA-FBG) distributed dynamic strain and temperature sensing system. Conventionally, the errors during the measurement are unknown or evaluated by using other sensors such as strain gauge and thermocouples. This will make the sensing system complicated and decrease the efficiency since more than one kind of sensor is applied for the same measurand. In this study, we used the approximately constant ratio of primary errors in strain and temperature measurement and realized the self-evaluation of the sensing system, which can significantly enhance the applicability, as well as the reliability in strategy making.

  1. Transient fission gas release from UO2 fuel for high temperature and high burnup

    International Nuclear Information System (INIS)

    Szuta, M.

    2001-01-01

    In the present paper it is assumed that the fission gas release kinetics from an irradiated UO 2 fuel for high temperature is determined by the kinetics of grain growth. A well founded assumption that Vitanza curve describes the change of uranium dioxide re-crystallization temperature and the experimental results referring to the limiting grain size presented in the literature are used to modify the grain growth model. Algorithms of fission gas release due to re-crystallization of uranium dioxide grains are worked out. The defect trap model of fission gas behaviour described in the earlier papers is supplemented with the algorithms. Calculations of fission gas release in function of time, temperature, burn-up and initial grain sizes are obtained. Computation of transient fission gas release in the paper is limited to the case where steady state of irradiation to accumulate a desired burn-up is performed below the temperature of re-crystallization then the subsequent step temperature increase follows. There are considered two kinds of step temperature increase for different burn-up: the final temperature of the step increase is below and above the re-crystallization temperature. Calculations show that bursts of fission gas are predicted in both kinds. The release rate of gas liberated for the final temperature above the re-crystallization temperature is much higher than for final temperature below the re-crystallization temperature. The time required for the burst to subside is longer due to grain growth than due to diffusion of bubbles and knock-out release. The theoretical results explain qualitatively the experimental data but some of them need to be verified since this sort of experimental data are not found in the available literature. (author)

  2. Extreme temperature sensing using brillouin scattering in optical fibers

    CERN Document Server

    Fellay, Alexandre

    Stimulated Brillouin scattering in silica-based optical fibers may be considered from two different and complementary standpoints. For a physicist, this interaction of light and pressure wave in a material, or equivalently in quantum theory terms between photons and phonons, gives some glimpses of the atomic structure of the solid and of its vibration modes. For an applied engineer, the same phenomenon may be put to good use as a sensing mechanism for distributed measurements, thanks to the dependence of the scattered light on external parameters such as the temperature, the pressure or the strain applied to the fiber. As far as temperature measurements are concerned, Brillouin-based distributed sensors have progressively gained wide recognition as efficient systems, even if their rather high cost still restricts the number of their applications. Yet they are generally used in a relatively narrow temperature range around the usual ambient temperature; in this domain, the frequency of the scattered light incre...

  3. Effects of cold temperatures on the excitability of rat trigeminal ganglion neurons that are not for cold sensing.

    Science.gov (United States)

    Kanda, Hirosato; Gu, Jianguo G

    2017-05-01

    Aside from a small population of primary afferent neurons for sensing cold, which generate sensations of innocuous and noxious cold, it is generally believed that cold temperatures suppress the excitability of primary afferent neurons not responsible for cold sensing. These not-for-cold-sensing neurons include the majority of non-nociceptive and nociceptive afferent neurons. In this study we have found that the not-for-cold-sensing neurons of rat trigeminal ganglia (TG) change their excitability in several ways at cooling temperatures. In nearly 70% of not-for-cold-sensing TG neurons, a cooling temperature of 15°C increases their membrane excitability. We regard these neurons as cold-active neurons. For the remaining 30% of not-for-cold-sensing TG neurons, the cooling temperature of 15°C either has no effect (cold-ineffective neurons) or suppress their membrane excitability (cold-suppressive neurons). For cold-active neurons, the cold temperature of 15°C increases their excitability as is evidenced by increases in action potential (AP) firing numbers and/or the reduction in AP rheobase when these neurons are depolarized electrically. The cold temperature of 15°C significantly inhibits M-currents and increases membrane input resistance of cold-active neurons. Retigabine, an M-current activator, abolishes the effect of cold temperatures on AP firing, but not the effect of cold temperature on AP rheobase levels. The inhibition of M-currents and the increases of membrane input resistance are likely two mechanisms by which cooling temperatures increase the excitability of not-for-cold-sensing TG neurons. This article is part of the special article series "Pain". © 2015 International Society for Neurochemistry.

  4. Basin-Wide Temperature Constraints On Gas Hydrate Stability In The Gulf Of Mexico

    Science.gov (United States)

    MacDonald, I. R.; Reagan, M. T.; Guinasso, N. L.; Garcia-Pineda, O. G.

    2012-12-01

    Gas hydrate deposits commonly occur at the seafloor-water interface on marine margins. They are especially prevalent in the Gulf of Mexico where they are associated with natural oil seeps. The stability of these deposits is potentially challenged by fluctuations in bottom water temperature, on an annual time-scale, and under the long-term influence of climate change. We mapped the locations of natural oil seeps where shallow gas hydrate deposits are known to occur across the entire Gulf of Mexico basin based on a comprehensive review of synthetic aperture radar (SAR) data (~200 images). We prepared a bottom water temperature map based on the archive of CTD casts from the Gulf (~6000 records). Comparing the distribution of gas hydrate deposits with predicted bottom water temperature, we find that a broad area of the upper slope lies above the theoretical stability horizon for structure 1 gas hydrate, while all sites where gas hydrate deposits occur are within the stability horizon for structure 2 gas hydrate. This is consistent with analytical results that structure 2 gas hydrates predominate on the upper slope (Klapp et al., 2010), where bottom water temperatures fluctuate over a 7 to 10 C range (approx. 600 m depth), while pure structure 1 hydrates are found at greater depths (approx. 3000 m). Where higher hydrocarbon gases are available, formation of structure 2 gas hydrate should significantly increase the resistance of shallow gas hydrate deposits to destabilizing effects variable or increasing bottom water temperature. Klapp, S.A., Bohrmann, G., Kuhs, W.F., Murshed, M.M., Pape, T., Klein, H., Techmer, K.S., Heeschen, K.U., and Abegg, F., 2010, Microstructures of structure I and II gas hydrates from the Gulf of Mexico: Marine and Petroleum Geology, v. 27, p. 116-125.Bottom temperature and pressure for Gulf of Mexico gas hydrate outcrops and stability horizons for sI and sII hydrate.

  5. Structural, magnetic and gas sensing properties of nanosized copper ferrite powder synthesized by sol gel combustion technique

    Energy Technology Data Exchange (ETDEWEB)

    Sumangala, T.P.; Mahender, C. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Barnabe, A. [Université de Toulouse, Institut Carnot CIRIMAT – UMR CNRS-UPS-INP 5085, Université Paul Sabatier, Toulouse 31062 (France); Venkataramani, N. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Prasad, Shiva, E-mail: shiva.pd@gmail.com [Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2016-11-15

    Stoichiometric nano sized copper ferrite particles were synthesized by sol gel combustion technique. They were then calcined at various temperatures ranging from 300–800 °C and were either furnace cooled or quenched in liquid nitrogen. A high magnetisation value of 48.2 emu/g signifying the cubic phase of copper ferrite, was obtained for sample quenched to liquid nitrogen temperature from 800 °C. The ethanol sensing response of the samples was studied and a maximum of 86% response was obtained for 500 ppm ethanol in the case of a furnace cooled sample calcined at 800 °C. The chemical sensing is seen to be correlated with the c/a ratio and is best in the case of tetragonal copper ferrite. - Highlights: • One of the first study on ethanol sensing of cubic copper ferrite. • In-situ High temperature XRD done shows phase transition from cubic to tetragonal. • A non-monotonic increase in magnetization was seen with calcination temperature. • A response of 86% was obtained towards 500 ppm ethanol. • Tried to correlate sensing response and ion content in spinel structure.

  6. Palladium Gate All Around - Hetero Dielectric -Tunnel FET based highly sensitive Hydrogen Gas Sensor

    Science.gov (United States)

    Madan, Jaya; Chaujar, Rishu

    2016-12-01

    The paper presents a novel highly sensitive Hetero-Dielectric-Gate All Around Tunneling FET (HD-GAA-TFET) based Hydrogen Gas Sensor, incorporating the advantages of band to band tunneling (BTBT) mechanism. Here, the Palladium supported silicon dioxide is used as a sensing media and sensing relies on the interaction of hydrogen with Palladium-SiO2-Si. The high surface to volume ratio in the case of cylindrical GAA structure enhances the fortuities for surface reactions between H2 gas and Pd, and thus improves the sensitivity and stability of the sensor. Behaviour of the sensor in presence of hydrogen and at elevated temperatures is discussed. The conduction path of the sensor which is dependent on sensors radius has also been varied for the optimized sensitivity and static performance analysis of the sensor where the proposed design exhibits a superior performance in terms of threshold voltage, subthreshold swing, and band to band tunneling rate. Stability of the sensor with respect to temperature affectability has also been studied, and it is found that the device is reasonably stable and highly sensitive over the bearable temperature range. The successful utilization of HD-GAA-TFET in gas sensors may open a new door for the development of novel nanostructure gas sensing devices.

  7. Down-conversion luminescence and its temperature-sensing properties from Er3+-doped sodium bismuth titanate ferroelectric thin films

    Science.gov (United States)

    Wang, Shanshan; Zheng, Shanshan; Zhou, Hong; Pan, Anlian; Wu, Guangheng; Liu, Jun-ming

    2015-11-01

    Here, we demonstrate outstanding temperature-sensing properties from Na0.5Bi0.49Er0.01TiO3 (NBT:Er) thin films. The perovskite phase for them is stable in the temperature range from 80 to 440 K. Interestingly, the Er doping enhances the ferroelectric polarization and introduces local dipolar, which are positive for temperature sensing. Pumped by a 488-nm laser, the NBT:Er thin films show strong green luminescence with two bands around 525 and 548 nm. The intensity ratio I 525/ I 548 can be used for temperature sensing, and the maximum sensitivity is about 2.3 × 10-3 K-1, higher than that from Er-doped silicon oxide. These suggest NBT:Er thin film is a promising candidate for temperature sensor.

  8. W18O49 nanorods decorated with Ag/AgCl nanoparticles as highly-sensitive gas-sensing material and visible-light-driven photocatalyst

    International Nuclear Information System (INIS)

    Sun Shibin; Chang Xueting; Dong Lihua; Zhang Yidong; Li Zhenjiang; Qiu Yanyan

    2011-01-01

    A novel gas-sensing material and photocatalyst was successfully obtained by decorating Ag/AgCl nanoparticles on the W 18 O 49 nanorods through a clean photochemical route. The as-prepared samples were characterized using combined techniques of X-ray diffractometry, electron microscopy, energy dispersive X-ray spectrometry, and X-ray photoelectron spectroscopy. Gas-sensing measurements indicate that the Ag/AgCl/W 18 O 49 NRs sensors exhibit superior reducing gas-sensing properties to those of bare W 18 O 49 NRs, and they are highly selective and sensitive to NH 3 , acetone, and H 2 S with short response and recovery times. The Ag/AgCl/W 18 O 49 NRs photocatlysts also possess higher photocatalytic performance than bare W 18 O 49 NRs for degradation of methyl orange under simulated sunlight irradiation. Possible mechanisms concerning the enhancement of gas-sensing and photocatalytic activities of the Ag/AgCl/W 18 O 49 NRs composite were proposed. - Graphical Abstract: The Ag/AgCl nanoparticles adhered well to the W 18 O 49 nanorod. The Ag could act as transfer center of the photoexcited carriers, prohibiting their recombinations in both W 18 O 49 and AgCl. Highlights: → Ag/AgCl/W 18 O 49 NRs were successfully obtained via a clean photochemical route. → The Ag/AgCl nanoparticles decorated on the W 18 O 49 NRs possessed cladding structure. → The Ag/AgCl/W 18 O 49 NRs exhibited excellent gas-sensing and photocatalytic properties.

  9. Infrared remote sensing for canopy temperature in paddy field and relationship between leaf temperature and leaf color

    International Nuclear Information System (INIS)

    Wakiyama, Y.

    2002-01-01

    Infrared remote sensing is used for crop monitoring, for example evaluation of water stress, detection of infected crops and estimation of transpiration and photosynthetic rates. This study was conducted to show another application of remote sensing information. The relationship between rice leaf temperature and chlorophyll content in the leaf blade was investigated by using thermography during the ripening period. The canopy of a rice community fertilized by top dressing was cooler than that not fertilized in a 1999 field experiment. In an experiment using thermocouples to measure leaf temperature, a rice leaf with high chlorophyll content was also cooler than that with a low chlorophyll content. Transpiration resistance and transpiration rate were measured with a porometer. Transpiration rate was higher with increasing chlorophyll content in the leaf blade. Stomatal aperture is related to chlorophyll content in the leaf blade. High degree of stomatal aperture is caused by high chlorophyll content in the leaf blade. As degree of stomatal aperture increases, transpiration rate increases. Therefore the rice leaf got cooler with increasing chlorophyll content in leaf blade. Paddy rice communities with different chlorophyll contents were provided with fertilization of different nitrogen levels on basal and top dressing in a 2000 field experiment. Canopy temperature of the rice community with high chlorophyll content was 0.85°C cooler than that of the rice community with low chlorophyll content. Results of this study revealed that infrared remote sensing could detect difference in chlorophyll contents in rice communities and could be used in fertilizer management in paddy fields. (author)

  10. Microarray study of temperature-dependent sensitivity and selectivity of metal/oxide sensing interfaces

    Science.gov (United States)

    Tiffany, Jason; Cavicchi, Richard E.; Semancik, Stephen

    2001-02-01

    Conductometric gas microsensors offer the benefits of ppm-level sensitivity, real-time data, simple interfacing to electronics hardware, and low power consumption. The type of device we have been exploring consists of a sensor film deposited on a "microhotplate"- a 100 micron platform with built-in heating (to activate reactions on the sensing surface) and thermometry. We have been using combinatorial studies of 36-element arrays to characterize the relationship between sensor film composition, operating temperature, and response, as measured by the device's sensitivity and selectivity. Gases that have been tested on these arrays include methanol, ethanol, dichloromethane, propane, methane, acetone, benzene, hydrogen, and carbon monoxide, and are of interest in the management of environmental waste sites. These experiments compare tin oxide films modified by catalyst overlayers, and ultrathin metal seed layers. The seed layers are used as part of a chemical vapor deposition process that uses each array element's microheater to activate the deposition of SnO2, and control its microstructure. Low coverage (20 Ê) catalytic metals (Pd, Cu, Cr, In, Au) are deposited on the oxides by masked evaporation or sputtering. This presentation demonstrates the value of an array-based approach for developing film processing methods, measuring performance characteristics, and establishing reproducibility. It also illustrates how temperature-dependent response data for varied metal/oxide compositions can be used to tailor a microsensor array for a given application.

  11. Infrared temperature and gas measurements at the Haderslev power and heat plan[Denmark]; Infraroede temperatur- og gasmaelinger Haderslev Kraftvarmevaerk

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Soennik

    2007-04-15

    Report describe results from a two week measurement campaign at Haderslev Kraftvarmevaerk in 2006 as a part of PSO-project 5727 'On-line optimization of waste incinerators'. Non-contact gas temperature and gas composition was measured simultaneously with a FTIR spectrometer coupled to a water-cooled fiber-optic probe. Gas temperature and H{sub 2}O, CO{sub 2}, CO, C{sub x}H{sub y} and HCl concentrations was extracted from measured spectra of emitted thermal radiation from gas slab over a 25 cm path. Measurements where performed in different positions to obtain a overview of flow behavior and conditions during stable operation and during a step in operation conditions, e.g. changing combustion air flows. Furthermore, surface temperature of grate was monitored with a thermal camera and a cross stack reference measurement on hot outlet gas was performed with a FTIR spectrometer. (au)

  12. Ag-Modified In2O3/ZnO Nanobundles with High Formaldehyde Gas-Sensing Performance

    Directory of Open Access Journals (Sweden)

    Fang Fang

    2015-08-01

    Full Text Available Ag-modified In2O3/ZnO bundles with micro/nano porous structures have been designed and synthesized with by hydrothermal method continuing with dehydration process. Each bundle consists of nanoparticles, where nanogaps of 10–30 nm are present between the nanoparticles, leading to a porous structure. This porous structure brings high surface area and fast gas diffusion, enhancing the gas sensitivity. Consequently, the HCHO gas-sensing performance of the Ag-modified In2O3/ZnO bundles have been tested, with the formaldehyde-detection limit of 100 ppb (parts per billion and the response and recover times as short as 6 s and 3 s, respectively, at 300 °C and the detection limit of 100 ppb, response time of 12 s and recover times of 6 s at 100 °C. The HCHO sensing detect limitation matches the health standard limitation on the concentration of formaldehyde for indoor air. Moreover, the strategy to synthesize the nanobundles is just two-step heating and easy to scale up. Therefore, the Ag-modified In2O3/ZnO bundles are ready for industrialization and practical applications.

  13. Ag-Modified In2O3/ZnO Nanobundles with High Formaldehyde Gas-Sensing Performance

    Science.gov (United States)

    Fang, Fang; Bai, Lu; Song, Dongsheng; Yang, Hongping; Sun, Xiaoming; Sun, Hongyu; Zhu, Jing

    2015-01-01

    Ag-modified In2O3/ZnO bundles with micro/nano porous structures have been designed and synthesized with by hydrothermal method continuing with dehydration process. Each bundle consists of nanoparticles, where nanogaps of 10–30 nm are present between the nanoparticles, leading to a porous structure. This porous structure brings high surface area and fast gas diffusion, enhancing the gas sensitivity. Consequently, the HCHO gas-sensing performance of the Ag-modified In2O3/ZnO bundles have been tested, with the formaldehyde-detection limit of 100 ppb (parts per billion) and the response and recover times as short as 6 s and 3 s, respectively, at 300 °C and the detection limit of 100 ppb, response time of 12 s and recover times of 6 s at 100 °C. The HCHO sensing detect limitation matches the health standard limitation on the concentration of formaldehyde for indoor air. Moreover, the strategy to synthesize the nanobundles is just two-step heating and easy to scale up. Therefore, the Ag-modified In2O3/ZnO bundles are ready for industrialization and practical applications. PMID:26287205

  14. Assessment of detection limits of fiber-optic distributed temperature sensing for detection of illicit connections

    NARCIS (Netherlands)

    Nienhuis, J.; De Haan, C.; Langeveld, J.G.; Klootwijk, M.; Clemens, F.H.L.R.

    2012-01-01

    Distributed Temperature Sensing (DTS) with fiber-optic cables is a powerful tool to detect illicit connections in storm sewer systems. High frequency temperature measurements along the in-sewer cable create a detailed representation of temperature anomalies due to illicit discharges. The detection

  15. Detection of Hydrogen Sulphide Gas Sensor Based Nanostructured Ba2CrMoO6 Thick Films

    Directory of Open Access Journals (Sweden)

    A. V. Kadu

    2007-11-01

    Full Text Available Nanocrystalline pure and doped Ba2CrMoO6, having an average crystallite size of 40 nm were synthesized by the sol-gel citrate method. Structural and gas-sensing characteristics were performed by using X-ray diffraction (XRD and sensitivity measurements. The gas sensing properties to reducing gases like Hydrogen sulphide (H2S, liquefied petroleum gas (LPG, carbon monoxide (CO and hydrogen gas (H2 were also discussed. The maximum sensitivity was obtained for 5 wt % Ni doped Ba2CrMoO6 at an operating temperature 250oC for H2S gas. Pd incorporation over 5 wt% Ni doped Ba2CrMoO6 improved the sensitivity, selectivity, response time, and reduced the operating temperature from 250 to 200oC of the sensor for H2S gas. This sensor also shows good satiability.

  16. High-Performance Flexible Force and Temperature Sensing Array with a Robust Structure

    Science.gov (United States)

    Kim, Min-Seok; Song, Han-Wook; Park, Yon-Kyu

    We have developed a flexible tactile sensor array capable of sensing physical quantities, e.g. force and temperature with high-performances and high spatial resolution. The fabricated tactile sensor consists of 8 × 8 force measuring array with 1 mm spacing and a thin metal (copper) temperature sensor. The flexible force sensing array consists of sub-millimetre-size bar-shaped semi-conductor strain gage array attached to a thin and flexible printed circuit board covered by stretchable elastomeric material on both sides. This design incorporates benefits of both materials; the semi-conductor's high performance and the polymer's mechanical flexibility and robustness, while overcoming their drawbacks of those two materials. Special fabrication processes, so called “dry-transfer technique” have been used to fabricate the tactile sensor along with standard micro-fabrication processes.

  17. Design and development of gas turbine high temperature reactor 300 (GTHTR300)

    International Nuclear Information System (INIS)

    Kunitomi, Kazuhiko; Katanishi, Shoji; Takada, Shoji; Takizuka, Takakazu; Yan, Xing; Kosugiyama, Shinichi

    2003-01-01

    JAERI (Japan Atomic Energy Research Institute) started design and development of the high temperature gas cooled reactor with a gas turbine electric generation system, GTHTR300, in April 2001. Design originalities of the GTHTR300 are a horizontally mounted highly efficient gas turbine system and an ultimately simplified safety system such as no containment building and no active emergency core cooling. These design originalities are proposed based on design and operational experiences in conventional gas turbine systems and Japan's first high temperature gas cooled reactor (HTTR: High Temperature Engineering Test Reactor) so that many R and Ds are not required for the development. Except these original design features, devised core design, fuel design and plant design are adopted to meet design requirements and attain a target cost. This paper describes the unique design features focusing on the safety design, reactor core design and gas turbine system design together with a preliminary result of the safety evaluation carried out for a typical severe event. This study is entrusted from Ministry of Education, Culture, Sports, Science and Technology of Japan. (author)

  18. Experimental Study of Natural Gas Temperature Effects on the Flame Luminosity and No Emission

    Directory of Open Access Journals (Sweden)

    S. M. Javadi

    2012-06-01

    Full Text Available The flame radiation enhancement in gas-fired furnaces significantly improves the thermal efficiency without significantly affecting the NOx emissions. In this paper, the effects of inlet natural gas preheating on the flame luminosity, overall boiler efficiency, and NO emission in a 120 kW boiler have been investigated experimentally. Flame radiation is measured by use of laboratory pyranometer with photovoltaic sensor. A Testo350XL gas analyzer is also used for measuring the temperature and combustion species. The fuel is preheated from the room temperature to 350°C. The experimental measurements show that the preheating of natural gas up to about 240°C has no considerable effect on the flame luminosity. The results show that increasing the inlet gas temperature from 240°C, abruptly increases the flame luminosity. This luminosity increase enhances the boiler efficiency and also causes significant reduction in flame temperature and NO emission. The results show that increasing the inlet gas temperature from 240°C to 300°C increases the flame luminous radiation by 60% and boiler efficiency by 20%; while the maximum flame temperature and the boiler NO emission show a 10% and 8% decrease respectively.

  19. The interaction between the gas sensing and surface morphology properties of LB thin films of porphyrins in terms of the adsorption kinetics

    International Nuclear Information System (INIS)

    Capan, İ.; Erdoğan, M.; Stanciu, G.A.; Stanciu, S.G.; Hristu, R.; Göktepe, M.

    2012-01-01

    In this work we investigate the adsorption characteristics due to exposure to benzene, toluene and chloroform vapor of 2,3,7,8,12,13,17,18-Octaethyl-21H,23H-porphine metal free thin films fabricated by using the Langmuir–Blodgett (LB) thin film technique and its derivatives containing iron chloride, cobalt and magnesium. By using the surface pressure–surface area (Π–A) isotherm graphs the optimum conditions for the thin film deposition and mean molecular area values of each porphyrin have been determined. Quartz Crystal Microbalance (QCM) system was employed to investigate the gas sensing performances of thin films during the exposure to Volatile Organic Compounds (VOCs). The surface properties have been investigated by using Atomic Force Microscopy (AFM) and analyzed together with the QCM results to understand the adsorption kinetics of the gas sensing mechanism. The rate constants, k a for each thin film interacting with the saturated concentration of vapors have been calculated. The gas sensing interaction has been considered in terms of rate constants in each case. The highest value for k a has been observed for benzene exposure. -- Highlights: ► We model an adsorption behavior for gas sensing porphyrin LB thin films. ► Adsorption coefficients are consistent with the gas experiments. ► The higher rate constant values point out the faster response.

  20. Gravitational collapse of a magnetized fermion gas with finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Delgado Gaspar, I. [Instituto de Geofisica y Astronomia (IGA), La Habana (Cuba); Perez Martinez, A. [Instituto de Cibernetica, Matematica y Fisica (ICIMAF), La Habana (Cuba); Sussman, Roberto A. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (ICN-UNAM), Mexico (Mexico); Ulacia Rey, A. [Instituto de Cibernetica, Matematica y Fisica (ICIMAF), La Habana (Cuba); Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (ICN-UNAM), Mexico (Mexico)

    2013-07-15

    We examine the dynamics of a self-gravitating magnetized fermion gas at finite temperature near the collapsing singularity of a Bianchi-I spacetime. Considering a general set of appropriate and physically motivated initial conditions, we transform Einstein-Maxwell field equations into a complete and self-consistent dynamical system amenable for numerical work. The resulting numerical solutions reveal the gas collapsing into both, isotropic (''point-like'') and anisotropic (''cigar-like''), singularities, depending on the initial intensity of the magnetic field. We provide a thorough study of the near collapse behavior and interplay of all relevant state and kinematic variables: temperature, expansion scalar, shear scalar, magnetic field, magnetization, and energy density. A significant qualitative difference in the behavior of the gas emerges in the temperature range T/m{sub f} {proportional_to} 10{sup -6} and T/m{sub f} {proportional_to} 10{sup -3}. (orig.)

  1. Contribution to high-temperature chromatography and high-temperature-gas-chromatography-mass spectrometry of lipids

    International Nuclear Information System (INIS)

    Aichholz, R.

    1998-04-01

    This thesis describes the use of high temperature gas chromatography for the investigation of unusual triacylglycerols, cyanolipids and bees waxes. The used glass capillary columns were pretreated and coated with tailor made synthesized high temperature stable polysiloxane phases. The selective separation properties of the individual columns were tested with a synthetic lipid mixture. Suitable derivatization procedures for the gaschromatographic analyses of neutral lipids, containing multiple bonds as well as hydroxy-, epoxy-, and carboxyl groups, were developed and optimized. Therefore conjugated olefinic-, conjugated olefinic-acetylenic-, hydroxy-, epoxy-, and conjugated olefinic keto triacylglycerols in miscellaneous plant seed oils as well as hydroxy monoesters, diesters and hydroxy diesters in bees waxes could be analysed directly with high temperature gas chromatography for the first time. In order to elucidate the structures of separated lipid compounds, high temperature gas chromatography was coupled to mass spectrometry and tandem mass spectrometry, respectively. Comparable analytical systems are hitherto not commercial available. Therefore instrumental prerequisites for a comprehensive and detailed analysis of seed oils and bees waxes were established. In GC/MS commonly two ionization methods are used, electron impact ionization and chemical ionization. For the analysis of lipids the first is of limited use only. Due to intensive fragmentation only weak molecular ions are observed. In contrast, the chemical ionization yields in better results. Dominant quasi molecular ions enable an unambiguous determination of the molecular weight. Moreover, characteristic fragment ions provide important indications of certain structural features of the examined compounds. Nevertheless, in some cases the chromatographic resolution was insufficient in order to separate all compounds present in natural lipid mixtures. Owing to the selected detection with mass spectrometry

  2. Technical note: using Distributed Temperature Sensing for Bowen ratio evaporation measurements

    NARCIS (Netherlands)

    Schilperoort, B.; Coenders, Miriam; Luxemburg, W.M.J.; Jimenez Rodriguez, C.D.; Cisneros Vaca2, C.; Savenije, Hubert

    2017-01-01

    Rapid improvements in the precision and spatial resolution of Distributed Temperature Sensing (DTS) technology now allows its use in hydrological and atmospheric sciences. Introduced by Euser [Hydrol. Earth Syst. Sci., 18, 2021–2032 (2014)] is the use of DTS for measuring the Bowen ratio (BR-DTS),

  3. High temperature gas cleaning for pressurized gasification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Alden, H.; Hagstroem, P.; Hallgren, A.; Waldheim, L. [TPS Termiska Processer AB, Nykoeping (Sweden)

    2000-04-01

    The purpose of the project was to build an apparatus to study pressurized, high temperature gas cleaning of raw gasification gas generated from biomass. A flexible and easy to operate pressurized apparatus was designed and installed for the investigations in high temperature gas cleaning by means of thermal, catalytic or chemical procedures. A semi continuos fuel feeding concept, at a maximum rate of 700 g/h, allowed a very constant formation of a gas product at 700 deg C. The gas product was subsequently introduced into a fixed bed secondary reactor where the actual gas cleanup or reformation was fulfilled. The installation work was divided into four work periods and apart from a few delays the work was carried out according to the time plan. During the first work period (January - June 1994) the technical design, drawings etc. of the reactor and additional parts were completed. All material for the construction was ordered and the installation work was started. The second work period (July - December 1994) was dedicated to the construction and the installation of the different components. Initial tests with the electrical heating elements, control system and gas supply were assigned to the third work period (January - June 1995). After the commissioning and the resulting modifications, initial pyrolysis and tar decomposition experiments were performed. During the fourth and final work period, (June - December 1995) encouraging results from first tests allowed the experimental part of the project work to commence, however in a slightly reduced program. The experimental part of the project work comparatively studied tar decomposition as a function of the process conditions as well as of the choice of catalyst. Two different catalysts, dolomite and a commercial Ni-based catalyst, were evaluated in the unit. Their tar cracking ability in the pressure interval 1 - 20 bar and at cracker bed temperatures between 800 - 900 deg C was compared. Long term tests to study

  4. Optical and morphological characterization of bispyrazole thin films for gas sensing applications

    Directory of Open Access Journals (Sweden)

    Rachid Touzani

    2014-11-01

    Full Text Available The optical gas recognition capabilities of thin film layer of 4-[bis[(3,5-dimethyl-1H-pyrazol-1-ylmethyl]-amino]phenol deposed on quartz substrates were studied. The dynamic gas responses to the following analytes have been investigated as air pollutants (SO2, NO2, CO, CH4 and NH3. The spin-coated bispyrazole layer appears to have reversible response towards SO2 and a very low and irreversible response to NO2. The selectivity of the thin film based on bispyrazole layer with respect to other analytes was also examined and the present data show that the thin sensing layer in the presence of CO, CH4 and NH3 in low concentration does not influence its optical properties.

  5. Synergistic improvement of gas sensing performance by micro-gravimetrically extracted kinetic/thermodynamic parameters

    International Nuclear Information System (INIS)

    Guo, Shuanbao; Xu, Pengcheng; Yu, Haitao; Cheng, Zhenxing; Li, Xinxin

    2015-01-01

    Highlights: • Sensing material can be comprehensively optimized by using gravimetric cantilever. • Kinetic-thermodynamic model parameters are quantitatively extracted by experiment • Sensing-material performance is synergistically optimized by extracted parameters. - Abstract: A novel method is explored for comprehensive design/optimization of organophosphorus sensing material, which is loaded on mass-type microcantilever sensor. Conventionally, by directly observing the gas sensing response, it is difficult to build quantitative relationship with the intrinsic structure of the material. To break through this difficulty, resonant cantilever is employed as gravimetric tool to implement molecule adsorption experiment. Based on the sensing data, key kinetic/thermodynamic parameters of the material to the molecule, including adsorption heat −ΔH°, adsorption/desorption rate constants K a and K d , active-site number per unit mass N′ and surface coverage θ, can be quantitatively extracted according to physical–chemistry theories. With gaseous DMMP (simulant of organophosphorus agents) as sensing target, the optimization route for three sensing materials is successfully demonstrated. Firstly, a hyper-branched polymer is evaluated. Though suffering low sensitivity due to insufficient N′, the bis(4-hydroxyphenyl)-hexafluoropropane (BHPF) sensing-group exhibits satisfactory reproducibility due to appropriate −ΔH°. To achieve more sensing-sites, KIT-5 mesoporous-silica with higher surface-area is assessed, resulting in good sensitivity but too high −ΔH° that brings poor repeatability. After comprehensive consideration, the confirmed BHPF sensing-group is grafted on the KIT-5 carrier to form an optimized DMMP sensing nanomaterial. Experimental results indicate that, featuring appropriate kinetic/thermodynamic parameters of −ΔH°, K a , K d , N′ and θ, the BHPF-functionalized KIT-5 mesoporous silica exhibits synergistic improvement among

  6. Prediction of radiofrequency ablation lesion formation using a novel temperature sensing technology incorporated in a force sensing catheter.

    Science.gov (United States)

    Rozen, Guy; Ptaszek, Leon; Zilberman, Israel; Cordaro, Kevin; Heist, E Kevin; Beeckler, Christopher; Altmann, Andres; Ying, Zhang; Liu, Zhenjiang; Ruskin, Jeremy N; Govari, Assaf; Mansour, Moussa

    2017-02-01

    Real-time radiofrequency (RF) ablation lesion assessment is a major unmet need in cardiac electrophysiology. The purpose of this study was to assess whether improved temperature measurement using a novel thermocoupling (TC) technology combined with information derived from impedance change, contact force (CF) sensing, and catheter orientation allows accurate real-time prediction of ablation lesion formation. RF ablation lesions were delivered in the ventricles of 15 swine using a novel externally irrigated-tip catheter containing 6 miniature TC sensors in addition to force sensing technology. Ablation duration, power, irrigation rate, impedance drop, CF, and temperature from each sensor were recorded. The catheter "orientation factor" was calculated using measurements from the different TC sensors. Information derived from all the sources was included in a mathematical model developed to predict lesion depth and validated against histologic measurements. A total of 143 ablation lesions were delivered to the left ventricle (n = 74) and right ventricle (n = 69). Mean CF applied during the ablations was 14.34 ± 3.55g, and mean impedance drop achieved during the ablations was 17.5 ± 6.41 Ω. Mean difference between predicted and measured ablation lesion depth was 0.72 ± 0.56 mm. In the majority of lesions (91.6%), the difference between estimated and measured depth was ≤1.5 mm. Accurate real-time prediction of RF lesion depth is feasible using a novel ablation catheter-based system in conjunction with a mathematical prediction model, combining elaborate temperature measurements with information derived from catheter orientation, CF sensing, impedance change, and additional ablation parameters. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  7. High temperature, high pressure gas loop - the Component Flow Test Loop (CFTL)

    International Nuclear Information System (INIS)

    Gat, U.; Sanders, J.P.; Young, H.C.

    1984-01-01

    The high-pressure, high-temperature, gas-circulating Component Flow Test Loop located at Oak Ridge National Laboratory was designed and constructed utilizing Section III of the ASME Boiler and Pressure Vessel Code. The quality assurance program for operating and testing is also based on applicable ASME standards. Power to a total of 5 MW is available to the test section, and an air-cooled heat exchanger rated at 4.4 MW serves as heat sink. The three gas-bearing, completely enclosed gas circulators provide a maximum flow of 0.47 m 3 /s at pressures to 10.7 MPa. The control system allows for fast transients in pressure, power, temperature, and flow; it also supports prolonged unattended steady-state operation. The data acquisition system can access and process 10,000 data points per second. High-temperature gas-cooled reactor components are being tested

  8. Soft-sensing model of temperature for aluminum reduction cell on improved twin support vector regression

    Science.gov (United States)

    Li, Tao

    2018-06-01

    The complexity of aluminum electrolysis process leads the temperature for aluminum reduction cells hard to measure directly. However, temperature is the control center of aluminum production. To solve this problem, combining some aluminum plant's practice data, this paper presents a Soft-sensing model of temperature for aluminum electrolysis process on Improved Twin Support Vector Regression (ITSVR). ITSVR eliminates the slow learning speed of Support Vector Regression (SVR) and the over-fit risk of Twin Support Vector Regression (TSVR) by introducing a regularization term into the objective function of TSVR, which ensures the structural risk minimization principle and lower computational complexity. Finally, the model with some other parameters as auxiliary variable, predicts the temperature by ITSVR. The simulation result shows Soft-sensing model based on ITSVR has short time-consuming and better generalization.

  9. Graphene-based LbL deposited films: further study of electrical and gas sensing properties

    Directory of Open Access Journals (Sweden)

    Nabok A.

    2017-01-01

    Full Text Available Graphene-surfactant composite materials obtained by the ultrasonic exfoliation of graphite powder in the presence of ionic surfactants (either CTAB or SDS were utilised to construct thin films using layer-by-layer (LbL electrostatic deposition technique. A series of graphene-based thin films were made by alternating layers of either graphene-SDS with polycations (PEI or PAH or graphene-CTAB with polyanions (PSS. Also, graphene-phthalocyanine composite films were produced by alternating layers of graphene-CTAB with tetrasulfonated nickel phthalocyanine. Graphene-surfactant LbL films exhibited good electric conductivity (about 0.1 S/cm of semiconductor type with a band gap of about 20 meV. Judging from UV-vis spectra measurements, graphene-phthalocyanine LbL films appeared to form joint π-electron system. Gas sensing testing of such composite films combining high conductivity of graphene with the gas sensing abilities of phthalocyanines showed substantial changes (up to 10% in electrical conductivity upon exposure to electro-active gases such as HCl and NH3.

  10. Fiber optic distributed temperature sensing for fire source localization

    Science.gov (United States)

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Sigrist, Markus W.; Li, Jun; Dong, Fengzhong

    2017-08-01

    A method for localizing a fire source based on a distributed temperature sensor system is proposed. Two sections of optical fibers were placed orthogonally to each other as the sensing elements. A tray of alcohol was lit to act as a fire outbreak in a cabinet with an uneven ceiling to simulate a real scene of fire. Experiments were carried out to demonstrate the feasibility of the method. Rather large fluctuations and systematic errors with respect to predicting the exact room coordinates of the fire source caused by the uneven ceiling were observed. Two mathematical methods (smoothing recorded temperature curves and finding temperature peak positions) to improve the prediction accuracy are presented, and the experimental results indicate that the fluctuation ranges and systematic errors are significantly reduced. The proposed scheme is simple and appears reliable enough to locate a fire source in large spaces.

  11. Uncertainty Analysis of the Temperature–Resistance Relationship of Temperature Sensing Fabric

    Directory of Open Access Journals (Sweden)

    Muhammad Dawood Husain

    2016-11-01

    Full Text Available This paper reports the uncertainty analysis of the temperature–resistance (TR data of the newly developed temperature sensing fabric (TSF, which is a double-layer knitted structure fabricated on an electronic flat-bed knitting machine, made of polyester as a basal yarn, and embedded with fine metallic wire as sensing element. The measurement principle of the TSF is identical to temperature resistance detector (RTD; that is, change in resistance due to change in temperature. The regression uncertainty (uncertainty within repeats and repeatability uncertainty (uncertainty among repeats were estimated by analysing more than 300 TR experimental repeats of 50 TSF samples. The experiments were performed under dynamic heating and cooling environments on a purpose-built test rig within the temperature range of 20–50 °C. The continuous experimental data was recorded through LabVIEW-based graphical user interface. The result showed that temperature and resistance values were not only repeatable but reproducible, with only minor variations. The regression uncertainty was found to be less than ±0.3 °C; the TSF sample made of Ni and W wires showed regression uncertainty of <±0.13 °C in comparison to Cu-based TSF samples (>±0.18 °C. The cooling TR data showed considerably reduced values (±0.07 °C of uncertainty in comparison with the heating TR data (±0.24 °C. The repeatability uncertainty was found to be less than ±0.5 °C. By increasing the number of samples and repeats, the uncertainties may be reduced further. The TSF could be used for continuous measurement of the temperature profile on the surface of the human body.

  12. Vapor-phase infrared laser spectroscopy: from gas sensing to forensic urinalysis.

    Science.gov (United States)

    Bartlome, Richard; Rey, Julien M; Sigrist, Markus W

    2008-07-15

    Numerous gas-sensing devices are based on infrared laser spectroscopy. In this paper, the technique is further developed and, for the first time, applied to forensic urinalysis. For this purpose, a difference frequency generation laser was coupled to an in-house-built, high-temperature multipass cell (HTMC). The continuous tuning range of the laser was extended to 329 cm(-1) in the fingerprint C-H stretching region between 3 and 4 microm. The HTMC is a long-path absorption cell designed to withstand organic samples in the vapor phase (Bartlome, R.; Baer, M.; Sigrist, M. W. Rev. Sci. Instrum. 2007, 78, 013110). Quantitative measurements were taken on pure ephedrine and pseudoephedrine vapors. Despite featuring similarities, the vapor-phase infrared spectra of these diastereoisomers are clearly distinguishable with respect to a vibrational band centered at 2970.5 and 2980.1 cm(-1), respectively. Ephedrine-positive and pseudoephedrine-positive urine samples were prepared by means of liquid-liquid extraction and directly evaporated in the HTMC without any preliminary chromatographic separation. When 10 or 20 mL of ephedrine-positive human urine is prepared, the detection limit of ephedrine, prohibited in sports as of 10 microg/mL, is 50 or 25 microg/mL, respectively. The laser spectrometer has room for much improvement; its potential is discussed with respect to doping agents detection.

  13. Effect of temperature and α-irradiation on gas permeability for ...

    Indian Academy of Sciences (India)

    Unknown

    polymer membranes that help separate gas. In addition to the chemical composition, the transport properties are related to the main characteristics of copolymers like the glass transition temperature, crystallinity and crosslink- ing ratio. Gas diffusion through polymers is related to the activation energy (Pesiri et al 2003).

  14. High temperature gas dynamics an introduction for physicists and engineers

    CERN Document Server

    Bose, Tarit K

    2014-01-01

    High Temperature Gas Dynamics is a primer for scientists, engineers, and students who would like to have a basic understanding of the physics and the behavior of high-temperature gases. It is a valuable tool for astrophysicists as well. The first chapters treat the basic principles of quantum and statistical mechanics and how to derive thermophysical properties from them. Special topics are included that are rarely found in other textbooks, such as the thermophysical and transport properties of multi-temperature gases and a novel method to compute radiative transfer. Furthermore, collision processes between different particles are discussed. Separate chapters deal with the production of high-temperature gases and with electrical emission in plasmas, as well as related diagnostic techniques.This new edition adds over 100 pages and includes the following updates: several sections on radiative properties of high temperature gases and various radiation models, a section on shocks in magneto-gas-dynamics, a sectio...

  15. The real gas behaviour of helium as a cooling medium for high-temperature reactors

    International Nuclear Information System (INIS)

    Hewing, G.

    1977-01-01

    The article describes the influence of the real gas behaviour on the variables of state for the helium gas and the effects on the design of high-temperature reactor plants. After explaining the basic equations for describing variables and changes of state of the real gas, the real and ideal gas behaviour is analysed. Finally, the influence of the real gas behaviour on the design of high-temperature reactors in one- and two-cycle plants is investigated. (orig.) [de

  16. Investigation of the Optical and Sensing Characteristics of Nanoparticle Arrays for High Temperature Applications

    Science.gov (United States)

    Dharmalingam, Gnanaprakash

    The monitoring of polluting gases such as CO and NOx emitted from gas turbines in power plants and aircraft is important in order to both reduce the effects of such gases on the environment as well as to optimize the performance of the respective power system. The need for emissions monitoring systems is further realized from increased regulatory requirements that are being instituted as a result of the environmental impact from increased air travel. Specifically, it is estimated that the contributions from aircraft emissions to total NOx emissions will increase from 4% to 17% between 2008 and 2020. Extensive fuel cost savings as well as a reduced environmental impact would therefore be realized if this increased air traffic utilized next generation jet turbines which used a emission/performance control sensing system. These future emissions monitoring systems must be sensitive and selective to the emission gases, reliable and stable under harsh environmental conditions where the operation temperatures are in excess of 500 °C within a highly reactive environment. Plasmonics based chemical sensors which use nanocomposites comprised of a combination of gold nano particles and Yttria Stabilized Zirconia (YSZ) has enabled the sensitive (PPM) and stable detection (100s of hrs) of H2, NO2 and CO at temperatures of 500 °C. The detection method involves measuring the change in the localized Surface Plasmon Resonance (LSPR) characteristics of the Au- YSZ nano composite and in particular, the plasmon peak position. Selectivity remains a challenging parameter to optimize and a layer by layer sputter deposition approach has been recently demonstrated to modify the resulting sensing properties through a change in the morphology of the deposited films. The material properties of the films have produced a unique sensing behavior in terms of a preferential response to H2 compared to CO. Although this is a very good benefit, it is expected that further enhancements would be

  17. Influence of the gas mixture radio on the correlations between the excimer XeCl emission and the sealed gas temperature in dielectric barrier discharge lamps

    CERN Document Server

    Xu Jin Zhou; Ren Zhao Xing

    2002-01-01

    For dielectric barrier discharge lamps filled with various gas mixture ratios, the correlations between the excimer XeCl emission and the sealed gas temperature have been founded, and a qualitative explication is presented. For gas mixture with chlorine larger than 3%, the emission intensity increases with the sealed gas temperature, while with chlorine about 2%, the emission intensity decreases with the increasing in the gas temperature, and could be improved by cooling water. However, if chlorine is less than 1.5%, the discharge appears to be a mixture mode with filaments distributed in a diffused glow-like discharge, and the UV emission is independent on the gas temperature

  18. CO Sensing Performance of a Micro Thermoelectric Gas Sensor with AuPtPd/SnO₂ Catalyst and Effects of a Double Catalyst Structure with Pt/α-Al₂O₃.

    Science.gov (United States)

    Goto, Tomoyo; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2015-12-15

    The CO sensing properties of a micro thermoelectric gas sensor (micro-TGS) with a double AuPtPd/SnO₂ and Pt/α-Al₂O₃ catalyst were investigated. While several nanometer sized Pt and Pd particles were uniformly dispersed on SnO₂, the Au particles were aggregated as particles measuring >10 nm in diameter. In situ diffuse reflectance Fourier transform Infrared spectroscopy (DRIFT) analysis of the catalyst showed a CO adsorption peak on Pt and Pd, but no clear peak corresponding to the interaction between CO and Au was detected. Up to 200 °C, CO combustion was more temperature dependent than that of H₂, while H₂ combustion was activated by repeated exposure to H₂ gas during the periodic gas test. Selective CO sensing of the micro-TGS against H₂ was attempted using a double catalyst structure with 0.3-30 wt% Pt/α-Al₂O₃ as a counterpart combustion catalyst. The sensor output of the micro-TGS decreased with increasing Pt content in the Pt/α-Al₂O₃ catalyst, by cancelling out the combustion heat from the AuPtPd/SnO₂ catalyst. In addition, the AuPtPd/SnO₂ and 0.3 wt% Pt/α-Al₂O₃ double catalyst sensor showed good and selective CO detection. We therefore demonstrated that our micro-TGS with double catalyst structure is useful for controlling the gas selectivity of CO against H₂.

  19. Size-controlled synthesis of SnO{sub 2} quantum dots and their gas-sensing performance

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jianping, E-mail: dujp518@163.com [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Zhao, Ruihua [Shanxi Kunming Tobacco Limited Liability Company, Taiyuan 030012, Shanxi (China); Xie, Yajuan [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Li, Jinping, E-mail: jpli211@hotmail.com [Research Institute of Special Chemicals, Taiyuan University of Technology, Shanxi, 030024 (China)

    2015-08-15

    Graphical abstract: The gas-sensing property of quantum dots is related to their sizes. SnO{sub 2} quantum dots (TQDs) were synthesized and the sizes were controlled by a simple strategy. The results show that controlling QDs size is efficient to detect low-concentration hazardous volatile compounds selectively. - Highlights: • SnO{sub 2} quantum dots with controllable size were synthesized by hydrothermal route. • The sizes of SnO{sub 2} quantum dots (TQDs) were controlled by a simple strategy. • The responses to volatile chemicals strongly depend on the size of quantum dots. • Small-size TQDs exhibit a good selectivity and response to triethylamine. • Controlling size is efficient to detect low-concentration toxic gases selectively. - Abstract: Tin dioxide quantum dots (TQDs) with controllable size were synthesized by changing the amount of alkaline reagent in the hydrothermal process. The gas-sensing properties were investigated by operating chemoresistor type sensor. The morphology and structure were characterized by X-ray diffraction, scanning/transmission electron microscopy, UV–vis and Raman spectrometry. The as-synthesized SnO{sub 2} shows the characteristics of quantum dots and the narrowest size distribution is about 2–3 nm. The gas-sensing results indicate that the responses are strongly dependent on the size of quantum dots. TQDs with different sizes exhibit different sensitivities and selectivities to volatile toxic chemicals such as aldehyde, acetone, methanol, ethanol and amine. Especially, when the sensors are exposed to 100 ppm triethylamine (TEA), the sensing response value of TQDs with small size is two times higher than that of the large-size TQDs. The maximum response values of TQDs to 1 ppm and 100 ppm TEA are 15 and 153, respectively. The response time is 1 s and the recovery time is 47 s upon exposure to 1 ppm TEA. The results suggest that it is an effective method by regulating the size of SnO{sub 2} quantum dots to detect low

  20. Temperature Sensing in Modular Microfluidic Architectures

    Directory of Open Access Journals (Sweden)

    Krisna C. Bhargava

    2016-01-01

    Full Text Available A discrete microfluidic element with integrated thermal sensor was fabricated and demonstrated as an effective probe for process monitoring and prototyping. Elements were constructed using stereolithography and market-available glass-bodied thermistors within the modular, standardized framework of previous discrete microfluidic elements demonstrated in the literature. Flow rate-dependent response due to sensor self-heating and microchannel heating and cooling was characterized and shown to be linear in typical laboratory conditions. An acid-base neutralization reaction was performed in a continuous flow setting to demonstrate applicability in process management: the ratio of solution flow rates was varied to locate the equivalence point in a titration, closely matching expected results. This element potentially enables complex, three-dimensional microfluidic architectures with real-time temperature feedback and flow rate sensing, without application specificity or restriction to planar channel routing formats.

  1. Biomolecule-assisted synthesis and gas-sensing properties of porous nanosheet-based corundum In2O3 microflowers

    International Nuclear Information System (INIS)

    Zhang Wenhui; Zhang Weide

    2012-01-01

    Porous nanosheet-based corundum In 2 O 3 microflowers were fabricated by one-pot hydrothermal treatment of D-fructose and In(NO 3 ) 3 mixture using urea as a precipitating agent followed by calcination. The products were characterized by X-ray diffraction, scanning and transmission electron microscopy. The effects of D-fructose and urea on the fabrication of nanosheet-based corundum In 2 O 3 microflowers were investigated and a possible mechanism is proposed to explain the formation of the hierarchical nanostructures. The gas sensor based on the In 2 O 3 microflowers exhibits excellent sensing properties for the detection of formaldehyde. - Graphical abstract: Nanosheets-based corundum In 2 O 3 microflowers were fabricated by one-pot hydrothermal treatment of D-fructose/In(NO 3 ) 3 mixture followed by calcination, which show high performance for formaldehyde sensing. Highlights: ► Preparation of porous nanosheet-based corundum In 2 O 3 microflowers. ► Morphology and phase control of In 2 O 3 . ► Gas sensor based on the In 2 O 3 microflowers exhibits excellent sensing properties for the detection of formaldehyde.

  2. Studies on Gas Sensing Performance of Cr-doped Indium Oxide Thick Film Sensors

    Directory of Open Access Journals (Sweden)

    D. N. Chavan

    2011-02-01

    Full Text Available A series of In1-xCrxO3 composites, with x ranging from 0.01 to 0.5wt% were prepared by mechanochemically starting from InCl3 and CrO3. Structural and micro structural characteristics of the sample were investigated by XRD, SEM with EDAX. Thick films of pure Indium Oxide and composites were prepared by standard screen printing technique. The gas sensitivity of these thick films was tested for various gases. The pure Indium Oxide thick film (x=0 shows maximum sensitivity to ethanol vapour (80 ppm at 350 oC, but composite-A (x=0.01 thick film shows maximum sensitivity to H2S gas (40 ppm at 250 oC, composite-B (x=0.1 thick film shows higher sensitivity to NH3 gas (80 ppm at 250 oC and composite-C (x=0.5 thick film shows maximum sensitivity to Cl2 gas (80 ppm at 350 oC. A systematic study of gas sensing performance of the sensors indicates the key role played by concentration variation of Cr doped species. The sensitivity, selectivity and recovery time of the sensor were measured and presented.

  3. Fe3O4/γ-Fe2O3 nanoparticle multilayers deposited by the Langmuir-Blodgett technique for gas sensors application.

    Science.gov (United States)

    Capone, S; Manera, M G; Taurino, A; Siciliano, P; Rella, R; Luby, S; Benkovicova, M; Siffalovic, P; Majkova, E

    2014-02-04

    Fe3O4/γ-Fe2O3 nanoparticles (NPs) based thin films were used as active layers in solid state resistive chemical sensors. NPs were synthesized by high temperature solution phase reaction. Sensing NP monolayers (ML) were deposited by Langmuir-Blodgett (LB) techniques onto chemoresistive transduction platforms. The sensing ML were UV treated to remove NP insulating capping. Sensors surface was characterized by scanning electron microscopy (SEM). Systematic gas sensing tests in controlled atmosphere were carried out toward NO2, CO, and acetone at different concentrations and working temperatures of the sensing layers. The best sensing performance results were obtained for sensors with higher NPs coverage (10 ML), mainly for NO2 gas showing interesting selectivity toward nitrogen oxides. Electrical properties and conduction mechanisms are discussed.

  4. Fuel arrangement for high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Tobin, J.M.

    1978-01-01

    Disclosed is a fuel arrangement for a high temperature gas cooled reactor including fuel assemblies with separate directly cooled fissile and fertile fuel elements removably inserted in an elongated moderator block also having a passageway for control elements

  5. A method for calculating the gas volume proportions and inhalation temperature of inert gas mixtures allowing reaching normothermic or hypothermic target body temperature in the awake rat

    Directory of Open Access Journals (Sweden)

    Jacques H Abraini

    2017-01-01

    Full Text Available The noble gases xenon (Xe and helium (He are known to possess neuroprotective properties. Xe is considered the golden standard neuroprotective gas. However, Xe has a higher molecular weight and lower thermal conductivity and specific heat than those of nitrogen, the main diluent of oxygen (O2 in air, conditions that could impair or at least reduce the intrinsic neuroprotective properties of Xe by increasing the critical care patient's respiratory workload and body temperature. In contrast, He has a lower molecular weight and higher thermal conductivity and specific heat than those of nitrogen, but is unfortunately far less potent than Xe at providing neuroprotection. Therefore, combining Xe with He could allow obtaining, depending on the gas inhalation temperature and composition, gas mixtures with neutral or hypothermic properties, the latter being advantageous in term of neuroprotection. However, calculating the thermal properties of a mixture, whatever the substances – gases, metals, rubbers, etc. – is not trivial. To answer this question, we provide a graphical method to assess the volume proportions of Xe, He and O2 that a gas mixture should contain, and the inhalation temperature to which it should be administered to allow a clinician to maintain the patient at a target body temperature.

  6. Study of Influencing Factors of Dynamic Measurements Based on SnO2 Gas Sensor

    Directory of Open Access Journals (Sweden)

    Jinhuai Liu

    2004-08-01

    Full Text Available Abstract: The gas-sensing behaviour based on a dynamic measurement method of a single SnO2 gas sensor was investigated by comparison with the static measurement. The influencing factors of nonlinear response such as modulation temperature, duty ratio, heating waveform (rectangular, sinusoidal, saw-tooth, pulse, etc. were also studied. Experimental data showed that temperature was the most essential factor because the changes of frequency and heating waveform could result in the changes of temperature essentially.

  7. Modular high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shepherd, L.R.

    1988-01-01

    The high financial risk involved in building large nuclear power reactors has been a major factor in halting investment in new plant and in bringing further technical development to a standstill. Increased public concern about the safety of nuclear plant, particularly after Chernobyl, has contributed to this stagnation. Financial and technical risk could be reduced considerably by going to small modular units, which would make it possible to build up power station capacity in small steps. Such modular plant, based on the helium-cooled high temperature reactor (HTR), offers remarkable advantages in terms of inherent safety characteristics, partly because of the relatively small size of the individual modules but more on account of the enormous thermal capacity and high temperature margins of the graphitic reactor assemblies. Assessments indicate that, in the USA, the cost of power from the modular systems would be less than that from conventional single reactor plant, up to about 600 MW(e), and only marginally greater above that level, a margin that should be offset by the shorter time required in bringing the modular units on line to earn revenue. The modular HTR would be particularly appropriate in the UK, because of the considerable British industrial background in gas-cooled reactors, and could be a suitable replacement for Magnox. The modular reactor would be particularly suited to combined heat and power schemes and would offer great potential for the eventual development of gas turbine power conversion and the production of high-temperature process heat. (author)

  8. Low-temperature solution processing of palladium/palladium oxide films and their pH sensing performance.

    Science.gov (United States)

    Qin, Yiheng; Alam, Arif U; Pan, Si; Howlader, Matiar M R; Ghosh, Raja; Selvaganapathy, P Ravi; Wu, Yiliang; Deen, M Jamal

    2016-01-01

    Highly sensitive, easy-to-fabricate, and low-cost pH sensors with small dimensions are required to monitor human bodily fluids, drinking water quality and chemical/biological processes. In this study, a low-temperature, solution-based process is developed to prepare palladium/palladium oxide (Pd/PdO) thin films for pH sensing. A precursor solution for Pd is spin coated onto pre-cleaned glass substrates and annealed at low temperature to generate Pd and PdO. The percentages of PdO at the surface and in the bulk of the electrodes are correlated to their sensing performance, which was studied by using the X-ray photoelectron spectroscope. Large amounts of PdO introduced by prolonged annealing improve the electrode's sensitivity and long-term stability. Atomic force microscopy study showed that the low-temperature annealing results in a smooth electrode surface, which contributes to a fast response. Nano-voids at the electrode surfaces were observed by scanning electron microscope, indicating a reason for the long-term degradation of the pH sensitivity. Using the optimized annealing parameters of 200°C for 48 h, a linear pH response with sensitivity of 64.71±0.56 mV/pH is obtained for pH between 2 and 12. These electrodes show a response time shorter than 18 s, hysteresis less than 8 mV and stability over 60 days. High reproducibility in the sensing performance is achieved. This low-temperature solution-processed sensing electrode shows the potential for the development of pH sensing systems on flexible substrates over a large area at low cost without using vacuum equipment. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. A Comparison of Thermal Models for Temperature Profiles in Gas-Lift Wells

    Directory of Open Access Journals (Sweden)

    Langfeng Mu

    2018-02-01

    Full Text Available Gas lift is a simple, reliable artificial lift method which is frequently used in offshore oil field developments. In order to enhance the efficiency of production by gas lift, it is vital to exactly predict the distribution of temperature-field for fluid within the wellbore. A new mechanistic model is developed for computing flowing fluid temperature profiles in both conduits simultaneously for a continuous-flow gas-lift operation. This model assumes steady heat transfer in the formation, as well as steady heat transfer in the conduits. A micro-units discrete from the wellbore, whose heat transfer process is analyzed and whose heat transfer equation is set up according to the law of conservation of energy. A simplified algebraic solution to our model is conducted to analyze the temperature profile. Sensitivity analysis was conducted with the new model. The results indicate that mass flow rate of oil and the tubing overall heat transfer coefficient are the main factors that influence the temperature distribution inside the tubing and that the mass flow rate of oil is the main factor affecting temperature distribution in the annulus. Finally, the new model was tested in three various wells and compared with other models. The results showed that the new model is more accurate and provides significant references for temperature prediction in gas lift well.

  10. Carbon materials-functionalized tin dioxide nanoparticles toward robust, high-performance nitrogen dioxide gas sensor.

    Science.gov (United States)

    Zhang, Rui; Liu, Xiupeng; Zhou, Tingting; Wang, Lili; Zhang, Tong

    2018-08-15

    Carbon (C) materials, which process excellent electrical conductivity and high carrier mobility, are promising sensing materials as active units for gas sensors. However, structural agglomeration caused by chemical processes results in a small resistance change and low sensing response. To address the above issues, structure-derived carbon-coated tin dioxide (SnO 2 ) nanoparticles having distinct core-shell morphology with a 3D net-like structure and highly uniform size are prepared by careful synthesis and fine structural design. The optimum carbon-coated SnO 2 nanoparticles (SnO 2 /C)-based gas sensor exhibits a low working temperature, excellent selectivity and fast response-recovery properties. In addition, the SnO 2 /C-based gas sensor can maintain a sensitivity to nitrogen dioxide (NO 2 ) of 3 after being cycled 4 times at 140 °C for, suggesting its good long-term stability. The structural integrity, good synergistic properties, and high gas-sensing performance of SnO 2 /C render it a promising sensing material for advanced gas sensors. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Preparation and characterization of ALD deposited ZnO thin films studied for gas sensors

    Energy Technology Data Exchange (ETDEWEB)

    Boyadjiev, S.I., E-mail: boiajiev@gmail.com [MTA-BME Technical Analytical Chemistry Research Group, Szent Gellért tér 4, Budapest, H-1111 (Hungary); Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia (Bulgaria); Georgieva, V. [Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia (Bulgaria); Yordanov, R. [Department of Microelectronics, Technical University of Sofia, 8 Kliment Ohridski Blvd., 1756 Sofia (Bulgaria); Raicheva, Z. [Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia (Bulgaria); Szilágyi, I.M. [MTA-BME Technical Analytical Chemistry Research Group, Szent Gellért tér 4, Budapest, H-1111 (Hungary); Budapest University of Technology and Economics, Department of Inorganic and Analytical Chemistry, Szent Gellért tér 4, Budapest, H-1111 (Hungary)

    2016-11-30

    Highlights: • For the first time the gas sensing towards NO{sub 2} of very thin ALD ZnO films is studied. • The very thin ALD ZnO films showed excellent sensitivity to NO{sub 2} at room temperature. • These very thin film ZnO-based QCM sensors very well register even low concentrations. • The sensors have fully reversible sorption and are able to be recovered in short time. • Described fast and cost-effective ALD deposition of ZnO thin films for QCM gas sensor. - Abstract: Applying atomic layer deposition (ALD), very thin zinc oxide (ZnO) films were deposited on quartz resonators, and their gas sensing properties were studied using the quartz crystal microbalance (QCM) method. The gas sensing of the ZnO films to NO{sub 2} was tested in the concentration interval between 10 and 5000 ppm. On the basis of registered frequency change of the QCM, for each concentration the sorbed mass was calculated. Further characterization of the films was carried out by various techniques, i.e. by SEM-EDS, XRD, ellipsometry, and FTIR spectroscopy. Although being very thin, the films were gas sensitive to NO{sub 2} already at room temperature and could register very well as low concentrations as 100 ppm, while the sorption was fully reversible. Our results for very thin ALD ZnO films show that the described fast, simple and cost-effective technology could be implemented for producing gas sensors working at room temperature and being capable to detect in real time low concentrations of NO{sub 2}.

  12. Magnesium ferrite nanoparticles: a rapid gas sensor for alcohol

    Science.gov (United States)

    Godbole, Rhushikesh; Rao, Pratibha; Bhagwat, Sunita

    2017-02-01

    Highly porous spinel MgFe2O4 nanoparticles with a high specific surface area have been successfully synthesized by a sintering free auto-combustion technique and characterized for their structural and surface morphological properties using XRD, BET, TEM and SEM techniques. Their sensing properties to alcohol vapors viz. ethanol and methanol were investigated. The site occupation of metal ions was investigated by VSM. The as-synthesized sample shows the formation of sponge-like porous material which is necessary for gas adsorption. The gas sensing characteristics were obtained by measuring the gas response as a function of operating temperature, concentration of the gas, and the response-recovery time. The response of magnesium ferrite to ethanol and methanol vapors was compared and it was revealed that magnesium ferrite is more sensitive and selective to ethanol vapor. The sensor operates at a substantially low vapor concentration of about 1 ppm of alcohol vapors, exhibits fantastic response reproducibility, long term reliability and a very fast response and recovery property. Thus the present study explored the possibility of making rapidly responding alcohol vapor sensor based on magnesium ferrite. The sensing mechanism has been discussed in co-relation with magnetic and morphological properties. The role of occupancy of Mg2+ ions in magnesium ferrite on its gas sensing properties has also been studied and is found to influence the response of magnesium ferrite ethanol sensor.

  13. Nuclear power for coexistence with nature, high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko

    1996-01-01

    Until this century, it is sufficient to aim at the winner of competition in human society to obtain resources, and to entrust waste to natural cleaning action. However, the expansion of social activities has been too fast, and the scale has become too large, consequently, in the next century, the expansion of social activities will be caught by the structure of trilemma that is subjected to the strong restraint and selection from the problems of finite energy and resources and environment preservation. In 21st century, the problems change to those between mankind and nature. Energy supply and population increase, envrionment preservation and human activities, and the matters that human wisdom should bear regarding energy technology are discussed. In Japan, the construction of the high temperature engineering test reactor (HTTR) is in progress. The design of high temperature gas-cooled reactors and their features on the safety are explained. The capability of reducing CO 2 release of high temperature gas-cooled reactors is reported. In future, it is expected that the time of introducing high temperature gas-cooled reactors will come. (K.I.)

  14. Mechanical Property and Its Comparison of Superalloys for High Temperature Gas Cooled Reactor

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Kim, D. W.; Ryu, W. S.; Han, C. H.; Yoon, J. H.; Chang, J.

    2005-01-01

    Since structural materials for high temperature gas cooled reactor are used during long period in nuclear environment up to 1000 .deg. C, it is important to have good properties at elevated temperature such as mechanical properties (tensile, creep, fatigue, creep-fatigue), microstructural stability, interaction between metal and gas, friction and wear, hydrogen and tritium permeation, irradiation behavior, corrosion by impurity in He. Thus, in order to select excellent materials for the high temperature gas cooled reactor, it is necessary to understand the material properties and to gather the data for them. In this report, the items related to material properties which are needed for designing the high temperature gas cooled reactor were presented. Mechanical properties; tensile, creep, and fatigue etc. were investigated for Haynes 230, Hastelloy-X, In 617 and Alloy 800H, which can be used as the major structural components, such as intermediate heat exchanger (IHX), hot duct and piping and internals. Effect of He and irradiation on these structural materials was investigated. Also, mechanical properties; physical properties, tensile properties, creep and creep crack growth rate were compared for them, respectively. These results of this report can be used as important data to select superior materials for high temperature gas reactor

  15. Swift heavy ion irradiated SnO_2 thin film sensor for efficient detection of SO_2 gas

    International Nuclear Information System (INIS)

    Tyagi, Punit; Sharma, Savita; Tomar, Monika; Singh, Fouran; Gupta, Vinay

    2016-01-01

    Highlights: • Response of Ni"7"+ ion irradiated (100 MeV) SnO_2 film have been performed. • Effect of irradiation on the structural and optical properties of SnO_2 film is studied. • A decrease in operating temperature and increased response is seen after irradiation. - Abstract: Gas sensing response studies of the Ni"7"+ ion irradiated (100 MeV) and non-irradiated SnO_2 thin film sensor prepared under same conditions have been performed towards SO_2 gas (500 ppm). The effect of irradiation on the structural, surface morphological, optical and gas sensing properties of SnO_2 thin film based sensor have been studied. A significant decrease in operating temperature (from 220 °C to 60 °C) and increased sensing response (from 1.3 to 5.0) is observed for the sample after irradiation. The enhanced sensing response obtained for the irradiated SnO_2 thin film based sensor is attributed to the desired modification in the surface morphology and material properties of SnO_2 thin film by Ni"7"+ ions.

  16. Evaluation of a Novel Temperature Sensing Probe for Monitoring and Controlling Glass Temperature in a Joule-Heated Glass Melter

    International Nuclear Information System (INIS)

    Watkins, A. D.; Musick, C. A.; Cannon, C.; Carlson, N. M.; Mullenix, P.D.; Tillotson, R. D.

    1999-01-01

    A self-verifying temperature sensor that employs advanced contact thermocouple probe technology was tested in a laboratory-scale, joule-heated, refractory-lined glass melter used for radioactive waste vitrification. The novel temperature probe monitors melt temperature at any given level of the melt chamber. The data acquisition system provides the real-time temperature for molten glass. Test results indicate that the self-verifying sensor is more accurate and reliable than classic platinum/rhodium thermocouple and sheath assemblies. The results of this test are reported as well as enhancements being made to the temperature probe. To obtain more reliable temperature measurements of the molten glass for improving production efficiency and ensuring consistent glass properties, optical sensing was reviewed for application in a high temperature environment

  17. A simple large-scale synthesis of mesoporous In_2O_3 for gas sensing applications

    International Nuclear Information System (INIS)

    Zhang, Su; Song, Peng; Yan, Huihui; Yang, Zhongxi; Wang, Qi

    2016-01-01

    Graphical abstract: Large-scale mesoporous In_2O_3 nanostructures for gas-sensing applications were successfully fabricated via a facile Lewis acid catalytic the furfural alcohol resin template route. - Highlights: • Mesoporous In_2O_3 nanostructures with high-yield have been successfully fabricated via a facile strategy. • The microstructure and formation mechanism of mesoporous In_2O_3 nanostructures were discussed based on the experimental results. • The as-prepared In_2O_3 samples exhibited high response, short response-recovery times and good selectivity to ethanol gas. - Abstract: In this paper, large-scale mesoporous In_2O_3 nanostructures were synthesized by a facile Lewis acid catalytic the furfural alcohol resin (FAR) template route for the high-yield. Their morphology and structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential thermal and thermogravimetry analysis (DSC-TG) and the Brunauer-Emmett-Teller (BET) approach. The as-obtained mesoporous In_2O_3 nanostructures possess excellent mesoporous and network structure, which increases the contact area with the gases, it is conducive for adsorption-desorption of gas on the surface of In_2O_3. The In_2O_3 particles and pores were both about 15 nm and very uniform. In gas-sensing measurements with target gases, the gas sensor based on mesoporous In_2O_3 nanostructures showed a good response, short response-recovery time, good selectivity and stability to ethanol. These properties are due to the large specific surface area of mesoporous structure. This synthetic method could use as a new design concept for functional mesoporous nanomaterials and for mass production.

  18. Effect of Ni Doping on Gas Sensing Performance of ZnO Thick Film Resistor

    Directory of Open Access Journals (Sweden)

    M. K. DEORE

    2010-11-01

    Full Text Available This work investigates the use of ZnO-NiO as a H2S metal oxide thick film gas sensor. To find the optimum ratio of NiO to ZnO, two compositions were prepared using different molecular percentages and prepared as a thick film paste. These pastes were then screen-printed onto glass substrates with suitable binder. The final composition of each film was determined using SEM analysis. The films were used to detect CO, CL2, ethanol, Amonia and H2S. For each composition tested, the highest responses where displayed for H2S gas. The Thick film having composition of equal molar ZnO and NiO shows the highest response at operating temp. 350 0C for 100 ppm level. The gas response, selectivity, response and recovery time of the sensor were measured and presented. The role played by NiO species is to improve the gas sensing performance is discussed.

  19. In-situ study of the gas-phase composition and temperature of an intermediate-temperature solid oxide fuel cell anode surface fed by reformate natural gas

    Science.gov (United States)

    Santoni, F.; Silva Mosqueda, D. M.; Pumiglia, D.; Viceconti, E.; Conti, B.; Boigues Muñoz, C.; Bosio, B.; Ulgiati, S.; McPhail, S. J.

    2017-12-01

    An innovative experimental setup is used for in-depth and in-operando characterization of solid oxide fuel cell anodic processes. This work focuses on the heterogeneous reactions taking place on a 121 cm2 anode-supported cell (ASC) running with a H2, CH4, CO2, CO and steam gas mixture as a fuel, using an operating temperature of 923 K. The results have been obtained by analyzing the gas composition and temperature profiles along the anode surface in different conditions: open circuit voltage (OCV) and under two different current densities, 165 mA cm-2 and 330 mA cm-2, corresponding to 27% and 54% of fuel utilization, respectively. The gas composition and temperature analysis results are consistent, allowing to monitor the evolution of the principal chemical and electrochemical reactions along the anode surface. A possible competition between CO2 and H2O in methane internal reforming is shown under OCV condition and low current density values, leading to two different types of methane reforming: Steam Reforming and Dry Reforming. Under a current load of 40 A, the dominance of exothermic reactions leads to a more marked increase of temperature in the portion of the cell close to the inlet revealing that current density is not uniform along the anode surface.

  20. Atmospheric aerosol and gas sensing using Scheimpflug lidar

    Science.gov (United States)

    Mei, Liang; Brydegaard, Mikkel

    2015-04-01

    This work presents a new lidar technique for atmospheric remote sensing based on Scheimpflug principle, which describes the relationship between nonparallel image- and object-planes[1]. When a laser beam is transmitted into the atmosphere, the implication is that the backscattering echo of the entire illuminated probe volume can be in focus simultaneously without diminishing the aperture. The range-resolved backscattering echo can be retrieved by using a tilted line scan or two-dimensional CCD/CMOS camera. Rather than employing nanosecond-pulsed lasers, cascade detectors, and MHz signal sampling, all of high cost and complexity, we have developed a robust and inexpensive atmospheric lidar system based on compact laser diodes and array detectors. We present initial applications of the Scheimpflug lidar for atmospheric aerosol monitoring in bright sunlight, with a 3 W, 808 nm CW laser diode. Kilohertz sampling rates are also achieved with applications for wind speed and entomology [2]. Further, a proof-of-principle demonstration of differential absorption lidar (DIAL) based on the Scheimpflug lidar technique is presented [3]. By utilizing a 30 mW narrow band CW laser diode emitting at around 760 nm, the detailed shape of an oxygen absorption line can be resolved remotely with an integration time of 6 s and measurement cycle of 1 minute during night time. The promising results demonstrated in this work show potential for the Scheimpflug lidar technique for remote atmospheric aerosol and gas sensing, and renews hope for robust and realistic instrumentation for atmospheric lidar sensing. [1] F. Blais, "Review of 20 years of range sensor development," Journal of Electronic Imaging, vol. 13, pp. 231-243, Jan 2004. [2] M. Brydegaard, A. Gebru, and S. Svanberg, "Super resolution laser radar with blinking atmospheric particles - application to interacting flying insects " Progress In Electromagnetics Research, vol. 147, pp. 141-151, 2014. [3] L. Mei and M. Brydegaard