WorldWideScience

Sample records for temperature gas phase

  1. The Influence of Mixing in High Temperature Gas Phase Reactions

    DEFF Research Database (Denmark)

    Østberg, Martin

    1996-01-01

    The objective of this thesis is to describe the mixing in high temperature gas phase reactions.The Selective Non-Catalytic Reduction of NOx (referred as the SNR process) using NH3 as reductant was chosen as reaction system. This in-furnace denitrification process is made at around 1200 - 1300 K b....... For temperatures below 1200 K the NO outlet concentration is unaffected because of lower reaction rates.The droplet diffusion model is used to model the experimental results and it can describe the influence of the carrier gas flow with a successful result....... to the injected gas as well.The effects of the NH3 flow and natural gas addition were as expected from earlier studies in laboratory reactors and pilot plants.The experiments indicates that the SNR process was only dependent on the O2 concentration in the flue gas without any effect due to variation of the O2...... concentrations in the injected gas between 0 - 20 vol%.Using a nozzle with a diameter of 1.9 mm the reduction of NO is dependent on the carrier gas flow for temperatures above 1200 K (1100 K when natural gas is added).It is shown that this effect can not be described by macromixing using a simple reactor model...

  2. Determining magnetic phase transitions temperatures in working magnetocaloric coolers bodies and gas cryorefrigerators regenerators

    Science.gov (United States)

    Karagusov, V. I.; Mayankov, I. V.

    2017-08-01

    Due to magnetic phase transitions rare-earth materials possess unique properties near the Curie and Neel temperatures, such as the magneto-caloric effect, the abnormally high heat capacity, the magnetic susceptibility and permeability extremes. Using rare earth materials in gas cryogenic refrigerators regenerators increases the efficiency, reduces the power consumption and allows reaching helium temperatures. The magneto-caloric effect has also extreme values near the Curie and Neel temperatures. The paper presents theoretical and experimental methods allowing to determine magnetic phase transitions temperatures in a wide range of low temperature materials with a various rare-earth components content and expected thermophysical properties of a certain rare-earth materials composition at the temperatures based on starting pure metals characteristics. The results analysis has shown that magnetic phase transitions temperatures are a linear function of the components concentration. Moreover, heat capacity values and MCE also depend linearly on the starting components concentration, which simplifies calculations significantly.

  3. High temperature thermal storage for solar gas turbines using encapsulated phase change materials

    CSIR Research Space (South Africa)

    Klein, P

    2014-01-01

    Full Text Available The development of high temperature thermal storage systems is required to increase the solar share of solar-hybrid gas turbine cycles. This paper proposes a pressurised packed bed of Encapsulated Phase Change Materials (EPCM) as a thermal storage...

  4. Solid-Fluid Phase Equilibria for Natural Gas Processing at Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Longman

    2012-07-01

    Precipitation and deposition of solid components create potential risks of blocking gas passages in processes such as in LNG plants. To avoid such risks, experimental data and modelling of solid-fluid equilibrium should be used to optimize the design and operations. The objective of this work was to get a better understanding of the fundamentals of solid-fluid phase equilibrium. The specific focus of this work was to study solid-fluid phase behavior in systems of solid Co2, heavy hydrocarbons(HHC) and hydrate in equilibria with natural gas at low temperatures.Experimental methods for measuring solid-fluid equilibrium data in natural gas systems at low temperatures were extensively reviewed, and important and practical issues for designing experimental systems were summarized. The frost points in the Co2-methane systems (Co2 mole fraction 0.108 to 0.542) were measured in this work. Meanwhile, in another experimental setup, the water content in the gas phase was measured in the hydratemethane and hydrate-natural gas systems down to temperature 238.15 K. These data, together with data from other researchers, were used to verify the thermodynamic models. It is expensive and time-consuming to get experimental data at low temperatures, thus it is important to verify and use thermodynamic models to predict the solid-fluid phase behaviors. In the systems of solid Co2 and HHC in equilibrium with natural gas systems, the Soave-Redlich-Kwong (SRK) Equation of State (EOS) and simplified Perturbed-Chain Statistic Associating Fluid Theory (sPC-SAFT) EOS were used to calculate the fugacities in fluid phases. For solid phase, one fugacity model based on sublimation pressures and one model based on subcooled liquid were used. For correlating and predicting the hydrate behaviors, the Cubic-Plus-Association (CPA)EOS was used to model fluid phases and the hydrate-forming conditions were modelled by the solid solution theory of van der Waals and Platteeuw. Examples of applications of

  5. An improved stochastic algorithm for temperature-dependent homogeneous gas phase reactions

    CERN Document Server

    Kraft, M

    2003-01-01

    We propose an improved stochastic algorithm for temperature-dependent homogeneous gas phase reactions. By combining forward and reverse reaction rates, a significant gain in computational efficiency is achieved. Two modifications of modelling the temperature dependence (with and without conservation of enthalpy) are introduced and studied quantitatively. The algorithm is tested for the combustion of n-heptane, which is a reference fuel component for internal combustion engines. The convergence of the algorithm is studied by a series of numerical experiments and the computational cost of the stochastic algorithm is compared with the DAE code DASSL. If less accuracy is needed the stochastic algorithm is faster on short simulation time intervals. The new stochastic algorithm is significantly faster than the original direct simulation algorithm in all cases considered.

  6. Phase transitions and steady-state microstructures in a two-temperature lattice-gas model with mobile active impurities

    DEFF Research Database (Denmark)

    Henriksen, Jonas Rosager; Sabra, Mads Christian; Mouritsen, Ole G.

    2000-01-01

    The nonequilibrium, steady-state phase transitions and the structure of the different phases of a two-dimensional system with two thermodynamic temperatures are studied via a simple lattice-gas model with mobile active impurities ("hot/cold spots'') whose activity is controlled by an external drive....... The properties of the model are calculated by Monte Carlo computer-simulation techniques. The two temperatures and the external drive on the system lead to a rich phase diagram including regions of microstructured phases in addition to macroscopically ordered (phase-separated) and disordered phases. Depending...

  7. Gas-Phase Thermolyses

    DEFF Research Database (Denmark)

    Carlsen, Lars; Egsgaard, Helge

    1982-01-01

    The unimolecular gas-phase thermolyses of the four methyl and ethyl monothioacetates (5)–(8) have been studied by the flash vacuum thermolysis–field ionization mass spectrometry technique in the temperature range 883–1 404 K. The types of reactions verified were keten formation, thiono–thiolo rea...

  8. Reactive and inelastic processes in the gas-phase at ultra-low temperatures

    CERN Document Server

    Chastaing, D

    2000-01-01

    This thesis reports the gas-phase kinetic study of reactions between neutral species of astrophysical importance, over a wide range of temperatures, from 295 K down to 15 K. Such extremely low temperatures were provided by the CRESU technique (Cinetique de Reaction en Ecoulement Supersonique Uniforme or Reaction Kinetics in Uniform Supersonic Flow). The kinetics of the reactions of ethynyl radical (C sub 2 H) with oxygen (O sub 2) and unsaturated hydrocarbons (C sub 2 H sub 2 , C sub 2 H sub 4 , C sub 3 H sub 6) has been investigated for the first time down to such extremely low temperatures, using a laser photolysis - chemiluminescence technique. Rate coefficients of the reactions of ground state carbon atom with O sub 2 , NO, C sub 2 H sub 2 , C sub 2 H sub 4 and the two C sub 3 H sub 4 isomers (allene and methyl acetylene) have been measured, using a direct detection technique (laser induced fluorescence). These investigations are of particular interest for the improvement of theoretical models which seek ...

  9. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 1 covers papers on the advances of gas phase ion chemistry. The book discusses the advances in flow tubes and the measurement of ion-molecule rate coefficients and product distributions; the ion chemistry of the earth's atmosphere; and the classical ion-molecule collision theory. The text also describes statistical methods in reaction dynamics; the state selection by photoion-photoelectron coincidence; and the effects of temperature and pressure in the kinetics of ion-molecule reactions. The energy distribution in the unimolecular decomposition of ions, as well

  10. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 2 covers the advances in gas phase ion chemistry. The book discusses the stabilities of positive ions from equilibrium gas-phase basicity measurements; the experimental methods used to determine molecular electron affinities, specifically photoelectron spectroscopy, photodetachment spectroscopy, charge transfer, and collisional ionization; and the gas-phase acidity scale. The text also describes the basis of the technique of chemical ionization mass spectrometry; the energetics and mechanisms of unimolecular reactions of positive ions; and the photodissociation

  11. The impact of temperature and gas-phase oxygen on kinetics of in situ ammonia removal in bioreactor landfill leachate.

    Science.gov (United States)

    Berge, Nicole D; Reinhart, Debra R; Dietz, John D; Townsend, Tim

    2007-05-01

    Microcosm experiments aimed at defining a rate equation that describes how different environmental conditions (i.e., gas-phase oxygen concentrations, temperature and ammonia concentration) may impact in situ ammonia removal were conducted. Results indicate that ammonia removal can readily occur at various gas-phase oxygen levels (between 0.7% and 100%) and over a range of temperatures (22, 35 and 45 degrees C). Slowest rates occurred with lower gas-phase oxygen concentrations. All rate data, except at 45 degrees C and 5% oxygen, fit well (r2=0.75) to a multiplicative Monod equation with terms describing the impact of oxygen, pH, temperature and ammonia concentration. All ammonia half-saturation values are relatively high when compared to those generally found in wastewater treatment, suggesting that the rate may be affected by the mass transfer of oxygen and/or ammonia. Additionally, as the temperature increases, the ammonia half-saturation value also increases. The multiplicative Monod model developed can be used to aid in designing and operating field-scale studies.

  12. Effect of Machine Smoking Intensity and Filter Ventilation Level on Gas-Phase Temperature Distribution Inside a Burning Cigarette

    Directory of Open Access Journals (Sweden)

    Li Bin

    2015-01-01

    Full Text Available Accurate measurements of cigarette coal temperature are essential to understand the thermophysical and thermo-chemical processes in a burning cigarette. The last system-atic studies of cigarette burning temperature measurements were conducted in the mid-1970s. Contemporary cigarettes have evolved in design features and multiple standard machine-smoking regimes have also become available, hence there is a need to re-examine cigarette combustion. In this work, we performed systematic measurements on gas-phase temperature of burning cigarettes using an improved fine thermocouple technique. The effects of machine-smoking parameters (puff volume and puff duration and filter ventilation levels were studied with high spatial and time resolutions during single puffs. The experimental results were presented in a number of differ-ent ways to highlight the dynamic and complex thermal processes inside a burning coal. A mathematical distribution equation was used to fit the experimental temperature data. Extracting and plotting the distribution parameters against puffing time revealed complex temperature profiles under different coal volume as a function of puffing intensities or filter ventilation levels. By dividing the coal volume prior to puffing into three temperature ranges (low-temperature from 200 to 400 °C, medium-temperature from 400 to 600 °C, and high-temperature volume above 600 °C by following their development at different smoking regimes, useful mechanistic details were obtained. Finally, direct visualisation of the gas-phase temperature through detailed temperature and temperature gradient contour maps provided further insights into the complex thermo-physics of the burning coal. [Beitr. Tabakforsch. Int. 26 (2014 191-203

  13. Gas-Phase Thermolyses

    DEFF Research Database (Denmark)

    Carlsen, Lars; Egsgaard, Helge

    1982-01-01

    The unimolecular gas-phase thermolyses of 1,2,3-oxadithiolan 2-oxide and thiiran 1-oxide have been studied by the flash vacuum thermolysis–field ionization mass spectrometry (f.v.t.–f.i.m.s.) technique in the temperature range from 1 043 to 1 404 K. The reactions are rationalized in terms...... of sulphoxide–sulphenate rearrangement and atomic oxygen, sulphur monoxide, and sulphur dioxide extrusions. Evidence is presented for the common intermediacy of 1,2-oxathietan from the thermolyses of both 1,2,3-oxadithiolan 2-oxide and thiiran 1-oxide....

  14. Investigation of Thermographic Phosphors for Gas-Phase Temperature Measurements in Combustion Applications

    Science.gov (United States)

    Witkowski, Dustin

    The feasibility of a planar gas temperature diagnostic, termed aerosol phosphor thermometry (APT), was investigated for combustion applications. APT has several advantages over other thermometry methods, such as the potential to measure both the reactants and products of a combusting flow, and the capability of providing simultaneous spatially-resolved planar temperature and velocity measurements. Unfortunately, thermal quenching of the phosphor signal due to nonradiative relaxation at elevated temperatures has limited the state-of-the-art for accurate single-shot APT to measurements below approximately 800 K. Therefore, the primary focus of this work was to establish a methodology that utilizes configurational coordinate diagrams in combination with host-referred binding energy diagrams to systematically select new phosphors for high-temperature thermometry applications. Oxide hosts doped with trivalent ions were investigated, and based on the analysis Ce3+ doped ortho-phosphates were selected for testing. All selected phosphors had high measured quenching temperatures (T50>800 K), partially validating the methodology. One particular phosphor, Ce:GdPO4, had a quenching temperature of T50=1000 K and demonstrated usable signal levels out to 1300 K, representing a substantial improvement on the current state-of-the-art from a temperature quenching perspective. Following this, an experimental setup designed to characterize the properties of thermographic phosphors in an environment representative of APT applications was presented. Luminescence imaging and spectrally-resolved measurements of aerosolized phosphor particles in a seeded jet were presented. A significant result of this work was the ability to quantitatively assess systematic errors due to radiative trapping in the measured spectra of the furnace by making a head-to-head comparison with data collected in the jet. Finally, the current viability of APT for high-temperature applications was assessed by using

  15. Liquid phase low temperature method for production of methanol from synthesis gas and catalyst formulations therefor

    Science.gov (United States)

    Mahajan, Devinder

    2005-07-26

    The invention provides a homogenous catalyst for the production of methanol from purified synthesis gas at low temperature and low pressure which includes a transition metal capable of forming transition metal complexes with coordinating ligands and an alkoxide, the catalyst dissolved in a methanol solvent system, provided the transition metal complex is not transition metal carbonyl. The coordinating ligands can be selected from the group consisting of N-donor ligands, P-donor ligands, O-donor ligands, C-donor ligands, halogens and mixtures thereof.

  16. Quantitative Temperature Imaging in Gas-Phase Turbulent Thermal Convection by Laser-Induced Fluorescence of Acetone

    Energy Technology Data Exchange (ETDEWEB)

    KEARNEY,SEAN P.; REYES,FELIPE V.

    2000-12-13

    In this paper, an acetone planar laser-induced fluorescence (PLIF) technique for nonintrusive, temperature imaging is demonstrated in gas-phase (Pr = 0.72) turbulent Rayleigh-Benard convection at Rayleigh number, Ra = 1.3 x 10{sup 5}. The PLIF technique provides quantitative, spatially correlated temperature data without the flow intrusion or time lag associated with physical probes and without the significant path averaging that plagues most optical heat-transfer diagnostic tools, such as the Mach-Zehnder interferometer, thus making PLIF an attractive choice for quantitative thermal imaging in easily perturbed, complex three-dimensional flow fields. The instantaneous (20-ns integration time) thermal images presented have a spatial resolution of 176 x 176 x 500 {micro}m and a single-pulse temperature measurement precision of {+-}5.5 K, or 5.4 % of the total temperature difference. These images represent a 2-D slice through a complex, 3-D flow allowing for the thermal structure of the turbulence to be quantified. Statistics such as the horizontally averaged temperature profile, rms temperature fluctuation, two-point spatial correlations, and conditionally averaged plume structures are computed from an ensemble of 100 temperature images. The profiles of the mean temperature and rms temperature fluctuation are in good agreement with previously published data, and the results obtained from the two-point spatial correlations and conditionally averaged temperature fields show the importance of large-scale coherent structures in this turbulent flow.

  17. In-situ study of the gas-phase composition and temperature of an intermediate-temperature solid oxide fuel cell anode surface fed by reformate natural gas

    Science.gov (United States)

    Santoni, F.; Silva Mosqueda, D. M.; Pumiglia, D.; Viceconti, E.; Conti, B.; Boigues Muñoz, C.; Bosio, B.; Ulgiati, S.; McPhail, S. J.

    2017-12-01

    An innovative experimental setup is used for in-depth and in-operando characterization of solid oxide fuel cell anodic processes. This work focuses on the heterogeneous reactions taking place on a 121 cm2 anode-supported cell (ASC) running with a H2, CH4, CO2, CO and steam gas mixture as a fuel, using an operating temperature of 923 K. The results have been obtained by analyzing the gas composition and temperature profiles along the anode surface in different conditions: open circuit voltage (OCV) and under two different current densities, 165 mA cm-2 and 330 mA cm-2, corresponding to 27% and 54% of fuel utilization, respectively. The gas composition and temperature analysis results are consistent, allowing to monitor the evolution of the principal chemical and electrochemical reactions along the anode surface. A possible competition between CO2 and H2O in methane internal reforming is shown under OCV condition and low current density values, leading to two different types of methane reforming: Steam Reforming and Dry Reforming. Under a current load of 40 A, the dominance of exothermic reactions leads to a more marked increase of temperature in the portion of the cell close to the inlet revealing that current density is not uniform along the anode surface.

  18. Anomalous temperature dependence of gas chromatographic retention indices of polar compounds on non-polar stationary phases.

    Science.gov (United States)

    Pavlovskii, Alexander A; Héberger, Károly; Zenkevich, Igor G

    2016-05-06

    Increasing the reliability of both GC and GC-MS identification requires appropriate interlaboratory reproducibility of gas chromatographic retention indices (I). Known temperature dependence, I(T), is the main source of non-reproducibility of these parameters. It can be approximated with a simple linear function I(T). However, since mid-1990s-beginning of 2000s some examples of anomalous temperature dependence, I(T), preferably for polar analytes on non-polar stationary phases were revealed independently by different authors. The effect implies the variations in the sign of the temperature coefficients β=dI/dT for selected compounds and, hence, the appearance of the I-extrema (usually, minima). The current work provides evidence that the character of the anomalous I(Т) dependences (ascending, descending, or with extrema) is strongly influenced by the amounts of analytes injected into the chromatographic column, but these anomalies appeared not to be connected directly with the mass overloading of separation systems. The physicochemical model is proposed to describe the observed anomalies of I(T) dependence. This model is based on three previously known principles of chromatography, namely: The superposition of these objectives allows understanding both the unusual temperature dependence of retention indices, and the influence of the amounts of polar analytes injected into GC column on the parameters of this dependence. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Comparisons of Gas-phase Temperature Measurements in a Flame Using Thin-Filament Pyrometry and Thermocouples

    Science.gov (United States)

    Struk, Peter; Dietrich, Daniel; Valentine, Russell; Feier, Ioan

    2003-01-01

    Less-intrusive, fast-responding, and full-field temperature measurements have long been a desired tool for the research community. Recently, the emission of a silicon-carbide (SiC) fiber placed in a flowing hot (or reacting) gas has been used to measure the temperature profile along the length of the fiber. The relationship between the gas and fiber temperature comes from an energy balance on the fiber. In the present work, we compared single point flame temperature measurements using thin-filament pyrometry (TFP) and thermocouples. The data was from vertically traversing a thermocouple and a SiC fiber through a methanol/air diffusion flame of a porous-metal wick burner. The results showed that the gas temperature using the TFP technique agreed with the thermocouple measurements (25.4 m diameter wire) within 3.5% for temperatures above 1200 K. Additionally, we imaged the entire SiC fiber (with a spatial resolution of 0.14 mm) while it was in the flame using a high resolution CCD camera. The intensity level along the fiber length is a function of the temperature. This results in a one-dimensional temperature profiles at various heights above the burner wick. This temperature measurement technique, while having a precision of less than 1 K, showed data scatter as high as 38 K. Finally, we discuss the major sources of uncertainty in gas temperature measurement using TFP.

  20. Time resolved IR-LIGS experiments for gas-phase trace detection and temperature measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fantoni, R.; Giorgi, M. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Innovazione; Snels, M. [CNR, Tito Scalo, Potenza (Italy). Istituto per i Materiali Speciali; Latzel, H.

    1997-01-01

    Time resolved Laser Induced Grating Spectroscopy (LIGS) has been performed to detect different gases in mixtures at atmospheric pressure or higher. The possibility of trace detection of minor species and of temperature measurements has been demonstrated for various molecular species either of environmental interest or involved in combustion processes. In view of the application of tracing unburned hydrocarbons in combustion chambers, the coupling of the IR-LIGS technique with imaging detection has been considered and preliminary results obtained in small size ethylene/air flames are shown.

  1. Hydroperoxide Measurements During Low-Temperature Gas-Phase Oxidation of n-Heptane and n-Decane

    KAUST Repository

    Rodriguez, Anne

    2017-02-13

    A wide range of hydroperoxides (C-C alkyl hydroperoxides, C-C alkenyl hydroperoxides, C ketohydroperoxides, and hydrogen peroxide (HO)), as well as ketene and diones, have been quantified during the gas-phase oxidation of n-heptane. Some of these species, as well as C alkenyl hydroperoxides and ketohydroperoxides, were also measured during the oxidation of n-decane. These experiments were performed using an atmospheric-pressure jet-stirred reactor at temperatures from 500 to 1100 K and one of three analytical methods, time-of-flight mass spectrometry combined with tunable synchrotron photoionization with a molecular beam sampling: time-of-flight mass spectrometry combined with laser photoionization with a capillary tube sampling, continuous wave cavity ring-down spectroscopy with sonic probe sampling. The experimental temperature at which the maximum mole fraction is observed increases significantly for alkyl hydroperoxides, alkenyl hydroperoxides, and then more so again for hydrogen peroxide, compared to ketohydroperoxides. The influence of the equivalence ratio from 0.25 to 4 on the formation of these peroxides has been studied during n-heptane oxidation. The up-to-date detailed kinetic oxidation models for n-heptane and for n-decane found in the literature have been used to discuss the possible pathways by which these peroxides, ketene, and diones are formed. In general, the model predicts well the reactivity of the two fuels, as well as the formation of major intermediates. (Figure Presented).

  2. Atmospheric gas phase reactions

    Science.gov (United States)

    Platt, Ulrich

    This chapter introduces the underlying physicochemical principles and the relevance of atmospheric gas phase reactions. In particular, reaction orders, the concept of elementary reactions, definition of and factors determining reaction rates (kinetic theory of chemical reactions), and photochemical reactions are discussed. Sample applications of the pertinent reaction pathways in tropospheric chemistry are presented, particularly reactions involving free radicals (OH, NO3, halogen oxides) and their roles in the self-cleaning of the troposphere. The cycles of nitrogen and sulfur species as well as the principles of tropospheric ozone formation are introduced. Finally, the processes governing the stratospheric ozone layer (Chapman Cycle and extensions) are discussed.

  3. The Impacts of a 2-Degree Rise in Global Temperatures upon Gas-Phase Air Pollutants in Europe

    Science.gov (United States)

    Watson, Laura; Josse, Béatrice; Marecal, Virginie; Lacressonnière, Gwendoline; Vautard, Robert; Gauss, Michael; Engardt, Magnuz; Nyiri, Agnes; Siour, Guillaume

    2014-05-01

    The 15th session of the Conference of Parties (COP 15) in 2009 ratified the Copenhagen Accord, which "recognises the scientific view that" global temperature rise should be held below 2 degrees C above pre-industrial levels in order to limit the impacts of climate change. Due to the fact that a 2-degree limit has been frequently referred to by policy makers in the context of the Copenhagen Accord and many other high-level policy statements, it is important that the impacts of this 2-degree increase in temperature are adequately analysed. To this end, the European Union sponsored the project IMPACT2C, which uses a multi-disciplinary international team to assess a wide variety of impacts of a 2-degree rise in global temperatures. For example, this future increase in temperature is expected to have a significant influence upon meteorological conditions such as temperature, precipitation, and wind direction and intensity; which will in turn affect the production, deposition, and distribution of air pollutants. For the first part of the air quality analysis within the IMPACT2C project, the impact of meteorological forcings on gas phase air pollutants over Europe was studied using four offline atmospheric chemistry transport models. Two sets of meteorological forcings were used for each model: reanalysis of past observation data and global climate model output. Anthropogenic emissions of ozone precursors for the year 2005 were used for all simulations in order to isolate the impact of meteorology and assess the robustness of the results across the different models. The differences between the simulations that use reanalysis of past observation data and the simulations that use global climate model output show how global climate models modify climate hindcasts by boundary conditions inputs: information that is necessary in order to interpret simulations of future climate. The baseline results were assessed by comparison with AirBase (Version 7) measurement data, and were

  4. Temperature measurements of the gas-phase during surrogate diesel injection using two-color toluene LIF

    Science.gov (United States)

    Zegers, R. P. C.; Yu, M.; Bekdemir, C.; Dam, N. J.; Luijten, C. C. M.; de Goey, L. P. H.

    2013-08-01

    Planar laser-induced fluorescence (LIF) of toluene has been applied in an optical engine and a high-pressure cell, to determine temperatures of fuel sprays and in-cylinder vapors. The method relies on a redshift of the toluene LIF emission spectrum with increasing temperature. Toluene fluorescence is recorded simultaneously in two disjunct wavelength bands by a two-camera setup. After calibration, the pixel-by-pixel LIF signal ratio is a proxy for the local temperature. A detailed measurement procedure is presented to minimize measurement inaccuracies and to improve precision. n-Heptane is used as the base fuel and 10 % of toluene is added as a tracer. The toluene LIF method is capable of measuring temperatures up to 700 K; above that the signal becomes too weak. The precision of the spray temperature measurements is 4 % and the spatial resolution 1.3 mm. We pay particular attention to the construction of the calibration curve that is required to translate LIF signal ratios into temperature, and to possible limitations in the portability of this curve between different setups. The engine results are compared to those obtained in a constant-volume high-pressure cell, and the fuel spray results obtained in the high-pressure cell are also compared to LES simulations. We find that the hot ambient gas entrained by the head vortex gives rise to a hot zone on the spray axis.

  5. An in situ spatially resolved analytical technique to simultaneously probe gas phase reactions and temperature within the packed bed of a plug flow reactor.

    Science.gov (United States)

    Touitou, Jamal; Burch, Robbie; Hardacre, Christopher; McManus, Colin; Morgan, Kevin; Sá, Jacinto; Goguet, Alexandre

    2013-05-21

    This paper reports the detailed description and validation of a fully automated, computer controlled analytical method to spatially probe the gas composition and thermal characteristics in packed bed systems. As an exemplar, we have examined a heterogeneously catalysed gas phase reaction within the bed of a powdered oxide supported metal catalyst. The design of the gas sampling and the temperature recording systems are disclosed. A stationary capillary with holes drilled in its wall and a moveable reactor coupled with a mass spectrometer are used to enable sampling and analysis. This method has been designed to limit the invasiveness of the probe on the reactor by using the smallest combination of thermocouple and capillary which can be employed practically. An 80 μm (O.D.) thermocouple has been inserted in a 250 μm (O.D.) capillary. The thermocouple is aligned with the sampling holes to enable both the gas composition and temperature profiles to be simultaneously measured at equivalent spatially resolved positions. This analysis technique has been validated by studying CO oxidation over a 1% Pt/Al2O3 catalyst and the spatial resolution profiles of chemical species concentrations and temperature as a function of the axial position within the catalyst bed are reported.

  6. Gas-phase chemical dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Weston, R.E. Jr.; Sears, T.J.; Preses, J.M. [Brookhaven National Laboratory, Upton, NY (United States)

    1993-12-01

    Research in this program is directed towards the spectroscopy of small free radicals and reactive molecules and the state-to-state dynamics of gas phase collision, energy transfer, and photodissociation phenomena. Work on several systems is summarized here.

  7. Effect of high-temperature on the swellable organically-modified silica (SOMS) and its application to gas-phase hydrodechlorination of trichloroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Hyuntae; Celik, Gokhan; Gunduz, Seval; Majumdar, Sreshtha Sinha; Dean, Stacey L.; Edmiston, Paul L.; Ozkan, Umit S.

    2017-07-01

    Pd catalysts supported on swellable organically-modified silica (SOMS) and high-temperature-treated swellable organically-modified silica (H-SOMS) were characterized and tested for gas-phase hydrodechlorination (HDC) of trichloroethylene (TCE) conditions. The high-temperature treatment on SOMS resulted in an increase in surface area and pore diameter as well as significant improvement of Pd dispersion on H-SOMS with smaller Pd particle sizes compared to the Pd/SOMS catalyst. Although the high-temperature treatment led to some alteration of the SOMS polysiloxane network, the hydrophobicity and organic vapor adsorption characteristics of SOMS were preserved. The reduction and oxidation characteristics of Pd on SOMS and HSOMS were investigated in situ using XANES technique. It was found that the Pd sites in the pores of SOMS was accessible to small molecules such as H2, facilitating the reduction of PdOx, whereas oxidation of metallic Pd was limited even at higher temperatures when O2 was used. This effect was only observed over Pd/SOMS catalyst. For Pd/H-SOMS, because the pores were more widely open than Pd/SOMS, both reduction and oxidation of Pd were observed. Finally, the catalytic activity of Pd/H-SOMS for gas-phase HDC of TCE was significantly better than Pd/SOMS. When water was added to the reactant stream (TCE + H2O), both Pd/SOMS and Pd/H-SOMS maintained its catalytic performances due to hydrophobic property of the supports.

  8. Quantitative shearography in axisymmetric gas temperature measurements

    Science.gov (United States)

    VanDerWege, Brad A.; O'Brien, Christopher J.; Hochgreb, Simone

    1999-06-01

    This paper describes the use of shearing interferometry (shearography) for the quantitative measurement of gas temperatures in axisymmetric systems in which vibration and shock are substantial, and measurement time is limited. The setup and principle of operation of the interferometer are described, as well as Fourier-transform-based fringe pattern analysis, Abel transform, and sensitivity of the phase lead to temperature calculation. A helium jet and a Bunsen burner flame are shown as verification of the diagnostic. The accuracy of the measured temperature profile is shown to be limited by the Abel transform and is critically dependent on the reference temperature used.

  9. Synthesis and development of ordered, phase-separated, room-temperature ionic liquid-based AB and ABC block copolymers for gas separation applications

    Science.gov (United States)

    Wiesenauer, Erin F.

    CO2 capture process development is an economically and environmentally important challenge, as concerns over greenhouse gas emissions continue to receive worldwide attention. Many applications require the separation of CO 2 from other light gases such as N2, CH4, and H2 and a number of technologies have been developed to perform such separations. While current membrane technology offers an economical, easy to operate and scale-up solution, polymeric membranes cannot withstand high temperatures and aggressive chemical environments, and they often exhibit an unfavorable tradeoff between permeability and selectivity. Room-temperature ionic-liquids (RTILs) are very attractive as next-generation CO2-selective separation media and their development into polymerized membranes combat these challenges. Furthermore, polymers that can self-assemble into nanostructured, phase-separated morphologies (e.g., block copolymers, BCPs) have a direct effect on gas transport as materials morphology can influence molecular diffusion and membrane transport performance. In this thesis, nanophase-separated, RTIL-based AB and ABC di- and tri-BCPs were prepared via the sequential, living ring-opening metathesis polymerization (ROMP) of an IL-based monomer and one or more mutually immiscible co-monomers. This novel type of ion-containing BCP system forms various ordered nanostructures in the melt state via primary and secondary structure control. Monomer design and control of block composition, sequence, and overall polymer lengths were found to directly affect the ordered polymer assembly. Supported, composite membranes of these new BCPs were successfully fabricated, and the effect of BCP composition and nanostructure on CO2/light gas transport properties was studied. These nanostructured IL-based BCPs represent innovative polymer architectures and show great potential CO2/light gas membrane separation applications.

  10. High temperature phase equilibria and phase diagrams

    CERN Document Server

    Kuo, Chu-Kun; Yan, Dong-Sheng

    2013-01-01

    High temperature phase equilibria studies play an increasingly important role in materials science and engineering. It is especially significant in the research into the properties of the material and the ways in which they can be improved. This is achieved by observing equilibrium and by examining the phase relationships at high temperature. The study of high temperature phase diagrams of nonmetallic systems began in the early 1900s when silica and mineral systems containing silica were focussed upon. Since then technical ceramics emerged and more emphasis has been placed on high temperature

  11. Comparison of electrical and optical characteristics in gas-phase and gas-liquid phase discharges

    Science.gov (United States)

    Qazi, H. I. A.; Nie, Qiu-Yue; Li, He-Ping; Zhang, Xiao-Fei; Bao, Cheng-Yu

    2015-12-01

    This paper presents an AC-excited argon discharge generated using a gas-liquid (two-phase) hybrid plasma reactor, which mainly consists of a powered needle electrode enclosed in a conical quartz tube and grounded deionized water electrode. The discharges in the gas-phase, as well as in the two-phase, exhibit two discharge modes, i.e., the low current glow-like diffuse mode and the high current streamer-like constrict mode, with a mode transition, which exhibits a negative resistance of the discharges. The optical emission spectral analysis shows that the stronger diffusion of the water vapor into the discharge region in the two-phase discharges boosts up the generation of OH (A-X) radicals, and consequently, leads to a higher rotational temperature in the water-phase plasma plume than that of the gas-phase discharges. Both the increase of the power input and the decrease of the argon flow rate result in the increase of the rotational temperature in the plasma plume of the water-phase discharge. The stable two-phase discharges with a long plasma plume in the water-phase under a low power input and gas flow rate may show a promising prospect for the degradation of organic pollutants, e.g., printing and dyeing wastewater, in the field of environmental protection.

  12. Simplified pesticide multiresidue analysis of soybean oil by low-temperature cleanup and dispersive solid-phase extraction coupled with gas chromatography/mass spectrometry.

    Science.gov (United States)

    Li, Li; Xu, Yanjun; Pan, Canping; Zhou, Zhiqiang; Jianc, Shuren; Liu, Fengmao

    2007-01-01

    A simple, fast, and economical method has been developed for the simultaneous determination of 28 various types of pesticides in soybean oil. Pesticides of low molecular mass were separated from the fat of the oil, which has a high molecular mass, by using low-temperature fat precipitation, followed by a cleanup process based on dispersive solid-phase extraction with primary secondary amine and C18 as sorbents and magnesium sulfate for the removal of residual water. The results for all pesticides determined by gas chromatography with mass spectrometry in the selected-ion monitoring mode were linear, and the matrix effect of the method was evaluated. Recoveries of most pesticides were acceptable at fortification levels of 0.02, 0.05, 0.2, and 1 mg/kg. The relative standard deviation was <20% even for determinations without internal standards. Limits of quantitation ranged from 20 to 250 microg/kg.

  13. Analysis of hexachlorocyclohexanes in aquatic samples by one-step microwave-assisted headspace controlled-temperature liquid-phase microextraction and gas chromatography with electron capture detection.

    Science.gov (United States)

    Tsai, Ming-Yuen; Kumar, Ponnusamy Vinoth; Li, Hong-Ping; Jen, Jen-Fon

    2010-03-19

    A microwave-assisted headspace controlled-temperature liquid-phase microextraction (HS-CT-LPME) technique was applied for the one-step sample extraction of hexachlorocyclohexanes (HCHs) from aqueous samples with complicate matrices, followed by gas chromatographic (GC) analysis with electron capture detector (ECD). Microwave heating was applied to accelerate the evaporation of HCHs into the headspace and an external-cooling system was used to control the temperature in the sampling zone for HS-LPME. Parameters affecting extraction efficiency, such as LPME solvent, sampling position and temperature, microwave power and irradiation time (the same as sampling time), sample pH, and salt addition were thoroughly investigated. From experimental results, the following conditions were selected for the extraction of HCHs from 10-mL water sample (pH 2.0) by using 1-octanol as the LPME solvent, with sampling done at 38 degrees C for 6 min under 167 W of microwave irradiation. The detections were linear in the concentration of 0.1-10 microg/L for alpha-HCH and gamma-HCH, and 1-100 microg/L for beta-HCH and delta-HCH. Detection limits were 0.05, 0.4, 0.03 and 0.1 microg/L for alpha-, beta-, gamma- and delta-HCH, respectively. Environmental water samples were analyzed with recovery between 86.4% and 102.4% for farm-field water, and between 92.2% and 98.6% for river water. The proposed method proved to serve as a simple, rapid, sensitive, inexpensive, and eco-friendly procedure for the determination of HCHs in aqueous samples. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Influence of the V/III ratio in the gas phase on thin epitaxial AlN layers grown on (0001) sapphire by high temperature hydride vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Claudel, A., E-mail: arnaud.claudel@grenoble-inp.org [ACERDE, 354 Voie Magellan — Alpespace, 73800 Ste Hélène du Lac (France); Fellmann, V. [ACERDE, 354 Voie Magellan — Alpespace, 73800 Ste Hélène du Lac (France); Science et Ingénierie des Matériaux et des Procédés, Grenoble INP-CNRS-UJF, BP 75, 38402 Saint Martin d' Hères (France); Gélard, I. [ACERDE, 354 Voie Magellan — Alpespace, 73800 Ste Hélène du Lac (France); Coudurier, N. [ACERDE, 354 Voie Magellan — Alpespace, 73800 Ste Hélène du Lac (France); Science et Ingénierie des Matériaux et des Procédés, Grenoble INP-CNRS-UJF, BP 75, 38402 Saint Martin d' Hères (France); Sauvage, D. [ACERDE, 354 Voie Magellan — Alpespace, 73800 Ste Hélène du Lac (France); Balaji, M. [ACERDE, 354 Voie Magellan — Alpespace, 73800 Ste Hélène du Lac (France); Science et Ingénierie des Matériaux et des Procédés, Grenoble INP-CNRS-UJF, BP 75, 38402 Saint Martin d' Hères (France); Crystal Growth Center, Anna University, Chennai 600025 (India); and others

    2014-12-31

    Thin (0001) epitaxial aluminum nitride (AlN) layers were grown on c-plane sapphire using high temperature hydride vapor phase epitaxy. The experimental set-up consists of a vertical cold-wall quartz reactor working at low pressure in which the reactions take place on a susceptor heated by induction. The reactants used are ammonia and aluminum chlorides in situ formed via hydrogen chloride reaction with high purity aluminum pellets. As-grown AlN layers have been characterized by scanning electron microscopy, atomic force microscopy, X-ray diffraction, transmission electron microscopy, photoluminescence and Raman spectroscopies. The influence of the V/III ratio in the gas phase, from 1.5 to 15, on growth rate, surface morphology, roughness and crystalline quality is investigated in order to increase the quality of thin epitaxial AlN layers grown at high temperature. Typical growth rates of around 0.45 μm/h were obtained for such thin epitaxial AlN layers. The growth rate was unaffected by the V/III ratio. An optimum for roughness, crystalline quality and optical properties seems to exist at V/III = 7.5. As a matter of fact, for a V/III ratio of 7.5, best root mean square roughness and crystalline quality — measured on 0002 symmetric reflection — as low as 6.9 nm and 898 arcsec were obtained, respectively. - Highlights: • Growth of thin epitaxial AlN layers by high temperature hydride vapor phase epitaxy • Influence of V/III ratio on growth rate, morphology and crystalline quality • The effect of surface morphology on strain state and crystal quality is established.

  15. Low-temperature gas from marine shales

    Science.gov (United States)

    2009-01-01

    Thermal cracking of kerogens and bitumens is widely accepted as the major source of natural gas (thermal gas). Decomposition is believed to occur at high temperatures, between 100 and 200°C in the subsurface and generally above 300°C in the laboratory. Although there are examples of gas deposits possibly generated at lower temperatures, and reports of gas generation over long periods of time at 100°C, robust gas generation below 100°C under ordinary laboratory conditions is unprecedented. Here we report gas generation under anoxic helium flow at temperatures 300° below thermal cracking temperatures. Gas is generated discontinuously, in distinct aperiodic episodes of near equal intensity. In one three-hour episode at 50°C, six percent of the hydrocarbons (kerogen & bitumen) in a Mississippian marine shale decomposed to gas (C1–C5). The same shale generated 72% less gas with helium flow containing 10 ppm O2 and the two gases were compositionally distinct. In sequential isothermal heating cycles (~1 hour), nearly five times more gas was generated at 50°C (57.4 μg C1–C5/g rock) than at 350°C by thermal cracking (12 μg C1–C5/g rock). The position that natural gas forms only at high temperatures over geologic time is based largely on pyrolysis experiments under oxic conditions and temperatures where low-temperature gas generation could be suppressed. Our results indicate two paths to gas, a high-temperature thermal path, and a low-temperature catalytic path proceeding 300° below the thermal path. It redefines the time-temperature dimensions of gas habitats and opens the possibility of gas generation at subsurface temperatures previously thought impossible. PMID:19236698

  16. Low-temperature gas from marine shales

    Directory of Open Access Journals (Sweden)

    Jarvie Daniel M

    2009-02-01

    Full Text Available Abstract Thermal cracking of kerogens and bitumens is widely accepted as the major source of natural gas (thermal gas. Decomposition is believed to occur at high temperatures, between 100 and 200°C in the subsurface and generally above 300°C in the laboratory. Although there are examples of gas deposits possibly generated at lower temperatures, and reports of gas generation over long periods of time at 100°C, robust gas generation below 100°C under ordinary laboratory conditions is unprecedented. Here we report gas generation under anoxic helium flow at temperatures 300° below thermal cracking temperatures. Gas is generated discontinuously, in distinct aperiodic episodes of near equal intensity. In one three-hour episode at 50°C, six percent of the hydrocarbons (kerogen & bitumen in a Mississippian marine shale decomposed to gas (C1–C5. The same shale generated 72% less gas with helium flow containing 10 ppm O2 and the two gases were compositionally distinct. In sequential isothermal heating cycles (~1 hour, nearly five times more gas was generated at 50°C (57.4 μg C1–C5/g rock than at 350°C by thermal cracking (12 μg C1–C5/g rock. The position that natural gas forms only at high temperatures over geologic time is based largely on pyrolysis experiments under oxic conditions and temperatures where low-temperature gas generation could be suppressed. Our results indicate two paths to gas, a high-temperature thermal path, and a low-temperature catalytic path proceeding 300° below the thermal path. It redefines the time-temperature dimensions of gas habitats and opens the possibility of gas generation at subsurface temperatures previously thought impossible.

  17. Apparatus for the investigation of high-temperature, high-pressure gas-phase heterogeneous catalytic and photo-catalytic materials

    Science.gov (United States)

    Alvino, Jason F.; Bennett, Trystan; Kler, Rantej; Hudson, Rohan J.; Aupoil, Julien; Nann, Thomas; Golovko, Vladimir B.; Andersson, Gunther G.; Metha, Gregory F.

    2017-05-01

    A high-temperature, high-pressure, pulsed-gas sampling and detection system has been developed for testing new catalytic and photocatalytic materials for the production of solar fuels. The reactor is fitted with a sapphire window to allow the irradiation of photocatalytic samples from a lamp or solar simulator light source. The reactor has a volume of only 3.80 ml allowing for the investigation of very small quantities of a catalytic material, down to 1 mg. The stainless steel construction allows the cell to be heated to 350 °C and can withstand pressures up to 27 bar, limited only by the sapphire window. High-pressure sampling is made possible by a computer controlled pulsed valve that delivers precise gas flow, enabling catalytic reactions to be monitored across a wide range of pressures. A residual gas analyser mass spectrometer forms a part of the detection system, which is able to provide a rapid, real-time analysis of the gas composition within the photocatalytic reaction chamber. This apparatus is ideal for investigating a number of industrially relevant reactions including photocatalytic water splitting and CO2 reduction. Initial catalytic results using Pt-doped and Ru nanoparticle-doped TiO2 as benchmark experiments are presented.

  18. Apparatus for the investigation of high-temperature, high-pressure gas-phase heterogeneous catalytic and photo-catalytic materials.

    Science.gov (United States)

    Alvino, Jason F; Bennett, Trystan; Kler, Rantej; Hudson, Rohan J; Aupoil, Julien; Nann, Thomas; Golovko, Vladimir B; Andersson, Gunther G; Metha, Gregory F

    2017-05-01

    A high-temperature, high-pressure, pulsed-gas sampling and detection system has been developed for testing new catalytic and photocatalytic materials for the production of solar fuels. The reactor is fitted with a sapphire window to allow the irradiation of photocatalytic samples from a lamp or solar simulator light source. The reactor has a volume of only 3.80 ml allowing for the investigation of very small quantities of a catalytic material, down to 1 mg. The stainless steel construction allows the cell to be heated to 350 °C and can withstand pressures up to 27 bar, limited only by the sapphire window. High-pressure sampling is made possible by a computer controlled pulsed valve that delivers precise gas flow, enabling catalytic reactions to be monitored across a wide range of pressures. A residual gas analyser mass spectrometer forms a part of the detection system, which is able to provide a rapid, real-time analysis of the gas composition within the photocatalytic reaction chamber. This apparatus is ideal for investigating a number of industrially relevant reactions including photocatalytic water splitting and CO2 reduction. Initial catalytic results using Pt-doped and Ru nanoparticle-doped TiO2 as benchmark experiments are presented.

  19. Temperature Modulation of a Catalytic Gas Sensor

    Directory of Open Access Journals (Sweden)

    Eike Brauns

    2014-10-01

    Full Text Available The use of catalytic gas sensors usually offers low selectivity, only based on their different sensitivities for various gases due to their different heats of reaction. Furthermore, the identification of the gas present is not possible, which leads to possible misinterpretation of the sensor signals. The use of micro-machined catalytic gas sensors offers great advantages regarding the response time, which allows advanced analysis of the sensor response. By using temperature modulation, additional information about the gas characteristics can be measured and drift effects caused by material shifting or environmental temperature changes can be avoided. In this work a miniaturized catalytic gas sensor which offers a very short response time (<150 ms was developed. Operation with modulated temperature allows analysis of the signal spectrum with advanced information content, based on the Arrhenius approach. Therefore, a high-precise electronic device was developed, since theory shows that harmonics induced by the electronics must be avoided to generate a comprehensible signal.

  20. Phase Change Fabrics Control Temperature

    Science.gov (United States)

    2009-01-01

    Originally featured in Spinoff in 1997, Outlast Technologies Inc. (formerly Gateway Technologies Inc.) has built its entire product line on microencapsulated phase change materials, developed in Small Business Innovation Research (SBIR) contracts with Johnson Space Center after initial development for the U.S. Air Force. The Boulder, Colorado-based company acquired the exclusive patent rights and now integrates these materials into textiles or onto finished apparel, providing temperature regulation in bedding materials and a full line of apparel for both ordinary and extreme conditions.

  1. Optical Temperature Sensor For Gas Turbines

    Science.gov (United States)

    Mossey, P. W.

    1987-01-01

    New design promises accuracy even in presence of contamination. Improved sensor developed to measure gas temperatures up to 1,700 degree C in gas-turbine engines. Sensor has conical shape for mechanical strengths and optical configuration insensitive to deposits of foreign matter on sides of cone.

  2. Microstructural Characterization of Low Temperature Gas Nitrided Martensitic Stainless Steel

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2015-01-01

    The present work presents microstructural investigations of the surface zone of low temperature gas nitrided precipitation hardening martensitic stainless steel AISI 630. Grazing incidence X-ray diffraction was applied to investigate the present phases after successive removal of very thin sectio...

  3. Precursor-Less Coating of Nanoparticles in the Gas Phase

    NARCIS (Netherlands)

    Pfeiffer, T.V.; Kedia, P.; Messing, M.E.; Valvo, M.; Schmidt-Ott, A.

    2015-01-01

    This article introduces a continuous, gas-phase method for depositing thin metallic coatings onto (nano)particles using a type of physical vapor deposition (PVD) at ambient pressure and temperature. An aerosol of core particles is mixed with a metal vapor cloud formed by spark ablation by passing

  4. Gas-phase SO2 in absorption towards massive protostars

    NARCIS (Netherlands)

    Keane, JV; Boonman, AMS; Tielens, AGGM; van Dishoeck, EF; Dishoeck, E. F.; Lahuis, F. van; Wright, C. M.; Doty, S. D.

    We present the first detection of the v(3) ro-vibrational band of gas-phase SO2 in absorption in the mid-infrared spectral region around 7.3 mum of a sample of deeply embedded massive protostars. Comparison with model spectra shows that the derived excitation temperatures correlate with previous

  5. Post-flame gas-phase sulfation of potassium chloride

    DEFF Research Database (Denmark)

    Li, Bo; Sun, Zhiwei; Li, Zhongshan

    2013-01-01

    The sulfation of KCl during biomass combustion has implications for operation and emissions: it reduces the rates of deposition and corrosion, it increases the formation of aerosols, and it leads to higher concentrations of HCl and lower concentrations of SO2 in the gas phase. Rigorously homogene......The sulfation of KCl during biomass combustion has implications for operation and emissions: it reduces the rates of deposition and corrosion, it increases the formation of aerosols, and it leads to higher concentrations of HCl and lower concentrations of SO2 in the gas phase. Rigorously...... homogeneous systems are required to characterize the gas-phase formation of alkali sulfates. We have measured the temperature and gas-phase concentrations of KCl and HCl, and detected the presence of aerosols in the post-flame region of a range of hydrocarbon flames seeded with KCl, with and without...... and HCl and aerosols formed, most pronounced in flames with the lowest post-flame temperatures. This shows that KCl is sulfated in the gas phase to K2SO4, and this is followed by homogeneous nucleation of K2SO4 to form aerosols. Predictions from a kinetic model of the S/Cl/K chemistry agreed well...

  6. Temperature dependence of the MDT gas gain

    CERN Document Server

    Gaudio, G; Treichel, M

    1999-01-01

    This note describes the measurements taken in the Gamma Irradiation Facility (GIF) in the X5 test beam area at CERN to investigate the temperature dependence of the MDT drift gas (Ar/CO2 - 90:10). Spectra were taken with an Americium-241 source during the aging studies. We analysed the effects of temperature changes on the pulse height spectrum.

  7. Turbine gas temperature measurement and control system

    Science.gov (United States)

    Webb, W. L.

    1973-01-01

    A fluidic Turbine Inlet Gas Temperature (TIGIT) Measurement and Control System was developed for use on a Pratt and Whitney Aircraft J58 engine. Based on engine operating requirements, criteria for high temperature materials selection, system design, and system performance were established. To minimize development and operational risk, the TIGT control system was designed to interface with an existing Exhaust Gas Temperature (EGT) Trim System and thereby modulate steady-state fuel flow to maintain a desired TIGT level. Extensive component and system testing was conducted including heated (2300F) vibration tests for the fluidic sensor and gas sampling probe, temperature and vibration tests on the system electronics, burner rig testing of the TIGT measurement system, and in excess of 100 hours of system testing on a J58 engine. (Modified author abstract)

  8. Reactive intermediates in the gas phase generation and monitoring

    CERN Document Server

    Setser, D W

    2013-01-01

    Reactive Intermediates in the Gas Phase: Generation and Monitoring covers methods for reactive intermediates in the gas phase. The book discusses the generation and measurement of atom and radical concentrations in flow systems; the high temperature flow tubes, generation and measurement of refractory species; and the electronically excited long-lived states of atoms and diatomic molecules in flow systems. The text also describes the production and detection of reactive species with lasers in static systems; the production of small positive ions in a mass spectrometer; and the discharge-excite

  9. Gas-Phase Infrared; JCAMP Format

    Science.gov (United States)

    SRD 35 NIST/EPA Gas-Phase Infrared; JCAMP Format (PC database for purchase)   This data collection contains 5,228 infrared spectra in the JCAMP-DX (Joint Committee for Atomic and Molecular Physical Data "Data Exchange") format.

  10. Low-temperature gas from marine shales: wet gas to dry gas over experimental time.

    Science.gov (United States)

    Mango, Frank D; Jarvie, Daniel M

    2009-11-09

    Marine shales exhibit unusual behavior at low temperatures under anoxic gas flow. They generate catalytic gas 300 degrees below thermal cracking temperatures, discontinuously in aperiodic episodes, and lose these properties on exposure to trace amounts of oxygen. Here we report a surprising reversal in hydrocarbon generation. Heavy hydrocarbons are formed before light hydrocarbons resulting in wet gas at the onset of generation grading to dryer gas over time. The effect is moderate under gas flow and substantial in closed reactions. In sequential closed reactions at 100 degrees C, gas from a Cretaceous Mowry shale progresses from predominately heavy hydrocarbons (66% C5, 2% C1) to predominantly light hydrocarbons (56% C1, 8% C5), the opposite of that expected from desorption of preexisting hydrocarbons. Differences in catalyst substrate composition explain these dynamics. Gas flow should carry heavier hydrocarbons to catalytic sites, in contrast to static conditions where catalytic sites are limited to in-place hydrocarbons. In-place hydrocarbons and their products should become lighter with conversion thus generating lighter hydrocarbon over time, consistent with our experimental results. We recognize the similarities between low-temperature gas generation reported here and the natural progression of wet gas to dry gas over geologic time. There is now substantial evidence for natural catalytic activity in source rocks. Natural gas at thermodynamic equilibrium and the results reported here add to that evidence. Natural catalysis provides a plausible and unique explanation for the origin and evolution of gas in sedimentary basins.

  11. Low-temperature gas from marine shales: wet gas to dry gas over experimental time

    Directory of Open Access Journals (Sweden)

    Jarvie Daniel M

    2009-11-01

    Full Text Available Abstract Marine shales exhibit unusual behavior at low temperatures under anoxic gas flow. They generate catalytic gas 300° below thermal cracking temperatures, discontinuously in aperiodic episodes, and lose these properties on exposure to trace amounts of oxygen. Here we report a surprising reversal in hydrocarbon generation. Heavy hydrocarbons are formed before light hydrocarbons resulting in wet gas at the onset of generation grading to dryer gas over time. The effect is moderate under gas flow and substantial in closed reactions. In sequential closed reactions at 100°C, gas from a Cretaceous Mowry shale progresses from predominately heavy hydrocarbons (66% C5, 2% C1 to predominantly light hydrocarbons (56% C1, 8% C5, the opposite of that expected from desorption of preexisting hydrocarbons. Differences in catalyst substrate composition explain these dynamics. Gas flow should carry heavier hydrocarbons to catalytic sites, in contrast to static conditions where catalytic sites are limited to in-place hydrocarbons. In-place hydrocarbons and their products should become lighter with conversion thus generating lighter hydrocarbon over time, consistent with our experimental results. We recognize the similarities between low-temperature gas generation reported here and the natural progression of wet gas to dry gas over geologic time. There is now substantial evidence for natural catalytic activity in source rocks. Natural gas at thermodynamic equilibrium and the results reported here add to that evidence. Natural catalysis provides a plausible and unique explanation for the origin and evolution of gas in sedimentary basins.

  12. Operating limitations due to low gas temperature

    Energy Technology Data Exchange (ETDEWEB)

    Bruschi, R.; Ghiselli, W.; Spinazze, M.

    1995-12-31

    A number of projects concerning continental links for the transport of treated natural gas over long distance, both on and offshore, have been implemented during the last few years or are currently being implemented. The long trunklines in North America and subsea trunklines planned or already in operation in the North Sea, are outstanding examples of such long distance transmission of gas in large diameter pipelines operated at high pressure. The development of such network has paid special attention to the effects that low temperature resulting from the transportation process may imply in terms of pipe structural integrity and environmental impact. Scope of this paper is to discuss operating limitations due to low gas temperature. New project scenarios are presented in a brief introduction. The fluido-thermo-dynamic background for the development of low temperatures are outlined. Finally some topics relevant to structural integrity are discussed in particular such as the pipe steel behaviour at low temperature, the prediction techniques of the ice bulb growth around the pipe, the interactions of the cold line with the soil and the consequences due to the differential compliancy of the pipeline towards points of fixity (in-line valves/tees or fixed plants). 30 refs., 22 figs., 1 tab.

  13. Low temperature liquefied gas storage tank

    Energy Technology Data Exchange (ETDEWEB)

    Noma, T.; Hayakawa, K.; Nagao, O.; Okano, I.; Teramoto, R.; Kurihara, T.; Kakano, K.; Okamoto, T.

    1974-07-30

    The inner wall of Hitachi's improved liquefied gas storage tank is made up of multi-layer panels, each panel made liquid-tight by bonding a low-temperature-resistant metal sheet (such as aluminum or stainless steel or a synthetic resin film) to both sides of a plywood core consisting of numerous veneers. These veneers are then bonded to the liquid-tight membranes to serve as heat-shock-absorbing layers.

  14. Noninvasive Measurement of Core Temperature. Phase 1.

    Science.gov (United States)

    Topical Testing proposes the development of a noninvasive device to monitor core temperature by sampling the maximal temperature of the respiratory...air during expiration. Phase I development used a fast rise-time thermocouple to monitor the temperature of the expired air of an anesthetized animal

  15. High temperature gas-cooled reactor: gas turbine application study

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The high-temperature capability of the High-Temperature Gas-Cooled Reactor (HTGR) is a distinguishing characteristic which has long been recognized as significant both within the US and within foreign nuclear energy programs. This high-temperature capability of the HTGR concept leads to increased efficiency in conventional applications and, in addition, makes possible a number of unique applications in both electrical generation and industrial process heat. In particular, coupling the HTGR nuclear heat source to the Brayton (gas turbine) Cycle offers significant potential benefits to operating utilities. This HTGR-GT Application Study documents the effort to evaluate the appropriateness of the HTGR-GT as an HTGR Lead Project. The scope of this effort included evaluation of the HTGR-GT technology, evaluation of potential HTGR-GT markets, assessment of the economics of commercial HTGR-GT plants, and evaluation of the program and expenditures necessary to establish HTGR-GT technology through the completion of the Lead Project.

  16. Neutral gas depletion in low temperature plasma

    Science.gov (United States)

    Fruchtman, A.

    2017-11-01

    Neutral depletion can significantly affect the steady state of low temperature plasmas. Processes that lead to neutral depletion and the resulting plasma–neutrals steady state are reviewed. Two such processes are due to collisions of neutrals with plasma. One process is the drag by ions that collide with neutrals and push them towards the wall. Another process is neutral-gas heating by collisions with plasma that makes the gas hotter at the discharge center. These processes, which usually occur under (static) pressure balance between plasma and neutrals, are called here ‘neutral pumping’. When collisions are negligible, neutrals that move ballistically between the chamber walls are depleted through ionization, a process called here ‘ion pumping’. The effect of the magnetic field on neutral depletion is explored in plasma in which the dynamics is governed by cross-field diffusion. Finally, neutral depletion in a flowing plasma is analyzed.

  17. Gas phase equilibrium structure of histamine.

    Science.gov (United States)

    Tikhonov, Denis S; Rykov, Anatolii N; Grikina, Olga E; Khaikin, Leonid S

    2016-02-17

    The first gas electron diffraction (GED) experiment for histamine was carried out. The equilibrium structure of histamine in the gas phase was determined on the basis of the data obtained. The refinement was also supported by the rotational constants obtained in previous studies [B. Vogelsanger, et al., J. Am. Chem. Soc., 1991, 113, 7864-7869; P. Godfrey, et al., J. Am. Chem. Soc., 1998, 120, 10724-10732] and quantum chemical calculations. The proposed mechanism of tautomerization by simultaneous intermolecular transfer of hydrogens in a histamine dimer helps to explain the distribution of tautomers in different experiments. The estimations of the conformational interconversion times provided the explanation for the absence of some conformers in the rotational spectroscopy experiments.

  18. In situ gas temperature measurements by UV-absorption spectroscopy

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    2009-01-01

    The absorption spectrum of the NO A(2)Sigma(+) situ evaluation of gas temperature. Experiments were performed with a newly developed atmospheric-pressure high-temperature flow gas cell at highly uniform and stable gas temperatures over a 0.533 m path...

  19. Gas-Phase Reactivity of Microsolvated Anions

    DEFF Research Database (Denmark)

    Thomsen, Ditte Linde

    the gas-phase α-effect. The experimental studies are performed by means of the flowing after glow selected ion flow tube technique, and these are supplemented by electronic structure calculations. The α-nucleophile employed is the microsolvated hydrogen peroxide anion whose reactivity is compared...... for the microsolvated α-nucleophile, and a significant α-effect was observed in this channel. Quantum chemical calculations reveal that the structure of the microsolvated hydrogen peroxide adduct is distinctly different from the structure of the microsolvated alkoxy nucleophiles, in that it involves transfer a proton...... cannot be expected to catalyze hydrogen abstraction reactions by the hydroxyl radical under atmospherically relevant conditions....

  20. Development of High Temperature Gas Sensor Technology

    Science.gov (United States)

    Hunter, Gary W.; Chen, Liang-Yu; Neudeck, Philip G.; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai; Zhou, Huan-Jun

    1997-01-01

    The measurement of engine emissions is important for their monitoring and control. However, the ability to measure these emissions in-situ is limited. We are developing a family of high temperature gas sensors which are intended to operate in harsh environments such as those in an engine. The development of these sensors is based on progress in two types of technology: (1) The development of SiC-based semiconductor technology; and (2) Improvements in micromachining and microfabrication technology. These technologies are being used to develop point-contact sensors to measure gases which are important in emission control especially hydrogen, hydrocarbons, nitrogen oxides, and oxygen. The purpose of this paper is to discuss the development of this point-contact sensor technology. The detection of each type of gas involves its own challenges in the fields of materials science and fabrication technology. Of particular importance is sensor sensitivity, selectivity, and stability in long-term, high temperature operation. An overview is presented of each sensor type with an evaluation of its stage of development. It is concluded that this technology has significant potential for use in engine applications but further development is necessary.

  1. Liquid-gas Coexistence Phase in Nuclear Matter

    Science.gov (United States)

    Salcedo, Alan; Lopez, Jorge; Terrazas, Sergio; Gaytan, Adrian

    2017-09-01

    Nuclear matter at low temperatures (T CMD). In this study, we present data obtained from CMD simulations and a method to determine a 3-dimensional phase diagram using these results, interpolation techniques, and Maxwell constructions. We performed more than 300 simulations of nuclear matter for settings of 2000 nucleons with isospin content X (Z/A) = 0.3, 0.35, 0.4, 0.45, 0.5 at temperatures of T = 1-5 MeV and T = 10-15 MeV, with densities between 0.02 fm-3 and 0.18 fm-3. Our results of pressure per nucleon for each system were stored and analyzed to construct a phase diagram. From this study, we aim to extract the boundaries and shape of the liquid-gas coexistence region for neutron-rich nuclear matter, thus determining its intrinsic physical conditions.

  2. Solid-phase sequencing on the gas-phase sequencer.

    Science.gov (United States)

    Sarin, V K; Kim, Y; Fox, J L

    1986-05-01

    Automated Edman degradation has been successfully used for determining the primary structure of numerous peptides and proteins. Quantitative solid-phase Edman degradation has great potential use for amino acid sequence analysis of synthetic peptides assembled on resin support by the Merrifield procedure. We report here the combined use of a modified gas-phase sequencer program and our improved reversed-phase HPLC analysis for PTH-amino acids to carry out the sequence analysis on synthesized peptide resins. This approach is far more sensitive than using glass beads on the conventional solid-phase sequencer. The peptide was assembled on copoly (styrene-1% divinylbenzene) resin beads at an initial substitution of 0.54 mmol/g. On a routine basis, 10-15 resin beads are used, and a repetitive yield of 94% is obtained: as few as 4 beads can be successfully sequenced. The HPLC PTH-amino acid analysis is sensitive down to subpicomole quantities. This procedure offers a sensitive and rapid analytical tool for checking the purity of peptides as they are being assembled on solid support.

  3. Maximal temperature of a gas in AdS spacetime

    Science.gov (United States)

    Dai, De-Chang; Stojkovic, Dejan

    2017-04-01

    Assuming only statistical mechanics and general relativity, we calculate the maximal temperature of gas of particles placed in anti-de Sitter (AdS) spacetime. If two particles with a given center of mass energy come close enough, according to classical gravity, they will form a black hole. We focus only on the black holes with a Hawking temperature lower than the environment, because they do not disappear. The number density of such black holes grows with the temperature in the system. At a certain finite temperature, the thermodynamical system will be dominated by black holes. This critical temperature is lower than the Planck temperature for the values of the AdS vacuum energy density below the Planck density. This result might be interesting from the AdS/CFT correspondence point of view, since it is different from the Hawking-Page phase transition, and it is not immediately clear what effect dynamically limits the maximal temperature of the thermal state on the CFT side of the correspondence.

  4. Electrochemical high-temperature gas sensors

    Science.gov (United States)

    Saruhan, B.; Stranzenbach, M.; Yüce, A.; Gönüllü, Y.

    2012-06-01

    Combustion produced common air pollutant, NOx associates with greenhouse effects. Its high temperature detection is essential for protection of nature. Component-integration capable high-temperature sensors enable the control of combustion products. The requirements are quantitative detection of total NOx and high selectivity at temperatures above 500°C. This study reports various approaches to detect NO and NO2 selectively under lean and humid conditions at temperatures from 300°C to 800°C. All tested electrochemical sensors were fabricated in planar design to enable componentintegration. We suggest first an impedance-metric gas sensor for total NOx-detection consisting of NiO- or NiCr2O4-SE and PYSZ-electrolyte. The electrolyte-layer is about 200μm thickness and constructed of quasi-single crystalline columns. The sensing-electrode (SE) is magnetron sputtered thin-layers of NiO or NiCr2O4. Sensor sensitivity for detection of total NOx has been measured by applying impedance analysis. The cross-sensitivity to other emission gases such as CO, CO2, CH4 and oxygen (5 vol.%) has been determined under 0-1000ppm NO. Sensor maintains its high sensitivity at temperatures up to 550°C and 600°C, depending on the sensing-electrode. NiO-SE yields better selectivity to NO in the presence of oxygen and have shorter response times comparing to NiCr2O4-SE. For higher temperature NO2-sensing capability, a resistive DC-sensor having Al-doped TiO2-sensing layers has been employed. Sensor-sensitivity towards NO2 and cross-sensitivity to CO has been determined in the presence of H2O at temperatures 600°C and 800°C. NO2 concentrations varying from 25 to 100ppm and CO concentrations from 25 to 75ppm can be detected. By nano-tubular structuring of TiO2, NO2 sensitivity of the sensor was increased.

  5. Resolving Gas-Phase Metallicity In Galaxies

    Science.gov (United States)

    Carton, David

    2017-06-01

    Chapter 2: As part of the Bluedisk survey we analyse the radial gas-phase metallicity profiles of 50 late-type galaxies. We compare the metallicity profiles of a sample of HI-rich galaxies against a control sample of HI-'normal' galaxies. We find the metallicity gradient of a galaxy to be strongly correlated with its HI mass fraction {M}{HI}) / {M}_{\\ast}). We note that some galaxies exhibit a steeper metallicity profile in the outer disc than in the inner disc. These galaxies are found in both the HI-rich and control samples. This contradicts a previous indication that these outer drops are exclusive to HI-rich galaxies. These effects are not driven by bars, although we do find some indication that barred galaxies have flatter metallicity profiles. By applying a simple analytical model we are able to account for the variety of metallicity profiles that the two samples present. The success of this model implies that the metallicity in these isolated galaxies may be in a local equilibrium, regulated by star formation. This insight could provide an explanation of the observed local mass-metallicity relation. Chapter 3 We present a method to recover the gas-phase metallicity gradients from integral field spectroscopic (IFS) observations of barely resolved galaxies. We take a forward modelling approach and compare our models to the observed spatial distribution of emission line fluxes, accounting for the degrading effects of seeing and spatial binning. The method is flexible and is not limited to particular emission lines or instruments. We test the model through comparison to synthetic observations and use downgraded observations of nearby galaxies to validate this work. As a proof of concept we also apply the model to real IFS observations of high-redshift galaxies. From our testing we show that the inferred metallicity gradients and central metallicities are fairly insensitive to the assumptions made in the model and that they are reliably recovered for galaxies

  6. Gas: A Neglected Phase in Remediation of Metals and Radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Denham, Miles E.; Looney, Brian B

    2005-09-28

    The gas phase is generally ignored in remediation of metals and radionuclides because it is assumed that there is no efficient way to exploit it. In the literal sense, all remediations involve the gas phase because this phase is linked to the liquid and solid phases by vapor pressure and thermodynamic relationships. Remediation methods that specifically use the gas phase as a central feature have primarily targeted volatile organic contaminants, not metals and radionuclides. Unlike many organic contaminants, the vapor pressure and Henry's Law constants of metals and radionuclides are not generally conducive to direct air stripping of dissolved contaminants. Nevertheless, the gas phase can play an important role in remediation of inorganic contaminants and provide opportunities for efficient, cost effective remediation. The objective here is to explore ways in which manipulation of the gas phase can be used to facilitate remediation of metals and radionuclides.

  7. NbOx/SiO2 in the gas-phase Beckmann rearrangement of cyclohexanone oxime to epsilon-caprolactam: Influence of calcination temperature, niobia loading and silylation post-treatment

    NARCIS (Netherlands)

    Maronna, M. M.; Kruissink, E. C.; Parton, R. F.; Tinge, J. T.; Soulimani, F.|info:eu-repo/dai/nl/313889449; Weckhuysen, B. M.|info:eu-repo/dai/nl/285484397; Hoelderich, W. F.

    2016-01-01

    NbOx/SiO2 catalyst materials prepared by the incipient wetness impregnation method were studied in the industrially relevant gas-phase Beckmann rearrangement of cyclohexanone oxime to ε-caprolactam. The catalytic experiments were carried out in a fixed bed reactor system at atmospheric pressure.

  8. Vapor phase lubrication of high temperature alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hanyaloglu, B.F.; Graham, E.E.; Oreskovic, T.; Hajj, C.G. [Cleveland State Univ., OH (United States)

    1995-06-01

    In a previous study, it was found that when a nickel-based superalloy IN750 was heated to high temperatures, a passive layer of aluminum oxide formed on the surface, preventing vapor phase lubrication. In this study, two nickel-chrome-iron alloys and a nickel-copper alloy were studied for high temperature lubrication to see if these alloys, which contained small amounts of aluminum, would exhibit similar behavior. It was found that under static conditions, all three alloys formed a lubricious nodular coating when exposed to a vapor of aryl phosphate. Under dynamic sliding conditions at 500{degrees}C, these alloys were successfully lubricated with a coefficient of friction of 0.1 and no detectable wear. In order to explain these results, a direct correlation between successful vapor phase lubrication and the composition of the alloys containing aluminum has been proposed. If the ratio of copper/aluminum or iron/aluminum is greater that 100 vapor phase, lubrication will be successful. If the ratio is less than 10, a passive aluminum oxide layer will prevent vapor phase lubrication. By selecting alloys with a high iron or copper content, vapor phase lubrication can provide excellent lubrication at high temperatures. 14 refs., 11 figs., 1 tab.

  9. Separation of Flue Gas Components by SILP (Supported Ionic Liquid-Phase) Absorbers

    DEFF Research Database (Denmark)

    Thomassen, P.; Kunov-Kruse, Andreas Jonas; Mossin, Susanne L.

    2013-01-01

    -Phase (SILP) absorber materials. The use of solid SILP absorbers with selected ILs were found to significantly improve the absorption capacity and sorption dynamics at low flue gas concentration, thus making the applicability of ILs viable in technical, continuous flow processes for flue gas cleaning....... The results show that CO2, NO and SO2 can be reversible and selective absorbed using different ILs and that Supported Ionic Liquid-Phase (SILP) absorbers are promising materials for industrial flue gas cleaning. Absorption/desorption dynamics can be tuned by temperature, pressure and gas concentration. © 2012...

  10. Simulation of non-ideal gases and liquid-gas phase transitions by lattice Boltzmann equation

    CERN Document Server

    Shan, X; Xiaowen Shan; Hudong Chen

    1994-01-01

    We describe in detail a recently proposed lattice-Boltzmann model for simulating flows with multiple phases and components. In particular, the focus is on the modeling of one-component fluid systems which obey non-ideal gas equations of state and can undergo a liquid-gas type phase transition. The model is shown to be momentum-conserving. From the microscopic mechanical stability condition, the densities in bulk liquid and gas phases are obtained as functions of a temperature-like parameter. Comparisons with the thermodynamic theory of phase transition show that the LBE model can be made to correspond exactly to an isothermal process. The density profile in the liquid-gas interface is also obtained as function of the temperature-like parameter and is shown to be isotropic. The surface tension, which can be changed independently, is calculated. The analytical conclusions are verified by numerical simulations. (To appear in Phys. Rev. E)

  11. The gas-phase thermal chemistry of tetralin and related model systems

    Energy Technology Data Exchange (ETDEWEB)

    Malandra, James [Iowa State Univ., Ames, IA (United States)

    1993-05-01

    The thesis is divided into 5 papers: gas-phase thermal decomposition of tetralin; flash vacuum pyrolysis of 3-benzocycloheptenone and 1,3, 4,5-tetrahydro-2-benzothiepin-2,2-dioxide (model systems for gas-phase pyrolysis of tetralin); high-temperature gas-phase reactions of o-allylbenzyl radicals generated by flash vacuum pyrolysis of is(o-allylbenzyl) oxalate; flash vacuum pyrolysis of 1,4-diphenylbutane; and flash vacuum pyrolysis of o-allyltoluene, o-(3-butenyl)toluene and o-(pentenyl)toluene were also used.

  12. Positron annihilation in benzene and cyclohexane: a comparison between gas and liquid phase

    Science.gov (United States)

    Fedus, Kamil

    2015-06-01

    A comparative study about positron annihilation in gas and liquid phases of two non-polar ring molecules: benzene (C6H6) and cyclohexane (C6H12) is presented including the most recent experimental and theoretical achievements. In addition the preliminary results of positron annihilation lifetime measurements in a liquid phase at room temperature for these two molecules are reported.

  13. Elastic properties and stress-temperature phase diagrams of high-temperature phases with low-temperature lattice instabilities

    Science.gov (United States)

    Thomas, John C.; Van der Ven, Anton

    2014-12-01

    The crystal structures of many technologically important high-temperature phases are predicted to have lattice instabilities at low temperature, making their thermodynamic and mechanical properties inaccessible to standard first principles approaches that rely on the (quasi) harmonic approximation. Here, we use the recently developed anharmonic potential cluster expansion within Monte Carlo simulations to predict the effect of temperature and anisotropic stress on the elastic properties of ZrH2, a material that undergoes diffusionless transitions among cubic, tetragonal, and orthorhombic phases. Our analysis shows that the mechanical properties of high-temperature phases with low-temperature vibrational instabilities are very sensitive to temperature and stress state. These findings have important implications for materials characterization and multi-scale simulations and suggest opportunities for enhanced strain engineering of high-temperature phases exhibiting soft-mode instabilities.

  14. Measured gas and particle temperatures in VTT's entrained flow reactor

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Sørensen, L.H.

    2006-01-01

    Particle and gas temperature measurements were carried out in experiments on VTTs entrained flow reactor with 5% and 10% oxygen using Fourier transform infrared emission spectroscopy (FTIR). Particle temperature measurements were performed on polish coal,bark, wood, straw particles, and bark...... and wood particles treated with additive. A two-color technique with subtraction of the background light was used to estimate particle temperatures during experiments. A transmission-emission technique was used tomeasure the gas temperature in the reactor tube. Gas temperature measurements were in good...

  15. Electron attachment to gas-phase uracil

    Science.gov (United States)

    Denifl, S.; Ptasińska, S.; Hanel, G.; Gstir, B.; Probst, M.; Scheier, P.; Märk, T. D.

    2004-04-01

    We present results about dissociative electron attachment (DEA) to gas-phase uracil (U) for incident electron energies between 0 and 14 eV using a crossed electron/molecule beam apparatus. The most abundant negative ion formed via DEA is (U-H)-, where the resonance with the highest intensity appears at 1.01 eV. The anion yield of (U-H)- shows a number of peaks, which can be explained in part as being due to the formation of different (U-H)- isomers. Our results are compared with high level ab initio calculations using the G2MP2 method. There was no measurable amount of a parent ion U-. We also report the occurrence of 12 other fragments produced by dissociative electron attachment to uracil but with lower cross sections than (U-H)-. In addition we observed a parasitic contaminating process for conditions where uracil was introduced simultaneously with calibrant gases SF6 and CCl4 that leads to a sharp peak in the (U-H)- cross section close to 0 eV. For (U-H)- and all other fragments we determined rough measures for the absolute partial cross section yielding in the case of (U-H)- a peak value of σ (at 1.01 eV)=3×10-20 m2.

  16. Resolving gas-phase metallicity in galaxies

    NARCIS (Netherlands)

    Carton, D.J.

    2017-01-01

    Galaxies are environments where gas coalesces, cools, and is converted into stars. However, it remains unclear the exact mechanisms through which galaxies acquire, redistribute and lose their gas. The fresh gas that flows into galaxies is primarily composed of Hydrogen and Helium. But because a

  17. Comparison of catalytic ethylene polymerization in slurry and gas phase

    NARCIS (Netherlands)

    Daftaribesheli, Majid

    2009-01-01

    Polyethylene (PE) with the annual consumption of 70 million tones in 2007 is mostly produced in slurry, gas-phase or combination of both processes. This work focuses on a comparison between the slurry and gas phase processes. Why does PE produced in theses two processes can show extremely different

  18. Hydrocarbon radical thermochemistry: Gas-phase ion chemistry techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ervin, Kent M. [Univ. of Nevada, Reno, NV (United States)

    2014-03-21

    Final Scientific/Technical Report for the project "Hydrocarbon Radical Thermochemistry: Gas-Phase Ion Chemistry Techniques." The objective of this project is to exploit gas-phase ion chemistry techniques for determination of thermochemical values for neutral hydrocarbon radicals of importance in combustion kinetics.

  19. Rapid determination of dichlorodiphenyltrichloroethane and its main metabolites in aqueous samples by one-step microwave-assisted headspace controlled-temperature liquid-phase microextraction and gas chromatography with electron capture detection.

    Science.gov (United States)

    Vinoth Kumar, Ponnusamy; Jen, Jen-Fon

    2011-03-01

    A rapid and sensitive analytical method for the determination of dichlorodiphenyltrichloroethane (DDT) and its main metabolites in environmental aqueous samples has been developed using one-step microwave-assisted headspace controlled-temperature liquid-phase micro-extraction (MA-HS-CT-LPME) technique coupled with gas chromatography-electron-capture detection (GC-ECD). In this study, the one-step extraction of DDT and its main metabolites was achieved by using microwave heating to accelerate the evaporation of analytes into the controlled-temperature headspace to form a cloudy mist vapor zone for LPME sampling. Parameters influencing extraction efficiency were thoroughly optimized, and the best extraction for DDT and its main metabolites from 10-mL aqueous sample at pH 6.0 was achieved by using 1-octanol (4-μL) as the LPME solvent, sampling at 34°C for 6.5 min under 249W of microwave irradiation. Under optimum conditions, excellent linear relationship was obtained in the range of 0.05-1.0 μg/L for 1-dichloro-2,2-bis-(p'-chlorophenyl)ethylene (p,p'-DDE), 0.1-2.0 μg/L for o,p'-DDT, 0.15-3.0 μg/L for 1,1-dichloro-2,2-bis-(p'-chlorophenyl)ethane (p,p'-DDD) and p,p'-DDT, with detection limits of 20 ng/L for p,p'-DDE, and 30 ng/L for o,p'-DDT, p,p'-DDD and p,p'-DDT. Precision was in the range of 3.2-11.3% RSD. The proposed method was validated with environmental water samples. The spiked recovery was between 95.5% and 101.3% for agricultural-field water, between 94% and 99.7% for sea water and between 93.5% and 98% for river water. Thus the established method has been proved to be a simple, rapid, sensitive, inexpensive and eco-friendly procedure for the determination of DDT and its main metabolites in environmental water samples. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Study of Solid Particle Behavior in High Temperature Gas Flows

    Science.gov (United States)

    Majid, A.; Bauder, U.; Stindl, T.; Fertig, M.; Herdrich, G.; Röser, H.-P.

    2009-01-01

    The Euler-Lagrangian approach is used for the simulation of solid particles in hypersonic entry flows. For flow field simulation, the program SINA (Sequential Iterative Non-equilibrium Algorithm) developed at the Institut für Raumfahrtsysteme is used. The model for the effect of the carrier gas on a particle includes drag force and particle heating only. Other parameters like lift Magnus force or damping torque are not taken into account so far. The reverse effect of the particle phase on the gaseous phase is currently neglected. Parametric analysis is done regarding the impact of variation in the physical input conditions like position, velocity, size and material of the particle. Convective heat fluxes onto the surface of the particle and its radiative cooling are discussed. The variation of particle temperature under different conditions is presented. The influence of various input conditions on the trajectory is explained. A semi empirical model for the particle wall interaction is also discussed and the influence of the wall on the particle trajectory with different particle conditions is presented. The heat fluxes onto the wall due to impingement of particles are also computed and compared with the heat fluxes from the gas.

  1. Gas-phase chemistry of superheavy elements

    OpenAIRE

    Gäggeler Heinz W.; Türler Andreas

    2013-01-01

    © 2014 Springer Verlag Berlin Heidelberg. All rights are reserved. This chapter summarizes gas chemical studies of transactinides using two approaches gas thermochromatography and isothermal gas chromatography. Both techniques enabled successful chemical studies of the transactinides rutherfordium (Z = 104 Rf) dubnium (Z = 105 Db) seaborgium (Z = 106 Sg) bohrium (Z = 107 Bh) hassium (Z = 108; Hs) copernicium (Z = 112 Cn) and the recently named flerovium (Z = 114 Fl). Typically these chemical ...

  2. Electronic phase separation and high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kivelson, S.A. [Univ. of California, Los Angeles, CA (United States). Dept. of Physics; Emery, V.J. [Brookhaven National Lab., Upton, NY (United States)

    1994-01-11

    The authors review the extensive evidence from model calculations that neutral holes in an antiferromagnet separate into hole-rich and hole-poor phases. All known solvable limits of models of holes in a Heisenberg antiferromagnet exhibit this behavior. The authors show that when the phase separation is frustrated by the introduction of long-range Coulomb interactions, the typical consequence is either a modulated (charge density wave) state or a superconducting phase. The authors then review some of the strong experimental evidence supporting an electronically-driven phase separation of the holes in the cuprate superconductors and the related Ni oxides. Finally, the authors argue that frustrated phase separation in these materials can account for many of the anomalous normal state properties of the high temperature superconductors and provide the mechanism of superconductivity. In particular, it is shown that the T-linear resistivity of the normal state is a paraconductivity associated with a novel composite pairing, although the ordered superconducting state is more conventional.

  3. Novel silica membranes for high temperature gas separations

    KAUST Repository

    Bighane, Neha

    2011-04-01

    This article describes fabrication of novel silica membranes derived via controlled oxidative thermolysis of polydimethylsiloxane and their gas separation performance. The optimized protocol for fabrication of the silica membranes is described and pure gas separation performance in the temperature range 35-80°C is presented. It is observed that the membranes exhibit activated transport for small gas penetrants such as He, H 2 and CO 2. The membranes can withstand temperatures up to 350°C in air and may ultimately find use in H 2/CO 2 separations to improve efficiency in the water-gas shift reactor process. © 2011 Elsevier B.V.

  4. Residence time distribution of the gas phase in a mechanically agitated gas-liquid reactor

    NARCIS (Netherlands)

    Thijert, M.P.G.; Oyevaar, M.H.; Kuper, W.J.; Westerterp, K.R.

    1992-01-01

    In this study we present a measuring method and extensive experimental data on the gas phase RTD in a mechanically agitated gas-liquid reactor with standard dimensions over a wide range of superficial gas velocities, agitation rates and agitator sizes. The results are modelled successfully, using

  5. Reticulated Vitreous Carbon Electrodes for Gas Phase Pulsed Corona Reactors

    National Research Council Canada - National Science Library

    Locke, B

    1998-01-01

    A new design for gas phase pulsed corona reactors incorporating reticulated vitreous carbon electrodes is demonstrated to be effective for the removal of nitrogen oxides from synthetic air mixtures...

  6. Reticulated Vitreous Carbon Electrodes for Gas Phase Pulsed Corona Reactors

    National Research Council Canada - National Science Library

    LOCKE, B

    1999-01-01

    A new design for gas phase pulsed corona reactors incorporating reticulated vitreous carbon electrodes is demonstrated to be effective for the removal of nitrogen oxides from synthetic air mixtures...

  7. GAS PHASE ION CHEMISTRY OF COUMARINS: AB INITIO ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    ABSTRACT. The gas phase ion chemistry of coumarins using electron ionization (EI), positive chemical ionization (PCI) and negative chemical ionization (NCI) in a time of flight and quadrupole mass spectrometer. (qMS) coupled to a gas chromatograph is outlined. The observations in NCI mode were complimented with Ab.

  8. Research of thermal conditions over high-temperature gas-fired infrared emitters

    Directory of Open Access Journals (Sweden)

    Ermolaev Anton N.

    2017-01-01

    Full Text Available The paper presents the study results of the thermal conditions in the area above high-temperature gas-fired infrared emitter. A number of bench tests and experiments were made on the basis of production facilities to control the distribution of temperatures above emitter in different heating system operating modes. Impact of the thermal characteristics in the area above high-temperature gas-fired infrared emitter on the heating system performance was estimated. Comparison of the bench tests results with existing experimental data has shown a good result convergence for both efficiency and accuracy. The obtained results can be used in the emitter development phase and in the construction phase of modern gas-fired radiant heating systems.

  9. Fast temperature programming in gas chromatography using resistive heating

    NARCIS (Netherlands)

    Dallüge, J.; Ou-Aissa, R.; Vreuls, J.J.; Brinkman, U.A.T.; Veraart, J.R.

    1999-01-01

    The features of a resistive-heated capillary column for fast temperature-programmed gas chromatography (GC) have been evaluated. Experiments were carried out using a commercial available EZ Flash GC, an assembly which can be used to upgrade existing gas chromatographs. The capillary column is placed

  10. Electron spectrometer for gas-phase spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bozek, J.D.; Schlachter, A.S. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    An electron spectrometer for high-resolution spectroscopy of gaseous samples using synchrotron radiation has been designed and constructed. The spectrometer consists of a gas cell, cylindrical electrostatic lens, spherical-sector electron energy analyzer, position-sensitive detector and associated power supplies, electronics and vacuum pumps. Details of the spectrometer design are presented together with some representative spectra.

  11. Temperature independent low voltage polymer stabilized blue phase liquid crystals

    Science.gov (United States)

    Kemiklioglu, E.; Hwang, J. Y.; Chien, L.-C.

    2012-03-01

    Blue phases are types of liquid crystal phase which can appear in a narrow temperature range between a chiral nematic phase and isotropic liquid phase. Blue Phase (BP) liquid crystals have been known to exist in a small temperature range. Recently, broadening the temperature range of a BP liquid crystal has occurred by using a mixture of nematic bimesogenic liquid crystals or by polymerizing a small amount of monomer in a BP to stabilize the cubic lattice against temperature variation. In this study, we report a low switching voltage polymer stabilized blue phase (PSBP) liquid crystal device. We showed the stabilization of blue phases over a temperature range of 30.4 °C including room temperature. We observed the temperature independent of Bragg wavelength. Furthermore, the polymer effect on the electo-optic properties of a self assembled nanostructured blue phase liquid crystal composites have been investigated. As well as the ratio between two monomers, the overall monomers concentration is controlled.

  12. Uptake of organic gas phase species by 1-methylnaphthalene.

    Science.gov (United States)

    Zhang, H Z; Davidovits, P; Williams, L R; Kolb, C E; Worsnop, D R

    2005-05-05

    Organic compounds are a significant component of tropospheric aerosols. In the present study, 1-methylnaphthalene was selected as a surrogate for aromatic hydrocarbons (PAHs) found in tropospheric aerosols. Mass accommodation coefficients (alpha) on 1-methylnaphthalene were determined as a function of temperature (267 K to 298 K) for gas-phase m-xylene, ethylbenzene, butylbenzene, alpha-pinene, gamma-terpinene, p-cymene, and 2-methyl-2-hexanol. The gas uptake studies were performed with droplets maintained under liquid-vapor equilibrium conditions using a droplet train flow reactor. The mass accommodation coefficients for all of the molecules studied in these experiments exhibit negative temperature dependence. The upper and lower values of alpha at 267 and 298 K respectively are as follows: for m-xylene 0.44 +/- 0.05 and 0.26 +/- 0.03; for ethylbenzene 0.37 +/- 0.03 and 0.22 +/- 0.04; for butylbenzene 0.47 +/- 0.06 and 0.31 +/- 0.04; for alpha-pinene 0.47 +/- 0.07 and 0.10 +/- 0.05; for gamma-terpinene 0.37 +/- 0.04 and 0.12 +/- 0.06; for p-cymene 0.74 +/- 0.05 and 0.36 +/- 0.07; for 2-methyl-2-hexanol 0.44 +/- 0.06 and 0.29 +/- 0.06. The uptake measurements also yielded values for the product HD(l)(1/2) for most of the molecules studied (H = Henry's law constant, D(l) = liquid-phase diffusion coefficient). Using calculated values of D(l), the Henry's law constants (H) for these molecules were obtained as a function of temperature. The H values at 298 K in units 10(3) M atm(-1) are as follows: for m-xylene (0.48 +/- 0.05); for ethylbenzene (0.50 +/- 0.08); for butylbenzene (3.99 +/- 0.93); for alpha-pinene (0.53 +/- 0.07); for p-cymene (0.23 +/- 0.07); for 2-methyl-2-hexanol (1.85 +/- 0.29).

  13. High-temperature turbine technology program. Turbine subsystem design report: Low-Btu gas

    Energy Technology Data Exchange (ETDEWEB)

    Horner, M.W.

    1980-12-01

    The objective of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) program is to bring to technology readiness a high-temperature (2600/sup 0/F to 3000/sup 0/F firing temperature) turbine within a 6- to 10-year duration, Phase II has addressed the performance of component design and technology testing in critical areas to confirm the design concepts identified in the earlier Phase I program. Based on the testing and support studies completed under Phase II, this report describes the updated turbine subsystem design for a coal-derived gas fuel (low-Btu gas) operation at 2600/sup 0/F turbine firing temperature. A commercial IGCC plant configuration would contain four gas turbines. These gas turbines utilize an existing axial flow compressor from the GE product line MS6001 machine. A complete description of the Primary Reference Design-Overall Plant Design Description has been developed and has been documented. Trends in overall plant performance improvement at higher pressure ratio and higher firing temperature are shown. It should be noted that the effect of pressure ratio on efficiency is significally enhanced at higher firing temperatures. It is shown that any improvement in overall plant thermal efficiency reflects about the same level of gain in Cost of Electricity (COE). The IGCC concepts are shown to be competitive in both performance and cost at current and near-term gas turbine firing temperatures of 1985/sup 0/F to 2100/sup 0/F. The savings that can be accumulated over a thirty-year plant life for a water-cooled gas turbine in an IGCC plant as compared to a state-of-the-art coal-fired steam plant are estimated. A total of $500 million over the life of a 1000 MW plant is projected. Also, this IGCC power plant has significant environmental advantages over equivalent coal-fired steam power plants.

  14. Gas hydrate phase equilibria measurement techniques and phase rule considerations

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, Juan G. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON (Canada); Bruusgaard, Hallvard [Department of Chemical Engineering, McGill University, Montreal, QC (Canada); Servio, Phillip, E-mail: phillip.servio@mcgill.ca [Department of Chemical Engineering, McGill University, Montreal, QC (Canada)

    2012-01-15

    Highlights: > Inconsistencies found in hydrate literature. > Clarification to the number of variables needed to satisfy and justify equilibrium data. > Application of phase rule to mixed hydrate systems. > Thermodynamically consistent format to present data. - Abstract: A brief review of the Gibbs phase rule for non-reacting systems and its correct application to clathrate hydrates is presented. Clarification is provided for a common mistake found in hydrate phase-equilibria literature, whereby initial compositions are used as intensive variables to satisfy the Gibbs phase rule instead of the equilibrium values. The system of (methane + carbon dioxide + water) under (hydrate + liquid + vapor) equilibrium is used as a case study to illustrate key points and suggestions to improve experimental techniques are proposed.

  15. GC/MS Gas Separator Operates At Lower Temperatures

    Science.gov (United States)

    Sinha, Mahadeva P.; Gutnikov, George

    1991-01-01

    Experiments show palladium/silver tube used to separate hydrogen carrier gas from gases being analyzed in gas-chromatography/mass-spectrometry (GC/MS) system functions satisfactorily at temperatures as low as 70 to 100 degrees C. Less power consumed, and catalytic hydrogenation of compounds being analyzed diminished. Because separation efficiency high even at lower temperatures, gas load on vacuum pump of mass spectrometer kept low, permitting use of smaller pump. These features facilitate development of relatively small, lightweight, portable GC/MS system for such uses as measuring concentrations of pollutants in field.

  16. Molecular Photofragmentation Dynamics in the Gas and Condensed Phases

    Science.gov (United States)

    Ashfold, Michael N. R.; Murdock, Daniel; Oliver, Thomas A. A.

    2017-05-01

    Exciting a molecule with an ultraviolet photon often leads to bond fission, but the final outcome of the bond cleavage is typically both molecule and phase dependent. The photodissociation of an isolated gas-phase molecule can be viewed as a closed system: Energy and momentum are conserved, and the fragmentation is irreversible. The same is not true in a solution-phase photodissociation process. Solvent interactions may dissipate some of the photoexcitation energy prior to bond fission and will dissipate any excess energy partitioned into the dissociation products. Products that have no analog in the corresponding gas-phase study may arise by, for example, geminate recombination. Here, we illustrate the extent to which dynamical insights from gas-phase studies can inform our understanding of the corresponding solution-phase photochemistry and how, in the specific case of photoinduced ring-opening reactions, solution-phase studies can in some cases reveal dynamical insights more clearly than the corresponding gas-phase study.

  17. Planar gas chromatography column on aluminum plate with multi-walled carbon nanotubes as stationary phase

    Science.gov (United States)

    Platonov, I. A.; Platonov, V. I.; Pavelyev, V. S.

    2016-04-01

    The high selectivity of the adsorption layer for low-boiling alkanes is shown, the separation factor (α) couple iso-butane / butane is 1.9 at a column temperature of 50 °C.The paper presents sorption and selective properties of planar gas chromatography column on aluminum plate with multi-walled carbon nanotubes as the stationary phase.

  18. Gas phase polymerization of propylene. Reaction kinetics and molecular weight distribution

    NARCIS (Netherlands)

    Meier, G.B.; Weickert, G.; van Swaaij, Willibrordus Petrus Maria

    2001-01-01

    Gas-phase polymerizations have been executed at different temperatures, pressures, and hydrogen concentrations using Me2Si[Ind]2ZrCl2 / methylaluminoxane / SiO2(Pennsylvania Quarts) as a catalyst. The reaction rate curves have been described by a kinetic model, which takes into account the initially

  19. Modern gas-based temperature and pressure measurements

    CERN Document Server

    Pavese, Franco

    2013-01-01

    This 2nd edition volume of Modern Gas-Based Temperature and Pressure Measurements follows the first publication in 1992. It collects a much larger set of information, reference data, and bibliography in temperature and pressure metrology of gaseous substances, including the physical-chemical issues related to gaseous substances. The book provides solutions to practical applications where gases are used in different thermodynamic conditions. Modern Gas-Based Temperature and Pressure Measurements, 2nd edition is the only comprehensive survey of methods for pressure measurement in gaseous media used in the medium-to-low pressure range closely connected with thermometry. It assembles current information on thermometry and manometry that involve the use of gaseous substances which are likely to be valid methods for the future. As such, it is an important resource for the researcher. This edition is updated through the very latest scientific and technical developments of gas-based temperature and pressure measurem...

  20. Brittle Materials Design, High Temperature Gas Turbine

    Science.gov (United States)

    1981-03-01

    Modulus and Poisson’s Ratio were determined by sonic techniques: thermal expansion values were measured on a differential dilatometer and thermal...accumulation of potentially explosive gases. 4. Thermal conductivity of the nitriding atmosphere is important for production of high quality RBSN...of varying MgO content. Measurements were conducted on a differential dilatometer from room temperatures up to 900°C, and are shown in Figure 3.2.3

  1. Cold flame on Biofilm - Transport of Plasma Chemistry from Gas to Liquid Phase

    Science.gov (United States)

    Kong, Michael

    2014-10-01

    One of the most active and fastest growing fields in low-temperature plasma science today is biological effects of gas plasmas and their translation in many challenges of societal importance such as healthcare, environment, agriculture, and nanoscale fabrication and synthesis. Using medicine as an example, there are already three FDA-approved plasma-based surgical procedures for tissue ablation and blood coagulation and at least five phase-II clinical trials on plasma-assisted wound healing therapies. A key driver for realizing the immense application potential of near room-temperature ambient pressure gas plasmas, commonly known as cold atmospheric plasmas or CAP, is to build a sizeable interdisciplinary knowledge base with which to unravel, optimize, and indeed design how reactive plasma species interact with cells and their key components such as protein and DNA. Whilst a logical objective, it is a formidable challenge not least since existing knowledge of gas discharges is largely in the gas-phase and therefore not directly applicable to cell-containing matters that are covered by or embedded in liquid (e.g. biofluid). Here, we study plasma inactivation of biofilms, a jelly-like structure that bacteria use to protect themselves and a major source of antimicrobial resistance. As 60--90% of biofilm is made of water, we develop a holistic model incorporating physics and chemistry in the upstream CAP-generating region, a plasma-exit region as a buffer for as-phase transport, and a downstream liquid region bordering the gas buffer region. A special model is developed to account for rapid chemical reactions accompanied the transport of gas-phase plasma species through the gas-liquid interface and for liquid-phase chemical reactions. Numerical simulation is used to illustrate how key reactive oxygen species (ROS) are transported into the liquid, and this is supported with experimental data of both biofilm inactivation using plasmas and electron spin spectroscopy (ESR

  2. Atomic and Molecular Gas Phase Spectrometry.

    Science.gov (United States)

    1987-01-01

    temperatures up to 3000 K were achieved with the oxyhydrogen diffusion flame (see Table 8); these LODs should be improved by switching to a NyO-Cy2 primary flame...second harmonic mode. The system consisted of a continuum 5oWi’c, t- S . S’S 25 separated air/acetylene flame and a wavelength-modulated monochr omator

  3. Ionic liquids as stationary phases in gas chromatography--an LSER investigation of six commercial phases and some applications.

    Science.gov (United States)

    Weber, Waldemar; Andersson, Jan T

    2014-09-01

    The separation properties of six novel stationary phases for gas chromatography, commercially available from Sigma-Aldrich (Supelco) and based on ionic liquids (ILs), were investigated. The linear solvation energy relationship model (LSER) was used to describe the molecular interactions between these stationary phases and 30 solutes. The solutes belong to different groups of compounds, like haloalkanes, alcohols, ketones, aromatics, aliphatics, and others. A good description of different interactions, as described by the LSER model, could be achieved. The calculated values of system constants for the ionic liquid phases were compared with constants of commonly used standard phases like a 5 % phenyl/95 % dimethyl siloxane and a polyethylene glycol phase. The solute descriptors are in good agreement with those found by previous authors who have used the LSER model for 44 different ionic liquids as stationary phase. The experiments were carried out at two temperatures to evaluate the influence on the phase parameters and separation characteristics. The interactions of different functional groups with the IL phases are discussed. These novel IL phases are a promising replacement of or an addition to common polar phases. Based on the evaluated phase properties, several possibilities for applications of these novel phases are shown.

  4. Determination of gas temperature in the plasmatron channel according to the known distribution of electronic temperature

    Directory of Open Access Journals (Sweden)

    Gerasimov Alexander V.

    2013-01-01

    Full Text Available An analytical method to calculate the temperature distribution of heavy particles in the channel of the plasma torch on the known distribution of the electronic temperature has been proposed. The results can be useful for a number of model calculations in determining the most effective conditions of gas blowing through the plasma torch with the purpose of heating the heavy component. This approach allows us to understand full details about the heating of cold gas, inpouring the plasma, and to estimate correctly the distribution of the gas temperature inside the channel.

  5. Gas Phase Sulfur, Chlorine and Potassium Chemistry in Biomass Combustion

    DEFF Research Database (Denmark)

    Løj, Lusi Hindiyarti

    2007-01-01

    Gas Phase Sulfur, Chlorine and Alkali Metal Chemistry in Biomass Combustion Concern about aerosols formation, deposits, corrosion, and gaseous emissions during biomass combustion, especially straw, continues to be a driving force for investigation on S, Cl, K-containing species under combustions...... the uncertainties. In the present work, the detailed kinetic model for gas phase sulfur, chlorine, alkali metal, and their interaction has been updated. The K/O/H/Cl chemistry, S chemistry, and their interaction can reasonably predict a range of experimental data. In general, understanding of the interaction...... conditions. These trace species contained in the biomass structure will be released to the gas phase during combustion and contribute to the problems generated during the process. The investigation during this PhD project is done to stepwise improve the understanding in the chemistry and reduce...

  6. Gravitational collapse of a magnetized fermion gas with finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Delgado Gaspar, I. [Instituto de Geofisica y Astronomia (IGA), La Habana (Cuba); Perez Martinez, A. [Instituto de Cibernetica, Matematica y Fisica (ICIMAF), La Habana (Cuba); Sussman, Roberto A. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (ICN-UNAM), Mexico (Mexico); Ulacia Rey, A. [Instituto de Cibernetica, Matematica y Fisica (ICIMAF), La Habana (Cuba); Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (ICN-UNAM), Mexico (Mexico)

    2013-07-15

    We examine the dynamics of a self-gravitating magnetized fermion gas at finite temperature near the collapsing singularity of a Bianchi-I spacetime. Considering a general set of appropriate and physically motivated initial conditions, we transform Einstein-Maxwell field equations into a complete and self-consistent dynamical system amenable for numerical work. The resulting numerical solutions reveal the gas collapsing into both, isotropic (''point-like'') and anisotropic (''cigar-like''), singularities, depending on the initial intensity of the magnetic field. We provide a thorough study of the near collapse behavior and interplay of all relevant state and kinematic variables: temperature, expansion scalar, shear scalar, magnetic field, magnetization, and energy density. A significant qualitative difference in the behavior of the gas emerges in the temperature range T/m{sub f} {proportional_to} 10{sup -6} and T/m{sub f} {proportional_to} 10{sup -3}. (orig.)

  7. Gas-phase photocatalysis in μ-reactors

    DEFF Research Database (Denmark)

    Vesborg, Peter Christian Kjærgaard; Olsen, Jakob Lind; Henriksen, Toke Riishøj

    2010-01-01

    Gas-phase photocatalysis experiments may benefit from the high sensitivity and good time response in product detection offered by μ-reactors. We demonstrate this by carrying out CO oxidation and methanol oxidation over commercial TiO2 photocatalysts in our recently developed high-sensitivity reac......Gas-phase photocatalysis experiments may benefit from the high sensitivity and good time response in product detection offered by μ-reactors. We demonstrate this by carrying out CO oxidation and methanol oxidation over commercial TiO2 photocatalysts in our recently developed high...

  8. Room Temperature Gas Sensing of Two-Dimensional Titanium Carbide (MXene).

    Science.gov (United States)

    Lee, Eunji; VahidMohammadi, Armin; Prorok, Barton C; Yoon, Young Soo; Beidaghi, Majid; Kim, Dong-Joo

    2017-10-11

    Wearable gas sensors have received lots of attention for diagnostic and monitoring applications, and two-dimensional (2D) materials can provide a promising platform for fabricating gas sensors that can operate at room temperature. In the present study, the room temperature gas-sensing performance of Ti3C2Tx nanosheets was investigated. 2D Ti3C2Tx (MXene) sheets were synthesized by removal of Al atoms from Ti3AlC2 (MAX phases) and were integrated on flexible polyimide platforms with a simple solution casting method. The Ti3C2Tx sensors successfully measured ethanol, methanol, acetone, and ammonia gas at room temperature and showed a p-type sensing behavior. The fabricated sensors showed their highest and lowest response toward ammonia and acetone gas, respectively. The limit of detection of acetone gas was theoretically calculated to be about 9.27 ppm, presenting better performance compared to other 2D material-based sensors. The sensing mechanism was proposed in terms of the interactions between the majority charge carriers of Ti3C2Tx and gas species.

  9. Gas-Phase Theoretical Kinetics for Astrochemistry

    Science.gov (United States)

    Klippenstein, Stephen

    2013-05-01

    We will survey a number of our applications of ab initio theoretical kinetics to reactions of importance to astrochemistry. Illustrative examples will be taken from our calculations for (i) interstellar chemistry, (ii) Titan's atmospheric chemistry, and (iii) the chemistry of extrasolar giant planets. For low temperature interstellar chemistry, careful consideration of the long-range expansion of the potential allows for quantitative predictions of the kinetics. Our recent calculations for the reactions of H3+ with O(3P) and with CO suggest an increase of the predicted destruction rate of H3+ by a factor of 2.5 to 3.0 for temperatures that are typical of dense clouds. Further consideration of the interplay between spin-orbit and multipole terms for open-shell atomic fragments allows us to predict the kinetics for a number of the reactions that have been listed as important reactions for interstellar chemical modeling [V. Wakelam, I. W. M. Smith, E. Herbst, J. Troe, W. Geppert, et al. Space Science Rev., 156, 13-72, 2010]. Our calculations for Titan's atmosphere demonstrate the importance of radiative emission as a stabilization process in the low-pressure environment of Titan's upper atmosphere. Theory has also helped to illuminate the role of various reactions in both Titan's atmosphere and in extrasolar planetary atmospheres. Comparisons between theory and experiment have provided a more detail understanding of the kinetics of PAH dimerization. High level predictions of thermochemical properties are remarkably accurate, and allow us to provide important data for studying P chemistry in planetary atmospheres. Finally, our study of O(3P) + C3 provides an example of a case where theory provides suggestive but not definitive results, and further experiments are clearly needed.

  10. Gas Phase Theoretical Kinetics for Astrochemistry

    Science.gov (United States)

    Klippenstein, Stephen J.; Georgievskii, Y.; Harding, L. B.

    2012-05-01

    We will survey a number of our applications of ab initio theoretical kinetics to reactions of importance to astrochemistry. Illustrative examples will be taken from our calculations for (i) interstellar chemistry, (ii) Titan’s atmospheric chemistry, and (iii) the chemistry of extrasolar giant planets. For low temperature interstellar chemistry, careful consideration of the long-range expansion of the potential allows for quantitative predictions of the kinetics. Our recent calculations for the reactions of H3+ with O(3P) and with CO suggest an increase of the predicted destruction rate of H3+ by a factor of 2.5 to 3.0 for temperatures that are typical of dense clouds. Further consideration of the interplay between spin-orbit and multipole terms for open-shell atomic fragments allows us to predict the kinetics for a number of the reactions that have been listed as important reactions for interstellar chemical modeling [V. Wakelam, I. W. M. Smith, E. Herbst, J. Troe, W. Geppert, et al. Space Science Rev., 156, 13-72, 2010]. Our calculations for Titan’s atmosphere demonstrate the importance of radiative emission as a stabilization process in the low-pressure environment of Titan’s upper atmosphere. Theory has also helped to illuminate the role of various reactions in both Titan’s atmosphere and in extrasolar planetary atmospheres. Comparisons between theory and experiment have provided a more detail understanding of the kinetics of PAH dimerization. High level predictions of thermochemical properties are remarkably accurate, and allow us to provide important data for studying P chemistry in planetary atmospheres. Finally, our study of O(3P) + C3 provides an example of a case where theory provides suggestive but not definitive results, and further experiments are clearly needed.

  11. Gas-phase photocatalytic oxidation of volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kachina, A.

    2008-07-01

    Substances emitted into the atmosphere by human activities in urban and industrial areas cause environmental problems such as air quality degradation, respiratory diseases, climate change, global warming, and stratospheric ozone depletion. Volatile organic compounds (VOCs) are major air pollutants, emitted largely by industry, transportation and households. Many VOCs are toxic, and some are considered to be carcinogenic, mutagenic, or teratogenic. A wide spectrum of VOCs is readily oxidized photocatalytically. Photocatalytic oxidation (PCO) over titanium dioxide may present a potential alternative to air treatment strategies currently in use, such as adsorption and thermal treatment, due to its advantageous activity under ambient conditions, although higher but still mild temperatures may also be applied. The objective of the present research was to disclose routes of chemical reactions, estimate the kinetics and the sensitivity of gas-phase PCO to reaction conditions in respect of air pollutants containing heteroatoms in their molecules. Deactivation of the photocatalyst and restoration of its activity was also taken under consideration to assess the practical possibility of the application of PCO to the treatment of air polluted with VOCs. UV-irradiated titanium dioxide was selected as a photocatalyst for its chemical inertness, non-toxic character and low cost. In the present work Degussa P25 TiO{sub 2} photocatalyst was mostly used. In transient studies platinized TiO{sub 2} was also studied. The experimental research into PCO of following VOCs was undertaken: - methyl tert-butyl ether (MTBE) as the basic oxygenated motor fuel additive and, thus, a major non-biodegradable pollutant of groundwater; - tert-butyl alcohol (TBA) as the primary product of MTBE hydrolysis and PCO; - ethyl mercaptan (ethanethiol) as one of the reduced sulphur pungent air pollutants in the pulp-and-paper industry; - methylamine (MA) and dimethylamine (DMA) as the amino compounds often

  12. Ultra High Temperature (UHT) SiC Fiber (Phase 2)

    Science.gov (United States)

    Dicarlo, James A.; Jacobson, Nathan S.; Lizcano, Maricela; Bhatt, Ramakrishna T.

    2015-01-01

    Silicon-carbide fiber-reinforced silicon-carbide ceramic matrix composites (SiCSiC CMC) are emerginglightweight re-usable structural materials not only for hot section components in gas turbine engines, but also for controlsurfaces and leading edges of reusable hypersonic vehicles as well as for nuclear propulsion and reactor components. Ithas been shown that when these CMC are employed in engine hot-section components, the higher the upper usetemperature (UUT) of the SiC fiber, the more performance benefits are accrued, such as higher operating temperatures,reduced component cooling air, reduced fuel consumption, and reduced emissions. The first generation of SiCSiC CMC with a temperature capability of 2200-2400F are on the verge of being introduced into the hot-section components ofcommercial and military gas turbine engines.Today the SiC fiber type currently recognized as the worlds best in terms ofthermo-mechanical performance is the Sylramic-iBN fiber. This fiber was previously developed by the PI at NASA GRC using patented processes to improve the high-cost commercial Sylramic fiber, which in turn was derived from anotherlow-cost low-performance commercial fiber. Although the Sylramic-iBN fiber shows state-of-the art creep and rupture resistance for use temperatures above 2550oF, NASA has shown by fundamental creep studies and model developmentthat its microstructure and creep resistance could theoretically be significantly improved to produce an Ultra HighTemperature (UHT) SiC fiber.This Phase II Seedling Fund effort has been focused on the key objective of effectively repeating the similar processes used for producing the Sylramic-iBN fiber using a design of experiments approach to first understand the cause of the less than optimum Sylramic-iBN microstructure and then attempting to develop processconditions that eliminate or minimize these key microstructural issues. In so doing, it is predicted that that theseadvanced process could result in an UHT Si

  13. A modeling and experimental study of flue gas desulfurization in a dense phase tower.

    Science.gov (United States)

    Chang, Guanqin; Song, Cunyi; Wang, Li

    2011-05-15

    We used a dense phase tower as the reactor in a novel semi-dry flue gas desulfurization process to achieve a high desulfurization efficiency of over 95% when the Ca/S molar ratio reaches 1.3. Pilot-scale experiments were conducted for choosing the parameters of the full-scale reactor. Results show that with an increase in the flue gas flow rate the rate of the pressure drop in the dense phase tower also increases, however, the rate of the temperature drop decreases in the non-load hot gas. We chose a water flow rate of 0.6 kg/min to minimize the approach to adiabatic saturation temperature difference and maximize the desulfurization efficiency. To study the flue gas characteristics under different processing parameters, we simulated the desulfurization process in the reactor. The simulated data matched very well with the experimental data. We also found that with an increase in the Ca/S molar ratio, the differences between the simulation and experimental data tend to decrease; conversely, an increase in the flue gas flow rate increases the difference; this may be associated with the surface reactions caused by collision, coalescence and fragmentation between the dispersed phases. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Gas-Phase IR Spectroscopy of Deprotonated Amino Acids

    NARCIS (Netherlands)

    Oomens, J.; Steill, J. D.; Redlich, B.

    2009-01-01

    Gas-phase infrared multiple photon dissociation (IRMPD) spectra have been recorded for the conjugate bases of a series of amino acids (Asp, Cys, Glu, Phe, Set, Trp, Tyr). The spectra are dominated by strong symmetric and antisymmetric carboxylate stretching modes around 1300 and 1600 cm(-1),

  15. Headspace solid-phase microextraction and gas chromatography ...

    African Journals Online (AJOL)

    Purpose: To extract and analyze the volatile components of Chrysanthemum morifolium Ramat. 'huaiju' by headspace solid-phase microextraction (HS-SPME) and gas chromatography–mass spectrometry (GC–MS). Methods: Volatile components were extracted by HS-SPME and identified by GC–MS. The relative contents ...

  16. Headspace solid-phase microextraction and gas chromatography ...

    African Journals Online (AJOL)

    Purpose: To extract and analyze the volatile components of Chrysanthemum morifolium Ramat. 'huaiju' by headspace solid-phase microextraction (HS-SPME) and gas chromatography–mass spectrometry. (GC–MS). Methods: Volatile components were extracted by HS-SPME and identified by GC–MS. The relative contents ...

  17. Nanoparticles-chemistry, new synthetic approaches, gas phase ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, an overview of the synthesis, chemistry and applications of nanosystems carried out in our laboratory is presented. The discussion is divided into four sections, namely (a) chemistry of nanoparticles, (b) development of new synthetic approaches, (c) gas phase clusters and (d) device structures and ...

  18. Nanoparticles-chemistry, new synthetic approaches, gas phase ...

    Indian Academy of Sciences (India)

    http://www.ias.ac.in/article/fulltext/pram/065/04/0631-0640. Keywords. Nanoparticles; nanochemistry; gas phase clusters; flow sensors; optical limiters. Abstract. In this paper, an overview of the synthesis, chemistry and applications of nanosystems carried out in our laboratory is presented. The discussion is divided into four ...

  19. Gas phase toluene isopropylation over high silica mordenite

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Mordenite (HM) catalysts with three different Si/Al ratios were compared for their activity and selectivities in gas phase toluene isopropylation with isopropanol. Catalyst with Si/Al ratio 44⋅9 of- fered better cumene selectivity, hence, it was chosen for detailed kinetic investigations. The influence of various process ...

  20. Gas phase toluene isopropylation over high silica mordenite

    Indian Academy of Sciences (India)

    Mordenite (HM) catalysts with three different Si/Al ratios were compared for their activity and selectivities in gas phase toluene isopropylation with isopropanol. Catalyst with Si/Al ratio 44.9 offered better cumene selectivity, hence, it was chosen for detailed kinetic investigations. The influence of various process parameters ...

  1. INVESTIGATION OF GAS-PHASE OZONE AS A POTENTIAL BIOCIDE

    Science.gov (United States)

    The paper presents data on the effect of ozone on both vegetative and spore-forming fungi as well as on spore-forming bacteria. (NOTE: Despite the wide use of ozone generators in indoor air cleaning, there is little research data on ozone's biocidal activity in the gas phase.) Dr...

  2. Numerical simulation of wall temperature on gas pipeline due to radiation of natural gas during combustion

    Directory of Open Access Journals (Sweden)

    Ilić Marko N.

    2012-01-01

    Full Text Available This paper presents one of the possible hazardous situations during transportation of gas through the international pipeline. It describes the case when at high-pressure gas pipeline, due to mechanical or chemical effect, cracks and a gas leakage appears and the gas is somehow triggered to burn. As a consequence of heat impingement on the pipe surface, change of material properties (decreasing of strength at high temperatures will occur. In order to avoid greater rapture a reasonable pressure relief rate needs to be applied. Standards in this particular domain of depressurizing procedure are not so exact (DIN EN ISO 23251; API 521. This paper was a part of the project to make initial contribution in defining the appropriate procedure of gas operator behaving during the rare gas leakage and burning situations on pipeline network. The main part of the work consists of two calculations. The first is the numerical simulation of heat radiation of combustible gas, which affects the pipeline, done in the FLUENT software. The second is the implementation of obtained results as a boundary condition in an additional calculation of time resolved wall temperature of the pipe under consideration this temperature depending on the incident flux as well as a number of other heat flow rates, using the Matlab. Simulations were done with the help of the “E.ON Ruhrgas AG” in Essen.

  3. Anisotropic ordering in a two-temperature lattice gas

    DEFF Research Database (Denmark)

    Szolnoki, Attila; Szabó, György; Mouritsen, Ole G.

    1997-01-01

    We consider a two-dimensional lattice gas model with repulsive nearest- and next-nearest-neighbor interactions that evolves in time according to anisotropic Kawasaki dynamics. The hopping of particles along the principal directions is governed by two heat baths at different temperatures T-x and T...

  4. Temperature-dependent gas transport and its correlation with kinetic ...

    Indian Academy of Sciences (India)

    2017-05-20

    May 20, 2017 ... Temperature-dependent gas transport and its correlation with kinetic diameter in polymer nanocomposite membrane. N K ACHARYA. Applied Physics Department, Faculty of Technology and Engineering, The M S University of Baroda,. Vadodara 390 001, India sarnavee@gmail.com. MS received 18 May ...

  5. Influence of different storage times and temperatures on blood gas ...

    African Journals Online (AJOL)

    The present study was designed to investigate the effects of storage temperature and time on blood gas and acid-base balance of ovine venous blood. Ten clinically healthy sheep were used in this study. A total number of 30 blood samples, were divided into three different groups, and were stored in a refrigerator adjusted ...

  6. Temperature control of micro heater using Pt thin film temperature sensor embedded in micro gas sensor

    Science.gov (United States)

    Kang, Jun-gu; Park, Joon-Shik; Park, Kwang-Bum; Shin, Junho; Lee, Eung-An; Noh, Sangsoo; Lee, Hoo-Jeong

    2017-12-01

    Pt thin film temperature sensors (Pt T sensors) are embedded in micro gas sensors to measure and control the working temperature. We characterized electrical resistances of Pt T sensors and micro heaters with temperature changing in the oven and by Joule heating. In order to enhance the accuracy of temperature measurement by the Pt T sensors, we investigated the correlation among the Pt T sensor, micro heater, and the working temperature, which was linear proportional relation expressed as the equation: T2 = 6.466R1-642.8, where T2 = temperature of the Pt micro heater and R1 = the electrical resistance of the Pt T sensor. As the error by physically separated gap between Pt T sensor and micro heater calibrated, measuring and controlling temperature of micro heater in micro gas sensors were possible through the Pt T sensors. For the practical use of Pt T sensor in micro gas sensor, the gas sensing properties of fabricated micro gas sensors to 25 ppm CO and 1 ppm HCHO gases were characterized.

  7. A compressed hydrogen gas storage system with an integrated phase change material

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rothuizen, Erasmus Damgaard; Jørgensen, Jens Erik

    2015-01-01

    A dynamic fueling model is built to simulate the fueling process of a hydrogen tank with an integrated passive cooling system. The study investigates the possibility of absorbing a part of the heat of compression in the high latent-heat material during melting, with the aim of keeping the walls...... below the critical temperature of 85 °C, while filling the hydrogen at ambient temperature. Results show that a 10-mm-thick layer of paraffin wax can absorb enough heat to reduce the adiabatic temperature by 20 K when compared to a standard Type IV tank. The heat transfer from the gas to the phase...

  8. Liquid-gas phase transition and Coulomb instability of asymmetric nuclear systems

    Energy Technology Data Exchange (ETDEWEB)

    Anthony Thomas; P. Wang; D. B. Leinweber; A. G. Williams

    2005-02-01

    We use a chiral SU(3) quark mean field model to study the properties of nuclear systems at finite temperature. The liquid-gas phase transition of symmetric and asymmetric nuclear matter is discussed. For two formulations of the model the critical temperature, T{sub c}, for symmetric nuclear matter is found to be 15.8 MeV and 17.9 MeV. These values are consistent with those derived from recent experiments. The limiting temperatures for finite nuclei are in good agreement with the experimental points.

  9. Highly Selective Continuous Gas-Phase Methoxycarbonylation of Ethylene with Supported Ionic Liquid Phase (SILP) Catalysts

    DEFF Research Database (Denmark)

    Khokarale, Santosh Govind; Garcia Suárez, Eduardo José; Fehrmann, Rasmus

    2017-01-01

    Supported ionic liquid phase (SILP) technology was applied for the first time to the Pd-catalyzed continuous, gas-phase methoxycarbonylation of ethylene to selectively produce methyl propanoate (MP) in high yields. The influence of catalyst and reaction parameters such as, for example, ionic liquid...

  10. Direct Numerical Simulation of biomass pyrolysis and combustion with gas phase reactions

    Science.gov (United States)

    Awasthi, A.; Kuerten, J. G. M.; Geurts, B. J.

    2016-09-01

    We present Direct Numerical Simulation of biomass pyrolysis and combustion in a turbulent channel flow. The model includes simplified models for biomass pyrolysis and char combustion along with a model for particle tracking. The gas phase is modelled as a mixture of reacting gas species. The gas-particle interactions for mass, momentum, and energy exchange are included by two-way coupling terms. The effect of two-way coupling on the conversion time of biomass particles is found noticeable for particle volume fractions > 10-5. We also observe that at constant volume fraction the effect of two-way coupling increases as the particle size is reduced, due to the higher total heat exchange area in case of smaller particles. The inclusion of gas phase homogeneous reactions in the DNS model decreases the biomass pyrolysis time due to higher gas temperatures. In contrast, including gas phase reactions increases the combustion time of biomass due to the lower concentration of oxygen at the particle surface.

  11. Thermodynamic analysis of fuels in gas phase: ethanol, gasoline and ethanol - gasoline predicted by DFT method.

    Science.gov (United States)

    Neto, A F G; Lopes, F S; Carvalho, E V; Huda, M N; Neto, A M J C; Machado, N T

    2015-10-01

    This paper presents a theoretical study using density functional theory to calculate thermodynamics properties of major molecules compounds at gas phase of fuels like gasoline, ethanol, and gasoline-ethanol mixture in thermal equilibrium on temperature range up to 1500 K. We simulated a composition of gasoline mixture with ethanol for a thorough study of thermal energy, enthalpy, Gibbs free energy, entropy, heat capacity at constant pressure with respect to temperature in order to study the influence caused by ethanol as an additive to gasoline. We used semi-empirical computational methods as well in order to know the efficiency of other methods to simulate fuels through this methodology. In addition, the ethanol influence through the changes in percentage fractions of chemical energy released in combustion reaction and the variations on thermal properties for autoignition temperatures of fuels was analyzed. We verified how ethanol reduces the chemical energy released by gasoline combustion and how at low temperatures the gas phase fuels in thermal equilibrium have similar thermodynamic behavior. Theoretical results were compared with experimental data, when available, and showed agreement. Graphical Abstract Thermodynamic analysis of fuels in gas phase.

  12. Phase change based cooling for high burst mode heat loads with temperature regulation above the phase change temperature

    Science.gov (United States)

    The United States of America as represented by the United States Department of Energy

    2009-12-15

    An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.

  13. Oriented xenon hydride molecules in the gas phase

    Czech Academy of Sciences Publication Activity Database

    Buck, U.; Fárník, Michal

    2006-01-01

    Roč. 25, č. 4 (2006), s. 583-612 ISSN 0144-235X Grant - others:Deutsche Forschungsgemeinschaft(DE) SFB 357 Institutional research plan: CEZ:AV0Z40400503 Keywords : photofragment translational spectroscopy * charge transfer molecules * low temperature matrices * neutral rare-gas Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.036, year: 2006

  14. Optical pyrometer based on the gas phase photoacoustic effect.

    Science.gov (United States)

    Meng, Xiangling; Diebold, Gerald J

    2016-05-15

    A photoacoustic cell containing an infrared active gas and equipped with a pair of infrared transmitting windows that alternately views two bodies at different temperatures through a pair of chopping wheels acts as a differential detector of the radiation emitted by the two bodies. A theory for the photoacoustic signal shows that the device acts to monitor the difference in the incidances between the two bodies integrated over the absorptions of the gas in the cell. Experiments are reported showing that the response of the pyrometer depends on the relative temperatures of heated bodies, the absorption coefficient of the gas in the cell, and the modulation frequency of the chopping wheels. The instrument is shown to be a sensitive detector of a null in the integrated incidance of the two bodies.

  15. Low temperature catalytic combustion of natural gas - hydrogen - air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Newson, E.; Roth, F. von; Hottinger, P.; Truong, T.B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The low temperature catalytic combustion of natural gas - air mixtures would allow the development of no-NO{sub x} burners for heating and power applications. Using commercially available catalysts, the room temperature ignition of methane-propane-air mixtures has been shown in laboratory reactors with combustion efficiencies over 95% and maximum temperatures less than 700{sup o}C. After a 500 hour stability test, severe deactivation of both methane and propane oxidation functions was observed. In cooperation with industrial partners, scaleup to 3 kW is being investigated together with startup dynamics and catalyst stability. (author) 3 figs., 3 refs.

  16. Robust control of speed and temperature in a power plant gas turbine.

    Science.gov (United States)

    Najimi, Ebrahim; Ramezani, Mohammad Hossein

    2012-03-01

    In this paper, an H(∞) robust controller has been designed for an identified model of MONTAZER GHAEM power plant gas turbine (GE9001E). In design phase, a linear model (ARX model) which is obtained using real data has been applied. Since the turbine has been used in a combined cycle power plant, its speed and also the exhaust gas temperature should be adjusted simultaneously by controlling fuel signals and compressor inlet guide vane (IGV) position. Considering the limitations on the system inputs, the aim of the control is to maintain the turbine speed and the exhaust gas temperature within desired interval under uncertainties and load demand disturbances. Simulation results of applying the proposed robust controller on the nonlinear model of the system (NARX model), fairly fulfilled the predefined aims. Simulations also show the improvement in the performance compared to MPC and PID controllers for the same conditions. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Gas-liquid two-phase flows in double inlet cyclones for natural gas separation

    DEFF Research Database (Denmark)

    Yang, Yan; Wang, Shuli; Wen, Chuang

    2017-01-01

    The gas-liquid two-phase flow within a double inlet cyclone for natural gasseparation was numerically simulated using the discrete phase model. The numericalapproach was validated with the experimental data, and the comparison resultsagreed well with each other. The simulation results showed...... that the strong swirlingflow produced a high centrifugal force to remove the particles from the gas mixture.The larger particles moved downward on the internal surface and were removeddue to the outer vortex near the wall. Most of the tiny particles went into the innervortex zones and escaped from the up...

  18. Coal/Biomass cogasification and high temperature gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Kiel, J.H.A.; Bos, A.; Den Uil, H.; Plaum, J.M.

    1995-08-01

    This paper reports on the cogasification of coal and biomass in a downdraught fixed-bed gasifier and on the high temperature removal of halides from the fuel gas produced. Air-blown downdraught gasifiers are considered as an interesting option especially for small and intermediate scale on-site fuel gas generation using high volatile feedstocks. The current test programme conducted with a 300 kW{sub th} downdraught gasifier at the Netherlands Energy Research Foundation (ECN) was focused on the effect of the partial replacement of the coal feedstock by two different biomass feedstocks, viz. Meranti wood waste and straw pellets (Danish winter wheat), on gasifier operability and fuel gas composition. For dry halide removal, several sorbents were evaluated based on literature data, thermodynamic calculations, and on laboratory and bench-scale experiments at atmospheric pressure. The evaluation was mainly focused on dry halide removal at a temperature level of 350-400C in a separate process located upstream of the desulphurisation process in an integrated system for high temperature gas cleaning. 8 figs., 11 tabs., 11 refs.

  19. Temperature and distortion transients in gas tungsten-arc weldments

    Energy Technology Data Exchange (ETDEWEB)

    Glickstein, S.S.; Friedman, E.

    1979-10-01

    An analysis and test program to develop a fundamental understanding of the gas tungsten-arc welding process has been undertaken at the Bettis Atomic Power Laboratory to develop techniques to determine and control the various welding parameters and weldment conditions so as to result in optimum weld response characteristics. These response characteristics include depth of penetration, weld bead configuration, weld bead sink and roll, distortion, and cracking sensitivity. The results are documented of that part of the program devoted to analytical and experimental investigations of temperatures, weld bead dimensions, and distortions for moving gas tungsten-arc welds applied to Alloy 600 plates.

  20. Evolution of temperature and gas composition in coal piles

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, J.L.; Romero, C.; Andres, J.M.; Schmal, D. [CSIC, Zaragoza (Spain). Instituto de Carboquimica

    1995-12-31

    The evolution of temperature and gas composition in coal piles was followed for eleven months at three different depths using special probes. For all the piles studied the slope exposed to the wind showed the most severe weathering. The kind of coal in the piles has a strong effect on the extent of the oxidation which can reach 300{degree}C. The analysis of gas evolution showed a strong correlation between oxygen and carbon monoxide concentrations, pointing to a combined pyrolysis-combustion process. 3 refs., 3 figs., 1 tab.

  1. Dual Phase Membrane for High Temperature CO2 Separation

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Lin

    2007-06-30

    This project aimed at synthesis of a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Metal-carbonate dual-phase membranes were prepared by the direct infiltration method and the synthesis conditions were optimized. Permeation tests for CO{sub 2} and N{sub 2} from 450-750 C showed very low permeances of those two gases through the dual-phase membrane, which was expected due to the lack of ionization of those two particular gases. Permeance of the CO{sub 2} and O{sub 2} mixture was much higher, indicating that the gases do form an ionic species, CO{sub 3}{sup 2-}, enhancing transport through the membrane. However, at temperatures in excess of 650 C, the permeance of CO{sub 3}{sup 2-} decreased rapidly, while predictions showed that permeance should have continued to increase with temperature. XRD data obtained from used membrane indicated that lithium iron oxides formed on the support surface. This lithium iron oxide layer has a very low conductivity, which drastically reduces the flow of electrons to the CO{sub 2}/O{sub 2} gas mixture; thus limiting the formation of the ionic species required for transport through the membrane. These results indicated that the use of stainless steel supports in a high temperature oxidative environment can lead to decreased performance of the membranes. This revelation created the need for an oxidation resistant support, which could be gained by the use of a ceramic-type membrane. Work was extended to synthesize a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Helium permeance of the support before and after infiltration of molten carbonate are on the order of 10{sup -6} and 10{sup -10} moles/m{sup 2} {center_dot} Pa {center_dot} s respectively, indicating that the molten carbonate is able to sufficiently infiltrate the membrane. It was found that La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (LSCF) was a suitable candidate for the support

  2. Inhibited phase behavior of gas hydrates in graphene oxide: influences of surface and geometric constraints.

    Science.gov (United States)

    Kim, Daeok; Kim, Dae Woo; Lim, Hyung-Kyu; Jeon, Jiwon; Kim, Hyungjun; Jung, Hee-Tae; Lee, Huen

    2014-11-07

    Porous materials have provided us unprecedented opportunities to develop emerging technologies such as molecular storage systems and separation mechanisms. Pores have also been used as supports to contain gas hydrates for the application in gas treatments. Necessarily, an exact understanding of the properties of gas hydrates in confining pores is important. Here, we investigated the formation of CO2, CH4 and N2 hydrates in non-interlamellar voids in graphene oxide (GO), and their thermodynamic behaviors. For that, low temperature XRD and P-T traces were conducted to analyze the water structure and confirm hydrate formation, respectively, in GO after its exposure to gaseous molecules. Confinement and strong interaction of water with the hydrophilic surface of graphene oxide reduce water activity, which leads to the inhibited phase behavior of gas hydrates.

  3. Optimized Feature Extraction for Temperature-Modulated Gas Sensors

    Directory of Open Access Journals (Sweden)

    Alexander Vergara

    2009-01-01

    Full Text Available One of the most serious limitations to the practical utilization of solid-state gas sensors is the drift of their signal. Even if drift is rooted in the chemical and physical processes occurring in the sensor, improved signal processing is generally considered as a methodology to increase sensors stability. Several studies evidenced the augmented stability of time variable signals elicited by the modulation of either the gas concentration or the operating temperature. Furthermore, when time-variable signals are used, the extraction of features can be accomplished in shorter time with respect to the time necessary to calculate the usual features defined in steady-state conditions. In this paper, we discuss the stability properties of distinct dynamic features using an array of metal oxide semiconductors gas sensors whose working temperature is modulated with optimized multisinusoidal signals. Experiments were aimed at measuring the dispersion of sensors features in repeated sequences of a limited number of experimental conditions. Results evidenced that the features extracted during the temperature modulation reduce the multidimensional data dispersion among repeated measurements. In particular, the Energy Signal Vector provided an almost constant classification rate along the time with respect to the temperature modulation.

  4. Phase diagrams for an ideal gas mixture of fermionic atoms and bosonic molecules

    DEFF Research Database (Denmark)

    Williams, J. E.; Nygaard, Nicolai; Clark, C. W.

    2004-01-01

    We calculate the phase diagrams for a harmonically trapped ideal gas mixture of fermionic atoms and bosonic molecules in chemical and thermal equilibrium, where the internal energy of the molecules can be adjusted relative to that of the atoms by use of a tunable Feshbach resonance. We plot...... diagrams obtained in recent experiments on the Bose-Einstein condensation to Bardeen-Cooper-Schrieffer crossover, in which the condensate fraction is plotted as a function of the initial temperature of the Fermi gas measured before a sweep of the magnetic field through the resonance region....

  5. High temperature gas cleaning for pressurized gasification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Alden, H.; Hagstroem, P.; Hallgren, A.; Waldheim, L. [TPS Termiska Processer AB, Nykoeping (Sweden)

    2000-04-01

    The purpose of the project was to build an apparatus to study pressurized, high temperature gas cleaning of raw gasification gas generated from biomass. A flexible and easy to operate pressurized apparatus was designed and installed for the investigations in high temperature gas cleaning by means of thermal, catalytic or chemical procedures. A semi continuos fuel feeding concept, at a maximum rate of 700 g/h, allowed a very constant formation of a gas product at 700 deg C. The gas product was subsequently introduced into a fixed bed secondary reactor where the actual gas cleanup or reformation was fulfilled. The installation work was divided into four work periods and apart from a few delays the work was carried out according to the time plan. During the first work period (January - June 1994) the technical design, drawings etc. of the reactor and additional parts were completed. All material for the construction was ordered and the installation work was started. The second work period (July - December 1994) was dedicated to the construction and the installation of the different components. Initial tests with the electrical heating elements, control system and gas supply were assigned to the third work period (January - June 1995). After the commissioning and the resulting modifications, initial pyrolysis and tar decomposition experiments were performed. During the fourth and final work period, (June - December 1995) encouraging results from first tests allowed the experimental part of the project work to commence, however in a slightly reduced program. The experimental part of the project work comparatively studied tar decomposition as a function of the process conditions as well as of the choice of catalyst. Two different catalysts, dolomite and a commercial Ni-based catalyst, were evaluated in the unit. Their tar cracking ability in the pressure interval 1 - 20 bar and at cracker bed temperatures between 800 - 900 deg C was compared. Long term tests to study

  6. Gas phase RDX decomposition pathways using coupled cluster theory.

    Science.gov (United States)

    Molt, Robert W; Watson, Thomas; Bazanté, Alexandre P; Bartlett, Rodney J; Richards, Nigel G J

    2016-09-21

    Electronic and free energy barriers for a series of gas-phase RDX decomposition mechanisms have been obtain using coupled cluster singles, doubles, and perturbative triples with complete basis set (CCSD(T)/CBS) electronic energies for MBPT(2)/cc-pVTZ structures. Importantly, we have located a well-defined transition state for NN homolysis, in the initial RDX decomposition step, thereby obtaining a true barrier for this reaction. These calculations support the view that HONO elimination is preferred at STP over other proposed mechanisms, including NN homolysis, "triple whammy" and NONO isomerization. Indeed, our calculated values of Arrhenius parameters are in agreement with experimental findings for gas phase RDX decomposition. We also investigate a number of new pathways leading to breakdown of the intermediate formed by the initial HONO elimination, and find that NN homolysis in this intermediate has an activation energy barrier comparable with that computed for HONO elimination.

  7. Preconcentration in gas or liquid phases using adsorbent thin films

    Directory of Open Access Journals (Sweden)

    Antonio Pereira Nascimento Filho

    2006-03-01

    Full Text Available The possibility of preconcentration on microchannels for organic compounds in gas or liquid phases was evaluated. Microstructures with different geometries were mechanically machined using poly(methyl methacrylate - PMMA as substrates and some cavities were covered with cellulose. The surfaces of the microchannels were modified by plasma deposition of hydrophilic or hydrophobic films using 2-propanol and hexamethyldisilazane (HMDS, respectively. Double layers of HMDS + 2-propanol were also used. Adsorption characterization was made by Quartz Crystal Measurements (QCM technique using reactants in a large polarity range that showed the adsorption ability of the structures depends more on the films used than on the capillary phenomena. Cellulose modified by double layer film showed a high retention capacity for all gaseous compounds tested. However, structures without plasma deposition showed low retention capacity. Microchannels modified with double layers or 2-propanol plasma films showed higher retention than non-modified ones on gas or liquid phase.

  8. Phase evolution in an MCrAlY coating during high temperature exposure

    Directory of Open Access Journals (Sweden)

    Costa C.

    2012-01-01

    Full Text Available MCrAlY (M = Ni and/or Co coating systems are often applied on gas turbine blades and vanes to withstand the challenges of severe conditions. During service MCrAlY coatings are subjected to microstructural transformations that can be an indication of components service temperatures. The development of indirect methods to measure this parameter is of great concern in the gas turbine “world” due to the impossibility of direct measurements. In the present work the evolution of an MCrAlY coating applied on Rene80 by LPPS (Low Pressure Plasma Spray technique has been studied in order to verify if it was possible to identify a microstructural indicator of the service temperature. The specimens were exposed for different lengths of time at test temperatures of 700 - 800 - in order to characterize the phase evolution with time and temperature. Selective etching was employed for optical metallographic investigation. Scanning Electron Microscopy (SEM observation combined with Electron Backscattered Diffraction (EBSD and Energy Dispersive Spectroscopy (EDS showed that the coating is composed of a γ- Co matrix, β-AlNi, σ-(Cr, Co, Cr carbide and Y-rich phases. Among these phases, the sigma phase resulted in a temperature - composition dependence that can be a useful tool for evaluating the local service temperature and modelling the residual lifetime.

  9. Temperatures of Mediterranean Volcanic Hydrothermal Systems Reflected by Gas Geothermometry

    Science.gov (United States)

    Fiebig, J.; Tassi, F.; D'Alessandro, W.; Vaselli, O.; Woodland, A. B.

    2011-12-01

    We have addressed the genetic relationship between H2, H2O, CO, CO2, n-alkanes and n-alkenes in volcanic-hydrothermal gases emitted from Nisyros (Greece), Vesuvio, Campi Flegrei and Pantelleria (all Italy). Methane attains chemical and isotopic equilibrium with CO2 in the associated hydrothermal systems within the single liquid phase. Calculated aquifer temperatures at depth are ~360°C at Nisyros, 420-460°C at Vesuvio, ~450°C at Campi Flegrei and ~540°C at Pantelleria. CH4-CO2 equilibrium temperatures are in agreement with propane/propene concentration ratios. Temperatures >400°C are additionally confirmed by ethane/ethene ratios. In contrast to CH4-CO2, metastable equilibration of the alkane/alkene pairs takes place in the saturated water vapor phase. Overall agreement of vapor and liquid equilibration temperatures suggests that boiling in the investigated high-enthalpy hydrothermal systems is essentially isothermal. Our results imply that the chemical and isotopic CH4-CO2 geothermometer is least prone to re-equilibration reactions occurring in the vapor phase after vapor separation. Redox conditions during these re-equilibration reactions are homogeneously buffered by H2/H2O ratios of the vapor phase, which, in turn, are controlled by those of the parental liquid phase and by the degree of superimposed vapor separation. Amongst the redox pairs investigated, CO/CO2 is most prone to secondary vapor phase equilibration. Our results imply that the isotopic CH4-CO2 geothermometer has the potential to record temperatures of aquifers associated with dormant volcanoes. Alkene/alkane and H2/H2O concentration ratios should be measured along with CH4 and CO2 to prove independently whether isotopic equilibrium has been attained.

  10. Mass Spectrometric Determination of Gas Phase Structures of Amino Acids

    OpenAIRE

    Rožman, Marko; Srzić, Dunja

    2005-01-01

    In the past two decades mass spectrometry became an important tool in the structural investigations of biomolecules (amino acids). Although, the primary focus of mass spectrometry is on compound identification and sequence information (primary structure), some mass spectrometry based methods as ion chromatography, hydrogen/deuterium exchange, and kinetic method are able to determine secondary gas phase structure of the amino acids. For example, it is possible to distinguish the zwitterionic a...

  11. Can quantum gas microscopes directly image exotic glassy phases?

    OpenAIRE

    Thomson, Steven John; Walker, Liam S.; Harte, Tiffany L.; Bruce, Graham David

    2016-01-01

    With the advent of spatially resolved fluorescence imaging in quantum gas microscopes (see e.g. [1]), it is now possible to directly image glassy phases and probe the local effects of disorder in a highly controllable setup. Here we present numerical calculations using a spatially resolved local mean-field theory, show that it captures the essential physics of the disordered system, and use it to simulate the density distributions seen in single-shot fluorescence microscopy [2]. From these si...

  12. Gas Phase Hydrogenation of Levulinic Acid to gamma-Valerolactone

    NARCIS (Netherlands)

    Bonrath, Werner; Castelijns, Anna Maria Cornelia Francisca; de Vries, Johannes Gerardus; Guit, Rudolf Philippus Maria; Schuetz, Jan; Sereinig, Natascha; Vaessen, Henricus Wilhelmus Leonardus Marie

    The gas phase hydrogenation of levulinic acid to gamma-valerolactone over copper and ruthenium based catalysts in a continuous fixed-bed reactor system was investigated. Among the catalysts a copper oxide based one [50-75 % CuO, 20-25 % SiO2, 1-5 % graphite, 0.1-1 % CuCO3/Cu(OH)(2)] gave

  13. Gas diffusion and temperature dependence of bubble nucleation during irradiation

    DEFF Research Database (Denmark)

    Foreman, A. J. E.; Singh, Bachu Narain

    1986-01-01

    of the diatomic nucleation of helium bubbles, assuming helium to diffuse substitutionally, with radiation-enhanced diffusion at lower temperatures. The calculated temperature dependence of the bubble density shows excellent agreement with that observed in 600 MeV proton irradiations, including a reduction...... in activation energy below Tm/2. The coalescence of diatomic nuclei due to Brownian motion markedly improves the agreement and also provides a well-defined terminal density. Bubble nucleation by this mechanism is sufficiently fast to inhibit any appreciable initial loss of gas to grain boundaries during...

  14. Gas detection using low-temperature reduced graphene oxide sheets

    Science.gov (United States)

    Lu, Ganhua; Ocola, Leonidas E.; Chen, Junhong

    2009-02-01

    We demonstrate a high-performance gas sensor using partially reduced graphene oxide (GO) sheets obtained through low-temperature step annealing (300 °C at maximum) in argon flow at atmospheric pressure. The electrical conductance of GO was measured after each heating cycle to interpret the level of reduction. The thermally reduced GO showed p-type semiconducting behavior in ambient conditions and were responsive to low-concentration NO2 diluted in air at room temperature. The sensitivity is attributed to the electron transfer from the reduced GO to adsorbed NO2, which leads to enriched hole concentration and enhanced electrical conduction in the reduced GO sheet.

  15. High-Temperature Gas-Cooled Test Reactor Point Design

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Laboratory; Bayless, Paul David [Idaho National Laboratory; Nelson, Lee Orville [Idaho National Laboratory; Gougar, Hans David [Idaho National Laboratory; Kinsey, James Carl [Idaho National Laboratory; Strydom, Gerhard [Idaho National Laboratory; Kumar, Akansha [Idaho National Laboratory

    2016-04-01

    A point design has been developed for a 200 MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technological readiness level, licensing approach and costs.

  16. Utilizing the response patterns of a temperature modulated chemoresistive gas sensor for gas diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Amini, Amir [Jannatabad College, Sama Organization, Islamic Azad University, Tehran (Iran, Islamic Republic of); Ghafarinia, Vahid, E-mail: amir.amini.elec@gmail.com, E-mail: ghafarinia@ee.kntu.ac.ir [Electrical Engineering Department, K. N. Toosi University of Technology, Tehran (Iran, Islamic Republic of)

    2011-02-15

    The observed features in the temporal response patterns of a temperature-modulated chemoresistive gas sensor were used for gas diagnosis. The patterns were recorded for clean air and air contaminated with different levels of some volatile organic compounds while a staircase heating voltage waveform had been applied to the microheater of a tin oxide gas sensor that modulated its operating temperature. Combining the steady-state and transient parameters of the recorded responses in the 50-400 deg. C range resulted in discriminatory feature vectors which were utilized for contaminant classification. The information content of these feature vectors was proved sufficient for discrimination of methanol, ethanol, 1-butanol, and acetone contaminations in a wide concentration range.

  17. Non-intrusive measurement of hot gas temperature in a gas turbine engine

    Science.gov (United States)

    DeSilva, Upul P.; Claussen, Heiko; Yan, Michelle Xiaohong; Rosca, Justinian; Ulerich, Nancy H.

    2016-09-27

    A method and apparatus for operating a gas turbine engine including determining a temperature of a working gas at a predetermined axial location within the engine. An acoustic signal is encoded with a distinct signature defined by a set of predetermined frequencies transmitted as a non-broadband signal. Acoustic signals are transmitted from an acoustic transmitter located at a predetermined axial location along the flow path of the gas turbine engine. A received signal is compared to one or more transmitted signals to identify a similarity of the received signal to a transmitted signal to identify a transmission time for the received signal. A time-of-flight is determined for the signal and the time-of-flight for the signal is processed to determine a temperature in a region of the predetermined axial location.

  18. Gas phase basicities of polyfunctional molecules. Part 3: Amino acids.

    Science.gov (United States)

    Bouchoux, Guy

    2012-01-01

    The present article is the third part of a general overview of the gas-phase protonation thermochemistry of polyfunctional molecules (first part: Mass Spectrom. Rev., 2007, 26:775-835, second part: Mass Spectrom. Rev., 2011, in press). This review is devoted to the 20 proteinogenic amino acids and is divided in two parts. In the first one, the experimental data obtained during the last 30 years using the equilibrium, thermokinetic and kinetic methods are presented. A general re-assignment of the values originating from these various experiments has been done on the basis of the commonly accepted Hunter & Lias 1998 gas-phase basicity scale in order to provide an homogeneous set of data. In the second part, theoretical investigations on gaseous neutral and protonated amino acids are reviewed. Conformational landscapes of both types of species were examined in order to provide theoretical protonation thermochemistry based on the truly identified most stable conformers. Proton affinities computed at the presently highest levels of theory (i.e. composite methods such as Gn procedures) are presented. Estimates of thermochemical parameters calculated using a Boltzmann distribution of conformers at 298K are also included. Finally, comparison between experiment and theory is discussed and a set of evaluated proton affinities, gas-phase basicities and protonation entropies is proposed. © 2011 Wiley Periodicals, Inc.

  19. Parenchymal mechanics, gas mixing, and the slope of phase III.

    Science.gov (United States)

    Wilson, Theodore A

    2013-07-01

    A model of parenchymal mechanics is revisited with the objective of investigating the differences in parenchymal microstructure that underlie the differences in regional compliance that are inferred from gas-mixing studies. The stiffness of the elastic line elements that lie along the free edges of alveoli and form the boundary of the lumen of the alveolar duct is the dominant determinant of parenchymal compliance. Differences in alveolar size cause parallel shifts of the pressure-volume curve, but have little effect on compliance. However, alveolar size also affects the relation between surface tension and pressure during the breathing cycle. Thus regional differences in alveolar size generate regional differences in surface tension, and these drive Marangoni surface flows that equilibrate surface tension between neighboring acini. Surface tension relaxation introduces phase differences in regional volume oscillations and a dependence of expired gas concentration on expired volume. A particular example of different parenchymal properties in two neighboring acini is described, and gas exchange in this model is calculated. The efficiency of mixing and slope of phase III for the model agree well with published data. This model constitutes a new hypothesis concerning the origin of phase III.

  20. Study of the MWPC gas gain behaviour as a function of the gas pressure and temperature

    CERN Document Server

    Pinci, D

    2005-01-01

    The Muon System of the LHCb experiment is composed of five detection stations (M1-M5) equipped with 1368 Multi-Wire Proportional Chambers (MWPC) and 24 Triple-GEM detectors. The Multi Wire Proportional Chamber (MWPC) performances (detection efficiency, time resolution, pad-cluster size and ageing properties) are heavily dependent on the gas gain. The chamber gain depends on the gas density and therefore on the gas temperature and pressure. The impact of the environmental parameters on the MWPC gain has been studied in detail. The results, togheter with a simple method proposed to account for the gain variations, are reported in this note. The absolute gas gain at the testing voltage of 2750 V was also measured to be (1.2 +- 0.1)*10^5.

  1. An extension of the weighted sum of gray gases non-gray gas radiation model to a two phase mixture of non-gray gas with particles

    Energy Technology Data Exchange (ETDEWEB)

    Myoung Jong Yu; Seung Wook Baek; Jae Hyun Park [Korea Advanced Institute of Science and Technology, Taejon (Korea). Department of Aerospace Engineering

    2000-05-01

    A great deal of effort has been exercised to date to accurately model the non-gray behavior of the gases. Among others, the weighted sum of gray gases model (WSGGM), which replaces the non-gray gas behavior by an equivalent finite number of gray gases, is a simplified model yielding reasonable results. However, a discussion on the weighting factors required for an estimation of radiation in a mixture of non-gray gas/gray particulate is not yet established for WSGGM. since they are dependent on the particle number density, particle size distribution, local temperature and partial pressure. Consequently, the relation between the weighting factors used in the WSGGM for a mixture of non-gray gas and gray particles with scattering in the thermal non-equilibrium has been discussed here, which has not been done before to the author's best knowledge. Weighting factors for the particles, of which temperature is different from that of the gas, were evaluated analytically for the WSGGM. The results were then validated for the problem of isothermal gas containing soot particulates between two parallel slab walls. For further application, the approach derived here was implemented to examine the non-gray radiative effects of the two phase mixture in an axisymmetric cylinder by changing such various parameters as the particle temperature, non-gray gas composition and particle concentration. The effects of thermal non-equilibrium in a mixture of gas and particles were also discussed in parallel with scattering effects by particles. Parametric study showed that a variation in the gas concentration yielded a noticeable change in the radiative heat transfer when the suspended particle temperature was different from the gas temperature. New contribution of this study consisted in an extension of applicability of the WSGGM non-gray model to two phase radiation. (author)

  2. Experimental and numerical investigation of gas phase freeboard combustion

    DEFF Research Database (Denmark)

    Andersen, J.; Jensen, Peter Arendt; Meyer, K.E.

    2009-01-01

    Experimental data for velocity field, temperatures, and gas composition have been obtained from a 50 kW axisymmetric non-swirling natural gas fired combustion setup under two different settings. The reactor was constructed to simulate the conditions in the freeboard of a grate-fired boiler but un...... of more advanced chemical mechanisms did not improve the prediction of the overall combustion process but did provide additional information about species (especially H(2) and radicals), which is desirable for postprocessing pollutant formation.......Experimental data for velocity field, temperatures, and gas composition have been obtained from a 50 kW axisymmetric non-swirling natural gas fired combustion setup under two different settings. The reactor was constructed to simulate the conditions in the freeboard of a grate-fired boiler...... but under well-defined conditions. The experimental results are compared to computational fluid dynamics (CFD) modeling predictions, using the eddy dissipation model (EDM) its well as the eddy dissipation concept (EDC). The use of EDC allows for implementation of more advanced combustion schemes; we have...

  3. Theory of Gas Injection: Interaction of Phase Behavior and Flow

    Science.gov (United States)

    Dindoruk, B.

    2015-12-01

    The theory of gas injection processes is a central element required to understand how components move and partition in the reservoir as one fluid is displacing another (i.e., gas is displacing oil). There is significant amount of work done in the area of interaction of phase-behavior and flow in multiphase flow conditions. We would like to present how the theory of gas injection is used in the industry to understand/design reservoir processes in various ways. The tools that are developed for the theory of gas injection originates from the fractional flow theory, as the first solution proposed by Buckley-Leveret in 1940's, for water displacing oil in porous media. After 1960's more and more complex/coupled equations were solved using the initial concept(s) developed by Buckley-Leverett, and then Welge et al. and others. However, the systematic use of the fractional flow theory for coupled set of equations that involves phase relationships (EOS) and phase appearance and disappearance was mainly due to the theory developed by Helfferich in early 80's (in petroleum literature) using method of characteristics primarily for gas injection process and later on by the systematic work done by Orr and his co-researchers during the last two decades. In this talk, we will present various cases that use and extend the theory developed by Helfferich and others (Orr et al., Lake et al. etc.). The review of various injection systems reveals that displacement in porous media has commonalities that can be represented with a unified theory for a class of problems originating from the theory of gas injection (which is in a way generalized Buckley-Leverett problem). The outcome of these solutions can be used for (and are not limited to): 1) Benchmark solutions for reservoir simulators (to quantify numerical dispersion, test numerical algorithms) 2) Streamline simulators 3) Design of laboratory experiments and their use (to invert the results) 4) Conceptual learning and to investigate

  4. Corrosion of Alloy 617 in high-temperature gas environments

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Tsung-Kuang [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 300, Taiwan (China); Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan (China); Chang, Hao-Ping [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 300, Taiwan (China); Wang, Mei-Ya, E-mail: meywang@mx.nthu.edu.tw [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 300, Taiwan (China); Yuan, Trai [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 300, Taiwan (China); Kai, Ji-Jung [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 300, Taiwan (China); Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan (China)

    2014-05-01

    High-temperature gas-cooled reactors (HTGRs) with helium gas as the primary coolant have been considered as one type of the Generation IV nuclear power reactor systems. Several nickel-based superalloys, including Alloy 617, are potential structural materials to serve as pressure boundary components, such as the intermediate heat exchanger (IHX) in an HTGR. Impurities in a helium coolant, such as H{sub 2}O and O{sub 2}, can interact with structural materials at working temperatures of >900 °C, leading to serious degradation on these materials. In addition, defects in IHX surface coatings would allow these species to reach and interact with the external surfaces of these components, leading to similar or even more serious degradation. In this study we investigated the oxidation behavior of Alloy 617 in high-temperature, gaseous environments with various levels of O{sub 2} and H{sub 2}O. A series of general corrosion tests were conducted at test temperatures of 650 °C, 750 °C, 850 °C and 950 °C under various coolant compositions of dry air, 1% O{sub 2}, 10% relative humidity (RH), and 50% RH. Preliminary results showed that the surface morphologies of the Alloy 617 samples exhibited distinct evidence of intergranular corrosion. Compact chromium oxide layers were observed on the sample surfaces. The oxidation mechanisms of this alloy in the designated environments are discussed.

  5. Prediction of temperature front in a gas turbine combustion chamber

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, F.Z.; Kubiak, J.; Gonzalez, G.; Urquiza, G. [Universidad Autonoma del Estado de Morelos, Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Cuernavaca, Morelos (Mexico)

    2005-06-01

    Numerical computation has been applied to investigate the temperature field in a gas turbine combustion chamber. The simulation assumed that pressure imbalance conditions of air flow between primary and secondary inlets occur. The combustion chamber under study is part of a 70 MW gas turbine from an operating combined cycle power plant. The combustion was simulated with normal fuel-air flow rate assuming stoichiometric conditions. Under these conditions characteristic temperature and pressure fields were obtained provided equity of boundary conditions at air inlets applies. However, with pressure distribution imbalances of the order of 3 kPa between primary and secondary air inlets, excessive heating in regions other than the combustion chamber core were obtained. Over heating in these regions helped to explain what was observed to produce permanent damage to auxiliary equipment surrounding the combustion chamber core, like the cross flame pipes. It is observed that high temperatures which normally develop in the central region of the combustion chamber may reach other surrounding upstream regions by modifying slightly the air pressure. Microscope scanning of the damaged pipes confirmed that the material was exposed to high temperatures such as predicted through the numerical computation. (Author)

  6. Dynamic Modeling of the Two-Phase Leakage Process of Natural Gas Liquid Storage Tanks

    Directory of Open Access Journals (Sweden)

    Xia Wu

    2017-09-01

    Full Text Available The leakage process simulation of a Natural Gas Liquid (NGL storage tank requires the simultaneous solution of the NGL’s pressure, temperature and phase state in the tank and across the leak hole. The methods available in the literature rarely consider the liquid/vapor phase transition of the NGL during such a process. This paper provides a comprehensive pressure-temperature-phase state method to solve this problem. With this method, the phase state of the NGL is predicted by a thermodynamic model based on the volume translated Peng-Robinson equation of state (VTPR EOS. The tank’s pressure and temperature are simulated according to the pressure-volume-temperature and isenthalpic expansion principles of the NGL. The pressure, temperature, leakage mass flow rate across the leak hole are calculated from an improved Homogeneous Non-Equilibrium Diener-Schmidt (HNE-DS model and the isentropic expansion principle. In particular, the improved HNE-DS model removes the ideal gas assumption used in the original HNE-DS model by using a new compressibility factor developed from the VTPR EOS to replace the original one derived from the Clausius-Clayperon equation. Finally, a robust procedure of simultaneously solving the tank model and the leak hole model is proposed and the method is validated by experimental data. A variety of leakage cases demonstrates that this method is effective in simulating the dynamic leakage process of NGL tanks under critical and subcritical releasing conditions associated with vapor/liquid phase change.

  7. Evidence of Microporous Carbon Nanosheets Showing Fast Kinetics in both Gas Phase and Liquid Phase Environments.

    Science.gov (United States)

    Jin, Zhen-Yu; Xu, Yuan-Yuan; Sun, Qiang; Lu, An-Hui

    2015-10-01

    Despite the great advantages of microporous carbons for applications in gas phase separation, liquid phase enrichment, and energy storage devices, direct experiment data and theoretical calculations on the relevance of properties and structures are quite limited. Herein, two model carbon materials are designed and synthesized, i.e., microporous carbon nanosheets (MCN) and microporous carbon spheres (MCS). They both have nearly same composition, surface chemistry, and specific surface area, known morphology, but distinguishable diffusion paths. Based on these two types of materials, a reliable relationship between the morphology with different diffusion paths and adsorption kinetics in both gas phase and liquid phase environments is established. When used for CO2 capture, MCN shows a high saturated CO2 capacity of 8.52 μmol m(-2) and 18.4 mmol cm(-3) at 273 K and ambient pressure, and its calculated first-order rate constant is ≈7.4 times higher than that of MCS. Moreover, MCN shows a quick and high uptake of Cr (VI) and a higher-rate performance for supercapacitors than MCS does. These results strongly confirm that MCN exhibits improved kinetics in gas phase separation, liquid phase enrichment, and energy storage devices due to its shorter diffusion paths and larger exposed geometrical area resulting from the nanosheet structure. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Thermodynamic Changes in the Coal Matrix - Gas - Moisture System Under Pressure Release and Phase Transformations of Gas Hydrates

    Science.gov (United States)

    Dyrdin, V. V.; Smirnov, V. G.; Kim, T. L.; Manakov, A. Yu.; Fofanov, A. A.; Kartopolova, I. S.

    2017-06-01

    The physical processes occurring in the coal - natural gas system under the gas pressure release were studied experimentally. The possibility of gas hydrates presence in the inner space of natural coal was shown, which decomposition leads to an increase in the amount of gas passing into the free state. The decomposition of gas hydrates can be caused either by the seam temperature increase or the pressure decrease to lower than the gas hydrates equilibrium curve. The contribution of methane released during gas hydrates decomposition should be taken into account in the design of safe mining technologies for coal seams prone to gas dynamic phenomena.

  9. The Wilson flow and the finite temperature phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Wandelt, M. [Department of Mathematics, School of Mathematics and Natural Sciences,Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal (Germany); Knechtli, F. [Department of Physics, School of Mathematics and Natural Sciences,Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal (Germany); Günther, M. [Department of Mathematics, School of Mathematics and Natural Sciences,Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal (Germany)

    2016-10-12

    We consider the determination of the finite temperature phase transition in the Yang-Mills SU(3) gauge theory. We compute the difference of the spatial and temporal energy density at a physical Wilson flow time. This difference is zero in the confined phase and becomes non zero in the deconfined phase. We locate the phase transition by using a new technique based on an exponential smoothing spline. This method is an alternative to the determination of the phase transition based on the Polyakov loop susceptibility and can also be used with dynamical fermions.

  10. Star formation and gas phase history of the cosmic web

    Science.gov (United States)

    Snedden, Ali; Coughlin, Jared; Phillips, Lara Arielle; Mathews, Grant; Suh, In-Saeng

    2016-01-01

    We present a new method of tracking and characterizing the environment in which galaxies and their associated circumgalactic medium evolve. We have developed a structure finding algorithm that uses the rate of change of the density gradient to self-consistently parse and follow the evolution of groups/clusters, filaments and voids in large-scale structure simulations. We use this to trace the complete evolution of the baryons in the gas phase and the star formation history within each structure in our simulated volume. We vary the structure measure threshold to probe the complex inner structure of star-forming regions in poor clusters, filaments and voids. We find that the majority of star formation occurs in cold, condensed gas in filaments at intermediate redshifts (z ˜ 3). We also show that much of the star formation above a redshift z = 3 occurs in low-contrast regions of filaments, but as the density contrast increases at lower redshift, star formation switches to the high-contrast regions, or inner parts, of filaments. Since filaments bridge the void and cluster regions, it suggests that the majority of star formation occurs in galaxies in intermediate density regions prior to the accretion on to groups/clusters. We find that both filaments and poor clusters are multiphase environments distinguishing themselves by different distributions of gas phases.

  11. Systematic Search for Chemical Reactions in Gas Phase Contributing to Methanol Formation in Interstellar Space.

    Science.gov (United States)

    Gamez-Garcia, Victoria G; Galano, Annia

    2017-10-05

    A massive search for chemical routes leading to methanol formation in gas phase has been conducted using computational chemistry, at the CBS-QB3 level of theory. The calculations were performed at five different temperatures (100, 80, 50, 20, and 10 K) and at three pressures (0.1, 0.01, and 0.001 atm) for each temperature. The search was focused on identifying reactions with the necessary features to be viable in the interstellar medium (ISM). A searching strategy was applied to that purpose, which allowed to reduce an initial set of 678 possible reactions to a subset of 11 chemical routes that are recommended, for the first time, as potential candidates for contributing to methanol formation in the gas phase of the ISM. They are all barrier-less, and thus they are expected to take place at collision rates. Hopefully, including these reactions in the currently available models, for the gas-phase methanol formation in the ISM, would help improving the predicted fractional abundance of this molecule in dark clouds. Further investigations, especially those dealing with grain chemistry and electronic excited states, would be crucial to get a complete picture of the methanol formation in the ISM.

  12. Phase diagram of Nitrogen at high pressures and temperatures

    Science.gov (United States)

    Jenei, Zsolt; Lin, Jung-Fu; Yoo, Choong-Shik

    2007-03-01

    Nitrogen is a typical molecular solid with relatively weak van der Waals intermolecular interactions but strong intramolecular interaction arising from the second highest binding energy of all diatomic molecules. The phase diagram of solid nitrogen is, however, complicated at high pressures, as inter-molecular interaction becomes comparable to the intra-molecular interaction. In this paper, we present an updated phase diagram of the nitrogen in the pressure-temperature region of 100 GPa and 1000 K, based on in-situ Raman and synchrotron x-ray diffraction studies using externally heated membrane diamond anvil cells. While providing an extension of the phase diagram, our results indicate a ``steeper'' slope of the δ/ɛ phase boundary than previously determined^1. We also studied the stability of the ɛ phase at high pressures and temperatures. Our new experimental results improve the understanding of the Nitrogen phase diagram. 1. Gregoryanz et al, Phys. Rev. B 66, 224108 (2002)

  13. Contributions of gas-phase plasma chemistry to surface modifications and gas-surface interactions: investigations of fluorocarbon rf plasmas

    Science.gov (United States)

    Cuddy, Michael F., II

    scatter coefficient include the surface with which the radical interacts, the vibrational temperature (thetaV) of the radical in its gas phase, and radical interactions in the gas phase. The analyses of thetaV in particular were extended to diatomic radicals from other plasma sources, including nitric oxide and fluorosilane systems, to gauge the contributions of vibrational energy to surface reactivity. In general, a monotonic increase in S is observed for CF, NO, and SiF radicals with increasing thetaV. Preliminary results for mixed plasma precursor systems (i.e. FC/H 2, FC/O2) indicate that the choice of feed gas additives has a profound effect on surface modification. Hydrogen additions tend to promote FC film deposition through scavenging of fluorine atoms, whereas oxygen consumes polymerizing species, thus favoring etching regimes. Time-resolved optical emission spectroscopy (TR-OES) studies of gas-phase species elucidate the mechanisms by which these processes occur. Ultimately, the work presented herein expands the fundamental chemical and physical understanding of fluorocarbon plasma systems.

  14. luminous transmittance and phase transition temperature of vo2:ce ...

    African Journals Online (AJOL)

    nb

    A two-step increase in transmittance observed in the cooling loop in pure VO2 was found to be suppressed by cerium inclusion. Keywords: vanadium dioxide, luminous transmittance, phase transition temperature. INTRODUCTION. Discovery of novel behavior of vanadium dioxide to undergo a metal-to-insulator phase.

  15. Gamma radiation effects on polydimethylsilane stationary phases for use in packed-column gas chromatographic analyses

    Directory of Open Access Journals (Sweden)

    Adaime M.B.

    1999-01-01

    Full Text Available Gamma radiation induced immobilization of several polydimethylsilane liquid stationary phases for use in packed-column gas chromatographic separations has been studied. Extraction tests show that moderate doses of gamma radiation (80-140 kGy are sufficient to produce significant (90% immobilization of most polydimethylsilanes onto Chromosorb supports, although a molecular mass effect is seen. Thermal stability also increases significantly with radiation dose, suggesting higher temperature use with smaller volatility losses. Infrared spectra confirm the continued presence of the stationary phase on the support after thermal stability tests and after exhaustive in-column washing. The column chromatographic behavior of the immobilized phases is equal to or better than that of the unirradiated phases, except for higher doses (300 kGy of gamma-radiation. Columns prepared from gamma-immobilized polydimethylsilane have been used successfully in analyses where column contamination from high boiling materials requires frequent column recuperation.

  16. Nonequilibrium Phase Chemistry in High Temperature Structure Alloys

    Science.gov (United States)

    Wang, R.

    1991-01-01

    Titanium and nickel aluminides of nonequilibrium microstructures and in thin gauge thickness were identified, characterized and produced for potential high temperature applications. A high rate sputter deposition technique for rapid surveillance of the microstructures and nonequilibrium phase is demonstrated. Alloys with specific compositions were synthesized with extended solid solutions, stable dispersoids, and specific phase boundaries associated with different heat treatments. Phase stability and mechanical behavior of these nonequilibrium alloys were investigated and compared.

  17. Graphene quantum dots modified silicon nanowire array for ultrasensitive detection in the gas phase

    Science.gov (United States)

    Li, T. Y.; Duan, C. Y.; Zhu, Y. X.; Chen, Y. F.; Wang, Y.

    2017-03-01

    Si nanostructure-based gas detectors have attracted much attention due to their huge surface areas, relatively high carrier mobility, maneuverability for surface functionalization and compatibility to modern electronic industry. However, the unstable surface of Si, especially for the nanostructures in a corrosive atmosphere, hinders their sensitivity and reproducibility when used for detection in the gas phase. In this study, we proposed a novel strategy to fabricate a Si-based gas detector by using the vertically aligned Si nanowire (SiNW) array as a skeleton and platform, and decorated chemically inert graphene quantum dots (GQDs) to protect the SiNWs from oxidation and promote the carriers’ interaction with the analytes. The radial core-shell structures of the GQDs/SiNW array were then assembled into a resistor-based gas detection system and evaluated by using nitrogen dioxide (NO2) as the model analyte. Compared to the bare SiNW array, our novel sensor exhibited ultrahigh sensitivity for detecting trace amounts of NO2 with the concentration as low as 10 ppm in room temperature and an immensely reduced recovery time, which is of significant importance for their practical application. Meanwhile, strikingly, reproducibility and stability could also be achieved by showing no sensitivity decline after storing the GQDs/SiNW array in air for two weeks. Our results demonstrate that protecting the surface of the SiNW array with chemically inert GQDs is a feasible strategy to realize ultrasensitive detection in the gas phase.

  18. Luminous transmittance and phase transition temperature of VO 2 ...

    African Journals Online (AJOL)

    The phase transition temperature (τc) of the films was obtained from both the transmittance and sheet resistance against temperature curves. A change in sheet resistance of 2 to 3 orders of magnitude was observed for both undoped and Ce-doped VO2 films. Comparison between undoped and doped VO2 films revealed ...

  19. Design aspects of the Chinese modular high-temperature gas-cooled reactor HTR-PM

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zuoyi [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Wu Zongxin [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Sun Yuliang [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Li Fu [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)]. E-mail: lifu@tsinghua.edu.cn

    2006-03-15

    The modular high-temperature gas-cooled reactor (MHTGR) has distinct advantages in terms of inherent safety, economics potential, high efficiency, potential usage for hydrogen production, etc. The Chinese design of the MHTGR, named as high-temperature gas-cooled reactor-pebble bed module (HTR-PM), based on the technology and experience of the HTR-10, is currently in the conceptual phase. The HTR-PM demonstration plant is planned to be finished by 2012. The main philosophy of the HTR-PM project can be pinned down as: (1) safety, (2) standardization, (3) economy, and (4) proven technology. The work in the categories of marketing, organization, project and technology is done in predefined order. The biggest challenge for the HTR-PM is to ensure its economical viability while maintaining its inherent safety. A design of a 450 MWth annular pebble bed core connected with steam turbine is aimed for and presented in this paper.

  20. Startup analysis for a high temperature gas loaded heat pipe

    Science.gov (United States)

    Sockol, P. M.

    1973-01-01

    A model for the rapid startup of a high-temperature gas-loaded heat pipe is presented. A two-dimensional diffusion analysis is used to determine the rate of energy transport by the vapor between the hot and cold zones of the pipe. The vapor transport rate is then incorporated in a simple thermal model of the startup of a radiation-cooled heat pipe. Numerical results for an argon-lithium system show that radial diffusion to the cold wall can produce large vapor flow rates during a rapid startup. The results also show that startup is not initiated until the vapor pressure p sub v in the hot zone reaches a precise value proportional to the initial gas pressure p sub i. Through proper choice of p sub i, startup can be delayed until p sub v is large enough to support a heat-transfer rate sufficient to overcome a thermal load on the heat pipe.

  1. Gas sensing properties of nanocrystalline diamond at room temperature

    Directory of Open Access Journals (Sweden)

    Marina Davydova

    2014-12-01

    Full Text Available This study describes an integrated NH3 sensor based on a hydrogenated nanocrystalline diamond (NCD-sensitive layer coated on an interdigitated electrode structure. The gas sensing properties of the sensor structure were examined using a reducing gas (NH3 at room temperature and were found to be dependent on the electrode arrangement. A pronounced response of the sensor, which was comprised of dense electrode arrays (of 50 µm separation distance, was observed. The sensor functionality was explained by the surface transfer doping effect. Moreover, the three-dimensional model of the current density distribution of the hydrogenated NCD describes the transient flow of electrons between interdigitated electrodes and the hydrogenated NCD surface, that is, the formation of a closed current loop.

  2. The Status of the US High-Temperature Gas Reactors

    Directory of Open Access Journals (Sweden)

    Andrew C. Kadak

    2016-03-01

    Full Text Available In 2005, the US passed the Energy Policy Act of 2005 mandating the construction and operation of a high-temperature gas reactor (HTGR by 2021. This law was passed after a multiyear study by national experts on what future nuclear technologies should be developed. As a result of the Act, the US Congress chose to develop the so-called Next-Generation Nuclear Plant, which was to be an HTGR designed to produce process heat for hydrogen production. Despite high hopes and expectations, the current status is that high temperature reactors have been relegated to completing research programs on advanced fuels, graphite and materials with no plans to build a demonstration plant as required by the US Congress in 2005. There are many reasons behind this diminution of HTGR development, including but not limited to insufficient government funding requirements for research, unrealistically high temperature requirements for the reactor, the delay in the need for a “hydrogen” economy, competition from light water small modular light water reactors, little utility interest in new technologies, very low natural gas prices in the US, and a challenging licensing process in the US for non-water reactors.

  3. Gas phase dispersion in a small rotary kiln

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, B.B.

    1981-07-01

    A study was made of nonideal flow of gas in a rotary kiln reactor. A rotating tube 0.165 m in diameter by 2.17 m long, with internal lifting flights, was operated at room temperature. Rotational speeds from 2.0 to 7.0 rpm, air flow rates from 0.351 to 4.178 m/sup 3//h, and solid contents of 0.0, 5.1, and 15.3% of tube volume were studied. Residence time distribution of the gas was measured by means of the pulse injection technique using a helium tracer. A model was developed based on dispersive flow that exchanges with a deadwater region. Two parameters, a dispersion number describing bulk gas flow and an interchange factor describing exchange between the flow region and the gas trapped in the solids bed, were sufficient to correlate the data, but these parameters are sensitive to experimental error. The model is applicable to analysis of other flow systems, such as packed beds.

  4. Simulation of a turbulent spray flame using coupled PDF gas phase and spray flamelet modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Hai-Wen [Engine Research Center, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706 (United States); Gutheil, Eva [Interdisziplinaeres Zentrum fuer Wissenschaftliches Rechnen, Universitaet Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg (Germany)

    2008-04-15

    A joint mixture fraction-enthalpy probability density function (PDF) is proposed for the simulation of turbulent spray flames. The PDF transport equation is deduced and modeled. The interaction-by-exchange-with-the-mean (IEM) model that has been developed for gas-phase flows is extended to describe molecular mixing in nonreactive and reactive spray flows. The joint PDF transport equation is solved by a hybrid finite-volume and Lagrangian Monte Carlo method. Standard spray and turbulence models are used to describe the gas phase and the liquid phase. A turbulent methanol/air spray flame is simulated using the present method. Detailed chemistry is implemented through the spray flamelet model. The precalculated spray flamelet library for methanol/air combustion comprises 23 species and 168 elementary reactions. Thus, the model is capable of predicting the formation of radicals and of pollutants. Different values for the model constant C{sub {phi}} in the IEM model are tested. The numerical results for the gas velocity, the gas temperature, and the mass fraction of methanol vapor are compared with experimental data in the literature. Good agreement with experiment is obtained when C{sub {phi}}=2.0. Marginal PDFs of mixture fraction, enthalpy, and gas temperature are presented. The computed PDFs of mixture fraction are compared with the presumed standard {beta} function and modified {beta} function. The results show that the standard {beta} function fails to reproduce bimodal shapes observed in transported PDF computation, while the modified {beta} function, fits the computed PDFs very well. Moreover, joint PDFs of mixture fraction and enthalpy are presented and analyzed. The enthalpy and mixture fraction are strongly correlated. The samples that deviate from the linear correlation are due to the energy consumption of local spray evaporation. (author)

  5. Femtosecond gas phase electron diffraction with MeV electrons.

    Science.gov (United States)

    Yang, Jie; Guehr, Markus; Vecchione, Theodore; Robinson, Matthew S; Li, Renkai; Hartmann, Nick; Shen, Xiaozhe; Coffee, Ryan; Corbett, Jeff; Fry, Alan; Gaffney, Kelly; Gorkhover, Tais; Hast, Carsten; Jobe, Keith; Makasyuk, Igor; Reid, Alexander; Robinson, Joseph; Vetter, Sharon; Wang, Fenglin; Weathersby, Stephen; Yoneda, Charles; Wang, Xijie; Centurion, Martin

    2016-12-16

    We present results on ultrafast gas electron diffraction (UGED) experiments with femtosecond resolution using the MeV electron gun at SLAC National Accelerator Laboratory. UGED is a promising method to investigate molecular dynamics in the gas phase because electron pulses can probe the structure with a high spatial resolution. Until recently, however, it was not possible for UGED to reach the relevant timescale for the motion of the nuclei during a molecular reaction. Using MeV electron pulses has allowed us to overcome the main challenges in reaching femtosecond resolution, namely delivering short electron pulses on a gas target, overcoming the effect of velocity mismatch between pump laser pulses and the probe electron pulses, and maintaining a low timing jitter. At electron kinetic energies above 3 MeV, the velocity mismatch between laser and electron pulses becomes negligible. The relativistic electrons are also less susceptible to temporal broadening due to the Coulomb force. One of the challenges of diffraction with relativistic electrons is that the small de Broglie wavelength results in very small diffraction angles. In this paper we describe the new setup and its characterization, including capturing static diffraction patterns of molecules in the gas phase, finding time-zero with sub-picosecond accuracy and first time-resolved diffraction experiments. The new device can achieve a temporal resolution of 100 fs root-mean-square, and sub-angstrom spatial resolution. The collimation of the beam is sufficient to measure the diffraction pattern, and the transverse coherence is on the order of 2 nm. Currently, the temporal resolution is limited both by the pulse duration of the electron pulse on target and by the timing jitter, while the spatial resolution is limited by the average electron beam current and the signal-to-noise ratio of the detection system. We also discuss plans for improving both the temporal resolution and the spatial resolution.

  6. Phase transformations in liquids and the liquid–gas transition in fluids at supercritical pressures

    Science.gov (United States)

    Brazhkin, V. V.

    2017-12-01

    It is an experimental fact that in the neighborhood of melting curves, including those measured at above-critical pressures and temperatures, all fluids have some short- and intermediate-range order and their excitation spectra contain high-frequency transverse waves. At high pressure, both smooth and sharp first-order phase transitions involving changes in the liquid structure and properties can occur between various liquid states. However, at sufficiently high temperatures, any liquid loses its identity and turns into an unstructured dense gas in which only longitudinal waves can propagate. We discuss theoretical and experimental evidence for the existence of a boundary between a ‘solid-like’ melt and a dense gas at supercritical pressures.

  7. Phase Change Material Systems for High Temperature Heat Storage.

    Science.gov (United States)

    Perraudin, David Y S; Binder, Selmar R; Rezaei, Ehsan; Ortonaa, Alberto; Haussener, Sophia

    2015-01-01

    Efficient, cost effective, and stable high-temperature heat storage material systems are important in applications such as high-temperature industrial processes (metal processing, cement and glass manufacturing, etc.), or electricity storage using advanced adiabatic compressed air energy storage. Incorporating phase change media into heat storage systems provides an advantage of storing and releasing heat at nearly constant temperature, allowing steady and optimized operation of the downstream processes. The choice of, and compatibility of materials and encapsulation for the phase change section is crucial, as these must guarantee good and stable performance and long lifetime at low cost. Detailed knowledge of the material properties and stability, and the coupled heat transfer, phase change, and fluid flow are required to allow for performance and lifetime predictions. We present coupled experimental-numerical techniques allowing prediction of the long-term performance of a phase change material-based high-temperature heat storage system. The experimental investigations focus on determination of material properties (melting temperature, heat of fusion, etc.) and phase change material and encapsulation interaction (stability, interface reactions, etc.). The computational investigations focus on an understanding of the multi-mode heat transfer, fluid flow, and phase change processes in order to design the material system for enhanced performance. The importance of both the experimental and numerical approaches is highlighted and we give an example of how both approaches can be complementarily used for the investigation of long-term performance.

  8. Ecological and climatic consequences of phase instability of gas hydrates on the ocean bed

    Science.gov (United States)

    Balanyuk, I.; Dmitrievsky, A.; Akivis, T.; Chaikina, O.

    2009-04-01

    energy and gas that leads to explosion. Methane is the main natural source for power engineering specialists. It is transported by pipelines, and gas hydrate is dangerous in this case too. It can block the gas pipeline system forming the so-called "trombus" of "thermal ice". After that the pipes have to be opened. The mess of this strange ice discovered melts immediately releasing methane and water vapor. The trombus formation can be prevented by the temperature increase or the pressure decrease. Both methods are very uncomfortable under the conditions the pipelines work. The better method is thorough drying up of the gas because gas hydrate obviously cannot be formed without water. Gas hydrates attract attention not only as a fuel and chemical stuff but in relation to a serious anxiety of strong ecological and climatic problems that can occur as a result of methane release to the atmosphere due to both gas hydrate deposits development and minor changes in thermodynamic conditions in the vicinity of a threshold of gas hydrate phase stability. One of the most probable causes is the global warming of the Earth due to the hothouse effect because the specific absorption of the Earth heat radiation by methane (radiation effectivity) is 21 times higher than its absorption by carbonic gas. Analysis of the air trapped by polar ice show that contemporary increase of methane concentration in the atmosphere is unexampled for the last 160 thousands of years. The sources of this increase are not clear. Observer and latent methane bursts during natural gas hydrates decomposition can be considered as a probable source. Amount of methane hided in natural gas hydrates is 3000 times higher its amount in the atmosphere. Release of this hothouse potential would have terrible consequences for the humanity. The warming can cause further gas hydrates decomposition and released methane will cause the following warming. Thus, self-accelerating process can start. The most vulnerable for the

  9. Experimental and CFD investigation of gas phase freeboard combustion

    DEFF Research Database (Denmark)

    Andersen, Jimmy

    treatment. The aim of this project is to provide validation data for Computational Fluid Dynamic (CFD) models relevant for grate firing combustion conditions. CFD modeling is a mathematical tool capable of predicting fluid flow, mixing and chemical reaction with thermal conversion and transport. Prediction...... of pollutant formation, which occurs in small concentrations with little impact on the general combustion process is in this work predicted by a post-processing step, making it less computationally expensive. A reactor was constructed to simulate the conditions in the freeboard of a grate fired boiler......, but under well-defined conditions. Comprehensive experimental data for velocity field, temperatures, and gas composition are obtained from a 50 kW axisymmetric non-swirling natural gas fired combustion setup under two different settings. Ammonia is added to the combustion setup in order to simulate fuel...

  10. SVOC partitioning between the gas phase and settled dust indoors

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Nazaroff, W. W.

    2010-01-01

    Semivolatile organic compounds (SVOCs) are a major class of indoor pollutants. Understanding SVOC partitioning between the gas phase and settled dust is important for characterizing the fate of these species indoors and the pathways by which humans are exposed to them. Such knowledge also helps...... than a thousand buildings, mostly residences, in seven countries. In aggregate, measured median data are reported in these studies for 66 different SVOCs whose octanol-air partition coefficients (K-oa) span more than five orders of magnitude. We use these data to test a simple equilibrium model...

  11. Neurotransmitters in the Gas Phase: La-Mb Studies

    Science.gov (United States)

    Cabezas, C.; Mata, S.; López, J. C.; Alonso, J. L.

    2011-06-01

    LA-MB-FTMW spectroscopy combines laser ablation with Fourier transform microwave spectroscopy in supersonic jets overcoming the problems of thermal decomposition associated with conventional heating methods. We present here the results on LA-MB-FTMW studies of some neurotransmitters. Six conformers of dopamine, four of adrenaline, five of noradrenaline and three conformers of serotonin have been characterized in the gas phase. The rotational and nuclear quadrupole coupling constants extracted from the analysis of the rotational spectrum are directly compared with those predicted by ab initio methods to achieve the conclusive identification of different conformers and the experimental characterization of the intramolecular forces at play which control conformational preferences.

  12. Unimolecular Gas-Phase Thermolysis of Ethyl Acetate

    DEFF Research Database (Denmark)

    Egsgaard, Helge; Carlsen, Lars

    1983-01-01

    The unimolecular gas-phase thermolysis of ethyl acetate has been investigated by the Flash-Vacuum-Thermolysis/Field-Ionization Mass Spectrometry (FVT/FI-MS) method in combination with Collision Activation (CA) mass spectrometry at 1253K. Two predominant reactions are observed: elimination...... of ethylene affording acetic acid, the latter to some extent consecutively yielding ketene, and intramolecular oxygen to oxygen ethyl group migration. Additionally minor amounts of acetaldehyde is formed. The mechanistic aspects are discussed based on 18O and 18O/ 13C labelling....

  13. Gas-phase energetics of thorium fluorides and their ions.

    Science.gov (United States)

    Irikura, Karl K

    2013-02-14

    Gas-phase thermochemistry for neutral ThF(n) and cations ThF(n)(+) (n = 1-4) is obtained from large-basis CCSD(T) calculations, with a small-core pseudopotential on thorium. Electronic partition functions are computed with the help of relativistic MRCI calculations. Geometries, vibrational spectra, electronic fine structure, and ion appearance energies are tabulated. These results support the experimental results by Lau, Brittain, and Hildenbrand for the neutral species, except for ThF. The ion thermochemistry is presented here for the first time.

  14. Experimental and numerical investigation of gas phase freeboard combustion

    DEFF Research Database (Denmark)

    Andersen, Jimmy; Jensen, Peter Arendt; Hvid, S.L.

    2009-01-01

    In part 1 of the present work (10.1021/ef900752a), experimental data and computational fluid dynamics (CFD) modeling predictions for velocity field, temperatures, and major species were compared fora 50 kW axisymmetric, non-swirling natural gas Fired combustion setup, constructed to simulate...... modeling approaches, including global schemes and analytically reduced mechanisms, were tested in the CFD calculations. In addition, the simplified schemes were compared to reference calculations with a detailed mechanism under isothermal plug flow reactor conditions. While none of the global ammonia...

  15. Project ARGO: Gas phase formation in simulated microgravity

    Science.gov (United States)

    Powell, Michael R.; Waligora, James M.; Norfleet, William T.; Kumar, K. Vasantha

    1993-01-01

    The ARGO study investigated the reduced incidence of joint pain decompression sickness (DCS) encountered in microgravity as compared with an expected incidence of joint pain DCS experienced by test subjects in Earth-based laboratories (unit gravity) with similar protocols. Individuals who are decompressed from saturated conditions usually acquire joint pain DCS in the lower extremities. Our hypothesis is that the incidence of joint pain DCS can be limited by a significant reduction in the tissue gas micronuclei formed by stress-assisted nucleation. Reductions in dynamic and kinetic stresses in vivo are linked to hypokinetic and adynamic conditions of individuals in zero g. We employed the Doppler ultrasound bubble detection technique in simulated microgravity studies to determine quantitatively the degree of gas phase formation in the upper and lower extremities of test subjects during decompression. We found no evidence of right-to-left shunting through pulmonary vasculature. The volume of gas bubble following decompression was examined and compared with the number following saline contrast injection. From this, we predict a reduced incidence of DCS on orbit, although the incidence of predicted mild DCS still remains larger than that encountered on orbit.

  16. Helium-3 gas self-diffusion in a nematically ordered aerogel at low temperatures: enhanced role of adsorption.

    Science.gov (United States)

    Kuzmin, Vyacheslav; Safiullin, Kajum; Stanislavovas, Andrey; Tagirov, Murat

    2017-08-30

    We performed (3)He gas diffusion measurements for the first time in a highly porous ordered Al2O3 aerogel sample at a temperature of 4.2 K using a nuclear magnetic resonance field gradient technique. A strong influence of (3)He adsorption in the aerogel on self-diffusion is observed. The classical consideration of adsorptive gas diffusion in mesopores leads to anomalously high tortuosity factors. The application of a more sophisticated model than the simple combination of empirical two-phase diffusion and the Knudsen gas diffusion models is required to explain our results. Anisotropic properties of the aerogel are not reflected in the observed gas diffusion even at low gas densities where the anisotropic Knudsen regime of diffusion is expected. The observed gas densification indicates the influence of the aerogel attractive potential on the molecular dynamics, which probably explains the reduced diffusion process. Perhaps this behavior is common for any adsorptive gases in nanopores.

  17. Contact line motion in confined liquid–gas systems: Slip versus phase transition

    KAUST Repository

    Xu, Xinpeng

    2010-11-30

    contributions determined by a competition between the two coexisting mechanisms in terms of entropy production. At temperatures very close to the critical temperature, the phase transition is the dominant mechanism, for the liquid–gas interface is wide and the density ratio is close to 1. At low temperatures, the slip effect shows up as the slip length is gradually increased. The observed competition can be interpreted by the Onsager principle of minimum entropy production

  18. Experimental Research On Gas Injection High Temperature Heat Pump With An Economizer

    OpenAIRE

    He, Yongning; Jin, Lei; Cao, Feng; Chen, Shengkun

    2014-01-01

    Gas injection technology is often used in cold regions to solve heat pump’s low heating capacity and high discharge temperature at low ambient temperature. Injecting gas into port opened at specific position of compressor could increase mass flow rate of compressor and total heating capacity of heat pump. Gas injection also changes compression ratio of compressor and decreases discharge temperature. An optimal gas injection pressure is got when the coefficient of performance reached to peak v...

  19. ANALISIS INVENTORI REAKTOR DAYA EKSPERIMENTAL JENIS REAKTOR GAS TEMPERATUR TINGGI

    Directory of Open Access Journals (Sweden)

    Sri Kuntjoro

    2016-06-01

    Full Text Available ABSTRAK ANALISIS INVENTORI REAKTOR DAYA EKSPERIMENTAL JENIS REAKTOR GAS TEMPERATUR TINGGI. Berkaitan dengan rencana Badan Tenaga Nuklir Nasional (BATAN untuk mengoperasikan reaktor eksperimental jenis Reaktor Gas Temperatur Tinggi (RGTT, maka diperlukan analisis keselamatan terhadap reaktor terutama yang berkaitan dengan issue lingkungan. Analisis sebaran radionuklida dari reaktor ke lingkungan pada kondisi operasi normal atau abnormal diawali dengan estimasi sumber radionuklida di teras reaktor (inventori teras berdasarkan pada tipe, daya, dan operasi reaktor. Tujuan penelitian adalah melakukan analisis inventori teras untuk disain Reaktor Daya Eksperimental (RDE jenis reaktor gas temperature tinggi berdaya 10 MWt, 20 MWt dan 30 MWt. Analisis dilakukan menggunakan program ORIGEN2 berbasis pustaka penampang lintang pada temperatur tinggi. Perhitungan diawali dengan membuat modifikasi beberapa parameter pustaka tampang lintang berdasarkan temperatur rata-rata teras sebesar 5700 °C dan dilanjutkan dengan melakukan perhitungan inventori reaktor untuk reaktor RDE berdaya 10 MWt. Parameter utama reaktor RDE 10 MWt yang digunakan dalam perhitungan sama dengan parameter utama reaktor HTR-10. Setelah inventori reaktor RDE 10 MWt diperoleh, dilakukan perbandingan dengan hasil dari peneliti terdahulu. Berdasarkan kesesuaian hasil yang didapat dilakukan desain untuk reaktor RDE 20MWEt dan 30 MWt untuk memperoleh parameter utama reaktor tersebut berupa jumlah bahan bakar pebble bed di teras reaktor, tinggi dan diameter teras. Berdasarkan pareameter utama teras dilakukan perhitungan inventori teras RDE 20 MWt dan 30 MWt dengan metode yang sama dengan metode perhitungan pada RDE 10 MWt. Hasil yang diperoleh adalah inventori terbesar untuk reaktor RDE 10 MWt, 20 MWt dan 30 MWt secara berurutan untuk kelompok Kr adalah sekitar 1,00E+15 Bq, 1,20E+16 Bq, 1,70E+16 Bq untuk kelompok I sebesar 6,50E+16 Bq, 1,20E+17 Bq, 1,60E+17 Bq dan untuk

  20. Continuous gas-phase hydroformylation of 1-butene using supported ionic liquid phase (SILP) catalysts

    DEFF Research Database (Denmark)

    Haumann, Marco; Dentler, Katharina; Joni, Joni

    2007-01-01

    The concept of supported ionic liquid phase (SILP) catalysis has been extended to 1-butene hydroformylation. A rhodium-sulfoxantphos complex was dissolved in [BMIM][n-C8H17OSO3] and this solution was highly dispersed on silica. Continuous gas-phase experiments in a fixed-bed reactor revealed...... another excellent hint for truly homogeneous catalysis in the SILP system. Compared to former studies using propene, the SILP system showed significantly higher activity and selectivity with 1-butene as feedstock. These findings could be elucidated by solubility measurements using a magnetic microbalance....

  1. Rate constants for the gas-phase reactions of OH radicals with CH3CHF2 and CHCl2CF3 over the temperature range 295-388 K

    DEFF Research Database (Denmark)

    Nielsen, O.J.

    1991-01-01

    Rate constants for the reactions of OH radicals with CH3CHF2 and CHCl2CF3 have been determined over the temperature range 295-388 K and a total pressure of 1 atm. The OH rate data were obtained using the absolute rate technique of pulse radiolysis combined with kinetic spectroscopy. The data can...... and in the light of the important role CH3CHF2 and CHCl2CF3 play as alternatives to the fully halogenated chlorofluorocarbons....

  2. Temperature dependence of the surface plasmon resonance in small electron gas fragments, self consistent field approximation

    Science.gov (United States)

    Fasolato, C.; Sacchetti, F.; Tozzi, P.; Petrillo, C.

    2017-07-01

    The temperature dependence of the surface plasmon resonance in small metal spheres is calculated using an electron gas model within the Random Phase Approximation. The calculation is mainly devoted to the study of spheres with diameters up to at least 10 nm, where quantum effects can still be relevant and a simple plasmon pole approximation for the dielectric function is no more appropriate. We find a possible blue shift of the plasmon resonance position when the temperature is increased while keeping the size of the sphere fixed. The blue shift is appreciable only when the temperature is a large fraction of the Fermi energy. These results provide a guide for pump and probe experiments with a high time resolution, tailored to study the excited electron system before thermalisation with the lattice takes place.

  3. Photoinduced Processes in Cobalt-Complexes: Condensed Phase and Gas Phase

    Directory of Open Access Journals (Sweden)

    Niedner-Schatteburg Y.

    2013-03-01

    Full Text Available Femtosecond time-resolved, steady-state spectroscopic methods and quantum chemical calculations are employed to study ultrafast photoinduced processes in [Co(III-(L-N4Me2(dbc](BPh4 and [Co(II-(L-N4tBu2(dbsq](B(p-C6H4Cl4 and to characterise the transient redox- and spin-states in condensed and gas phase.

  4. MOLECULAR SPECTROSCPY AND REACTIONS OF ACTINIDES IN THE GAS PHASE AND CRYOGENIC MATRICES

    Energy Technology Data Exchange (ETDEWEB)

    Heaven, Michael C.; Gibson, John K.; Marcalo, Joaquim

    2009-02-01

    In this chapter we review the spectroscopic data for actinide molecules and the reaction dynamics for atomic and molecular actinides that have been examined in the gas phase or in inert cryogenic matrices. The motivation for this type of investigation is that physical properties and reactions can be studied in the absence of external perturbations (gas phase) or under minimally perturbing conditions (cryogenic matrices). This information can be compared directly with the results from high-level theoretical models. The interplay between experiment and theory is critically important for advancing our understanding of actinide chemistry. For example, elucidation of the role of the 5f electrons in bonding and reactivity can only be achieved through the application of experimentally verified theoretical models. Theoretical calculations for the actinides are challenging due the large numbers of electrons that must be treated explicitly and the presence of strong relativistic effects. This topic has been reviewed in depth in Chapter 17 of this series. One of the goals of the experimental work described in this chapter has been to provide benchmark data that can be used to evaluate both empirical and ab initio theoretical models. While gas-phase data are the most suitable for comparison with theoretical calculations, there are technical difficulties entailed in generating workable densities of gas-phase actinide molecules that have limited the range of species that have been characterized. Many of the compounds of interest are refractory, and problems associated with the use of high temperature vapors have complicated measurements of spectra, ionization energies, and reactions. One approach that has proved to be especially valuable in overcoming this difficulty has been the use of pulsed laser ablation to generate plumes of vapor from refractory actinide-containing materials. The vapor is entrained in an inert gas, which can be used to cool the actinide species to room

  5. Phase change material for temperature control and material storage

    Science.gov (United States)

    Wessling, Jr., Francis C. (Inventor); Blackwood, James M. (Inventor)

    2011-01-01

    A phase change material comprising a mixture of water and deuterium oxide is described, wherein the mole fraction of deuterium oxide is selected so that the mixture has a selected phase change temperature within a range between 0.degree. C. and 4.degree. C. The mixture is placed in a container and used for passive storage and transport of biomaterials and other temperature sensitive materials. Gels, nucleating agents, freezing point depression materials and colorants may be added to enhance the characteristics of the mixture.

  6. Cerebral temperature varies across circadian phases in humans.

    Science.gov (United States)

    Boudreau, Philippe; Shechter, Ari; Dittmar, Andre; Gehin, Claudine; Delhomme, Georges; Nocua, Ronald; Dumont, Guy; Boivin, Diane B

    2008-01-01

    The 24-hour rhythm of core body temperature (CBT) is commonly used in humans as a tool to assess the oscillation of the central endogenous circadian pacemaker. The invasive nature of the rectal sensor used to collect CBT makes it difficult to use in ambulatory conditions. Here we validate the use of a newly developed brain temperature (BT) sensor against that of a standard rectal temperature sensor using a 72-hour ultra-rapid sleep-wake (URSW) cycle procedure. A significant circadian variation of both body temperature recordings was observed from which a phase and amplitude was reliably determined. These results indicate that BT can be refined as a non-invasive alternative to CBT measurements in the evaluation of circadian phase in field conditions.

  7. Properties of water as a novel stationary phase in capillary gas chromatography.

    Science.gov (United States)

    Gallant, Jonathan A; Thurbide, Kevin B

    2014-09-12

    A novel method of separation that uses water as a stationary phase in capillary gas chromatography (GC) is presented. Through applying a water phase to the interior walls of a stainless steel capillary, good separations were obtained for a large variety of analytes in this format. It was found that carrier gas humidification and backpressure were key factors in promoting stable operation over time at various temperatures. For example, with these measures in place, the retention time of an acetone test analyte was found to reduce by only 44s after 100min of operation at a column temperature of 100°C. In terms of efficiency, under optimum conditions the method produced about 20,000 plates for an acetone test analyte on a 250μm i.d.×30m column. Overall, retention on the stationary phase generally increased with analyte water solubility and polarity, but was relatively little correlated with analyte volatility. Conversely, non-polar analytes were essentially unretained in the system. These features were applied to the direct analysis of different polar analytes in both aqueous and organic samples. Results suggest that this approach could provide an interesting alternative tool in capillary GC separations. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Gas Phase Chromatography of some Group 4, 5, and 6 Halides

    Energy Technology Data Exchange (ETDEWEB)

    Sylwester, Eric Robert [Univ. of California, Berkeley, CA (United States)

    1998-10-01

    temperature) gas phase chromatography instrument to a thermochromatographic (variable temperature) instrument have been completed. Thermochromatography is a technique that can be used to study the volatility and ΔHa of longer-lived isotopes off-line, Future work will include a comparison between the two techniques and the use of thermochromatography to study isotopes in a wider range of half-lives and molecular structures.

  9. Thermal phase transitions in a honeycomb lattice gas with three-body interactions.

    Science.gov (United States)

    Lohöfer, Maximilian; Bonnes, Lars; Wessel, Stefan

    2013-11-01

    We study the thermal phase transitions in a classical (hard-core) lattice gas model with nearest-neighbor three-body interactions on the honeycomb lattice, based on parallel tempering Monte Carlo simulations. This system realizes incompressible low-temperature phases at fractional fillings of 9/16, 5/8, and 3/4 that were identified in a previous study of a related quantum model. In particular, both the 9/16 and the 5/8 phase exhibit an extensive ground-state degeneracy reflecting the frustrated nature of the three-body interactions on the honeycomb lattice. The thermal melting of the 9/16 phase is found to be a first-order, discontinuous phase transition. On the other hand, from the thermodynamic behavior we obtain indications for a four-states Potts-model thermal transition out of the 5/8 phase. We find that this thermal Potts-model transition relates to the selection of one out of four extensive sectors within the low-energy manifold of the 5/8 phase, which we obtain via an exact mapping of the ground-state manifold to a hard-core dimer model on an embedded honeycomb superlattice.

  10. Temperature and organic matter controls on hyporheic greenhouse gas production

    Science.gov (United States)

    Comer-Warner, S.; Romeijn, P.; Krause, S.; Hannah, D. M.; Gooddy, D.

    2016-12-01

    The region of groundwater and surface water mixing, known as the hyporheic zone, has recently attracted interest as an area of greenhouse gas (GHG) production. Although high concentrations of GHG have been found in these environments, the drivers of hyporheic GHG production remain poorly understood. Here we present the results of a microcosm incubation experiment, designed to determine the effect of multiple environmental parameters on GHG production. Three sediment types, representing a gradient of organic matter contents, from two contrasting UK lowland rivers (sandstone and chalk), were incubated for 29 hours. Experiments were performed at five temperature treatments between 5 and 25°C, and the microbial metabolism of each microcosm was determined using the smart tracer Resazurin. Headspace concentrations of carbon dioxide, methane and nitrous oxide were measured to determine the effect of these environmental parameters on GHG production, and establish their roles as drivers of GHG production in the hyporheic zone. Our results indicate strong temperature controls of GHG production, overlapping with the observed impacts of varying organic matter content of different sediments. Experimental findings indicate that increased hyporheic temperatures during increasing baseflow and drought conditions may significantly enhance sediment respiration, and thus, GHG emissions from the streambed interface. This research advances understanding of drivers of whole stream carbon and nitrogen budgets, as well as the role of groundwater-surface water interfaces in GHG emissions, and allows the interaction of these controls to be assessed.

  11. Reduced graphene oxide for room-temperature gas sensors

    Energy Technology Data Exchange (ETDEWEB)

    Lu Ganhua; Chen Junhong [Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Ocola, Leonidas E, E-mail: jhchen@uwm.ed [Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2009-11-04

    We demonstrated high-performance gas sensors based on graphene oxide (GO) sheets partially reduced via low-temperature thermal treatments. Hydrophilic graphene oxide sheets uniformly suspended in water were first dispersed onto gold interdigitated electrodes. The partial reduction of the GO sheets was then achieved through low-temperature, multi-step annealing (100, 200, and 300 {sup 0}C) or one-step heating (200 {sup 0}C) of the device in argon flow at atmospheric pressure. The electrical conductance of GO was measured after each heating cycle to interpret the level of reduction. The thermally-reduced GO showed p-type semiconducting behavior in ambient conditions and was responsive to low-concentration NO{sub 2} and NH{sub 3} gases diluted in air at room temperature. The sensitivity can be attributed mainly to the electron transfer between the reduced GO and adsorbed gaseous molecules (NO{sub 2}/NH{sub 3}). Additionally, the contact between GO and the Au electrode is likely to contribute to the overall sensing response because of the adsorbates-induced Schottky barrier variation. A simplified model is used to explain the experimental observations.

  12. Reduced graphene oxide for room-temperature gas sensors.

    Science.gov (United States)

    Lu, Ganhua; Ocola, Leonidas E; Chen, Junhong

    2009-11-04

    We demonstrated high-performance gas sensors based on graphene oxide (GO) sheets partially reduced via low-temperature thermal treatments. Hydrophilic graphene oxide sheets uniformly suspended in water were first dispersed onto gold interdigitated electrodes. The partial reduction of the GO sheets was then achieved through low-temperature, multi-step annealing (100, 200, and 300 degrees C) or one-step heating (200 degrees C) of the device in argon flow at atmospheric pressure. The electrical conductance of GO was measured after each heating cycle to interpret the level of reduction. The thermally-reduced GO showed p-type semiconducting behavior in ambient conditions and was responsive to low-concentration NO2 and NH3 gases diluted in air at room temperature. The sensitivity can be attributed mainly to the electron transfer between the reduced GO and adsorbed gaseous molecules (NO2/NH3). Additionally, the contact between GO and the Au electrode is likely to contribute to the overall sensing response because of the adsorbates-induced Schottky barrier variation. A simplified model is used to explain the experimental observations.

  13. Reduced graphene oxide for room-temperature gas sensors

    Science.gov (United States)

    Lu, Ganhua; Ocola, Leonidas E.; Chen, Junhong

    2009-11-01

    We demonstrated high-performance gas sensors based on graphene oxide (GO) sheets partially reduced via low-temperature thermal treatments. Hydrophilic graphene oxide sheets uniformly suspended in water were first dispersed onto gold interdigitated electrodes. The partial reduction of the GO sheets was then achieved through low-temperature, multi-step annealing (100, 200, and 300 °C) or one-step heating (200 °C) of the device in argon flow at atmospheric pressure. The electrical conductance of GO was measured after each heating cycle to interpret the level of reduction. The thermally-reduced GO showed p-type semiconducting behavior in ambient conditions and was responsive to low-concentration NO2 and NH3 gases diluted in air at room temperature. The sensitivity can be attributed mainly to the electron transfer between the reduced GO and adsorbed gaseous molecules (NO2/NH3). Additionally, the contact between GO and the Au electrode is likely to contribute to the overall sensing response because of the adsorbates-induced Schottky barrier variation. A simplified model is used to explain the experimental observations.

  14. Correlations in two-dimensional electron gas: Random-phase approximation with exchange and ladder results

    Science.gov (United States)

    Pederiva, F.; Lipparini, E.; Takayanagi, K.

    1997-12-01

    We have evaluated the density-density response of the two-dimensional electron gas at zero temperature by solving the Dyson equation for the particle-hole Green's function, including exchange Coulomb matrix elements and short-range contributions in the ladder approximation. We study the effect of these correlations on the total energy, compressibility per particle, local field factor G(q), static structure factor and pair-correlation function. Results are compared with the normal random-phase approximation, local field theories and quantum Monte Carlo calculations.

  15. Wettability in the liquid Cu-Ag alloy – fireproof material – gas phase system

    Directory of Open Access Journals (Sweden)

    G. Siwiec

    2013-07-01

    Full Text Available In the present paper, results of wettability studies on the liquid metal – fireproof material – gas phase system using copper and Cu-Ag alloys as well as typical fireproof materials, i.e. aluminium oxide, magnesium oxide and graphite, are presented. Contact angle measurements were conducted at 1 373–1 573 K by means of a high-temperature microscope coupled with a camera and a computer equipped with a program for recording and analysing images. For the measurements, the sessile drop method was used.

  16. Three-phase flow (water, oil and gas in a vertical circular cylindrical duct with leaks: A theoretical study

    Directory of Open Access Journals (Sweden)

    W Santos

    2016-10-01

    Full Text Available This article describes the fluid dynamic behavior of a three-phase flow (water-oil-natural gas in a vertical pipe with or without leakage. The studied pipe has 8 meters in length, circular cross-section with 25 cm in diameter and a leak, which hole has a circular shape with 10mm diameter located in the center of pipe. The conservation equations of mass, momentum and energy for each phase (continuous phase - oil, dispersed phases - gas and water were numerically solved using ANSYS CFX software, in which the Eulerian-Eulerian model and the RNG - turbulence model were applied. Results of the pressure, velocity, temperature and volume fraction distributions of the involved phases are present and analyzed.

  17. Temperature Prediction for High Pressure High Temperature Condensate Gas Flow Through Chokes

    Directory of Open Access Journals (Sweden)

    Changjun Li

    2012-03-01

    Full Text Available This study developed a theoretical model for predicting the downstream temperatures of high pressure high temperature condensate gas flowing through chokes. The model is composed of three parts: the iso-enthalpy choke model derived from continuity equation and energy conservation equation; the liquid-vapor equilibrium model based on the SRK equation of state (EoS; and the enthalpy model based on the Lee-Kesler EoS. Pseudocritical properties of mixtures, which are obtained by mixing rules, are very important in the enthalpy model, so the Lee-Kesler, Plocker-Knapp, Wong-Sandler and Prausnitz-Gunn mixing rules were all researched, and the combination mixing rules with satisfactory accuracy for high pressure high temperature condensate gases were proposed. The temperature prediction model is valid for both the critical and subcritical flows through different kinds of choke valves. The applications show the model is reliable for predicting the downstream temperatures of condensate gases with upstream pressures up to 85.54 MPa and temperatures up to 93.23 °C. The average absolute errors between the measured and calculated temperatures are expected for less than 2 °C by using the model.

  18. Gas-phase chemistry of Mo, Ru, W, and Os metal carbonyl complexes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Qin, Z.; Fan, F.L. [Chinese Academy of Sciences, Lanzhou (China). Inst. of Modern Physics; and others

    2014-04-01

    Metal carbonyl complexes were used for studying the gas-phase chemical behavior of Mo, Ru, W and Os isotopes with an on-line low temperature isothermal gas chromatography apparatus. Short-lived Mo and Ru isotopes were produced by a {sup 252}Cf spontaneous fission source. Short-lived nuclides of W and Os were produced using the heavy ion reactions {sup 19}F + {sup 159}Tb and {sup 165}Ho, respectively. Short-lived products were thermalized in a recoil chamber filled with a gas mixture of helium and carbon monoxide. The carbonyls formed were then transported through capillaries to an isothermal chromatography column for study of the adsorption behavior as a function of temperature. On-line isothermal chromatography (IC) experiments on Teflon (PTFE) and quartz surfaces showed that short-lived isotopes of the listed elements can form carbonyl complexes which are very volatile and interact most likely in physical sorption processes. Deduced adsorption enthalpies of Mo and Ru carbonyls were -38 ± 2 kJ/mol and -36 ± 2 kJ/mol, respectively. These values are in good agreement with literature data, partly obtained with different chromatographic techniques. A validation of the applied Monte Carlo model to deduce adsorption enthalpies with Mo isotopes of different half-lives proved the validity of the underlying adsorption model. The investigations using a gas-jet system coupled to a heavy ion accelerator without any preseparator clearly showed the limitations of the approach. The He and CO gas mixture, which was directly added into the chamber, will result in decomposition of CO gas and produce some aerosol particles. After the experiment of {sup 173}W and {sup 179}Os in the heavy ion experiments, the Teflon column was covered by a yellowish deposit; the adsorption enthalpy of W and Os carbonyls could therefore not be properly deduced using Monte Carlo simulations. (orig.)

  19. Temperature dependence of scattering phases and Friedel phase discontinuity in quantum wires

    Science.gov (United States)

    Vargiamidis, Vassilios; Fessatidis, Vassilios

    2011-07-01

    Two important issues concerning the scattering phases in a quantum wire with an attractive scatterer are investigated. We consider the case of two quasibound states which couple to a scattering channel and give rise to two Fano resonances. First, we examine the effects of temperature on the phase of the transmission amplitude and the Friedel phase. It is shown that temperature effects tend to smear sharp features of the transmission phase; namely, the phase drops become less than π, and acquire finite widths which increase linearly in the low-temperature regime. The influence of temperature on the Friedel phase and density of states becomes stronger as the Fano resonance becomes narrower. Second, we examine the behavior of the Friedel phase when the energy of the incident electron crosses an infinitely narrow Fano resonance, forming bound state in the continuum. It is shown that the Friedel phase exhibits abrupt jump of π at this energy. We discuss this odd behavior in relation to the Friedel sum rule and point out its consequences on the charge in the scattering region.

  20. On the Thermodynamics of a Gas of AdS Black Holes and the Quark-Hadron Phase Transition

    CERN Document Server

    Ellis, Jonathan Richard; Mavromatos, Nikolaos E; Ellis, John

    1999-01-01

    We discuss the thermodynamics of a gas of black holes in five-dimensional anti-de-Sitter (AdS) space, showing that they are described by a van der Waals equation of state. Motivated by the Maldacena conjecture, we relate the energy density and pressure of this non-ideal AdS black-hole gas to those of four-dimensional gauge theory in the unconfined phase. We find that the energy density rises rapidly above the deconfinement transition temperature, whilst the pressure rises more slowly towards its asymptotic high-temperature value, in qualitative agreement with lattice simulations.

  1. Gas-phase experiments on Au(III) photochemistry.

    Science.gov (United States)

    Marcum, Jesse C; Kaufman, Sydney H; Weber, J Mathias

    2011-04-14

    Irradiation of AuCl(4)(-) and AuCl(2)(OH)(2)(-) in the gas-phase using ultraviolet light (220-415 nm) leads to their dissociation. Observed fragment ions for AuCl(4)(-) are AuCl(3)(-) and AuCl(2)(-) and for AuCl(2)(OH)(2)(-) are AuCl(2)(-) and AuClOH(-). All fragment channels correspond to photoreduction of the gold atom to either Au(II) or Au(I) depending on the number of neutral ligands lost. Fragment branching ratios of AuCl(4)(-) are observed to be highly energy dependent and can be explained by comparison of the experimental data to calculated threshold energies obtained using density functional theory. The main observed spectral features are attributed to ligand-to-metal charge transfer transitions. These results are discussed in the context of the molecular-level mechanisms of Au(III) photochemistry.

  2. Statistical Physics of Nanoparticles in the Gas Phase

    CERN Document Server

    Hansen, Klavs

    2013-01-01

    Thermal processes are ubiquitous and an understanding of thermal phenomena is essential for a complete description of the physics of nanoparticles, both for the purpose of modeling the dynamics of the particles and for the correct interpretation of experimental data. This book has the twofold aim to present coherently the relevant results coming from the recent scientific literature and to guide the readers through the process of deriving results, enabling them to explore the limits of the mathematical approximations and test the power of the method. The book is focused on the fundamental properties of nanosystems in the gas phase. For this reason there is a strong emphasis on microcanonical physics. Each chapter is enriched with exercises and 3 Appendices provide additional useful materials.

  3. Gas-phase spectroscopy of ferric heme-NO complexes

    DEFF Research Database (Denmark)

    Wyer, J.A.; Jørgensen, Anders; Pedersen, Bjarke

    2013-01-01

    and significantly blue-shifted compared to ferric heme nitrosyl proteins (maxima between 408 and 422 nm). This is in stark contrast to the Q-band absorption where the protein microenvironment is nearly innocent in perturbing the electronic structure of the porphyrin macrocycle. Photodissociation is primarily...... through loss of NO. In contrast to the Q-band region, two-photon absorption was seen in the Soret band despite NO loss only requiring ∼1 eV. A model based on intersystem crossing to a long-lived triplet state where a barrier has to be surmounted is suggested. Finally, we summarise the measured absorption...... maxima of heme and its complexes with amino acids and NO. Not so innocent: Weakly bound complexes between ferric heme and NO were synthesised in the gas phase, and their absorption measured from photodissociation yields. Opposite absorption trends in the Soret-band are seen upon NO addition to heme ions...

  4. Silicon Nanowire‐Based Devices for Gas-Phase Sensing

    Directory of Open Access Journals (Sweden)

    Anping Cao

    2013-12-01

    Full Text Available Since their introduction in 2001, SiNW-based sensor devices have attracted considerable interest as a general platform for ultra-sensitive, electrical detection of biological and chemical species. Most studies focus on detecting, sensing and monitoring analytes in aqueous solution, but the number of studies on sensing gases and vapors using SiNW-based devices is increasing. This review gives an overview of selected research papers related to the application of electrical SiNW-based devices in the gas phase that have been reported over the past 10 years. Special attention is given to surface modification strategies and the sensing principles involved. In addition, future steps and technological challenges in this field are addressed.

  5. Synthesis and Gas Phase Thermochemistry of Germanium-Containing Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Classen, Nathan Robert [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    The driving force behind much of the work in this dissertation was to gain further understanding of the unique olefin to carbene isomerization observed in the thermolysis of 1,1-dimethyl-2-methylenesilacyclobutane by finding new examples of it in other silicon and germanium compounds. This lead to the examination of a novel phenylmethylenesilacyclobut-2-ene, which did not undergo olefin to carbene rearrangement. A synthetic route to methylenegermacyclobutanes was developed, but the methylenegermacyclobutane system exhibited kinetic instability, making the study of the system difficult. In any case the germanium system decomposed through a complex mechanism which may not include olefin to carbene isomerization. However, this work lead to the study of the gas phase thermochemistry of a series of dialkylgermylene precursors in order to better understand the mechanism of the thermal decomposition of dialkylgermylenes. The resulting dialkylgermylenes were found to undergo a reversible intramolecular β C-H insertion mechanism.

  6. Gas phase plasma impact on phenolic compounds in pomegranate juice.

    Science.gov (United States)

    Herceg, Zoran; Kovačević, Danijela Bursać; Kljusurić, Jasenka Gajdoš; Jambrak, Anet Režek; Zorić, Zoran; Dragović-Uzelac, Verica

    2016-01-01

    The aim of the study was to evaluate the effect of gas phase plasma on phenolic compounds in pomegranate juice. The potential of near infrared reflectance spectroscopy combined with partial least squares for monitoring the stability of phenolic compounds during plasma treatment was explored, too. Experiments are designed to investigate the effect of plasma operating conditions (treatment time 3, 5, 7 min; sample volume 3, 4, 5 cm(3); gas flow 0.75, 1, 1.25 dm(3) min(-1)) on phenolic compounds and compared to pasteurized and untreated pomegranate juice. Pasteurization and plasma treatment resulted in total phenolic content increasing by 29.55% and 33.03%, respectively. Principal component analysis and sensitivity analysis outputted the optimal treatment design with plasma that could match the pasteurized sample concerning the phenolic stability (5 min/4 cm(3)/0.75 dm(3) min(-1)). Obtained results demonstrate the potential of near infrared reflectance spectroscopy that can be successfully used to evaluate the quality of pomegranate juice upon plasma treatment considering the phenolic compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. In situ laser measurement of oxygen concentration and flue gas temperature utilizing chemical reaction kinetics.

    Science.gov (United States)

    Viljanen, J; Sorvajärvi, T; Toivonen, J

    2017-12-01

    Combustion research requires detailed localized information on the dynamic combustion conditions to improve the accuracy of the simulations and, hence, improve the performance of the combustion processes. We have applied chemical reaction kinetics of potassium to measure the local temperature and O 2 concentration in flue gas. An excess of free atomic potassium is created in the measurement volume by a photofragmenting precursor molecule such as potassium chloride or KOH which are widely released from solid fuels. The decay of the induced potassium concentration is followed with an absorption measurement using a narrow-linewidth diode laser. The temperature and O 2 concentration are solved from the decay curve features using equations obtained from calibration measurements in a temperature range of 800°C-1000°C and in O 2 concentrations of 0.1%-21%. The local flue gas temperature and O 2 concentration were recorded in real time during devolatilization, char burning, and ash cooking phases of combustion in a single-particle reactor with a 5 Hz repetition rate. The method can be further extended to other target species and applications where the chemical dynamics can be disturbed with photofragmentation.

  8. TEMPERATURE INFLUENCE ON PHASE STABILITY OF ETHANOL-GASOLINE MIXTURES

    Directory of Open Access Journals (Sweden)

    Valerian Cerempei

    2011-06-01

    Full Text Available The article investigates phase stability of ethanol-gasoline mixtures depending on their composition, water concentration in ethanol and ethanol-gasoline mixture and temperature. There have been determined the perfect functioning conditions of spark ignition engines fueled with ethanol-gasoline mixtures.

  9. Phase structure of QED$_{3}$ at finite temperature

    CERN Document Server

    Aitchison, Ian Johnston Rhind; Klein-Kreisler, M; Mavromatos, Nikolaos E

    1992-01-01

    Dynamical symmetry breaking in three-dimensional QED with N fermion flavours is considered at finite temperature, in the large $N$ approximation. Using an approximate treatment of the Schwinger-Dyson equation for the fermion self-energy, we find that chiral symmetry is restored above a certain critical temperature which depends itself on $N$. We find that the ratio of the zero-momentum zero-temperature fermion mass to the critical temperature has a large value compared with four-fermion theories, as had been suggested in a previous work with a momentum-independent self-energy. Evidence of a temperature- dependent critical $N$ is shown to appear in this approximation. The phase diagram for spontaneous mass generation in the theory is presented in $T-N$ space.

  10. Gas-phase chemistry of element 114, flerovium

    Directory of Open Access Journals (Sweden)

    Yakushev Alexander

    2016-01-01

    Full Text Available Element 114 was discovered in 2000 by the Dubna-Livermore collaboration, and in 2012 it was named flerovium. It belongs to the group 14 of the periodic table of elements. A strong relativistic stabilisation of the valence shell 7s27p21/2 is expected due to the orbital splitting and the contraction not only of the 7s2 but also of the spherical 7p21/2 closed subshell, resulting in the enhanced volatility and inertness. Flerovium was studied chemically by gas-solid chromatography upon its adsorption on a gold surface. Two experimental results on Fl chemistry have been published so far. Based on observation of three atoms, a weak interaction of flerovium with gold was suggested in the first study. Authors of the second study concluded on the metallic character after the observation of two Fl atoms deposited on gold at room temperature.

  11. Gas-phase chemistry of element 114, flerovium

    Science.gov (United States)

    Yakushev, Alexander; Eichler, Robert

    2016-12-01

    Element 114 was discovered in 2000 by the Dubna-Livermore collaboration, and in 2012 it was named flerovium. It belongs to the group 14 of the periodic table of elements. A strong relativistic stabilisation of the valence shell 7s27p is expected due to the orbital splitting and the contraction not only of the 7s2 but also of the spherical 7p closed subshell, resulting in the enhanced volatility and inertness. Flerovium was studied chemically by gas-solid chromatography upon its adsorption on a gold surface. Two experimental results on Fl chemistry have been published so far. Based on observation of three atoms, a weak interaction of flerovium with gold was suggested in the first study. Authors of the second study concluded on the metallic character after the observation of two Fl atoms deposited on gold at room temperature.

  12. Modeling of Shale Gas Adsorption and its Influence on Phase Equilibrium

    DEFF Research Database (Denmark)

    Sandoval Lemus, Diego Rolando; Yan, Wei; Michelsen, Michael Locht

    2017-01-01

    provides a comparison of several engineering models for gas adsorption in shale based on the recent literature data for pure and binary gases. For pure components, Langmuir, the modied Toth-Langmuir, and the Multicomponent Potential Theory of Adsorption using Dubinin-Radushkevich potential (MPTA-DRA) were......Natural gas and oil produced from shale accounts for a signicant portion in the global production. Due to the large surface area and high organic content in shale formations, adsorption plays a major role in the storage of the hydrocarbons within the rock and their phase equilibrium. This study...... the in uence of the capillary pressure and the adsorption lm. ML and IAST were used to calculate the adsorption amount whereas MPTA was used to gen- erate articial adsorption data over large temperature range and for other homologous hydrocarbons to estimate the ML and IAST parameters. The adsorption lm...

  13. Gas-Phase Photochemical Overall H2S Splitting by UV Light Irradiation.

    Science.gov (United States)

    Baldovi, Herme G; Albero, Josep; Ferrer, Belen; Mateo, Diego; Alvaro, Mercedes; García, Hermenegildo

    2017-05-09

    Splitting of hydrogen sulfide is achieved to produce value-added chemicals. Upon irradiation at 254 nm in the gas phase and in the absence of catalysts or photocatalysts at near room temperature, H 2 S splits into stoichiometric amounts of H 2 and S with a quantum efficiency close to 50 %. No influence of the presence of CH 4 and CO 2 (typical components in natural gas and biogas in which H 2 S is an unwanted component) on the efficiency of overall H 2 S splitting was observed. A mechanism for the H 2 and S formation is proposed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Melt-gas phase equilibria and state diagrams of the selenium-tellurium system

    Science.gov (United States)

    Volodin, V. N.; Trebukhov, S. A.; Burabaeva, N. M.; Nitsenko, A. V.

    2017-05-01

    The partial pressures of saturated vapor of the components in the Se-Te system are determined and presented in the form of temperature-concentration dependences from which the boundaries of the melt-gas phase transition are calculated at atmospheric pressure and vacuums of 2000 and 100 Pa. The existence of azeotropic mixtures is revealed. It is found that the points of inseparably boiling melts correspond to 7.5 at % of Se and 995°C at 101325 Pa, 10.9 at % at 673°C and 19.5 at % at 522°C in vacuums of 2000 and 100 Pa, respectively. A complete state diagram is constructed, including the fields of gas-liquid equilibria at atmospheric and low pressures, the boundaries of which allow us to assess the behavior of selenium and tellurium upon distillation fractionation.

  15. Modeling of a three-phase reactor for bitumen-derived gas oil hydrotreating

    Directory of Open Access Journals (Sweden)

    R. Chacón

    2012-03-01

    Full Text Available A three-phase reactor model for describing the hydrotreating reactions of bitumen-derived gas oil was developed. The model incorporates the mass-transfer resistance at the gas-liquid and liquid-solid interfaces and a kinetic rate expression based on a Langmuir-Hinshelwood-type model. We derived three correlations for determining the solubility of hydrogen (H2, hydrogen sulfide (H2S and ammonia (NH3 in hydrocarbon mixtures and the calculation of the catalyst effectiveness factor was included. Experimental data taken from the literature were used to determine the kinetic parameters (stoichiometric coefficients, reaction orders, reaction rate and adsorption constants for hydrodesulfuration (HDS and hydrodenitrogenation (HDN and to validate the model under various operating conditions. Finally, we studied the effect of operating conditions such as pressure, temperature, LHSV, H2/feed ratio and the inhibiting effect of H2S on HDS and NH3 on HDN.

  16. Phase Evolution of Hydrous Enstatite at High Pressures and Temperatures

    Science.gov (United States)

    Xu, J.; Zhang, D.; Dera, P.; Zhang, J.; Fan, D.

    2016-12-01

    Pyroxenes, including Mg-rich orthopyroxene and Ca-rich clinopyroxene, are among the most important minerals in the Earth's upper mantle (account for 20% by volume). Pyroxenes are major phases of harzburgite and lherzolite, which are important components of subducting slabs, so the high pressure behavior of pyroxenes should influence the physical properties of the subducted slabs. Therefore, understanding the phase evolution and thermal equations of state and of pyroxenes at elevated pressure and temperature is crucial to model theupper mantle and subduction zones. On the other hand, water is expected to be incorporated into pyroxene minerals in the upper mantle environments, yet the effect of water on the high pressure behavior of pyroxene has not been fully explored. In this study, we conducted high-pressure single-crystal X-ray diffraction study on hydrous enstatite sample (Mg2Si2O6) at ambient and high temperatures. High-pressure single-crystal diffraction experiments at ambient temperature were performed to 30 GPa at the experimental station 13BMC of the Advanced Photon Source. Two phase transformations were detected within the pressure range. High-pressure and high-temperature single crystal diffraction experiments were conducted to 27 GPa and 700 K also at 13BMC. From the experimental data, we derived the thermoelastic parameters of enstatite and performed structural refinements of enstatite at high pressures and temperatures, which is of implication for understanding of geophysics and geochemistry of subducting slabs.

  17. Gas phase recovery of hydrogen sulfide contaminated polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Kakati, Biraj Kumar; Kucernak, Anthony R. J.

    2014-04-01

    The effect of hydrogen sulfide (H2S) on the anode of a polymer electrolyte membrane fuel cell (PEMFC) and the gas phase recovery of the contaminated PEMFC using ozone (O3) were studied. Experiments were performed on fuel cell electrodes both in an aqueous electrolyte and within an operating fuel cell. The ex-situ analyses of a fresh electrode; a H2S contaminated electrode (23 μmolH2S cm-2); and the contaminated electrode cleaned with O3 shows that all sulfide can be removed within 900 s at room temperature. Online gas analysis of the recovery process confirms the recovery time required as around 720 s. Similarly, performance studies of an H2S contaminated PEMFC shows that complete rejuvenation occurs following 600-900 s O3 treatment at room temperature. The cleaning process involves both electrochemical oxidation (facilitated by the high equilibrium potential of the O3 reduction process) and direct chemical oxidation of the contaminant. The O3 cleaning process is more efficient than the external polarization of the single cell at 1.6 V. Application of O3 at room temperature limits the amount of carbon corrosion. Room temperature O3 treatment of poisoned fuel cell stacks may offer an efficient and quick remediation method to recover otherwise inoperable systems.

  18. Full field gas phase velocity measurements in microgravity

    Science.gov (United States)

    Griffin, Devon W.; Yanis, William

    1995-01-01

    Measurement of full-field velocities via Particle Imaging Velocimetry (PIV) is common in research efforts involving fluid motion. While such measurements have been successfully performed in the liquid phase in a microgravity environment, gas-phase measurements have been beset by difficulties with seeding and laser strength. A synthesis of techniques developed at NASA LeRC exhibits promise in overcoming these difficulties. Typical implementation of PIV involves forming the light from a pulsed laser into a sheet that is some fraction of a millimeter thick and 50 or more millimeters wide. When a particle enters this sheet during a pulse, light scattered from the particle is recorded by a detector, which may be a film plane or a CCD array. Assuming that the particle remains within the boundaries of the sheet for the second pulse and can be distinguished from neighboring particles, comparison of the two images produces an average velocity vector for the time between the pulses. If the concentration of particles in the sampling volume is sufficiently large but the particles remain discrete, a full field map may be generated.

  19. Tracking Gas Phase Composition in Oil evaporation and Oxidation Experiments

    Science.gov (United States)

    Amador-Muñoz, O.; Zhang, H.; Misztal, P. K.; Worton, D.; Drozd, G.; Goldstein, A. H.

    2015-12-01

    Primary Organic Aerosol (POA) is emitted directly by anthropogenic or natural sources, whereas Secondary Organic Aerosol (SOA) is formed in the atmosphere through chemical reactions that result from conversion of more volatile species into lower volatility oxidized products and their subsequent condensation to the particulate phase. We studied SOA formation from evaporation of Macondo crude oil (MC 252) using a wind tunnel coupled to a flow tube oxidation reactor. Ozone, UV lights, and water vapor were used to make OH radicals. Organic compounds in the gas phase, both those evaporated from the wind tunnel and those formed in the flow tube oxidation experiments, were monitored using proton-transfer-reaction mass spectrometry (PTR-qMS and PTR-TOF-MS). We observed approximately 400 different species. Compounds with less than C10 were mostly evaporated in the first 5 hours when maximum SOA formation was also obtained. Hydrocarbons with carbon number (11-14) were still present in the oil after 12 h of continuous evaporation at wind speed of 2 m s-1. We will show the implications of these results for the production of SOA related to the range of evaporated chemical size and reactivity.

  20. Test and Characterization of Some Zeolite Supported Gas Phase Desulfurization Sorbents

    Science.gov (United States)

    2009-06-01

    Test and Characterization of Some Zeolite Supported Gas Phase Desulfurization Sorbents by Charles Rong, Deryn Chu, and John Hopkins ARL...20783-1197 ARL-TR-4859 June 2009 Test and Characterization of Some Zeolite Supported Gas Phase Desulfurization Sorbents Charles Rong...Characterization of Some Zeolite Supported Gas Phase Desulfurization Sorbents 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 6

  1. Multifunctional potentiometric gas sensor array with an integrated temperature control and temperature sensors

    Science.gov (United States)

    Blackburn, Bryan M; Wachsman, Eric D

    2015-05-12

    Embodiments of the subject invention relate to a gas sensor and method for sensing one or more gases. An embodiment incorporates an array of sensing electrodes maintained at similar or different temperatures, such that the sensitivity and species selectivity of the device can be fine tuned between different pairs of sensing electrodes. A specific embodiment pertains to a gas sensor array for monitoring combustion exhausts and/or chemical reaction byproducts. An embodiment of the subject device related to this invention operates at high temperatures and can withstand harsh chemical environments. Embodiments of the device are made on a single substrate. The devices can also be made on individual substrates and monitored individually as if they were part of an array on a single substrate. The device can incorporate sensing electrodes in the same environment, which allows the electrodes to be coplanar and, thus, keep manufacturing costs low. Embodiments of the device can provide improvements to sensitivity, selectivity, and signal interference via surface temperature control.

  2. A direct comparison of protein structure in the gas and solution phase: the Trp-cage

    DEFF Research Database (Denmark)

    Patriksson, Alexandra; Adams, Christopher M; Kjeldsen, Frank

    2007-01-01

    Molecular dynamics simulations of zwitterions of the Trp-cage protein in the gas phase show that the most stable ion in vacuo has preserved the charge locations acquired in solution. A direct comparison of the gas and solution-phase structures reveals that, despite the similarity in charge location......, there is significant difference in the structures, with a substantial increase in hydrogen bonds and exposure of hydrophobic parts in the gas phase. The structure of the salt bridge in the gas phase is also much more stable than in the (experimental) solution structure....

  3. Gas Phase Oligomerization of Isobutene over Acid Treated Kaolinite Clay Catalyst

    Directory of Open Access Journals (Sweden)

    Dhaifallah Aldhayan

    2017-04-01

    Full Text Available Natural Kaolin Clay was calcined and treated by sulfuric acid. The resulting solid acid catalyst was characterized by FTIR, TGA, and X-ray powder diffraction (XRD and tested for isobutene oligomerization in a gas phase. The characterization results showed that the acid treated clay underwent chemical and structural transformations. After acid treatment, the Si/Al ratio was increased, and the crystalline raw clay became amorphous. The effects of various parameters such as reaction temperature, reaction time and contact time on isobutene oligomerization were investigated. Catalytic tests showed that isobutene oligomerization led to dimers and trimers as major products. Tetramers were obtained as by- products. At relatively high reaction temperatures and long contact times, the conversion was enhanced while the selectivity of dimers was decreased in favor of higher oligomers. Copyright © 2017 BCREC GROUP. All rights reserved Received: 27th October 2016; Revised: 21st December 2016; Accepted: 22nd December 2016 How to Cite: Aldhayan, D., Aouissi, A. (2017. Gas Phase Oligomerization of Isobutene over Acid Treated Kaolinite Clay Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (1: 119-126 (doi:10.9767/bcrec.12.1.758.119-126 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.1.758.119-126

  4. Temperature Control of Gas Chromatograph Based on Switched Delayed System Techniques

    Directory of Open Access Journals (Sweden)

    Xiao-Liang Wang

    2014-01-01

    Full Text Available We address the temperature control problem of the gas chromatograph. We model the temperature control system of the gas chromatograph into a switched delayed system and analyze the stability by common Lyapunov functional technique. The PI controller parameters can be given based on the proposed linear matrix inequalities (LMIs condition and the designed controller can make the temperature of gas chromatograph track the reference signal asymptotically. An experiment is given to illustrate the effectiveness of the stability criterion.

  5. Testing of a shrouded, short mixing stack gas eductor model using high temperature primary flow.

    OpenAIRE

    Eick, Ira James.

    1982-01-01

    Approved for public release; distribution is unlimited An existing apparatus for testing models of gas eductor systems using high temperature primary flow was redesigned and modified to provide improved control and performance over a wide range of gas temperatures and flow rates. Pumping coefficient, temperature, and pressure data were recorded for two gas eductor system models. The first, previously tested under hot flow conditions, consisted of a primary plate with four straight nozzle...

  6. Low-temperature phase transformation of CZTS thin films

    Science.gov (United States)

    Zhao, Wei; Du, Lin-Yuan; Liu, Lin-Lin; Sun, Ya-Li; Liu, Zhi-Wei; Teng, Xiao-Yun; Xie, Juan; Liu, Kuang; Yu, Wei; Fu, Guang-Sheng; Gao, Chao

    2017-04-01

    The low temperature phase transformation in the Cu2ZnSnS4 (CZTS) films was investigated by laser annealing and low temperature thermal annealing. The Raman measurements show that a-high-power laser annealing could cause a red shift of the Raman scattering peaks of the kesterite (KS) structure and promotes the formation of the partially disordered kesterite (PD-KS) structure in the CZTS films, and the low-temperature thermal annealing only shifts the Raman scattering peak of KS phase by several wavenumber to low frequency and the broads Raman peaks in the low frequency region. Moreover, the above two processes were reversible. The Raman analyses of the CZTS samples prepared under different process show that the PD-KS structure tends to be found at low temperatures and low sulfur vapor pressures. Our results reveal that the control of the phase structure in CZTS films is feasible by adjusting the preparation process of the films. Project supported by the Natural Science Foundation for Youth Fund of Hebei Province, China (Grant No. A2016201087), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20131301120003), and the National Natural Science Foundation of China (Grant Nos. 11504078 and 61504054).

  7. In situ monitoring of the acetylene decomposition and gas temperature at reaction conditions for the deposition of carbon nanotubes using linear Raman scattering.

    Science.gov (United States)

    Reinhold-López, Karla; Braeuer, Andreas; Popovska, Nadejda; Leipertz, Alfred

    2010-08-16

    To understand the reaction mechanisms taking place by growing carbon nanotubes via the catalytic chemical vapor deposition process, a strategy to monitor in situ the gas phase at reaction conditions was developed applying linear Raman spectroscopy. The simultaneous determination of the gas temperature and composition was possible by a new strategy of the evaluation of the Raman spectra. In agreement to the well-known exothermic decomposition of acetylene, a gas temperature increase was quantified when acetylene was added to the incident flow. Information about exhaust gas recirculation and location of the maximal acetylene conversion was derived from the composition measurements.

  8. Room temperature ferromagnetism and CH{sub 4} gas sensing of titanium oxynitride induced by milling and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Bolokang, Amogelang S., E-mail: Sylvester.Bolokang@transnet.net [DST/CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria, 0001 (South Africa); Transnet Engineering, Product Development, Private Bag X 528, Kilnerpark, 0127 (South Africa); Tshabalala, Zamaswazi P. [DST/CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria, 0001 (South Africa); Malgas, Gerald F. [Department of Physics, University of the Western Cape, Private Bag X17, Bellville, 7535 (South Africa); Kortidis, Ioannis [DST/CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria, 0001 (South Africa); West Virginia University, Department of Mechanical & Aerospace Engineering, Evansdale Campus, Morgantown, WV, 26506 (United States); Swart, Hendrik C. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA9300 (South Africa); Motaung, David E., E-mail: dmotaung@csir.co.za [DST/CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria, 0001 (South Africa)

    2017-06-01

    We report on the room temperature ferromagnetism and CH{sub 4} gas sensing of titanium oxynitride prepared by milling and annealing at 1100 °C in a nitrogen gas environment. Structural analyses revealed a metastable orthorhombic TiO{sub 2} phase after milling for 120 h. The 120 h milled TiO{sub 2} particles and subsequently annealed in nitrogen gas at 1100 °C showed the formation of titanium oxynitride (TiO{sub x}N{sub y}) with a tetragonal crystal structure. An FCC metastable TiO{sub x}N{sub y} phase was also observed with a lattice parameter a = 4.235 Å. The vibrating sample magnetometer and electron paramagnetic analyses showed that the milled and TiO{sub x}N{sub y} samples possess room temperature ferromagnetism. Gas sensing measurements were carried out toward CH{sub 4} and H{sub 2} gases. The TiO{sub x}N{sub y} nanostructures demonstrated higher sensing response and selectivity to CH{sub 4} gas at room temperature. The enhanced response of 1010 and sensitivity of 50.12 ppm{sup -1} at a concentration of 20 ppm CH{sub 4} are associated with higher surface area, pore diameter and surface defects such as oxygen vacancies and Ti{sup 3+}, as evidenced from the Brunauer–Emmet–Teller, photoluminescence, electron paramagnetic resonance and x-ray photoelectron analyses. - Highlights: • Ball milled of TiO{sub 2} structure revealed metastable orthorhombic phase. • Upon nitridation tetragonal and FCC TiO{sub x}N{sub y} crystal structures were induced. • The magnetic properties of TiO{sub 2} nanoparticles was transformed by milling. • TiO{sub x}N{sub y} sensing response for CH{sub 4} gas at room temperature was high.

  9. Production Decline Analysis for Two-Phase Flow in Multifractured Horizontal Well in Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Wei-Yang Xie

    2015-01-01

    Full Text Available After multistage fracturing, the flowback of fracturing fluid will cause two-phase flow through hydraulic fractures in shale gas reservoirs. With the consideration of two-phase flow and desorbed gas transient diffusion in shale gas reservoirs, a two-phase transient flow model of multistage fractured horizontal well in shale gas reservoirs was created. Accurate solution to this flow model is obtained by the use of source function theory, Laplace transform, three-dimensional eigenvalue method, and orthogonal transformation. According to the model’s solution, the bilogarithmic type curves of the two-phase model are illustrated, and the production decline performance under the effects of hydraulic fractures and shale gas reservoir properties are discussed. The result obtained in this paper has important significance to understand pressure response characteristics and production decline law of two-phase flow in shale gas reservoirs. Moreover, it provides the theoretical basis for exploiting this reservoir efficiently.

  10. Direct gas-phase synthesis of single-phase {beta}-FeSi{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bywalez, Robert, E-mail: robert.bywalez@uni-due.de; Orthner, Hans; Mehmedovic, Ervin [University of Duisburg-Essen, IVG, Institute for Combustion and Gas Dynamics - Reactive Fluids (Germany); Imlau, Robert; Kovacs, Andras; Luysberg, Martina [Forschungszentrum Juelich, Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Gruenberg Institute 5 (Germany); Wiggers, Hartmut [University of Duisburg-Essen, IVG, Institute for Combustion and Gas Dynamics - Reactive Fluids (Germany)

    2013-09-15

    For the first time, phase-pure {beta}-FeSi{sub 2} nanoparticles were successfully produced by gas-phase synthesis. We present a method to fabricate larger quantities of semiconducting {beta}-FeSi{sub 2} nanoparticles, with crystallite sizes between 10 and 30 nm, for solar and thermoelectric applications utilizing a hot-wall reactor. A general outline for the production of those particles by thermal decomposition of silane and iron pentacarbonyl is provided based on kinetic data. The synthesized particles are investigated by X-ray diffraction and transmission electron microscopy, providing evidence that the as-prepared materials are indeed {beta}-FeSi{sub 2}, while revealing morphological characteristics inherent to the nanoparticles created.

  11. Mesospheric temperature trends derived from standard phase-height measurements

    Science.gov (United States)

    Peters, Dieter H. W.; Entzian, Günter; Keckhut, Philippe

    2017-10-01

    New homogeneous time series of daily standard phase-height (SPH) and daily plasma scale-height (PSH) have been derived from a 50-year long-radio-wave measurement of the broadcasting station Allouis (France, 162 kHz). The signal was received at Kühlungsborn (54°N, 12°E, Mecklenburg, Germany) and the present series is a third release. The daily time series of SPH shows in its spectrum dominant modes which are typical for the solar cycle (SC), for El Niño-Southern Oscillation (ENSO) and for quasi-biannual oscillation (QBO), indicating solar and lower atmospheric influences. Surprisingly, the time series of daily PSH shows a band of dominant cycles larger than 16 years. In order to exclude the influence of the winter anomaly in the determination of column-integrated mesospheric temperature trends the phase-height-temperature procedure is confined to summer months. The derived thickness temperature of the mesosphere decreased statistically significant over the period 1959-2008 after pre-whitening with summer mean of solar sun spot numbers. The trend value is in the order of about -1.05 K/decade if the stratopause trend is excluded. The linear regression is more pronounced, -1.35 K/decade for the period of 1963-1985 (2 SCs), but weaker, -0.51 K/decade during 1986-2008 (last 2 SCs). The linear regression is in very good agreement with a mean column-integrated mesospheric trend derived from OHP-Lidar temperatures on a monthly mean basis for the last two SCs. This clearly shows that the thickness temperature of the mesosphere derived from phase-height measurement is a useful proxy for the long-term summer temperature change in the mesosphere from 1959 until 2008.

  12. Applying ion-molecule reactions to studies of gas-phase protein structure

    Energy Technology Data Exchange (ETDEWEB)

    Ogorzalek Loo, R.R.; Loo, J.A.; Smith, R.D.

    1992-06-01

    Whether solution phase differences in protein higher order structure persist in the gas phase, is examined by means of proton transfer reactions on ions generated by electrospray ionization of different solution conformations. Ion-molecule reactions were carried out in the atmosphere-vacuum interface of a quadrupole mass spectrometer with a Y-shaped capillary inlet-reactor. An amine (dimethyl-, trimethyl-, or diethyl-) were delivered to one inlet arm. Reactivities of bovine cytochrome c ions sprayed from denatured and native solutions were determined; the ions generated shifted to about the same charge states. Addition of equal amounts of amine to ions generated from different solution conformations of bovine ubiquitin also yielded similar final charge states; however, the average charge state increased with temperature. Myoglobin and apomyoglobin also yielded similar final charge states. The results suggest that for the non-disulfide linked proteins, either there are not significant differences in gas phase higher order structure, or proton transfer reactions are not sensitive enough to detect higher order structural differences arising from noncovalent interactions. 2 refs, 2 figs. (DLC)

  13. Predictive Determination of the Integral Characteristics of Evaporation of Water Droplets in Gas Media with a Varying Temperature

    Science.gov (United States)

    Vysokomornaya, O. V.; Kuznetsov, G. V.; Strizhak, P. A.

    2017-05-01

    The possibility of using three heat-transfer models based on ordinary differential equations (ODEs) has been analyzed with account taken of the relevant endothermic phase transformations to predict the integral characteristics of evaporation of liquid droplets (with the example of water) in gas media with a varying temperature. The existing formulations with "diffusive" and "kinetic" approximations to the description of the process of evaporation have been considered, and a new model has been developed according to approximations obtained from the results of conducted experiments (with the use of high-speed cameras and cross-correlation software and hardware systems). Two integral characteristics of the process of evaporation were monitored: the mass rate of vaporization and the lifetime (time of complete evaporation) of a droplet. A comparison of simulation results and experimental data allowed us to draw the conclusion on the expediency of use of ODE-based "diffusive" and "phase-transition" models in a limited temperature range (to 600 K). At high gas temperatures (particularly, higher than 1000 K), a satisfactory correlation with experimental data can be provided by a model that takes account of the substantially nonlinear dependence of the vaporization rate on temperature, the formation of a buffer (steam) layer between the droplet and the gas medium, and the basic mechanisms of heat transfer in the liquid and in the gas medium.

  14. Effect of menstrual cycle phase on the ventilatory response to rising body temperature during exercise

    National Research Council Canada - National Science Library

    Keiji Hayashi; Takayo Kawashima; Yuichi Suzuki

    2012-01-01

    .... Esophageal temperature, mean skin temperature, mean body temperature, minute ventilation, and tidal volume were all significantly higher at baseline and during exercise in the luteal phase than the follicular phase...

  15. Concurrence of aqueous and gas phase contamination of groundwater in the Wattenberg oil and gas field of northern Colorado.

    Science.gov (United States)

    Li, Huishu; Son, Ji-Hee; Carlson, Kenneth H

    2016-01-01

    The potential impact of rapid development of unconventional oil and natural gas resources using hydraulic fracturing and horizontal drilling on regional groundwater quality has received significant attention. Major concerns are methane or oil/gas related hydrocarbon (such as TPHs, BTEX including benzene, toluene, ethybenzene and xylene) leaks into the aquifer due to the failure of casing and/or stray gas migration. Previously, we investigated the relationship between oil and gas activity and dissolved methane concentration in a drinking water aquifer with the major finding being the presence of thermogenic methane contamination, but did not find detectable concentrations of TPHs or BTEX. To understand if aqueous and gas phases from the producing formation were transported concurrently to drinking water aquifers without the presence of oil/gas related hydrocarbons, the ionic composition of three water groups was studied: (1) uncontaminated deep confined aquifer, (2) suspected contaminated groundwater - deep confined aquifer containing thermogenic methane, and (3) produced water from nearby oil and gas wells that would represent aqueous phase contaminants. On the basis of quantitative and spatial analysis, we identified that the "thermogenic methane contaminated" groundwater did not have similarities to produced water in terms of ionic character (e.g. Cl/TDS ratio), but rather to the "uncontaminated" groundwater. The analysis indicates that aquifer wells with demonstrated gas phase contamination have not been contacted by an aqueous phase from oil and gas operations according to the methodology we use in this study and the current groundwater quality data from COGCC. However, the research does not prove conclusively that this the case. The results may provide insight on contamination mechanisms since improperly sealed well casing may result in stray gas but not aqueous phase transport. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Liquid-phase diffusion bonding: Temperature effects and solute redistribution in high temperature lead-free composite solders

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver [Ames Lab. and Iowa State Univ., Ames, IA (United States); Iowa State Univ., Ames, IA (United States); Choquette, Stephanie [Ames Lab. and Iowa State Univ., Ames, IA (United States); Iowa State Univ., Ames, IA (United States)

    2015-05-17

    Liquid-phase diffusion bonding (LPDB) is being studied as the primary phenomena occurring in the development of a high temperature lead-free composite solder paste composed of gas-atomized Cu-10Ni, wt.% (Cu-11Ni, at.%) powder blended with Sn-0.7Cu-0.05Ni-0.01Ge (Sn-1.3Cu-0.1Ni-0.02Ge, at.%) Nihon-Superior SN100C solder powder. Powder compacts were used as a model system. LPDB promotes enhanced interdiffusion of the low-melting alloy matrix with the solid Cu-10Ni reinforcement powder above the matrix liquidus temperature. The initial study involved the effective intermetallic compound (IMC) compositions and microstructures that occur at varying reflow temperatures and times between 250-300°C and 30-60s, respectively. Certain reflow temperatures encourage adequate interdiffusion to form a continuous highly-conductive network throughout the composite solder joints. The diffusion of nickel, in particular, has a disperse pattern that foreshadows the possibility of a highly-conductive low-melting solder that can be successfully utilized at high temperatures.

  17. Ozone Cross-Section Measurement by Gas Phase Titration.

    Science.gov (United States)

    Viallon, Joële; Moussay, Philippe; Flores, Edgar; Wielgosz, Robert I

    2016-11-01

    Elevated values of ground-level ozone damage health, vegetation, and building materials and are the subject of air quality regulations. Levels are monitored by networks using mostly ultraviolet (UV) absorption instruments, with traceability to standard reference photometers, relying on the UV absorption of ozone at the 253.65 nm line of mercury. We have redetermined the ozone cross-section at this wavelength based on gas phase titration (GPT) measurements. This is a well-known chemical method using the reaction of ozone (O3) with nitrogen monoxide (NO) resulting in nitrogen dioxide (NO2) and oxygen (O2). The BIPM GPT facility uses state-of-the-art flow measurement, chemiluminescence for NO concentration measurements, a cavity phase shift analyzer (CAPS) for NO2 measurements, and a UV ozone analyzer. The titration experiment is performed over the concentration range 100-500 nmol/mol, with NO and NO2 reactants/calibrants diluted down from standards with nominal mole fractions of 50 μmol/mol. Accurate measurements of NO, NO2, and O3 mole fractions allow the calculation of ozone absorption cross section values at 253.65 nm, and we report a value of 11.24 × 10-18 cm2 molecule-1 with a relative expanded uncertainty of 1.8% (coverage factor k = 2) based on nitrogen monoxide titration values and a value of 11.22 × 10-18 cm2 molecule-1 with a relative expanded uncertainty of 1.4% (coverage factor k = 2) based on nitrogen dioxide titration values. The excellent agreement between these values and recently published absorption cross-section measurements directly on pure ozone provide strong evidence for revising the conventionally accepted value of ozone cross section at 253.65 nm.

  18. The Gas-Phase Spectra of the 1-INDANYL Radical

    Science.gov (United States)

    Troy, Tyler P.; Nakajima, Masakazu; Chalyavi, Nahid; Clady, Raphaël G. C. R.; Nauta, Klaas; Kable, Scott H.; Schmidt, Timothy W.

    2009-06-01

    The gas-phase resonant two color two photon ionization (R2C2PI) spectrum of the 1-indanyl radical (m/z=117) has been identified in the region 20800 - 22600 cm^{-1} in a molecular beam. The radical was produced from the discharge of ˜1 % indene in Argon . Laser induced fluorescence (LIF) spectra were recorded in the same region revealing those features observed in R2C2PI. Other precursor molecules were investigated and it was found that the indane precursor resulted in the strongest signal. The fluorescence of the 1-indanyl radical origin band (21158 cm^{-1}) was dispersed in order to determine the ground state vibrational energies. The dispersed fluorescence (DF) spectrum is consistent with the previously observed condensed-phase emission spectrum of the 1-indanyl radical. The DF values were compared with those ground state energies determined by DFT. Franck-Condon factors computed based on the ab initio results showed good agreement with the observed spectrum. Based on the theoretical results we assigned the observed bands. The LIF spectrum contained other bands inconsistent with the 1-indanyl radical. These have been determined to be carried by 1-phenylpropargyl radical and another currently unknown radical determined by R2C2PI to have m/z=133. [1] T. Izumida, K. Inoue, S. Noda, and H. Yoshida, Bull. Chem. Soc. Jpn. 54, 2517 (1981). [2] N. J. Reilly, D. L. Kokkin, M. Nakajima, K. Nauta, S. H. Kable, and T. W. Schmidt, J. Am. Chem. Soc. 130, 3137 (2009).

  19. Experiments on Quantum Hall Topological Phases in Ultra Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Du, Rui-Rui [Rice Univ., Houston, TX (United States). Dept. of Physics and Astronomy

    2015-02-14

    This project is to cool electrons in semiconductors to extremely low temperatures and to study new states of matter formed by low-dimensional electrons (or holes). At such low temperatures (and with an intense magnetic field), electronic behavior differs completely from ordinary ones observed at room temperatures or regular low temperature. Studies of electrons at such low temperatures would open the door for fundamental discoveries in condensed matter physics. Present studies have been focused on topological phases in the fractional quantum Hall effect in GaAs/AlGaAs semiconductor heterostructures, and the newly discovered (by this group) quantum spin Hall effect in InAs/GaSb materials. This project consists of the following components: 1) Development of efficient sample cooling techniques and electron thermometry: Our goal is to reach 1 mK electron temperature and reasonable determination of electron temperature; 2) Experiments at ultra-low temperatures: Our goal is to understand the energy scale of competing quantum phases, by measuring the temperature-dependence of transport features. Focus will be placed on such issues as the energy gap of the 5/2 state, and those of 12/5 (and possible 13/5); resistive signature of instability near 1/2 at ultra-low temperatures; 3) Measurement of the 5/2 gaps in the limit of small or large Zeeman energies: Our goal is to gain physics insight of 5/2 state at limiting experimental parameters, especially those properties concerning the spin polarization; 4) Experiments on tuning the electron-electron interaction in a screened quantum Hall system: Our goal is to gain understanding of the formation of paired fractional quantum Hall state as the interaction pseudo-potential is being modified by a nearby screening electron layer; 5) Experiments on the quantized helical edge states under a strong magnetic field and ultralow temperatures: our goal is to investigate both the bulk and edge states in a quantum spin Hall insulator under

  20. Understanding the aqueous phase ozonolysis of isoprene: distinct product distribution and mechanism from the gas phase reaction

    Directory of Open Access Journals (Sweden)

    H. L. Wang

    2012-08-01

    Full Text Available The aqueous phase reaction of volatile organic compounds (VOCs has not been considered in most analyses of atmospheric chemical processes. However, some experimental evidence has shown that, compared to the corresponding gas phase reaction, the aqueous chemical processes of VOCs in the bulk solutions and surfaces of ambient wet particles (cloud, fog, and wet aerosols may potentially contribute to the products and formation of secondary organic aerosol (SOA. In the present study, we performed a laboratory experiment of the aqueous ozonolysis of isoprene at different pHs (3–7 and temperatures (4–25 °C. We detected three important kinds of products, including carbonyl compounds, peroxide compounds, and organic acids. Our results showed that the molar yields of these products were nearly independent of the investigated pHs and temperatures, those were (1 carbonyls: 56.7 ± 3.7 % formaldehyde, 42.8 ± 2.5 % methacrolein (MAC, and 57.7 ± 3.4 % methyl vinyl ketone (MVK; (2 peroxides: 53.4 ± 4.1 % hydrogen peroxide (H2O2 and 15.1 ± 3.1 % hydroxylmethyl hydroperoxide (HMHP; and (3 organic acids: undetectable (<1 % estimated by the detection limit. Based on the amounts of products formed and the isoprene consumed, the total carbon yield was estimated to be 94.8 ± 4.1 %. This implied that most of the products in the reaction system were detected. The combined yields of both MAC + MVK and H2O2 + HMHP in the aqueous isoprene ozonolysis were much higher than those observed in the corresponding gas phase reaction. We suggest that these unexpected high yields of carbonyls and peroxides are related to the greater capability of condensed water, compared to water vapor, to stabilize energy-rich Criegee radicals. This aqueous ozonolysis of isoprene (and possibly other biogenic VOCs could potentially occur on the surfaces of ambient wet particles and plants. Moreover, the high-yield carbonyl and peroxide products

  1. Reactions of molecular dications in the gas phase

    CERN Document Server

    Tafadar, N N

    2001-01-01

    This thesis presents the results from a series of experiments investigating the reactivity of gas phase molecular dications with neutral collision partners, at collision energies between 3 and 13 eV in the laboratory frame using a crossed-beam apparatus. The experiments involve measurement of product ion intensities, which are determined by means of time of flight mass spectrometry. The experimental methodology, together with relevant theory is described in the thesis. The relative intensities of product ions formed are a powerful probe of the reaction mechanism. Where appropriate, the reactions are examined for isotope effects by using the isotopic analogue of the neutral collision partner. Our investigation of the CF sub 3 sup 2 sup + /Ar collision system shows neutral loss and electron transfer dominating the product ion yield. The variation of the neutral loss ion yield with collision energy provides a first estimate of the bond energy of the weak CF sub 2 sup 2 sup + -F bond. Ab initio calculations indic...

  2. Surface plasmon sensing of gas phase contaminants using optical fiber.

    Energy Technology Data Exchange (ETDEWEB)

    Thornberg, Steven Michael; White, Michael I.; Rumpf, Arthur Norman; Pfeifer, Kent Bryant

    2009-10-01

    Fiber-optic gas phase surface plasmon resonance (SPR) detection of several contaminant gases of interest to state-of-health monitoring in high-consequence sealed systems has been demonstrated. These contaminant gases include H{sub 2}, H{sub 2}S, and moisture using a single-ended optical fiber mode. Data demonstrate that results can be obtained and sensitivity is adequate in a dosimetric mode that allows periodic monitoring of system atmospheres. Modeling studies were performed to direct the design of the sensor probe for optimized dimensions and to allow simultaneous monitoring of several constituents with a single sensor fiber. Testing of the system demonstrates the ability to detect 70mTorr partial pressures of H{sub 2} using this technique and <280 {micro}Torr partial pressures of H{sub 2}S. In addition, a multiple sensor fiber has been demonstrated that allows a single fiber to measure H{sub 2}, H{sub 2}S, and H{sub 2}O without changing the fiber or the analytical system.

  3. Phase transformation strengthening of high-temperature superalloys

    Science.gov (United States)

    Smith, T. M.; Esser, B. D.; Antolin, N.; Carlsson, A.; Williams, R. E. A.; Wessman, A.; Hanlon, T.; Fraser, H. L.; Windl, W.; McComb, D. W.; Mills, M. J.

    2016-11-01

    Decades of research has been focused on improving the high-temperature properties of nickel-based superalloys, an essential class of materials used in the hot section of jet turbine engines, allowing increased engine efficiency and reduced CO2 emissions. Here we introduce a new `phase-transformation strengthening' mechanism that resists high-temperature creep deformation in nickel-based superalloys, where specific alloying elements inhibit the deleterious deformation mode of nanotwinning at temperatures above 700 °C. Ultra-high-resolution structure and composition analysis via scanning transmission electron microscopy, combined with density functional theory calculations, reveals that a superalloy with higher concentrations of the elements titanium, tantalum and niobium encourage a shear-induced solid-state transformation from the γ' to η phase along stacking faults in γ' precipitates, which would normally be the precursors of deformation twins. This nanoscale η phase creates a low-energy structure that inhibits thickening of stacking faults into twins, leading to significant improvement in creep properties.

  4. High Temperature Gas-to-Gas Heat Exchanger Based on a Solid Intermediate Medium

    Directory of Open Access Journals (Sweden)

    R. Amirante

    2014-04-01

    Full Text Available This paper proposes the design of an innovative high temperature gas-to-gas heat exchanger based on solid particles as intermediate medium, with application in medium and large scale externally fired combined power plants fed by alternative and dirty fuels, such as biomass and coal. An optimization procedure, performed by means of a genetic algorithm combined with computational fluid dynamics (CFD analysis, is employed for the design of the heat exchanger: the goal is the minimization of its size for an assigned heat exchanger efficiency. Two cases, corresponding to efficiencies equal to 80% and 90%, are considered. The scientific and technical difficulties for the realization of the heat exchanger are also faced up; in particular, this work focuses on the development both of a pressurization device, which is needed to move the solid particles within the heat exchanger, and of a pneumatic conveyor, which is required to deliver back the particles from the bottom to the top of the plant in order to realize a continuous operation mode. An analytical approach and a thorough experimental campaign are proposed to analyze the proposed systems and to evaluate the associated energy losses.

  5. Helium turbine power generation in high temperature gas reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Yasuo [Tokyo Inst. of Tech. (Japan)

    1995-03-01

    This paper presents studies on the helium turbine power generator and important components in the indirect cycle of high temperature helium cooled reactor with multi-purpose use of exhaust thermal energy from the turbine. The features of this paper are, firstly the reliable estimation of adiabatic efficiencies of turbine and compressor, secondly the introduction of heat transfer enhancement by use of the surface radiative heat flux from the thin metal plates installed in the hot helium and between the heat transfer coil rows of IHX and RHX, thirdly the use of turbine exhaust heat to produce fresh water from seawater for domestic, agricultural and marine fields, forthly a proposal of plutonium oxide fuel without a slight possibility of diversion of plutonium for nuclear weapon production and finally the investigation of GT-HTGR of large output such as 500 MWe. The study of performance of GT-HTGR reduces the result that for the reactor of 450 MWt the optimum thermal efficiency is about 43% when the turbine expansion ratio is 3.9 for the turbine efficiency of 0.92 and compressor efficiency of 0.88 and the helium temperature at the compressor inlet is 45degC. The produced amount of fresh water is about 8640 ton/day. It is made clear that about 90% of the reactor thermal output is totally used for the electric power generation in the turbine and for the multi-puposed utilization of the heat from the turbine exhaust gas and compressed helium cooling seawater. The GT-Large HTGR is realized by the separation of the pressure and temperature boundaries of the pressure vessel, the increase of burning density of the fuel by 1.4 times, the extention of the nuclear core diameter and length by 1.2 times, respectively, and the enhancement of the heat flux along the nuclear fuel compact surface by 1.5 times by providing riblets with the peak in the flow direction. (J.P.N.).

  6. Temperature measurements in fluid flows (eventually reactive, multi-phase...) using optical methods; Mesure des temperatures dans les ecoulements (eventuellement reactifs, multiphasiques...) par methodes optiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This conference day was organized by the `radiations` section of the French association of thermal engineers. This book of proceedings contains 8 papers entitled: `simultaneous temperature and NO concentration measurements in a hydrogen-air turbulent flame`; `application of iodine laser induced fluorescence to temperature, pressure and velocity measurements`; `Doppler phase measurement of refractive index and temperature`; `experimental and numerical study of temperature fields of particulates in plasma jets`; `measurement and determination of temperatures and concentrations of hot exhaust gases with FTIR emission spectroscopy`; `combustion control in gas turbines using CO{sub 2} emission spectroscopy`; `analysis of gases temperature fields and particulate jets. Application to hydrogen-air, kerosene stato-reactors and to solid propellant jets`; `restitution of temperature and species profiles in pre-mixing flames by inversion of transmission and IR emission data. (J.S.)

  7. Characterization of hexacationic imidazolium ionic liquids as effective and highly stable gas chromatography stationary phases.

    Science.gov (United States)

    González-Álvarez, Jaime; Blanco-Gomis, Domingo; Arias-Abrodo, Pilar; Díaz-Llorente, Daniel; Ríos-Lombardía, Nicolás; Busto, Eduardo; Gotor-Fernández, Vicente; Gutiérrez-Álvarez, María D

    2012-01-01

    Polycationic ionic liquids (ILs) are an attractive class of ILs with great potential applicability as gas chromatography stationary phases. A family of hexacationic imidazolium ILs derived from the cycloalkanol family was chemically first prepared in a straightforward manner and then applied for analytical separation purposes. Four tuneable engineering vectors, namely cation ring size structure, anion nature, spatial disposition of cycloalkanol substituents and O-substitution, were considered as experimental parameters for the design of the desired ionic liquids. A total number of five new phases based on a common benzene core respectively exhibited column efficiencies around to 2500 plates/m, broad operating temperature ranges and also, even more importantly, good thermal stabilities (bleeding temperature between 260 and 365°C), finding variations in the selectivity and analytes elution orders depending on the IL structures. Their solvation characteristics were evaluated using the Abraham solvation parameter model, establishing clear correlations between their cation structure and retention capability with respect to certain analytes. The study of relationships between the ILs structure and solvation parameters gives us an idea of the IL stationary phase to be used for specific separations. Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Thermal analysis of high temperature phase transformations of steel

    Directory of Open Access Journals (Sweden)

    K. Gryc

    2013-10-01

    Full Text Available The series of thermal analysis measurements of high temperature phase transformations of real grain oriented electrical steel grade under conditions of two analytical devices (Netzsch STA 449 F3 Jupiter; Setaram SETSYS 18TM were carried out. Two thermo analytical methods were used (DTA and Direct thermal analysis. The different weight of samples was used (200 mg, 23 g. The stability/reproducibility of results obtained by used methodologies was verified. The liquidus and solidus temperatures for close to equilibrium conditions and during cooling (20 °C/min; 80 °C/min were determined. It has been shown that the higher cooling rate lead to lower temperatures for start and end of solidification process of studied steel grade.

  9. Impact of seasonal temperature and pressure changes on methane gas production, dissolution, and transport in unfractured sediments

    Science.gov (United States)

    Mogollón, J. M.; Dale, A. W.; L'Heureux, I.; Regnier, P.

    2011-09-01

    A one-dimensional reaction-transport model is used to investigate the dynamics of methane gas in coastal sediments in response to intra-annual variations in temperature and pressure. The model is applied to data from two shallow water sites in Eckernförde Bay (Germany) characterized by low and high rates of upward fluid advection. At both sites, organic matter is buried below the sulfate-reducing zone to the methanogenic zone at sufficiently high rates to allow supersaturation of the pore water with dissolved methane and to form a free methane gas phase. The methane solubility concentration varies by similar magnitudes at both study sites in response to bottom water temperature changes and leads to pronounced peaks in the gas volume fraction in autumn when the methanic zone temperature is at a maximum. Yearly hydrostatic pressure variations have comparatively negligible effects on methane solubility. Field data suggest that no free gas escapes to the water column at any time of the year. Although the existence of gas migration cannot be substantiated by direct observation, a speculative mechanism for slow moving gas is proposed here. The model results reveal that free gas migrating upward into the undersaturated pore water will completely dissolve and subsequently be consumed above the free gas depth (FGD) by anaerobic oxidation of methane (AOM). This microbially mediated process maintains methane undersaturation above the FGD. Although the complexities introduced by seasonal changes in temperature lead to different seasonal trends for the depth-integrated AOM rates and the FGD, both sites adhere to previously developed prognostic indicators for methane fluxes based on the FGD.

  10. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM LANDFILL GAS: PHASE II. PRETREATMENT SYSTEM PERFORMANCE MEASUREMENT

    Science.gov (United States)

    The report describes Phase II of a demonstration of the utilization of commercial phosphoric acid fuel cells to recover energy from landfill gas. This phase consisted primarily of the construction and testing of a Gas Pretreatment Unit (GPU) whose function is to remove those impu...

  11. Effect of annealing temperature on hardness, thickness and phase structure of carbonitrided 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    El-Hossary, F.M.; Negm, N.Z.; Khalil, S.M.; Abed El-Rahman, A.M.; Raaif, M. [Sohag University, Physics Department, Faculty of Science, Sohag (Egypt); Maendl, S. [Leibniz-Institute fuer Oberflaechenmodifizierung, Leipzig (Germany)

    2010-05-15

    Carbonitriding of AISI 304 austenitic stainless steel was performed at a plasma-processing power of 450 W using inductively coupled radio frequency (rf) plasma in a gas mixture of 50% N{sub 2} and 50% C{sub 2}H{sub 2}. The rate of carbonitriding, microhardness, phase structure of the compound layer, surface microstructure and cross-section morphology were studied before and after the annealing process. At the annealing temperature up to 800 C, the microhardness values of the compound zones decrease, while the associated values of the diffused zones increase. Little change was found in the thickness of the compound and diffused zones when the carbonitrided samples were annealed up to 400 C. However, at a higher annealing temperature, the thicknesses of both zones increase. The {gamma}-Fe austenite is the main crystalline phase that can be detected by X-ray diffraction. As the annealing temperature increases up to 500 C, X-ray spectra show {alpha}-Fe and Fe{sub 5}C{sub 2} phases. Nitrogen diffuses more deeply from the near surface to the interior of the treated sample as the annealing temperature increases up to 800 C and this might explain the extent of carbonitrided thickness and the enhanced microhardness of the diffused zone. (orig.)

  12. Critical point of gas-liquid type phase transition and phase equilibrium functions in developed two-component plasma model.

    Science.gov (United States)

    Butlitsky, M A; Zelener, B B; Zelener, B V

    2014-07-14

    A two-component plasma model, which we called a "shelf Coulomb" model has been developed in this work. A Monte Carlo study has been undertaken to calculate equations of state, pair distribution functions, internal energies, and other thermodynamics properties. A canonical NVT ensemble with periodic boundary conditions was used. The motivation behind the model is also discussed in this work. The "shelf Coulomb" model can be compared to classical two-component (electron-proton) model where charges with zero size interact via a classical Coulomb law. With important difference for interaction of opposite charges: electrons and protons interact via the Coulomb law for large distances between particles, while interaction potential is cut off on small distances. The cut off distance is defined by an arbitrary ɛ parameter, which depends on system temperature. All the thermodynamics properties of the model depend on dimensionless parameters ɛ and γ = βe(2)n(1/3) (where β = 1/kBT, n is the particle's density, kB is the Boltzmann constant, and T is the temperature) only. In addition, it has been shown that the virial theorem works in this model. All the calculations were carried over a wide range of dimensionless ɛ and γ parameters in order to find the phase transition region, critical point, spinodal, and binodal lines of a model system. The system is observed to undergo a first order gas-liquid type phase transition with the critical point being in the vicinity of ɛ(crit) ≈ 13(T(*)(crit) ≈ 0.076), γ(crit) ≈ 1.8(v(*)(crit) ≈ 0.17), P(*)(crit) ≈ 0.39, where specific volume v* = 1/γ(3) and reduced temperature T(*) = ɛ(-1).

  13. Gas Temperature and Radiative Heat Transfer in Oxy-fuel Flames

    DEFF Research Database (Denmark)

    Bäckström, Daniel; Johansson, Robert; Andersson, Klas

    temperature than the suction pyrometer in the low velocity regions of the furnace, a difference which is likely to be an effect of the purge gas added in the optical probe. The measured temperature fluctuations were evaluated by modeling of the gas radiation. The influence from the measured fluctuations...

  14. Phase Transformations and Phase Equilibria in the Fe-N System at Temperatures below 573 K

    DEFF Research Database (Denmark)

    Malinov, S.; Böttger, A.J.; Mittemeijer, E.J.

    2001-01-01

    The phase transformations of homogeneous Fe-N alloys of nitrogen contents from 10 to 26 at. pct were investigated by means of X-ray diffraction analysis upon aging in the temperature range from 373 to 473 K. It was found that precipitation of alpha double prime-Fe16N2 below 443 K does not only oc...

  15. Numerical Study on Flow, Temperature, and Concentration Distribution Features of Combined Gas and Bottom-Electromagnetic Stirring in a Ladle

    Directory of Open Access Journals (Sweden)

    Yang Li

    2018-01-01

    Full Text Available A novel method of combined argon gas stirring and bottom-rotating electromagnetic stirring in a ladle refining process is presented in this report. A three-dimensional numerical model was adopted to investigate its effect on improving flow field, eliminating temperature stratification, and homogenizing concentration distribution. The results show that the electromagnetic force has a tendency to spiral by spinning clockwise on the horizontal section and straight up along the vertical section, respectively. When the electromagnetic force is applied to the gas-liquid two phase flow, the gas-liquid plume is shifted and the gas-liquid two phase region is extended. The rotated flow driven by the electromagnetic force promotes the scatter of bubbles. The temperature stratification tends to be alleviated due to the effect of heat compensation and the improved flow. The temperature stratification tends to disappear when the current reaches 1200 A. The improved flow field has a positive influence on decreasing concentration stratification and shortening the mixing time when the combined method is imposed. However, the alloy depositing site needs to be optimized according to the whole circulatory flow and the region of bubbles to escape.

  16. Axial Dispersion and Back-mixing of Gas Phase in Pebble Bed Reactor

    Directory of Open Access Journals (Sweden)

    Rahman Al-Musafir

    2013-04-01

    Full Text Available Despite the worldwide attended of pebble bed reactors (PBRs, there is a lack of fundamental understanding of the complex flow pattern. In this work, the non-ideal flow behavior of the gas phase which is used for cooling has been investigated experimentally in a 0.3 m diameter pebble bed. The extent of mixing and dispersion of the gas phase has been qualified. The effect of gas velocity on the axial dispersion has been investigated with range from 0.05 to 0.6 m/s covering both the laminar and turbulent flow regimes. Glass bead particles of 1.2 cm diameter and 2.5 gm/cm3 which is randomly and closely packed have been used to mimic the pebbles. An advanced gas tracer technique was applied to measure the residence time distribution (RTD of gas phase using impulse tracer. The axial dispersion coefficients of gas phase in the studied pebble bed have been estimated using the axial dispersion model (ADM. It was found that the flow pattern of the gas phase deviates from plug flow depending on the superficial gas velocity. The results showed that the dispersion of the gas reduces as the gas velocity and Reynolds numbers increased.

  17. Modification of Low-Alloy Steel Surface by High-Temperature Gas Nitriding Plus Tempering

    Science.gov (United States)

    Jiao, Dongling; Li, Minsong; Ding, Hongzhen; Qiu, Wanqi; Luo, Chengping

    2018-01-01

    The low-alloy steel was nitrided in a pure NH3 gas atmosphere at 640 660 °C for 2 h, i.e., high-temperature gas nitriding (HTGN), followed by tempering at 225 °C, which can produce a high property surface coating without brittle compound (white) layer. The steel was also plasma nitriding for comparison. The composition, microstructure and microhardness of the nitrided and tempered specimens were examined, and their tribological behavior investigated. The results showed that the as-gas-nitrided layer consisted of a white layer composed of FeN0.095 phase (nitrided austenite) and a diffusional zone underneath the white layer. After tempering, the white layer was decomposed to a nano-sized (α-Fe + γ'-Fe4N + retained austenite) bainitic microstructure with a high hardness of 1150HV/25 g. Wear test results showed that the wear resistance and wear coefficient yielded by the complex HTGN plus tempering were considerably higher and lower, respectively, than those produced by the conventional plasma nitriding.

  18. The influence of temperature induced phase transition on the energy storage density of anti-ferroelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Jinqiao; Zhang, Ling; Xie, Bing; Jiang, Shenglin, E-mail: nanx1013@163.com [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-09-28

    Anti-ferroelectric (AFE) composite ceramics of (Pb{sub 0.858}Ba{sub 0.1}La{sub 0.02}Y{sub 0.008})(Zr{sub 0.65}Sn{sub 0.3}Ti{sub 0.05})O{sub 3}-(Pb{sub 0.97}La{sub 0.02})(Zr{sub 0.9}Sn{sub 0.05} Ti{sub 0.05})O{sub 3} (PBLYZST-PLZST) were fabricated by the conventional solid-state sintering process (CS), the glass-aided sintering (GAS), and the spark plasma sintering (SPS), respectively. The influence of the temperature induced phase transition on the phase structure, hysteresis loops, and energy storage properties of the composite ceramics were investigated in detail. The measured results of X-ray diffraction demonstrate that the composite ceramics exhibit the perovskite phases and small amounts of non-functional pyrochlore phases. Compared with the CS process, the GAS and SPS processes are proven more helpful to suppress the diffusion behaviors between the PBLYZST and PLZST phases according to the field emission scanning electron microscopy, thereby being able to improve the contribution of PBLYZST phase to the temperature stability of the orthogonal AFE phase. When the ambient temperature rises from 25 °C to 125 °C, CS and GAS samples have undergone a phase transition from orthorhombic AFE phase to tetragonal AFE phase, which results in a sharp decline in the energy storage density. However, the phase transition temperature of SPS samples is higher than 125 °C, and the energy storage density only slightly decreases due to the disorder of material microstructure caused by the high temperature. As a result, the SPS composite ceramics obtain a recoverable high energy storage density of 6.46 J/cm{sup 3} and the excellent temperature stability of the energy storage density of 1.16 × 10{sup −2} J/°C·cm{sup 3}, which is 1.29 × 10{sup −2} J/°C·cm{sup 3} lower than that of CS samples and about 0.43 times as that of GAS samples.

  19. Proliferation resistance assessment of high temperature gas reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chikamatsu N, M. A. [Instituto Tecnologico y de Estudios Superiores de Monterrey, Campus Santa Fe, Av. Carlos Lazo No. 100, Santa Fe, 01389 Mexico D. F. (Mexico); Puente E, F., E-mail: midori.chika@gmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    The Generation IV International Forum has established different objectives for the new generation of reactors to accomplish. These objectives are focused on sustain ability, safety, economics and proliferation resistance. This paper is focused on how the proliferation resistance of the High Temperature Gas Reactors (HTGR) is assessed and the advantages that these reactors present currently. In this paper, the focus will be on explaining why such reactors, HTGR, can achieve the goals established by the GIF and can present a viable option in terms of proliferation resistance, which is an issue of great importance in the field of nuclear energy generation. The reason why the HTGR are being targeted in this writing is that these reactors are versatile, and present different options from modular reactors to reactors with the same size as the ones that are being operated today. Besides their versatility, the HTGR has designed features that might improve on the overall sustain ability of the nuclear reactors. This is because the type of safety features and materials that are used open up options for industrial processes to be carried out; cogeneration for instance. There is a small section that mentions how HTGR s are being developed in the international sector in order to present the current world view in this type of technology and the further developments that are being sought. For the proliferation resistance section, the focus is on both the intrinsic and the extrinsic features of the nuclear systems. The paper presents a comparison between the features of Light Water Reactors (LWR) and the HTGR in order to be able to properly compare the most used technology today and one that is gaining international interest. (Author)

  20. Modeling of Aerobrake Ballute Stagnation Point Temperature and Heat Transfer to Inflation Gas

    Science.gov (United States)

    Bahrami, Parviz A.

    2012-01-01

    A trailing Ballute drag device concept for spacecraft aerocapture is considered. A thermal model for calculation of the Ballute membrane temperature and the inflation gas temperature is developed. An algorithm capturing the most salient features of the concept is implemented. In conjunction with the thermal model, trajectory calculations for two candidate missions, Titan Explorer and Neptune Orbiter missions, are used to estimate the stagnation point temperature and the inflation gas temperature. Radiation from both sides of the membrane at the stagnation point and conduction to the inflating gas is included. The results showed that the radiation from the membrane and to a much lesser extent conduction to the inflating gas, are likely to be the controlling heat transfer mechanisms and that the increase in gas temperature due to aerodynamic heating is of secondary importance.

  1. Measurement of soil/dust arsenic by gas phase chemiluminescence.

    Science.gov (United States)

    Sawalha, Maather F; Sengupta, Mrinal K; Ohira, Shin-Ichi; Idowu, Ademola D; Gill, Thomas E; Rojo, Lila; Barnes, Melanie; Dasgupta, Purnendu K

    2008-10-19

    A gas phase chemiluminescence (GPCL)-based method for trace measurement of arsenic has been recently described for the measurement of arsenic in water. The principle is based on the reduction of inorganic As to AsH(3) at a controlled pH (the choice of pH governs whether only As(III) or all inorganic As is converted) and the reaction of AsH(3) with O(3) to produce chemiluminescence (Idowu et al., Anal. Chem. 78 (2006) 7088-7097). The same general principle has also been used in postcolumn reaction detection of As, where As species are separated chromatographically, then converted into inorganic As by passing through a UV photochemical reactor followed by AsH(3) generation and CL reaction with ozone (Idowu and Dasgupta, Anal. Chem. 79 (2007) 9197-9204). In the present paper we describe the measurement of As in different soil and dust samples by serial extraction with water, citric acid, sulfuric acid and nitric acid. We also compare parallel measurements for total As by induction coupled plasma mass spectrometry (ICP-MS). As(V) was the only species found in our samples. Because of chloride interference of isobaric ArCl(+) ICP-MS analyses could only be carried out by standard addition; these results were highly correlated with direct GPCL and LC-GPCL results (r(2)=0.9935 and 1.0000, respectively). The limit of detection (LOD) in the extracts was 0.36 microg/L by direct GPCL compared to 0.1 microg/L by ICP-MS. In sulfuric acid-based extracts, the LC-GPCL method provided LODs inferior to those previously observed for water-based standards and were 2.6, 1.3, 6.7, and 6.4 microg/L for As(III), As(V), dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA), respectively.

  2. Gas-Phase Combustion Synthesis of Nonoxide Nanoparticles in Microgravity

    Science.gov (United States)

    Axelbaum, R. L.; Kumfer, B. M.; Sun, Z.; Chao, B. H.

    2001-01-01

    Gas-phase combustion synthesis is a promising process for creating nanoparticles for the growing nanostructure materials industry. The challenges that must be addressed are controlling particle size, preventing hard agglomerates, maintaining purity, and, if nonoxides are synthesized, protecting the particles from oxidation and/or hydrolysis during post-processing. Sodium-halide Flame Encapsulation (SFE) is a unique methodology for producing nonoxide nanoparticles that addresses these challenges. This flame synthesis process incorporates sodium and metal-halide chemistry, resulting in nanoparticles that are encapsulated in salt during the early stages of their growth in the flame. Salt encapsulation has been shown to allow control of particle size and morphology, while serving as an effective protective coating for preserving the purity of the core particles. Metals and compounds that have been produced using this technology include Al, W, Ti, TiB2, AlN, and composites of W-Ti and Al-AlN. Oxygen content in SFE synthesized nano- AlN has been measured by neutron activation analysis to be as low as 0.54wt.%, as compared to over 5wt.% for unprotected AlN of comparable size. The overall objective of this work is to study the SFE process and nano-encapsulation so that they can be used to produce novel and superior materials. SFE experiments in microgravity allow the study of flame and particle dynamics without the influence of buoyancy forces. Spherical sodium-halide flames are produced in microgravity by ejecting the halide from a spherical porous burner into a quiescent atmosphere of sodium vapor and argon. Experiments are performed in the 2.2 sec Drop Tower at the NASA-Glenn Research Center. Numerical models of the flame and particle dynamics were developed and are compared with the experimental results.

  3. Gas-Phase Synthesis and Characterization of CH4-Loaded Hydroquinone Clathrates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.; Lee, Y; Takeya, S; Kawamura, T; Yamamoto, Y; Lee, Y; Yoon, J

    2010-01-01

    A CH{sub 4}-loaded hydroquinone (HQ) clathrate was synthesized via a gas-phase reaction using the {alpha}-form of crystalline HQ and CH{sub 4} gas at 12 MPa and room temperature. Solid-state {sup 13}C cross-polarization/magic angle spinning (CP/MAS) NMR and Raman spectroscopic measurements confirm the incorporation of CH{sub 4} molecules into the cages of the HQ clathrate framework. The chemical analysis indicates that about 69% of the cages are filled by CH{sub 4} molecules, that is, 0.69 CH{sub 4} per three HQ molecules. Rietveld refinement using synchrotron X-ray powder diffraction (XRD) data shows that the CH{sub 4}-loaded HQ clathrate adopts the {beta}-form of HQ clathrate in a hexagonal space group R3 with lattice parameters of a = 16.6191 {angstrom} and c = 5.5038 {angstrom}. Time-resolved synchrotron XRD and quadrupole mass spectroscopic measurements show that the CH{sub 4}-loaded HQ clathrate is stable up to 368 K and gradually transforms to the {alpha}-form by releasing the confined CH{sub 4} gases between 368-378 K. Using solid-state {sup 13}C CP/MAS NMR, the reaction kinetics between the {alpha}-form HQ and CH{sub 4} gas is qualitatively described in terms of the particle size of the crystalline HQ.

  4. Single-step gas phase synthesis of stable iron aluminide nanoparticles with soft magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Vernieres, Jerome, E-mail: Jerome.vernieres@oist.jp; Benelmekki, Maria; Kim, Jeong-Hwan; Grammatikopoulos, Panagiotis; Diaz, Rosa E. [Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha, Onna Son, Okinawa 904-0495 (Japan); Bobo, Jean-François [Centre d’Elaboration de Materiaux et d’Etudes Structurales (CEMES), 29 rue Jeanne Marvig, 31055 Toulouse Cedex 4 (France); Sowwan, Mukhles, E-mail: Mukhles@oist.jp [Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha, Onna Son, Okinawa 904-0495 (Japan); Nanotechnology Research Laboratory, Al-Quds University, P.O. Box 51000, East Jerusalem, Palestine (Country Unknown)

    2014-11-01

    Soft magnetic alloys at the nanoscale level have long generated a vivid interest as candidate materials for technological and biomedical purposes. Consequently, controlling the structure of bimetallic nanoparticles in order to optimize their magnetic properties, such as high magnetization and low coercivity, can significantly boost their potential for related applications. However, traditional synthesis methods stumble upon the long standing challenge of developing true nanoalloys with effective control over morphology and stability against oxidation. Herein, we report on a single-step approach to the gas phase synthesis of soft magnetic bimetallic iron aluminide nanoparticles, using a versatile co-sputter inert gas condensation technique. This method allowed for precise morphological control of the particles; they consisted of an alloy iron aluminide crystalline core (DO{sub 3} phase) and an alumina shell, which reduced inter-particle interactions and also prevented further oxidation and segregation of the bimetallic core. Remarkably, the as-deposited alloy nanoparticles show interesting soft magnetic properties, in that they combine a high saturation magnetization (170 emu/g) and low coercivity (less than 20 Oe) at room temperature. Additional functionality is tenable by modifying the surface of the particles with a polymer, to ensure their good colloidal dispersion in aqueous environments.

  5. Gas phase reaction of allyl alcohol (2-propen-1-ol) with OH radicals and ozone.

    Science.gov (United States)

    Le Person, A; Solignac, G; Oussar, F; Daële, V; Mellouki, A; Winterhalter, R; Moortgat, G K

    2009-09-21

    The gas phase reactions of allyl alcohol with OH radicals and ozone have been investigated using different experimental systems. The rate coefficient for the OH reaction is reported in the temperature range 231-373 K, k(OH) = (5.7 +/- 0.2) x 10(-12) exp[(650 +/- 52)/T] cm3 molecule(-1) s(-1). This reaction is found to be pressure independent between 33 and 760 Torr. Rate coefficient (k(O3)) and gas phase products of the ozone reaction with allyl alcohol are reported at atmospheric pressure and 298 K. The obtained k(O3) = (1.8 +/- 0.2) x 10(-17) cm3 molecule(-1) s(-1) is in good agreement with the single measurement reported in the literature. The reaction of 03 with allyl alcohol is found to lead to the formation of formaldehyde and glycolaldehyde as the main products. Other products such as CH3OH, CO and CO2 have also been observed in low yield. Aerosol formation has been detected in the ozonolysis of allyl alcohol and its size distribution investigated.

  6. The contributions of apoplastic, symplastic and gas phase pathways for water transport outside the bundle sheath in leaves.

    Science.gov (United States)

    Buckley, Thomas N

    2015-01-01

    Water movement from the xylem to stomata is poorly understood. There is still no consensus about whether apoplastic or symplastic pathways are more important, and recent work suggests vapour diffusion may also play a role. The objective of this study was to estimate the proportions of hydraulic conductance outside the bundle sheath contributed by apoplastic, symplastic and gas phase pathways, using a novel analytical framework based on measurable anatomical and biophysical parameters. The calculations presented here suggest that apoplastic pathways provide the majority of conductance outside the bundle sheath under most conditions, whereas symplastic pathways contribute only a small proportion. The contributions of apoplastic and gas phase pathways vary depending on several critical but poorly known or highly variable parameters namely, the effective Poiseuille radius for apoplastic bulk flow, the thickness of cell walls and vertical temperature gradients within the leaf. The gas phase conductance should increase strongly as the leaf centre becomes warmer than the epidermis - providing up to 44% of vertical water transport for a temperature gradient of 0.2 K. These results may help to explain how leaf water transport is influenced by light absorption, temperature and differences in leaf anatomy among species. © 2014 John Wiley & Sons Ltd.

  7. Continuous fixed-bed gas-phase hydroformylation using supported ionic liquid-phase (SILP) Rh catalysts

    DEFF Research Database (Denmark)

    Riisager, Anders; Wasserscheid, Peter; Van Hal, R.

    2003-01-01

    Continuous flow gas-phase hydroformylation of propene was performed using novel supported ionic liquid-phase (SILP) catalysts containing immobilized Rh complexes of the biphosphine ligand sulfoxantphos in the ionic liquids 1-n-butyl-3-methylimidazolium hexafluorophosphate and halogen-free 1-n...

  8. Effect of gas recirculation intensity and various temperatures on ...

    African Journals Online (AJOL)

    The influence of mixing H2/CO2 gas recirculation on the performance of hydrogenotrophic methanogens activity in continuous culture was studied at 37 and 20°C. Chemostat fermentation was used at laboratory scale to determine the bioconversion rate of H2/CO2 mixture gas to methane under different mixing rates.

  9. Temperature dependence of gas sensing behaviour of TiO2 doped PANI composite thin films

    Science.gov (United States)

    Srivastava, Subodh; Sharma, S. S.; Sharma, Preetam; Sharma, Vinay; Rajura, Rajveer Singh; Singh, M.; Vijay, Y. K.

    2014-04-01

    In the present work we have reported the effect of temperature on the gas sensing properties of TiO2 doped PANI composite thin film based chemiresistor type gas sensors for hydrogen gas sensing application. PANI and TiO2 doped PANI composite were synthesized by in situ chemical oxidative polymerization of aniline at low temperature. The electrical properties of these composite thin films were characterized by I-V measurements as function of temperature. The I-V measurement revealed that conductivity of composite thin films increased as the temperature increased. The changes in resistance of the composite thin film sensor were utilized for detection of hydrogen gas. It was observed that at room temperature TiO2 doped PANI composite sensor shows higher response value and showed unstable behavior as the temperature increased. The surface morphology of these composite thin films has also been characterized by scanning electron microscopy (SEM) measurement.

  10. Silicon Carbide-Based Hydrogen Gas Sensors for High-Temperature Applications

    Directory of Open Access Journals (Sweden)

    Sangchoel Kim

    2013-10-01

    Full Text Available We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5 layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures.

  11. Silicon carbide-based hydrogen gas sensors for high-temperature applications.

    Science.gov (United States)

    Kim, Seongjeen; Choi, Jehoon; Jung, Minsoo; Joo, Sungjae; Kim, Sangchoel

    2013-10-09

    We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC) was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures.

  12. Absolutely Exponential Stability and Temperature Control for Gas Chromatograph System Under Dwell Time Switching Techniques.

    Science.gov (United States)

    Sun, Xi-Ming; Wang, Xue-Fang; Tan, Ying; Wang, Xiao-Liang; Wang, Wei

    2016-06-01

    This paper provides a design strategy for temperature control of the gas chromatograph. Usually gas chromatograph is modeled by a simple first order system with a time-delay, and a proportion integration (PI) controller is widely used to regulate the output of the gas chromatograph to the desired temperature. As the characteristics of the gas chromatograph varies at the different temperature range, the single-model based PI controller cannot work well when output temperature varies from one range to another. Moreover, the presence of various disturbance will further deteriorate the performance. In order to improve the accuracy of the temperature control, multiple models are used at the different temperature ranges. With a PI controller designed for each model accordingly, a delay-dependent switching control scheme using the dwell time technique is proposed to ensure the absolute exponential stability of the closed loop. Experiment results demonstrate the effectiveness of the proposed switching technique.

  13. The low-temperature phase of morpholinium tetrafluoroborate

    Directory of Open Access Journals (Sweden)

    Tadeusz Lis

    2008-04-01

    Full Text Available The crystal structure of the low-temperature form of the title compound, C4H10NO+·BF4−, was determined at 80 K. Two reversible phase transitions, at 158/158 and 124/126 K (heating/cooling, were detected by differential scanning calorimetry for this compound, and the sequence of phase transitions was subsequently confirmed by single-crystal X-ray diffraction experiments. The asymmetric unit at 80 K consists of three BF4− tetrahedral anions and three morpholinium cations (Z′ = 3. Hydrogen-bonded morpholinium cations form chains along the [100] direction. The BF4− anions are connected to these chains by N—H...F hydrogen bonds. In the crystal structure, two different layers perpendicular to the [001] direction can be distinguished, which differ in the geometry of the hydrogen bonds between cationic and anionic species.

  14. Phase Stability Diagrams for High Temperature Corrosion Processes

    Directory of Open Access Journals (Sweden)

    J. J. Ramos-Hernandez

    2013-01-01

    Full Text Available Corrosion phenomena of metals by fused salts depend on chemical composition of the melt and environmental conditions of the system. Detail knowledge of chemistry and thermodynamic of aggressive species formed during the corrosion process is essential for a better understanding of materials degradation exposed to high temperature. When there is a lack of kinetic data for the corrosion processes, an alternative to understand the thermodynamic behavior of chemical species is to utilize phase stability diagrams. Nowadays, there are several specialized software programs to calculate phase stability diagrams. These programs are based on thermodynamics of chemical reactions. Using a thermodynamic data base allows the calculation of different types of phase diagrams. However, sometimes it is difficult to have access to such data bases. In this work, an alternative way to calculate phase stability diagrams is presented. The work is exemplified in the Na-V-S-O and Al-Na-V-S-O systems. This system was chosen because vanadium salts is one of the more aggressive system for all engineering alloys, especially in those processes where fossil fuels are used.

  15. Hydrocarbon fuels from gas phase decarboxylation of hydrolyzed free fatty acid

    KAUST Repository

    Wang, Weicheng

    2012-01-01

    Gas phase decarboxylation of hydrolyzed free fatty acid (FFA) from canola oil has beeninvestigated in two fix-bed reactors by changing reaction parameters such as temperatures,FFA feed rates, and H 2-to-FFA molar ratios. FFA, which contains mostly C 18 aswell as a few C 16, C 20, C 22, and C 24 FFA, was fed into the boiling zone, evaporated, carriedby hydrogen flow at the rate of 0.5-20 ml/min, and reacted with the 5% Pd/C catalystin the reactor. Reactions were conducted atmospherically at 380-450 °C and the products,qualified and quantified through gas chromatography-flame ionization detector(GC-FID), showed mostly n-heptadecane and a few portion of n-C 15, n-C 19, n-C 21, n-C 23 as well as some cracking species. Results showed that FFA conversion increased withincreasing reaction temperatures but decreased with increasing FFA feed rates and H 2-to-FFA molar ratios. The reaction rates were found to decrease with higher temperatureand increase with higher H 2 flow rates. Highly selective heptadecane was achieved byapplying higher temperatures and higher H 2-to-FFA molar ratios. From the results, ascatalyst loading and FFA feed rate were fixed, an optimal reaction temperature of 415 °C as well as H 2-to-FFA molar ratio of 4.16 were presented. These results provided goodbasis for studying the kinetics of decarboxylation process. © 2012 American Society of Mechanical Engineers.

  16. CO2 Capture from Flue Gas by Phase Transitional Absorption

    Energy Technology Data Exchange (ETDEWEB)

    Liang Hu

    2009-06-30

    A novel absorption process called Phase Transitional Absorption was invented. What is the Phase Transitional Absorption? Phase Transitional Absorption is a two or multi phase absorption system, CO{sub 2} rich phase and CO{sub 2} lean phase. During Absorption, CO{sub 2} is accumulated in CO{sub 2} rich phase. After separating the two phases, CO{sub 2} rich phase is forward to regeneration. After regeneration, the regenerated CO{sub 2} rich phase combines CO{sub 2} lean phase to form absorbent again to complete the cycle. The advantage for Phase Transitional Absorption is obvious, significantly saving on regeneration energy. Because CO{sub 2} lean phase was separated before regeneration, only CO{sub 2} rich phase was forward to regeneration. The absorption system we developed has the features of high absorption rate, high loading and working capacity, low corrosion, low regeneration heat, no toxic to environment, etc. The process evaluation shows that our process is able to save 80% energy cost by comparing with MEA process.

  17. Influence of the gas mixture radio on the correlations between the excimer XeCl emission and the sealed gas temperature in dielectric barrier discharge lamps

    CERN Document Server

    Xu Jin Zhou; Ren Zhao Xing

    2002-01-01

    For dielectric barrier discharge lamps filled with various gas mixture ratios, the correlations between the excimer XeCl emission and the sealed gas temperature have been founded, and a qualitative explication is presented. For gas mixture with chlorine larger than 3%, the emission intensity increases with the sealed gas temperature, while with chlorine about 2%, the emission intensity decreases with the increasing in the gas temperature, and could be improved by cooling water. However, if chlorine is less than 1.5%, the discharge appears to be a mixture mode with filaments distributed in a diffused glow-like discharge, and the UV emission is independent on the gas temperature

  18. Experimental study of three-phase gas-lift

    NARCIS (Netherlands)

    Descamps, M.N.

    2007-01-01

    The gas-lift technique is a gravity-based pumping technique used for recovering oil from a production well. Gas injected at the bottom of the production pipe reduces the gravity component of the pressure drop and thereby, stimulates the supply of oil from the reservoir. This results in an enhanced

  19. Measurement of Turbulent Pressure and Temperature Fluctuations in a Gas Turbine Combustor

    Science.gov (United States)

    Povinelli, Louis (Technical Monitor); LaGraff, John E.; Bramanti, Cristina; Pldfield, Martin; Passaro, Andrea; Biagioni, Leonardo

    2004-01-01

    The report summarizes the results of the redesign efforts directed towards the gas-turbine combustor rapid-injector flow diagnostic probe developed under sponsorship of NASA-GRC and earlier reported in NASA-CR-2003-212540. Lessons learned during the theoretical development, developmental testing and field-testing in the previous phase of this research were applied to redesign of both the probe sensing elements and of the rapid injection device. This redesigned probe (referred to herein as Turboprobe) has been fabricated and is ready, along with the new rapid injector, for field-testing. The probe is now designed to capture both time-resolved and mean total temperatures, total pressures and, indirectly, one component of turbulent fluctuations.

  20. Mechanistic and kinetic studies of high-temperature coal gas desulfurization sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Lew, S.; Flytzani-Stephanopoulos, M.; Sarofim, A.F.

    1991-10-01

    The overall objective of this project was to investigate the properties of and evaluate mixed oxides of zinc and titanium for hot fuel gas desulfurization. Uncombined ZnO was also investigated as a base case. Detailed investigation of the reduction and sulfidation reactions of Zn-Ti-O sorbents was performed. The intrinsic kinetics and the product layer diffusion rates in reduction and sulfidation were determined. Kinetic experiments with sorbents containing various Zn/Ti atomic ratios were performed. Chemical phase and structural transformations were followed by various methods. The results were compared to similar experiments performed with ZnO. The purpose of these experiments was to determine how the presence of titanium dioxide affects the reduction and sulfidation of ZnO. This information would be used to identify and select the sorbent composition that gives the best combination of low reduction rate and acceptable sulfidation performance at temperatures exceeding 600{degree}C. (VC)

  1. A stable algorithm for calculating phase equilibria with capillarity at specified moles, volume and temperature using a dynamic model

    KAUST Repository

    Kou, Jisheng

    2017-09-30

    Capillary pressure can significantly affect the phase properties and flow of liquid-gas fluids in porous media, and thus, the phase equilibrium calculation incorporating capillary pressure is crucial to simulate such problems accurately. Recently, the phase equilibrium calculation at specified moles, volume and temperature (NVT-flash) becomes an attractive issue. In this paper, capillarity is incorporated into the phase equilibrium calculation at specified moles, volume and temperature. A dynamical model for such problem is developed for the first time by using the laws of thermodynamics and Onsager\\'s reciprocal principle. This model consists of the evolutionary equations for moles and volume, and it can characterize the evolutionary process from a non-equilibrium state to an equilibrium state in the presence of capillarity effect at specified moles, volume and temperature. The phase equilibrium equations are naturally derived. To simulate the proposed dynamical model efficiently, we adopt the convex-concave splitting of the total Helmholtz energy, and propose a thermodynamically stable numerical algorithm, which is proved to preserve the second law of thermodynamics at the discrete level. Using the thermodynamical relations, we derive a phase stability condition with capillarity effect at specified moles, volume and temperature. Moreover, we propose a stable numerical algorithm for the phase stability testing, which can provide the feasible initial conditions. The performance of the proposed methods in predicting phase properties under capillarity effect is demonstrated on various cases of pure substance and mixture systems.

  2. Scaling Studies for High Temperature Test Facility and Modular High Temperature Gas-Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Richard R. Schult; Paul D. Bayless; Richard W. Johnson; James R. Wolf; Brian Woods

    2012-02-01

    The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5-year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant (NGNP) project. Because the NRC's interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC).

  3. A new method for measurement of gas-phase ammonia and amines in air

    Science.gov (United States)

    Dawson, M. L.; Gomez, A.; Arquero, K. D.; Perraud, V. M.; Finlayson-Pitts, B. J.

    2013-12-01

    Accurately predicting particle formation and growth from gas phase precursors is an essential component of modeling the impact of particulate matter on human health, visibility and climate. While the reactions of ammonia with nitric and sulfuric acids to form particulate nitrate and sulfate particles is well known, it has been recently recognized that gas-phase amines, even at low ppb levels, significantly enhance particle formation from common atmospheric acids. As a result, accurate data on the sources, sinks and typical background concentrations of gas-phase amines, are crucial to predicting new particle formation in the atmosphere. However, gas-phase amines are notoriously difficult to measure, as they have a tendency to stick to surfaces, including sampling lines and inlets. In addition, background amine concentrations in the atmosphere are typically a few ppb or lower, requiring low detection limits for ambient sampling techniques. Here we report the development of a simple, reliable method for detection of gas-phase amines at atmospherically relevant concentrations using collection on a cation exchange sorbent followed by in-line extraction and ion chromatography. Gas-phase standards of several amines and ammonia are used to characterize the technique and results from ambient samples in an agricultural area are presented. The application of this technique to field measurements as well as to laboratory measurements of new particle formation from gas-phase ammonia and amines are discussed.

  4. The effects of surface temperature on the gas-liquid interfacial reaction dynamics of O(3P)+squalane.

    Science.gov (United States)

    Köhler, Sven P K; Allan, Mhairi; Kelso, Hailey; Henderson, David A; McKendrick, Kenneth G

    2005-01-08

    OH/OD product state distributions arising from the reaction of gas-phase O(3P) atoms at the surface of the liquid hydrocarbon squalane C30H62/C30D62 have been measured. The O(3P) atoms were generated by 355 nm laser photolysis of NO2 at a low pressure above the continually refreshed liquid. It has been shown unambiguously that the hydroxyl radicals detected by laser-induced fluorescence originate from the squalane surface. The gas-phase OH/OD rotational populations are found to be partially sensitive to the liquid temperature, but do not adapt to it completely. In addition, rotational temperatures for OH/OD(v'=1) are consistently colder (by 34+/-5 K) than those for OH/OD(v'=0). This is reminiscent of, but less pronounced than, a similar effect in the well-studied homogeneous gas-phase reaction of O(3P) with smaller hydrocarbons. We conclude that the rotational distributions are composed of two different components. One originates from a direct abstraction mechanism with product characteristics similar to those in the gas phase. The other is a trapping-desorption process yielding a thermal, Boltzmann-like distribution close to the surface temperature. This conclusion is consistent with that reached previously from independent measurements of OH product velocity distributions in complementary molecular-beam scattering experiments. It is further supported by the temporal profiles of OH/OD laser-induced fluorescence signals as a function of distance from the surface observed in the current experiments. The vibrational branching ratios for (v'=1)/(v'=0) for OH and OD have been found to be (0.07+/-0.02) and (0.30+/-0.10), respectively. The detection of vibrationally excited hydroxyl radicals suggests that secondary and/or tertiary hydrogen atoms may be accessible to the attacking oxygen atoms. 2005 American Institute of Physics.

  5. Release to the gas phase of metals, S and Cl during combustion of dedicated waste fractions

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; van Lith, Simone Cornelia; Frandsen, Flemming

    2010-01-01

    wood, shoes, automotive shredder waste and PVC (poly-vinyl-chloride). The waste fractions were characterized by use of wet chemical analysis, and, based on the chemical composition of the initial fuel sample and the ash residue after the experiments; the release of inorganic elements was quantified......The release to the gas phase of inorganic elements such as alkali metals. Cl, S, and heavy metals in Waste-to-Energy (WtE) boilers is a challenge. Besides the risk of harmful emissions to the environment, inorganic elements released from the grate may cause severe ash deposition and corrosion...... and the link to the formation of fly ash and aerosols in full-scale waste incinerators. The release of metals, S and Cl from four dedicated waste fractions was quantified as a function of temperature in a lab-scale fixed-bed reactor. The waste fractions comprised chromated copper arsenate (CCA) impregnated...

  6. Gas phase dispersion in compost as a function of different water contents and air flow rates

    Science.gov (United States)

    Sharma, Prabhakar; Poulsen, Tjalfe G.

    2009-07-01

    Gas phase dispersion in a natural porous medium (yard waste compost) was investigated as a function of gas flow velocity and compost volumetric water content using oxygen and nitrogen as tracer gases. The compost was chosen because it has a very wide water content range and because it represents a wide range of porous media, including soils and biofilter media. Column breakthrough curves for oxygen and nitrogen were measured at relatively low pore gas velocities, corresponding to those observed in for instance soil vapor extraction systems or biofilters for air cleaning at biogas plants or composting facilities. Total gas mechanical dispersion-molecular diffusion coefficients were fitted from the breakthrough curves using a one-dimensional numerical solution to the advection-dispersion equation and used to determine gas dispersivities at different volumetric gas contents. The results showed that gas mechanical dispersion dominated over molecular diffusion with mechanical dispersion for all water contents and pore gas velocities investigated. Importance of mechanical dispersion increased with increasing pore gas velocity and compost water content. The results further showed that gas dispersivity was relatively constant at high values of compost gas-filled porosity but increased with decreasing gas-filled porosity at lower values of gas-filled porosity. Results finally showed that measurement uncertainty in gas dispersivity is generally highest at low values of pore gas velocity.

  7. Gas-phase lithium cation affinity of glycine.

    Science.gov (United States)

    Bourcier, Sophie; Chiaa, Ru Xuan; Mimbong, Rosa Ngo Biboum; Bouchoux, Guy

    2015-01-01

    The gas-phase lithium cation binding thermochemistry of glycine has been determined theoretically by quantum chemical calculations at the G4 level and experimentally by the extended kinetic method using electrospray ionization quadrupole time-of-flight tandem mass spectrometry. The lithium cation affinity of glycine, ∆(Li)H°(298)(GLY), i.e. the∆(Li)H°(298) of the reaction GlyLi(+)→ Gly + Li(+)) given by the G4 method is equal to 241.4 kJ.mol(-1) if only the most stable conformer of glycine is considered or to 242.3 kJ.mol(-1) if the 298K equilibrium mixture of neutral conformers is included in the calculation. The ∆(Li)H°(298)(GLY) deduced from the extended kinetic method is obviously dependent on the choice of the Li(+) affinity scale, thus∆(Li)H°(298)(GLY) is equal to 228.7±0.9(2.0) kJ.mol(- 1) if anchored to the recently re-evaluated lithium cation affinity scale but shifted to 235.4±1.0 kJ.mol(-1) if G4 computed lithium cation affinities of the reference molecules is used. This difference of 6.3 kJ.mol(-1) may originate from a compression of the experimental lithium affinity scale in the high ∆(Li)H°(298) region. The entropy change associated with the reaction GlyLi(+)→Gly + Li(+) reveals a gain of approximately 15 J.mol(-) 1.K(-1) with respect to monodentate Li(+) acceptors. The origin of this excess entropy is attributed to the bidentate interaction between the Li(+) cation and both the carbonyl oxygen and the nitrogen atoms of glycine. The computed G4 Gibbs free energy,∆(Li)G°(298)(GLY) is equal to 205.3 kJ.mol(-1), a similar result, 201.0±3.4 kJ.mol(-1), is obtained from the experiment if the∆(Li)G°(298) of the reference molecules is anchored on the G4 results.

  8. Material Control and Accounting Design Considerations for High-Temperature Gas Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Trond Bjornard; John Hockert

    2011-08-01

    The subject of this report is domestic safeguards and security by design (2SBD) for high-temperature gas reactors, focusing on material control and accountability (MC&A). The motivation for the report is to provide 2SBD support to the Next Generation Nuclear Plant (NGNP) project, which was launched by Congress in 2005. This introductory section will provide some background on the NGNP project and an overview of the 2SBD concept. The remaining chapters focus specifically on design aspects of the candidate high-temperature gas reactors (HTGRs) relevant to MC&A, Nuclear Regulatory Commission (NRC) requirements, and proposed MC&A approaches for the two major HTGR reactor types: pebble bed and prismatic. Of the prismatic type, two candidates are under consideration: (1) GA's GT-MHR (Gas Turbine-Modular Helium Reactor), and (2) the Modular High-Temperature Reactor (M-HTR), a derivative of Areva's Antares reactor. The future of the pebble-bed modular reactor (PBMR) for NGNP is uncertain, as the PBMR consortium partners (Westinghouse, PBMR [Pty] and The Shaw Group) were unable to agree on the path forward for NGNP during 2010. However, during the technology assessment of the conceptual design phase (Phase 1) of the NGNP project, AREVA provided design information and technology assessment of their pebble bed fueled plant design called the HTR-Module concept. AREVA does not intend to pursue this design for NGNP, preferring instead a modular reactor based on the prismatic Antares concept. Since MC&A relevant design information is available for both pebble concepts, the pebble-bed HTGRs considered in this report are: (1) Westinghouse PBMR; and (2) AREVA HTR-Module. The DOE Office of Nuclear Energy (DOE-NE) sponsors the Fuel Cycle Research and Development program (FCR&D), which contains an element specifically focused on the domestic (or state) aspects of SBD. This Material Protection, Control and Accountancy Technology (MPACT) program supports the present work

  9. Initiation of the ice phase by marine biogenic surfaces in supersaturated gas and supercooled aqueous phases.

    Science.gov (United States)

    Alpert, Peter A; Aller, Josephine Y; Knopf, Daniel A

    2011-11-28

    Biogenic particles have the potential to affect the formation of ice crystals in the atmosphere with subsequent consequences for the hydrological cycle and climate. We present laboratory observations of heterogeneous ice nucleation in immersion and deposition modes under atmospherically relevant conditions initiated by Nannochloris atomus and Emiliania huxleyi, marine phytoplankton with structurally and chemically distinct cell walls. Temperatures at which freezing, melting, and water uptake occur are observed using optical microscopy. The intact and fragmented unarmoured cells of N. atomus in aqueous NaCl droplets enhance ice nucleation by 10-20 K over the homogeneous freezing limit and can be described by a modified water activity based ice nucleation approach. E. huxleyi cells covered by calcite plates do not enhance droplet freezing temperatures. Both species nucleate ice in the deposition mode at an ice saturation ratio, S(ice), as low as ~1.2 and below 240 K, however, for each, different nucleation modes occur at warmer temperatures. These observations show that markedly different biogenic surfaces have both comparable and contrasting effects on ice nucleation behaviour depending on the presence of the aqueous phase and the extent of supercooling and water vapour supersaturation. We derive heterogeneous ice nucleation rate coefficients, J(het), and cumulative ice nuclei spectra, K, for quantification and analysis using time-dependent and time-independent approaches, respectively. Contact angles, α, derived from J(het)via immersion freezing depend on T, a(w), and S(ice). For deposition freezing, α can be described as a function of S(ice) only. The different approaches yield different predictions of atmospheric ice crystal numbers primarily due to the time evolution allowed for the time-dependent approach with implications for the evolution of mixed-phase and ice clouds.

  10. Temperature dependence of the magneto-controllable first-order phase transition in dilute magnetic fluids

    Science.gov (United States)

    Ivanov, A. S.

    2017-11-01

    Experimental study was carried out to investigate the influence of particle size distribution function on the temperature dependent magneto-controllable first-order phase transition of the ;gas-liquid; type in magnetic fluids. The study resolves one crisis situation in ferrohydrodynamic experiment made by several research groups in the 1980-1990s. It is shown that due to polydispersity magnetic fluids exhibit phase diagrams which are divided into three regions by vaporus and liquidus curves. Granulometric data states the primary role of the width of the particle size distribution function in the process of spinodal decomposition. New modified Langevin parameter is introduced for unification of liquidus curves of different ferrofluids despite the significant difference between the curves (one order of magnitude) in (H, T) coordinates.

  11. Impact of compression on gas transport in non-woven gas diffusion layers of high temperature polymer electrolyte fuel cells

    Science.gov (United States)

    Froning, Dieter; Yu, Junliang; Gaiselmann, Gerd; Reimer, Uwe; Manke, Ingo; Schmidt, Volker; Lehnert, Werner

    2016-06-01

    Gas transport in non-woven gas diffusion layers of a high-temperature polymer electrolyte fuel cell was calculated with the Lattice Boltzmann method. The underlying micro structure was taken from two sources. A real micro structure was analyzed in the synchrotron under the impact of a compression mask mimicking the channel/rib structure of a flow field. Furthermore a stochastic geometry model based on synchrotron X-ray tomography studies was applied. The effect of compression is included in the stochastic model. Gas transport in these micro structures was simulated and the impact of compression was analyzed. Fiber bundles overlaying the micro structure were identified which affect the homogeneity of the gas flow. There are significant deviations between the impact of compression on effective material properties for this type of gas diffusion layers and the Kozeny-Carman equation.

  12. Investigation of the resistive phase in high power gas switching. Research and development report

    Energy Technology Data Exchange (ETDEWEB)

    O' Rourke, R.C.

    1977-01-01

    A theoretical study was made of the resistive phase in high pressure gas switching with the regime of interest being (10 to 50) kV from (1J, 10ns, 100KHz) to (100J, 10..mu..s, 1KHz). The resistive phase was examined as a function of applied field, gap spacing, inductance, gas type and pressure, and electrode material. The initiating and quenching phases as regards system performance (e.g., the jitter problem) were examined. The cooling and electrode debris removal effects of the vortex gas flow on the operating characteristics of the system were considered.

  13. Parenchymal mechanics, gas mixing, and the slope of phase III

    National Research Council Canada - National Science Library

    Theodore A. Wilson

    2013-01-01

    ... from gas-mixing studies. The stiffness of the elastic line elements that lie along the free edges of alveoli and form the boundary of the lumen of the alveolar duct is the dominant determinant of parenchymal compliance...

  14. Photocatalytic degradation of 2-phenethyl-2-chloroethyl sulfide in liquid and gas phases.

    Science.gov (United States)

    Vorontsov, Alexandre V; Panchenko, Alexander A; Savinov, Evgueni N; Lion, Claude; Smirniotis, Panagiotis G

    2002-12-01

    This work explores the ability of photocatalysis to decontaminate water and air from chemical warfare agent mustard using its simulant 2-phenethyl 2-chloroethyl sulfide (PECES). PECES like mustard slowly dissolves in water with hydrolysis, forming 2-phenethyl 2-hydroxyethyl sulfide (PEHES). Irradiation of TiO2 suspension containing PECES with the unfiltered light of a mercury lamp (lambda > or = 254 nm) decomposed all PECES mostly via photolysis. Reaction under filtered light (lambda > 300 nm) proceeds mainly photocatalytically and requires longer time. Sulfur from starting PECES is completely transformed into sulfuric acid at the end of the reaction. Detected volatile, nonvolatile, surface products, and the suggested scheme of degradation are reported. The main volatile products are styrene and benzaldehyde, nonvolatile--hydroxylated PEHES, surface--2-phenethyl disulfide. Photolysis of PECES produced the same set of volatile products as photocatalysis. Photocatalytic degradation of gaseous PECES in air results in its mineralization but is accompanied by TiO2 deactivation. The highest rate of mineralization with minimum deactivation was observed at about room temperature and a water concentration of 27,500 ppm. No gaseous products except CO2 were detected. The main extracted surface product was styrene. It was concluded that PECES photocatalytic degradation proceeds mainly via C-S bond cleavage and further oxidation of the products. Hydrolysis of the C-S bond was detected only in gas-phase photocatalytic degradation. The quantum efficiency of gas-phase degradation (0.28%) was much higher than that of liquid-phase degradation (0.008%). The results demonstrate the ability of photocatalysis to decontaminate an aqueous and especially an air environment

  15. Research on Sources of Gas Phase Metastable Atoms and Molecules

    Science.gov (United States)

    1982-05-01

    reported in a post-deadline paper at thu Paris ICPEAC Conference (35) which described an experimental measurement of electron impact excitiation cross...are completely removed from the plate resulting in a positive cur- rent monitored by a high sensitivity electrometer. Ihe guard plates insure that...physics of high-power lasers (e.g., the rare gas- halides ). Unfortunately, even the lowest of the metastable rare gas en- ergy levels, the Xe*( 3P0) with

  16. Dipolar Bose gas with three-body interactions at finite temperature

    Science.gov (United States)

    Boudjemâa, Abdelâali

    2018-01-01

    We investigate effects of three-body contact interactions on a trapped dipolar Bose gas at finite temperature using the Hartree–Fock–Bogoliubov approximation. We analyze numerically the behavior of the transition temperature and the condensed fraction. Effects of the three-body interactions, anomalous pair correlations and temperature on the collective modes are discussed.

  17. Temperature and Humidity Dependence of a Polymer-Based Gas Sensor

    Science.gov (United States)

    Ryan, M. A.; Buehler, M. G.

    1997-01-01

    This paper quantifies the temperature and humidity dependence of a polymer-based gas sensor. The measurement and analysis of three polymers indicates that resistance changes in the polymer films, due to temperature and humidity, can be positive or negative. The temperature sensitivity ranged from +1600 to -320 ppm/nd the relative sensitivity ranged from +1100 to -260 ppm/%.

  18. High Temperature Gas-cooled Reactor Projected Markets and Scoping Economics

    Energy Technology Data Exchange (ETDEWEB)

    Larry Demick

    2010-08-01

    The NGNP Project has the objective of developing the high temperature gas-cooled reactor (HTGR) technology to supply high temperature process heat to industrial processes as a substitute for burning of fossil fuels, such as natural gas. Applications of the HTGR technology that have been evaluated by the NGNP Project for supply of process heat include supply of electricity, steam and high-temperature gas to a wide range of industrial processes, and production of hydrogen and oxygen for use in petrochemical, refining, coal to liquid fuels, chemical, and fertilizer plants.

  19. Gas Emissivity of a Modified Cellulose Mix at the Temperature of 900°C

    Directory of Open Access Journals (Sweden)

    Zawieja Z.

    2015-09-01

    Full Text Available This paper presents the findings of a study of gas emissivity and the volumetric gas flow rate from a patented modified cellulose mix used in production of disposable sand casting moulds. The modified cellulose mix with such additives as expanded perlite, expanded vermiculite and microspheres was used as the study material. The results for gas emissivity and the gas flow rate for the modified cellulose mix were compared with the gas emissivity of the commercial material used in gating systems in disposable sand casting moulds. The results have shown that the modified cellulose mix is characterized by a lower gas emissivity by as much as 50% and lower gas flow rate per unit mass during the process of thermal degradation at the temperature of 900°C, compared to the commercial mix. It was also noted that the amount of microspheres considerably affected the amount of gas produced.

  20. Dynamic Modeling of the Two-Phase Leakage Process of Natural Gas Liquid Storage Tanks

    National Research Council Canada - National Science Library

    Xia Wu; Changjun Li; Yufa He; Wenlong Jia

    2017-01-01

    ... of the NGL’s pressure, temperature and phase state in the tank and across the leak hole. The methods available in the literature rarely consider the liquid/vapor phase transition of the NGL during such a process...

  1. Experimental and computational investigation on the gas phase reaction of p-cymene with Cl atoms.

    Science.gov (United States)

    Dash, Manas Ranjan; Srinivasulu, G; Rajakumar, B

    2015-01-29

    The rate coefficient for the gas-phase reaction of Cl atoms with p-cymene was determined as a function of temperature (288-350 K) and pressure (700-800 Torr) using the relative rate technique, with 1,3-butadiene and ethylene as reference compounds. Cl atoms were generated by UV photolysis of oxalyl chloride ((COCl)2) at 254 nm, and nitrogen was used as the diluent gas. The rate coefficient for the reaction of Cl atoms with p-cymene at 298 K was measured to be (2.58 ± 1.55) × 10(-10) cm(3) molecule(-1) s(-1). The kinetic data obtained over the temperature range 288-350 K were used to derive an Arrhenius expression: k(T) = (9.36 ± 2.90) × 10(-10) exp[-(488 ± 98)/T] cm(3) molecule(-1) s(-1). Theoretical kinetic calculations were also performed for the title reaction using canonical variational transition state theory (CVT) with small curvature tunneling (SCT) between 250 and 400 K. The calculated rate coefficients obtained over the temperature range 250-400 K were used to derive an Arrhenius expression: k(T) = 5.41 × 10(-13) exp[1837/T] cm(3) molecule(-1) s(-1). Theoretical study indicated that addition channels contribute maximum to the total reaction and H-abstraction channels can be neglected. The atmospheric lifetime (τ) of p-cymene due to its reactions with various tropospheric oxidants was estimated, and it was concluded that the reactions of p-cymene with Cl atoms may compete with OH radicals in the marine boundary layer and in coastal urban areas where the concentration of Cl atoms is high.

  2. Uptake of gas phase sulfur species methanesulfonic acid, dimethylsulfoxide, and dimethyl sulfone by aqueous surfaces

    Energy Technology Data Exchange (ETDEWEB)

    De Bruyn, W.J.; Shorter, J.A.; Davidovits, P. [Boston College, Chestnut Hill, MA (United States); Worsnop, D.R.; Zahniser, M.S.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States)

    1994-08-20

    Biogenic reduced sulfur species are emitted from the oceans and then oxidized in the marine boundary layer. The gas/liquid interactions of these oxidized species must be understood in order to evaluate the relative contributions to marine boundary layer aerosol levels from anthropogenic and biogenic sources and to assess the overall impact of these aerosols on global climate. A key parameter in understanding these interactions is the mass accommodation coefficient, which is simply the probability that a gas phase molecule enters into a liquid on striking the liquid surface. The mass accommodation coefficients for dimethylsulfoxide, dimethyl sulfone, and methanesulfonic acid into water have been measured as a function of temperature (260-280 K), pH (1-14), and NaCl concentration (0-3.5 M). The experimental method employs a monodispersed train of fast droplets in a low-pressure flow reactor. The mass accommodation coefficients show a negative temperature dependence varying from {approximately} 0.1 to {approximately} 0.2 over the range of temperatures studied. The measured uptake is independent of pH and NaCl concentration in the ranges studied. The mass accommodation coefficients are well expressed in terms of an observed Gibbs free energy {Delta}G{sub obs}{sup No.} - T{Delta}S{sub obs}{sup No.} as {alpha}/(1 - {alpha}) = exp (-{Delta}G{sub obs}{sup No.}/RT). The results are discussed in terms of a previously described uptake model. In the marine boundary layer, mass transfer of these species into aerosols will be limited by mass accommodation for aerosols with diameters of less than 2 {mu}m. 28 refs., 5 figs., 2 tabs.

  3. Multi-spectral pyrometer for gas turbine blade temperature measurement

    Science.gov (United States)

    Gao, Shan; Wang, Lixin; Feng, Chi

    2014-09-01

    To achieve the highest possible turbine inlet temperature requires to accurately measuring the turbine blade temperature. If the temperature of blade frequent beyond the design limits, it will seriously reduce the service life. The problem for the accuracy of the temperature measurement includes the value of the target surface emissivity is unknown and the emissivity model is variability and the thermal radiation of the high temperature environment. In this paper, the multi-spectral pyrometer is designed provided mainly for range 500-1000°, and present a model corrected in terms of the error due to the reflected radiation only base on the turbine geometry and the physical properties of the material. Under different working conditions, the method can reduce the measurement error from the reflect radiation of vanes, make measurement closer to the actual temperature of the blade and calculating the corresponding model through genetic algorithm. The experiment shows that this method has higher accuracy measurements.

  4. Crystal-liquid-gas phase transitions and thermodynamic similarity

    CERN Document Server

    Skripov, Vladimir P; Schmelzer, Jurn W P

    2006-01-01

    Professor Skripov obtained worldwide recognition with his monograph ""Metastable liquids"", published in English by Wiley & Sons. Based upon this work and another monograph published only in Russia, this book investigates the behavior of melting line and the properties of the coexisting crystal and liquid phase of simple substances across a wide range of pressures, including metastable states of the coexisting phases. The authors derive new relations for the thermodynamic similarity for liquid-vapour phase transition, as well as describing solid-liquid, liquid-vapor and liquid-liquid phase tra

  5. Note: Buffer gas temperature inhomogeneities and design of drift-tube ion mobility spectrometers: Warnings for real-world applications by non-specialists.

    Science.gov (United States)

    Fernandez-Maestre, R

    2017-09-01

    Ion mobility spectrometry (IMS) separates gas phase ions moving under an electric field according to their size-to-charge ratio. IMS is the method of choice to detect illegal drugs and explosives in customs and airports making accurate determination of reduced ion mobilities (K0) important for national security. An ion mobility spectrometer with electrospray ionization coupled to a quadrupole mass spectrometer was used to study uncertainties in buffer gas temperatures during mobility experiments. Differences up to 16°C were found in the buffer gas temperatures in different regions of the drift tube and up to 42°C between the buffer gas and the drift tube temperatures. The drift tube temperature is used as an approximation to the buffer gas temperature for the calculation of K0 because the buffer gas temperature is hard to measure. This is leading to uncertainties in the determination of K0 values. Inaccurate determination of K0 values yields false positives that delay the cargo and passengers in customs and airports. Therefore, recommendations are issued for building mobility tubes to assure a homogeneous temperature of the buffer gas. Because the temperature and other instrumental parameters are difficult to measure in IMS, chemical standards should always be used when calculating K0. The difference of 42°C between the drift tube and buffer gas temperatures found in these experiments produces a 10.5% error in the calculation of K0. This large inaccuracy in K0 shows the importance of a correct temperature measurement in IMS.

  6. Note: Buffer gas temperature inhomogeneities and design of drift-tube ion mobility spectrometers: Warnings for real-world applications by non-specialists

    Science.gov (United States)

    Fernandez-Maestre, R.

    2017-09-01

    Ion mobility spectrometry (IMS) separates gas phase ions moving under an electric field according to their size-to-charge ratio. IMS is the method of choice to detect illegal drugs and explosives in customs and airports making accurate determination of reduced ion mobilities (K0) important for national security. An ion mobility spectrometer with electrospray ionization coupled to a quadrupole mass spectrometer was used to study uncertainties in buffer gas temperatures during mobility experiments. Differences up to 16°C were found in the buffer gas temperatures in different regions of the drift tube and up to 42°C between the buffer gas and the drift tube temperatures. The drift tube temperature is used as an approximation to the buffer gas temperature for the calculation of K0 because the buffer gas temperature is hard to measure. This is leading to uncertainties in the determination of K0 values. Inaccurate determination of K0 values yields false positives that delay the cargo and passengers in customs and airports. Therefore, recommendations are issued for building mobility tubes to assure a homogeneous temperature of the buffer gas. Because the temperature and other instrumental parameters are difficult to measure in IMS, chemical standards should always be used when calculating K0. The difference of 42°C between the drift tube and buffer gas temperatures found in these experiments produces a 10.5% error in the calculation of K0. This large inaccuracy in K0 shows the importance of a correct temperature measurement in IMS.

  7. Exhaust Gas Temperature Measurements in Diagnostics of Turbocharged Marine Internal Combustion Engines Part II Dynamic Measurements

    Directory of Open Access Journals (Sweden)

    Korczewski Zbigniew

    2016-01-01

    Full Text Available The second part of the article describes the technology of marine engine diagnostics making use of dynamic measurements of the exhaust gas temperature. Little-known achievements of Prof. S. Rutkowski of the Naval College in Gdynia (now: Polish Naval Academy in this area are presented. A novel approach is proposed which consists in the use of the measured exhaust gas temperature dynamics for qualitative and quantitative assessment of the enthalpy flux of successive pressure pulses of the exhaust gas supplying the marine engine turbocompressor. General design assumptions are presented for the measuring and diagnostic system which makes use of a sheathed thermocouple installed in the engine exhaust gas manifold. The corrected thermal inertia of the thermocouple enables to reproduce a real time-history of exhaust gas temperature changes.

  8. High temperature corrosion of advanced ceramic materials for hot-gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Kupp, E.R.; Trubelja, M.F.; Spear, K.E.; Tressler, R.E. [Pennsylvania State Univ., University Park, PA (United States)

    1995-08-01

    Experimental corrosion studies of hot gas filter materials and heat exchanger materials in oxidizing combustion environments have been initiated. Filter materials from 3M Co. and DuPont Lanxide Composites Inc. are being tested over a range of temperatures, times and gas flows. It has been demonstrated that morphological and phase changes due to corrosive effects occur after exposure of the 3M material to a combustion environment for as little as 25 hours at 800{degrees}C. The study of heat exchanger materials has focused on enhancing the corrosion resistance of DuPont Lanxide Dimox{trademark} composite tubes by adding chromium to its surfaces by (1) heat treatments in a Cr{sub 2}O{sub 3} powder bed, or (2) infiltrating surface porosity with molten chromium nitrate. Each process is followed by a surface homogenization at 1500{degrees}C. The powder bed method has been most successful, producing continuous Cr-rich layers with thicknesses ranging from 20 to 250 {mu}m. As-received and Cr-modified DuPont Lanxide Dimox{trademark} samples will be reacted with commonly encountered coal-ash slags to determine the Cr effects on corrosion resistance.

  9. Determination of gas phase triacetone triperoxide with aspiration ion mobility spectrometry and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Räsänen, Riikka-Marjaana; Nousiainen, Marjaana; Peräkorpi, Kaleva; Sillanpää, Mika; Polari, Lauri; Anttalainen, Osmo; Utriainen, Mikko

    2008-08-08

    Aspiration ion mobility spectrometry (IMS) has been used for the first time to screen 3,3,6,6,9,9-hexamethyl-1,2,4,5,7,8-hexaoxacyclononane explosive, the most commonly known as triacetone triperoxide (TATP). Gaseous TATP was generated from synthesized solid compound, sublimed and directed to a portable chemical detection system comprised of an aspiration-type IMS detector and six semiconductor sensors. Different unknown TATP gas phase concentrations were produced and corresponding IMS and semiconductor responses were measured. The experimental concentrations were determined by gas chromatography-mass spectrometry (GC-MS). The results evidenced that the monitored compound in the gas phase was TATP. In addition, the determined TATP concentrations and corresponding IMS intensities showed that the IMS response values were proportional to the measured TATP concentrations.

  10. Formation mechanism of gas bubble superlattice in UMo metal fuels: Phase-field modeling investigation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Shenyang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burkes, Douglas E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Senor, David J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Setyawan, Wahyu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xu, Zhijie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-07-08

    Nano-gas bubble superlattices are often observed in irradiated UMo nuclear fuels. However, the for- mation mechanism of gas bubble superlattices is not well understood. A number of physical processes may affect the gas bubble nucleation and growth; hence, the morphology of gas bubble microstructures including size and spatial distributions. In this work, a phase-field model integrating a first-passage Monte Carlo method to investigate the formation mechanism of gas bubble superlattices was devel- oped. Six physical processes are taken into account in the model: 1) heterogeneous generation of gas atoms, vacancies, and interstitials informed from atomistic simulations; 2) one-dimensional (1-D) migration of interstitials; 3) irradiation-induced dissolution of gas atoms; 4) recombination between vacancies and interstitials; 5) elastic interaction; and 6) heterogeneous nucleation of gas bubbles. We found that the elastic interaction doesn’t cause the gas bubble alignment, and fast 1-D migration of interstitials along $\\langle$110$\\rangle$ directions in the body-centered cubic U matrix causes the gas bubble alignment along $\\langle$110$\\rangle$ directions. It implies that 1-D interstitial migration along [110] direction should be the primary mechanism of a fcc gas bubble superlattice which is observed in bcc UMo alloys. Simulations also show that fission rates, saturated gas concentration, and elastic interaction all affect the morphology of gas bubble microstructures.

  11. Formation mechanism of gas bubble superlattice in UMo metal fuels: Phase-field modeling investigation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Shenyang, E-mail: shenyang.hu@pnnl.gov; Burkes, Douglas E.; Lavender, Curt A.; Senor, David J.; Setyawan, Wahyu; Xu, Zhijie

    2016-10-15

    Nano-gas bubble superlattices are often observed in irradiated UMo nuclear fuels. However, the formation mechanism of gas bubble superlattices is not well understood. A number of physical processes may affect the gas bubble nucleation and growth; hence, the morphology of gas bubble microstructures including size and spatial distributions. In this work, a phase-field model integrating a first-passage Monte Carlo method to investigate the formation mechanism of gas bubble superlattices was developed. Six physical processes are taken into account in the model: 1) heterogeneous generation of gas atoms, vacancies, and interstitials informed from atomistic simulations; 2) one-dimensional (1-D) migration of interstitials; 3) irradiation-induced dissolution of gas atoms; 4) recombination between vacancies and interstitials; 5) elastic interaction; and 6) heterogeneous nucleation of gas bubbles. We found that the elastic interaction doesn’t cause the gas bubble alignment, and fast 1-D migration of interstitials along 〈110〉 directions in the body-centered cubic U matrix causes the gas bubble alignment along 〈110〉 directions. It implies that 1-D interstitial migration along [110] direction should be the primary mechanism of a fcc gas bubble superlattice which is observed in bcc UMo alloys. Simulations also show that fission rates, saturated gas concentration, and elastic interaction all affect the morphology of gas bubble microstructures.

  12. Current correlation functions of ideal Fermi gas at finite temperature

    Indian Academy of Sciences (India)

    The results obtained for transverse and longitudinal functions are presented for different values of wavelength and frequency at different temperatures. The diamagnetic susceptibility as a function of temperature has also been obtained from transverse current correlation function as its long wavelength and static limit, which ...

  13. Phases equilibria at low temperature between light hydrocarbons mixtures, methanol and water: measures and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Rossilhol, N.

    1995-12-01

    In this work we discuss phase equilibria of mixtures similar to those formed during natural gas treatment (transportation and purification). The mixtures can contain light hydrocarbons (methane, ethane, propane, etc), acid gases (hydrogen sulfide, carbon dioxide), methanol (solvent, inhibitor) and (water). We present a low temperature phase equilibrium equipment to obtain two and three phase equilibrium data of light hydrocarbon-methanol-water mixtures. The realisation of the equipment, the measuring procedure and some determination of binary, ternary and quaternary systems are described. The range of application is - 100 deg. C to 0 deg. C in temperature and between 0 and 100 bar in pressure. The binary subsystems of the systems mentioned above are calculated in order to study the possibilities of the MHV2 and Wong and Sandler methods to represent simultaneously their vapor-liquid and liquid-liquid equilibria. According to the formalism proposed by the two methods, the cubic Soave-Redlich-Kwong equation of state is systematically combined with the NRTL excess Gibbs energy model. (authors). 72 refs., 47 figs., 38 tabs.

  14. High temperature, low expansion, corrosion resistant ceramic and gas turbine

    Science.gov (United States)

    Rauch, Sr., Harry W.

    1981-01-01

    The present invention relates to ZrO.sub.2 -MgO-Al.sub.2 O.sub.3 -SiO.sub.2 ceramic materials having improved thermal stability and corrosion resistant properties. The utilization of these ceramic materials as heat exchangers for gas turbine engines is also disclosed.

  15. High Temperature Gas-Cooled Test Reactor Options Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    Preliminary scoping calculations are being performed for a 100 MWt gas-cooled test reactor. The initial design uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to identify some reactor design features to investigate further. Current status of the effort is described.

  16. Severe slugging in gas-liquid two-phase pipe flow

    NARCIS (Netherlands)

    Malekzadeh, R.

    2012-01-01

    transportation facilities. In an offshore oil and gas production facility, pipeline-riser systems are required to transport two-phase hydrocarbons from subsurface oil and gas wells to a central production platform. Severe slugs reaching several thousands pipe diameters may occur when transporting

  17. Dynamic simulation of dispersed gas-liquid two-phase flow using a discrete bubble model.

    NARCIS (Netherlands)

    Delnoij, E.; Lammers, F.A.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    1997-01-01

    In this paper a detailed hydrodynamic model for gas-liquid two-phase flow will be presented. The model is based on a mixed Eulerian-Lagrangian approach and describes the time-dependent two-dimensional motion of small, spherical gas bubbles in a bubble column operating in the homogeneous regime. The

  18. Gas phase ion chemistry of coumarins: ab initio calculations used to ...

    African Journals Online (AJOL)

    The gas phase ion chemistry of coumarins using electron ionization (EI), positive chemical ionization (PCI) and negative chemical ionization (NCI) in a time of flight and quadrupole mass spectrometer (qMS) coupled to a gas chromatograph is outlined. The observations in NCI mode were complimented with Ab initio ...

  19. Silicon carbide-based hydrogen gas sensors for high-temperature applications

    National Research Council Canada - National Science Library

    Kim, Seongjeen; Choi, Jehoon; Jung, Minsoo; Joo, Sungjae; Kim, Sangchoel

    2013-01-01

    .... In this work, a thin tantalum oxide (Ta2O5) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC...

  20. CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Kee, R.J.; Rupley, F.M.; Meeks, E.; Miller, J.A.

    1996-05-01

    This document is the user`s manual for the third-generation CHEMKIN package. CHEMKIN is a software package whose purpose is to facilitate the formation, solution, and interpretation of problems involving elementary gas-phase chemical kinetics. It provides a flexible and powerful tool for incorporating complex chemical kinetics into simulations of fluid dynamics. The package consists of two major software components: an Interpreter and a Gas-Phase Subroutine Library. The Interpreter is a program that reads a symbolic description of an elementary, user-specified chemical reaction mechanism. One output from the Interpreter is a data file that forms a link to the Gas-Phase Subroutine Library. This library is a collection of about 100 highly modular FORTRAN subroutines that may be called to return information on equations of state, thermodynamic properties, and chemical production rates. CHEMKIN-III includes capabilities for treating multi-fluid plasma systems, that are not in thermal equilibrium. These new capabilities allow researchers to describe chemistry systems that are characterized by more than one temperature, in which reactions may depend on temperatures associated with different species; i.e. reactions may be driven by collisions with electrons, ions, or charge-neutral species. These new features have been implemented in such a way as to require little or no changes to CHEMKIN implementation for systems in thermal equilibrium, where all species share the same gas temperature. CHEMKIN-III now has the capability to handle weakly ionized plasma chemistry, especially for application related to advanced semiconductor processing.

  1. Modeling of a three-phase reactor for bitumen-derived gas oil hydrotreating

    Energy Technology Data Exchange (ETDEWEB)

    Chacon, R.; Canale, A.; Bouza, A. [Departamento de Termodinamica y Fenomenos de Transporte. Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of); Sanchez, Y. [Departamento de Procesos y Sistemas. Universidad Simon Bolivar (Venezuela, Bolivarian Republic of)

    2012-01-15

    A three-phase reactor model for describing the hydrotreating reactions of bitumen-derived gas oil was developed. The model incorporates the mass-transfer resistance at the gas-liquid and liquid-solid interfaces and a kinetic rate expression based on a Langmuir-Hinshelwood-type model. We derived three correlations for determining the solubility of hydrogen (H{sub 2}), hydrogen sulfide (H{sub 2}S) and ammonia (NH{sub 3}) in hydrocarbon mixtures and the calculation of the catalyst effectiveness factor was included. Experimental data taken from the literature were used to determine the kinetic parameters (stoichiometric coefficients, reaction orders, reaction rate and adsorption constants for hydrodesulfuration (HDS) and hydrodenitrogenation (HDN)) and to validate the model under various operating conditions. Finally, we studied the effect of operating conditions such as pressure, temperature, LHSV, H{sub 2}/feed ratio and the inhibiting effect of H{sub 2}S on HDS and NH{sub 3} on HDN. (author)

  2. Synthesis of refractory organic matter in the ionized gas phase of the solar nebula.

    Science.gov (United States)

    Kuga, Maïa; Marty, Bernard; Marrocchi, Yves; Tissandier, Laurent

    2015-06-09

    In the nascent solar system, primitive organic matter was a major contributor of volatile elements to planetary bodies, and could have played a key role in the development of the biosphere. However, the origin of primitive organics is poorly understood. Most scenarios advocate cold synthesis in the interstellar medium or in the outer solar system. Here, we report the synthesis of solid organics under ionizing conditions in a plasma setup from gas mixtures (H2(O)-CO-N2-noble gases) reminiscent of the protosolar nebula composition. Ionization of the gas phase was achieved at temperatures up to 1,000 K. Synthesized solid compounds share chemical and structural features with chondritic organics, and noble gases trapped during the experiments reproduce the elemental and isotopic fractionations observed in primitive organics. These results strongly suggest that both the formation of chondritic refractory organics and the trapping of noble gases took place simultaneously in the ionized areas of the protoplanetary disk, via photon- and/or electron-driven reactions and processing. Thus, synthesis of primitive organics might not have required a cold environment and could have occurred anywhere the disk is ionized, including in its warm regions. This scenario also supports N2 photodissociation as the cause of the large nitrogen isotopic range in the solar system.

  3. Articulated Multimedia Physics, Lesson 14, Gases, The Gas Laws, and Absolute Temperature.

    Science.gov (United States)

    New York Inst. of Tech., Old Westbury.

    As the fourteenth lesson of the Articulated Multimedia Physics Course, instructional materials are presented in this study guide with relation to gases, gas laws, and absolute temperature. The topics are concerned with the kinetic theory of gases, thermometric scales, Charles' law, ideal gases, Boyle's law, absolute zero, and gas pressures. The…

  4. Thermodynamics of high-temperature and high-density hadron gas by a numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Nobuo; Miyamura, Osamu [Hiroshima Univ., Higashi-Hiroshima (Japan). Dept. of Physics

    1998-07-01

    We study thermodynamical properties of hot and dense hadronic gas an event generator URASiMA. In our results, the increase of temperature is suppressed. It indicates that hot and dense hadronic gas has a large specific heat at constant volume. (author)

  5. PHASE CHANGES ON 4H AND 6H SIC AT HIGH TEMPERATURE OXIDATION

    Directory of Open Access Journals (Sweden)

    Jan Setiawan

    2016-10-01

    Full Text Available ABSTRACT PHASE CHANGES ON 4H AND 6H SIC AT HIGH TEMPERATURE OXIDATION. The oxidation on two silicon carbide contain 6H phase and contains 6H and 4H phases has been done.  Silicon carbide is ceramic non-oxide with excellent properties that potentially used in industry.  Silicon carbide is used in nuclear industry as structure material that developed as light water reactor (LWR fuel cladding and as a coating layer in the high temperature gas-cooled reactor (HTGR fuel.  In this study silicon carbide oxidation simulation take place in case the accident in primary cooling pipe is ruptured.  Sample silicon carbide made of powder that pressed into pellet with diameter 12.7 mm and thickness 1.0 mm, then oxidized at temperature 1000 oC, 1200 oC dan 1400 oC for 1 hour.  The samples were weighted before and after oxidized.  X-ray diffraction con-ducted to the samples using Panalytical Empyrean diffractometer with Cu as X-ray source.  Diffraction pattern analysis has been done using General Structure Analysis System (GSAS software. This software was resulting the lattice parameter changes and content of SiC phases.  The result showed all of the oxidation samples undergoes weight gain.  The 6S samples showed the highest weight change at oxidation temperature 1200 oC, for the 46S samples showed increasing tendency with the oxidation temperature.  X-ray diffraction pattern analysis showed the 6S samples contain dominan phase 6H-SiC that matched to ICSD 98-001-5325 card.  Diffraction pattern on 6S showed lattice parameter, composition and crystallite size changes.  Lattice parameters changes had smaller tendency from the model and before oxidation.  However, the lowest silicon carbide composition or the highest converted into other phases up to 66.85 %, occurred at oxidation temperature 1200 oC.  The 46S samples contains two polytypes silicon car-bide.  The 6H-SiC phases matched by ICSD 98-016-4972 card and 4H-SiC phase matched by ICSD 98

  6. Minimization of steam requirements and enhancement of water-gas shift reaction with warm gas temperature CO2 removal

    Science.gov (United States)

    Siriwardane, Ranjani V; Fisher, II, James C

    2013-12-31

    The disclosure utilizes a hydroxide sorbent for humidification and CO.sub.2 removal from a gaseous stream comprised of CO and CO.sub.2 prior to entry into a water-gas-shift reactor, in order to decrease CO.sub.2 concentration and increase H.sub.2O concentration and shift the water-gas shift reaction toward the forward reaction products CO.sub.2 and H.sub.2. The hydroxide sorbent may be utilized for absorbtion of CO.sub.2 exiting the water-gas shift reactor, producing an enriched H.sub.2 stream. The disclosure further provides for regeneration of the hydroxide sorbent at temperature approximating water-gas shift conditions, and for utilizing H.sub.2O product liberated as a result of the CO.sub.2 absorption.

  7. Phase Transitions in Lattice-Gas Models Far from Equilibrium

    NARCIS (Netherlands)

    Beijeren, H. van; Schulman, L.S.

    1984-01-01

    A lattice-gas model with particle-conserving hopping dynamics on a periodic lattice is exposed to a strong external field along one of the principal axes. The resulting stationary state is determined exactly in the limit of infinite ratio of jump rates in and perpendicular to the field direction. In

  8. Ceramic stationary gas turbine development. Final report, Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    This report summarizes work performed by Solar Turbines Inc. and its subcontractors during the period September 25, 1992 through April 30, 1993. The objective of the work is to improve the performance of stationary gas turbines in cogeneration through implementation of selected ceramic components.

  9. Molecular structure of tryptamine in gas phase according to gas electron diffraction method and quantum chemistry calculations

    Science.gov (United States)

    Marochkin, Ilya I.; Altova, Ekaterina P.; Rykov, Anatolii N.; Shishkov, Igor F.

    2017-11-01

    The molecular structure of tryptamine was studied by gas-phase electron diffraction (GED) and quantum chemical calculations (DFT/B3LYP and MP2 methods with cc-pVTZ basis set). The best fit of the experimental scattering intensities (R-factor = 3.8%) was obtained for the four-conformer model. The experimental structural parameters are found to be in good agreement with the results of theoretical calculations. The geometric parameters of gaseous tryptamine are compared with those in the crystal phase. The standard enthalpy of formation of tryptamine in the gas phase was calculated using Gaussian-4 theory, yielding value of 133.6 ± 3.3 kJ/mol.

  10. A method for calculating the gas volume proportions and inhalation temperature of inert gas mixtures allowing reaching normothermic or hypothermic target body temperature in the awake rat

    Directory of Open Access Journals (Sweden)

    Jacques H Abraini

    2017-01-01

    Full Text Available The noble gases xenon (Xe and helium (He are known to possess neuroprotective properties. Xe is considered the golden standard neuroprotective gas. However, Xe has a higher molecular weight and lower thermal conductivity and specific heat than those of nitrogen, the main diluent of oxygen (O2 in air, conditions that could impair or at least reduce the intrinsic neuroprotective properties of Xe by increasing the critical care patient's respiratory workload and body temperature. In contrast, He has a lower molecular weight and higher thermal conductivity and specific heat than those of nitrogen, but is unfortunately far less potent than Xe at providing neuroprotection. Therefore, combining Xe with He could allow obtaining, depending on the gas inhalation temperature and composition, gas mixtures with neutral or hypothermic properties, the latter being advantageous in term of neuroprotection. However, calculating the thermal properties of a mixture, whatever the substances – gases, metals, rubbers, etc. – is not trivial. To answer this question, we provide a graphical method to assess the volume proportions of Xe, He and O2 that a gas mixture should contain, and the inhalation temperature to which it should be administered to allow a clinician to maintain the patient at a target body temperature.

  11. Gas-particle phase partitioning and particle size distribution of chlorinated and brominated polycyclic aromatic hydrocarbons in haze.

    Science.gov (United States)

    Jin, Rong; Zheng, Minghui; Yang, Hongbo; Yang, Lili; Wu, Xiaolin; Xu, Yang; Liu, Guorui

    2017-12-01

    Chlorinated and brominated polycyclic aromatic hydrocarbons (Cl/Br-PAHs) are emerging semi-volatile organic pollutants in haze-associated particulate matter (PM). Their gas-particle phase partitioning and distribution among PM fractions have not been clarified. Clarification would increase understanding of atmospheric behavior and health risks of Cl/Br-PAHs. In this study, samples of the gas phase and 4 PM phases (aerodynamic diameters (dae) > 10 μm, 2.5-10 μm, 1.0-2.5 μm, and distribution indicated that the Cl/Br-PAHs tended to adhere to fine particles. Over 80% of the Cl-PAHs and 70% of the Br-PAHs were associated with fine PM (dae particle phase partitioning and PM distribution of Cl/Br-PAHs when heating of buildings was required, which was associated with haze events, were obviously different from those when heating was not required. The relationship between the logarithmic geometric mean diameters of the Cl/Br-PAH congeners and reciprocal of the temperature (1/T) suggested that low air temperatures during the heating period could lead to high proportions of Cl/Br-PAHs in the fine particles. Increased coal burning during the heating period also contributed to high Cl/Br-PAH loads in the fine particles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Milestone report: The simulation of radiation driven gas diffusion in UO2 at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Michael William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kuganathan, Navaratnarajah [Imperial College, London (United Kingdom); Burr, Patrick A [Univ. of New South Wales (Australia); Rushton, Michael J. [Imperial College, London (United Kingdom); Grimes, Robin W [Imperial College, London (United Kingdom); Turbull, James Anthony [Independent Consultant (United Kingdom); Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andersson, Anders David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-24

    Below 1000 K it is thought that fission gas diffusion in nuclear fuel during irradiation occurs through atomic mixing due to radiation damage. This is an important process for nuclear reactor performance as it affects fission gas release, particularly from the periphery of the pellet where such temperatures are normal. Here we present a molecular dynamics study of Xe and Kr diffusion due to irradiation. Thermal spikes and cascades have been used to study the electronic stopping and ballistic phases of damage, respectively. Our results predict that O and Kr exhibit the greatest diffusivity and U the least, while Xe lies in between. It is concluded that the ballistic phase does not sufficiently account for the experimentally observed diffusion. Preliminary thermal spike calculations indicate that the electronic stopping phase generates greater fission gas displacement than the ballistic phase, although further calculation must be carried out to confirm this. A good description of the system by the empirical potentials is important over the very wide temperatures induced during thermal spike and damage cascade simulations. This has motivated the development of a parameter set for gas-actinide and gas-oxygen interactions that is complementary for use with a recent many-body potential set. A comprehensive set of density functional theory (DFT) calculations were used to study Xe and Kr incorporation at a number of sites in CeO2, ThO2, UO2 and PuO2. These structures were used to fit a potential, which was used to generate molecular dynamics (MD) configurations incorporating Xe and Kr at 300 K, 1500 K, 3000 K and 5000 K. Subsequent matching to the forces predicted by DFT for these MD configurations was used to refine the potential set. This fitting approach ensured weighted fitting to configurations that are thermodynamically significant over a broad temperature range, while avoiding computationally expensive DFT-MD calculations

  13. Effect of substrate temperature and gas flow ratio on the nanocomposite TiAlBN coating

    Energy Technology Data Exchange (ETDEWEB)

    Rosli, Z. M., E-mail: azmr@utem.edu.my; Kwan, W. L., E-mail: kwailoon86@gmail.com; Juoi, J. M., E-mail: jariah@utem.edu.my [Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia)

    2016-07-19

    Nanocomposite TiAlBN (nc-TiAlBN) coatings were successfully deposited via RF magnetron sputtering by varying the nitrogen-to-total gas flow ratio (R{sub N}), and substrate temperature (T{sub S}). All coatings were deposited on AISI 316 substrates using single Ti-Al-BN hot-pressed disc as a target. The grain size, phases, and chemical composition of the coatings were evaluated using glancing angle X-ray diffraction analysis (GAXRD) and X-ray photoelectron spectroscopy (XPS). Results showed that the grains size of the deposited nc-TiAlBN coatings were in the range of 3.5 to 5.7 nm and reached a nitride saturation state as early as 15 % R{sub N}. As the nitrogen concentration decreases, boron concentration increased from 9 at.% to 16.17 at.%. and thus, increase the TiB{sub 2} phase within the coatings. The T{sub S}, however, showed no significant effect either on the crystallographic structure, grain size, or in the chemical composition of the deposited nc-TiAlBN coating.

  14. Experimental and CFD Simulations of Vertical Two-Phase Slug Flow for Gas-Newtonian and Non-Newtonian Liquids

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Bentzen, Thomas Ruby; Majumder, S.

    Gas-liquid two-phase flows are presented everywhere in industrial processes (i.e. gas-oil pipelines). In spite of the common occurrence of these two-phase flows, their understanding is limited compared to single-phase flows. Different studies on two-phase flow have focus on developing empirical c...

  15. High temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Crossland, C.E.; Shelleman, D.L.; Spear, K.E. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1996-08-01

    A vertical flow-through furnace has been built to study the effect of corrosion on the morphology and mechanical properties of ceramic hot gas filters. Sections of 3M Type 203 and DuPont Lanxide SiC-SiC filter tubes were sealed at one end and suspended in the furnace while being subjected to a simulated coal combustion environment at 870{degrees}C. X-ray diffraction and electron microscopy is used to identify phase and morphology changes due to corrosion while burst testing determines the loss of mechanical strength after exposure to the combustion gases. Additionally, a thermodynamic database of gaseous silicon compounds is currently being established so that calculations can be made to predict important products of the reaction of the environment with the ceramics. These thermodynamic calculations provide useful information concerning the regimes where the ceramic may be degraded by material vaporization. To verify the durability and predict lifetime performance of ceramic heat exchangers in coal combustion environments, long-term exposure testing of stressed (internally pressurized) tubes must be performed in actual coal combustion environments. The authors have designed a system that will internally pressurize 2 inch OD by 48 inch long ceramic heat exchanger tubes to a maximum pressure of 200 psi while exposing the outer surface of the tubes to coal combustion gas at the Combustion and Environmental Research Facility (CERF) at the Pittsburgh Energy and Technology Center. Water-cooled, internal o-ring pressure seals were designed to accommodate the existing 6 inch by 6 inch access panels of the CERF. Tubes will be exposed for up to a maximum of 500 hours at temperatures of 2500 and 2600{degrees}F with an internal pressure of 200 psi. If the tubes survive, their retained strength will be measured using the high temperature tube burst test facility at Penn State University. Fractographic analysis will be performed to identify the failure source(s) for the tubes.

  16. Selective Sensing of Gas Mixture via a Temperature Modulation Approach: New Strategy for Potentiometric Gas Sensor Obtaining Satisfactory Discriminating Features.

    Science.gov (United States)

    Li, Fu-An; Jin, Han; Wang, Jinxia; Zou, Jie; Jian, Jiawen

    2017-03-12

    A new strategy to discriminate four types of hazardous gases is proposed in this research. Through modulating the operating temperature and the processing response signal with a pattern recognition algorithm, a gas sensor consisting of a single sensing electrode, i.e., ZnO/In₂O₃ composite, is designed to differentiate NO₂, NH₃, C₃H₆, CO within the level of 50-400 ppm. Results indicate that with adding 15 wt.% ZnO to In₂O₃, the sensor fabricated at 900 °C shows optimal sensing characteristics in detecting all the studied gases. Moreover, with the aid of the principle component analysis (PCA) algorithm, the sensor operating in the temperature modulation mode demonstrates acceptable discrimination features. The satisfactory discrimination features disclose the future that it is possible to differentiate gas mixture efficiently through operating a single electrode sensor at temperature modulation mode.

  17. High-temperature CO / HC gas sensors to optimize firewood combustion in low-power fireplaces

    Directory of Open Access Journals (Sweden)

    B. Ojha

    2017-06-01

    Full Text Available In order to optimize firewood combustion in low-power firewood-fuelled fireplaces, a novel combustion airstream control concept based on the signals of in situ sensors for combustion temperature, residual oxygen concentration and residual un-combusted or partly combusted pyrolysis gas components (CO and HC has been introduced. A comparison of firing experiments with hand-driven and automated airstream-controlled furnaces of the same type showed that the average CO emissions in the high-temperature phase of the batch combustion can be reduced by about 80 % with the new control concept. Further, the performance of different types of high-temperature CO / HC sensors (mixed-potential and metal oxide types, with reference to simultaneous exhaust gas analysis by a high-temperature FTIR analysis system, was investigated over 20 batch firing experiments (∼ 80 h. The distinctive sensing behaviour with respect to the characteristically varying flue gas composition over a batch firing process is discussed. The calculation of the Pearson correlation coefficients reveals that mixed-potential sensor signals correlate more with CO and CH4; however, different metal oxide sensitive layers correlate with different gas species: 1 % Pt / SnO2 designates the presence of CO and 2 % ZnO / SnO2 designates the presence of hydrocarbons. In the case of a TGS823 sensor element, there was no specific correlation with one of the flue gas components observed. The stability of the sensor signals was evaluated through repeated exposure to mixtures of CO, N2 and synthetic air after certain numbers of firing experiments and exhibited diverse long-term signal instabilities.

  18. Severe water ingress accident analysis for a Modular High Temperature Gas Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zuoyi [Inst. of Nuclear Energy Technology Tsinghua Univ., Beijing, BJ (China); Scherer, Winfried

    1997-12-31

    This paper analyzes the severe water ingress accidents in the SIEMENS 200MW Modular High Temperature Gas Cooled Reactor (HTR-Module) under the assumption of no active safety protection systems in order to find the safety margin of the current HTR-Module design. A water, steam and helium multi-phase cavity model is originally developed and implemented in the DSNP simulation system. The developed DSNP system is used to simulate the primary circuit of HTR-Module power plant. The comparisons of the models with the TINTE calculations validate the current simulation. After analyzing the effects of blower separation on water droplets, the wall heat storage, etc., it is found that the maximum H{sub 2}O density increase rate in the reactor core is smaller than 0.3 kg/(m{sup 3}s). The liquid water vaporization in the steam generator and H{sub 2}O transport from the steam generator to the reactor core reduces the impulse of the H{sub 2}O in the reactor core. The nuclear reactivity increase caused by the water ingress leads to a fast power excursion, which, however, is inherently counterbalanced by negative feedback effects. Concerning the integrity of the fuel elements, the safety relevant temperature limit of 1600degC was not reached in any case. (author)

  19. Gas Phase Thz Spectroscopy of Organosulfide and Organophosphorous Compounds Using a Synchrotron Source

    Science.gov (United States)

    Cuisset, Arnaud; Smirnova, Irina; Bocquet, Robin; Hindle, Francis; Mouret, Gael; Sadovskii, Dmitrii A.; Pirali, Olivier; Roy, Pascale

    2011-06-01

    This study concerns the gas phase rovibrational spectroscopy of organosulfide and organophosphorous which are considered as non toxic model compounds in the analysis of chemical weapon materials, high pathogenic and mutagenic agents, and other environmentally interesting air-borne species. The coupling of the synchrotron radiation with multipass cells and the FTIR spectrometer allowed to obtain very conclusive results in term of sensitivity and resolution and improved the previous results obtained with classical sources. For DMSO, using an optical path of 150 m the spectra have been recorded at the ultimate resolution of 0.001 Cm-1 allowing to fully resolve the rotational structure of the lowest vibrational modes observed in the THz region. In the 290 - 420 Cm-1 region, the rovibrational spectrum of the "perpendicular" and "parallel" vibrational bands associated with, respectively, the asymmetric ν23 and symmetric ν11 bending modes of DMSO have been recorded with a resolution of 1.5× 10-3 Cm-1. The gas phase vibrational spectra of organophosphorous compounds were measured by FTIR spectroscopy using the vapor pressure of the compounds. Except for TBP, the room temperature vapor pressure was sufficient to detect all active vibrational modes from THz to NIR domain. Contrary to DMSO, the rotational patterns of alkyl phosphates and alkyl phosphonates could not be resolved; only a vibrational analysis may be performed. Nevertheless, the spectral fingerprints observed in the THz region allowed a clear discrimination between the molecules and between the different molecular conformations. A. Cuisset, G. Mouret, O. Pirali, P. Roy, F. Cazier, H. Nouali, J. Demaison, J. Phys. Chem. B, 2008, 112:, 12516-12525 A. Cuisset, L. Nanobashvili, I. Smirnova, R. Bocquet, F. Hindle, G. Mouret, O. Pirali, P. Roy and D. A. Sadovskií, Chem. Phys. Lett., 2010, 492: 30-34 I. Smirnova, A. Cuisset, R. Bocquet, F. Hindle, G. Mouret, O. Pirali, P. Roy, J. Phys. Chem. B, 2010, 114: 16936-16947.

  20. Reaction pathways for catalytic gas-phase oxidation of glycerol over mixed metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Suprun, W.; Glaeser, R.; Papp, H. [Leipzig Univ. (Germany). Inst. of Chemical Technology

    2011-07-01

    Glycerol as a main by-product from bio-diesel manufacture is a cheap raw material with large potential for chemical or biochemical transformations to value-added C3-chemicals. One possible way of glycerol utilization involves its catalytic oxidation to acrylic acid as an alternative to petrochemical routes. However, this catalytic conversion exhibits various problems such as harsh reaction conditions, severe catalyst coking and large amounts of undesired by-products. In this study, the reaction pathways for gas-phase conversion of glycerol over transition metal oxides (Mo, V und W) supported on TiO{sub 2} and SiO{sub 2} were investigated by two methods: (i) steady state experiments of glycerol oxidation and possible reactions intermediates, i.e., acrolein, 3-hydroxy propionaldehyde and acetaldehyde, and (ii) temperature-programmed surface reaction (TPSR) studies of glycerol conversion in the presence and in the absence of gas-phase oxygen. It is shown that the supported W-, V and Mo-oxides possess an ability to catalyze the oxidation of glycerol to acrylic acid. These investigations allowed us to gain a deeper insight into the reaction mechanism. Thus, based on the obtained results, three possible reactions pathways for the selective oxidation of glycerol to acrylic acid on the transition metal-containing catalysts are proposed. The major pathways in presence of molecular oxygen are a fast successive destructive oxidation of glycerol to CO{sub x} and the dehydration of glycerol to acrolein which is a rate-limiting step. (orig.)

  1. Modelling of the temporal evolution of the gas temperature in N2 discharges

    Science.gov (United States)

    Pintassilgo, Carlos D.; Guerra, Vasco

    2017-05-01

    The time-dependent evolution of the energy transfer to gas heating in a pure N2 discharge produced in a cylindrical tube at low pressures (1-10 Torr) is studied for different fixed values of the reduced electric field and electron density. We consider a model based on the self-consistent solutions to the time-dependent gas thermal balance equation coupled to the electron, vibrational, and chemical kinetic equations for the most important heavy species produced in N2 plasma discharges. The results of this model provide the temporal variation of the radially averaged value of the gas temperature, as well as the corresponding gas heating mechanisms. It is shown that the pooling reactions N2(A) + N2(A) → N2(B) + N2 and N2(A) + N2(A) → N2(C) + N2 are responsible for a smooth increase in the gas temperature before the first millisecond. For longer times, gas heating is found to be mainly caused by vibrational energy exchanges from non-resonant vibration-vibration (V-V) processes between N2 molecules and by vibration-translation (V-T) N2-N collisions. The heating rates of these different gas heating mechanisms and the gas temperature are calculated for a reduced electric field of 50 and 100 Td (1 Td = 10-17 Vcm2), an electron density of 1010 and 1011 cm-3, and a pressure of 1 and 10 Torr. The fractional power converted to gas heating from electronic and vibrational excitation is also calculated for these parameters, being respectively ˜2% and in the range 10%-35%. The effect of having a contribution of non-resonant V-V processes to gas cooling within the time interval 0.1-1 ms is analysed. The role of the gas temperature on the temporal evolution of the vibrational distribution of N2(X, v) molecules is also discussed.

  2. Flow resistance reduction of coal water slurry through gas phase addition

    Directory of Open Access Journals (Sweden)

    Robak Jolanta

    2016-01-01

    Full Text Available One of the main advantages of coal water slurry fuel (CWS is a physical form that allows, among others, their transfer by pipelines over long distances. For this form of transport actions towards reducing the flow resistance of the transmitted medium are important. One of the treatments leading to reduction in the flow resistance of suspensions is to introduce gas into the stream of flowing slurry. The goal of that action is to either loosen the structure of densely packed grains or increase the velocity of the suspension. The paper presents the flow resistance of CWS in a horizontal pipeline and the effect of addition of the gas phase on the resistance level. The investigation was carried out with the use of a research stand enabling to measure the flow resistance of the multiphase/multicomponent systems. The measured diameter and length of sections were respectively: 0.03 and 2 m. The coal-water slurries (based on steam coals with concentration of dry coal in the range of 51 do 60% obtained by wet milling in a drum mill were used. During the tests, the following parameters were measured: slurry flow rate, air flow rate, temperature and pressure difference in inlet and outlet of the measured section. The volume flow rate of slurry fuel was in the range of 30 to 110 dm3/min while the volume flow rate of air was from 0.15 to 4 m3/h. Based on the obtained results, the slurry flow resistance as a function of the flow rate and share of introduced air was evaluated. The performed research allowed for assessment of flow resistance reduction condition and to determine the pipe flow curves for different temperatures. It was found that the effect of reducing the flow resistance of the coal slurry by introducing gas into the flow tube depended on the volumetric flow rate, and thus the linear velocity of the slurry. Under the experimental condition, this effect only occurred at low flow rates (30 - 50 dm3/min and low temperature of the suspension. The

  3. Core Level Spectroscopy and Tautomerism of Key Biomolecules in the Gas Phase

    Science.gov (United States)

    Feyer, V.; Plekan, O.; Richter, R.; Prince, K. C.; Coreno, M.; Giuliano, B. M.; Evangelisti, L.; Melandri, S.; Caminati, W.; Trofimov, A. B.; Zaytseva, I. L.; Moskovskaya, T. E.; Gromov, E. V.; Schirmer, J.

    2010-06-01

    The nucleobases cytosine, thymine and uracil are pyrimidine derivatives. They pair with their complementary purines, guanine and adenine, through hydrogen bonding to form DNA and RNA chains. The tautomeric forms of DNA bases are capable of unusual base pairing like thymine-guanine and cytosine-adenine and create mutations, which are the precursors of some molecular-based diseases. Low energy spectroscopies such as microwave, laser and infrared techniques are commonly used as methods to investigate the conformatonal and tautomeric equilibria of biomolecules, while the high energy technique of x-ray photoemission spectroscopy (XPS) has yielded a smaller amount of significant structural information about biomolecules in the gas phase. In the present studies we successfully apply XPS to the study of five nucleic acid base tautomers, as well as the prototypical system 2-hydroxypyridimine and the related molecules S-methyl-2-thiouracil and 2-thiouracil in the vapor phase. XPS is a quantitative technique, allowing the experimental determination of the populations of keto and enol tautomers at known equilibrium temperatures: it is difficult to obtain this information otherwise. The effect of different substituents on stability of tautomers has been revealed. Quantum chemistry calculations have been carried out in order to obtain information about the structure, relative stability and difference in populations of the tautomers and conformers under study.

  4. Observations of gas- and aerosol-phase organic nitrates at BEACHON-RoMBAS 2011

    Directory of Open Access Journals (Sweden)

    J. L. Fry

    2013-09-01

    Full Text Available At the Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS field campaign in the Colorado front range, July–August 2011, measurements of gas- and aerosol-phase organic nitrates enabled a study of the role of NOx (NOx = NO + NO2 in oxidation of forest-emitted volatile organic compounds (VOCs and subsequent aerosol formation. Substantial formation of peroxy- and alkyl-nitrates is observed every morning, with an apparent 2.9% yield of alkyl nitrates from daytime RO2 + NO reactions. Aerosol-phase organic nitrates, however, peak in concentration during the night, with concentrations up to 140 ppt as measured by both optical spectroscopic and mass spectrometric instruments. The diurnal cycle in aerosol fraction of organic nitrates shows an equilibrium-like response to the diurnal temperature cycle, suggesting some reversible absorptive partitioning, but the full dynamic range cannot be reproduced by thermodynamic repartitioning alone. Nighttime aerosol organic nitrate is observed to be positively correlated with [NO2] × [O3] but not with [O3]. These observations support the role of nighttime NO3-initiated oxidation of monoterpenes as a significant source of nighttime aerosol. Nighttime production of organic nitrates is comparable in magnitude to daytime photochemical production at this site, which we postulate to be representative of the Colorado front range forests.

  5. Gas phase microreaction: nanomaterials synthesis via plasma exposure of liquid droplets

    Science.gov (United States)

    Maguire, Paul; Mahony, Charles; Kelsey, Colin; Hamilton, Neil; Askari, Sadegh; Macias-Montero, Manuel; Diver, Declan; Mariotti, Davide

    2015-09-01

    Plasma-liquid interactions are complex but offer considerable scope for use in nanomaterials synthesis. The introduction of individual picolitre micro-droplets into a steady-state low temperature plasma at atmospheric pressure, offers opportunities for enhanced scope and control of plasma-liquid chemistry and material properties. The gas-phase micro-reactor is similar in concept to liquid bubble microfluidics currently under intense research but with enhanced opportunities for scale-up. For nanomaterials and quantum dot synthesis, the addition of a liquid phase within the plasma expands considerably the scope for core-shell and alloy formation. The synthesis and encapsulation within a liquid droplet allows continuous delivery of nanoparticles to remote sites for plasma medicine, device fabrication or surface coating. We have synthesized Au nanoparticles in flight using AuHCl4 droplets with plasma flight times <0.1 ms. Also, Ag nanoparticles have been synthesized downstream via the delivery of plasma exposed water droplets onto AgNO3 laden substrates. Funding from EPSRC acknowledged (Grants EP/K006088/1 and EP/K006142/1).

  6. Brominated flame retardants in the urban atmosphere of Northeast China: Concentrations, temperature dependence and gas-particle partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Hong; Li, Wen-Long; Liu, Li-Yan; Song, Wei-Wei; Ma, Wan-Li, E-mail: mawanli002@163.com; Li, Yi-Fan, E-mail: ijrc_pts_paper@yahoo.com

    2014-09-01

    57 pairs of air samples (gas and particle phases) were collected using a high volume air sampler in a typical city of Northeast China. Brominated flame retardants (BFRs) including 13 polybrominated diphenyl ethers (PBDEs, including BDEs 17, 28, 47, 49, 66, 85, 99, 100, 138, 153, 154, 183, and 209) and 9 alternative BFRs (p-TBX, PBBZ, PBT, PBEB, DPTE, HBBZ, γ-HBCD, BTBPE, and DBDPE) were analyzed. The annual average total concentrations of the 13 PBDEs and the 9 alternative BFRs were 69 pg/m{sup 3} and 180 pg/m{sup 3}, respectively. BDE 209 and γ-HBCD were the dominant congeners, according to the one-year study. The partial pressure of BFRs in the gas phase was significantly correlated with the ambient temperature, except for BDE 85, γ-HBCD and DBDPE, indicating the important influence of ambient temperature on the behavior of BFRs in the atmosphere. It was found that the gas–particle partitioning coefficients (logK{sub p}) for most low molecular weight BFRs were highly temperature dependent as well. Gas–particle partitioning coefficients (logK{sub p}) also correlated with the sub-cooled liquid vapor pressure (logP{sub L}{sup o}). Our results indicated that absorption into organic matter is the main control mechanism for the gas–particle partitioning of atmospheric PBDEs. - Highlights: • Both PBDEs and alternative BFRs were analyzed in the atmosphere of Northeast China. • Partial pressure of BFRs was significantly correlated with the ambient temperature. • A strong temperature dependence of gas-particle partitioning was found. • Absorption into organic matter was the control mechanism for G-P partitioning.

  7. Estimating fuel octane numbers from homogeneous gas-phase ignition delay times

    KAUST Repository

    Naser, Nimal

    2017-11-05

    Fuel octane numbers are directly related to the autoignition properties of fuel/air mixtures in spark ignition (SI) engines. This work presents a methodology to estimate the research and the motor octane numbers (RON and MON) from homogeneous gas-phase ignition delay time (IDT) data calculated at various pressures and temperatures. The hypothesis under investigation is that at specific conditions of pressure and temperature (i.e., RON-like and MON-like conditions), fuels with IDT identical to that of a primary reference fuel (PRF) have the same octane rating. To test this hypothesis, IDTs with a detailed gasoline surrogate chemical kinetic model have been calculated at various temperatures and pressures. From this dataset, temperatures that best represent RON and MON have been correlated at a specified pressure. Correlations for pressures in the range of 10–50 bar were obtained. The proposed correlations were validated with toluene reference fuels (TRF), toluene primary reference fuels (TPRF), ethanol reference fuels (ERF), PRFs and TPRFs with ethanol, and multi-component gasoline surrogate mixtures. The predicted RON and MON showed satisfactory accuracy against measurements obtained by the standard ASTM methods and blending rules, demonstrating that the present methodology can be a viable tool for a first approximation. The correlations were also validated against an extensive set of experimental IDT data obtained from literature with a high degree of accuracy in RON/MON prediction. Conditions in homogeneous reactors such as shock tubes and rapid compression machines that are relevant to modern SI engines were also identified. Uncertainty analysis of the proposed correlations with linear error propagation theory is also presented.

  8. Quantum chaos in ultracold collisions of gas-phase erbium atoms.

    Science.gov (United States)

    Frisch, Albert; Mark, Michael; Aikawa, Kiyotaka; Ferlaino, Francesca; Bohn, John L; Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana

    2014-03-27

    Atomic and molecular samples reduced to temperatures below one microkelvin, yet still in the gas phase, afford unprecedented energy resolution in probing and manipulating the interactions between their constituent particles. As a result of this resolution, atoms can be made to scatter resonantly on demand, through the precise control of a magnetic field. For simple atoms, such as alkalis, scattering resonances are extremely well characterized. However, ultracold physics is now poised to enter a new regime, where much more complex species can be cooled and studied, including magnetic lanthanide atoms and even molecules. For molecules, it has been speculated that a dense set of resonances in ultracold collision cross-sections will probably exhibit essentially random fluctuations, much as the observed energy spectra of nuclear scattering do. According to the Bohigas-Giannoni-Schmit conjecture, such fluctuations would imply chaotic dynamics of the underlying classical motion driving the collision. This would necessitate new ways of looking at the fundamental interactions in ultracold atomic and molecular systems, as well as perhaps new chaos-driven states of ultracold matter. Here we describe the experimental demonstration that random spectra are indeed found at ultralow temperatures. In the experiment, an ultracold gas of erbium atoms is shown to exhibit many Fano-Feshbach resonances, of the order of three per gauss for bosons. Analysis of their statistics verifies that their distribution of nearest-neighbour spacings is what one would expect from random matrix theory. The density and statistics of these resonances are explained by fully quantum mechanical scattering calculations that locate their origin in the anisotropy of the atoms' potential energy surface. Our results therefore reveal chaotic behaviour in the native interaction between ultracold atoms.

  9. Gas phase composition effects on suspension cultures of Taxus cuspidata

    Energy Technology Data Exchange (ETDEWEB)

    Mirjalili, N.; Linden, J.C. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Chemical and Bioresources Engineering

    1995-10-20

    The effect of different concentrations and combinations of oxygen, carbon dioxide, and ethylene on cell growth and taxol production in suspension cultures of Taxus cuspidata was investigated using several factorial design experiments. Low head space oxygen concentration (10% v/v) promoted early production of taxol. High carbon dioxide concentration (10% v/v) inhibited taxol production.The most effective gas mixture composition in terms of taxol production was 10% (v/v) oxygen, 0.5% (v/v) carbon dioxide, and 5 ppm ethylene. Cultures grown under ambient concentration of oxygen had a delayed uptake of glucose and fructose compared to cultures grown under 10% (v/v) oxygen. Average calcium uptake rates into the cultured cells decreased and average phosphate uptake rates increased as ethylene was increased from 0 to 10 ppm. These results may indicate that gas composition alters partitioning of nutrients, which in turn affects secondary metabolite production.

  10. Passive Gas-Gap Heat Switches for Use in Low-Temperature Cryogenic Systems

    Science.gov (United States)

    Kimball, M. O.; Shirron, P. J.; Canavan, E. R.; Tuttle, J. G.; Jahromi, A. E.; Dipirro, M. J.; James, B. L.; Sampson, M. A.; Letmate, R. V.

    2017-01-01

    We present the current state of development in passive gas-gap heat switches. This type of switch does not require a separate heater to activate heat transfer but, instead, relies upon the warming of one end due to an intrinsic step in a thermodynamic cycle to raise a getter above a threshold temperature. Above this temperature sequestered gas is released to couple both sides of the switch. This enhances the thermodynamic efficiency of the system and reduces the complexity of the control system. Various gas mixtures and getter configurations will be presented.

  11. Nonequilibrium Features of the Nuclear Liquid-Gas Phase Transition

    Science.gov (United States)

    Zwieglinski, B.; Odeh, T.; Gross, C.; Schwarz, C.; Bassini, R.; Begemann-Blaich, M.; Blaich, T.; Emling, H.; Ferrero, A.; Fritz, S.; Gaff, S. J.; Imme, G.; Iori, I.; Kleinevoss, U.; Kunde, G. J.; Kunze, W. D.; Lindenstruth, V.; Lynen, U.; Mahi, M.; Moroni, A.; Moehlenkamp, T.; Mueller, W. F. J.; Ocker, B.; Pochodzalla, J.; Raciti, G.; Rubehn, Th.; Sann, H.; Schnittker, M.; Schuettauf, A.; Seidel, W.; Serfling, V.; Stroth, J.; Trautmann, W.; Trzcinski, A.; Verde, G.; Woerner, A.; Xi, H.; Zude, E.

    1999-03-01

    Energy spectra of protons emitted by the target residue in Au + Au collisions at 1 GeV/u were measured for different excitation energy bins. They reveal two components with different slopes attributed to preequilibrium and equilibrium emission. The relative contribution of the latter decreases rapidly with excitation energy, so that its presence becomes not apparent for the highest energy bins. It is argued therefore, that equilibrium may not be reached on the gas branch of the caloric curve.

  12. Gas-phase polymerization of propylene with a highly active catalyst.

    NARCIS (Netherlands)

    Samson, J.J.C.; Samson, Job Jan C.; van Middelkoop, Bart; van Middelkoop, B.; Weickert, G.; Westerterp, K.R.

    1999-01-01

    The polymerization of propylene in the gas phase has been studied with the same high-activity catalyst as was used for liquid-phase polymerizations in earlier work. Catalyst injection, the influence of the support bed, and precontacting of the catalyst with the cocatalyst and the electron donor have

  13. Determination of terpenes in tequila by solid phase microextraction-gas chromatography-mass spectrometry.

    Science.gov (United States)

    Peña-Alvarez, Araceli; Capella, Santiago; Juárez, Rocío; Labastida, Carmen

    2006-11-17

    Solid phase microextraction and capillary gas chromatography-mass spectrometry were used for the determination of seven terpenes in tequila. The method was selected based on the following parameters: coating selection (PA, PDMS, CW/DVB, and PDMS/DVB), extraction temperature, addition of salt, and extraction time profile. The extraction conditions were: PDMS/DVB fiber, Headspace, 100% NaCl, 25 degrees C extraction temperature, 30 min extraction time and stirring at 1200 rpm. The calibration curves (50-1000 ng/ml) for the terpenes followed linear relationships with correlation coefficients (r) greater than 0.99, except for trans,trans-farnesol (r = 0.98). RSD values were smaller than 10% confirmed that the technique was precise. Samples from 18 different trade brands of "Aged" tequila analyzed with the developed method showed the same terpenes in different concentrations. The analytical procedure used is selective, robust (more than 100 analyses with the same fiber), fast and of low-cost.

  14. Removal of pyridine from liquid and gas phase by copper forms of natural and synthetic zeolites.

    Science.gov (United States)

    Reháková, Mária; Fortunová, Lubica; Bastl, Zdeněk; Nagyová, Stanislava; Dolinská, Silvia; Jorík, Vladimír; Jóna, Eugen

    2011-02-15

    Zeoadsorbents on the basis of copper forms of synthetic zeolite ZSM5 and natural zeolite of the clinoptilolite type (CT) have been studied taking into account their environmental application in removing harmful pyridine (py) from liquid and gas phase. Sorption of pyridine by copper forms of zeolites (Cu-ZSM5 and Cu-CT) has been studied by CHN, X-ray photoelectron spectroscopy, X-ray powder diffractometry, FTIR spectroscopy, thermal analysis (TG, DTA and DTG) and analysis of the surface areas and the pore volumes by low-temperature adsorption of nitrogen. The results of thermal analyses of Cu-ZSM5, Cu-(py)(x)ZSM5, Cu-CT and Cu-(py)(x)CT zeolitic products with different composition (x depends on the experimental conditions of sorption of pyridine) clearly confirmed their different thermal properties as well as the sorption of pyridine. In the zeolitic pyridine containing samples the main part of the pyridine release process occurs at considerably higher temperatures than is the boiling point of pyridine, which proves strong bond and irreversibility of py-zeolite interaction. FTIR spectra of Cu-(py)(x)zeolite samples showed well resolved bands of pyridine. The results of thermal analysis and FTIR spectroscopy are in a good agreement with the results of other used methods. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide.

    Science.gov (United States)

    Nielsen, Martin; Alberico, Elisabetta; Baumann, Wolfgang; Drexler, Hans-Joachim; Junge, Henrik; Gladiali, Serafino; Beller, Matthias

    2013-03-07

    Hydrogen produced from renewable resources is a promising potential source of clean energy. With the help of low-temperature proton-exchange membrane fuel cells, molecular hydrogen can be converted efficiently to produce electricity. The implementation of sustainable hydrogen production and subsequent hydrogen conversion to energy is called "hydrogen economy". Unfortunately, its physical properties make the transport and handling of hydrogen gas difficult. To overcome this, methanol can be used as a material for the storage of hydrogen, because it is a liquid at room temperature and contains 12.6 per cent hydrogen. However, the state-of-the-art method for the production of hydrogen from methanol (methanol reforming) is conducted at high temperatures (over 200 degrees Celsius) and high pressures (25-50 bar), which limits its potential applications. Here we describe an efficient low-temperature aqueous-phase methanol dehydrogenation process, which is facilitated by ruthenium complexes. Hydrogen generation by this method proceeds at 65-95 degrees Celsius and ambient pressure with excellent catalyst turnover frequencies (4,700 per hour) and turnover numbers (exceeding 350,000). This would make the delivery of hydrogen on mobile devices--and hence the use of methanol as a practical hydrogen carrier--feasible.

  16. Experimental study of a gas clearance phase regulation mechanism for a pneumatically-driven split-Stirling-cycle cryocooler

    Science.gov (United States)

    Zhang, Cun-quan; Zhong, Cheng

    2015-03-01

    A concept for a new type of pneumatically-driven split-Stirling-cycle cryocooler with clearance-phase-adjustor has recently been described, along with a theoretical model for simulating its operation and performance (Zhang, in preparation, 2003). This paper describes experiments that have been carried out to systematically validate the model, and to characterize the performance of the cryocooler in several key areas. These include: oscillatory flow within the cooler, correlation between the compression piston and the free displacer, the impact of the cold-tip temperature and phase-adjusting clearance gaps on cooler performance. The minimum cold-tip temperature is used as primary gauge of refrigeration performance. Real-time measurements of gas pressures in different chambers, displacements of the compression piston and the free displacer have been performed to reveal the internal physical processes. The experimental results are found to be in good agreement with the simulated ones.

  17. Is the Gas-phase OH+H2CO Reaction a Source of HCO in Interstellar Cold Dark Clouds? A Kinetic, Dynamic, and Modeling Study

    Science.gov (United States)

    Ocaña, A. J.; Jiménez, E.; Ballesteros, B.; Canosa, A.; Antiñolo, M.; Albaladejo, J.; Agúndez, M.; Cernicharo, J.; Zanchet, A.; del Mazo, P.; Roncero, O.; Aguado, A.

    2017-11-01

    The chemical kinetics of neutral-neutral gas-phase reactions at ultralow temperatures is a fascinating research subject with important implications on the chemistry of complex organic molecules in the interstellar medium (T ˜ 10-100 K). Scarce kinetic information is currently available for these kinds of reactions at T environments are also addressed.

  18. Phase transformations in the Zn-Al eutectoid alloy after quenching from the high temperature triclinic beta phase

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval-Jimenez, A., E-mail: asandovalj@correo.unam.mx [Instituto Nacional de Investigaciones Nucleares, Dpto. de Aceleradores, Carretera Mexico-Toluca S/N, La Marquesa, Ocoyoacac, Mexico, C.P. 52750, ESIME, Unidad Culhuacan, Dpto. Ing. Mecanica, IPN (Mexico); Negrete, J. [Instituto de Metalurgia, Universidad Autonoma de San Luis Potosi, SLP 78210 (Mexico); Torres-Villasenor, G. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-360, Mexico D.F. 04510 (Mexico)

    2010-11-15

    Ribbons of the Zn-Al eutectoid alloy obtained by melt-spinning, were heat treated at 350 deg. C during 30 min in a free atmosphere furnace, and then quenched in liquid nitrogen. The temperature correspond to {beta} phase zone, which has a triclinic crystalline structure [1, 2]. Some evidence, obtained by X-ray diffraction, show that the structures present in the just quenched material are both close-packed hexagonal ({eta}-phase) and rhombohedral (R-phase). X-ray diffractograms taken in the same ribbons after annealed 500 h at room temperature, show that the R phase its transform to {alpha} and {eta} phases.

  19. Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces.

    Science.gov (United States)

    Spezia, Riccardo; Martínez-Nuñez, Emilio; Vazquez, Saulo; Hase, William L

    2017-04-28

    In this Introduction, we show the basic problems of non-statistical and non-equilibrium phenomena related to the papers collected in this themed issue. Over the past few years, significant advances in both computing power and development of theories have allowed the study of larger systems, increasing the time length of simulations and improving the quality of potential energy surfaces. In particular, the possibility of using quantum chemistry to calculate energies and forces 'on the fly' has paved the way to directly study chemical reactions. This has provided a valuable tool to explore molecular mechanisms at given temperatures and energies and to see whether these reactive trajectories follow statistical laws and/or minimum energy pathways. This themed issue collects different aspects of the problem and gives an overview of recent works and developments in different contexts, from the gas phase to the condensed phase to excited states.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'. © 2017 The Author(s).

  20. An Explosive Range Model Based on the Gas Composition, Temperature, and Pressure during Air Drilling

    Directory of Open Access Journals (Sweden)

    Xiangyu Fan

    2016-01-01

    Full Text Available Air drilling is low cost and effectively improves the penetration rate and causes minimal damage to liquid-sensitive pay zones. However, there is a potential downhole explosion when combustible gas mixed with drilling fluid reaches the combustible condition. In this paper, based on the underground combustion mechanism, an explosive range calculation model is established. This model couples the state equation and the empirical formula method, which considers the inert gas content, pressure, mixed gas component, and temperature. The result shows that increase of the inert gas content narrows the explosive range, while increase of the gas temperature and pressure improves the explosive range. A case in Chongqing, China, is used to validate the explosive range calculation model.

  1. Conditions for lowering the flue gas temperature; Foerutsaettning foer saenkning av roekgastemperatur

    Energy Technology Data Exchange (ETDEWEB)

    Nordling, Magnus

    2012-02-15

    In heat and power production, the efficiency of the power plant increases the larger share of heat from the flue gas that is converted to power. However, this also implies that the temperature of the heat exchanging surfaces is lowered. If the temperature is lowered to a temperature below the dew point of the flue gas, this would result in condensation of the gas, which in turn elevates the risk of serious corrosion attack on the surfaces where condensation occurs. Thus, it is important to determine the dew point temperature. One way of determining the dew point temperature is to use data on composition of the fuel together with operation parameters of the plant, thus calculating the dew point temperature. However, this calculation of the dew point is not so reliable, especially if hygroscopic salts are present. Therefore, for safety reasons, the temperature of the flue gas is kept well above the dew point temperature. This results in lowered over-all efficiency of the plant. It could also be expected that for a certain plant, some construction materials under certain operation conditions would have corrosion characteristics that may allow condensation on the surface without severe and unpredictable corrosion attack. However, by only using operation parameters and fuel composition, it is even harder to predict the composition of the condensate at different operation temperatures than to calculate the dew point temperature. If the dew point temperature was known with a greater certainty, the temperature of the flue gas could be kept lower, just above the estimated value of the dew point, without any increased risk for condensation. If, in addition, also the resulting composition of the condensate at different temperatures below the dew point is known, it can be predicted if the construction materials of the flue gas channel were compatible with the formed condensate. If they are compatible, the flue gas temperature can be further lowered from the dew point

  2. DESIGN CHARACTERISTICS OF THE IDAHO NATIONAL LABORATORY HIGH-TEMPERATURE GAS-COOLED TEST REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James; Bayless, Paul; Strydom, Gerhard; Kumar, Akansha; Gougar, Hans

    2016-11-01

    Uncertainty and sensitivity analysis is an indispensable element of any substantial attempt in reactor simulation validation. The quantification of uncertainties in nuclear engineering has grown more important and the IAEA Coordinated Research Program (CRP) on High-Temperature Gas Cooled Reactor (HTGR) initiated in 2012 aims to investigate the various uncertainty quantification methodologies for this type of reactors. The first phase of the CRP is dedicated to the estimation of cell and lattice model uncertainties due to the neutron cross sections co-variances. Phase II is oriented towards the investigation of propagated uncertainties from the lattice to the coupled neutronics/thermal hydraulics core calculations. Nominal results for the prismatic single block (Ex.I-2a) and super cell models (Ex.I-2c) have been obtained using the SCALE 6.1.3 two-dimensional lattice code NEWT coupled to the TRITON sequence for cross section generation. In this work, the TRITON/NEWT-flux-weighted cross sections obtained for Ex.I-2a and various models of Ex.I-2c is utilized to perform a sensitivity analysis of the MHTGR-350 core power densities and eigenvalues. The core solutions are obtained with the INL coupled code PHISICS/RELAP5-3D, utilizing a fixed-temperature feedback for Ex. II-1a.. It is observed that the core power density does not vary significantly in shape, but the magnitude of these variations increases as the moderator-to-fuel ratio increases in the super cell lattice models.

  3. Application of structured illumination to gas phase thermometry using thermographic phosphor particles: a study for averaged imaging

    Science.gov (United States)

    Zentgraf, Florian; Stephan, Michael; Berrocal, Edouard; Albert, Barbara; Böhm, Benjamin; Dreizler, Andreas

    2017-07-01

    Structured laser illumination planar imaging (SLIPI) is combined with gas phase thermometry measurements using thermographic phosphor (TGP) particles. The technique is applied to a heated jet surrounded by a coflow which is operated at ambient temperature. The respective air flows are seeded with a powder of BaMgAl10O17:Eu2+ (BAM) which is used as temperature-sensitive gas phase tracer. Upon pulsed excitation in the ultraviolet spectral range, the temperature is extracted based on the two-color ratio method combined with SLIPI. The main advantage of applying the SLIPI approach to phosphor thermometry is the reduction of particle-to-particle multiple light scattering and diffuse wall reflections, yielding a more robust calibration procedure as well as improving the measurement accuracy, precision, and sensitivity. For demonstration, this paper focuses on sample-averaged measurements of temperature fields in a jet-in-coflow configuration. Using the conventional approach, which in contrast to SLIPI is based on imaging with an unmodulated laser light sheet, we show that for the present setup typically 40% of the recorded signal is affected by the contribution of multiply scattered photons. At locations close to walls even up to 75% of the apparent signal is due to diffuse reflection and wall luminescence of BAM sticking at the surface. Those contributions lead to erroneous temperature fields. Using SLIPI, an unbiased two-color ratio field is recovered allowing for two-dimensional mean temperature reconstructions which exhibit a more realistic physical behavior. This is in contrast to results deduced by the conventional approach. Furthermore, using the SLIPI approach it is shown that the temperature sensitivity is enhanced by a factor of up to 2 at 270 °C. Finally, an outlook towards instantaneous SLIPI phosphorescence thermometry is provided.

  4. Gas chromatography flow rates for determining deuterium/hydrogen ratios of natural gas by gas chromatography/high-temperature conversion/isotope ratio mass spectrometry.

    Science.gov (United States)

    Jia, Wanglu; Peng, Ping'an; Liu, Jinzhong

    2008-08-01

    The effects of the gas chromatography flow rate on the determination of the deuterium/hydrogen (D/H) ratios of natural gas utilising gas chromatography/high-temperature conversion/isotope ratio mass spectrometry (GC/TC/IRMS) have been evaluated. In general, the measured deltaD values of methane, ethane and propane decrease with increase in column flow rate. When the column flow rate is 1 mL/min or higher, which is commonly used for the determination of D/H ratios of natural gas, the organic H in gas compounds may not be completely converted into hydrogen gas. Based on the results of experiments conducted on a GC column with an i.d. of 0.32 mm, a GC flow rate of 0.6 mL/min is proposed for determining the D/H ratios of natural gas by GC/TC/IRMS. Although this value may be dependent on the instrument conditions used in this work, we believe that correct deltaD values of organic compounds with a few carbon atoms are obtained only when relatively low GC flow rates are used for D/H analysis by GC/TC/IRMS. Moreover, as the presence of trace water could significantly affect the determination of D/H ratios, a newly designed inlet liner was used to remove trace water contained in some gas samples. Copyright (c) 2008 John Wiley & Sons, Ltd.

  5. Studies of nuclei under the extreme conditions of density, temperature, isospin asymmetry and the phase diagram of hadronic matter

    Energy Technology Data Exchange (ETDEWEB)

    Mekjian, Aram [Rutgers Univ., Piscataway, NJ (United States). Dept. of Physics and Astronomy

    2016-10-18

    The main emphasis of the entire project is on issues having to do with medium energy and ultra-relativistic energy and heavy ion collisions. A major goal of both theory and experiment is to study properties of hot dense nuclear matter under various extreme conditions and to map out the phase diagram in density or chemical potential and temperature. My studies in medium energy nuclear collisions focused on the liquid-gas phase transition and cluster yields from such transitions. Here I developed both the statistical model of nuclear multi-fragmentation and also a mean field theory.

  6. The gas phase structure of α -pinene, a main biogenic volatile organic compound

    Science.gov (United States)

    Neeman, Elias M.; Avilés Moreno, Juan Ramón; Huet, Thérèse R.

    2017-12-01

    The gas phase structure of the bicyclic atmospheric aerosol precursor α-pinene was investigated employing a combination of quantum chemical calculation and Fourier transform microwave spectroscopy coupled to a supersonic jet expansion. The very weak rotational spectra of the parent species and all singly substituted 13C in natural abundance have been identified, from 2 to 20 GHz, and fitted to Watson's Hamiltonian model. The rotational constants were used together with geometrical parameters from density functional theory and ab initio calculations to determine the rs, r0, and rm(1 ) structures of the skeleton, without any structural assumption in the fit concerning the heavy atoms. The double C=C bond was found to belong to a quasiplanar skeleton structure containing 6 carbon atoms. Comparison with solid phase structure is reported. The significant differences of α-pinene in gas phase and other gas phase bicyclic monoterpene structures (β-pinene, nopinone, myrtenal, and bicyclo[3.1.1]heptane) are discussed.

  7. Development of an Acoustic Sensor On-Line Gas Temperature Measurement in Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Peter Ariessohn

    2008-06-30

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Technical Topical Area 2 - Gasification Technologies. The project team includes Enertechnix, Inc. as the main contractor and ConocoPhillips Company as a technical partner, who also provides access to the SG Solutions Gasification Facility (formerly Wabash River Energy Limited), host for the field-testing portion of the research. The objective of this project was to adapt acoustic pyrometer technology to make it suitable for measuring gas temperature inside a coal gasifier, to develop a prototype sensor based on this technology, and to demonstrate its performance through testing on a commercial gasifier. The project was organized in three phases, each of approximately one year duration. The first phase consisted of researching a variety of sound generation and coupling approaches suitable for use with a high pressure process, evaluation of the impact of gas composition variability on the acoustic temperature measurement approach, evaluation of the impact of suspended particles and gas properties on sound attenuation, evaluation of slagging issues and development of concepts to deal with this issue, development and testing of key prototype components to allow selection of the best approaches, and development of a conceptual design for a field prototype sensor that could be tested on an operating gasifier. The second phase consisted of designing and fabricating a series of prototype sensors, testing them in the laboratory, and developing a conceptual design for a field prototype sensor. The third phase consisted of designing and fabricating the field prototype, and testing it in the lab and in a commercial gasifier to demonstrate the ability to obtain accurate measurements of gas temperature in an operating gasifier. Following the completion of the initial 3 year project, several continuations

  8. Effects of Outside Air Temperature on Movement of Phosphine Gas in Concrete Elevator Bins

    Science.gov (United States)

    Studies that measured the movement and concentration of phosphine gas in upright concrete bins over time indicated that fumigant movement was dictated by air currents, which in turn, were a function of the difference between the average grain temperature and the average outside air temperature durin...

  9. Effect of temperature and α-irradiation on gas permeability for ...

    Indian Academy of Sciences (India)

    In the present study the polyethersulphone (PES) membranes of thickness (35 ± 2) m were prepared by solution cast method. The permeability of these membranes was calculated by varying the temperature and by irradiation of ions. For the variation of temperature, the gas permeation cell was dipped in a constant ...

  10. Modeling and analytical simulation of high-temperature gas filtration ...

    African Journals Online (AJOL)

    High temperature filtration in combustion and gasification processes is a highly interdisciplinary field. Thus, particle technology in general has to be supported by elements of physics, chemistry, thermodynamics and heat and mass transfer processes. Presented in this paper is the analytical method for describing ...

  11. Temperature-dependent gas transport and its correlation with kinetic ...

    Indian Academy of Sciences (India)

    Activation energies for permeation of polymer nanocomposite membrane have not been reported so far. A tradeoff relation between permeability and selectivity shows that as permeability increases, the selectivity decreases. Attempts have been made to see this trade-off relation at relatively higher temperature. It is found ...

  12. Fourier transform phase difference method optimization for supersonic gas flow characterization

    Science.gov (United States)

    Rodríguez Lorenzo, Francisco; Vázquez Dorrío, Benito; Blanco García, Jesús

    2017-08-01

    In this work we propose a complete characterization method for supersonic gas flow. The optical phase of fringe patterns acquired in a simple Mach Zehnder interferometer is extracted with a differential phase evaluation method based on Fourier Transform (without translation to the frequency origin); reducing the computation steps and decreasing the errors due to the unwrapping process. Optical phase, gradient and Laplacian maps obtained allow detailed analysis of the pressure distribution, and shock wave patterns. We optimize phase evaluation process by studying and comparing effects of four different bandpass filters on phase maps by using quality maps as estimator.

  13. METHOD FOR DETERMINATION OF THE CHARACTERISTIC CURVE OF THE THERMAL INERTIA OF AIRCRAFT GAS TEMPERATURE SENSORS

    Directory of Open Access Journals (Sweden)

    A. F. Sabitov

    2017-01-01

    Full Text Available The effectiveness of correction of the dynamic characteristics of gas temperature sensors in automatic control systems for the operation of aircraft gas turbine engines depends on the accuracy of the time constants of the sensors used from heat exchange conditions. The aim of this work was to develop a new method for determining the characteristic curves of the thermal inertia of gas temperature sensors.The new technique does not require finding the time constants of gas temperature sensors on the experimental transient characteristics. Characteristic curves for each time constant are defined as hyperbolic dependencies on the heat transfer coefficient of the gas temperature sensors sensing element with the gas flow. Parameters of hyperbolic dependencies are proposed to be established using two-dimensional regression analysis. For this purpose, special software has been developed in the Mathcad 14 and Mathcad 15. The software allows inputting the original data from the transient characteristics to the corresponding vectors or from tables in Excel format. It is shown that the transient characteristics in three-dimensional coordinates«time – heat transfer coefficient – the value of the transition characteristic» form a surface whose parameters are parameters of the desired hyperbolic dependencies.For a specific application of the technique, the regression functions for the dynamic characteristics of gas temperature sensors corresponding to the first and second orders are given. Analysis of the characteristic dependencies suggests that the proposed method more accurately establishes the dependence of the dynamic characteristics of aircraft gas temperature sensors on heat exchange conditions.It is shown that the algorithm of two-dimensional regression analysis realizes finding more accurate values of the parameters of the characteristic dependencies. The found parameters of the characteristic dependencies in a best way reach the surface of the

  14. Bose–Einstein condensation and liquid–gas phase transition in strongly interacting matter composed of α particles

    Science.gov (United States)

    Satarov, L. M.; Gorenstein, M. I.; Motornenko, A.; Vovchenko, V.; Mishustin, I. N.; Stoecker, H.

    2017-12-01

    Systems of Bose particles with both repulsive and attractive interactions are studied using the Skyrme-like mean-field model. The phase diagram of such systems exhibits two special lines in the chemical potential-temperature plane: one line which represents the first-order liquid–gas phase transition with the critical end point, and another line which represents the onset of Bose–Einstein condensation. The calculations are made for strongly interacting matter composed of α particles. The phase diagram of this matter is qualitatively similar to that observed for the atomic 4He liquid. The sensitivity of the results to the model parameters is studied. For weak interaction coupling, the critical point is located at the Bose-condensation line.

  15. New concept of composite strengthening in Co-Re based alloys for high temperature applications in gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Mukherji, D.; Roesler, J.; Fricke, T.; Schmitz, F. [Technische Univ. Braunschweig (DE). Inst. fuer Werkstoffkunde (IfW); Piegert, S. [Siemens AG, Berlin (DE). Energy Sector (F PR GT EN)

    2010-07-01

    High temperature material development is mainly driven by gas turbine needs. Today, Ni-based superalloys are the dominant material class in the hot section of turbines. Material development will continue to push the maximum service temperature of Ni-superalloys upwards. However, this approach has a fundamental limit and can not be sustained indefinitely, as the Ni-superalloys are already used very close to their melting point. Within the frame work of a DFG Forschergruppe program (FOR 727) - ''Beyond Ni-base Superalloys'' - Co-Re based alloys are being developed as a new generation of high temperature materials that can be used at +100 C above single crystal Ni-superalloys. Along with other strengthening concepts, hardening by second phase is explored to develop a two phase composite alloy. With quaternary Co-Re-Cr-Ni alloys we demonstrate this development concept, where Co{sub 2}Re{sub 3}-type {sigma} phase is used in a novel way as the hardening phase. Thermodynamic calculation was used for designing model alloy compositions. (orig.)

  16. Plasmonic nanocomposite thin film enabled fiber optic sensors for simultaneous gas and temperature sensing at extreme temperatures.

    Science.gov (United States)

    Ohodnicki, Paul R; Buric, Michael P; Brown, Thomas D; Matranga, Christopher; Wang, Congjun; Baltrus, John; Andio, Mark

    2013-10-07

    Embedded sensors capable of operation in extreme environments including high temperatures, high pressures, and highly reducing, oxidizing and/or corrosive environments can make a significant impact on enhanced efficiencies and reduced greenhouse gas emissions of current and future fossil-based power generation systems. Relevant technologies can also be leveraged in a wide range of other applications with similar needs including nuclear power generation, industrial process monitoring and control, and aviation/aerospace. Here we describe a novel approach to embedded sensing under extreme temperature conditions by integration of Au-nanoparticle based plasmonic nanocomposite thin films with optical fibers in an evanescent wave absorption spectroscopy configuration. Such sensors can potentially enable simultaneous temperature and gas sensing at temperatures approaching 900-1000 °C in a manner compatible with embedded and distributed sensing approaches. The approach is demonstrated using the Au/SiO2 system deposited on silica-based optical fibers. Stability of optical fibers under relevant high temperature conditions and interactions with changing ambient gas atmospheres is an area requiring additional investigation and development but the simplicity of the sensor design makes it potentially cost-effective and may offer a potential for widespread deployment.

  17. Abundance and temperature distributions in the hot intra-cluster gas of Abell 4059

    Science.gov (United States)

    Mernier, F.; de Plaa, J.; Lovisari, L.; Pinto, C.; Zhang, Y.-Y.; Kaastra, J. S.; Werner, N.; Simionescu, A.

    2015-03-01

    Using the EPIC and RGS data from a deep (200 ks) XMM-Newton observation, we investigate the temperature structure (kT and σT) and the abundances of nine elements (O, Ne, Mg, Si, S, Ar, Ca, Fe, and Ni) of the intra-cluster medium (ICM) in the nearby (z = 0.046) cool-core galaxy cluster Abell 4059. Next to a deep analysis of the cluster core, a careful modelling of the EPIC background allows us to build radial profiles up to 12' (~650 kpc) from the core. Probably because of projection effects, the temperature ICM is not found to be in single phase, even in the outer parts of the cluster. The abundances of Ne, Si, S, Ar, Ca, and Fe, but also O are peaked towards the core. The elements Fe and O are still significantly detected in the outermost annuli, which suggests that the enrichment by both type Ia and core-collapse SNe started in the early stages of the cluster formation. However, the particularly high Ca/Fe ratio that we find in the core is not well reproduced by the standard SNe yield models. Finally, 2D maps of temperature and Fe abundance are presented and confirm the existence of a denser, colder, and Fe-rich ridge south-west of the core, previously observed by Chandra. The origin of this asymmetry in the hot gas of the cluster core is still unclear, but it might be explained by a past intense ram-pressure stripping event near the central cD galaxy. Appendices are available in electronic form at http://www.aanda.org

  18. Synthesis of phase-pure interpenetrated MOF-5 and its gas sorption properties.

    Science.gov (United States)

    Kim, Hyunuk; Das, Sunirban; Kim, Min Gyu; Dybtsev, Danil N; Kim, Yonghwi; Kim, Kimoon

    2011-04-18

    For the first time, phase-pure interpenetrated MOF-5 (1) has been synthesized and its gas sorption properties have been investigated. The phase purity of the material was confirmed by both single-crystal and powder X-ray diffraction studies and TGA analysis. A systematic study revealed that controlling the pH of the reaction medium is critical to the synthesis of phase-pure 1, and the optimum apparent pH (pH*) for the formation of 1 is 4.0-4.5. At higher or lower pH*, [Zn(2)(BDC)(2)(DMF)(2)] (2) or [Zn(5)(OH)(4)(BDC)(3)] (3), respectively, was predominantly formed. The pore size distribution obtained from Ar sorption experiments at 87 K showed only one peak, at ~6.7 Å, which is consistent with the average pore size of 1 revealed by single crystal X-ray crystallography. Compared to MOF-5, 1 exhibited higher stability toward heat and moisture. Although its surface area is much smaller than that of MOF-5 due to interpenetration, 1 showed a significantly higher hydrogen capacity (both gravimetric and volumetric) than MOF-5 at 77 K and 1 atm, presumably because of its higher enthalpy of adsorption, which may correlate with its higher volumetric hydrogen uptake compared to MOF-5 at room temperature, up to 100 bar. However, at high pressures and 77 K, where the saturated H(2) uptake mostly depends on the surface area of a porous material, the total hydrogen uptake of 1 is notably lower than that of MOF-5.

  19. Mesostructured silica aerosol particles: comparison of gas-phase and powder deposit X-ray diffraction data.

    Science.gov (United States)

    Shyjumon, I; Rappolt, M; Sartori, B; Cacho-Nerin, F; Grenci, G; Laggner, P; Amenitsch, H

    2011-05-03

    We report on the characterization of mesostructured aerosol silica particles in the gas phase using in situ synchrotron small-angle X-ray scattering (SAXS) in order to unveil the influence of the basic production parameters. The investigated system was based on tetraethylorthosilicate (TEOS) as the inorganic precursor and on cetyltrimethyl-ammonium bromide (CTAB) as the surfactant. The heating temperature, surfactant to silicate ratio, and particle flow rate were thoroughly investigated, and for this purpose, an in-house-built aerosol reactor equipped with a special X-ray observation chamber was used. Complementary fine structural analysis was applied on dried deposits of the silica aerosols comprising direct Fourier transforms as well as simple two-phase model fits. This resulted in robust estimates for the silica wall thickness and surfactant core radius of the hexagonally ordered mesostructure. The particle shape and size distribution were examined by scanning electron microscopy (SEM). The quality of the inner nanostructure was revealed from an analysis of the peak width. The comparison of data from the gas phase and powder deposit shows that, in general, slower drying conditions (heating temperature about 80 °C) and a medium surfactant to Si ratio (about 0.14) lead to nanostructures of the best quality in terms of well-defined long-range organization.

  20. Combustion Temperature Effect of Diesel Engine Convert to Compressed Natural Gas Engine

    OpenAIRE

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2009-01-01

    Effect of combustion temperature in the engine cylinder of diesel engine convert to Compressed Natural Gas (CNG) engine was presents in this study. The objective of this study was to investigate the engine cylinder combustion temperature effect of diesel engine convert to CNG engine on variation engine speed. Problem statement: The hypothesis was that the lower performance of CNG engine was caused by the effect of lower in engine cylinder temperature. Are the CNG engine is lower cylinder temp...

  1. Integration of phase change materials in compressed hydrogen gas systems: Modelling and parametric analysis

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rothuizen, Erasmus; Jørgensen, Jens-Erik

    2016-01-01

    A dynamic fueling model is built to simulate the fueling process of a hydrogen tank with an integrated passive cooling system. The study investigates the possibility of absorbing a part of the heat of compression in the high latent-heat material during melting, with the aim of saving the monetary...... and energy resources spent at the refueling station to cool the gas prior to tank filling. This is done while respecting the technical constraint of keeping the walls below the critical temperature of 85 C to ensure the mechanical stability of the storage system even when the gas is fueled at ambient...... temperature. Results show that a 10-mm-thick layer of paraffin wax can absorb enough heat to reduce the adiabatic temperature by 20 K when compared to a standard Type IV tank, but its influence on the hydrogen peak temperature that occurs at the end of refueling is modest. The heat transfer from the gas...

  2. Ultra-sensitive and selective NH3 room temperature gas sensing induced by manganese-doped titanium dioxide nanoparticles.

    Science.gov (United States)

    Tshabalala, Zamaswazi P; Shingange, Katekani; Cummings, Franscious R; Ntwaeaborwa, Odireleng M; Mhlongo, Gugu H; Motaung, David E

    2017-10-15

    The study of the fabrication of ultra-high sensitive and selective room temperature ammonia (NH3) and nitrogen dioxide (NO2) gas sensors remains an important scientific challenge in the gas sensing field. This is motivated by their harmful impact on the human health and environment. Therefore, herein, we report for the first time on the gas sensing properties of TiO2 nanoparticles doped with various concentrations of manganese (Mn) (1.0, 1.5, 2.0, 2.5 and 3.0mol.% presented as S1, S2, S3, S4 and S5, respectively), synthesized using hydrothermal method. Structural analyses showed that both undoped and Mn-doped TiO2 crystallized in tetragonal phases. Optical studies revealed that the Mn doped TiO2 nanoparticles have enhanced UV→Vis emission with a broad shoulder at 540nm, signifying induced defects by substituting Ti4+ ions with Mn2+. The X-ray photoelectron spectroscopy and the electron paramagnetic resonance studies revealed the presence of Ti3+ and singly ionized oxygen vacancies in both pure and Mn doped TiO2 nanoparticles. Additionally, a hyperfine split due to Mn2+ ferromagnetic ordering was observed, confirming incorporation of Mn ions into the lattice sites. The sensitivity, selectivity, operating temperature, and response-recovery times were thoroughly evaluated according to the alteration in the materials electrical resistance in the presence of the target gases. Gas sensing studies showed that Mn2+ doped on the TiO2 surface improved the NH3 sensing performance in terms of response, sensitivity and selectivity. The S1 sensing material revealed higher sensitivity of 127.39 at 20 ppm NH3 gas. The sensing mechanism towards NH3 gas is also proposed. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Analysis of the gas diffusion process during a hypothetical air ingress accident in a modular high temperature gas cooled reactor

    OpenAIRE

    Zhang, Z.; Gerwin, Helmut; Scherer, Winfried

    1993-01-01

    In order to simulate the diffusion process during a hypothetical air ingress accident in a modular high temperature gas cooled reactor, a one-dimensional coupled diffusion-convection model has been established. In this analysis it is shown first, that experiments performed at the Japan Atomic Energy Research Institute (JAERI) have been recalculated successfully, thus validating the new model. Applying this model to the NACOK facility, now under construction at the Institute for Safety Researc...

  4. Study on Deformation of Miniature Metal Bellows in Cryocooler Following Temperature Change of Internal Gas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Ha [LIGNex1 Co. Ltd., Gumi (Korea, Republic of); Lee, Tae Won [Kumoh National Institute of Technology, Gumi (Korea, Republic of)

    2015-04-15

    A bellows is an important temperature control component in a Joule-Thomson micro-cryocooler. It is designed using a very thin shell, and the inside of the bellows is filled with nitrogen gas. The bellows is made of a nickel-cobalt alloy that maintains its strength and elastic properties in a wide range of temperatures from cryogenic to 300℃. The pressure of the gas and the volume within the bellows vary according to the temperature of the gas. As a result, the bellows contracts or expands in the axial direction like a spring. To explore this phenomenon, the deformation of the bellows and its internal volume must be calculated iteratively under a modified pressure until the state equation of the gas is satisfied at a given temperature. In this paper, the modified Benedict-Webb-Rubin state equation is adopted to describe the temperature-volume-pressure relations of the gas. Experiments were performed to validate the proposed method. The results of a numerical analysis and the experiments showed good agreement.

  5. Studies and development of high-temperature catalytic materials for application in gas turbine combustion chamber

    Energy Technology Data Exchange (ETDEWEB)

    Papadias, Dennis; Thevenin, Philippe [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2000-04-01

    The catalyst system should fulfil the following conditions: (1) Low pressure drop, (2) Ignition of the fuel at the compressor outlet temperature, i.e. 300 - 400 deg C, (3) Resistance to thermal shocks, and (4) Resistance to sintering and deactivation for at least 1 year (8000 hours). As a single component can hardly retain all these properties, material science must then be combined with combustion technology and chemical reaction engineering. The work was then divided in four main tasks; material development, catalytic activity and kinetics measurement, mathematical modelling and design and engineering. The material development was devoted to the different components of a catalytic system, monolith, washcoat and active phase. The preparation method has proven to be of great importance with respect to the BET surface area of the prepared powder as well as the catalytic activity. A carbonate precipitation and a sol-gel procedure were developed at our laboratory. The use of modifiers in the sol-gel method has shown to affect the surface properties as well as the catalytic activity in ethanol and diesel combustion. Various catalytic materials have then been prepared: spinel, perovskite, hexaaluminate and pyrochlore. The hexaaluminate have the highest resistance to sintering in term of BET surface area when aged in 10% steam at temperature up to 1400 deg C for 4 hours. However, the LaAl{sub 11}O{sub 18} hexaaluminate does not have sufficient catalytic activity to ignite the fuel at 300-400 deg C. Substitution with transition metals have then been examined. In the case of ethanol combustion, the Mn-substituted La-hexaaluminate has a T{sub 50} (temperature for 50% conversion) of about 350 deg C. The noble metal-supported catalysts reveal a much higher activity with a T{sub 50} below 250 deg C. However their thermal stability may limit their use to temperatures below 900 deg C. The need of more thermal stable materials lead to the study of NZP-type material, yttrium

  6. ART CCIM PHASE II-A OFF-GAS SYSTEM EVALUATION TEST REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Nick Soelberg

    2009-04-01

    AREVA Federal Services (AFS) is performing a multi-year, multi-phase Advanced Remediation Technologies (ART) project, sponsored by the U.S. Department of Energy (DOE), to evaluate the feasibility and benefits of replacing the existing joule-heated melter (JHM) used to treat high level waste (HLW) in the Defense Waste Processing Facility (DWPF) at the Savannah River Site with a cold crucible induction melter (CCIM). The AFS ART CCIM project includes several collaborators from AREVA subsidiaries, French companies, and DOE national laboratories. The Savannah River National Laboratory and the Commissariat a l’Energie Atomique (CEA) have performed laboratory-scale studies and testing to determine a suitable, high-waste-loading glass matrix. The Idaho National Laboratory (INL) and CEA are performing CCIM demonstrations at two different pilot scales to assess CCIM design and operation for treating SRS sludge wastes that are currently being treated in the DWPF. SGN is performing engineering studies to validate the feasibility of retrofitting CCIM technology into the DWPF Melter Cell. The long-term project plan includes more lab-testing, pilot- and large-scale demonstrations, and engineering activities to be performed during subsequent project phases. A simulant of the DWPF SB4 feed was successfully fed and melted in a small pilot-scale CCIM system during two test series. The OGSE tests provide initial results that (a) provide melter operating conditions while feeding a DWPF SB4 simulant feed, (b) determine the fate of feed organic and metal feed constituents and metals partitioning, and (c) characterize the melter off-gas source term to a downstream off-gas system. The INL CCIM test system was operated continuously for about 30 hours during the parametric test series, and for about 58 hours during the OGSE test. As the DWPF simulant feed was continuously fed to the melter, the glass level gradually increased until a portion of the molten glass was drained from the melter

  7. Metal-Organic Framework Thin Films as Stationary Phases in Microfabricated Gas-Chromatography Columns.

    Energy Technology Data Exchange (ETDEWEB)

    Read, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sillerud, Colin Halliday [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    The overarching goal of this project is to integrate Sandia's microfabricated gas-chromatography ( GC) columns with a stationary phase material that is capable of retaining high-volatility chemicals and permanent gases. The successful integration of such a material with GCs would dramatically expand the repertoire of detectable compounds for Sandia's various microanalysis systems. One such promising class of candidate materials is metal-organic frameworks (MOFs). In this report we detail our methods for controlled deposition of HKUST-1 MOF stationary phases within GC columns. We demonstrate: the chromatographic separation of natural gas; a method for determining MOF film thickness from chromatography alone; and the first-reported GC x GC separation of natural gas -- in general -- let alone for two disparate MOF stationary phases. In addition we determine the fundamental thermodynamic constant for mass sorption, the partition coefficient, for HKUST-1 and several light hydrocarbons and select toxic industrial chemicals.

  8. Radical Reactions in the Gas Phase: Recent Development and Application in Biomolecules

    Directory of Open Access Journals (Sweden)

    Yang Gao

    2014-01-01

    Full Text Available This review summarizes recent literature describing the use of gas phase radical reactions for structural characterization of complex biomolecules other than peptides. Specifically, chemical derivatization, in-source chemical reaction, and gas phase ion/ion reactions have been demonstrated as effective ways to generate radical precursor ions that yield structural informative fragments complementary to those from conventional collision-induced dissociation (CID. Radical driven dissociation has been applied to a variety of biomolecules including peptides, nucleic acids, carbohydrates, and phospholipids. The majority of the molecules discussed in this review see limited fragmentation from conventional CID, and the gas phase radical reactions open up completely new dissociation channels for these molecules and therefore yield high fidelity confirmation of the structures of the target molecules. Due to the extensively studied peptide fragmentation, this review focuses only on nonpeptide biomolecules such as nucleic acids, carbohydrates, and phospholipids.

  9. Modeling the gas-particle partitioning of secondary organic aerosol: the importance of liquid-liquid phase separation

    Directory of Open Access Journals (Sweden)

    A. Zuend

    2012-05-01

    Full Text Available The partitioning of semivolatile organic compounds between the gas phase and aerosol particles is an important source of secondary organic aerosol (SOA. Gas-particle partitioning of organic and inorganic species is influenced by the physical state and water content of aerosols, and therefore ambient relative humidity (RH, as well as temperature and organic loading levels. We introduce a novel combination of the thermodynamic models AIOMFAC (for liquid mixture non-ideality and EVAPORATION (for pure compound vapor pressures with oxidation product information from the Master Chemical Mechanism (MCM for the computation of gas-particle partitioning of organic compounds and water. The presence and impact of a liquid-liquid phase separation in the condensed phase is calculated as a function of variations in relative humidity, organic loading levels, and associated changes in aerosol composition. We show that a complex system of water, ammonium sulfate, and SOA from the ozonolysis of α-pinene exhibits liquid-liquid phase separation over a wide range of relative humidities (simulated from 30% to 99% RH. Since fully coupled phase separation and gas-particle partitioning calculations are computationally expensive, several simplified model approaches are tested with regard to computational costs and accuracy of predictions compared to the benchmark calculation. It is shown that forcing a liquid one-phase aerosol with or without consideration of non-ideal mixing bears the potential for vastly incorrect partitioning predictions. Assuming an ideal mixture leads to substantial overestimation of the particulate organic mass, by more than 100% at RH values of 80% and by more than 200% at RH values of 95%. Moreover, the simplified one-phase cases stress two key points for accurate gas-particle partitioning calculations: (1 non-ideality in the condensed phase needs to be considered and (2 liquid-liquid phase separation is a consequence of considerable deviations

  10. Measurements of OH and HO2 yields from the gas phase ozonolysis of isoprene

    Directory of Open Access Journals (Sweden)

    P. W. Seakins

    2010-02-01

    Full Text Available The reactions of ozone with alkenes are an important source of hydroxyl (OH radicals; however, quantification of their importance is hindered by uncertainties in the absolute OH yield. Hydroxyl radical yields for the gas-phase ozonolysis of isoprene are determined in this paper by four different methods: (1 The use of cyclohexane as an OH scavenger, and the production of cyclohexanone, (2 The use of 1,3,5-trimethylbenzene as an OH tracer, and the diminution in its concentration, (3 A kinetic method in which the OH yield was obtained by performing a series of pseudo-first-order experiments in the presence or absence of an OH scavenger (cyclohexane, (4 The OH and HO2 yields were determined by fitting the temporal OH and HO2 profiles following direct detection of absolute OH and HO2 concentrations by laser induced fluorescence at low pressure (Fluorescence Assay by Gas Expansion- FAGE. The following OH yields for the ozonolysis of isoprene were obtained, relative to alkene consumed, for each method: (1 Scavenger (0.25±0.04, (2 Tracer (0.25±0.03, (3 Kinetic study (0.27±0.02, and (4 Direct observation (0.26±0.02, the error being one standard deviation. An averaged OH yield of 0.26±0.02 is recommended at room temperature and atmospheric pressure and this result is compared with recent literature determinations. The HO2 yield was directly determined for the first time using FAGE to be 0.26±0.03.

  11. Order from the disorder: hierarchical nanostructures self-assembled from the gas phase (Conference Presentation)

    Science.gov (United States)

    Di Fonzo, Fabio

    2017-02-01

    The assembly of nanoscale building blocks in engineered mesostructures is one of the fundamental goals of nanotechnology. Among the various processes developed to date, self-assembly emerges as one of the most promising, since it relays solely on basic physico-chemical forces. Our research is focused on a new type of self-assembly strategy from the gas-phase: Scattered Ballistic Deposition (SBD). SBD arises from the interaction of a supersonic molecular beam with a static gas and enables the growth of quasi-1D hierarchical mesostructures. Overall, they resemble a forest composed of individual, high aspect-ratio, tree-like structures, assembled from amorphous or crystalline nanoparticles. SBD is a general occurring phenomenon and can be obtained with different vapour or cluster sources. In particular, SBD by Pulsed Laser Deposition is a convenient physical vapor technique that allows the generation of supersonic plasma jets from any inorganic material irrespective of melting temperature, preserving even the most complex stoichiometries. One of the advantages of PLD over other vapour deposition techniques is extremely wide operational pressure range, from UHV to ambient pressure. These characteristics allowed us to develop quasi-1D hierarchical nanostructures from different transition metal oxides, semiconductors and metals. The precise control offered by the SBD-PLD technique over material properties at the nanoscale allowed us to fabricate ultra-thin, high efficiency hierarchical porous photonic crystals with Bragg reflectivity up to 85%. In this communication we will discuss the application of these materials to solar energy harvesting and storage, stimuli responsive photonic crystals and smart surfaces with digital control of their wettability behaviour.

  12. Finite-temperature phase transition to a Kitaev spin liquid phase on a hyperoctagon lattice: A large-scale quantum Monte Carlo study

    Science.gov (United States)

    Mishchenko, Petr A.; Kato, Yasuyuki; Motome, Yukitoshi

    2017-09-01

    The quantum spin liquid is an enigmatic quantum state in insulating magnets, in which conventional long-range order is suppressed by strong quantum fluctuations. Recently, an unconventional phase transition was reported between the low-temperature quantum spin liquid and the high-temperature paramagnet in the Kitaev model on a three-dimensional hyperhoneycomb lattice. Here, we show that a similar "liquid-gas" transition takes place in another three-dimensional lattice, the hyperoctagon lattice. We investigate the critical phenomena by adopting the Green-function based Monte Carlo technique with the kernel polynomial method, which enables systematic analysis of up to 2048 sites. The critical temperature is lower than that in the hyperhoneycomb case, reflecting the smaller flux gap. We also discuss the transition on the basis of an effective model in the anisotropic limit.

  13. Synthesis gas demonstration plant program, Phase I. Site confirmation report

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    With few reservations, the Baskett, Kentucky site exhibits the necessary characteristics to suggest compatibility with the proposed Synthesis Gas Demonstration Plant Project. An evaluation of a broad range of technical disciplinary criteria in consideration of presently available information indicated generally favorable conditions or, at least, conditions which could be feasibly accommodated in project design. The proximity of the Baskett site to market areas and sources of raw materials as well as a variety of transportation facilities suggests an overall favorable impact on Project economic feasibility. Two aspects of environmental engineering, however, have been identified as areas where the completion or continuation of current studies are required before removing all conditions on site suitability. The first aspect involves the current contradictory status of existing land use and planning ordinances in the site area. Additional investigation of the legality of, and local attitudes toward, these present plans is warranted. Secondly, terrestrial and aquatic surveys of plant and animal life species in the site area must be completed on a seasonal basis to confirm the preliminary conclusion that no exclusionary conditions exist.

  14. Two-color experiments in the gas phase at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M., E-mail: michael.meyer@u-psud.f [LIXAM/CNRS, UMR 8624, Centre Universitaire Paris-Sud, Batiment 350, F-91405 Orsay Cedex (France); Cubaynes, D. [LIXAM/CNRS, UMR 8624, Centre Universitaire Paris-Sud, Batiment 350, F-91405 Orsay Cedex (France); Dardis, J.; Hayden, P.; Hough, P.; Richardson, V.; Kennedy, E.T.; Costello, J.T. [School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9 (Ireland); Duesterer, S.; Li, W.B.; Radcliffe, P.; Redlin, H.; Feldhaus, J. [DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Strakhova, S.I.; Gryzlova, E.V.; Grum-Grzhimailo, A.N. [Institute of Nuclear Physics, Moscow State University, Moscow 119991 (Russian Federation); Taieb, R.; Maquet, A. [UPMC, Universite Paris 06, CNRS, UMR 7614, LCPMR, 11 Rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France)

    2010-08-15

    Intense ultra-short XUV-pulses from the Free Electron Laser in Hamburg (FLASH) were used in combination with the synchronized near-infrared (NIR) radiation from a femtosecond laser to perform two-color experiments on rare gas atoms and small molecules. Results of atomic photoionization in the presence of a NIR dressing field are presented and discussed for the low field regime, i.e. for intensities of less than 10{sup 11} W/cm{sup 2}. In particular, the analysis of two-color Above Threshold Ionization (ATI) as a function of the relative orientation of the polarization vectors of both photon beams provided detailed information about the partial photoionization crosssections by comparing the experimental results with theoretical values obtained by employing second-order perturbation theory and the 'soft-photon' approximation. Furthermore, a first time-resolved study was performed on the photodissociation of molecular hydrogen. In this proof-of-principle experiment, the excited atomic fragments, produced in the primary interaction with the intense XUV pulse, are probed by a time delayed NIR laser pulse that ionizes these fragments.

  15. Humidity independent mass spectrometry for gas phase chemical analysis via ambient proton transfer reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hongying; Huang, Guangming, E-mail: gmhuang@ustc.edu.cn

    2015-03-31

    Graphical abstract: Direct and humidity independent mass spectrometry analysis of gas phase chemicals could be achieved via ambient proton transfer ionization, ion intensity was found to be stable with humidity ranged from ∼10% to ∼100%. - Highlights: • A humidity independent mass spectrometric method for gas phase samples analysis. • A universal and good sensitivity method. • The method can real time identify plant released raw chemicals. - Abstract: In this work, a humidity independent mass spectrometric method was developed for rapid analysis of gas phase chemicals. This method is based upon ambient proton transfer reaction between gas phase chemicals and charged water droplets, in a reaction chamber with nearly saturate humidity under atmospheric pressure. The humidity independent nature enables direct and rapid analysis of raw gas phase samples, avoiding time- and sample-consuming sample pretreatments in conventional mass spectrometry methods to control sample humidity. Acetone, benzene, toluene, ethylbenzene and meta-xylene were used to evaluate the analytical performance of present method. The limits of detection for benzene, toluene, ethylbenzene and meta-xylene are in the range of ∼0.1 to ∼0.3 ppbV; that of benzene is well below the present European Union permissible exposure limit for benzene vapor (5 μg m{sup −3}, ∼1.44 ppbV), with linear ranges of approximately two orders of magnitude. The majority of the homemade device contains a stainless steel tube as reaction chamber and an ultrasonic humidifier as the source of charged water droplets, which makes this cheap device easy to assemble and facile to operate. In addition, potential application of this method was illustrated by the real time identification of raw gas phase chemicals released from plants at different physiological stages.

  16. Prediction of Ablation Rates from Solid Surfaces Exposed to High Temperature Gas Flow

    Science.gov (United States)

    Akyuzlu, Kazim M.; Coote, David

    2013-01-01

    A mathematical model and a solution algorithm is developed to study the physics of high temperature heat transfer and material ablation and identify the problems associated with the flow of hydrogen gas at very high temperatures and velocities through pipes and various components of Nuclear Thermal Rocket (NTR) motors. Ablation and melting can be experienced when the inner solid surface of the cooling channels and the diverging-converging nozzle of a Nuclear Thermal Rocket (NTR) motor is exposed to hydrogen gas flow at temperatures around 2500 degrees Kelvin and pressures around 3.4 MPa. In the experiments conducted on typical NTR motors developed in 1960s, degradation of the cooling channel material (cracking in the nuclear fuel element cladding) and in some instances melting of the core was observed. This paper presents the results of a preliminary study based on two types of physics based mathematical models that were developed to simulate the thermal-hydrodynamic conditions that lead to ablation of the solid surface of a stainless steel pipe exposed to high temperature hydrogen gas near sonic velocities. One of the proposed models is one-dimensional and assumes the gas flow to be unsteady, compressible and viscous. An in-house computer code was developed to solve the conservations equations of this model using a second-order accurate finite-difference technique. The second model assumes the flow to be three-dimensional, unsteady, compressible and viscous. A commercial CFD code (Fluent) was used to solve the later model equations. Both models assume the thermodynamic and transport properties of the hydrogen gas to be temperature dependent. In the solution algorithm developed for this study, the unsteady temperature of the pipe is determined from the heat equation for the solid. The solid-gas interface temperature is determined from an energy balance at the interface which includes heat transfer from or to the interface by conduction, convection, radiation, and

  17. Numerical investigation of high temperature synthesis gas premixed combustion via ANSYS Fluent

    OpenAIRE

    Pashchenko Dmitry

    2018-01-01

    A numerical model of the synthesis gas pre-mixed combustion is developed. The research was carried out via ANSYS Fluent software. Verification of the numerical results was carried out using experimental data. A visual comparison of the flame contours that obtained by the synthesis gas combustion for Re = 600; 800; 1000 was performed. A comparison of the wall temperature of the combustion chamber, obtained with the help of the developed model, with the results of a physical experiment was also...

  18. Room-temperature gas sensing through electronic coupling between tin oxide nanocrystal and carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Lu, G.; Ocola, L.; Chen, J.; Center for Nanoscale Materials; Univ. of Wisconsin at Milwaukee

    2009-01-01

    A new gas-sensing platform for low-concentration gases (NO{sub 2}, H{sub 2}, and CO) comprises discrete SnO{sub 2} nanocrystals uniformly distributed on the surface of multiwalled carbon nanotubes (CNTs). The resulting hybrid nanostructures are highly sensitive, even at room temperature, because their gas sensing abilities rely on electron transfer between the nanocrystals and the CNTs.

  19. Development and industrial application of catalyzer for low-temperature hydrogenation hydrolysis of Claus tail gas

    Directory of Open Access Journals (Sweden)

    Honggang Chang

    2015-10-01

    Full Text Available With the implementation of more strict national environmental protection laws, energy conservation, emission reduction and clean production will present higher requirements for sulfur recovery tail gas processing techniques and catalyzers. As for Claus tail gas, conventional hydrogenation catalyzers are gradually being replaced by low-temperature hydrogenation catalyzers. This paper concentrates on the development of technologies for low-temperature hydrogenation hydrolysis catalyzers, preparation of such catalyzers and their industrial application. In view of the specific features of SO2 hydrogenation and organic sulfur hydrolysis during low-temperature hydrogenation, a new technical process involving joint application of hydrogenation catalyzers and hydrolysis catalyzers was proposed. In addition, low-temperature hydrogenation catalyzers and low-temperature hydrolysis catalyzers suitable for low-temperature conditions were developed. Joint application of these two kinds of catalyzers may reduce the inlet temperatures in the conventional hydrogenation reactors from 280 °C to 220 °C, at the same time, hydrogenation conversion rates of SO2 can be enhanced to over 99%. To further accelerate the hydrolysis rate of organic sulfur, the catalyzers for hydrolysis of low-temperature organic sulfur were developed. In lab tests, the volume ratio of the total sulfur content in tail gas can be as low as 131 × 10−6 when these two kinds of catalyzers were used in a proportion of 5:5 in volumes. Industrial application of these catalyzers was implemented in 17 sulfur recovery tail gas processing facilities of 15 companies. As a result, Sinopec Jinling Petrochemical Company had outstanding application performances with a tail gas discharging rate lower than 77.9 mg/m3 and a total sulfur recovery of 99.97%.

  20. A novel high-heat transfer low-NO{sub x} natural gas combustion system. Phase 1 final report

    Energy Technology Data Exchange (ETDEWEB)

    Rue, D.M. [Institute of Gas Technology, Des Plaines, IL (United States); Fridman, A. [Univ. of Illinois, Chicago (United States); Viskanta, R. [Purdue Univ. (United States); Neff, D. [Cumbustion Tec, Inc. (United States)

    1997-11-01

    Phase I of the project focused on acquiring the market needs, modeling, design, and test plan information for a novel high-heat transfer low-NO{sub x} natural gas combustion system. All goals and objectives were achieved. The key component of the system is an innovative burner technology which combines high temperature natural gas preheating with soot formation and subsequent soot burnout in the flame, increases the system`s energy efficiency and furnace throughput, while minimizing the furnace air emissions, all without external parasitic systems. Work has included identifying industry`s needs and constraints, modeling the high luminosity burner system, designing the prototype burner for initial laboratory-scale testing, defining the test plan, adapting the burner technology to meet the industry`s needs and constraints, and outlining the Industrial Adoption Plan.

  1. Investigation of Pristine Graphite Oxide as Room-Temperature Chemiresistive Ammonia Gas Sensing Material

    Directory of Open Access Journals (Sweden)

    Alexander G. Bannov

    2017-02-01

    Full Text Available Graphite oxide has been investigated as a possible room-temperature chemiresistive sensor of ammonia in a gas phase. Graphite oxide was synthesized from high purity graphite using the modified Hummers method. The graphite oxide sample was investigated using scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, thermogravimetry and differential scanning calorimetry. Sensing properties were tested in a wide range of ammonia concentrations in air (10–1000 ppm and under different relative humidity levels (3%–65%. It was concluded that the graphite oxide–based sensor possessed a good response to NH3 in dry synthetic air (ΔR/R0 ranged from 2.5% to 7.4% for concentrations of 100–500 ppm and 3% relative humidity with negligible cross-sensitivity towards H2 and CH4. It was determined that the sensor recovery rate was improved with ammonia concentration growth. Increasing the ambient relative humidity led to an increase of the sensor response. The highest response of 22.2% for 100 ppm of ammonia was achieved at a 65% relative humidity level.

  2. Influence of structured packing on gas holdup in a three-phase bubble column

    DEFF Research Database (Denmark)

    Monsalvo, Matias Alfonso; Böhm, Ursula

    2007-01-01

    . The influence of structured packing on the total gas holdup for different superficial gas velocities was found to be similar with and without suspended solids. Therefore, the results obtained in this work were analysed on the basis of correlations derived earlier for gas-liquid dispersions. Excepting......In this work, the influence of structured packing on gas holdup in gas-liquid-solid dispersions has been studied. The experiments were carried out in an empty column and in column containing structured packing operating under identical conditions. Glass beads and silicon carbide particles were used...... as the solid material and the volumetric fraction of solids was varied from 0% to around 10%. The liquid viscosity was strongly modified using water, CMC solution and glycerol. The experimental results obtained with both columns were compared with previous results obtained in two-phase bubble columns...

  3. Variable pore connectivity model linking gas diffusivity and air-phase tortuosity to soil matric potential

    DEFF Research Database (Denmark)

    Chamindu, Deepagoda; Møldrup, Per; Schjønning, Per

    2012-01-01

    Soil-gas diffusivity (Dp/Do) and its dependency on soil matric potential (ψ) is important when taking regulative measures (based on accurate predictions) for climate gas emissions and also risk-mitigating measures (based on upper-limit predictions) of gaseous-phase contaminant emissions. Useful...... that accounts for water blockage. The X–pF relation can be linked to drained pore size to explain the lower probability of the larger but far fewer air-filled pores at lower pF effectively interconnecting and promoting gas diffusion. The model with X* = 2 and A = 0.5 proved promising for generalizing Dp...

  4. Parents of two-phase flow and theory of “gas-lift”

    Directory of Open Access Journals (Sweden)

    Zitek Pavel

    2014-03-01

    Full Text Available This paper gives a brief overview of types of two-phase flow. Subsequently, it deals with their mutual division and problems with accuracy boundaries among particular types. It also shows the case of water flow through a pipe with external heating and the gradual origination of all kinds of flow. We have met it in solution of safety condition of various stages in pressurized and boiling water reactors. In the MSR there is a problem in the solution of gas-lift using helium as a gas and its secondary usage for clearing of the fuel mixture from gaseous fission products. Theory of gas-lift is described.

  5. Development of gas cooled reactors and experimental setup of high temperature helium loop for in-pile operation

    Energy Technology Data Exchange (ETDEWEB)

    Miletić, Marija, E-mail: marija_miletic@live.com [Czech Technical University in Prague, Prague (Czech Republic); Fukač, Rostislav, E-mail: fuk@cvrez.cz [Research Centre Rez Ltd., Rez (Czech Republic); Pioro, Igor, E-mail: Igor.Pioro@uoit.ca [University of Ontario Institute of Technology, Oshawa (Canada); Dragunov, Alexey, E-mail: Alexey.Dragunov@uoit.ca [University of Ontario Institute of Technology, Oshawa (Canada)

    2014-09-15

    Highlights: • Gas as a coolant in Gen-IV reactors, history and development. • Main physical parameters comparison of gas coolants: carbon dioxide, helium, hydrogen with water. • Forced convection in turbulent pipe flow. • Gas cooled fast reactor concept comparisons to very high temperature reactor concept. • High temperature helium loop: concept, development, mechanism, design and constraints. - Abstract: Rapidly increasing energy and electricity demands, global concerns over the climate changes and strong dependence on foreign fossil fuel supplies are powerfully influencing greater use of nuclear power. In order to establish the viability of next-generation reactor concepts to meet tomorrow's needs for clean and reliable energy production the fundamental research and development issues need to be addressed for the Generation-IV nuclear-energy systems. Generation-IV reactor concepts are being developed to use more advanced materials, coolants and higher burn-ups fuels, while keeping a nuclear reactor safe and reliable. One of the six Generation-IV concepts is a very high temperature reactor (VHTR). The VHTR concept uses a graphite-moderated core with a once-through uranium fuel cycle, using high temperature helium as the coolant. Because helium is naturally inert and single-phase, the helium-cooled reactor can operate at much higher temperatures, leading to higher efficiency. Current VHTR concepts will use fuels such as uranium dioxide, uranium carbide, or uranium oxycarbide. Since some of these fuels are new in nuclear industry and due to their unknown properties and behavior within VHTR conditions it is very important to address these issues by investigate their characteristics within conditions close to those in VHTRs. This research can be performed in a research reactor with in-pile helium loop designed and constructed in Research Center Rez Ltd. One of the topics analyzed in this article are also physical characteristic and benefits of gas

  6. Pair Formation of Free Nucleobases and Mononucleosides in the Gas Phase

    Science.gov (United States)

    Dey, Michael; Grotemeyer, Jürgen; Schlag, Edward W.

    1994-08-01

    The formation of neutral bimolecular clusters of unsubstituted nucleobases and mononucleosides in the gas phase has been studied by IR laser desorption of the neutral molecules into a supersonic beam expansion. The complementary nucleobase pairs adenine-thymine and cytosine-guanine of D N A have been found to be formed in preference to non complementary base pairs. Association constants for the formation of the dimers of free nucleobases and nucleosides in the gas phase are calculated from the experimental results. A strong influence due to side groups affecting the dimer formation of the nucleobases is shown.

  7. Molecular simulation of excess isotherm and excess enthalpy change in gas-phase adsorption.

    Science.gov (United States)

    Do, D D; Do, H D; Nicholson, D

    2009-01-29

    We present a new approach to calculating excess isotherm and differential enthalpy of adsorption on surfaces or in confined spaces by the Monte Carlo molecular simulation method. The approach is very general and, most importantly, is unambiguous in its application to any configuration of solid structure (crystalline, graphite layer or disordered porous glass), to any type of fluid (simple or complex molecule), and to any operating conditions (subcritical or supercritical). The behavior of the adsorbed phase is studied using the partial molar energy of the simulation box. However, to characterize adsorption for comparison with experimental data, the isotherm is best described by the excess amount, and the enthalpy of adsorption is defined as the change in the total enthalpy of the simulation box with the change in the excess amount, keeping the total number (gas + adsorbed phases) constant. The excess quantities (capacity and energy) require a choice of a reference gaseous phase, which is defined as the adsorptive gas phase occupying the accessible volume and having a density equal to the bulk gas density. The accessible volume is defined as the mean volume space accessible to the center of mass of the adsorbate under consideration. With this choice, the excess isotherm passes through a maximum but always remains positive. This is in stark contrast to the literature where helium void volume is used (which is always greater than the accessible volume) and the resulting excess can be negative. Our definition of enthalpy change is equivalent to the difference between the partial molar enthalpy of the gas phase and the partial molar enthalpy of the adsorbed phase. There is no need to assume ideal gas or negligible molar volume of the adsorbed phase as is traditionally done in the literature. We illustrate this new approach with adsorption of argon, nitrogen, and carbon dioxide under subcritical and supercritical conditions.

  8. The gas phase emitter effect of lanthanum within ceramic metal halide lamps and its dependence on the La vapor pressure and operating frequency

    Science.gov (United States)

    Ruhrmann, C.; Hoebing, T.; Bergner, A.; Groeger, S.; Denissen, C.; Suijker, J.; Awakowicz, P.; Mentel, J.

    2015-08-01

    The gas phase emitter effect increases the lamp lifetime by lowering the work function and, with it, the temperature of the tungsten electrodes of metal halide lamps especially for lamps in ceramic vessels due to their high rare earth pressures. It is generated by a monolayer on the electrode surface of electropositive atoms of certain emitter elements, which are inserted into the lamp bulb by metal iodide salts. They are vaporized, dissociated, ionized, and deposited by an emitter ion current onto the electrode surface within the cathodic phase of lamp operation with a switched-dc or ac-current. The gas phase emitter effect of La and the influence of Na on the emitter effect of La are studied by spatially and phase-resolved pyrometric measurements of the electrode tip temperature, La atom, and ion densities by optical emission spectroscopy as well as optical broadband absorption spectroscopy and arc attachment images by short time photography. An addition of Na to the lamp filling increases the La vapor pressure within the lamp considerably, resulting in an improved gas phase emitter effect of La. Furthermore, the La vapor pressure is raised by a heating of the cold spot. In this way, conditions depending on the La vapor pressure and operating frequency are identified, at which the temperature of the electrodes becomes a minimum.

  9. The gas phase emitter effect of lanthanum within ceramic metal halide lamps and its dependence on the La vapor pressure and operating frequency

    Energy Technology Data Exchange (ETDEWEB)

    Ruhrmann, C.; Hoebing, T.; Bergner, A.; Groeger, S.; Awakowicz, P.; Mentel, J. [Electrical Engineering and Plasma Technology, Ruhr University Bochum, D-44780 Bochum (Germany); Denissen, C.; Suijker, J. [Philips Lighting, Category Professional Lamps, P.O. Box 80020, NL-5600JM Eindhoven (Netherlands)

    2015-08-07

    The gas phase emitter effect increases the lamp lifetime by lowering the work function and, with it, the temperature of the tungsten electrodes of metal halide lamps especially for lamps in ceramic vessels due to their high rare earth pressures. It is generated by a monolayer on the electrode surface of electropositive atoms of certain emitter elements, which are inserted into the lamp bulb by metal iodide salts. They are vaporized, dissociated, ionized, and deposited by an emitter ion current onto the electrode surface within the cathodic phase of lamp operation with a switched-dc or ac-current. The gas phase emitter effect of La and the influence of Na on the emitter effect of La are studied by spatially and phase-resolved pyrometric measurements of the electrode tip temperature, La atom, and ion densities by optical emission spectroscopy as well as optical broadband absorption spectroscopy and arc attachment images by short time photography. An addition of Na to the lamp filling increases the La vapor pressure within the lamp considerably, resulting in an improved gas phase emitter effect of La. Furthermore, the La vapor pressure is raised by a heating of the cold spot. In this way, conditions depending on the La vapor pressure and operating frequency are identified, at which the temperature of the electrodes becomes a minimum.

  10. Understanding the low temperature electrical properties of nanocrystalline tin oxide for gas sensor applications

    Science.gov (United States)

    Drake, Christina Hartsell

    Nanocrystalline metal/metal oxide is an important class of transparent and electronic materials due to its potential use in many applications, including gas sensors. At the nanoscale, many of the phenomena observed that give nanocrystalline semiconducting oxide enhanced performance as a gas sensor material over other conventional engineering materials is still poorly understood. This study is aimed at understanding the low temperature electrical and chemical properties of nanocrystalline SnO2 that makes it suitable for room temperature gas detectors. Studies were carried out in order to understand how various synthesis methods affect the surfaces on the nano-oxides, interactions of a target gas (in this study hydrogen) with different surface species, and changes in the electrical properties as a function of dopants and grain size. A correlation between the surface reactions and the electrical response of doped nanocrystalline metal-oxide-semiconductors exposed to a reducing gas is established using Fourier Transform Infrared (FTIR) Spectroscopy attached to a specially built custom designed catalytic cell. First principle calculations of oxygen vacancy concentrations from absorbance spectra are presented. FTIR is used for effectively screening of these nanostructures for gas sensing applications. The effect of processing temperature on the microstructural evolution and on the electronic properties of nanocrystalline trivalent doped-SnO 2 is also presented. This study includes the effect of dopants (In and Ce) on the growth of nano-SnO2, as well as their effects on the electronic properties and gas sensor behavior of the nanomaterial at room temperature. Band bending affects are also investigated for this system and are related to enhanced low temperature gas sensing. The role and importance of oxygen vacancies in the electronic and chemical behavior of surface modified nanocrystalline SnO2 are explored in this study. A generalized explanation for the low temperature

  11. Multiplexed Sensor for Synthesis Gas Compsition and Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Steven Buckley; Reza Gharavi; Marco Leon

    2007-10-01

    The overall goal of this project has been to develop a highly sensitive, multiplexed TDL-based sensor for CO{sub 2}, CO, H{sub 2}O (and temperature), CH{sub 4}, H{sub 2}S, and NH{sub 3}. Such a sensor was designed with so-called 'plug-and-play' characteristics to accommodate additional sensors, and provided in situ path-integrated measurements indicative of average concentrations at speeds suitable for direct gasifier control. The project developed the sensor and culminated in a real-world test of the underlying technology behind the sensor. During the project, new underlying measurements of spectroscopic constants for all of the gases of interest performed, in custom cells built for the project. The envisioned instrument was built from scratch from component lasers, fiber optics, amplifier blocks, detectors, etc. The sensor was tested for nearly a week in an operational power plant. The products of this research are expected to have a direct impact on gasifier technology and the production of high-quality syngas, with substantial broader application to coal and other energy systems. This report is the final technical report on project DE-FG26-04NT42172. During the project we completed all of the milestones planned in the project, with a modification of milestone (7) required due to lack of funding and personnel.

  12. Advanced Laser-Based Techniques for Gas-Phase Diagnostics in Combustion and Aerospace Engineering.

    Science.gov (United States)

    Ehn, Andreas; Zhu, Jiajian; Li, Xuesong; Kiefer, Johannes

    2017-03-01

    Gaining information of species, temperature, and velocity distributions in turbulent combustion and high-speed reactive flows is challenging, particularly for conducting measurements without influencing the experimental object itself. The use of optical and spectroscopic techniques, and in particular laser-based diagnostics, has shown outstanding abilities for performing non-intrusive in situ diagnostics. The development of instrumentation, such as robust lasers with high pulse energy, ultra-short pulse duration, and high repetition rate along with digitized cameras exhibiting high sensitivity, large dynamic range, and frame rates on the order of MHz, has opened up for temporally and spatially resolved volumetric measurements of extreme dynamics and complexities. The aim of this article is to present selected important laser-based techniques for gas-phase diagnostics focusing on their applications in combustion and aerospace engineering. Applicable laser-based techniques for investigations of turbulent flows and combustion such as planar laser-induced fluorescence, Raman and Rayleigh scattering, coherent anti-Stokes Raman scattering, laser-induced grating scattering, particle image velocimetry, laser Doppler anemometry, and tomographic imaging are reviewed and described with some background physics. In addition, demands on instrumentation are further discussed to give insight in the possibilities that are offered by laser flow diagnostics.

  13. Determination of enantiomers of synthetic pyrethroids in water by solid phase microextraction - enantioselective gas chromatography.

    Science.gov (United States)

    Liu, Weiping; Gan, Jay J

    2004-02-25

    Solid phase microextraction (SPME) is an ideal sample preparation technique because of its speed and solvent-free features. Sampling by SPME is selective and only the dissolved concentration is measured, which allows measurement of the bioavailable fraction of a contaminant in aqueous media. One potential application of SPME is for analysis of enantiomers of chiral contaminants in environmental samples. In this study, a method was developed for determining enantiomers of (Z)-cis-bifenthrin and cis-permethrin in water using coupled SPME and enantioselective gas chromatography (GC). Following SPME sampling, enantiomers of (Z)-cis-bifenthrin and cis-permethrin were separated at the baseline on a beta-cyclodextrin-based enantioselective column, and analyte enrichment onto the SPME fiber was not enantioselective. The GC response increased as sampling time was increased from 0 to 240 min, and as sampling temperature was increased from 20 to 40 degrees C. Organic solvents such as methanol, acetone, and acetonitrile enhanced, while soil extracts slightly decreased, the GC response. The integrated SPME-enantioselective GC method was used to analyze surface runoff samples. The analysis showed preferential degradation of the 1S-3S enantiomer over the 1R-3R enantiomer for both (Z)-cis-bifenthrin and cis-permethrin. The concentrations detected by SPME-GC were substantially smaller than those determined following solvent extraction, suggesting that SPME-enantioselective GC analysis selectively measured the dissolved fraction.

  14. Decomposition of gas-phase diphenylether at 473 K by electron beam generated plasma

    CERN Document Server

    Kim, H H; Kojima, T

    2003-01-01

    Decomposition of gas-phase diphenylether (DPE) in the order of several parts per million by volume (ppmv) was studied as a model compound of dioxin using a flow-type electron-beam reactor at an elevated temperature of 473 K. The ground state oxygen ( sup 3 P) atoms played an important role in the decomposition of DPE resulting in the formation of 1,4-hydroquinone (HQ) as a major ring retaining product. The high yield of hydroquinone indicated that the breakage of ether bond (C-O) is important in the initial step of DPE decomposition. Ring cleavage products were CO and CO sub 2 , and NO sub 2 was also produced from background N sub 2 -O sub 2. The sum of the yields of HQ, CO sub 2 and CO accounts for over 90% of the removed DPE. Hydroxyl radicals (OH) were less important in the dilute DPE decomposition at a high water content, and were mostly consumed by recombination reactions to form hydrogen peroxide. The smaller the initial DPE concentrations, the higher the decomposition efficiency and the lower the yield...

  15. Gas-phase hydrogenation influence on defect behavior in titanium-based hydrogen-storage material

    Directory of Open Access Journals (Sweden)

    Roman S. Laptev

    2017-02-01

    Full Text Available Titanium and its alloys are promising materials for hydrogen storage. However, hydrogen penetration accompanies the exploitation of hydrogen storage alloys. In particular, hydrogen penetration and accumulation in titanium alloys changes their mechanical properties. Therefore, the research works of such materials are mainly focused on improving the reversibility of hydrogen absorption-liberation processes, increasing the thermodynamic characteristics of the alloys, and augmenting their hydrogen storage capacity. In the process of hydrogenation-dehydrogenation, the formed defects both significantly reduce hydrogen storage capacity and can also be used to create effective traps for hydrogen. Therefore, the investigation of hydrogen interaction with structural defects in titanium and its alloys is very important. The present work, the hydrogen-induced formation of defects in the alloys of commercially pure titanium under temperature gas-phase hydrogenation (873 K has studied by positron lifetime spectroscopy and Doppler broadening spectroscopy. Based on the evolution of positron annihilation parameters τf, τd, their corresponding intensities If, Id and relative changes of parameters S/S0 and W/W0, the peculiarities of hydrogen interaction with titanium lattice defects were investigated in a wide range of hydrogen concentrations from 0.8at% to 32.0at%.

  16. Determination of volatile organic compounds in river water by solid phase extraction and gas chromatography.

    Science.gov (United States)

    Mottaleb, M A; Abedin, M Z; Islam, M S

    2004-01-01

    A simple, rapid, and reproducible method is described employing solid-phase extraction (SPE) using dichloromethane followed by gas chromatography (GC) with flame ionization detection (FID) for determination of volatile organic compound (VOC) from the Buriganga River water of Bangladesh. The method was applied to detect the benzene, toluene, ethylbenzene, xylene and cumene (BTEXC) in the sample collected from the surface or 15 cm depth of water. Two-hundred ml of n-hexane-pretreated and filtered water samples were applied directly to a C18 SPE column. BTEXC were extracted with dichloromethane and average concentrations were obtained as 0.104 to 0.372 microg/ml. The highest concentration of benzene was found as 0.372 microg/ml with a relative standard deviation (RSD) of 6.2%, and cumene was not detected. Factors influencing SPE e.g., adsorbent types, sample load volume, eluting solvent, headspace and temperatures, were investigated. A cartridge containing a C18 adsorbent and using dichloromethane gave better performance for extraction of BTEXC from water. Average recoveries exceeding 90% could be achieved for cumene at 4 degrees C with a 2.7% RSD.

  17. High speed, high temperature electrical characterization of phase change materials: metastable phases, crystallization dynamics, and resistance drift.

    Science.gov (United States)

    Dirisaglik, Faruk; Bakan, Gokhan; Jurado, Zoila; Muneer, Sadid; Akbulut, Mustafa; Rarey, Jonathan; Sullivan, Lindsay; Wennberg, Maren; King, Adrienne; Zhang, Lingyi; Nowak, Rebecca; Lam, Chung; Silva, Helena; Gokirmak, Ali

    2015-10-28

    During the fast switching in Ge2Sb2Te5 phase change memory devices, both the amorphous and fcc crystalline phases remain metastable beyond the fcc and hexagonal transition temperatures respectively. In this work, the metastable electrical properties together with crystallization times and resistance drift behaviour of GST are studied using a high-speed, device-level characterization technique in the temperature range of 300 K to 675 K.

  18. Gas Temperature Demography and the HI-to-H2 Transition in the Magellanic Clouds

    Science.gov (United States)

    Jameson, Katherine; McClure-Griffiths, Naomi; Liu, Boyang; Staveley-Smith, Lister; Miller Dickey, John; Bolatto, Alberto D.; Dawson, Joanne; Dénes, Helga; Li, Di; Stanimirovic, Snezana; Wolfire, Mark G.; Wong, Tony H.

    2017-06-01

    Given their proximity and low metallicity, the Magellanic Clouds provide the ideal laboratory to study the evolution of gas in the interstellar medium. We present first results from a new HI and OH absorption line study using the ATCA to measure the warm-to-cold atomic fraction and the atomic-to-molecular transition in the Large and Small Magellanic Clouds (LMC and SMC, respectively). The survey targets 48 sources in the LMC and 29 sources in the SMC, which covers more sources at higher senstitivity and spectral resolutin than previous absorption line measurement studies. We decompose the emission and absorption spectra using the autonomous gaussian decomposition software GaussPy (Lindner et al. 2015), which allows us to measure the spin temperature and optical depth of the HI gas. These measurements of the optical depth allow us to constrain the amount of "CO-faint" gas that is optically thick HI gas. Initial analysis indicates that we measure higher spin temperatures than the previous studies (Dickey et al. 1994, Marx-Zimmer et al. 2000), and cold atomic gas fractions of ~20%. We currently have no detections of OH absorption and an upper limit on the column density of molecular gas in the targeted lines of sight of ~few x 1022 cm-2, which is consistent with the dust-based molecular gas estimates.

  19. Diurnal variability of gas phase and surface water ethanol in southeastern North Carolina, USA

    Science.gov (United States)

    Kieber, R. J.; Powell, J. P.; Foley, L.; Mead, R. N.; Willey, J. D.; Avery, G. B.

    2017-11-01

    Diurnal variations in gas phase and surface water concentrations of ethanol and acetaldehyde were investigated at five locations in southeastern North Carolina, USA. There were distinct diurnal oscillations observed in gas phase concentrations with maxima occurring in late afternoon suggesting that photochemical production is an important process in the cycling of these analytes in the troposphere. The rapid decrease in concentrations after the mid day maximum suggests that there is also an atmospheric photochemical sink for both analytes most likely involving photo produced hydroxyl radicals with a half-life on the order of hours rather than days at ground level. Ethanol concentrations in the surface microlayer taken at the same time as gas phase samples had a very similar diurnal profile suggesting photochemical processes, in addition to atmospheric deposition, play a role in the aqueous phase cycling of both analytes. The concentration of ethanol and acetaldehyde increased significantly in flasks containing freshwater collected from the Cape Fear River exposed to simulated sunlight for 6 h underscoring the importance of in situ photochemical production. Results of this study are significant because they represent the first simultaneous analyses of the temporal variability of ethanol and acetaldehyde concentrations in the gas and aqueous phases. These measurements are essential in order to better define the processes involved in the global biogeochemical cycling of ethanol both now and in the future as our use of the biofuel continues to grow.

  20. Noncovalent Halogen Bonding as a Mechanism for Gas-Phase Clustering

    DEFF Research Database (Denmark)

    Wegeberg, Christina; Donald, William A.; McKenzie, Christine

    2017-01-01

    Gas-phase clustering of nonionizable iodylbenzene (PhIO2) is attributed to supramolecular halogen bonding. Electrospray ionization results in the formation of ions of proton-charged and preferably sodium-charged clusters assignable to [H(PhIO2)n]+, n = 1–7; [Na(PhIO2)n]+, n = 1–6; [Na2(PhIO2)n]2...... for I and Na predict 298 K binding enthalpies for the protonated and sodiated iodylbenzene dimers and trimers are greater than 180 kJ/mol. This is exceptionally high in comparison with other protonated and sodiated clusters with well-established binding enthalpies. Strongly halogen-bonded motifs found...... in the crystalline phases of PhIO2 and its derivatives serve as models for the structures of larger gas-phase clusters, and calculations on simple model gas-phase dimer and trimer clusters result in similar motifs. This is the first account of halogen bonding playing an extensive role in gas-phase associations....

  1. Inspired gas humidity and temperature during mechanical ventilation with the Stephanie ventilator.

    Science.gov (United States)

    Preo, Bianca L; Shadbolt, Bruce; Todd, David A

    2013-11-01

    To measure inspired gas humidity and temperature delivered by a Stephanie neonatal ventilator with variations in (i) circuit length; (ii) circuit insulation; (iii) proximal airway temperature probe (pATP) position; (iv) inspiratory temperature (offset); and (v) incubator temperatures. Using the Stephanie neonatal ventilator, inspired gas humidity and temperature were measured during mechanical ventilation at the distal inspiratory limb and 3 cm down the endotracheal tube. Measurements were made with a long or short circuit; with or without insulation of the inspiratory limb; proximal ATP (pATP) either within or external to the incubator; at two different inspiratory temperature (offset) of 37(-0.5) and 39(-2.0)°C; and at three different incubator temperatures of 32, 34.5, and 37°C. Long circuits produced significantly higher inspired humidity than short circuits at all incubator settings, while only at 32°C was the inspired temperature higher. In the long circuits, insulation further improved the inspired humidity especially at 39(-2.0)°C, while only at incubator temperatures of 32 and 37°C did insulation significantly improve inspired temperature. Positioning the pATP outside the incubator did not result in higher inspired humidity but did significantly improve inspired temperature. An inspiratory temperature (offset) of 39(-2.0)°C delivered significantly higher inspired humidity and temperature than the 37(-0.5)°C especially when insulated. Long insulated Stephanie circuits should be used for neonatal ventilation when the infant is nursed in an incubator. The recommended inspiratory temperature (offset) of 37(-0.5)°C produced inspired humidity and temperature below international standards, and we suggest an increase to 39(-2.0)°C. © 2013 John Wiley & Sons Ltd.

  2. Hot wire chemical vapor deposition chemistry in the gas phase and on the catalyst surface with organosilicon compounds.

    Science.gov (United States)

    Shi, Yujun

    2015-02-17

    CONSPECTUS: Hot wire chemical vapor deposition (HWCVD), also referred to as catalytic CVD (Cat-CVD), has been used to produce Si-containing thin films, nanomaterials, and functional polymer coatings that have found wide applications in microelectronic and photovoltaic devices, in automobiles, and in biotechnology. The success of HWCVD is largely due to its various advantages, including high deposition rate, low substrate temperatures, lack of plasma-induced damage, and large-area uniformity. Film growth in HWCVD is induced by reactive species generated from primary decomposition on the metal wire or from secondary reactions in the gas phase. In order to achieve a rational and efficient optimization of the process, it is essential to identify the reactive species and to understand the chemical kinetics that govern the production of these precursor species for film growth. In this Account, we report recent progress in unraveling the complex gas-phase reaction chemistry in the HWCVD growth of silicon carbide thin films using organosilicon compounds as single-source precursors. We have demonstrated that laser ionization mass spectrometry is a powerful diagnostic tool for studying the gas-phase reaction chemistry when combined with the methods of isotope labeling and chemical trapping. The four methyl-substituted silane molecules, belonging to open-chain alkylsilanes, dissociatively adsorb on W and Ta filaments to produce methyl radical and H2 molecule. Under the typical deposition pressures, with increasing number of methyl substitution, the dominant chemistry occurring in the gas phase switches from silylene/silene reactions to free-radical short chain reactions. This change in dominant reaction intermediates from silylene/silene to methyl radicals explains the observation from thin film deposition that silicon carbide films become more C-rich with a decreasing number of Si-H bonds in the four precursor molecules. In the case of cyclic monosilacyclobutanes, we have

  3. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks

    Directory of Open Access Journals (Sweden)

    Guangwen Fan

    2015-09-01

    Full Text Available Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  4. Delay time for fine particle ignition within gas with fluctuating temperature

    Science.gov (United States)

    Derevich, I. V.; Galdina, D. D.

    2017-03-01

    The Pontryagin equation was applied to calculating the average time for the random process escaping the assign interval: this gives the average delay time for waiting of particle ignition moment in a turbulent flow of gas. A direct numerical simulation method was developed for gas temperature fluctuations with assigned autocorrelation function and particle temperature fluctuations due to exothermal chemical reaction. The method was based on numerical solution of a system of stochastic differential equations. Results of direct simulation were validated through comparing with the analytical solution available for particles without exothermal reaction. Analytical calculations and results of direct numerical simulation for the delay time of particle ignition are in agreement.

  5. Review of Water Salinity Measurement Methods and Considering Salinity in Measuring Water Area Phase Fraction of Wet Gas

    Directory of Open Access Journals (Sweden)

    Hossein SERAJ

    2014-01-01

    Full Text Available Accurate measurement of water area phase fraction is one of key factors for precise measuring of wet gas flow rate. As variation in water salinity affects water area phase fraction measurement, therefore for having accurate water area phase fraction measurement, it is required to measure water salinity and take that into account in water area phase fraction measurement. In this paper, various methods for measuring water salinity in wet gas fluid are reviewed. Then the methodology for considering measured water salinity in water area phase fraction measurement is explained. Since accurate measurement of water area phase fraction is necessary for having precise wet gas flow rate measurement, therefore by considering water salinity in water area phase fraction measurement, the overall accuracy of wet gas measurement increases. In addition, knowing water salinity is very valuable in wet gas flow measurement as water breakthrough can be sensed using the measured salinity.

  6. Comparison of GERG-2008 and simpler EoS models in calculation of phase equilibrium and physical properties of natural gas related systems

    DEFF Research Database (Denmark)

    Varzandeh, Farhad; Stenby, Erling Halfdan; Yan, Wei

    2017-01-01

    Accurate description of thermodynamic properties of natural gas systems is of great significance in the oil and gas industry. For this application, non-cubic equations of state (EoSs) are advantageous due to their better density and compressibility description. Among the non-cubic models, GERG-2008...... is a new wide-range EoS for natural gases and other mixtures of 21 natural gas components. It is considered as a standard reference equation suitable for natural gas applications where highly accurate thermodynamic properties are required. Soave's modification of Benedict-Webb-Rubin (Soave-BWR) Eo......) and noncubic EoSs (Soave-BWR and PC-SAFT) with a focus on Soave-BWR in description of pure components density and compressibility in a wide temperature and pressure range, calculation of binary Vapor- Liquid-Equilibria (VLE) and density, prediction of multicomponent phase envelopes and gas compressibility...

  7. Vibrational energy transfer in gas phase water and ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Hovis, F.E. Jr.

    1979-09-01

    The V ..-->.. T, R relaxation rate for NH/sub 3/ (..nu../sub 2/) was studied from 198/sup 0/K to 398/sup 0/K by the method of laser-excited vibrational fluorescence. The self-deactivation rate constant decreases from 2.4 ..mu..sec torr/sup -1/ at 198/sup 0/K to 0.65 ..mu..sec/sup -1/ torr/sup -1/ at 398/sup 0/K. The rate constants for deactivation by He, Ar, N/sub 2/, and O/sub 2/ are much smaller and show a weak temperature dependence in the opposite direction. The vibrational relaxation rates of the coupled ..nu../sub 1/, ..nu../sub 3/ stretching level manifold and of the 2..nu../sub 2/ bending level in H/sub 2//sup 18/O was studied from 250/sup 0/K to 400/sup 0/K using th same method as for NH/sub 3/. The ..nu../sub 1/, ..nu../sub 3/ self-deactivation rate goes from 1.4 ..mu..sec/sup -1/ torr/sup -1/ at 250/sup 0/K to 0.48 ..mu..sec-/sup 1/ torr-/sup 1/ at 400/sup 0/K. For 2..nu../sub 2/ it goes from 4.5 ..mu..sec-/sup 1/ torr to 1.9 ..mu..sec/sup -1/ torr/sup -1/. The temperature dependence of the deactivation of both levels by He and Ar is much weaker and the rates are several hundred times slower. Deactivation of ..nu../sub 1/, ..nu../sub 3/ by N/sub 2/, O/sub 2/, and CO/sub 2/ is measured only at 293/sup 0/K. N/sub 2/ and O/sub 2/ deactivate ..nu../sub 1/, ..nu../sub 3/ about 5 and CO/sub 2/ about 50 times faster than He or Ar.

  8. Effects of Loading Rate on Gas Seepage and Temperature in Coal and Its Potential for Coal-Gas Disaster Early-Warning

    Directory of Open Access Journals (Sweden)

    Chong Zhang

    2017-08-01

    Full Text Available The seepage velocity and temperature externally manifest the changing structure, gas desorption and energy release that occurs in coal containing gas failure under loading. By using the system of coal containing gas failure under loading, this paper studies the law of seepage velocity and temperature under different loading rates and at 1.0 MPa confining pressure and 0.5 MPa gas pressure, and combined the on-site results of gas pressure and temperature. The results show that the stress directly affects the seepage velocity and temperature of coal containing gas, and the pressure and content of gas have the most sensitivity to mining stress. Although the temperature is not sensitive to mining stress, it has great correlation with mining stress. Seepage velocity has the characteristic of critically slowing down under loading. This is demonstrated by the variance increasing before the main failure of the samples. Therefore, the variance of seepage velocity with time and temperature can provide an early warning for coal containing gas failing and gas disasters in a coal mine.

  9. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-04-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: • Identifies pre-conceptual design requirements • Develops test loop equipment schematics and layout • Identifies space allocations for each of the facility functions, as required • Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems • Identifies pre-conceptual utility and support system needs • Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

  10. Accurate thermodynamic properties of gas phase hydrogen bonded complexes.

    Science.gov (United States)

    Hansen, Anne S; Maroun, Zeina; Mackeprang, Kasper; Frandsen, Benjamin N; Kjaergaard, Henrik G

    2016-08-24

    We have measured the infrared spectra of ethanol·dimethylamine and methanol·dimethylamine complexes in the 299-374 K temperature range, and have determined the enthalpy of complex formation (ΔH) to be -31.1 ± 2 and -29.5 ± 2 kJ mol(-1), respectively. The corresponding values of the Gibbs free energy (ΔG) are determined from the experimental integrated absorbance and a calculated oscillator strength of the OH-stretching vibrational transition to be 4.1 ± 0.3 and 3.9 ± 0.3 kJ mol(-1) at 302 and 300 K, respectively. The entropy, ΔS is determined from the values of ΔH and ΔG to be -117 ± 7 and -111 ± 10 J (mol K)(-1) for the ethanol·dimethylamine and methanol·dimethylamine complexes, respectively. The determined ΔH, ΔG and ΔS values of the two complexes are similar, as expected by the similarity to their donor molecules ethanol and methanol. Values of ΔH, ΔG and ΔS in chemical reactions are often obtained from quantum chemical calculations. However, these calculated values have limited accuracy and large variations are found using different methods. The accuracy of the present ΔH, ΔG and ΔS values is such that the benchmarking of theoretical methods is possible.

  11. Gas- and aerosol-phase chemistry of nitrogen oxides (NOy) in a pine forest (BEACHON-RoMBAS 2011)

    Science.gov (United States)

    Fry, J.; Draper, D.; Zarzana, K. J.; Brown, S. S.; Dube, B.; Wagner, N.; Cohen, R. C.; Palm, B. B.; Ortega, A. M.; Campuzano Jost, P.; Day, D. A.; Jimenez, J. L.; Brune, W. H.; Karl, T.; Kaser, L.; Jud, W.; Hansel, A.

    2011-12-01

    Ambient measurements of NOy (NO2, peroxy- and alkyl-nitrates, and the gas/aerosol partitioning of the latter) and Potential Aerosol Mass measurements of NO3-initiated secondary organic aerosol formation in a 16 L flow-through reactor were made during the BEACHON-RoMBAS field campaign in U.S. Forest Service Manitou Forest Observatory, Colorado (July/August 2011). A cavity ringdown spectrometer (CRDS) is used to monitor NO3 and N2O5 , Thermal Desorption - Laser Induced Fluorescence (TD-LIF) is used to detect the NOy species as NO2; an Aerodyne Aerosol Mass Spectrometer (AMS) monitors chemical composition of aerosol; Proton Transfer Reaction Mass Spectrometry (PTR-TOF-MS) monitors the gas-phase organic compounds; and a thermal converter/chemiluminescent NO/NOx/NH3 analyzer monitors gas-phase inorganic nitrogen compounds. In the PAM measurements, a calibrated flow of NO3 is supplied to the reactor from a temperature-controlled N2O5 trap. With this suite of measurements we seek to elucidate the role of nitrate in biogenic SOA formation, as well as the fate of pollution emissions in a forest environment. We observe significant concentrations of ambient alkyl- and peroxynitrates, despite the remote forest location, and find evidence in PAM measurements that formation of these compounds is linked to organic aerosol production.

  12. Two-phase materials for high-temperature service

    CSIR Research Space (South Africa)

    Nabarro, FRN

    2000-09-01

    Full Text Available viewed on the scale of the precipitate particles The structure consists of cubes of the g0 phase, an ordered L12 structure based on Ni3Al, stacked in a simple cubic array in a matrix of g, a disordered face- centred cubic lattice, also nickel-based. The g... phases show lattice coherence after standard heat treatments. 2.2. Current superalloys viewed on the atomic scale The great strength of the two-phase structure is com- parison with either of its components is explained as follows. In both phases, glide...

  13. Gas-phase hydrogenation/hydrogenolysis of phenol over supported nickel catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Shin, E.J.; Keane, M.A.

    2000-04-01

    The gas-phase hydrogenation/hydrogenolysis of alcoholic solutions of phenol between 423 and 573 K has been studied using a Y zeolite-supported nickel catalyst (2.2% w/w Ni) and Ni/SiO{sub 2} catalysts (1.5--20.3% w/w Ni). This is a viable means of treating concentrated phenol streams to generate recyclable raw material. Phenol hydrogenation proceeded in a stepwise fashion with cyclohexanone as a reactive intermediate while a combination of hydrogenolysis and hydrogenation yielded cyclohexane. Hydrogenolysis to benzene is favored by high nickel loadings and elevated temperatures. A catalytic hydrogen treatment of cyclohexanone and cyclohexanol helped to establish the overall reaction network/mechanism. The possible role of thermodynamic limitations is considered and structure sensitivity is addressed; reaction data are subjected to a pseudo-first-order kinetic treatment. Hydrogen temperature-programmed desorption (H{sub 2}-TPD) has revealed the existence of different forms of surface hydrogen. Selectivity is interpreted on the basis of the H{sub 2}-TPD profiles and the possible phenol/catalyst interactions. The zeolite sample only catalyzed (via the surface Bronsted acidity) anisole formation in the presence of methanol, but this was suppressed when hexanol was used; the zeolite then promoted hydrogenolysis. The zeolite, however, deactivated and this was not reversed by heating in hydrogen. The results of the hydrogen treatment of aqueous rather than alcoholic phenol solutions are presented, where a switch from methanol to water was accompanied by a move from highly selective hydrogenolysis to highly selective hydrogenation.

  14. High Temperature Gas Reactors: Assessment of Applicable Codes and Standards

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, Bruce K.; Nickolaus, James R.; Mitchell, Mark R.; Swearingen, Gary L.; Pugh, Ray

    2011-10-31

    Current interest expressed by industry in HTGR plants, particularly modular plants with power up to about 600 MW(e) per unit, has prompted NRC to task PNNL with assessing the currently available literature related to codes and standards applicable to HTGR plants, the operating history of past and present HTGR plants, and with evaluating the proposed designs of RPV and associated piping for future plants. Considering these topics in the order they are arranged in the text, first the operational histories of five shut-down and two currently operating HTGR plants are reviewed, leading the authors to conclude that while small, simple prototype HTGR plants operated reliably, some of the larger plants, particularly Fort St. Vrain, had poor availability. Safety and radiological performance of these plants has been considerably better than LWR plants. Petroleum processing plants provide some applicable experience with materials similar to those proposed for HTGR piping and vessels. At least one currently operating plant - HTR-10 - has performed and documented a leak before break analysis that appears to be applicable to proposed future US HTGR designs. Current codes and standards cover some HTGR materials, but not all materials are covered to the high temperatures envisioned for HTGR use. Codes and standards, particularly ASME Codes, are under development for proposed future US HTGR designs. A 'roadmap' document has been prepared for ASME Code development; a new subsection to section III of the ASME Code, ASME BPVC III-5, is scheduled to be published in October 2011. The question of terminology for the cross-duct structure between the RPV and power conversion vessel is discussed, considering the differences in regulatory requirements that apply depending on whether this structure is designated as a 'vessel' or as a 'pipe'. We conclude that designing this component as a 'pipe' is the more appropriate choice, but that the ASME BPVC

  15. Gas-phase spectra of MgO molecules: a possible connection from gas-phase molecules to planet formation

    Science.gov (United States)

    Kloska, Katherine A.; Fortenberry, Ryan C.

    2018-02-01

    A more fine-tuned method for probing planet-forming regions, such as protoplanetary discs, could be rovibrational molecular spectroscopy observation of particular premineral molecules instead of more common but ultimately less related volatile organic compounds. Planets are created when grains aggregate, but how molecules form grains is an ongoing topic of discussion in astrophysics and planetary science. Using the spectroscopic data of molecules specifically involved in mineral formation could help to map regions where planet formation is believed to be occurring in order to examine the interplay between gas and dust. Four atoms are frequently associated with planetary formation: Fe, Si, Mg and O. Magnesium, in particular, has been shown to be in higher relative abundance in planet-hosting stars. Magnesium oxide crystals comprise the mineral periclase making it the chemically simplest magnesium-bearing mineral and a natural choice for analysis. The monomer, dimer and trimer forms of (MgO)n with n = 1-3 are analysed in this work using high-level quantum chemical computations known to produce accurate results. Strong vibrational transitions at 12.5, 15.0 and 16.5 μm are indicative of magnesium oxide monomer, dimer and trimer making these wavelengths of particular interest for the observation of protoplanetary discs and even potentially planet-forming regions around stars. If such transitions are observed in emission from the accretion discs or absorptions from stellar spectra, the beginning stages of mineral and, subsequently, rocky body formation could be indicated.

  16. Rapid Separation of Elemental Species by Fast Multicapillary Gas Chromatography with Multichannel Optical Spectrometry Detection following Headspace Solid Phase Microextraction

    Directory of Open Access Journals (Sweden)

    Jacek Giersz

    2015-05-01

    Full Text Available A method for conducting fast and efficient gas chromatography based on short multicapillaries in straight alignment combined with atomic emission detection was developed for field analysis. The strategy enables for speciation analysis of organometallic compounds. The analytes are simultaneously ethylated and preconcentrated on a solid phase microextraction (SPME fiber placed in the headspace over the sample for 25 min. The ethylated species are then completely separated and selectively quantified within 25 s under isothermal conditions. A new miniaturized speciation analyzer has been constructed and evaluated. The system consists of a GC injection port and a lab-made miniaturized GC unit directly coupled with miniaturized plasma excitation source. The emitted light is transferred via optical fiber and registered with a miniaturized charged coupled device (CCD based spectrometer. Working parameters for multicapillary column gas chromatography with atomic emission detector, including carrier gas flow rate, desorption temperature, and GC column temperature, were optimized to achieve good separation of analytes. Basic investigations of the fundamental properties of 5 cm-long multicapillary column, to evaluate its potential and limitations as a rapid separation unit, are presented. The adaptation of the technique for use with a SPME system and with a multichannel element-selective plasma-emission detector is highlighted.

  17. Thermochemistry of the Reaction of SF6 with Gas-Phase Hydrated Electrons: A Benchmark for Nanocalorimetry.

    Science.gov (United States)

    Akhgarnusch, Amou; Höckendorf, Robert F; Beyer, Martin K

    2015-10-01

    The reaction of sulfur hexafluoride with gas-phase hydrated electrons (H2O)n(-), n ≈ 60-130, is investigated at temperatures T = 140-300 K by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. SF6 reacts with a temperature-independent rate of 3.0 ± 1.0 × 10(-10) cm(3) s(-1) via exclusive formation of the hydrated F(-) anion and the SF5(•) radical, which evaporates from the cluster. Nanocalorimetry yields a reaction enthalpy of ΔHR,298K = 234 ± 24 kJ mol(-1). Combined with literature thermochemical data from bulk aqueous solution, these result in an F5S-F bond dissociation enthalpy of ΔH298K = 455 ± 24 kJ mol(-1), in excellent agreement with all high-level quantum chemical calculations in the literature. A combination with gas-phase literature thermochemistry also yields an experimental value for the electron affinity of SF5(•), EA(SF5(•)) = 4.27 ± 0.25 eV.

  18. Oxidative potential of gas phase combustion emissions - An underestimated and potentially harmful component of air pollution from combustion processes

    Science.gov (United States)

    Stevanovic, S.; Vaughan, A.; Hedayat, F.; Salimi, F.; Rahman, M. M.; Zare, A.; Brown, R. A.; Brown, R. J.; Wang, H.; Zhang, Z.; Wang, X.; Bottle, S. E.; Yang, I. A.; Ristovski, Z. D.

    2017-06-01

    The oxidative potential (OP) of the gas phase is an important and neglected aspect of environmental toxicity. Whilst prolonged exposure to particulate matter (PM) associated reactive oxygen species (ROS) have been shown to lead to negative health effects, the potential for compounds in gas phase to cause similar effects is yet to be understood. In this study we describe: the significance of the gas phase OP generated through vehicle emissions; discuss the origin and evolution of species contributing to measured OP; and report on the impact of gas phase OP on human lung cells. The model aerosol for this study was exhaust emitted from a Euro III Common-rail diesel engine fuelled with different blends of diesel and biodiesel. The gas phase of these emissions was found to be potentially as hazardous as the particle phase. Fuel oxygen content was found to negatively correlate with the gas phase OP, and positively correlate with particle phase OP. This signifies a complex interaction between reactive species present in gas and particle phase. Furthermore, this interaction has an overarching effect on the OP of both particle and gas phase, and therefore the toxicity of combustion emissions.

  19. Two-phase Flow Characteristics in a Gas-Flow Channel of Polymer Electrolyte Membrane Fuel Cells

    Science.gov (United States)

    Cho, Sung Chan

    Fuel cells, converting chemical energy of fuels directly into electricity, have become an integral part of alternative energy and energy efficiency. They provide a power source of high energy-conversion efficiency and zero emission, meeting the critical demands of a rapidly growing society. The proton exchange membrane (PEM) fuel cells, also called polymer electrolyte fuel cells (PEFCs), are the major type of fuel cells for transportation, portable and small-scale stationary applications. They provide high-power capability, work quietly at low temperatures, produce only water byproduct and no emission, and can be compactly assembled, making them one of the leading candidates for the next generation of power sources. Water management is one of the key issues in PEM fuel cells: appropriate humidification is critical for the ionic conductivity of membrane while excessive water causes flooding and consequently reduces cell performance. For efficient liquid water removal from gas flow channels of PEM fuel cells, in-depth understanding on droplet dynamics and two-phase flow characteristics is required. In this dissertation, theoretical analysis, numerical simulation, and experimental testing with visualization are carried out to understand the two-phase flow characteristics in PEM fuel cell channels. Two aspects of two-phase phenomena will be targeted: one is the droplet dynamics at the GDL surface; the other is the two-phase flow phenomena in gas flow channels. In the former, forces over a droplet, droplet deformation, and detachment are studied. Analytical solutions of droplet deformation and droplet detachment velocity are obtained. Both experiments and numerical simulation are conducted to validate analytical results. The effects of contact angle, channel geometry, superficial air velocity, properties of gas phase fluids are examined and criteria for the detachment velocity are derived to relate the Reynolds number to the Weber number. In the latter, two-phase flow

  20. A high-temperature gas-and-steam turbine plant operating on combined fuel

    Science.gov (United States)

    Klimenko, A. V.; Milman, O. O.; Shifrin, B. A.

    2015-11-01

    A high-temperature gas-steam turbine plant (GSTP) for ultrasupercritical steam conditions is proposed based on an analysis of prospects for the development of power engineering around the world and in Russia up to 2040. The performance indicators of a GSTP using steam from a coal-fired boiler with a temperature of 560-620°C with its superheating to 1000-1500°C by firing natural gas with oxygen in a mixingtype steam superheater are analyzed. The thermal process circuit and design of a GSTP for a capacity of 25 MW with the high- and intermediate-pressure high-temperature parts with the total efficiency equal to 51.7% and the natural gas utilization efficiency equal to 64-68% are developed. The principles of designing and the design arrangement of a 300 MW GSTP are developed. The effect of economic parameters (the level and ratio of prices for solid fuel and gas, and capital investments) on the net cost of electric energy is determined. The net cost of electric energy produced by the GSTP is lower than that produced by modern combined-cycle power plants in a wide variation range of these parameters. The components of a high-temperature GSTP the development of which determines the main features of such installations are pointed out: a chamber for combusting natural gas and oxygen in a mixture with steam, a vacuum device for condensing steam with a high content of nondensables, and a control system. The possibility of using domestically available gas turbine technologies for developing the GSTP's intermediate-pressure high-temperature part is pointed out. In regard of its environmental characteristics, the GSTP is more advantageous as compared with modern condensing power plants: it allows a flow of concentrated carbon dioxide to be obtained at its outlet, which can be reclaimed; in addition, this plant requires half as much consumption of fresh water.

  1. Trimethyl(phenylsilane — a precursor for gas phase processes of SiCx:H film deposition: Synthesis and characterization

    Directory of Open Access Journals (Sweden)

    Evgeniya N. Ermakova

    2015-12-01

    Full Text Available The technique of synthesis and purification of trimethyl(phenylsilane PhSiMe3, allowing to obtain the product with high yield. Individuality of the product was confirmed by elemental analysis for C, H, Si was developed. IR, UV and 1H NMR-spectroscopic studies were used to define its spectral characteristics. Complex thermal analysis and thermogravimetry defined thermoanalytical behavior of PhSiMe3 in an inert atmosphere. Tensimetric studies have shown that the compound has sufficient volatility and thermal stability for use as a precursor in the process of chemical vapor deposition (CVD. The composition and temperature limits of the possible crystalline phase complexes in equilibrium with the gas phase of different composition has been determined by method of thermodynamic modeling. Calculated CVD diagrams allow us to select the optimal conditions of film deposition. The possibility of using trimethyl(phenylsilane in CVD processes for producing dielectric films of hydrogenated silicon carbide has been demonstrated.

  2. A comparative study of ethylene oxide gas, hydrogen peroxide gas plasma, and low-temperature steam formaldehyde sterilization.

    Science.gov (United States)

    Kanemitsu, Keiji; Imasaka, Takayuki; Ishikawa, Shiho; Kunishima, Hiroyuki; Harigae, Hideo; Ueno, Kumi; Takemura, Hiromu; Hirayama, Yoshihiro; Kaku, Mitsuo

    2005-05-01

    To compare the efficacies of ethylene oxide gas (EOG), hydrogen peroxide gas plasma (PLASMA), and low-temperature steam formaldehyde (LTSF) sterilization methods. The efficacies of EOG, PLASMA, and LTSF sterilization were tested using metal and plastic plates, common medical instruments, and three process challenge devices with narrow lumens. All items were contaminated with Bacillus stearothermophilus spores or used a standard biological indicator. EOG and LTSF demonstrated effective killing of B. stearothermophilus spores, with or without serum, on plates, on instruments, and in process challenge devices. PLASMA failed to adequately sterilize materials on multiple trials in several experiments, including two of three plates, two of three instruments, and all process challenge devices. Our results suggest that PLASMA sterilization may be unsuccessful under certain conditions, particularly when used for items with complex shapes and narrow lumens. Alternatively, LTSF sterilization demonstrates excellent efficacy and is comparable to EOG sterilization. LTSF could potentially act as a substitute if EOG becomes unavailable due to environmental concerns.

  3. Coupling of Modular High-Temperature Gas-Cooled Reactor with Supercritical Rankine Cycle

    OpenAIRE

    Shutang Zhu; Ying Tang; Kun Xiao; Zuoyi Zhang

    2008-01-01

    This paper presents investigations on the possible combination of modular high-temperature gas-cooled reactor (MHTGR) technology with the supercritical (SC) steam turbine technology and the prospective deployments of the MHTGR SC power plant. Energy conversion efficiency of steam turbine cycle can be improved by increasing the main steam pressure and temperature. Investigations on SC water reactor (SCWR) reveal that the development of SCWR power plants still needs further research and develop...

  4. Enhancement of NH3 Gas Sensitivity at Room Temperature by Carbon Nanotube-Based Sensor Coated with Co Nanoparticles

    OpenAIRE

    Lich Quang Nguyen; Pho Quoc Phan; Chien Duc Nguyen; Huyen Ngoc Duong; Lam Huu Nguyen

    2013-01-01

    Multi-walled carbon nanotube (MWCNT) film has been fabricated onto Pt-patterned alumina substrates using the chemical vapor deposition method for NH3 gas sensing applications. The MWCNT-based sensor is sensitive to NH3 gas at room temperature. Nanoclusters of Co catalysts have been sputtered on the surface of the MWCNT film to enhance gas sensitivity with respect to unfunctionalized CNT films. The gas sensitivity of Co-functionalized MWCNT-based gas sensors is thus significantly improved. The...

  5. Gas-Phase Growth of Heterostructures of Carbon Nanotubes and Bimetallic Nanowires

    Directory of Open Access Journals (Sweden)

    Whi Dong Kim

    2011-01-01

    Full Text Available A simple, inexpensive, and viable method for growing multiple heterostructured carbon nanotubes (CNTs over the entire surface of Ni-Al bimetallic nanowires (NWs in the gas phase was developed. Polymer-templated bimetallic nitrate NWs were produced by electrospinning in the first step, and subsequent calcination resulted in the formation of bimetallic oxide NWs by thermal decomposition. In the second step, free-floating bimetallic NWs were produced by spray pyrolysis in an environment containing hydrogen gas as a reducing gas. These NWs were continuously introduced into a thermal CVD reactor in order to grow CNTs in the gas phase. Scanning electron microscopy (SEM, transmission electron microscopy (TEM, and Raman spectrometry analyses revealed that the catalytic Ni sites exposed in the non-catalytic Al matrix over the entire surface of the bimetallic NWs were seeded to radially grow highly graphitized CNTs, which resembled “foxtail” structures. The grown CNTs were found to have a relatively uniform diameter of approximately 10±2 nm and 10 to 15 walls with a hollow core. The average length of the gas-phase-grown CNTs can be controlled between 100 and 1000 nm by adjusting the residence time of the free-floating bimetallic NWs in the thermal CVD reactor.

  6. An "Inefficient Fin" Non-Dimensional Parameter to Measure Gas Temperatures Efficiently

    Science.gov (United States)

    Lemieux, Patrick; Murray, William; Cooke, Terry; Gerhardt, James

    2012-01-01

    A gas containment vessel that is not in thermal equilibrium with the bulk gas can affect its temperature measurement. The physical nature of many gas dynamics experiments often makes the accurate measurement of temperature a challenge. The environment itself typically requires that the thermocouple be sheathed, both to protect the wires and hot junction of the instrument from their environment, and to provide a smooth, rigid surface for pressure sealing of the enclosure. However, that enclosure may also be much colder than the gas to be sensed, or vice-versa. Either way, the effect of such gradients is to potentially skew the temperature measurements themselves, since heat may then be conducted by the instrument. Thermocouple designers traditionally address this problem by insulating the sheath from the thermocouple leads and hot junction as much as possible. The thermocouple leads are typically packed in a ceramic powder inside the sheath, protecting them somewhat from temperature gradients along the sheath, but there is no effective mechanism to shield the sheath from the enclosure body itself. Standard practice dictates that thermocouples be used in installations that do not present large thermal gradients along the probe. If this conduction dominates heat transfer near the tip of the probe, then temperature measurements may be expected to be skewed. While the same problem may be experienced in the measurement of temperature at various points within a solid in a gradient, it tends to be aggravated in the measurements of gas temperature, since heat transfer dependent on convection is often less efficient than conduction along the thermocouple. The proposed solution is an inefficient fin thermocouple probe. Conventional wisdom suggests that in many experiments where gas flows through an enclosure (e.g., flow in pipe, manifold, nozzle, etc.), the thermocouple be introduced flush to the surface, so as not to interfere with the flow. In practice, however, many such

  7. Averaged electron collision cross sections for thermal mixtures of β-alanine conformers in the gas phase

    Science.gov (United States)

    Fujimoto, Milton M.; de Lima, Erik V. R.; Tennyson, Jonathan

    2017-10-01

    A theoretical study of elastic electron scattering by gas-phase amino acid molecule β-alanine (NH2-CH2-CH2-COOH) is presented. R-matrix calculations are performed for each of the ten lowest-lying, thermally-accessible conformers of β-alanine. Eigenphase sums, resonance features, differential and integral cross sections are computed for each conformer. The positions of the low-energy shape resonance associated with the unoccupied {π }* orbital of the -COOH group are found to vary from 2.5 to 3.3 eV and the resonance widths from 0.2 to 0.5 eV depending on the conformation. The temperature-dependent population ratios are derived, based on temperature-corrected Gibbs free energies. Averaged cross sections for thermal mixtures of the 10 conformers are presented. A comparison with previous results for the α-alanine isomer is also presented.

  8. Acoustic transducer in system for gas temperature measurement in gas turbine engine

    Science.gov (United States)

    DeSilva, Upul P.; Claussen, Heiko

    2017-07-04

    An apparatus for controlling operation of a gas turbine engine including at least one acoustic transmitter/receiver device located on a flow path boundary structure. The acoustic transmitter/receiver device includes an elongated sound passage defined by a surface of revolution having opposing first and second ends and a central axis extending between the first and second ends, an acoustic sound source located at the first end, and an acoustic receiver located within the sound passage between the first and second ends. The boundary structure includes an opening extending from outside the boundary structure to the flow path, and the second end of the surface of revolution is affixed to the boundary structure at the opening for passage of acoustic signals between the sound passage and the flow path.

  9. On the phase-correlation and phase-fluctuation dynamics of a strongly excited Bose gas

    Energy Technology Data Exchange (ETDEWEB)

    Sakhel, Roger R., E-mail: rogersakhel@yahoo.com [Department of Basic Sciences, Faculty of Information Technology, Isra University, Amman 11622 (Jordan); The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, Trieste 34151 (Italy); Sakhel, Asaad R. [Department of Applied Sciences, Faculty of Engineering Technology, Balqa Applied University, Amman 11134 (Jordan); The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, Trieste 34151 (Italy); Ghassib, Humam B. [Department of Physics, The University of Jordan, Amman 11942 (Jordan)

    2015-12-01

    The dynamics of a Bose–Einstein condensate (BEC) is explored in the wake of a violent excitation caused by a strong time-dependent deformation of a trapping potential under the action of an intense stirring laser. The system is a two-dimensional BEC confined to a power-law trap with hard-wall boundaries. The stirring agent is a moving red-detuned laser potential. The time-dependent Gross–Pitaevskii equation is solved numerically by the split-step Crank–Nicolson method in real time. The phase correlations and phase fluctuations are examined as functions of time to demonstrate the evolving properties of a strongly-excited BEC. Of special significance is the occurrence of spatial fluctuations while the condensate is being excited. These oscillations arise from stirrer-induced density fluctuations. While the stirrer is inside the trap, a reduction in phase coherence occurs, which is attributed to phase fluctuations.

  10. Rapid method for simulating gas spectra using reversed PCR temperature calibration models based on Hitran data

    DEFF Research Database (Denmark)

    Bak, J.

    1999-01-01

    A computer program was produced to make rapid simulations of CO gas spectra at a spectral resolution of 1 cm(-1) and at temperatures ranging from 295 to 845 K and concentrations from 5 to 400 mg/m(3). The program is based on loadings and scores from three principal component regression (PCR) temp...... a uniform slab of gas at various temperatures, concentrations, and pathlengths. The gain in speed of the calculations of the spectra is based on the fact that the PCR models include mathematical pretreatments and compress the data effectively.......A computer program was produced to make rapid simulations of CO gas spectra at a spectral resolution of 1 cm(-1) and at temperatures ranging from 295 to 845 K and concentrations from 5 to 400 mg/m(3). The program is based on loadings and scores from three principal component regression (PCR......) temperature calibration models. Three sets of 12 Hitran-simulated high-density spectra, each set spanning the entire temperature range at constant concentrations (50, 150, and 300 mg/m(3)), were used as calibration spectra in the PCR temperature models. All the spectra were convoluted with a sine...

  11. An Annular Mechanical Temperature Compensation Structure for Gas-Sealed Capacitive Pressure Sensor

    Science.gov (United States)

    Hao, Xiuchun; Jiang, Yonggang; Takao, Hidekuni; Maenaka, Kazusuke; Higuchi, Kohei

    2012-01-01

    A novel gas-sealed capacitive pressure sensor with a temperature compensation structure is reported. The pressure sensor is sealed by Au-Au diffusion bonding under a nitrogen ambient with a pressure of 100 kPa and integrated with a platinum resistor-based temperature sensor for human activity monitoring applications. The capacitance-pressure and capacitance-temperature characteristics of the gas-sealed capacitive pressure sensor without temperature compensation structure are calculated. It is found by simulation that a ring-shaped structure on the diaphragm of the pressure sensor can mechanically suppress the thermal expansion effect of the sealed gas in the cavity. Pressure sensors without/with temperature compensation structures are fabricated and measured. Through measured results, it is verified that the calculation model is accurate. Using the compensation structures with a 900 μm inner radius, the measured temperature coefficient is much reduced as compared to that of the pressure sensor without compensation. The sensitivities of the pressure sensor before and after compensation are almost the same in the pressure range from 80 kPa to 100 kPa. PMID:22969385

  12. Mass flow discharge and total temperature characterisation of a pyrotechnic gas generator formulation for airbag systems

    Energy Technology Data Exchange (ETDEWEB)

    Neutz, Jochen; Koenig, Andreas [Fraunhofer Institut fuer Chemische Technologie ICT, Pfinztal (Germany); Knauss, Helmut; Jordan, Sebastian; Roediger, Tim; Smorodsky, Boris [Universitaet Stuttgart (Germany). Institut fuer Aerodynamik und Gasdynamik; Bluemcke, Erich Walter [AUDI AG, Department I/EK-523, Ingolstadt (Germany)

    2009-06-15

    The mass flow characteristics of gas generators for airbag applications have to comply with a number of requirements for an optimal deployment of the airbag itself. Up to now, the mass flow was determined from pressure time histories of so-called can tests. This procedure suffers from the missing knowledge on the temperature of the generated gas entering the can. A new test setup described in this paper could overcome this problem by providing highly time resolved information on the gas's total temperature and the mass flow of the generator. The test setup consisted of a combustion chamber with a specially designed Laval nozzle in combination with a temperature sensor of high time resolution. The results showed a high time resolved temperature signal, which was disturbed by the formation of a slag layer on the sensor. Plausibility considerations with experimentally and thermodynamically determined combustion temperatures led to satisfying results for the overall temperature as characteristic parameter of airbag inflating gases flows from pyrotechnics. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  13. Supported Rh-phosphine complex catalysts for continuous gas-phase decarbonylation of aldehydes

    DEFF Research Database (Denmark)

    Malcho, Phillip; Garcia-Suarez, Eduardo J.; Mentzel, Uffe Vie

    2014-01-01

    Heterogeneous silica supported rhodium-phosphine complex catalysts are employed for the first time in the catalytic decarbonylation of aldehydes in continuous gas-phase. The reaction protocol is exemplified for the decarbonylation of p-tolualdehyde to toluene and further extended to other aromati...

  14. Gas-Phase Oxidation of Aqueous Ethanol by Nanoparticle Vanadia/Anatase Catalysts

    DEFF Research Database (Denmark)

    Jørgensen, Betina; Kristensen, Steffen Buus; Kunov-Kruse, Andreas Jonas

    2009-01-01

    The gas-phase oxidation of aqueous ethanol with dioxygen has been examined with a new nanoparticle V2O5/TiO2 catalyst. Product selectivity could to a large extent be controlled by small alterations of reaction parameters, allowing production of acetaldehyde at a selectivity higher than 90%, near...

  15. Measurements of solids concentration and axial solids velocity in gas-solid two-phase flows.

    NARCIS (Netherlands)

    Nieuwland, J.J.; Nieuwland, J.J.; Meijer, R.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    1996-01-01

    Several techniques reported in the literature for measuring solids concentration and solids velocity in (dense) gas-solid two-phase flow have been briefly reviewed. An optical measuring system, based on detection of light reflected by the suspended particles, has been developed to measure local

  16. Photoresponse of the protonated Schiff-base retinal chromophore in the gas phase

    DEFF Research Database (Denmark)

    Toker, Jonathan; Rahbek, Dennis Bo; Kiefer, H V

    2013-01-01

    The fragmentation, initiated by photoexcitation as well as collisionally-induced excitation, of several retinal chromophores was studied in the gas phase. The chromophore in the protonated Schiff-base form (RPSB), essential for mammalian vision, shows a remarkably selective photoresponse. The sel...

  17. DFT study of the reactions of Mo and Mo with CO 2 in gas phase

    Indian Academy of Sciences (India)

    Density functional theory (DFT) calculations have been performed to explore the potential energy surfaces of C-O bond activation in CO2 molecule by gas-phase Mo+ cation and Mo atom, in order to better understanding the mechanism of second-row metal reacting with CO2. The minimum energy reaction path is found to ...

  18. Imaging Molecular Structure through Femtosecond Photoelectron Diffraction on Aligned and Oriented Gas-Phase Molecules

    DEFF Research Database (Denmark)

    Boll, Rebecca; Rouzee, Arnaud; Adolph, Marcus

    2014-01-01

    This paper gives an account of our progress towards performing femtosecond time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe setup combining optical lasers and an X-ray Free-Electron Laser. We present results of two experiments aimed at measuring photoelectron angular...

  19. Methylation of 2-Naphthol Using Dimethyl Carbonate under Continuous-Flow Gas-Phase Conditions

    Science.gov (United States)

    Tundo, Pietro; Rosamilia, Anthony E.; Arico, Fabio

    2010-01-01

    This experiment investigates the methylation of 2-naphthol with dimethyl carbonate. The volatility of the substrates, products, and co-products allows the reaction to be performed using a continuous-flow gas-phase setup at ambient pressure. The reaction uses catalytic quantities of base, achieves high conversion, produces little waste, and…

  20. Field ionization kinetic and electron impact studies of gas phase transition states - The cyclic bromonium ion

    Science.gov (United States)

    Green, M. M.; Giguere, R. J.; Falick, A. M.; Aberth, W.; Burlingame, A. L.

    1978-01-01

    Cis- and trans-isomers of 4-t-butylcyclohexyl bromide were studied to determine the mechanism of cyclic bromonium ion formation. The field ionization kinetic and electron impact data indicate that the formation of the cyclic structure occurs simultaneously with loss of the neutral fragment. The data also show that little or no gas-phase cis-trans isomerization occurs.

  1. Humidity independent mass spectrometry for gas phase chemical analysis via ambient proton transfer reaction.

    Science.gov (United States)

    Zhu, Hongying; Huang, Guangming

    2015-03-31

    In this work, a humidity independent mass spectrometric method was developed for rapid analysis of gas phase chemicals. This method is based upon ambient proton transfer reaction between gas phase chemicals and charged water droplets, in a reaction chamber with nearly saturate humidity under atmospheric pressure. The humidity independent nature enables direct and rapid analysis of raw gas phase samples, avoiding time- and sample-consuming sample pretreatments in conventional mass spectrometry methods to control sample humidity. Acetone, benzene, toluene, ethylbenzene and meta-xylene were used to evaluate the analytical performance of present method. The limits of detection for benzene, toluene, ethylbenzene and meta-xylene are in the range of ∼0.1 to ∼0.3 ppbV; that of benzene is well below the present European Union permissible exposure limit for benzene vapor (5 μg m(-3), ∼1.44 ppbV), with linear ranges of approximately two orders of magnitude. The majority of the homemade device contains a stainless steel tube as reaction chamber and an ultrasonic humidifier as the source of charged water droplets, which makes this cheap device easy to assemble and facile to operate. In addition, potential application of this method was illustrated by the real time identification of raw gas phase chemicals released from plants at different physiological stages. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Experimental Gas-Phase Thermochemistry for Alkane Reductive Elimination from Pt(IV)

    NARCIS (Netherlands)

    Couzijn, Erik P. A.; Kobylianskii, Ilia J.; Moret, Marc-Etienne; Chen, Peter

    2014-01-01

    The gas-phase reactivity of the [(NN)(PtMe3)-Me-IV](+) (NN = alpha-diimine) complex 1 and its acetonitrile adduct has been investigated by tandem mass spectrometry. The only observed reaction from the octahedral d(6) complex 1 center dot MeCN is the simple dissociation of the coordinated solvent

  3. Laser-induced photochemical gas-phase reactions of vibrationally excited triplet molecules

    Science.gov (United States)

    Zalesskaya, G. A.; Yakovlev, D. L.; Sambor, E. G.

    2002-05-01

    Mechanisms and rates of laser-induced gas-phase reactions of vibrationally excited triplet ketones were studied after adding electron and hydrogen donors using time-resolved delayed fluorescence. The influence of various bimolecular competing processes on DF quenching was analyzed.

  4. Ethylene polymerization kinetics with a heteregeneous catalyst - Comparison of gas and slurry phases

    NARCIS (Netherlands)

    Bergstra, M.F.; Weickert, G.

    2005-01-01

    Ethylene homopolymerizations were executed with a supported Ind2ZrCl2/MAO catalyst using the so-called Reactive Bed Preparation method. This RBP method combined a slurry polymerization with a gas phase polymerization with the same polymerizing particles, i.e., a reactive bed. Polymerization kinetics

  5. Regular arrangement of nanoparticles from the gas phase on bacterial surface-protein layers

    Science.gov (United States)

    Queitsch, Ute; Mohn, Elias; Schäffel, Franziska; Schultz, Ludwig; Rellinghaus, Bernd; Blüher, Anja; Mertig, Michael

    2007-03-01

    FePt nanoparticles from the gas phase are deposited onto the two-dimensional crystalline surface layer protein from the bacterium Bacillus sphaericus NCTC 9602. The potential of this protein layer to facilitate the ordered spatial arrangement of the otherwise statistically distributed nanoparticles on the substrate is studied. Transmission electron microscopy reveals the particles positions to be directed by the regular protein template.

  6. Photo-fragmentation and electron-detachment studies of gas-phase chromophore ions

    DEFF Research Database (Denmark)

    Rahbek, Dennis Bo

    -physical properties of two important bio-chromophores by investigating the properties of structural isomers of these molecules. The chromophores are the ones found in the green fluorescent protein and the photoactive yellow protein. The photo-physical properties have been studied experimentally in the gas phase...

  7. Relaxation of heavy species and gas temperature in the afterglow of a N2 microwave discharge★

    Science.gov (United States)

    Pintassilgo, Carlos D.; Guerra, Vasco

    2017-10-01

    In this paper we present a self-consistent kinetic model to study the temporal variation of the gas temperature in the afterglow of a 440 Pa microwave nitrogen discharge operating at 433 MHz in a 3.8 cm diameter tube. The initial conditions in the afterglow are determined by a kinetic model that solves the electron Boltzmann equation coupled to the gas thermal balance equation and a system of rate-balance equations for N2(X 1∑g+, v) molecules, electronically excited states of N2, ground and excited states of atomic nitrogen and the main positive ions. Once the initial concentrations of the heavy species and gas temperature are known, their relaxation in the afterglow is obtained from the solutions to the corresponding time-dependent equations. Modelling predictions are found to be in good agreement with previously measured values for the concentrations of N(4S) atoms and N2(A 3∑u+) molecules, and the radially averaged gas temperature Tg along the afterglow of a microwave discharge in N2 under the same working conditions. It is shown that gas heating in the afterglow comes essentially from the energy transfer involving non-resonant vibration-vibration (V-V) collisions between vibrationally excited nitrogen molecules, as well as from energy exchanges in vibration-translation (V-T) on N2-N collisions. Contribution to the topical issue "Plasma Sources and Plasma Processes (PSPP)", edited by Luis Lemos Alves, Thierry Belmonte and Tiberiu Minea

  8. Oxidation of Pt(1 1 1) by gas-phase oxygen atoms

    Science.gov (United States)

    Weaver, Jason F.; Chen, Jau-Jiun; Gerrard, Alex L.

    2005-11-01

    The oxidation of Pt(1 1 1) by gas-phase oxygen atoms was investigated in ultrahigh vacuum using temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), electron energy loss spectroscopy (ELS) and low energy electron diffraction (LEED). Atomic oxygen coverages as high as 2.9 ML (monolayers) could be generated on Pt(1 1 1) using an atomic oxygen beam, and both the adsorption of oxygen atoms and the progression of surface oxygen phases with increasing atomic oxygen coverage are found to be relatively insensitive to the surface temperature over the range from 250 to 450 K. The results show that oxidation involves the development of a chemisorbed layer for oxygen coverages up to about 0.75 ML, and that the average binding energy of an oxygen atom chemisorbed on Pt(1 1 1) decreases significantly (˜100 kJ/mol) with increasing oxygen coverage, in agreement with previous observations [D.H. Parker, M.E. Bartram, B.E. Koel, Surf. Sci. 217 (1989) 489, N.A. Saliba, Y.-L. Tsai, C. Panja, B.E. Koel, Surf. Sci. 419 (1999) 79]. Long-range order in the chemisorbed layer generally diminishes as the oxygen coverage increases above the 0.25 ML saturation coverage of the p(2 × 2) layer, though the persistence of a (2 × 2) LEED pattern up to about 0.50 ML is consistent with the formation of domains of a new, high-density ordered phase. Disordering within the chemisorbed layer becomes more pronounced with continued atomic oxygen adsorption to coverages greater than 0.50 ML. Distinct features in the O 2 thermal desorption traces at 650 K and 560 K are attributed to the desorption of oxygen from a high-density ordered phase and disordered domains, respectively, which suggests that the binding energy is lowest for oxygen atoms chemisorbed in the disordered domains. Increasing the atomic oxygen coverage above approximately 0.75 ML is shown to result in the growth of Pt oxide particles and disordering of the Pt surface. Decomposition of the Pt oxide particles

  9. Techniques in Gas-Phase Thermolyses. Part 6. Pulse Pyrolysis: Gas Kinetic Studies in an Inductively Heated Flow Reactor

    DEFF Research Database (Denmark)

    Egsgaard, Helge; Bo, P.; Carlsen, Lars

    1985-01-01

    A prototype of an inductively heated flow reactor for gas kinetic studies is presented. The applicability of the system, which is based on a direct coupling between the reactor and the ion source of a mass spectrometer, is illustrated by investigations of a series of simple bond fission reactions....... The method permits the direct determination of low-pressure rate constants, the transformation to high-pressure values, and correspondingly evaluation of activation parameters, being derived by means of an empirical effective temperature approach.......A prototype of an inductively heated flow reactor for gas kinetic studies is presented. The applicability of the system, which is based on a direct coupling between the reactor and the ion source of a mass spectrometer, is illustrated by investigations of a series of simple bond fission reactions...

  10. Platinum-modulated cobalt nanocatalysts for low-temperature aqueous-phase Fischer-Tropsch synthesis.

    Science.gov (United States)

    Wang, Hang; Zhou, Wu; Liu, Jin-Xun; Si, Rui; Sun, Geng; Zhong, Meng-Qi; Su, Hai-Yan; Zhao, Hua-Bo; Rodriguez, Jose A; Pennycook, Stephen J; Idrobo, Juan-Carlos; Li, Wei-Xue; Kou, Yuan; Ma, Ding

    2013-03-13

    Fischer-Tropsch synthesis (FTS) is an important catalytic process for liquid fuel generation, which converts coal/shale gas/biomass-derived syngas (a mixture of CO and H2) to oil. While FTS is thermodynamically favored at low temperature, it is desirable to develop a new catalytic system that could allow working at a relatively low reaction temperature. In this article, we present a one-step hydrogenation-reduction route for the synthesis of Pt-Co nanoparticles (NPs) which were found to be excellent catalysts for aqueous-phase FTS at 433 K. Coupling with atomic-resolution scanning transmission electron microscopy (STEM) and theoretical calculations, the outstanding activity is rationalized by the formation of Co overlayer structures on Pt NPs or Pt-Co alloy NPs. The improved energetics and kinetics from the change of the transition states imposed by the lattice mismatch between the two metals are concluded to be the key factors responsible for the dramatically improved FTS performance.

  11. Simulation of phase separation with temperature-dependent viscosity using lattice Boltzmann method.

    Science.gov (United States)

    Wang, Heping; Zang, Duyang; Li, Xiaoguang; Geng, Xingguo

    2017-12-27

    This paper presents an exploration of the phase separation behavior and pattern formation in a binary fluid with temperature-dependent viscosity via a coupled lattice Boltzmann method (LBM). By introducing a viscosity-temperature relation into the LBM, the coupling effects of the viscosity-temperature coefficient [Formula: see text] , initial viscosity [Formula: see text] and thermal diffusion coefficient [Formula: see text] , on the phase separation were successfully described. The calculated results indicated that an increase in initial viscosity and viscosity-temperature coefficient, or a decrease in the thermal diffusion coefficient, can lead to the orientation of isotropic growth fronts over a wide range of viscosity. The results showed that droplet-type phase structures and lamellar phase structures with domain orientation parallel or perpendicular to the walls can be obtained in equilibrium by controlling the initial viscosity, thermal diffusivity, and the viscosity-temperature coefficient. Furthermore, the dataset was rearranged for growth kinetics of domain growth and thermal diffusion fronts in a plot by the spherically averaged structure factor and the ratio of separated and continuous phases. The analysis revealed two different temporal regimes: spinodal decomposition and domain growth stages, which further quantified the coupled effects of temperature and viscosity on the evolution of temperature-dependent phase separation. These numerical results provide guidance for setting optimum temperature ranges to obtain expected phase separation structures for systems with temperature-dependent viscosity.

  12. Analytical solution of gas bubble dynamics between two-phase flow

    Science.gov (United States)

    Mohammadein, S. A.; Shalaby, G. A.; Abu-Bakr, A. F.; Abu-Nab, A. K.

    The growth of a gas bubble between two-phase flow represents the current physical problem. The mathematical model is performed by mass, momentum and diffusion equations. The Problem is solved analytically by using the modified Plesset and Zwick method. The growth process is affected by shear stress, coefficient of consistency, surface tension and void fraction in order to derive the growth of a gas bubble between two-phase in non-Newtonian fluids. The growth of a gas bubble in non-Newtonian fluids flow performs lower values than that in case of Newtonian one. The initial time of bubble growth for the different values of superheating and flow index n in the thermal stage is obtained. Moreover, the effect of critical bubble radius Rcr is studied on the growth process. The results satisfy the growth model in Newtonian fluids given by Foster and Zuber (1954) [34] and Scriven theory (Scriven, 1959) [35] for limited values of physical parameters.

  13. Temperature-driven topological quantum phase transitions in a phase-change material Ge2Sb2Te5.

    Science.gov (United States)

    Eremeev, S V; Rusinov, I P; Echenique, P M; Chulkov, E V

    2016-12-13

    The Ge2Sb2Te5 is a phase-change material widely used in optical memory devices and is a leading candidate for next generation non-volatile random access memory devices which are key elements of various electronics and portable systems. Despite the compound is under intense investigation its electronic structure is currently not fully understood. The present work sheds new light on the electronic structure of the Ge2Sb2Te5 crystalline phases. We demonstrate by predicting from first-principles calculations that stable crystal structures of Ge2Sb2Te5 possess different topological quantum phases: a topological insulator phase is realized in low-temperature structure and Weyl semimetal phase is a characteristic of the high-temperature structure. Since the structural phase transitions are caused by the temperature the switching between different topologically non-trivial phases can be driven by variation of the temperature. The obtained results reveal the rich physics of the Ge2Sb2Te5 compound and open previously unexplored possibility for spintronics applications of this material, substantially expanding its application potential.

  14. Comparative simulation study of gas-phase propylene polymerization in fluidized bed reactors using aspen polymers and two phase models

    Directory of Open Access Journals (Sweden)

    Shamiria Ahmad

    2013-01-01

    Full Text Available A comparative study describing gas-phase propylene polymerization in fluidized-bed reactors using Ziegler-Natta catalyst is presented. The reactor behavior was explained using a two-phase model (which is based on principles of fluidization as well as simulation using the Aspen Polymers process simulator. The two-phase reactor model accounts for the emulsion and bubble phases which contain different portions of catalysts with the polymerization occurring in both phases. Both models predict production rate, molecular weight, polydispersity index (PDI and melt flow index (MFI of the polymer. We used both models to investigate the effect of important polymerization parameters, namely catalyst feed rate and hydrogen concentration, on the product polypropylene properties, such as production rate, molecular weight, PDI and MFI. Both the two-phase model and Aspen Polymers simulator showed good agreement in terms of production rate. However, the models differed in their predictions for weight-average molecular weight, PDI and MFI. Based on these results, we propose incorporating the missing hydrodynamic effects into Aspen Polymers to provide a more realistic understanding of the phenomena encountered in fluidized bed reactors for polyolefin production.

  15. Analysis of Precooling Injection Transient of Steam Generator for High Temperature Gas Cooled Reactor

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2017-01-01

    Full Text Available After a postulated design basis accident leads high temperature gas cooled reactor to emergency shutdown, steam generator still remains with high temperature level and needs to be cooled down by a precooling before reactor restarts with clearing of fault. For the large difference of coolant temperature between inlet and outlet of steam generator in normal operation, the temperature distribution on the components of steam generator is very complicated. Therefore, the temperature descending rate of the components in steam generator needs to be limited to avoid the potential damage during the precooling stage. In this paper, a pebble-bed high temperature gas cooled reactor is modeled by thermal-hydraulic system analysis code and several postulated precooling injection transients are simulated and compared to evaluate their effects, which will provide support for the precooling design. The analysis results show that enough precooling injection is necessary to satisfy the precooling requirements, and larger mass flow rate of precooling water injection will accelerate the precooling process. The temperature decrease of steam generator is related to the precooling injection scenarios, and the maximal mass flow rate of the precooling injection should be limited to avoid the excessively quick temperature change of the structures in steam generator.

  16. Effects of gas temperature on nozzle damping experiments on cold-flow rocket motors

    Science.gov (United States)

    Sun, Bing-bing; Li, Shi-peng; Su, Wan-xing; Li, Jun-wei; Wang, Ning-fei

    2016-09-01

    In order to explore the impact of gas temperature on the nozzle damping characteristics of solid rocket motor, numerical simulations were carried out by an experimental motor in Naval Ordnance Test Station of China Lake in California. Using the pulse decay method, different cases were numerically studied via Fluent along with UDF (User Defined Functions). Firstly, mesh sensitivity analysis and monitor position-independent analysis were carried out for the computer code validation. Then, the numerical method was further validated by comparing the calculated results and experimental data. Finally, the effects of gas temperature on the nozzle damping characteristics were studied in this paper. The results indicated that the gas temperature had cooperative effects on the nozzle damping and there had great differences between cold flow and hot fire test. By discussion and analysis, it was found that the changing of mainstream velocity and the natural acoustic frequency resulted from gas temperature were the key factors that affected the nozzle damping, while the alteration of the mean pressure had little effect. Thus, the high pressure condition could be replaced by low pressure to reduce the difficulty of the test. Finally, the relation of the coefficients "alpha" between the cold flow and hot fire was got.

  17. Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee Nelson

    2011-09-01

    This report is a summary of analyses performed by the NGNP project to determine whether it is technically and economically feasible to integrate high temperature gas cooled reactor (HTGR) technology into industrial processes. To avoid an overly optimistic environmental and economic baseline for comparing nuclear integrated and conventional processes, a conservative approach was used for the assumptions and calculations.

  18. Characterization of the global impact of low temperature gas plasma on vegetative microorganisms.

    NARCIS (Netherlands)

    Winter, T.; Winter, J.; Polak, M.; Kusch, K.; Mader, U.; Sietmann, R.; Ehlbeck, J.; Hijum, S.A.F.T. van; Weltmann, K.D.; Hecker, M.; Kusch, H.

    2011-01-01

    Plasma medicine and also decontamination of bacteria with physical plasmas is a promising new field of life science with huge interest especially for medical applications. Despite numerous successful applications of low temperature gas plasmas in medicine and decontamination, the fundamental nature

  19. Physiological and transcriptional response of Bacillus cereus treated with low-temperature nitrogen gas plasma

    NARCIS (Netherlands)

    Mols, J.M.; Mastwijk, H.C.; Nierop Groot, M.N.; Abee, T.

    2013-01-01

    Aims - This study was conducted to investigate the inactivation kinetics of Bacillus cereus vegetative cells upon exposure to low-temperature nitrogen gas plasma and to reveal the mode of inactivation by transcriptome profiling. Methods and Results - Exponentially growing B. cereus cells were

  20. Parametric analysis of a high temperature packed bed thermal storage design for a solar gas turbine

    CSIR Research Space (South Africa)

    Klein, P

    2015-08-01

    Full Text Available The development of a high temperature Thermal Energy Storage (TES) system will allow for high solar shares in Solar Gas Turbine (SGT) plants. In this research a pressurised storage solution is proposed that utilises a packed bed of alumina spheres...