WorldWideScience

Sample records for temperature gas phase

  1. The Influence of Mixing in High Temperature Gas Phase Reactions

    DEFF Research Database (Denmark)

    Østberg, Martin

    1996-01-01

    by injection of NH3 with carrier gas into the flue gas. NH3 can react with NO and form N2, but a competing reaction path is the oxidation of NH3 to NO.The SNR process is briefly described and it is shown by chemical kinetic modelling that OH radicals under the present conditions will initiate the reaction......The objective of this thesis is to describe the mixing in high temperature gas phase reactions.The Selective Non-Catalytic Reduction of NOx (referred as the SNR process) using NH3 as reductant was chosen as reaction system. This in-furnace denitrification process is made at around 1200 - 1300 K...... diffusion. The SNR process is simulated using the mixing model and an empirical kinetic model based on laboratory experiments.A bench scale reactor set-up has been built using a natural gas burner to provide the main reaction gas. The set-up has been used to perform an experimental investigation...

  2. Temperature dependence of muonium reaction rates in the gas phase

    International Nuclear Information System (INIS)

    Fleming, D.G.; Garner, D.M.; Mikula, R.J.; British Columbia Univ., Vancouver

    1981-01-01

    A study of the temperature dependence of reaction rates has long been an important tool in establishing reaction pathways in chemical reactions. This is particularly true for the reactions of muonium (in comparison with those of hydrogen) since a measurement of the activation energy for chemical reaction is sensitive to both the height and the position of the potential barrier in the reaction plane. For collision controlled reactions, on the other hand, the reaction rate is expected to exhibit a weak T 1 sup(/) 2 dependence characteristic of the mean collision velocity. These concepts are discussed and their effects illustrated in a comparison of the chemical and spin exchange reaction rates of muonium and hydrogen in the temperature range approx.300-approx.500 K. (orig.)

  3. Liquid-gas phase transition in asymmetric nuclear matter at finite temperature

    International Nuclear Information System (INIS)

    Maruyama, Toshiki; Tatsumi, Toshitaka; Chiba, Satoshi

    2010-01-01

    Liquid-gas phase transition is discussed in warm asymmetric nuclear matter. Some peculiar features are figured out from the viewpoint of the basic thermodynamics about the phase equilibrium. We treat the mixed phase of the binary system based on the Gibbs conditions. When the Coulomb interaction is included, the mixed phase is no more uniform and the sequence of the pasta structures appears. Comparing the results with those given by the simple bulk calculation without the Coulomb interaction, we extract specific features of the pasta structures at finite temperature.

  4. Liquid-gas phase transition in asymmetric nuclear matter at finite temperature

    Science.gov (United States)

    Maruyama, Toshiki; Tatsumi, Toshitaka; Chiba, Satoshi

    2010-03-01

    Liquid-gas phase transition is discussed in warm asymmetric nuclear matter. Some peculiar features are figured out from the viewpoint of the basic thermodynamics about the phase equilibrium. We treat the mixed phase of the binary system based on the Gibbs conditions. When the Coulomb interaction is included, the mixed phase is no more uniform and the sequence of the pasta structures appears. Comparing the results with those given by the simple bulk calculation without the Coulomb interaction, we extract specific features of the pasta structures at finite temperature.

  5. Temperature dependence of the particle/gas partition coefficient: An application to predict indoor gas-phase concentrations of semi-volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wenjuan, E-mail: Wenjuan.Wei@cstb.fr [University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2 (France); Mandin, Corinne [University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2 (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); Blanchard, Olivier [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Mercier, Fabien [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Pelletier, Maud [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Le Bot, Barbara [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); and others

    2016-09-01

    The indoor gas-phase concentrations of semi-volatile organic compounds (SVOCs) can be predicted from their respective concentrations in airborne particles by applying the particle/gas partitioning equilibrium. The temperature used for partitioning is often set to 25 °C. However, indoor temperatures frequently differ from this reference value. This assumption may result in errors in the predicted equilibrium gas-phase SVOC concentrations. To improve the prediction model, the temperature dependence of the particle/gas partition coefficient must be addressed. In this paper, a theoretical relationship between the particle/gas partition coefficient and temperature was developed based on the SVOC absorptive mechanism. The SVOC particle/gas partition coefficients predicted by employing the derived theoretical relationship agree well with the experimental data retrieved from the literature (R > 0.93). The influence of temperature on the equilibrium gas-phase SVOC concentration was quantified by a dimensionless analysis of the derived relationship between the SVOC particle/gas partition coefficient and temperature. The predicted equilibrium gas-phase SVOC concentration decreased by between 31% and 53% when the temperature was lowered by 6 °C, while it increased by up to 750% when the indoor temperature increased from 15 °C to 30 °C. - Highlights: • A theoretical relationship between K{sub p} and temperature was developed. • The relationship was based on the SVOC absorptive mechanism. • The temperature impact was quantified by a dimensionless analysis.

  6. Phase transitions and steady-state microstructures in a two-temperature lattice-gas model with mobile active impurities

    DEFF Research Database (Denmark)

    Henriksen, Jonas Rosager; Sabra, Mads Christian; Mouritsen, Ole G.

    2000-01-01

    The nonequilibrium, steady-state phase transitions and the structure of the different phases of a two-dimensional system with two thermodynamic temperatures are studied via a simple lattice-gas model with mobile active impurities ("hot/cold spots'') whose activity is controlled by an external drive...... on the temperatures, microstructured phases of both lamellar and droplet symmetry arise, described by a length scale that is determined by the characteristic temperature controlling the diffusive motion of the active impurities....

  7. An improved stochastic algorithm for temperature-dependent homogeneous gas phase reactions

    CERN Document Server

    Kraft, M

    2003-01-01

    We propose an improved stochastic algorithm for temperature-dependent homogeneous gas phase reactions. By combining forward and reverse reaction rates, a significant gain in computational efficiency is achieved. Two modifications of modelling the temperature dependence (with and without conservation of enthalpy) are introduced and studied quantitatively. The algorithm is tested for the combustion of n-heptane, which is a reference fuel component for internal combustion engines. The convergence of the algorithm is studied by a series of numerical experiments and the computational cost of the stochastic algorithm is compared with the DAE code DASSL. If less accuracy is needed the stochastic algorithm is faster on short simulation time intervals. The new stochastic algorithm is significantly faster than the original direct simulation algorithm in all cases considered.

  8. Gas-Phase Thermolyses

    DEFF Research Database (Denmark)

    Carlsen, Lars; Egsgaard, Helge

    1982-01-01

    The unimolecular gas-phase thermolyses of 1,2,3-oxadithiolan 2-oxide and thiiran 1-oxide have been studied by the flash vacuum thermolysis–field ionization mass spectrometry (f.v.t.–f.i.m.s.) technique in the temperature range from 1 043 to 1 404 K. The reactions are rationalized in terms of sulp...

  9. Gas-Phase Thermolyses

    DEFF Research Database (Denmark)

    Carlsen, Lars; Egsgaard, Helge

    1982-01-01

    The unimolecular gas-phase thermolyses of the four methyl and ethyl monothioacetates (5)–(8) have been studied by the flash vacuum thermolysis–field ionization mass spectrometry technique in the temperature range 883–1 404 K. The types of reactions verified were keten formation, thiono–thiolo rea...

  10. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 1 covers papers on the advances of gas phase ion chemistry. The book discusses the advances in flow tubes and the measurement of ion-molecule rate coefficients and product distributions; the ion chemistry of the earth's atmosphere; and the classical ion-molecule collision theory. The text also describes statistical methods in reaction dynamics; the state selection by photoion-photoelectron coincidence; and the effects of temperature and pressure in the kinetics of ion-molecule reactions. The energy distribution in the unimolecular decomposition of ions, as well

  11. High temperature gasification and gas cleaning – phase II of the HotVegas project

    OpenAIRE

    Meysel, P.; Halama, S.; Botteghi, F.; Steibel, M.; Nakonz, M.; Rück, R.; Kurowski, P.; Buttler, A.; Spliethoff, H.

    2016-01-01

    The primary objective of the research project HotVeGas is to lay the necessary foundations for the long-term development of future, highly efficient high-temperature gasification processes. This includes integrated hot gas cleaning and optional CO2 capture and storage for next generation IGCC power plants and processes for the development of synthetic fuels. The joint research project is funded by the German Federal Ministry of Economics and Technology and five industry partners. It is coordi...

  12. Electron Scattering Studies of Gas Phase Molecular Structure at High Temperature

    Science.gov (United States)

    Mawhorter, Richard J., Jr.

    A high precision counting electron diffraction study of the structure of gaseous sulfur dioxide as a function of temperature from 300(DEGREES) to 1000(DEGREES)K is presented. The results agree well with current theory, and yield insight into the effects of anharmonicity on molecular structure. Another aspect of molecular structure is the molecular charge density distribution. The difference (DELTA)(sigma) is between the electron scattering cross sections for the actual molecule and independent atom model (IAM) are a sensitive measure of the change in this distribution due to bond formation. These difference cross sections have been calculated using ab initio methods, and the results for a wide range of simple polyatomic molecules are presented. Such calculations are routinely done for a single, fixed molecular geometry, an approach which neglects the effects of the vibrational motion of real molecules. The effect of vibrational averaging is studied in detail for the three normal vibrational modes of H(,2)O in the ground state. The effects are small, lending credence to the practice of comparing cross sections calculated at a fixed geometry with inherently averaged experimental data. The efficacy of the standard formula used to account for vibrational averaging in the IAM is also examined. Finally, the nature of the ionic bond is probed with an experimental study of the structure of alkali chlorides, NaCl, KCl, RbCl, and CsCl, in the gas phase. Temperatures from 840-960(DEGREES)K were required to achieve the necessary vapor pressures of approximately 0.01 torr. A planar rhombic structure for the dimer molecule is confirmed, with a fairly uniform decrease of the chlorine-alkali-chlorine angle as the alkalis increase in size. The experiment also yields information on the amount of dimer present in the vapor, and these results are compared with thermodynamic values.

  13. Gas-Phase Thermolysis

    DEFF Research Database (Denmark)

    Carlsen, Lars; Egsgaard, Helge; Schaumann, Ernst

    1980-01-01

    The unimolecular gas-phase thermolytic decomposition of three silylated thionocarboxylic acid derivatives (2b), (3), and (8) have been studied by the flash vacuum thermolysis–field ionization mass spectrometry technique in the temperature range from 783 to 1 404 K in order to elucidate its possible...... applicability as a route to thioketens. Only very minor amounts of the expected thioketens were found, whereas the corresponding ketens were obtained as the major products. A possible mechanism for keten formation is discussed....

  14. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 2 covers the advances in gas phase ion chemistry. The book discusses the stabilities of positive ions from equilibrium gas-phase basicity measurements; the experimental methods used to determine molecular electron affinities, specifically photoelectron spectroscopy, photodetachment spectroscopy, charge transfer, and collisional ionization; and the gas-phase acidity scale. The text also describes the basis of the technique of chemical ionization mass spectrometry; the energetics and mechanisms of unimolecular reactions of positive ions; and the photodissociation

  15. Surface modification of superaustenitic and maraging stainless steels by low-temperature gas-phase carburization

    Science.gov (United States)

    Gentil, Johannes

    Low-temperature gas-phase carburization of 316L austenitic stainless steel was developed in recent years by the Swagelok company. This process generates great mechanical and electrochemical surface properties. Hardness, wear resistance, fatigue behavior, and corrosion resistance are dramatically improved, while the formation of carbides is effectively suppressed. This new technique is of technical, economical, but especially of scientific interest because the surface properties of common stainless steel can be enhanced to a level of more sophisticated and more expensive superalloys. The consequential continuation of previous research is the application of the carburization process to other steel grades. Differences in chemical composition, microstructure, and passivity between the various alloys may cause technical problems and it is expected that the initial process needs to be optimized for every specific material. This study presents results of low-temperature carburization of AL-6XN (superaustenitic stainless steel) and PH13-8Mo (precipitation-hardened martensitic stainless steel). Both alloys have been treated successfully in terms of creating a hardened surface by introducing high amounts of interstitially dissolved carbon. The surface hardness of AL-6XN was increased to 12GPa and is correlated with a colossal carbon supersaturation at the surface of up to 20 at.%. The hardened case develops a carburization time-dependent thickness between 10mum after one carburization cycle and up to 35mum after four treatments and remains highly ductile. Substantial broadening of X-ray diffraction peaks in low-temperature carburized superaustenitic stainless steels are attributed to the generation of very large compressive biaxial residual stresses. Those large stresses presumably cause relaxations of the surface, so-called undulations. Heavily expanded regions of carburized AL-6XN turn ferromagnetic. Non-carburized AL-6XN is known for its outstanding corrosion resistance

  16. Determining Role of the Chain Mechanism in the Temperature Dependence of the Gas-Phase Rate of Combustion Reactions

    Science.gov (United States)

    Azatyan, V. V.; Bolod'yan, I. A.; Kopylov, N. P.; Kopylov, S. N.; Prokopenko, V. M.; Shebeko, Yu. N.

    2018-05-01

    It is shown that the strong dependence of the rate of gas-phase combustion reactions on temperature is determined by the high values of the reaction rate constants of free atoms and radicals. It is established that with a branched chain mechanism, a special role in the reaction rate temperature dependence is played by positive feedback between the concentrations of active intermediate species and the rate of their change. The role of the chemical mechanism in the temperature dependence of the process rate with and without inhibitors is considered.

  17. Effect of Machine Smoking Intensity and Filter Ventilation Level on Gas-Phase Temperature Distribution Inside a Burning Cigarette

    Directory of Open Access Journals (Sweden)

    Li Bin

    2015-01-01

    Full Text Available Accurate measurements of cigarette coal temperature are essential to understand the thermophysical and thermo-chemical processes in a burning cigarette. The last system-atic studies of cigarette burning temperature measurements were conducted in the mid-1970s. Contemporary cigarettes have evolved in design features and multiple standard machine-smoking regimes have also become available, hence there is a need to re-examine cigarette combustion. In this work, we performed systematic measurements on gas-phase temperature of burning cigarettes using an improved fine thermocouple technique. The effects of machine-smoking parameters (puff volume and puff duration and filter ventilation levels were studied with high spatial and time resolutions during single puffs. The experimental results were presented in a number of differ-ent ways to highlight the dynamic and complex thermal processes inside a burning coal. A mathematical distribution equation was used to fit the experimental temperature data. Extracting and plotting the distribution parameters against puffing time revealed complex temperature profiles under different coal volume as a function of puffing intensities or filter ventilation levels. By dividing the coal volume prior to puffing into three temperature ranges (low-temperature from 200 to 400 °C, medium-temperature from 400 to 600 °C, and high-temperature volume above 600 °C by following their development at different smoking regimes, useful mechanistic details were obtained. Finally, direct visualisation of the gas-phase temperature through detailed temperature and temperature gradient contour maps provided further insights into the complex thermo-physics of the burning coal. [Beitr. Tabakforsch. Int. 26 (2014 191-203

  18. Gas phase analysis of CO interactions with solid surfaces at high temperatures

    International Nuclear Information System (INIS)

    Anghel, Clara; Hoernlund, Erik; Hultquist, Gunnar; Limbaeck, Magnus

    2004-01-01

    An in situ method including mass spectrometry and labeled gases is presented and used to gain information on adsorption of molecules at high temperatures (>300 deg. C). Isotopic exchange rate in H 2 upon exposure to an oxidized zicaloy-2 sample and exchange rate in CO upon exposure to various materials have been measured. From these measurements, molecular dissociation rates in respective system have been calculated. The influence of CO and N 2 on the uptake rate of H 2 in zirconium and oxidized zicaloy-2 is discussed in terms of tendency for adsorption at high temperatures. In the case of oxidized Cr exposed to CO gas with 12 C, 13 C, 16 O and 18 O, the influence of H 2 O is investigated with respect to dissociation of CO molecules. The presented data supports a view of different tendencies for molecular adsorption of H 2 O, CO, N 2 , and H 2 molecules on surfaces at high temperatures

  19. Self-assembly of gas-phase synthesized magnesium nanoparticles on room temperature substrates

    International Nuclear Information System (INIS)

    Venturi, F; Calizzi, M; Pasquini, L; Bals, S; Perkisas, T

    2015-01-01

    Magnesium nanoparticles (NPs) with initial size in the 10–50 nm range were synthesized by inert gas condensation under helium flow and deposited on room temperature substrates. The morphology and crystal structure of the NPs ensemble were investigated as a function of the deposition time by complementary electron microscopy techniques, including high resolution imaging and chemical mapping. With increasing amount of material, strong coarsening phenomena were observed at room temperature: small NPs disappeared while large faceted NPs developed, leading to a 5-fold increase of the average NPs size within a few minutes. The extent of coarsening and the final morphology depended also on the nature of the substrate. Furthermore, large single-crystal NPs were seen to arise from the self-organization of primary NPs units, providing a mechanism for crystal growth. The dynamics of the self-assembly process involves the basic steps of NPs sticking, diffusion on substrate, coordinated rotation and attachment/coalescence. Key features are the surface energy anisotropy, reflected by the faceted shape of the NPs, and the low melting point of the material. The observed phenomena have strong implications in relation to the synthesis and stability of nanostructures based on Mg or other elements with similar features. (paper)

  20. In-situ study of the gas-phase composition and temperature of an intermediate-temperature solid oxide fuel cell anode surface fed by reformate natural gas

    Science.gov (United States)

    Santoni, F.; Silva Mosqueda, D. M.; Pumiglia, D.; Viceconti, E.; Conti, B.; Boigues Muñoz, C.; Bosio, B.; Ulgiati, S.; McPhail, S. J.

    2017-12-01

    An innovative experimental setup is used for in-depth and in-operando characterization of solid oxide fuel cell anodic processes. This work focuses on the heterogeneous reactions taking place on a 121 cm2 anode-supported cell (ASC) running with a H2, CH4, CO2, CO and steam gas mixture as a fuel, using an operating temperature of 923 K. The results have been obtained by analyzing the gas composition and temperature profiles along the anode surface in different conditions: open circuit voltage (OCV) and under two different current densities, 165 mA cm-2 and 330 mA cm-2, corresponding to 27% and 54% of fuel utilization, respectively. The gas composition and temperature analysis results are consistent, allowing to monitor the evolution of the principal chemical and electrochemical reactions along the anode surface. A possible competition between CO2 and H2O in methane internal reforming is shown under OCV condition and low current density values, leading to two different types of methane reforming: Steam Reforming and Dry Reforming. Under a current load of 40 A, the dominance of exothermic reactions leads to a more marked increase of temperature in the portion of the cell close to the inlet revealing that current density is not uniform along the anode surface.

  1. An atmospheric pressure high-temperature laminar flow reactor for investigation of combustion and related gas phase reaction systems

    Energy Technology Data Exchange (ETDEWEB)

    Oßwald, Patrick; Köhler, Markus [Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, D-70569 Stuttgart (Germany)

    2015-10-15

    A new high-temperature flow reactor experiment utilizing the powerful molecular beam mass spectrometry (MBMS) technique for detailed observation of gas phase kinetics in reacting flows is presented. The reactor design provides a consequent extension of the experimental portfolio of validation experiments for combustion reaction kinetics. Temperatures up to 1800 K are applicable by three individually controlled temperature zones with this atmospheric pressure flow reactor. Detailed speciation data are obtained using the sensitive MBMS technique, providing in situ access to almost all chemical species involved in the combustion process, including highly reactive species such as radicals. Strategies for quantifying the experimental data are presented alongside a careful analysis of the characterization of the experimental boundary conditions to enable precise numeric reproduction of the experimental results. The general capabilities of this new analytical tool for the investigation of reacting flows are demonstrated for a selected range of conditions, fuels, and applications. A detailed dataset for the well-known gaseous fuels, methane and ethylene, is provided and used to verify the experimental approach. Furthermore, application for liquid fuels and fuel components important for technical combustors like gas turbines and engines is demonstrated. Besides the detailed investigation of novel fuels and fuel components, the wide range of operation conditions gives access to extended combustion topics, such as super rich conditions at high temperature important for gasification processes, or the peroxy chemistry governing the low temperature oxidation regime. These demonstrations are accompanied by a first kinetic modeling approach, examining the opportunities for model validation purposes.

  2. An atmospheric pressure high-temperature laminar flow reactor for investigation of combustion and related gas phase reaction systems.

    Science.gov (United States)

    Oßwald, Patrick; Köhler, Markus

    2015-10-01

    A new high-temperature flow reactor experiment utilizing the powerful molecular beam mass spectrometry (MBMS) technique for detailed observation of gas phase kinetics in reacting flows is presented. The reactor design provides a consequent extension of the experimental portfolio of validation experiments for combustion reaction kinetics. Temperatures up to 1800 K are applicable by three individually controlled temperature zones with this atmospheric pressure flow reactor. Detailed speciation data are obtained using the sensitive MBMS technique, providing in situ access to almost all chemical species involved in the combustion process, including highly reactive species such as radicals. Strategies for quantifying the experimental data are presented alongside a careful analysis of the characterization of the experimental boundary conditions to enable precise numeric reproduction of the experimental results. The general capabilities of this new analytical tool for the investigation of reacting flows are demonstrated for a selected range of conditions, fuels, and applications. A detailed dataset for the well-known gaseous fuels, methane and ethylene, is provided and used to verify the experimental approach. Furthermore, application for liquid fuels and fuel components important for technical combustors like gas turbines and engines is demonstrated. Besides the detailed investigation of novel fuels and fuel components, the wide range of operation conditions gives access to extended combustion topics, such as super rich conditions at high temperature important for gasification processes, or the peroxy chemistry governing the low temperature oxidation regime. These demonstrations are accompanied by a first kinetic modeling approach, examining the opportunities for model validation purposes.

  3. Gas Phase Nanoparticle Synthesis

    Science.gov (United States)

    Granqvist, Claes; Kish, Laszlo; Marlow, William

    This book deals with gas-phase nanoparticle synthesis and is intended for researchers and research students in nanomaterials science and engineering, condensed matter physics and chemistry, and aerosol science. Gas-phase nanoparticle synthesis is instrumental to nanotechnology - a field in current focus that raises hopes for environmentally benign, resource-lean manufacturing. Nanoparticles can be produced by many physical, chemical, and even biological routes. Gas-phase synthesis is particularly interesting since one can achieve accurate manufacturing control and hence industrial viability.

  4. Critical temperature of liquid-gas phase transition for hot nuclear matter and three-body force effect

    International Nuclear Information System (INIS)

    Zuo Wei; Lu Guangcheng; Li Zenghua; Luo Peiyan; Chinese Academy of Sciences, Beijing

    2005-01-01

    The finite temperature Brueckner-Hartree-Fock (FTBHF) approach is extended by introducing a microscopic three-body force. Within the extended approach, the three-body force effects on the equation of state of hot nuclear matter and its temperature dependence have been investigated. The critical properties of the liquid-gas phase transition of hot nuclear matter have been calculated. It is shown that the three-body force provides a repulsive contribution to the equation of state of hot nuclear matter. The repulsive effect of the three-body force becomes more pronounced as the density and temperature increase and consequently inclusion of the three-body force contribution in the calculation reduces the predicted critical temperature from about 16 MeV to about 13 MeV. By separating the contribution originated from the 2σ-exchange process coupled to the virtual excitation of a nucleon-antinucleon pair from the full three-body force, the connection between the three-body force effect and the relativistic correction from the Dirac-Brueckner-Hartree-Fock has been explored. It turns out that the contribution of the 2σ-N(N-bar) part is more repulsive than that of the full three-body force and the calculated critical temperature is about 11 MeV if only the 2σ-N(N-bar) component of the three-body force is included which is lower than the value obtained in the case of including the full three-body force and is close to the value predicted by the Dirac-Brueckner-Hartree-Fock (DBHF) approach. Our result provides a reasonable explanation for the discrepancy between the values of critical temperature predicted from the FTBHF approach including the three-body force and the DBHF approach. (authors)

  5. Liquefied Gas Catholytes for UItra-Low Temperature Lithium Primary Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Ocean Worlds exploration missions require batteries which operate as low as -100 C (defined here are "Ultra-Low Temperatures") and lower, a critically...

  6. High temperature thermal storage for solar gas turbines using encapsulated phase change materials

    CSIR Research Space (South Africa)

    Klein, P

    2014-01-01

    Full Text Available in the near term. Sensible heat storage in packed beds involves a random packing of ceramic pebbles/particles in an insulated container. The temperature change of the solid during charging/discharging is used to store/release thermal energy. The primary... the packed bed due to vaporization and condensation effects. 2.3. Macro-encapsulation of PCM In the macro-encapsulation approach the PCM is retained within a hollow shell material. The shell can be preformed, filled with a molten PCM and sealed; or it can...

  7. Time resolved IR-LIGS experiments for gas-phase trace detection and temperature measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fantoni, R.; Giorgi, M. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Innovazione; Snels, M. [CNR, Tito Scalo, Potenza (Italy). Istituto per i Materiali Speciali; Latzel, H.

    1997-01-01

    Time resolved Laser Induced Grating Spectroscopy (LIGS) has been performed to detect different gases in mixtures at atmospheric pressure or higher. The possibility of trace detection of minor species and of temperature measurements has been demonstrated for various molecular species either of environmental interest or involved in combustion processes. In view of the application of tracing unburned hydrocarbons in combustion chambers, the coupling of the IR-LIGS technique with imaging detection has been considered and preliminary results obtained in small size ethylene/air flames are shown.

  8. Gas phase pulse radiolysis

    International Nuclear Information System (INIS)

    Jonah, C.D.; Andong Liu; Mulac, W.A.

    1987-01-01

    Gas phase pulse radiolysis, a technique which can be used to study many different phenomena in chemistry and physics, is discussed. As a source of small radicals, pulse radiolysis is important to the field of chemistry, particularly to combustion and atmospheric kinetics. The reactions of 1,3-butadiene, allene, ethylene and acetylene with OH are presented. 52 refs., 1 fig., 1 tab

  9. Hydroperoxide Measurements During Low-Temperature Gas-Phase Oxidation of n-Heptane and n-Decane

    KAUST Repository

    Rodriguez, Anne

    2017-02-13

    A wide range of hydroperoxides (C-C alkyl hydroperoxides, C-C alkenyl hydroperoxides, C ketohydroperoxides, and hydrogen peroxide (HO)), as well as ketene and diones, have been quantified during the gas-phase oxidation of n-heptane. Some of these species, as well as C alkenyl hydroperoxides and ketohydroperoxides, were also measured during the oxidation of n-decane. These experiments were performed using an atmospheric-pressure jet-stirred reactor at temperatures from 500 to 1100 K and one of three analytical methods, time-of-flight mass spectrometry combined with tunable synchrotron photoionization with a molecular beam sampling: time-of-flight mass spectrometry combined with laser photoionization with a capillary tube sampling, continuous wave cavity ring-down spectroscopy with sonic probe sampling. The experimental temperature at which the maximum mole fraction is observed increases significantly for alkyl hydroperoxides, alkenyl hydroperoxides, and then more so again for hydrogen peroxide, compared to ketohydroperoxides. The influence of the equivalence ratio from 0.25 to 4 on the formation of these peroxides has been studied during n-heptane oxidation. The up-to-date detailed kinetic oxidation models for n-heptane and for n-decane found in the literature have been used to discuss the possible pathways by which these peroxides, ketene, and diones are formed. In general, the model predicts well the reactivity of the two fuels, as well as the formation of major intermediates. (Figure Presented).

  10. Hydroperoxide Measurements During Low-Temperature Gas-Phase Oxidation of n-Heptane and n-Decane

    KAUST Repository

    Rodriguez, Anne; Herbinet, Olivier; Meng, Xiangzan; Fittschen, Christa; Wang, Zhandong; Xing, Lili; Zhang, Lidong; Battin-Leclerc, Fré dé rique

    2017-01-01

    A wide range of hydroperoxides (C-C alkyl hydroperoxides, C-C alkenyl hydroperoxides, C ketohydroperoxides, and hydrogen peroxide (HO)), as well as ketene and diones, have been quantified during the gas-phase oxidation of n-heptane. Some of these species, as well as C alkenyl hydroperoxides and ketohydroperoxides, were also measured during the oxidation of n-decane. These experiments were performed using an atmospheric-pressure jet-stirred reactor at temperatures from 500 to 1100 K and one of three analytical methods, time-of-flight mass spectrometry combined with tunable synchrotron photoionization with a molecular beam sampling: time-of-flight mass spectrometry combined with laser photoionization with a capillary tube sampling, continuous wave cavity ring-down spectroscopy with sonic probe sampling. The experimental temperature at which the maximum mole fraction is observed increases significantly for alkyl hydroperoxides, alkenyl hydroperoxides, and then more so again for hydrogen peroxide, compared to ketohydroperoxides. The influence of the equivalence ratio from 0.25 to 4 on the formation of these peroxides has been studied during n-heptane oxidation. The up-to-date detailed kinetic oxidation models for n-heptane and for n-decane found in the literature have been used to discuss the possible pathways by which these peroxides, ketene, and diones are formed. In general, the model predicts well the reactivity of the two fuels, as well as the formation of major intermediates. (Figure Presented).

  11. Plasma-assisted partial oxidation of methane at low temperatures: numerical analysis of gas-phase chemical mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Goujard, Valentin; Nozaki, Tomohiro; Yuzawa, Shuhei; Okazaki, Ken [Department of Mechanical and Control Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, 1528552, Tokyo (Japan); Agiral, Anil, E-mail: tnozaki@mech.titech.ac.jp [Mesoscale Chemical Systems, MESA Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE, Enschede (Netherlands)

    2011-07-13

    Methane partial oxidation was investigated using a plasma microreactor. The experiments were performed at 5 and 300 deg. C. Microreactor configuration allows an efficient evacuation of the heat generated by methane partial oxidation and dielectric barrier discharges, allowing at the same time a better temperature control. At 5 deg. C, liquid condensation of low vapour pressure compounds, such as formaldehyde and methanol, occurs. {sup 1}H-NMR analysis allowed us to demonstrate significant CH{sub 3}OOH formation during plasma-assisted partial oxidation of methane. Conversion and product selectivity were discussed for both temperatures. In the second part of this work, a numerical simulation was performed and a gas-phase chemical mechanism was proposed and discussed. From the comparison between the experimental results and the simulation it was found that CH{sub 3}OO{center_dot} formation has a determinant role in oxygenated compound production, since its fast formation disfavoured radical recombination. At 5 deg. C the oxidation leads mainly towards oxygenated compound formation, and plasma dissociation was the major phenomenon responsible for CH{sub 4} conversion. At 300 deg. C, higher CH{sub 4} conversion resulted from oxidative reactions induced by {center_dot}OH radicals with a chemistry predominantly oxidative, producing CO, H{sub 2}, CO{sub 2} and H{sub 2}O.

  12. Gas phase chemical kinetics at high temperature of carbonaceous molecules: application to circumstellar envelopes

    Science.gov (United States)

    Biennier, L.; Gardez, A.; Saidani, G.; Georges, R.; Rowe, B.; Reddy, K. P. J.

    2011-05-01

    Circumstellar shells of evolved stars are a theater of extremely rich physical and chemical processes. More than seventy molecules of varied nature have been identified in the envelopes through their spectral fingerprints in the microwave or far infrared regions. Many of them are carbon chain molecules and radicals and a significant number are unique to the circumstellar medium. However, observational data remain scarce and more than half of the detected species have been observed in only one object, the nearby carbon star IRC + 10216. Chemical kinetic models are needed to describe the formation of molecules in evolved circumstellar outflows. Upcoming terrestrial telescopes such as ALMA will increase the spatial resolution by several orders of magnitude and provide a wealth of data. The determination of relevant laboratory kinetics data is critical to keep up with the development of the observations and of the refinement of chemical models. Today, the majority of reactions studied in the laboratory are the ones involved in combustion and concerning light hydrocarbons. Our objective is to provide the scientific community with rate coefficients of reactions between abundant species in these warm environments. Cyanopolyynes from HC_2N to HC_9N have all been detected in carbon rich circumstellar envelopes in up to 10 sources for HC_3N. Neutral-neutral reactions of the CN radical with unsaturated hydrocarbons could be a dominant route in the formation of cyanopolyynes, even at low temperatures. Our approach aims to bridge the temperature gap between resistively heated flow tubes and shock tubes. The present kinetic measurements are obtained using a new reactor combining a high enthalpy source (Moudens et al. 2011) with a flow tube and a pulsed laser photolysis and laser induced fluorescence system to probe the undergoing chemical reactions. The high enthalpy flow tube has been used to measure the rate constant of the reaction of the CN radical with propane, propene

  13. Solid gas reaction phase diagram under high gas pressure

    International Nuclear Information System (INIS)

    Ishizaki, K.

    1992-01-01

    This paper reports that to evaluate which are the stable phases under high gas pressure conditions, a solid-gas reaction phase diagram under high gas pressure (HIP phase diagram) has been proposed by the author. The variables of the diagram are temperature, reactant gas partial pressure and total gas pressure. Up to the present time the diagrams have been constructed using isobaric conditions. In this work, the stable phases for a real HIP process were evaluated assuming an isochoric condition. To understand the effect of the total gas pressure on stability is of primary importance. Two possibilities were considered and evaluated, those are: the total gas pressure acts as an independent variable, or it only affects the fugacity values. The results of this work indicate that the total gas pressure acts as an independent variable, and in turn also affects the fugacity values

  14. Reactor for tracking catalyst nanoparticles in liquid at high temperature under a high-pressure gas phase with X-ray absorption spectroscopy.

    Science.gov (United States)

    Nguyen, Luan; Tao, Franklin Feng

    2018-02-01

    Structure of catalyst nanoparticles dispersed in liquid phase at high temperature under gas phase of reactant(s) at higher pressure (≥5 bars) is important for fundamental understanding of catalytic reactions performed on these catalyst nanoparticles. Most structural characterizations of a catalyst performing catalysis in liquid at high temperature under gas phase at high pressure were performed in an ex situ condition in terms of characterizations before or after catalysis since, from technical point of view, access to the catalyst nanoparticles during catalysis in liquid phase at high temperature under high pressure reactant gas is challenging. Here we designed a reactor which allows us to perform structural characterization using X-ray absorption spectroscopy including X-ray absorption near edge structure spectroscopy and extended X-ray absorption fine structure spectroscopy to study catalyst nanoparticles under harsh catalysis conditions in terms of liquid up to 350 °C under gas phase with a pressure up to 50 bars. This reactor remains nanoparticles of a catalyst homogeneously dispersed in liquid during catalysis and X-ray absorption spectroscopy characterization.

  15. Development of a laser-induced plasma probe to measure gas phase plasma signals at high pressures and temperatures

    International Nuclear Information System (INIS)

    Gounder, J.D.; Kutne, P.; Meier, W.

    2012-01-01

    The ability of laser induced breakdown spectroscopy (LIBS) technique for on line simultaneous measurement of elemental concentrations has led to its application in a wide number of processes. The simplicity of the technique allows its application to harsh environments such as present in boilers, furnaces and gasifiers. This paper presents the design of a probe using a custom optic which transforms a round beam into a ring (Donut) beam, which is used for forming a plasma in an atmosphere of nitrogen at high pressure (20 bar) and temperature (200 °C). The LIBS experiments were performed using a high pressure cell to characterize and test the effectiveness of the donut beam transmitted through the LIBS probe and collect plasma signal in back scatter mode. The first tests used the second harmonic of a Nd:YAG laser, pulse width 7 ns, to form a plasma in nitrogen gas at five different pressures (1, 5, 10, 15 and 20 bar) and three different gas temperatures (25, 100 and 200 °C). The uniqueness of this probe is the custom made optic used for reshaping the round laser beam into a ring (Donut) shaped laser beam, which is fed into the probe and focused to form a plasma at the measurement point. The plasma signal is collected and collimated using the laser focusing lens and is reflected from the laser beam axis onto an achromatic lens by a high reflection mirror mounted in the center section of the donut laser beam. The effect of gas pressure and temperature on N(I) lines in the high pressure cell experiment shows that the line intensity decreases with pressure and increases with temperature. Mean plasma temperature was calculated using the ratios of N(I) line intensities ranging from 7400 K to 8900 K at 1 bar and 2400 K to 3200 K at 20 bar for the three different gas temperatures. The results show that as a proof of principle the donut beam optics in combination with the LIBS probe can be used for performing extensive LIBS measurements in well controlled laboratory

  16. Development of a laser-induced plasma probe to measure gas phase plasma signals at high pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Gounder, J.D., E-mail: James.Gounder@dlr.de; Kutne, P.; Meier, W.

    2012-08-15

    The ability of laser induced breakdown spectroscopy (LIBS) technique for on line simultaneous measurement of elemental concentrations has led to its application in a wide number of processes. The simplicity of the technique allows its application to harsh environments such as present in boilers, furnaces and gasifiers. This paper presents the design of a probe using a custom optic which transforms a round beam into a ring (Donut) beam, which is used for forming a plasma in an atmosphere of nitrogen at high pressure (20 bar) and temperature (200 Degree-Sign C). The LIBS experiments were performed using a high pressure cell to characterize and test the effectiveness of the donut beam transmitted through the LIBS probe and collect plasma signal in back scatter mode. The first tests used the second harmonic of a Nd:YAG laser, pulse width 7 ns, to form a plasma in nitrogen gas at five different pressures (1, 5, 10, 15 and 20 bar) and three different gas temperatures (25, 100 and 200 Degree-Sign C). The uniqueness of this probe is the custom made optic used for reshaping the round laser beam into a ring (Donut) shaped laser beam, which is fed into the probe and focused to form a plasma at the measurement point. The plasma signal is collected and collimated using the laser focusing lens and is reflected from the laser beam axis onto an achromatic lens by a high reflection mirror mounted in the center section of the donut laser beam. The effect of gas pressure and temperature on N(I) lines in the high pressure cell experiment shows that the line intensity decreases with pressure and increases with temperature. Mean plasma temperature was calculated using the ratios of N(I) line intensities ranging from 7400 K to 8900 K at 1 bar and 2400 K to 3200 K at 20 bar for the three different gas temperatures. The results show that as a proof of principle the donut beam optics in combination with the LIBS probe can be used for performing extensive LIBS measurements in well controlled

  17. An Introduction to the Gas Phase

    Science.gov (United States)

    Vallance, Claire

    2017-11-01

    'An Introduction to the Gas Phase' is adapted from a set of lecture notes for a core first year lecture course in physical chemistry taught at the University of Oxford. The book is intended to give a relatively concise introduction to the gas phase at a level suitable for any undergraduate scientist. After defining the gas phase, properties of gases such as temperature, pressure, and volume are discussed. The relationships between these properties are explained at a molecular level, and simple models are introduced that allow the various gas laws to be derived from first principles. Finally, the collisional behaviour of gases is used to explain a number of gas-phase phenomena, such as effusion, diffusion, and thermal conductivity.

  18. An in situ spatially resolved analytical technique to simultaneously probe gas phase reactions and temperature within the packed bed of a plug flow reactor.

    Science.gov (United States)

    Touitou, Jamal; Burch, Robbie; Hardacre, Christopher; McManus, Colin; Morgan, Kevin; Sá, Jacinto; Goguet, Alexandre

    2013-05-21

    This paper reports the detailed description and validation of a fully automated, computer controlled analytical method to spatially probe the gas composition and thermal characteristics in packed bed systems. As an exemplar, we have examined a heterogeneously catalysed gas phase reaction within the bed of a powdered oxide supported metal catalyst. The design of the gas sampling and the temperature recording systems are disclosed. A stationary capillary with holes drilled in its wall and a moveable reactor coupled with a mass spectrometer are used to enable sampling and analysis. This method has been designed to limit the invasiveness of the probe on the reactor by using the smallest combination of thermocouple and capillary which can be employed practically. An 80 μm (O.D.) thermocouple has been inserted in a 250 μm (O.D.) capillary. The thermocouple is aligned with the sampling holes to enable both the gas composition and temperature profiles to be simultaneously measured at equivalent spatially resolved positions. This analysis technique has been validated by studying CO oxidation over a 1% Pt/Al2O3 catalyst and the spatial resolution profiles of chemical species concentrations and temperature as a function of the axial position within the catalyst bed are reported.

  19. A NEW NETWORK FOR HIGHER-TEMPERATURE GAS-PHASE CHEMISTRY. I. A PRELIMINARY STUDY OF ACCRETION DISKS IN ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Harada, Nanase; Herbst, Eric; Wakelam, Valentine

    2010-01-01

    We present a new interstellar chemical gas-phase reaction network for time-dependent kinetics that can be used for modeling high-temperature sources up to ∼800 K. This network contains an extended set of reactions based on the Ohio State University (OSU) gas-phase chemical network. The additional reactions include processes with significant activation energies, reverse reactions, proton exchange reactions, charge exchange reactions, and collisional dissociation. Rate coefficients already in the OSU network are modified for H 2 formation on grains, ion-neutral dipole reactions, and some radiative association reactions. The abundance of H 2 O is enhanced at high temperature by hydrogenation of atomic O. Much of the elemental oxygen is in the form of water at T ≥ 300 K, leading to effective carbon-rich conditions, which can efficiently produce carbon-chain species such as C 2 H 2 . At higher temperatures, HCN and NH 3 are also produced much more efficiently. We have applied the extended network to a simplified model of the accretion disk of an active galactic nucleus.

  20. Role of single-point mutations and deletions on transition temperatures in ideal proteinogenic heteropolymer chains in the gas phase.

    Science.gov (United States)

    Olivares-Quiroz, L

    2016-07-01

    A coarse-grained statistical mechanics-based model for ideal heteropolymer proteinogenic chains of non-interacting residues is presented in terms of the size K of the chain and the set of helical propensities [Formula: see text] associated with each residue j along the chain. For this model, we provide an algorithm to compute the degeneracy tensor [Formula: see text] associated with energy level [Formula: see text] where [Formula: see text] is the number of residues with a native contact in a given conformation. From these results, we calculate the equilibrium partition function [Formula: see text] and characteristic temperature [Formula: see text] at which a transition from a low to a high entropy states is observed. The formalism is applied to analyze the effect on characteristic temperatures [Formula: see text] of single-point mutations and deletions of specific amino acids [Formula: see text] along the chain. Two probe systems are considered. First, we address the case of a random heteropolymer of size K and given helical propensities [Formula: see text] on a conformational phase space. Second, we focus our attention to a particular set of neuropentapeptides, [Met-5] and [Leu-5] enkephalins whose thermodynamic stability is a key feature on their coupling to [Formula: see text] and [Formula: see text] receptors and the triggering of biochemical responses.

  1. The effect of carrier gas flow rate and source cell temperature on low pressure organic vapor phase deposition simulation by direct simulation Monte Carlo method

    Science.gov (United States)

    Wada, Takao; Ueda, Noriaki

    2013-01-01

    The process of low pressure organic vapor phase deposition (LP-OVPD) controls the growth of amorphous organic thin films, where the source gases (Alq3 molecule, etc.) are introduced into a hot wall reactor via an injection barrel using an inert carrier gas (N2 molecule). It is possible to control well the following substrate properties such as dopant concentration, deposition rate, and thickness uniformity of the thin film. In this paper, we present LP-OVPD simulation results using direct simulation Monte Carlo-Neutrals (Particle-PLUS neutral module) which is commercial software adopting direct simulation Monte Carlo method. By estimating properly the evaporation rate with experimental vaporization enthalpies, the calculated deposition rates on the substrate agree well with the experimental results that depend on carrier gas flow rate and source cell temperature. PMID:23674843

  2. The effect of carrier gas flow rate and source cell temperature on low pressure organic vapor phase deposition simulation by direct simulation Monte Carlo method

    Science.gov (United States)

    Wada, Takao; Ueda, Noriaki

    2013-04-01

    The process of low pressure organic vapor phase deposition (LP-OVPD) controls the growth of amorphous organic thin films, where the source gases (Alq3 molecule, etc.) are introduced into a hot wall reactor via an injection barrel using an inert carrier gas (N2 molecule). It is possible to control well the following substrate properties such as dopant concentration, deposition rate, and thickness uniformity of the thin film. In this paper, we present LP-OVPD simulation results using direct simulation Monte Carlo-Neutrals (Particle-PLUS neutral module) which is commercial software adopting direct simulation Monte Carlo method. By estimating properly the evaporation rate with experimental vaporization enthalpies, the calculated deposition rates on the substrate agree well with the experimental results that depend on carrier gas flow rate and source cell temperature.

  3. Thermohydraulics in a high-temperature gas-cooled reactor primary loop during early phases of unrestricted core-heatup accidents

    International Nuclear Information System (INIS)

    Kroeger, P.G.; Colman, J.; Hsu, C.J.

    1983-01-01

    In High Temperature Gas Cooled Reactor (HTGR) siting considerations, the Unrestricted Core Heatup Accidents (UCHA) are considered as accidents of highest consequence, corresponding to core meltdown accidents in light water reactors. Initiation of such accidents can be, for instance, due to station blackout, resulting in scram and loss of all main loop forced circulation, with none of the core auxiliary cooling system loops being started. The result is a slow but continuing core heatup, extending over days. During the initial phases of such UCHA scenarios, the primary loop remains pressurized, with the system pressure slowly increasing until the relief valve setpoint is reached. The major objectives of the work described here were to determine times to depressurization as well as approximate loop component temperatures up to depressurization

  4. High temperature phase equilibria and phase diagrams

    CERN Document Server

    Kuo, Chu-Kun; Yan, Dong-Sheng

    2013-01-01

    High temperature phase equilibria studies play an increasingly important role in materials science and engineering. It is especially significant in the research into the properties of the material and the ways in which they can be improved. This is achieved by observing equilibrium and by examining the phase relationships at high temperature. The study of high temperature phase diagrams of nonmetallic systems began in the early 1900s when silica and mineral systems containing silica were focussed upon. Since then technical ceramics emerged and more emphasis has been placed on high temperature

  5. EQUILGAS: Program to estimate temperatures and in situ two-phase conditions in geothermal reservoirs using three combined FT-HSH gas equilibria models

    Science.gov (United States)

    Barragán, Rosa María; Núñez, José; Arellano, Víctor Manuel; Nieva, David

    2016-03-01

    Exploration and exploitation of geothermal resources require the estimation of important physical characteristics of reservoirs including temperatures, pressures and in situ two-phase conditions, in order to evaluate possible uses and/or investigate changes due to exploitation. As at relatively high temperatures (>150 °C) reservoir fluids usually attain chemical equilibrium in contact with hot rocks, different models based on the chemistry of fluids have been developed that allow deep conditions to be estimated. Currently either in water-dominated or steam-dominated reservoirs the chemistry of steam has been useful for working out reservoir conditions. In this context, three methods based on the Fischer-Tropsch (FT) and combined H2S-H2 (HSH) mineral-gas reactions have been developed for estimating temperatures and the quality of the in situ two-phase mixture prevailing in the reservoir. For these methods the mineral buffers considered to be controlling H2S-H2 composition of fluids are as follows. The pyrite-magnetite buffer (FT-HSH1); the pyrite-hematite buffer (FT-HSH2) and the pyrite-pyrrhotite buffer (FT-HSH3). Currently from such models the estimations of both, temperature and steam fraction in the two-phase fluid are obtained graphically by using a blank diagram with a background theoretical solution as reference. Thus large errors are involved since the isotherms are highly nonlinear functions while reservoir steam fractions are taken from a logarithmic scale. In order to facilitate the use of the three FT-HSH methods and minimize visual interpolation errors, the EQUILGAS program that numerically solves the equations of the FT-HSH methods was developed. In this work the FT-HSH methods and the EQUILGAS program are described. Illustrative examples for Mexican fields are also given in order to help the users in deciding which method could be more suitable for every specific data set.

  6. Gas phase kinetics of the OH + CH3CH2OH reaction at temperatures of the interstellar medium (T = 21-107 K).

    Science.gov (United States)

    Ocaña, A J; Blázquez, S; Ballesteros, B; Canosa, A; Antiñolo, M; Albaladejo, J; Jiménez, E

    2018-02-21

    Ethanol, CH 3 CH 2 OH, has been unveiled in the interstellar medium (ISM) by radioastronomy and it is thought to be released into the gas phase after the warm-up phase of the grain surface, where it is formed. Once in the gas phase, it can be destroyed by different reactions with atomic and radical species, such as hydroxyl (OH) radicals. The knowledge of the rate coefficients of all these processes at temperatures of the ISM is essential in the accurate interpretation of the observed abundances. In this work, we have determined the rate coefficient for the reaction of OH with CH 3 CH 2 OH (k(T)) between 21 and 107 K by employing the pulsed and continuous CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme, which means Reaction Kinetics in a Uniform Supersonic Flow) technique. The pulsed laser photolysis technique was used for generating OH radicals, whose time evolution was monitored by laser induced fluorescence. An increase of approximately 4 times was observed for k(21 K) with respect to k(107 K). With respect to k(300 K), the OH-reactivity at 21 K is enhanced by two orders of magnitude. The obtained T-expression in the investigated temperature range is k(T) = (2.1 ± 0.5) × 10 -11 (T/300 K) -(0.71±0.10) cm 3 molecule -1 s -1 . In addition, the pressure dependence of k(T) has been investigated at several temperatures between 21 K and 90 K. No pressure dependence of k(T) was observed in the investigated ranges. This may imply that this reaction is purely bimolecular or that the high-pressure limit is reached at the lowest total pressure experimentally accessible in our system. From our results, k(T) at usual IS temperatures (∼10-100 K) is confirmed to be very fast. Typical rate coefficients can be considered to range within about 4 × 10 -11 cm 3 molecule -1 s -1 at 100 K and around 1 × 10 -10 cm 3 molecule -1 s -1 at 20 K. The extrapolation of k at the lowest temperatures of the dense molecular clouds of ISM is also discussed in this paper.

  7. Gas phase kinetics of the OH + CH3CH2OH reaction at temperatures of the interstellar medium (T = 21-10^7 K)

    Science.gov (United States)

    Ocaña, A. J.; Blázquez, S.; Ballesteros, B.; Canosa, A.; Antiñolo, M.; Albaladejoab, J.; Jiménez, E.

    2018-02-01

    Ethanol, CH3CH2OH, has been unveiled in the interstellar medium (ISM) by radioastronomy and it is thought to be released into the gas phase after the warm-up phase of the grain surface, where it is formed. Once in the gas phase, it can be destroyed by different reactions with atomic and radical species, such as hydroxyl (OH) radicals. The knowledge of the rate coefficients of all these processes at temperatures of the ISM is essential in the accurate interpretation of the observed abundances. In this work, we have determined the rate coefficient for the reaction of OH with CH3CH2OH (k(T)) between 21 and 10^7 K by employing the pulsed and continuous CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme, which means Reaction Kinetics in a Uniform Supersonic Flow) technique. The pulsed laser photolysis technique was used for generating OH radicals, whose time evolution was monitored by laser induced fluorescence. An increase of approximately 4 times was observed for k(21 K) with respect to k(10^7 K). With respect to k(300 K), the OH-reactivity at 21 K is enhanced by two orders of magnitude. The obtained T-expression in the investigated temperature range is k(T) = (2.1 ± 0.5) × 10^-11 (T/300 K)-(0.71±0.10) cm^3 molecule^-1 s^-1. In addition, the pressure dependence of k(T) has been investigated at several temperatures between 21 K and 90 K. No pressure dependence of k(T) was observed in the investigated ranges. This may imply that this reaction is purely bimolecular or that the high-pressure limit is reached at the lowest total pressure experimentally accessible in our system. From our results, k(T) at usual IS temperatures (˜10-100 K) is confirmed to be very fast. Typical rate coefficients can be considered to range within about 4 × 10^-11 cm^3 molecule^-1 s^-1 at 100 K and around 1 × 10^-10 cm^3 molecule^-1 s^-1 at 20 K. The extrapolation of k at the lowest temperatures of the dense molecular clouds of ISM is also discussed in this paper.

  8. Volatile organo-selenium speciation in biological matter by solid phase microextraction-moderate temperature multicapillary gas chromatography with microwave induced plasma atomic emission spectrometry detection

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, C.; Sanz Landaluze, J.; Ximenez-Embun, P.; Madrid-Albarran, Y.; Camara, C

    2004-01-16

    Microwave induced plasma atomic emission spectrometry (MIP-AES) in combination with multicapillary (MC) gas chromatography could be proven to be useful for element specific detection of volatile species. Solid phase microextraction (SPME) was used for preconcentration and sample-matrix separation. The fiber desorption unit as well as the heating control for the MC column were in-house developed and multicapillary column was operated at moderate temperatures (30-100 deg. C). The method was optimized for organo-selenium species (dimethylselenide (DMSe), diethylselenide (DEtSe) and dimethyldiselenide (DMDSe)), using a chemometric approach. Stationary phases for the separation column were optimized using a conventional GC and contrasted with the results obtained with the MC. Application was focussed on selenium accumulating biological matter, such as lupine, yeast, Indian mustard and garlic. These samples were grown in hydroponic solution containing inorganic selenium (Na{sub 2}SeO{sub 3} and Na{sub 2}SeO{sub 4}). SPME sampling was carried out in fixed volume flow boxes in headspace above the living plants and in vials using treated samples. Results demonstrate inorganic selenium transformation into volatile organic species during metabolism. Separation is fast, a chromatogram can be obtained in less than 3 min and detection limits were at sub-ppb level for all investigated species. The system is independent from the use of a conventional gas chromatographic oven and can be used as a versatile alternative to highly cost intensive methods such as GC-ICP-MS.

  9. A low temperature investigation of the gas-phase N(2D) + NO reaction. Towards a viable source of N(2D) atoms for kinetic studies in astrochemistry.

    Science.gov (United States)

    Nuñez-Reyes, Dianailys; Hickson, Kevin M

    2018-06-18

    The gas-phase reaction of metastable atomic nitrogen N(2D) with nitric oxide has been investigated over the 296-50 K temperature range using a supersonic flow reactor. As N(2D) could not be produced photolytically in the present work, these excited state atoms were generated instead through the C(3P) + NO → N(2D) + CO reaction while C(3P) atoms were created in situ by the 266 nm pulsed laser photolysis of CBr4 precursor molecules. The kinetics of N(2D) atoms were followed on-resonance by vacuum ultraviolet laser induced fluorescence at 116.7 nm. The measured rate constants for the N(2D) + NO reaction are in excellent agreement with most of the earlier work at room temperature and represent the only available kinetic data for this process below 296 K. The rate constants are seen to increase slightly as the temperature falls to 100 K with a more substantial increase at even lower temperature; a finding which is not reproduced by theoretical work. The prospects for using this chemical source of N(2D) atoms in future studies of a wide range of N(2D) atom reactions are discussed.

  10. Gas Phase Molecular Dynamics

    International Nuclear Information System (INIS)

    Hall, G.E.; Prrese, J.M.; Sears, T.J.; Weston, R.E.

    1999-01-01

    The goal of this research is the understanding of elementary chemical and physical processes important in the combustion of fossil fuels. Interest centers on reactions involving short-lived chemical intermediates and their properties. High-resolution high-sensitivity laser absorption methods are augmented by high temperature flow-tube reaction kinetics studies with mass spectrometric sampling. These experiments provide information on the energy levels, structures and reactivity of molecular flee radical species and, in turn, provide new tools for the study of energy flow and chemical bond cleavage in the radicals in chemical systems. The experimental work is supported by theoretical and computational work using time-dependent quantum wave packet calculations that provide insights into energy flow between the vibrational modes of the molecule

  11. Gas phase considerations for the deposition of thin film silicon solar cells by VHF-PECVD at low substrate temperatures

    NARCIS (Netherlands)

    Rath, J.K.; Verkerk, A.D.; Brinza, M.; Schropp, R.E.I.; Goedheer, W.J.; Krzhizhanovskaya, V.V.; Gorbachev, Y.E.; Orlov, K.E.; Khilkevitch, E.M.; Smirnov, A.S.

    2008-01-01

    Fabrication of thin film silicon solar cells on cheap plastics or paper-like substrate requires deposition process at very low substrate temperature, typically ≤ 100 °C. In a chemical vapor deposition process, low growth temperatures lead to materials with low density, high porosity, high disorder

  12. Temperature and the Ideal Gas

    Science.gov (United States)

    Daisley, R. E.

    1973-01-01

    Presents some organized ideas in thermodynamics which are suitable for use with high school (GCE A level or ONC) students. Emphases are placed upon macroscopic observations and intimate connection of the modern definition of temperature with the concept of ideal gas. (CC)

  13. Charge transfer reactions between gas-phase hydrated electrons, molecular oxygen and carbon dioxide at temperatures of 80-300 K.

    Science.gov (United States)

    Akhgarnusch, Amou; Tang, Wai Kit; Zhang, Han; Siu, Chi-Kit; Beyer, Martin K

    2016-09-14

    The recombination reactions of gas-phase hydrated electrons (H2O)n˙(-) with CO2 and O2, as well as the charge exchange reaction of CO2˙(-)(H2O)n with O2, were studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry in the temperature range T = 80-300 K. Comparison of the rate constants with collision models shows that CO2 reacts with 50% collision efficiency, while O2 reacts considerably slower. Nanocalorimetry yields internally consistent results for the three reactions. Converted to room temperature condensed phase, this yields hydration enthalpies of CO2˙(-) and O2˙(-), ΔHhyd(CO2˙(-)) = -334 ± 44 kJ mol(-1) and ΔHhyd(O2˙(-)) = -404 ± 28 kJ mol(-1). Quantum chemical calculations show that the charge exchange reaction proceeds via a CO4˙(-) intermediate, which is consistent with a fully ergodic reaction and also with the small efficiency. Ab initio molecular dynamics simulations corroborate this picture and indicate that the CO4˙(-) intermediate has a lifetime significantly above the ps regime.

  14. Comparison of electrical and optical characteristics in gas-phase and gas-liquid phase discharges

    Energy Technology Data Exchange (ETDEWEB)

    Qazi, H. I. A.; Li, He-Ping, E-mail: liheping@tsinghua.edu.cn; Zhang, Xiao-Fei; Bao, Cheng-Yu [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Nie, Qiu-Yue [School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001 (China)

    2015-12-15

    This paper presents an AC-excited argon discharge generated using a gas-liquid (two-phase) hybrid plasma reactor, which mainly consists of a powered needle electrode enclosed in a conical quartz tube and grounded deionized water electrode. The discharges in the gas-phase, as well as in the two-phase, exhibit two discharge modes, i.e., the low current glow-like diffuse mode and the high current streamer-like constrict mode, with a mode transition, which exhibits a negative resistance of the discharges. The optical emission spectral analysis shows that the stronger diffusion of the water vapor into the discharge region in the two-phase discharges boosts up the generation of OH (A–X) radicals, and consequently, leads to a higher rotational temperature in the water-phase plasma plume than that of the gas-phase discharges. Both the increase of the power input and the decrease of the argon flow rate result in the increase of the rotational temperature in the plasma plume of the water-phase discharge. The stable two-phase discharges with a long plasma plume in the water-phase under a low power input and gas flow rate may show a promising prospect for the degradation of organic pollutants, e.g., printing and dyeing wastewater, in the field of environmental protection.

  15. Measurement of spatially resolved gas-phase plasma temperatures by optical emission and laser-induced fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Davis, G.P.; Gottscho, R.A.

    1983-01-01

    Knowledge of the energy distributions of particles in glow discharges is crucial to the understanding and modeling of plasma reactors used in microelectronic manufacturing. Reaction rates, available product channels, and transport phenomena all depend upon the partitioning of energy in the discharge. Because of the nonequilibrium nature of glow discharges, however, the distribution of energy among different species and among different degrees of freedom cannot be characterized simply by one temperature. The extent to which different temperatures are needed for each degree of freedom and for each species is not known completely. How plasma operating conditions affect these energy distributions is also an unanswered question. We have investigated the temperatures of radicals, ions, and neutrals in CCl 4 , CCl 4 /N 2 (2%), and N 2 discharges. In the CCl 4 systems, we probed the CCl rotational and vibrational energy distributions by laser-induced fluorescence spectroscopy. The rotational distribution always appeared to be thermal but under identical operating conditions was found to be roughly-equal400 K colder than the vibrational distribution. The rotational temperature at any point in the discharge was strongly dependent upon both applied power and surface temperature. Thermal gradients as large as 10 2 K mm -1 were observed near electrode surfaces but the bulk plasmas were isothermal. When 2% N 2 was added to a CCl 4 discharge, N 2 second positive emission was observed and used to estimate the N 2 rotational temperature. The results suggest that emission from molecular actinometers can be used to measure plasma temperatures, providing such measurements are not made in close proximity to surfaces

  16. Measurement of gas-liquid two-phase flow around horizontal tube bundle using SF6-water. Simulating high-pressure high-temperature gas-liquid two-phase flow of PWR/SG secondary coolant side at normal pressure

    International Nuclear Information System (INIS)

    Ishikawa, Atsushi; Imai, Ryoj; Tanaka, Takahiro

    2014-01-01

    In order to improve prediction accuracy of analysis code used for design and development of industrial products, technology had been developed to create and evaluate constitutive equation incorporated in analysis code. The experimental facility for PWR/SG U tubes part was manufactured to measure local void fraction and gas-liquid interfacial velocity with forming gas-liquid upward two-phase flow simulating high-pressure high-temperature secondary coolant (water-steam) rising vertically around horizontal tube bundle. The experimental facility could reproduce flow field having gas-liquid density ratio equivalent to real system with no heating using SF6 (Sulfur Hexafluoride) gas at normal temperature and pressure less than 1 MPa, because gas-liquid density ratio, surface tension and gas-liquid viscosity ratio were important parameters to determine state of gas-liquid two-phase flow and gas-liquid density ratio was most influential. Void fraction was measured by two different methods of bi-optical probe and conductivity type probe. Test results of gas-liquid interfacial velocity vs. apparent velocity were in good agreement with existing empirical equation within 10% error, which could confirm integrity of experimental facility and appropriateness of measuring method so as to set up original constitutive equation in the future. (T. Tanaka)

  17. Temperature Dependent Rate Coefficients for the Gas-Phase Reaction of the OH Radical with Linear (L2, L3) and Cyclic (D3, D4) Permethylsiloxanes.

    Science.gov (United States)

    Bernard, François; Papanastasiou, Dimitrios K; Papadimitriou, Vassileios C; Burkholder, James B

    2018-04-19

    Permethylsiloxanes are emitted into the atmosphere during production and use as personal care products, lubricants, and cleaning agents. The predominate atmospheric loss process for permethylsiloxanes is expected to be via gas-phase reaction with the OH radical. In this study, rate coefficients, k(T), for the OH radical gas-phase reaction with the two simplest linear and cyclic permethylsiloxanes were measured using a pulsed laser photolysis-laser induced fluorescence technique over the temperature range of 240-370 K and a relative rate method at 294 K: hexamethyldisiloxane ((CH 3 ) 3 SiOSi(CH 3 ) 3 , L 2 ), k 1 ; octamethyltrisiloxane ([(CH 3 ) 3 SiO] 2 Si(CH 3 ) 2 , L 3 ), k 2 ; hexamethylcyclotrisiloxane ([-Si(CH 3 ) 2 O-] 3 , D 3 ), k 3 ; and octamethylcyclotetrasiloxane ([-Si(CH 3 ) 2 O-] 4 , D 4 ), k 4 . The obtained k(294 K) values and temperature-dependence expressions for the 240-370 K temperature range are (cm 3 molecule -1 s -1 , 2σ absolute uncertainties): k 1 (294 K) = (1.28 ± 0.08) × 10 -12 , k 1 ( T) = (1.87 ± 0.18) × 10 -11 exp(-(791 ± 27)/ T); k 2 (294 K) = (1.72 ± 0.10) × 10 -12 , k 2 ( T) = 1.96 × 10 -13 (T/298) 4.34 exp(657/ T); k 3 (294 K) = (0.82 ± 0.05) × 10 -12 , k 3 ( T) = (1.29 ± 0.19) × 10 -11 exp(-(805 ± 43)/ T); and k 4 (294 K) = (1.12 ± 0.10) × 10 -12 , k 4 ( T) = (1.80 ± 0.26) × 10 -11 exp(-(816 ± 43)/ T). The cyclic molecules were found to be less reactive than the analogous linear molecule with the same number of -CH 3 groups, while the linear and cyclic permethylsiloxane reactivity both increase with the increasing number of CH 3 - groups. The present results are compared with previous rate coefficient determinations where available. The permethylsiloxanes included in this study are atmospherically short-lived compounds with estimated atmospheric lifetimes of 11, 8, 17, and 13 days, respectively.

  18. Gas flow headspace liquid phase microextraction.

    Science.gov (United States)

    Yang, Cui; Qiu, Jinxue; Ren, Chunyan; Piao, Xiangfan; Li, Xifeng; Wu, Xue; Li, Donghao

    2009-11-06

    There is a trend towards the use of enrichment techniques such as microextraction in the analysis of trace chemicals. Based on the theory of ideal gases, theory of gas chromatography and the original headspace liquid phase microextraction (HS-LPME) technique, a simple gas flow headspace liquid phase microextraction (GF-HS-LPME) technique has been developed, where the extracting gas phase volume is increased using a gas flow. The system is an open system, where an inert gas containing the target compounds flows continuously through a special gas outlet channel (D=1.8mm), and the target compounds are trapped on a solvent microdrop (2.4 microL) hanging on the microsyringe tip, as a result, a high enrichment factor is obtained. The parameters affecting the enrichment factor, such as the gas flow rate, the position of the microdrop, the diameter of the gas outlet channel, the temperatures of the extracting solvent and of the sample, and the extraction time, were systematically optimized for four types of polycyclic aromatic hydrocarbons. The results were compared with results obtained from HS-LPME. Under the optimized conditions (where the extraction time and the volume of the extracting sample vial were fixed at 20min and 10mL, respectively), detection limits (S/N=3) were approximately a factor of 4 lower than those for the original HS-LPME technique. The method was validated by comparison of the GF-HS-LPME and HS-LPME techniques using data for PAHs from environmental sediment samples.

  19. Ionic liquid stationary phases for gas chromatography.

    Science.gov (United States)

    Poole, Colin F; Poole, Salwa K

    2011-04-01

    This article provides a summary of the development of ionic liquids as stationary phases for gas chromatography beginning with early work on packed columns that established details of the retention mechanism and established working methods to characterize selectivity differences compared with molecular stationary phases through the modern development of multi-centered cation and cross-linked ionic liquids for high-temperature applications in capillary gas chromatography. Since there are many reviews on ionic liquids dealing with all aspects of their chemical and physical properties, the emphasis in this article is placed on the role of gas chromatography played in the design of ionic liquids of low melting point, high thermal stability, high viscosity, and variable selectivity for separations. Ionic liquids provide unprecedented opportunities for extending the selectivity range and temperature-operating range of columns for gas chromatography, an area of separation science that has otherwise been almost stagnant for over a decade. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A new algorithm predicts pressure and temperature profiles of gas/gas-condensate transmission pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Mokhatab, Saied [OIEC - Oil Industries' Engineering and Construction Group, Tehran (Iran, Islamic Republic of); Vatani, Ali [University of Tehran (Iran, Islamic Republic of)

    2003-07-01

    The main objective of the present study has been the development of a relatively simple analytical algorithm for predicting flow temperature and pressure profiles along the two-phase, gas/gas-condensate transmission pipelines. Results demonstrate the ability of the method to predict reasonably accurate pressure gradient and temperature gradient profiles under operating conditions. (author)

  1. Gas phase reactive collisions, experimental approach

    Directory of Open Access Journals (Sweden)

    Canosa A.

    2012-01-01

    Full Text Available Since 1937 when the first molecule in space has been identified, more than 150 molecules have been detected. Understanding the fate of these molecules requires having a perfect view of their photochemistry and reactivity with other partners. It is then crucial to identify the main processes that will produce and destroy them. In this chapter, a general view of experimental techniques able to deliver gas phase chemical kinetics data at low and very low temperatures will be presented. These techniques apply to the study of reactions between neutral reactants on the one hand and reactions involving charge species on the other hand.

  2. Report on evaluation of research and development of direct steel-making using high-temperature reducing gas. Phase 1. Draft; Koon kangen gas riyo ni yoru chokusetsu seitetsu no kenkyu kaihatsu (daiikki) ni kansuru hyoka hokokusho (an)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-01-01

    Described herein is development of direct steel-making using high-temperature reducing gas. A light hydrocarbon fraction (boiling point: 230 degrees C or lower), produced by steam cracking of vacuum residua, is reformed into a reducing gas in the presence of steam, using heat to be supplied by a nuclear plant which produces high-temperature gases for various purposes. This reducing gas is then supplied to a plant for producing reduced iron. This project has established basic techniques for designing, constructing and operating a direct steel-making pilot plant, to be connected to a 50 MWt high-temperature gas test furnace. The closed iron-making system and greatly reduced SOx emissions to several fractions of the current level are some of the expected effects. The environmental impacts of the high-temperature gas furnace will be on a level with those associated with a light-water reactor. Cracking and gasification of vacuum residua, which has found limited purposes so far, should expand its applicable areas and reduce dependence on fossil resources, leading to diversification of energy sources. The overall thermal efficiency of the high-temperature gas furnace is expected to increase to at least 60%, because its high-temperature gases of around 1,000 degrees C can be used for heating processes, and the waste heat can be further used for generation of steam for power production. (NEDO)

  3. Iodine removal from a gas phase

    International Nuclear Information System (INIS)

    Vikis, A. Ch.

    1982-01-01

    Iodine, e.g. radioactive iodine, present as one or more organic iodides, optionally with elemental iodine, in a gas phase (e.g. air) are removed by photochemically decomposing the organic iodides to elemental iodine, reacting the iodine produced, and any initially present with excess ozone, preferably photochemically produced in situ in the gas phase to produce solid iodine oxides, and removing the solid oxides from the gas phase. (author)

  4. Iodine removal from a gas phase

    International Nuclear Information System (INIS)

    Vikis, A.C.

    1984-01-01

    Iodine, e.g. radioactive iodine, present as one or more organic iodides, optionally with elemental iodine, in a gas phase (e.g. air) are removed by photochemically decomposing the organic iodides to elemental iodine, reacting the iodine produced, and any initially present with excess ozone, preferably photochemically produced in situ in the gas phase to produce solid iodine oxides, and removing the solid oxides from the gas phase

  5. Microstructural Characterization of Low Temperature Gas Nitrided Martensitic Stainless Steel

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2015-01-01

    The present work presents microstructural investigations of the surface zone of low temperature gas nitrided precipitation hardening martensitic stainless steel AISI 630. Grazing incidence X-ray diffraction was applied to investigate the present phases after successive removal of very thin sections...... of the sample surface. The development of epsilon nitride, expanded austenite and expanded martensite resulted from the low temperature nitriding treatments. The microstructural features, hardness and phase composition are discussed with emphasis on the influence of nitriding duration and nitriding potential....

  6. FORTRAN program for calculating liquid-phase and gas-phase thermal diffusion column coefficients

    International Nuclear Information System (INIS)

    Rutherford, W.M.

    1980-01-01

    A computer program (COLCO) was developed for calculating thermal diffusion column coefficients from theory. The program, which is written in FORTRAN IV, can be used for both liquid-phase and gas-phase thermal diffusion columns. Column coefficients for the gas phase can be based on gas properties calculated from kinetic theory using tables of omega integrals or on tables of compiled physical properties as functions of temperature. Column coefficients for the liquid phase can be based on compiled physical property tables. Program listings, test data, sample output, and users manual are supplied for appendices

  7. Low temperature FT-IR and molecular orbital study of N,N-dimethylglycine methyl ester: Proof for different ground conformational states in gas phase and in condensed media

    OpenAIRE

    Gómez-Zavaglia, A.; Fausto, R.

    2002-01-01

    N,N-dimethylglycine methyl ester (DMG-Me) was studied by FT-IR spectroscopy under several experimental conditions, including low temperature solid state and isolated in low temperature inert gas matrices, and by molecular orbital calculations. In agreement with the theoretical predictions, the experimental data show that in the gaseous phase the most stable conformer (ASC) has the ester group in cis configuration and the N–C–CO and Lp–N–C–C (Lp=lone electron pair) dihedral angles equal to 0° ...

  8. Phase transitions in a vortex gas

    International Nuclear Information System (INIS)

    Shah, P.A.

    1995-01-01

    It has been shown recently that the motion of solitons at couplings around a critical coupling can be reduced to the dynamics of particles (the zeros of the Higgs field) on a curved manifold with potential. The curvature gives a velocity-dependent force, and the magnitude of the potential is proportional to the distance from a critical coupling. In this paper we apply this approximation to determining the equation of state of a gas of vortices in the abelian Higgs model. We derive a virial expansion using certain known integrals of the metric, and the second virial coefficient is calculated, determining the behaviour of the gas at low densities. A formula for determining higher-order coefficients is given. At low densities and temperatures T >>λ the equation of state is of the Van der Waals form (P+b N 2 /A 2 )(A-aN) = NT with a=4π and b=-4.89πλ where λ is a measure of the distance from critical coupling. It is found that there is no phase transition in a low-density type-II gas, but there is a transition in the type-I case between a condensed and gaseous state. We conclude with a discussion of the relation of our results to vortex behaviour in superconductors. ((orig.))

  9. Device to remove hydrogen isotopes from a gas phase

    International Nuclear Information System (INIS)

    Morlock, G.; Wiesemes, J.; Bachner, D.

    1977-01-01

    The device described here guarantees the selective removal of hydrogen isotopes from gas phases in order to prevent the occurence of explosive H 2 gas mixtures, or to separate off radioactive tritium in nuclear plants from the gas phase. It consists of a closed container whose walls are selectively penetrable by hydrogen isotopes. It is simultaneously filled compactly and presssure-resistant with a metal bulk (e.g. powder, sponges or the like of titanium or other hydrogen isotope binding metal). Walling and bulk are maintained at suitable working temperatures by means of a system according to the Peltier effect. The whole thing is safeguarded by protective walling. (RB) [de

  10. Condensation in gas transmission pipelines. Phase behavior of mixtures of hydrogen with natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Schouten, J.A.; Michels, J.P.J. [Amsterdam Univ. (Netherlands). Van der Waals-Zeeman Inst.; Rosmalen, R.J. van [Energy, Roden (Netherlands)

    2005-05-01

    Several pressure and temperature reductions occur along gas transmission lines. Since the pressure and temperature conditions of the natural gas in the pipeline are often close to the dew point curve, liquid dropout can occur. Injection of hydrogen into the natural gas will change the phase envelope and thus the liquid dropout. This condensation of the heavy hydrocarbons requires continuous operational attention and a positive effect of hydrogen may affect the decision to introduce hydrogen. In this paper we report on calculations of the amount of condensate in a natural gas and in this natural gas mixed with 16.7% hydrogen. These calculations have been performed at conditions prevailing in gas transport lines. The results will be used to discuss the difference in liquid dropout in a natural gas and in a mixture with hydrogen at pressure reduction stations, at crossings under waterways, at side-branching, and at separators in the pipelines. (author)

  11. Temperature of gas delivered from ventilators.

    Science.gov (United States)

    Chikata, Yusuke; Onodera, Mutsuo; Imanaka, Hideaki; Nishimura, Masaji

    2013-01-01

    Although heated humidifiers (HHs) are the most efficient humidifying device for mechanical ventilation, some HHs do not provide sufficient humidification when the inlet temperature to the water chamber is high. Because portable and home-care ventilators use turbines, blowers, pistons, or compressors to inhale in ambient air, they may have higher gas temperature than ventilators with piping systems. We carried out a bench study to investigate the temperature of gas delivered from portable and home-care ventilators, including the effects of distance from ventilator outlet, fraction of inspiratory oxygen (FIO2), and minute volume (MV). We evaluated five ventilators equipped with turbine, blower, piston, or compressor system. Ambient air temperature was adjusted to 24°C ± 0.5°C, and ventilation was set at FIO2 0.21, 0.6, and 1.0, at MV 5 and 10 L/min. We analyzed gas temperature at 0, 40, 80, and 120 cm from ventilator outlet and altered ventilator settings. While temperature varied according to ventilators, the outlet gas temperature of ventilators became stable after, at the most, 5 h. Gas temperature was 34.3°C ± 3.9°C at the ventilator outlet, 29.5°C ± 2.2°C after 40 cm, 25.4°C ± 1.2°C after 80 cm and 25.1°C ± 1.2°C after 120 cm (P < 0.01). FIO2 and MV did not affect gas temperature. Gas delivered from portable and home-care ventilator was not too hot to induce heated humidifier malfunctioning. Gas soon declined when passing through the limb.

  12. Influence of Gas-Liquid Interface on Temperature Wave of Pulsating Heat Pipe

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2018-01-01

    Full Text Available The influence of the interface on the amplitude and phase of the temperature wave and the relationship between the attenuation of the temperature wave and the gas-liquid two-phase physical parameters are studied during the operation of the pulsating heat pipe. The numerical simulation shows that the existence of the phase interface changes the direction of the temperature gradient during the propagation of the temperature wave, which increases the additional “thermal resistance.” The relative size of the gas-liquid two-phase thermal conductivity affects the propagation direction of heat flow at phase interface directly. The blockage of the gas plug causes hysteresis in the phase of the temperature wave, the relative size of the gas-liquid two-phase temperature coefficient will gradually increase the phase of the temperature wave, and the time when the heat flow reaches the peak value is also advanced. The attenuation of the temperature wave is almost irrelevant to the absolute value of the density, heat capacity, and thermal conductivity of the gas-liquid two phases, and the ratio of the thermal conductivity of the gas-liquid two phases is related. When the temperature of the heat pipe was changed, the difference of heat storage ability between gas and liquid will lead to the phenomenon of heat reflux and becomes more pronounced with the increases of the temperature wave.

  13. Phase transition in the hadron gas model

    International Nuclear Information System (INIS)

    Gorenstein, M.I.; Petrov, V.K.; Zinov'ev, G.M.

    1981-01-01

    A class of statistical models of hadron gas allowing an analytical solution is considered. A mechanism of a possible phase transition in such a system is found and conditions for its occurence are determined [ru

  14. Transferring pharmaceuticals into the gas phase

    Science.gov (United States)

    Christen, Wolfgang; Krause, Tim; Rademann, Klaus

    2008-11-01

    The dissolution of molecules of biological interest in supercritical carbon dioxide is investigated using pulsed molecular beam mass spectrometry. Due to the mild processing temperatures of most supercritical fluids, their adiabatic expansion into vacuum permits to transfer even thermally very sensitive substances into the gas phase, which is particularly attractive for pharmaceutical and biomedical applications. In addition, supercritical CO2constitutes a chemically inert solvent that is compatible with hydrocarbon-free ultrahigh vacuum conditions. Here, we report on the dissolution and pulsed supersonic jet expansion of caffeine (C8H10N4O2), the provitamin menadione (C11H8O2), and the amino acid derivative l-phenylalanine tert-butyl ester hydrochloride (C6H5CH2CH(NH2)COOC(CH3)3[dot operator]HCl), into vacuum. An on-axis residual gas analyzer is used to monitor the relative amounts of solute and solvent in the molecular beam as a function of solvent densityE The excellent selectivity and sensitivity provided by mass spectrometry permits to probe even trace amounts of solutes. The strong density variation of CO2 close to the critical point results in a pronounced pressure dependence of the relative ion currents of solute and solvent molecules, reflecting a substantial change in solubility.

  15. Medium temperature carbon dioxide gas turbine reactor

    International Nuclear Information System (INIS)

    Kato, Yasuyoshi; Nitawaki, Takeshi; Muto, Yasushi

    2004-01-01

    A carbon dioxide (CO 2 ) gas turbine reactor with a partial pre-cooling cycle attains comparable cycle efficiencies of 45.8% at medium temperature of 650 deg. C and pressure of 7 MPa with a typical helium (He) gas turbine reactor of GT-MHR (47.7%) at high temperature of 850 deg. C. This higher efficiency is ascribed to: reduced compression work around the critical point of CO 2 ; and consideration of variation in CO 2 specific heat at constant pressure, C p , with pressure and temperature into cycle configuration. Lowering temperature to 650 deg. C provides flexibility in choosing materials and eases maintenance through the lower diffusion leak rate of fission products from coated particle fuel by about two orders of magnitude. At medium temperature of 650 deg. C, less expensive corrosion resistant materials such as type 316 stainless steel are applicable and their performance in CO 2 have been proven during extensive operation in AGRs. In the previous study, the CO 2 cycle gas turbomachinery weight was estimated to be about one-fifth compared with He cycles. The proposed medium temperature CO 2 gas turbine reactor is expected to be an alternative solution to current high-temperature He gas turbine reactors

  16. Studies of matrix diffusion in gas phase

    International Nuclear Information System (INIS)

    Hartikainen, K.; Timonen, J.; Vaeaetaeinen, K.; Pietarila, H.

    1994-03-01

    The diffusion of solutes from fractures into rock matrix is an important factor in the safety analysis of disposal of radioactive waste. Laboratory measurements are needed to complement field investigations for a reliable determination of the necessary transport parameters. Measurements of diffusion coefficients in tight rock samples are usually time consuming because the diffusion processes are slow. On the other hand it is well known that diffusion coefficients in the gas phase are roughly four orders of magnitude larger than those in the liquid phase. Therefore, for samples whose structures do not change much upon drying, it is possible to estimate the diffusion properties of the liquid phase when the properties of the gas phase are known. Advantages of the gas method are quick and easy measurements. In the measurements nitrogen was used as the carrier gas and helium as the tracer gas, and standard techniques have been used for helium detection. Techniques have been developed for both channel flow and through-diffusion measurements. The breakthrough curves have been measured in every experiment and all measurements have been modelled by using appropriate analytical models. As a result matrix porosities and effective diffusion coefficients in the gas phase have been determined. (12 refs., 21 figs., 6 tabs.)

  17. The nuclear liquid gas phase transition and phase coexistence

    International Nuclear Information System (INIS)

    Chomaz, Ph.

    2001-01-01

    In this talk we will review the different signals of liquid gas phase transition in nuclei. From the theoretical side we will first discuss the foundations of the concept of equilibrium, phase transition and critical behaviors in infinite and finite systems. From the experimental point of view we will first recall the evidences for some strong modification of the behavior of hot nuclei. Then we will review quantitative detailed analysis aiming to evidence phase transition, to define its order and phase diagram. Finally, we will present a critical discussion of the present status of phase transitions in nuclei and we will draw some lines for future development of this field. (author)

  18. The nuclear liquid gas phase transition and phase coexistence

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph

    2001-07-01

    In this talk we will review the different signals of liquid gas phase transition in nuclei. From the theoretical side we will first discuss the foundations of the concept of equilibrium, phase transition and critical behaviors in infinite and finite systems. From the experimental point of view we will first recall the evidences for some strong modification of the behavior of hot nuclei. Then we will review quantitative detailed analysis aiming to evidence phase transition, to define its order and phase diagram. Finally, we will present a critical discussion of the present status of phase transitions in nuclei and we will draw some lines for future development of this field. (author)

  19. Ambient Temperature Phase Change Launcher

    Science.gov (United States)

    2013-09-30

    microwave emitter is activated simultaneously with the release of the gas into the tube. Dkt . No. 100903 Application No. ?? REPLACEMENT SHEET? /31...100 26 24 22 20 18 16 1214 10 FIG. 1 A Dkt . No. 100903 Application No. ?? REPLACEMENT SHEET? /32 STORE ATMOSPHERIC GAS IN LIQUID STATE LAUNCH MISSILE...FROM SUBMARINE BY VAPORIZING THE GAS ADD HEAT TO LIQUID DURING LAUNCH TO MAINTAIN EVAPORATION 50 FIG. 2 52 54 Dkt . No. 100903 Application No

  20. Reactive intermediates in the gas phase generation and monitoring

    CERN Document Server

    Setser, D W

    2013-01-01

    Reactive Intermediates in the Gas Phase: Generation and Monitoring covers methods for reactive intermediates in the gas phase. The book discusses the generation and measurement of atom and radical concentrations in flow systems; the high temperature flow tubes, generation and measurement of refractory species; and the electronically excited long-lived states of atoms and diatomic molecules in flow systems. The text also describes the production and detection of reactive species with lasers in static systems; the production of small positive ions in a mass spectrometer; and the discharge-excite

  1. Effect of deposition temperature of TiO2 on the piezoelectric property of PbTiO3 film grown by PbO gas phase reaction sputtering

    International Nuclear Information System (INIS)

    Kim, Jiyoon; Kim, Yunseok; Park, Moonkyu; No, Kwangsoo; Hong, Seungbum; Buehlmann, Simon; Kim, Yong Kwan

    2010-01-01

    A 17 nm thick PbTiO 3 (PTO) films were fabricated via PbO gas phase reaction with TiO 2 starting layer in a sputtering chamber. The influence of deposition temperature of TiO 2 on the piezoelectric properties of PTO thin films was investigated. The remnant piezoresponse of PTO films nonlinearly increased as a function of TiO 2 deposition temperature, which is correlated with the increase in average grain diameter of PTO film. As grain size increases, the restriction on remnant piezoresponse imposed by the grain boundary via coupling between local strain and polarization becomes less pronounced, which results in the increase in remnant piezoresponse. Furthermore, we found that the vertical shift in piezoresponse hysteresis loops is closely related to the residual stress state. A strong correlation between the negative vertical shift and the residual tensile stress reveals that residual stress on the resulting PTO film contributed to the asymmetric piezoelectric property.

  2. Effect of temperature, gas phase composition, pH and microbial activity on As, Zn, Pb and Cd mobility in selected soils in the Ebro and Meuse Basins in the context of global change

    Energy Technology Data Exchange (ETDEWEB)

    Joubert, A.V.P. [Laboratoire des Interactions Micro-organismes, Mineraux et Matieres organiques dans les Sols (LIMOS) UMR 7137, Nancy University, CNRS, BP 239, 54506 Vandoeuvre-les-Nancy cedex (France)]. E-mail: antoine.joubert@limos.uhp-nancy.fr; Lucas, L. [Bureau de Recherches Geologiques et Minieres (BRGM), Service Environnement et Procedes Innovants-Unite Ecotechnologie (EPI/ECO), 3 Avenue Claude Guillemin, BP 6009, 45060 Orleans cedex 2 (France); Garrido, F. [Bureau de Recherches Geologiques et Minieres (BRGM), Service Environnement et Procedes Innovants-Unite Ecotechnologie (EPI/ECO), 3 Avenue Claude Guillemin, BP 6009, 45060 Orleans cedex 2 (France)]. E-mail: f.garrido@brgm.fr; Joulian, C. [Bureau de Recherches Geologiques et Minieres (BRGM), Service Environnement et Procedes Innovants-Unite Ecotechnologie (EPI/ECO), 3 Avenue Claude Guillemin, BP 6009, 45060 Orleans cedex 2 (France); Jauzein, M. [Laboratoire des Interactions Micro-organismes, Mineraux et Matieres organiques dans les Sols (LIMOS) UMR 7137, Nancy University, CNRS, BP 239, 54506 Vandoeuvre-les-Nancy cedex (France)

    2007-08-15

    This study estimates the effect of environmental parameters on the mobility of four inorganic contaminants (As, Zn, Pb and Cd) in soils from three areas in the Ebro and Meuse River basins, within the context of global change. An experimental method, applicable to various soil systems, is used to measure the effect of four global-change-sensitive parameters (temperature, gas phase composition, pH and microbial activity). The aqueous phase of batch incubations was sampled regularly to monitor toxic element concentrations in water. Statistical processing enabled discrimination of the most relevant variations in dissolved concentrations measured at different incubation times and under different experimental conditions. Gas phase composition was identified as the most sensitive parameter for toxic element solubilization. This study confirms that total soil concentrations of inorganic pollutants are irrelevant when assessing the hazard for ecosystems or water resource quality. - An experimental method applicable for different soil systems enables the determination of the effect of environmental parameters, potentially affected by global change, on the mobilization of inorganic pollutants.

  3. Experimental station for gas phase fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Stankiewicz, M.; Garcia, E. Melero; Ruiz, J. Alvarez; Erman, P.; Hatherly, P.A.; Kivimaeki, A.; Rachlew, E.; Rius i Riu, J.

    2004-01-01

    The details of an experimental setup for gas phase atomic and molecular fluorescence measurements using synchrotron radiation are described in this article. The most significant part of the apparatus is an optical arrangement, which allows for simultaneous measurements of dispersed as well as total fluorescence intensity using an effusive gas jet and an inbuilt gas cell assembled in a convenient plug and measure configuration. The first measurements concerning fluorescence of the N 2 molecule around the N 1s edge obtained with this setup are presented

  4. Zpif's law in the liquid gas phase transition of nuclei

    International Nuclear Information System (INIS)

    Ma, Y.G.

    1999-01-01

    Zpif's law in the field of linguistics is tested in the nuclear disassembly within the framework of isospin dependent lattice gas model. It is found that the average cluster charge (or mass) of rank n in the charge (or mass) list shows exactly inversely to its rank, i.e., there exists Zpif's law, at the phase transition temperature. This novel criterion shall be helpful to search the nuclear liquid gas phase transition experimentally and theoretically. In addition, the finite size scaling of the effective phase transition temperature at which the Zpif's law appears is studied for several systems with different mass and the critical exponents of ν and β are tentatively extracted. (orig.)

  5. Enhancing the activation of silicon carbide tracer particles for PEPT applications using gas-phase deposition of alumina at room temperature and atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Valdesueiro, D. [Delft University of Technology, Department of Chemical Engineering, 2628 BL Delft (Netherlands); Garcia-Triñanes, P., E-mail: p.garcia@surrey.ac.uk [Department of Chemical and Process Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Meesters, G.M.H.; Kreutzer, M.T. [Delft University of Technology, Department of Chemical Engineering, 2628 BL Delft (Netherlands); Gargiuli, J.; Leadbeater, T.W.; Parker, D.J. [Positron Imaging Centre, School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Seville, J.P.K. [Department of Chemical and Process Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Ommen, J.R. van, E-mail: j.r.vanommen@tudelft.nl [Delft University of Technology, Department of Chemical Engineering, 2628 BL Delft (Netherlands)

    2016-01-21

    We have enhanced the radio-activation efficiency of SiC (silicon carbide) particles, which by nature have a poor affinity towards {sup 18}F ions, to be employed as tracers in studies using PEPT (Positron Emission Particle Tracking). The resulting SiC–Al{sub 2}O{sub 3} core–shell structure shows a good labelling efficiency, comparable to γ-Al{sub 2}O{sub 3} tracer particles, which are commonly used in PEPT. The coating of the SiC particles was carried at 27±3 °C and 1 bar in a fluidized bed reactor, using trimethylaluminium and water as precursors, by a gas phase technique similar to atomic layer deposition. The thickness of the alumina films, which ranged from 5 to 500 nm, was measured by elemental analysis and confirmed with FIB-TEM (focused ion beam – transmission electron microscope), obtaining consistent results from both techniques. By depositing such a thin film of alumina, properties that influence the hydrodynamic behaviour of the SiC particles, such as size, shape and density, are hardly altered, ensuring that the tracer particle shows the same flow behaviour as the other particles. The paper describes a general method to improve the activation efficiency of materials, which can be applied for the production of tracer particles for many other applications too. - Highlights: • We deposited Al{sub 2}O{sub 3} films on SiC particles at ambient conditions in a fluidized bed. • The affinity of {sup 18}F ions towards Al{sub 2}O{sub 3}–SiC particle was improved compared to SiC. • We used the Al{sub 2}O{sub 3}–SiC activated particle as tracer in a PEPT experiment. • Tracer particles have suitable activity for accurate tracking. • The Al{sub 2}O{sub 3} film is thin enough not to alter the particle size, shape and density.

  6. Gas phase decontamination of gaseous diffusion process equipment

    International Nuclear Information System (INIS)

    Bundy, R.D.; Munday, E.B.; Simmons, D.W.; Neiswander, D.W.

    1994-01-01

    D ampersand D of the process facilities at the gaseous diffusion plants (GDPs) will be an enormous task. The EBASCO estimate places the cost of D ampersand D of the GDP at the K-25 Site at approximately $7.5 billion. Of this sum, nearly $4 billion is associated with the construction and operation of decontamination facilities and the dismantlement and transport of contaminated process equipment to these facilities. In situ long-term low-temperature (LTLT) gas phase decontamination is being developed and demonstrated at the K-25 site as a technology that has the potential to substantially lower these costs while reducing criticality and safeguards concerns and worker exposure to hazardous and radioactive materials. The objective of gas phase decontamination is to employ a gaseous reagent to fluorinate nonvolatile uranium deposits to form volatile LJF6, which can be recovered by chemical trapping or freezing. The LTLT process permits the decontamination of the inside of gas-tight GDP process equipment at room temperature by substituting a long exposure to subatmospheric C1F for higher reaction rates at higher temperatures. This paper outlines the concept for applying LTLT gas phase decontamination, reports encouraging laboratory experiments, and presents the status of the design of a prototype mobile system. Plans for demonstrating the LTLT process on full-size gaseous diffusion equipment are also outlined briefly

  7. Titanium dioxide thin films for high temperature gas sensors

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, Zachary Mark; Bandyopadhyay, Amit; Bose, Susmita, E-mail: sbose@wsu.ed

    2010-10-29

    Titanium dioxide (TiO{sub 2}) thin film gas sensors were fabricated via the sol-gel method from a starting solution of titanium isopropoxide dissolved in methoxyethanol. Spin coating was used to deposit the sol on electroded aluminum oxide (Al{sub 2}O{sub 3}) substrates forming a film 1 {mu}m thick. The influence of crystallization temperature and operating temperature on crystalline phase, grain size, electronic conduction activation energy, and gas sensing response toward carbon monoxide (CO) and methane (CH{sub 4}) was studied. Pure anatase phase was found with crystallization temperatures up to 800 {sup o}C, however, rutile began to form by 900 {sup o}C. Grain size increased with increasing calcination temperature. Activation energy was dependent on crystallite size and phase. Sensing response toward CO and CH{sub 4} was dependent on both calcination and operating temperatures. Films crystallized at 650 {sup o}C and operated at 450 {sup o}C showed the best selectivity toward CO.

  8. IAEA high temperature gas cooled reactor activities

    International Nuclear Information System (INIS)

    Kendall, J.M.

    2001-01-01

    IAEA activities on high temperature gas cooled reactors are conducted with the review and support of Member States, primarily through the International Working Group on Gas Cooled Reactors (IWGGCR). This paper summarises the results of the IAEA gas cooled reactor project activities in recent years along with ongoing current activities through a review of Co-ordinated Research Projects (CRPs), meetings and other international efforts. A series of three recently completed CRPs have addressed the key areas of reactor physics for LEU fuel, retention of fission products, and removal of post shutdown decay heat through passive heat transport mechanisms. These activities along with other completed and ongoing supporting CRPs and meetings are summarised with reference to detailed documentation of the results. (author)

  9. High temperature gas cooled nuclear reactor

    International Nuclear Information System (INIS)

    Hosegood, S.B.; Lockett, G.E.

    1975-01-01

    For high-temperature gas cooled reactors it is considered advantageous to design the core so that the moderator blocks can be removed and replaced by some means of standpipes normally situated in the top of the reactor vessel. An arrangement is here described to facilitate these operations. The blocks have end faces shaped as irregular hexagons with three long sides of equal length and three short sides also of equal length, one short side being located between each pair of adjacent long sides, and the long sides being inclined towards one another at 60 0 . The block defines a number of coolant channels located parallel to its sides. Application of the arrangement to a high temperature gas-cooled reactor with refuelling standpipes is described. The standpipes are located in the top of the reactor vessel above the tops of the columns and are disposed coaxially above the hexagonal channels, with diameters that allow the passage of the blocks. (U.K.)

  10. The modular high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Lutz, D.E.; Lipps, A.J.

    1984-01-01

    Due to relatively high operating temperatures, the gas-cooled reactor has the potential to serve a wide variety of energy applications. This paper discusses the energy applications which can be served by the modular HTGR, the magnitude of the potential markets, and the HTGR product cost incentives relative to fossil fuel competition. Advantages of the HTGR modular systems are presented along with a description of the design features and performance characteristics of the current reference HTGR modular systems

  11. Rotational temperature determinations in molecular gas lasers

    International Nuclear Information System (INIS)

    Weaver, L.A.; Taylor, L.H.; Denes, L.J.

    1975-01-01

    The small-signal gain expressions for vibrational-rotational transitions are examined in detail to determine possible methods of extracting the rotational temperature from experimental gain measurements in molecular gas lasers. Approximate values of T/subr/ can be deduced from the rotational quantum numbers for which the P- and R-branch gains are maximum. Quite accurate values of T/subr/ and the population inversion density (n/subv//sub prime/-n/subv//sub double-prime/) can be determined by fitting data to suitably linearized gain relationships, or by performing least-squares fits of the P- and R-branch experimental data to the full gain expressions. Experimental gain measurements for 15 P-branch and 12 R-branch transitions in the 10.4-μm CO 2 band have been performed for pulsed uv-preionized laser discharges in CO 2 : N 2 : He=1 : 2 : 3 mixtures at 600 Torr. These data are subjected to the several gain analyses described herein, yielding a rotational temperature of 401plus-or-minus10 degreeK and an inversion density of (3.77plus-or-minus0.07) times10 17 cm -3 for conditions of maximum gain. These techniques provide accurate values of the gas temperature in molecular gas lasers with excellent temporal and spatial resolution, and should be useful in extending the conversion efficiency and arcing limits of high-energy electrically exc []ted lasers

  12. Gas-Phase Reactivity of Microsolvated Anions

    DEFF Research Database (Denmark)

    Thomsen, Ditte Linde

    the gas-phase α-effect. The experimental studies are performed by means of the flowing after glow selected ion flow tube technique, and these are supplemented by electronic structure calculations. The α-nucleophile employed is the microsolvated hydrogen peroxide anion whose reactivity is compared......Gas-phase studies of ion-molecule reactions shed light on the intrinsic factors that govern reactivity; and even solvent effects can be examined in the gasphase environment by employing microsolvated ions. An area that has received considerable attention with regard to the interplay between...... to that of a series of microsolvated oxygen centered anions. The association of the nucleophiles with a single water or methanol molecule allows the α-effect to be observed in the SN2 reaction with methyl chloride; this effect was not apparent in the reactions of the unsolvated anions. The results suggest...

  13. Analytical study of solids-gas two phase flow

    International Nuclear Information System (INIS)

    Hosaka, Minoru

    1977-01-01

    Fundamental studies were made on the hydrodynamics of solids-gas two-phase suspension flow, in which very small solid particles are mixed in a gas flow to enhance the heat transfer characteristics of gas cooled high temperature reactors. Especially, the pressure drop due to friction and the density distribution of solid particles are theoretically analyzed. The friction pressure drop of two-phase flow was analyzed based on the analytical result of the single-phase friction pressure drop. The calculated values of solid/gas friction factor as a function of solid/gas mass loading are compared with experimental results. Comparisons are made for Various combinations of Reynolds number and particle size. As for the particle density distribution, some factors affecting the non-uniformity of distribution were considered. The minimum of energy dispersion was obtained with the variational principle. The suspension density of particles was obtained as a function of relative distance from wall and was compared with experimental results. It is concluded that the distribution is much affected by the particle size and that the smaller particles are apt to gather near the wall. (Aoki, K.)

  14. High temperature gas-cooled reactor: gas turbine application study

    International Nuclear Information System (INIS)

    1980-12-01

    The high-temperature capability of the High-Temperature Gas-Cooled Reactor (HTGR) is a distinguishing characteristic which has long been recognized as significant both within the US and within foreign nuclear energy programs. This high-temperature capability of the HTGR concept leads to increased efficiency in conventional applications and, in addition, makes possible a number of unique applications in both electrical generation and industrial process heat. In particular, coupling the HTGR nuclear heat source to the Brayton (gas turbine) Cycle offers significant potential benefits to operating utilities. This HTGR-GT Application Study documents the effort to evaluate the appropriateness of the HTGR-GT as an HTGR Lead Project. The scope of this effort included evaluation of the HTGR-GT technology, evaluation of potential HTGR-GT markets, assessment of the economics of commercial HTGR-GT plants, and evaluation of the program and expenditures necessary to establish HTGR-GT technology through the completion of the Lead Project

  15. High temperature gas-cooled reactor: gas turbine application study

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The high-temperature capability of the High-Temperature Gas-Cooled Reactor (HTGR) is a distinguishing characteristic which has long been recognized as significant both within the US and within foreign nuclear energy programs. This high-temperature capability of the HTGR concept leads to increased efficiency in conventional applications and, in addition, makes possible a number of unique applications in both electrical generation and industrial process heat. In particular, coupling the HTGR nuclear heat source to the Brayton (gas turbine) Cycle offers significant potential benefits to operating utilities. This HTGR-GT Application Study documents the effort to evaluate the appropriateness of the HTGR-GT as an HTGR Lead Project. The scope of this effort included evaluation of the HTGR-GT technology, evaluation of potential HTGR-GT markets, assessment of the economics of commercial HTGR-GT plants, and evaluation of the program and expenditures necessary to establish HTGR-GT technology through the completion of the Lead Project.

  16. High temperature phase transitions without infrared divergences

    International Nuclear Information System (INIS)

    Tetradis, N.; Wetterich, C.

    1993-09-01

    The most commonly used method for the study of high temperature phase transitions is based on the perturbative evaluation of the temperature dependent effective potential. This method becomes unreliable in the case of a second order or weakly first order phase transition, due to the appearance of infrared divergences. These divergences can be controlled through the method of the effective average action which employs renormalization group ideas. We report on the study of the high temperature phase transition for the N-component φ 4 theory. A detailed quantitative picture of the second order phase transition is presented, including the critical exponents for the behaviour in the vicinity of the critical temperature. An independent check of the results is obtained in the large N limit, and contact with the perturbative approach is established through the study of the Schwinger-Dyson equations. (orig.)

  17. Two methods to measure granular gas temperature

    Science.gov (United States)

    Chastaing, J.-Y.; Géminard, J.-C.; Naert, A.

    2017-07-01

    Grains are vibrated so as to achieve a granular gas, here regarded as an archetype of a dissipative non equilibrium steady state (NESS). We report on two distinct and concordant experimental measures of the system effective temperature. To do so, a blade fastened to the shaft of a small DC-motor, immersed in the grains, behaves as a driven 1D Brownian rotator, which is used as both actuator and sensor simultaneously. On the one hand, the Gallavotti-Cohen fluctuation theorem, which involves a measure of the asymmetry of the energy exchanges between the rotator and the NESS reservoir, provides a first effective temperature. On the other hand, the fluctuation-dissipation theorem, which involves the relation between the spontaneous fluctuations and the response to a weak perturbation, defines a second, independent, effective temperature. Both methods, even though they are based on drastically different ideas, give nicely concordant results.

  18. High Temperature Metallic Seal Development For Aero Propulsion and Gas Turbine Applications

    Science.gov (United States)

    More, Greg; Datta, Amit

    2006-01-01

    A viewgraph presentation on metallic high temperature static seal development at NASA for gas turbine applications is shown. The topics include: 1) High Temperature Static Seal Development; 2) Program Review; 3) Phase IV Innovative Seal with Blade Alloy Spring; 4) Spring Design; 5) Phase IV: Innovative Seal with Blade Alloy Spring; 6) PHase IV: Testing Results; 7) Seal Seating Load; 8) Spring Seal Manufacturing; and 9) Other Applications for HIgh Temperature Spring Design

  19. Bimodular high temperature planar oxygen gas sensor

    Directory of Open Access Journals (Sweden)

    Xiangcheng eSun

    2014-08-01

    Full Text Available A bimodular planar O2 sensor was fabricated using NiO nanoparticles (NPs thin film coated yttria-stabilized zirconia (YSZ substrate. The thin film was prepared by radio frequency (r.f. magnetron sputtering of NiO on YSZ substrate, followed by high temperature sintering. The surface morphology of NiO nanoparticles film was characterized by atomic force microscopy (AFM and scanning electron microscopy (SEM. X-ray diffraction (XRD patterns of NiO NPs thin film before and after high temperature O2 sensing demonstrated that the sensing material possesses a good chemical and structure stability. The oxygen detection experiments were performed at 500 °C, 600 °C and 800 °C using the as-prepared bimodular O2 sensor under both potentiometric and resistance modules. For the potentiometric module, a linear relationship between electromotive force (EMF output of the sensor and the logarithm of O2 concentration was observed at each operating temperature, following the Nernst law. For the resistance module, the logarithm of electrical conductivity was proportional to the logarithm of oxygen concentration at each operating temperature, in good agreement with literature report. In addition, this bimodular sensor shows sensitive, reproducible and reversible response to oxygen under both sensing modules. Integration of two sensing modules into one sensor could greatly enrich the information output and would open a new venue in the development of high temperature gas sensors.

  20. Preconceptual design of the gas-phase decontamination demonstration cart

    International Nuclear Information System (INIS)

    Munday, E.B.

    1993-12-01

    Removal of uranium deposits from the interior surfaces of gaseous diffusion equipment will be a major portion of the overall multibillion dollar effort to decontaminate and decommission the gaseous diffusion plants. Long-term low-temperature (LTLT) gas-phase decontamination is being developed at the K-25 Site as an in situ decontamination process that is expected to significantly lower the decontamination costs, reduce worker exposure to radioactive materials, and reduce safeguard concerns. This report documents the preconceptual design of the process equipment that is necessary to conduct a full-scale demonstration of the LTLT method in accordance with the process steps listed above. The process equipment and method proposed in this report are not intended to represent a full-scale production campaign design and operation, since the gas evacuation, gas charging, and off-gas handling systems that would be cost effective in a production campaign are not cost effective for a first-time demonstration. However, the design presented here is expected to be applicable to special decontamination projects beyond the demonstration, which could include the Deposit Recovery Program. The equipment will therefore be sized to a 200 ft size 1 converter (plus a substantial conservative design margin), which is the largest item of interest for gas phase decontamination in the Deposit Recovery Program. The decontamination equipment will allow recovery of the UF 6 , which is generated from the reaction of ClF 3 with the uranium deposits, by use of NaF traps

  1. Study on Method of Ultrasonic Gas Temperature Measure Based on FPGA

    Energy Technology Data Exchange (ETDEWEB)

    Wen, S H; Xu, F R [Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004 (China)

    2006-10-15

    It is always a problem to measure instantaneous temperature of high-temperature and high-pressure gas. There is difficulty for the conventional method of measuring temperature to measure quickly and exactly, and the measuring precision is low, the ability of anti-jamming is bad, etc. So the article introduces a method of measuring burning gas temperature using ultrasonic based on Field-Programmable Gate Array (FPGA). The mathematic model of measuring temperature is built with the relation of velocity of ultrasonic transmitting and gas Kelvin in the ideal gas. The temperature can be figured out by measuring the difference of ultrasonic frequency {delta}f. FPGA is introduced and a high-precision data acquisition system based on digital phase-shift technology is designed. The feasibility of proposed above is confirmed more by measuring pressure of burning gas timely. Experimental result demonstrates that the error is less than 12.. and the precision is heightened to 0.8%.

  2. Achievement report on research and development (1st phase) of direct iron making by use of high-temperature; Koon kangen gas riyo ni yoru chokusetsu seitetsu no kenkyu kaihatsu (daiikki) ni kansuru hyoka hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-02-01

    Efforts are put into the study of direct iron making for use in a closed system where heat energy from a multi-purpose high-temperature gas furnace expected to be developed in the near future will be utilized for iron making. The researches, carried out for the establishment of technologies necessary for designing, building, and operating a pilot plant dimensionally suitable for connection to a 50MWt multi-purpose high-temperature gas furnace, cover the plant total system, a high-temperature heat exchanger, ultrahigh-temperature alloys, high-temperature insulating materials, a reduced gas generating unit, and a reduced iron making unit. When the effort is evaluated as a whole, it is found that the newly developed system is effective in preventing pollution, emitting but 0.1Nm{sup 3} of SOx per 1 ton of crude iron against the 0.4-0.9Nm{sup 3} emitted by a blast furnace/converter iron making mill. It is also found effective in reducing fossil fuel dependence and in enhancing energy source diversification. When it comes to energy conversion efficiency, furthermore, it is shown that the new system achieves a rate of 60% or more while only approximately 30% is attained by light water reactor power generation and approximately 40% by a high-temperature gas furnace. (NEDO)

  3. Gas-phase transport of fission products

    International Nuclear Information System (INIS)

    Tang, I.N.; Munkelwitz, H.R.

    1982-01-01

    The paper presents the results of an experimental investigation to show the importance of nuclear aerosol formation as a mechanism for semi-volatile fission product transport under certain postulated HTGR accident conditions. Simulated fission product Sr and Ba as oxides are impregnated in H451 graphite and released at elevated temperatures into a dry helium flow. In the presence of graphite, the oxides are quantitatively reduced to metals, which subsequently vaporize at temperatures much lower than required for the oxides alone to vaporize in the absence of graphite. A substantial fraction of the released material is associated with particulate matter, which is collected on filters located downstream at ambient temperatures. Increasing carrier-gas flow rate greatly enhances the extent of particulate transport. The release and transport of simulated fission product Ag as metal are also investigated. Electron microscopic examinations of the collected Sr and Ag aerosols show large agglomerates composed of primary particles roughly 0.06 to 0.08 μm in diameter

  4. Phase transitions in a gas of anyons

    International Nuclear Information System (INIS)

    MacKenzie, R.; Nebia-Rahal, F.; Paranjape, M. B.; Richer, J.

    2010-01-01

    We continue our numerical Monte Carlo simulation of a gas of closed loops on a 3 dimensional lattice, however, now in the presence of a topological term added to the action which corresponds to the total linking number between the loops. We compute the linking number using a novel approach employing certain notions from knot theory. Adding the topological term converts the particles into anyons. Interpreting the model as an effective theory that describes the 2+1-dimensional Abelian Higgs model in the asymptotic strong-coupling regime, the topological linking number simply corresponds to the addition to the action of the Chern-Simons term. The system continues to exhibit a phase transition as a function of the vortex mass as it becomes small. We find the following new results. The Chern-Simons term has no effect on the Wilson loop. On the other hand, it does effect the 't Hooft loop of a given configuration, adding the linking number of the 't Hooft loop with all of the dynamical vortex loops. We find the unexpected result that both the Wilson loop and the 't Hooft loop exhibit a perimeter law even though there are no massless particles in the theory, in both phases of the theory. It should be noted that our method suffers from numerical instabilities if the coefficient of the Chern-Simons term is too large; thus, we have restricted our results to small values of this parameter. Furthermore, interpreting the lattice loop gas as an effective theory describing the Abelian Higgs model is only known to be true in the infinite coupling limit; for strong but finite coupling this correspondence is only a conjecture, the validity of which is beyond the scope of this article.

  5. Gas Temperature Measurement in a Glow Discharge Plasma

    Science.gov (United States)

    Sloneker, Kenneth; Podder, Nirmol; McCurdy, William E.; Shi, Shi

    2009-10-01

    In this study a relatively inexpensive quartz protected thermocouple is used to measure the gas temperature in the positive column of a glow discharge plasma. For simplicity a K-type thermocouple is used to interpret the gas temperature from the sensor voltage at pressures from 0.5 Torr to 15 Torr and discharge currents from 5 mA to 120 mA. Gas temperature is investigated as a function of the gas pressure at fixed discharge currents and as a function of discharge current at fixed gas pressures in three different gas species (Ar, N2, and He). An infinite cylinder model is used to compute the average gas temperature of the discharge from joule heating and gas thermal conductivity. The model and measurement data agree within 1% to 10% depending on plasma parameters. Data for all three gases have a similar quasi-linear increasing error as compared to the model.

  6. Resolving Gas-Phase Metallicity In Galaxies

    Science.gov (United States)

    Carton, David

    2017-06-01

    Chapter 2: As part of the Bluedisk survey we analyse the radial gas-phase metallicity profiles of 50 late-type galaxies. We compare the metallicity profiles of a sample of HI-rich galaxies against a control sample of HI-'normal' galaxies. We find the metallicity gradient of a galaxy to be strongly correlated with its HI mass fraction {M}{HI}) / {M}_{\\ast}). We note that some galaxies exhibit a steeper metallicity profile in the outer disc than in the inner disc. These galaxies are found in both the HI-rich and control samples. This contradicts a previous indication that these outer drops are exclusive to HI-rich galaxies. These effects are not driven by bars, although we do find some indication that barred galaxies have flatter metallicity profiles. By applying a simple analytical model we are able to account for the variety of metallicity profiles that the two samples present. The success of this model implies that the metallicity in these isolated galaxies may be in a local equilibrium, regulated by star formation. This insight could provide an explanation of the observed local mass-metallicity relation. Chapter 3 We present a method to recover the gas-phase metallicity gradients from integral field spectroscopic (IFS) observations of barely resolved galaxies. We take a forward modelling approach and compare our models to the observed spatial distribution of emission line fluxes, accounting for the degrading effects of seeing and spatial binning. The method is flexible and is not limited to particular emission lines or instruments. We test the model through comparison to synthetic observations and use downgraded observations of nearby galaxies to validate this work. As a proof of concept we also apply the model to real IFS observations of high-redshift galaxies. From our testing we show that the inferred metallicity gradients and central metallicities are fairly insensitive to the assumptions made in the model and that they are reliably recovered for galaxies

  7. DEMONSTRATION BULLETIN: GAS-PHASE CHEMICAL REDUCTION - ECO LOGIC INTERNATIONAL, INC.

    Science.gov (United States)

    The patented Eco Logic Process employs a gas-phase reduction reaction of hydrogen with organic and chlorinated organic compounds at elevated temperatures to convert aqueous and oily hazardous contaminants into a hydrocarbon-rich gas product. After passing through a scrubber, the ...

  8. Raman study of vibrational dynamics of aminopropylsilanetriol in gas phase

    Science.gov (United States)

    Volovšek, V.; Dananić, V.; Bistričić, L.; Movre Šapić, I.; Furić, K.

    2014-01-01

    Raman spectrum of aminopropylsilanetriol (APST) in gas phase has been recorded at room temperature in macro chamber utilizing two-mirror technique over the sample tube. Unlike predominantly trans molecular conformation in condensed phase, the spectra of vapor show that the molecules are solely in gauche conformation with intramolecular hydrogen bond N⋯Hsbnd O which reduces the molecular energy in respect to trans conformation by 0.152 eV. The assignment of the molecular spectra based on the DFT calculation is presented. The strong vibrational bands at 354 cm-1, 588 cm-1 and 3022 cm-1 are proposed for verifying the existence of the ring like, hydrogen bonded structure. Special attention was devoted to the high frequency region, where hydrogen bond vibrations are coupled to stretchings of amino and silanol groups.

  9. Effect of temperature on crack initiation in gas formed structures

    Energy Technology Data Exchange (ETDEWEB)

    Gohari, S.; Vrcelj, Z.; Sharifi, S.; Sharifishourabi, G.; Abadi, R. [Universiti Teknlogi Malaysia, Skudai (Malaysia)

    2013-12-15

    In the gas forming process, the work piece is formed by applying gas pressure. However, the gas pressure and the accompanying gas temperature can result in crack initiation and unstable crack growth. Thus, it is vital to determine the critical values of applied gas pressure and temperature to avoid crack and fracture failure. We studied the mechanism of fracture using an experimental approach and finite element simulations of a perfect aluminum sheet containing no inclusions and voids. The definition of crack was based on ductile damage mechanics. For inspection of initiation of crack and rupture in gas-metal forming, the ABAQUS/EXPLICIT simulation was used. In gas forming, the applied load is the pressure applied rather than the punching force. The results obtained from both the experimental approach and finite element simulations were compared. The effects of various parameters, such as temperature and gas pressure value on crack initiation, were taken into account.

  10. Gas-Phase Thermolysis of a Thioketen-S-Oxide

    DEFF Research Database (Denmark)

    Carlsen, Lars; Egsgaard, Helge; Schaumann, Ernst

    1980-01-01

    The unimolecular gas-phase thermolytic decomposition of 1,1,3,3-tetramethyl-2-thiocarbonylcyclohexane S-oxide (3) has been studied as a function of temperature by a flash vacuum thermolysis (f.v.t.) technique. The products detected are the carbenes (4) and (5), the ketone (6), the keten (7......), the thioketone (8), and the thioketen (9). The product ratio is highly dependent on the thermolysis temperature. The thermolysis of (3) is mechanistically rationalized by assuming the existence of only two concurrent primary processes, which are (a) extrusion of atomic oxygen, leading to the thioketen (9...... and CSO leading to the carbenes (5) and (4), respectively, are observed. Owing to an apparently very short half-life of the oxathiiran (10), only the decomposition products of the three-membered ring compound have been detected. These are the thioketone (8), formed by rearrangement of (10) into the α...

  11. High-temperature Gas Reactor (HTGR)

    Science.gov (United States)

    Abedi, Sajad

    2011-05-01

    General Atomics (GA) has over 35 years experience in prismatic block High-temperature Gas Reactor (HTGR) technology design. During this period, the design has recently involved into a modular have been performed to demonstrate its versatility. This versatility is directly related to refractory TRISO coated - particle fuel that can contain any type of fuel. This paper summarized GA's fuel cycle studies individually and compares each based upon its cycle sustainability, proliferation-resistance capabilities, and other performance data against pressurized water reactor (PWR) fuel cycle data. Fuel cycle studies LEU-NV;commercial HEU-Th;commercial LEU-Th;weapons-grade plutonium consumption; and burning of LWR waste including plutonium and minor actinides in the MHR. results show that all commercial MHR options, with the exception of HEU-TH, are more sustainable than a PWR fuel cycle. With LEU-NV being the most sustainable commercial options. In addition, all commercial MHR options out perform the PWR with regards to its proliferation-resistance, with thorium fuel cycle having the best proliferation-resistance characteristics.

  12. Analysis of volatile phase transport in soils using natural radon gas as a tracer

    International Nuclear Information System (INIS)

    Chen, C.; Thomas, D.M.

    1992-01-01

    We have conducted a field study of soil gas transport processes using radon gas as a naturally occurring tracer. The experiment monitored soil gas radon activity, soil moisture, and soil temperature at three depths in the shallow soil column; barometric pressure, rainfall and wind speed were monitored at the soil surface. Linear and multiple regression analysis of the data sets has shown that the gas phase radon activities under natural environmental conditions are influenced by soil moisture content, barometric pressure variations, soil temperature and soil structure. The effect of wind speed on subsurface radon activities under our field conditions has not been demonstrated

  13. Thermodynamics of a classical ideal gas at arbitrary temperatures

    OpenAIRE

    Pal, Palash B.

    2002-01-01

    We propose a fundamental relation for a classical ideal gas that is valid at all temperatures with remarkable accuracy. All thermodynamical properties of classical ideal gases can be deduced from this relation at arbitrary temperature.

  14. X3 expansion tube driver gas spectroscopy and temperature measurements

    Science.gov (United States)

    Parekh, V.; Gildfind, D.; Lewis, S.; James, C.

    2017-11-01

    The University of Queensland's X3 facility is a large, free-piston driven expansion tube used for super-orbital and high Mach number scramjet aerothermodynamic studies. During recent development of new scramjet test flow conditions, experimentally measured shock speeds were found to be significantly lower than that predicted by initial driver performance calculations. These calculations were based on ideal, isentropic compression of the driver gas and indicated that loss mechanisms, not accounted for in the preliminary analysis, were significant. The critical determinant of shock speed is peak driver gas sound speed, which for a given gas composition depends on the peak driver gas temperature. This temperature may be inaccurately estimated if an incorrect fill temperature is assumed, or if heat losses during driver gas compression are significant but not accounted for. For this study, the ideal predicted peak temperature was 3750 K, without accounting for losses. However, a much lower driver temperature of 2400 K is suggested based on measured experimental shock speeds. This study aimed to measure initial and peak driver gas temperatures for a representative X3 operating condition. Examination of the transient temperatures of the driver gas and compression tube steel wall during the initial fill process showed that once the filling process was complete, the steady-state driver gas temperature closely matched the tube wall temperature. Therefore, while assuming the gas is initially at the ambient laboratory temperature is not a significant source of error, it can be entirely mitigated by simply monitoring tube wall temperature. Optical emission spectroscopy was used to determine the driver gas spectra after diaphragm rupture; the driver gas emission spectrum exhibited a significant continuum radiation component, with prominent spectral lines attributed to contamination of the gas. A graybody approximation of the continuum suggested a peak driver gas temperature of

  15. X3 expansion tube driver gas spectroscopy and temperature measurements

    Science.gov (United States)

    Parekh, V.; Gildfind, D.; Lewis, S.; James, C.

    2018-07-01

    The University of Queensland's X3 facility is a large, free-piston driven expansion tube used for super-orbital and high Mach number scramjet aerothermodynamic studies. During recent development of new scramjet test flow conditions, experimentally measured shock speeds were found to be significantly lower than that predicted by initial driver performance calculations. These calculations were based on ideal, isentropic compression of the driver gas and indicated that loss mechanisms, not accounted for in the preliminary analysis, were significant. The critical determinant of shock speed is peak driver gas sound speed, which for a given gas composition depends on the peak driver gas temperature. This temperature may be inaccurately estimated if an incorrect fill temperature is assumed, or if heat losses during driver gas compression are significant but not accounted for. For this study, the ideal predicted peak temperature was 3750 K, without accounting for losses. However, a much lower driver temperature of 2400 K is suggested based on measured experimental shock speeds. This study aimed to measure initial and peak driver gas temperatures for a representative X3 operating condition. Examination of the transient temperatures of the driver gas and compression tube steel wall during the initial fill process showed that once the filling process was complete, the steady-state driver gas temperature closely matched the tube wall temperature. Therefore, while assuming the gas is initially at the ambient laboratory temperature is not a significant source of error, it can be entirely mitigated by simply monitoring tube wall temperature. Optical emission spectroscopy was used to determine the driver gas spectra after diaphragm rupture; the driver gas emission spectrum exhibited a significant continuum radiation component, with prominent spectral lines attributed to contamination of the gas. A graybody approximation of the continuum suggested a peak driver gas temperature of

  16. Phases of a polar spin-1 Bose gas in a magnetic field

    International Nuclear Information System (INIS)

    Kis-Szabo, Krisztian; Szepfalusy, Peter; Szirmai, Gergely

    2007-01-01

    The two Bose-Einstein condensed phases of a polar spin-1 gas at nonzero magnetizations and temperatures are investigated. The Hugenholtz-Pines theorem is generalized to this system. Crossover to a quantum phase transition is also studied. Results are discussed in a mean field approximation

  17. Electronic phase separation and high temperature superconductors

    International Nuclear Information System (INIS)

    Kivelson, S.A.

    1994-01-01

    The authors review the extensive evidence from model calculations that neutral holes in an antiferromagnet separate into hole-rich and hole-poor phases. All known solvable limits of models of holes in a Heisenberg antiferromagnet exhibit this behavior. The authors show that when the phase separation is frustrated by the introduction of long-range Coulomb interactions, the typical consequence is either a modulated (charge density wave) state or a superconducting phase. The authors then review some of the strong experimental evidence supporting an electronically-driven phase separation of the holes in the cuprate superconductors and the related Ni oxides. Finally, the authors argue that frustrated phase separation in these materials can account for many of the anomalous normal state properties of the high temperature superconductors and provide the mechanism of superconductivity. In particular, it is shown that the T-linear resistivity of the normal state is a paraconductivity associated with a novel composite pairing, although the ordered superconducting state is more conventional

  18. Comparison of catalytic ethylene polymerization in slurry and gas phase

    NARCIS (Netherlands)

    Daftaribesheli, Majid

    2009-01-01

    Polyethylene (PE) with the annual consumption of 70 million tones in 2007 is mostly produced in slurry, gas-phase or combination of both processes. This work focuses on a comparison between the slurry and gas phase processes. Why does PE produced in theses two processes can show extremely different

  19. Novel silica membranes for high temperature gas separations

    KAUST Repository

    Bighane, Neha; Koros, William J.

    2011-01-01

    and pure gas separation performance in the temperature range 35-80°C is presented. It is observed that the membranes exhibit activated transport for small gas penetrants such as He, H 2 and CO 2. The membranes can withstand temperatures up to 350°C in air

  20. Modeling the Phase Composition of Gas Condensate in Pipelines

    Science.gov (United States)

    Dudin, S. M.; Zemenkov, Yu D.; Shabarov, A. B.

    2016-10-01

    Gas condensate fields demonstrate a number of thermodynamic characteristics to be considered when they are developed, as well as when gas condensate is transported and processed. A complicated phase behavior of the gas condensate system, as well as the dependence of the extracted raw materials on the phase state of the deposit other conditions being equal, is a key aspect. Therefore, when designing gas condensate lines the crucial task is to select the most appropriate methods of calculating thermophysical properties and phase equilibrium of the transported gas condensate. The paper describes a physical-mathematical model of a gas-liquid flow in the gas condensate line. It was developed based on balance equations of conservation of mass, impulse and energy of the transported medium within the framework of a quasi-1D approach. Constitutive relationships are given separately, and practical recommendations on how to apply the research results are provided as well.

  1. Measured gas and particle temperatures in VTT's entrained flow reactor

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Sørensen, L.H.

    2006-01-01

    Particle and gas temperature measurements were carried out in experiments on VTTs entrained flow reactor with 5% and 10% oxygen using Fourier transform infrared emission spectroscopy (FTIR). Particle temperature measurements were performed on polish coal,bark, wood, straw particles, and bark...... and wood particles treated with additive. A two-color technique with subtraction of the background light was used to estimate particle temperatures during experiments. A transmission-emission technique was used tomeasure the gas temperature in the reactor tube. Gas temperature measurements were in good...... agreement with thermocouple readings. Gas lines and bands from CO, CO2 and H2O can be observed in the spectra. CO was only observed at the first measuring port (100ms) with the strongest CO-signal seen during experiments with straw particles. Variations in gas concentration (CO2 and H2O) and the signal from...

  2. Medium-size high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Peinado, C.O.; Koutz, S.L.

    1980-08-01

    This report summarizes high-temperature gas-cooled reactor (HTGR) experience for the 40-MW(e) Peach Bottom Nuclear Generating Station of Philadelphia Electric Company and the 330-MW(e) Fort St. Vrain Nuclear Generating Station of the Public Service Company of Colorado. Both reactors are graphite moderated and helium cooled, operating at approx. 760 0 C (1400 0 F) and using the uranium/thorium fuel cycle. The plants have demonstrated the inherent safety characteristics, the low activation of components, and the high efficiency associated with the HTGR concept. This experience has been translated into the conceptual design of a medium-sized 1170-MW(t) HTGR for generation of 450 MW of electric power. The concept incorporates inherent HTGR safety characteristics [a multiply redundant prestressed concrete reactor vessel (PCRV), a graphite core, and an inert single-phase coolant] and engineered safety features

  3. A compressed hydrogen gas storage system with an integrated phase change material

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rothuizen, Erasmus Damgaard; Jørgensen, Jens Erik

    2015-01-01

    below the critical temperature of 85 °C, while filling the hydrogen at ambient temperature. Results show that a 10-mm-thick layer of paraffin wax can absorb enough heat to reduce the adiabatic temperature by 20 K when compared to a standard Type IV tank. The heat transfer from the gas to the phase...... change material, mainly occurs after the fueling is completed, resulting in a higher hydrogen peak temperature inside the tank and a lower fuelled mass than a gas-cooled system. Such a mass reduction accounts for 12% with respect to the case of a standard tank system fuelled at -40 °C....

  4. Temperature monitoring of gas-cooled reactors

    International Nuclear Information System (INIS)

    Kaiser, G.E.

    1977-01-01

    The present paper deals with questions like : a) Why temperature monitoring in high-temperature reactors at all. b) How are the measuring positions arranged and how are the measurements designed. c) What technique of temperature measurement is applied. (RW) [de

  5. Phase diagram of a polarized Fermi gas across a Feshbach resonance in a potential trap

    International Nuclear Information System (INIS)

    Yi, W.; Duan, L.-M.

    2006-01-01

    We map out the detailed phase diagram of a trapped ultracold Fermi gas with population imbalance across a wide Feshbach resonance. We show that under the local density approximation, the properties of the atoms in any (anisotropic) harmonic traps are universally characterized by three dimensionless parameters: the normalized temperature, the dimensionless interaction strength, and the population imbalance. We then discuss the possible quantum phases in the trap, and quantitatively characterize their phase boundaries in various typical parameter regions

  6. Two-phase regime in the magnetic field-temperature phase diagram of a type-II superconductor

    International Nuclear Information System (INIS)

    Adams, L.L.A.; Halterman, Klaus; Valls, Oriol T.; Goldman, A.M.

    2004-01-01

    The magnetic field and temperature dependencies of the magnetic moments of superconducting crystals of V 3 Si have been studied. In a constant magnetic field and at temperatures somewhat below the superconducting transition temperature, the moments are hysteretic in temperature. However, the magnetic moment-magnetic field isotherms are reversible and exhibit features that formally resemble the pressure-volume isotherms of the liquid-gas transition. This suggests the existence of a first-order phase transition, a two-phase regime, and a critical point in the superconducting phase diagram. The two phases are disordered vortex configurations with the same magnetization, but with different vortex densities. The entropy change, determined from the data using the Clausius-Clapeyron equation, is consistent with estimates based on the difference in the vortex densities of the two phases

  7. Two-phase regime in the magnetic field-temperature phase diagram of a type-II superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Adams, L.L.A.; Halterman, Klaus; Valls, Oriol T.; Goldman, A.M

    2004-01-01

    The magnetic field and temperature dependencies of the magnetic moments of superconducting crystals of V{sub 3}Si have been studied. In a constant magnetic field and at temperatures somewhat below the superconducting transition temperature, the moments are hysteretic in temperature. However, the magnetic moment-magnetic field isotherms are reversible and exhibit features that formally resemble the pressure-volume isotherms of the liquid-gas transition. This suggests the existence of a first-order phase transition, a two-phase regime, and a critical point in the superconducting phase diagram. The two phases are disordered vortex configurations with the same magnetization, but with different vortex densities. The entropy change, determined from the data using the Clausius-Clapeyron equation, is consistent with estimates based on the difference in the vortex densities of the two phases.

  8. Apparatus using radioactive particles for measuring gas temperatures

    International Nuclear Information System (INIS)

    Compton, W.A.; Duffy, T.E.; Seegall, M.I.

    1975-01-01

    Apparatus for producing a signal indicative of the temperature of a heated gas is described comprising a beta particle source; a beta particle detector which intercepts particles emitted from said source; circuitry for converting the detector output to a signal indicative of the density of the gas; a pressure transducer for generating a signal indicative of the pressure on the gas; and circuitry for dividing the pressure signal by the density signal to produce a signal indicative of the average temperature of the gas along the path between the beta particle source and the beta particle detector. (auth)

  9. Novel silica membranes for high temperature gas separations

    KAUST Repository

    Bighane, Neha

    2011-04-01

    This article describes fabrication of novel silica membranes derived via controlled oxidative thermolysis of polydimethylsiloxane and their gas separation performance. The optimized protocol for fabrication of the silica membranes is described and pure gas separation performance in the temperature range 35-80°C is presented. It is observed that the membranes exhibit activated transport for small gas penetrants such as He, H 2 and CO 2. The membranes can withstand temperatures up to 350°C in air and may ultimately find use in H 2/CO 2 separations to improve efficiency in the water-gas shift reactor process. © 2011 Elsevier B.V.

  10. Method for high temperature mercury capture from gas streams

    Science.gov (United States)

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2006-04-25

    A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

  11. Gas Between the Stars: What Determines its Temperature?

    Indian Academy of Sciences (India)

    The interstellar gas in galaxies is heated by stellar radiationand cosmic rays and it also cools through radiation. We takea detailed look at these processes in order to understand thethermal state of equilibrium of the interstellar gas. This gasalso manifests itself in different 'phases'– molecular, neutralatomic and ionized, ...

  12. Wigner Distribution Functions as a Tool for Studying Gas Phase Alkali Metal Plus Noble Gas Collisions

    Science.gov (United States)

    2014-03-27

    WIGNER DISTRIBUTION FUNCTIONS AS A TOOL FOR STUDYING GAS PHASE ALKALI METAL PLUS NOBLE GAS COLLISIONS THESIS Keith A. Wyman, Second Lieutenant, USAF...the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENP-14-M-39 WIGNER DISTRIBUTION FUNCTIONS AS A TOOL FOR...APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT-ENP-14-M-39 WIGNER DISTRIBUTION FUNCTIONS AS A TOOL FOR STUDYING GAS PHASE ALKALI METAL PLUS

  13. Gas temperature of capacitance spark discharge in air

    International Nuclear Information System (INIS)

    Ono, Ryo; Nifuku, Masaharu; Fujiwara, Shuzo; Horiguchi, Sadashige; Oda, Tetsuji

    2005-01-01

    Capacitance spark discharge has been widely used for studying the ignition of flammable gas caused by electrostatic discharge. In the present study, the gas temperature of capacitance spark discharge is measured. The gas temperature is an important factor in understanding the electrostatic ignition process because it influences the reaction rate of ignition. Spark discharge is generated in air with a pulse duration shorter than 100 ns. The discharge energy is set to 0.03-1 mJ. The rotational and vibrational temperatures of the N 2 molecule are measured using the emission spectrum of the N 2 second positive system. The rotational and vibrational temperatures are estimated to be 500 and 5000 K, respectively, which are independent of the discharge energy. This result indicates that most of the electron energy is consumed in the excitation of vibrational levels of molecules rather than the heating of the gas. The gas temperature after discharge is also measured by laser-induced fluorescence of OH radicals. It is shown that the gas temperature increases after discharge and reaches approximately 1000 K at 3 μs after discharge. Then the temperature decreases at a rate in the range of 8-35 K/μs depending on the discharge energy

  14. Isothermal phase equilibria for the (HFC-32 + HFC-134a) mixed-gas hydrate system

    International Nuclear Information System (INIS)

    Miyauchi, Hiroshi; Yasuda, Kenjiro; Matsumoto, Yuuki; Hashimoto, Shunsuke; Sugahara, Takeshi; Ohgaki, Kazunari

    2012-01-01

    Highlights: ► Structural phase transition results in the heterogeneous azeotropic-like behaviour. ► HFC-134a molecules, in spite of an s-II former, occupy the large cages of s-I. ► Negative azeotropic-like behaviour becomes more remarkable at higher temperatures. - Abstract: Isothermal phase equilibria (pressure-composition relations in hydrate, gas, and aqueous phases) in the {difluoromethane (HFC-32) + 1,1,1,2-tetrafluoroethane (HFC-134a)} mixed-gas hydrate system were measured at the temperatures 274.15 K, 279.15 K, and 283.15 K. The heterogeneous azeotropic-like behaviour derived from the structural phase transition of (HFC-32 + HFC-134a) mixed-gas hydrates appears over the whole temperature range of the present study. In addition to the heterogeneous azeotropic-like behaviour, the isothermal phase equilibrium curves of the (HFC-32 + HFC-134a) mixed-gas hydrate system exhibit the negative homogeneous azeotropic-like behaviour at temperatures 279.15 K and 283.15 K. The negative azeotropic-like behaviour, which becomes more remarkable at higher temperatures, results in the lower equilibrium pressure of (HFC-32 + HFC-134a) mixed-gas hydrates than those of both simple HFC-32 and HFC-134a hydrates. Although the HFC-134a molecule forms the simple structure-II hydrate at the temperatures, the present findings reveal that HFC-134a molecules occupy a part of the large cages of the structure-I mixed-gas hydrate.

  15. Fuel arrangement for high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Tobin, J.M.

    1978-01-01

    Disclosed is a fuel arrangement for a high temperature gas cooled reactor including fuel assemblies with separate directly cooled fissile and fertile fuel elements removably inserted in an elongated moderator block also having a passageway for control elements

  16. The Ultrafast Wolff Rearrangement in the Gas Phase

    Science.gov (United States)

    Steinbacher, Andreas; Roeding, Sebastian; Brixner, Tobias; Nuernberger, Patrick

    The Wolff rearrangement of gas-phase 5-diazo Meldrum's acid is disclosed with femtosecond ion spectroscopy. Distinct differences are found for 267 nm and 200 nm excitation, the latter leading to even two ultrafast rearrangement reactions.

  17. Reticulated Vitreous Carbon Electrodes for Gas Phase Pulsed Corona Reactors

    National Research Council Canada - National Science Library

    Locke, B

    1998-01-01

    A new design for gas phase pulsed corona reactors incorporating reticulated vitreous carbon electrodes is demonstrated to be effective for the removal of nitrogen oxides from synthetic air mixtures...

  18. GAS PHASE ION CHEMISTRY OF COUMARINS: AB INITIO ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    The gas phase ion chemistry of coumarins using electron ionization (EI), positive chemical ionization (PCI) and ... Figure 1. Generic chemical structures of the coumarins in this study. ..... Part of this work was conducted using the resources of ...

  19. Reticulated Vitreous Carbon Electrodes for Gas Phase Pulsed Corona Reactors

    National Research Council Canada - National Science Library

    LOCKE, B

    1999-01-01

    A new design for gas phase pulsed corona reactors incorporating reticulated vitreous carbon electrodes is demonstrated to be effective for the removal of nitrogen oxides from synthetic air mixtures...

  20. Diode Laser Raman Scattering Prototype Gas-Phase Environmental Monitoring

    National Research Council Canada - National Science Library

    Benner, Robert

    1999-01-01

    We proposed developing a diode-laser-based, full spectrum Raman scattering instrument incorporating a multipass, external cavity enhancement cell for full spectrum, gas phase analysis of environmental pollutants...

  1. The temperature distribution in a gas core fission reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E.; Dam, H. van; Kuijper, J.C. (Interuniversitair Reactor Inst., Delft (Netherlands)); Kistemaker, J.; Boersma-Klein, W.; Vitalis, F. (FOM-Instituut voor Atoom-en Molecuulfysica, Amsterdam (Netherlands))

    1991-01-01

    A model is proposed for the heat transport in a nuclear reactor with gaseous fuel at high temperatures taking into account radiative and kinetic heat transfer. A derivation is given of the equation determining the temperature distribution in a gas core reactor and different numerical solution methods are discussed in detail. Results are presented of the temperature distribution. The influence of the kinetic heat transport and of dissociation of the gas molecules is shown. Also discussed is the importance of the temperature gradient at the reactor wall and its dependence on system parameters. (author).

  2. The temperature distribution in a gas core fission reactor

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.; Dam, H. van; Kuijper, J.C.; Kistemaker, J.; Boersma-Klein, W.; Vitalis, F.

    1991-01-01

    A model is proposed for the heat transport in a nuclear reactor with gaseous fuel at high temperatures taking into account radiative and kinetic heat transfer. A derivation is given of the equation determining the temperature distribution in a gas core reactor and different numerical solution methods are discussed in detail. Results are presented of the temperature distribution. The influence of the kinetic heat transport and of dissociation of the gas molecules is shown. Also discussed is the importance of the temperature gradient at the reactor wall and its dependence on system parameters. (author)

  3. Analysis and improvement of gas turbine blade temperature measurement error

    International Nuclear Information System (INIS)

    Gao, Shan; Wang, Lixin; Feng, Chi; Daniel, Ketui

    2015-01-01

    Gas turbine blade components are easily damaged; they also operate in harsh high-temperature, high-pressure environments over extended durations. Therefore, ensuring that the blade temperature remains within the design limits is very important. In this study, measurement errors in turbine blade temperatures were analyzed, taking into account detector lens contamination, the reflection of environmental energy from the target surface, the effects of the combustion gas, and the emissivity of the blade surface. In this paper, each of the above sources of measurement error is discussed, and an iterative computing method for calculating blade temperature is proposed. (paper)

  4. Analysis and improvement of gas turbine blade temperature measurement error

    Science.gov (United States)

    Gao, Shan; Wang, Lixin; Feng, Chi; Daniel, Ketui

    2015-10-01

    Gas turbine blade components are easily damaged; they also operate in harsh high-temperature, high-pressure environments over extended durations. Therefore, ensuring that the blade temperature remains within the design limits is very important. In this study, measurement errors in turbine blade temperatures were analyzed, taking into account detector lens contamination, the reflection of environmental energy from the target surface, the effects of the combustion gas, and the emissivity of the blade surface. In this paper, each of the above sources of measurement error is discussed, and an iterative computing method for calculating blade temperature is proposed.

  5. Fast temperature programming in gas chromatography using resistive heating

    NARCIS (Netherlands)

    Dallüge, J.; Ou-Aissa, R.; Vreuls, J.J.; Brinkman, U.A.T.; Veraart, J.R.

    1999-01-01

    The features of a resistive-heated capillary column for fast temperature-programmed gas chromatography (GC) have been evaluated. Experiments were carried out using a commercial available EZ Flash GC, an assembly which can be used to upgrade existing gas chromatographs. The capillary column is placed

  6. Contribution to high-temperature chromatography and high-temperature-gas-chromatography-mass spectrometry of lipids

    International Nuclear Information System (INIS)

    Aichholz, R.

    1998-04-01

    This thesis describes the use of high temperature gas chromatography for the investigation of unusual triacylglycerols, cyanolipids and bees waxes. The used glass capillary columns were pretreated and coated with tailor made synthesized high temperature stable polysiloxane phases. The selective separation properties of the individual columns were tested with a synthetic lipid mixture. Suitable derivatization procedures for the gaschromatographic analyses of neutral lipids, containing multiple bonds as well as hydroxy-, epoxy-, and carboxyl groups, were developed and optimized. Therefore conjugated olefinic-, conjugated olefinic-acetylenic-, hydroxy-, epoxy-, and conjugated olefinic keto triacylglycerols in miscellaneous plant seed oils as well as hydroxy monoesters, diesters and hydroxy diesters in bees waxes could be analysed directly with high temperature gas chromatography for the first time. In order to elucidate the structures of separated lipid compounds, high temperature gas chromatography was coupled to mass spectrometry and tandem mass spectrometry, respectively. Comparable analytical systems are hitherto not commercial available. Therefore instrumental prerequisites for a comprehensive and detailed analysis of seed oils and bees waxes were established. In GC/MS commonly two ionization methods are used, electron impact ionization and chemical ionization. For the analysis of lipids the first is of limited use only. Due to intensive fragmentation only weak molecular ions are observed. In contrast, the chemical ionization yields in better results. Dominant quasi molecular ions enable an unambiguous determination of the molecular weight. Moreover, characteristic fragment ions provide important indications of certain structural features of the examined compounds. Nevertheless, in some cases the chromatographic resolution was insufficient in order to separate all compounds present in natural lipid mixtures. Owing to the selected detection with mass spectrometry

  7. In situ gas temperature measurements by UV-absorption spectroscopy

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    2009-01-01

    The absorption spectrum of the NO A(2)Sigma(+) uniform and stable gas temperatures over a 0.533 m path....... The accuracy of both methods is discussed. Validation of the classical Lambert-Beer law has been demonstrated at NO concentrations up to 500 ppm and gas temperatures up to 1,500 degrees C over an optical absorption path length of 0.533 m....

  8. Laser spectroscopy and gas-phase chemistry in CVD

    International Nuclear Information System (INIS)

    Ho, P.; Breiland, W.G.; Coltrin, M.E.

    1986-01-01

    The experimental work involves the use of laser spectroscopic techniques for in situ measurements on the gas phase in a chemical vapor deposition reactor. The theoretical part of the program consists of a computer model of the coupled fluid mechanics and gas-phase chemical kinetics of silane decomposition and subsequent reactions of intermediate species. The laser measurements provide extensive data for thoroughly testing the predictive capabilities of the model

  9. Comparison of catalytic ethylene polymerization in slurry and gas phase

    OpenAIRE

    Daftaribesheli, Majid

    2009-01-01

    Polyethylene (PE) with the annual consumption of 70 million tones in 2007 is mostly produced in slurry, gas-phase or combination of both processes. This work focuses on a comparison between the slurry and gas phase processes. Why does PE produced in theses two processes can show extremely different properties and extremely different reaction behaviour even if the same Ziegler-Natta (ZN) catalyst is used? Generally, it is known that the reason can be found in the differences of local condition...

  10. Liquid-gas phase transition and isospin fractionation in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Xing Yongzhong; Liu Jianye; Guo Wenjun

    2004-01-01

    The liquid-gas phase transition in the heavy ion collisions and nuclear matter has been an important topic and got achievements, such as, based on the studies by H.Q. Song et al the critical temperature of liquid-gas phase transition enhances with increasing the mass of system and reduces as the increase of the neutron proton ratio of system. As authors know that both the liquid-gas phase transition and the isospin fractionation occur in the spinodal instability region at the nuclear density below the normal nuclear density. In particular, these two dynamical processes lead to the separation of nuclear matter into the liquid phase and gas phase. In this case to compare their dynamical behaviors is interested. The authors investigate the dependence of isospin fractionation degree on the mass and neutron proton ratio of system by using the isospin dependent quantum molecular dynamics model. The authors found that the degree of isospin fractionation (N/Z) n /(N/Z) imf decreases with increasing the mass of the system. This is just similar to the enhance of the critical temperature of liquid-gas phase transition T c as the increase of system mass. Because the enhance of T c is not favorable for the liquid-gas transition taking place, which reduces the isospin fractionation process and leads to decrease of (N/Z) n /(N/Z) imf . However the degree of isospin fractionation enhances with increasing the neutron proton ratio of the system. It is just corresponding to the reduce of T c of the liquid-gas phase transition as the increase of the isospin fractionation of the system. Because the reduce of T c enhances the liquid-gas phase transition process and also prompts the isospin fractionation process leading the increase of the isospin fractionation degree. To sum up, there are very similar dynamical behaviors for the degree of isospin fractionation and the critical temperature of the liquid-gas phase transition. So dynamical properties of the liquid-gas phase transition can

  11. Low temperature techniques for natural gas purification and LNG production: An energy and exergy analysis

    International Nuclear Information System (INIS)

    Baccanelli, Margaret; Langé, Stefano; Rocco, Matteo V.; Pellegrini, Laura A.; Colombo, Emanuela

    2016-01-01

    Highlights: • Low-temperature processes for of high CO_2 content natural gas have been modelled. • Energy and exergy analyses have been performed. • The Dual Pressure distillation scheme has the best thermodynamic performances. • There is a synergy between cryogenic natural gas purification and LNG production. - Abstract: Due to the rapid increase of the World’s primary energy demand of the last decades, low-temperature processes for the purification of natural gas streams with high carbon dioxide content has gained interest, since they allow to make profitable exploitation of low-quality gas reserves. Low temperature purification processes allow the direct production of a methane stream at high purity and at low-temperature, suitable conditions for the direct synergistic integration with natural gas cryogenic liquefaction processes, while CO_2 is obtained in liquid phase and under pressure. In this way, it can be pumped for transportation, avoiding significant compression costs as for classical CO_2 capture units (where carbon dioxide is discharged in gas phase and at atmospheric pressure), and further uses such as Enhanced Oil Recovery (EOR) or underground storage. In this paper, the three most common natural gas low-temperature purification techniques have been modelled and their performances have been evaluated through energy and exergy analyses. Specifically, the dual pressure low-temperature distillation process, the anti-sublimation process and a hybrid configuration have been considered. It is found that the dual pressure low-temperature distillation scheme reach the highest thermodynamic performances, resulting in the best values of exergy efficiency and equivalent methane requirements with respect to the other configurations. This is mainly due to the distributed temperature profile along a distillation column, resulting in a less irreversible heat exchanging process.

  12. Evaporation and Condensation Flows of a Vapor-Gas Mixture from or onto the Condensed Phase with an Internal Structure

    National Research Council Canada - National Science Library

    Onishi, Yoshimoto; Yamada, Ken

    2005-01-01

    Transient motions of a vapor-gas mixture due to the evaporation and condensation processes from or onto the plane condensed phase, with a temperature field as its internal structure, have been studied...

  13. Precursor-Less Coating of Nanoparticles in the Gas Phase

    Directory of Open Access Journals (Sweden)

    Tobias V. Pfeiffer

    2015-03-01

    Full Text Available This article introduces a continuous, gas-phase method for depositing thin metallic coatings onto (nanoparticles using a type of physical vapor deposition (PVD at ambient pressure and temperature. An aerosol of core particles is mixed with a metal vapor cloud formed by spark ablation by passing the aerosol through the spark zone using a hollow electrode configuration. The mixing process rapidly quenches the vapor, which condenses onto the core particles at a timescale of several tens of milliseconds in a manner that can be modeled as bimodal coagulation. Gold was deposited onto core nanoparticles consisting of silver or polystyrene latex, and silver was deposited onto gold nanoparticles. The coating morphology depends on the relative surface energies of the core and coating materials, similar to the growth mechanisms known for thin films: a coating made of a substance having a high surface energy typically results in a patchy coverage, while a coating material with a low surface energy will normally “wet” the surface of a core particle. The coated particles remain gas-borne, allowing further processing.

  14. Electron spectrometer for gas-phase spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bozek, J.D.; Schlachter, A.S. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    An electron spectrometer for high-resolution spectroscopy of gaseous samples using synchrotron radiation has been designed and constructed. The spectrometer consists of a gas cell, cylindrical electrostatic lens, spherical-sector electron energy analyzer, position-sensitive detector and associated power supplies, electronics and vacuum pumps. Details of the spectrometer design are presented together with some representative spectra.

  15. Development history of the gas turbine modular high temperature reactor

    International Nuclear Information System (INIS)

    Brey, H.L.

    2001-01-01

    The development of the high temperature gas cooled reactor (HTGR) as an environmentally agreeable and efficient power source to support the generation of electricity and achieve a broad range of high temperature industrial applications has been an evolutionary process spanning over four decades. This process has included ongoing major development in both the HTGR as a nuclear energy source and associated power conversion systems from the steam cycle to the gas turbine. This paper follows the development process progressively through individual plant designs from early research of the 1950s to the present focus on the gas turbine modular HTGR. (author)

  16. Gas hydrate phase equilibria measurement techniques and phase rule considerations

    International Nuclear Information System (INIS)

    Beltran, Juan G.; Bruusgaard, Hallvard; Servio, Phillip

    2012-01-01

    Highlights: → Inconsistencies found in hydrate literature. → Clarification to the number of variables needed to satisfy and justify equilibrium data. → Application of phase rule to mixed hydrate systems. → Thermodynamically consistent format to present data. - Abstract: A brief review of the Gibbs phase rule for non-reacting systems and its correct application to clathrate hydrates is presented. Clarification is provided for a common mistake found in hydrate phase-equilibria literature, whereby initial compositions are used as intensive variables to satisfy the Gibbs phase rule instead of the equilibrium values. The system of (methane + carbon dioxide + water) under (hydrate + liquid + vapor) equilibrium is used as a case study to illustrate key points and suggestions to improve experimental techniques are proposed.

  17. Microfluidic and nanofluidic phase behaviour characterization for industrial CO2, oil and gas.

    Science.gov (United States)

    Bao, Bo; Riordon, Jason; Mostowfi, Farshid; Sinton, David

    2017-08-08

    Microfluidic systems that leverage unique micro-scale phenomena have been developed to provide rapid, accurate and robust analysis, predominantly for biomedical applications. These attributes, in addition to the ability to access high temperatures and pressures, have motivated recent expanded applications in phase measurements relevant to industrial CO 2 , oil and gas applications. We here present a comprehensive review of this exciting new field, separating microfluidic and nanofluidic approaches. Microfluidics is practical, and provides similar phase properties analysis to established bulk methods with advantages in speed, control and sample size. Nanofluidic phase behaviour can deviate from bulk measurements, which is of particular relevance to emerging unconventional oil and gas production from nanoporous shale. In short, microfluidics offers a practical, compelling replacement of current bulk phase measurement systems, whereas nanofluidics is not practical, but uniquely provides insight into phase change phenomena at nanoscales. Challenges, trends and opportunities for phase measurements at both scales are highlighted.

  18. A Smart Gas Sensor Insensitive to Humidity and Temperature Variations

    International Nuclear Information System (INIS)

    Hajmirzaheydarali, Mohammadreza; Ghafarinia, Vahid

    2011-01-01

    The accuracy of the quantitative sensing of volatile organic compounds by chemoresistive gas sensors suffers from the fluctuations in the background atmospheric conditions. This is caused by the drift-like terms introduced in the responses by these instabilities, which should be identified and compensated. Here, a mathematical model is presented for a specific chemoresistive gas sensor, which facilitates these identification and compensation processes. The resistive gas sensor was considered as a multi-input-single-output system. Along with the steady state value of the measured sensor resistance, the ambient humidity and temperature are the inputs to the system, while the concentration level of the target gas is the output. The parameters of the model were calculated based on the experimental database. The model was simulated by the utilization of an artificial neural network. This was connected to the sensor and could deliver the correct contamination level upon receiving the measured gas response, ambient humidity and temperature.

  19. Characterization of condensed phase nitric acid particles formed in the gas phase

    Institute of Scientific and Technical Information of China (English)

    Long Jia; Yongfu Xu

    2011-01-01

    The formation of nitric acid hydrates has been observed in a chamber during the dark reaction of NO2 with O3 in the presence of air.The size of condensed phase nitric acid was measured to be 40-100 nm and 20-65 nm at relative humidity (RH) ≤ 5% and RH = 67% under our experimental conditions, respectively.The nitric acid particles were collected on the glass fiber membrane and their chemical compositions were analyzed by infrared spectrum.The main components of nitric acid hydrates in particles are HNO3·3H2O and NO3-·xH2O (x≥ 4) at low RH, whereas at high RH HNO3·H2O, HNO3·2H2O, HNO3·3H2O and NO3-·xH2O (x≥ 4) all exist in the condensed phase.At high RH HNO3·xH2O (x ≤ 3) collected on the glass fiber membrane is greatly increased, while NO3-·xH2O (x ≥4) decreased, compared with low RH.To the best of our knowledge, this is the first time to report that condensed phase nitric acid can be generated in the gas phase at room temperature.

  20. Catalytic combustion in gas stoves - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Hjelm, Anna-Karin [CATATOR AB, Lund (Sweden)

    2003-06-01

    Several independent studies show that gas stoves to some degree contribute to the indoor emissions of NO{sub x} especially in situations were the ventilation flow is poor. The peak-NO{sub x} concentrations can reach several hundred ppb but the integral concentration seldom exceeds about 20 - 50 ppb, which corresponds to an indoor-outdoor ratio of about 1 - 2.5. Epidemiological studies indicate increasing problems with respiratory symptoms in sensitive people at concentrations as low as 15 ppb of NO{sub 2}. Consequently, the NO{sub x}-concentration in homes where gas stoves are used is high enough to cause health effects. However, in situations where the ventilation flow is high (utilisation of ventilation hoods) the NO{sub x}-emissions are not likely to cause any health problems. This study has been aimed at investigating the possibilities to reduce the NO{sub x} emissions from gas stoves by replacing the conventional flame combustion with catalytic combustion. The investigation is requested by Swedish Gas Center, and is a following-up work of an earlier conducted feasibility study presented in April-2002. The present investigation reports on the possibility to use cheap and simple retro-fit catalytic design suggestions for traditional gas stoves. Experiments have been conducted with both natural and town gas, and parameters such as emissions of NO{sub x}, CO and unburned fuel gas and thermal efficiency, etc, have been examined and are discussed. The results show that it is possible to reduce the NO{sub x} emissions up to 80% by a simple retro-fit installation, without decreasing the thermal efficiency of the cooking plate. The measured source strengths correspond to indoor NO{sub x} concentrations that are below or equal to the average outdoor concentration, implying that no additional detrimental health effects are probable. The drawback of the suggested installations is that the concentration of CO and in some cases also CH{sub 4} are increased in the flue gases

  1. Do medium heavy fragments give evidence for a liquid-gas phase transition

    International Nuclear Information System (INIS)

    Trockel, R.; Hildenbrand, K.D.; Lynen, U.; Mueller, W.F.J.; Rabe, H.J.; Sann, H.; Stelzer, H.; Wada, R.; Brummund, N.; Glasow, R.; Kampert, K.H.; Santo, R.; Pelte, D.; Pochodzalla, J.; Eckert, E.

    1985-09-01

    Light and medium heavy fragments have been measured in light ion induced reactions at intermediate energies. The energy spectra have been parametrized with moving source fits. The resulting temperatures and yields do not confirm the expectations of a liquid-gas phase transition. (orig.)

  2. Gas-phase salt bridge interactions between glutamic acid and arginine

    NARCIS (Netherlands)

    Jaeqx, S.; Oomens, J.; Rijs, A.M.

    2013-01-01

    The gas-phase side chain-side chain (SC-SC) interaction and possible proton transfer between glutamic acid (Glu) and arginine (Arg) residues are studied under low-temperature conditions in an overall neutral peptide. Conformation-specific IR spectra, obtained with the free electron laser FELIX, in

  3. Integration of phase change materials in compressed hydrogen gas systems: Modelling and parametric analysis

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rothuizen, Erasmus; Jørgensen, Jens-Erik

    2016-01-01

    to the phase change material, mainly occurs after the fueling is completed, resulting in a hydrogen peak temperature higher than 85 C and a lower fueled mass than a gas-cooled system. Such a mass reduction accounts for 12% with respect to the case of a standard tank system fueled at 40 C. A parametric analysis...

  4. Hydrocarbon fuels from gas phase decarboxylation of hydrolyzed free fatty acid

    KAUST Repository

    Wang, Weicheng; Roberts, William L.; Stikeleather, Larry F.

    2012-01-01

    Gas phase decarboxylation of hydrolyzed free fatty acid (FFA) from canola oil has beeninvestigated in two fix-bed reactors by changing reaction parameters such as temperatures,FFA feed rates, and H 2-to-FFA molar ratios. FFA, which contains mostly C

  5. Gas phase polymerization of propylene. Reaction kinetics and molecular weight distribution

    NARCIS (Netherlands)

    Meier, G.B.; Weickert, G.; van Swaaij, Willibrordus Petrus Maria

    2001-01-01

    Gas-phase polymerizations have been executed at different temperatures, pressures, and hydrogen concentrations using Me2Si[Ind]2ZrCl2 / methylaluminoxane / SiO2(Pennsylvania Quarts) as a catalyst. The reaction rate curves have been described by a kinetic model, which takes into account the initially

  6. Low-temperature phase transformation in rubidium and cesium superoxides

    International Nuclear Information System (INIS)

    Alikhanov, R.A.; Toshich, B.S.; Smirnov, L.S.

    1980-01-01

    Crystal structures of rubidium and cesium superoxides which are two interpenetrating lattices of metal ions and oxygen molecule ions reveal a number of phase transformations with temperature decrease. Crystal-phase transformations in CsO 2 are 1-2, 2-3 and low temperature one 3-4 at 378, 190 and 10 K. Low temperature transition is considered as the instability of lattice quadrupoles of oxygen molecule ions to phase transformation of the order-disorder type. Calculated temperatures of low temperature phase transformations in PbO 2 and CsO 2 agree with experimental calculations satisfactory [ru

  7. Modern gas-based temperature and pressure measurements

    CERN Document Server

    Pavese, Franco

    2013-01-01

    This 2nd edition volume of Modern Gas-Based Temperature and Pressure Measurements follows the first publication in 1992. It collects a much larger set of information, reference data, and bibliography in temperature and pressure metrology of gaseous substances, including the physical-chemical issues related to gaseous substances. The book provides solutions to practical applications where gases are used in different thermodynamic conditions. Modern Gas-Based Temperature and Pressure Measurements, 2nd edition is the only comprehensive survey of methods for pressure measurement in gaseous media used in the medium-to-low pressure range closely connected with thermometry. It assembles current information on thermometry and manometry that involve the use of gaseous substances which are likely to be valid methods for the future. As such, it is an important resource for the researcher. This edition is updated through the very latest scientific and technical developments of gas-based temperature and pressure measurem...

  8. Uptake of Organic Gas Phase Species by 1-Methylnaphthalene

    Science.gov (United States)

    Zhang, H.; Xia, J.; Davidovits, P.; Jayne, J. T.; Kolb, C. E.; Worsnop, D. R.

    2002-12-01

    Using a droplet train apparatus, the mass accommodation coefficients (α) on 1-methylnapthalene of gas phase m-xylene, ethylbenzene, butylbenzene, α-pinene, γ-terpinene, and 2-methyl-2-hexanol were measured as a function of temperature (265 K to 296 K). 1-methylnapthalene was selected as a surrogate for hydrophobic and aromatic hydrocarbons found in tropospheric aerosols. The mass accommodation coefficients (α) of all the molecules obtained from these measurements exhibit negative temperature dependence. The upper and lower values of α at 265 K and 296 K respectively are: for m-xylene 0.44 and 0.26; for ethylbenzene 0.37 and 0.22; for butylbenzene 0.47 and 0.31; for α-pinene 0.47 and 0.096; for γ-terpinene 0.39 and 0.12; for 2-methyl-2-hexanol 0.44 and 0.26. The uptake measurements also yielded values for the product HDl1/2 for most of the molecules studied (H = Henry's law constant, Dl = liquid phase diffusion coefficient). Using calculated values of Dl the Henry's law constant is obtained, and expressed in the form ln H (M/atm) = -A + B/T. The A and B values for the molecules studied are listed in Table 1. Table 1: A and B values for the Henry's law constant H expressed as ln H (M/atm) = -A + B/T \\ m-xylene: A=7.20, B=4060\\ethylbenzene: A=5.81, B=3660\\butylbenzene: A=16.95, B=7330α-pinene: A=15.69, B=6360\\2-methyl-2-hexanol: A=9.95, B=4760

  9. Microfabricated Gas Phase Chemical Analysis Systems

    International Nuclear Information System (INIS)

    FRYE-MASON, GREGORY CHARLES; HELLER, EDWIN J.; HIETALA, VINCENT M.; KOTTENSTETTE, RICHARD; LEWIS, PATRICK R.; MANGINELL, RONALD P.; MATZKE, CAROLYN M.; WONG, CHUNGNIN C.

    1999-01-01

    A portable, autonomous, hand-held chemical laboratory ((micro)ChemLab(trademark)) is being developed for trace detection (ppb) of chemical warfare (CW) agents and explosives in real-world environments containing high concentrations of interfering compounds. Microfabrication is utilized to provide miniature, low-power components that are characterized by rapid, sensitive and selective response. Sensitivity and selectivity are enhanced using two parallel analysis channels, each containing the sequential connection of a front-end sample collector/concentrator, a gas chromatographic (GC) separator, and a surface acoustic wave (SAW) detector. Component design and fabrication and system performance are described

  10. Measuring gas temperature during spin-exchange optical pumping process

    Science.gov (United States)

    Normand, E.; Jiang, C. Y.; Brown, D. R.; Robertson, L.; Crow, L.; Tong, X.

    2016-04-01

    The gas temperature inside a Spin-Exchange Optical Pumping (SEOP) laser-pumping polarized 3He cell has long been a mystery. Different experimental methods were employed to measure this temperature but all were based on either modelling or indirect measurement. To date there has not been any direct experimental measurement of this quantity. Here we present the first direct measurement using neutron transmission to accurately determine the number density of 3He, the temperature is obtained using the ideal gas law. Our result showed a surprisingly high gas temperature of 380°C, compared to the 245°C of the 3He cell wall temperature and 178°C of the optical pumping oven temperature. This experiment result may be used to further investigate the unsolved puzzle of the "X-factor" in the SEOP process which places an upper bound to the 3He polarization that can be achieved. Additional spin relaxation mechanisms might exist due to the high gas temperature, which could explain the origin of the X-factor.

  11. Design and development of gas turbine high temperature reactor 300

    International Nuclear Information System (INIS)

    Kunitomi, Kazuhiko; Katanishi, Shoji; Takada, Shoji; Yan, Xing; Takizuka, Takakazu

    2003-01-01

    JAERI (Japan Atomic Energy Research Institute) has been designing a Japan's original gas turbine high temperature reactor, GTHTR300 (Gas Turbine High Temperature Reactor 300). The greatly simplified design based on salient features of the HTGR (High Temperature Gas-cooled reactor) with a closed helium gas turbine enables the GTHTR300 a high efficient and economically competitive reactor to be deployed in early 2010s. Also, the GTHTR300 fully taking advantage of various experiences accumulated in design, construction and operation of the HTTR (High Temperature Engineering Test Reactor) and fossil gas turbine systems reduces technological development concerning a reactor system and electric generation system. Original features of this system are core design with two-year refueling interval, conventional steel material usage for a reactor pressure vessel, innovative plant flow scheme and horizontally installed gas turbine unit. Due to these salient features, the capital cost of the GTHTR300 is less than a target cost of 200 thousands Yen/kWe, and the electric generation cost is close to a target cost of 4 Yen/kWh. This paper describes the original design features focusing on reactor core design, fuel design, in-core structure design and reactor pressure vessel design except PCU design. Also, R and D for developing the power conversion unit is briefly described. The present study is entrusted from the Ministry of Education, Culture, Sports, Science and Technology of Japan. (author)

  12. Thermodynamic Functions of Yttrium Trifluoride and Its Dimer in the Gas Phase

    Science.gov (United States)

    Osina, E. L.; Kovtun, D. M.

    2018-05-01

    New calculations of the functions for YF3 and Y2F6 in the gas phase using quantum-chemical calculations by MP2 and CCSD(T) methods are performed in connection with the ongoing work on obtaining reliable thermodynamic data of yttrium halides. The obtained values are entered in the database of the IVTANTERMO software complex. Equations approximating the temperature dependence of the reduced Gibbs energy in the T = 298.15-6000 K range of temperatures are presented.

  13. Cold flame on Biofilm - Transport of Plasma Chemistry from Gas to Liquid Phase

    Science.gov (United States)

    Kong, Michael

    2014-10-01

    One of the most active and fastest growing fields in low-temperature plasma science today is biological effects of gas plasmas and their translation in many challenges of societal importance such as healthcare, environment, agriculture, and nanoscale fabrication and synthesis. Using medicine as an example, there are already three FDA-approved plasma-based surgical procedures for tissue ablation and blood coagulation and at least five phase-II clinical trials on plasma-assisted wound healing therapies. A key driver for realizing the immense application potential of near room-temperature ambient pressure gas plasmas, commonly known as cold atmospheric plasmas or CAP, is to build a sizeable interdisciplinary knowledge base with which to unravel, optimize, and indeed design how reactive plasma species interact with cells and their key components such as protein and DNA. Whilst a logical objective, it is a formidable challenge not least since existing knowledge of gas discharges is largely in the gas-phase and therefore not directly applicable to cell-containing matters that are covered by or embedded in liquid (e.g. biofluid). Here, we study plasma inactivation of biofilms, a jelly-like structure that bacteria use to protect themselves and a major source of antimicrobial resistance. As 60--90% of biofilm is made of water, we develop a holistic model incorporating physics and chemistry in the upstream CAP-generating region, a plasma-exit region as a buffer for as-phase transport, and a downstream liquid region bordering the gas buffer region. A special model is developed to account for rapid chemical reactions accompanied the transport of gas-phase plasma species through the gas-liquid interface and for liquid-phase chemical reactions. Numerical simulation is used to illustrate how key reactive oxygen species (ROS) are transported into the liquid, and this is supported with experimental data of both biofilm inactivation using plasmas and electron spin spectroscopy (ESR

  14. SVOC partitioning between the gas phase and settled dust indoors

    Science.gov (United States)

    Weschler, Charles J.; Nazaroff, William W.

    2010-09-01

    Semivolatile organic compounds (SVOCs) are a major class of indoor pollutants. Understanding SVOC partitioning between the gas phase and settled dust is important for characterizing the fate of these species indoors and the pathways by which humans are exposed to them. Such knowledge also helps in crafting measurement programs for epidemiological studies designed to probe potential associations between exposure to these compounds and adverse health effects. In this paper, we analyze published data from nineteen studies that cumulatively report measurements of dustborne and airborne SVOCs in more than a thousand buildings, mostly residences, in seven countries. In aggregate, measured median data are reported in these studies for 66 different SVOCs whose octanol-air partition coefficients ( Koa) span more than five orders of magnitude. We use these data to test a simple equilibrium model for estimating the partitioning of an SVOC between the gas phase and settled dust indoors. The results demonstrate, in central tendency, that a compound's octanol-air partition coefficient is a strong predictor of its abundance in settled dust relative to its gas phase concentration. Using median measured results for each SVOC in each study, dustborne mass fractions predicted using Koa and gas-phase concentrations correlate reasonably well with measured dustborne mass fractions ( R2 = 0.76). Combined with theoretical understanding of SVOC partitioning kinetics, the empirical evidence also suggests that for SVOCs with high Koa values, the mass fraction in settled dust may not have sufficient time to equilibrate with the gas phase concentration.

  15. Dissociative attachment reactions of electrons with gas phase superacids

    International Nuclear Information System (INIS)

    Liu, X.

    1992-01-01

    Using the flowing afterglow Langmuir probe (FALP) technique, dissociative attachment coefficients β for reactions of electrons with gas phase superacids HCo(PF 3 ) 4 , HRh(PF 3 ) 4 and carbonyl hydride complexes HMn(CO) 5 , HRe(CO) 5 have been determined under thermal conditions over the approximate temperature range 300∼550 K. The superacids react relatively slowly ( max ) with free electrons in a thermal plasma, and the values of β obtained this far do not show a correlation between acidity and β. The pioneer researchers in this field had speculated that any superacid would be a rapid attacher of electrons; it was found that this speculation is not true in general. The product distribution of electron attachment reaction to HCo(PF 3 ) 4 was found to be independent of temperature even though the β[HCo(PF 3 ) 4 ] increases with temperature. This proposes that the electron attachment process occurs well before the excited complex dissociates. In addition, the activation energy of HCo(PF 3 ) 4 for electron attachment has been derived from the Arrhenius plots. The carbonyl hydride complexes, HMn(CO) 5 and HRe(CO) 5 , react relatively rapidly (>1/4 of β max ) with free electrons in thermal plasma. This indicates that these reactions cannot be significantly endothermic. Observation of rapid attachment for these non-superacids shows that the Mn-CO and Re-CO bonds are weaker than the Mn-H and Re-H bonds, respectively. Comparisons between the carbonyl and trifluorophosphine cases implies that fast electron capture is related more to the CO ligand than to the transition-metal species

  16. Atomic and molecular gas phase spectrometry

    Science.gov (United States)

    Winefordner, J. D.

    1985-10-01

    The major goals of this research have been to develop diagnostical spectroscopic methods for measuring spatial/temporal temperatures and species of combustion flames and plasmas and to develop sensitive, selective, precise, reliable, rapid spectrometric methods of trace analysis of elements present in jet engine lubricating oils, metallurgical samples, and engine exhausts. The diagnostical approaches have been based upon the measurement of metal probes introduced into the flame or plasmas and the measurement of OH in flames. The measurement approaches have involved the use of laser-excited fluorescence, saturated absorption, polarization, and linear absorption. The spatial resolution in most studies is less than 1 cu mm and the temporal resolution is less than 10 ns with the use of pulsed lasers. Single pulse temperature and species measurements have also been carried out. Other diagnostical studies have involved the measurement of collisional redistribution of radiatively excited levels of Na and Tl in acetylene/02/Ar flames and the measurement of lifetimes and quantum efficiencies of atoms and ions in the inductively coupled plasmas, ICP. The latter studies indicate that the high electron number densities in ICPs are not efficient quenchers of excited atoms/ions. Temperatures of microwave atmospheric plasmas produced capacitatively and cool metastable N2 discharge produced by a dielectric discharge have also been measured.

  17. Determination of gas temperature in the plasmatron channel according to the known distribution of electronic temperature

    Directory of Open Access Journals (Sweden)

    Gerasimov Alexander V.

    2013-01-01

    Full Text Available An analytical method to calculate the temperature distribution of heavy particles in the channel of the plasma torch on the known distribution of the electronic temperature has been proposed. The results can be useful for a number of model calculations in determining the most effective conditions of gas blowing through the plasma torch with the purpose of heating the heavy component. This approach allows us to understand full details about the heating of cold gas, inpouring the plasma, and to estimate correctly the distribution of the gas temperature inside the channel.

  18. Electron-beam synthesis of fuel in the gas phase

    International Nuclear Information System (INIS)

    Ponomarev, A.V.; Holodkova, E.M.; Ershov, B.G.

    2011-01-01

    Complete text of publication follows. Tendencies of world development focus attention on a vegetative biomass as on the major raw resource for future chemistry and a fuel industry. The significant potential for perfection of biomass conversion processes is concentrated in the field of radiation-chemical methods. Both the mode of post-radiation distillation and mode of electron-beam distillation of biomass have been investigated as well as the mode of gas-phase synthesis of liquid engine fuel from of biomass distillation products. Synergistic action of radiation and temperature has been analyzed at use of the accelerated electron beams allowing to combine radiolysis with effective radiation heating of a material without use of additional heaters. At dose rate above 1 kGy/s the electron-beam irradiation results in intensive decomposition of a biomass and evaporation of formed fragments with obtaining of a liquid condensate (∼ 60 wt%), CO 2 and Co gases (13-18 wt%) and charcoal in the residue. Biomass distillation at radiation heating allows to increase almost three times an organic liquid yield in comparison with pyrolysis. The majority of liquid products from cellulose is represented by the furan derivatives considered among the very perspective components for alternative engine fuels. Distilled-off gases and vapors are diluted with gaseous C 1 -C 5 alkanes and again are exposed to an irradiation to produce liquid fuel from a biomass. This transformation is based on a method of electron-beam circulation conversion of gaseous C 1 -C 5 alkanes (Ponomarev, A.V., Radiat. Phys. Chem., 78, 48, 2009) which consists in formation and removal of liquid products with high degree of carbon skeleton branching. The isomers ratio in a liquid may be controlled by means of change of an irradiation condition and initial gas composition. The irradiation of gaseous alkanes together with vaporous products of biomass destruction allows to synthesize the fuel enriched by conventional

  19. Multi-spectral temperature measurement method for gas turbine blade

    Science.gov (United States)

    Gao, Shan; Feng, Chi; Wang, Lixin; Li, Dong

    2016-02-01

    One of the basic methods to improve both the thermal efficiency and power output of a gas turbine is to increase the firing temperature. However, gas turbine blades are easily damaged in harsh high-temperature and high-pressure environments. Therefore, ensuring that the blade temperature remains within the design limits is very important. There are unsolved problems in blade temperature measurement, relating to the emissivity of the blade surface, influences of the combustion gases, and reflections of radiant energy from the surroundings. In this study, the emissivity of blade surfaces has been measured, with errors reduced by a fitting method, influences of the combustion gases have been calculated for different operational conditions, and a reflection model has been built. An iterative computing method is proposed for calculating blade temperatures, and the experimental results show that this method has high precision.

  20. High temperature gas dynamics an introduction for physicists and engineers

    CERN Document Server

    Bose, Tarit K

    2014-01-01

    High Temperature Gas Dynamics is a primer for scientists, engineers, and students who would like to have a basic understanding of the physics and the behavior of high-temperature gases. It is a valuable tool for astrophysicists as well. The first chapters treat the basic principles of quantum and statistical mechanics and how to derive thermophysical properties from them. Special topics are included that are rarely found in other textbooks, such as the thermophysical and transport properties of multi-temperature gases and a novel method to compute radiative transfer. Furthermore, collision processes between different particles are discussed. Separate chapters deal with the production of high-temperature gases and with electrical emission in plasmas, as well as related diagnostic techniques.This new edition adds over 100 pages and includes the following updates: several sections on radiative properties of high temperature gases and various radiation models, a section on shocks in magneto-gas-dynamics, a sectio...

  1. Gravitational collapse of a magnetized fermion gas with finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Delgado Gaspar, I. [Instituto de Geofisica y Astronomia (IGA), La Habana (Cuba); Perez Martinez, A. [Instituto de Cibernetica, Matematica y Fisica (ICIMAF), La Habana (Cuba); Sussman, Roberto A. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (ICN-UNAM), Mexico (Mexico); Ulacia Rey, A. [Instituto de Cibernetica, Matematica y Fisica (ICIMAF), La Habana (Cuba); Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (ICN-UNAM), Mexico (Mexico)

    2013-07-15

    We examine the dynamics of a self-gravitating magnetized fermion gas at finite temperature near the collapsing singularity of a Bianchi-I spacetime. Considering a general set of appropriate and physically motivated initial conditions, we transform Einstein-Maxwell field equations into a complete and self-consistent dynamical system amenable for numerical work. The resulting numerical solutions reveal the gas collapsing into both, isotropic (''point-like'') and anisotropic (''cigar-like''), singularities, depending on the initial intensity of the magnetic field. We provide a thorough study of the near collapse behavior and interplay of all relevant state and kinematic variables: temperature, expansion scalar, shear scalar, magnetic field, magnetization, and energy density. A significant qualitative difference in the behavior of the gas emerges in the temperature range T/m{sub f} {proportional_to} 10{sup -6} and T/m{sub f} {proportional_to} 10{sup -3}. (orig.)

  2. Gas Phase Sulfur, Chlorine and Potassium Chemistry in Biomass Combustion

    DEFF Research Database (Denmark)

    Løj, Lusi Hindiyarti

    2007-01-01

    Gas Phase Sulfur, Chlorine and Alkali Metal Chemistry in Biomass Combustion Concern about aerosols formation, deposits, corrosion, and gaseous emissions during biomass combustion, especially straw, continues to be a driving force for investigation on S, Cl, K-containing species under combustions...... conditions. These trace species contained in the biomass structure will be released to the gas phase during combustion and contribute to the problems generated during the process. The investigation during this PhD project is done to stepwise improve the understanding in the chemistry and reduce...... the uncertainties. In the present work, the detailed kinetic model for gas phase sulfur, chlorine, alkali metal, and their interaction has been updated. The K/O/H/Cl chemistry, S chemistry, and their interaction can reasonably predict a range of experimental data. In general, understanding of the interaction...

  3. Phase space analysis of some interacting Chaplygin gas models

    Energy Technology Data Exchange (ETDEWEB)

    Khurshudyan, M. [Academy of Sciences of Armenia, Institute for Physical Research, Ashtarak (Armenia); Tomsk State University of Control Systems and Radioelectronics, Laboratory for Theoretical Cosmology, Tomsk (Russian Federation); Tomsk State Pedagogical University, Department of Theoretical Physics, Tomsk (Russian Federation); Myrzakulov, R. [Eurasian National University, Eurasian International Center for Theoretical Physics, Astana (Kazakhstan)

    2017-02-15

    In this paper we discuss a phase space analysis of various interacting Chaplygin gas models in general relativity. Linear and nonlinear sign changeable interactions are considered. For each case appropriate late time attractors of field equations are found. The Chaplygin gas is one of the dark fluids actively considered in modern cosmology due to the fact that it is a joint model of dark energy and dark matter. (orig.)

  4. Understanding Gas-Phase Ammonia Chemistry in Protoplanetary Disks

    Science.gov (United States)

    Chambers, Lauren; Oberg, Karin I.; Cleeves, Lauren Ilsedore

    2017-01-01

    Protoplanetary disks are dynamic regions of gas and dust around young stars, the remnants of star formation, that evolve and coagulate over millions of years in order to ultimately form planets. The chemical composition of protoplanetary disks is affected by both the chemical and physical conditions in which they develop, including the initial molecular abundances in the birth cloud, the spectrum and intensity of radiation from the host star and nearby systems, and mixing and turbulence within the disk. A more complete understanding of the chemical evolution of disks enables a more complete understanding of the chemical composition of planets that may form within them, and of their capability to support life. One element known to be essential for life on Earth is nitrogen, which often is present in the form of ammonia (NH3). Recent observations by Salinas et al. (2016) reveal a theoretical discrepancy in the gas-phase and ice-phase ammonia abundances in protoplanetary disks; while observations of comets and protostars estimate the ice-phase NH3/H2O ratio in disks to be 5%, Salinas reports a gas-phase NH3/H2O ratio of ~7-84% in the disk surrounding TW Hydra, a young nearby star. Through computational chemical modeling of the TW Hydra disk using a reaction network of over 5000 chemical reactions, I am investigating the possible sources of excess gas-phase NH3 by determining the primary reaction pathways of NH3 production; the downstream chemical effects of ionization by ultraviolet photons, X-rays, and cosmic rays; and the effects of altering the initial abundances of key molecules such as N and N2. Beyond providing a theoretical explanation for the NH3 ice/gas discrepancy, this new model may lead to fuller understanding of the gas-phase formation processes of all nitrogen hydrides (NHx), and thus fuller understanding of the nitrogen-bearing molecules that are fundamental for life as we know it.

  5. Gas-phase photocatalysis in μ-reactors

    DEFF Research Database (Denmark)

    Vesborg, Peter Christian Kjærgaard; Olsen, Jakob Lind; Henriksen, Toke Riishøj

    2010-01-01

    Gas-phase photocatalysis experiments may benefit from the high sensitivity and good time response in product detection offered by μ-reactors. We demonstrate this by carrying out CO oxidation and methanol oxidation over commercial TiO2 photocatalysts in our recently developed high-sensitivity reac......Gas-phase photocatalysis experiments may benefit from the high sensitivity and good time response in product detection offered by μ-reactors. We demonstrate this by carrying out CO oxidation and methanol oxidation over commercial TiO2 photocatalysts in our recently developed high...

  6. Post-flame gas-phase sulfation of potassium chloride

    DEFF Research Database (Denmark)

    Li, Bo; Sun, Zhiwei; Li, Zhongshan

    2013-01-01

    The sulfation of KCl during biomass combustion has implications for operation and emissions: it reduces the rates of deposition and corrosion, it increases the formation of aerosols, and it leads to higher concentrations of HCl and lower concentrations of SO2 in the gas phase. Rigorously homogene......The sulfation of KCl during biomass combustion has implications for operation and emissions: it reduces the rates of deposition and corrosion, it increases the formation of aerosols, and it leads to higher concentrations of HCl and lower concentrations of SO2 in the gas phase. Rigorously...

  7. Fischer Indole Synthesis in the Gas Phase, the Solution Phase, and at the Electrospray Droplet Interface.

    Science.gov (United States)

    Bain, Ryan M; Ayrton, Stephen T; Cooks, R Graham

    2017-07-01

    Previous reports have shown that reactions occurring in the microdroplets formed during electrospray ionization can, under the right conditions, exhibit significantly greater rates than the corresponding bulk solution-phase reactions. The observed acceleration under electrospray ionization could result from a solution-phase, a gas-phase, or an interfacial reaction. This study shows that a gas-phase ion/molecule (or ion/ion) reaction is not responsible for the observed rate enhancement in the particular case of the Fischer indole synthesis. The results show that the accelerated reaction proceeds in the microdroplets, and evidence is provided that an interfacial process is involved. Graphical Abstract GRAPHICAL ABSTRACT TEXT HERE] -->.

  8. Elevated temperature and high pressure large helium gas loop

    International Nuclear Information System (INIS)

    Sakasai, Minoru; Midoriyama, Shigeru; Miyata, Toyohiko; Nakase, Tsuyoshi; Izaki, Makoto

    1979-01-01

    The development of high temperature gas-cooled reactors especially aiming at the multi-purpose utilization of nuclear heat energy is carried out actively in Japan and West Germany. In Japan, the experimental HTGR of 50 MWt and 1000 deg C outlet temperature is being developed by Japan Atomic Energy Research Institute and others since 1969, and the development of direct iron-making technology utilizing high temperature reducing gas was started in 1973 as the large project of Ministry of Internalional Trade and Industry. Kawasaki Heavy Industries, Ltd., Has taken part in these development projects, and has developed many softwares for nuclear heat design, system design and safety design of nuclear reactor system and heat utilization system. In hardwares also, efforts have been exerted to develop the technologies of design and manufacture of high temperature machinery and equipments. The high temperature, high pressure, large helium gas loop is under construction in the technical research institute of the company, and it is expected to be completed in December, 1979. The tests planned are that of proving the dynamic performances of the loop and its machinery and equipments and the verification of analysis codes. The loop is composed of the main circulation system, the objects of testing, the helium gas purifying system, the helium supplying and evacuating system, instruments and others. (Kako, I.)

  9. Zpif's law in the liquid gas phase transition of nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y.G. [China Center of Advanced Science and Technology (CCAST), Beijing, BJ (China). World Lab.; Shanghai Institute of Nuclear Research, Chinese Academy of Sciences, P.O. Box 800-204, Shanghai 201800 (China)

    1999-12-01

    Zpif's law in the field of linguistics is tested in the nuclear disassembly within the framework of isospin dependent lattice gas model. It is found that the average cluster charge (or mass) of rank n in the charge (or mass) list shows exactly inversely to its rank, i.e., there exists Zpif's law, at the phase transition temperature. This novel criterion shall be helpful to search the nuclear liquid gas phase transition experimentally and theoretically. In addition, the finite size scaling of the effective phase transition temperature at which the Zpif's law appears is studied for several systems with different mass and the critical exponents of {nu} and {beta} are tentatively extracted. (orig.)

  10. Passive Wireless Temperature Sensor for Harsh Environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Wireless Sensor Technologies has for several years been developing a passive Wireless Temperature Sensor (WTS) for gas turbine engine and other harsh environment...

  11. Phase change based cooling for high burst mode heat loads with temperature regulation above the phase change temperature

    Science.gov (United States)

    The United States of America as represented by the United States Department of Energy

    2009-12-15

    An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.

  12. Temperature oscillations at critical temperature in two-phase flow

    International Nuclear Information System (INIS)

    Brevi, R.; Cumo, M.; Palmieri, A.; Pitimada, D.

    Some experiments on the temperature oscillations, or thermal cycling, which occur with steam-water flow in once-through cooling systems at the critical temperature zone, i.e., when dryout occurs, are described. A theoretical analysis is done on the characteristic frequency of the oscillations, and the parameters upon which the operating characteristics and the physical properties of the fluid depend. Finally, the temperature distribution in the critical zone is analyzed, examining the thermal transitions that occur due to the rapid variations in the coefficient of heat transfer

  13. CHAOS. III. GAS-PHASE ABUNDANCES IN NGC 5457

    Energy Technology Data Exchange (ETDEWEB)

    Croxall, Kevin V.; Pogge, Richard W. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Berg, Danielle A. [Center for Gravitation, Cosmology and Astrophysics, Department of Physics, University of Wisconsin Milwaukee, 1900 East Kenwood Boulevard, Milwaukee, WI 53211 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Moustakas, John [Department of Physics and Astronomy, Siena College, 515 Loudon Road, Loudonville, NY 12211 (United States)

    2016-10-10

    We present Large Binocular Telescope observations of 109 H ii regions in NGC 5457 (M101) obtained with the Multi-Object Double Spectrograph. We have robust measurements of one or more temperature-sensitive auroral emission lines for 74 H ii regions, permitting the measurement of “direct” gas-phase abundances. Comparing the temperatures derived from the different ionic species, we find: (1) strong correlations of T [N ii] with T [S iii] and T [O iii], consistent with little or no intrinsic scatter; (2) a correlation of T [S iii] with T [O iii], but with significant intrinsic dispersion; (3) overall agreement between T [N ii], T [S ii], and T [O ii], as expected, but with significant outliers; (4) the correlations of T [N ii] with T [S iii] and T [O iii] match the predictions of photoionization modeling while the correlation of T [S iii] with T [O iii] is offset from the prediction of photoionization modeling. Based on these observations, which include significantly more observations of lower excitation H ii regions, missing in many analyses, we inspect the commonly used ionization correction factors (ICFs) for unobserved ionic species and propose new empirical ICFs for S and Ar. We have discovered an unexpected population of H ii regions with a significant offset to low values in Ne/O, which defies explanation. We derive radial gradients in O/H and N/O which agree with previous studies. Our large observational database allows us to examine the dispersion in abundances, and we find intrinsic dispersions of 0.074 ± 0.009 in O/H and 0.095 ± 0.009 in N/O (at a given radius). We stress that this measurement of the intrinsic dispersion comes exclusively from direct abundance measurements of H ii regions in NGC 5457.

  14. A review of helium gas turbine technology for high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    No, Hee Cheon; Kim, Ji Hwan; Kim, Hyeun Min

    2007-01-01

    Current High-Temperature Gas-cooled Reactors (HTGRs) are based on a closed brayton cycle with helium gas as the working fluid. Thermodynamic performance of the axial-flow helium gas turbines is of critical concern as it considerably affects the overall cycle efficiency. Helium gas turbines pose some design challenges compared to steam or air turbomachinery because of the physical properties of helium and the uniqueness of the operating conditions at high pressure with low pressure ratio. This report present a review of the helium Brayton cycle experiences in Germany and in Japan. The design and availability of helium gas turbines for HTGR are also presented in this study. We have developed a new throughflow calculation code to calculate the design-point performance of helium gas turbines. Use of the method has been illustrated by applying it to the GTHTR300 reference

  15. Finite temperature susy GUT phase transitions determined by radiative corrections

    International Nuclear Information System (INIS)

    Kripfganz, J.; Perlt, H.

    1983-02-01

    Studying the 2-loop perturbative contribution to the free energy of grand unified theories a sequence of phase transitions is found, with SU(3)xSU(2)xU(1) being the prefered low temperature phase. The transition temperatures are still within the weak coupling regime. (author)

  16. Temperature and coupling dependence of the universal contact intensity for an ultracold Fermi gas

    International Nuclear Information System (INIS)

    Palestini, F.; Perali, A.; Pieri, P.; Strinati, G. C.

    2010-01-01

    Physical properties of an ultracold Fermi gas in the temperature-coupling phase diagram can be characterized by the contact intensity C, which enters the pair-correlation function at short distances and describes how the two-body problem merges into its surrounding. We show that the local order established by pairing fluctuations about the critical temperature T c of the superfluid transition considerably enhances the contact C in a temperature range where pseudogap phenomena are maximal. Our ab initio results for C in a trap compare well with recently available experimental data over a wide coupling range. An analysis is also provided for the effects of trap averaging on C.

  17. Influence of different storage times and temperatures on blood gas ...

    African Journals Online (AJOL)

    The present study was designed to investigate the effects of storage temperature and time on blood gas and acid-base balance of ovine venous blood. Ten clinically healthy sheep were used in this study. A total number of 30 blood samples, were divided into three different groups, and were stored in a refrigerator adjusted ...

  18. Anisotropic ordering in a two-temperature lattice gas

    DEFF Research Database (Denmark)

    Szolnoki, Attila; Szabó, György; Mouritsen, Ole G.

    1997-01-01

    We consider a two-dimensional lattice gas model with repulsive nearest- and next-nearest-neighbor interactions that evolves in time according to anisotropic Kawasaki dynamics. The hopping of particles along the principal directions is governed by two heat baths at different temperatures T-x and T...

  19. A modeling and experimental study of flue gas desulfurization in a dense phase tower

    International Nuclear Information System (INIS)

    Chang, Guanqin; Song, Cunyi; Wang, Li

    2011-01-01

    We used a dense phase tower as the reactor in a novel semi-dry flue gas desulfurization process to achieve a high desulfurization efficiency of over 95% when the Ca/S molar ratio reaches 1.3. Pilot-scale experiments were conducted for choosing the parameters of the full-scale reactor. Results show that with an increase in the flue gas flow rate the rate of the pressure drop in the dense phase tower also increases, however, the rate of the temperature drop decreases in the non-load hot gas. We chose a water flow rate of 0.6 kg/min to minimize the approach to adiabatic saturation temperature difference and maximize the desulfurization efficiency. To study the flue gas characteristics under different processing parameters, we simulated the desulfurization process in the reactor. The simulated data matched very well with the experimental data. We also found that with an increase in the Ca/S molar ratio, the differences between the simulation and experimental data tend to decrease; conversely, an increase in the flue gas flow rate increases the difference; this may be associated with the surface reactions caused by collision, coalescence and fragmentation between the dispersed phases.

  20. Gas-phase synthesis of semiconductor nanocrystals and its applications

    Science.gov (United States)

    Mandal, Rajib

    photoluminescence (PL), surface analysis, and defect identification indicate the shell is protective against oxidation compared to Si NCs without any shell growth. Gallium Nitride (GaN) is one of the most well-known semiconductor material and the industry standard for fabricating LEDs. The problem is that epitaxial growth of high-quality GaN requires costly substrates (e.g. sapphire), high temperatures, and long processing times. Synthesizing freestanding NCs of GaN, on the other hand, could enable these novel device morphologies, as the NCs could be incorporated into devices without the requirements imposed by epitaxial GaN growth. Synthesis of GaN NCs was performed using a fully gas-phase process. Different sizes of crystalline GaN nanoparticles were produced indicating versatility of this gas-phase process. Elemental analysis using X-ray photoelectron spectroscopy (XPS) indicated a possible nitrogen deficiency in the NCs; addition of secondary plasma for surface treatment indicates improving stoichiometric ratio and points towards a unique method for creating high-quality GaN NCs with ultimate alloying and doping for full-spectrum luminescence.

  1. SVOC partitioning between the gas phase and settled dust indoors

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Nazaroff, W. W.

    2010-01-01

    Semivolatile organic compounds (SVOCs) are a major class of indoor pollutants. Understanding SVOC partitioning between the gas phase and settled dust is important for characterizing the fate of these species indoors and the pathways by which humans are exposed to them. Such knowledge also helps...

  2. Gas-Phase IR Spectroscopy of Deprotonated Amino Acids

    NARCIS (Netherlands)

    Oomens, J.; Steill, J. D.; Redlich, B.

    2009-01-01

    Gas-phase infrared multiple photon dissociation (IRMPD) spectra have been recorded for the conjugate bases of a series of amino acids (Asp, Cys, Glu, Phe, Set, Trp, Tyr). The spectra are dominated by strong symmetric and antisymmetric carboxylate stretching modes around 1300 and 1600 cm(-1),

  3. Gas phase toluene isopropylation over high silica mordenite

    Indian Academy of Sciences (India)

    Mordenite (HM) catalysts with three different Si/Al ratios were compared for their activity and selectivities in gas phase toluene isopropylation with isopropanol. Catalyst with Si/Al ratio 44.9 offered better cumene selectivity, hence, it was chosen for detailed kinetic investigations. The influence of various process parameters ...

  4. Magnetic resonance studies of atomic hydrogen gas at low temperatures

    International Nuclear Information System (INIS)

    Hardy, W.N.; Morrow, M.; Jochemsen, R.; Statt, B.W.; Kubik, P.R.; Marsolais, R.M.; Berlinsky, A.J.; Landesman, A.

    1980-01-01

    Using a pulsed low temperature discharge in a closed cell containing H 2 and 4 He, we have been able to store a low density (approximately 10 12 atoms/cc) gas of atomic hydrogen for periods of order one hour in zero magnetic field and T=1 K. Pulsed magnetic resonance at the 1420 MHz hyperfine transition has been used to study a number of the properties of the gas, including the recombination rate H + H + 4 He→H 2 + 4 He, the hydrogen spin-exchange relaxation rates, the diffusion coefficient of H in 4 He gas and the pressure shift of the hyperfine frequency due to the 4 He buffer gas. Here we discuss the application of hyperfine frequency shifts as a probe of the H-He potential, and as a means for determining the binding energy of H on liquid helium

  5. Low temperature catalytic combustion of natural gas - hydrogen - air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Newson, E; Roth, F von; Hottinger, P; Truong, T B [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The low temperature catalytic combustion of natural gas - air mixtures would allow the development of no-NO{sub x} burners for heating and power applications. Using commercially available catalysts, the room temperature ignition of methane-propane-air mixtures has been shown in laboratory reactors with combustion efficiencies over 95% and maximum temperatures less than 700{sup o}C. After a 500 hour stability test, severe deactivation of both methane and propane oxidation functions was observed. In cooperation with industrial partners, scaleup to 3 kW is being investigated together with startup dynamics and catalyst stability. (author) 3 figs., 3 refs.

  6. Reactions of newly formed fission products in the gas phase

    International Nuclear Information System (INIS)

    Strickert, R.G.

    1976-01-01

    A dynamic gas-flow system was constructed which stopped fission products in the gas phase and rapidly separated (in less than 2 sec) volatile compounds from non-volatile ones. The filter assembly designed and used was shown to stop essentially all non-volatile fission products. Between 5 percent and 20 percent of tellurium fission-product isotopes reacted with several hydrocarbon gases to form volatile compounds, which passed through the filter. With carbon monoxide gas, volatile tellurium compound(s) (probably TeCO) were also formed with similar efficiencies. The upper limits for the yields of volatile compounds formed between CO and tin and antimony fission products were shown to be less than 0.3 percent, so tellurium nuclides, not their precursors, reacted with CO. It was found that CO reacted preferentially with independently produced tellurium atoms; the reaction efficiency of beta-produced atoms was only 27 +- 3 percent of that of the independently formed atoms. The selectivity, which was independent of the over-all reaction efficiency, was shown to be due to reaction of independently formed atoms in the gas phase. The gas phase reactions are believed to occur mainly at thermal energies because of the independence of the yield upon argon moderator mole-fraction (up to 80 percent). It was shown in some experiments that about one-half of the TeCO decomposed in passing through a filter and that an appreciable fraction (approximately 20 percent) of the tellurium atoms deposited on the filter reacted agin with CO. Other tellurium atoms on the filter surface (those formed by beta decay and those formed independently but not reacting in the gas phase) also reacted with CO, but probably somewhat less efficiently than atoms formed by TeCO decomposition. No evidence was found for formation of TeCO as a direct result of beta-decay

  7. Highly Selective Continuous Gas-Phase Methoxycarbonylation of Ethylene with Supported Ionic Liquid Phase (SILP) Catalysts

    DEFF Research Database (Denmark)

    Khokarale, Santosh Govind; Garcia Suárez, Eduardo José; Fehrmann, Rasmus

    2017-01-01

    Supported ionic liquid phase (SILP) technology was applied for the first time to the Pd-catalyzed continuous, gas-phase methoxycarbonylation of ethylene to selectively produce methyl propanoate (MP) in high yields. The influence of catalyst and reaction parameters such as, for example, ionic liquid...

  8. Continuous gas-phase hydroformylation of 1-butene using supported ionic liquid phase (SILP) catalysts

    DEFF Research Database (Denmark)

    Haumann, Marco; Dentler, Katharina; Joni, Joni

    2007-01-01

    The concept of supported ionic liquid phase (SILP) catalysis has been extended to 1-butene hydroformylation. A rhodium-sulfoxantphos complex was dissolved in [BMIM][n-C8H17OSO3] and this solution was highly dispersed on silica. Continuous gas-phase experiments in a fixed-bed reactor revealed...

  9. High Temperature Electrostrictive Ceramics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes to develop high temperature electrostrictors from bismuth-based ferroelectrics. These materials will exhibit high strain and low loss in...

  10. Novel High Temperature Strain Gauge, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced high-temperature sensor technology and bonding methods are of great interests in designing and developing advanced future aircraft. Current state-of-the-art...

  11. The phase lag of temperature behind global solar radiation

    International Nuclear Information System (INIS)

    El Hussainy, F.M.

    1995-08-01

    This paper presented the relationship between the air temperature and the global solar radiation, which can be conveniently represented by the three characteristics: mean, amplitude and phase lag of the first harmonic of global radiation and air temperatures. A good correlation between the air temperature and the global solar radiation has been found when the phase lag between them is nearly of 30 days. (author). 4 refs, 9 figs, 1 tab

  12. Shear viscosity of neutron-rich nucleonic matter near its liquid–gas phase transition

    International Nuclear Information System (INIS)

    Xu, Jun; Chen, Lie-Wen; Ko, Che Ming; Li, Bao-An; Ma, Yu Gang

    2013-01-01

    Within a relaxation time approach using free nucleon–nucleon cross sections modified by the in-medium nucleon masses that are determined from an isospin- and momentum-dependent effective nucleon–nucleon interaction, we investigate the specific shear viscosity (η/s) of neutron-rich nucleonic matter near its liquid–gas phase transition. It is found that as the nucleonic matter is heated at fixed pressure or compressed at fixed temperature, its specific shear viscosity shows a valley shape in the temperature or density dependence, with the minimum located at the boundary of the phase transition. Moreover, the value of η/s drops suddenly at the first-order liquid–gas phase transition temperature, reaching as low as 4–5 times the KSS bound of ℏ/4π. However, it varies smoothly for the second-order liquid–gas phase transition. Effects of the isospin degree of freedom and the nuclear symmetry energy on the value of η/s are also discussed

  13. Dual Phase Membrane for High Temperature CO2 Separation

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Lin

    2007-06-30

    This project aimed at synthesis of a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Metal-carbonate dual-phase membranes were prepared by the direct infiltration method and the synthesis conditions were optimized. Permeation tests for CO{sub 2} and N{sub 2} from 450-750 C showed very low permeances of those two gases through the dual-phase membrane, which was expected due to the lack of ionization of those two particular gases. Permeance of the CO{sub 2} and O{sub 2} mixture was much higher, indicating that the gases do form an ionic species, CO{sub 3}{sup 2-}, enhancing transport through the membrane. However, at temperatures in excess of 650 C, the permeance of CO{sub 3}{sup 2-} decreased rapidly, while predictions showed that permeance should have continued to increase with temperature. XRD data obtained from used membrane indicated that lithium iron oxides formed on the support surface. This lithium iron oxide layer has a very low conductivity, which drastically reduces the flow of electrons to the CO{sub 2}/O{sub 2} gas mixture; thus limiting the formation of the ionic species required for transport through the membrane. These results indicated that the use of stainless steel supports in a high temperature oxidative environment can lead to decreased performance of the membranes. This revelation created the need for an oxidation resistant support, which could be gained by the use of a ceramic-type membrane. Work was extended to synthesize a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Helium permeance of the support before and after infiltration of molten carbonate are on the order of 10{sup -6} and 10{sup -10} moles/m{sup 2} {center_dot} Pa {center_dot} s respectively, indicating that the molten carbonate is able to sufficiently infiltrate the membrane. It was found that La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (LSCF) was a suitable candidate for the support

  14. Phase development and kinetics of high temperature Bi-2223 phase

    International Nuclear Information System (INIS)

    Yavuz, M.; Maeda, H.; Hua, K.L.; Shi, X.D.

    1998-01-01

    The two-dimensional nucleation (random)-growth mechanism were observed as a support for the related previous works, which is attributable to the growth of the Bi-2223 grain in the a-b plane direction of the Bi-2212 matrix is being much faster than in the c-direction, or that the early-formed plate-like 2212 phase confines the 2223 product. At the beginning of the reaction, the additional phases are partially melted. Because of the structure, composition and thermal fluctuation, the 2223 nucleates and grows in the phase boundary between the liquid phase and Bi-2212. It was shown here that the nucleation and the growth rate were relatively fast between 0 and 36 h. At the final stage, between 36 and 60 h, because of the impingement of the growth fronts of different nuclei, the high formation rate of 2223 is suppressed. The major reactant 2212 remains as a solid and its plate-like configuration determines the two dimensional nature of the reaction. The amount of liquid forms during reaction is small. (orig.)

  15. SILP catalysis in gas-phase hydroformylation and carbonylation

    Energy Technology Data Exchange (ETDEWEB)

    Riisager, A.; Fehrmann, R. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Chemistry; Haumann, M.; Wasserscheid, P. [Univ. Erlangen-Nuernberg (Germany). Lehrstuhl fuer Chemische Reaktionstechnik

    2006-07-01

    Supported ionic liquid phase (SILP) catalysts are new materials consisting of an ionic liquid-metal catalyst solution highly dispersed on a porous support. The use of a non-volatile, ionic liquid catalyst phase in SILP catalysts results in a stable heterogeneous-type material with selectivity and efficiency like homogeneous catalysts. The silica-supported SILP Rh-bisphosphine hydroformylation catalyst exhibited good activities and excellent selectivities in gas phase hydroformylation with stability exceeding 700 hours time-on-stream. Spectroscopic and kinetic data confirmed the homogeneous nature of the catalyst. In the Rh- SILP catalysed carbonylation of methanol the formation of undesired by-products could be suppressed by variation of residence time and gas pressure. (orig.)

  16. Thermodynamic analysis of fuels in gas phase: ethanol, gasoline and ethanol - gasoline predicted by DFT method.

    Science.gov (United States)

    Neto, A F G; Lopes, F S; Carvalho, E V; Huda, M N; Neto, A M J C; Machado, N T

    2015-10-01

    This paper presents a theoretical study using density functional theory to calculate thermodynamics properties of major molecules compounds at gas phase of fuels like gasoline, ethanol, and gasoline-ethanol mixture in thermal equilibrium on temperature range up to 1500 K. We simulated a composition of gasoline mixture with ethanol for a thorough study of thermal energy, enthalpy, Gibbs free energy, entropy, heat capacity at constant pressure with respect to temperature in order to study the influence caused by ethanol as an additive to gasoline. We used semi-empirical computational methods as well in order to know the efficiency of other methods to simulate fuels through this methodology. In addition, the ethanol influence through the changes in percentage fractions of chemical energy released in combustion reaction and the variations on thermal properties for autoignition temperatures of fuels was analyzed. We verified how ethanol reduces the chemical energy released by gasoline combustion and how at low temperatures the gas phase fuels in thermal equilibrium have similar thermodynamic behavior. Theoretical results were compared with experimental data, when available, and showed agreement. Graphical Abstract Thermodynamic analysis of fuels in gas phase.

  17. Determining noncondensible gas fractions at elevated temperatures and pressures using wet and dry bulb temperature measurements

    International Nuclear Information System (INIS)

    Griffith, P.; Bowman, J.

    1987-01-01

    The work reported in this note was undertaken to provide a method of determining the noncondensible gas fractions in a steam-gas mixture such as might be found in large reactor safety experiment like LOFT. In essence, the method used involves measuring the wet and dry bulb temperatures and using an algorithm, in place of the psychometric chart, to determine the partial pressure of the noncondensible gas in the mixture. In accomplishing this, the authors did the following: (1) extended the use of wet and dry-bulb temperature readings to determine mixture composition up to a temperature of 589 K and a pressure of 4.13 x 10 6 Pa. (2) developed an algorithm to reduce the data (3) found which materials would survive those temperatures

  18. Phase transitions in vector quantization and neural gas

    NARCIS (Netherlands)

    Witoelar, Aree; Biehl, Michael

    The statistical physics of off-learning is applied to winner-takes-all (WTA) and rank-based vector quantization (VQ), including the neural gas (NG). The analysis is based on the limit of high training temperatures and the annealed approximation. The typical learning behavior is evaluated for systems

  19. Oriented xenon hydride molecules in the gas phase

    Czech Academy of Sciences Publication Activity Database

    Buck, U.; Fárník, Michal

    2006-01-01

    Roč. 25, č. 4 (2006), s. 583-612 ISSN 0144-235X Grant - others:Deutsche Forschungsgemeinschaft(DE) SFB 357 Institutional research plan: CEZ:AV0Z40400503 Keywords : photofragment translational spectroscopy * charge transfer molecules * low temperature matrices * neutral rare-gas Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.036, year: 2006

  20. Robust control of speed and temperature in a power plant gas turbine.

    Science.gov (United States)

    Najimi, Ebrahim; Ramezani, Mohammad Hossein

    2012-03-01

    In this paper, an H(∞) robust controller has been designed for an identified model of MONTAZER GHAEM power plant gas turbine (GE9001E). In design phase, a linear model (ARX model) which is obtained using real data has been applied. Since the turbine has been used in a combined cycle power plant, its speed and also the exhaust gas temperature should be adjusted simultaneously by controlling fuel signals and compressor inlet guide vane (IGV) position. Considering the limitations on the system inputs, the aim of the control is to maintain the turbine speed and the exhaust gas temperature within desired interval under uncertainties and load demand disturbances. Simulation results of applying the proposed robust controller on the nonlinear model of the system (NARX model), fairly fulfilled the predefined aims. Simulations also show the improvement in the performance compared to MPC and PID controllers for the same conditions. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Miniaturized Planar Room Temperature Ionic Liquid Electrochemical Gas Sensor for Rapid Multiple Gas Pollutants Monitoring.

    Science.gov (United States)

    Wan, Hao; Yin, Heyu; Lin, Lu; Zeng, Xiangqun; Mason, Andrew J

    2018-02-01

    The growing impact of airborne pollutants and explosive gases on human health and occupational safety has escalated the demand of sensors to monitor hazardous gases. This paper presents a new miniaturized planar electrochemical gas sensor for rapid measurement of multiple gaseous hazards. The gas sensor features a porous polytetrafluoroethylene substrate that enables fast gas diffusion and room temperature ionic liquid as the electrolyte. Metal sputtering was utilized for platinum electrodes fabrication to enhance adhesion between the electrodes and the substrate. Together with carefully selected electrochemical methods, the miniaturized gas sensor is capable of measuring multiple gases including oxygen, methane, ozone and sulfur dioxide that are important to human health and safety. Compared to its manually-assembled Clark-cell predecessor, this sensor provides better sensitivity, linearity and repeatability, as validated for oxygen monitoring. With solid performance, fast response and miniaturized size, this sensor is promising for deployment in wearable devices for real-time point-of-exposure gas pollutant monitoring.

  2. High-temperature superconducting phase in rare earth alloys

    International Nuclear Information System (INIS)

    Vedyaev, A.V.; Molodykh, O.Eh.; Savchenko, M.A.; Stefanovich, A.V.

    1984-01-01

    A possibility of high-temperature superconducting phase existence in rare e arth alloys with aluminium: TbAl-NdAl is predicted. Such a phase is shown t o exist at t approximately 40 k, however its existence is possible only in a nar row temperature range and it might be metastable. A possibility of a supercondu cting phase occurrence in spin glass is studied. It is shown that the first kin d phase transition to superconducting state may first occur under definite condi tions in the system. But the phase in question will be a low-temperature one be cause of rather inefficient elctron-phonon interaction. Further temperature dec rease would lead to an appearance of magnetic order and to disappearance of the superconductivity

  3. Temperature and distortion transients in gas tungsten-arc weldments

    International Nuclear Information System (INIS)

    Glickstein, S.S.; Friedman, E.

    1979-10-01

    An analysis and test program to develop a fundamental understanding of the gas tungsten-arc welding process has been undertaken at the Bettis Atomic Power Laboratory to develop techniques to determine and control the various welding parameters and weldment conditions so as to result in optimum weld response characteristics. These response characteristics include depth of penetration, weld bead configuration, weld bead sink and roll, distortion, and cracking sensitivity. The results are documented of that part of the program devoted to analytical and experimental investigations of temperatures, weld bead dimensions, and distortions for moving gas tungsten-arc welds applied to Alloy 600 plates

  4. Gas-liquid two-phase flows in double inlet cyclones for natural gas separation

    DEFF Research Database (Denmark)

    Yang, Yan; Wang, Shuli; Wen, Chuang

    2017-01-01

    The gas-liquid two-phase flow within a double inlet cyclone for natural gasseparation was numerically simulated using the discrete phase model. The numericalapproach was validated with the experimental data, and the comparison resultsagreed well with each other. The simulation results showed...... that the strong swirlingflow produced a high centrifugal force to remove the particles from the gas mixture.The larger particles moved downward on the internal surface and were removeddue to the outer vortex near the wall. Most of the tiny particles went into the innervortex zones and escaped from the up...

  5. Optimized Feature Extraction for Temperature-Modulated Gas Sensors

    Directory of Open Access Journals (Sweden)

    Alexander Vergara

    2009-01-01

    Full Text Available One of the most serious limitations to the practical utilization of solid-state gas sensors is the drift of their signal. Even if drift is rooted in the chemical and physical processes occurring in the sensor, improved signal processing is generally considered as a methodology to increase sensors stability. Several studies evidenced the augmented stability of time variable signals elicited by the modulation of either the gas concentration or the operating temperature. Furthermore, when time-variable signals are used, the extraction of features can be accomplished in shorter time with respect to the time necessary to calculate the usual features defined in steady-state conditions. In this paper, we discuss the stability properties of distinct dynamic features using an array of metal oxide semiconductors gas sensors whose working temperature is modulated with optimized multisinusoidal signals. Experiments were aimed at measuring the dispersion of sensors features in repeated sequences of a limited number of experimental conditions. Results evidenced that the features extracted during the temperature modulation reduce the multidimensional data dispersion among repeated measurements. In particular, the Energy Signal Vector provided an almost constant classification rate along the time with respect to the temperature modulation.

  6. Temperature anomalies of shock and isentropic waves of quark-hadron phase transition

    Science.gov (United States)

    Konyukhov, A. V.; Iosilevskiy, I. L.; Levashov, P. R.; Likhachev, A. P.

    2018-01-01

    In this work, we consider a phenomenological equation of state, which combinesstatistical description for hadron gas and a bag-model-based approach for the quark-gluon plasma. The equation of state is based on the excluded volume method in its thermodynamically consistent variant from Satarov et al [2009 Phys. At. Nucl. 72 1390]. The characteristic shape of the Taub adiabats and isentropes in the phase diagram is affected by the anomalous pressure-temperature dependence along the curve of phase equilibrium. The adiabats have kink points at the boundary of the two-phase region, inside which the temperature decreases with compression. Thermodynamic properties of matter observed in the quark-hadron phase transition region lead to hydrodynamic anomalies (in particular, to the appearance of composite compression and rarefaction waves). On the basis of relativistic hydrodynamics equations we investigate and discuss the structure and anomalous temperature behavior in these waves.

  7. Angular intensity of a gas-phase field ionization source

    International Nuclear Information System (INIS)

    Orloff, J.; Swanson, L.W.

    1979-01-01

    Angular intensities of 1 μA sr -1 have been measured for a gas-phase field ionization source in an optical column under practical operating conditions. The source, which was differentially pumped and cooled to 77 K, utilized a -oriented iridium emitter and precooled hydrogen gas at 10 -2 Torr. The ion beam was collimated with an electrostatic lens and detected below an aperture subtending 0.164 msr. A transmitted current of approx.10 -10 A was measured at voltages corresponding to a field of approx. =2.2 V/A at the emitter

  8. High temperature phases in PZT ferroelectric films

    Czech Academy of Sciences Publication Activity Database

    Deineka, Alexander; Suchaneck, G.; Jastrabík, Lubomír; Gerlach, G.

    2003-01-01

    Roč. 293, - (2003), s. 111-118 ISSN 0015-0193 R&D Projects: GA ČR GP202/02/D078; GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferroelectric film * phase transition * film profile Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.406, year: 2003

  9. The high temperature phase transition for the φ4 theory

    International Nuclear Information System (INIS)

    Tetradis, N.

    1994-01-01

    The use of the perturbative temperature dependent effective potential for the study of second order or weakly first order phase transitions is problematic, due to the appearance of infrared divergences. These divergences can be controlled through the method of the effective average action which employs renormalization group ideas. I review work done with C. Wetterich on the study of the high temperature phase transition for the N-component Φ 4 theory. A detailed quantitative picture of the second order phase transition is presented, including the critical exponents for the behaviour in the vicinity of the critical temperature. (orig.)

  10. Temperature and phase dependence of positron lifetimes in solid cyclohexane

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard

    1985-01-01

    The temperature dependence of position lifetimes in both the brittle and plastic phases of cyclohaxane has been examined. Long-lived components in both phases are associated with the formation of positronium (Ps). Two long lifetimes attributable to ortho-Ps are resolvable in the plastic phase....... The longer of these (≈ 2.5 ns), which is temperature dependent, is ascribed to ortho-Ps trapped at vacancies. The shorter lifetime (≈ 0.9 ns), shows little temperature dependence. In contrast to most other plastic crystals, no sigmoidal behaviour of the average ortho-Ps lifetime is observed. A possibility...

  11. Model simulation for high-temperature gas desulphurization processes

    Energy Technology Data Exchange (ETDEWEB)

    Tonini; Zaccagnini; Berg; Vitolo; Tartarelli; Zeppi (Struttura Informatica, Florence (Italy))

    1993-01-01

    Metal oxides such as zinc ferrite, zinc titanate and tin oxide have been identified as promising adsorbent materials in the removal of sulphur compounds from hot coal gas in power generation operations. A mathematical model for the sulfidation phase in fixed, moving and fluidised bed reactors has been developed. This paper presents kinetic models of spherical sorbent particles applicable to all reactor configurations and a mathematical model limited to the moving bed reactor. 10 refs., 5 figs.

  12. Noncovalent Halogen Bonding as a Mechanism for Gas-Phase Clustering

    DEFF Research Database (Denmark)

    Wegeberg, Christina; Donald, William A.; McKenzie, Christine

    2017-01-01

    in the crystalline phases of PhIO2 and its derivatives serve as models for the structures of larger gas-phase clusters, and calculations on simple model gas-phase dimer and trimer clusters result in similar motifs. This is the first account of halogen bonding playing an extensive role in gas-phase associations....

  13. Phase diagrams for an ideal gas mixture of fermionic atoms and bosonic molecules

    DEFF Research Database (Denmark)

    Williams, J. E.; Nygaard, Nicolai; Clark, C. W.

    2004-01-01

    We calculate the phase diagrams for a harmonically trapped ideal gas mixture of fermionic atoms and bosonic molecules in chemical and thermal equilibrium, where the internal energy of the molecules can be adjusted relative to that of the atoms by use of a tunable Feshbach resonance. We plot...... diagrams obtained in recent experiments on the Bose-Einstein condensation to Bardeen-Cooper-Schrieffer crossover, in which the condensate fraction is plotted as a function of the initial temperature of the Fermi gas measured before a sweep of the magnetic field through the resonance region....

  14. Gas phase collision dynamics by means of pulse-radiolysis methods

    International Nuclear Information System (INIS)

    Hatano, Yoshihiko

    1989-01-01

    After a brief survey of recent advances in gas-phase collision dynamics studies using pulse radiolysis methods, the following two topics in our research programs are presented with emphasis on the superior advantages of the pulse radiolysis methods over the various methods of gas-phase collision dynamics, such as beam methods, swarm methods and flow methods. One of the topics is electron attachment to van der Waals molecules. The attachment rates of thermal electrons to O 2 and other molecules in dense gases have been measured in wide ranges of both gas temperatures and pressures, from which experimental evidence has been obtained for electron attachment to van der Waals molecules. The results have been compared with theories and discussed in terms of the effect of van der Waals interaction on the electron attachment resonance. The obtained conclusions have been related with investigations of electron attachment, solvation and localization in the condensed phase. The other is Penning ionization and its related processes. The rate constants for the de-excitation of He(2 1 P), He(2 3 S), Ne( 3 P 0 ), Ne( 3 P 1 ), Ne( 3 P 2 ), Ar( 1 P 1 ), Ar( 3 P 1 ), by atoms and molecules have been measured in the temperature range from 100 to 300 K, thus obtaining the collisional energy dependence of the de-excitation cross sections. The results are compared in detail with theories classified according to the excited rare gas atoms in the metastable and resonance states. (author)

  15. IAEA high temperature gas-cooled reactor activities

    International Nuclear Information System (INIS)

    Kendall, J.M.

    2000-01-01

    The IAEA activities on high temperature gas-cooled reactors are conducted with the review and support of the Member states, primarily through the International Working Group on Gas-Cooled Reactors (IWG-GCR). This paper summarises the results of the IAEA gas-cooled reactor project activities in recent years along with ongoing current activities through a review of Co-ordinated Research Projects (CRPs), meetings and other international efforts. A series of three recently completed CRPs have addressed the key areas of reactor physics for LEU fuel, retention of fission products and removal of post shutdown decay heat through passive heat transport mechanisms. These activities along with other completed and ongoing supporting CRPs and meetings are summarised with reference to detailed documentation of the results. (authors)

  16. High temperature gas cleaning for pressurized gasification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Alden, H.; Hagstroem, P.; Hallgren, A.; Waldheim, L. [TPS Termiska Processer AB, Nykoeping (Sweden)

    2000-04-01

    The purpose of the project was to build an apparatus to study pressurized, high temperature gas cleaning of raw gasification gas generated from biomass. A flexible and easy to operate pressurized apparatus was designed and installed for the investigations in high temperature gas cleaning by means of thermal, catalytic or chemical procedures. A semi continuos fuel feeding concept, at a maximum rate of 700 g/h, allowed a very constant formation of a gas product at 700 deg C. The gas product was subsequently introduced into a fixed bed secondary reactor where the actual gas cleanup or reformation was fulfilled. The installation work was divided into four work periods and apart from a few delays the work was carried out according to the time plan. During the first work period (January - June 1994) the technical design, drawings etc. of the reactor and additional parts were completed. All material for the construction was ordered and the installation work was started. The second work period (July - December 1994) was dedicated to the construction and the installation of the different components. Initial tests with the electrical heating elements, control system and gas supply were assigned to the third work period (January - June 1995). After the commissioning and the resulting modifications, initial pyrolysis and tar decomposition experiments were performed. During the fourth and final work period, (June - December 1995) encouraging results from first tests allowed the experimental part of the project work to commence, however in a slightly reduced program. The experimental part of the project work comparatively studied tar decomposition as a function of the process conditions as well as of the choice of catalyst. Two different catalysts, dolomite and a commercial Ni-based catalyst, were evaluated in the unit. Their tar cracking ability in the pressure interval 1 - 20 bar and at cracker bed temperatures between 800 - 900 deg C was compared. Long term tests to study

  17. Industrial aspects of gas-liquid two-phase flow

    International Nuclear Information System (INIS)

    Hewitt, G.F.

    1977-01-01

    The lecture begins by reviewing the various types of plant in which two phase flow occurs. Specifically, boiling plant, condensing plant and pipelines are reviewed, and the various two phase flow problems occurring in them are described. Of course, many other kinds of chemical engineering plant involve two phase flow, but are somewhat outside the scope of this lecture. This would include distillation columns, vapor-liquid separators, absorption towers etc. Other areas of industrial two phase flow which have been omitted for space reasons from this lecture are those concerned with gas/solids, liquid/solid and liquid/liquid flows. There then follows a description of some of the two phase flow processes which are relevant in industrial equipment and where special problems occur. The topics chosen are as follows: (1) pressure drop; (2) horizontal tubes - separation effects non-uniformites in heat transfer coefficient, effect of bends on dryout; (3) multicomponent mixtures - effects in pool boiling, mass transfer effects in condensation and Marangoni effects; (4) flow distribution - manifold problems in single phase flow, separation effects at a single T-junction in two phase flow and distribution in manifolds in two phase flow; (5) instability - oscillatory instability, special forms of instability in cryogenic systems; (6) nucleate boiling - effect of variability of surface, unresolved problems in forced convective nucleate boiling; and (7) shell side flows - flow patterns, cross flow boiling, condensation in cross flow

  18. Gas diffusion and temperature dependence of bubble nucleation during irradiation

    DEFF Research Database (Denmark)

    Foreman, A. J. E.; Singh, Bachu Narain

    1986-01-01

    The continuous production of gases at relatively high rates under fusion irradiation conditions may enhance the nucleation of cavities. This can cause dimensional changes and could induce embrittlement arising from gas accumulation on grain boundaries. Computer calculations have been made...... of the diatomic nucleation of helium bubbles, assuming helium to diffuse substitutionally, with radiation-enhanced diffusion at lower temperatures. The calculated temperature dependence of the bubble density shows excellent agreement with that observed in 600 MeV proton irradiations, including a reduction...... in activation energy below Tm/2. The coalescence of diatomic nuclei due to Brownian motion markedly improves the agreement and also provides a well-defined terminal density. Bubble nucleation by this mechanism is sufficiently fast to inhibit any appreciable initial loss of gas to grain boundaries during...

  19. Power Conversion Study for High Temperature Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    Chang Oh; Richard Moore; Robert Barner

    2005-01-01

    The Idaho National Laboratory (INL) is investigating a Brayton cycle efficiency improvement on a high temperature gas-cooled reactor (HTGR) as part of Generation-IV nuclear engineering research initiative. There are some technical issues to be resolved before the selection of the final design of the high temperature gas cooled reactor, called as a Next Generation Nuclear Plant (NGNP), which is supposed to be built at the INEEL by year 2017. The technical issues are the selection of the working fluid, direct vs. indirect cycle, power cycle type, the optimized design in terms of a number of intercoolers, and others. In this paper, we investigated a number of working fluids for the power conversion loop, direct versus indirect cycle, the effect of intercoolers, and other thermal hydraulics issues. However, in this paper, we present part of the results we have obtained. HYSYS computer code was used along with a computer model developed using Visual Basic computer language

  20. Properties of super alloys for high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Izaki, Takashi; Nakai, Yasuo; Shimizu, Shigeki; Murakami, Takashi

    1975-01-01

    The existing data on the properties at high temperature in helium gas of iron base super alloys. Incoloy-800, -802 and -807, nickel base super alloys, Hastelloy-X, Inconel-600, -617 and -625, and a casting alloy HK-40 were collectively evaluated from the viewpoint of the selection of material for HTGRs. These properties include corrosion resistance, strength and toughness, weldability, tube making, formability, radioactivation, etc. Creep strength was specially studied, taking into consideration the data on the creep characteristics in the actual helium gas atmosphere. The necessity of further long run creep data is suggested. Hastelloy-X has completely stable corrosion resistance at high temperature in helium gas. Incoloy 800 and 807 and Inconel 617 are not preferable in view of corrosion resistance. The creep strength of Inconel 617 extraporated to 1,000 deg C for 100,000 hours in air was the greatest rupture strength of 0.6 kg/mm 2 in all above alloys. However, its strength in helium gas began to fall during a relatively short time, so that its creep strength must be re-evaluated in the use for long time. The radioactivation and separation of oxide film in primary construction materials came into question, Inconel 617 and Incoloy 807 showed high induced radioactivity intensity. Generally speaking, in case of nickel base alloys such as Hastelloy-X, oxide film is difficult to break away. (Iwakiri, K.)

  1. High-Temperature Gas-Cooled Test Reactor Point Design

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Laboratory; Bayless, Paul David [Idaho National Laboratory; Nelson, Lee Orville [Idaho National Laboratory; Gougar, Hans David [Idaho National Laboratory; Kinsey, James Carl [Idaho National Laboratory; Strydom, Gerhard [Idaho National Laboratory; Kumar, Akansha [Idaho National Laboratory

    2016-04-01

    A point design has been developed for a 200 MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technological readiness level, licensing approach and costs.

  2. Treatment of low-temperature tar-gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Schick, F

    1928-07-04

    Process for the treating and conversion of low-temperature tar-vapor and gas mixtures in the presence of metals or metal oxides as well as bodies of large surface, without previous condensation of the liquid material to be treated, characterized by the treatment taking place with a mixture of desulfurizing metals and metal oxides which, if necessary, are precipitated on carriers and large surface nonmetal cracking catalysts, such as active carbon and silica gel.

  3. Fluid Phase Separation (FPS) experiment for flight on a space shuttle Get Away Special (GAS) canister

    Science.gov (United States)

    Peters, Bruce; Wingo, Dennis; Bower, Mark; Amborski, Robert; Blount, Laura; Daniel, Alan; Hagood, Bob; Handley, James; Hediger, Donald; Jimmerson, Lisa

    1990-01-01

    The separation of fluid phases in microgravity environments is of importance to environmental control and life support systems (ECLSS) and materials processing in space. A successful fluid phase separation experiment will demonstrate a proof of concept for the separation technique and add to the knowledge base of material behavior. The phase separation experiment will contain a premixed fluid which will be exposed to a microgravity environment. After the phase separation of the compound has occurred, small samples of each of the species will be taken for analysis on the Earth. By correlating the time of separation and the temperature history of the fluid, it will be possible to characterize the process. The experiment has been integrated into space available on a manifested Get Away Special (GAS) experiment, CONCAP 2, part of the Consortium for Materials Complex Autonomous Payload (CAP) Program, scheduled for STS-42. The design and the production of a fluid phase separation experiment for rapid implementation at low cost is presented.

  4. Preconcentration in gas or liquid phases using adsorbent thin films

    Directory of Open Access Journals (Sweden)

    Antonio Pereira Nascimento Filho

    2006-03-01

    Full Text Available The possibility of preconcentration on microchannels for organic compounds in gas or liquid phases was evaluated. Microstructures with different geometries were mechanically machined using poly(methyl methacrylate - PMMA as substrates and some cavities were covered with cellulose. The surfaces of the microchannels were modified by plasma deposition of hydrophilic or hydrophobic films using 2-propanol and hexamethyldisilazane (HMDS, respectively. Double layers of HMDS + 2-propanol were also used. Adsorption characterization was made by Quartz Crystal Measurements (QCM technique using reactants in a large polarity range that showed the adsorption ability of the structures depends more on the films used than on the capillary phenomena. Cellulose modified by double layer film showed a high retention capacity for all gaseous compounds tested. However, structures without plasma deposition showed low retention capacity. Microchannels modified with double layers or 2-propanol plasma films showed higher retention than non-modified ones on gas or liquid phase.

  5. Long-lived gas-phase radicals from combustion

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Takashi; Furusawa, Koji; Amano, Toshiji; Okubo, Yoichi; Tsuchiya, Jun' ichi; Yoshizawa, Fujiroku; Akutsu, Yoshiaki; Tamura, Masamitsu; Yoshida, Tadao (Univ. of Tokyo (Japan))

    1989-04-20

    On indoor air pollution or fire, it is feared that the gas-phase radicals from the combustion of inflammables or fuel seriously exert an influence on the organisms as harmful matter. The gas-phase radicals were studied using the electron spin resonance (ESR) spin-trapping technique. For the spin trap solution, 0.1 mol solution of {alpha}-phenyl-N-t-butylnitron in benzene was used. As a result, apparently long-lived and highly reactive oxygen-centered radicals were detected in the smoke from polyethylene, polypropylene, polystyrene, polymethylmethacrylate, cellulose, kerosene, benzene, acetone, methanol and butylalcohol. It is suggested that the production mechanism for the radicals should be different from olefin-NOx-air system reaction, which is considered for the radicals from cigarette smoke. 11 refs., 6 figs., 2 tabs.

  6. Micromachined High-Temperature Sensors for Planet Exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In phase I of the SBIR program, LEEOAT Company will develop, simulate, fabricate and test high-temperature piezoelectric miniature sensors (up to 800oC), for...

  7. InGaN High Temperature Photovoltaic Cells, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objectives of this Phase II project are to develop InGaN photovoltaic cells for high temperature and/or high radiation environments to TRL 4 and to define the...

  8. Inorganic Nanostructured High-Temperature Magnet Wires, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop a high-temperature tolerant electrically-insulating coating for magnet wires. The Phase I program will result in a flexible, inorganic...

  9. High Temperature Fiberoptic Thermal Imaging System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase 1 program will fabricate and demonstrate a small diameter single fiber endoscope that can perform high temperature thermal imaging in a jet engine...

  10. Structural evolution of calcite at high temperatures: Phase V unveiled

    Science.gov (United States)

    Ishizawa, Nobuo; Setoguchi, Hayato; Yanagisawa, Kazumichi

    2013-01-01

    The calcite form of calcium carbonate CaCO3 undergoes a reversible phase transition between Rc and Rm at ~1240 K under a CO2 atmosphere of ~0.4 MPa. The joint probability density function obtained from the single-crystal X-ray diffraction data revealed that the oxygen triangles of the CO3 group in the high temperature form (Phase V) do not sit still at specified positions in the space group Rm, but migrate along the undulated circular orbital about carbon. The present study also shows how the room temperature form (Phase I) develops into Phase V through an intermediate form (Phase IV) in the temperature range between ~985 K and ~1240 K. PMID:24084871

  11. Temperature Evolution of a 1 MA Triple-Nozzle Gas-Puff Z-Pinch

    Science.gov (United States)

    de Grouchy, Philip; Banasek, Jacob; Engelbrecht, Joey; Qi, Niansheng; Atoyan, Levon; Byvank, Tom; Cahill, Adam; Moore, Hannah; Potter, William; Ransohoff, Lauren; Hammer, David; Kusse, Bruce; Laboratory of Plasma Studies Team

    2015-11-01

    Mitigation of the Rayleigh-Taylor instability (RTI) plays a critical role in optimizing x-ray output at high-energy ~ 13 keV using the triple-nozzle Krypton gas-puff at Sandia National Laboratory. RTI mitigation by gas-puff density profiling using a triple-nozzle gas-puff valve has recently been recently demonstrated on the COBRA 1MA z-pinch at Cornell University. In support of this work we investigate the role of shell cooling in the growth of RTI during gas-puff implosions. Temperature measurements within the imploding plasma shell are recorded using a 527 nm, 10 GW Thomson scattering diagnostic for Neon, Argon and Krypton puffs. The mass-density profile is held constant at 22 microgram per centimeter for all three puffs and the temperature evolution of the imploding material is recorded. In the case of Argon puffs we find that the shell ion and electron effective temperatures remain in equilibrium at around 1keV for the majority of the implosion phase. In contrast scattered spectra from Krypton are dominated by of order 10 keV effective ion temperatures. Supported by the NNSA Stewardship Sciences Academic Programs.

  12. Utilizing the response patterns of a temperature modulated chemoresistive gas sensor for gas diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Amini, Amir [Jannatabad College, Sama Organization, Islamic Azad University, Tehran (Iran, Islamic Republic of); Ghafarinia, Vahid, E-mail: amir.amini.elec@gmail.com, E-mail: ghafarinia@ee.kntu.ac.ir [Electrical Engineering Department, K. N. Toosi University of Technology, Tehran (Iran, Islamic Republic of)

    2011-02-15

    The observed features in the temporal response patterns of a temperature-modulated chemoresistive gas sensor were used for gas diagnosis. The patterns were recorded for clean air and air contaminated with different levels of some volatile organic compounds while a staircase heating voltage waveform had been applied to the microheater of a tin oxide gas sensor that modulated its operating temperature. Combining the steady-state and transient parameters of the recorded responses in the 50-400 deg. C range resulted in discriminatory feature vectors which were utilized for contaminant classification. The information content of these feature vectors was proved sufficient for discrimination of methanol, ethanol, 1-butanol, and acetone contaminations in a wide concentration range.

  13. Utilizing the response patterns of a temperature modulated chemoresistive gas sensor for gas diagnosis

    International Nuclear Information System (INIS)

    Amini, Amir; Ghafarinia, Vahid

    2011-01-01

    The observed features in the temporal response patterns of a temperature-modulated chemoresistive gas sensor were used for gas diagnosis. The patterns were recorded for clean air and air contaminated with different levels of some volatile organic compounds while a staircase heating voltage waveform had been applied to the microheater of a tin oxide gas sensor that modulated its operating temperature. Combining the steady-state and transient parameters of the recorded responses in the 50-400 deg. C range resulted in discriminatory feature vectors which were utilized for contaminant classification. The information content of these feature vectors was proved sufficient for discrimination of methanol, ethanol, 1-butanol, and acetone contaminations in a wide concentration range.

  14. Gas phase fractionation method using porous ceramic membrane

    Science.gov (United States)

    Peterson, Reid A.; Hill, Jr., Charles G.; Anderson, Marc A.

    1996-01-01

    Flaw-free porous ceramic membranes fabricated from metal sols and coated onto a porous support are advantageously used in gas phase fractionation methods. Mean pore diameters of less than 40 .ANG., preferably 5-20 .ANG. and most preferably about 15 .ANG., are permeable at lower pressures than existing membranes. Condensation of gases in small pores and non-Knudsen membrane transport mechanisms are employed to facilitate and increase membrane permeability and permselectivity.

  15. Gas Phase Hydrogenation of Levulinic Acid to gamma-Valerolactone

    NARCIS (Netherlands)

    Bonrath, Werner; Castelijns, Anna Maria Cornelia Francisca; de Vries, Johannes Gerardus; Guit, Rudolf Philippus Maria; Schuetz, Jan; Sereinig, Natascha; Vaessen, Henricus Wilhelmus Leonardus Marie

    The gas phase hydrogenation of levulinic acid to gamma-valerolactone over copper and ruthenium based catalysts in a continuous fixed-bed reactor system was investigated. Among the catalysts a copper oxide based one [50-75 % CuO, 20-25 % SiO2, 1-5 % graphite, 0.1-1 % CuCO3/Cu(OH)(2)] gave

  16. The gas chimney formation during the steam explosion premixing phase

    International Nuclear Information System (INIS)

    Leskovar, M.

    2001-01-01

    The crucial part in isothermal premixing experiment simulation is the correct prediction of the gas chimney, which forms when the spheres penetrate into water. The first simulation results with the developed original combined multiphase model showed that the gas chimney starts to close at the wrong place at the top of the chimney and not in the middle, like it was observed in the experiments. To find the physical explanation for this identified weakness of our numerical model a comprehensive parametric analysis (mesh size, initial water-air surface thickness, water density, momentum coupling starting position) has been performed. It was established that the reason for the unphysical gas chimney closing at the top could be the gradual air-water density transition in the experiment model, since there is due to the finite differences description always a transition layer with intermediate phases density over the pure water phase. It was shown that this difference between our numerical model and the experiment can be somewhat compensated if the spheres interfacial drag coefficient at the upmost mesh plane of the unphysical air-water transition layer is artificially risen. On this way a more correct gas chimney formation can be obtained.(author)

  17. Study of the MWPC gas gain behaviour as a function of the gas pressure and temperature

    CERN Document Server

    Pinci, D

    2005-01-01

    The Muon System of the LHCb experiment is composed of five detection stations (M1-M5) equipped with 1368 Multi-Wire Proportional Chambers (MWPC) and 24 Triple-GEM detectors. The Multi Wire Proportional Chamber (MWPC) performances (detection efficiency, time resolution, pad-cluster size and ageing properties) are heavily dependent on the gas gain. The chamber gain depends on the gas density and therefore on the gas temperature and pressure. The impact of the environmental parameters on the MWPC gain has been studied in detail. The results, togheter with a simple method proposed to account for the gain variations, are reported in this note. The absolute gas gain at the testing voltage of 2750 V was also measured to be (1.2 +- 0.1)*10^5.

  18. Experimental and CFD investigation of gas phase freeboard combustion

    DEFF Research Database (Denmark)

    Andersen, Jimmy

    Reliable and accurate modeling capabilities for combustion systems are valuable tools for optimization of the combustion process. This work concerns primary precautions for reducing NO emissions, thereby abating the detrimental effects known as “acid rain”, and minimizing cost for flue gas...... treatment. The aim of this project is to provide validation data for Computational Fluid Dynamic (CFD) models relevant for grate firing combustion conditions. CFD modeling is a mathematical tool capable of predicting fluid flow, mixing and chemical reaction with thermal conversion and transport. Prediction......, but under well-defined conditions. Comprehensive experimental data for velocity field, temperatures, and gas composition are obtained from a 50 kW axisymmetric non-swirling natural gas fired combustion setup under two different settings. Ammonia is added to the combustion setup in order to simulate fuel...

  19. Measurements of the phase behavior of ternary systems of interest to the GAS process: III. The system CO2 + toluene plus naphthalene

    NARCIS (Netherlands)

    Breure, B.; Kordikowski, A.; Wilmes, B; Peters, C.J.

    2013-01-01

    Systems consisting of a supercritical gas, an organic solvent and an organic solute are of interest for the gas-antisolvent (GAS) process. In this work the phase behavior of the ternary system carbon dioxide + toluene + naphthalene was studied in a Cailletet apparatus over the temperature range

  20. Heat capacity characterization at phase transition temperature of Agl superionic

    International Nuclear Information System (INIS)

    Widowati, Arie

    2000-01-01

    The phase transition of Agl superionic conductor was investigated by calorometric. A single phase transition was found at (153±5) o C which corresponds to the α - β transition. Calorimetric measurement showed an anomalously high heat capacity with a large discontinues change in the Arrhenius plot, was found above the transition temperature of β - α phase. The maximum heat capacity was found to be ±19.7 cal/gmol. Key words : superionic conductor, thermal capacity

  1. Po2 temperature blood factor for blood gas apparatus.

    Science.gov (United States)

    Teisseire, B P; Hérigault, R A; Teisseire, L J; Laurent, D N

    1984-01-01

    PO2 temperature formulae supplied by manufacturers on automatic blood gas apparatus, PO2 corr. = PO2 37 degrees C X 10F X delta T were studied and compared to the experimental determination of the delta log PO2/delta T ratio (Hérigault et al. [10]). Acid-base status at 37 degrees C appeared to have a measurable influence on the PO2 temperature factor; alkalosis increased the delta log PO2/delta T ratio, and the contrary was found for acidosis in comparison with normal acid-base status at 37 degrees C. For the same PO2, measured at 37 degrees C, all the proposed formulae of commercial blood gas automatic apparatus did not give the same temperature corrected PO2. The observed difference between the corrected PO2 may be important and greater than the precision of the initial measurement. To correct the measured PO2 for temperature, a relationship between delta log PO2/delta T and PO2 is proposed, between PO2 zero and PO2 180 mmHg, which takes into account measured pH and PO2 values at 37 degrees C:delta log PO2/delta T = [(-0.35 pH + 0.658) X 10(-4) X PO2] + 0.035.

  2. High-Temperature Corrosion Behavior of Alloy 617 in Helium Environment of Very High Temperature Gas Reactor

    International Nuclear Information System (INIS)

    Lee, Gyeong-Geun; Jung, Sujin; Kim, Daejong; Jeong, Yong-Whan; Kim, Dong-Jin

    2012-01-01

    Alloy 617 is a Ni-base superalloy and a candidate material for the intermediate heat exchanger (IHX) of a very high temperature gas reactor (VHTR) which is one of the next generation nuclear reactors under development. The high operating temperature of VHTR enables various applications such as mass production of hydrogen with high energy efficiency. Alloy 617 has good creep resistance and phase stability at high temperatures in an air environment. However, it was reported that the mechanical properties decreased at a high temperature in an impure helium environment. In this study, high-temperature corrosion tests were carried out at 850°C-950°C in a helium environment containing the impurity gases H_2, CO, and CH_4, in order to examine the corrosion behavior of Alloy 617. Until 250 h, Alloy 617 specimens showed a parabolic oxidation behavior at all temperatures. The activation energy for oxidation in helium environment was 154 kJ/mol. The SEM and EDS results elucidated a Cr-rich surface oxide layer, Al-rich internal oxides and depletion of grain boundary carbides. The thickness and depths of degraded layers also showed a parabolic relationship with time. A normal grain growth was observed in the Cr-rich surface oxide layer. When corrosion tests were conducted in a pure helium environment, the oxidation was suppressed drastically. It was elucidated that minor impurity gases in the helium would have detrimental effects on the high temperature corrosion behavior of Alloy 617 for the VHTR application.

  3. Luminous transmittance and phase transition temperature of VO 2 ...

    African Journals Online (AJOL)

    The phase transition temperature (τc) of the films was obtained from both the transmittance and sheet resistance against temperature curves. A change in sheet resistance of 2 to 3 orders of magnitude was observed for both undoped and Ce-doped VO2 films. Comparison between undoped and doped VO2 films revealed ...

  4. Finite temperature susy GUT phase transitions determined by radiative corrections

    International Nuclear Information System (INIS)

    Kripfganz, J.; Perlt, H.

    1983-01-01

    Studying the 2-loop perturbative contribution to the free energy of supersymmetric grand unified theories, SU(3)xSU(2)xU(1) is found to be the prefered low temperature phase. The transition temperature is still within the weak coupling regime. (author)

  5. Laser diagnostics of a diamond depositing chemical vapour deposition gas-phase environment

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James Anthony

    2002-07-01

    Studies have been carried out to understand the gas-phase chemistry underpinning diamond deposition in hot filament and DC-arcjet chemical vapour deposition (CVD) systems. Resonance enhanced Multiphoton lonisation (REMPI) techniques were used to measure the relative H atom and CH{sub 3} radical number densities and local gas temperatures prevalent in a hot filament reactor, operating on Ch{sub 4}/H{sub 2} and C{sub 2}H{sub 2}/H{sub 2} gas mixtures. These results were compared to a 3D-computer simulation, and hence provided an insight into the nature of the gas-phase chemistry with particular reference to C{sub 2}{yields}C{sub 1} species conversion. Similar experimental and theoretical studies were also carried out to explain the chemistry involved in NH{sub 3}/CH{sub 4}/H{sub 2} and N{sub 2}/CH{sub 4}/H{sub 2} gas mixtures. It was demonstrated that the reactive nature of the filament surface was dependent on the addition of NH{sub 3}, influencing atomic hydrogen production, and thus the H/C/N gas-phase chemistry. Studies of the DC-arcjet diamond CVD reactor consisted of optical emission spectroscopic studies of the plume during deposition from an Ar/H{sub 2}/CH{sub 4}/N{sub 2} gas mixture. Spatially resolved species emission intensity maps were obtained for C{sub 2}(d{yields}a), CN(B{yields}X) and H{sub {beta}} from Abel-inverted datasets. The C{sub 2}(d{yields}a) and CN(B{yields}X) emission intensity maps both show local maxima near the substrate surface. SEM and Laser Raman analyses indicate that N{sub 2} additions lead to a reduction in film quality and growth rate. Photoluminescence and SIMS analyses of the grown films provide conclusive evidence of nitrogen incorporation (as chemically bonded CN). Absolute column densities of C{sub 2}(a) in a DC-arcjet reactor operating on an Ar/H{sub 2}/CH{sub 4} gas mixture, were measured using Cavity ring down spectroscopy. Simulations of the measured C{sub 2}(v=0) transition revealed a rotational temperature of {approx

  6. Laser diagnostics of a diamond depositing chemical vapour deposition gas-phase environment

    International Nuclear Information System (INIS)

    Smith, James Anthony

    2002-01-01

    Studies have been carried out to understand the gas-phase chemistry underpinning diamond deposition in hot filament and DC-arcjet chemical vapour deposition (CVD) systems. Resonance enhanced Multiphoton lonisation (REMPI) techniques were used to measure the relative H atom and CH 3 radical number densities and local gas temperatures prevalent in a hot filament reactor, operating on Ch 4 /H 2 and C 2 H 2 /H 2 gas mixtures. These results were compared to a 3D-computer simulation, and hence provided an insight into the nature of the gas-phase chemistry with particular reference to C 2 →C 1 species conversion. Similar experimental and theoretical studies were also carried out to explain the chemistry involved in NH 3 /CH 4 /H 2 and N 2 /CH 4 /H 2 gas mixtures. It was demonstrated that the reactive nature of the filament surface was dependent on the addition of NH 3 , influencing atomic hydrogen production, and thus the H/C/N gas-phase chemistry. Studies of the DC-arcjet diamond CVD reactor consisted of optical emission spectroscopic studies of the plume during deposition from an Ar/H 2 /CH 4 /N 2 gas mixture. Spatially resolved species emission intensity maps were obtained for C 2 (d→a), CN(B→X) and H β from Abel-inverted datasets. The C 2 (d→a) and CN(B→X) emission intensity maps both show local maxima near the substrate surface. SEM and Laser Raman analyses indicate that N 2 additions lead to a reduction in film quality and growth rate. Photoluminescence and SIMS analyses of the grown films provide conclusive evidence of nitrogen incorporation (as chemically bonded CN). Absolute column densities of C 2 (a) in a DC-arcjet reactor operating on an Ar/H 2 /CH 4 gas mixture, were measured using Cavity ring down spectroscopy. Simulations of the measured C 2 (v=0) transition revealed a rotational temperature of ∼3300 K. This gas temperature is similar to that deduced from optical emission spectroscopy studies of the C 2 (d→a) transition. (author)

  7. GAS PHASE SELECTIVE PHOTOXIDATION OF ALCOHOLS USING LIGHT-ACTIVATED TITANIUM DIOXIDE AND MOLECULAR OXYGEN

    Science.gov (United States)

    Gas Phase Selective Oxidation of Alcohols Using Light-Activated Titanium Dioxide and Molecular Oxygen Gas phase selective oxidations of various primary and secondary alcohols are studied in an indigenously built stainless steel up-flow photochemical reactor using ultravi...

  8. Development of high temperature gas cooled reactor in China

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Wentao [Paul Scherrer Institute, Villigen (Switzerland). Dept. of Nuclear Energy and Safety; Schorer, Michael [Swiss Nuclear Forum, Olten (Switzerland)

    2018-02-15

    High temperature gas cooled reactor (HTGR) is one of the six Generation IV reactor types put forward by Generation IV International Forum (GIF) in 2002. This type of reactor has high outlet temperature. It uses Helium as coolant and graphite as moderator. Pebble fuel and ceramic reactor core are adopted. Inherit safety, good economy, high generating efficiency are the advantages of HTGR. According to the comprehensive evaluation from the international nuclear community, HTGR has already been given the priority to the research and development for commercial use. A demonstration project of the High Temperature Reactor-Pebble-�bed Modules (HTR-PM) in Shidao Bay nuclear power plant in China is under construction. In this paper, the development history of HTGR in China and the current situation of HTR-PM will be introduced. The experiences from China may be taken as a reference by the international nuclear community.

  9. A combined heating cooling stage for cluster thermalization in the gas phase

    International Nuclear Information System (INIS)

    Ievlev, D.N.; Kuester, A.; Enders, A.; Malinowski, N.; Schaber, H.; Kern, K.

    2003-01-01

    We report on the design and performance of a combined heating/cooling stage for the thermalization of clusters in a gas phase time-of-flight mass spectrometer. With this setup the cluster temperature can sensitively be adjusted within the range from 100 up to 800 K and higher. The unique combination of a heating stage with a subsequent cooling stage allows us to perform thermodynamic investigations on clusters at very high temperatures without quality losses in the spectra due to delayed fragmentation in the drift tube of the mass spectrometer. The performance of the setup is demonstrated by the example of (C 60 ) n clusters

  10. Structure of the gas-liquid annular two-phase flow in a nozzle section

    International Nuclear Information System (INIS)

    Yoshida, Kenji; Kataoka, Isao; Ohmori, Syuichi; Mori, Michitsugu

    2006-01-01

    Experimental studies on the flow behavior of gas-liquid annular two-phase flow passing through a nozzle section were carried out. This study is concerned with the central steam jet injector for a next generation nuclear reactor. In the central steam jet injector, steam/water annular two-phase flow is formed at the mixing nozzle. To make an appropriate design and to establish the high-performance steam injector system, it is very important to accumulate the fundamental data of the thermo-hydro dynamic characteristics of annular flow passing through a nozzle section. On the other hand, the transient behavior of multiphase flow, in which the interactions between two-phases occur, is one of the most interesting scientific issues and has attracted research attention. In this study, the transient gas-phase turbulence modification in annular flow due to the gas-liquid phase interaction is experimentally investigated. The annular flow passing through a throat section is under the transient state due to the changing cross sectional area of the channel and resultantly the superficial velocities of both phases are changed compared with a fully developed flow in a straight pipe. The measurements for the gas-phase turbulence were precisely performed by using a constant temperature hot-wire anemometer, and made clear the turbulence structure such as velocity profiles, fluctuation velocity profiles. The behavior of the interfacial waves in the liquid film flow such as the ripple or disturbance waves was also observed. The measurements for the liquid film thickness by the electrode needle method were also performed to measure the base film thickness, mean film thickness, maximum film thickness and wave height of the ripple or the disturbance waves. (author)

  11. Two-Phase Phenomena In Wet Flue Gas Desulfurization Process

    International Nuclear Information System (INIS)

    Minzer, U.; Moses, E.J.; Toren, M.; Blumenfeld, Y.

    1998-01-01

    In order to reduce sulfur oxides discharge, Israel Electric Corporation (IEC) is building a wet Flue Gas Desulfurization (FGD) facility at Rutenberg B power station. The primary objective of IEC is to minimize the occurrence of stack liquid discharge and avoid the discharge of large droplets, in order to prevent acid rain around the stack. Liquid discharge from the stack is the integrated outcome of two-phase processes, which are discussed in this work. In order to estimate droplets discharge the present investigation employs analytical models, empirical tests, and numerical calculations of two-phase phenomena. The two-phase phenomena are coupled and therefore cannot be investigated separately. The present work concerns the application of Computational Fluid Dynamic (CFD) as an engineering complementary tool in the IEC investigation

  12. FLUIDDYNAMIC ASPECTS OF GAS-PHASE ETHYLENE POLYMERIZATION REACTOR DESIGN

    Directory of Open Access Journals (Sweden)

    Guardani R.

    1998-01-01

    Full Text Available The relative importance of design variables affecting the fluiddynamic behavior of a fluidized bed reactor for the gas-phase ethylene polymerization is discussed, based on mathematical modeling. The three-phase bubbling fluidized bed model is based on axially distributed properties for the bubble, cloud and emulsion phases, combined with correlations for population balance and entrainment. Under the operating conditions adopted in most industrial processes, the reactor performance is affected mainly by the reaction rate and solids entrainment. Simulation results indicate that an adequate design of the freeboard and particle collecting equipment is of primary importance in order to produce polymeric particles with the desired size distribution, as well as to keep entrainment and catalyst feed rates at adequate levels.

  13. Chlorination of some eliphatic organic compounds in liquid and gas phase

    International Nuclear Information System (INIS)

    Hassan, A.A.

    1990-01-01

    The photochlorination of different organic compounds and the relative slectivities of different positions have been investigated in both gaseous and liquid phases at different temperatures. The results have shown that the relative selectivity generally decreased with increasing temperature and in the gas phase has a higher value. Polar solvents increase the selectivity relative to the chlorination of pure liquid phases. The differences in activation energy between two positions were much higher in the gas phases chlorination, relative to that in the liquid phase. It was also found that the functional groups have great influence on the rate of chlorine free radical attack on different positions, for example the electron withdrawing groups decreasing the selectivity on the first position, but the electron donating groups increase the selectivity on the first position, but the electron donating groups increase the selectivity on the first position. Furthermore it was found that the polar solvents, which stabilize the resonance between oxygen and carbon atoms, increases the selectivity on that position. 23 tabs.; 16 figs.; 50 refs

  14. Fundamental thermochemical properties of amino acids: gas-phase and aqueous acidities and gas-phase heats of formation.

    Science.gov (United States)

    Stover, Michele L; Jackson, Virgil E; Matus, Myrna H; Adams, Margaret A; Cassady, Carolyn J; Dixon, David A

    2012-03-08

    The gas-phase acidities of the 20 L-amino acids have been predicted at the composite G3(MP2) level. A broad range of structures of the neutral and anion were studied to determine the lowest energy conformer. Excellent agreement is found with the available experimental gas-phase deprotonation enthalpies, and the calculated values are within experimental error. We predict that tyrosine is deprotonated at the CO(2)H site. Cysteine is predicted to be deprotonated at the SH but the proton on the CO(2)H is shared with the S(-) site. Self-consistent reaction field (SCRF) calculations with the COSMO parametrization were used to predict the pK(a)'s of the non-zwitterion form in aqueous solution. The differences in the non-zwitterion pK(a) values were used to estimate the free energy difference between the zwitterion and nonzwitterion forms in solution. The heats of formation of the neutral compounds were calculated from atomization energies and isodesmic reactions to provide the first reliable set of these values in the gas phase. Further calculations were performed on five rare amino acids to predict their heats of formation, acidities, and pK(a) values.

  15. Statistical parameter characteristics of gas-phase fluctuations for gas-liquid intermittent flow

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, G.; Monji, H.; Takaguchi, M. [Univ. of Tsukuba (Japan)

    1995-09-01

    This study deals with theoretical analysis on the general behaviour of statistical parameters of gas-phase fluctuations and comparison of statistical parameter characteristics for the real void fraction fluctuations measured with those for the wave form modified the real fluctuations. In order to investigate the details of the relation between the behavior of the statistical parameters in real intermittent flow and analytical results obtained from information on the real flow, the distributions of statistical parameters for general fundamental wave form of gas-phase fluctuations are discussed in detail. By modifying the real gas-phase fluctuations to a trapezoidaly wave, the experimental results can be directly compared with the analytical results. The analytical results for intermittent flow show that the wave form parameter, and the total amplitude of void fraction fluctuations, affects strongly on the statistical parameter characteristics. The comparison with experiment using nitrogen gas-water intermittent flow suggests that the parameters of skewness and excess may be better as indicators of flow pattern. That is, the macroscopic nature of intermittent flow can be grasped by the skewness and the excess, and the detailed flow structure may be described by the mean and the standard deviation.

  16. Statistical parameter characteristics of gas-phase fluctuations for gas-liquid intermittent flow

    International Nuclear Information System (INIS)

    Matsui, G.; Monji, H.; Takaguchi, M.

    1995-01-01

    This study deals with theoretical analysis on the general behaviour of statistical parameters of gas-phase fluctuations and comparison of statistical parameter characteristics for the real void fraction fluctuations measured with those for the wave form modified the real fluctuations. In order to investigate the details of the relation between the behavior of the statistical parameters in real intermittent flow and analytical results obtained from information on the real flow, the distributions of statistical parameters for general fundamental wave form of gas-phase fluctuations are discussed in detail. By modifying the real gas-phase fluctuations to a trapezoidaly wave, the experimental results can be directly compared with the analytical results. The analytical results for intermittent flow show that the wave form parameter, and the total amplitude of void fraction fluctuations, affects strongly on the statistical parameter characteristics. The comparison with experiment using nitrogen gas-water intermittent flow suggests that the parameters of skewness and excess may be better as indicators of flow pattern. That is, the macroscopic nature of intermittent flow can be grasped by the skewness and the excess, and the detailed flow structure may be described by the mean and the standard deviation

  17. Energy Demodulation Algorithm for Flow Velocity Measurement of Oil-Gas-Water Three-Phase Flow

    Directory of Open Access Journals (Sweden)

    Yingwei Li

    2014-01-01

    Full Text Available Flow velocity measurement was an important research of oil-gas-water three-phase flow parameter measurements. In order to satisfy the increasing demands for flow detection technology, the paper presented a gas-liquid phase flow velocity measurement method which was based on energy demodulation algorithm combing with time delay estimation technology. First, a gas-liquid phase separation method of oil-gas-water three-phase flow based on energy demodulation algorithm and blind signal separation technology was proposed. The separation of oil-gas-water three-phase signals which were sampled by conductance sensor performed well, so the gas-phase signal and the liquid-phase signal were obtained. Second, we used the time delay estimation technology to get the delay time of gas-phase signals and liquid-phase signals, respectively, and the gas-phase velocity and the liquid-phase velocity were derived. At last, the experiment was performed at oil-gas-water three-phase flow loop, and the results indicated that the measurement errors met the need of velocity measurement. So it provided a feasible method for gas-liquid phase velocity measurement of the oil-gas-water three-phase flow.

  18. High-temperature gas effects on aerodynamic characteristics of waverider

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2015-02-01

    Full Text Available This paper focuses on the analysis of high-temperature effect on a conical waverider and it is a typical configuration of near space vehicles. Two different gas models are used in the numerical simulations, namely the thermochemical non-equilibrium and perfect gas models. The non-equilibrium flow simulations are conducted with the usage of the parallel non-equilibrium program developed by the authors while the perfect gas flow simulations are carried out with the commercial software Fluent. The non-equilibrium code is validated with experimental results and grid sensitivity analysis is performed as well. Then, numerical simulations of the flow around the conical waverider with the two gas models are conducted. In the results, differences in the flow structures as well as aerodynamic performances of the conical waverider are compared. It is found that the thermochemical non-equilibrium effect is significant mainly near the windward boundary layer at the tail of the waverider, and the non-equilibrium influence makes the pressure center move forward to about 0.57% of the whole craft’s length at the altitude of 60 km.

  19. The phase equilibria of multicomponent gas hydrate in methanol/ethylene glycol solution based formation water

    International Nuclear Information System (INIS)

    Xu, Shurui; Fan, Shuanshi; Yao, Haiyuan; Wang, Yanhong; Lang, Xuemei; Lv, Pingping; Fang, Songtian

    2017-01-01

    Highlights: • The equilibrium data in THI solution based formation water is first investigated. • The 0.55 mass fraction concentration of EG 0.55 mass fraction fills the vacancy of this area. • The testing pressure range from 4.22 MPa to 34.72 MPa was rare in published data. - Abstract: In this paper, the three-phase coexistence points are generated for multicomponent gas hydrate in methanol (MeOH) solution for (0.05, 0.10, 0.15, and 0.35) mass fraction and ethylene glycol (EG) solution for (0.05, 0.10, 0.15, 0.35, 0.40 and 0.55) mass fraction. The phase equilibrium curves of different system were obtained by an isochoric pressure-search method on high pressure apparatus. The phase equilibrium regions of multicomponent gas hydrate were measured using the same composition of natural gas distributed in the South China Sea. And the different concentration solutions were prepared based formation water. The experimental data were measured in a wide range temperature from 267.74 to 298.53 K and a wide range pressure from 4.22 MPa to 34.72 MPa. The results showed that the hydrate phase equilibrium curves shifted to the inhibition region in accordance with the increased inhibitor concentration. In addition, the equilibrium temperature would decrease about 2.7 K when the concentration of MeOH increased 0.05 mass fraction. Besides, the suppression temperature was 1.25 K with the 0.05 mass fraction increase of EG concentration in the range of 0.05 mass fraction to 0.15 mass fraction. While in high EG concentration region, the suppression temperature was 3.3 K with the same increase of EG concentration (0.05 mass fraction).

  20. High temperature friction and seizure in gas cooled nuclear reactors

    International Nuclear Information System (INIS)

    Cousseran, P.; Febvre, A.; Martin, R.; Roche, R.

    1978-01-01

    One of the most delicate problems encountered in the gas cooled nuclear reactors is the friction without lubrication in a dry and hot (800 0 C /1472 0 F) helium atmosphere even at very small velocity. The research and development programs are described together with special tribometers that operate at mode than 1000 0 C (1832 0 F) in dry helium. The most interesting test conditions and results are given for gas nitrited steels and for strongly alloyed Ni-Cr steels coated with chromium carbide by plasma sprayed. The effects of parameters live velocity, travelled distance, contact pressure, roughness, temperature and prolonged stops under charge are described together with the effects of negative phenomena like attachment and chattering [fr

  1. Startup analysis for a high temperature gas loaded heat pipe

    Science.gov (United States)

    Sockol, P. M.

    1973-01-01

    A model for the rapid startup of a high-temperature gas-loaded heat pipe is presented. A two-dimensional diffusion analysis is used to determine the rate of energy transport by the vapor between the hot and cold zones of the pipe. The vapor transport rate is then incorporated in a simple thermal model of the startup of a radiation-cooled heat pipe. Numerical results for an argon-lithium system show that radial diffusion to the cold wall can produce large vapor flow rates during a rapid startup. The results also show that startup is not initiated until the vapor pressure p sub v in the hot zone reaches a precise value proportional to the initial gas pressure p sub i. Through proper choice of p sub i, startup can be delayed until p sub v is large enough to support a heat-transfer rate sufficient to overcome a thermal load on the heat pipe.

  2. Systematic Search for Chemical Reactions in Gas Phase Contributing to Methanol Formation in Interstellar Space.

    Science.gov (United States)

    Gamez-Garcia, Victoria G; Galano, Annia

    2017-10-05

    A massive search for chemical routes leading to methanol formation in gas phase has been conducted using computational chemistry, at the CBS-QB3 level of theory. The calculations were performed at five different temperatures (100, 80, 50, 20, and 10 K) and at three pressures (0.1, 0.01, and 0.001 atm) for each temperature. The search was focused on identifying reactions with the necessary features to be viable in the interstellar medium (ISM). A searching strategy was applied to that purpose, which allowed to reduce an initial set of 678 possible reactions to a subset of 11 chemical routes that are recommended, for the first time, as potential candidates for contributing to methanol formation in the gas phase of the ISM. They are all barrier-less, and thus they are expected to take place at collision rates. Hopefully, including these reactions in the currently available models, for the gas-phase methanol formation in the ISM, would help improving the predicted fractional abundance of this molecule in dark clouds. Further investigations, especially those dealing with grain chemistry and electronic excited states, would be crucial to get a complete picture of the methanol formation in the ISM.

  3. Modular high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shepherd, L.R.

    1988-01-01

    The high financial risk involved in building large nuclear power reactors has been a major factor in halting investment in new plant and in bringing further technical development to a standstill. Increased public concern about the safety of nuclear plant, particularly after Chernobyl, has contributed to this stagnation. Financial and technical risk could be reduced considerably by going to small modular units, which would make it possible to build up power station capacity in small steps. Such modular plant, based on the helium-cooled high temperature reactor (HTR), offers remarkable advantages in terms of inherent safety characteristics, partly because of the relatively small size of the individual modules but more on account of the enormous thermal capacity and high temperature margins of the graphitic reactor assemblies. Assessments indicate that, in the USA, the cost of power from the modular systems would be less than that from conventional single reactor plant, up to about 600 MW(e), and only marginally greater above that level, a margin that should be offset by the shorter time required in bringing the modular units on line to earn revenue. The modular HTR would be particularly appropriate in the UK, because of the considerable British industrial background in gas-cooled reactors, and could be a suitable replacement for Magnox. The modular reactor would be particularly suited to combined heat and power schemes and would offer great potential for the eventual development of gas turbine power conversion and the production of high-temperature process heat. (author)

  4. A possible origin of EL6 chondrites from a high temperature-high pressure solar gas

    Energy Technology Data Exchange (ETDEWEB)

    Blander, M. [Argonne National Lab., IL (United States); Unger, L. [Purdue Univ., Westiville, IN (United States). Dept. of Chemistry; Pelton, A.; Eriksson, G. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. of Metallurgy and Materials Engineering

    1994-05-01

    Condensates from a gas of ``solar`` composition were calculated to investigate the origins of EL6 chondrites using a free energy minimization program with a data base for the thermodynamic properties of multicomponent molten silicates as well as for other liquids solids, solid solutions and gaseous species. Because of high volatility of silicon and silica, the high silicon content of metal (2.6 mole %) can only be produced at pressures 10{sup {minus}2} atm at temperatures above 1475 K. At 100--500 atm, a liquid silicate phase crystallizes at a temperature where the silicon content of the metal, ferrosilite content of the enstatite and albite concentration in the plagioclase are close to measured values. In pyrometallurgy, liquid silicates are catalysts for reactions in which Si-O-Si bridging bonds are broken or formed. Thus, one attractive mode for freezing in the compositions of these three phases is disappearance of fluxing liquid. If the plagioclase can continue to react with the nebula without a liquid phase, lower pressures of 10{sup {minus}1} to 1 atm might be possible. Even if the nebula is more reducing than a solar gas, the measured properties of EL6 chondrites might be reconciled with only slightly lower pressures (less than 3X lower). The temperatures would be about the same as indicated in our calculations since the product of the silicon content of the metal and the square of the ferrosilite content of the enstatite constitute a cosmothermometer for the mineral assemblage in EL6 chondrites.

  5. Gas-phase advanced oxidation as an integrated air pollution control technique

    Directory of Open Access Journals (Sweden)

    Getachew A. Adnew

    2016-03-01

    Full Text Available Gas-phase advanced oxidation (GPAO is an emerging air cleaning technology based on the natural self-cleaning processes that occur in the Earth’s atmosphere. The technology uses ozone, UV-C lamps and water vapor to generate gas-phase hydroxyl radicals that initiate oxidation of a wide range of pollutants. In this study four types of GPAO systems are presented: a laboratory scale prototype, a shipping container prototype, a modular prototype, and commercial scale GPAO installations. The GPAO systems treat volatile organic compounds, reduced sulfur compounds, amines, ozone, nitrogen oxides, particles and odor. While the method covers a wide range of pollutants, effective treatment becomes difficult when temperature is outside the range of 0 to 80 °C, for anoxic gas streams and for pollution loads exceeding ca. 1000 ppm. Air residence time in the system and the rate of reaction of a given pollutant with hydroxyl radicals determine the removal efficiency of GPAO. For gas phase compounds and odors including VOCs (e.g. C6H6 and C3H8 and reduced sulfur compounds (e.g. H2S and CH3SH, removal efficiencies exceed 80%. The method is energy efficient relative to many established technologies and is applicable to pollutants emitted from diverse sources including food processing, foundries, water treatment, biofuel generation, and petrochemical industries.

  6. Computational phase diagrams of noble gas hydrates under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Teeratchanan, Pattanasak, E-mail: s1270872@sms.ed.ac.uk; Hermann, Andreas, E-mail: a.hermann@ed.ac.uk [Centre for Science at Extreme Conditions and SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD (United Kingdom)

    2015-10-21

    We present results from a first-principles study on the stability of noble gas-water compounds in the pressure range 0-100 kbar. Filled-ice structures based on the host water networks ice-I{sub h}, ice-I{sub c}, ice-II, and C{sub 0} interacting with guest species He, Ne, and Ar are investigated, using density functional theory (DFT) with four different exchange-correlation functionals that include dispersion effects to various degrees: the non-local density-based optPBE-van der Waals (vdW) and rPW86-vdW2 functionals, the semi-empirical D2 atom pair correction, and the semi-local PBE functional. In the He-water system, the sequence of stable phases closely matches that seen in the hydrogen hydrates, a guest species of comparable size. In the Ne-water system, we predict a novel hydrate structure based on the C{sub 0} water network to be stable or at least competitive at relatively low pressure. In the Ar-water system, as expected, no filled-ice phases are stable; however, a partially occupied Ar-C{sub 0} hydrate structure is metastable with respect to the constituents. The ability of the different DFT functionals to describe the weak host-guest interactions is analysed and compared to coupled cluster results on gas phase systems.

  7. Gas phase chromatography of halides of elements 104 and 105

    International Nuclear Information System (INIS)

    Tuerler, A.; Gregorich, K.E.; Czerwinski, K.R.; Hannink, N.J.; Henderson, R.A.; Hoffman, D.C.; Kacher, C.D.; Kadkhodayan, B.; Kreek, S.A.; Lee, D.M.; Leyba, J.D.; Nurmia, M.J.; Gaeggeler, H.W.; Jost, D.T.; Kovacs, J.; Scherer, U.W.; Vermeulen, D.; Weber, A.; Barth, H.; Gober, M.K.; Kratz, J.V.; Bruechle, W.; Schaedel, M.; Schimpf, E.; Gober, M.K.; Kratz, J.V.; Zimmermann, H.P.

    1991-04-01

    On-line isothermal gas phase chromatography was used to study halides of 261 104 (T 1/2 = 65 s) and 262,263 105 (T 1/2 = 34 s and 27 s) produced an atom-at-a time via the reactions 248 Cm( 18 O, 5n) and 249 Bk( 18 O, 5n, 4n), respectively. Using HBr and HCl gas as halogenating agents, we were able to produce volatile bromides and chlorides of the above mentioned elements and study their behavior compared to their lighter homologs in Groups 4 or 5 of the periodic table. Element 104 formed more volatile bromides than its homolog Hf. In contrast, element 105 bromides were found to be less volatile than the bromides of the group 5 elements Nb and Ta. Both 104 and Hf chlorides were observed to be more volatile than their respective bromides. 31 refs., 8 figs

  8. A description of phases with induced hybridisation at finite temperatures

    Science.gov (United States)

    Golosov, D. I.

    2018-05-01

    In an extended Falicov-Kimball model, an excitonic insulator phase can be stabilised at zero temperature. With increasing temperature, the excitonic order parameter (interaction-induced hybridisation on-site, characterised by the absolute value and phase) eventually becomes disordered, which involves fluctuations of both its phase and (at higher T) its absolute value. In order to build an adequate mean field description, it is important to clarify the nature of degrees of freedom associated with the phase and absolute value of the induced hybridisation, and the corresponding phase space volume. We show that a possible description is provided by the SU(4) parametrisation on-site. In principle, this allows to describe both the lower-temperature regime where phase fluctuations destroy the long-range order, and the higher temperature crossover corresponding to a decrease of absolute value of the hybridisation relative to the fluctuations level. This picture is also expected to be relevant in other contexts, including the Kondo lattice model.

  9. High-temperature gas-cooled reactors and process heat

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1980-01-01

    High-Temperature Gas-Cooled Reactors (HTGRs) are fueled with ceramic-coated microspheres of uranium and thorium oxides/carbides embedded in graphite blocks which are cooled with helium. Promising areas of HTGR application are in cogeneration, energy transport using Heat Transfer Salt, recovery of oils from oil shale, steam reforming of methane for chemical production, coal gasification, and in energy transfer using chemical heat jpipes in the long term. Further, HTGRs could be used as the energy source for hydrogen production through thermochemical water splitting in the long term. The potential market for Process Heat HTGRs is 100-200 large units by about the year 2020

  10. Analysis of artificial fireplace logs by high temperature gas chromatography.

    Science.gov (United States)

    Kuk, Raymond J

    2002-11-01

    High temperature gas chromatography is used to analyze the wax of artificial fireplace logs (firelogs). Firelogs from several different manufacturers are studied and compared. This study shows that the wax within a single firelog is homogeneous and that the wax is also uniform throughout a multi-firelog package. Different brands are shown to have different wax compositions. Firelogs of the same brand, but purchased in different locations, also have different wax compositions. With this information it may be possible to associate an unknown firelog sample to a known sample, but a definitive statement of the origin cannot be made.

  11. Experimental studies on hydrogen isotopic deuterium from gas to liquid phase by catalytic exchange

    International Nuclear Information System (INIS)

    Luo Yangming; Wang Heyi; Liu Jun; Fu Zhonghua; Wang Changbin; Han Jun; Xia Xiulong; Tang Lei

    2005-01-01

    The experimental studies on hydrogen isotopic deuterium from gas to liquid phase were completed by mixed ratio 1:4 of Pt-SDB hydrophobic catalyst and hydrophilic packing. The influencing factors on number of transfer units (NTU) and transformation efficiencies of deuterium were researched. The results show that preferable NTU can be obtained by choosing suitable operational temperature and flux of exchange gas. The transformation rate increases with increasing liquid flux, but it cannot obviously be improved when liquid flux attains some level. The length of catalytic column has an obvious influence on transformation rate and 90% of transformation rate is obtained by 4 m column length at gas flux with 2 m 3 /h, liquid flux with 1-2 kg/h and 45 degree C. (author)

  12. Gas phase dispersion in a small rotary kiln

    International Nuclear Information System (INIS)

    Spencer, B.B.

    1981-07-01

    A study was made of nonideal flow of gas in a rotary kiln reactor. A rotating tube 0.165 m in diameter by 2.17 m long, with internal lifting flights, was operated at room temperature. Rotational speeds from 2.0 to 7.0 rpm, air flow rates from 0.351 to 4.178 m 3 /h, and solid contents of 0.0, 5.1, and 15.3% of tube volume were studied. Residence time distribution of the gas was measured by means of the pulse injection technique using a helium tracer. A model was developed based on dispersive flow that exchanges with a deadwater region. Two parameters, a dispersion number describing bulk gas flow and an interchange factor describing exchange between the flow region and the gas trapped in the solids bed, were sufficient to correlate the data, but these parameters are sensitive to experimental error. The model is applicable to analysis of other flow systems, such as packed beds

  13. Measurement of phase interaction in dispersed gas-particle two-phase flow by phase-doppler anemometry

    Directory of Open Access Journals (Sweden)

    Mergheni Ali Mohamed

    2008-01-01

    Full Text Available For simultaneous measurement of size and velocity distributions of continuous and dispersed phases in a two-phase flow a technique phase-Doppler anemometry was used. Spherical glass particles with a particle diameter range from 102 up to 212 µm were used. In this two-phase flow an experimental results are presented which indicate a significant influence of the solid particles on the flow characteristics. The height of influence of these effects depends on the local position in the jet. Near the nozzle exit high gas velocity gradients exist and therefore high turbulence production in the shear layer of the jet is observed. Here the turbulence intensity in the two-phase jet is decreased compared to the single-phase jet. In the developed zone the velocity gradient in the shear layer is lower and the turbulence intensity reduction is higher. .

  14. A study of silver behavior in Gas-turbine High Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Sawa, Kazuhiro; Tanaka, Toshiyuki

    1995-11-01

    A Gas-turbine High Temperature Gas-cooled Reactor (GT-HTGR) is one of the promising reactor systems of future HTGRs. In the design of GT-HTGR, behavior of fission products, especially of silver, is considered to be important from the view point of maintenance of gas-turbine. A study of silver behavior in the GT-HTGR was carried out based on current knowledge. The purposes of this study were to determine an importance of the silver problem quantitatively, countermeasures to the problem and items of future research and development which will be needed. In this study, inventory, fractional release from fuel, plateout in the primary circuit and radiation dose were evaluated, respectively. Based on this study, it is predicted that gamma-ray from plateout silver in gas-turbine system contributes about a half of total radiation dose after reactor shutdown. In future, more detail data for silver release from fuel, plateout behavior, etc. using the High Temperature Engineering Test Reactor (HTTR), for example, will be needed to carry out reasonable design. (author)

  15. Safety philosophy of gas turbine high temperature reactor (GTHTR300)

    International Nuclear Information System (INIS)

    Shoji Katanishi; Kazuhiko Kunitomi; Shusaku Shiozawa

    2002-01-01

    Japan Atomic Energy Research Institute (JAERI) has undertaken the study of an original design concept of gas turbine high temperature reactor, the GTHTR300. The general concept of this study is development of a greatly simplified design that leads to substantially reduced technical and cost requirements. Newly proposed design features enable the GTHTR300 to be an efficient and economically competitive reactor in 2010's. Also, the GTHTR300 fully takes advantage of its inherent safety characteristics. The safety philosophy of the GTHTR300 is developed based on the HTTR (High Temperature Engineering Test Reactor) of JAERI which is the first HTGR in Japan. Major features of the newly proposed safety philosophy for the GTHTR300 are described in this article. (authors)

  16. Gas phase spectroscopic study of unstable molecules using FTIR technique

    International Nuclear Information System (INIS)

    Allaf, A.W.; Alibrahim, M.; Kassem, M.

    1998-01-01

    A new route has been developed, leading to the production of phosphorus (III) oxycyanide, OPCN and phosphorus (III) oxycyanate, OPOCN by an on-line process using phosphoryl chloride, POCL 3 as a starting material passed over heated silver at 870 Centigrade and then reacted with AgCN and KOCN heated at 270 Centigrade and 590 Centigrade to produce OPCN and OPOCN respectively. The gas phase fourier transform infrared spectra reported for the first time show the two characterized bonds of OPCN and OPOCN at 2165 cm -1 and 2130 cm -1 , assigned to the C≡N stretching fundamentals of OPCN and OPOCN respectively. (Author)

  17. Gas-phase spectroscopy of ferric heme-NO complexes

    DEFF Research Database (Denmark)

    Wyer, J.A.; Jørgensen, Anders; Pedersen, Bjarke

    2013-01-01

    and significantly blue-shifted compared to ferric heme nitrosyl proteins (maxima between 408 and 422 nm). This is in stark contrast to the Q-band absorption where the protein microenvironment is nearly innocent in perturbing the electronic structure of the porphyrin macrocycle. Photodissociation is primarily...... maxima of heme and its complexes with amino acids and NO. Not so innocent: Weakly bound complexes between ferric heme and NO were synthesised in the gas phase, and their absorption measured from photodissociation yields. Opposite absorption trends in the Soret-band are seen upon NO addition to heme ions...

  18. Experimental and numerical investigation of gas phase freeboard combustion

    DEFF Research Database (Denmark)

    Andersen, J.; Jensen, Peter Arendt; Meyer, K.E.

    2009-01-01

    Experimental data for velocity field, temperatures, and gas composition have been obtained from a 50 kW axisymmetric non-swirling natural gas fired combustion setup under two different settings. The reactor was constructed to simulate the conditions in the freeboard of a grate-fired boiler...... but under well-defined conditions. The experimental results are compared to computational fluid dynamics (CFD) modeling predictions, using the eddy dissipation model (EDM) its well as the eddy dissipation concept (EDC). The use of EDC allows for implementation of more advanced combustion schemes; we have...... tested the four-step global mechanism by Jones and Lindstedt (Combust. Flame 1988, 73, 233-249), and the 16 species and 41 reaction skeletal mechanism by Yang and Pope (Combust. Flame 1998, 112 16-32). The CFD model captured the main features of the combustion process and flow patterns. The application...

  19. Experimental and numerical investigation of gas phase freeboard combustion

    DEFF Research Database (Denmark)

    Andersen, Jimmy; Jensen, Peter Arendt; Hvid, S.L.

    2009-01-01

    In part 1 of the present work (10.1021/ef900752a), experimental data and computational fluid dynamics (CFD) modeling predictions for velocity field, temperatures, and major species were compared fora 50 kW axisymmetric, non-swirling natural gas Fired combustion setup, constructed to simulate...... the conditions in the freeboard of it grate-fired boiler. Here, in part 2, the ability of CFD to predict volatile N oxidation to NO and N(2) is evaluated. Trace amounts of ammonia were added to the natural gas, and local measurements of NH(3) and NO in the reactor were compared to modeling predictions. Different...... modeling approaches, including global schemes and analytically reduced mechanisms, were tested in the CFD calculations. In addition, the simplified schemes were compared to reference calculations with a detailed mechanism under isothermal plug flow reactor conditions. While none of the global ammonia...

  20. Abnormal gas-liquid-solid phase transition behaviour of water observed with in situ environmental SEM.

    Science.gov (United States)

    Chen, Xin; Shu, Jiapei; Chen, Qing

    2017-04-24

    Gas-liquid-solid phase transition behaviour of water is studied with environmental scanning electron microscopy for the first time. Abnormal phenomena are observed. At a fixed pressure of 450 Pa, with the temperature set to -7 °C, direct desublimation happens, and ice grows continuously along the substrate surface. At 550 Pa, although ice is the stable phase according to the phase diagram, metastable liquid droplets first nucleate and grow to ~100-200 μm sizes. Ice crystals nucleate within the large sized droplets, grow up and fill up the droplets. Later, the ice crystals grow continuously through desublimation. At 600 Pa, the metastable liquid grows quickly, with some ice nuclei floating in it, and the liquid-solid coexistence state exists for a long time. By lowering the vapour pressure and/or increasing the substrate temperature, ice sublimates into vapour phase, and especially, the remaining ice forms a porous structure due to preferential sublimation in the concave regions, which can be explained with surface tension effect. Interestingly, although it should be forbidden for ice to transform into liquid phase when the temperature is well below 0 °C, liquid like droplets form during the ice sublimation process, which is attributed to the surface tension effect and the quasiliquid layers.

  1. Reduced one-body density matrix of Tonks–Girardeau gas at finite temperature

    International Nuclear Information System (INIS)

    Fu Xiao-Chen; Hao Ya-Jiang

    2015-01-01

    With thermal Bose–Fermi mapping method, we investigate the Tonks–Girardeau gas at finite temperature. It is shown that at low temperature, the Tonks gas displays the Fermi-like density profiles, and with the increase in temperature, the Tonks gas distributes in wider region. The reduced one-body density matrix is diagonal dominant in the whole temperature region, and the off-diagonal elements shall vanish rapidly with the deviation from the diagonal part at high temperature. (paper)

  2. Study of two-phase underexpanded jets by gas jet

    International Nuclear Information System (INIS)

    Uchida, Mitsunori; Someya, Satoshi; Okamoto, Koji

    2008-01-01

    When a heat exchange in a Fast Breeder Reactor cracks, a sodium-water reaction occurs. When a tube cracks, highly pressurized water or steam escapes into the surrounding liquid sodium and a sodium-water reaction occurs forming the disodium oxide. The disodium oxide caught in the steam jet strikes other tubes in the reactor. The struck disodium oxide can then cause these tubes to crack. The release of steam into the liquid sodium media is a two-phase flow involving underexpansion. In this paper qualitative measurement of the underexpanded gas jet which injected into water was carried our for the purpose of analyzing the behavior of the two-phase flow. (author)

  3. Phase change material for temperature control and material storage

    Science.gov (United States)

    Wessling, Jr., Francis C. (Inventor); Blackwood, James M. (Inventor)

    2011-01-01

    A phase change material comprising a mixture of water and deuterium oxide is described, wherein the mole fraction of deuterium oxide is selected so that the mixture has a selected phase change temperature within a range between 0.degree. C. and 4.degree. C. The mixture is placed in a container and used for passive storage and transport of biomaterials and other temperature sensitive materials. Gels, nucleating agents, freezing point depression materials and colorants may be added to enhance the characteristics of the mixture.

  4. Heat transfer characteristics of liquid-gas Taylor flows incorporating microencapsulated phase change materials

    International Nuclear Information System (INIS)

    Howard, J A; Walsh, P A

    2014-01-01

    This paper presents an investigation on the heat transfer characteristics associated with liquid-gas Taylor flows in mini channels incorporating microencapsulated phase change materials (MPCM). Taylor flows have been shown to result in heat transfer enhancements due to the fluid recirculation experienced within liquid slugs which is attributable to the alternating liquid slug and gas bubble flow structure. Microencapsulated phase change materials (MPCM) also offer significant potential with increased thermal capacity due to the latent heat required to cause phase change. The primary aim of this work was to examine the overall heat transfer potential associated with combining these two novel liquid cooling technologies. By investigating the local heat transfer characteristics, the augmentation/degradation over single phase liquid cooling was quantified while examining the effects of dimensionless variables, including Reynolds number, liquid slug length and gas void fraction. An experimental test facility was developed which had a heated test section and allowed MPCM-air Taylor flows to be subjected to a constant heat flux boundary condition. Infrared thermography was used to record high resolution experimental wall temperature measurements and determine local heat transfer coefficients from the thermal entrance point. 30.2% mass particle concentration of the MPCM suspension fluid was examined as it provided the maximum latent heat for absorption. Results demonstrate a significant reduction in experimental wall temperatures associated with MPCM-air Taylor flows when compared with the Graetz solution for conventional single phase coolants. Total enhancement in the thermally developed region is observed to be a combination of the individual contributions due to recirculation within the liquid slugs and also absorption of latent heat. Overall, the study highlights the potential heat transfer enhancements that are attainable within heat exchange devices employing MPCM

  5. High temperature interdiffusion and phase equilibria in U-Mo

    International Nuclear Information System (INIS)

    Lundberg, L.B.

    1988-01-01

    Experimental data for interdiffusion and phase equilibria in the U-Mo system have been obtained over the temperature range 1400 to 1525 K as a fallout from compatibility experiments in which UO 2 was decomposed by lithium in closed molybdenum capsules. Composition-position, x-ray diffraction and microstructural data from the interdiffusion zones indicate that the intermediate phase U 2 Mo is found in this temperature range, contrary to the currently accepted equilibrium U-Mo phase diagram. The U-Mo interdiffusion data are in good agreement with published values. Inclusion of the U 2 Mo phase in a theoretical correlation of interdiffusion and phase equilibria data using Darken's equation indicate that high temperature interdiffusion of uranium and molybdenum follows the usual thermodynamic rules. Significant changes in the value of the thermodynamic based Darken factor near the U 2 Mo phase boundary on the high uranium side are indicated from both the new and published interdiffusion data. 9 refs., 10 figs., 3 tabs

  6. Low-temperature phase diagram of YbBiPt

    International Nuclear Information System (INIS)

    Movshovich, R.; Lacerda, A.; Canfield, P.C.; Thompson, J.D.; Fisk, Z.

    1994-01-01

    Resistivity measurements are reported on the cubic heavy-fermion compound YbBiPt at ambient and hydrostatic pressures to ∼19 kbar and in magnetic fields to 1 T. The phase transition at T c =0.4 K is identified by a sharp rise in resistivity. That feature is used to build low-temperature H-T and P-T phase diagrams. The phase boundary in the H-T plane follows the weak-coupling BCS expression remarkably well from T c to T c /4, while small hydrostatic pressure of ∼1 kbar suppresses the low-temperature phase entirely. These effects of hydrostatic pressure and magnetic field on the phase transition are consistent with an spin-density-wave (SDW) formation in a very heavy electron band at T=0.4 K. Outside of the SDW phase at low temperature, hydrostatic pressure increases the T 2 coefficient of resistivity, signaling an increase in heavy-fermion correlations with hydrostatic pressure. The residual resistivity decreases with pressure, contrary to trends in other Yb heavy-fermion compounds

  7. Two phases of the anyon gas and broken T symmetry

    International Nuclear Information System (INIS)

    Canright, G.S.; Rojo, A.G.

    1991-01-01

    This paper reports the first exact finite-temperature study of anyons. The authors' method is an extension to finite T of earlier numerical work with small numbers of anyons on a lattice. We study the spontaneous magnetization M 0 (T), since the signature has been identified as a key signature of broken T symmetry for anyon models. Our results confirm the two-phase picture suggested by earlier work: The authors find a low-temperature regime where M 0 is very small or zero, and a high-temperature regime where M 0 is of O(0.1 μ B ) per particle. In the high-temperature regime the authors can obtain an excellent estimate of M 0 (T) in the thermodynamic limit (which we call M 0 ∞ ). since our finite-size results extrapolate smoothly with little scatter. The authors' values for M 0 ∞ can then be compared with the results of μSR experiments on high-temperature superconductors, which set an upper experimental bound on the internal fields from such moments. The authors find that M 0 ∞ in a bulk material of many planes will almost certainly give a signal well above this threshold if (and only if) the planes are ordered ferromagnetically. In the antiferromagnetic case (which is strongly favored energetically) the signal from M 0 ∞ is probably undetectable. Finally, we estimate the transition temperature T c from our finite-size studies, obtaining a value on the order of a few hundred Kelvins

  8. Macroscopic phase separation in high-temperature superconductors

    Science.gov (United States)

    Wen, Hai-Hu

    2000-01-01

    High-temperature superconductivity is recovered by introducing extra holes to the Cu-O planes, which initially are insulating with antiferromagnetism. In this paper I present data to show the macroscopic electronic phase separation that is caused by either mobile doping or electronic instability in the overdoped region. My results clearly demonstrate that the electronic inhomogeneity is probably a general feature of high-temperature superconductors. PMID:11027323

  9. Probing the nuclear liquid-gas phase transition

    International Nuclear Information System (INIS)

    Pochodzalla, J.; Moehlenkamp, T.; Rubehn, T.; Schuettauf, A.; Zude, E.; Begemann-Blaich, M.; Blaich, T.; Emling, H.; Ferrero, A.; Kunze, W.D.; Lindenstruth, V.; Lynen, U.; Moroni, W.; Ocker, B.; Schwarz, C.; Seidel, W.; Serfling, V.; Trzcinski, A.; Tucholski, A.; Verde, G.

    1995-02-01

    Fragment distributions resulting from Au+Au collisions at an incident energy of E/A=600 MeV are studied. From the measured fragment and neutron distributions the mass and the excitation energy of the decaying pre-fragments were determined. A temperature scale was derived from observed yield ratios of He and Li isotopes. The relation between this isotope temperature and the excitation energy of the system exhibits a behavior which is expected for a phase transition. The nuclear vapor regime takes over at an excitation energy of 10 MeV per nucleon, a temperature of 5 MeV and may be characterized by a density of 0.15-0.3 normal nuclear density. (orig.)

  10. Gas phase absorption studies of photoactive yellow protein chromophore derivatives.

    Science.gov (United States)

    Rocha-Rinza, Toms; Christiansen, Ove; Rajput, Jyoti; Gopalan, Aravind; Rahbek, Dennis B; Andersen, Lars H; Bochenkova, Anastasia V; Granovsky, Alexander A; Bravaya, Ksenia B; Nemukhin, Alexander V; Christiansen, Kasper Lincke; Nielsen, Mogens Brøndsted

    2009-08-27

    Photoabsorption spectra of deprotonated trans p-coumaric acid and two of its methyl substituted derivatives have been studied in gas phase both experimentally and theoretically. We have focused on the spectroscopic effect of the location of the two possible deprotonation sites on the trans p-coumaric acid which originate to either a phenoxide or a carboxylate. Surprisingly, the three chromophores were found to have the same absorption maximum at 430 nm, in spite of having different deprotonation positions. However, the absorption of the chromophore in polar solution is substantially different for the distinct deprotonation locations. We also report on the time scales and pathways of relaxation after photoexcitation for the three photoactive yellow protein chromophore derivatives. As a result of these experiments, we could detect the phenoxide isomer within the deprotonated trans p-coumaric acid in gas phase; however, the occurrence of the carboxylate is uncertain. Several computational methods were used simultaneously to provide insights and assistance in the interpretation of our experimental results. The calculated excitation energies S(0)-S(1) are in good agreement with experiment for those systems having a negative charge on a phenoxide moiety. Although our augmented multiconfigurational quasidegenerate perturbation theory calculations agree with experiment in the description of the absorption spectrum of anions with a carboxylate functional group, there are some puzzling disagreements between experiment and some calculational methods in the description of these systems.

  11. Closed-cage tungsten oxide clusters in the gas phase.

    Science.gov (United States)

    Singh, D M David Jeba; Pradeep, T; Thirumoorthy, Krishnan; Balasubramanian, Krishnan

    2010-05-06

    During the course of a study on the clustering of W-Se and W-S mixtures in the gas phase using laser desorption ionization (LDI) mass spectrometry, we observed several anionic W-O clusters. Three distinct species, W(6)O(19)(-), W(13)O(29)(-), and W(14)O(32)(-), stand out as intense peaks in the regular mass spectral pattern of tungsten oxide clusters suggesting unusual stabilities for them. Moreover, these clusters do not fragment in the postsource decay analysis. While trying to understand the precursor material, which produced these clusters, we found the presence of nanoscale forms of tungsten oxide. The structure and thermodynamic parameters of tungsten clusters have been explored using relativistic quantum chemical methods. Our computed results of atomization energy are consistent with the observed LDI mass spectra. The computational results suggest that the clusters observed have closed-cage structure. These distinct W(13) and W(14) clusters were observed for the first time in the gas phase.

  12. The real gas behaviour of helium as a cooling medium for high-temperature reactors

    International Nuclear Information System (INIS)

    Hewing, G.

    1977-01-01

    The article describes the influence of the real gas behaviour on the variables of state for the helium gas and the effects on the design of high-temperature reactor plants. After explaining the basic equations for describing variables and changes of state of the real gas, the real and ideal gas behaviour is analysed. Finally, the influence of the real gas behaviour on the design of high-temperature reactors in one- and two-cycle plants is investigated. (orig.) [de

  13. Surfactants from the gas phase may promote cloud droplet formation.

    Science.gov (United States)

    Sareen, Neha; Schwier, Allison N; Lathem, Terry L; Nenes, Athanasios; McNeill, V Faye

    2013-02-19

    Clouds, a key component of the climate system, form when water vapor condenses upon atmospheric particulates termed cloud condensation nuclei (CCN). Variations in CCN concentrations can profoundly impact cloud properties, with important effects on local and global climate. Organic matter constitutes a significant fraction of tropospheric aerosol mass, and can influence CCN activity by depressing surface tension, contributing solute, and influencing droplet activation kinetics by forming a barrier to water uptake. We present direct evidence that two ubiquitous atmospheric trace gases, methylglyoxal (MG) and acetaldehyde, known to be surface-active, can enhance aerosol CCN activity upon uptake. This effect is demonstrated by exposing acidified ammonium sulfate particles to 250 parts per billion (ppb) or 8 ppb gas-phase MG and/or acetaldehyde in an aerosol reaction chamber for up to 5 h. For the more atmospherically relevant experiments, i.e., the 8-ppb organic precursor concentrations, significant enhancements in CCN activity, up to 7.5% reduction in critical dry diameter for activation, are observed over a timescale of hours, without any detectable limitation in activation kinetics. This reduction in critical diameter enhances the apparent particle hygroscopicity up to 26%, which for ambient aerosol would lead to cloud droplet number concentration increases of 8-10% on average. The observed enhancements exceed what would be expected based on Köhler theory and bulk properties. Therefore, the effect may be attributed to the adsorption of MG and acetaldehyde to the gas-aerosol interface, leading to surface tension depression of the aerosol. We conclude that gas-phase surfactants may enhance CCN activity in the atmosphere.

  14. Contact line motion in confined liquid–gas systems: Slip versus phase transition

    KAUST Repository

    Xu, Xinpeng

    2010-11-30

    contributions determined by a competition between the two coexisting mechanisms in terms of entropy production. At temperatures very close to the critical temperature, the phase transition is the dominant mechanism, for the liquid–gas interface is wide and the density ratio is close to 1. At low temperatures, the slip effect shows up as the slip length is gradually increased. The observed competition can be interpreted by the Onsager principle of minimum entropy production

  15. Temperature profile and producer gas composition of high temperature air gasification of oil palm fronds

    International Nuclear Information System (INIS)

    Guangul, F M; Sulaiman, S A; Ramli, A

    2013-01-01

    Environmental pollution and scarcity of reliable energy source are the current pressing global problems which need a sustainable solution. Conversion of biomass to a producer gas through gasification process is one option to alleviate the aforementioned problems. In the current research the temperature profile and composition of the producer gas obtained from the gasification of oil palm fronds by using high temperature air were investigated and compared with unheated air. By preheating the gasifying air at 500°C the process temperature were improved and as a result the concentration of combustible gases and performance of the process were improved. The volumetric percentage of CO, CH4 and H2 were improved from 22.49, 1.98, and 9.67% to 24.98, to 2.48% and 13.58%, respectively. In addition, HHV, carbon conversion efficiency and cold gas efficiency were improver from 4.88 MJ/Nm3, 83.8% and 56.1% to 5.90 MJ/Nm3, 87.3% and 62.4%, respectively.

  16. Modified random phase approximation for multipole excitations at finite temperature

    International Nuclear Information System (INIS)

    Nguyen Dinh Dang

    1991-01-01

    The modified finite temperature random phase approximation (modified FT-RPA) has been constructed with taking the influence of thermostat on the structure of quansiparticles into account. The modified FT-RPA linear response for electric quadrupole (λ π = 2 + ) and octupole (λ π = 3 - ) excitations in 5 8Ni has been calculated as a function of the nuclear temperature. As compared to the conventional FT-RPA the modified FT-RPA has given a stronger spreading for the strength distribution of quandrupole excitations at finite temperature T ≤ 3MeV. (author). 22 refs; 4 figs; 2 tabs

  17. Metaphysics methods development for high temperature gas cooled reactor analysis

    International Nuclear Information System (INIS)

    Seker, V.; Downar, T. J.

    2007-01-01

    Gas cooled reactors have been characterized as one of the most promising nuclear reactor concepts in the Generation-IV technology road map. Considerable research has been performed on the design and safety analysis of these reactors. However, the calculational tools being used to perform these analyses are not state-of-the-art and are not capable of performing detailed three-dimensional analyses. This paper presents the results of an effort to develop an improved thermal-hydraulic solver for the pebble bed type high temperature gas cooled reactors. The solution method is based on the porous medium approach and the momentum equation including the modified Ergun's resistance model for pebble bed is solved in three-dimensional geometry. The heat transfer in the pebble bed is modeled considering the local thermal non-equilibrium between the solid and gas, which results in two separate energy equations for each medium. The effective thermal conductivity of the pebble-bed can be calculated both from Zehner-Schluender and Robold correlations. Both the fluid flow and the heat transfer are modeled in three dimensional cylindrical coordinates and can be solved in steady-state and time dependent. The spatial discretization is performed using the finite volume method and the theta-method is used in the temporal discretization. A preliminary verification was performed by comparing the results with the experiments conducted at the SANA test facility. This facility is located at the Institute for Safety Research and Reactor Technology (ISR), Julich, Germany. Various experimental cases are modeled and good agreement in the gas and solid temperatures is observed. An on-going effort is to model the control rod ejection scenarios as described in the OECD/NEA/NSC PBMR-400 benchmark problem. In order to perform these analyses PARCS reactor simulator code will be coupled with the new thermal-hydraulic solver. Furthermore, some of the other anticipated accident scenarios in the benchmark

  18. Gas-phase and liquid-phase pre-irradiation grafting of AAc onto LDPE and HDPE films for pervaporation membranes

    International Nuclear Information System (INIS)

    Rao Zhigong; Li Guixiang; Sugo, Takanobu; Okamoto, Jiro

    1992-01-01

    A study has been made on gas-phase and liquid-phase pre-irradiation grafting of acrylic acid onto LDPE and HDPE films for pervaporation membranes of ethanol-water mixtures. It was found that the degree of grafting, percent volume change of grafted membranes and length of grafting chains depend on the methods of grafting, crystal state of substrate films and diffusion rate of the monomer in the films. The pervaporation characteristics of grafted membranes is influenced directly by the surface hydrophilicity of grafted membranes, temperature of the feed, degree of grafting, crosslinking of grafted chains and alkaline metal ions in the functional groups. The potassium ion exchange membrane of HDPE synthesized by gas-phase grafting has better pervaporation efficiency. At 80 wt% ethanol in the feed, 25 o C feed temperature and 70% degree of grafting a grafted membrane has a 0.65 kg/m 2 h flux and a separation factor of 20. (Author)

  19. Methanol ice co-desorption as a mechanism to explain cold methanol in the gas-phase

    Science.gov (United States)

    Ligterink, N. F. W.; Walsh, C.; Bhuin, R. G.; Vissapragada, S.; van Scheltinga, J. Terwisscha; Linnartz, H.

    2018-05-01

    Context. Methanol is formed via surface reactions on icy dust grains. Methanol is also detected in the gas-phase at temperatures below its thermal desorption temperature and at levels higher than can be explained by pure gas-phase chemistry. The process that controls the transition from solid state to gas-phase methanol in cold environments is not understood. Aims: The goal of this work is to investigate whether thermal CO desorption provides an indirect pathway for methanol to co-desorb at low temperatures. Methods: Mixed CH3OH:CO/CH4 ices were heated under ultra-high vacuum conditions and ice contents are traced using RAIRS (reflection absorption IR spectroscopy), while desorbing species were detected mass spectrometrically. An updated gas-grain chemical network was used to test the impact of the results of these experiments. The physical model used is applicable for TW Hya, a protoplanetary disk in which cold gas-phase methanol has recently been detected. Results: Methanol release together with thermal CO desorption is found to be an ineffective process in the experiments, resulting in an upper limit of ≤ 7.3 × 10-7 CH3OH molecules per CO molecule over all ice mixtures considered. Chemical modelling based on the upper limits shows that co-desorption rates as low as 10-6 CH3OH molecules per CO molecule are high enough to release substantial amounts of methanol to the gas-phase at and around the location of the CO thermal desorption front in a protoplanetary disk. The impact of thermal co-desorption of CH3OH with CO as a grain-gas bridge mechanism is compared with that of UV induced photodesorption and chemisorption.

  20. Detection of gas-permeable fuel particles for highl 7490 temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Thiele, B.A.; Stinton, D.P.; Costanzo, D.A.

    1980-01-01

    Fuel for High-Temperature Gas-Cooled Reactors (HTGR) consists of uranium oxide-carbide and thoria microspheres coated with layers of pyrolytic carbon and silicon carbide. The pyrolytic carbon coatings must be gas-tight to perform properly during irradiation. Therefore, particles must be carefully characterized to determine the number of defective particles (ie bare kernels, and cracked or permeable coatings). Although techniques are available to determine the number of bare kernels or cracked coatings, no reliable technique has been available to measure coating permeability. This work describes a technique recently developed to determine whether coatings for a batch of particles are gas-tight or permeable. Although most of this study was performed on Biso-coated particles, the technique applies equally well to Triso-coated particles. About 150 randomly selected Biso-particle batches were studied in this work. These batches were first subjected to an 18-hr chlorination at 15000C, and the volatile thorium tetrachloride released through cracked or very permeable coatings was measured versus chlorination time. Chlorinated batches were also radiographed to detect any thorium that had migrated from the kernel into the coatings. From this work a technique was developed to determine coating permeability. This consists of an 18-hr chlorination of multiple samples without measurement of the heavy metal released. Each batch is then radiographed and the heavy metal diffusion within each particle is examined so it can be determined if a particle batch is permeable, slightly permeable, or gas-tight. (author)

  1. New deployment of high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Tsuchie, Yasuo; Kunitomi, Kazuhiko; Shiozawa, Shusaku; Konuki, Kaoru; Inagaki, Yoshiyuki; Hayakawa, Hitoshi

    2002-01-01

    The high temperature gas-cooled reactor (HTGR) is now under a condition difficult to know it well, because of considering not only power generation, but also diverse applications of its nuclear heat, of having extremely different safe principle from that of conventional reactors, of having two types of pebble-bed and block which are extremely different types, of promoting its construction plan in South Africa, of including its application to disposition of Russian surplus weapons plutonium of less reporting HTTR in Japan in spite of its full operation, and so on. However, HTGR is expected for an extremely important nuclear reactor aiming at the next coming one of LWR. HTGR which is late started and developed under complete private leading, is strongly conscious at environmental problem since its beginning. Before 30 years when large scale HTGR was expected to operate, it advertised a merit to reduce wasted heat because of its high temperature. As ratio occupied by electricity expands among application of energies, ratio occupied by the other energies are larger. When considering applications except electric power, high temperature thermal energy from HTGR can be thought wider applications than that from LWR and so on. (G.K.)

  2. Numerical modeling of experimental observations on gas formation and multi-phase flow of carbon dioxide in subsurface formations

    Science.gov (United States)

    Pawar, R.; Dash, Z.; Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Illangasekare, T. H.; Zyvoloski, G.

    2011-12-01

    One of the concerns related to geologic CO2 sequestration is potential leakage of CO2 and its subsequent migration to shallow groundwater resources leading to geochemical impacts. Developing approaches to monitor CO2 migration in shallow aquifer and mitigate leakage impacts will require improving our understanding of gas phase formation and multi-phase flow subsequent to CO2 leakage in shallow aquifers. We are utilizing an integrated approach combining laboratory experiments and numerical simulations to characterize the multi-phase flow of CO2 in shallow aquifers. The laboratory experiments involve a series of highly controlled experiments in which CO2 dissolved water is injected in homogeneous and heterogeneous soil columns and tanks. The experimental results are used to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. We utilize the Finite Element Heat and Mass (FEHM) simulator (Zyvoloski et al, 2010) to numerically model the experimental results. The numerical models capture the physics of CO2 exsolution, multi-phase fluid flow as well as sand heterogeneity. Experimental observations of pressure, temperature and gas saturations are used to develop and constrain conceptual models for CO2 gas-phase formation and multi-phase CO2 flow in porous media. This talk will provide details of development of conceptual models based on experimental observation, development of numerical models for laboratory experiments and modelling results.

  3. TEMPERATURE INFLUENCE ON PHASE STABILITY OF ETHANOL-GASOLINE MIXTURES

    Directory of Open Access Journals (Sweden)

    Valerian Cerempei

    2011-06-01

    Full Text Available The article investigates phase stability of ethanol-gasoline mixtures depending on their composition, water concentration in ethanol and ethanol-gasoline mixture and temperature. There have been determined the perfect functioning conditions of spark ignition engines fueled with ethanol-gasoline mixtures.

  4. High-temperature phase transition in hadron matter

    International Nuclear Information System (INIS)

    Bugrij, A.I.; Trushevsky, A.A.

    1976-01-01

    A possible phase transition in hadronic systems at temperatures of few of GeV is shown in the framework of the S-matrix formulation of statistical mechanics given by Dashen, Ma, Bernstein by using Regge pole model for the scattering amplitude

  5. Utilization of multi-purpose high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Kawada, Osamu; Onuki, Yoshiaki; Wasaoka, Takeshi.

    1974-01-01

    Concerning the utilization of multi-purpose high temperature gas-cooled reactors, the electric power generation with gas turbines is described: features of HTR-He gas turbine power plants; the state of development of He gas turbines; and combined cycle with gas turbines and steam turbines. The features of gas turbines concern heat dissipation into the environment and the mode of load operation. Outstanding work in the development of He gas turbines is that in Hochtemperatur Helium-Turbine Project in West Germany. The power generation with combined gas turbines and steam turbines appears to be superior to that with gas turbines alone. (Mori, K.)

  6. The Gas-Phase Formation of Methyl Formate in Hot Molecular Cores

    Science.gov (United States)

    Horn, Anne; Møllendal, Harald; Sekiguchi, Osamu; Uggerud, Einar; Roberts, Helen; Herbst, Eric; Viggiano, A. A.; Fridgen, Travis D.

    2004-08-01

    Methyl formate, HCOOCH3, is a well-known interstellar molecule prominent in the spectra of hot molecular cores. The current view of its formation is that it occurs in the gas phase from precursor methanol, which is synthesized on the surfaces of grain mantles during a previous colder era and evaporates while temperatures increase during the process of high-mass star formation. The specific reaction sequence thought to form methyl formate, the ion-molecule reaction between protonated methanol and formaldehyde followed by dissociative recombination of the protonated ion [HCO(H)OCH3]+, has not been studied in detail in the laboratory. We present here the results of both a quantum chemical study of the ion-molecule reaction between [CH3OH2]+ and H2CO as well as new experimental work on the system. In addition, we report theoretical and experimental studies for a variety of other possible gas-phase reactions leading to ion precursors of methyl formate. The studied chemical processes leading to methyl formate are included in a chemical model of hot cores. Our results show that none of these gas-phase processes produces enough methyl formate to explain its observed abundance.

  7. Existence of a critical point in the phase diagram of the ideal relativistic neutral Bose gas

    International Nuclear Information System (INIS)

    Park, Jeong-Hyuck; Kim, Sang-Woo

    2011-01-01

    We explore the phase transitions of the ideal relativistic neutral Bose gas confined in a cubic box, without assuming the thermodynamic limit nor continuous approximation. While the corresponding non-relativistic canonical partition function is essentially a one-variable function depending on a particular combination of temperature and volume, the relativistic canonical partition function is genuinely a two-variable function of them. Based on an exact expression for the canonical partition function, we performed numerical computations for up to 10 5 particles. We report that if the number of particles is equal to or greater than a critical value, which amounts to 7616, the ideal relativistic neutral Bose gas features a spinodal curve with a critical point. This enables us to depict the phase diagram of the ideal Bose gas. The consequent phase transition is first order below the critical pressure or second order at the critical pressure. The exponents corresponding to the singularities are 1/2 and 2/3, respectively. We also verify the recently observed 'Widom line' in the supercritical region.

  8. MOLECULAR SPECTROSCPY AND REACTIONS OF ACTINIDES IN THE GAS PHASE AND CRYOGENIC MATRICES

    Energy Technology Data Exchange (ETDEWEB)

    Heaven, Michael C.; Gibson, John K.; Marcalo, Joaquim

    2009-02-01

    In this chapter we review the spectroscopic data for actinide molecules and the reaction dynamics for atomic and molecular actinides that have been examined in the gas phase or in inert cryogenic matrices. The motivation for this type of investigation is that physical properties and reactions can be studied in the absence of external perturbations (gas phase) or under minimally perturbing conditions (cryogenic matrices). This information can be compared directly with the results from high-level theoretical models. The interplay between experiment and theory is critically important for advancing our understanding of actinide chemistry. For example, elucidation of the role of the 5f electrons in bonding and reactivity can only be achieved through the application of experimentally verified theoretical models. Theoretical calculations for the actinides are challenging due the large numbers of electrons that must be treated explicitly and the presence of strong relativistic effects. This topic has been reviewed in depth in Chapter 17 of this series. One of the goals of the experimental work described in this chapter has been to provide benchmark data that can be used to evaluate both empirical and ab initio theoretical models. While gas-phase data are the most suitable for comparison with theoretical calculations, there are technical difficulties entailed in generating workable densities of gas-phase actinide molecules that have limited the range of species that have been characterized. Many of the compounds of interest are refractory, and problems associated with the use of high temperature vapors have complicated measurements of spectra, ionization energies, and reactions. One approach that has proved to be especially valuable in overcoming this difficulty has been the use of pulsed laser ablation to generate plumes of vapor from refractory actinide-containing materials. The vapor is entrained in an inert gas, which can be used to cool the actinide species to room

  9. Frequency metrology of a photomixing source for gas phase spectroscopy

    Science.gov (United States)

    Hindle, Francis; Mouret, Gael; Yang, Chun; Cuisset, Arnaud; Bocquet, Robin; Lours, Michel; Rovera, Daniele

    2010-08-01

    The availability of frequency combs has opened new possibilities for the measurement of optical frequencies. Photomixing is an attractive solution for high resolution THz spectroscopy of gases due to the narrow spectral resolution and ability to access the 100 GHz to 3.5 THz range. One limitation of present photomixing spectrometers is the accuracy with which the THz frequency is established. Measurement of the centre frequency gas phase molecular transitions requires an accuracy better than 100 kHz in order to allow spectroscopic constants to be determined. Standard optical techniques like those employed in wavelength meters can only provide accuracies in the order of 50 MHz. We have used a turnkey fibre based frequency comb and a standard photomixing configuration to realize a THz synthesizer with an accuracy of around 50kHz. Two ECDLs used to pump the photomixer are phase locked onto the frequency comb and provide a tuning range of 10 MHz. In order to extend the tuning range an additional phase locked ECLD has been added to obtain a range in excess of 100 MHz. The absorption profiles of many Doppler limited transitions of carbonyl sulphide and formaldehyde have been measured to validate this instrument.

  10. Nucleation and dissociation of nano-particles in gas phase

    International Nuclear Information System (INIS)

    Feiden, P.

    2007-09-01

    This work deals with the study of nano-particles formation in gas phase and their dissociation pathways after an optical excitation. The clusters formation decomposes in two steps: a seed is formed (nucleation phase) and sticks atoms during its propagation in a sodium atomic vapor (growth phase). Those two steps have been observed separately for homogeneous Na n and heterogeneous Na n X particles (X = (NaOH) 2 or (Na 2 O) 2 ). The growth mechanism is well interpreted by a Monte Carlo simulation taking into account an accretion mechanism with hard-sphere cross section. The homogeneous nucleation mechanism has been highlighted by a direct comparison with the Classical Nucleation Theory predictions. The clusters fragmentation of ionic Na + (NaOH) p et Na + (NaF) p particles is studied in the second part. The way clusters fragment with size when they are excited optically is compared with theoretical previsions: this highlights the existence of an energetic barrier for special size of clusters. Finally, the fragmentation of doubly charged Na + Na + (NaOH) p clusters shows a competition between the fission into two single charged fragments and the unimolecular evaporation of a neutral fragment. (author)

  11. Precise temperature compensation of phase in a rhythmic motor pattern.

    Directory of Open Access Journals (Sweden)

    Lamont S Tang

    2010-08-01

    Full Text Available Most animal species are cold-blooded, and their neuronal circuits must maintain function despite environmental temperature fluctuations. The central pattern generating circuits that produce rhythmic motor patterns depend on the orderly activation of circuit neurons. We describe the effects of temperature on the pyloric rhythm of the stomatogastric ganglion of the crab, Cancer borealis. The pyloric rhythm is a triphasic motor pattern in which the Pyloric Dilator (PD, Lateral Pyloric (LP, and Pyloric (PY neurons fire in a repeating sequence. While the frequency of the pyloric rhythm increased about 4-fold (Q(10 approximately 2.3 as the temperature was shifted from 7 degrees C to 23 degrees C, the phase relationships of the PD, LP, and PY neurons showed almost perfect temperature compensation. The Q(10's of the input conductance, synaptic currents, transient outward current (I(A, and the hyperpolarization-activated inward current (I(h, all of which help determine the phase of LP neuron activity, ranged from 1.8 to 4. We studied the effects of temperature in >1,000 computational models (with different sets of maximal conductances of a bursting neuron and the LP neuron. Many bursting models failed to monotonically increase in frequency as temperature increased. Temperature compensation of LP neuron phase was facilitated when model neurons' currents had Q(10's close to 2. Together, these data indicate that although diverse sets of maximal conductances may be found in identified neurons across animals, there may be strong evolutionary pressure to restrict the Q(10's of the processes that contribute to temperature compensation of neuronal circuits.

  12. Two-phase materials for high-temperature service

    CSIR Research Space (South Africa)

    Nabarro, FRN

    2000-09-01

    Full Text Available load is carried by the g phase, which is a ductile material; at high temperatures the g phase is weak, and 0966-9795/00/$ - see front matter #2000 Elsevier Science Ltd. All rights reserved. PII: S0966-9795(00)00030-3 Intermetallics 8 (2000) 979?985 www...-temperature phase of ZrO2 containing 4.5 mol% per cent Y2O3 has the cubic ?uorite structure. A 980 F.R.N. Nabarro / Intermetallics 8 (2000) 979?985 face-centred cube of Zr atoms, with 4 Zr atoms in the unit cell, contains a simple cube of 8 O-atoms. On cooling...

  13. Assessment and status report High-Temperature Gas-Cooled Reactor gas-turbine technology

    International Nuclear Information System (INIS)

    1981-01-01

    Purpose of this report is to present a brief summary assessment of the High Temperature Gas-Cooled Reactor - Gas Turbine (HTGR-GT) technology. The focal point for the study was a potential 2000 MW(t)/800 MW(e) HTGR-GT commercial plant. Principal findings of the study were that: the HTGR-GT is feasible, but with significantly greater development risk than the HTGR-SC (Steam Cycle). At the level of performance corresponding to the reference design, no incremental economic incentive can be identified for the HTGR-GT to offset the increased development costs and risk relative to the HTGR-SC. The relative economics of the HTGR-GT and HTGR-SC are not significantly impacted by dry cooling considerations. While reduced cycel complexity may ultimately result in a reliability advantage for the HTGR-GT, the value of that potential advantage was not quantified

  14. Gas Phase Chromatography of some Group 4, 5, and 6 Halides

    Energy Technology Data Exchange (ETDEWEB)

    Sylwester, Eric Robert [Univ. of California, Berkeley, CA (United States)

    1998-10-01

    temperature) gas phase chromatography instrument to a thermochromatographic (variable temperature) instrument have been completed. Thermochromatography is a technique that can be used to study the volatility and ΔHa of longer-lived isotopes off-line, Future work will include a comparison between the two techniques and the use of thermochromatography to study isotopes in a wider range of half-lives and molecular structures.

  15. Possibility of high temperature superconducting phases in PdH

    Science.gov (United States)

    Tripodi, Paolo; Di Gioacchino, Daniele; Borelli, Rodolfo; Vinko, Jenny Darja

    2003-05-01

    Possible new superconducting phases with a high critical transition temperature (Tc) have been found in stable palladium-hydrogen (PdHx) samples for stoichiometric ratio x=H/Pd⩾1, in addition to the well-known low critical transition temperature (0⩽Tc⩽9) when x is in the range (0.75⩽x⩽1.00). Possible new measured superconducting phases with critical temperature in the range 51⩽Tc⩽295 K occur. This Tc varies considerably with every milli part of x when x exceeds unit. A superconducting critical current density Jc⩾6.1×104 A cm-2 has been measured at 77 K with HDC=0 T.

  16. Possibility of high temperature superconducting phases in PdH

    Energy Technology Data Exchange (ETDEWEB)

    Tripodi, Paolo; Di Gioacchino, Daniele; Borelli, Rodolfo; Vinko, Jenny Darja

    2003-05-15

    Possible new superconducting phases with a high critical transition temperature (T{sub c}) have been found in stable palladium-hydrogen (PdH{sub x}) samples for stoichiometric ratio x=H/Pd{>=}1, in addition to the well-known low critical transition temperature (0{<=}T{sub c}{<=}9) when x is in the range (0.75{<=}x{<=}1.00). Possible new measured superconducting phases with critical temperature in the range 51{<=}T{sub c}{<=}295 K occur. This T{sub c} varies considerably with every milli part of x when x exceeds unit. A superconducting critical current density J{sub c}{>=}6.1x10{sup 4} A cm{sup -2} has been measured at 77 K with H{sub DC}=0 T.

  17. Advances in High Temperature Gas Cooled Reactor Fuel Technology

    International Nuclear Information System (INIS)

    2012-12-01

    This publication reports on the results of a coordinated research project on advances in high temperature gas cooled reactor (HTGR) fuel technology and describes the findings of research activities on coated particle developments. These comprise two specific benchmark exercises with the application of HTGR fuel performance and fission product release codes, which helped compare the quality and validity of the computer models against experimental data. The project participants also examined techniques for fuel characterization and advanced quality assessment/quality control. The key exercise included a round-robin experimental study on the measurements of fuel kernel and particle coating properties of recent Korean, South African and US coated particle productions applying the respective qualification measures of each participating Member State. The summary report documents the results and conclusions achieved by the project and underlines the added value to contemporary knowledge on HTGR fuel.

  18. Advances in High Temperature Gas Cooled Reactor Fuel Technology

    International Nuclear Information System (INIS)

    2012-06-01

    This publication reports on the results of a coordinated research project on advances in high temperature gas cooled reactor (HTGR) fuel technology and describes the findings of research activities on coated particle developments. These comprise two specific benchmark exercises with the application of HTGR fuel performance and fission product release codes, which helped compare the quality and validity of the computer models against experimental data. The project participants also examined techniques for fuel characterization and advanced quality assessment/quality control. The key exercise included a round-robin experimental study on the measurements of fuel kernel and particle coating properties of recent Korean, South African and US coated particle productions applying the respective qualification measures of each participating Member State. The summary report documents the results and conclusions achieved by the project and underlines the added value to contemporary knowledge on HTGR fuel.

  19. Safety analysis of a high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shimazu, Akira; Morimoto, Toshio

    1975-01-01

    In recent years, in order to satisfy the social requirements of environment and safety and also to cope with the current energy stringency, the installation of safe nuclear power plants is indispensable. Herein, safety analysis and evaluation to confirm quantitatively the safety design of a nuclear power plant become more and more important. The safety analysis and its methods for a high temperature gas-cooled reactor are described, with emphasis placed on the practices by Fuji Electric Manufacturing Co. Fundamental rule of securing plant safety ; safety analysis in normal operation regarding plant dynamic characteristics and radioactivity evaluation ; and safety analysis at the time of accidents regarding plant response to the accidents and radioactivity evaluation are explained. (Mori, K.)

  20. Control of temperature distribution in a supercritical gas extraction tower

    International Nuclear Information System (INIS)

    Yoshida, M.; Matsumoto, S.; Honda, G.; Iwama, T.; Suzuki, Y.; Odagiri, S.

    1989-01-01

    A control scheme recently proposed by the authors is applied to the control of axial temperature distribution in a bench-scale supercritical-gas extractor. The extraction unit is constructed from a packed column 3 m long covered by a coaxial cylindrical casing. Although the actual structure of the extractor is very complicated, it is modeled by a simple double-pipe and therefore its mathematical model can be described by a pair of partial differential equations. The models are reduced to a lumped parameter system with a finite dimension by use of the finite Fourier transform technique. The controller is designed on the basis of the reduced model. An extended Kalman filter is used to estimate simultaneously the state variables and the unknown parameters. The results demonstrate that both the state estimation and the controller performance are satisfactory. This implies that the control scheme is very robust in spite of the incompleteness of the model used

  1. Wettability in the liquid Cu-Ag alloy – fireproof material – gas phase system

    Directory of Open Access Journals (Sweden)

    G. Siwiec

    2013-07-01

    Full Text Available In the present paper, results of wettability studies on the liquid metal – fireproof material – gas phase system using copper and Cu-Ag alloys as well as typical fireproof materials, i.e. aluminium oxide, magnesium oxide and graphite, are presented. Contact angle measurements were conducted at 1 373–1 573 K by means of a high-temperature microscope coupled with a camera and a computer equipped with a program for recording and analysing images. For the measurements, the sessile drop method was used.

  2. Gas-phase Crystallization of Titanium Dioxide Nanoparticles

    International Nuclear Information System (INIS)

    Ahonen, P.P.; Moisala, A.; Tapper, U.; Brown, D.P.; Jokiniemi, J.K.; Kauppinen, E.I.

    2002-01-01

    We have investigated the development of crystal morphology and phase in ultrafine titanium dioxide particles. The particles were produced by a droplet-to-particle method starting from propanolic titanium tetraisopropoxide solution, and calcined in a vertical aerosol reactor in air. Mobility size classified 40-nm diameter particles were conveyed to the aerosol reactor to investigate particle size changes at 20-1200 deg. C with 5-1-s residence time. In addition, polydisperse particles were used to study morphology and phase formation by electron microscopy. According to differential mobility analysis, the particle diameter was reduced to 21-23-nm at 600 deg. C and above. Precursor decomposition occurred between 20 deg. C and 500 deg. C. The increased mobility particle size at 700 deg. C and above was observed to coincide with irregular particles at 700 deg. C and 800 deg. C and faceted particles between 900 deg. C and 1200 deg. C, according to transmission electron microscopy. The faceted anatase particles were observed to approach a minimized surface energy by forming {101} and {001} crystallographic surfaces. Anatase phase was observed at 500-1200 deg. C and above 600 deg. C the particles were single crystals. Indications of minor rutile formation were observed at 1200 deg. C. The relatively stable anatase phase vs. temperature is attributed to the defect free structure of the observed particles and a lack of crystal-crystal attachment points

  3. Metal-Organic Frameworks for Sensing Applications in the Gas Phase

    Directory of Open Access Journals (Sweden)

    Sabine Achmann

    2009-03-01

    Full Text Available Several metal-organic framework (MOF materials were under investigated to test their applicability as sensor materials for impedimetric gas sensors. The materials were tested in a temperature range of 120 °C - 240 °C with varying concentrations of O2, CO2, C3H8, NO, H2, ethanol and methanol in the gas atmosphere and under different test gas humidity conditions. Different sensor configurations were studied in a frequency range of 1 Hz -1 MHz and time-continuous measurements were performed at 1 Hz. The materials did not show any impedance response to O2, CO2, C3H8, NO, or H2 in the gas atmospheres, although for some materials a significant impedance decrease was induced by a change of the ethanol or methanol concentration in the gas phase. Moreover, pronounced promising and reversible changes in the electric properties of a special MOF material were monitored under varying humidity, with a linear response curve at 120 °C. Further investigations were carried out with differently doped MOF materials of this class, to evaluate the influence of special dopants on the sensor effect.

  4. Two-phase heat and mass transfer in turbulent parallel and countercurrent flows of liquid film and gas

    International Nuclear Information System (INIS)

    Kholpanov, L.P.; Babak, T.B.; Babak, V.N.; Malyusov, V.A.; Zhavoronkov, N.M.; AN SSSR, Moscow. Inst. Obshchej i Neorganicheskoj Khimii)

    1980-01-01

    To determine the ways of intensification of heat and mass transfer processes, the direct flow and counterflow heat and mass transfer is analytically investigated during the turbulent flow of a liquid and gas film on the basis of solving the energy equation for liquid and gas film, i.e. the two-phase film heat transfer is investigated from the position of a conjugate task. The analysis of the two-phase heat transfer has shown that it is necessary to know the position of each point in a plane before using this or that formula. Depending on its position on this plane, the heat transfer process will be determined by one or two phases only. It is found, that in the case of a single-phase heat transfer the temperature on the surface remains stable over the channel length. In the case of a two-phase heat transfer it can significantly change over the channel length [ru

  5. Three-phase flow (water, oil and gas in a vertical circular cylindrical duct with leaks: A theoretical study

    Directory of Open Access Journals (Sweden)

    W Santos

    2016-10-01

    Full Text Available This article describes the fluid dynamic behavior of a three-phase flow (water-oil-natural gas in a vertical pipe with or without leakage. The studied pipe has 8 meters in length, circular cross-section with 25 cm in diameter and a leak, which hole has a circular shape with 10mm diameter located in the center of pipe. The conservation equations of mass, momentum and energy for each phase (continuous phase - oil, dispersed phases - gas and water were numerically solved using ANSYS CFX software, in which the Eulerian-Eulerian model and the RNG - turbulence model were applied. Results of the pressure, velocity, temperature and volume fraction distributions of the involved phases are present and analyzed.

  6. Working gas temperature and pressure changes for microscale thermal creep-driven flow caused by discontinuous wall temperatures

    International Nuclear Information System (INIS)

    Han, Yen-Lin

    2010-01-01

    Microscale temperature gradient-driven (thermal creep/transpiration) gas flows have attracted significant interest during the past decade. For free molecular and transitional conditions, applying temperature gradients to a flow channel's walls induces the thermal creep effect. This results in a working gas flowing through the channel from cold to hot, which is generally accompanied by a rising pressure from cold to hot in the channel. Working gas temperature and pressure distributions can vary significantly, depending on a flow channel's configuration and wall temperature distribution. Understanding working gas temperature excursions, both increases and decreases, is essential to ensure the effective use of thermal creep flows in microscale applications. In this study, the characterizations of working gas temperature variations, due to both temperature discontinuities and more gradual changes, on a variety of flow channel walls, were systematically investigated using the direct simulation Monte Carlo (DSMC) method. A micro/meso-scale pump, the Knudsen compressor, was chosen to illustrate the importance of controlling working gas temperature in thermal creep-driven flows. Gas pressure and temperature variations, through several Knudsen compressor stage configurations, were studied to determine the most advantageous flow phenomena for the efficient operation of Knudsen compressors.

  7. Gas-phase chemistry of Mo, Ru, W, and Os metal carbonyl complexes

    International Nuclear Information System (INIS)

    Wang, Y.; Qin, Z.; Fan, F.L.

    2014-01-01

    Metal carbonyl complexes were used for studying the gas-phase chemical behavior of Mo, Ru, W and Os isotopes with an on-line low temperature isothermal gas chromatography apparatus. Short-lived Mo and Ru isotopes were produced by a 252 Cf spontaneous fission source. Short-lived nuclides of W and Os were produced using the heavy ion reactions 19 F + 159 Tb and 165 Ho, respectively. Short-lived products were thermalized in a recoil chamber filled with a gas mixture of helium and carbon monoxide. The carbonyls formed were then transported through capillaries to an isothermal chromatography column for study of the adsorption behavior as a function of temperature. On-line isothermal chromatography (IC) experiments on Teflon (PTFE) and quartz surfaces showed that short-lived isotopes of the listed elements can form carbonyl complexes which are very volatile and interact most likely in physical sorption processes. Deduced adsorption enthalpies of Mo and Ru carbonyls were -38 ± 2 kJ/mol and -36 ± 2 kJ/mol, respectively. These values are in good agreement with literature data, partly obtained with different chromatographic techniques. A validation of the applied Monte Carlo model to deduce adsorption enthalpies with Mo isotopes of different half-lives proved the validity of the underlying adsorption model. The investigations using a gas-jet system coupled to a heavy ion accelerator without any preseparator clearly showed the limitations of the approach. The He and CO gas mixture, which was directly added into the chamber, will result in decomposition of CO gas and produce some aerosol particles. After the experiment of 173 W and 179 Os in the heavy ion experiments, the Teflon column was covered by a yellowish deposit; the adsorption enthalpy of W and Os carbonyls could therefore not be properly deduced using Monte Carlo simulations. (orig.)

  8. Superfluid 3He at very low temperatures: a very unusual excitation gas

    International Nuclear Information System (INIS)

    Pickett, G.R.; Enrico, M.P.; Fisher, S.N.; Guenault, A.M.; Torizuka, K.

    1994-01-01

    The excitation gas in superfluid 3 He at low temperatures shows a number of remarkable dynamical properties arising from the unusual dispersion curve. The existence of an energy gap leads to many of the observed properties varying rapidly with temperature, since the excitation density is dominated by the gap Boltzmann factor exp(-Δ/kT). But also, the fact that the minimum energy lies at finite momentum gives rise to Andreev scattering processes, in which the velocity of the excitation is reversed but the momentum left virtually unchanged. Since the dispersion curve looks different to a moving observer, there is the possibility of the free production of quasiparticle-quasihole pairs at a Landau critical velocity. At low temperatures the mean free path becomes much larger than any experimental size. Using vibrating wire resonators as universal probes, we can monitor the temperature, measure the Kapitz resistance, examine the nonlinear regime beyond the two-fluid model, observe the Landau velocity, create and detect thermal beams of excitation with black-body radiators, observe Andreev reflection directly and probe A-phase textures (in which the gas is one-dimensional). Future possibilities are discussed. (orig.)

  9. On the Thermodynamics of a Gas of AdS Black Holes and the Quark-Hadron Phase Transition

    CERN Document Server

    Ellis, Jonathan Richard; Mavromatos, Nikolaos E; Ellis, John

    1999-01-01

    We discuss the thermodynamics of a gas of black holes in five-dimensional anti-de-Sitter (AdS) space, showing that they are described by a van der Waals equation of state. Motivated by the Maldacena conjecture, we relate the energy density and pressure of this non-ideal AdS black-hole gas to those of four-dimensional gauge theory in the unconfined phase. We find that the energy density rises rapidly above the deconfinement transition temperature, whilst the pressure rises more slowly towards its asymptotic high-temperature value, in qualitative agreement with lattice simulations.

  10. Regenerable Air Purification System for Gas-Phase Contaminant Control

    Science.gov (United States)

    Constantinescu, Ileana C.; Finn, John E.; LeVan, M. Douglas; Lung, Bernadette (Technical Monitor)

    2000-01-01

    Tests of a pre-prototype regenerable air purification system (RAPS) that uses water vapor to displace adsorbed contaminants from an adsorbent column have been performed at NASA Ames Research Center. A unit based on this design can be used for removing trace gas-phase contaminants from spacecraft cabin air or from polluted process streams including incinerator exhaust. During the normal operation mode, contaminants are removed from the air on the column. Regeneration of the column is performed on-line. During regeneration, contaminants are displaced and destroyed inside the closed oxidation loop. In this presentation we discuss initial experimental results for the performance of RAPS in the removal and treatment of several important spacecraft contaminant species from air.

  11. Synthesis and Gas Phase Thermochemistry of Germanium-Containing Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Classen, Nathan Robert [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    The driving force behind much of the work in this dissertation was to gain further understanding of the unique olefin to carbene isomerization observed in the thermolysis of 1,1-dimethyl-2-methylenesilacyclobutane by finding new examples of it in other silicon and germanium compounds. This lead to the examination of a novel phenylmethylenesilacyclobut-2-ene, which did not undergo olefin to carbene rearrangement. A synthetic route to methylenegermacyclobutanes was developed, but the methylenegermacyclobutane system exhibited kinetic instability, making the study of the system difficult. In any case the germanium system decomposed through a complex mechanism which may not include olefin to carbene isomerization. However, this work lead to the study of the gas phase thermochemistry of a series of dialkylgermylene precursors in order to better understand the mechanism of the thermal decomposition of dialkylgermylenes. The resulting dialkylgermylenes were found to undergo a reversible intramolecular β C-H insertion mechanism.

  12. Conformational Study of Taurine in the Gas Phase

    Science.gov (United States)

    Cortijo, Vanessa; Sanz, M. Eugenia; López, Juan C.; Alonso, José L.

    2009-08-01

    The conformational preferences of the amino sulfonic acid taurine (NH2-CH2-CH2-SO3H) have been investigated in the gas phase by laser ablation molecular beam Fourier transform microwave spectroscopy (LA-MB-FTMW) in the 6-14 GHz frequency range. One conformer has been observed, and its rotational, centrifugal distortion, and hyperfine quadrupole coupling constants have been determined from the analysis of its rotational spectrum. Comparison of the experimental constants with those calculated theoretically identifies the detected conformer unambiguously. The observed conformer of taurine is stabilized by an intramolecular hydrogen bond O-H···N between the hydrogen of the sulfonic acid group and the nitrogen atom of the amino group.

  13. Technical Procedures Management in Gas-Phase Detoxification Laboratory

    International Nuclear Information System (INIS)

    Cardona Garcia, A. I.; Sanchez Cabrero, B.

    2000-01-01

    The natural cycle of Volatile Organic Compounds (VOCs) has been disturbed by the industrial and socioeconomic activities of human beings. This imbalance in the environment has affected the ecosystems and the human health. Initiatives have been planned to mitigate these adverse effects. In order to minimize the hazardous effects, initiatives have been proposed for the treatment of gaseous emissions. The solar photo catalysis appears as a clear and renewable technology in front of the conventional ones.In CIEMAT this line is being investigated as the base of a future implementation at a pre industrial scale.Technical procedures are written in this document for testing Gas-Phase detoxification at lab scale in the Renewable Energy Department (DER) CIEMAT- Madrid to eliminate the VOCs by using the solar photo catalysis technology. (Author) 34 refs

  14. Gas-phase synthesis of magnetic metal/polymer nanocomposites

    Science.gov (United States)

    Starsich, Fabian H. L.; Hirt, Ann M.; Stark, Wendelin J.; Grass, Robert N.

    2014-12-01

    Highly magnetic metal Co nanoparticles were produced via reducing flame spray pyrolysis, and directly coated with an epoxy polymer in flight. The polymer content in the samples varied between 14 and 56 wt% of nominal content. A homogenous dispersion of Co nanoparticles in the resulting nanocomposites was visualized by electron microscopy. The size and crystallinity of the metallic fillers was not affected by the polymer, as shown by XRD and magnetic hysteresis measurements. The good control of the polymer content in the product nanocomposite was shown by elemental analysis. Further, the successful polymerization in the gas phase was demonstrated by electron microscopy and size measurements. The presented effective, dry and scalable one-step synthesis method for highly magnetic metal nanoparticle/polymer composites presented here may drastically decrease production costs and increase industrial yields.

  15. Statistical Physics of Nanoparticles in the Gas Phase

    CERN Document Server

    Hansen, Klavs

    2013-01-01

    Thermal processes are ubiquitous and an understanding of thermal phenomena is essential for a complete description of the physics of nanoparticles, both for the purpose of modeling the dynamics of the particles and for the correct interpretation of experimental data. This book has the twofold aim to present coherently the relevant results coming from the recent scientific literature and to guide the readers through the process of deriving results, enabling them to explore the limits of the mathematical approximations and test the power of the method. The book is focused on the fundamental properties of nanosystems in the gas phase. For this reason there is a strong emphasis on microcanonical physics. Each chapter is enriched with exercises and 3 Appendices provide additional useful materials.

  16. Multiphase flow and transport caused by spontaneous gas phase growth in the presence of dense non-aqueous phase liquid.

    Science.gov (United States)

    Roy, James W; Smith, James E

    2007-01-30

    Disconnected bubbles or ganglia of trapped gas may occur below the top of the capillary fringe through a number of mechanisms. In the presence of dense non-aqueous phase liquid (DNAPL), the disconnected gas phase experiences mass transfer of dissolved gases, including volatile components from the DNAPL. The properties of the gas phase interface can also change. This work shows for the first time that when seed gas bubbles exist spontaneous gas phase growth can be expected to occur and can significantly affect water-gas-DNAPL distributions, fluid flow, and mass transfer. Source zone behaviour was observed in three different experiments performed in a 2-dimensional flow cell. In each case, a DNAPL pool was created in a zone of larger glass beads over smaller glass beads, which served as a capillary barrier. In one experiment effluent water samples were analyzed to determine the vertical concentration profile of the plume above the pool. The experiments effectively demonstrated a) a cycle of spontaneous gas phase expansion and vertical advective mobilization of gas bubbles and ganglia above the DNAPL source zone, b) DNAPL redistribution caused by gas phase growth and mobilization, and c) that these processes can significantly affect mass transport from a NAPL source zone.

  17. Online Measurements of Highly Oxidized Organics in the Gas and Particle phase during SOAS and SENEX

    Science.gov (United States)

    Lopez-Hilfiker, F.; Lee, B. H.; Mohr, C.; Ehn, M.; Rubach, F.; Mentel, T. F.; Kleist, E.; Thornton, J. A.

    2014-12-01

    We present measurements of a large suite of gas and particle phase organic compounds made with a Filter Inlet for Gas and AEROsol (FIGAERO) coupled to a high resolution time of flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington and with airborne HR-ToF-CIMS measurements. The FIGAERO instrument was deployed on the Jülich Plant Atmosphere Chamber to study α-pinene oxidation, and subsequently at the SMEAR II forest station in Hyytiälä, Finland and the SOAS ground site, in Brent Alabama. During the Southern Atmosphere Study, a gas-phase only version of the HR-ToF-CIMS was deployed on the NOAA WP-3 aircraft as part of SENEX. We focus here on highly oxygenated organic compounds derived from monoterpene oxidation detected both aloft during SENEX and at the ground-based site during SOAS. In both chamber and the atmosphere, many highly oxidized, low volatility compounds were observed in the gas and particles and many of the same compositions detected in the gas-phase were detected in the particles upon temperature programmed thermal desorption. The fraction of a given compound measured in the particle phase follows expected trends with elemental composition such as O/C ratios, but many compounds would not be well described by an absorptive partitioning model assuming unity activity coefficients. The detailed structure in the thermograms reveals a significant contribution from large molecular weight organics and/or oligomers in both chamber and ambient aerosol samples. Approximately 50% of the measured organics in the particle phase are associated with compounds having effective vapour pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. We discuss the implications of these findings for measurements of gas-particle partitioning and for evaluating the contribution of monoterpene oxidation to organic aerosol formation and growth. We also use the aircraft measurements and a

  18. Determination of the rate of crystal growth from the gas phase under conditions of turbulent free convection

    Science.gov (United States)

    Alad'Ev, S. I.

    1987-04-01

    Crystal growth in vertical and horizontal cylindrical vials, with the substrate and the source serving as the vial ends, is investigated analytically, assuming that the medium consists of a binary mixture of an active and an inert gas. The active gas is made up of the gaseous products of reactions taking place at the substrate and at the source. It is shown that turbulent free convection leads to an increase in crystal growth rate. All other conditions being equal, crystal growth in vertical vials is greater than that in horizontal ones; in both cases crystal growth rate increases with the vial radius, temperature gradient in the gas phase, and gas phase density. The results are compared with experimental data on the growth of Ge crystals in the Ge-GeI4 system.

  19. Very-high-temperature gas reactor environmental impacts assessment

    International Nuclear Information System (INIS)

    Baumann, C.D.; Barton, C.J.; Compere, E.L.; Row, T.H.

    1977-08-01

    The operation of a Very High Temperature Reactor (VHTR), a slightly modified General Atomic type High Temperature Gas-Cooled Reactor (HTGR) with 1600 F primary coolant, as a source of process heat for the 1400 0 F steam-methanation reformer step in a hydrogen producing plant (via hydrogasification of coal liquids) was examined. It was found that: (a) from the viewpoint of product contamination by fission and activation products, an Intermediate Heat Exchanger (IHX) is probably not necessary; and (b) long term steam corrosion of the core support posts may require increasing their diameter (a relatively minor design adjustment). However, the hydrogen contaminant in the primary coolant which permeates the reformer may reduce steam corrosion but may produce other problems which have not as yet been resolved. An IHX in parallel with both the reformer and steam generator would solve these problems, but probably at greater cost than that of increasing the size of the core support posts. It is recommended that this corrosion problem be examined in more detail, especially by investigating the performance of current fossil fuel heated reformers in industry. Detailed safety analysis of the VHTR would be required to establish definitely whether the IHX can be eliminated. Water and hydrogen ingress into the reactor system are potential problems which can be alleviated by an IHX. These problems will require analysis, research and development within the program required for development of the VHTR

  20. Recent developments in high temperature coatings for gas turbine airfoils

    Science.gov (United States)

    Goward, G. W.

    1983-01-01

    The importance of coatings for hot section airfoils has increased with the drive for more cost-effective use of fuel in a wide variety of gas turbine engines. Minor additions of silicon have been found to appreciably increase the oxidation resistance of plasma-sprayed NiCoCrAlY coatings on a single crystal nickel-base superalloy. Increasing the chromium content of MCrAlY coatings substantially increases the resistance to acidic (Na2SO4-SO3) hot corrosion at temperatures of about 1300 F (704 C) but gives no significant improvement beyond contemporary coatings in the range of 1600 F (871 C). Surface enrichment of MCrAlY coatings with silicon also gives large increases in resistance to acidic hot corrosion in the 1300 F region. The resistance to the thermal stress-induced spalling of zirconia-based thermal barrier coatings has been improved by lowering coating stresses with segmented structures and by controlling the substrate temperature during coating fabrication.

  1. Gas-phase chemistry of element 114, flerovium

    Directory of Open Access Journals (Sweden)

    Yakushev Alexander

    2016-01-01

    Full Text Available Element 114 was discovered in 2000 by the Dubna-Livermore collaboration, and in 2012 it was named flerovium. It belongs to the group 14 of the periodic table of elements. A strong relativistic stabilisation of the valence shell 7s27p21/2 is expected due to the orbital splitting and the contraction not only of the 7s2 but also of the spherical 7p21/2 closed subshell, resulting in the enhanced volatility and inertness. Flerovium was studied chemically by gas-solid chromatography upon its adsorption on a gold surface. Two experimental results on Fl chemistry have been published so far. Based on observation of three atoms, a weak interaction of flerovium with gold was suggested in the first study. Authors of the second study concluded on the metallic character after the observation of two Fl atoms deposited on gold at room temperature.

  2. Fixing arsenic contained in a gas phase using solid hematite

    International Nuclear Information System (INIS)

    Balladares, E.; Gonzalez, A.; Rarra, R.; Sanchez, M.

    2004-01-01

    Feasibility to obtain ferric arsenate starting from arsenic containing gas in contact with Fe 3 O 3 has been studied. Thermodynamic stability of the system Fe-As-O was analysed in order to verify conditions to form Fe x As y O z type compounds. Experiments were made using a hematite sample suspended in a thermogravimetric device. As 4 O 6 was generated starting from solid As 2 O 3 which was circulating through the iron oxide. Final samples were analysed chemically and by means of DRX, verifying the formation of FeAsO 4 , FeAsO 4 .2h 2 O and FeAsO 4 .(H 2 O) 2 in small quantities. Tests in porous bed and pellets were carried out, studying the effect of: porosity, temperature and oxygen potential. The largest conversion obtained was 10% at 800 degree centigrade, pO 2 =50% and porosity=0.883. (Author) 9 refs

  3. Modeling of a three-phase reactor for bitumen-derived gas oil hydrotreating

    International Nuclear Information System (INIS)

    Chacon, R.; Canale, A.; Bouza, A.; Sanchez, Y.

    2012-01-01

    A three-phase reactor model for describing the hydrotreating reactions of bitumen-derived gas oil was developed. The model incorporates the mass-transfer resistance at the gas-liquid and liquid-solid interfaces and a kinetic rate expression based on a Langmuir-Hinshelwood-type model. We derived three correlations for determining the solubility of hydrogen (H 2 ), hydrogen sulfide (H 2 S) and ammonia (NH 3 ) in hydrocarbon mixtures and the calculation of the catalyst effectiveness factor was included. Experimental data taken from the literature were used to determine the kinetic parameters (stoichiometric coefficients, reaction orders, reaction rate and adsorption constants for hydrodesulfuration (HDS) and hydrodenitrogenation (HDN)) and to validate the model under various operating conditions. Finally, we studied the effect of operating conditions such as pressure, temperature, LHSV, H 2 /feed ratio and the inhibiting effect of H 2 S on HDS and NH 3 on HDN. (author)

  4. Melt-gas phase equilibria and state diagrams of the selenium-tellurium system

    Science.gov (United States)

    Volodin, V. N.; Trebukhov, S. A.; Burabaeva, N. M.; Nitsenko, A. V.

    2017-05-01

    The partial pressures of saturated vapor of the components in the Se-Te system are determined and presented in the form of temperature-concentration dependences from which the boundaries of the melt-gas phase transition are calculated at atmospheric pressure and vacuums of 2000 and 100 Pa. The existence of azeotropic mixtures is revealed. It is found that the points of inseparably boiling melts correspond to 7.5 at % of Se and 995°C at 101325 Pa, 10.9 at % at 673°C and 19.5 at % at 522°C in vacuums of 2000 and 100 Pa, respectively. A complete state diagram is constructed, including the fields of gas-liquid equilibria at atmospheric and low pressures, the boundaries of which allow us to assess the behavior of selenium and tellurium upon distillation fractionation.

  5. Parametric studies on different gas turbine cycles for a high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Wang Jie; Gu Yihua

    2005-01-01

    The high temperature gas-cooled reactor (HTGR) coupled with turbine cycle is considered as one of the leading candidates for future nuclear power plants. In this paper, the various types of HTGR gas turbine cycles are concluded as three typical cycles of direct cycle, closed indirect cycle and open indirect cycle. Furthermore they are theoretically converted to three Brayton cycles of helium, nitrogen and air. Those three types of Brayton cycles are thermodynamically analyzed and optimized. The results show that the variety of gas affects the cycle pressure ratio more significantly than other cycle parameters, however, the optimized cycle efficiencies of the three Brayton cycles are almost the same. In addition, the turbomachines which are required for the three optimized Brayton cycles are aerodynamically analyzed and compared and their fundamental characteristics are obtained. Helium turbocompressor has lower stage pressure ratio and more stage number than those for nitrogen and air machines, while helium and nitrogen turbocompressors have shorter blade length than that for air machine

  6. High temperature creep behavior in the (α + β) phase temperature range of M5 alloy

    International Nuclear Information System (INIS)

    Trego, G.

    2011-01-01

    The isothermal steady-state creep behavior of a M5 thin sheet alloy in a vacuum environment was investigated in the (α + β) temperature, low-stress (1-10 MPa) range. To this aim, the simplest approach consists in identifying α and β creep flow rules in their respective single-phase temperature ranges and extrapolating them in the two-phase domain. However, the (α + β) experimental behavior may fall outside any bounds calculated using such creep flow data. Here, the model was improved for each phase by considering two microstructural effects: (i) Grain size: Thermo-mechanical treatments applied on the material yielded various controlled grain size distributions. Creep tests in near-α and near-β ranges evidenced a strong grain-size effect, especially in the diffusional creep regime. (ii) Chemical contrast between the two phases in the (α + β) range: From thermodynamic calculations and microstructural investigations, the β phase is enriched in Nb and depleted in O (the reverse being true for the α phase). Thus, creep tests were performed on model Zr-Nb-O thin sheets with Nb and O concentrations representative of each phase in the considered temperature range. New α and β creep flow equations were developed from this extended experimental database and used to compute, via a finite element model, the creep rates of the two-phase material. The 3D morphology of phases (β grains nucleated at α grain boundaries) was explicitly introduced in the computations. The effect of phase morphology on the macroscopic creep flow was shown using this specific morphology, compared to other typical morphologies and to experimental data. (author) [fr

  7. Phase compensated gas turbine governor for damping oscillatory modes

    Energy Technology Data Exchange (ETDEWEB)

    Yee, S.K. [Siemens Transmission and Distribution Limited, Manchester (United Kingdom); Milanovic, J.V. [School of Electrical and Electronic Engineering, University of Manchester, PO Box 88, Manchester M60 1 QD (United Kingdom); Hughes, F.M. [Manchester (United Kingdom)

    2009-08-15

    With market deregulation, there is constant pressure to utilise existing assets in more effective ways in order to achieve high levels of performance and as governor technologies mature the ability of governors to achieve much more than the standard power-frequency regulation function increases. Thus, this paper has focused on a more active use of governor control for a gas turbine to provide improved system stabilisation and performance via the inclusion of phase compensation in the governor control loop. Due to the decoupled nature of the mechanical power and excitation control loops, performance improvement via governor control does not interfere with generator voltage regulation, which is a drawback of conventional generator damping provision via a power system stabiliser (PSS). In addition, the mechanical power control loop is also less affected by the operating condition of the power system and is hence more robust. It is shown that inclusion of appropriate phase compensation in the governor control loop can improve dynamic and transient stability, either alone or in conjunction with a PSS in the exciter control loop, without adversely interfering with voltage control or changing steady state power-frequency regulation. (author)

  8. Atomic and molecular physics in the gas phase

    International Nuclear Information System (INIS)

    Toburen, L.H.

    1990-09-01

    The spatial and temporal distributions of energy deposition by high-linear-energy-transfer radiation play an important role in the subsequent chemical and biological processes leading to radiation damage. Because the spatial structures of energy deposition events are of the same dimensions as molecular structures in the mammalian cell, direct measurements of energy deposition distributions appropriate to radiation biology are infeasible. This has led to the development of models of energy transport based on a knowledge of atomic and molecular interactions process that enable one to simulate energy transfer on an atomic scale. Such models require a detailed understanding of the interactions of ions and electrons with biologically relevant material. During the past 20 years there has been a great deal of progress in our understanding of these interactions; much of it coming from studies in the gas phase. These studies provide information on the systematics of interaction cross sections leading to a knowledge of the regions of energy deposition where molecular and phase effects are important and that guide developments in appropriate theory. In this report studies of the doubly differential cross sections, crucial to the development of stochastic energy deposition calculations and track structure simulation, will be reviewed. Areas of understanding are discussed and directions for future work addressed. Particular attention is given to experimental and theoretical findings that have changed the traditional view of secondary electron production for charged particle interactions with atomic and molecular targets

  9. Two-phase exchangers with small temperature differences

    International Nuclear Information System (INIS)

    Moracchioli, R.; Marie, G.; Lallee, J. de.

    1976-01-01

    The possibility in using heat available at low temperature level is shown (industrial wastes, solar energy, geothermal energy, heat power from seas). Special emphasis is put on the importance of heat exchangers that commonly should be evaporators and condensors working with small temperature differences (20 to 100 deg C). The expansion of the so-called ''new'' energies or recovery processes will depend on the physical performance of exchangers (Rankine two-phase cycles) and cost of the elementary exchange interfaces and assembling technics [fr

  10. Possibilities of gas-phase radio-chromatography application to permanent-gas analysis

    International Nuclear Information System (INIS)

    Dupuis, M.C.; Charrier, G.; Alba, C.; Massimino, D.

    1970-01-01

    The gas-phase radio-chromatography technique has been applied to the rapid analysis of permanent gases (H 2 , O 2 , N 2 , A, Kr, Xe, CO, CH 4 ) labelled with radioactive indicators ( 3 H, 37 A, 85 Kr, 133 Xe). After calibration, the components of such a mixture can be identified and their concentrations measured in less than two hours, using a sample volume of from 0.1 to 10 cm 3 . The minimum detectable activity is of the order of 10 -4 μC for each radioactive isotope. The measurements are reproducible to about 2 to 3 per cent. This work has been mainly concerned with the influence of parameters affecting the response of the radioactivity detector (ionization chamber or gas flow proportional counter). The method has very numerous applications both theoretically, for the study of chromatographic phenomena under ideal conditions (infinitesimal concentrations made possible by the use of radioactive tracers), and practically, for rapid and accurate radiochemical analysis of radioactive gas mixtures. (authors) [fr

  11. Corrosion behaviour of high temperature alloys in the cooling gas of high temperature reactors

    International Nuclear Information System (INIS)

    Quadakkers, W.J.; Schuster, H.

    1989-01-01

    The reactive impurities in the primary cooling helium of advanced high temperature gas cooled reactors (HTGR) can cause oxidation, carburization or decarburization of the heat exchanging metallic components. By studies of the fundamental aspects of the corrosion mechanisms it became possible to define operating conditions under which the metallic construction materials show, from the viewpoint of technical application, acceptable corrosion behaviour. By extensive test programmes with exposure times of up to 30,000 hours, a data base has been obtained which allows a reliable extrapolation of the corrosion effects up to the envisaged service lives of the heat exchanging components. (author). 6 refs, 7 figs

  12. Liquid and Gas Phase Chemistry of Hypergolic Reactions between MMH and NTO or RFNA

    Science.gov (United States)

    Black, Ariel

    Hypergolic systems rely on fuel and oxidizer propellant combinations that spontaneously ignite upon contact. Monomethylhydrazine (MMH) fuel and nitrogen tetroxide (NTO) - based oxidizers embody the state of the art for hypergolic propellants, although the health and safety hazards associated with these propellants demand investigation into less-toxic, high performance alternatives. In order to replicate the combustion characteristics of these highly reactive propellants, a detailed understanding of the full reaction process is necessary. Current reaction mechanisms and hypergolic ignition models generally assume that gas-phase chemistry dominates the interaction since the liquid-phase reactions occur on the order of microseconds. However, condensed-phase reactions produce intermediates integral to gas-phase initiation and development. Additional insight into the physical and chemical processes that dictate this liquid-phase chemistry is therefore essential. Concurrently, further examination of the gas-phase reactions leading to and immediately following ignition is also needed. A method devoted to the determination of the liquid phase hypergolic reaction mechanism and kinematic rate parameters for MMH-NTO and MMH-red fuming nitric acid (RFNA) is presented in this study. MMH-RFNA reaction chemistry is better understood and documented in literature than MMH-NTO and is examined for comparison and validation. Drop on pool experiments at a range of temperatures were initially undertaken using MMH and RFNA and then modified to accommodate the high vapor pressure of NTO. Using a temperature and atmosphere controlled droplet contact chamber, the liquid phases of MMH-RFNA and MMH-NTO were studied by capturing impacts at frame rates from 100,000 to 500,000 fps. This footage allowed for the identification of time delays between droplet contact and initial gas formation, enabling calibration of the Arrhenius pre-exponential factors and activation energies for a global, one

  13. Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations

    Science.gov (United States)

    Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.

    2018-04-01

    In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s-1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.

  14. High temperature resistive phase transition in A15 high temperature superconductors

    International Nuclear Information System (INIS)

    Chu, C.W.; Huang, C.Y.; Schmidt, P.H.; Sugawara, K.

    1976-01-01

    Resistive measurements were made on A15 high temperature superconductors. Anomalies indicative of a phase transition were observed at 433 0 K in a single crystal Nb 3 Sn and at 485 0 K in an unbacked Nb 3 Ge sputtered thin film. Results are compared with the high temperature transmission electron diffraction studies of Nb 3 Ge films by Schmidt et al. A possible instability in the electron energy spectrum is discussed

  15. Temperature Control of Gas Chromatograph Based on Switched Delayed System Techniques

    Directory of Open Access Journals (Sweden)

    Xiao-Liang Wang

    2014-01-01

    Full Text Available We address the temperature control problem of the gas chromatograph. We model the temperature control system of the gas chromatograph into a switched delayed system and analyze the stability by common Lyapunov functional technique. The PI controller parameters can be given based on the proposed linear matrix inequalities (LMIs condition and the designed controller can make the temperature of gas chromatograph track the reference signal asymptotically. An experiment is given to illustrate the effectiveness of the stability criterion.

  16. Experiments on Quantum Hall Topological Phases in Ultra Low Temperatures

    International Nuclear Information System (INIS)

    Du, Rui-Rui

    2015-01-01

    This project is to cool electrons in semiconductors to extremely low temperatures and to study new states of matter formed by low-dimensional electrons (or holes). At such low temperatures (and with an intense magnetic field), electronic behavior differs completely from ordinary ones observed at room temperatures or regular low temperature. Studies of electrons at such low temperatures would open the door for fundamental discoveries in condensed matter physics. Present studies have been focused on topological phases in the fractional quantum Hall effect in GaAs/AlGaAs semiconductor heterostructures, and the newly discovered (by this group) quantum spin Hall effect in InAs/GaSb materials. This project consists of the following components: 1) Development of efficient sample cooling techniques and electron thermometry: Our goal is to reach 1 mK electron temperature and reasonable determination of electron temperature; 2) Experiments at ultra-low temperatures: Our goal is to understand the energy scale of competing quantum phases, by measuring the temperature-dependence of transport features. Focus will be placed on such issues as the energy gap of the 5/2 state, and those of 12/5 (and possible 13/5); resistive signature of instability near 1/2 at ultra-low temperatures; 3) Measurement of the 5/2 gaps in the limit of small or large Zeeman energies: Our goal is to gain physics insight of 5/2 state at limiting experimental parameters, especially those properties concerning the spin polarization; 4) Experiments on tuning the electron-electron interaction in a screened quantum Hall system: Our goal is to gain understanding of the formation of paired fractional quantum Hall state as the interaction pseudo-potential is being modified by a nearby screening electron layer; 5) Experiments on the quantized helical edge states under a strong magnetic field and ultralow temperatures: our goal is to investigate both the bulk and edge states in a quantum spin Hall insulator under

  17. Room temperature ferromagnetism and CH{sub 4} gas sensing of titanium oxynitride induced by milling and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Bolokang, Amogelang S., E-mail: Sylvester.Bolokang@transnet.net [DST/CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria, 0001 (South Africa); Transnet Engineering, Product Development, Private Bag X 528, Kilnerpark, 0127 (South Africa); Tshabalala, Zamaswazi P. [DST/CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria, 0001 (South Africa); Malgas, Gerald F. [Department of Physics, University of the Western Cape, Private Bag X17, Bellville, 7535 (South Africa); Kortidis, Ioannis [DST/CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria, 0001 (South Africa); West Virginia University, Department of Mechanical & Aerospace Engineering, Evansdale Campus, Morgantown, WV, 26506 (United States); Swart, Hendrik C. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA9300 (South Africa); Motaung, David E., E-mail: dmotaung@csir.co.za [DST/CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria, 0001 (South Africa)

    2017-06-01

    We report on the room temperature ferromagnetism and CH{sub 4} gas sensing of titanium oxynitride prepared by milling and annealing at 1100 °C in a nitrogen gas environment. Structural analyses revealed a metastable orthorhombic TiO{sub 2} phase after milling for 120 h. The 120 h milled TiO{sub 2} particles and subsequently annealed in nitrogen gas at 1100 °C showed the formation of titanium oxynitride (TiO{sub x}N{sub y}) with a tetragonal crystal structure. An FCC metastable TiO{sub x}N{sub y} phase was also observed with a lattice parameter a = 4.235 Å. The vibrating sample magnetometer and electron paramagnetic analyses showed that the milled and TiO{sub x}N{sub y} samples possess room temperature ferromagnetism. Gas sensing measurements were carried out toward CH{sub 4} and H{sub 2} gases. The TiO{sub x}N{sub y} nanostructures demonstrated higher sensing response and selectivity to CH{sub 4} gas at room temperature. The enhanced response of 1010 and sensitivity of 50.12 ppm{sup -1} at a concentration of 20 ppm CH{sub 4} are associated with higher surface area, pore diameter and surface defects such as oxygen vacancies and Ti{sup 3+}, as evidenced from the Brunauer–Emmet–Teller, photoluminescence, electron paramagnetic resonance and x-ray photoelectron analyses. - Highlights: • Ball milled of TiO{sub 2} structure revealed metastable orthorhombic phase. • Upon nitridation tetragonal and FCC TiO{sub x}N{sub y} crystal structures were induced. • The magnetic properties of TiO{sub 2} nanoparticles was transformed by milling. • TiO{sub x}N{sub y} sensing response for CH{sub 4} gas at room temperature was high.

  18. A Kinetic Study of the Gas-Phase Reaction of OH with Br2

    Science.gov (United States)

    Bryukov, Mikhail G.; Dellinger, Barry; Knyazev, Vadim D.

    2011-01-01

    An experimental, temperature-dependent kinetic study of the gas-phase reaction of the hydroxyl radical with molecular bromine (reaction 1) has been performed using a pulsed laser photolysis/pulsed-laser-induced fluorescence technique over a wide temperature range of 297 – 766 K, and at pressures between 6.68 and 40.29 kPa of helium. The experimental rate coefficients for reaction 1 demonstrate no correlation with pressure and exhibit a negative temperature dependence with a slight negative curvature in the Arrhenius plot. A non-linear least-squares fit with two floating parameters of the temperature dependent k1(T) data set using an equation of the form k1(T) = ATn yields the recommended expression k1(T) = 1.85×10−9T − 0.66 cm3 molecule−1 s−1 for the temperature dependence of the reaction 1 rate coefficient. The potential energy surface (PES) of reaction 1 was investigated using quantum chemistry methods. The reaction proceeds through formation of a weakly bound OH···Br2 complex and a PES saddle point with an energy below that of the reactants. Temperature dependence of the reaction rate coefficient was modeled using the RRKM method on the basis of the calculated PES. PMID:16854030

  19. Temperature stabilisation in Fischer–Tropsch reactors using phase change material (PCM)

    International Nuclear Information System (INIS)

    Odunsi, Ademola O.; O'Donovan, Tadhg S.; Reay, David A.

    2016-01-01

    The Fischer–Tropsch (FT) reaction is highly exothermic. The exothermicity combined with a high sensitivity of product selectivity to temperature constitute the main challenges in the design of FT reactors. Temperature control is particularly critical to the process in order to ensure longevity of the catalyst, optimise the product distribution, and to ensure thermo-mechanical reliability of the entire process. The use of encapsulated, Phase Change Material (PCM), in conjunction with a supervisory temperature control mechanism, could help mitigate these challenges and intensify the heat transport from the reactor. A 2D-axisymmetric, pseudo-homogeneous, steady-state model, with the dissipation of the enthalpy of reaction into an isothermal PCM sink, in a wall-cooled, single-tube fixed bed reactor is presented. Effective temperature control shows a shift in thermodynamic equilibrium, favouring the selectivity of longer chain hydrocarbons (C_5_+) to the disadvantage of CH_4 selectivity-a much desired outcome in the hydrocarbon Gas-to-Liquid (GTL) industry. - Highlights: • Phase change material is used to control temperature in a Fischer–Tropsch reactor. • Effective temperature control favours the production of C_5_+ over CH_4. • A 2D-axisymmetric, steady-state model is presented. • The model is verified against similar experimental work done in literature.

  20. Brane-antibrane systems at finite temperature and phase transition near the Hagedorn temperature

    International Nuclear Information System (INIS)

    Hotta, Kenji

    2002-01-01

    In order to study the thermodynamic properties of brane-antibrane systems, we compute the finite temperature effective potential of tachyon T in this system on the basis of boundary string field theory. At low temperature, the minimum of the potential shifts towards T=0 as the temperature increases. In the D9-anti-D9 case, the sign of the coefficient of vertical bar T vertical bar 2 term of the potential changes slightly below the Hagedorn temperature. This means that a phase transition occurs near the Hagedorn temperature. On the other hand, the coefficient is kept negative in the Dp-anti-Dp case with p≤8, and thus a phase transition does not occur. This leads us to the conclusion that only a D9-anti-D9 pair and no other (lower dimensional) brane-antibrane pairs are created near the Hagedorn temperature. We also discuss a phase transition in NS9B-anti-NS9B case as a model of the Hagedorn transition of closed strings. (author)

  1. Photochemical reactions of triplet benzophenone and anthraquinone molecules with amines in the gas phase

    International Nuclear Information System (INIS)

    Zalesskaya, G.A.; Sambor, E.G.; Belyi, N.N.

    2004-01-01

    The intermolecular photoinduced reactions between triplet ketone molecules and aliphatic amines and pyridine are studied by the quenching of delayed fluorescence of anthraquinone and benzophenone vapors by diethylamine, dibutylamine, cyclohexylamine, triethylamine, and pyridine. In the temperature range 423-573 K, the delayed fluorescence quenching rate constants k q are estimated from changes in the decay rate constant and the intensity of delayed fluorescence upon increasing pressure of bath gases. It is ascertained that, in the gas phase, the mixtures under study exhibit both a negative and a positive dependence of k q on temperature, which indicates that some photoinduced reactions do not have activation barriers. The rate constant k q is shown to increase with decreasing ionization potential of the electron donors. This points to the importance of interactions with charge transfer in the photoreaction of triplet ketone molecules with aliphatic amines and pyridine in the gas phase. The relationship between k q and the change in the free energy ΔG upon the photoinduced intermolecular electron transfer, which is the primary stage of the photochemical reaction, is studied. It is shown that the dependence k q (ΔG) for the donor-acceptor pairs under study is described well by the Marcus equation, in which the average vibrational energies of the donor and acceptor are taken into account for the estimate of ΔG

  2. KINETIC TEMPERATURES OF THE DENSE GAS CLUMPS IN THE ORION KL MOLECULAR CORE

    International Nuclear Information System (INIS)

    Wang, K.-S.; Kuan, Y.-J.; Liu, S.-Y.; Charnley, Steven B.

    2010-01-01

    High angular-resolution images of the J = 18 K -17 K emission of CH 3 CN in the Orion KL molecular core were observed with the Submillimeter Array (SMA). Our high-resolution observations clearly reveal that CH 3 CN emission originates mainly from the Orion Hot Core and the Compact Ridge, both within ∼15'' of the warm and dense part of Orion KL. The clumpy nature of the molecular gas in Orion KL can also be readily seen from our high-resolution SMA images. In addition, a semi-open cavity-like kinematic structure is evident at the location between the Hot Core and the Compact Ridge. We performed excitation analysis with the 'population diagram' method toward the Hot Core, IRc7, and the northern part of the Compact Ridge. Our results disclose a non-uniform temperature structure on small scales in Orion KL, with a range of temperatures from 190-620 K in the Hot Core. Near the Compact Ridge, the temperatures are found to be 170-280 K. Comparable CH 3 CN fractional abundances of 10 -8 to 10 -7 are found around both in the Hot Core and the Compact Ridge. Such high abundances require that a hot gas phase chemistry, probably involving ammonia released from grain mantles, plays an important role in forming these CH 3 CN molecules.

  3. Solution-phase synthesis of nanomaterials at low temperature

    Science.gov (United States)

    Zhu, Yongchun; Qian, Yitai

    2009-01-01

    This paper reviews the solution-phase synthesis of nanoparticles via some routes at low temperatures, such as room temperature route, wave-assisted synthesis (γ-irradiation route and sonochemical route), directly heating at low temperatures, and hydrothermal/solvothermal methods. A number of strategies were developed to control the shape, the size, as well as the dispersion of nanostructures. Using diethylamine or n-butylamine as solvent, semiconductor nanorods were yielded. By the hydrothermal treatment of amorphous colloids, Bi2S3 nanorods and Se nanowires were obtained. CdS nanowires were prepared in the presence of polyacrylamide. ZnS nanowires were obtained using liquid crystal. The polymer poly (vinyl acetate) tubule acted as both nanoreactor and template for the CdSe nanowire growth. Assisted by the surfactant of sodium dodecyl benzenesulfonate (SDBS), nickel nanobelts were synthesized. In addition, Ag nanowires, Te nanotubes and ZnO nanorod arrays could be prepared without adding any additives or templates.

  4. Thermal analysis of high temperature phase transformations of steel

    Directory of Open Access Journals (Sweden)

    K. Gryc

    2013-10-01

    Full Text Available The series of thermal analysis measurements of high temperature phase transformations of real grain oriented electrical steel grade under conditions of two analytical devices (Netzsch STA 449 F3 Jupiter; Setaram SETSYS 18TM were carried out. Two thermo analytical methods were used (DTA and Direct thermal analysis. The different weight of samples was used (200 mg, 23 g. The stability/reproducibility of results obtained by used methodologies was verified. The liquidus and solidus temperatures for close to equilibrium conditions and during cooling (20 °C/min; 80 °C/min were determined. It has been shown that the higher cooling rate lead to lower temperatures for start and end of solidification process of studied steel grade.

  5. Effects of the liquid-gas phase transition and cluster formation on the symmetry energy

    International Nuclear Information System (INIS)

    Typel, S.; Wolter, H.H.; Roepke, G.; Blaschke, D.

    2014-01-01

    Various definitions of the symmetry energy are introduced for nuclei, dilute nuclear matter below saturation density and stellar matter, which is found in compact stars or core-collapse supernovae. The resulting differences are exemplified by calculations in a theoretical approach based on a generalized relativistic density functional for dense matter. It contains nucleonic clusters as explicit degrees of freedom with medium-dependent properties that are derived for light clusters from a quantum statistical approach. With such a model the dissolution of clusters at high densities can be described. The effects of the liquid-gas phase transition in nuclear matter and of cluster formation in stellar matter on the density dependence of the symmetry energy are studied for different temperatures. It is observed that correlations and the formation of inhomogeneous matter at low densities and temperatures causes an increase of the symmetry energy as compared to calculations assuming a uniform uncorrelated spatial distribution of constituent baryons and leptons. (orig.)

  6. Structural instabilities of high temperature alloys and their use in advanced high temperature gas cooled reactors

    International Nuclear Information System (INIS)

    Schuster, H.; Ennis, P.J.; Nickel, H.; Czyrska-Filemonowicz, A.

    1989-01-01

    High-temperature, iron-nickel and nickel based alloys are the candidate heat exchanger materials for advanced high temperature gas-cooled reactors supplying process heat for coal gasification, where operation temperatures can reach 850-950 deg. C and service lives of more than 100,000 h are necessary. In the present paper, typical examples of structural changes which occur in two representative alloys (Alloy 800 H, Fe-32Ni-20Cr and Alloy 617, Ni-22Cr-12Co-9Mo-1Al) during high temperature exposure will be given and the effects on the creep rupture properties discussed. At service temperatures, precipitation of carbides occurs which has a significant effect on the creep behaviour, especially in the early stages of creep when the precipitate particles are very fine. During coarsening of the carbides, carbides at grain boundaries restrict grain boundary sliding which retards the development of creep damage. In the service environments, enhanced carbide precipitation may occur due to the ingress of carbon from the environment (carburization). Although the creep rate is not adversely affected, the ductility of the carburized material at low and intermediate temperatures is very low. During simulated service exposures, the formation of surface corrosion scales, the precipitation of carbides and the formation of internal oxides below the surface leads to depletion of the matrix in the alloying elements involved in the corrosion processes. In thin-walled tubes the depletion of Cr due to Cr 2 O 3 formation on the surface can lead to a loss of creep strength. An additional depletion effect resulting from environmental-metal reactions is the loss of carbon (decarburization) which may occur in specific environments. The compositions of the cooling gases which decarburize the material have been determined; they are to be avoided during reactor operation

  7. Temperature measurements in fluid flows (eventually reactive, multi-phase...) using optical methods; Mesure des temperatures dans les ecoulements (eventuellement reactifs, multiphasiques...) par methodes optiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-31

    This conference day was organized by the `radiations` section of the French association of thermal engineers. This book of proceedings contains 8 papers entitled: `simultaneous temperature and NO concentration measurements in a hydrogen-air turbulent flame`; `application of iodine laser induced fluorescence to temperature, pressure and velocity measurements`; `Doppler phase measurement of refractive index and temperature`; `experimental and numerical study of temperature fields of particulates in plasma jets`; `measurement and determination of temperatures and concentrations of hot exhaust gases with FTIR emission spectroscopy`; `combustion control in gas turbines using CO{sub 2} emission spectroscopy`; `analysis of gases temperature fields and particulate jets. Application to hydrogen-air, kerosene stato-reactors and to solid propellant jets`; `restitution of temperature and species profiles in pre-mixing flames by inversion of transmission and IR emission data. (J.S.)

  8. Temperature measurements in fluid flows (eventually reactive, multi-phase...) using optical methods; Mesure des temperatures dans les ecoulements (eventuellement reactifs, multiphasiques...) par methodes optiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This conference day was organized by the `radiations` section of the French association of thermal engineers. This book of proceedings contains 8 papers entitled: `simultaneous temperature and NO concentration measurements in a hydrogen-air turbulent flame`; `application of iodine laser induced fluorescence to temperature, pressure and velocity measurements`; `Doppler phase measurement of refractive index and temperature`; `experimental and numerical study of temperature fields of particulates in plasma jets`; `measurement and determination of temperatures and concentrations of hot exhaust gases with FTIR emission spectroscopy`; `combustion control in gas turbines using CO{sub 2} emission spectroscopy`; `analysis of gases temperature fields and particulate jets. Application to hydrogen-air, kerosene stato-reactors and to solid propellant jets`; `restitution of temperature and species profiles in pre-mixing flames by inversion of transmission and IR emission data. (J.S.)

  9. Use of thorium for high temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Guimarães, Cláudio Q., E-mail: claudio_guimaraes@usp.br [Universidade de São Paulo (USP), SP (Brazil). Instituto de Física; Stefani, Giovanni L. de, E-mail: giovanni.stefani@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Santos, Thiago A. dos, E-mail: thiago.santos@ufabc.edu.br [Universidade Federal do ABC (UFABC), Santo André, SP (Brazil)

    2017-07-01

    The HTGR ( High Temperature Gas-cooled Reactor) is a 4{sup th} generation nuclear reactor and is fuelled by a mixture of graphite and fuel-bearing microspheres. There are two competitive designs of this reactor type: The German “pebble bed” mode, which is a system that uses spherical fuel elements, containing a graphite-and-fuel mixture coated in a graphite shell; and the American version, whose fuel is loaded into precisely located graphite hexagonal prisms that interlock to create the core of the vessel. In both variants, the coolant consists of helium pressurised. The HTGR system operates most efficiently with the thorium fuel cycle, however, so relatively little development has been carried out in this country on that cycle for HTGRs. In the Nuclear Engineering Centre of IPEN (Instituto de Pesquisas Energéticas e Nucleares), a study group is being formed linked to thorium reactors, whose proposal is to investigate reactors using thorium for {sup 233}U production and rejects burning. The present work intends to show the use of thorium in HTGRs, their advantages and disadvantages and its feasibility. (author)

  10. Inherently safe high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Yamada, Masao; Hayakawa, Hitoshi

    1987-01-01

    It is recognized in general that High Temperature Gas-cooled Reactors have remarkable characteristics in inherent safety and it is well known that credits of the time margin have been admitted for accident evaluation in the licensing of the currently operating prototype HTGRs (300 MWe class). Recently, more inherently safe HTGRs are being developed in various countries and drawing attention on their possibility for urban siting. The inherent safety characteristics of these HTRs differ each other depending on their design philosophy and on the features of the components/structures which constitute the plant. At first, the specific features/characteristics of the elemental components/structures of the HTRs are explained one by one and then the overall safety features/characteristics of these HTR plants are explained in connection with their design philosophy and combination of the elemental features. Taking the KWU/Interatom Modular Reactor System as an example, the particular design philosophy and safety characteristics of the inherently safe HTR are explained with a result of preliminary evaluation on the possibility of siting close to densely populated area. (author)

  11. A New Approach to Modeling Densities and Equilibria of Ice and Gas Hydrate Phases

    Science.gov (United States)

    Zyvoloski, G.; Lucia, A.; Lewis, K. C.

    2011-12-01

    The Gibbs-Helmholtz Constrained (GHC) equation is a new cubic equation of state that was recently derived by Lucia (2010) and Lucia et al. (2011) by constraining the energy parameter in the Soave form of the Redlich-Kwong equation to satisfy the Gibbs-Helmholtz equation. The key attributes of the GHC equation are: 1) It is a multi-scale equation because it uses the internal energy of departure, UD, as a natural bridge between the molecular and bulk phase length scales. 2) It does not require acentric factors, volume translation, regression of parameters to experimental data, binary (kij) interaction parameters, or other forms of empirical correlations. 3) It is a predictive equation of state because it uses a database of values of UD determined from NTP Monte Carlo simulations. 4) It can readily account for differences in molecular size and shape. 5) It has been successfully applied to non-electrolyte mixtures as well as weak and strong aqueous electrolyte mixtures over wide ranges of temperature, pressure and composition to predict liquid density and phase equilibrium with up to four phases. 6) It has been extensively validated with experimental data. 7) The AAD% error between predicted and experimental liquid density is 1% while the AAD% error in phase equilibrium predictions is 2.5%. 8) It has been used successfully within the subsurface flow simulation program FEHM. In this work we describe recent extensions of the multi-scale predictive GHC equation to modeling the phase densities and equilibrium behavior of hexagonal ice and gas hydrates. In particular, we show that radial distribution functions, which can be determined by NTP Monte Carlo simulations, can be used to establish correct standard state fugacities of 1h ice and gas hydrates. From this, it is straightforward to determine both the phase density of ice or gas hydrates as well as any equilibrium involving ice and/or hydrate phases. A number of numerical results for mixtures of N2, O2, CH4, CO2, water

  12. Gas-phase thermal dissociation of uranium hexafluoride: Investigation by the technique of laser-powered homogeneous pyrolysis

    International Nuclear Information System (INIS)

    Bostick, W.D.; McCulla, W.H.; Trowbridge, L.D.

    1987-04-01

    In the gas-phase, uranium hexafluoride decomposes thermally in a quasi-unimolecular reaction to yield uranium pentafluoride and atomic fluorine. We have investigated this reaction using the relatively new technique of laser-powered homogeneous pyrolysis, in which a megawatt infrared laser is used to generate short pulses of high gas temperatures under strictly homogeneous conditions. In our investigation, SiF 4 is used as the sensitizer to absorb energy from a pulsed CO 2 laser and to transfer this energy by collisions with the reactant gas. Ethyl chloride is used as an external standard ''thermometer'' gas to permit estimation of the unimolecular reaction rate constants by a relative rate approach. When UF 6 is the reactant, CF 3 Cl is used as reagent to trap atomic fluorine reaction product, forming CF 4 as a stable indicator which is easily detected by infrared spectroscopy. Using these techniques, we estimate the UF 6 unimolecular reaction rate constant near the high-pressure limit. In the Appendix, we describe a computer program, written for the IBM PC, which predicts unimolecular rate constants based on the Rice-Ramsperger-Kassel theory. Parameterization of the theoretical model is discussed, and recommendations are made for ''appropriate'' input parameters for use in predicting the gas-phase unimolecular reaction rate for UF 6 as a function of temperature and gas composition and total pressure. 85 refs., 17 figs., 14 tabs

  13. Infrared temperature and gas measurements at the Haderslev power and heat plan[Denmark]; Infraroede temperatur- og gasmaelinger Haderslev Kraftvarmevaerk

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Soennik

    2007-04-15

    Report describe results from a two week measurement campaign at Haderslev Kraftvarmevaerk in 2006 as a part of PSO-project 5727 'On-line optimization of waste incinerators'. Non-contact gas temperature and gas composition was measured simultaneously with a FTIR spectrometer coupled to a water-cooled fiber-optic probe. Gas temperature and H{sub 2}O, CO{sub 2}, CO, C{sub x}H{sub y} and HCl concentrations was extracted from measured spectra of emitted thermal radiation from gas slab over a 25 cm path. Measurements where performed in different positions to obtain a overview of flow behavior and conditions during stable operation and during a step in operation conditions, e.g. changing combustion air flows. Furthermore, surface temperature of grate was monitored with a thermal camera and a cross stack reference measurement on hot outlet gas was performed with a FTIR spectrometer. (au)

  14. Red soil as a regenerable sorbent for high temperature removal of hydrogen sulfide from coal gas

    International Nuclear Information System (INIS)

    Ko, T.-H.; Chu Hsin; Lin, H.-P.; Peng, C.-Y.

    2006-01-01

    In this study, hydrogen sulfide (H 2 S) was removed from coal gas by red soil under high temperature in a fixed-bed reactor. Red soil powders were collected from the northern, center and southern of Taiwan. They were characterized by XRPD, porosity analysis and DCB chemical analysis. Results show that the greater sulfur content of LP red soils is attributed to the higher free iron oxides and suitable sulfidation temperature is around 773 K. High temperature has a negative effect for use red soil as a desulfurization sorbent due to thermodynamic limitation in a reduction atmosphere. During 10 cycles of regeneration, after the first cycle the red soil remained stable with a breakthrough time between 31 and 36 min. Hydrogen adversely affects sulfidation reaction, whereas CO exhibits a positive effect due to a water-shift reaction. COS was formed during the sulfidation stage and this was attributed to the reaction of H 2 S and CO. Results of XRPD indicated that, hematite is the dominant active species in fresh red soil and iron sulfide (FeS) is a product of the reaction between hematite and hydrogen sulfide in red soils. The spinel phase FeAl 2 O 4 was found during regeneration, moreover, the amount of free iron oxides decreased after regeneration indicating the some of the free iron oxide formed a spinel phase, further reducting the overall desulfurization efficiency

  15. High Temperature Gas-to-Gas Heat Exchanger Based on a Solid Intermediate Medium

    Directory of Open Access Journals (Sweden)

    R. Amirante

    2014-04-01

    Full Text Available This paper proposes the design of an innovative high temperature gas-to-gas heat exchanger based on solid particles as intermediate medium, with application in medium and large scale externally fired combined power plants fed by alternative and dirty fuels, such as biomass and coal. An optimization procedure, performed by means of a genetic algorithm combined with computational fluid dynamics (CFD analysis, is employed for the design of the heat exchanger: the goal is the minimization of its size for an assigned heat exchanger efficiency. Two cases, corresponding to efficiencies equal to 80% and 90%, are considered. The scientific and technical difficulties for the realization of the heat exchanger are also faced up; in particular, this work focuses on the development both of a pressurization device, which is needed to move the solid particles within the heat exchanger, and of a pneumatic conveyor, which is required to deliver back the particles from the bottom to the top of the plant in order to realize a continuous operation mode. An analytical approach and a thorough experimental campaign are proposed to analyze the proposed systems and to evaluate the associated energy losses.

  16. Phase transition temperatures of Sn-Zn-Al system and their comparison with calculated phase diagrams

    Czech Academy of Sciences Publication Activity Database

    Smetana, B.; Zlá, S.; Kroupa, Aleš; Žaludová, M.; Drápala, J.; Burkovič, R.; Petlák, D.

    2012-01-01

    Roč. 110, č. 1 (2012), s. 369-378 ISSN 1388-6150 R&D Projects: GA MŠk(CZ) OC08053 Institutional support: RVO:68081723 Keywords : Sn-Zn-Al system * DTA * phase transition temperatures Subject RIV: BJ - Thermodynamics Impact factor: 1.982, year: 2012

  17. Phase Transformations and Phase Equilibria in the Fe-N System at Temperatures below 573 K

    DEFF Research Database (Denmark)

    Malinov, S.; Böttger, A.J.; Mittemeijer, E.J.

    2001-01-01

    The phase transformations of homogeneous Fe-N alloys of nitrogen contents from 10 to 26 at. pct were investigated by means of X-ray diffraction analysis upon aging in the temperature range from 373 to 473 K. It was found that precipitation of alpha double prime-Fe16N2 below 443 K does not only oc...

  18. Numerical simulation for gas-liquid two-phase flow in pipe networks

    International Nuclear Information System (INIS)

    Li Xiaoyan; Kuang Bo; Zhou Guoliang; Xu Jijun

    1998-01-01

    The complex pipe network characters can not directly presented in single phase flow, gas-liquid two phase flow pressure drop and void rate change model. Apply fluid network theory and computer numerical simulation technology to phase flow pipe networks carried out simulate and compute. Simulate result shows that flow resistance distribution is non-linear in two phase pipe network

  19. On the second-order temperature jump coefficient of a dilute gas

    Science.gov (United States)

    Radtke, Gregg A.; Hadjiconstantinou, N. G.; Takata, S.; Aoki, K.

    2012-09-01

    We use LVDSMC simulations to calculate the second-order temperature jump coefficient for a dilute gas whose temperature is governed by the Poisson equation with a constant forcing term. Both the hard sphere gas and the BGK model of the Boltzmann equation are considered. Our results show that the temperature jump coefficient is different from the well known linear and steady case where the temperature is governed by the homogeneous heat conduction (Laplace) equation.

  20. Cation disorder and gas phase equilibrium in an YBa 2Cu 3O 7- x superconducting thin film

    Science.gov (United States)

    Shin, Dong Chan; Ki Park, Yong; Park, Jong-Chul; Kang, Suk-Joong L.; Yong Yoon, Duk

    1997-02-01

    YBa 2Cu 3O 7- x superconducting thin films have been grown by in situ off-axis rf sputtering with varying oxygen pressure, Ba/Y ratio in a target, and deposition temperature. With decreasing oxygen pressure, increasing Ba/Y ratio, increasing deposition temperature, the critical temperature of the thin films decreased and the c-axis length increased. The property change of films with the variation of deposition variables has been explained by a gas phase equilibrium of the oxidation reaction of Ba and Y. Applying Le Chatelier's principle to the oxidation reaction, we were able to predict the relation of deposition variables and the resultant properties of thin films; the prediction was in good agreement with the experimental results. From the relation between the three deposition variables and gas phase equilibrium, a 3-dimensional processing diagram was introduced. This diagram has shown that the optimum deposition condition of YBa 2Cu 3O 7- x thin films is not a fixed point but can be varied. The gas phase equilibrium can also be applied to the explanation of previous results that good quality films were obtained at low deposition temperature using active species, such as O, O 3, and O 2+.

  1. Thermal-hydraulic Analysis of High-temperature Cover Gas Region in STELLA-2

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Youngchul; Son, Seok-Kwon; Yoon, Jung; Eoh, Jaehyuk; Jeong, Ji-Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The first phase of the program was focused on the key sodium component tests, and the second one has been concentrated on the sodium thermal-hydraulic integral effect test (STELLA-2). Based on its platform, simulation of the PGSFR transient will be made to evaluate plant dynamic behaviors as well as to demonstrate decay heat removal performance. Therefore, most design features of PGSFR have been modeled in STELLA-2 as closely as possible. The similarities of temperature and pressure between the model (STELLA-2) and the prototype (PGSFR) have been well preserved to reflect thermal-hydraulic behavior with natural convection as well as heat transfer between structure and sodium coolant inside the model reactor vessel (RV). For this reason, structural integrity of the entire test section should be confirmed as in the prototype. In particular, since the model reactor head in STELLA-2 supports key components and internal structures, its structural integrity exposed to high-temperature cover gas region should be confirmed. In order to reduce thermal radiation heat transfer from the hot sodium pool during normal operation, a dedicated insulation layer has been installed at the downward surface of the model reactor head to prevent direct heat flux from the sodium free surface at 545 .deg. C. Three-dimensional conjugate heat transfer analyses for the full-shape geometry of the upper part of the model reactor vessel in STELLA-2 have been carried out. Based on the results, steady-state temperature distributions in the cover gas region and the model reactor head itself have been obtained and the design requirement in temperature of the model reactor head has been newly proposed to be 350 .deg. C. For any elevated temperature conditions in STELLA-2, it was confirmed that the model reactor head generally satisfied the requirement. The CFD database constructed from this study will be used to optimize geometric parameters such as thicknesses and/or types of the insulator.

  2. GAS-PHASE CHEMISTRY OF THE CYANATE ION, OCN−

    International Nuclear Information System (INIS)

    Cole, Callie A.; Wang, Zhe-Chen; Bierbaum, Veronica M.; Snow, Theodore P.

    2015-01-01

    Cyanate (OCN − ) is the only ion to date whose presence has been confirmed in the icy mantles that coat interstellar dust grains. Understanding the chemical behavior of cyanate at a fundamental level is therefore integral to the advancement of astrochemistry. We seek to unravel the chemistry of this intriguing anion through a combination of gas-phase experiments and theoretical explorations. Our approach is twofold: first, employing a flowing afterglow-selected ion flow tube apparatus, the reactions between OCN − and three of the most abundant atomic species in the interstellar medium, hydrogen, nitrogen, and oxygen, are examined. Hydrogen atoms readily react by associative detachment, but the remarkable stability of OCN − does not give rise to an observable reaction with either nitrogen or oxygen atoms. To explain these results, the potential energy surfaces of several reactions are investigated at the B3LYP/6-311++G(d,p) level of theory. Second, collision induced dissociation experiments involving deprotonated uracil, thymine, and cytosine in an ion trap mass spectrometer reveal an interesting connection between these pyrimidine nucleobase anions and OCN − . Theoretical calculations at the B3LYP/6-311++G(d,p) level of theory are performed to delineate the mechanisms of dissociation and explore the possible role of OCN − as a biomolecule precursor

  3. Gas phase reactions of nitrogen oxides with olefins

    Energy Technology Data Exchange (ETDEWEB)

    Altshuller, A P; Cohen, I

    1961-01-01

    The nature of the condensation products formed in the gas phase reactions of nitrogen dioxide and nitric oxide with pentene-1, 2-methylbutene-2, and 2-methylbutadiene-1,3 was investigated. The reactants were combined at partial pressures in the range of 0.1 to 2.5 mm with the total pressure at one atmosphere. The products were determined by infrared and ultraviolet spectroscopy and colorimetry. The condensates included primary and secondary nitro compounds and alkyl nitrates. Strong hydroxyl and single bond carbon to oxygen stretching vibrations indicate the presence of either nitroalcohols or simple aliphatic alcohols formed through oxidation reactions. Carbonyl stretching frequencies observable in some of the reactions support the conclusion that a portion of the reactants disappear by oxidation rather than by nitration processes. The available results do not indicate the presence of appreciable amounts of tert.-nitro compounds, conjugated nitro-olefins, or gem-dinitro-alkanes. The reactivities of the olefins with the nitrogen oxides are in the decreasing order: 2-methyl-butadiene-1,3, 2-methylbutene-2, pentene-1. 20 references.

  4. Numerical simulation of gas-liquid two-phase flow and convective heat transfer in a micro tube

    International Nuclear Information System (INIS)

    Fukagata, Koji; Kasagi, Nobuhide; Ua-arayaporn, Poychat; Himeno, Takehiro

    2007-01-01

    Numerical simulation of an air and water two-phase flow in a 20 μm ID tube is carried out. A focus is laid upon the flow and heat transfer characteristics in bubble-train flows. An axisymmetric two-dimensional flow is assumed. The finite difference method is used to solve the governing equations, while the level set method is adopted for capturing the interface of gas and liquid. In each simulation, the mean pressure gradient and the wall heat flux are kept constant. The simulation is repeated under different conditions of pressure gradient and void fraction. The superficial Reynolds numbers of gas and liquid phases studied are 0.34-13 and 16-490, respectively, and the capillary number is 0.0087-0.27. Regardless of the flow conditions, the gas-phase velocity is found approximately 1.2 times higher than the liquid-phase velocity. This is in accordance with the Armand correlation valid for two-phase flows in macro-sized tubes. The two-phase friction coefficient is found to be scaled with the Reynolds number based on the effective viscosity of the Einstein type. The computed wall temperature distribution is qualitatively similar to that observed experimentally in a mini channel. The local Nusselt number beneath the bubble is found notably higher than that of single-phase flow

  5. CFD Analysis of the Fuel Temperature in High Temperature Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    In, W. K.; Chun, T. H.; Lee, W. J.; Chang, J. H.

    2005-01-01

    High temperature gas-cooled reactors (HTGR) have received a renewed interest as potential sources for future energy needs, particularly for a hydrogen production. Among the HTGRs, the pebble bed reactor (PBR) and a prismatic modular reactor (PMR) are considered as the nuclear heat source in Korea's nuclear hydrogen development and demonstration project. PBR uses coated fuel particles embedded in spherical graphite fuel pebbles. The fuel pebbles flow down through the core during an operation. PMR uses graphite fuel blocks which contain cylindrical fuel compacts consisting of the fuel particles. The fuel blocks also contain coolant passages and locations for absorber and control material. The maximum fuel temperature in the core hot spot is one of the important design parameters for both PBR and PMR. The objective of this study is to predict the fuel temperature distributions in PBR and PMR using a computational fluid dynamics(CFD) code, CFX-5. The reference reactor designs used in this analysis are PBMR400 and GT-MHR600

  6. Gas adsorption/absorption heat switch, phase 1

    Science.gov (United States)

    Chan, C. K.

    1987-01-01

    The service life and/or reliability of far-infrared sensors on surveillance satellites is presently limited by the cryocooler. The life and/or reliability, however, can be extended by using redundant cryocoolers. To reduce parasitic heat leak, each stage of the inactive redundant cryocooler must be thermally isolated from the optical system, while each stage of the active cryocooler must be thermally connected to the system. The thermal break or the thermal contact can be controlled by heat switches. Among different physical mechanisms for heat switching, mechanically activated heat switches tend to have low reliability and, furthermore, require a large contact force. Magnetoresistive heat switches are, except at very low temperatures, of very low efficiency. Heat switches operated by the heat pipe principle usually require a long response time. A sealed gas gap heat switch operated by an adsorption pump has no mechanical motion and should provide the reliability and long lifetime required in long-term space missions. Another potential application of a heat switch is the thermal isolation of the optical plane during decontamination.

  7. Electron temperature and density measurement of tungsten inert gas arcs with Ar-He shielding gas mixture

    Science.gov (United States)

    Kühn-Kauffeldt, M.; Marques, J.-L.; Forster, G.; Schein, J.

    2013-10-01

    The diagnostics of atmospheric welding plasma is a well-established technology. In most cases the measurements are limited to processes using pure shielding gas. However in many applications shielding gas is a mixture of various components including metal vapor in gas metal arc welding (GMAW). Shielding gas mixtures are intentionally used for tungsten inert gas (TIG) welding in order to improve the welding performance. For example adding Helium to Argon shielding gas allows the weld geometry and porosity to be influenced. Yet thermal plasmas produced with gas mixtures or metal vapor still require further experimental investigation. In this work coherent Thomson scattering is used to measure electron temperature and density in these plasmas, since this technique allows independent measurements of electron and ion temperature. Here thermal plasmas generated by a TIG process with 50% Argon and 50% Helium shielding gas mixture have been investigated. Electron temperature and density measured by coherent Thomson scattering have been compared to the results of spectroscopic measurements of the plasma density using Stark broadening of the 696.5 nm Argon spectral line. Further investigations of MIG processes using Thomson scattering technique are planned.

  8. Electron temperature and density measurement of tungsten inert gas arcs with Ar-He shielding gas mixture

    International Nuclear Information System (INIS)

    Kühn-Kauffeldt, M; Marques, J-L; Forster, G; Schein, J

    2013-01-01

    The diagnostics of atmospheric welding plasma is a well-established technology. In most cases the measurements are limited to processes using pure shielding gas. However in many applications shielding gas is a mixture of various components including metal vapor in gas metal arc welding (GMAW). Shielding gas mixtures are intentionally used for tungsten inert gas (TIG) welding in order to improve the welding performance. For example adding Helium to Argon shielding gas allows the weld geometry and porosity to be influenced. Yet thermal plasmas produced with gas mixtures or metal vapor still require further experimental investigation. In this work coherent Thomson scattering is used to measure electron temperature and density in these plasmas, since this technique allows independent measurements of electron and ion temperature. Here thermal plasmas generated by a TIG process with 50% Argon and 50% Helium shielding gas mixture have been investigated. Electron temperature and density measured by coherent Thomson scattering have been compared to the results of spectroscopic measurements of the plasma density using Stark broadening of the 696.5 nm Argon spectral line. Further investigations of MIG processes using Thomson scattering technique are planned

  9. Homolytic iodination and nitration of some benzene derivatives in the gas phase

    International Nuclear Information System (INIS)

    Vonk, W.F.M.

    1980-01-01

    Two gas phase reactions, involving the iodination and nitration of benzene derivatives, are described. The experimental techniques of the apparatus and the methods used are outlined. The kinetic H/D isotope effect in the gas phase nitration of benzene with NO 2 is determined. (C.F.)

  10. A direct comparison of protein structure in the gas and solution phase: the Trp-cage

    DEFF Research Database (Denmark)

    Patriksson, Alexandra; Adams, Christopher M; Kjeldsen, Frank

    2007-01-01

    Molecular dynamics simulations of zwitterions of the Trp-cage protein in the gas phase show that the most stable ion in vacuo has preserved the charge locations acquired in solution. A direct comparison of the gas and solution-phase structures reveals that, despite the similarity in charge location...

  11. Critical point of gas-liquid type phase transition and phase equilibrium functions in developed two-component plasma model.

    Science.gov (United States)

    Butlitsky, M A; Zelener, B B; Zelener, B V

    2014-07-14

    A two-component plasma model, which we called a "shelf Coulomb" model has been developed in this work. A Monte Carlo study has been undertaken to calculate equations of state, pair distribution functions, internal energies, and other thermodynamics properties. A canonical NVT ensemble with periodic boundary conditions was used. The motivation behind the model is also discussed in this work. The "shelf Coulomb" model can be compared to classical two-component (electron-proton) model where charges with zero size interact via a classical Coulomb law. With important difference for interaction of opposite charges: electrons and protons interact via the Coulomb law for large distances between particles, while interaction potential is cut off on small distances. The cut off distance is defined by an arbitrary ɛ parameter, which depends on system temperature. All the thermodynamics properties of the model depend on dimensionless parameters ɛ and γ = βe(2)n(1/3) (where β = 1/kBT, n is the particle's density, kB is the Boltzmann constant, and T is the temperature) only. In addition, it has been shown that the virial theorem works in this model. All the calculations were carried over a wide range of dimensionless ɛ and γ parameters in order to find the phase transition region, critical point, spinodal, and binodal lines of a model system. The system is observed to undergo a first order gas-liquid type phase transition with the critical point being in the vicinity of ɛ(crit) ≈ 13(T(*)(crit) ≈ 0.076), γ(crit) ≈ 1.8(v(*)(crit) ≈ 0.17), P(*)(crit) ≈ 0.39, where specific volume v* = 1/γ(3) and reduced temperature T(*) = ɛ(-1).

  12. Coated particle fuel for high temperature gas cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, Karl; Nabielek, Heinz [Research Center Julich (FZJ), Julich (Germany); Kendall, James M. [Global Virtual L1c, Prescott (United States)

    2007-10-15

    applications at 850-900 .deg. C and for process heat/hydrogen generation applications with 950 .deg. C outlet temperatures. There is a clear set of standards for modern high quality fuel in terms of low levels of heavy metal contamination, manufacture-induced particle defects during fuel body and fuel element making, irradiation/accident induced particle failures and limits on fission product release from intact particles. While gas-cooled reactor design is still open-ended with blocks for the prismatic and spherical fuel elements for the pebble-bed design, there is near worldwide agreement on high quality fuel: a 500 {mu}m diameter UO{sub 2} kernel of 10% enrichment is surrounded by a 100 {mu}m thick sacrificial buffer layer to be followed by a dense inner pyrocarbon layer, a high quality silicon carbide layer of 35 {mu}m thickness and theoretical density and another outer pyrocarbon layer. Good performance has been demonstrated both under operational and under accident conditions, i.e. to 10% FIMA and maximum 1600 .deg. C afterwards. And it is the wide-ranging demonstration experience that makes this particle superior. Recommendations are made for further work: 1. Generation of data for presently manufactured materials, e.g. SiC strength and strength distribution, PyC creep and shrinkage and many more material data sets. 2. Renewed start of irradiation and accident testing of modern coated particle fuel. 3. Analysis of existing and newly created data with a view to demonstrate satisfactory performance at burnups beyond 10% FIMA and complete fission product retention even in accidents that go beyond 1600 .deg. C for a short period of time. This work should proceed at both national and international level.

  13. Coated particle fuel for high temperature gas cooled reactors

    International Nuclear Information System (INIS)

    Verfondern, Karl; Nabielek, Heinz; Kendall, James M.

    2007-01-01

    and for process heat/hydrogen generation applications with 950 .deg. C outlet temperatures. There is a clear set of standards for modern high quality fuel in terms of low levels of heavy metal contamination, manufacture-induced particle defects during fuel body and fuel element making, irradiation/accident induced particle failures and limits on fission product release from intact particles. While gas-cooled reactor design is still open-ended with blocks for the prismatic and spherical fuel elements for the pebble-bed design, there is near worldwide agreement on high quality fuel: a 500 μm diameter UO 2 kernel of 10% enrichment is surrounded by a 100 μm thick sacrificial buffer layer to be followed by a dense inner pyrocarbon layer, a high quality silicon carbide layer of 35 μm thickness and theoretical density and another outer pyrocarbon layer. Good performance has been demonstrated both under operational and under accident conditions, i.e. to 10% FIMA and maximum 1600 .deg. C afterwards. And it is the wide-ranging demonstration experience that makes this particle superior. Recommendations are made for further work: 1. Generation of data for presently manufactured materials, e.g. SiC strength and strength distribution, PyC creep and shrinkage and many more material data sets. 2. Renewed start of irradiation and accident testing of modern coated particle fuel. 3. Analysis of existing and newly created data with a view to demonstrate satisfactory performance at burnups beyond 10% FIMA and complete fission product retention even in accidents that go beyond 1600 .deg. C for a short period of time. This work should proceed at both national and international level

  14. Experimental optimization of temperature distribution in the hot-gas duct through the installation of internals in the hot-gas plenum of a high-temperature reactor

    International Nuclear Information System (INIS)

    Henssen, J.; Mauersberger, R.

    1990-01-01

    The flow conditions in the hot-gas plenum and in the adjacent hot-gas ducts and hot-gas pipes for the high-temperature reactor project PNP-1000 (nuclear process heat project for 1000 MW thermal output) have been examined experimentally. The experiments were performed in a closed loop in which the flow model to be analyzed, representing a 60deg sector of the core bottom of the PNP-1000 with connecting hot-gas piping and diverting arrangements, was installed. The model scale was approx. 1:5.6. The temperature and flow velocity distribution in the hot-gas duct was registered by means of 14 dual hot-wire flowmeters. Through structural changes and/or the installation of internals into the hot-gas plenum of the core bottom offering little flow resistance coolant gas temperature differentials produced in the core could be reduced to such an extent that a degree of mixture amounting to over 80% was achieved at the entrance of the connected heat exchanger systems. Thereby the desired goal of an adequate degree of mixture of the hot gas involving an acceptable pressure loss was reached. (orig.)

  15. Phase Stability Diagrams for High Temperature Corrosion Processes

    Directory of Open Access Journals (Sweden)

    J. J. Ramos-Hernandez

    2013-01-01

    Full Text Available Corrosion phenomena of metals by fused salts depend on chemical composition of the melt and environmental conditions of the system. Detail knowledge of chemistry and thermodynamic of aggressive species formed during the corrosion process is essential for a better understanding of materials degradation exposed to high temperature. When there is a lack of kinetic data for the corrosion processes, an alternative to understand the thermodynamic behavior of chemical species is to utilize phase stability diagrams. Nowadays, there are several specialized software programs to calculate phase stability diagrams. These programs are based on thermodynamics of chemical reactions. Using a thermodynamic data base allows the calculation of different types of phase diagrams. However, sometimes it is difficult to have access to such data bases. In this work, an alternative way to calculate phase stability diagrams is presented. The work is exemplified in the Na-V-S-O and Al-Na-V-S-O systems. This system was chosen because vanadium salts is one of the more aggressive system for all engineering alloys, especially in those processes where fossil fuels are used.

  16. The low-temperature phase of morpholinium tetrafluoroborate

    Directory of Open Access Journals (Sweden)

    Tadeusz Lis

    2008-04-01

    Full Text Available The crystal structure of the low-temperature form of the title compound, C4H10NO+·BF4−, was determined at 80 K. Two reversible phase transitions, at 158/158 and 124/126 K (heating/cooling, were detected by differential scanning calorimetry for this compound, and the sequence of phase transitions was subsequently confirmed by single-crystal X-ray diffraction experiments. The asymmetric unit at 80 K consists of three BF4− tetrahedral anions and three morpholinium cations (Z′ = 3. Hydrogen-bonded morpholinium cations form chains along the [100] direction. The BF4− anions are connected to these chains by N—H...F hydrogen bonds. In the crystal structure, two different layers perpendicular to the [001] direction can be distinguished, which differ in the geometry of the hydrogen bonds between cationic and anionic species.

  17. Importance of the gas phase role to the prediction of energetic material behavior: An experimental study

    International Nuclear Information System (INIS)

    Ali, A.N.; Son, S.F.; Asay, B.W.; Sander, R.K.

    2005-01-01

    Various thermal (radiative, conductive, and convective) initiation experiments are performed to demonstrate the importance of the gas phase role in combustion modeling of energetic materials (EM). A previously published condensed phase model that includes a predicted critical irradiance above which ignition is not possible is compared to experimental laser ignition results for octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and 2,4,6-trinitrotoluene (TNT). Experimental results conflict with the predicted critical irradiance concept. The failure of the model is believed to result from a misconception about the role of the gas phase in the ignition process of energetic materials. The model assumes that ignition occurs at the surface and that evolution of gases inhibits ignition. High speed video of laser ignition, oven cook-off and hot wire ignition experiments captures the ignition of HMX and TNT in the gas phase. A laser ignition gap test is performed to further evaluate the effect of gas phase laser absorption and gas phase disruption on the ignition process. Results indicate that gas phase absorption of the laser energy is probably not the primary factor governing the gas phase ignition observations. It is discovered that a critical gap between an HMX pellet and a salt window of 6 mm±0.4 mm exists below which ignition by CO 2 laser is not possible at the tested irradiances of 29 W/cm 2 and 38 W/cm 2 for HMX ignition. These observations demonstrate that a significant disruption of the gas phase, in certain scenarios, will inhibit ignition, independent of any condensed phase processes. These results underscore the importance of gas phase processes and illustrate that conditions can exist where simple condensed phase models are inadequate to accurately predict the behavior of energetic materials

  18. Importance of the gas phase role to the prediction of energetic material behavior: An experimental study

    Science.gov (United States)

    Ali, A. N.; Son, S. F.; Asay, B. W.; Sander, R. K.

    2005-03-01

    Various thermal (radiative, conductive, and convective) initiation experiments are performed to demonstrate the importance of the gas phase role in combustion modeling of energetic materials (EM). A previously published condensed phase model that includes a predicted critical irradiance above which ignition is not possible is compared to experimental laser ignition results for octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and 2,4,6-trinitrotoluene (TNT). Experimental results conflict with the predicted critical irradiance concept. The failure of the model is believed to result from a misconception about the role of the gas phase in the ignition process of energetic materials. The model assumes that ignition occurs at the surface and that evolution of gases inhibits ignition. High speed video of laser ignition, oven cook-off and hot wire ignition experiments captures the ignition of HMX and TNT in the gas phase. A laser ignition gap test is performed to further evaluate the effect of gas phase laser absorption and gas phase disruption on the ignition process. Results indicate that gas phase absorption of the laser energy is probably not the primary factor governing the gas phase ignition observations. It is discovered that a critical gap between an HMX pellet and a salt window of 6mm±0.4mm exists below which ignition by CO2 laser is not possible at the tested irradiances of 29W /cm2 and 38W/cm2 for HMX ignition. These observations demonstrate that a significant disruption of the gas phase, in certain scenarios, will inhibit ignition, independent of any condensed phase processes. These results underscore the importance of gas phase processes and illustrate that conditions can exist where simple condensed phase models are inadequate to accurately predict the behavior of energetic materials.

  19. Proliferation resistance assessment of high temperature gas reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chikamatsu N, M. A. [Instituto Tecnologico y de Estudios Superiores de Monterrey, Campus Santa Fe, Av. Carlos Lazo No. 100, Santa Fe, 01389 Mexico D. F. (Mexico); Puente E, F., E-mail: midori.chika@gmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    The Generation IV International Forum has established different objectives for the new generation of reactors to accomplish. These objectives are focused on sustain ability, safety, economics and proliferation resistance. This paper is focused on how the proliferation resistance of the High Temperature Gas Reactors (HTGR) is assessed and the advantages that these reactors present currently. In this paper, the focus will be on explaining why such reactors, HTGR, can achieve the goals established by the GIF and can present a viable option in terms of proliferation resistance, which is an issue of great importance in the field of nuclear energy generation. The reason why the HTGR are being targeted in this writing is that these reactors are versatile, and present different options from modular reactors to reactors with the same size as the ones that are being operated today. Besides their versatility, the HTGR has designed features that might improve on the overall sustain ability of the nuclear reactors. This is because the type of safety features and materials that are used open up options for industrial processes to be carried out; cogeneration for instance. There is a small section that mentions how HTGR s are being developed in the international sector in order to present the current world view in this type of technology and the further developments that are being sought. For the proliferation resistance section, the focus is on both the intrinsic and the extrinsic features of the nuclear systems. The paper presents a comparison between the features of Light Water Reactors (LWR) and the HTGR in order to be able to properly compare the most used technology today and one that is gaining international interest. (Author)

  20. Proliferation resistance assessment of high temperature gas reactors

    International Nuclear Information System (INIS)

    Chikamatsu N, M. A.; Puente E, F.

    2014-10-01

    The Generation IV International Forum has established different objectives for the new generation of reactors to accomplish. These objectives are focused on sustain ability, safety, economics and proliferation resistance. This paper is focused on how the proliferation resistance of the High Temperature Gas Reactors (HTGR) is assessed and the advantages that these reactors present currently. In this paper, the focus will be on explaining why such reactors, HTGR, can achieve the goals established by the GIF and can present a viable option in terms of proliferation resistance, which is an issue of great importance in the field of nuclear energy generation. The reason why the HTGR are being targeted in this writing is that these reactors are versatile, and present different options from modular reactors to reactors with the same size as the ones that are being operated today. Besides their versatility, the HTGR has designed features that might improve on the overall sustain ability of the nuclear reactors. This is because the type of safety features and materials that are used open up options for industrial processes to be carried out; cogeneration for instance. There is a small section that mentions how HTGR s are being developed in the international sector in order to present the current world view in this type of technology and the further developments that are being sought. For the proliferation resistance section, the focus is on both the intrinsic and the extrinsic features of the nuclear systems. The paper presents a comparison between the features of Light Water Reactors (LWR) and the HTGR in order to be able to properly compare the most used technology today and one that is gaining international interest. (Author)

  1. Modification of Low-Alloy Steel Surface by High-Temperature Gas Nitriding Plus Tempering

    Science.gov (United States)

    Jiao, Dongling; Li, Minsong; Ding, Hongzhen; Qiu, Wanqi; Luo, Chengping

    2018-02-01

    The low-alloy steel was nitrided in a pure NH3 gas atmosphere at 640 660 °C for 2 h, i.e., high-temperature gas nitriding (HTGN), followed by tempering at 225 °C, which can produce a high property surface coating without brittle compound (white) layer. The steel was also plasma nitriding for comparison. The composition, microstructure and microhardness of the nitrided and tempered specimens were examined, and their tribological behavior investigated. The results showed that the as-gas-nitrided layer consisted of a white layer composed of FeN0.095 phase (nitrided austenite) and a diffusional zone underneath the white layer. After tempering, the white layer was decomposed to a nano-sized (α-Fe + γ'-Fe4N + retained austenite) bainitic microstructure with a high hardness of 1150HV/25 g. Wear test results showed that the wear resistance and wear coefficient yielded by the complex HTGN plus tempering were considerably higher and lower, respectively, than those produced by the conventional plasma nitriding.

  2. Low temperature storage test phase 2 : identification of problem species

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-12-15

    The use of renewable fuels such as biodiesel, in motor vehicle fuels is expected to grow rapidly in North America as a result of governmental mandates. Biodiesel is a fuel component made from plant and animal feedstocks via a transesterification process. The fatty acid methyl esters (FAME) of biodiesel have cloud points that range from 5 degrees C to -15 degrees C. The poor low temperature performance of blends containing FAME must be understood in order to avoid operability issues. This paper presented the results of several testing programs conducted by researchers to investigate filter plugging in biodiesel fuels caused by high levels of saturated monoglycerides. The low temperature storage stability of 57 biodiesel fuels comprised of B5 and B20 made with canola methyl ester (CME), soybean methyl ester (SME), tallow methyl ester (TME) and palm methyl ester (PME) was investigated. Filter blocking tests were conducted to assess storage stability. Deposits from the blends were analyzed using gas chromatography and mass spectrometry (GC-MS) in order to identify the problem species. Results of the study confirmed the deleterious impact of saturated mono-glycerides in FAME on the low temperature operability of filters in fuel handling systems. 11 refs., 7 tabs., 5 figs. 9 appendices.

  3. Numerical Study on Flow, Temperature, and Concentration Distribution Features of Combined Gas and Bottom-Electromagnetic Stirring in a Ladle

    Directory of Open Access Journals (Sweden)

    Yang Li

    2018-01-01

    Full Text Available A novel method of combined argon gas stirring and bottom-rotating electromagnetic stirring in a ladle refining process is presented in this report. A three-dimensional numerical model was adopted to investigate its effect on improving flow field, eliminating temperature stratification, and homogenizing concentration distribution. The results show that the electromagnetic force has a tendency to spiral by spinning clockwise on the horizontal section and straight up along the vertical section, respectively. When the electromagnetic force is applied to the gas-liquid two phase flow, the gas-liquid plume is shifted and the gas-liquid two phase region is extended. The rotated flow driven by the electromagnetic force promotes the scatter of bubbles. The temperature stratification tends to be alleviated due to the effect of heat compensation and the improved flow. The temperature stratification tends to disappear when the current reaches 1200 A. The improved flow field has a positive influence on decreasing concentration stratification and shortening the mixing time when the combined method is imposed. However, the alloy depositing site needs to be optimized according to the whole circulatory flow and the region of bubbles to escape.

  4. Gas holdup in a reciprocating plate bioreactor: Non-Newtonian - liquid phase

    Directory of Open Access Journals (Sweden)

    Naseva Olivera S.

    2002-01-01

    Full Text Available The gas holdup was studied in non-newtonian liquids in a gas-liquid and gas-liquid-solid reciprocating plate bioreactor. Aqueous solutions of carboxy methyl cellulose (CMC; Lucel, Lučane, Yugoslavia of different degrees of polymerization (PP 200 and PP 1000 and concentration (0,5 and 1%, polypropylene spheres (diameter 8.3 mm; fraction of spheres: 3.8 and 6.6% by volume and air were used as the liquid, solid and gas phase. The gas holdup was found to be dependent on the vibration rate, the superficial gas velocity, volume fraction of solid particles and Theological properties of the liquid ohase. Both in the gas-liquid and gas-liquid-solid systems studied, the gas holdup increased with increasing vibration rate and gas flow rate. The gas holdup was higher in three-phase systems than in two-phase ones under otter operating conditions being the same. Generally the gas holdup increased with increasing the volume fraction of solid particles, due to the dispersion action of the solid particles, and decreased with increasing non-Newtonian behaviour (decreasing flow index i.e. with increasing degree of polymerization and solution concentration of CMC applied, as a result of gas bubble coalescence.

  5. Comparisons between a gas-phase model of silane chemical vapor deposition and laser-diagnostic measurements

    International Nuclear Information System (INIS)

    Breiland, W.G.; Coltrin, M.E.; Ho, P.

    1986-01-01

    Theoretical modeling and experimental measurements have been used to study gas-phase chemistry in the chemical vapor deposition (CVD) of silicon from silane. Pulsed laser Raman spectroscopy was used to obtain temperature profiles and to obtain absolute density profiles of silane during deposition at atmospheric and 6-Torr total pressures for temperatures ranging from 500 to 800 0 C. Laser-excited fluorescence was used to obtain relative density profiles of Si 2 during deposition at 740 0 C in helium with 0-12 Torr added hydrogen. These measurements are compared to predictions from the theoretical model of Coltrin, Kee, and Miller. The predictions agree qualitatively with experiment. These studies indicate that fluid mechanics and gas-phase chemical kinetics are important considerations in understanding the chemical vapor deposition process

  6. The Integration Of Process Heat Applications To High Temperature Gas Reactors

    International Nuclear Information System (INIS)

    McKellar, Michael G.

    2011-01-01

    A high temperature gas reactor, HTGR, can produce industrial process steam, high-temperature heat-transfer gases, and/or electricity. In conventional industrial processes, these products are generated by the combustion of fossil fuels such as coal and natural gas, resulting in significant emissions of greenhouse gases such as carbon dioxide. Heat or electricity produced in an HTGR could be used to supply process heat or electricity to conventional processes without generating any greenhouse gases. Process heat from a reactor needs to be transported by a gas to the industrial process. Two such gases were considered in this study: helium and steam. For this analysis, it was assumed that steam was delivered at 17 MPa and 540 C and helium was delivered at 7 MPa and at a variety of temperatures. The temperature of the gas returning from the industrial process and going to the HTGR must be within certain temperature ranges to maintain the correct reactor inlet temperature for a particular reactor outlet temperature. The returning gas may be below the reactor inlet temperature, ROT, but not above. The optimal return temperature produces the maximum process heat gas flow rate. For steam, the delivered pressure sets an optimal reactor outlet temperature based on the condensation temperature of the steam. ROTs greater than 769.7 C produce no additional advantage for the production of steam.

  7. Determination of an instability temperature for alloys in the cooling gas of a high temperature reactor

    International Nuclear Information System (INIS)

    Grimmer, H.; Grman, D.; Krompholz, K.; Zimmermann, U.; Ullrich, G.

    1985-05-01

    High temperature alloys designed to be used for components in the primary circuit of a helium cooled high temperature nuclear reactor show massive CO production above a certain temperature, called the instability temperature T/sub i/, which increases with increasing partial pressure of CO in the cooling gas. At p/sub CO/ = 15 microbar, T/sub i/ lies between 900 and 950 degrees C for the four alloys under investigation: T/sub i/ is lowest for the iron base alloy Incoloy 800 H and increases for the nickel base alloys in the order Inconel 617, HDA 230 and Nimonic 86. Measurements of T/sub i/ made at 3 different laboratories were compared and shown to agree for p/sub CO/ 25 microbar, compatible with CO production by a reaction of Cr2O3 with carbides. Some measurements of T/sub i/ on HDA 230 and Nimonic 86 were performed in the course of simulated reactor disturbances. They showed that the oxide layer looses its protective properties above T/sub i/. A highlight of the examinations was the detection of eta-carbides (M6C) with unusual properties. M6C is the only type of carbide occuring in HDA 230. An eta-carbide with a lattice constant of 1088.8 pm had developed at the surface of Nimonic 86 during pre-oxidation before the disturbance simulation. Its composition is estimated at Ni3SiMo2C. Eta-carbides containing Si and especially eta-carbides with lattice constants as low as 1088.8 pm have been described only rarely until now. (author)

  8. A low-temperature (4-300K) constant volume gas thermometer

    International Nuclear Information System (INIS)

    Combarieu, A. de

    1976-01-01

    A constant volume gas thermometer was built to calibrate the various secondary thermometers used at low temperature. This gas thermometer is placed in a cryostat where any stable temperature between 4 and 300K may be obtained. The principle is outlined, then the gas thermometer and its auxiliary equipment are briefly described; the corrections to be applied to the results are given and a table shows the values obtained [fr

  9. Self-Healing Phase Change Salogels with Tunable Gelation Temperature.

    Science.gov (United States)

    Karimineghlani, Parvin; Palanisamy, Anbazhagan; Sukhishvili, Svetlana A

    2018-04-19

    Chemically cross-linked polymer matrices have demonstrated strong potential for shape stabilization of molten phase change materials (PCM). However, they are not designed to be fillable and removable from a heat exchange module for an easy replacement with new PCM matrices and lack self-healing capability. Here, a new category of shapeable, self-healing gels, "salogels", is introduced. The salogels reversibly disassemble in a high-salinity environment of a fluid inorganic PCM [lithium nitrate trihydrate (LNH)], at a preprogrammed temperature. LNH was employed as a high latent heat PCM and simultaneously as a solvent, which supported the formation of a network of polyvinyl alcohol (PVA) chains via physical cross-linking through poly(amidoamine) dendrimers of various generations. The existence of hydrogen bonding and the importance of low-hydration state of PVA for the efficient gelation were experimentally confirmed. The thermal behavior of PCM salogels was highly reversible and repeatable during multiple heating/cooling cycles. Importantly, the gel-sol transition temperature could be precisely controlled within a range of temperature above LNH's melting point by the choice of dendrimer generation and their concentration. Shape stabilization and self-healing properties of the salogels, taken together with tunability of their temperature-induced fluidization make these materials attractive for thermal energy storage applications that require on-demand removal and replacement of used inorganic PCM salt hydrates.

  10. Modeling of Aerobrake Ballute Stagnation Point Temperature and Heat Transfer to Inflation Gas

    Science.gov (United States)

    Bahrami, Parviz A.

    2012-01-01

    A trailing Ballute drag device concept for spacecraft aerocapture is considered. A thermal model for calculation of the Ballute membrane temperature and the inflation gas temperature is developed. An algorithm capturing the most salient features of the concept is implemented. In conjunction with the thermal model, trajectory calculations for two candidate missions, Titan Explorer and Neptune Orbiter missions, are used to estimate the stagnation point temperature and the inflation gas temperature. Radiation from both sides of the membrane at the stagnation point and conduction to the inflating gas is included. The results showed that the radiation from the membrane and to a much lesser extent conduction to the inflating gas, are likely to be the controlling heat transfer mechanisms and that the increase in gas temperature due to aerodynamic heating is of secondary importance.

  11. The properties of gas-phase multiply charged ions

    International Nuclear Information System (INIS)

    Newson, K.A.

    1999-01-01

    This thesis presents the results of a series of experiments investigating the reactivity of gas-phase molecular dications with various neutral collision partners, at collision energies between 3 and 13 eV in the laboratory frame, using a crossed-beam apparatus. The experiment involves the measurement of product ion intensities, which are determined by means of time-of-flight mass spectrometry. The experimental apparatus and methodology, together with the areas of theory important to ion chemistry, are described in the thesis. The product ions of greatest interest are those ions formed by bond-forming (chemical) reactivity. The relative intensities of such product ions, and those ions formed as a result of electron-transfer reactions, are, when recorded as a function of the collision energy, a powerful probe of the reaction mechanism. Additionally, where appropriate, the reactions are examined for isotope effects by using the isotopic analogue of the neutral collision partner. The results of the experiments indicate that no intermolecular isotope effects are present in the reactions of CF 2 2+ and CF 3 2+ with H 2 and D 2 neutral targets. In addition, the observed collision energy dependence is symptomatic of the absence of a barrier to reaction. These observations suggest that the reactions proceed via an impulsive direct reaction mechanism. Such a conclusion casts doubt on the applicability of the Landau-Zener model of H - /D - transfer reactivity. Other results presented in this thesis include the first reported observation of a bond-forming reaction between a molecular dication (CF2 2+ ) and a polyatomic neutral species (NH 3 ). Finally, the branching ratio of the products of bond-forming reactions between CF 2 2+ with HD indicates the operation of a strong intramolecular isotope effect, favouring the formation of the deuterated product. This observation points to a reaction mechanism in which the bond-formation is preceded by electron-transfer. (author)

  12. Dissociative electron attachment to the gas-phase nucleobase hypoxanthine

    Energy Technology Data Exchange (ETDEWEB)

    Dawley, M. Michele [Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Tanzer, Katrin; Denifl, Stephan, E-mail: Stephan.Denifl@uibk.ac.at, E-mail: Sylwia.Ptasinska.1@nd.edu [Institut für Ionenphysik und Angewandte Physik, and Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck (Austria); Carmichael, Ian [Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Ptasińska, Sylwia, E-mail: Stephan.Denifl@uibk.ac.at, E-mail: Sylwia.Ptasinska.1@nd.edu [Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2015-06-07

    We present high-resolution measurements of the dissociative electron attachment (DEA) to isolated gas-phase hypoxanthine (C{sub 5}H{sub 4}N{sub 4}O, Hyp), a tRNA purine base. The anion mass spectra and individual ion efficiency curves from Hyp were measured as a function of electron energy below 9 eV. The mass spectra at 1 and 6 eV exhibit the highest anion yields, indicating possible common precursor ions that decay into the detectable anionic fragments. The (Hyp − H) anion (C{sub 5}H{sub 3}N{sub 4}O{sup −}) exhibits a sharp resonant peak at 1 eV, which we tentatively assign to a dipole-bound state of the keto-N1H,N9H tautomer in which dehydrogenation occurs at either the N1 or N9 position based upon our quantum chemical computations (B3LYP/6-311+G(d,p) and U(MP2-aug-cc-pVDZ+)) and prior studies with adenine. This closed-shell dehydrogenated anion is the dominant fragment formed upon electron attachment, as with other nucleobases. Seven other anions were also observed including (Hyp − NH){sup −}, C{sub 4}H{sub 3}N{sub 4}{sup −}/C{sub 4}HN{sub 3}O{sup −}, C{sub 4}H{sub 2}N{sub 3}{sup −}, C{sub 3}NO{sup −}/HC(HCN)CN{sup −}, OCN{sup −}, CN{sup −}, and O{sup −}. Most of these anions exhibit broad but weak resonances between 4 and 8 eV similar to many analogous anions from adenine. The DEA to Hyp involves significant fragmentation, which is relevant to understanding radiation damage of biomolecules.

  13. Kinetics of the gas-phase tritium oxidation reaction

    International Nuclear Information System (INIS)

    Failor, R.A.

    1989-01-01

    Homogeneous gas-phase kinetics of tritium oxidation (2T 2 + O 2 →2T 2 O) have been studied with a model that accounts explicitly for radiolysis of the major species and the kinetics of the subsequent reactions of ionic, excited-state, and neutral species. Results from model calculations are given for 10 -4 -1.0 mol% T 2 in O 2 (298 K, 1 atm). As the reaction evolves three different mechanisms control T 2 O production, each with a different overall rate expression and a different order with respect to the T 2 concentration. The effects of self-radiolysis of pure T 2 on the tritium oxidation reaction were calculated. Tritium atoms, the primary product of T 2 self-radiolysis, altered the oxidation mechanism only during the first few seconds following the initiation of the T 2 -O 2 reaction. Ozone, an important intermediate in T 2 oxidation, was monitored in-situ by U.V. absorption spectroscopy for 0.01-1.0 mol% T 2 an 1 atm O 2 . The shape of the experimental ozone time profile agreed with the model predictions. As predicted, the measured initial rate of ozone production varied linearly with initial T 2 concentration ([T 2 ] 0.6 o ), but at an initial rate one-third the predicted value. The steady-state ozone concentration ([O 3 ]ss) was predicted to be dependent on [T 2 ] 0.3 o , but the measured value was [T 2 ] 0.6 o , resulting in four times higher [O 3 ]ss than predicted for a 1.0% T 2 -O 2 mixture. Adding H 2 to the T 2 -O 2 mixture, to provide insight into the differences between the radiolytic and chemical behavior of the tritium, produced a greater decrease in [O 3 ]ss than predicted. Adjusting the reaction cell surface-to-volume ratio showed implications of minor surface removal of ozone

  14. Gas-Phase Combustion Synthesis of Aluminum Nitride Powder

    Science.gov (United States)

    Axelbaum, R. L.; Lottes, C. R.; Huertas, J. I.; Rosen, L. J.

    1996-01-01

    Due to its combined properties of high electrical resistivity and high thermal conductivity aluminum nitride (AlN) is a highly desirable material for electronics applications. Methods are being sought for synthesis of unagglomerated, nanometer-sized powders of this material, prepared in such a way that they can be consolidated into solid compacts having minimal oxygen content. A procedure for synthesizing these powders through gas-phase combustion is described. This novel approach involves reacting AlCl3, NH3, and Na vapors. Equilibrium thermodynamic calculations show that 100% yields can be obtained for these reactants with the products being AlN, NaCl, and H2. The NaCl by-product is used to coat the AlN particles in situ. The coating allows for control of AlN agglomeration and protects the powders from hydrolysis during post-flame handling. On the basis of thermodynamic and kinetic considerations, two different approaches were employed to produce the powder, in co-flow diffusion flame configurations. In the first approach, the three reactants were supplied in separate streams. In the second, the AlCl3 and NH3 were premixed with HCl and then reacted with Na vapor. X-ray diffraction (XRD) spectra of as-produced powders show only NaCl for the first case and NaCl and AlN for the second. After annealing at 775 C tinder dynamic vacuum, the salt was removed and XRD spectra of powders from both approaches show only AlN. Aluminum metal was also produced in the co-flow flame by reacting AlCl3 with Na. XRD spectra of as-produced powders show the products to be only NaCl and elemental aluminum.

  15. A stable algorithm for calculating phase equilibria with capillarity at specified moles, volume and temperature using a dynamic model

    KAUST Repository

    Kou, Jisheng

    2017-09-30

    Capillary pressure can significantly affect the phase properties and flow of liquid-gas fluids in porous media, and thus, the phase equilibrium calculation incorporating capillary pressure is crucial to simulate such problems accurately. Recently, the phase equilibrium calculation at specified moles, volume and temperature (NVT-flash) becomes an attractive issue. In this paper, capillarity is incorporated into the phase equilibrium calculation at specified moles, volume and temperature. A dynamical model for such problem is developed for the first time by using the laws of thermodynamics and Onsager\\'s reciprocal principle. This model consists of the evolutionary equations for moles and volume, and it can characterize the evolutionary process from a non-equilibrium state to an equilibrium state in the presence of capillarity effect at specified moles, volume and temperature. The phase equilibrium equations are naturally derived. To simulate the proposed dynamical model efficiently, we adopt the convex-concave splitting of the total Helmholtz energy, and propose a thermodynamically stable numerical algorithm, which is proved to preserve the second law of thermodynamics at the discrete level. Using the thermodynamical relations, we derive a phase stability condition with capillarity effect at specified moles, volume and temperature. Moreover, we propose a stable numerical algorithm for the phase stability testing, which can provide the feasible initial conditions. The performance of the proposed methods in predicting phase properties under capillarity effect is demonstrated on various cases of pure substance and mixture systems.

  16. Effect of population imbalance on the Berezinskii-Kosterlitz-Thouless phase transition in a superfluid Fermi gas

    International Nuclear Information System (INIS)

    Tempere, J.; Klimin, S. N.; Devreese, J. T.

    2009-01-01

    The Berezinskii-Kosterlitz-Thouless (BKT) mechanism describes the breakdown of superfluidity in a two-dimensional Bose gas or a two-dimensional gas of paired fermions. In the latter case, a population imbalance between the two pairing partners in the Fermi mixture is known to influence pairing characteristics. Here, we investigate the effects of imbalance on the two-dimensional BKT superfluid transition and show that superfluidity is even more sensitive to imbalance than for three-dimensional systems. Finite-temperature phase diagrams are derived using the functional integral formalism in combination with a hydrodynamic action functional for the phase fluctuations. This allows to identify a phase-separation region and tricritical points due to imbalance. In contrast to superfluidity in the three-dimensional case, the effect of imbalance is also pronounced in the strong-coupling regime.

  17. Numerical modeling of turbulent evaporating gas-droplet two-phase flows in an afterburner diffusor of turbo-fan jet engines

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Lixing; Zhang, Jian [Qinghua Univ., Beijing (China)

    1990-11-01

    Two-dimensional turbulent evaporating gas-droplet two-phase flows in an afterburner diffusor of turbofan jet engines are simulated here by a k-epsilon turbulence model and a particle trajectory model. Comparison of predicted gas velocity and temperature distributions with experimental results for the cases without liquid spray shows good agreement. Gas-droplet two-phase flow predictions give plausible droplet trajectories, fuel-vapor concentration distribution, gas-phase velocity and temperature field in the presence of liquid droplets. One run of computation with this method is made for a particular afterburner. The results indicate that the location of the atomizers is not favorable to flame stabilization and combustion efficiency. The proposed numerical modeling can also be adopted for optimization design and performance evaluation of afterburner combustors of turbofan jet engines. 7 refs.

  18. Properties of clusters in the gas phase: V. Complexes of neutral molecules onto negative ions

    International Nuclear Information System (INIS)

    Keesee, R.G.; Lee, N.; Castleman, A.W. Jr.

    1980-01-01

    Ion--molecules association reactions of the form A - (B)/sub n1/-+B=A - (B)/sub n/ were studied over a range of temperatures in the gas phase using high pressure mass spectrometry. Enthalpy and entropy changes were determined for the stepwise clustering reactions of (1) sulfur dioxide onto Cl - , I - , and NO 2 - with n ranging from one to three or four, and onto SO 2 - and SO 3 - with n equal to one; and (2) carbon dioxide onto Cl - , I - , NO 2 - , CO 3 - , and SO 3 - with n equal to one. From these data and earlier hydration results, the order of the magnitude of the enthalpy changes on the association of the first neutral for a series of negative ions was found to parallel the gas-phase basicity of those anions. For any given ion, the relative order of the addition enthalpies among the neutrals was found to be dependent on the polarizabilities of the neutrals and on the covalency in the ion-neutral bond. Dispersion of charge via covalent bonding was found to affect significantly the succeeding clustering steps

  19. Single-step gas phase synthesis of stable iron aluminide nanoparticles with soft magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Vernieres, Jerome, E-mail: Jerome.vernieres@oist.jp; Benelmekki, Maria; Kim, Jeong-Hwan; Grammatikopoulos, Panagiotis; Diaz, Rosa E. [Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha, Onna Son, Okinawa 904-0495 (Japan); Bobo, Jean-François [Centre d’Elaboration de Materiaux et d’Etudes Structurales (CEMES), 29 rue Jeanne Marvig, 31055 Toulouse Cedex 4 (France); Sowwan, Mukhles, E-mail: Mukhles@oist.jp [Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha, Onna Son, Okinawa 904-0495 (Japan); Nanotechnology Research Laboratory, Al-Quds University, P.O. Box 51000, East Jerusalem, Palestine (Country Unknown)

    2014-11-01

    Soft magnetic alloys at the nanoscale level have long generated a vivid interest as candidate materials for technological and biomedical purposes. Consequently, controlling the structure of bimetallic nanoparticles in order to optimize their magnetic properties, such as high magnetization and low coercivity, can significantly boost their potential for related applications. However, traditional synthesis methods stumble upon the long standing challenge of developing true nanoalloys with effective control over morphology and stability against oxidation. Herein, we report on a single-step approach to the gas phase synthesis of soft magnetic bimetallic iron aluminide nanoparticles, using a versatile co-sputter inert gas condensation technique. This method allowed for precise morphological control of the particles; they consisted of an alloy iron aluminide crystalline core (DO{sub 3} phase) and an alumina shell, which reduced inter-particle interactions and also prevented further oxidation and segregation of the bimetallic core. Remarkably, the as-deposited alloy nanoparticles show interesting soft magnetic properties, in that they combine a high saturation magnetization (170 emu/g) and low coercivity (less than 20 Oe) at room temperature. Additional functionality is tenable by modifying the surface of the particles with a polymer, to ensure their good colloidal dispersion in aqueous environments.

  20. Optical Absorptions of Oxygenated Carbon Chain Cations in the Gas Phase

    Science.gov (United States)

    Hardy, F.-X.; Rice, C. A.; Chakraborty, A.; Fulara, J.; Maier, J. P.

    2016-06-01

    The gas-phase electronic spectra of linear OC4O+ and a planar C6H2O+ isomer were obtained at a rotational temperature of ≈10 K. Absorption measurements in a 6 K neon matrix were followed by gas-phase observations in a cryogenic radiofrequency ion trap. The origin bands of the 1{}2{{{\\Pi }}}u ≤ftarrow X{}2{{{\\Pi }}}g transition of OC4O+ and the 1{}2A{}2 ≤ftarrow X{}2B1 of HCCC(CO)CCH+ lie at 417.31 ± 0.01 nm and 523.49 ± 0.01 nm, respectively. These constitute the first electronic spectra of oxygenated carbon chain cations studied under conditions that are relevant to the diffuse interstellar bands (DIBs), as both have a visible transition. The recent analysis of the 579.5 nm DIB indicates that small carriers, five to seven heavy atoms, continue to be possible candidates (Huang & Oka 2015). Astronomical implications are discussed regarding this kind of oxygenated molecules.

  1. Mixing in three-phase systems: Implications for enhanced oil recovery and unconventional gas extraction

    Science.gov (United States)

    Jimenez-Martinez, J.; Porter, M. L.; Hyman, J.; Carey, J. W.; Viswanathan, H. S.

    2015-12-01

    Although the mixing of fluids within a porous media is a common process in natural and industrial systems, how the degree of mixing depends on the miscibility of multiple phases is poorly characterized. Often, the direct consequence of miscible mixing is the modification of the resident fluid (brine and hydrocarbons) rheological properties. We investigate supercritical (sc)CO2 displacement and mixing processes in a three-phase system (scCO2, oil, and H2O) using a microfluidics experimental system that accommodates the high pressures and temperatures encountered in fossil fuel extraction operations. The miscibility of scCO2 with the resident fluids, low with aqueous solutions and high with hydrocarbons, impacts the mixing processes that control sweep efficiency in enhanced oil recovery (EOR) and the unlocking of the system in unconventional oil and gas extraction. Using standard volume-averaging techniques we upscale the aqueous phase saturation to the field-scale (i.e., Darcy scale) and interpret the results as a simpler two-phase system. This process allows us to perform a statistical analysis to quantify i) the degree of heterogeneity in the system resulting from the immiscible H2O and ii) how that heterogeneity impacts mixing between scCO2 and oil and their displacement. Our results show that when scCO2 is used for miscible displacement, the presence of an aqueous solution, which is common in secondary and tertiary EOR and unconventional oil and gas extraction, strongly impacts the mixing of scCO2 with the hydrocarbons due to low scCO2-H2O miscibility. H2O, which must be displaced advectively by the injected scCO2, introduces spatio-temporal variability into the system that acts as a barrier between the two miscibile fluids. This coupled with the effect of viscosity contrast, i.e., viscous fingering, has an impact on the mixing of the more miscible pair.

  2. Continuous fixed-bed gas-phase hydroformylation using supported ionic liquid-phase (SILP) Rh catalysts

    DEFF Research Database (Denmark)

    Riisager, Anders; Wasserscheid, Peter; Van Hal, R.

    2003-01-01

    Continuous flow gas-phase hydroformylation of propene was performed using novel supported ionic liquid-phase (SILP) catalysts containing immobilized Rh complexes of the biphosphine ligand sulfoxantphos in the ionic liquids 1-n-butyl-3-methylimidazolium hexafluorophosphate and halogen-free 1-n-butyl...

  3. Engineered Materials for Advanced Gas Turbine Engine, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop innovative composite powders and composites that will surpass the properties of currently identified materials for advanced gas turbine...

  4. Silicon Carbide-Based Hydrogen Gas Sensors for High-Temperature Applications

    Directory of Open Access Journals (Sweden)

    Sangchoel Kim

    2013-10-01

    Full Text Available We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5 layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures.

  5. Temperature dependence of gas sensing behaviour of TiO2 doped PANI composite thin films

    Science.gov (United States)

    Srivastava, Subodh; Sharma, S. S.; Sharma, Preetam; Sharma, Vinay; Rajura, Rajveer Singh; Singh, M.; Vijay, Y. K.

    2014-04-01

    In the present work we have reported the effect of temperature on the gas sensing properties of TiO2 doped PANI composite thin film based chemiresistor type gas sensors for hydrogen gas sensing application. PANI and TiO2 doped PANI composite were synthesized by in situ chemical oxidative polymerization of aniline at low temperature. The electrical properties of these composite thin films were characterized by I-V measurements as function of temperature. The I-V measurement revealed that conductivity of composite thin films increased as the temperature increased. The changes in resistance of the composite thin film sensor were utilized for detection of hydrogen gas. It was observed that at room temperature TiO2 doped PANI composite sensor shows higher response value and showed unstable behavior as the temperature increased. The surface morphology of these composite thin films has also been characterized by scanning electron microscopy (SEM) measurement.

  6. Scaling Studies for High Temperature Test Facility and Modular High Temperature Gas-Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Richard R. Schult; Paul D. Bayless; Richard W. Johnson; James R. Wolf; Brian Woods

    2012-02-01

    The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5-year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant (NGNP) project. Because the NRC's interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC).

  7. Exchange of Na+ and K+ between water vapor and feldspar phases at high temperature and low vapor pressure

    Science.gov (United States)

    Fournier, R.O.

    1976-01-01

    In order to determine whether gas (steam) containing a small amount of dissolved alkali chloride is effective in promoting base exchange of Na+ and K+ among alkali feldspars and coexisting brine or brine plus solid salt, experiments were carried out at 400-700??C and steam densities ranging down to less than 0.05. For bulk compositions rich in potassium, the low pressure results are close to previous high-pressure results in composition of the fluid and coexisting solid phase. However, when the bulk composition is more sodic, alkali feldspars are relatively richer in potassium at low pressure than at high pressure. This behaviour corresponds to enrichment of potassium in the gas phase relative to coexisting brine and precipitation of solid NaCl when the brine plus gas composition becomes moderately sodic. The gas phase is very effective in promoting base exchange between coexisting alkali feldspars at high temperature and low water pressure. This suggests that those igneous rocks which contain coexisting alkali feldspars out of chemical equilibrium either remained very dry during the high-temperature part of their cooling history or that the pore fluid was a gas containing very little potassium relative to sodium. ?? 1976.

  8. Gas Phase Vibrational Spectroscopy of Weakly Volatil Safe Taggants Using a Synchrotron Source

    Science.gov (United States)

    Cuisset, Arnaud; Hindle, Francis; Mouret, Gael; Gruet, Sebastien; Pirali, Olivier; Roy, Pascale

    2013-06-01

    The high performances of the AILES beamline of SOLEIL allow to study at medium resolution (0.5 cm^{-1}) the gas phase THz vibrational spectra of weakly volatil compounds. Between 2008 and 2010 we recorded and analyzed the THz/Far-IR spectra of phosphorous based nerve agents thanks to sufficient vapour pressures from liquid samples at room temperature. Recently, we extended these experiments towards the vibrational spectroscopy of vapour pressures from solid samples. This project is quite challenging since we target lower volatile compounds, and so requires very high sensitive spectrometers. Moreover a specially designed heated multipass-cell have been developped for the gas phase study of very weak vapor pressures. Thanks to skills acquired during initial studies and recent experiments performed on AILES with solid PAHs, we have recorded and assigned the gas phase vibrational fingerprints from the THz to the NIR spectral domain (10-4000 cm-1) of a set of targeted nitro-derivatives. The study was focused onto the para, ortho-mononitrotoluene (p-NT, o-NT), the 1,4 Dinitrobenzene (1,4 DNB), the 2,3-dimethyl-2,3-dinitrobutane (DMNB), and 2,4 and 2,6-dinitrotoluene (2,4-2,6 DNT), which are safe taggants widely used for the detection of commercial explosives. These taggants are usually added to plastic explosives in order to facilitate their vapour detection. Therefore, there is a continuous interest for their detection and identification in realistic conditions via optical methods. A first step consists in the recording of their gas phase vibrational spectra. These expected spectra focused onto molecules involved into defence and security domains are not yet available to date and will be very useful for the scientific community. This work is supported by the contract ANR-11-ASTR-035-01. A. Cuisset, G. Mouret, O. Pirali, P. Roy, F. Cazier, H. Nouali, J. Demaison, J. Phys. Chem. B, 2008, 112:, 12516-12525 I. Smirnova, A. Cuisset, R. Bocquet, F. Hindle, G. Mouret, O

  9. Measurement of Turbulent Pressure and Temperature Fluctuations in a Gas Turbine Combustor

    Science.gov (United States)

    Povinelli, Louis (Technical Monitor); LaGraff, John E.; Bramanti, Cristina; Pldfield, Martin; Passaro, Andrea; Biagioni, Leonardo

    2004-01-01

    The report summarizes the results of the redesign efforts directed towards the gas-turbine combustor rapid-injector flow diagnostic probe developed under sponsorship of NASA-GRC and earlier reported in NASA-CR-2003-212540. Lessons learned during the theoretical development, developmental testing and field-testing in the previous phase of this research were applied to redesign of both the probe sensing elements and of the rapid injection device. This redesigned probe (referred to herein as Turboprobe) has been fabricated and is ready, along with the new rapid injector, for field-testing. The probe is now designed to capture both time-resolved and mean total temperatures, total pressures and, indirectly, one component of turbulent fluctuations.

  10. Gas phase adsorption technology for nitrogen isotope separation and its feasibility for highly enriched nitrogen gas production

    International Nuclear Information System (INIS)

    Inoue, Masaki; Asaga, Takeo

    2000-04-01

    Highly enriched nitrogen-15 gas is favorable to reduce radioactive carbon-14 production in reactor. The cost of highly enriched nitrogen-15 gas in mass production is one of the most important subject in nitride fuel option in 'Feasibility Study for FBR and Related Fuel Cycle'. In this work gas phase adsorption technology was verified to be applicable for nitrogen isotope separation and feasible to produce highly enriched nitrogen-15 gas in commercial. Nitrogen isotopes were separated while ammonia gas flows through sodium-A type zeolite column using pressure swing adsorption process. The isotopic ratio of eight samples were measured by high resolution mass spectrometry and Fourier transform microwave spectroscopy. Gas phase adsorption technology was verified to be applicable for nitrogen isotope separation, since the isotopic ratio of nitrogen-15 and nitrogen-14 in samples were more than six times as high as in natural. The cost of highly enriched nitrogen-15 gas in mass production were estimated by the factor method. It revealed that highly enriched nitrogen-15 gas could be supplied in a few hundred yen per gram in mass production. (author)

  11. High Temperature Gas Cooled Reactor Fuels and Materials

    International Nuclear Information System (INIS)

    2010-03-01

    At the third annual meeting of the technical working group on Nuclear Fuel Cycle Options and Spent Fuel Management (TWG-NFCO), held in Vienna, in 2004, it was suggested 'to develop manuals/handbooks and best practice documents for use in training and education in coated particle fuel technology' in the IAEA's Programme for the year 2006-2007. In the context of supporting interested Member States, the activity to develop a handbook for use in the 'education and training' of a new generation of scientists and engineers on coated particle fuel technology was undertaken. To make aware of the role of nuclear science education and training in all Member States to enhance their capacity to develop innovative technologies for sustainable nuclear energy is of paramount importance to the IAEA Significant efforts are underway in several Member States to develop high temperature gas cooled reactors (HTGR) based on either pebble bed or prismatic designs. All these reactors are primarily fuelled by TRISO (tri iso-structural) coated particles. The aim however is to build future nuclear fuel cycles in concert with the aim of the Generation IV International Forum and includes nuclear reactor applications for process heat, hydrogen production and electricity generation. Moreover, developmental work is ongoing and focuses on the burning of weapon-grade plutonium including civil plutonium and other transuranic elements using the 'deep-burn concept' or 'inert matrix fuels', especially in HTGR systems in the form of coated particle fuels. The document will serve as the primary resource materials for 'education and training' in the area of advanced fuels forming the building blocks for future development in the interested Member States. This document broadly covers several aspects of coated particle fuel technology, namely: manufacture of coated particles, compacts and elements; design-basis; quality assurance/quality control and characterization techniques; fuel irradiations; fuel

  12. Hydrocarbon fuels from gas phase decarboxylation of hydrolyzed free fatty acid

    KAUST Repository

    Wang, Weicheng

    2012-01-01

    Gas phase decarboxylation of hydrolyzed free fatty acid (FFA) from canola oil has beeninvestigated in two fix-bed reactors by changing reaction parameters such as temperatures,FFA feed rates, and H 2-to-FFA molar ratios. FFA, which contains mostly C 18 aswell as a few C 16, C 20, C 22, and C 24 FFA, was fed into the boiling zone, evaporated, carriedby hydrogen flow at the rate of 0.5-20 ml/min, and reacted with the 5% Pd/C catalystin the reactor. Reactions were conducted atmospherically at 380-450 °C and the products,qualified and quantified through gas chromatography-flame ionization detector(GC-FID), showed mostly n-heptadecane and a few portion of n-C 15, n-C 19, n-C 21, n-C 23 as well as some cracking species. Results showed that FFA conversion increased withincreasing reaction temperatures but decreased with increasing FFA feed rates and H 2-to-FFA molar ratios. The reaction rates were found to decrease with higher temperatureand increase with higher H 2 flow rates. Highly selective heptadecane was achieved byapplying higher temperatures and higher H 2-to-FFA molar ratios. From the results, ascatalyst loading and FFA feed rate were fixed, an optimal reaction temperature of 415 °C as well as H 2-to-FFA molar ratio of 4.16 were presented. These results provided goodbasis for studying the kinetics of decarboxylation process. © 2012 American Society of Mechanical Engineers.

  13. A complementary and synergistic effect of Fe-Zn binary metal oxide in the process of high-temperature fuel gas desulfurization

    Institute of Scientific and Technical Information of China (English)

    翁斯灏; 吴幼青

    1996-01-01

    57Fe Mossbauer spectroscopy was used to investigate the evolution of Fe-Zn binary metal oxide sorbent in the process of high-temperature fuel gas desulfurization. The results of phase analyses show that Fe-Zn binary metal oxide sorbent is rapidly reduced in hot fuel gas and decomposed to new phases of highly dispersed microcrystalline elemental iron and zinc oxide, both of which become the active desulfurization constituents. A complementary and synergistic effect between active iron acting as a high sulfur capacity constituent and active zinc oxide acting as a deep refining desulfurization constituent exists in this type of sorbent for hot fuel gas desulfurization.

  14. Influence of the gas mixture radio on the correlations between the excimer XeCl emission and the sealed gas temperature in dielectric barrier discharge lamps

    CERN Document Server

    Xu Jin Zhou; Ren Zhao Xing

    2002-01-01

    For dielectric barrier discharge lamps filled with various gas mixture ratios, the correlations between the excimer XeCl emission and the sealed gas temperature have been founded, and a qualitative explication is presented. For gas mixture with chlorine larger than 3%, the emission intensity increases with the sealed gas temperature, while with chlorine about 2%, the emission intensity decreases with the increasing in the gas temperature, and could be improved by cooling water. However, if chlorine is less than 1.5%, the discharge appears to be a mixture mode with filaments distributed in a diffused glow-like discharge, and the UV emission is independent on the gas temperature

  15. Formation of gas-phase π-allyl radicals from propylene over bismuth oxide and γ-bismuth molybdate catalysts

    International Nuclear Information System (INIS)

    Martir, W.; Lunsford, J.H.

    1981-01-01

    Gas-phase π-allyl radicals were produced when propylene reacted over Bi 2 O 3 and γ-bismuth molybdate catalysts at 723 K. The pressure in the catalyst zone was varied between 5 x 10 -3 and 1 torr. The radicals were detected by EPR spectroscopy together with a matrix isolation technique in which argon was used as the diluent. The matrix was formed on a sapphire rod at 12 K which was located 33-cm downstream from the catalyst. Bismuth oxide was more effective in the production of gas-phase allyl radicals than γ-bismuth molybdate. By contrast α-bismuth molybdate was ineffective in forming allyl radicals and MoO 3 acted as a sink for radicals which were produced elsewhere in the system. Comparison of the π-allyl radical and the stable product concentrations over Bi 2 O 3 revealed that gas-phase radical recombination reactions served as a major pathway for the formation of 1,5-hexadiene. Addition of small amounts of gas-phase oxygen increased the concentration of allyl radicals, and at greater oxygen levels allyl peroxy radicals were detected. Because of the effect of temperature on the equilibrium between allyl and allyl peroxy radicals, the latter product must be formed in the cooler part of the system

  16. Possibility of determining the concentration of the gas phase in a two-phase stream by an acoustical method

    Energy Technology Data Exchange (ETDEWEB)

    Butenko, A N; Potapenko, A E; Chistyakov, E S

    1976-01-01

    The method is based on the recording of the amplitude-frequency characteristics of a circular piezoelectric resonator (sensor) during movement of a stream of a two-phase medium. It is shown that the electrical voltage drop across the transducer and the natural oscillating frequency of the transducer depend on the concentration of the gas phase in the two-phase mixture, allowing an instrument to be developed for measurement of this concentration.

  17. Two-phase gas bubble-liquid boundary layer flow along vertical and inclined surfaces

    International Nuclear Information System (INIS)

    Cheung, F.B.; Epstein, M.

    1985-01-01

    The behavior of a two-phase gas bubble-liquid boundary layer along vertical and inclined porous surfaces with uniform gas injection is investigated experimentally and analytically. Using argon gas and water as the working fluids, a photographical study of the two-phase boundary layer flow has been performed for various angles of inclination ranging from 45 0 to 135 0 and gas injection rates ranging from 0.01 to 0.1 m/s. An integral method has been employed to solve the system of equations governing the two-phase motion. The effects of the gas injection rate and the angle of inclination on the growth of the boundary layer have been determined. The predicted boundary layer thickness is found to be in good agreement with the experimental results. The calculated axial liquid velocity and the void fraction in the two-phase region are also presented along with the observed flow behavior

  18. Evolution of the Normal State of a Strongly Interacting Fermi Gas from a Pseudogap Phase to a Molecular Bose Gas

    International Nuclear Information System (INIS)

    Perali, A.; Palestini, F.; Pieri, P.; Strinati, G. C.; Stewart, J. T.; Gaebler, J. P.; Drake, T. E.; Jin, D. S.

    2011-01-01

    Wave-vector resolved radio frequency spectroscopy data for an ultracold trapped Fermi gas are reported for several couplings at T c , and extensively analyzed in terms of a pairing-fluctuation theory. We map the evolution of a strongly interacting Fermi gas from the pseudogap phase into a fully gapped molecular Bose gas as a function of the interaction strength, which is marked by a rapid disappearance of a remnant Fermi surface in the single-particle dispersion. We also show that our theory of a pseudogap phase is consistent with a recent experimental observation as well as with quantum Monte Carlo data of thermodynamic quantities of a unitary Fermi gas above T c .

  19. Some problems on materials tests in high temperature hydrogen base gas mixture

    International Nuclear Information System (INIS)

    Shikama, Tatsuo; Tanabe, Tatsuhiko; Fujitsuka, Masakazu; Yoshida, Heitaro; Watanabe, Ryoji

    1980-01-01

    Some problems have been examined on materials tests (creep rupture tests and corrosion tests) in high temperature mixture gas of hydrogen (80%H 2 + 15%CO + 5%CO 2 ) simulating the reducing gas for direct steel making. H 2 , CO, CO 2 and CH 4 in the reducing gas interact with each other at elevated temperature and produce water vapor (H 2 O) and carbon (soot). Carbon deposited on the walls of retorts and the water condensed at pipings of the lower temperature gas outlet causes blocking of gas flow. The gas reactions have been found to be catalyzed by the retort walls, and appropriate selection of the materials for retorts has been found to mitigate the problems caused by water condensation and carbon deposition. Quartz has been recognized to be one of the most promising materials for minimizing the gas reactions. And ceramic coating, namely, BN (born nitride) on the heat resistant superalloy, MO-RE II, has reduced the amounts of water vapor and deposited carbon (sooting) produced by gas reactions and has kept dew points of outlet gas below room temperature. The well known emf (thermo-electromotive force) deterioration of Alumel-Chromel thermocouples in the reducing gases at elevated temperatures has been also found to be prevented by the ceramic (BN) coating. (author)

  20. Material Control and Accounting Design Considerations for High-Temperature Gas Reactors

    International Nuclear Information System (INIS)

    Bjornard, Trond; Hockert, John

    2011-01-01

    The subject of this report is domestic safeguards and security by design (2SBD) for high-temperature gas reactors, focusing on material control and accountability (MC and A). The motivation for the report is to provide 2SBD support to the Next Generation Nuclear Plant (NGNP) project, which was launched by Congress in 2005. This introductory section will provide some background on the NGNP project and an overview of the 2SBD concept. The remaining chapters focus specifically on design aspects of the candidate high-temperature gas reactors (HTGRs) relevant to MC and A, Nuclear Regulatory Commission (NRC) requirements, and proposed MC and A approaches for the two major HTGR reactor types: pebble bed and prismatic. Of the prismatic type, two candidates are under consideration: (1) GA's GT-MHR (Gas Turbine-Modular Helium Reactor), and (2) the Modular High-Temperature Reactor (M-HTR), a derivative of Areva's Antares reactor. The future of the pebble-bed modular reactor (PBMR) for NGNP is uncertain, as the PBMR consortium partners (Westinghouse, PBMR (Pty) and The Shaw Group) were unable to agree on the path forward for NGNP during 2010. However, during the technology assessment of the conceptual design phase (Phase 1) of the NGNP project, AREVA provided design information and technology assessment of their pebble bed fueled plant design called the HTR-Module concept. AREVA does not intend to pursue this design for NGNP, preferring instead a modular reactor based on the prismatic Antares concept. Since MC and A relevant design information is available for both pebble concepts, the pebble-bed HTGRs considered in this report are: (1) Westinghouse PBMR; and (2) AREVA HTR-Module. The DOE Office of Nuclear Energy (DOE-NE) sponsors the Fuel Cycle Research and Development program (FCR and D), which contains an element specifically focused on the domestic (or state) aspects of SBD. This Material Protection, Control and Accountancy Technology (MPACT) program supports the present

  1. Single phase and two phase erosion corrosion in broilers of gas-cooled reactors

    International Nuclear Information System (INIS)

    Harrison, G.S.; Fountain, M.J.

    1988-01-01

    Erosion-corrosion is a phenomenon causing metal wastage in a variety of locations in water and water-steam circuits throughout the power generation industry. Erosion-corrosion can occur in a number of regions of the once-through boiler designs used in the later Magnox and AGR type of gas cooled nuclear reactor. This paper will consider two cases of erosion-corrosion damage (single and two phase) in once through boilers of gas cooled reactors and will describe the solutions that have been developed. The single phase problem is associated with erosion-corrosion damage of mild steel downstream of a boiler inlet flow control orifice. With metal loss rates of up to 1 mm/year at 150 deg. C and pH in the range 9.0-9.4 it was found that 5 μg/kg oxygen was sufficient to reduce erosion-corrosion rates to less than 0.02 mm/year. A combined oxygen-ammonia-hydrazine feedwater regime was developed and validated to eliminate oxygen carryover and hence give protection from stress corrosion in the austenitic section of the AGR once through boiler whilst still providing erosion-corrosion control. Two phase erosion-corrosion tube failures have occurred in the evaporator of the mild steel once through boilers of the later Magnox reactors operating at pressures in the range 35-40 bar. Rig studies have shown that amines dosed in the feedwater can provide a significant reduction in metal loss rates and a tube lifetime assessment technique has been developed to predict potential tube failure profiles in a fully operational boiler. The solutions identified for both problems have been successfully implemented and the experience obtained following implementation including any problems or other benefits arising from the introduction of the new regimes will be presented. Methods for monitoring and evaluating the efficiency of the solutions have been developed and the results from these exercises will also be discussed. Consideration will also be given to the similarities in the metal loss

  2. Single phase and two phase erosion corrosion in broilers of gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, G S; Fountain, M J [Operational Engineering Division (Northern Area), Central Electricity Generating Board, Manchester (United Kingdom)

    1988-07-01

    Erosion-corrosion is a phenomenon causing metal wastage in a variety of locations in water and water-steam circuits throughout the power generation industry. Erosion-corrosion can occur in a number of regions of the once-through boiler designs used in the later Magnox and AGR type of gas cooled nuclear reactor. This paper will consider two cases of erosion-corrosion damage (single and two phase) in once through boilers of gas cooled reactors and will describe the solutions that have been developed. The single phase problem is associated with erosion-corrosion damage of mild steel downstream of a boiler inlet flow control orifice. With metal loss rates of up to 1 mm/year at 150 deg. C and pH in the range 9.0-9.4 it was found that 5 {mu}g/kg oxygen was sufficient to reduce erosion-corrosion rates to less than 0.02 mm/year. A combined oxygen-ammonia-hydrazine feedwater regime was developed and validated to eliminate oxygen carryover and hence give protection from stress corrosion in the austenitic section of the AGR once through boiler whilst still providing erosion-corrosion control. Two phase erosion-corrosion tube failures have occurred in the evaporator of the mild steel once through boilers of the later Magnox reactors operating at pressures in the range 35-40 bar. Rig studies have shown that amines dosed in the feedwater can provide a significant reduction in metal loss rates and a tube lifetime assessment technique has been developed to predict potential tube failure profiles in a fully operational boiler. The solutions identified for both problems have been successfully implemented and the experience obtained following implementation including any problems or other benefits arising from the introduction of the new regimes will be presented. Methods for monitoring and evaluating the efficiency of the solutions have been developed and the results from these exercises will also be discussed. Consideration will also be given to the similarities in the metal loss

  3. Simulation of temperature-pressure profiles and wax deposition in gas-lift wells

    Directory of Open Access Journals (Sweden)

    Sevic Snezana

    2017-01-01

    Full Text Available Gas-lift is an artificial lift method in which gas is injected down the tubing- -casing annulus and enters the production tubing through the gas-lift valves to reduce the hydrostatic pressure of the formation fluid column. The gas changes pressure, temperature and fluid composition profiles throughout the production tubing string. Temperature and pressure drop along with the fluid composition changes throughout the tubing string can lead to wax, asphaltenes and inorganic salts deposition, increased emulsion stability and hydrate formation. This paper presents a new model that can sucesfully simulate temperature and pressure profiles and fluid composition changes in oil well that operates by means of gas-lift. This new model includes a pipe-in-pipe segment (production tubing inside production casing, countercurrent flow of gas-lift gas and producing fluid, heat exchange between gas-lift gas and the surrounding ambient – ground; and gas-lift gas with the fluid in the tubing. The model enables a better understanding of the multiphase fluid flow up the production tubing. Model was used to get insight into severity and locations of wax deposition. The obtained information on wax deposition can be used to plan the frequency and depth of wax removing operations. Model was developed using Aspen HYSYS software.

  4. Conformational reduction of DOPA in the gas phase studied by laser desorption supersonic jet laser spectroscopy.

    Science.gov (United States)

    Ishiuchi, Shun-ichi; Mitsuda, Haruhiko; Asakawa, Toshiro; Miyazaki, Mitsuhiko; Fujii, Masaaki

    2011-05-07

    The conformational reduction in catecholamine neurotransmitters was studied by resonance enhanced multi photon ionization (REMPI), ultraviolet-ultraviolet (UV-UV) hole burning and infrared (IR) dip spectroscopy with applying a laser desorption supersonic jet technique to DOPA, which is one of the catecholamine neurotransmitters and has one more phenolic OH group than tyrosine. It is concluded that DOPA has a single observable conformer in the gas phase at low temperature. Quantum chemical calculations at several levels with or without the dispersion correction were also carried out to study stable conformations. From the comparison between the computational IR spectra and the experimental ones, the most stable structure was determined. It is strongly suggested that the conformational reduction is caused by electrostatic interactions, such as a dipole-dipole interaction, between the chain and OH groups. This journal is © the Owner Societies 2011

  5. Gas-phase Hydrogenation of Crotonaldehyde Over Nickel-on-Kieselguhr Catalyst Pellets

    International Nuclear Information System (INIS)

    Uraz, C.; Atalay, F.; Atalay, S.

    2001-01-01

    Gas phase catalytic hydrogenation of crotonaldehyde to η-butanol was investigated. A nickel based commercial catalyst produced by Harshaw was used at constant temperatures ranging from 160 to 210deg; at pressures of 1.5, 2 , and 2.5 atm and at different crotonaldehyde to hydrogen feed ratios changing from 0.134 to 0.226. The conversion of crotonaldehyde at different operating conditions were determined and the reaction rates were calculated . The experimental results were fitted to ten langmuir-Hinshelwood/ Eley Rideal type models in addition to a homogeneous kinetics modal and the best modal was identified. The effects of external and internal mass transfer resistances were found to be negligible .(authors) refs 28., 2 figs , 4 tabs

  6. Detailed investigation of proposed gas-phase syntheses of ammonia in dense interstellar clouds

    International Nuclear Information System (INIS)

    Herbst, E.; Defrees, D.J.; Mclean, A.D.; Molecular Research Institute, Palo Alto, CA; IBM Almaden Research Center, San Jose, CA)

    1987-01-01

    The initial reactions of the Herbst and Klemperer (1973) and the Dalgarno (1974) schemes (I and II, respectively) for the gas-phase synthesis of ammonia in dense interstellar clouds were investigated. The rate of the slightly endothermic reaction between N(+) and H2 to yield NH(+) and H (scheme I) under interstellar conditions was reinvestigated under thermal and nonthermal conditions based on laboratory data. It was found that the relative importance of this reaction in synthesizing ammonia is determined by how the laboratory data at low temperature are interpreted. On the other hand, the exothermic reaction between N and H3(+) to form NH2(+) + H (scheme II) was calculated to possess significant activation energy and, therefore, to have a negligible rate coefficient under interstellar conditions. Consequently, this reaction cannot take place appreciably in interstellar clouds. 41 references

  7. Role of a gas phase in the kinetics of zinc and iron reduction with carbon from slag melts

    Science.gov (United States)

    Chumarev, V. M.; Selivanov, E. N.

    2013-03-01

    The influence of the mass transfer conditions in the gas phase having formed at the carbon-slag melt interface on CO regeneration is approximately estimated in the framework of a two-stage scheme of metal reduction from slag melts by carbon. The effect of zinc vapors on the combined reduction of iron and zinc from slags is considered. The influence of the slag composition and temperature on the critical concentration of zinc oxide above which no iron forms as an individual phase is explained.

  8. Detection methods for atoms and radicals in the gas phase

    Science.gov (United States)

    Hack, W.

    This report lists atoms and free radicals in the gas phase which are of interest for environmental and flame chemistry and have been detected directly. The detection methods which have been used are discussed with respect to their range of application, specificity and sensitivity. In table 1, detection methods for the five atoms of group IV (C, Si, Ge, Sn, Pb) and about 60 radicals containing at least one atom of group IV are summarized (CH, Cd, Cf, CC1, CBr, Cn, Cs, CSe, CH2, CD2, Chf, Cdf, CHC1, CHBr, CF2, CC12, CBr2, CFC1, CFBr, CH3, CD3, CF3, CH2F, CH2C1, CH2Br, CHF2, CHC12, CHBr2, Hco, Fco, CH30, CD30, CH2OH, CH3S, Nco, CH4N, CH302, CF302; C2, C2N, C2H, C20, C2HO, C2H3, C2F3, C2H5, C2HsO, C2H4OH, CH3CO, CD3CO, C2H3O, C2H502, CH3COO2, C2H4N, C2H6N, C3; Si, SiF, SiF2, SiO, SiC, Si2; Ge, GeC, GeO, GeF, GeF2, GeCl2, Sn, SnF, SnO, SnF2, Pb, PbF, PbF2, PbO, PbS). In table 2 detection methods for about 25 other atoms and 60 radicals are listed: (H, D, O, O2, Oh, Od, HO2, DO2, F, Ci, Br, I, Fo, Cio, BrO, Io, FO2, C1O2, Li, Na, K, Rb, Cs, N, N3, Nh, Nd, Nf, Nci, NBr, NH2, ND2, Nhd, Nhf, NF2, NC12, N2H3, No, NO2, NO3, Hno, Dno, P, Ph, Pd, Pf, Pci, PH2, PD2, PF2, Po, As, AsO, AsS, Sb, Bi, S, S2, Sh, Sd, Sf, SF2, So, Hso, Dso, Sn, Se, Te, Se2, SeH, SeD, SeF, SeO, SeS, SeN, TeH, TeO, Bh, BH2, Bo, Bn, B02, Cd, Hg, UF5). The tables also cite some recent kinetic applications of the various methods.

  9. Development of data logger for atmospheric pressure, temperature and relative humidity for gas-filled detector

    International Nuclear Information System (INIS)

    Sahu, S.; Sahu, P.K.; Bhuyan, M.R.; Biswas, S.; Mohanty, B.

    2014-01-01

    At IoP-NISER an initiative has been taken to build and test micro-pattern gas detector such as Gas Electron Multiplier (GEM) for several upcoming High-Energy Physics (HEP) experiment projects. Temperature (t), atmospheric pressure (p) and relative humidity (RH) monitor and recording is very important for gas filled detector development. A data logger to monitor and record the ambient parameters such as temperature, relative humidity and pressure has been developed. With this data logger continuous recording of t, p, RH and time stamp can be done with a programmable sampling interval. This data is necessary to correct the gain of a gas filled detector

  10. Low temperature X-ray diffraction studies of natural gas hydrate samples from the Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Rawn, C.J. [Oak Ridge National Laboratory, Oak Ridge, TN (United States). Materials Science and Technology Div.; Sassen, R. [Texas A and M Univ., College Station, TX (United States). Geochemical and Environmental Research Group; Ulrich, S.M.; Phelps, T.J. [Oak Ridge National Laboratory, Oak Ridge, TN (United States). Biosciences Div.; Chakoumakos, B.C. [Oak Ridge National Laboratory, Oak Ridge, TN (United States). Neutron Scattering Science Div.; Payzant, E.A. [Oak Ridge National Laboratory, Oak Ridge, TN (United States). Center for Nanophase Materials Science

    2008-07-01

    Quantitative studies of natural clathrate hydrates are hampered by the difficulties associated with obtaining pristine samples for the sea floor without comprising their integrity. This paper discussed X-ray power diffraction studies conducted to measure natural gas hydrate samples obtained from the Green Canyon in the Gulf of Mexico. Data on the hydrate deposits were initially collected in 2002. The X-ray diffraction data were collected in order to examine the structure 2 (s2) gas hydrates as functions of temperature and time. A diffractometer with a theta-theta goniometer modified with a helium closed cycle refrigerator and temperature controller was used. Aragonite, quartz and halite phases were determined in the decomposed sample. Refined phase fractions for both the ice and the s2 hydrate were obtained as a function of temperature. Results of the study demonstrated that the amount of hydrates decreased with increasing temperatures and amounts of time. Large pieces of the hydrate showed heterogenous ice content. Dissociation rates were higher at lower temperatures. It was concluded that unusual trends observed for the smaller lattice parameter of the hydrates resulted from the formation of ice layers that acted as barriers to the released gases and caused increased isostatic pressures around the hydrate core. 9 refs., 6 figs.

  11. Investigation of the resistive phase in high power gas switching. Research and development report

    International Nuclear Information System (INIS)

    O'Rourke, R.C.

    1977-01-01

    A theoretical study was made of the resistive phase in high pressure gas switching with the regime of interest being (10 to 50) kV from (1J, 10ns, 100KHz) to (100J, 10μs, 1KHz). The resistive phase was examined as a function of applied field, gap spacing, inductance, gas type and pressure, and electrode material. The initiating and quenching phases as regards system performance (e.g., the jitter problem) were examined. The cooling and electrode debris removal effects of the vortex gas flow on the operating characteristics of the system were considered

  12. Transient fission gas release from UO2 fuel for high temperature and high burnup

    International Nuclear Information System (INIS)

    Szuta, M.

    2001-01-01

    In the present paper it is assumed that the fission gas release kinetics from an irradiated UO 2 fuel for high temperature is determined by the kinetics of grain growth. A well founded assumption that Vitanza curve describes the change of uranium dioxide re-crystallization temperature and the experimental results referring to the limiting grain size presented in the literature are used to modify the grain growth model. Algorithms of fission gas release due to re-crystallization of uranium dioxide grains are worked out. The defect trap model of fission gas behaviour described in the earlier papers is supplemented with the algorithms. Calculations of fission gas release in function of time, temperature, burn-up and initial grain sizes are obtained. Computation of transient fission gas release in the paper is limited to the case where steady state of irradiation to accumulate a desired burn-up is performed below the temperature of re-crystallization then the subsequent step temperature increase follows. There are considered two kinds of step temperature increase for different burn-up: the final temperature of the step increase is below and above the re-crystallization temperature. Calculations show that bursts of fission gas are predicted in both kinds. The release rate of gas liberated for the final temperature above the re-crystallization temperature is much higher than for final temperature below the re-crystallization temperature. The time required for the burst to subside is longer due to grain growth than due to diffusion of bubbles and knock-out release. The theoretical results explain qualitatively the experimental data but some of them need to be verified since this sort of experimental data are not found in the available literature. (author)

  13. Gas-phase laser synthesis of aggregation-free, size-controlled hydroxyapatite nanoparticles

    International Nuclear Information System (INIS)

    Bapat, Parimal V.; Kraft, Rebecca; Camata, Renato P.

    2012-01-01

    Nanophase hydroxyapatite (HA) is finding applications in many areas of biomedical research, including bone tissue engineering, drug delivery, and intracellular imaging. Details in chemical composition, crystal phase makeup, size, and shape of HA nanoparticles play important roles in achieving the favorable biological responses required in these applications. Most of the nanophase HA synthesis techniques involve solution-based methods that exhibit substantial aggregation of particles upon precipitation. Typically these methods also have limited control over the particle size and crystal phase composition. In this study, we describe the gas-phase synthesis of aggregation-free, size-controlled HA nanoparticles with mean size in the 20–70 nm range using laser ablation followed by aerosol electrical mobility classification. Nanoparticle deposits with adjustable number concentration were obtained on solid substrates. Particles were characterized by transmission electron microscopy, atomic force microscopy, and X-ray diffraction. Samples are well represented by log-normal size distributions with geometric standard deviation σ g ≈ 1.2. The most suitable conditions for HA nanoparticle formation at a laser fluence of 5 J/cm 2 were found to be a temperature of 800 °C and a partial pressure of water of 160 mbar.

  14. High Temperature Gas-cooled Reactor Projected Markets and Scoping Economics

    Energy Technology Data Exchange (ETDEWEB)

    Larry Demick

    2010-08-01

    The NGNP Project has the objective of developing the high temperature gas-cooled reactor (HTGR) technology to supply high temperature process heat to industrial processes as a substitute for burning of fossil fuels, such as natural gas. Applications of the HTGR technology that have been evaluated by the NGNP Project for supply of process heat include supply of electricity, steam and high-temperature gas to a wide range of industrial processes, and production of hydrogen and oxygen for use in petrochemical, refining, coal to liquid fuels, chemical, and fertilizer plants.

  15. Investigation of ambient temperature on the performance of GE-F5 gas turbine

    International Nuclear Information System (INIS)

    Ghazikhani, M.; Taffazoli, D.; Manshori, N.

    2002-01-01

    The role of ambient temperature in determining the performance of GE-F5 gas turbine is analysed by investigating the Shirvan gas turbine power plant 10 MW , 15 MW and 20 MW power output. These parameters have been brought as a function of ambient temperature. The results show when ambient temperature increases 1 deg C, The compressor pressure decreases about 20 k Pa, compressor outlet temperature increases about 1.13 deg C and exhaust temperature increases about 2.5 deg C. It is revealed that variations are due to decreasing the efficiency of compressor and less due to mass flow rate of air reduction as ambient temperature increases at constant power output. The results shows cycle efficiency reduces 3% with increasing 50 of ambient temperature, also the m increases as ambient temperature increase for constant turbine work. These are also because of reducing the compressor efficiency as ambient temperature increases

  16. Multi-spectral pyrometer for gas turbine blade temperature measurement

    Science.gov (United States)

    Gao, Shan; Wang, Lixin; Feng, Chi

    2014-09-01

    To achieve the highest possible turbine inlet temperature requires to accurately measuring the turbine blade temperature. If the temperature of blade frequent beyond the design limits, it will seriously reduce the service life. The problem for the accuracy of the temperature measurement includes the value of the target surface emissivity is unknown and the emissivity model is variability and the thermal radiation of the high temperature environment. In this paper, the multi-spectral pyrometer is designed provided mainly for range 500-1000°, and present a model corrected in terms of the error due to the reflected radiation only base on the turbine geometry and the physical properties of the material. Under different working conditions, the method can reduce the measurement error from the reflect radiation of vanes, make measurement closer to the actual temperature of the blade and calculating the corresponding model through genetic algorithm. The experiment shows that this method has higher accuracy measurements.

  17. Hot Gas TVC For Planetary Ascent Vehicle, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A Mars ascent vehicle (MAV) uses solid rocket motors to propel soil samples into orbit, but the motors cannot provide steering. Cold gas thrusters are used for...

  18. Advanced On Board Inert Gas Generation System (OBBIGS), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Valcor Engineering Corporation proposes to develop an advanced On Board Inert Gas Generation System, OBIGGS, for aircraft fuel tank inerting to prevent hazardous...

  19. High-Temperature, High-Bandwidth Fiber Optic Pressure and Temperature Sensors for Gas Turbine Applications

    National Research Council Canada - National Science Library

    Fielder, Robert S; Palmer, Matthew E

    2003-01-01

    The accurate measurement of gas flow conditions in the compressor, combustors, and turbines of gas turbine engines is important to assess performance, predict failure, and facilitate data-driven maintenance...

  20. Gas phase enthalpies of formation of nitrobenzamides using combustion calorimetry and thermal analysis

    International Nuclear Information System (INIS)

    Ximello, Arturo; Flores, Henoc; Rojas, Aarón; Adriana Camarillo, E.; Patricia Amador, M.

    2014-01-01

    Graphical abstract: - Highlights: • Formation enthalpies of the nitrobenzamides were derived from combustion calorimetry. • Enthalpies of vaporisation and sublimation were calculated by thermogravimetry. • From gas phase enthalpies of formation the stability of the isomers is studied. • Stability of isomers is not driven by a steric hindrance between functional groups. - Abstract: The standard molar energies of combustion of 2-nitrobenzamide, 3-nitrobenzamide and 4-nitrobenzamide were determined with an isoperibolic, static-bomb, combustion calorimeter. From the combustion results, the standard molar enthalpies of combustion and formation for these compounds in the condensed phase at T = 298.15 K were derived. Subsequently, to determine the enthalpies of sublimation, the vapour pressure data as a function of the temperature for the compounds under investigation were estimated using thermogravimetry by applying Langmuir’s equation, and the enthalpies of vaporisation were derived. Standard enthalpies of fusion were measured by differential scanning calorimetry then added to those of vaporisation to obtain reliable results for the enthalpy of sublimation. From the combustion and sublimation data, the gas phase enthalpies of formation were determined to be (−138.9 ± 3.5) kJ · mol −1 , (−122.9 ± 2.9) kJ · mol −1 and (−108.5 ± 3.7) kJ · mol −1 for the ortho, meta and para isomers of nitrobenzamide, respectively. The meaning of these results with regard to the enthalpic stability of these molecular structures is discussed herein

  1. Basin-Wide Temperature Constraints On Gas Hydrate Stability In The Gulf Of Mexico

    Science.gov (United States)

    MacDonald, I. R.; Reagan, M. T.; Guinasso, N. L.; Garcia-Pineda, O. G.

    2012-12-01

    Gas hydrate deposits commonly occur at the seafloor-water interface on marine margins. They are especially prevalent in the Gulf of Mexico where they are associated with natural oil seeps. The stability of these deposits is potentially challenged by fluctuations in bottom water temperature, on an annual time-scale, and under the long-term influence of climate change. We mapped the locations of natural oil seeps where shallow gas hydrate deposits are known to occur across the entire Gulf of Mexico basin based on a comprehensive review of synthetic aperture radar (SAR) data (~200 images). We prepared a bottom water temperature map based on the archive of CTD casts from the Gulf (~6000 records). Comparing the distribution of gas hydrate deposits with predicted bottom water temperature, we find that a broad area of the upper slope lies above the theoretical stability horizon for structure 1 gas hydrate, while all sites where gas hydrate deposits occur are within the stability horizon for structure 2 gas hydrate. This is consistent with analytical results that structure 2 gas hydrates predominate on the upper slope (Klapp et al., 2010), where bottom water temperatures fluctuate over a 7 to 10 C range (approx. 600 m depth), while pure structure 1 hydrates are found at greater depths (approx. 3000 m). Where higher hydrocarbon gases are available, formation of structure 2 gas hydrate should significantly increase the resistance of shallow gas hydrate deposits to destabilizing effects variable or increasing bottom water temperature. Klapp, S.A., Bohrmann, G., Kuhs, W.F., Murshed, M.M., Pape, T., Klein, H., Techmer, K.S., Heeschen, K.U., and Abegg, F., 2010, Microstructures of structure I and II gas hydrates from the Gulf of Mexico: Marine and Petroleum Geology, v. 27, p. 116-125.Bottom temperature and pressure for Gulf of Mexico gas hydrate outcrops and stability horizons for sI and sII hydrate.

  2. Two-stage coal liquefaction without gas-phase hydrogen

    Science.gov (United States)

    Stephens, H.P.

    1986-06-05

    A process is provided for the production of a hydrogen-donor solvent useful in the liquefaction of coal, wherein the water-gas shift reaction is used to produce hydrogen while simultaneously hydrogenating a donor solvent. A process for the liquefaction of coal using said solvent is also provided. The process enables avoiding the use of a separate water-gas shift reactor as well as high pressure equipment for liquefaction. 3 tabs.

  3. Local gas- and liquid-phase measurements for air-water two-phase flows in a rectangular channel

    International Nuclear Information System (INIS)

    Zhou, X.; Sun, X.; Williams, M.; Fu, Y.; Liu, Y.

    2014-01-01

    Local gas- and liquid-phase measurements of various gas-liquid two-phase flows, including bubbly, cap-bubbly, slug, and churn-turbulent flows, were performed in an acrylic vertical channel with a rectangular cross section of 30 mm x 10 mm and height of 3.0 m. All the measurements were carried out at three measurement elevations along the flow channel, with z/D h = 9, 72, and 136, respectively, to study the flow development. The gas-phase velocity, void fraction, and bubble number frequency were measured using a double-sensor conductivity probe. A high-speed imaging system was utilized to perform the flow regime visualization and to provide additional quantitative information of the two-phase flow structure. An image processing scheme was developed to obtain the gas-phase velocity, void fraction, Sauter mean diameter, bubble number density, and interfacial area concentration. The liquid-phase velocity and turbulence measurements were conducted using a particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system, which enables whole-field and high-resolution data acquisition. An optical phase separation method, which uses fluorescent particles and optical filtration technique, is adopted to extract the velocity information of the liquid phase. An image pre-processing scheme is imposed on the raw PIV images acquired to remove noises due to the presence of bubble residuals and optically distorted particles in the images captured by the PIV-PLIF system. Due to the better light access and less bubble distortion in the narrow rectangular channel, the PIV-PLIF system were able to perform reasonably well in flows of even higher void fractions as compared to the situations with circular pipe test sections. The flow conditions being studied covered various flow regime transitions, void fractions, and liquid-phase flow Reynolds numbers. The obtained experimental data can also be used to validate two-phase CFD results. (author)

  4. Temperature-field phase diagram of extreme magnetoresistance.

    Science.gov (United States)

    Fallah Tafti, Fazel; Gibson, Quinn; Kushwaha, Satya; Krizan, Jason W; Haldolaarachchige, Neel; Cava, Robert Joseph

    2016-06-21

    The recent discovery of extreme magnetoresistance (XMR) in LaSb introduced lanthanum monopnictides as a new platform to study this effect in the absence of broken inversion symmetry or protected linear band crossing. In this work, we report XMR in LaBi. Through a comparative study of magnetotransport effects in LaBi and LaSb, we construct a temperature-field phase diagram with triangular shape that illustrates how a magnetic field tunes the electronic behavior in these materials. We show that the triangular phase diagram can be generalized to other topological semimetals with different crystal structures and different chemical compositions. By comparing our experimental results to band structure calculations, we suggest that XMR in LaBi and LaSb originates from a combination of compensated electron-hole pockets and a particular orbital texture on the electron pocket. Such orbital texture is likely to be a generic feature of various topological semimetals, giving rise to their small residual resistivity at zero field and subject to strong scattering induced by a magnetic field.

  5. PHASE CHANGES ON 4H AND 6H SIC AT HIGH TEMPERATURE OXIDATION

    Directory of Open Access Journals (Sweden)

    Jan Setiawan

    2016-10-01

    Full Text Available ABSTRACT PHASE CHANGES ON 4H AND 6H SIC AT HIGH TEMPERATURE OXIDATION. The oxidation on two silicon carbide contain 6H phase and contains 6H and 4H phases has been done.  Silicon carbide is ceramic non-oxide with excellent properties that potentially used in industry.  Silicon carbide is used in nuclear industry as structure material that developed as light water reactor (LWR fuel cladding and as a coating layer in the high temperature gas-cooled reactor (HTGR fuel.  In this study silicon carbide oxidation simulation take place in case the accident in primary cooling pipe is ruptured.  Sample silicon carbide made of powder that pressed into pellet with diameter 12.7 mm and thickness 1.0 mm, then oxidized at temperature 1000 oC, 1200 oC dan 1400 oC for 1 hour.  The samples were weighted before and after oxidized.  X-ray diffraction con-ducted to the samples using Panalytical Empyrean diffractometer with Cu as X-ray source.  Diffraction pattern analysis has been done using General Structure Analysis System (GSAS software. This software was resulting the lattice parameter changes and content of SiC phases.  The result showed all of the oxidation samples undergoes weight gain.  The 6S samples showed the highest weight change at oxidation temperature 1200 oC, for the 46S samples showed increasing tendency with the oxidation temperature.  X-ray diffraction pattern analysis showed the 6S samples contain dominan phase 6H-SiC that matched to ICSD 98-001-5325 card.  Diffraction pattern on 6S showed lattice parameter, composition and crystallite size changes.  Lattice parameters changes had smaller tendency from the model and before oxidation.  However, the lowest silicon carbide composition or the highest converted into other phases up to 66.85 %, occurred at oxidation temperature 1200 oC.  The 46S samples contains two polytypes silicon car-bide.  The 6H-SiC phases matched by ICSD 98-016-4972 card and 4H-SiC phase matched by ICSD 98

  6. GASCON and MHDGAS: FORTRAN IV computer codes for calculating gas and condensed-phase compositions in the coal-fired open-cycle MHD system

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, P E

    1977-12-01

    Fortran IV computer codes have been written to calculate the equilibrium partial pressures of the gaseous phase and the quantity and composition of the condensed phases in the open-cycle MHD system. The codes are based on temperature-dependent equilibrium constants, mass conservation, the mass action law, and assumed ideal solution of compounds in each of two condensed phases. It is assumed that the phases are an oxide-silicate phase and a sulfate-carbonate-hydroxide phase. Calculations are iterated for gas and condensate concentrations while increasing or decreasing the total moles of elements, but keeping mole ratios constant, to achieve the desired total pressure. During iteration the oxygen partial pressure is incrementally changed. The decision to increase or decrease the oxygen pressure in this process depends on comparison of the oxygen content calculated in the gas and condensate phases with the initial amount of oxygen in the ash, coal, seed, and air. This process, together with a normalization step, allows the elements to converge to their initial quantities. Two versions of the computer code have been written. GASCON calculates the equilibrium gas partial pressures and the quantity and composition of the condensed phases in steps of thirteen temperature and pressure combinations in which the condensate is removed after each step, simulating continuous slag removal from the MHD system. MHDGAS retains the condensate for each step, simulating flow of condensate (and gas) through the MHD system.

  7. Crystal-liquid-gas phase transitions and thermodynamic similarity

    CERN Document Server

    Skripov, Vladimir P; Schmelzer, Jurn W P

    2006-01-01

    Professor Skripov obtained worldwide recognition with his monograph ""Metastable liquids"", published in English by Wiley & Sons. Based upon this work and another monograph published only in Russia, this book investigates the behavior of melting line and the properties of the coexisting crystal and liquid phase of simple substances across a wide range of pressures, including metastable states of the coexisting phases. The authors derive new relations for the thermodynamic similarity for liquid-vapour phase transition, as well as describing solid-liquid, liquid-vapor and liquid-liquid phase tra

  8. Discontinuous gas exchange in a tracheate arthropod, the pseudoscorpion Garypus californicus: Occurrence, characteristics and temperature dependence

    Directory of Open Access Journals (Sweden)

    John R.B. Lighton

    2002-11-01

    Full Text Available The discontinuous gas exchange cycle of the pseudoscorpion Garypus californicus, mean mass 5.9 mg, is rudimentary and is characterized by bursts of CO2 at frequencies ranging from 3.6 mHz at 15 °C to 13.3 mHz at 35 °C. The mean volume of CO2 emitted per burst is 3.6 µl g-1 at 25 °C, about a tenth of the amount emitted by tracheate arthropods with a well developed discontinuous gas exchange cycle. Interburst CO2 emission is high and increases with temperature, reaching near 45% of total CO2 production rate at 35 °C. No fluttering spiracle phase is evident. The metabolic rate of G. californicus at 25 °C (8.4 µW is typical of other arthropods. We infer from the high rate of interburst CO2 emission in G. californicus that trans-spiracular O2 partial pressure gradients are small and that spiracular conductance is correspondingly high, which may lead to high rates of respiratory water loss relative to arthropods with more stringent spiracular control and higher CO2 buffering capacity. The typical moist, hypogeal environments and small body sizes of pseudoscorpions correlate well with their respiratory physiology

  9. Current correlation functions of ideal Fermi gas at finite temperature

    Indian Academy of Sciences (India)

    in the study of time dependent density functional theory [5] due to the work of Vignale and. Kohn [6,7]. They obtained ... part has relevance to the study of viscous effects [10] in the electron gas and to the dia- magnetic ... is found that the diamagnetic susceptibility, related to the transverse part, smoothly cross over from ...

  10. Void fraction fluctuations in two-phase gas-liquid flow

    International Nuclear Information System (INIS)

    Ulbrich, R.

    1987-01-01

    Designs of the apparatus in which two-phase gas-liquid flow occurs are usually based on the mean value of parameters such as pressure drop and void fraction. The flow of two-phase mixtures generally presents a very complicated flow structure, both in terms of the unsteady formation on the interfacial area and in terms of the fluctuations of the velocity, pressure and other variables within the flow. When the gas void fraction is near 0 or 1 / bubble or dispersed flow regimes / then oscillations of void fraction are very small. The intermittent flow such as plug and slug/ froth is characterized by alternately flow portions of liquid and gas. It influences the change of void fractions in time. The results of experimental research of gas void fraction fluctuations in two-phase adiabatic gas-liquid flow in a vertical pipe are presented

  11. Two-phase gas bubble-liquid boundary layer flow along vertical and inclined surfaces

    International Nuclear Information System (INIS)

    Cheung, F.B.; Epstein, M.

    1985-01-01

    The behavior of a two-phase gas bubble liquid boundary layer along vertical and inclined porous surfaces with uniform gas injection is investigated experimentally and analytically. Using argon gas and water as the working fluids, a photographical study of the two-phase boundary layer flow has been performed for various angles of inclination ranging from 45 0 to 135 0 and gas injection rates ranging from 0.01 to 0.1 m/s. An integral method has been employed to solve the system of equations governing the two-phase motion. The effects of the gas injection rate and the angle of inclination on the growth of the boundary layer have been determined

  12. Note: Buffer gas temperature inhomogeneities and design of drift-tube ion mobility spectrometers: Warnings for real-world applications by non-specialists

    Science.gov (United States)

    Fernandez-Maestre, R.

    2017-09-01

    Ion mobility spectrometry (IMS) separates gas phase ions moving under an electric field according to their size-to-charge ratio. IMS is the method of choice to detect illegal drugs and explosives in customs and airports making accurate determination of reduced ion mobilities (K0) important for national security. An ion mobility spectrometer with electrospray ionization coupled to a quadrupole mass spectrometer was used to study uncertainties in buffer gas temperatures during mobility experiments. Differences up to 16°C were found in the buffer gas temperatures in different regions of the drift tube and up to 42°C between the buffer gas and the drift tube temperatures. The drift tube temperature is used as an approximation to the buffer gas temperature for the calculation of K0 because the buffer gas temperature is hard to measure. This is leading to uncertainties in the determination of K0 values. Inaccurate determination of K0 values yields false positives that delay the cargo and passengers in customs and airports. Therefore, recommendations are issued for building mobility tubes to assure a homogeneous temperature of the buffer gas. Because the temperature and other instrumental parameters are difficult to measure in IMS, chemical standards should always be used when calculating K0. The difference of 42°C between the drift tube and buffer gas temperatures found in these experiments produces a 10.5% error in the calculation of K0. This large inaccuracy in K0 shows the importance of a correct temperature measurement in IMS.

  13. Argentation gas chromatography revisited: Separation of light olefin/paraffin mixtures using silver-based ionic liquid stationary phases.

    Science.gov (United States)

    Nan, He; Zhang, Cheng; Venkatesh, Amrit; Rossini, Aaron J; Anderson, Jared L

    2017-11-10

    Silver ion or argentation chromatography utilizes stationary phases containing silver ions for the separation of unsaturated compounds. In this study, a mixed-ligand silver-based ionic liquid (IL) was evaluated for the first time as a gas chromatographic (GC) stationary phase for the separation of light olefin/paraffin mixtures. The selectivity of the stationary phase toward olefins can be tuned by adjusting the ratio of silver ion and the mixed ligands. The maximum allowable operating temperature of these stationary phases was determined to be between 125°C and 150°C. Nuclear magnetic resonance (NMR) spectroscopy was used to characterize the coordination behavior of the silver-based IL as well as provide an understanding into the retention mechanism of light olefins. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Exhaust Gas Temperature Measurements in Diagnostics of Turbocharged Marine Internal Combustion Engines Part I Standard Measurements

    Directory of Open Access Journals (Sweden)

    Korczewski Zbigniew

    2015-01-01

    Full Text Available The article discusses the problem of diagnostic informativeness of exhaust gas temperature measurements in turbocharged marine internal combustion engines. Theoretical principles of the process of exhaust gas flow in turbocharger inlet channels are analysed in its dynamic and energetic aspects. Diagnostic parameters are defined which enable to formulate general evaluation of technical condition of the engine based on standard online measurements of the exhaust gas temperature. A proposal is made to extend the parametric methods of diagnosing workspaces in turbocharged marine engines by analysing time-histories of enthalpy changes of the exhaust gas flowing to the turbocompressor turbine. Such a time-history can be worked out based on dynamic measurements of the exhaust gas temperature, performed using a specially designed sheathed thermocouple.

  15. Exhaust Gas Temperature Measurements in Diagnostics of Turbocharged Marine Internal Combustion Engines Part II Dynamic Measurements

    Directory of Open Access Journals (Sweden)

    Korczewski Zbigniew

    2016-01-01

    Full Text Available The second part of the article describes the technology of marine engine diagnostics making use of dynamic measurements of the exhaust gas temperature. Little-known achievements of Prof. S. Rutkowski of the Naval College in Gdynia (now: Polish Naval Academy in this area are presented. A novel approach is proposed which consists in the use of the measured exhaust gas temperature dynamics for qualitative and quantitative assessment of the enthalpy flux of successive pressure pulses of the exhaust gas supplying the marine engine turbocompressor. General design assumptions are presented for the measuring and diagnostic system which makes use of a sheathed thermocouple installed in the engine exhaust gas manifold. The corrected thermal inertia of the thermocouple enables to reproduce a real time-history of exhaust gas temperature changes.

  16. A numerical scheme to calculate temperature and salinity dependent air-water transfer velocities for any gas

    Science.gov (United States)

    Johnson, M. T.

    2010-02-01

    The transfer velocity determines the rate of exchange of a gas across the air-water interface for a given deviation from Henry's law equilibrium between the two phases. In the thin film model of gas exchange, which is commonly used for calculating gas exchange rates from measured concentrations of trace gases in the atmosphere and ocean/freshwaters, the overall transfer is controlled by diffusion-mediated films on either side of the air-water interface. Calculating the total transfer velocity (i.e. including the influence from both molecular layers) requires the Henry's law constant and the Schmidt number of the gas in question, the latter being the ratio of the viscosity of the medium and the molecular diffusivity of the gas in the medium. All of these properties are both temperature and (on the water side) salinity dependent and extensive calculation is required to estimate these properties where not otherwise available. The aim of this work is to standardize the application of the thin film approach to flux calculation from measured and modelled data, to improve comparability, and to provide a numerical framework into which future parameter improvements can be integrated. A detailed numerical scheme is presented for the calculation of the gas and liquid phase transfer velocities (ka and kw respectively) and the total transfer velocity, K. The scheme requires only basic physical chemistry data for any gas of interest and calculates K over the full range of temperatures, salinities and wind-speeds observed in and over the ocean. Improved relationships for the wind-speed dependence of ka and for the salinity-dependence of the gas solubility (Henry's law) are derived. Comparison with alternative schemes and methods for calculating air-sea flux parameters shows good agreement in general but significant improvements under certain conditions. The scheme is provided as a downloadable program in the supplementary material, along with input files containing molecular

  17. Optical processes in the performance and recovery of gas-phase switches

    International Nuclear Information System (INIS)

    Gundersen, M.

    1982-01-01

    In this paper several optical processes that may be used to affect gas-phase switch performance and operation are discussed, and approaches using a laser to increase recovery rates of switches are presented. In the latter the laser is used during the recovery phase rather than the conductive or closure phase. This papper suggests that it should be possible to use a low-power laser (e.g., one that is technologically feasible to use as part of a switch) to assist in opening the switch by quenching excited atomic and/or molecular species. The application of laser-induced energy extraction to gas-phase switches is also discussed

  18. Laser-induced carbon plasma emission spectroscopic measurements on solid targets and in gas-phase optical breakdown

    International Nuclear Information System (INIS)

    Nemes, Laszlo; Keszler, Anna M.; Hornkohl, James O.; Parigger, Christian

    2005-01-01

    We report measurements of time- and spatially averaged spontaneous-emission spectra following laser-induced breakdown on a solid graphite/ambient gas interface and on solid graphite in vacuum, and also emission spectra from gas-phase optical breakdown in allene C3H4 and helium, and in CO2 and helium mixtures. These emission spectra were dominated by CII (singly ionized carbon), CIII (doubly ionized carbon), hydrogen Balmer beta (H b eta), and Swan C2 band features. Using the local thermodynamic equilibrium and thin plasma assumptions, we derived electron number density and electron temperature estimates. The former was in the 1016 cm -3 range, while the latter was found to be near 20000 K. In addition, the vibration-rotation temperature of the Swan bands of the C2 radical was determined to be between 4500 and 7000 K, using an exact theoretical model for simulating diatomic emission spectra. This temperature range is probably caused by the spatial inhomogeneity of the laser-induced plasma plume. Differences are pointed out in the role of ambient CO2 in a solid graphite target and in gas-phase breakdown plasma

  19. Enhanced Membrane System for Recovery of Water from Gas-Liquid Mixtures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Gas-Liquid separation is an acute microgravity problem. Existing devices use centrifugal motion on microporous membranes to separate the two phases. Centrifugal...

  20. Infrared spectroscopy of gas-phase clusters using a free-electron laser

    International Nuclear Information System (INIS)

    Heijnsbergen, D. van; Helden, G. von; Meijer, G.

    2002-01-01

    Most clusters produced in the gas phase, especially those containing metals, remain largely uncharaterized, among these are transition metal - carbide, -oxide and -nitride clusters. A method for recording IR spectra of strongly bound gas-phase clusters is presented. It is based on a free-electron laser called Felix, characterized by wide wavelength tuning range, covering almost the full 'molecular finger print' region, high power and fluence which make it suited to excite gas-phase species i.e. gas -phase clusters. Neutral clusters were generated by laser vaporization technique, ions that were created after the interaction with the free-electron laser were analyzed in a flight mass spectrometer. Experiments were run with titanium carbide clusters and their IR spectra given. It was shown that this method is suited to strongly bound clusters with low ionization energies, a condition met for many pure metal clusters and metal compound clusters. (nevyjel)