WorldWideScience

Sample records for temperature gas cooled

  1. High temperature gas-cooled reactor: gas turbine application study

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The high-temperature capability of the High-Temperature Gas-Cooled Reactor (HTGR) is a distinguishing characteristic which has long been recognized as significant both within the US and within foreign nuclear energy programs. This high-temperature capability of the HTGR concept leads to increased efficiency in conventional applications and, in addition, makes possible a number of unique applications in both electrical generation and industrial process heat. In particular, coupling the HTGR nuclear heat source to the Brayton (gas turbine) Cycle offers significant potential benefits to operating utilities. This HTGR-GT Application Study documents the effort to evaluate the appropriateness of the HTGR-GT as an HTGR Lead Project. The scope of this effort included evaluation of the HTGR-GT technology, evaluation of potential HTGR-GT markets, assessment of the economics of commercial HTGR-GT plants, and evaluation of the program and expenditures necessary to establish HTGR-GT technology through the completion of the Lead Project.

  2. Cooling performance of a water-cooling panel system for modular high-temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Shoji; Suzuki, Kunihiko; Inagaki, Yoshiyuki; Sudo, Yukio [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)

    1995-12-31

    Experiments on a water cooling panel system were performed to investigate its heat removal performance and the temperature distribution of components for a modular high-temperature gas-cooled reactor (MHTGR). The analytical code THANPACST2 was applied to analyze the experimental results to verify the validity of the analytical method and the model.

  3. High-Temperature Gas-Cooled Test Reactor Point Design

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Laboratory; Bayless, Paul David [Idaho National Laboratory; Nelson, Lee Orville [Idaho National Laboratory; Gougar, Hans David [Idaho National Laboratory; Kinsey, James Carl [Idaho National Laboratory; Strydom, Gerhard [Idaho National Laboratory; Kumar, Akansha [Idaho National Laboratory

    2016-04-01

    A point design has been developed for a 200 MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technological readiness level, licensing approach and costs.

  4. High Temperature Gas-Cooled Test Reactor Options Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    Preliminary scoping calculations are being performed for a 100 MWt gas-cooled test reactor. The initial design uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to identify some reactor design features to investigate further. Current status of the effort is described.

  5. Use of a temperature-initiated passive cooling system (TIPACS) for the modular high-temperature gas-cooled reactor cavity cooling system (RCCS)

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Conklin, J.; Reich, W.J.

    1994-04-01

    A new type of passive cooling system has been invented (Forsberg 1993): the Temperature-Initiated Passive Cooling System (TIPACS). The characteristics of the TIPACS potentially match requirements for an improved reactor-cavity-cooling system (RCCS) for the modular high-temperature gas-cooled reactor (MHTGR). This report is an initial evaluation of the TIPACS for the MHTGR with a Rankines (steam) power conversion cycle. Limited evaluations were made of applying the TIPACS to MHTGRs with reactor pressure vessel temperatures up to 450 C. These temperatures may occur in designs of Brayton cycle (gas turbine) and process heat MHTGRs. The report is structured as follows. Section 2 describes the containment cooling issues associated with the MHTGR and the requirements for such a cooling system. Section 3 describes TIPACS in nonmathematical terms. Section 4 describes TIPACS`s heat-removal capabilities. Section 5 analyzes the operation of the temperature-control mechanism that determines under what conditions the TIPACS rejects heat to the environment. Section 6 addresses other design and operational issues. Section 7 identifies uncertainties, and Section 8 provides conclusions. The appendixes provide the detailed data and models used in the analysis.

  6. High Temperature Gas-cooled Reactor Projected Markets and Scoping Economics

    Energy Technology Data Exchange (ETDEWEB)

    Larry Demick

    2010-08-01

    The NGNP Project has the objective of developing the high temperature gas-cooled reactor (HTGR) technology to supply high temperature process heat to industrial processes as a substitute for burning of fossil fuels, such as natural gas. Applications of the HTGR technology that have been evaluated by the NGNP Project for supply of process heat include supply of electricity, steam and high-temperature gas to a wide range of industrial processes, and production of hydrogen and oxygen for use in petrochemical, refining, coal to liquid fuels, chemical, and fertilizer plants.

  7. Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee Nelson

    2011-09-01

    This report is a summary of analyses performed by the NGNP project to determine whether it is technically and economically feasible to integrate high temperature gas cooled reactor (HTGR) technology into industrial processes. To avoid an overly optimistic environmental and economic baseline for comparing nuclear integrated and conventional processes, a conservative approach was used for the assumptions and calculations.

  8. Power cycle assessment of nuclear high temperature gas-cooled reactors

    OpenAIRE

    Herranz, L.E.; Linares, J.I.; Moratilla, B.Y.

    2009-01-01

    Power cycle assessment of nuclear high temperature gas-cooled reactors correspondance: Corresponding author. Tel.: +34 91 346 62 36; fax: +34 91 346 62 33. (Herranz, L.E.) (Herranz, L.E.) Unit of Nuclear Safety Research (CIEMAT) Avda. Complutense--> , 22 - 28040 Madrid - Spain--> - (Herranz, L.E.) Unit of Nuclear Safety Research (CIEMAT) Avda. Complutense--> , 22 - 28040 Madrid - Spain--...

  9. CFD Model Development and validation for High Temperature Gas Cooled Reactor Cavity Cooling System (RCCS) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Yassin [Univ. of Wisconsin, Madison, WI (United Texas A & M Univ., College Station, TX (United States); Corradini, Michael; Tokuhiro, Akira; Wei, Thomas Y.C.

    2014-07-14

    The Reactor Cavity Cooling Systems (RCCS) is a passive safety system that will be incorporated in the VTHR design. The system was designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation (steady-state) and accident scenarios. A small scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the complex thermohydraulic phenomena taking place in the RCCS during steady-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates and a general verification was completed during the shakedown. A model of the experimental facility was prepared using RELAP5-3D and simulations were performed to validate the scaling procedure. The experimental data produced during the steady-state run were compared with the simulation results obtained using RELAP5-3D. The overall behavior of the facility met the expectations. The facility capabilities were confirmed to be very promising in performing additional experimental tests, including flow visualization, and produce data for code validation.

  10. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-04-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: • Identifies pre-conceptual design requirements • Develops test loop equipment schematics and layout • Identifies space allocations for each of the facility functions, as required • Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems • Identifies pre-conceptual utility and support system needs • Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

  11. Coupling of Modular High-Temperature Gas-Cooled Reactor with Supercritical Rankine Cycle

    OpenAIRE

    Shutang Zhu; Ying Tang; Kun Xiao; Zuoyi Zhang

    2008-01-01

    This paper presents investigations on the possible combination of modular high-temperature gas-cooled reactor (MHTGR) technology with the supercritical (SC) steam turbine technology and the prospective deployments of the MHTGR SC power plant. Energy conversion efficiency of steam turbine cycle can be improved by increasing the main steam pressure and temperature. Investigations on SC water reactor (SCWR) reveal that the development of SCWR power plants still needs further research and develop...

  12. Analysis of Precooling Injection Transient of Steam Generator for High Temperature Gas Cooled Reactor

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2017-01-01

    Full Text Available After a postulated design basis accident leads high temperature gas cooled reactor to emergency shutdown, steam generator still remains with high temperature level and needs to be cooled down by a precooling before reactor restarts with clearing of fault. For the large difference of coolant temperature between inlet and outlet of steam generator in normal operation, the temperature distribution on the components of steam generator is very complicated. Therefore, the temperature descending rate of the components in steam generator needs to be limited to avoid the potential damage during the precooling stage. In this paper, a pebble-bed high temperature gas cooled reactor is modeled by thermal-hydraulic system analysis code and several postulated precooling injection transients are simulated and compared to evaluate their effects, which will provide support for the precooling design. The analysis results show that enough precooling injection is necessary to satisfy the precooling requirements, and larger mass flow rate of precooling water injection will accelerate the precooling process. The temperature decrease of steam generator is related to the precooling injection scenarios, and the maximal mass flow rate of the precooling injection should be limited to avoid the excessively quick temperature change of the structures in steam generator.

  13. Licensing topical report: interpretation of general design criteria for high-temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Orvis, D.D.; Raabe, P.H.

    1980-01-01

    This Licensing Topical Report presents a set of General Design Criteria (GDC) which is proposed for applicability to licensing of graphite-moderated, high-temperature gas-cooled reactors (HTGRs). Modifications as necessary to reflect HTGR characteristics and design practices have been made to the GDC derived for applicability to light-water-cooled reactors and presented in Appendix A of Part 50, Title 10, Code of Federal Regulations, including the Introduction, Definitions, and Criteria. It is concluded that the proposed set of GDC affords a better basis for design and licensing of HTGRs.

  14. Design aspects of the Chinese modular high-temperature gas-cooled reactor HTR-PM

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zuoyi [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Wu Zongxin [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Sun Yuliang [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Li Fu [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)]. E-mail: lifu@tsinghua.edu.cn

    2006-03-15

    The modular high-temperature gas-cooled reactor (MHTGR) has distinct advantages in terms of inherent safety, economics potential, high efficiency, potential usage for hydrogen production, etc. The Chinese design of the MHTGR, named as high-temperature gas-cooled reactor-pebble bed module (HTR-PM), based on the technology and experience of the HTR-10, is currently in the conceptual phase. The HTR-PM demonstration plant is planned to be finished by 2012. The main philosophy of the HTR-PM project can be pinned down as: (1) safety, (2) standardization, (3) economy, and (4) proven technology. The work in the categories of marketing, organization, project and technology is done in predefined order. The biggest challenge for the HTR-PM is to ensure its economical viability while maintaining its inherent safety. A design of a 450 MWth annular pebble bed core connected with steam turbine is aimed for and presented in this paper.

  15. Thermal-hydraulic code selection for modular high temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Komen, E.M.J.; Bogaard, J.P.A. van den

    1995-06-01

    In order to study the transient thermal-hydraulic system behaviour of modular high temperature gas-cooled reactors, the thermal-hydraulic computer codes RELAP5, MELCOR, THATCH, MORECA, and VSOP are considered at the Netherlands Energy Research Foundation ECN. This report presents the selection of the most appropriate codes. To cover the range of relevant accidents, a suite of three codes is recommended for analyses of HTR-M and MHTGR reactors. (orig.).

  16. The modular high-temperature gas-cooled reactor: A cost/risk competitive nuclear option

    Energy Technology Data Exchange (ETDEWEB)

    Gotschall, H.L. (Gas-Cooled Reactor Associates, San Diego, CA (United States))

    1994-01-01

    The business risks of nuclear plant ownership are identified as a constraint on the expanded use of nuclear power. Such risks stem from the exacting demands placed on owner/operator organizations of current plants to demonstrate ongoing compliance with safety regulations and the resulting high costs for operation and maintenance. This paper describes the Modular High-Temperature Gas-Cooled Reactor (MHTGR) design, competitive economics, and approach to reducing the business risks of nuclear plant ownership.

  17. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nelson, Lee Orville [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-01-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  18. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nelson, Lee Orville [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinsey, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  19. Reference modular High Temperature Gas-Cooled Reactor Plant: Concept description report

    Energy Technology Data Exchange (ETDEWEB)

    1986-10-01

    This report provides a summary description of the Modular High Temperature Gas-Cooled Reactor (MHTGR) concept and interim results of assessments of costs, safety, constructibility, operability, maintainability, and availability. Conceptual design of this concept was initiated in October 1985 and is scheduled for completion in 1987. Participating industrial contractors are Bechtel National, Inc. (BNI), Stone and Webster Engineering Corporation (SWEC), GA Technologies, Inc. (GA), General Electric Co. (GE), and Combustion Engineering, Inc. (C-E).

  20. Evaluation of proposed German safety criteria for high-temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Barsell, A.W.

    1980-05-01

    This work reviews proposed safety criteria prepared by the German Bundesministerium des Innern (BMI) for future licensing of gas-cooled high-temperature reactor (HTR) concepts in the Federal Republic of Germany. Comparison is made with US General Design Criteria (GDCs) in 10CFR50 Appendix A and with German light water reactor (LWR) criteria. Implications for the HTR design relative to the US design and safety approach are indicated. Both inherent characteristics and design features of the steam cycle, gas turbine, and process heat concepts are taken into account as well as generic design options such as a pebble bed or prismatic core.

  1. Analysis of the gas diffusion process during a hypothetical air ingress accident in a modular high temperature gas cooled reactor

    OpenAIRE

    Zhang, Z.; Gerwin, Helmut; Scherer, Winfried

    1993-01-01

    In order to simulate the diffusion process during a hypothetical air ingress accident in a modular high temperature gas cooled reactor, a one-dimensional coupled diffusion-convection model has been established. In this analysis it is shown first, that experiments performed at the Japan Atomic Energy Research Institute (JAERI) have been recalculated successfully, thus validating the new model. Applying this model to the NACOK facility, now under construction at the Institute for Safety Researc...

  2. Application of Gamma code coupled with turbomachinery models for high temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chang Oh

    2008-02-01

    The very high-temperature gas-cooled reactor (VHTR) is envisioned as a single- or dual-purpose reactor for electricity and hydrogen generation. The concept has average coolant temperatures above 9000C and operational fuel temperatures above 12500C. The concept provides the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperature to support process heat applications, such as coal gasification, desalination or cogenerative processes, the VHTR’s higher temperatures allow broader applications, including thermochemical hydrogen production. However, the very high temperatures of this reactor concept can be detrimental to safety if a loss-ofcoolant accident (LOCA) occurs. Following the loss of coolant through the break and coolant depressurization, air will enter the core through the break by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heatup of the reactor core and the release of a toxic gas, CO, and fission products. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. Prior to the start of this Korean/United States collaboration, no computer codes were available that had been sufficiently developed and validated to reliably simulate a LOCA in the VHTR. Therefore, we have worked for the past three years on developing and validating advanced computational methods for simulating LOCAs in a VHTR. GAMMA code is being developed to implement turbomachinery models in the power conversion unit (PCU) and ultimately models associated with the hydrogen plant. Some preliminary results will be described in this paper.

  3. Monte Carlo Analysis of the Battery-Type High Temperature Gas Cooled Reactor

    Science.gov (United States)

    Grodzki, Marcin; Darnowski, Piotr; Niewiński, Grzegorz

    2017-12-01

    The paper presents a neutronic analysis of the battery-type 20 MWth high-temperature gas cooled reactor. The developed reactor model is based on the publicly available data being an `early design' variant of the U-battery. The investigated core is a battery type small modular reactor, graphite moderated, uranium fueled, prismatic, helium cooled high-temperature gas cooled reactor with graphite reflector. The two core alternative designs were investigated. The first has a central reflector and 30×4 prismatic fuel blocks and the second has no central reflector and 37×4 blocks. The SERPENT Monte Carlo reactor physics computer code, with ENDF and JEFF nuclear data libraries, was applied. Several nuclear design static criticality calculations were performed and compared with available reference results. The analysis covered the single assembly models and full core simulations for two geometry models: homogenous and heterogenous (explicit). A sensitivity analysis of the reflector graphite density was performed. An acceptable agreement between calculations and reference design was obtained. All calculations were performed for the fresh core state.

  4. Monte Carlo Analysis of the Battery-Type High Temperature Gas Cooled Reactor

    Directory of Open Access Journals (Sweden)

    Grodzki Marcin

    2017-12-01

    Full Text Available The paper presents a neutronic analysis of the battery-type 20 MWth high-temperature gas cooled reactor. The developed reactor model is based on the publicly available data being an ‘early design’ variant of the U-battery. The investigated core is a battery type small modular reactor, graphite moderated, uranium fueled, prismatic, helium cooled high-temperature gas cooled reactor with graphite reflector. The two core alternative designs were investigated. The first has a central reflector and 30×4 prismatic fuel blocks and the second has no central reflector and 37×4 blocks. The SERPENT Monte Carlo reactor physics computer code, with ENDF and JEFF nuclear data libraries, was applied. Several nuclear design static criticality calculations were performed and compared with available reference results. The analysis covered the single assembly models and full core simulations for two geometry models: homogenous and heterogenous (explicit. A sensitivity analysis of the reflector graphite density was performed. An acceptable agreement between calculations and reference design was obtained. All calculations were performed for the fresh core state.

  5. Design of Helium Brayton Cycle for Small Modular High Temperature Gas cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Yoon Han; Lee, Je Kyoung; Lee, Jeong Ik [Korea Advanced Institue of Science and Technology, Daejeon (Korea, Republic of)

    2012-05-15

    The small modular reactor (SMR) is gaining a lot of interest recently. Not only it can achieve better passive safety, but also it can be potentially utilized for the diverse applications to respond to the increasing global energy demands. As a part of the SMR development effort, SM-HTGR (Small Modular-High Temperature Gas-cooled Reactor), a 20MWth reactor is under development by the Korean Atomic Energy Research Institute (KAERI) for the complete passive safety, desalination and industrial process heat application. The Helium Brayton cycle is considered as a promising candidate for the SM-HTGR power conversion. The advantages of Helium Brayton cycles are: 1) helium is an inert gas that does not interact with structure material. 2) helium is chemically stable that helium Brayton cycle can be utilized under the high temperature circumstance. 3) higher thermal efficiency is achievable under higher outlet temperature range. Moreover, high temperature advantage can be utilized (reinforced) by diverting part of the heat for industrial process heat. This paper will discuss the progress on the helium power conversion cycle operating condition optimization by studying the sensitivity of the maximum pressure, pressure ratio and the component cooling on the total cycle efficiency

  6. Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors

    Science.gov (United States)

    Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pacoima, CA; Benander, Robert E [Pacoima, CA

    2011-03-01

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  7. Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors

    Science.gov (United States)

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2013-09-03

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  8. Commercialization of modular high temperature gas-cooled reactors in the world

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Hitoshi; Okamoto, Futoshi; Ohhashi, Kazutaka [Fuji Electric Co. Ltd., Tokyo (Japan)

    2001-07-01

    The construction programs of the commercial high temperature gas-cooled reactors have been activated extraordinarily all over the world. This paper gives an overview of the three major programs, the South African PBMR project (US utility Exelon announced recently their plan to import PBMRs), the international GT-MHR project (by US DOE, General Atomics, MINATOM of Russian Federation, FRAMATOME ANP, Fuji Electric) and Chinese HTR-PM project. And the reasons why the utilities selected small modular HTGRs as next generation reactors, the superior characteristics of the small modular HTGRs for power generation plant and prospects of them are summarized and discussed. (author)

  9. Assessment of Water Ingress Accidents in a Modular High-Temperature Gas-Cooled Reactor

    OpenAIRE

    Zhang, Z.; Dong, Y; Scherer, W

    2005-01-01

    Severe water ingress accidents in the 200-MW HTR-module were assessed to determine the safety margins of modular pebble-bed high-temperature gas-cooled reactors (HTR-module). The 200-MW HTR-module was designed by Siemens under the criteria that no active safety protection systems were necessary because of its inherent safe nature. For simulating the behavior of the HTR-module during severe water ingress accidents, a water, steam, and helium multiphase cavity model was developed and implemente...

  10. KEY DESIGN REQUIREMENTS FOR THE HIGH TEMPERATURE GAS-COOLED REACTOR NUCLEAR HEAT SUPPLY SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    L.E. Demick

    2010-09-01

    Key requirements that affect the design of the high temperature gas-cooled reactor nuclear heat supply system (HTGR-NHSS) as the NGNP Project progresses through the design, licensing, construction and testing of the first of a kind HTGR based plant are summarized. These requirements derive from pre-conceptual design development completed to-date by HTGR Suppliers, collaboration with potential end users of the HTGR technology to identify energy needs, evaluation of integration of the HTGR technology with industrial processes and recommendations of the NGNP Project Senior Advisory Group.

  11. Perspectives on understanding and verifying the safety terrain of modular high temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Donald E., E-mail: donald@carlsonperin.net [11221 Empire Lane, Rockville, MD 20852 (United States); Ball, Sydney J., E-mail: beckysyd@comcast.net [100 Greywood Place, Oak Ridge, TN 37830 (United States)

    2016-09-15

    The passive safety characteristics of modular high temperature gas-cooled reactors (HTGRs) are conceptually well known and are largely supported by insights from past and ongoing research. This paper offers perspectives on selected issues in areas where further analysis and testing achievable within existing research and demonstration programs could help address residual uncertainties and better support the analysis of safety performance and the regulatory assessment of defense in depth. Areas considered include the evaluation of normal and anomalous core operating conditions and the analysis of accidents involving loss of forced cooling, coolant depressurization, air ingress, moisture ingress, and reactivity events. In addition to discussing associated uncertainties and potential measures to address them, this paper also proposes supplemental “safety terrain” studies that would use realistic assessments of postulated extreme event sequences to establish a more comprehensive understanding of the inherent behaviors and ultimate safety capabilities of modular HTGRs.

  12. Critical evaluation of high-temperature gas-cooled reactors applicable to coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Spiewak, I.; Jones, J.E. Jr.; Rittenhouse, P.L.; DeStefano, J.R.; Delene, J.G.

    1975-12-01

    A critical review is presented of the technology and costs of very high-temperature gas-cooled reactors (VHTRs) applicable to nuclear coal conversion. Coal conversion processes suitable for coupling to reactors are described. Vendor concepts of the VHTR are summarized. The materials requirements as a function of process temperature in the range 1400 to 2000/sup 0/F are analyzed. Components, environmental and safety factors, economics and nuclear fuel cycles are reviewed. It is concluded that process heat supply in the range 1400 to 1500/sup 0/F could be developed with a high degree of assurance. Process heat at 1600/sup 0/F would require considerably more materials development. While temperatures up to 2000/sup 0/F appear to be attainable, considerably more research and risk were involved. A demonstration plant would be required as a step in the commercialization of the VHTR.

  13. High Temperature Gas-Cooled Reactor Projected Markets and Preliminary Economics

    Energy Technology Data Exchange (ETDEWEB)

    Larry Demick

    2011-08-01

    This paper summarizes the potential market for process heat produced by a high temperature gas-cooled reactor (HTGR), the environmental benefits reduced CO2 emissions will have on these markets, and the typical economics of projects using these applications. It gives examples of HTGR technological applications to industrial processes in the typical co-generation supply of process heat and electricity, the conversion of coal to transportation fuels and chemical process feedstock, and the production of ammonia as a feedstock for the production of ammonia derivatives, including fertilizer. It also demonstrates how uncertainties in capital costs and financial factors affect the economics of HTGR technology by analyzing the use of HTGR technology in the application of HTGR and high temperature steam electrolysis processes to produce hydrogen.

  14. Sensitivity studies of modular high-temperature gas-cooled reactor postulated accidents

    Energy Technology Data Exchange (ETDEWEB)

    Ball, Syd [Nuclear Science and Technology Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6010 (United States)]. E-mail: sjb@ornl.gov

    2006-03-15

    The results of various accident scenario simulations for the two major modular high temperature gas-cooled reactor (HTGR) variants (prismatic and pebble bed cores) are presented. Sensitivity studies can help to quantify the uncertainty ranges of the predicted outcomes for variations in some of the more crucial system parameters, as well as for occurrences of equipment and/or operator failures or errors. In addition, sensitivity studies can guide further efforts in improving the design and determining where more (or less) R and D is appropriate. Both of the modular HTGR designs studied - the 400-MW(t) pebble bed modular reactor (PBMR, pebble) and the 600-MW(t) gas-turbine modular helium reactor (GT-MHR, prismatic) - show excellent accident prevention and mitigation capabilities because of their inherent passive safety features. The large thermal margins between operating and 'potential damage' temperatures, along with the typically very slow accident response times (approximate days to reach peak temperatures), tend to reduce concerns about uncertainties in the simulation models, the initiating events, and the equipment and operator responses.

  15. THATCH: A computer code for modelling thermal networks of high- temperature gas-cooled nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, P.G.; Kennett, R.J.; Colman, J.; Ginsberg, T. (Brookhaven National Lab., Upton, NY (United States))

    1991-10-01

    This report documents the THATCH code, which can be used to model general thermal and flow networks of solids and coolant channels in two-dimensional r-z geometries. The main application of THATCH is to model reactor thermo-hydraulic transients in High-Temperature Gas-Cooled Reactors (HTGRs). The available modules simulate pressurized or depressurized core heatup transients, heat transfer to general exterior sinks or to specific passive Reactor Cavity Cooling Systems, which can be air or water-cooled. Graphite oxidation during air or water ingress can be modelled, including the effects of added combustion products to the gas flow and the additional chemical energy release. A point kinetics model is available for analyzing reactivity excursions; for instance due to water ingress, and also for hypothetical no-scram scenarios. For most HTGR transients, which generally range over hours, a user-selected nodalization of the core in r-z geometry is used. However, a separate model of heat transfer in the symmetry element of each fuel element is also available for very rapid transients. This model can be applied coupled to the traditional coarser r-z nodalization. This report described the mathematical models used in the code and the method of solution. It describes the code and its various sub-elements. Details of the input data and file usage, with file formats, is given for the code, as well as for several preprocessing and postprocessing options. The THATCH model of the currently applicable 350 MW{sub th} reactor is described. Input data for four sample cases are given with output available in fiche form. Installation requirements and code limitations, as well as the most common error indications are listed. 31 refs., 23 figs., 32 tabs.

  16. Operation and Control Simulation of a Modular High Temperature Gas Cooled Reactor Nuclear Power Plant

    Science.gov (United States)

    Li, Haipeng; Huang, Xiaojin; Zhang, Liangju

    2008-08-01

    Issues in the operation and control of the multi-modular nuclear power plant are complicated. The high temperature gas cooled reactor pebble-bed module (HTR-PM) plant with two-module will be built as a demonstration plant in China. To investigate the operation and control characteristics of the plant, a simplified dynamic model is developed and mathematically formulated based upon the fundamental conversation of mass, energy and momentum. The model is implemented in a personal computer to simulate the power increase process of the HTR-PM operation. The open loop operation with no controller is first simulated and the results show that the essential parameter steam temperature varies drastically with time, which is not allowable in the normal operation. According to the preliminary control strategy of the HTR-PM, a simple steam temperature controller is proposed. The controller is of Proportional-type with a time lag. The closed loop operation with a steam temperature controller is then implemented and the simulation results show that the steam temperature and also other parameters are all well controlled in the allowable range.

  17. Using Wireless Sensor Networks to Achieve Intelligent Monitoring for High-Temperature Gas-Cooled Reactor

    Directory of Open Access Journals (Sweden)

    Jianghai Li

    2017-01-01

    Full Text Available High-temperature gas-cooled reactors (HTGR can incorporate wireless sensor network (WSN technology to improve safety and economic competitiveness. WSN has great potential in monitoring the equipment and processes within nuclear power plants (NPPs. This technology not only reduces the cost of regular monitoring but also enables intelligent monitoring. In intelligent monitoring, large sets of heterogeneous data collected by the WSN can be used to optimize the operation and maintenance of the HTGR. In this paper, WSN-based intelligent monitoring schemes that are specific for applications of HTGR are proposed. Three major concerns regarding wireless technology in HTGR are addressed: wireless devices interference, cybersecurity of wireless networks, and wireless standards selected for wireless platform. To process nonlinear and non-Gaussian data obtained by WSN for fault diagnosis, novel algorithms combining Kernel Entropy Component Analysis (KECA and support vector machine (SVM are developed.

  18. High temperature gas-cooled reactor (HTGR) graphite pebble fuel: Review of technologies for reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Mcwilliams, A. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-08

    This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniques through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.

  19. Transient analysis of nuclear graphite oxidation for high temperature gas cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wei, E-mail: wxu12@mails.tsinghua.edu.cn; Shi, Lei; Zheng, Yanhua

    2016-09-15

    Graphite is widely used as moderator, reflector and structural materials in the high temperature gas-cooled reactor pebble-bed modular (HTR-PM). In normal operating conditions or water/air ingress accident, the nuclear graphite in the reactor may be oxidized by air or steam. Oxidation behavior of nuclear graphite IG-110 which is used as the structural materials and reflector of HTR-PM is mainly researched in this paper. To investigate the penetration depth of oxygen in IG-110, this paper developed the one dimensional spherical oxidation model. In the oxidation model, the equations considered graphite porosity variation with the graphite weight loss. The effect of weight loss on the effective diffusion coefficient and the oxidation rate was also considered in this model. Based on this theoretical model, this paper obtained the relative concentration and local weight loss ratio profile in graphite. In addition, the local effective diffusion coefficient and oxidation rate in the graphite were also investigated.

  20. Depletion Analysis of Modular High Temperature Gas-cooled Reactor Loaded with LEU/Thorium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sonat Sen; Gilles Youinou

    2013-02-01

    Thorium based fuel has been considered as an option to uranium-based fuel, based on considerations of resource utilization (Thorium is more widely available when compared to Uranium). The fertile isotope of Thorium (Th-232) can be converted to fissile isotope U-233 by neutron capture during the operation of a suitable nuclear reactor such as High Temperature Gas-cooled Reactor (HTGR). However, the fertile Thorium needs a fissile supporter to start and maintain the conversion process such as U-235 or Pu-239. This report presents the results of a study that analyzed the thorium utilization in a prismatic HTGR, namely Modular High Temperature Gas-Cooled Reactor (MHTGR) that was designed by General Atomics (GA). The collected for the modeling of this design come from Chapter 4 of MHTGR Preliminary Safety Information Document that GA sent to Department of Energy (DOE) on 1995. Both full core and unit cell models were used to perform this analysis using SCALE 6.1 and Serpent 1.1.18. Because of the long mean free paths (and migration lengths) of neutrons in HTRs, using a unit cell to represent a whole core can be non-trivial. The sizes of these cells were set to match the spectral index between unit cell and full core domains. It was found that for the purposes of this study an adjusted unit cell model is adequate. Discharge isotopics and one-group cross-sections were delivered to the transmutation analysis team. This report provides documentation for these calculations

  1. Scaling Studies for High Temperature Test Facility and Modular High Temperature Gas-Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Richard R. Schult; Paul D. Bayless; Richard W. Johnson; James R. Wolf; Brian Woods

    2012-02-01

    The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5-year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant (NGNP) project. Because the NRC's interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC).

  2. HYBRID SULFUR CYCLE FLOWSHEETS FOR HYDROGEN PRODUCTION USING HIGH-TEMPERATURE GAS-COOLED REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.

    2011-07-06

    Two hybrid sulfur (HyS) cycle process flowsheets intended for use with high-temperature gas-cooled reactors (HTGRs) are presented. The flowsheets were developed for the Next Generation Nuclear Plant (NGNP) program, and couple a proton exchange membrane (PEM) electrolyzer for the SO2-depolarized electrolysis step with a silicon carbide bayonet reactor for the high-temperature decomposition step. One presumes an HTGR reactor outlet temperature (ROT) of 950 C, the other 750 C. Performance was improved (over earlier flowsheets) by assuming that use of a more acid-tolerant PEM, like acid-doped poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI), instead of Nafion{reg_sign}, would allow higher anolyte acid concentrations. Lower ROT was accommodated by adding a direct contact exchange/quench column upstream from the bayonet reactor and dropping the decomposition pressure. Aspen Plus was used to develop material and energy balances. A net thermal efficiency of 44.0% to 47.6%, higher heating value basis is projected for the 950 C case, dropping to 39.9% for the 750 C case.

  3. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations.

  4. Severe water ingress accident analysis for a Modular High Temperature Gas Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zuoyi [Inst. of Nuclear Energy Technology Tsinghua Univ., Beijing, BJ (China); Scherer, Winfried

    1997-12-31

    This paper analyzes the severe water ingress accidents in the SIEMENS 200MW Modular High Temperature Gas Cooled Reactor (HTR-Module) under the assumption of no active safety protection systems in order to find the safety margin of the current HTR-Module design. A water, steam and helium multi-phase cavity model is originally developed and implemented in the DSNP simulation system. The developed DSNP system is used to simulate the primary circuit of HTR-Module power plant. The comparisons of the models with the TINTE calculations validate the current simulation. After analyzing the effects of blower separation on water droplets, the wall heat storage, etc., it is found that the maximum H{sub 2}O density increase rate in the reactor core is smaller than 0.3 kg/(m{sup 3}s). The liquid water vaporization in the steam generator and H{sub 2}O transport from the steam generator to the reactor core reduces the impulse of the H{sub 2}O in the reactor core. The nuclear reactivity increase caused by the water ingress leads to a fast power excursion, which, however, is inherently counterbalanced by negative feedback effects. Concerning the integrity of the fuel elements, the safety relevant temperature limit of 1600degC was not reached in any case. (author)

  5. Coupling of Modular High-Temperature Gas-Cooled Reactor with Supercritical Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Shutang Zhu

    2008-01-01

    Full Text Available This paper presents investigations on the possible combination of modular high-temperature gas-cooled reactor (MHTGR technology with the supercritical (SC steam turbine technology and the prospective deployments of the MHTGR SC power plant. Energy conversion efficiency of steam turbine cycle can be improved by increasing the main steam pressure and temperature. Investigations on SC water reactor (SCWR reveal that the development of SCWR power plants still needs further research and development. The MHTGR SC plant coupling the existing technologies of current MHTGR module design with operation experiences of SC FPP will achieve high cycle efficiency in addition to its inherent safety. The standard once-reheat SC steam turbine cycle and the once-reheat steam cycle with life-steam have been studied and corresponding parameters were computed. Efficiencies of thermodynamic processes of MHTGR SC plants were analyzed, while comparisons were made between an MHTGR SC plant and a designed advanced passive PWR - AP1000. It was shown that the net plant efficiency of an MHTGR SC plant can reach 45% or above, 30% higher than that of AP1000 (35% net efficiency. Furthermore, an MHTGR SC plant has higher environmental competitiveness without emission of greenhouse gases and other pollutants.

  6. Modular High Temperature Gas-Cooled Reactor Safety Basis and Approach

    Energy Technology Data Exchange (ETDEWEB)

    David Petti; Jim Kinsey; Dave Alberstein

    2014-01-01

    Various international efforts are underway to assess the safety of advanced nuclear reactor designs. For example, the International Atomic Energy Agency has recently held its first Consultancy Meeting on a new cooperative research program on high temperature gas-cooled reactor (HTGR) safety. Furthermore, the Generation IV International Forum Reactor Safety Working Group has recently developed a methodology, called the Integrated Safety Assessment Methodology, for use in Generation IV advanced reactor technology development, design, and design review. A risk and safety assessment white paper is under development with respect to the Very High Temperature Reactor to pilot the Integrated Safety Assessment Methodology and to demonstrate its validity and feasibility. To support such efforts, this information paper on the modular HTGR safety basis and approach has been prepared. The paper provides a summary level introduction to HTGR history, public safety objectives, inherent and passive safety features, radionuclide release barriers, functional safety approach, and risk-informed safety approach. The information in this paper is intended to further the understanding of the modular HTGR safety approach. The paper gives those involved in the assessment of advanced reactor designs an opportunity to assess an advanced design that has already received extensive review by regulatory authorities and to judge the utility of recently proposed new methods for advanced reactor safety assessment such as the Integrated Safety Assessment Methodology.

  7. Gas turbine cooling system

    Science.gov (United States)

    Bancalari, Eduardo E.

    2001-01-01

    A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

  8. Approaches to experimental validation of high-temperature gas-cooled reactor components

    Energy Technology Data Exchange (ETDEWEB)

    Belov, S.E. [Joint Stock Company ' Afrikantov OKB Mechanical Engineering' , Burnakovsky Proezd, 15, Nizhny Novgorod 603074 (Russian Federation); Borovkov, M.N., E-mail: borovkov@okbm.nnov.ru [Joint Stock Company ' Afrikantov OKB Mechanical Engineering' , Burnakovsky Proezd, 15, Nizhny Novgorod 603074 (Russian Federation); Golovko, V.F.; Dmitrieva, I.V.; Drumov, I.V.; Znamensky, D.S.; Kodochigov, N.G. [Joint Stock Company ' Afrikantov OKB Mechanical Engineering' , Burnakovsky Proezd, 15, Nizhny Novgorod 603074 (Russian Federation); Baxi, C.B.; Shenoy, A.; Telengator, A. [General Atomics, 3550 General Atomics Court, CA (United States); Razvi, J., E-mail: Junaid.Razvi@ga.com [General Atomics, 3550 General Atomics Court, CA (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Computational and experimental investigations of thermal and hydrodynamic characteristics for the equipment. Black-Right-Pointing-Pointer Vibroacoustic investigations. Black-Right-Pointing-Pointer Studies of the electromagnetic suspension system on GT-MHR turbo machine rotor models. Black-Right-Pointing-Pointer Experimental investigations of the catcher bearings design. - Abstract: The special feature of high-temperature gas-cooled reactors (HTGRs) is stressed operating conditions for equipment due to high temperature of the primary circuit helium, up to 950 Degree-Sign C, as well as acoustic and hydrodynamic loads upon the gas path elements. Therefore, great significance is given to reproduction of real operation conditions in tests. Experimental investigation of full-size nuclear power plant (NPP) primary circuit components is not practically feasible because costly test facilities will have to be developed for the power of up to hundreds of megawatts. Under such conditions, the only possible process to validate designs under development is representative tests of smaller scale models and fragmentary models. At the same time, in order to take in to validated account the effect of various physical factors, it is necessary to ensure reproduction of both individual processes and integrated tests incorporating needed integrated investigations. Presented are approaches to experimental validation of thermohydraulic and vibroacoustic characteristics for main equipment components and primary circuit path elements under standard loading conditions, which take account of their operation in the HTGR. Within the framework of the of modular helium reactor project, including a turbo machine in the primary circuit, a new and difficult problem is creation of multiple-bearing flexible vertical rotor. Presented are approaches to analytical and experimental validation of the rotor electromagnetic bearings, catcher bearings, flexible rotor

  9. Water-ingress analysis for the 200 MWe pebble-bed modular high temperature gas-cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Yanhua, E-mail: zhengyh@mail.tsinghua.edu.c [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Shi Lei; Wang Yan [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2010-10-15

    Water ingress into the primary circuit is generally recognized as one of the severe accidents with potential hazard to the modular high temperature gas-cooled reactor adopting steam-turbine cycle, which will cause a positive reactivity introduction, as well as the chemical corrosion of graphite fuel elements and reflector structure material. Besides, increase of the primary pressure may result in the opening of the safety valves, consequently leading the release of radioactive isotopes and flammable water gas. The analysis of such a kind of important and particular accident is significant to verify the inherent safety characteristics of the modular HTR plants. Based on the preliminary design of the 200 MWe high temperature gas-cooled reactor pebble-bed modular (HTR-PM), the design basis accident of a double-ended guillotine break of one heating tube and the beyond design basis accident of a large break of the main steam collection plate have been analyzed by using TINTE code, which is a special transient analysis program for high temperature gas-cooled reactors. Some safety relevant concerns, such as the fuel temperature, the primary loop pressure, the graphite corrosion, the water gas releasing amount, as well as the natural convection influence on the condition of failing to close the blower flaps, have been studied in detail. The calculation results indicate that even under some severe hypothetical postulates, the HTR-PM is able to keep the inherent safeties of the modular high temperature gas-cooled reactor and has a relatively good natural plant response, which will not result in environmental radiation hazard.

  10. Nonlinear Adaptive Power-Level Control for Modular High Temperature Gas-Cooled Reactors

    Science.gov (United States)

    Dong, Zhe

    2013-04-01

    After the Fukushima nuclear accident, much more attention has to be drawn on the safety issues. The improvement of safety has already become the focus of the developing trend of the nuclear energy systems. Due to the inherent safety feature and the potential economic competitiveness, the modular high temperature gas-cooled reactor (MHTGR) has been seen as the central part of the next generation of nuclear plant (NGNP). Power-level control is one of the key techniques that guarantee the safe, stable and efficient operation for nuclear reactors. Since the MHTGR dynamics has the features of strong nonlinearity and uncertainty, in order to improve the operation performance, it is meaningful to develop the nonlinear adaptive power-level control law for the MHTGR. Based on using the natural dynamic features beneficial to system stabilization, a novel nonlinear adaptive power-level control is given for the MHTGR in this paper. It is theoretically proved that this newly-built controller does not only provide globally asymptotic closed-loop stability but is also adaptive to the system uncertainty. This control law is then applied to the power-level regulation of the pebble-bed MHTGR of the HTR-PM power plant. Numerical simulation results show the feasibility of this control law and the relationship between the performance and controller parameters.

  11. Physically-Based Power-Level Control for Modular High Temperature Gas-Cooled Reactors

    Science.gov (United States)

    Dong, Zhe

    2012-10-01

    Because of its strong inherent safety, the modular high temperature gas-cooled nuclear reactor (MHTGR) has been regarded as the central part of the next generation nuclear plants (NGNPs). Power-level control is one of the key techniques which provide safe, stable and efficient operation for the MHTGRs. The physically-based regulation theory is definitely a promising trend of modern control theory and provides a control design method that can suppress the unstable part of the system dynamics and remain the stable part. Usually, the control law designed by the physically-based control theory has a simple form and high performance. Stimulated by this, a novel nonlinear dynamic output feedback power-level control is established in this paper for the MHTGR based upon its own dynamic features. This newly-built control strategy guarantees the globally asymptotic stability and provides a satisfactory transient performance through properly adjusting the feedback gains. Simulation results not only verify the correctness of the theoretical results but also illustrate the high control performance.

  12. Utilization of heat of modular high temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ide, A. [Fuji Electric, Tokyo (Japan). Nuclear Power Promotion Dept.; Takenaka, Y. [Kawasaki Heavy Industries, Tokyo (Japan). Nuclear Systems Div.; Maeda, S. [Ube Industries, Yamaguchi (Japan). Machinery Dept.

    1996-07-01

    The demand for energy is increasing worldwide along with increases in population and rises in the standard of living. If the needed energy is supplied only by fossil fuels, environmental problems will impose limits on human activities. Recognizing that more than 60% of the energy consumed in Japan is non-electrical energy, FAPIG organized the HTR-HUC Working Group to study methods of using heat from high temperature gas-cooled reactors (HTR) to mitigate environmental and energy resource problems, and to contribute to the steady supply and effective use of energy. The authors chose three types of model plants to study: (1) a cogeneration plant which can be built with existing technology; (2) a coal gasification plant which can accelerate the clean use of coal and contribute to a stable supply of energy and the preservation of the environment; and (3) a hydrogen production plant whose hydrogen will release people from their dependence on fossil energy. For each of the above plants, a system outline and basic plan as well as costs, resultant social effects, management methods of the operating company and technical issues are studied.

  13. Validation of SCALE for High Temperature Gas-Cooled Reactors Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [ORNL; Ilas, Dan [ORNL; Kelly, Ryan P [ORNL; Sunny, Eva E [ORNL

    2012-08-01

    This report documents verification and validation studies carried out to assess the performance of the SCALE code system methods and nuclear data for modeling and analysis of High Temperature Gas-Cooled Reactor (HTGR) configurations. Validation data were available from the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhE Handbook), prepared by the International Reactor Physics Experiment Evaluation Project, for two different HTGR designs: prismatic and pebble bed. SCALE models have been developed for HTTR, a prismatic fuel design reactor operated in Japan and HTR-10, a pebble bed reactor operated in China. The models were based on benchmark specifications included in the 2009, 2010, and 2011 releases of the IRPhE Handbook. SCALE models for the HTR-PROTEUS pebble bed configuration at the PROTEUS critical facility in Switzerland have also been developed, based on benchmark specifications included in a 2009 IRPhE draft benchmark. The development of the SCALE models has involved a series of investigations to identify particular issues associated with modeling the physics of HTGRs and to understand and quantify the effect of particular modeling assumptions on calculation-to-experiment comparisons.

  14. DESIGN CHARACTERISTICS OF THE IDAHO NATIONAL LABORATORY HIGH-TEMPERATURE GAS-COOLED TEST REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James; Bayless, Paul; Strydom, Gerhard; Kumar, Akansha; Gougar, Hans

    2016-11-01

    Uncertainty and sensitivity analysis is an indispensable element of any substantial attempt in reactor simulation validation. The quantification of uncertainties in nuclear engineering has grown more important and the IAEA Coordinated Research Program (CRP) on High-Temperature Gas Cooled Reactor (HTGR) initiated in 2012 aims to investigate the various uncertainty quantification methodologies for this type of reactors. The first phase of the CRP is dedicated to the estimation of cell and lattice model uncertainties due to the neutron cross sections co-variances. Phase II is oriented towards the investigation of propagated uncertainties from the lattice to the coupled neutronics/thermal hydraulics core calculations. Nominal results for the prismatic single block (Ex.I-2a) and super cell models (Ex.I-2c) have been obtained using the SCALE 6.1.3 two-dimensional lattice code NEWT coupled to the TRITON sequence for cross section generation. In this work, the TRITON/NEWT-flux-weighted cross sections obtained for Ex.I-2a and various models of Ex.I-2c is utilized to perform a sensitivity analysis of the MHTGR-350 core power densities and eigenvalues. The core solutions are obtained with the INL coupled code PHISICS/RELAP5-3D, utilizing a fixed-temperature feedback for Ex. II-1a.. It is observed that the core power density does not vary significantly in shape, but the magnitude of these variations increases as the moderator-to-fuel ratio increases in the super cell lattice models.

  15. Comparative evaluation of pebble-bed and prismatic fueled high-temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.; Bartine, D.E.

    1981-01-01

    A comparative evaluation has been performed of the HTGR and the Federal Republic of Germany's Pebble Bed Reactor (PBR) for potential commercial applications in the US. The evaluation considered two reactor sizes (1000 and 3000 MW(t)) and three process applications (steam cycle, direct cycle, and process heat, with outlet coolant temperatures of 750, 850, and 950/sup 0/C, respectively). The primary criterion for the comparison was the levelized (15-year) cost of producing electricity or process heat. Emphasis was placed on the cost impact of differences between the prismatic-type HTGR core, which requires periodic refuelings during reactor shutdowns, and the pebble bed PBR core, which is refueled continuously during reactor operations. Detailed studies of key technical issues using reference HTGR and PBR designs revealed that two cost components contributing to the levelized power costs are higher for the PBR: capital costs and operation and maintenance costs. A third cost component, associated with nonavailability penalties, tended to be higher for the PBR except for the process heat application, for which there is a large uncertainty in the HTGR nonavailability penalty at the 950/sup 0/C outlet coolant temperature. A fourth cost component, fuel cycle costs, is lower for the PBR, but not sufficiently lower to offset the capital cost component. Thus the HTGR appears to be slightly superior to the PBR in economic performance. Because of the advanced development of the HTGR concept, large HTGRs could also be commercialized in the US with lower R and D costs and shorter lead times than could large PBRs. It is recommended that the US gas-cooled thermal reactor program continue giving primary support to the HTGR, while also maintaining its cooperative PBR program with FRG.

  16. Application of optical fibers for optical diagnostics in high temperature gas cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shikama, T.; Narui, M. [Oarai Branch, Institute for Materials Research, Tohoku University, Ibaraki-ken (Japan); Kakuta, T. [Tokai Research Establishment, JAERI, Ibaraki-ken (Japan); Ishihara, M.; Sagawa, T.; Arai, T. [Oarai Research Establishment, JAERI, Ibaraki-ken (Japan)

    1998-09-01

    Visibility of a core region of a high temperature gas cooled reactor (HTGR) is very poor in general with its solid graphite moderator. Realization of optical diagnostics will improve safety and maintenance of the HTGR considerably. The applicability of fused silica core optical fibers for optical diagnostics in a core of the High Temperature Testing Reactor (HTTR) of the Japan Atomic Energy Research Institute (JAERI) has been studied in the present research. Optical diagnostics are also expected to play crucial roles in advanced research planned in the HTTR. Optical transmission of the optical fibers was found not to degrade for several hundred hours at 1070K in air and helium environments in the wavelength range of 350-1800nm. In general. the optical fibers were found to be heat-resistant. To study radiation effects, the optical fibers were irradiated in Japan Materials Testing Reactor (JMTR). where the fast neutron(E>1MeV) flux was up to 1.5x10{sup 18}n/m{sup 2}s and the gamma-ray dose rate was up to about 5W/g for iron. The estimated fast neutron flux and the gamma-ray dose rate would be in the order of 10{sup 16}n/m{sup 2} and about 0.1W/g for iron, respectively in the HTTR. In general, optical transmission loss increased substantially with a small irradiation dose in the visible wave length range, although some developed fibers showed better radiation resistance. Good optical transmissivity was kept in the infrared region with absorption rate of less than a few dB/m. Radioluminescence and thermoluminescence from sapphire and silica could be observed with optical fibers under irradiation. Cherenkov radiation was observed in the wavelength range of 600-1800nm, whose intensity was temperature-independent. Black-body radiation was dominant in the wavelength longer than 1200nm at elevated temperatures. The results showed that the silica core optical fibers could be used as an image guide as well as monitors for radiation dosimetry and for monitoring core

  17. Neutronic analysis stochastic distribution of fuel particles in Very High Temperature Gas-Cooled Reactors

    Science.gov (United States)

    Ji, Wei

    The Very High Temperature Gas-Cooled Reactor (VHTR) is a promising candidate for Generation IV designs due to its inherent safety, efficiency, and its proliferation-resistant and waste minimizing fuel cycle. A number of these advantages stem from its unique fuel design, consisting of a stochastic mixture of tiny (0.78mm diameter) microspheres with multiple coatings. However, the microsphere fuel regions represent point absorbers for resonance energy neutrons, resulting in the "double heterogeneity" for particle fuel. Special care must be taken to analyze this fuel in order to predict the spatial and spectral dependence of the neutron population in a steady-state reactor configuration. The challenges are considerable and resist brute force computation: there are over 1010 microspheres in a typical reactor configuration, with no hope of identifying individual microspheres in this stochastic mixture. Moreover, when individual microspheres "deplete" (e.g., burn the fissile isotope U-235 or transmute the fertile isotope U-238 (eventually) to Pu-239), the stochastic time-dependent nature of the depletion compounds the difficulty posed by the stochastic spatial mixture of the fuel, resulting in a prohibitive computational challenge. The goal of this research is to develop a methodology to analyze particle fuel randomly distributed in the reactor, accounting for the kernel absorptions as well as the stochastic depletion of the fuel mixture. This Ph.D. dissertation will address these challenges by developing a methodology for analyzing particle fuel that will be accurate enough to properly model stochastic particle fuel in both static and time-dependent configurations and yet be efficient enough to be used for routine analyses. This effort includes creation of a new physical model, development of a simulation algorithm, and application to real reactor configurations.

  18. Options for treating high-temperature gas-cooled reactor fuel for repository disposal

    Energy Technology Data Exchange (ETDEWEB)

    Lotts, A.L.; Bond, W.D.; Forsberg, C.W.; Glass, R.W.; Harrington, F.E.; Micheals, G.E.; Notz, K.J.; Wymer, R.G.

    1992-02-01

    This report describes the options that can reasonably be considered for disposal of high-temperature gas-cooled reactor (HTGR) fuel in a repository. The options include whole-block disposal, disposal with removal of graphite (either mechanically or by burning), and reprocessing of spent fuel to separate the fuel and fission products. The report summarizes what is known about the options without extensively projecting or analyzing actual performance of waste forms in a repository. The report also summarizes the processes involved in convert spent HTGR fuel into the various waste forms and projects relative schedules and costs for deployment of the various options. Fort St. Vrain Reactor fuel, which utilizes highly-enriched {sup 235}U (plus thorium) and is contained in a prismatic graphite block geometry, was used as the baseline for evaluation, but the major conclusions would not be significantly different for low- or medium-enriched {sup 235}U (without thorium) or for the German pebble-bed fuel. Future US HTGRs will be based on the Fort St. Vrain (FSV) fuel form. The whole block appears to be a satisfactory waste form for disposal in a repository and may perform better than light-water reactor (LWR) spent fuel. From the standpoint of process cost and schedule (not considering repository cost or value of fuel that might be recycled), the options are ranked as follows in order of increased cost and longer schedule to perform the option: (1) whole block, (2a) physical separation, (2b) chemical separation, and (3) complete chemical processing.

  19. Temperature responsive cooling apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Weker, M.L.; Stearns, R.M.

    1987-08-11

    A temperature responsive cooling apparatus is described for an air conditioner or refrigeration system in operative association with a reservoir of fluid, the air conditioner or refrigeration system having an air cooled coil and means for producing a current of air for cooling the coil, the temperature responsive cooling apparatus comprising: (a) means for transferring the fluid from the reservoir to the air conditioner temperature responsive cooling apparatus, (b) a fluid control device activated by the current of air for cooling the coil; (c) a temperature activated, nonelectrical device for terminating and initiating the flow of fluid therethrough in an intermittent fashion for enhancing the operability of the compressor associated with the refrigeration system and for reducing the quantity of fluid required to cool the coil of the refrigeration system, (d) a fluid treatment device for preventing, reducing or mitigating the deposition of nonevaporative components on the air cooled coil, and (e) means for dispersing the fluid to the air cooled coil from the fluid control device for cooling the coil and increasing the efficiency of the air conditioner thereby reducing the cost of operating and maintaining the air conditioner without damaging the air conditioner and without the deposition of nonevaporative components thereupon.

  20. DESIGN CHARACTERISTICS OF THE IDAHO NATIONAL LABORATORY HIGH-[TEMPERATURE GAS-COOLED TEST REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James; Bayless, Paul; Strydom, Gerhard; Kumar, Akansha; Gougar, Hans

    2016-11-01

    A point design for a graphite-moderated, high-temperature, gas-cooled test reactor (HTG TR) has been developed by Idaho National Laboratory (INL) as part of a United States (U.S.) Department of Energy (DOE) initiative to explore and potentially expand the existing U.S. test reactor capabilities. This paper provides a summary of the design and its main attributes. The 200 MW HTG TR is a thermal-neutron spectrum reactor composed of hexagonal prismatic fuel and graphite reflector blocks. Twelve fuel columns (96 fuel blocks total and 6.34 m active core height) are arranged in two hexagonal rings to form a relatively compact, high-power density, annular core sandwiched between inner, outer, top, and bottom graphite reflectors. The HTG-TR is designed to operate at 7 MPa with a coolant inlet/outlet temperature of 325°C/650°C, and utilizes TRISO particle fuel from the DOE AGR Program with 425 ?m uranium oxycarbide (UCO) kernels and an enrichment of 15.5 wt% 235U. The primary mission of the HTG TR is material irradiation and therefore the core has been specifically designed and optimized to provide the highest possible thermal and fast neutron fluxes. The highest thermal neutron flux (3.90E+14 n/cm2s) occurs in the outer reflector, and the maximum fast flux levels (1.17E+14 n/cm2s) are produced in the central reflector column where most of the graphite has been removed. Due to high core temperatures under accident conditions, all the irradiation test facilities have been located in the inner and outer reflectors where fast flux levels decline. The core features a large number of irradiation positions with large test volumes and long test lengths, ideal for thermal neutron irradiation of large test articles. The total available test volume is more than 1100 liters. Up to four test loop facilities can be accommodated with pressure tube boundaries to isolate test articles and test fluids (e.g., liquid metal, liquid salt, light water) from the helium primary coolant system.

  1. Analysis of Fluid Flow and Heat Transfer Model for the Pebble Bed High Temperature Gas Cooled Reactor

    OpenAIRE

    S. Yamoah; E.H.K. Akaho; Nana G.A. Ayensu; M. Asamoah

    2012-01-01

    The pebble bed type high temperature gas cooled nuclear reactor is a promising option for next generation reactor technology and has the potential to provide high efficiency and cost effective electricity generation. The reactor unit heat transfer poses a challenge due to the complexity associated with the thermalflow design. Therefore to reliably simulate the flow and heat transport of the pebble bed modular reactor necessitates a heat transfer model that deals with radiation as well as ther...

  2. High-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.; Rittenhouse, P.L.; Bartine, D.E.; Sanders, J.P.

    1983-06-01

    During 1982 the High-Temperature Gas-Cooled Reactor (HTGR) Technology Program at Oak Ridge National Laboratory (ORNL) continued to develop experimental data required for the design and licensing of cogeneration HTGRs. The program involves fuels and materials development (including metals, graphite, ceramic, and concrete materials), HTGR chemistry studies, structural component development and testing, reactor physics and shielding studies, performance testing of the reactor core support structure, and HTGR application and evaluation studies.

  3. Effect of fuel burnup and cross sections on modular HTGR (High-Temperature Gas-cooled Reactor) reactivity coefficients

    Science.gov (United States)

    Lefler, W.; Baxter, A.; Mathews, D.

    1987-12-01

    The temperature dependence of the reactivity coefficient in a prismatic block Modular High-Temperature Gas-Cooled Reactor (MHTGR) design is examined and found to be large and negative. Temperature coefficient results obtained with the ENDF/B-V data library were almost the same as results obtained with the earlier versions of the ENDF/B data library usually used at GA Technologies Inc., in spite of a significant eigenvalue increase with the ENDF/B-V data. The effects of fuel burnup and arbitrarily assumed cross section variations were examined and tabulated.

  4. Development status and operational features of the high temperature gas-cooled reactor. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Winkleblack, R.K.

    1976-04-01

    The objective of this study is to investigate the maturity of HTR-technology and to look out for possible technical problems, concerning introduction of large HTR power plants into the market. Further state and problems of introducing and closing the thorium fuel cycle is presented and judged. Finally, the state of development of advanced HTR-concepts for electricity production, the direct cycle HTR with helium turbine, and the gas-cooled fast breeder is discussed. In preparing the study, both HTR concepts with spherical and block-type fuel elements have been considered.

  5. Development of gas cooled reactors and experimental setup of high temperature helium loop for in-pile operation

    Energy Technology Data Exchange (ETDEWEB)

    Miletić, Marija, E-mail: marija_miletic@live.com [Czech Technical University in Prague, Prague (Czech Republic); Fukač, Rostislav, E-mail: fuk@cvrez.cz [Research Centre Rez Ltd., Rez (Czech Republic); Pioro, Igor, E-mail: Igor.Pioro@uoit.ca [University of Ontario Institute of Technology, Oshawa (Canada); Dragunov, Alexey, E-mail: Alexey.Dragunov@uoit.ca [University of Ontario Institute of Technology, Oshawa (Canada)

    2014-09-15

    Highlights: • Gas as a coolant in Gen-IV reactors, history and development. • Main physical parameters comparison of gas coolants: carbon dioxide, helium, hydrogen with water. • Forced convection in turbulent pipe flow. • Gas cooled fast reactor concept comparisons to very high temperature reactor concept. • High temperature helium loop: concept, development, mechanism, design and constraints. - Abstract: Rapidly increasing energy and electricity demands, global concerns over the climate changes and strong dependence on foreign fossil fuel supplies are powerfully influencing greater use of nuclear power. In order to establish the viability of next-generation reactor concepts to meet tomorrow's needs for clean and reliable energy production the fundamental research and development issues need to be addressed for the Generation-IV nuclear-energy systems. Generation-IV reactor concepts are being developed to use more advanced materials, coolants and higher burn-ups fuels, while keeping a nuclear reactor safe and reliable. One of the six Generation-IV concepts is a very high temperature reactor (VHTR). The VHTR concept uses a graphite-moderated core with a once-through uranium fuel cycle, using high temperature helium as the coolant. Because helium is naturally inert and single-phase, the helium-cooled reactor can operate at much higher temperatures, leading to higher efficiency. Current VHTR concepts will use fuels such as uranium dioxide, uranium carbide, or uranium oxycarbide. Since some of these fuels are new in nuclear industry and due to their unknown properties and behavior within VHTR conditions it is very important to address these issues by investigate their characteristics within conditions close to those in VHTRs. This research can be performed in a research reactor with in-pile helium loop designed and constructed in Research Center Rez Ltd. One of the topics analyzed in this article are also physical characteristic and benefits of gas

  6. Numerical simulation of severe water ingress accidents in a modular high temperature gas cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zuoyi; Scherer, W.

    1996-01-01

    This report analyzes reverse water ingress accidents in the SIEMENS 200 MW Modular Pebble-Bed High Temperature Gas Cooled Reactor (HTR-MODULE) under the assumption of no active safety protection systems in order to find the safety margins of the current HTR-MODULE design and to realize a catastrophe-free nuclear technology. A water, steam and helium multi-phase cavity model is developed and implemented in the DSNP simulation system. The DSNP system is then used to simulate the primary and secondary circuit of a HTR-MODULE power plant. Comparisons of the model with experiments and with TINTE calculations serve as validation of the simulation. The analysis of the primary circuit tries to answer the question how fast the water enters the reactor core. It was found that the maximum H{sub 2}O concentration increase in the reactor core is smaller than 0.3 kg/(m{sup 3}s). The liquid water vaporization in the steam generator and H{sub 2}O transport from the steam generator to the reactor core reduce the ingress velocity of the H{sub 2}O into the reactor core. In order to answer the question how much water enters the primary circuit, the full cavitation of the feed water pumps is analyzed. It is found that if the secondary circuit is depressurized enough, the feed water pumps will be inherently stopped by the full cavitation. This limits the water to be pumped from the deaerator to the steam generator. A comprehensive simulation of the MODUL-HTR power plant then shows that the H{sub 2}O inventory in the primary circuit can be limited to about 3000 kg. The nuclear reactivity increase caused by the water ingress leads to a fast power excursion, which, however, is inherently counterbalanced by negative feedback effects. Concerning the integrity of the fuel elements, the safety relevant temperature limit of 1600 C was not reached in any case. (orig.) [Deutsch] Dieser Bericht analysiert schwere Wassereinbruch-Stoerfaelle im 200 MW modularen Kugelhaufen-Hochtemperaturreaktor (HTR

  7. Development of safety analysis codes and experimental validation for a very high temperature gas-cooled reactor Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chang Oh

    2006-03-01

    The very high-temperature gas-cooled reactor (VHTR) is envisioned as a single- or dual-purpose reactor for electricity and hydrogen generation. The concept has average coolant temperatures above 9000C and operational fuel temperatures above 12500C. The concept provides the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperature to support process heat applications, such as coal gasification, desalination or cogenerative processes, the VHTR’s higher temperatures allow broader applications, including thermochemical hydrogen production. However, the very high temperatures of this reactor concept can be detrimental to safety if a loss-of-coolant accident (LOCA) occurs. Following the loss of coolant through the break and coolant depressurization, air will enter the core through the break by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heatup of the reactor core and the release of toxic gasses (CO and CO2) and fission products. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. Prior to the start of this Korean/United States collaboration, no computer codes were available that had been sufficiently developed and validated to reliably simulate a LOCA in the VHTR. Therefore, we have worked for the past three years on developing and validating advanced computational methods for simulating LOCAs in a VHTR. Research Objectives As described above, a pipe break may lead to significant fuel damage and fission product release in the VHTR. The objectives of this Korean/United States collaboration were to develop and validate advanced computational methods for VHTR safety analysis. The methods that have been developed are now

  8. Development of Safety Analysis Codes and Experimental Validation for a Very High Temperature Gas-Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H. Oh, PhD; Cliff Davis; Richard Moore

    2004-11-01

    The very high temperature gas-cooled reactors (VHTGRs) are those concepts that have average coolant temperatures above 900 degrees C or operational fuel temperatures above 1250 degrees C. These concepts provide the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation and nuclear hydrogen generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperatures to support process heat applications, such as desalination and cogeneration, the VHTGR's higher temperatures are suitable for particular applications such as thermochemical hydrogen production. However, the high temperature operation can be detrimental to safety following a loss-of-coolant accident (LOCA) initiated by pipe breaks caused by seismic or other events. Following the loss of coolant through the break and coolant depressurization, air from the containment will enter the core by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structures and fuel. The oxidation will release heat and accelerate the heatup of the reactor core. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. The Idaho National Engineering and Environmental Laboratory (INEEL) has investigated this event for the past three years for the HTGR. However, the computer codes used, and in fact none of the world's computer codes, have been sufficiently developed and validated to reliably predict this event. New code development, improvement of the existing codes, and experimental validation are imperative to narrow the uncertaninty in the predictions of this type of accident. The objectives of this Korean/United States collaboration are to develop advanced computational methods for VHTGR safety analysis codes and to validate these computer codes.

  9. Heat exchanger design considerations for high temperature gas-cooled reactor (HTGR) plants

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, C.F.; Vrable, D.L.; Van Hagan, T.H.; King, J.H.; Spring, A.H.

    1980-02-01

    Various aspects of the high-temperature heat exchanger conceptual designs for the gas turbine (HTGR-GT) and process heat (HTGR-PH) plants are discussed. Topics include technology background, heat exchanger types, surface geometry, thermal sizing, performance, material selection, mechanical design, fabrication, and the systems-related impact of installation and integration of the units in the prestressed concrete reactor vessel. The impact of future technology developments, such as the utilization of nonmetallic materials and advanced heat exchanger surface geometries and methods of construction, is also discussed.

  10. Integration of High Temperature Gas-cooled Reactor Technology with Oil Sands Processes

    Energy Technology Data Exchange (ETDEWEB)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation of siting an HTGR plant in a remote area supplying steam, electricity and high temperature gas for recovery and upgrading of unconventional crude oil from oil sands. The area selected for this evaluation is the Alberta Canada oil sands. This is a very fertile and active area for bitumen recovery and upgrading with significant quantities piped to refineries in Canada and the U.S Additionally data on the energy consumption and other factors that are required to complete the evaluation of HTGR application is readily available in the public domain. There is also interest by the Alberta oil sands producers (OSP) in identifying alternative energy sources for their operations. It should be noted, however, that the results of this evaluation could be applied to any similar oil sands area.

  11. Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee Nelson

    2009-10-01

    This report is a preliminary comparison of conventional and potential HTGR-integrated processesa in several common industrial areas: ? Producing electricity via a traditional power cycle ? Producing hydrogen ? Producing ammonia and ammonia-derived products, such as fertilizer ? Producing gasoline and diesel from natural gas or coal ? Producing substitute natural gas from coal, and ? Steam-assisted gravity drainage (extracting oil from tar sands).

  12. Helium-cooled high temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Trauger, D.B.

    1985-01-01

    Experience with several helium cooled reactors has been favorable, and two commercial plants are now operating. Both of these units are of the High Temperature Graphite Gas Cooled concept, one in the United States and the other in the Federal Republic of Germany. The initial helium charge for a reactor of the 1000 MW(e) size is modest, approx.15,000 kg.

  13. Hybrid sulfur cycle operation for high-temperature gas-cooled reactors

    Science.gov (United States)

    Gorensek, Maximilian B

    2015-02-17

    A hybrid sulfur (HyS) cycle process for the production of hydrogen is provided. The process uses a proton exchange membrane (PEM) SO.sub.2-depolarized electrolyzer (SDE) for the low-temperature, electrochemical reaction step and a bayonet reactor for the high-temperature decomposition step The process can be operated at lower temperature and pressure ranges while still providing an overall energy efficient cycle process.

  14. Output feedback dissipation control for the power-level of modular high-temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Z. [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China)

    2011-07-01

    Because of its strong inherent safety features and the high outlet temperature, the modular high temperature gas-cooled nuclear reactor (MHTGR) is the chosen technology for a new generation of nuclear power plants. Such power plants are being considered for industrial applications with a wide range of power levels, thus power-level regulation is very important for their efficient and stable operation. Exploiting the large scale asymptotic closed-loop stability provided by nonlinear controllers, a nonlinear power-level regulator is presented in this paper that is based upon both the techniques of feedback dissipation and well-established backstepping. The virtue of this control strategy, i.e., the ability of globally asymptotic stabilization, is that it takes advantage of the inherent zero-state detectability property of the MHTGR dynamics. Moreover, this newly built power-level regulator is also robust towards modeling uncertainty in the control rod dynamics. If modeling uncertainty of the control rod dynamics is small enough to be omitted, then this control law can be simplified to a classical proportional feedback controller. The comparison of the control performance between the newly-built power controller and the simplified controller is also given through numerical study and theoretical analysis. (author)

  15. Output Feedback Dissipation Control for the Power-Level of Modular High-Temperature Gas-Cooled Reactors

    Directory of Open Access Journals (Sweden)

    Zhe Dong

    2011-11-01

    Full Text Available Because of its strong inherent safety features and the high outlet temperature, the modular high temperature gas-cooled nuclear reactor (MHTGR is the chosen technology for a new generation of nuclear power plants. Such power plants are being considered for industrial applications with a wide range of power levels, thus power-level regulation is very important for their efficient and stable operation. Exploiting the large scale asymptotic closed-loop stability provided by nonlinear controllers, a nonlinear power-level regulator is presented in this paper that is based upon both the techniques of feedback dissipation and well-established backstepping. The virtue of this control strategy, i.e., the ability of globally asymptotic stabilization, is that it takes advantage of the inherent zero-state detectability property of the MHTGR dynamics. Moreover, this newly built power-level regulator is also robust towards modeling uncertainty in the control rod dynamics. If modeling uncertainty of the control rod dynamics is small enough to be omitted, then this control law can be simplified to a classical proportional feedback controller. The comparison of the control performance between the newly-built power controller and the simplified controller is also given through numerical study and theoretical analysis.

  16. Numerical simulation of the heat transfer at cooling a high-temperature metal cylinder by a flow of a gas-liquid medium

    Science.gov (United States)

    Makarov, S. S.; Lipanov, A. M.; Karpov, A. I.

    2017-10-01

    The numerical modeling results for the heat transfer during cooling a metal cylinder by a gas-liquid medium flow in an annular channel are presented. The results are obtained on the basis of the mathematical model of the conjugate heat transfer of the gas-liquid flow and the metal cylinder in a two-dimensional nonstationary formulation accounting for the axisymmetry of the cooling medium flow relative to the cylinder longitudinal axis. To solve the system of differential equations the control volume approach is used. The flow field parameters are calculated by the SIMPLE algorithm. To solve iteratively the systems of linear algebraic equations the Gauss-Seidel method with under-relaxation is used. The results of the numerical simulation are verified by comparing the results of the numerical simulation with the results of the field experiment. The calculation results for the heat transfer parameters at cooling the high-temperature metal cylinder by the gas-liquid flow are obtained with accounting for evaporation. The values of the rate of cooling the cylinder by the laminar flow of the cooling medium are determined. The temperature change intensity for the metal cylinder is analyzed depending on the initial velocity of the liquid flow and the time of the cooling process.

  17. Porosity Effect in the Core Thermal Hydraulics for Ultra High Temperature Gas-cooled Reactor

    Directory of Open Access Journals (Sweden)

    Motoo Fumizawa

    2008-12-01

    Full Text Available This study presents an experimental method of porosity evaluation and a predictive thermal-hydraulic analysis with packed spheres in a nuclear reactor core. The porosity experiments were carried out in both a fully shaken state with the closest possible packing and in a state of non-vibration. The predictive analysis considering the fixed porosity value was applied as a design condition for an Ultra High Temperature Reactor Experiment (UHTREX. The thermal-hydraulic computer code was developed and identified as PEBTEMP. The highest outlet coolant temperature of 1316 oC was achieved in the case of an UHTREX at Los Alamos Scientific Laboratory, which was a small scale UHTR. In the present study, the fuel was changed to a pebble type, a porous media. In order to compare the present pebble bed reactor and UHTREX, a calculation based on HTGR-GT300 was carried out in similar conditions with UHTREX; in other words, with an inlet coolant temperature of 871oC, system pressure of 3.45 MPa and power density of 1.3 w/cm3. As a result, the fuel temperature in the present pebble bed reactor showed an extremely lower value compared to that of UHTREX.

  18. Sustainability and Efficiency Improvements of Gas-Cooled High Temperature Reactors

    NARCIS (Netherlands)

    Marmier, A.

    2012-01-01

    The work presented in this thesis covers three fundamental aspects of High Temperature Reactor (HTR) performance, namely fuel testing under irradiation for maximized safety and sustainability, fuel architecture for improved economy and sustainability, and a novel Balance of Plant concept to enable

  19. FACTORS INFLUENCING HUMAN RELIABILITY OF HIGH TEMPERATURE GAS COOLED REACTOR OPERATION

    Directory of Open Access Journals (Sweden)

    Sigit Santoso

    2016-10-01

    ABSTRAK Peran dan tindakan operator pada reaktor berpendingin gas akan berbeda dengan peran operator pada operasi tipe reaktor lain. Analisis unjuk kerja operator dan faktor yang berpengaruh dapat dilakukan secara komprehensif melalui analisis keandalan manusia(HRA. Melalui HRA dampak dari kesalahan manusia pada sistem maupun cara untuk mengurangi dampak dan frekuensi kesalahan dapat diketahui. Makalah membahas faktor yang berpengaruh pada tindakan operator, yaitu pada kejadian kecelakaan pendingin reaktor gas bersuhu tinggi-HTGR. Analisis untuk kualifikasi faktor pembentuk kinerja(PSF dilakukan berdasarkan kurva keandalan fungsi waktu, dan metode keandalan manusia yang dikembangkan berdasar pada aspek kognitif yaitu Cognitive Reliability and Error Analysis Method (CREAM. Hasil analisis berdasar kurva keandalan fungsi waktu menunjukkan komponen waktu berkontribusi positif pada peningkatan keandalan operator (PSF<1 pada kondisi semua fitur keselamatan berfungsi sesuai rancangan. Sedangkan pada metoda analisis dengan pendekatan kognitif CREAM diketahui selain faktor ketersediaan waktu, faktor pelatihan dan rancangan HMI juga berkontribusi meningkatkan keandalan operator. Faktor pembentuk kinerja keseluruhan diketahui sebesar 0,25 dengan faktor kontribusi positif dominan atau berpengaruh pada penurunan kesalahan manusia adalah ketersediaan waktu (PSF=0,01, dan faktor kontribusi negatif dominan adalah prosedur dan siklus kerja (PSF=5. Nilai PSF tersebut sebagai faktor pengali dalam perhitungan probabilitas kesalahan manusia. Analisis faktor pembentuk kinerja perlu dikembangkan pada skenario kejadian lain untuk selanjutnya digunakan untuk perhitungan dan analisis keandalan manusia yang komprehensif dan perancangan sistem interaksi manusia mesin di ruang kendali. Kata kunci: PSF, HTGR, operator, ruang kendali, keandalan manusia

  20. Review of activities of Research Association of High Temperature Gas Cooled Reactor Plant (RAHP)

    Energy Technology Data Exchange (ETDEWEB)

    An, Shigehiro [Research Association of High Temperature Gas Cooled Reactor Plant RAHP, University of Tokyo, Tokyo (Japan); Tsuchie, Yasuo [Research Association of High Temperature Gas Cooled Reactor Plant RAHP, The Japan Atomic Power Co. JAPC, Tokyo (Japan)

    1998-09-01

    The Research Association of the HTGR Plant (RAHP) is the sole research association in the private or industrial sector of Japan with respect to HTGR Plants. It was established in 1985, composing of professors, representatives of electric power companies, and fabricators of nuclear plant and fuels Activities in these years were to analyze world trends of R and D, to identify techno-economical issues to be cleared, to set-up fundamental development strategies, and to put the results of the studies into actions towards commercialization of the HTGR. Conclusions obtained through the activities so far are: (1) From the view point of effective use of energy and reduction of environmental impacts on a global scale, development of nuclear power is essential, in particular of the HTGR, because of its very highly inherent safety and feasibility of high temperature heat uses. The role of the HTGR is inter-complementary with those of LWR and FBR; (2) Future subjects on the HTGR are technical demonstration of its unique characteristics, economic prospects, public acceptance (PA) and industrial acceptance, R and D through international cooperation and share in role, and successful realization of demonstration plant(s). RAHP is to start a survey on HTGR from nuclear fuel cycle point of view to have a better outlook on future needs of high temperature heat uses. 6 refs.

  1. An Artificial Neural Network Compensated Output Feedback Power-Level Control for Modular High Temperature Gas-Cooled Reactors

    Directory of Open Access Journals (Sweden)

    Zhe Dong

    2014-02-01

    Full Text Available Small modular reactors (SMRs could be beneficial in providing electricity power safely and also be viable for applications such as seawater desalination and heat production. Due to its inherent safety features, the modular high temperature gas-cooled reactor (MHTGR has been seen as one of the best candidates for building SMR-based nuclear power plants. Since the MHTGR dynamics display high nonlinearity and parameter uncertainty, it is necessary to develop a nonlinear adaptive power-level control law which is not only beneficial to the safe, stable, efficient and autonomous operation of the MHTGR, but also easy to implement practically. In this paper, based on the concept of shifted-ectropy and the physically-based control design approach, it is proved theoretically that the simple proportional-differential (PD output-feedback power-level control can provide asymptotic closed-loop stability. Then, based on the strong approximation capability of the multi-layer perceptron (MLP artificial neural network (ANN, a compensator is established to suppress the negative influence caused by system parameter uncertainty. It is also proved that the MLP-compensated PD power-level control law constituted by an experientially-tuned PD regulator and this MLP-based compensator can guarantee bounded closed-loop stability. Numerical simulation results not only verify the theoretical results, but also illustrate the high performance of this MLP-compensated PD power-level controller in suppressing the oscillation of process variables caused by system parameter uncertainty.

  2. Fuel Summary for Peach Bottom Unit 1 High-Temperature Gas-Cooled Reactor Cores 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Karel I. Kingrey

    2003-04-01

    This fuel summary report contains background and summary information for the Peach Bottom Unit 1, High-Temperature, Gas-Cooled Reactor Cores 1 and 2. This report contains detailed information about the fuel in the two cores, the Peach Bottom Unit 1 operating history, nuclear parameters, physical and chemical characteristics, and shipping and storage canister related data. The data in this document have been compiled from a large number of sources and are not qualified beyond the qualification of the source documents. This report is intended to provide an overview of the existing data pertaining to spent fuel management and point to pertinent reference source documents. For design applications, the original source documentation must be used. While all referenced sources are available as records or controlled documents at the Idaho National Engineering and Environmental Laboratory (INEEL), some of the sources were marked as informal or draft reports. This is noted where applicable. In some instances, source documents are not consistent. Where they are known, this document identifies those instances and provides clarification where possible. However, as stated above, this document has not been independently qualified and such clarifications are only included for information purposes. Some of the information in this summary is available in multiple source documents. An effort has been made to clearly identify at least one record document as the source for the information included in this report.

  3. Inquiry into disintegration control of irradiated low enrichment uranium for high temperature gas cooled reactors

    Science.gov (United States)

    Reitsamer, G.; Stolba, G.; Falta, G.; Strigl, A.; Zeger, J.; Maly, V.

    1984-07-01

    The PyC-coatings of irradiated high temperature reactor (HTR) fuel particles from AVR fuel elements were burnt off by air and oxygen at 1120K (comparable to the current HTR head-end). Experiments on the solubility of this low enrichment uranium fuel prove that 99.93% of the uranium and 99.84% of the plutonium can be dissolved by 7n HNO3. After additional treatment with 7n HNO3/0.01 n NaF, only 0.01% of the original amount of uranium and 0.01% of the original amount of plutonium remain undissolved. Neither the insoluble residues nor the very small amounts of solids formed on standing (before and after concentrating the solution up to 200 g U/1 and acidity of 3 n HNO3) show any enrichment of plutonium compared with the nitric acid solution. Results indicate that LWR-PUREX-technology can be used for reprocessing HTR-LEU-fuel.

  4. Gas-cooled reactor programs: high-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    Information is presented concerning HTGR chemistry; fueled graphite development; irradiation services for General Atomic Company; prestressed concrete pressure vessel development; HTGR structural materials; graphite development; high-temperature reactor physics studies; shielding studies; component flow test loop studies; core support performance test; and application and project assessments.

  5. High-temperature gas-cooled reactor safety studies. Progress report for January 1, 1974--June 30, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Cole, T.E.; Sanders, J.P.; Kasten, P.R.

    1977-07-01

    Progress is reported in the following areas: systems and safety analysis; fission product technology; primary coolant technology; seismic and vibration technology; confinement components; primary system materials technology; safety instrumentation; loss of flow accident analysis using HEATUP code; use of coupled-conduction-convection model for core thermal analysis; development of multichannel conduction-convection program HEXEREI; cooling system performance after shutdown; core auxiliary cooling system performance; development of FLODIS code; air ingress into primary systems following DBDA; performance of PCRV thermal barrier cover plates; temperature limits for fuel particle coating failure; tritium distribution and release in HTGR; energy release to PCRV during DBDA; and mathematical models for HTGR reactor safety studies.

  6. Saturated Adaptive Output-Feedback Power-Level Control for Modular High Temperature Gas-Cooled Reactors

    Directory of Open Access Journals (Sweden)

    Zhe Dong

    2014-11-01

    Full Text Available Small modular reactors (SMRs are those nuclear fission reactors with electrical output powers of less than 300 MWe. Due to its inherent safety features, the modular high temperature gas-cooled reactor (MHTGR has been seen as one of the best candidates for building SMR-based nuclear plants with high safety-level and economical competitive power. Power-level control is crucial in providing grid-appropriation for all types of SMRs. Usually, there exists nonlinearity, parameter uncertainty and control input saturation in the SMR-based plant dynamics. Motivated by this, a novel saturated adaptive output-feedback power-level control of the MHTGR is proposed in this paper. This newly-built control law has the virtues of having relatively neat form, of being strong adaptive to parameter uncertainty and of being able to compensate control input saturation, which are given by constructing Lyapunov functions based upon the shifted-ectropies of neutron kinetics and reactor thermal-hydraulics, giving an online tuning algorithm for the controller parameters and proposing a control input saturation compensator respectively. It is proved theoretically that input-to-state stability (ISS can be guaranteed for the corresponding closed-loop system. In order to verify the theoretical results, this new control strategy is then applied to the large-range power maneuvering control for the MHTGR of the HTR-PM plant. Numerical simulation results show not only the relationship between regulating performance and control input saturation bound but also the feasibility of applying this saturated adaptive control law practically.

  7. Finite element based stress analysis of graphite component in high temperature gas cooled reactor core using linear and nonlinear irradiation creep models

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish, E-mail: smohanty@anl.gov; Majumdar, Saurindranath

    2015-10-15

    Highlights: • High temperature gas cooled reactor. • Finite element based stress analysis. • H-451 graphite. • Irradiation creep model. • Graphite reflector stress analysis. - Abstract: Irradiation creep plays a major role in the structural integrity of the graphite components in high temperature gas cooled reactors. Finite element procedures combined with a suitable irradiation creep model can be used to simulate the time-integrated structural integrity of complex shapes, such as the reactor core graphite reflector and fuel bricks. In the present work a comparative study was undertaken to understand the effect of linear and nonlinear irradiation creep on results of finite element based stress analysis. Numerical results were generated through finite element simulations of a typical graphite reflector.

  8. Entropy generation in a channel resembling gas turbine cooling ...

    Indian Academy of Sciences (India)

    Abstract. Flow into a passage resembling a gas turbine blade cooling passage is considered and entropy .... for the flow systems associated with the cooling applications. In the present study, rectangular .... Since we are using ideal gas law to incorporate the density variation with temperature, the code does not permit use of ...

  9. Plutonium and Minor Actinide Management in Thermal High-Temperature Gas-Cooled Reactors. Publishable Final Activity Report

    Energy Technology Data Exchange (ETDEWEB)

    Kuijper, J.C., E-mail: kuijper@nrg.eu [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands); Somers, J.; Van Den Durpel, L.; Chauvet, V.; Cerullo, N.; Cetnar, J.; Abram, T.; Bakker, K.; Bomboni, E.; Bernnat, W.; Domanska, J.G.; Girardi, E.; De Haas, J.B.M.; Hesketh, K.; Hiernaut, J.P.; Hossain, K.; Jonnet, J.; Kim, Y.; Kloosterman, J.L.; Kopec, M.; Murgatroyd, J.; Millington, D.; Lecarpentier, D.; Lomonaco, G.; McEachern, D.; Meier, A.; Mignanelli, M.; Nabielek, H.; Oppe, J.; Petrov, B.Y.; Pohl, C.; Ruetten, H.J.; Schihab, S.; Toury, G.; Trakas, C.; Venneri, F.; Verfondern, K.; Werner, H.; Wiss, T.; Zakova, J.

    2010-11-15

    The PUMA project -the acronym stands for 'Plutonium and Minor Actinide Management in Thermal High-Temperature Gas-Cooled Reactors'- was a Specific Targeted Research Project (STREP) within the EURATOM 6th Framework Program (EU FP6). The PUMA project ran from September 1, 2006, until August 31, 2009, and was executed by a consortium of 14 European partner organisations and one from the USA. This report serves 2 purposes. It is both the 'Publishable Final Activity Report' and the 'Final (Summary) Report', describing, per Work Package, the specific objectives, research activities, main conclusions, recommendations and supporting documents. PUMA's main objective was to investigate the possibilities for the utilisation and transmutation of plutonium and especially minor actinides in contemporary and future (high temperature) gas-cooled reactor designs, which are promising tools for improving the sustainability of the nuclear fuel cycle. This contributes to the reduction of Pu and MA stockpiles, and also to the development of safe and sustainable reactors for CO{sub 2}-free energy generation. The PUMA project has assessed the impact of the introduction of Pu/MA-burning HTRs at three levels: fuel and fuel performance (modelling), reactor (transmutation performance and safety) and reactor/fuel cycle facility park. Earlier projects already indicated favourable characteristics of HTRs with respect to Pu burning. So, core physics of Pu/MA fuel cycles for HTRs has been investigated to study the CP fuel and reactor characteristics and to assure nuclear stability of a Pu/MA HTR core, under both normal and abnormal operating conditions. The starting point of this investigation comprised the two main contemporary HTR designs, viz. the pebble-bed type HTR, represented by the South-African PBMR, and hexagonal block type HTR, represented by the GT-MHR. The results (once again) demonstrate the flexibility of the contemporary (and near future) HTR

  10. Cooled membrane for high sensitivity gas sampling.

    Science.gov (United States)

    Jiang, Ruifen; Pawliszyn, Janusz

    2014-04-18

    A novel sample preparation method that combines the advantages of high surface area geometry and cold surface effect was proposed to achieve high sensitivity gas sampling. To accomplish this goal, a device that enables the membrane to be cooled down was developed for sampling, and a gas chromatograph-mass spectrometer was used for separation and quantification analysis. Method development included investigation of the effect of membrane temperature, membrane size, gas flow rate and humidity. Results showed that high sensitivity for equilibrium sampling, such as limonene sampling in the current study could be achieved by either cooling down the membrane and/or using a large volume extraction phase. On the other hand, for pre-equilibrium extraction, in which the extracted amount was mainly determined by membrane surface area and diffusion coefficient, high sensitivity could be obtained by using thinner membranes with a larger surface and/or a higher sampling flow rate. In addition, humidity showed no significant influence on extraction efficiency, due to the absorption property of the liquid extraction phase. Next, the limit of detection (LOD) was found, and the reproducibility of the developed cooled membrane gas sampling method was evaluated. Results showed that LODs with a membrane diameter of 19mm at room temperature sampling were 9.2ng/L, 0.12ng/L, 0.10ng/L for limonene, cinnamaldehyde and 2-pentadecanone, respectively. Intra- and inter-membrane sampling reproducibility revealed RSD% lower than 8% and 13%, respectively. Results uniformly demonstrated that the proposed cooled membrane device could serve as an alternative powerful tool for future gas sampling. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Impingement jet cooling in gas turbines

    CERN Document Server

    Amano, R S

    2014-01-01

    Due to the requirement for enhanced cooling technologies on modern gas turbine engines, advanced research and development has had to take place in field of thermal engineering. Impingement jet cooling is one of the most effective in terms of cooling, manufacturability and cost. This is the first to book to focus on impingement cooling alone.

  12. Studies Related to the Oregon State University High Temperature Test Facility: Scaling, the Validation Matrix, and Similarities to the Modular High Temperature Gas-Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Richard R. Schultz; Paul D. Bayless; Richard W. Johnson; William T. Taitano; James R. Wolf; Glenn E. McCreery

    2010-09-01

    The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5 year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant project. Because the NRC interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC). Since DOE has incorporated the HTTF as an ingredient in the NGNP thermal-fluids validation program, several important outcomes should be noted: 1. The reference prismatic reactor design, that serves as the basis for scaling the HTTF, became the modular high temperature gas-cooled reactor (MHTGR). The MHTGR has also been chosen as the reference design for all of the other NGNP thermal-fluid experiments. 2. The NGNP validation matrix is being planned using the same scaling strategy that has been implemented to design the HTTF, i.e., the hierarchical two-tiered scaling methodology developed by Zuber in 1991. Using this approach a preliminary validation matrix has been designed that integrates the HTTF experiments with the other experiments planned for the NGNP thermal-fluids verification and validation project. 3. Initial analyses showed that the inherent power capability of the OSU infrastructure, which only allowed a total operational facility power capability of 0.6 MW, is

  13. Development of Safety Analysis Codes and Experimental Validation for a Very High Temperature Gas-Cooled Reactor - FY-05 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Chang Oh

    2005-09-01

    The very high temperature gas-cooled reactors (VHTGRs) are those concepts that have average coolant temperatures above 9000C or operational fuel temperatures above 12500C. These concepts provide the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation and nuclear hydrogen generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperatures to support process heat applications, such as desalination and cogeneration, the VHTGR’s higher temperatures are suitable for particular applications such as thermochemical hydrogen production. However, the high temperature operation can be detrimental to safety following a loss-of-coolant accident (LOCA) initiated by pipe breaks caused by seismic or other events. Following the loss of coolant through the break and coolant depressurization, air from the containment will enter the core by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structures and fuel. The oxidation will release heat and accelerate the heatup of the reactor core. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. The Idaho National Laboratory (INL) has investigated this event for the past three years for the HTGR. However, the computer codes used, and in fact none of the world’s computer codes, have been sufficiently developed and validated to reliably predict this event. New code development, improvement of the existing codes, and experimental validation are imperative to narrow the uncertainty in the predictions of this type of accident. The objectives of this Korean/United States collaboration are to develop advanced computational methods for VHTGR safety analysis codes and to validate these computer codes.

  14. STATUS OF TRISO FUEL IRRADIATIONS IN THE ADVANCED TEST REACTOR SUPPORTING HIGH-TEMPERATURE GAS-COOLED REACTOR DESIGNS

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, Michael; Petti, D. A.; Palmer, Joe

    2016-11-01

    The United States Department of Energy’s Advanced Reactor Technologies (ART) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is irradiating up to seven low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The experiments will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of several independent capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and completed in October 2013. The third and fourth experiments have been combined into a single experiment designated (AGR-3/4), which started its irradiation in December 2011 and completed in April 2014. Since the purpose of this experiment was to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment was significantly different from the first two experiments, though the control

  15. Proposed Advanced Reactor Adaptation of the Standard Review Plan NUREG-0800 Chapter 4 (Reactor) for Sodium-Cooled Fast Reactors and Modular High-Temperature Gas-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Poore, III, Willis P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Flanagan, George F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holbrook, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States); Moe, Wayne [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sofu, Tanju [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-03-01

    This report proposes adaptation of the previous regulatory gap analysis in Chapter 4 (Reactor) of NUREG 0800, Standard Review Plan (SRP) for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR [Light Water Reactor] Edition. The proposed adaptation would result in a Chapter 4 review plan applicable to certain advanced reactors. This report addresses two technologies: the sodium-cooled fast reactor (SFR) and the modular high temperature gas-cooled reactor (mHTGR). SRP Chapter 4, which addresses reactor components, was selected for adaptation because of the possible significant differences in advanced non-light water reactor (non-LWR) technologies compared with the current LWR-based description in Chapter 4. SFR and mHTGR technologies were chosen for this gap analysis because of their diverse designs and the availability of significant historical design detail.

  16. Representative Source Terms and the Influence of Reactor Attributes on Functional Containment in Modular High-Temperature Gas-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Petti, D. A.; Hobbins, R. R.; Lowry, P.; Gougar, H.

    2013-11-01

    Modular high-temperature gas-cooled reactors (MHTGRs) offer a high degree of passive safety. The low power density of the reactor and the high heat capacity of the graphite core result in slow transients that do not challenge the integrity of the robust TRISO fuel. Another benefit of this fuel form and the surrounding graphite is their superior ability to retain fission products under all anticipated normal and off-normal conditions, which limits reactor accident source terms to very low values. In this paper, we develop estimates of the source term for a generic MHTGR to illustrate the performance of the radionuclide barriers that comprise the MHTGR functional containment. We also examine the influence of initial fuel quality, fuel performance/failure, reactor outlet temperature, and retention outside of the reactor core on the resultant source term to the environment.

  17. State of Art Report for the Bypass and Cross Flows in Prismatic Modular High-Temperature Gas-Cooled Reactor Core

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Ji Su; Kim, Min Hwan

    2010-01-15

    The horizontal and vertical gaps between the adjacent fuel blocks occurs significantly in the prismatic modular high-temperature gas-cooled reactor core due to the thermal expansion, irradiation expansion/shrinking, and fuel block column bowing by pressure and gravity during the plant operation, in addition to the initial manufacture/design tolerance of fuel/reflector blocks. The coolant leakage of helium gas occurs through the gaps. These bypass and cross flows highly impact on the effective core cooling flow rate. This report describes the technical state of the bypass and cross flow study, based on ten reference papers, reviewing and summarizing four classified contents in the viewpoints of 'The reactor core fluctuation data for the first identification of the importance of the bypass and cross flow', 'The cross flow test and evaluation data', 'The flow test and evaluation data of the seal mechanism to prevent the leakage flow', and 'The reactor core thermal-fluid analysis and evaluation dat000.

  18. BLAST: a digital computer program for the dynamic simulation of the high temperature gas cooled reactor reheater-steam generator module

    Energy Technology Data Exchange (ETDEWEB)

    Hedrick, R.A.; Cleveland, J.C.

    1976-06-24

    BLAST simulates the high temperature gas cooled reactor reheater-steam generator module with a multi-node, fixed boundary, homogenous flow model. The time dependent conservation of energy, mass, and momentum equations are solved by an implicit integration technique. The code contains equation of state formulations for both helium and water as well as heat transfer and friction factor correlations. Normal operational transients and more severe transients such as those resulting in low and/or reverse flow can be simulated. The code calculates helium and water temperature, pressure, flow rate, and tube bulk and wall temperatures at various points within the reheater-steam generator module during the transients. BLAST predictions will be compared with dynamic test results obtained from the Fort St. Vrain reactor owned by Public Service of Colorado, and, based on these comparisons, appropriate improvements will be made in BLAST. BLAST is written in FORTRAN IV for the IBM 360/91 computer at the Oak Ridge National Laboratory.

  19. A development strategy for the business plan of Mitsubishi Small-sized High Temperature Gas-cooled Modular Reactor (MHR-50/100is)

    Energy Technology Data Exchange (ETDEWEB)

    Minatsuki, Isao, E-mail: isao_minatsuki@mhi.co.jp [Mitsubishi Heavy Industries, Ltd., 16-5, Konan 2-Chome, Minato-ku, Tokyo (Japan); Otani, Tomomi; Shimizu, Katsusuke [Mitsubishi Heavy Industries, Ltd., 16-5, Konan 2-Chome, Minato-ku, Tokyo (Japan); Mizokami, Yorikata; Oyama, Sunao; Tsukamoto, Hiroki [Mitsubishi Heavy Industries, Ltd., 1-1 Wadasaki-cho 1-Chome, Hyogo-ku, Kobe (Japan)

    2014-05-01

    A business plan and a new concept of Mitsubishi Small-sized High Temperature Gas-cooled Modular Reactor (MHR-50/100is) has been investigated toward a commercialization in near future by Mitsubishi Heavy Industries cooperated with Japan Atomic Energy Agency (JAEA) in Japan. The potential market of small sized reactor is expected to increase from the points of view of smaller investment, industrial use of the nuclear heat and IPP (Independent Power Producer). Especially minimization of construction unit cost including R and D and plant construction period are important issues in order to realize a business plan for them. The study includes four pertinent subject areas of (1) a market analysis, (2) a conceptual design, (3) improvement of safety design and (4) plant dynamics. In summary, the MHR-50/100 is designed to target a short construction period, competitive cost, and an inherent safety feature while applying only the verified technology of the High Temperature Engineering Test Reactor (HTTR) of JAEA or conventional technologies.

  20. High temperature gas cooled reactor applications and future prospects. Proceedings of an IAEA Technical Committee Meeting held in Petten, the Netherlands, 10-12 November 1997

    Energy Technology Data Exchange (ETDEWEB)

    Haverkate, B.R.W. [ed.

    1998-09-01

    From 10-12 November, 1997, the Netherlands Energy Research Foundation (ECN) in Petten, Netherlands hosted a Technical Committee Meeting (TCM) on High Temperature Gas Cooled Reactors (HTGR). This meeting has been organised by the International Atomic Energy Agency (IAEA) and was entitled: `HTGR Applications and Future Prospects`. During the meeting a review of the status of national programmes, including the design and construction of HTGR plants, status of R and D programmes and related activities in support of the advancement and applications of the HTGR have been reported. 21 papers were presented in three sessions, respectively: nine papers in the first session Status of GCR Programmes, seven papers in the session HTGR Applications and five papers in the last session HTGR Development Activities. The meeting has been attended by approximately fifty participants from nine countries all over the world. The Nuclear Energy Agency (NEA) of the OECD and the European Commission have also attended this TCM. The IAEA TCM was followed, from 12-14 November, 1997, by an OECD/NEA workshop on High Temperature Engineering Research Facilities and Experiments to complement and support the IAEA activities in the HTGR field. The proceedings of this workshop have also been published by ECN as report ECN-R-98-005. 15 refs.

  1. Compatibility of gas turbine materials with steam cooling

    Energy Technology Data Exchange (ETDEWEB)

    Desai, V.; Tamboli, D.; Patel, Y. [Univ. of Central Florida, Orlando, FL (United States)

    1995-10-01

    Gas turbines had been traditionally used for peak load plants and remote locations as they offer advantage of low installation costs and quick start up time. Their use as a base load generator had not been feasible owing to their poor efficiency. However, with the advent of gas turbines based combined cycle plants (CCPs), continued advances in efficiency are being made. Coupled with ultra low NO{sub x} emissions, coal compatibility and higher unit output, gas turbines are now competing with conventional power plants for base load power generation. Currently, the turbines are designed with TIT of 2300{degrees}F and metal temperatures are maintained around 1700{degrees}F by using air cooling. New higher efficiency ATS turbines will have TIT as high as 2700{degrees}F. To withstand this high temperature improved materials, coatings, and advances in cooling system and design are warranted. Development of advanced materials with better capabilities specifically for land base applications are time consuming and may not be available by ATS time frame or may prove costly for the first generation ATS gas turbines. Therefore improvement in the cooling system of hot components, which can take place in a relatively shorter time frame, is important. One way to improve cooling efficiency is to use better cooling agent. Steam as an alternate cooling agent offers attractive advantages because of its higher specific heat (almost twice that of air) and lower viscosity.

  2. Comparison of The Thermal Conductivity of selected Nuclear Graphite Grades for High Temperature Gas-Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Ju; Chi, Se-Hwan; Kim, Eung-Seon; Kim, Min-Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    It is well known that the thermal conductivity of nuclear graphite is influenced by factors such as phonon boundary scattering processes, Umklapp processes, electron-phonon scattering etc, and a lot of studies have been performed to investigate the neutron-irradiation effects on the thermal conductivity of graphite. However, no studies have been reported yet for the overall differences in the thermal conductivity of the nuclear graphite grades for HTGR differing in coke source (petroleum, coal), forming method and particle size. In the present study, the thermal conductivities of seven candidate nuclear graphite grades for HTGR were determined and compared based on the microstructure of the grades. The thermal conductivity is an important material input data during the design, construction and operation of HTGR. The thermal conductivities of seven nuclear graphite grades for HTGR were determined by laser flash method from room temperature to 1,100 .deg. C and compared based on the microstructure of the grade. Conclusions obtained from the study are as follow. (1) The thermal conductivity of seven nuclear graphite grades appeared to be strongly influenced by the grain size at low temperature below about 500 .deg. C and by the phonon-phonon scattering at above 800 .deg. C. (2) All the grades show a decrease in TC of 55-60 % from their room temperature TCs with increasing temperature to 1,100 .deg. C.

  3. Modeling and Simulation of the Sulfur-Iodine Process Coupled to a Very High-Temperature Gas-Cooled Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Youngjoon; Lee, Taehoon; Lee, Kiyoung; Kim, Minhwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Hydrogen produced from water using nuclear energy will avoid both the use of fossil fuel and CO{sub 2} emission presumed to be the dominant reason for global warming. A thermo-chemical sulfur-iodine (SI) process coupled to a Very High Temperature Gas-Cooled Reactor(VHTR) is one of the most prospective hydrogen production methods that split water using nuclear energy because the SI process is suitable for large-scale hydrogen production without CO{sub 2} emission. The dynamic simulation code to evaluate the start-up behavior of the chemical reactors placed on the secondary helium loop of the SI process has been developed and partially verified using the steady state values obtained from the Aspen Plus{sup TM} Code simulation. As the start-up dynamic simulation results of the SI process coupled to the IHX, which is one of components in the VHTR system, it is expected that the integrated secondary helium loop of the SI process can be successfully and safely approach the steady state condition.

  4. Entropy generation in a channel resembling gas turbine cooling ...

    Indian Academy of Sciences (India)

    Flow into a passage resembling a gas turbine blade cooling passage is considered and entropy generation rate in the passage is examined for unique rotation number and density ratios. In the simulations, leading and trailing walls of the passage are assumed to be at constant temperature. A control volume approach is ...

  5. Gas Cooled, Natural Uranium, D20 Moderated Power Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, R.C.; Beasley, E.G.; DeBoer, T.K.; Evans, T.C.; Molino, D.F.; Rothwell, W.S.; Slivka, W.R.

    1956-08-01

    The attractiveness of a helium cooled, heavy water moderated, natural uranium central station power plant has been investigated. A fuel element has been devised which allows the D20 to be kept at a low pressure while the exit gas temperature is high. A preliminary cost analysis indicates that, using currently available materials, competitive nuclear power in foreign countries is possible.

  6. Ship exhaust gas plume cooling

    NARCIS (Netherlands)

    Schleijpen, H.M.A.; Neele, P.P.

    2004-01-01

    The exhaust gas plume is an important and sometimes dominating contributor to the infrared signature of ships. Suppression of the infrared ship signatures has been studied by TNO for the Royal Netherlands Navy over considerable time. This study deals with the suppression effects, which can be

  7. TRITIUM PERMEATION AND TRANSPORT IN THE GASOLINE PRODUCTION SYSTEM COUPLED WITH HIGH TEMPERATURE GAS-COOLED REACTORS (HTGRS)

    Energy Technology Data Exchange (ETDEWEB)

    Chang H. Oh; Eung S. Kim; Mike Patterson

    2011-05-01

    This paper describes scoping analyses on tritium behaviors in the HTGR-integrated gasoline production system, which is based on a methanol-to-gasoline (MTG) plant. In this system, the HTGR transfers heat and electricity to the MTG system. This system was analyzed using the TPAC code, which was recently developed by Idaho National Laboratory. The global sensitivity analyses were performed to understand and characterize tritium behaviors in the coupled HTGR/MTG system. This Monte Carlo based random sampling method was used to evaluate maximum 17,408 numbers of samples with different input values. According to the analyses, the average tritium concentration in the product gasoline is about 3.05×10-3 Bq/cm3, and 62 % cases are within the tritium effluent limit (= 3.7x10-3 Bq/cm3[STP]). About 0.19% of released tritium is finally transported from the core to the gasoline product through permeations. This study also identified that the following four parameters are important concerning tritium behaviors in the HTGR/MTG system: (1) tritium source, (2) wall thickness of process heat exchanger, (3) operating temperature, and (4) tritium permeation coefficient of process heat exchanger. These four parameters contribute about 95 % of the total output uncertainties. This study strongly recommends focusing our future research on these four parameters to improve modeling accuracy and to mitigate tritium permeation into the gasol ine product. If the permeation barrier is included in the future study, the tritium concentration will be significantly reduced.

  8. Application of Hastelloy X in Gas-Cooled Reactor Systems

    DEFF Research Database (Denmark)

    Brinkman, C. R.; Rittenhouse, P. L.; Corwin, W.R.

    1976-01-01

    Hastelloy X, an Ni--Cr--Fe--Mo alloy, may be an important structural alloy for components of gas-cooled reactor systems. Expected applications of this alloy in the High-Temperature Gas-Cooled Reactor (HTGR) are discussed, and the development of interim mechanical properties and supporting data...... extensive amount of information has been generated on this material at Oak Ridge National Laboratory and elsewhere concerning behavior in air, which is reviewed. However, only limited data are available from tests conducted in helium. Comparisons of the fatigue and subcritical growth behavior in air between...

  9. Updating of ASME Nuclear Code Case N-201 to Accommodate the Needs of Metallic Core Support Structures for High Temperature Gas Cooled Reactors Currently in Development

    Energy Technology Data Exchange (ETDEWEB)

    Mit Basol; John F. Kielb; John F. MuHooly; Kobus Smit

    2007-05-02

    On September 29, 2005, ASME Standards Technology, LLC (ASME ST-LLC) executed a multi-year, cooperative agreement with the United States DOE for the Generation IV Reactor Materials project. The project's objective is to update and expand appropriate materials, construction, and design codes for application in future Generation IV nuclear reactor systems that operate at elevated temperatures. Task 4 was embarked upon in recognition of the large quantity of ongoing reactor designs utilizing high temperature technology. Since Code Case N-201 had not seen a significant revision (except for a minor revision in September, 2006 to change the SA-336 forging reference for 304SS and 316SS to SA-965 in Tables 1.2(a) and 1.2(b), and some minor editorial changes) since December 1994, identifying recommended updates to support the current high temperature Core Support Structure (CSS) designs and potential new designs was important. As anticipated, the Task 4 effort identified a number of Code Case N-201 issues. Items requiring further consideration range from addressing apparent inconsistencies in definitions and certain material properties between CC-N-201 and Subsection NH, to inclusion of additional materials to provide the designer more flexibility of design. Task 4 developed a design parameter survey that requested input from the CSS designers of ongoing high temperature gas cooled reactor metallic core support designs. The responses to the survey provided Task 4 valuable input to identify the design operating parameters and future needs of the CSS designers. Types of materials, metal temperature, time of exposure, design pressure, design life, and fluence levels were included in the Task 4 survey responses. The results of the survey are included in this report. This research proves that additional work must be done to update Code Case N-201. Task 4 activities provide the framework for the Code Case N-201 update and future work to provide input on materials. Candidate

  10. Accurate Galactic Wind Simulations Require Gas Cooling to 10 K

    Science.gov (United States)

    Tanner, Ryan; Heitsch, Fabian; Cecil, Gerald N.

    2015-01-01

    Starbursts and AGN winds in galaxy cores can produce large-scale outflows or galactic winds (GW). Whether a starburst can form a GW depends on several variables including mechanical power into the ISM and the rate at which mass is loaded into the flow. Previous simulations (e.g. Hill+12, Cooper+08, Sutherland and Bicknell 2007) have included radiative cooling but only down to 10,000 K. We have modified the public Athena hydro code (Stone+08) to include a combined cooling curve from Sutherland and Dopita (1993) and Koyama and Inutsuka (2002) down to 10 K. We analyze grids of high-resolution 3D simulations of starbursts with an initial stellar mass ranging from 5e6 M⊙ to 1e8 M⊙. We find a 10-fold decrease of Hα emission in the halo resulting from the GW when we cool the gas down to 10 K vs the 10,000 K of previous simulations. We find that cooling to 10,000 K deposits 80% of the total GW gas mass in the warm phase (emitting Hα) whereas cooling to 10 K deposits only 7% in the warm phase but leaves 25% of the total GW gas mass in cold gas (cold temperatures, cold gas swept up into the halo by the GW is 4-5 orders of magnitude fainter than cold gas that remains in the disk. Thus detection of a cold GW component will be very difficult. Our results demonstrate that there are substantial differences in simulations with cooling down to 10 K vs cooling down to 10,000 K. Our work is funded by NASA/Herschel and NC Space Grant.

  11. Cooling and Heating Functions of Photoionized Gas

    Energy Technology Data Exchange (ETDEWEB)

    Gnedin, Nickolay Y.; /Chicago U., EFI /Fermilab /Chicago U., Astron. Astrophys. Ctr. /Chicago U., KICP; Hollon, Nicholas; /Chicago U., EFI /Chicago U., Astron. Astrophys. Ctr. /Chicago U., KICP

    2012-01-01

    Cooling functions of cosmic gas are a crucial ingredient for any study of gas dynamics and thermodynamics in the interstellar and intergalactic medium. As such, they have been studied extensively in the past under the assumption of collisional ionization equilibrium. However, for a wide range of applications, the local radiation field introduces a non-negligible, often dominant, modification to the cooling and heating functions. In the most general case, these modifications cannot be described in simple terms, and would require a detailed calculation with a large set of chemical species using a radiative transfer code (the well-known code Cloudy, for example). We show, however, that for a sufficiently general variation in the spectral shape and intensity of the incident radiation field, the cooling and heating functions can be approximated as depending only on (1) the photodissociation rate of molecular hydrogen, (2) the hydrogen photo-ionization rate, and (3) the photo-ionization rate of OVIII;more complex and more accurate approximations also exist. Such dependence is easy to tabulate and implement in cosmological or galactic-scale simulations, thus economically accounting for an important but rarely-included factor in the evolution of cosmic gas. We also show a few examples where the radiation environment has a large effect, the most spectacular of which is a quasar that suppresses gas cooling in its host halo without any mechanical or non-radiative thermal feedback.

  12. COOLING AND HEATING FUNCTIONS OF PHOTOIONIZED GAS

    Energy Technology Data Exchange (ETDEWEB)

    Gnedin, Nickolay Y. [Particle Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Hollon, Nicholas, E-mail: gnedin@fnal.gov [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States)

    2012-10-15

    Cooling and heating functions of cosmic gas are crucial ingredients for any study of gas dynamics and thermodynamics in the interstellar and intergalactic media. As such, they have been studied extensively in the past under the assumption of collisional ionization equilibrium. However, for a wide range of applications, the local radiation field introduces a non-negligible, often dominant, modification to the cooling and heating functions. In the most general case, these modifications cannot be described in simple terms and would require a detailed calculation with a large set of chemical species using a radiative transfer code (the well-known code Cloudy, for example). We show, however, that for a sufficiently general variation in the spectral shape and intensity of the incident radiation field, the cooling and heating functions can be approximated as depending only on several photoionization rates, which can be thought of as representative samples of the overall radiation field. This dependence is easy to tabulate and implement in cosmological or galactic-scale simulations, thus economically accounting for an important but rarely included factor in the evolution of cosmic gas. We also show a few examples where the radiation environment has a large effect, the most spectacular of which is a quasar that suppresses gas cooling in its host halo without any mechanical or non-radiative thermal feedback.

  13. Core temperature affects scalp skin temperature during scalp cooling

    NARCIS (Netherlands)

    Daanen, H.A.M.; Peerbooms, M.; van den Hurk, C.J.G.; van Os, B.; Levels, K.; Teunissen, L.P.J.; Breed, W.P.M.

    2015-01-01

    Background: The efficacy of hair loss prevention by scalp cooling to prevent chemotherapy induced hair loss has been shown to be related to scalp skin temperature. Scalp skin temperature, however, is dependent not only on local cooling but also on the thermal status of the body. Objectives: This

  14. Core temperature affects scalp skin temperature during scalp cooling.

    Science.gov (United States)

    Daanen, Hein A M; Peerbooms, Mijke; van den Hurk, Corina J G; van Os, Bernadet; Levels, Koen; Teunissen, Lennart P J; Breed, Wim P M

    2015-08-01

    The efficacy of hair loss prevention by scalp cooling to prevent chemotherapy induced hair loss has been shown to be related to scalp skin temperature. Scalp skin temperature, however, is dependent not only on local cooling but also on the thermal status of the body. This study was conducted to investigate the effect of body temperature on scalp skin temperature. We conducted experiments in which 13 healthy subjects consumed ice slurry to lower body temperature for 15 minutes after the start of scalp cooling and then performed two 12-minute cycle exercise sessions to increase body core temperature. Esophageal temperature (Tes ), rectal temperature (Tre ), mean skin temperature (eight locations, Tskin ), and mean scalp temperature (five locations, Tscalp ) were recorded. During the initial 10 minutes of scalp cooling, Tscalp decreased by >15 °C, whereas Tes decreased by 0.2 °C. After ice slurry ingestion, Tes , Tre , and Tskin were 35.8, 36.5, and 31.3 °C, respectively, and increased after exercise to 36.3, 37.3, and 33.0 °C, respectively. Tscalp was significantly correlated to Tes (r = 0.39, P scalp cooling contributes to the decrease in scalp temperature and may improve the prevention of hair loss. This may be useful if the desired decrease of scalp temperature cannot be obtained by scalp cooling systems. © 2015 The International Society of Dermatology.

  15. Proposals of new basic concepts on safety and radioactive waste and of new High Temperature Gas-cooled Reactor based on these basic concepts

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Masuro, E-mail: ogawa.masuro@jaea.go.jp

    2016-11-15

    Highlights: • The author proposed new basic concepts on safety and radioactive waste. • A principle of ‘continue confining’ to realize the basic concept on safety is also proposed. • It is indicated that only a HTGR can attain the conditions required from the principle. • Technologies to realize the basic concept on radioactive waste are also discussed. • A New HTGR system based on the new basic concepts is proposed. - Abstract: A new basic concept on safety of ‘Not causing any serious catastrophe by any means’ and a new basic concept on radioactive waste of ‘Not returning any waste that possibly affects the environment’ are proposed in the present study, aiming at nuclear power plants which everybody can accept, in consideration of the serious catastrophe that happened at Fukushima Japan in 2011. These new basic concepts can be found to be valid in comparison with basic concepts on safety and waste in other industries. The principle to realize the new basic concept on safety is, as known well as the inherent safety, to use physical phenomena such as Doppler Effect and so on which never fail to work even if all equipment and facilities for safety lose their functions. In the present study, physical phenomena are used to ‘continue confining’, rather than ‘confine’, because the consequence of emission of radioactive substances to the environment cannot be mitigated. To ‘continue confining’ is meant to apply natural correction to fulfill inherent safety function. Fission products must be detoxified to realize the new basic concept on radioactive waste, aiming at the final processing and disposal of radioactive wastes as same as that in the other wastes such as PCB, together with much efforts not to produce radioactive wastes and to reduce their volume nevertheless if they are emitted. Technology development on the detoxification is one of the most important subjects. A new High Temperature Gas-cooled Reactor, namely the New HTGR

  16. Improving fuel cycle design and safety characteristics of a gas cooled fast reactor

    NARCIS (Netherlands)

    van Rooijen, W.F.G.

    2006-01-01

    This research concerns the fuel cycle and safety aspects of a Gas Cooled Fast Reactor, one of the so-called "Generation IV" nuclear reactor designs. The Generation IV Gas Cooled Fast Reactor uses helium as coolant at high temperature. The goal of the GCFR is to obtain a "closed nuclear fuel cycle",

  17. Cooling an Optically Trapped Ultracold Fermi Gas by Periodical Driving.

    Science.gov (United States)

    Li, Jiaming; de Melo, Leonardo F; Luo, Le

    2017-03-30

    We present a cooling method for a cold Fermi gas by parametrically driving atomic motions in a crossed-beam optical dipole trap (ODT). Our method employs the anharmonicity of the ODT, in which the hotter atoms at the edge of the trap feel the anharmonic components of the trapping potential, while the colder atoms in the center of the trap feel the harmonic one. By modulating the trap depth with frequencies that are resonant with the anharmonic components, we selectively excite the hotter atoms out of the trap while keeping the colder atoms in the trap, generating parametric cooling. This experimental protocol starts with a magneto-optical trap (MOT) that is loaded by a Zeeman slower. The precooled atoms in the MOT are then transferred to an ODT, and a bias magnetic field is applied to create an interacting Fermi gas. We then lower the trapping potential to prepare a cold Fermi gas near the degenerate temperature. After that, we sweep the magnetic field to the noninteracting regime of the Fermi gas, in which the parametric cooling can be manifested by modulating the intensity of the optical trapping beams. We find that the parametric cooling effect strongly depends on the modulation frequencies and amplitudes. With the optimized frequency and amplitude, we measure the dependence of the cloud energy on the modulation time. We observe that the cloud energy is changed in an anisotropic way, where the energy of the axial direction is significantly reduced by parametric driving. The cooling effect is limited to the axial direction because the dominant anharmonicity of the crossed-beam ODT is along the axial direction. Finally, we propose to extend this protocol for the trapping potentials of large anharmonicity in all directions, which provides a promising scheme for cooling quantum gases using external driving.

  18. 30 CFR 36.47 - Tests of exhaust-gas cooling system.

    Science.gov (United States)

    2010-07-01

    ... at the final temperature. Water in excess of that required for adiabatic saturation shall be... before the exhaust gas is diluted with air, shall not exceed 170 °F. or the temperature of adiabatic saturation, if this temperature is lower. (d) Water consumed in cooling the exhaust gas under the test...

  19. Gas turbine cooling modeling - Thermodynamic analysis and cycle simulations

    Energy Technology Data Exchange (ETDEWEB)

    Jordal, Kristin

    1999-02-01

    Considering that blade and vane cooling are a vital point in the studies of modern gas turbines, there are many ways to include cooling in gas turbine models. Thermodynamic methods for doing this are reviewed in this report, and, based on some of these methods, a number of model requirements are set up and a Cooled Gas Turbine Model (CGTM) for design-point calculations of cooled gas turbines is established. Thereafter, it is shown that it is possible to simulate existing gas turbines with the CGTM. Knowledge of at least one temperature in the hot part of the turbine (TET, TRIT or possibly TIT) is found to be vital for a complete heat balance over the turbine. The losses, which are caused by the mixing of coolant and main flow, are in the CGTM considered through a polytropic efficiency reduction factor S. Through the study of S, it can be demonstrated that there is more to gain from coolant reduction in a small and/or old turbine with poor aerodynamics, than there is to gain in a large, modern turbine, where the losses due to interaction between coolant and main flow are, relatively speaking, small. It is demonstrated, at the design point (TET=1360 deg C, {pi}=20) for the simple-cycle gas turbine, that heat exchanging between coolant and fuel proves to have a large positive impact on cycle efficiency, with an increase of 0.9 percentage points if all of the coolant passes through the heat exchanger. The corresponding improvement for humidified coolant is 0.8 percentage points. A design-point study for the HAT cycle shows that if all of the coolant is extracted after the humidification tower, there is a decrease in coolant requirements of 7.16 percentage points, from 19.58% to 12.52% of the compressed air, and an increase in thermal efficiency of 0.46 percentage points, from 53.46% to 53.92%. Furthermore, it is demonstrated with a TET-parameter variation, that the cooling of a simple-cycle gas turbine with humid air can have a positive effect on thermal efficiency

  20. Low Temperature Heating and High Temperature Cooling in Buildings

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk

    , a single-family house designed for plus-energy targets and equipped with a radiant water-based floor heating and cooling system was studied by means of full-scale measurements, dynamic building simulations and thermodynamic evaluation tools. Thermal indoor environment and energy performance of the house......A heating and cooling system could be divided into three parts: terminal units (emission system), distribution system, and heating and cooling plant (generation system). The choice of terminal unit directly affects the energy performance, and the indoor environment in that space. Therefore......, a holistic system evaluation is necessary to ensure an optimal indoor environment for the occupants and to achieve energy efficiency simultaneously. Low temperature heating and high temperature cooling systems are one of the possible approaches to heat or cool indoor spaces in buildings. In this thesis...

  1. In-line monitoring of effluents from high-temperature gas-cooled reactor fuel particle preparation processes by mass spectrometry. [UO/sub 2/; UC/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.A.; Constanzo, D.A.; Stinton, D.P.; Carpenter, J.A. Jr.; Rainey, W.T.; Canada, D.C.; Carter, J.A.

    1977-06-01

    The carbonization, conversion, and coating processes in the manufacture of high-temperature gas-cooled reactor fuel particles have been studied with the use of a time-of-flight mass spectrometer. Noncondensable effluents from these fluidized-bed processes have been monitored continuously from the beginning to the end of the process. The processes monitored are these: uranium-loaded ion exchange resin carbonization, the carbothermic reduction of UO/sub 2/ to UC/sub 2/, buffer and low-temperature isotropic pyrocarbon coatings of fuel kernels, SiC coating of the kernels, and high-temperature particle annealing. Changes in concentrations of significant molecules with time and temperature have been useful in the interpretation of reaction mechanisms and optimization of process procedures.

  2. A Temperature-Controlled Chamber Based on Vortex Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Krider, John; Nguyen, Hogan; /Fermilab

    2007-11-01

    We describe the construction and performance of a temperature-controlled chamber, based on a 'vortex' cooler. The chamber is capable of operation between room temperature and -42 C. The only nontrivial infrastructure requirement is dry compressed gas at 100 psi and 8 cfm. The chamber is economical, easy to operate and to build using commercially available parts. Since the refrigerant is compressed air, the chamber has minimal environmental impact. It does not generate mechanical vibrations nor electrical noise. It is suitable for testing electronically sensitive and low-power electronics at cold temperatures. We measured the reserve cooling capacity of the cold plate to be 17 watts at -27 C. At the limiting temperature of -42 C, reserve cooling power reduces to zero.

  3. An integrated systems calculation of a steam generator tube rupture in a modular prismatic HTGR (high-temperature gas-cooled reactor) conceptual design using ATHENA (Advanced Thermal-Hydraulic Energy Network Analyzer)

    Energy Technology Data Exchange (ETDEWEB)

    Beelman, R.J. (Idaho National Engineering Laboratory, Idaho Falls (USA))

    1989-11-01

    The capability to perform integrated systems calculations of modular high-temperature gas-cooled reactor (MHTGR) transients has been developed at the Idaho National Engineering Laboratory (INEL) using the Advanced Thermal-Hydraulic Energy Network Analyzer (ATHENA) computer code. A scoping calculation of a steam generator tube rupture (SGTR) water ingress event in a prismatic 2 {times} 350-MW(thermal) MHTGR conceptual design has been completed at INEL using ATHENA. The proposed MHTGR design incorporates dual, graphite-moderated, helium-cooled, 350-MW(thermal), annular prismatic core concept reactor plants, each configured with an individual helical once-through steam generator steaming a common 280-MW(electric) turbine generator set.

  4. The Formation and Physical Origin of Highly Ionized Cooling Gas

    Science.gov (United States)

    Bordoloi, Rongmon; Wagner, Alexander Y.; Heckman, Timothy M.; Norman, Colin A.

    2017-10-01

    We present a simple model that explains the origin of warm, diffuse gas seen primarily as highly ionized absorption-line systems in the spectra of background sources. We predict the observed column densities of several highly ionized transitions such as O vi, O vii, Ne viii, N v, and Mg x, and we present a unified comparison of the model predictions with absorption lines seen in the Milky Way disk, Milky Way halo, starburst galaxies, the circumgalactic medium, and the intergalactic medium at low and high redshifts. We show that diffuse gas seen in such diverse environments can be simultaneously explained by a simple model of radiatively cooling gas. We show that most such absorption-line systems are consistent with being collisionally ionized, and we estimate the maximum-likelihood temperature of the gas in each observation. This model satisfactorily explains why O vi is regularly observed around star-forming low-z L* galaxies, and why N v is rarely seen around the same galaxies. We further present some consequences of this model in quantifying the dynamics of the cooling gas around galaxies and predict the shock velocities associated with such flows. A unique strength of this model is that while it has only one free (but physically well-constrained) parameter, it nevertheless successfully reproduces the available data on O vi absorbers in the interstellar, circumgalactic, intragroup, and intergalactic media, as well as the available data on other absorption lines from highly ionized species.

  5. Cooled gas turbine blade edge flow analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, Marcio Teixeira de [Instituto Tecnologico de Aeronautica, Divisao de Engenharia Mecanica Aeronautica ITA/IEM, Sao Jose dos Campos, SP (Brazil)], e-mail: marcio@ita.br

    2010-07-01

    The flow on the rotating blades of a turbine is unsteady due to the wake of the stator blade row upstream. This unsteadiness is a source of losses and complex flow structures on the rotor blade due to the variation on the turbulence levels and location of the boundary layer laminar to turbulent transition. Convective cooled blades often time have cooling air ejected at the trailing edge right at the blade wake. The present investigation presents an analysis of a canonical flow consistent with the flow topology found at the trailing edge of a gas turbine blade with coolant ejection. A hydrodynamic stability analysis is performed for the combined wake and jet velocity profiles given by a gaussian distribution representing the turbulent rms wake and a laminar jet superposed. The growth rate of any instability found on the flow is an indication of faster mixing, resulting in a reduction on the wake velocity defect and consequently on the complexity associated with it. The results show that increasing the Mach number or the three-dimensionality of the disturbances result in a reduction of the amplification rate. When the flow at the trailing edge is modified by a jet, the amplification rates are lower, but the range of unstable stream wise wavenumbers is larger. (author)

  6. Steam cooling system for a gas turbine

    Science.gov (United States)

    Wilson, Ian David; Barb, Kevin Joseph; Li, Ming Cheng; Hyde, Susan Marie; Mashey, Thomas Charles; Wesorick, Ronald Richard; Glynn, Christopher Charles; Hemsworth, Martin C.

    2002-01-01

    The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows.

  7. Gas turbine vane cooling air insert

    Energy Technology Data Exchange (ETDEWEB)

    North, W.E.; Hultgren, K.G.; Dishman, C.D.; Van Heusden, G.S.

    1992-09-08

    This patent describes a gas turbine. It comprises turbine vanes, each of the vanes supplied with cooling air and having: an airfoil portion forming a first cavity having an insert disposed therein for directing the flow of the cooling air, the insert having first and second insert ends; a shroud portion from which the airfoil portion extends, the insert attached to the shroud portion at the first insert end; an insert extension extending through a portion of the insert and extending beyond the first insert end, the insert extension and the insert forming an annular gap therebetween separating the insert from the insert extension; a plate covering at least a portion of the shroud, the plate having a first hole formed therein through which the insert extension extends; and at least a first seal extending between the insert extension and the insert, and sealing the annular gap therebetween. This patent also describes a method of making a gas turbine. It comprises welding a first tubular insert adjacent its first end to a vane outer shroud; partially inserting a second tubular insert into the first tubular member and attaching the second tubular insert thereto; placing a plate having a hole formed therein on the outer shroud so that the hole surrounds the second tubular insert; and attaching the second tubular insert to the plate by placing a first seal between the first and second tubular inserts and attaching the first seal to each of the first and second tubular inserts, and placing a second seal between the second tubular insert and the plate and welding the second seal to the second tubular insert and the plate.

  8. VENTED FUEL ELEMENT FOR GAS-COOLED NEUTRONIC REACTORS

    Science.gov (United States)

    Furgerson, W.T.

    1963-12-17

    A hollow, porous-walled fuel element filled with fissionable fuel and provided with an outlet port through its wall is described. In operation in a gas-cooled reactor, the element is connected, through its outlet port, to the vacuum side of a pump that causes a portion of the coolant gas flowing over the exterior surface of the element to be drawn through the porous walls thereof and out through the outlet port. This continuous purging gas flow sweeps away gaseous fission products as they are released by the fissioning fuel. (AEC) A fuel element for a nuclear reactor incorporating a body of metal of melting point lower than the temperature of operation of the reactor and a nuclear fuel in finely divided form dispersed in the body of metal as a settled slurry is presented. (AEC)

  9. Gas turbine heat transfer and cooling technology

    CERN Document Server

    Han, Je-Chin; Ekkad, Srinath

    2012-01-01

    FundamentalsNeed for Turbine Blade CoolingTurbine-Cooling TechnologyTurbine Heat Transfer and Cooling IssuesStructure of the BookReview Articles and Book Chapters on Turbine Cooling and Heat TransferNew Information from 2000 to 2010ReferencesTurbine Heat TransferIntroductionTurbine-Stage Heat TransferCascade Vane Heat-Transfer ExperimentsCascade Blade Heat TransferAirfoil Endwall Heat TransferTurbine Rotor Blade Tip Heat TransferLeading-Edge Region Heat TransferFlat-Surface Heat TransferNew Information from 2000 to 20102.10 ClosureReferencesTurbine Film CoolingIntroductionFilm Cooling on Rotat

  10. Some Experimental Investigations on Gas Turbine Cooling Performed with Infrared Thermography at Federico II

    Directory of Open Access Journals (Sweden)

    T. Astarita

    2015-01-01

    Full Text Available This paper reviews some experimental measurements of convective heat transfer coefficient distributions which are connected with the cooling of gas turbines, performed by the authors’ research group at the University of Naples Federico II with infrared thermography. Measurements concern impinging jets, cooling of rotating disks, and gas turbine blades, which are either stationary or rotating. The heated thin foil sensor, associated with the detection of surface temperature by means of infrared thermography, is exploited to accurately measure detailed convective heat transfer coefficient maps. The paper also intends to show how to correctly apply the infrared technique in a variety of gas turbines cooling problems.

  11. Low temperature heating and high temperature cooling embedded water based surface heating and cooling systems

    CERN Document Server

    Babiak, Jan; Petras, Dusan

    2009-01-01

    This Guidebook describes the systems that use water as heat-carrier and when the heat exchange within the conditioned space is more than 50% radiant. Embedded systems insulated from the main building structure (floor, wall and ceiling) are used in all types of buildings and work with heat carriers at low temperatures for heating and relatively high temperature for cooling.

  12. The first high resolution image of coronal gas in a starbursting cool core cluster

    Science.gov (United States)

    Johnson, Sean

    2017-08-01

    Galaxy clusters represent a unique laboratory for directly observing gas cooling and feedback due to their high masses and correspondingly high gas densities and temperatures. Cooling of X-ray gas observed in 1/3 of clusters, known as cool-core clusters, should fuel star formation at prodigious rates, but such high levels of star formation are rarely observed. Feedback from active galactic nuclei (AGN) is a leading explanation for the lack of star formation in most cool clusters, and AGN power is sufficient to offset gas cooling on average. Nevertheless, some cool core clusters exhibit massive starbursts indicating that our understanding of cooling and feedback is incomplete. Observations of 10^5 K coronal gas in cool core clusters through OVI emission offers a sensitive means of testing our understanding of cooling and feedback because OVI emission is a dominant coolant and sensitive tracer of shocked gas. Recently, Hayes et al. 2016 demonstrated that synthetic narrow-band imaging of OVI emission is possible through subtraction of long-pass filters with the ACS+SBC for targets at z=0.23-0.29. Here, we propose to use this exciting new technique to directly image coronal OVI emitting gas at high resolution in Abell 1835, a prototypical starbursting cool-core cluster at z=0.252. Abell 1835 hosts a strong cooling core, massive starburst, radio AGN, and at z=0.252, it offers a unique opportunity to directly image OVI at hi-res in the UV with ACS+SBC. With just 15 orbits of ACS+SBC imaging, the proposed observations will complete the existing rich multi-wavelength dataset available for Abell 1835 to provide new insights into cooling and feedback in clusters.

  13. Evaluating the income and employment impacts of gas cooling technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, P.J. [Oak Ridge National Lab., TN (United States); Laitner, S.

    1995-03-01

    The purpose of this study is to estimate the potential employment and income benefits of the emerging market for gas cooling products. The emphasis here is on exports because that is the major opportunity for the U.S. heating, ventilating, and air-conditioning (HVAC) industry. But domestic markets are also important and considered here because without a significant domestic market, it is unlikely that the plant investments, jobs, and income associated with gas cooling exports would be retained within the United States. The prospects for significant gas cooling exports appear promising for a variety of reasons. There is an expanding need for cooling in the developing world, natural gas is widely available, electric infrastructures are over-stressed in many areas, and the cost of building new gas infrastructure is modest compared to the cost of new electric infrastructure. Global gas cooling competition is currently limited, with Japanese and U.S. companies, and their foreign business partners, the only product sources. U.S. manufacturers of HVAC products are well positioned to compete globally, and are already one of the faster growing goods-exporting sectors of the U.S. economy. Net HVAC exports grew by over 800 percent from 1987 to 1992 and currently exceed $2.6 billion annually (ARI 1994). Net gas cooling job and income creation are estimated using an economic input-output model to compare a reference case to a gas cooling scenario. The reference case reflects current policies, practices, and trends with respect to conventional electric cooling technologies. The gas cooling scenario examines the impact of accelerated use of natural gas cooling technologies here and abroad.

  14. Gas Mixtures for Welding with Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Węgrzyn T.

    2015-04-01

    Full Text Available Welding with micro-jet cooling after was tested only for MIG and MAG processes. For micro-jet gases was tested only argon, helium and nitrogen. A paper presents a piece of information about gas mixtures for micro-jet cooling after in welding. There are put down information about gas mixtures that could be chosen both for MAG welding and for micro-jet process. There were given main information about influence of various micro-jet gas mixtures on metallographic structure of steel welds. Mechanical properties of weld was presented in terms of various gas mixtures selection for micro-jet cooling.

  15. Gas-cooled reactors: the importance of their development

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.

    1979-06-01

    The nearest term GCR is the steam-cycle HTGR, which can be used for both power and process steam production. Use of SC-HTGRs permits timely introduction of thorium fuel cycles and of high-thermal-efficiency reactors, decreasing the need for mined U/sub 3/O/sub 8/ before arrival of symbiotic fueling of fast-thermal reactor systems. The gas-turbine HTGR offers prospects of lower capital costs than other nuclear reactors, but it appears to require longer and more costly development than the SC-HTGR. Accelerated development of the GT-HTGR is needed to gain the advantages of timely introduction. The Gas-Cooled Fast Breeder Reactor (GCFR) offers the possibility of fast breeder reactors with lower capital costs and with higher breeding ratios from oxide fuels. The VHTR provides high-temperature heat for hydrogen production.

  16. Research of the influence of intensification of heat transfer on distribution of temperature in the active core of the gas cooled nuclear reactor of the «GT-MHR» project

    Science.gov (United States)

    Kuzevanov, V. S.; Podgorny, S. K.

    2017-11-01

    The maximum wall temperature of a cooling channel of a nuclear reactor is one of the factors that affects directly of the safety and reliability of the nuclear reactor. In this paper suggested an equation, which allows calculating the maximum wall temperature of the cooling channel of the nuclear reactor with heat transfer enhancer installed, without enormous calculations.

  17. A Gas-Cooled Reactor Surface Power System

    Energy Technology Data Exchange (ETDEWEB)

    Harms, G.A.; Lenard, R.X.; Lipinski, R.J.; Wright, S.A.

    1998-11-09

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life- cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitide clad in Nb 1 %Zr, which has been extensively tested under the SP-I 00 program The fiel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fbel and stabilizing the geometty against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality cannot occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars.

  18. Gas cooling in hydrodynamic simulations with an exact time integration scheme

    Science.gov (United States)

    Zhu, Qirong; Smith, Britton; Hernquist, Lars

    2017-09-01

    We implement and test the exact time integration method proposed by Townsend for gas cooling in cosmological hydrodynamic simulations. The errors using this time integrator for the internal energy are limited by the resolution of the cooling tables and are insensitive to the size of the time-step, improving accuracy relative to explicit or implicit schemes when the cooling time is short. We compare results with different time integrators for gas cooling in cosmological hydrodynamic simulations. We find that the temperature of the gas in filaments before accreting into dark matter haloes to form stars, obtained with the exact cooling integration, lies close to the equilibrium where radiative cooling balances heating from the ultraviolet background. For comparison, the gas temperature without the exact integrator shows substantial deviations from the equilibrium relation. Galaxy stellar masses with the exact cooling technique agree reasonably well, but are systematically lower than the results obtained by the other integration schemes, reducing the need for feedback to suppress star formation. Our implementation of the exact cooling technique is provided and can be easily incorporated into any hydrodynamic code.

  19. Advanced gas cooled nuclear reactor materials evaluation and development program

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Results of work performed from January 1, 1977 through March 31, 1977 on the Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program are presented. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Process Heat and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (impure Helium), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes progress to date on alloy selection for VHTR Nuclear Process Heat (NPH) applications and for DCHT applications. The present status on the simulated reactor helium loop design and on designs for the testing and analysis facilities and equipment is discussed.

  20. Novel Applications of Buffer-gas Cooling to Cold Atoms, Diatomic Molecules, and Large Molecules

    Science.gov (United States)

    Drayna, Garrett Korda

    Cold gases of atoms and molecules provide a system for the exploration of a diverse set of physical phenomena. For example, cold gasses of magnetically and electrically polar atoms and molecules are ideal systems for quantum simulation and quantum computation experiments, and cold gasses of large polar molecules allow for novel spectroscopic techniques. Buffer-gas cooling is a robust and widely applicable method for cooling atoms and molecules to temperatures of approximately 1 Kelvin. In this thesis, I present novel applications of buffer-gas cooling to obtaining gases of trapped, ultracold atoms and diatomic molecules, as well as the study of the cooling of large organic molecules. In the first experiment of this thesis, a buffer-gas beam source of atoms is used to directly load a magneto-optical trap. Due to the versatility of the buffer-gas beam source, we obtain trapped, sub-milliKelvin gases of four different lanthanide species using the same experimental apparatus. In the second experiment of this thesis, a buffer-gas beam is used as the initial stage of an experiment to directly laser cool and magneto-optically trap the diatomic molecule CaF. In the third experiment of this thesis, buffer-gas cooling is used to study the cooling of the conformational state of large organic molecules. We directly observe conformational relaxation of gas-phase 1,2-propanediol due to cold collisions with helium gas. Lastly, I present preliminary results on a variety of novel applications of buffer-gas cooling, such as mixture analysis, separation of chiral mixtures, the measurement of parity-violation in chiral molecules, and the cooling and spectroscopy of highly unstable reaction intermediates.

  1. Improvement of Cooling Technology through Atmosphere Gas Management

    Energy Technology Data Exchange (ETDEWEB)

    Renard, Michel; Dosogne, Edgaar; Crutzen, Jean Pierre; Raick, Jean Mare [DREVER INTERNATIONAL S.A., Liege (Belgium); Ji, Ma Jia; Jun, Lv; Zhi, Ma Bing [SHOUGANG Cold Rolling Mill Headquarter, Beijin (China)

    2009-12-15

    The production of advanced high strength steels requires the improvement of cooling technology. The use of high cooling rates allows relatively low levels of expensive alloying additions to ensure sufficient hardenability. In classical annealing and hot-dip galvanizing lines a mixing station is used to provide atmosphere gas containing 3-5% hydrogen and 97-95% nitrogen in the various sections of the furnace, including the rapid cooling section. Heat exchange enhancement in this cooling section can be insured by the increased hydrogen concentration. Driver international developed a patented improvement of cooling technology based on the following features: pure hydrogen gas is injected only in the rapid cooling section whereas the different sections of the furnace are supplied with pure nitrogen gas: the control of flows through atmosphere gas management allows to get high hydrogen concentration in cooling section and low hydrogen content in the other furnace zones. This cooling technology development insures higher cooling rates without additional expensive hydrogen gas consumption and without the use of complex sealing equipment between zones. In addition reduction in electrical energy consumption is obtained. This atmosphere control development can be combined with geometrical design improvements in order to get optimised cooling technology providing high cooling rates as well as reduced strip vibration amplitudes. Extensive validation of theoretical research has been conducted on industrial lines. New lines as well as existing lines, with limited modifications, can be equipped with this new development. Up to now this technology has successfully been implemented on 6 existing and 7 new lines in Europe and Asia.

  2. Development of computational methods for the safety assessment of gas-cooled high-temperature and supercritical light-water reactors. Final report; Rechenmethoden zur Bewertung der Sicherheit von gasgekuehlten Hochtemperaturreaktoren und superkritischen Leichtwasserreaktoren. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, S.; Cron, D. von der; Hristov, H.; Lerchl, G.; Papukchiev, A.; Seubert, A.; Sureda, A.; Weis, J.; Weyermann, F.

    2012-12-15

    This report documents developments and results in the frame of the project RS1191 ''Development of computational methods for the safety assessment of gas-cooled high temperature and supercritical light-water reactors''. The report is structured according to the five work packages: 1. Reactor physics modeling of gas-cooled high temperature reactors; 2. Coupling of reactor physics and 3-D thermal hydraulics for the core barrel; 3. Extension of ATHLET models for application to supercritical reactors (HPLWR); 4. Further development of ATHLET for application to HTR; 5. Further development and validation of ANSYS CFX for application to alternative reactor concepts. Chapter 4 describes the extensions made in TORT-TD related to the simulation of pebble-bed HTR, e.g. spectral zone buckling, Iodine-Xenon dynamics, nuclear decay heat calculation and extension of the cross section interpolation algorithms to higher dimensions. For fast running scoping calculations, a time-dependent 3-D diffusion solver has been implemented in TORT-TD. For the PBMR-268 and PBMR-400 as well as for the HTR-10 reactor, appropriate TORT-TD models have been developed. Few-group nuclear cross sections have been generated using the spectral codes MICROX- 2 and DRAGON4. For verification and validation of nuclear cross sections and deterministic reactor models, MCNP models of reactor core and control rod of the HTR-10 have been developed. Comparisons with experimental data have been performed for the HTR-10 first criticality and control rod worth. The development of the coupled 3-D neutron kinetics and thermal hydraulics code system TORT-TD/ATTICA3D is documented in chapter 5. Similar to the couplings with ATHLET and COBRA-TF, the ''internal'' coupling approach has been implemented. Regarding the review of experiments and benchmarks relevant to HTR for validation of the coupled code system, the PBMR-400 benchmarks and the HTR-10 test reactor have been selected

  3. Heat Transfer and Cooling in Gas Turbines

    Science.gov (United States)

    1985-09-01

    the detailed component internal heat transfer for a variety of families of cooling schemes, and (c) to choose from among and withir those families to...1965. 32. Metzger, D.E., and Grochowsky, 1.D., "Heat Transfer Between an Impinging Jet and a Rotating Dink ," J. Heat Tranafer, Trans. ASME, 99, pp. 663

  4. Gas Mixtures for Welding with Micro-Jet Cooling

    OpenAIRE

    Węgrzyn T.

    2015-01-01

    Welding with micro-jet cooling after was tested only for MIG and MAG processes. For micro-jet gases was tested only argon, helium and nitrogen. A paper presents a piece of information about gas mixtures for micro-jet cooling after in welding. There are put down information about gas mixtures that could be chosen both for MAG welding and for micro-jet process. There were given main information about influence of various micro-jet gas mixtures on metallographic structure of steel welds. Mechani...

  5. Performance and economic enhancement of cogeneration gas turbines through compressor inlet air cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lucia, M. De; Bronconi, R.; Carnevale, E. (Univ. di Firenze (Italy). Dipt. di Energetica)

    1994-04-01

    Gas turbine air cooling systems serve to raise performance to peak power levels during the hot months when high atmospheric temperatures cause reductions in net power output. This work describes the technical and economic advantages of providing a compressor inlet air cooling system to increase the gas turbine's power rating and reduce its heat rate. The pros and cons of state-of-the-art cooling technologies, i.e., absorption and compression refrigeration, with and without thermal energy storage, were examined in order to select the most suitable cooling solution. Heavy-duty gas turbine cogeneration systems with and without absorption units were modeled, as well as various industrial sectors, i.e., paper and pulp, pharmaceuticals, food processing, textiles, tanning, and building materials. The ambient temperature variations were modeled so the effects of climate could be accounted for the simulation. The results validated the advantages of gas turbine cogeneration with absorption air cooling as compared to other systems without air cooling.

  6. One-dimensional modeling of radial heat removal during depressurized heatup transients in modular pebble-bed and prismatic high temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Savage, M.G.

    1984-07-01

    A one-dimensional computational model was developed to evaluate the heat removal capabilities of both prismatic-core and pebble-bed modular HTGRs during depressurized heatup transients. A correlation was incorporated to calculate the temperature- and neutron-fluence-dependent thermal conductivity of graphite. The modified Zehner-Schluender model was used to determine the effective thermal conductivity of a pebble bed, accounting for both conduction and radiation. Studies were performed for prismatic-core and pebble-bed modular HTGRs, and the results were compared to analyses performed by GA and GR, respectively. For the particular modular reactor design studied, the prismatic HTGR peak temperature was 2152.2/sup 0/C at 38 hours following the transient initiation, and the pebble-bed peak temperature was 1647.8/sup 0/C at 26 hours. These results compared favorably with those of GA and GE, with only slight differences caused by neglecting axial heat transfer in a one-dimensional radial model. This study found that the magnitude of the initial power density had a greater effect on the temperature excursion than did the initial temperature.

  7. Direct cooling of polar molecules to sub-millikelvin temperatures

    CERN Document Server

    Prehn, Alexander; Glöckner, Rosa; Rempe, Gerhard; Zeppenfeld, Martin

    2015-01-01

    We demonstrate direct cooling of gaseous formaldehyde (H2CO) to the microkelvin regime. Our approach, optoelectrical Sisyphus cooling, provides a simple dissipative cooling method applicable to electrically trapped dipolar molecules. By reducing the temperature by three orders of magnitude and increasing the phase-space density by a factor of ~$10^4$ we generate an ensemble of $3\\cdot10^5$ molecules with a temperature of about 420\\mu K, populating a single rotational state with more than 80% purity.

  8. Development of Tritium Permeation Analysis Code and Tritium Transport in a High Temperature Gas-Cooled Reactor Coupled with Hydrogen Production System

    Energy Technology Data Exchange (ETDEWEB)

    Chang H. Oh; Eung S. Kim; Mike Patterson

    2010-06-01

    Abstract – A tritium permeation analyses code (TPAC) was developed by Idaho National Laboratory for the purpose of analyzing tritium distributions in very high temperature reactor (VHTR) systems, including integrated hydrogen production systems. A MATLAB SIMULINK software package was used in developing the code. The TPAC is based on the mass balance equations of tritium-containing species and various forms of hydrogen coupled with a variety of tritium sources, sinks, and permeation models. In the TPAC, ternary fission and neutron reactions with 6Li, 7Li 10B, and 3He were taken into considerations as tritium sources. Purification and leakage models were implemented as main tritium sinks. Permeation of tritium and H2 through pipes, vessels, and heat exchangers were considered as main tritium transport paths. In addition, electroyzer and isotope exchange models were developed for analyzing hydrogen production systems, including high temperature electrolysis and sulfur-iodine processes.

  9. Towards sympathetic cooling of large molecules: cold collisions between benzene and rare gas atoms

    Energy Technology Data Exchange (ETDEWEB)

    Barletta, P; Tennyson, J; Barker, P F [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)], E-mail: p.barletta@ucl.ac.uk

    2009-05-15

    This paper reports on calculations of collisional cross sections for the complexes X-C{sub 6}H{sub 6} (X={sup 3}He, {sup 4}He, Ne) at temperatures in the range 1 {mu}K-10 K and shows that relatively large cross sections in the 10{sup 3}-10{sup 5} A{sup 2} range are available for collisional cooling. Both elastic and inelastic processes are considered in this temperature range. The calculations suggest that sympathetically cooling benzene to microkelvin temperatures is feasible using these co-trapped rare gas atoms in an optical trap.

  10. Turbine Inlet Air Cooling for Industrial and Aero-derivative Gas Turbine in Malaysia Climate

    Science.gov (United States)

    Nordin, A.; Salim, D. A.; Othoman, M. A.; Kamal, S. N. Omar; Tam, Danny; Yusof, M. KY

    2017-12-01

    The performance of a gas turbine is dependent on the ambient temperature. A higher temperature results in a reduction of the gas turbine’s power output and an increase in heat rate. The warm and humid climate in Malaysia with its high ambient air temperature has an adverse effect on the performance of gas turbine generators. In this paper, the expected effect of turbine inlet air cooling technology on the annual performance of an aero-derivative gas turbine (GE LM6000PD) is compared against that of an industrial gas turbine (GEFr6B.03) using GT Pro software. This study investigated the annual net energy output and the annual net electrical efficiency of a plant with and without turbine inlet air cooling technology. The results show that the aero-derivative gas turbine responds more favorably to turbine inlet air cooling technology, thereby yielding higher annual net energy output and higher net electrical efficiency when compared to the industrial gas turbine.

  11. Carbon Contained Ammonium Diuranate Gel Particles Preparation in Mid-process of High-temperature Gas-cooled Reactor Fuel Fabrication

    Directory of Open Access Journals (Sweden)

    Kyung Chai Jeong

    2016-02-01

    Full Text Available This study investigates the dispersibility of carbon in carbon contained ammonium diuranate (C-ADU gel particles and the characteristics of C-ADU gel liquid droplets produced by the vibrating nozzle and integrated aging–washing–drying equipment. It was noted that the excellent stability of carbon dispersion was only observed in the C-ADU gel particle that contained carbon black named CB 10. ADU gel liquid droplets containing carbon particles with the excellent sphericity of approximately 1,950 μm were then obtained using an 80–100-Hz vibrating nozzle system. Dried C-ADU gel particles obtained by the aging–washing–drying equipment were thermal decomposed until 500°C at a rate of 1°C/min in an air or in 4% H2 gas atmosphere. The thermally decomposed C-ADU gel particles showed 24% weight loss and a more complicated profile than that of ADU gel particles.

  12. A cooled-gas pyrometer for use in hypersonic engine testing

    Science.gov (United States)

    Glawe, G. E.

    1973-01-01

    A cooled-gas pyrometer designed for application in a hypersonic research engine program was fabricated and tested. Design and operational considerations and calibration data are presented. The probe was tested in a rocket-engine exhaust stream operating at Mach 2 and 2300 K. Test temperature measurements agreed to within 2 percent with a radiation shielded thermocouple probe.

  13. Heating and cooling system for an on-board gas adsorbent storage vessel

    Energy Technology Data Exchange (ETDEWEB)

    Tamburello, David A.; Anton, Donald L.; Hardy, Bruce J.; Corgnale, Claudio

    2017-06-20

    In one aspect, a system for controlling the temperature within a gas adsorbent storage vessel of a vehicle may include an air conditioning system forming a continuous flow loop of heat exchange fluid that is cycled between a heated flow and a cooled flow. The system may also include at least one fluid by-pass line extending at least partially within the gas adsorbent storage vessel. The fluid by-pass line(s) may be configured to receive a by-pass flow including at least a portion of the heated flow or the cooled flow of the heat exchange fluid at one or more input locations and expel the by-pass flow back into the continuous flow loop at one or more output locations, wherein the by-pass flow is directed through the gas adsorbent storage vessel via the by-pass line(s) so as to adjust an internal temperature within the gas adsorbent storage vessel.

  14. Gas Reactor International Cooperative Program. Interim report. Construction and operating experience of selected European Gas-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-01

    The construction and operating experience of selected European Gas-Cooled Reactors is summarized along with technical descriptions of the plants. Included in the report are the AVR Experimental Pebble Bed Reactor, the Dragon Reactor, AGR Reactors, and the Thorium High Temperature Reactor (THTR). The study demonstrates that the European experience has been favorable and forms a good foundation for the development of Advanced High Temperature Reactors.

  15. Thermoregulated Nitric Cryosystem for Cooling Gas-Filled Detectors of Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Zharkov I.P.

    2015-09-01

    Full Text Available Cryosystem for cooling and filling of gas-filled detectors of ionizing radiation with compressed inert gas on the basis of wide-nitrogen cryostat, which provides detetector temperature control in a range of 173 — 293 K and its stabilization with accuracy of ± 1°. The work was carried out within the Ukraine — NATO Program of Collaboration, Grant SfP #984655.

  16. Passive radiative cooling below ambient air temperature under direct sunlight.

    Science.gov (United States)

    Raman, Aaswath P; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui

    2014-11-27

    Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day.

  17. Comparative performance of combined gas turbine systems under three different blade cooling schemes

    Energy Technology Data Exchange (ETDEWEB)

    Najjar, Y.S.H. [Jordan University of Science and Technology, Irbid (Jordan). Dept. of Mechanical Engineering; Alghamdi, A.S.; Al-Beirutty, M.H. [King Abdulaziz University, Jeddah (Saudi Arabia). Dept. of Mechanical Engineering

    2004-09-01

    Recent advances in gas turbine development have led to wider usage of combined power plant for electrical power generation, and made it possible to reach a thermal efficiency of 55-60%. This was a result of introducing higher turbine inlet temperature (TIT) and other factors. However, this temperature is restricted by the metallurgical limit of turbine blades of about 800{sup o}C. Thus, need arises to design efficient cooling systems to cool the turbine components subjected to such high temperatures. The performance of a combined system with different cooling techniques in the high temperature section of the turbine is evaluated. A general model of the combined system is developed and used to compare the performance relevant to the three main schemes of blade cooling, namely air-cooling, open-circuit steam cooling (OCSC) and closed-loop steam cooling (CLSC). The performance results of the combined system are expressed in terms of overall efficiency and specific power as functions of three primary variables and some other secondary variables, which depend on the considered type of cooling. The primary variables are the TIT, compressor pressure ratio (R{sub c}), and the cooling mass ratio ({phi}{sub c}). The secondary variables are related to the geometry, aerothermodynamics, and heat transfer parameters of the gas turbine blades. The specific power and efficiency of the gas turbine are found to be sensitive to the type of cooling technique used. The combined system with CLSC is found to outperform the OCSC system in specific power and overall efficiency. Thus, it is clear that more power is created when the cooling steam in the closed-loop is not thrown away. Under the given conditions the power of the lower steam cycle with CLSC is increased by 6%, accompanied by 19% rise in cycle efficiency relative to OCSC at similar conditions. The CLSC results in 11% enhancement in power and 3.2% in efficiency relative to air-cooling. The CLSC is less sensitive to variations of

  18. Calculation of the temperature distribution and thermal stresses in a gas turbine nozzle cooled by air film; Calculo de la distribucion de temperaturas y esfuerzos termicos en una tobera de turbina de gas enfriada por pelicula de aire

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez R, Alejandro; Garcia I, Rafael; Mazur C, Zdislaw [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2004-07-01

    The analysis begins with the generation of a computational geometric model of the gas turbine nozzle using reverse engineering techniques. For the obtaining of the original geometry of the blade, a measurement machine by coordinates and computerized numerical control was used. Next, the computational model is converted into a three-dimensional mesh. In advance, a study of boundary conditions was made of the nozzle material as well as of the turbine operating conditions during non-operating cycles, start-ups and shut-downs. On the other hand, with the boundary conditions imposed to the model, the distributions of the temperature and pressures on the aerofoil profile of the nozzle blade were calculated. These results had to be manipulated to be exported to a finite element software (ANSYS); at this point, another nozzle model was elaborated to be able to import the temperature distribution. With the temperatures correctly imported, the simulations for the calculation of the thermal stresses were made in the nozzle. [Spanish] El analisis inicia con la generacion de un modelo geometrico computacional de la tobera de la turbina de gas utilizando tecnicas de ingenieria inversa. Para la obtencion de la geometria original del alabe, se utilizo una maquina de medicion por coordenadas y control numerico computarizado. A continuacion, el modelo computacional es convertido en una malla tridimensional. Con antelacion, se realizo un estudio de las condiciones de frontera, tanto del material de la tobera como de las condiciones de operacion de la turbina, durante ciclos de paro, arranque y disparo. Por otra parte, con las condiciones de frontera impuestas al modelo, se calcularon las distribuciones de las temperaturas y presiones sobre el perfil aerodinamico de la paleta de la tobera. Estos resultados tuvieron que ser manipulados para ser exportados a un software de elemento finito (ANSYS); en este punto, se elaboro otro modelo de la tobera para poder importar la distribucion de

  19. International working group on gas-cooled reactors. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-15

    The purpose of the meeting was to provide a forum for exchange of information on safety and licensing aspects for gas-cooled reactors in order to provide comprehensive review of the present status and of directions for future applications and development. Contributions were made concerning the operating experience of the Fort St. Vrain (FSV) HTGR Power Plant in the United States of America, the experimental power station Arbeitsgemeinschaft Versuchsreaktor (AVR) in the Federal Republic of Germany, and the CO/sub 2/-cooled reactors in the United Kingdom such as Hunterson B and Hinkley Point B. The experience gained at each of these reactors has proved the high safety potential of Gas-cooled Reactor Power Plants.

  20. Ducting arrangement for cooling a gas turbine structure

    Science.gov (United States)

    Lee, Ching-Pang; Morrison, Jay A.

    2015-07-21

    A ducting arrangement (10) for a can annular gas turbine engine, including: a duct (12, 14) disposed between a combustor (16) and a first row of turbine blades and defining a hot gas path (30) therein, the duct (12, 14) having raised geometric features (54) incorporated into an outer surface (80); and a flow sleeve (72) defining a cooling flow path (84) between an inner surface (78) of the flow sleeve (72) and the duct outer surface (80). After a cooling fluid (86) traverses a relatively upstream raised geometric feature (90), the inner surface (78) of the flow sleeve (72) is effective to direct the cooling fluid (86) toward a landing (94) separating the relatively upstream raised geometric feature (90) from a relatively downstream raised geometric feature (94).

  1. Gas-Cooled Fast Reactor (GFR) FY04 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    K. D. Weaver; T. C. Totemeier; D. E. Clark; E. E. Feldman; E. A. Hoffman; R. B. Vilim; T. Y. C. Wei; J. Gan; M. K. Meyer; W. F. Gale; M. J. Driscoll; M. Golay; G. Apostolakis; K. Czerwinski

    2004-09-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radio toxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. Nevertheless, the GFR was chosen as one of only six Generation IV systems to be pursued based on its ability to meet the Generation IV goals in sustainability, economics, safety and reliability, proliferation resistance and physical protection.

  2. A thermodynamic approach for advanced fuels of gas-cooled reactors

    Science.gov (United States)

    Guéneau, C.; Chatain, S.; Gossé, S.; Rado, C.; Rapaud, O.; Lechelle, J.; Dumas, J. C.; Chatillon, C.

    2005-09-01

    For both high temperature reactor (HTR) and gas cooled fast reactor (GFR) systems, the high operating temperature in normal and accidental conditions necessitates the assessment of the thermodynamic data and associated phase diagrams for the complex system constituted of the fuel kernel, the inert materials and the fission products. A classical CALPHAD approach, coupling experiments and thermodynamic calculations, is proposed. Some examples of studies are presented leading with the CO and CO 2 gas formation during the chemical interaction of [UO 2± x/C] in the HTR particle, and the chemical compatibility of the couples [UN/SiC], [(U, Pu)N/SiC], [(U, Pu)N/TiN] for the GFR system. A project of constitution of a thermodynamic database for advanced fuels of gas-cooled reactors is proposed.

  3. A thermodynamic approach for advanced fuels of gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gueneau, C. [DEN/DPC/SCP - CEA Saclay, 91191 Gif-sur-Yvette cedex (France)]. E-mail: cgueneau@cea.fr; Chatain, S. [DEN/DPC/SCP - CEA Saclay, 91191 Gif-sur-Yvette cedex (France); Gosse, S. [DEN/DPC/SCP - CEA Saclay, 91191 Gif-sur-Yvette cedex (France); Rado, C. [DEN/DTEC/STCF - CEA Valrho, 26702 Pierrelatte cedex (France); Rapaud, O. [DEN/DTEC/STCF - CEA Valrho, 26702 Pierrelatte cedex (France); Lechelle, J. [DEN/DEC/SPUA - CEA Cadarache, 13108 Saint-Paul Lez Durance cedex (France); Dumas, J.C. [DEN/DEC/SESC - CEA Cadarache, 13108 Saint-Paul Lez Durance cedex (France); Chatillon, C. [LTPCM - UMR5614, ENSEEG BP75 Grenoble, 38402 Saint-Martin d' Heres cedex (France)

    2005-09-01

    For both high temperature reactor (HTR) and gas cooled fast reactor (GFR) systems, the high operating temperature in normal and accidental conditions necessitates the assessment of the thermodynamic data and associated phase diagrams for the complex system constituted of the fuel kernel, the inert materials and the fission products. A classical CALPHAD approach, coupling experiments and thermodynamic calculations, is proposed. Some examples of studies are presented leading with the CO and CO{sub 2} gas formation during the chemical interaction of [UO{sub 2{+-}}{sub x}/C] in the HTR particle, and the chemical compatibility of the couples [UN/SiC], [(U, Pu)N/SiC], [(U, Pu)N/TiN] for the GFR system. A project of constitution of a thermodynamic database for advanced fuels of gas-cooled reactors is proposed.

  4. Gas-Cooled Fast Reactor (GFR) FY05 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    K. D. Weaver; T. Marshall; T. Totemeier; J. Gan; E.E. Feldman; E.A Hoffman; R.F. Kulak; I.U. Therios; C. P. Tzanos; T.Y.C. Wei; L-Y. Cheng; H. Ludewig; J. Jo; R. Nanstad; W. Corwin; V. G. Krishnardula; W. F. Gale; J. W. Fergus; P. Sabharwall; T. Allen

    2005-09-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radio toxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. Nevertheless, the GFR was chosen as one of only six Generation IV systems to be pursued based on its ability to meet the Generation IV goals in sustainability, economics, safety and reliability, proliferation resistance and physical protection. Current research and development on the Gas-Cooled Fast Reactor (GFR) has focused on the design of safety systems that will remove the decay heat during accident conditions, ion irradiations of candidate ceramic materials, joining studies of oxide dispersion strengthened alloys; and within the Advanced Fuel Cycle Initiative (AFCI) the fabrication of carbide fuels and ceramic fuel matrix materials, development of non-halide precursor low density and high density ceramic coatings, and neutron irradiation of candidate ceramic fuel matrix and metallic materials. The vast majority of this work has focused on the reference design for the GFR: a helium-cooled, direct power conversion system that will operate with on outlet temperature of 850 C at 7 MPa. In addition to the work being performed in the United States, seven international partners under the Generation IV International Forum (GIF) have identified their interest in

  5. Pulmonary artery and intestinal temperatures during heat stress and cooling

    DEFF Research Database (Denmark)

    Pearson, James; Ganio, Matthew S; Seifert, Thomas

    2012-01-01

    In humans, whole body heating and cooling are used to address physiological questions where core temperature is central to the investigated hypotheses. Core temperature can be measured in various locations throughout the human body. The measurement of intestinal temperature is increasingly used...

  6. Influence of collector heat capacity and internal conditions of heat exchanger on cool-down process of small gas liquefier

    Science.gov (United States)

    Saberimoghaddam, Ali; Bahri Rasht Abadi, Mohammad Mahdi

    2018-01-01

    Joule-Thomson cooling systems are commonly used in gas liquefaction. In small gas liquefiers, transient cool-down time is high. Selecting suitable conditions for cooling down process leads to decrease in time and cost. In the present work, transient thermal behavior of Joule-Thomson cooling system including counter current helically coiled tube in tube heat exchanger, expansion valve, and collector was studied using experimental tests and simulations. The experiments were performed using small gas liquefier and nitrogen gas as working fluid. The heat exchanger was thermally studied by experimental data obtained from a small gas liquefier. In addition, the simulations were performed using experimental data as variable boundary conditions. A comparison was done between presented and conventional methods. The effect of collector heat capacity and convection heat transfer coefficient inside the tubes on system performance was studied using temperature profiles along the heat exchanger.

  7. Correlation of radioactive waste treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: reprocessing of high-temperature gas-cooled reactor fuel containing U-233 and thorium

    Energy Technology Data Exchange (ETDEWEB)

    Davis, W. Jr.; Blanco, R.E.; Finney, B.C.; Hill, G.S.; Moore, R.E.; Witherspoon, J.P.

    1976-05-01

    A cost/benefit study was made to determine the cost and effectiveness of various radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials from a model high-temperature gas-cooled reactor (HTGR) fuel reprocessing plant and to determine the radiological impact (dose commitment) of the released materials on the environment. The study is designed to assist the U. S. Nuclear Regulatory Commission in defining the term as low as reasonably achievable as it applies to this nuclear facility. The base case is representative of conceptual, developing technology of head-end graphite-burning operations and of extensions of solvent-extraction technology of current designs for light-water-reactor (LWR) fuel reprocessing plants. The model plant has an annual capacity of 450 metric tons of heavy metal (MTHM, where heavy metal is uranium plus thorium), as charged to about fifty 1000-MW(e) HTGRs. Additional radwaste treatment systems are added to the base-case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The capital and annual costs for the added waste treatment operations and the corresponding reductions in dose commitments are calculated for each case. In the final analysis, the cost/benefit of each case, calculated as additional cost of radwaste system divided by the reduction in dose commitment, is tabulated or the dose commitment is plotted with cost as the variable. The status of each of the radwaste treatment methods used in the case studies is discussed.

  8. Correlation of radioactive waste treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: fabrication of high-temperature gas-cooled reactor fuel containing uranium-233 and thorium

    Energy Technology Data Exchange (ETDEWEB)

    Roddy, J.W.; Blanco, R.E.; Hill, G.S.; Moore, R.E.; Seagren, R.D.; Witherspoon, J.P.

    1976-06-01

    A cost/benefit study was made to determine the cost and effectiveness of various radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials from model High-Temperature Gas-Cooled (HTGR) fuel fabrication plants and to determine the radiological impact (dose commitment) of the released materials on the environment. The study is designed to assist in defining the term ''as low as reasonably achievable'' as it applies to these nuclear facilities. The base cases of the two model plants, a fresh fuel fabrication plant and a refabrication plant, are representative of current proposed commercial designs or are based on technology that is being developed to fabricate uranium, thorium, and graphite into fuel elements. The annual capacities of the fresh fuel plant and the refabrication plant are 450 and 245 metric tons of heavy metal (where heavy metal is uranium plus thorium), as charged to about fifty 1000-MW(e) HTGRs. Additional radwaste treatment systems are added to the base case plants in a series of case studies to decrease the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The capital and annual costs for the added waste treatment operations and the corresponding reductions in dose commitments are calculated for each case. In the final analysis, the cost/benefit of each case, calculated as additional cost of radwaste system divided by the reduction in dose commitment, is tabulated or the dose commitment is plotted with cost as the variable. The status of each of the radwaste treatment methods is discussed. 48 figures, 74 tables.

  9. Temperature and thermal stress evolutions in sapphire crystal during the cooling process by heat exchanger method

    Science.gov (United States)

    Ma, Wencheng; Zhao, Wenhan; Wu, Ming; Ding, Guoqiang; Liu, Lijun

    2017-09-01

    Transient numerical calculations were carried out to predict the evolutions of temperature and thermal stress in sapphire single crystal during the cooling process by heat exchanger method (HEM). Internal radiation in the semitransparent sapphire crystal was taken into account using the finite volume method (FVM) in the global heat transfer model. The numerical results seem to indicate that the narrow bottom region of the sapphire crystal is subjected to high thermal stress during the cooling process, which could be responsible for the seed cracking of the as-grown crystal, while the thermal stress is relatively small in the central main body of the crystal, and is less than 10 MPa during the whole cooling process. The fast decrease of the thermal stress in the bottom region of the crystal during the initial stage of cooling process is dominated by the reduction of the cooling helium gas in the heat exchanger shaft, and is not significantly affected by the heating power reduction rate.

  10. How to get cool in the heat: comparing analytic models of hot, cold, and cooling gas in haloes and galaxies with EAGLE

    Science.gov (United States)

    Stevens, Adam R. H.; Lagos, Claudia del P.; Contreras, Sergio; Croton, Darren J.; Padilla, Nelson D.; Schaller, Matthieu; Schaye, Joop; Theuns, Tom

    2017-05-01

    We use the hydrodynamic, cosmological EAGLE simulations to investigate how the hot gas in haloes condenses to form and grow galaxies. We select haloes from the simulations that are actively cooling and study the temperature, distribution and metallicity of their hot, cold and transitioning 'cooling' gas, placing these in the context of semi-analytic models. Our selection criteria lead us to focus on Milky Way-like haloes. We find that the hot-gas density profiles of the haloes form a progressively stronger core over time, the nature of which can be captured by a β profile that has a simple dependence on redshift. In contrast, the hot gas that will cool over a time-step is broadly consistent with a singular isothermal sphere. We find that cooling gas carries a few times the specific angular momentum of the halo and is offset in spin direction from the rest of the hot gas. The gas loses ˜60 per cent of its specific angular momentum during the cooling process, generally remaining greater than that of the halo, and it precesses to become aligned with the cold gas already in the disc. We find tentative evidence that angular-momentum losses are slightly larger when gas cools on to dispersion-supported galaxies. We show that an exponential surface density profile for gas arriving on a disc remains a reasonable approximation, but a cusp containing ˜20 per cent of the mass is always present, and disc scale radii are larger than predicted by a vanilla Fall & Efstathiou model. These scale radii are still closely correlated with the halo spin parameter, for which we suggest an updated prescription for galaxy formation models.

  11. Ambient air cooling arrangement having a pre-swirler for gas turbine engine blade cooling

    Science.gov (United States)

    Lee, Ching-Pang; Tham, Kok-Mun; Schroeder, Eric; Meeroff, Jamie; Miller, Jr., Samuel R; Marra, John J

    2015-01-06

    A gas turbine engine including: an ambient-air cooling circuit (10) having a cooling channel (26) disposed in a turbine blade (22) and in fluid communication with a source (12) of ambient air: and an pre-swirler (18), the pre-swirler having: an inner shroud (38); an outer shroud (56); and a plurality of guide vanes (42), each spanning from the inner shroud to the outer shroud. Circumferentially adjacent guide vanes (46, 48) define respective nozzles (44) there between. Forces created by a rotation of the turbine blade motivate ambient air through the cooling circuit. The pre-swirler is configured to impart swirl to ambient air drawn through the nozzles and to direct the swirled ambient air toward a base of the turbine blade. The end walls (50, 54) of the pre-swirler may be contoured.

  12. Fast Quasi-Adiabatic Gas Cooling: An Experiment Revisited

    Science.gov (United States)

    Oss, S.; Gratton, L. M.; Calza, G.; Lopez-Arias, T.

    2012-01-01

    The well-known experiment of the rapid expansion and cooling of the air contained in a bottle is performed with a rapidly responsive, yet very cheap thermometer. The adiabatic, low temperature limit is approached quite closely and measured with our apparatus. A straightforward theoretical model for this process is also presented and discussed.…

  13. Gas cool reactor operation in the UK. The present position

    Energy Technology Data Exchange (ETDEWEB)

    Marsden, B.J. [AEA Technology, Risley, Warrington, Cheshire (United Kingdom)

    1998-09-01

    During 1996 there was a major reorganisation of the UK Nuclear Industry. The Advanced Gas Cooled Reactors (AGRs) and Pressurised Water reactor (PWR) operated by Nuclear Electric and Scottish Nuclear was privatised under a new company called British Energy. The Magnox reactors are now operated by a public utility named Magnox Electric, which is currently being merged with British Nuclear Fuels (BNFL). The old UKAEA was split into two parts; a public company, which has maintained the name UKAEA that is responsible for managing all their nuclear liabilities and a technical/consultancy company which is privately owned under the name of AEA Technology. Most of the Magnox and AGRs have continued to operate well with high availability factors. Decommissioning programmes have continued to expand and decommissioning costs have reduced below predicted levels. The industry is maintaining its safety research programme on gas cooled reactors under the direction of the HSE

  14. Stagnation Point Heat Transfer with Gas Injection Cooling

    Science.gov (United States)

    Vancrayenest, B.; Tran, M. D.; Fletcher, D. G.

    2005-01-01

    The present paper deals with an experimental study of the stagnation-point heat transfer to a cooled copper surface with gas injection under subsonic conditions. Test were made with a probe that combined a steady-state water-cooled calorimeter that allows the capability to study convective blockage and to perform heat transfer measurements in presence of gas injection in the stagnation region. The copper probe was pierced by 52 holes, representing 2.4% of the total probe surface. The 1.2 MW high enthalpy plasma wind tunnel was operated at anode powers between 130 and 230 kW and a static pressures from 35 hPa up to 200 hPa. Air, carbon dioxide and argon were injected in the mass flow range 0-0.4 g/s in the boundary layer developed around the 50 mm diameter probe. The measured stagnation-point heat transfer rates are reported and discussed.

  15. Flue gas injection control of silica in cooling towers.

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Patrick Vane; Anderson, Howard L., Jr.; Altman, Susan Jeanne

    2011-06-01

    Injection of CO{sub 2}-laden flue gas can decrease the potential for silica and calcite scale formation in cooling tower blowdown by lowering solution pH to decrease equilibrium calcite solubility and kinetic rates of silica polymerization. Flue gas injection might best inhibit scale formation in power plant cooling towers that use impaired makeup waters - for example, groundwaters that contain relatively high levels of calcium, alkalinity, and silica. Groundwaters brought to the surface for cooling will degas CO{sub 2} and increase their pH by 1-2 units, possibly precipitating calcite in the process. Recarbonation with flue gas can lower the pHs of these fluids back to roughly their initial pH. Flue gas carbonation probably cannot lower pHs to much below pH 6 because the pHs of impaired waters, once outgassed at the surface, are likely to be relatively alkaline. Silica polymerization to form scale occurs most rapidly at pH {approx} 8.3 at 25 C; polymerization is slower at higher and lower pH. pH 7 fluids containing {approx}220 ppm SiO{sub 2} require > 180 hours equilibration to begin forming scale whereas at pH 8.3 scale formation is complete within 36 hours. Flue gas injection that lowers pHs to {approx} 7 should allow substantially higher concentration factors. Periodic cycling to lower recoveries - hence lower silica concentrations - might be required though. Higher concentration factors enabled by flue gas injection should decrease concentrate volumes and disposal costs by roughly half.

  16. Benefits of compressor inlet air cooling for gas turbine cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    De Lucia, M.; Lanfranchi, C. [Univ. di Firenze (Italy). Dept. di Energetica; Boggio, V. [CRIT S.r.l., Prato (Italy)

    1996-07-01

    Compressor inlet air cooling is an effective method for enhancing the performance of gas turbine plants. This paper presents a comparative analysis of different solutions for cooling the compressor inlet air for the LM6000 gas turbine in a cogeneration plant operated in base load. Absorption and evaporative cooling systems are considered and their performance and economic benefits compared for the dry low-NO{sub x} LM6000 version. Reference is made to two sites in Northern and Southern Italy, whose climate data series for modeling the variations in ambient temperature during the single day were used to account for the effects of climate in the simulation. The results confirmed the advantages of inlet air cooling systems. In particular, evaporative cooling proved to be cost effective, though capable of supplying only moderate cooling, while absorption systems have a higher cost but are also more versatile and powerful in base-load operation. An integration of the two systems proved to be able to give both maximum performance enhancement and net economic benefit.

  17. Risk Based Inspection of Gas-Cooling Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Dwi Priyanta

    2017-09-01

    Full Text Available On October 2013, Pertamina Hulu Energi Offshore North West Java (PHE – ONWJ platform personnel found 93 leaking tubes locations in the finfan coolers/ gas-cooling heat exchanger. After analysis had been performed, the crack in the tube strongly indicate that stress corrosion cracking was occurred by chloride. Chloride stress corrosion cracking (CLSCC is the cracking occurred by the combined influence of tensile stress and a corrosive environment. CLSCC is the one of the most common reasons why austenitic stainless steel pipework or tube and vessels deteriorate in the chemical processing, petrochemical industries and maritime industries. In this thesis purpose to determine the appropriate inspection planning for two main items (tubes and header box in the gas-cooling heat exchanger using risk based inspection (RBI method. The result, inspection of the tubes must be performed on July 6, 2024 and for the header box inspection must be performed on July 6, 2025. In the end, RBI method can be applicated to gas-cooling heat exchanger. Because, risk on the tubes can be reduced from 4.537 m2/year to 0.453 m2/year. And inspection planning for header box can be reduced from 4.528 m2/year to 0.563 m2/year.

  18. Thermoelectrically-cooled variable-temperature probe

    Science.gov (United States)

    Kelso, R. M.; Richmond, R. G.

    1979-01-01

    Variable-temperature probe for electron spectroscopy requires no cryogenic liquids or resistance heating elements. Device consists of heat sink, probe tip, and nickel-plated copper body which resists oxidation and transfers heat efficiently between tip and heat sink.

  19. Cooling Effect of Water Injection on a High-Temperature Supersonic Jet

    Directory of Open Access Journals (Sweden)

    Jing Li

    2015-11-01

    Full Text Available The high temperature and high pressure supersonic jet is one of the key problems in the design of solid rocket motors. To reduce the jet temperature and noise, cooling water is typically injected into the exhaust plume. Numerical simulations for the gas-liquid multiphase flow field with mixture multiphase model were developed and a series of experiments were carried out. By introducing the energy source terms caused by the vaporization of liquid water into the energy equation, a coupling solution was developed to calculate the multiphase flow field. The temperature data predictions agreed well with the experimental results. When water was injected into the plume, the high temperature core region area was reduced, and the temperature on the head face was much lower than that without water. The relationship between the reduction of temperature on the bottom plate and the momentum ratio is developed, which can be used to predict the cooling effect of water injection in many cases.

  20. Comparative Exergoeconomic Analyses of Gas Turbine Steam Injection Cycles with and without Fogging Inlet Cooling

    Directory of Open Access Journals (Sweden)

    Hassan Athari

    2015-09-01

    Full Text Available The results are reported of exergoeconomic analyses of a simple gas turbine cycle without a fogging system (SGT, a simple steam injection gas turbine cycle (STIG, and a steam injection gas turbine cycle with inlet fogging cooler (FSTIG. The results show that (1 a gas-turbine cycle with steam injection and simultaneous cooling has a higher power output than the other considered cycle; (2 at maximum energy efficiency conditions the gas turbine has the highest exergy efficiency of the cycle components and the lowest value of exergy efficiency is calculated for the fog cooler, where the mixing of air and water at greatly different temperatures causes the high exergy destruction; and (3 utilization of the fogging cooler in the steam injection cycle increases the exergy destruction in the combustion chamber. Furthermore, the simple gas turbine cycle is found to be more economic as its relative cost difference, total unit product cost, and exergoeconomic factors are less than those for the two other configurations. However, its efficiency and net power output are notably lower than for the gas turbine with steam injection and/or fog cooling. The total unit product cost is highest for the simple gas turbine with steam injection.

  1. Temperature profiles of different cooling methods in porcine pancreas procurement.

    Science.gov (United States)

    Weegman, Bradley P; Suszynski, Thomas M; Scott, William E; Ferrer Fábrega, Joana; Avgoustiniatos, Efstathios S; Anazawa, Takayuki; O'Brien, Timothy D; Rizzari, Michael D; Karatzas, Theodore; Jie, Tun; Sutherland, David E R; Hering, Bernhard J; Papas, Klearchos K

    2014-01-01

    Porcine islet xenotransplantation is a promising alternative to human islet allotransplantation. Porcine pancreas cooling needs to be optimized to reduce the warm ischemia time (WIT) following donation after cardiac death, which is associated with poorer islet isolation outcomes. This study examines the effect of four different cooling Methods on core porcine pancreas temperature (n = 24) and histopathology (n = 16). All Methods involved surface cooling with crushed ice and chilled irrigation. Method A, which is the standard for porcine pancreas procurement, used only surface cooling. Method B involved an intravascular flush with cold solution through the pancreas arterial system. Method C involved an intraductal infusion with cold solution through the major pancreatic duct, and Method D combined all three cooling Methods. Surface cooling alone (Method A) gradually decreased core pancreas temperature to pancreas temperature profiles during procurement and histopathology scores. These data may also have implications on human pancreas procurement as use of an intraductal infusion is not common practice. © 2014 John Wiley & Sons A/S Published by John Wiley & Sons Ltd.

  2. Butterflies regulate wing temperatures using radiative cooling

    Science.gov (United States)

    Tsai, Cheng-Chia; Shi, Norman Nan; Ren, Crystal; Pelaez, Julianne; Bernard, Gary D.; Yu, Nanfang; Pierce, Naomi

    2017-09-01

    Butterfly wings are live organs embedded with multiple sensory neurons and, in some species, with pheromoneproducing cells. The proper function of butterfly wings demands a suitable temperature range, but the wings can overheat quickly in the sun due to their small thermal capacity. We developed an infrared technique to map butterfly wing temperatures and discovered that despite the wings' diverse visible colors, regions of wings that contain live cells are the coolest, resulting from the thickness of the wings and scale nanostructures. We also demonstrated that butterflies use behavioral traits to prevent overheating of their wings.

  3. A modular gas-cooled cermet reactor system for planetary base power

    Science.gov (United States)

    Jahshan, Salim N.; Borkowski, Jeffrey A.

    1993-01-01

    Fission nuclear power is foreseen as the source for electricity in planetary colonization and exploration. A six module gas-cooled, cermet-fueled reactor is proposed that can meet the design objectives. The highly enriched core is compact and can operate at high temperature for a long life. The helium coolant powers six modular Brayton cycles that compare favorably with the SP-100-based Brayton cycle.

  4. Improvements on cool gas generators and their application in space propulsion systems

    NARCIS (Netherlands)

    Sanders, H.M.; Schuurbiers, C.A.H.; Vandeberg, R.J.

    2014-01-01

    Cool Gas Generators are an innovative means to store gas which can be used in propulsion and pressurization systems but also for inflatable structures and terrestrial applications. In Cool Gas Generators, the gas is stored chemically, without pressure or leakage and with a long life time without

  5. Experimental investigation on ejecting low-temperature cooling superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin; Zhang, Qiang, E-mail: 6266798@qq.com; Tong, Ming-wei; Hu, Peng; Wu, Shuang-ying; Cai, Qin; Qin, Zeng-hu

    2013-10-15

    Highlights: • The cooling temperature of the superconducting materials can be adjusted by the ejecting refrigeration. • The result shows that the temperature of liquid nitrogen can be reduced to 70 K by controlling the inlet water pressure of the ejector. • The refrigeration performance of ejector is affected by the different structure and system pressure. -- Abstract: With the development of the high-temperature superconducting (HTS) materials and refrigeration technologies, using ejecting refrigeration to cool the superconducting materials becomes the direction of HTS applications. In this paper, an experimental study has been carried out on the basis of the theory of analyzing the ejecting low-temperature cooling superconducting magnet. The relationship between area ratios and refrigeration performance at different system pressures was derived. In addition, the working fluid flow and suction chamber pressure of the ejector with different area ratios at various inlet pressures have been examined to obtain the performance of ejectors under different working conditions. The result shows that the temperature of liquid nitrogen can be reduced to 70 K by controlling the inlet water pressure when the pressurized water at 20 °C is used to eject the saturated liquid nitrogen, which can provide the stable operational conditions for the HTS magnets cooling.

  6. Capturing high temperature protein conformations for low-temperature study using ultra-fast cooling

    Science.gov (United States)

    Moreau, David; Atakisi, Hakan; Thorne, Robert

    protocols for cooling biomolecular crystals for x-ray cryocrystallography are poorly controlled, leading to crystal-to-crystal and within-crystal non-isomorphism. Furthermore, cooling times below the protein-solvent glass transition of .1 s provide ample time for biological temperature conformations to depopulate and shift. To address these issues, methods and apparatus for cooling biomolecular crystals at rates approaching 100,000 K/s have been developed. These cooling rates are sufficient to eliminate ice formation on cooling without use of cryoprotectants, and to quench additional high-temperature conformations for low-temperature study. Time scales for conformational relaxation can be characterized using variable cooling rates. Possible extension of these methods to maximize conformational quenching will be discussed.

  7. Thermally Simulated Testing of a Direct-Drive Gas-Cooled Nuclear Reactor

    Science.gov (United States)

    Godfroy, Thomas; Bragg-Sitton, Shannon; VanDyke, Melissa

    2003-01-01

    This paper describes the concept and preliminary component testing of a gas-cooled, UN-fueled, pin-type reactor which uses He/Xe gas that goes directly into a recuperated Brayton system to produce electricity for nuclear electric propulsion. This Direct-Drive Gas-Cooled Reactor (DDG) is designed to be subcritical under water or wet-sand immersion in case of a launch accident. Because the gas-cooled reactor can directly drive the Brayton turbomachinery, it is possible to configure the system such that there are no external surfaces or pressure boundaries that are refractory metal, even though the gas delivered to the turbine is 1144 K. The He/Xe gas mixture is a good heat transport medium when flowing, and a good insulator when stagnant. Judicious use of stagnant cavities as insulating regions allows transport of the 1144-K gas while keeping all external surfaces below 900 K. At this temperature super-alloys (Hastelloy or Inconel) can be used instead of refractory metals. Super-alloys reduce the technology risk because they are easier to fabricate than refractory metals, we have a much more extensive knowledge base on their characteristics, and, because they have a greater resistance to oxidation, system testing is eased. The system is also relatively simple in its design: no additional coolant pumps, heat exchanger, or freeze-thaw systems are required. Key to success of this concept is a good knowledge of the heat transfer between the fuel pins and the gas, as well as the pressure drop through the system. This paper describes preliminary testing to obtain this key information, as well as experience in demonstrating electrical thermal simulation of reactor components and concepts.

  8. Direct-Drive Gas-Cooled Reactor Power System: Concept and Preliminary Testing

    Science.gov (United States)

    Wright, S. A.; Lipinski, R. J.; Godfroy, T. J.; Bragg-Sitton, S. M.; VanDyke, M. K.

    2002-01-01

    This paper describes the concept and preliminary component testing of a gas-cooled, UN-fueled, pin-type reactor which uses He/Xe gas that goes directly into a recuperated Brayton system to produce electricity for nuclear electric propulsion. This Direct-Drive Gas-Cooled Reactor (DDG) is designed to be subcritical under water or wet- sand immersion in case of a launch accident. Because the gas-cooled reactor can directly drive the Brayton turbomachinery, it is possible to configure the system such that there are no external surfaces or pressure boundaries that are refractory metal, even though the gas delivered to the turbine is 1144 K. The He/Xe gas mixture is a good heat transport medium when flowing, and a good insulator when stagnant. Judicious use of stagnant cavities as insulating regions allows transport of the 1144-K gas while keeping all external surfaces below 900 K. At this temperature super-alloys (Hastelloy or Inconel) can be used instead of refractory metals. Super-alloys reduce the technology risk because they are easier to fabricate than refractory metals, we have a much more extensive knowledge base on their characteristics, and, because they have a greater resistance to oxidation, system testing is eased. The system is also relatively simple in its design: no additional coolant pumps, heat exchanger, or freeze-thaw systems are required. Key to success of this concept is a good knowledge of the heat transfer between the fuel pins and the gas, as well as the pressure drop through the system. This paper describes preliminary testing to obtain this key information, as well as experience in demonstrating electrically heated testing of simulated reactor components.

  9. Evaluation of gas cooling for pressurized phosphoric acid fuel cell stacks

    Science.gov (United States)

    Farooque, M.; Skok, A. J.; Maru, H. C.; Kothmann, R. E.; Harry, R. W.

    1983-01-01

    Gas cooling is a more reliable, less expensive and a more simple alternative to conventional liquid cooling for heat removal from the phosphoric acid fuel cell (PAFC). The feasibility of gas cooling has already been demonstrated in atmospheric pressure stacks. This paper presents theoretical and experimental investigation of gas cooling for pressurized PAFC. Two approaches to gas cooling, Distributed Gas Cooling (DIGAS) and Separated Gas Cooling (SGC) were considered, and a theoretical comparison on the basis of cell performance indicated SGC to be superior to DIGAS. The feasibility of SGC was experimentally demonstrated by operating a 45-cell stack for 700 hours at pressure, and determining thermal response and the effect of other related parameters.

  10. Gas turbine performance enhancement via utilizing different integrated turbine inlet cooling techniques

    Directory of Open Access Journals (Sweden)

    Alaa A. El-Shazly

    2016-09-01

    Full Text Available Regions that experience ambient temperatures rising during hot seasons have significant losses and impacts on both output power and efficiency of the gas turbine. When the ambient temperature increases, the air mass flow rate decreases, and hence leads to reduce the gas turbine produced power. Ambient air can be cooled by using either evaporative cooler or absorption chiller. Currently, the performance was simulated thermodynamically for a natural gas operated gas turbine. The performance was tested for the base case without any turbine inlet cooling (TIC systems and compared with the performance for both evaporative cooler and absorption chiller separately in terms of output power, thermal efficiency, heat rate, specific fuel consumption, consumed fuel mass flow rate, and economics. Results showed that at air ambient temperature equals to 37 °C and after deducting all the associated auxiliaries power consumption for both evaporative cooler and absorption chiller, the absorption chiller with regenerator can achieve an augmentation of 25.47% in power and 33.66% in efficiency which provides a saving in average power price about 13%, while the evaporative cooler provides only an increase of 5.56% in power and 1.55% in efficiency, and a saving of 3% in average power price.

  11. Simulation and control of water-gas shift packed bed reactor with inter-stage cooling

    Science.gov (United States)

    Saw, S. Z.; Nandong, J.

    2016-03-01

    Water-Gas Shift Reaction (WGSR) has become one of the well-known pathways for H2 production in industries. The issue with WGSR is that it is kinetically favored at high temperatures but thermodynamically favored at low temperatures, thus requiring careful consideration in the control design in order to ensure that the temperature used does not deactivate the catalyst. This paper studies the effect of a reactor arrangement with an inter-stage cooling implemented in the packed bed reactor to look at its effect on outlet temperature. A mathematical model is developed based on one-dimensional heat and mass transfers which incorporate the intra-particle effects. It is shown that the placement of the inter-stage cooling and the outlet temperature exiting the inter-stage cooling have strong influence on the reaction conversion. Several control strategies are explored for the process. It is shown that a feedback- feedforward control strategy using Multi-scale Control (MSC) is effective to regulate the reactor temperature profile which is critical to maintaining the catalysts activity.

  12. Decay Heat Removal in GEN IV Gas-Cooled Fast Reactors

    Directory of Open Access Journals (Sweden)

    Lap-Yan Cheng

    2009-01-01

    Full Text Available The safety goal of the current designs of advanced high-temperature thermal gas-cooled reactors (HTRs is that no core meltdown would occur in a depressurization event with a combination of concurrent safety system failures. This study focused on the analysis of passive decay heat removal (DHR in a GEN IV direct-cycle gas-cooled fast reactor (GFR which is based on the technology developments of the HTRs. Given the different criteria and design characteristics of the GFR, an approach different from that taken for the HTRs for passive DHR would have to be explored. Different design options based on maintaining core flow were evaluated by performing transient analysis of a depressurization accident using the system code RELAP5-3D. The study also reviewed the conceptual design of autonomous systems for shutdown decay heat removal and recommends that future work in this area should be focused on the potential for Brayton cycle DHRs.

  13. High-resolution mid-infrared spectroscopy of buffer-gas-cooled methyltrioxorhenium molecules

    CERN Document Server

    Tokunaga, Sean; Tarbutt, M; Darquié, B

    2016-01-01

    We demonstrate cryogenic buffer-gas cooling of gas-phase methyltrioxorhenium (MTO). This molecule is closely related to chiral organometallic molecules where the parity-violating energy differences between enantiomers may be measurable. The molecules are produced with a rotational temperature of approximately 6~K by laser ablation of an MTO pellet inside a cryogenic helium buffer gas cell. Facilitated by the low temperature, we demonstrate absorption spectroscopy of the 10.2~$\\mu$m antisymmetric Re=O stretching mode of MTO with a resolution of 8~MHz and a frequency accuracy of 30~MHz. We partially resolve the hyperfine structure and measure the nuclear quadrupole coupling of the excited vibrational state.

  14. Low-temperature gas from marine shales

    Science.gov (United States)

    2009-01-01

    Thermal cracking of kerogens and bitumens is widely accepted as the major source of natural gas (thermal gas). Decomposition is believed to occur at high temperatures, between 100 and 200°C in the subsurface and generally above 300°C in the laboratory. Although there are examples of gas deposits possibly generated at lower temperatures, and reports of gas generation over long periods of time at 100°C, robust gas generation below 100°C under ordinary laboratory conditions is unprecedented. Here we report gas generation under anoxic helium flow at temperatures 300° below thermal cracking temperatures. Gas is generated discontinuously, in distinct aperiodic episodes of near equal intensity. In one three-hour episode at 50°C, six percent of the hydrocarbons (kerogen & bitumen) in a Mississippian marine shale decomposed to gas (C1–C5). The same shale generated 72% less gas with helium flow containing 10 ppm O2 and the two gases were compositionally distinct. In sequential isothermal heating cycles (~1 hour), nearly five times more gas was generated at 50°C (57.4 μg C1–C5/g rock) than at 350°C by thermal cracking (12 μg C1–C5/g rock). The position that natural gas forms only at high temperatures over geologic time is based largely on pyrolysis experiments under oxic conditions and temperatures where low-temperature gas generation could be suppressed. Our results indicate two paths to gas, a high-temperature thermal path, and a low-temperature catalytic path proceeding 300° below the thermal path. It redefines the time-temperature dimensions of gas habitats and opens the possibility of gas generation at subsurface temperatures previously thought impossible. PMID:19236698

  15. Low-temperature gas from marine shales

    Directory of Open Access Journals (Sweden)

    Jarvie Daniel M

    2009-02-01

    Full Text Available Abstract Thermal cracking of kerogens and bitumens is widely accepted as the major source of natural gas (thermal gas. Decomposition is believed to occur at high temperatures, between 100 and 200°C in the subsurface and generally above 300°C in the laboratory. Although there are examples of gas deposits possibly generated at lower temperatures, and reports of gas generation over long periods of time at 100°C, robust gas generation below 100°C under ordinary laboratory conditions is unprecedented. Here we report gas generation under anoxic helium flow at temperatures 300° below thermal cracking temperatures. Gas is generated discontinuously, in distinct aperiodic episodes of near equal intensity. In one three-hour episode at 50°C, six percent of the hydrocarbons (kerogen & bitumen in a Mississippian marine shale decomposed to gas (C1–C5. The same shale generated 72% less gas with helium flow containing 10 ppm O2 and the two gases were compositionally distinct. In sequential isothermal heating cycles (~1 hour, nearly five times more gas was generated at 50°C (57.4 μg C1–C5/g rock than at 350°C by thermal cracking (12 μg C1–C5/g rock. The position that natural gas forms only at high temperatures over geologic time is based largely on pyrolysis experiments under oxic conditions and temperatures where low-temperature gas generation could be suppressed. Our results indicate two paths to gas, a high-temperature thermal path, and a low-temperature catalytic path proceeding 300° below the thermal path. It redefines the time-temperature dimensions of gas habitats and opens the possibility of gas generation at subsurface temperatures previously thought impossible.

  16. INVESTIGATION ON STRUCTURAL STABILITY OF CMSX-4 AND RENE 77 MADE SHOWERHEAD COOLING DESIGNED GAS TURBINE GUIDE VANES

    OpenAIRE

    Dr. R. Saravanan*, M. Karuppasamy

    2017-01-01

    The efficiency and power output of a thermal device is directly proportional to its inlet temperature. Operating at elevated temperature affects the structural stability of its components under load. The gas turbine is a thermal device in which components like fixed and moving blades experience dynamic loading. Apart from elevated temperature, the design of cooling passages, materials which made up of also influential in their structural stability of the blades. In this research the guide van...

  17. Multi channel thermal hydraulic analysis of gas cooled fast reactor using genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Drajat, R. Z.; Su' ud, Z.; Soewono, E.; Gunawan, A. Y. [Department of Mathematics, Institut Teknologi Bandung, Bandung 40132 (Indonesia); Department of Physics, Institut Teknologi Bandung, Bandung 40132 (Indonesia); Department of Mathematics, Institut Teknologi Bandung, Bandung 40132 (Indonesia)

    2012-05-22

    There are three analyzes to be done in the design process of nuclear reactor i.e. neutronic analysis, thermal hydraulic analysis and thermodynamic analysis. The focus in this article is the thermal hydraulic analysis, which has a very important role in terms of system efficiency and the selection of the optimal design. This analysis is performed in a type of Gas Cooled Fast Reactor (GFR) using cooling Helium (He). The heat from nuclear fission reactions in nuclear reactors will be distributed through the process of conduction in fuel elements. Furthermore, the heat is delivered through a process of heat convection in the fluid flow in cooling channel. Temperature changes that occur in the coolant channels cause a decrease in pressure at the top of the reactor core. The governing equations in each channel consist of mass balance, momentum balance, energy balance, mass conservation and ideal gas equation. The problem is reduced to finding flow rates in each channel such that the pressure drops at the top of the reactor core are all equal. The problem is solved numerically with the genetic algorithm method. Flow rates and temperature distribution in each channel are obtained here.

  18. A new gas cooling model for semi-analytic galaxy formation models

    Science.gov (United States)

    Hou, Jun; Lacey, Cedric G.; Frenk, Carlos S.

    2018-03-01

    Semi-analytic galaxy formation models are widely used to gain insight into the astrophysics of galaxy formation and in model testing, parameter space searching and mock catalogue building. In this work, we present a new model for gas cooling in haloes in semi-analytic models, which improves over previous cooling models in several ways. Our new treatment explicitly includes the evolution of the density profile of the hot gas driven by the growth of the dark matter halo and by the dynamical adjustment of the gaseous corona as gas cools down. The effect of the past cooling history on the current mass cooling rate is calculated more accurately, by doing an integral over the past history. The evolution of the hot gas angular momentum profile is explicitly followed, leading to a self-consistent and more detailed calculation of the angular momentum of the cooled down gas. This model predicts higher cooled down masses than the cooling models previously used in GALFORM, closer to the predictions of the cooling models in L-GALAXIES and MORGANA, even though those models are formulated differently. It also predicts cooled down angular momenta that are higher than in previous GALFORM cooling models, but generally lower than the predictions of L-GALAXIES and MORGANA. When used in a full galaxy formation model, this cooling model improves the predictions for early-type galaxy sizes in GALFORM.

  19. Effects of cooling timescale and non-ideaness of the gas in the shockwaves

    Directory of Open Access Journals (Sweden)

    Mohsen Nejad-Asghar

    2017-09-01

    Full Text Available According to the suddenly compression of the matters in some regions of the compressible fluids, the density and temperature suddenly increases, and shockwaves can be produced. The cooling of post-shock region and non-idealness of the equation of state, $p=(k_B/mu m_prho T (1+brho equivmathcal{K}rho T (1+eta R$, where $mu m_p$ is the relative density of the post-shock gas and $Requiv rho_2 / rho_1$ is the non-idealness parameter, may affect on the shocked gases. In this article, we study the effects of both cooling timescale and non-idealness of the shocked gases, on the relative density of the post-shock region. For simplicity, the shock is assumed planar and steady in which the deceleration is negligible and there is no any instabilities through the cooling layer. Conservation of mass, momentum, and energy across the shock front are given by the Rankine-Hugoniot conditions. The most important factor through the shock is the energy lost per unit mass during the shock process, $Q=frac{n_2 Lambda}{mu_2 m_p} t_{dur}$, where $Lambda (erg cm^{-3} s^{-1}$ is the cooling function at the post-shock region with density $n_2} and mean particle mass $mu_2 m_p$, and $t_{dur}$ is the duration time of the post-shock process. Accurate determination of the cooling timescale requires specifying the elemental abundance of the post-shock region, but a simple estimate can be obtained using $t_{cool}approx k_B T_2/(n_2Lambda$. Eliminating the $n_2 Lambda$, we approximately have $Q/c^2approx lambda T$, where $c equiv sqrt{K_1 T_1}$ is the pre-shock sound speed, $lambda  equiv t_{dur}/t_{cool}$ and $T equiv K_2 T_2/K_1 T_1$. We would be interested to consider the collision of two gas sheets with velocities $v_0$ in the rest frame of the laboratory. Defining the Mach number as $M_0 equiv v_0/c$, we obtain a third degree polynomial equation for $R$, with coefficients as functions of the three parameters $eta$, $lambda$, and $M_0$. We numerically solved this three

  20. Optimum hot water temperature for absorption solar cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lecuona, A.; Ventas, R.; Venegas, M.; Salgado, R. [Dpto. Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganes, Madrid (Spain); Zacarias, A. [ESIME UPA, IPN, Av. de las Granjas 682, Col. Santa Catarina, 02550, D.F. Mexico (Mexico)

    2009-10-15

    The hot water temperature that maximizes the overall instantaneous efficiency of a solar cooling facility is determined. A modified characteristic equation model is used and applied to single-effect lithium bromide-water absorption chillers. This model is based on the characteristic temperature difference and serves to empirically calculate the performance of real chillers. This paper provides an explicit equation for the optimum temperature of vapor generation, in terms of only the external temperatures of the chiller. The additional data required are the four performance parameters of the chiller and essentially a modified stagnation temperature from the detailed model of the thermal collector operation. This paper presents and discusses the results for small capacity machines for air conditioning of homes and small buildings. The discussion highlights the influence of the relevant parameters. (author)

  1. Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system

    Science.gov (United States)

    Tomlinson, Leroy Omar; Smith, Raub Warfield

    2002-01-01

    In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

  2. Method and apparatus for maintaining multi-component sample gas constituents in vapor phase during sample extraction and cooling

    Science.gov (United States)

    Farthing, William Earl [Pinson, AL; Felix, Larry Gordon [Pelham, AL; Snyder, Todd Robert [Birmingham, AL

    2008-02-12

    An apparatus and method for diluting and cooling that is extracted from high temperature and/or high pressure industrial processes. Through a feedback process, a specialized, CFD-modeled dilution cooler is employed along with real-time estimations of the point at which condensation will occur within the dilution cooler to define a level of dilution and diluted gas temperature that results in a gas that can be conveyed to standard gas analyzers that contains no condensed hydrocarbon compounds or condensed moisture.

  3. Method and apparatus maintaining multi-component sample gas constituents in vapor phase during sample extraction and cooling

    Science.gov (United States)

    Farthing, William Earl; Felix, Larry Gordon; Snyder, Todd Robert

    2009-12-15

    An apparatus and method for diluting and cooling that is extracted from high temperature and/or high pressure industrial processes. Through a feedback process, a specialized, CFD-modeled dilution cooler is employed along with real-time estimations of the point at which condensation will occur within the dilution cooler to define a level of dilution and diluted gas temperature that results in a gas that can be conveyed to standard gas analyzers that contains no condensed hydrocarbon compounds or condensed moisture.

  4. Pebble Bed Reactors Design Optimization Methods and their Application to the Pebble Bed Fluoride Salt Cooled High Temperature Reactor (PB-FHR)

    OpenAIRE

    Cisneros, Anselmo Tomas

    2013-01-01

    The Fluoride salt cooled High temperature Reactor (FHR) is a class of advanced nuclear reactors that combine the robust coated particle fuel form from high temperature gas cooled reactors, direct reactor auxillary cooling system (DRACS) passive decay removal of liquid metal fast reactors, and the transparent, high volumetric heat capacitance liquid fluoride salt working fluids - flibe (33%7Li2F-67%BeF) - from molten salt reactors. This combination of fuel and coolant enables FHRs to operate i...

  5. Low pressure cooling seal system for a gas turbine engine

    Science.gov (United States)

    Marra, John J

    2014-04-01

    A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

  6. Regional cooling for reducing brain temperature and intracranial pressure.

    Science.gov (United States)

    Forte, Luis Vicente; Peluso, Cássio Morano; Prandini, Mirto Nelso; Godoy, Roberto; Rojas, Salomon Soriano Ordinola

    2009-06-01

    To evaluate the effectiveness of regional cooling for reducing brain temperature (BrTe) and intracranial pressure (ICP) in patients where conventional clinical treatment has failed. Regional cooling was carried out using ice bags covering the area of the craniectomy (regional method) in 23 patients. The BrTe and ICP were determined using a fiber optic sensor. Thirteen patients (56.52%) were female. The ages ranged from 16 to 83 years (mean of 48.9). The mean APACHE II score was 25 points (11-35). The patients were submitted, on mean, to 61.7 hours (20-96) of regional cooling. There was a significant reduction in mean BrTe (p<0.0001--from 37.1 degrees C to 35.2 degrees C) and mean ICP (p=0.0001--from 28 mmHg to 13 mmHg). Our results suggest that mild brain hypothermia induced by regional cooling was effective in the control of ICP in patients who had previously undergone decompressive craniectomy.

  7. Interactions among cooling, fungicide and postharvest ripening temperature on peaches

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Trujillo, J. Pablo; Cano, Antonio; Artes, Francisco [Postharvest and refrigeration Lab., Dept. of Food Science and Technology, CEBAS-CSIC, Murcia (Spain)

    2000-07-01

    Peach fruit (Prunus persica L. cv. 'Miraflores') harvested at the firm-ripe stage, treated or not with 2 g l{sup -1} iprodione, were cooled or not at 1{sup o}C and ripened at 15 or 20{sup o}C and 95% RH for 10 days. During ripening, weight loss, fungal development and changes in quality parameters (firmness, soluble solids content, titratable acidity, pH and ground and flesh color), and carbon dioxide and ethylene production were monitored. Cooling alone or combined with iprodione avoided Rhizopus nigricans decay during ripening at either ripening temperatures. A skin damage not previously reported on fungicide treated peach was observed at 20{sup o}C. Cooled fruit ripened at 15{sup o}C showed an anomalous respiration rate and ethylene production after the climacteric peak, a loss of firmness and a drop in titratable acidity after 7 days of storage, and reduced endo-polygalacturonase activity in presence of continuous pectinmethylesterase activity during the first week. Cooling before ripening at 20{sup o}C led to the best flavor without excessive total losses. These results helped in the optimization of warming cycles during cold storage used to avoid chilling injuries development on peaches. (Author)

  8. Role of gas cooling in tomorrow`s energy services industry

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, P.J.

    1997-04-01

    This article discusses the marketing approach and opportunities for suppliers and manufacturers of gas cooling equipment to partner with energy service companies (ESCOs). The author`s viewpoint is that in educating and partnering with ESCOs the gas cooling industry enables their technology to reach its potential in the projects that the ESCOs develop.

  9. The effect of cool water ingestion on gastrointestinal pill temperature.

    Science.gov (United States)

    Wilkinson, David M; Carter, James M; Richmond, Victoria L; Blacker, Sam D; Rayson, Mark P

    2008-03-01

    Telemetric gastrointestinal (GI) temperature pills are now commonly used to measure core body temperature and could minimize the risk of heat illness while maximizing operational effectiveness in workers subject to high levels of thermal strain. To quantify the effect of repeated cool water ingestion on the accuracy of GI pill temperature. Ten operational firefighters ingested a pill to measure GI temperature (T1int) before overnight sleep. Two hours following breakfast and 11.5 h after ingesting T1int, the firefighters ingested a second pill (T2int) before performing 8.5 h of intermittent activity (repetitive cycles of 30 min of seated rest followed by 30 min of general firefighter duties). During the first 2 min of each 30-min rest period, the firefighters consumed 250 mL of chilled water (5-8 degrees C). Water ingestion had a highly variable effect both within and between subjects in transiently (32 +/- 10 min) reducing the temperature of T2int in comparison with T1int. In general, this transient reduction in T2int became progressively smaller as time following ingestion increased. In some firefighters, the difference between T1int and T2int became negligible (+/- 0.1 degrees C) after 3 h, whereas in two others, large differences (peaking at 2.0 degrees C and 6.3 degrees C) were still observed when water was consumed 8 h after pill ingestion. These results show that a GI pill ingested immediately prior to physical activity cannot be used to measure core body temperature accurately in all individuals during the following 8 h when cool fluids are regularly ingested. This makes GI temperature measurement unsuitable for workers who respond to emergency deployments when regular fluid consumption is recommended operational practice.

  10. A comparative study of the He and CO{sub 2} cycle for a small modular gas-cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Seong Jun; Ahn, Yoon Han; Lee, Jeong Ik [Korea Advanced Institue of Science and Technology, Daejeon (Korea, Republic of)

    2013-10-15

    The gas-cooled nuclear reactor with closed Brayton cycle is considered as an attractive power conversion system because it can be compact and suitable system for reducing the total system size significantly while keeping the passive safety features. Helium and carbon dioxide (CO{sub 2}) are strong candidates as a coolant for the gas-cooled nuclear system. Helium Brayton cycle is commonly known that it can obtain very simple system arrangement with direct cycle and high thermal efficiency under high outlet temperature range due to its advantages such as less interaction with structure material, chemical stability and so on. However, supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle can be more suitable power conversion cycle with HTGR. The S-CO{sub 2} Brayton cycle has advantages over the helium Brayton cycle because it can achieve higher thermal efficiency at similar or even lower turbine inlet temperature (T. I. T) and can be more compact than a helium cycle. Both Brayton cycles can be a suitable power conversion system for a small modular gas-cooled reactor. Thus, for this study, preliminary design works of helium and the CO{sub 2} Brayton cycles for a 5MWth small modular gas-cooled reactor were carried out and evaluated while considering turbomachinery efficiency variation. Considering the size of a small modular nuclear system, the cycle configurations should be simple and compact. So, a simple recuperated Brayton cycle was chosen as candidate of the cycle layout for this study.

  11. Frontal subcutaneous blood flow, and epi- and subcutaneous temperatures during scalp cooling in normal man

    DEFF Research Database (Denmark)

    Bülow, J; Friberg, L; Gaardsting, O

    1985-01-01

    during cooling and rewarming and to measure the effect of scalp cooling on subcutaneous scalp blood flow, subcutaneous blood flow and epi- and subcutaneous temperatures were measured in the frontal region at the hairline border before and during cooling with a cooling helmet, during spontaneous rewarming...

  12. Description of the magnox type of gas cooled reactor (MAGNOX)

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, S.E.; Nonboel, E

    1999-05-01

    The present report comprises a technical description of the MAGNOX type of reactor as it has been build in Great Britain. The Magnox reactor is gas cooled (CO{sub 2}) with graphite moderators. The fuels is natural uranium in metallic form, canned with a magnesium alloy called 'Magnox'. The Calder Hall Magnox plant on the Lothian coastline of Scotland, 60 km east of Edinburgh, has been chosen as the reference plant and is described in some detail. Data on the other stations are given in tables with a summary of design data. Special design features are also shortly described. Where specific data for Calder Hall Magnox has not been available, corresponding data from other Magnox plants has been used. The information presented is based on the open literature. The report is written as a part of the NKS/RAK-2 sub-project 3: 'Reactors in Nordic Surroundings', which comprises a description of nuclear power plants neighbouring the Nordic countries. (au)

  13. Gas-Cooled Thorium Reactor with Fuel Block of the Unified Design

    Directory of Open Access Journals (Sweden)

    Igor Shamanin

    2015-01-01

    Full Text Available Scientific researches of new technological platform realization carried out in Russia are based on ideas of nuclear fuel breeding in closed fuel cycle and physical principles of fast neutron reactors. Innovative projects of low-power reactor systems correspond to the new technological platform. High-temperature gas-cooled thorium reactors with good transportability properties, small installation time, and operation without overloading for a long time are considered perspective. Such small modular reactor systems at good commercial, competitive level are capable of creating the basis of the regional power industry of the Russian Federation. The analysis of information about application of thorium as fuel in reactor systems and its perspective use is presented in the work. The results of the first stage of neutron-physical researches of a 3D model of the high-temperature gas-cooled thorium reactor based on the fuel block of the unified design are given. The calculation 3D model for the program code of MCU-5 series was developed. According to the comparison results of neutron-physical characteristics, several optimum reactor core compositions were chosen. The results of calculations of the reactivity margins, neutron flux distribution, and power density in the reactor core for the chosen core compositions are presented in the work.

  14. Influence of the gas mixture radio on the correlations between the excimer XeCl emission and the sealed gas temperature in dielectric barrier discharge lamps

    CERN Document Server

    Xu Jin Zhou; Ren Zhao Xing

    2002-01-01

    For dielectric barrier discharge lamps filled with various gas mixture ratios, the correlations between the excimer XeCl emission and the sealed gas temperature have been founded, and a qualitative explication is presented. For gas mixture with chlorine larger than 3%, the emission intensity increases with the sealed gas temperature, while with chlorine about 2%, the emission intensity decreases with the increasing in the gas temperature, and could be improved by cooling water. However, if chlorine is less than 1.5%, the discharge appears to be a mixture mode with filaments distributed in a diffused glow-like discharge, and the UV emission is independent on the gas temperature

  15. Heat transfer characteristics in depressurized LOFC accidents with a failure of the RCCS in a modular gas-cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seyun; Ha, Sangjun [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Tak, Namil; Lim, Hongsik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    A modular gas-cooled reactor has inherent safety characteristics with its large heat capacity and low power density of the core when compared with conventional light water reactors. The reactor cavity cooling system (RCCS) serves as an ultimate heat sink in a high temperature gas-cooled reactor and is a system for the removal of the decay and residual heat from the uninsulated reactor vessel to ensure a plant safety. To understand the inherent safety features of the designed reactor, analyses for the RCCS performance in various severe accident conditions are required. A depressurized loss of forced circulation (LOFC) accident was considered as an initiating condition. To investigate the safety characteristics of a GCR under the one of the worst accidental scenarios, a simultaneous failure of the RCCS is considered in this study.

  16. Blue-sky bifurcation of ion energies and the limits of neutral-gas sympathetic cooling of trapped ions

    CERN Document Server

    Schowalter, Steven J; Chen, Kuang; Puri, Prateek; Schneider, Christian; Hudson, Eric R

    2016-01-01

    Sympathetic cooling of trapped ions through collisions with neutral buffer gases is critical to a variety of modern scientific fields, including fundamental chemistry, mass spectrometry, nuclear and particle physics, and atomic and molecular physics. Despite its widespread use over four decades, there remain open questions regarding its fundamental limitations. To probe these limits, here we examine the steady-state evolution of up to ten barium ions immersed in a gas of three-million laser-cooled calcium atoms. We observe and explain the emergence of nonequilibrium behavior as evidenced by bifurcations in the ion steady-state temperature, parameterized by ion number. We show that this behavior leads to limitations in creating and maintaining translationally cold samples of trapped ions using neutral-gas sympathetic cooling. These results may provide a route to studying nonequilibrium thermodynamics.

  17. Temperature Modulation of a Catalytic Gas Sensor

    Directory of Open Access Journals (Sweden)

    Eike Brauns

    2014-10-01

    Full Text Available The use of catalytic gas sensors usually offers low selectivity, only based on their different sensitivities for various gases due to their different heats of reaction. Furthermore, the identification of the gas present is not possible, which leads to possible misinterpretation of the sensor signals. The use of micro-machined catalytic gas sensors offers great advantages regarding the response time, which allows advanced analysis of the sensor response. By using temperature modulation, additional information about the gas characteristics can be measured and drift effects caused by material shifting or environmental temperature changes can be avoided. In this work a miniaturized catalytic gas sensor which offers a very short response time (<150 ms was developed. Operation with modulated temperature allows analysis of the signal spectrum with advanced information content, based on the Arrhenius approach. Therefore, a high-precise electronic device was developed, since theory shows that harmonics induced by the electronics must be avoided to generate a comprehensible signal.

  18. Afforestation in China cools local land surface temperature.

    Science.gov (United States)

    Peng, Shu-Shi; Piao, Shilong; Zeng, Zhenzhong; Ciais, Philippe; Zhou, Liming; Li, Laurent Z X; Myneni, Ranga B; Yin, Yi; Zeng, Hui

    2014-02-25

    China has the largest afforested area in the world (∼62 million hectares in 2008), and these forests are carbon sinks. The climatic effect of these new forests depends on how radiant and turbulent energy fluxes over these plantations modify surface temperature. For instance, a lower albedo may cause warming, which negates the climatic benefits of carbon sequestration. Here, we used satellite measurements of land surface temperature (LST) from planted forests and adjacent grasslands or croplands in China to understand how afforestation affects LST. Afforestation is found to decrease daytime LST by about 1.1 ± 0.5 °C (mean ± 1 SD) and to increase nighttime LST by about 0.2 ± 0.5 °C, on average. The observed daytime cooling is a result of increased evapotranspiration. The nighttime warming is found to increase with latitude and decrease with average rainfall. Afforestation in dry regions therefore leads to net warming, as daytime cooling is offset by nighttime warming. Thus, it is necessary to carefully consider where to plant trees to realize potential climatic benefits in future afforestation projects.

  19. Environmental Profiles of Stirling-Cooled and Cascade-Cooled Ultra-Low Temperature Freezers

    OpenAIRE

    Yongrak Kwon; David M. Berchowitz

    2012-01-01

    The environmental footprint of ultra-low temperature (ULT) freezers as used in bio-repositories, universities and other research organizations is investigated. These freezers, employing the cascade refrigeration system, use between 10 and 20 times the energy of an average household refrigerator/freezer. In addition, they often require high greenhouse gas potential (GWP) refrigerants. A new technology employing the Stirling cycle machine promises to reduce energy consumption of ULT freezers by...

  20. Rotating diffuser for pressure recovery in a steam cooling circuit of a gas turbine

    Science.gov (United States)

    Eldrid, Sacheverel Q.; Salamah, Samir A.; DeStefano, Thomas Daniel

    2002-01-01

    The buckets of a gas turbine are steam-cooled via a bore tube assembly having concentric supply and spent cooling steam return passages rotating with the rotor. A diffuser is provided in the return passage to reduce the pressure drop. In a combined cycle system, the spent return cooling steam with reduced pressure drop is combined with reheat steam from a heat recovery steam generator for flow to the intermediate pressure turbine. The exhaust steam from the high pressure turbine of the combined cycle unit supplies cooling steam to the supply conduit of the gas turbine.

  1. Optical Temperature Sensor For Gas Turbines

    Science.gov (United States)

    Mossey, P. W.

    1987-01-01

    New design promises accuracy even in presence of contamination. Improved sensor developed to measure gas temperatures up to 1,700 degree C in gas-turbine engines. Sensor has conical shape for mechanical strengths and optical configuration insensitive to deposits of foreign matter on sides of cone.

  2. 9 CFR 354.244 - Temperatures and cooling and freezing procedures.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Temperatures and cooling and freezing... and cooling and freezing procedures. Temperatures and procedures which are necessary for cooling and freezing of rabbits in accordance with sound commercial practice shall be maintained in the coolers and...

  3. Migration of radionuclides in a gas cooled solid state spallation target

    DEFF Research Database (Denmark)

    Jørgensen, Thomas; Severin, Gregory; Jensen, Mikael

    2015-01-01

    The current design of the ESS (European Spallation Source) program proposes a rotating solid tungsten target cooled by helium gas and a pulsed beam of protons. For safety reasons any design has to address whether or not the induced radionuclidic isotopes in the target migrate. In this paper we have...... investigated the diffusion of (primarily) tritium in solid tungsten to see if a pulse driven short-term variation in temperature (temperature peaks separated by one turn of the wheel(2.36 s)) could possibly give rise to wave-like migration of the radionuclides, possibly accelerating the overall release....... In order to calculate the diffusion in the solid tungsten target two approaches have been used. One neglecting the time structure of the beam and thermal cycling of the target, and one numerical, discrete time step simulation to capture the effects of the thermal cycling on the diffusion behavior. We found...

  4. Heating and cooling with gas-fired heat-pumps; Heizen und Kuehlen mit Gas-Waermepumpen

    Energy Technology Data Exchange (ETDEWEB)

    Stadelmann, M.

    2008-07-01

    This article takes a look at the use of gas-fired absorption heat-pumps in combined cooling and heating applications. Savings in investments and reduced primary energy consumption along with the resulting lower gas costs are noted. The operation of such 'reversible' systems that use ammonia as a working fluid is briefly described. An installation at a filling station in Taverne, Switzerland, is described. A further installation at a gas utility depot in Givisiez, Switzerland, is also looked at. Here, the gas-powered heat-pump system works together with a solar installation to provide space-heating and cooling as well as hot-water preparation.

  5. Fabrication of gas turbine water-cooled composite nozzle and bucket hardware employing plasma spray process

    Science.gov (United States)

    Schilke, Peter W.; Muth, Myron C.; Schilling, William F.; Rairden, III, John R.

    1983-01-01

    In the method for fabrication of water-cooled composite nozzle and bucket hardware for high temperature gas turbines, a high thermal conductivity copper alloy is applied, employing a high velocity/low pressure (HV/LP) plasma arc spraying process, to an assembly comprising a structural framework of copper alloy or a nickel-based super alloy, or combination of the two, and overlying cooling tubes. The copper alloy is plamsa sprayed to a coating thickness sufficient to completely cover the cooling tubes, and to allow for machining back of the copper alloy to create a smooth surface having a thickness of from 0.010 inch (0.254 mm) to 0.150 inch (3.18 mm) or more. The layer of copper applied by the plasma spraying has no continuous porosity, and advantageously may readily be employed to sustain a pressure differential during hot isostatic pressing (HIP) bonding of the overall structure to enhance bonding by solid state diffusion between the component parts of the structure.

  6. Process for cooling and cleaning generator gas and furnace waste gas and device for carrying out this process. Verfahren zur Kuehlung und Reinigung von Generatorgas und Gichtgas und Vorrichtung zur Durchfuehrung dieses Verfahrens

    Energy Technology Data Exchange (ETDEWEB)

    Vuletic, B.

    1987-01-15

    A process and a device for producing cooling gas are proposed for a melt gasifier producing generator gas and excess gas which can be used in a suitable way, by cooling and cleaning at least part of the generator gas and the furnace waste gas of an iron ore reduction unit. The cooling gas is obtained exclusively by treatment of the generator gas. One cooling and one cleaning unit is provided for the excess gas and the cooling gas.

  7. A dynamic model of an innovative high-temperature solar heating and cooling system

    Directory of Open Access Journals (Sweden)

    Buonomano Annamaria

    2016-01-01

    Full Text Available In this paper a new simulation model of a novel solar heating and cooling system based on innovative high temperature flat plate evacuated solar thermal collector is presented. The system configuration includes: flat-plate evacuated solar collectors, a double-stage LiBr-H2O absorption chiller, gas-fired auxiliary heater, a closed loop cooling tower, pumps, heat exchangers, storage tanks, valves, mixers and controllers. The novelty of this study lies in the utilization of flat-plate stationary solar collectors, manufactured by TVP Solar, rather than concentrating ones (typically adopted for driving double-stage absorption chillers. Such devices show ultra-high thermal efficiencies, even at very high (about 200°C operating temperatures, thanks to the high vacuum insulation. Aim of the paper is to analyse the energy and economic feasibility of such novel technology, by including it in a prototypal solar heating and cooling system. For this purpose, the solar heating and cooling system design and performance were analysed by means of a purposely developed dynamic simulation model, implemented in TRNSYS. A suitable case study is also presented. Here, the simulated plant is conceived for the space heating and cooling and the domestic hot water production of a small building, whose energy needs are fulfilled through a real installation (settled also for experimental purposes built up close to Naples (South Italy. Simulation results show that the investigated system is able to reach high thermal efficiencies and very good energy performance. Finally, the economic analysis shows results comparable to those achieved through similar renewable energy systems.

  8. Influence of intranasal and carotid cooling on cerebral temperature balance and oxygenation

    DEFF Research Database (Denmark)

    Nybo, Lars; Wanscher, Michael; Secher, Niels H.

    2014-01-01

    The present study evaluated the influence of intranasal cooling with balloon catheters, increased nasal ventilation, or percutaneous cooling of the carotid arteries on cerebral temperature balance and oxygenation in six healthy male subjects. Aortic arch and internal jugular venous blood temperat......The present study evaluated the influence of intranasal cooling with balloon catheters, increased nasal ventilation, or percutaneous cooling of the carotid arteries on cerebral temperature balance and oxygenation in six healthy male subjects. Aortic arch and internal jugular venous blood...

  9. Benchmark problem for International Atomic Energy Agency (IAEA) coordinated research program (CRP) on gas-cooled reactor (GCR) afterheat Removal

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Shoji; Shiina, Yasuaki; Inagaki, Yoshiyuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Hishida, Makoto; Sudo, Yukio

    1997-12-31

    In IAEA CRP on `Heat Transport and Afterheat Removal for GCRs under Accident Conditions`, experimental data of the JAERI`s cooling panel test apparatus were selected as benchmark problems to verify the validity of computational codes for design and evaluation of the performance of heat transfer and temperature distribution of components in the cooling panel system of the HTGR. The test apparatus was composed of a pressure vessel (P.V) with 1m in diameter and 3m in height, containing heaters with the maximum heating rate of 100kW simulating decay heat, cooling panels surrounding the P.V and the reactor cavity occupied by air at the atmospheric pressure. Seven experimental data were established as benchmark problems to evaluate the effect of natural convection of superheated gas on temperature distribution of the P.V and the performance of heat transfer of both the water and the air cooling panel systems. The analytical code THANPACST2 was applied to analyze two benchmark problems to verify the validity of the analytical methods and models proposed. Under the conditions at helium gas pressure of 0.73MPa and temperature of 210degC in the P.V of the water cooling panel system, temperatures of the P.V were well estimated within the errors of -14% to +27% compared with the experimental data. The analyses indicated that the heat transferred to the cooling panel was 11.4% less than the experimental value and the heat transferred by thermal radiation was 74.4% of the total heat input. (author)

  10. Temperature dependence of the MDT gas gain

    CERN Document Server

    Gaudio, G; Treichel, M

    1999-01-01

    This note describes the measurements taken in the Gamma Irradiation Facility (GIF) in the X5 test beam area at CERN to investigate the temperature dependence of the MDT drift gas (Ar/CO2 - 90:10). Spectra were taken with an Americium-241 source during the aging studies. We analysed the effects of temperature changes on the pulse height spectrum.

  11. Application of gas-cooled Accelerator Driven System (ADS) transmutation devices to sustainable nuclear energy development

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, A., E-mail: abanades@etsii.upm.es [ETSII/Universidad Politecnica de Madrid, J.Gutierrez Abascal, 2-28006 Madrid (Spain); Garcia, C.; Garcia, L. [Instituto Superior de Tecnologia y Ciencias Aplicadas. Quinta de los, Molinos, Ave. Salvador Allende y Luaces, Ciudad de la Habana, CP 10400, Apartado Postal 6163 (Cuba); Escriva, A.; Perez-Navarro, A. [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, C.P. 46022 Valencia (Spain); Rosales, J. [Instituto Superior de Tecnologia y Ciencias Aplicadas. Quinta de los, Molinos, Ave. Salvador Allende y Luaces, Ciudad de la Habana, CP 10400, Apartado Postal 6163 (Cuba)

    2011-06-15

    Highlights: > Utilization of Accelerator Driven System (ADS) for Hydrogen production. > Evaluation of the potential use of gas-cooled ADS for a sustainable use of Uranium resources by transmutation of nuclear wastes, electricity and Hydrogen production. > Application of the Sulfur-Iodine thermochemical process to subcritical systems. > Application of CINDER90 to calculate burn-up in subcritical systems. - Abstract: The conceptual design of a pebble bed gas-cooled transmutation device is shown with the aim to evaluate its potential for its deployment in the context of the sustainable nuclear energy development, which considers high temperature reactors for their operation in cogeneration mode, producing electricity, heat and Hydrogen. As differential characteristics our device operates in subcritical mode, driven by a neutron source activated by an accelerator that adds clear safety advantages and fuel flexibility opening the possibility to reduce the nuclear stockpile producing energy from actual LWR irradiated fuel with an efficiency of 45-46%, either in the form of Hydrogen, electricity, or both.

  12. Turbine gas temperature measurement and control system

    Science.gov (United States)

    Webb, W. L.

    1973-01-01

    A fluidic Turbine Inlet Gas Temperature (TIGIT) Measurement and Control System was developed for use on a Pratt and Whitney Aircraft J58 engine. Based on engine operating requirements, criteria for high temperature materials selection, system design, and system performance were established. To minimize development and operational risk, the TIGT control system was designed to interface with an existing Exhaust Gas Temperature (EGT) Trim System and thereby modulate steady-state fuel flow to maintain a desired TIGT level. Extensive component and system testing was conducted including heated (2300F) vibration tests for the fluidic sensor and gas sampling probe, temperature and vibration tests on the system electronics, burner rig testing of the TIGT measurement system, and in excess of 100 hours of system testing on a J58 engine. (Modified author abstract)

  13. X-ray observations of complex temperature structure in the cool-core cluster A85

    Energy Technology Data Exchange (ETDEWEB)

    Schenck, David E.; Datta, Abhirup; Burns, Jack O. [Center for Astrophysics and Space Astronomy, Department of Astrophysical and Planetary Science, University of Colorado, Boulder, CO 80309 (United States); Skillman, Sam [Kavli Fellow, Kavli Institute for Particle Astrophysics and Cosmology, SLAC, CA 94025 (United States)

    2014-07-01

    X-ray observations were used to examine the complex temperature structure of A85, a cool-core galaxy cluster. Temperature features can provide evidence of merging events which shock heat the intracluster gas. Temperature maps were made from both Chandra and XMM-Newton observations. The combination of a new, long-exposure XMM observation and an improved temperature map binning technique produced the highest fidelity temperature maps of A85 to date. Hot regions were detected near the subclusters to the south and southwest in both the Chandra and XMM temperature maps. The presence of these structures implies A85 is not relaxed. The hot regions may indicate the presence of shocks. The Mach numbers were estimated to be ∼1.9 at the locations of the hot spots. Observational effects will tend to systematically reduce temperature jumps, so the measured Mach numbers are likely underestimated. Neither temperature map showed evidence for a shock in the vicinity of the presumed radio relic near the southwest subcluster. However, the presence of a weak shock cannot be ruled out. There was tension between the temperatures measured by the two instruments.

  14. Development of gas temperature probes for 1700 degrees C hydrogen-combustion turbine combustors; 1700 degrees C suiso nensho turbine yo nenshokino gas ondo keisoku probe no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Hisamatsu, T. [Central Research Inst. of Electric Power Industry, Tokyo (Japan); Nishida, H.; Kasai, Y.; Fukahori, O. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan); Murayama, M. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan); Dodo, S. [Hitachi, Ltd., Tokyo (Japan)

    2000-05-20

    In the development of the Hydrogen-oxygen combustor for 1700 degrees C Hydrogen-combustion turbines, it is important to measure gas temperature distribution at combustor outlet where local temperatures are estimated over 1800 degrees C in order to evaluate the performance of combustors. Multi point gas temperature probes consisting of Pt/Rh 40% Pt/Rh 20% thermocouples are developed to measure gas temperature distribution in the combustion tests of the Hydrogen-Oxygen combustors. Two types of probes no cooled and water-cooled, are designed and tested on the high pressure combustion tests. The test results demonstrate that the water-cooled type probes enable us to measure local gas temperatures up to 1850 degrees C in 2.5 Mpa, 130 m/s steam flow, and are applicable to the combustion tests of the combustor. (author)

  15. Endwall shape modification using vortex generators and fences to improve gas turbine cooling and effectiveness

    Science.gov (United States)

    Gokce, Zeki Ozgur

    The gas turbine is one of the most important parts of the air-breathing jet engine. Hence, improving its efficiency and rendering it operable under high temperatures are constant goals for the aerospace industry. Two types of flow within the gas turbine are of critical relevance: The flow around the first row of stator blades (also known as the nozzle guide vane blade - NGV) and the cooling flow inside the turbine blade cooling channel. The subject of this thesis work was to search for methods that could improve the characteristics of these two types of flows, thus enabling superior engine performance. The innovative aspect of our work was to apply an endwall shape modification previously employed by non-aerospace industries for cooling applications, to the gas turbine cooling flow which is vital to aerospace propulsion. Since the costs of investigating the possible benefits of any idea via extensive experiments could be quite high, we decided to use computational fluid dynamics (CFD) followed by experimentation as our methodology. We decided to analyze the potential benefits of using vortex generators (VGs) as well as the rectangular endwall fence. Since the pin-fins used in cooling flow are circular cylinders, and since the boundary layer flow is mainly characterized by the leading edge diameter of the NGV blade, we modeled both the pin-fins and the NGV blade as vertical circular cylinders. The baseline case consisted of the cylinder(s) being subjected to cross flow and a certain amount of freestream turbulence. The modifications we made on the endwall consisted of rectangular fences. In the case of the cooling flow, we used triangular shaped, common flow up oriented, delta winglet type vortex generators as well as rectangular endwall fences. The channel contained singular cylinders as well as staggered rows of multiple cylinders. For the NGV flow, a rectangular endwall fence and a singular cylinder were utilized. Using extensive CFD modeling and analysis, we

  16. Global Cooling: Effect of Urban Albedo on Global Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Menon, Surabi; Rosenfeld, Arthur

    2007-05-22

    In many urban areas, pavements and roofs constitute over 60% of urban surfaces (roof 20-25%, pavements about 40%). The roof and the pavement albedo can be increased by about 0.25 and 0.10, respectively, resulting in a net albedo increase for urban areas of about 0.1. Many studies have demonstrated building cooling-energy savings in excess of 20% upon raising roof reflectivity from an existing 10-20% to about 60%. We estimate U.S. potential savings in excess of $1 billion (B) per year in net annual energy bills. Increasing albedo of urban surfaces can reduce the summertime urban temperature and improve the urban air quality. Increasing the urban albedo has the added benefit of reflecting more of the incoming global solar radiation and countering the effect of global warming. We estimate that increasing albedo of urban areas by 0.1 results in an increase of 3 x 10{sup -4} in Earth albedo. Using a simple global model, the change in air temperature in lowest 1.8 km of the atmosphere is estimated at 0.01K. Modelers predict a warming of about 3K in the next 60 years (0.05K/year). Change of 0.1 in urban albedo will result in 0.01K global cooling, a delay of {approx}0.2 years in global warming. This 0.2 years delay in global warming is equivalent to 10 Gt reduction in CO2 emissions.

  17. Stagnation region gas film cooling: Spanwise angled injection from multiple rows of holes. [gas turbine engines

    Science.gov (United States)

    Luckey, D. W.; Lecuyer, M. R.

    1981-01-01

    The stagnation region of a cylinder in a cross flow was used in experiments conducted with both a single row and multiple rows of spanwise angled (25 deg) coolant holes for a range of the coolant blowing ratio with a freestream to wall temperature ratio approximately equal to 1.7 and R(eD) = 90,000. Data from local heat flux measurements are presented for injection from a single row located at 5 deg, 22.9 deg, 40.8 deg, 58.7 deg from stagnation using a hole spacing ratio of S/d(o) = 5 and 10. Three multiple row configurations were also investigated. Data are presented for a uniform blowing distribution and for a nonuniform blowing distribution simulating a plenum supply. The data for local Stanton Number reduction demonstrated a lack of lateral spreading by the coolant jets. Heat flux levels larger than those without film cooling were observed directly behind the coolant holes as the blowing ratio exceeded a particular value. The data were spanwise averaged to illustrate the influence of injection location, blowing ratio and hole spacing. The large values of blowing ratio for the blowing distribution simulating a plenum supply resulted in heat flux levels behind the holes in excess of the values without film cooling. An increase in freestream turbulence intensity from 4.4 to 9.5 percent had a negligible effect on the film cooling performance.

  18. Cooling system having reduced mass pin fins for components in a gas turbine engine

    Science.gov (United States)

    Lee, Ching-Pang; Jiang, Nan; Marra, John J

    2014-03-11

    A cooling system having one or more pin fins with reduced mass for a gas turbine engine is disclosed. The cooling system may include one or more first surfaces defining at least a portion of the cooling system. The pin fin may extend from the surface defining the cooling system and may have a noncircular cross-section taken generally parallel to the surface and at least part of an outer surface of the cross-section forms at least a quartercircle. A downstream side of the pin fin may have a cavity to reduce mass, thereby creating a more efficient turbine airfoil.

  19. Hot gas path component cooling system having a particle collection chamber

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Carlos Miguel; Lacy, Benjamin Paul

    2018-02-20

    A cooling system for a hot gas path component includes a substrate having an outer surface and an inner surface. The inner surface defines at least one interior space. A passage is formed in the substrate between the outer surface and the inner surface. An access passage is formed in the substrate and extends from the outer surface to the inner space. The access passage is formed at a first acute angle to the passage and includes a particle collection chamber. The access passage is configured to channel a cooling fluid to the passage. Furthermore, the passage is configured to channel the cooling fluid therethrough to cool the substrate.

  20. Gas-cooled thorium reactor with fuel block of the unified design

    Directory of Open Access Journals (Sweden)

    I.V. Shamanin

    2015-11-01

    Analysis of information materials pertaining to the use of thorium as fuel element in rector facilities of the new generation and of its future potential was performed in the present study. Results of the first phase of neutronics studies of 3D model of high-temperatures gas-cooled reactor facility on the basis of unified design of the fuel block are presented. Calculation 3D model was developed using the software code of the MCU-5 series. Several optimal configurations of the reactor core were selected according to the results of comparison of neutronics characteristics of the examined options for the purpose of development of small-size modular nuclear power installations with power up to 60MW. Results of calculations of reactivity margin of the reactor, neutron flux distribution and power density profiles are presented for the selected options of reactor core configuration.

  1. Quantitative shearography in axisymmetric gas temperature measurements

    Science.gov (United States)

    VanDerWege, Brad A.; O'Brien, Christopher J.; Hochgreb, Simone

    1999-06-01

    This paper describes the use of shearing interferometry (shearography) for the quantitative measurement of gas temperatures in axisymmetric systems in which vibration and shock are substantial, and measurement time is limited. The setup and principle of operation of the interferometer are described, as well as Fourier-transform-based fringe pattern analysis, Abel transform, and sensitivity of the phase lead to temperature calculation. A helium jet and a Bunsen burner flame are shown as verification of the diagnostic. The accuracy of the measured temperature profile is shown to be limited by the Abel transform and is critically dependent on the reference temperature used.

  2. Contributions to the neutronic analysis of a gas-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Martin-del-Campo, Cecilia, E-mail: cecilia.martin.del.campo@gmail.com [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532. Jiutepec, Morelos (Mexico); Reyes-Ramirez, Ricardo, E-mail: ricarera@yahoo.com.mx [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532. Jiutepec, Morelos (Mexico); Francois, Juan-Luis, E-mail: juan.luis.francois@gmail.com [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532. Jiutepec, Morelos (Mexico); Reinking-Cejudo, Arturo G., E-mail: reinking@servidor.unam.mx [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532. Jiutepec, Morelos (Mexico)

    2011-06-15

    Highlights: > Differences on reactivity with MCNPX and TRIPOLI-4 are negligible. > Fuel lattice and core criticality calculations were done. > A higher Doppler coefficient than coolant density coefficient. > Zirconium carbide is a better reflector than silicon carbide. > Adequate active height, radial size and reflector thickness were obtained. - Abstract: In this work the Monte Carlo codes MCNPX and TRIPOLI-4 were used to perform the criticality calculations of the fuel assembly and the core configuration of a gas-cooled fast reactor (GFR) concept, currently in development. The objective is to make contributions to the neutronic analysis of a gas-cooled fast reactor. In this study the fuel assembly is based on a hexagonal lattice of fuel-pins. The materials used are uranium and plutonium carbide as fuel, silicon carbide as cladding, and helium gas as coolant. Criticality calculations were done for a fuel assembly where the axial reflector thickness was varied in order to find the optimal thickness. In order to determine the best material to be used as a reflector, in the reactor core with neutrons of high energy spectrum, criticality calculations were done for three reflector materials: zirconium carbide, silicon carbide and natural uranium. It was found that the zirconium carbide provides the best neutron reflection. Criticality calculations using different active heights were done to determine the optimal height, and the reflector thickness was adjusted. Core criticality calculations were performed with different radius sizes to determine the active radial dimension of the core. A negative temperature coefficient of reactivity was verified for the fuel. The effect on reactivity produced by changes in the coolant density was also evaluated. We present the main neutronic characteristics of a preliminary fuel and core designs for the GFR concept. ENDF-VI cross-sections libraries were used in both the MCNPX and TRIPOLI-4 codes, and we verified that the obtained

  3. The performance of a temperature cascaded cogeneration system producing steam, cooling and dehumidification

    KAUST Repository

    Myat, Aung

    2013-02-01

    This paper discusses the performance of a temperature-cascaded cogeneration plant (TCCP), equipped with an efficient waste heat recovery system. The TCCP, also called a cogeneration system, produces four types of useful energy-namely, (i) electricity, (ii) steam, (iii) cooling and (iv) dehumidification-by utilizing single fuel source. The TCCP comprises a Capstone C-30 micro-turbine that generates nominal capacity of 26 kW of electricity, a compact and efficient waste heat recovery system and a host of waste-heat-activated devices, namely (i) a steam generator, (ii) an absorption chiller, (iii) an adsorption chiller and (iv) a multi-bed desiccant dehumidifier. The performance analysis was conducted under different operation conditions such as different exhaust gas temperatures. It was observed that energy utilization factor could be as high as 70% while fuel energy saving ratio was found to be 28%. © 2013 Desalination Publications.

  4. Study on disposal method of graphite blocks and storage of spent fuel for modular gas-cooled reactor. Joint research

    Energy Technology Data Exchange (ETDEWEB)

    Sumita, Junya; Sawa, Kazuhiro; Kunitomi, Kazuhiko [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Tsuchie, Yasuo; Urakami, Masao [Japan Atomic Power Co., Tokyo (Japan)

    2003-02-01

    This report describes the result of study on disposal method of graphite blocks in future block-type reactor. Present study was carried out within a framework of joint research, ''Research of Modular High Temperature Gas-cooled Reactors (No. 3)'', between Japan Atomic Energy Research Institute (JAERI) and the Japan Atomic Power Company (JAPCO), in 2000. In this study, activities in fuel and reflector graphite blocks were evaluated and were compared with the disposal limits defined as low-level of radioactive waste. As a result, it was found that the activity for only C-14 was higher than disposal limits for the low-level of radioactive waste and that the amount of air in the graphite is important to evaluate precisely of C-14 activity. In addition, spent fuels can be stored in air-cooled condition at least after two years cooling in the storage pool. (author)

  5. Startup analysis for a high temperature gas loaded heat pipe

    Science.gov (United States)

    Sockol, P. M.

    1973-01-01

    A model for the rapid startup of a high-temperature gas-loaded heat pipe is presented. A two-dimensional diffusion analysis is used to determine the rate of energy transport by the vapor between the hot and cold zones of the pipe. The vapor transport rate is then incorporated in a simple thermal model of the startup of a radiation-cooled heat pipe. Numerical results for an argon-lithium system show that radial diffusion to the cold wall can produce large vapor flow rates during a rapid startup. The results also show that startup is not initiated until the vapor pressure p sub v in the hot zone reaches a precise value proportional to the initial gas pressure p sub i. Through proper choice of p sub i, startup can be delayed until p sub v is large enough to support a heat-transfer rate sufficient to overcome a thermal load on the heat pipe.

  6. Development of cooling and cleaning systems for enhanced gas ...

    African Journals Online (AJOL)

    In order to address these tar related problems a cleaning and cooling system has been developed in house that facilitates tar removal to acceptable levels tolerated by the internal combustion (IC) engine and meets emission standards as well. The main objective of the present work is to reduce tar level and develop control ...

  7. Environmental Profiles of Stirling-Cooled and Cascade-Cooled Ultra-Low Temperature Freezers

    Directory of Open Access Journals (Sweden)

    Yongrak Kwon

    2012-10-01

    Full Text Available The environmental footprint of ultra-low temperature (ULT freezers as used in bio-repositories, universities and other research organizations is investigated. These freezers, employing the cascade refrigeration system, use between 10 and 20 times the energy of an average household refrigerator/freezer. In addition, they often require high greenhouse gas potential (GWP refrigerants. A new technology employing the Stirling cycle machine promises to reduce energy consumption of ULT freezers by 50% or more. The cascade and Stirling systems are compared for equivalent sized freezers in terms of embodied energy and equivalent CO2 production from cradle to gate and use, including total equivalent warming impact (TEWI estimations. End-of-life issues are discussed but not quantified. It is shown that Stirling technology is able to significantly reduce the environmental impact of ULT freezers.

  8. Current design efforts for the gas-cooled fast reactor (GFR)

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, K.D. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415-3850 (United States)]. e-mail: Kevan.Weaver@inl.gov

    2005-07-01

    Current research and development on the Gas-Cooled Fast Reactor (GCFR) has focused on the design of safety systems that will remove the decay heat during accident conditions, ion irradiations of candidate ceramic materials, joining studies of oxide dispersion strengthened alloys; and within the Advanced Fuel Cycle Initiative (AFC I) the fabrication of carbide fuels and ceramic fuel matrix materials, development of non-halide precursor low density and high density ceramic coatings, and neutron irradiation of candidate ceramic fuel matrix and metallic materials. The vast majority of this work has focused on the reference design for the GCFR: a helium-cooled, direct Brayton cycle power conversion system that will operate with an outlet temperature of 850 C at 7 MPa. In addition to the work being performed in the United States, seven international partners under the Generation IV International Forum (GIF) have identified their interest in participating in research related to the development of the GCFR. These are EURATOM (European Commission), France, Japan, South Africa, South Korea, Switzerland, and the United Kingdom. Of these, EURATOM (including the United Kingdom), France, Japan, and Switzerland have active research activities with respect to the GCFR. The research includes GCFR design and safety, and fuels/in-core materials/fuel cycle projects. This paper outlines the current design status of the GCFR, and includes work done in the areas mentioned above. (Author)

  9. Hot gas path component having near wall cooling features

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Carlos Miguel; Kottilingam, Srikanth Chandrudu; Lacy, Benjamin Paul

    2017-11-28

    A method for providing micro-channels in a hot gas path component includes forming a first micro-channel in an exterior surface of a substrate of the hot gas path component. A second micro-channel is formed in the exterior surface of the hot gas path component such that it is separated from the first micro-channel by a surface gap having a first width. The method also includes disposing a braze sheet onto the exterior surface of the hot gas path component such that the braze sheet covers at least of portion of the first and second micro-channels, and heating the braze sheet to bond it to at least a portion of the exterior surface of the hot gas path component.

  10. Corrosion of Alloy 617 in high-temperature gas environments

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Tsung-Kuang [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 300, Taiwan (China); Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan (China); Chang, Hao-Ping [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 300, Taiwan (China); Wang, Mei-Ya, E-mail: meywang@mx.nthu.edu.tw [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 300, Taiwan (China); Yuan, Trai [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 300, Taiwan (China); Kai, Ji-Jung [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 300, Taiwan (China); Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan (China)

    2014-05-01

    High-temperature gas-cooled reactors (HTGRs) with helium gas as the primary coolant have been considered as one type of the Generation IV nuclear power reactor systems. Several nickel-based superalloys, including Alloy 617, are potential structural materials to serve as pressure boundary components, such as the intermediate heat exchanger (IHX) in an HTGR. Impurities in a helium coolant, such as H{sub 2}O and O{sub 2}, can interact with structural materials at working temperatures of >900 °C, leading to serious degradation on these materials. In addition, defects in IHX surface coatings would allow these species to reach and interact with the external surfaces of these components, leading to similar or even more serious degradation. In this study we investigated the oxidation behavior of Alloy 617 in high-temperature, gaseous environments with various levels of O{sub 2} and H{sub 2}O. A series of general corrosion tests were conducted at test temperatures of 650 °C, 750 °C, 850 °C and 950 °C under various coolant compositions of dry air, 1% O{sub 2}, 10% relative humidity (RH), and 50% RH. Preliminary results showed that the surface morphologies of the Alloy 617 samples exhibited distinct evidence of intergranular corrosion. Compact chromium oxide layers were observed on the sample surfaces. The oxidation mechanisms of this alloy in the designated environments are discussed.

  11. Enhancing the radiative heat dissipation from high-temperature SF6 gas plasma by using selective absorbers

    Science.gov (United States)

    Tsuda, Shinichiro; Horinouchi, Katsuhiko; Yugami, Hiroo

    2017-09-01

    Radiative cooling accomplished by tailoring the properties of spectral thermal emission is an interesting method for energy harvesting and high-efficiency passive cooling of terrestrial structures. This strategy, however, has not been extended to cool enclosed heat sources, common in engineering applications, and heat sources in high-temperature environments where radiative transfer plays a dominant role. Here we show a radiative cooling scheme for a high-temperature gaseous medium, using radiative heat extraction with selective absorbers matched to the gas-selective emission properties. We used SF6 gas plasma as a model, because this gas is used in gas circuit breakers, which require effective cooling of the hot insulating gas. Our theoretical analysis confirms that a copper photonic absorber, matched to the ultraviolet-to-near-infrared-selective emission properties of the gas, effectively extracts heat from the high-temperature gas plasma and lowers the radiative equilibrium gas temperature by up to 1270 K, exceeding both blackbody-like and metallic surfaces in practical operating conditions.

  12. A review of gas-cooled reactor concepts for SDI (Strategic Defense Initiative) applications

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, A.C.

    1989-08-01

    We have completed a review of multimegawatt gas-cooled reactor concepts proposed for SDI applications. Our study concluded that the principal reason for considering gas-cooled reactors for burst-mode operation was the potential for significant system mass savings over closed-cycle systems if open-cycle gas-cooled operation (effluent exhausted to space) is acceptable. The principal reason for considering gas-cooled reactors for steady-state operation is that they may represent a lower technology risk than other approaches. In the review, nine gas-cooled reactor concepts were compared to identify the most promising. For burst-mode operation, the NERVA (Nuclear Engine for Rocket Vehicle Application) derivative reactor concept emerged as a strong first choice since its performance exceeds the anticipated operational requirements and the technology has been demonstrated and is retrievable. Although the NERVA derivative concepts were determined to be the lead candidates for the Multimegawatt Steady-State (MMWSS) mode as well, their lead over the other candidates is not as great as for the burst mode. 90 refs., 2 figs., 10 tabs.

  13. Enhancing efficiency and power output of gas turbines using either renewable energy or heat recovery cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Nasser, A.E.M. [Higher Technological Inst., Tenth of Ramadan (Egypt). Dept. of Mechanical Engineering

    2006-07-01

    An absorption system to cool intake air to the compressor of an air conditioning system was presented. The system used both solar energy and the waste heat of the exhaust gases to obtain higher temperatures during the summer months. The lithium bromide-water absorption system increased power output by more than 20 per cent during the summer months without consuming more fuel. The system was designed to conserve energy and output power in gas turbine power stations. The system operated by using hot effluent gases leaving the turbine and entered the flue stacks, where heat exchangers recovered the heat energy. Excess electricity produced by the turbine was then used to cool the ambient air before it entered the compressor. Studies have confirmed that the system is financially viable and suited for use in Arabian Gulf countries where temperatures regularly exceed 40 degrees C. 6 refs., 6 figs.

  14. Use of Distribution Devices for Hydraulic Profiling of Coolant Flow in Core Gas-cooled Reactors

    Directory of Open Access Journals (Sweden)

    A. A. Satin

    2014-01-01

    Full Text Available In setting up a reactor plant for the transportation-power module of the megawatt class an important task is to optimize the path of flow, i.e. providing moderate hydraulic resistance, uniform distribution of the coolant. Significant contribution to the hydraulic losses makes one selected design of the coolant supplies. It is, in particular, hemispherical or semi-elliptical shape of the supply reservoir, which is selected to reduce its mass, resulting in the formation of torusshaped vortex in the inlet manifold, that leads to uneven coolant velocity at the inlet into the core, the flow pulsations, hydraulic losses.To control the flow redistribution in the core according to the level of energy are used the switchgear - deflectors installed in a hemispherical reservoir supplying coolant to the fuel elements (FE of the core of gas-cooled reactor. This design solution has an effect on the structure of the flow, rate in the cooling duct, and the flow resistance of the collector.In this paper we present the results of experiments carried out on the gas dynamic model of coolant paths, deflectors, and core, comprising 55 fuel rod simulators. Numerical simulation of flow in two-parameter model, using the k-ε turbulence model, and the software package ANSYS CFX v14.0 is performed. The paper demonstrates that experimental results are in compliance with calculated ones.The results obtained suggest that the use of switchgear ensures a coolant flow balance directly at the core inlet, thereby providing temperature reduction of fuel rods with a uniform power release in the cross-section. Considered options to find constructive solutions for deflectors give an idea to solve the problem of reducing hydraulic losses in the coolant paths, to decrease pulsation components of flow in the core and length of initial section of flow stabilization.

  15. Hypothalamic, rectal, and muscle temperatures in exercising dogs - Effect of cooling

    Science.gov (United States)

    Kruk, B.; Kaciuba-Uscilko, H.; Nazar, K.; Greenleaf, J. E.; Kozlowski, S.

    1985-01-01

    An experimental investigation of the mechanisms of performance prolongation during exercise is presented. Measurements were obtained of the rectal, muscle, and hypothalamic temperature of dogs during treadmill exercise at an ambient temperature of 22 + or - 1 C, with and without cooling by use of ice packs. In comparison with exercise without cooling, exercise with cooling was found to: (1) increase exercise duration from 90 + or - 14 to 145 + or - 15 min; (2) attenuate increases in hypothalamic, rectal and muscle temperature; (3) decrease respiratory and heart rates; and (4) lower blood lactic acid content. It is shown that although significant differences were found between the brain, core, and muscle temperatures during exercise with and without cooling, an inverse relation was observed between muscle temperature and the total duration of exercise. It is suggested that sustained muscle hyperthermia may have contributed to the limitation of working ability in exercise with and without cooling.

  16. Migration of radionuclides in a gas cooled solid state spallation target

    Energy Technology Data Exchange (ETDEWEB)

    Jørgensen, Thomas; Severin, Gregory; Jensen, Mikael, E-mail: kmje@dtu.dk

    2015-02-15

    Highlights: • We have investigated diffusion of (primarily) tritium in solid tungsten. • We have used an analytical and a numerical approach. • The temperature of tungsten changes with a short-term pulse driven proton beam. • The time structure of the temperature has a negligible impact on the diffusion. • Radioactive release at the surface can be found by solving the differential equation. - Abstract: The current design of the ESS (European Spallation Source) program proposes a rotating solid tungsten target cooled by helium gas and a pulsed beam of protons. For safety reasons any design has to address whether or not the induced radionuclidic isotopes in the target migrate. In this paper we have investigated the diffusion of (primarily) tritium in solid tungsten to see if a pulse driven short-term variation in temperature (temperature peaks separated by one turn of the wheel (2.36 s)) could possibly give rise to wave-like migration of the radionuclides, possibly accelerating the overall release. In order to calculate the diffusion in the solid tungsten target two approaches have been used. One neglecting the time structure of the beam and thermal cycling of the target, and one numerical, discrete time step simulation to capture the effects of the thermal cycling on the diffusion behavior. We found that the time structure of the of the temperature has a negligible impact on the diffusion, and that the radioactive release at the surface can be calculated safely by solving the differential equation (Fick's law) using an appropriate temperature to calculate the diffusion constant.

  17. Low-temperature gas from marine shales: wet gas to dry gas over experimental time.

    Science.gov (United States)

    Mango, Frank D; Jarvie, Daniel M

    2009-11-09

    Marine shales exhibit unusual behavior at low temperatures under anoxic gas flow. They generate catalytic gas 300 degrees below thermal cracking temperatures, discontinuously in aperiodic episodes, and lose these properties on exposure to trace amounts of oxygen. Here we report a surprising reversal in hydrocarbon generation. Heavy hydrocarbons are formed before light hydrocarbons resulting in wet gas at the onset of generation grading to dryer gas over time. The effect is moderate under gas flow and substantial in closed reactions. In sequential closed reactions at 100 degrees C, gas from a Cretaceous Mowry shale progresses from predominately heavy hydrocarbons (66% C5, 2% C1) to predominantly light hydrocarbons (56% C1, 8% C5), the opposite of that expected from desorption of preexisting hydrocarbons. Differences in catalyst substrate composition explain these dynamics. Gas flow should carry heavier hydrocarbons to catalytic sites, in contrast to static conditions where catalytic sites are limited to in-place hydrocarbons. In-place hydrocarbons and their products should become lighter with conversion thus generating lighter hydrocarbon over time, consistent with our experimental results. We recognize the similarities between low-temperature gas generation reported here and the natural progression of wet gas to dry gas over geologic time. There is now substantial evidence for natural catalytic activity in source rocks. Natural gas at thermodynamic equilibrium and the results reported here add to that evidence. Natural catalysis provides a plausible and unique explanation for the origin and evolution of gas in sedimentary basins.

  18. Low-temperature gas from marine shales: wet gas to dry gas over experimental time

    Directory of Open Access Journals (Sweden)

    Jarvie Daniel M

    2009-11-01

    Full Text Available Abstract Marine shales exhibit unusual behavior at low temperatures under anoxic gas flow. They generate catalytic gas 300° below thermal cracking temperatures, discontinuously in aperiodic episodes, and lose these properties on exposure to trace amounts of oxygen. Here we report a surprising reversal in hydrocarbon generation. Heavy hydrocarbons are formed before light hydrocarbons resulting in wet gas at the onset of generation grading to dryer gas over time. The effect is moderate under gas flow and substantial in closed reactions. In sequential closed reactions at 100°C, gas from a Cretaceous Mowry shale progresses from predominately heavy hydrocarbons (66% C5, 2% C1 to predominantly light hydrocarbons (56% C1, 8% C5, the opposite of that expected from desorption of preexisting hydrocarbons. Differences in catalyst substrate composition explain these dynamics. Gas flow should carry heavier hydrocarbons to catalytic sites, in contrast to static conditions where catalytic sites are limited to in-place hydrocarbons. In-place hydrocarbons and their products should become lighter with conversion thus generating lighter hydrocarbon over time, consistent with our experimental results. We recognize the similarities between low-temperature gas generation reported here and the natural progression of wet gas to dry gas over geologic time. There is now substantial evidence for natural catalytic activity in source rocks. Natural gas at thermodynamic equilibrium and the results reported here add to that evidence. Natural catalysis provides a plausible and unique explanation for the origin and evolution of gas in sedimentary basins.

  19. Operating limitations due to low gas temperature

    Energy Technology Data Exchange (ETDEWEB)

    Bruschi, R.; Ghiselli, W.; Spinazze, M.

    1995-12-31

    A number of projects concerning continental links for the transport of treated natural gas over long distance, both on and offshore, have been implemented during the last few years or are currently being implemented. The long trunklines in North America and subsea trunklines planned or already in operation in the North Sea, are outstanding examples of such long distance transmission of gas in large diameter pipelines operated at high pressure. The development of such network has paid special attention to the effects that low temperature resulting from the transportation process may imply in terms of pipe structural integrity and environmental impact. Scope of this paper is to discuss operating limitations due to low gas temperature. New project scenarios are presented in a brief introduction. The fluido-thermo-dynamic background for the development of low temperatures are outlined. Finally some topics relevant to structural integrity are discussed in particular such as the pipe steel behaviour at low temperature, the prediction techniques of the ice bulb growth around the pipe, the interactions of the cold line with the soil and the consequences due to the differential compliancy of the pipeline towards points of fixity (in-line valves/tees or fixed plants). 30 refs., 22 figs., 1 tab.

  20. Parametric Simulation on Enhancement of the Regenerative Gas Turbine Performance by Effect of Inlet Air Cooling System and Steam Injection

    Directory of Open Access Journals (Sweden)

    Aadel A. Alkumait

    2016-02-01

    Full Text Available Aadel Abdulrazzaq Alkumait/Tikrit Journal of Engineering Sciences 22(1 (201538-44Iraq being one of the developing countries of the world considers energy efficiency and the impact of its generation on the environment an imperative process in improvement of its power generation policies. Iraq bearing high temperatures all year long results in reduction of air density, therefore, Inlet air Cooling and Steam Injection Gas Turbines are a striking addition to the regenerative gas turbines. Regenerating Gas turbines tend to have a high back work ratio and a high exhaust temperature, thus, it leads to a low efficiency in power generation in hotter climate. Moreover, STIG and IAC through fog cooling have known to be the best retrofitting methods available in the industry which improve the efficiency of generation from 30.5 to 43% and increase the power output from 22MW to 33.5MW as the outcomes of computer simulations reveal. Additionally, this happens without bringing about much extensive change to original features of the power generation cycle. Furthermore, STIG and spray coolers have also resulted in power boosting and exceeding generation efficiency of gas turbine power plant.

  1. Thermochemical Analysis of Gas-Cooled Reactor Fuels Containing Am and Pu Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Lindemer, T.B.

    2002-09-05

    Literature values and estimated data for the thermodynamics of the actinide oxides and fission products are applied to explain the chemical behavior in gas-cooled-reactor fuels. Emphasis is placed on the Am-O-C and Pu-O-C systems and the data are used to plot the oxygen chemical potential versus temperature of solid-solid and solid-gas equilibria. These results help explain observations of vaporization in Am oxides, nitrides, and carbides and provide guidance for the ceramic processing of the fuels. The thermodynamic analysis is then extended to the fission product systems and the Si-C-O system. Existing data on oxygen release (primarily as CO) as a function of burnup in the thoria-urania fuel system is reviewed and compared to values calculated from thermodynamic data. The calculations of oxygen release are then extended to the plutonia and americia fuels. Use of ZrC not only as a particle coating that may be more resistant to corrosion by Pd and other noble-metal fission products, but also as a means to getter oxygen released by fission is discussed.

  2. Variable temperature system using vortex tube cooling and fiber optic temperature measurement for low temperature magic angle spinning NMR

    Science.gov (United States)

    Martin, Rachel W.; Zilm, Kurt W.

    2004-06-01

    We describe the construction and operation of a variable temperature (VT) system for a high field fast magic angle spinning (MAS) probe. The probe is used in NMR investigations of biological macromolecules, where stable setting and continuous measurement of the temperature over periods of several days are required in order to prevent sample overheating and degradation. The VT system described is used at and below room temperature. A vortex tube is used to provide cooling in the temperature range of -20 to 20 °C, while a liquid nitrogen-cooled heat exchanger is used below -20 °C. Using this arrangement, the lowest temperature that is practically achievable is -140 °C. Measurement of the air temperature near the spinning rotor is accomplished using a fiber optic thermometer that utilizes the temperature dependence of the absorption edge of GaAs. The absorption edge of GaAs also has a magnetic field dependence that we have measured and corrected for. This dependence was calibrated at several field strengths using the well-known temperature dependence of the 1H chemical shift difference of the protons in methanol.

  3. Hybrid Cooling Systems for Low-Temperature Geothermal Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Ashwood, A.; Bharathan, D.

    2011-03-01

    This paper describes the identification and evaluation of methods by which the net power output of an air-cooled geothermal power plant can be enhanced during hot ambient conditions with a minimal amount of water use.

  4. Low temperature liquefied gas storage tank

    Energy Technology Data Exchange (ETDEWEB)

    Noma, T.; Hayakawa, K.; Nagao, O.; Okano, I.; Teramoto, R.; Kurihara, T.; Kakano, K.; Okamoto, T.

    1974-07-30

    The inner wall of Hitachi's improved liquefied gas storage tank is made up of multi-layer panels, each panel made liquid-tight by bonding a low-temperature-resistant metal sheet (such as aluminum or stainless steel or a synthetic resin film) to both sides of a plywood core consisting of numerous veneers. These veneers are then bonded to the liquid-tight membranes to serve as heat-shock-absorbing layers.

  5. The effectiveness of cooling conditions on temperature of canine EDTA whole blood samples

    Directory of Open Access Journals (Sweden)

    Karen M. Tobias

    2016-11-01

    Full Text Available Background Preanalytic factors such as time and temperature can have significant effects on laboratory test results. For example, ammonium concentration will increase 31% in blood samples stored at room temperature for 30 min before centrifugation. To reduce preanalytic error, blood samples may be placed in precooled tubes and chilled on ice or in ice water baths; however, the effectiveness of these modalities in cooling blood samples has not been formally evaluated. The purpose of this study was to evaluate the effectiveness of various cooling modalities on reducing temperature of EDTA whole blood samples. Methods Pooled samples of canine EDTA whole blood were divided into two aliquots. Saline was added to one aliquot to produce a packed cell volume (PCV of 40% and to the second aliquot to produce a PCV of 20% (simulated anemia. Thirty samples from each aliquot were warmed to 37.7 °C and cooled in 2 ml allotments under one of three conditions: in ice, in ice after transfer to a precooled tube, or in an ice water bath. Temperature of each sample was recorded at one minute intervals for 15 min. Results Within treatment conditions, sample PCV had no significant effect on cooling. Cooling in ice water was significantly faster than cooling in ice only or transferring the sample to a precooled tube and cooling it on ice. Mean temperature of samples cooled in ice water was significantly lower at 15 min than mean temperatures of those cooled in ice, whether or not the tube was precooled. By 4 min, samples cooled in an ice water bath had reached mean temperatures less than 4 °C (refrigeration temperature, while samples cooled in other conditions remained above 4.0 °C for at least 11 min. For samples with a PCV of 40%, precooling the tube had no significant effect on rate of cooling on ice. For samples with a PCV of 20%, transfer to a precooled tube resulted in a significantly faster rate of cooling than direct placement of the warmed tube onto ice

  6. Temperature Mapping of Air Film-Cooled Thermal Barrier Coated Surfaces Using Phosphor Thermometry

    Science.gov (United States)

    Eldridge, Jeffrey I.

    2016-01-01

    While the effects of thermal barrier coating (TBC) thermal protection and air film cooling effectiveness for jet engine components are usually studied separately, their contributions to combined cooling effectiveness are interdependent and are not simply additive. Therefore, combined cooling effectiveness must be measured to achieve an optimum balance between TBC thermal protection and air film cooling. Phosphor thermometry offers several advantages for mapping temperatures of air film cooled surfaces. While infrared thermography has been typically applied to study air film cooling effectiveness, temperature accuracy depends on knowing surface emissivity (which may change) and correcting for effects of reflected radiation. Because decay time-based full-field phosphor thermometry is relatively immune to these effects, it can be applied advantageously to temperature mapping of air film-cooled TBC-coated surfaces. In this presentation, an overview will be given of efforts at NASA Glenn Research Center to perform temperature mapping of air film-cooled TBC-coated surfaces in a burner rig test environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and the strengths and limitations of this method for studying air film cooling effectiveness are discussed.

  7. Gas-cooled reactor commercialization study: introduction scenario and commercialization analyses for process heat applications. Final report, July 8, 1977--November 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    This report identifies and presents an introduction scenario which can lead to the operation of High Temperature Gas Cooled Reactor demonstration plants for combined process heat and electric power generation applications, and presents a commercialization analysis relevant to the organizational and management plans which could implement a development program.

  8. The response of human thermal sensation and its prediction to temperature step-change (cool-neutral-cool.

    Directory of Open Access Journals (Sweden)

    Xiuyuan Du

    Full Text Available This paper reports on studies of the effect of temperature step-change (between a cool and a neutral environment on human thermal sensation and skin temperature. Experiments with three temperature conditions were carried out in a climate chamber during the period in winter. Twelve subjects participated in the experiments simulating moving inside and outside of rooms or cabins with air conditioning. Skin temperatures and thermal sensation were recorded. Results showed overshoot and asymmetry of TSV due to the step-change. Skin temperature changed immediately when subjects entered a new environment. When moving into a neutral environment from cool, dynamic thermal sensation was in the thermal comfort zone and overshoot was not obvious. Air-conditioning in a transitional area should be considered to limit temperature difference to not more than 5°C to decrease the unacceptability of temperature step-change. The linear relationship between thermal sensation and skin temperature or gradient of skin temperature does not apply in a step-change environment. There is a significant linear correlation between TSV and Qloss in the transient environment. Heat loss from the human skin surface can be used to predict dynamic thermal sensation instead of the heat transfer of the whole human body.

  9. A Preliminary Investigation of Exhaust-Gas Ejectors for Ground Cooling

    Science.gov (United States)

    1942-07-01

    a t insreasing length- diameter rat i o owing t o the di.:nfnieli:ng iniprovement i n energy t ransfer w i t 3 increacinz mixiEg l€iIc-th and...increaee i n horsopcwer results Prom the g rea t e r energy contalned i n the exhaust gas a t the higher powers; whereas, the increase of pressure...of the energy of the exhaust gas t o the cooling sir. drops are insuf f ic ien t f o r s a t i s f ac to ry cooling. a r e obtained f o r the

  10. Development of cooling and cleaning systems for enhanced gas ...

    African Journals Online (AJOL)

    DR OKE

    Energy from biomass based gasifier-engine integrated systems are becoming more popular for power generation applications in rural and urban driven societies. The quality of producer gas from the down draft gasifiers plays a significant role in power generation aspects. During gasification, tar is produced and its ...

  11. Implementation of gas district cooling and cogeneration systems in Malaysia; Mise en oeuvre de systemes de gas district cooling et de cogeneration en Malaisie

    Energy Technology Data Exchange (ETDEWEB)

    Haron, S. [Gas District Cooling, M, Sdn Bhd (Malaysia)

    2000-07-01

    With its energy demand in the early 1990's growing at a high rate due to the country's strong economic growth, Malaysia studied various options to improve the efficiency of its energy use. Since its natural gas reserves are almost four times that of its crude oil reserves, efforts were therefore centered on seeking ways to boost the use of natural gas to mitigate the growing domestic energy need. PETRONAS, the national oil company, subsequently studied and chose the District Cooling System using natural gas as the primary source of fuel. The Kuala Lumpur City Center development, which houses the PETRONAS Twin Towers, was subsequently chosen as the first project to use the Gas District Cooling (GDC) System. To acquire the technology and implement this project, PETRONAS created a new subsidiary, Gas District Cooling (Malaysia) Sendirian Berhad (GDC(M)). In the process of improving the plant's efficiency, GDC(M) discovered that the GDC system's efficiency and project economics would be significantly enhanced if its is coupled to a Cogeneration system. Having proven the success of the GDC/Cogeneration system, GDC(M) embarked on a campaign to aggressively promote and seek new opportunities to implement the system, both in Malaysia-and abroad. Apart from enhancing efficiency of energy use, and providing better project economics, the GDC/Cogeneration system also is environment friendly. Today, the GDC/Cogeneration systems is the system of choice for several important developments in Malaysia, which also includes the country's prestigious projects such as the Kuala Lumpur International Airport and the New Federal Government Administrative Center in Putrajaya. (author)

  12. Gas Cooled Fast Reactor Research and Development in the European Union

    Directory of Open Access Journals (Sweden)

    Richard Stainsby

    2009-01-01

    Full Text Available Gas-cooled fast reactor (GFR research is directed towards fulfilling the ambitious goals of Generation IV (Gen IV, that is, to develop a safe, sustainable, reliable, proliferation-resistant and economic nuclear energy system. The research is directed towards developing the GFR as an economic electricity generator, with good safety and sustainability characteristics. Fast reactors maximise the usefulness of uranium resources by breeding plutonium and can contribute to minimising both the quantity and radiotoxicity nuclear waste by actinide transmutation in a closed fuel cycle. Transmutation is particularly effective in the GFR core owing to its inherently hard neutron spectrum. Further, GFR is suitable for hydrogen production and process heat applications through its high core outlet temperature. As such GFR can inherit the non-electricity applications that will be developed for thermal high temperature reactors in a sustainable manner. The Euratom organisation provides a route by which researchers in all European states, and other non-European affiliates, can contribute to the Gen IV GFR system. This paper summarises the achievements of Euratom's research into the GFR system, starting with the 5th Framework programme (FP5 GCFR project in 2000, through FP6 (2005 to 2009 and looking ahead to the proposed activities within the 7th Framework Programme (FP7.

  13. Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, January 1, 1980-March 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-25

    Results are presented of work performed on the Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Included are the activities associated with the status of the simulated reactor helium supply system, testing equipment and gas chemistry analysis instrumentation and equipment. The progress in the screening test program is described, including screening creep results and metallographic analysis for materials thermally exposed or tested at 750, 850, and 950/sup 0/C.

  14. Advanced gas cooled nuclear reactor materials evaluation and development program. Progress report, January 1, 1979-March 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-19

    This report presents the results of work performed from January 1, 1979 through March 31, 1979 on the Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. Work covered in this report includes the activities associated with the creep-rupture testing of the test materials for the purpose of verifying the stresses selected for the screening creep test program, and the status of the simulated reactor helium supply system, testing equipment, and gas chemistry analysis instrumentation and equipment.

  15. Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, October 1, 1978--December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-03-09

    Results of work performed from October 1, 1978 through December 31, 1978 on the Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program is presented. Objectives are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys, and selection of materials for future test facilities and more extensive qualification programs. The activities associated with the characterization of the materials for the screening test program, and the status of the simulated reactor helium supply system, testing equipment, and gas chemistry analysis instrumentation and equipment are included. The status of the data management system is presented.

  16. Advanced gas cooled nuclear reactor materials evaluation and development program. Progress report, July 1--September 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-24

    Results of work performed from July 1, 1978 through September 30, 1978 on the Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program are presented. Candidate alloys were evaluated for Very High Temperature Reactor Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the affect of simulated reactor primary coolant (Helium containing small amounts of various other gases), the high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. The activities associated with the characterization of the materials for the screening test program are reported, i.e., test specimen preparation, information from the materials characterization tests performed by General Electric, and the status of the simulated reactor helium supply system, testing equipment, and gas chemistry analysis instrumentation and equipment. The status of the data management system is presented.

  17. Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, July 1, 1979-September 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-07

    The results of work performed from July 1, 1979 through September 30, 1979 on the Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program are presented. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment, and gas chemistry analysis instrumentation and equipment. The status of the data management system is presented. In addition, the progress in the screening test program is described.

  18. Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, April 1, 1979-June 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-25

    The results are presented of work performed on the Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment, and gas chemistry analysis instrumentation and equipment. The status of the data management system is presented. In addition, the progress in the screening test program is described.

  19. Assessment of the effect of nitrogen gas on passive containment cooling system performance

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Huiun; Suh, Jungsoo [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    As a part of the passive containment cooling system (PCCS) of Innovative PWR development project, we have been investigating the effect of the nitrogen gas released from safety injection tank (SIT) on PCCS performance. With the design characteristics of APR1400 and conceptual design of PCCS, we developed a GOTHIC model of the APR1400 containment with PCCS. The calculation model is described herein, and representative results from the calculation are presented as well. The results of the present work will be used for the design of PCCS. APR1400 GOTHIC model was developed for assessment on the effect of SIT nitrogen gas on passive containment cooling system performance. Calculation results confirmed that influence of nitrogen gas release is negligible; however, further studies should be performed to confirm effect of non-condensable gas on the final performance of PCCS. These insights are important for developing the PCCS of Innovative PWR.

  20. The effect of icepack cooling on skin and muscle temperature at rest ...

    African Journals Online (AJOL)

    The effect of icepack cooling on skin and muscle temperature at rest and after exercise. M Mars, B Hadebe, M Tufts. Abstract. Objective. To compare cooling of skin, subcutaneous fat and muscle, produced by an icepack, at rest and after short-duration exhaustive exercise. Methods. Eight male subjects were studied. With the ...

  1. Neutral gas depletion in low temperature plasma

    Science.gov (United States)

    Fruchtman, A.

    2017-11-01

    Neutral depletion can significantly affect the steady state of low temperature plasmas. Processes that lead to neutral depletion and the resulting plasma–neutrals steady state are reviewed. Two such processes are due to collisions of neutrals with plasma. One process is the drag by ions that collide with neutrals and push them towards the wall. Another process is neutral-gas heating by collisions with plasma that makes the gas hotter at the discharge center. These processes, which usually occur under (static) pressure balance between plasma and neutrals, are called here ‘neutral pumping’. When collisions are negligible, neutrals that move ballistically between the chamber walls are depleted through ionization, a process called here ‘ion pumping’. The effect of the magnetic field on neutral depletion is explored in plasma in which the dynamics is governed by cross-field diffusion. Finally, neutral depletion in a flowing plasma is analyzed.

  2. Concept Design for a High Temperature Helium Brayton Cycle with Interstage Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vernon, Milton E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pickard, Paul S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    The primary metric for the viability of these next generation nuclear power plants will be the cost of generated electricity. One important component in achieving these objectives is the development of power conversion technologies that maximize the electrical power output of these advanced reactors for a given thermal power. More efficient power conversion systems can directly reduce the cost of nuclear generated electricity and therefore advanced power conversion cycle research is an important area of investigation for the Generation IV Program. Brayton cycles using inert or other gas working fluids, have the potential to take advantage of the higher outlet temperature range of Generation IV systems and allow substantial increases in nuclear power conversion efficiency, and potentially reductions in power conversion system capital costs compared to the steam Rankine cycle used in current light water reactors. For the Very High Temperature Reactor (VHTR), Helium Brayton cycles which can operate in the 900 to 950 C range have been the focus of power conversion research. Previous Generation IV studies examined several options for He Brayton cycles that could increase efficiency with acceptable capital cost implications. At these high outlet temperatures, Interstage Heating and Cooling (IHC) was shown to provide significant efficiency improvement (a few to 12%) but required increased system complexity and therefore had potential for increased costs. These scoping studies identified the potential for increased efficiency, but a more detailed analysis of the turbomachinery and heat exchanger sizes and costs was needed to determine whether this approach could be cost effective. The purpose of this study is to examine the turbomachinery and heat exchanger implications of interstage heating and cooling configurations. In general, this analysis illustrates that these engineering considerations introduce new constraints to the design of IHC systems that may require

  3. Dwarf Galaxies in Voids: Dark Matter Halos and Gas Cooling

    Directory of Open Access Journals (Sweden)

    Matthias Hoeft

    2010-01-01

    Full Text Available Galaxy surveys have shown that luminous galaxies are mainly distributed in large filaments and galaxy clusters. The remaining large volumes are virtually devoid of luminous galaxies. This is in concordance with the formation of the large-scale structure in the universe as derived from cosmological simulations. However, the numerical results indicate that cosmological voids are abundantly populated with dark matter haloes which may in principle host dwarf galaxies. Observational efforts have in contrast revealed that voids are apparently devoid of dwarf galaxies. We investigate the formation of dwarf galaxies in voids by hydrodynamical cosmological simulations. Due to the cosmic ultraviolet background radiation low-mass haloes show generally a reduced baryon fraction. We determine the characteristic mass below which dwarf galaxies are baryon deficient. We show that the circular velocity below which the accretion of baryons is suppressed is approximately 40 kms−1. The suppressed baryon accretion is caused by the photo-heating due to the UV background. We set up a spherical halo model and show that the effective equation of the state of the gas in the periphery of dwarf galaxies determines the characteristic mass. This implies that any process which heats the gas around dwarf galaxies increases the characteristic mass and thus reduces the number of observable dwarf galaxies.

  4. Gas-cooled fast reactor program. Progress report, January 1, 1980-June 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.

    1981-09-01

    Since the national Gas-Cooled Fast Breeder Reactor Program has been terminated, this document is the last progress report until reinstatement. It is divided into three sections: Core Flow Test Loop, GCFR shielding and physics, and GCFR pressure vessel and closure studies. (DLC)

  5. Closed Fuel Cycle and Minor Actinide Multirecycling in a Gas-Cooled Fast Reactor

    NARCIS (Netherlands)

    Van Rooijen, W.F.G.; Kloosterman, J.L.

    2009-01-01

    The Generation IV International Forum has identified the Gas-Cooled Fast Reactor (GCFR) as one of the reactor concepts for future deployment. The GCFR targets sustainability, which is achieved by the use of a closed nuclear fuel cycle where only fission products are discharged to a repository; all

  6. Injection of Ballistic Hot Electrons and Cool Holes in a Two-Dimensional Electron Gas

    NARCIS (Netherlands)

    Williamson, J.G.; Houten, H. van; Beenakker, C.W.J.; Broekaart, M.E.I.; Spendeler, L.I.A.; Wees, B.J. van; Foxon, C.T.

    1990-01-01

    We have constructed a novel magnetic spectrometer to study the dynamics of hot electrons and cool missing electron states injected by quantum point contacts in the two-dimensional electron gas of a GaAs-AlxGa1-xAs heterostructure. The mean free path of these quasi-particles is found to be longer

  7. Engineering review of the core support structure of the Gas Cooled Fast Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-09-01

    The review of the core support structure of the gas cooled fast breeder reactor (GCFR) covered such areas as the design criteria, the design and analysis of the concepts, the development plan, and the projected manufacturing costs. Recommendations are provided to establish a basis for future work on the GCFR core support structure.

  8. In situ gas temperature measurements by UV-absorption spectroscopy

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    2009-01-01

    The absorption spectrum of the NO A(2)Sigma(+) situ evaluation of gas temperature. Experiments were performed with a newly developed atmospheric-pressure high-temperature flow gas cell at highly uniform and stable gas temperatures over a 0.533 m path...

  9. FUSE Observations of Warm Gas in the Cooling Flow Clusters A1795 and A2597

    Science.gov (United States)

    Oegerle, W. R.; Cowie, L.; Davidsen, A.; Hu, E.; Hutchings, J.; Murphy, E.; Sembach, K.; Woodgate, B.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We present far-ultraviolet spectroscopy of the cores of the massive cooling flow clusters Abell 1795 and 2597 obtained with FUSE. As the intracluster gas cools through 3 x 10(exp 5)K, it should emit strongly in the O VI lambda(lambda)1032,1038 resonance lines. We report the detection of O VI (lambda)1032 emission in A2597, with a line flux of 1.35 +/- 0.35 x 10(exp -15) erg/sq cm s, as well as detection of emission from C III (lambda)977. A marginal detection of C III (lambda)977 emission is also reported for A1795. These observations provide evidence for a direct link between the hot (10(exp 7) K) cooling flow gas and the cool (10(exp 4) K) gas in the optical emission line filaments. Assuming simple cooling flow models, the O VI line flux in A2597 corresponds to a mass deposition rate of approx. 40 solar mass /yr within the central 36 kpc. Emission from O VI (lambda)1032 was not detected in A1795, with an upper limit of 1.5 x 10(exp -15) erg/sq cm s, corresponding to a limit on the mass cooling flow rate of M(28 kpc) less than 28M solar mass/ yr. We have considered several explanations for the lack of detection of O VI emission in A1795 and the weaker than expected flux in A2597, including extinction by dust in the outer cluster, and quenching of thermal conduction by magnetic fields. We conclude that a turbulent mixing model, with some dust extinction, could explain our O VI results while also accounting for the puzzling lack of emission by Fe(sub XVII) in cluster cooling flows.

  10. Influence of cooled exhaust gas recirculation on performance, emissions and combustion characteristics of LPG fuelled lean burn SI engine

    Science.gov (United States)

    Ravi, K.; Pradeep Bhasker, J.; Alexander, Jim; Porpatham, E.

    2017-11-01

    On fuel perspective, Liquefied Petroleum Gas (LPG) provides cleaner emissions and also facilitates lean burn signifying less fuel consumption and emissions. Lean burn technology can attain better efficiencies and lesser combustion temperatures but this temperature is quite sufficient to facilitate formation of nitrogen oxide (NOx). Exhaust Gas Recirculation (EGR) for NOx reduction has been considered allover but extremely little literatures exist on the consequence of EGR on lean burn LPG fuelled spark ignition (SI) engine. The following research is carried out to find the optimal rate of EGR addition to reduce NOx emissions without settling on performance and combustion characteristics. A single cylinder diesel engine is altered to operate as LPG fuelled SI engine at a compression ratio of 10.5:1 and arrangements to provide different ratios of cooled EGR in the intake manifold. Investigations are done to arrive at optimum ratio of the EGR to reduce emissions without compromising on performance. Significant reductions in NOx emissions alongside HC and CO emissions were seen. Higher percentages of EGR further diluted the charge and lead to improper combustion and thus increased hydrocarbon emissions. Cooled EGR reduced the peak in-cylinder temperature which reduced NOx emissions but lead to misfire at lower lean limits.

  11. Cryotherapy-Induced Persistent Vasoconstriction After Cutaneous Cooling: Hysteresis Between Skin Temperature and Blood Perfusion

    Science.gov (United States)

    Khoshnevis, Sepideh; Craik, Natalie K.; Matthew Brothers, R.; Diller, Kenneth R.

    2016-01-01

    The goal of this study was to investigate the persistence of cold-induced vasoconstriction following cessation of active skin-surface cooling. This study demonstrates a hysteresis effect that develops between skin temperature and blood perfusion during the cooling and subsequent rewarming period. An Arctic Ice cryotherapy unit (CTU) was applied to the knee region of six healthy subjects for 60 min of active cooling followed by 120 min of passive rewarming. Multiple laser Doppler flowmetry perfusion probes were used to measure skin blood flow (expressed as cutaneous vascular conductance (CVC)). Skin surface cooling produced a significant reduction in CVC (P cryotherapy. PMID:26632263

  12. Results of scalp cooling during anthracycline containing chemotherapy depend on scalp skin temperature.

    Science.gov (United States)

    Komen, M M C; Smorenburg, C H; Nortier, J W R; van der Ploeg, T; van den Hurk, C J G; van der Hoeven, J J M

    2016-12-01

    The success of scalp cooling in preventing or reducing chemotherapy induced alopecia (CIA) is highly variable between patients undergoing similar chemotherapy regimens. A decrease of the scalp skin temperature seems to be an important factor, but data on the optimum temperature reached by scalp cooling to prevent CIA are lacking. This study investigated the relation between scalp skin temperature and its efficacy to prevent CIA. In this explorative study, scalp skin temperature was measured during scalp cooling in 62 breast cancer patients undergoing up to six cycles of anthracycline containing chemotherapy. Scalp skin temperature was measured by using two thermocouples at both temporal sides of the head. The primary end-point was the need for a wig or other head covering. Maximal cooling was reached after 45 min and was continued for 90 min after chemotherapy infusion. The scalp skin temperature after 45 min cooling varied from 10 °C to 31 °C, resulting in a mean scalp skin temperature of 19 °C (SEM: 0,4). Intrapersonal scalp skin temperatures during cooling were consistent for each chemotherapy cycle (ANOVA: P = 0,855). Thirteen out of 62 patients (21%) did not require a wig or other head covering. They appeared to have a significantly lower mean scalp skin temperature (18 °C; SEM: 0,7) compared to patients with alopecia (20 °C; SEM: 0,5) (P = 0,01). The efficacy of scalp cooling during chemotherapy is temperature dependent. A precise cut-off point could not be detected, but the best results seem to be obtained when the scalp temperature decreases below 18 °C. TRIALREGISTER. 3082. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Comparison of advanced cooling technologies efficiency depending on outside temperature

    Energy Technology Data Exchange (ETDEWEB)

    Blaise Hamanaka; Haihua Zhao; Phil Sharpe

    2009-09-01

    In some areas, water availability is a serious problem during the summer and could disrupt the normal operation of thermal power plants which needs large amount of water to operate. Moreover, when water quantities are sufficient, there can still be problem created by the waste heat rejected into the water which is regulated in order to limit the impact of thermal pollution on the environment. All these factors can lead to a decrease of electricity production during the summer and during peak hours, when electricity is the most needed. In order to deal with these problems, advanced cooling technologies have been developed and implemented to reduce water consumption and withdrawals but with an effect in the plant efficiency. This report aims at analyzing the efficiency of several cooling technologies with a fixed power plant design and so to produce a reference to be able to compare them.

  14. EURISOL-DS METEX: Cooling and Temperature Control of the Mercury Loop

    CERN Document Server

    Stefan Joray

    The cooling of the mercury loop is described on pages two, three and four. The gaps in the water jackets of the heat exchangers are too large and the cooling water capacity is too low. Convection from the wall into water is bad. The mercury temperature is too high. On page five is a proposal how the mercury temperature can be kept low and constant.

  15. Analysis of nocturnal air temperature in districts using mobile measurements and a cooling indicator

    Science.gov (United States)

    Leconte, François; Bouyer, Julien; Claverie, Rémy; Pétrissans, Mathieu

    2017-10-01

    The urban heat island phenomenon is generally defined as an air temperature difference between a city center and the non-urbanized rural areas nearby. However, this description does not encompass the intra-urban temperature differences that exist between neighborhoods in a city. This study investigates the air temperature dynamics of neighborhoods for meteorological conditions that lead to important urban heat island amplitude. Local climate zones (LCZs) have been determined in Nancy, France, and mobile screen-height air temperature measurements are performed using an instrumented vehicle. Initially, hourly measurements are performed within four different LCZs. These results show that air temperature within LCZ demonstrates a nocturnal cooling in two phases, i.e., a first phase between 1 to 3 h before sunset and 3 to 5 h after sunset, and a second phase from 3 to 5 h after sunset to sunrise. During phase 1, neighborhoods exhibit different cooling rate values and air temperature gaps develop between districts, while during phase 2, cooling rates tend to be analogous. Then, a larger meteorological data set is used to investigate these two phases for a selection of 13 LCZs. Normalized cooling rates are calculated between daytime measures and nighttime measures in order to quantify the air temperature dynamics of the studied areas during phase 1. Considering this indicator, three groups are emerging: LCZ compact midrise and open midrise with mean normalized cooling rate values of 0.09 h -1 LCZ large lowrise and open lowrise/sparsely built with mean normalized cooling rate values of 0.011 h -1 LCZ low plants with mean normalized cooling rate values of 0.014 h -1 Results indicate that the relative position of LCZ within the conurbation does not drive air temperature dynamics during phase 1. In addition, measures performed during phase 2 tend to illustrate that cooling rates are similar to all LCZ during this period.

  16. Moessbauer study of steels cooled to dry ice temperature

    Energy Technology Data Exchange (ETDEWEB)

    Boyanov, B S [Plovdiv University ' Paisii Hilendarski' , 24 Tsar Assen St., 4000 Plovdiv (Bulgaria); Paneva, D G [Institute of Catalysis, Bulgarian Academy of Science, 1113 Sofia (Bulgaria); Ivanov, K I, E-mail: boyanb@uni-plovdiv.b [Agricultural University, Department of Chemistry, 12 Mendeleev St., 4000 Plovdiv (Bulgaria)

    2010-03-01

    Based on the change of hardness H{sub B,} the parameter {beta}, the microstructure and Moessbauer spectra of 7 kinds of steels the conclusion is made that in the conditions of CO{sub 2} (dry ice) cleaning, using dry ice for repair and modification of pipes and dry snow for cooling (-78.3 {sup 0}C) no significant change in the mechanical properties of the cleaned surfaces, mechanically processed steels and the steel pipes can be expected.

  17. VALIDATION OF NUMERICAL METHODS TO CALCULATE BYPASS FLOW IN A PRISMATIC GAS-COOLED REACTOR CORE

    Directory of Open Access Journals (Sweden)

    NAM-IL TAK

    2013-11-01

    Full Text Available For thermo-fluid and safety analyses of a High Temperature Gas-cooled Reactor (HTGR, intensive efforts are in progress in the developments of the GAMMA+ code of Korea Atomic Energy Research Institute (KAERI and the AGREE code of the University of Michigan (U of M. One of the important requirements for GAMMA+ and AGREE is an accurate modeling capability of a bypass flow in a prismatic core. Recently, a series of air experiments were performed at Seoul National University (SNU in order to understand bypass flow behavior and generate an experimental database for the validation of computer codes. The main objective of the present work is to validate the GAMMA+ and AGREE codes using the experimental data published by SNU. The numerical results of the two codes were compared with the measured data. A good agreement was found between the calculations and the measurement. It was concluded that GAMMA+ and AGREE can reliably simulate the bypass flow behavior in a prismatic core.

  18. Development of High Temperature Gas Sensor Technology

    Science.gov (United States)

    Hunter, Gary W.; Chen, Liang-Yu; Neudeck, Philip G.; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai; Zhou, Huan-Jun

    1997-01-01

    The measurement of engine emissions is important for their monitoring and control. However, the ability to measure these emissions in-situ is limited. We are developing a family of high temperature gas sensors which are intended to operate in harsh environments such as those in an engine. The development of these sensors is based on progress in two types of technology: (1) The development of SiC-based semiconductor technology; and (2) Improvements in micromachining and microfabrication technology. These technologies are being used to develop point-contact sensors to measure gases which are important in emission control especially hydrogen, hydrocarbons, nitrogen oxides, and oxygen. The purpose of this paper is to discuss the development of this point-contact sensor technology. The detection of each type of gas involves its own challenges in the fields of materials science and fabrication technology. Of particular importance is sensor sensitivity, selectivity, and stability in long-term, high temperature operation. An overview is presented of each sensor type with an evaluation of its stage of development. It is concluded that this technology has significant potential for use in engine applications but further development is necessary.

  19. Absorption cooling sources atmospheric emissions decrease by implementation of simple algorithm for limiting temperature of cooling water

    Directory of Open Access Journals (Sweden)

    Wojdyga Krzysztof

    2017-01-01

    Full Text Available Constant strive to improve the energy efficiency forces carrying out activities aimed at reduction of energy consumption hence decreasing amount of contamination emissions to atmosphere. Cooling demand, both for air-conditioning and process cooling, plays an increasingly important role in the balance of Polish electricity generation and distribution system in summer. During recent years' demand for electricity during summer months has been steadily and significantly increasing leading to deficits of energy availability during particularly hot periods. This causes growing importance and interest in trigeneration power generation sources and heat recovery systems producing chilled water. Key component of such system is thermally driven chiller, mostly absorption, based on lithium-bromide and water mixture. Absorption cooling systems also exist in Poland as stand-alone systems, supplied with heating from various sources, generated solely for them or recovered as waste or useless energy. The publication presents a simple algorithm, designed to reduce the amount of heat for the supply of absorption chillers producing chilled water for the purposes of air conditioning by reducing the temperature of the cooling water, and its impact on decreasing emissions of harmful substances into the atmosphere. Scale of environmental advantages has been rated for specific sources what enabled evaluation and estimation of simple algorithm implementation to sources existing nationally.

  20. Absorption cooling sources atmospheric emissions decrease by implementation of simple algorithm for limiting temperature of cooling water

    Science.gov (United States)

    Wojdyga, Krzysztof; Malicki, Marcin

    2017-11-01

    Constant strive to improve the energy efficiency forces carrying out activities aimed at reduction of energy consumption hence decreasing amount of contamination emissions to atmosphere. Cooling demand, both for air-conditioning and process cooling, plays an increasingly important role in the balance of Polish electricity generation and distribution system in summer. During recent years' demand for electricity during summer months has been steadily and significantly increasing leading to deficits of energy availability during particularly hot periods. This causes growing importance and interest in trigeneration power generation sources and heat recovery systems producing chilled water. Key component of such system is thermally driven chiller, mostly absorption, based on lithium-bromide and water mixture. Absorption cooling systems also exist in Poland as stand-alone systems, supplied with heating from various sources, generated solely for them or recovered as waste or useless energy. The publication presents a simple algorithm, designed to reduce the amount of heat for the supply of absorption chillers producing chilled water for the purposes of air conditioning by reducing the temperature of the cooling water, and its impact on decreasing emissions of harmful substances into the atmosphere. Scale of environmental advantages has been rated for specific sources what enabled evaluation and estimation of simple algorithm implementation to sources existing nationally.

  1. Microstructure and Hardness of High Temperature Gas Nitrided AISI 420 Martensitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Ibrahim Nor Nurulhuda Md.

    2014-07-01

    Full Text Available This study examined the microstructure and hardness of as-received and nitrided AISI 420 martensitic stainless steels. High temperature gas nitriding was employed to treat the steels at 1200°C for one hour and four hours using nitrogen gas, followed by furnace cooled. Chromium nitride and iron nitride were formed and concentrated at the outmost surface area of the steels since this region contained the highest concentration of nitrogen. The grain size enlarged at the interior region of the nitrided steels due to nitriding at temperature above the recrystallization temperature of the steel and followed by slow cooling. The nitrided steels produced higher surface hardness compared to as-received steel due to the presence of nitrogen and the precipitation of nitrides. Harder steel was produced when nitriding at four hours compared to one hour since more nitrogen permeated into the steel.

  2. Mechanical properties of three-component additive manufactured composites at elevated and cool temperatures

    Science.gov (United States)

    Chumaevskii, A. V.; Tarasov, S. Yu.; Eliseev, A. A.; Rubtsov, V. E.; Kolubaev, E. A.

    2016-11-01

    Elevated and cool temperature tensile tests on three-component composite materials made of carbon fibers, thermoplastic and thermosetting bonding agents have been carried out. The results of tests testify the increasing the composite strength at negative temperature -120°C and reducing it at elevated temperature +120°C. The low temperature fracture of samples resulted in formation of numerous small fragments by cracking and delamination in deformation. The high temperature tests produced numerous delaminated fibers.

  3. Head and neck cooling decreases tympanic and skin temperature, but significantly increases blood pressure.

    Science.gov (United States)

    Koehn, Julia; Kollmar, Rainer; Cimpianu, Camelia-Lucia; Kallmünzer, Bernd; Moeller, Sebastian; Schwab, Stefan; Hilz, Max J

    2012-08-01

    Localized head and neck cooling might be suited to induce therapeutic hypothermia in acute brain injury such as stroke. Safety issues of head and neck cooling are undetermined and may include cardiovascular autonomic side effects that were identified in this study. Ten healthy men (age 35±13 years) underwent 120 minutes of combined head and neck cooling (Sovika, HVM Medical). Before and after onset of cooling, after 60 and 120 minutes, we determined rectal, tympanic, and forehead skin temperatures, RR intervals, systolic and diastolic blood pressures (BP), laser-Doppler skin blood flow at the index finger and cheek, and spectral powers of mainly sympathetic low-frequency (0.04-0.15 Hz) and parasympathetic high-frequency (0.15-0.5 Hz) RR interval oscillations and sympathetic low-frequency oscillations of BP. We compared values before and during cooling using analysis of variance with post hoc analysis; (significance, Pskin temperature dropped by 5.5±2.2°C with cooling onset and by 12.4±3.2°C after 20 minutes. Tympanic temperature decreased by 4.7±0.7°C within 40 minutes, and rectal temperature by only 0.3±0.3°C after 120 minutes. Systolic and diastolic BP increased immediately on cooling onset and rose by 15.3±20.8 mm Hg and 16.5±13.4 mm Hg (P=0.004) after 120 minutes, whereas skin blood flow fell significantly during cooling. RR intervals and parasympathetic RR interval high-frequency powers increased with cooling onset and were significantly higher after 60 and 120 minutes than they were before cooling. Head and neck cooling prominently reduced tympanic temperature and thus might also induce intracerebral hypothermia; however, it did not significantly lower body core temperature. Profound skin temperature decrease induced sympathetically mediated peripheral vasoconstriction and prominent BP increases that are not offset by simultaneous parasympathetic heart rate slowing. Prominent peripheral vasoconstriction and BP increase must be considered as

  4. Frontal subcutaneous blood flow, and epi- and subcutaneous temperatures during scalp cooling in normal man

    DEFF Research Database (Denmark)

    Bülow, J; Friberg, L; Gaardsting, O

    1985-01-01

    Cooling of the scalp has been found to prevent hair loss following cytostatic treatment, but in order to obtain the hair preserving effect the subcutaneous temperature has to be reduced below 22 degrees C. In order to establish the relationship between epicutaneous and subcutaneous temperatures...... epicutaneous and subcutaneous temperatures could be demonstrated with the regression equation: s = 0.9 c + 4.9 (r = 0.99). In eight of the 10 subjects the subcutaneous temperature could be reduced below 22 degrees C with the applied technique. It is concluded that the hair preserving effect of scalp cooling...

  5. Design of evaporative-cooling roof for decreasing air temperatures in buildings in the humid tropics

    Science.gov (United States)

    Kindangen, Jefrey I.; Umboh, Markus K.

    2017-03-01

    This subject points to assess the benefits of the evaporative-cooling roof, particularly for buildings with corrugated zinc roofs. In Manado, many buildings have roofed with corrugated zinc sheets; because this material is truly practical, easy and economical application. In general, to achieve thermal comfort in buildings in a humid tropical climate, people applying cross ventilation to cool the air in the room and avoid overheating. Cross ventilation is a very popular path to achieve thermal comfort; yet, at that place are other techniques that allow reducing the problem of excessive high temperature in the room in the constructions. This study emphasizes applications of the evaporative-cooling roof. Spraying water on the surface of the ceiling has been executed on the test cell and the reuse of water after being sprayed and cooled once more by applying a heat exchanger. Initial results indicate a reliable design and successfully meet the target as an effective evaporative-cooling roof technique. Application of water spraying automatic and cooling water installations can work optimally and can be an optimal model for the cooling roof as one of the green technologies. The role of heat exchangers can lower the temperature of the water from spraying the surface of the ceiling, which has become a hot, down an average of 0.77° C. The mass flow rate of the cooling water is approximately 1.106 kg/h and the rate of heat flow is around 515 Watt, depend on the site.

  6. The Gas-Cooled Fast Reactor: Report on Safety System Design for Decay Heat Removal

    Energy Technology Data Exchange (ETDEWEB)

    K. D. Weaver; T. Marshall; T. Y. C. Wei; E. E. Feldman; M. J. Driscoll; H. Ludewig

    2003-09-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radiotoxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. This report addresses/discusses the decay heat removal options available to the GFR, and the current solutions. While it is possible to design a GFR with complete passive safety (i.e., reliance solely on conductive and radiative heat transfer for decay heat removal), it has been shown that the low power density results in unacceptable fuel cycle costs for the GFR. However, increasing power density results in higher decay heat rates, and the attendant temperature increase in the fuel and core. Use of active movers, or blowers/fans, is possible during accident conditions, which only requires 3% of nominal flow to remove the decay heat. Unfortunately, this requires reliance on active systems. In order to incorporate passive systems, innovative designs have been studied, and a mix of passive and active systems appears to meet the requirements for decay heat removal during accident conditions.

  7. Study of Solid Particle Behavior in High Temperature Gas Flows

    Science.gov (United States)

    Majid, A.; Bauder, U.; Stindl, T.; Fertig, M.; Herdrich, G.; Röser, H.-P.

    2009-01-01

    The Euler-Lagrangian approach is used for the simulation of solid particles in hypersonic entry flows. For flow field simulation, the program SINA (Sequential Iterative Non-equilibrium Algorithm) developed at the Institut für Raumfahrtsysteme is used. The model for the effect of the carrier gas on a particle includes drag force and particle heating only. Other parameters like lift Magnus force or damping torque are not taken into account so far. The reverse effect of the particle phase on the gaseous phase is currently neglected. Parametric analysis is done regarding the impact of variation in the physical input conditions like position, velocity, size and material of the particle. Convective heat fluxes onto the surface of the particle and its radiative cooling are discussed. The variation of particle temperature under different conditions is presented. The influence of various input conditions on the trajectory is explained. A semi empirical model for the particle wall interaction is also discussed and the influence of the wall on the particle trajectory with different particle conditions is presented. The heat fluxes onto the wall due to impingement of particles are also computed and compared with the heat fluxes from the gas.

  8. Electrochemical high-temperature gas sensors

    Science.gov (United States)

    Saruhan, B.; Stranzenbach, M.; Yüce, A.; Gönüllü, Y.

    2012-06-01

    Combustion produced common air pollutant, NOx associates with greenhouse effects. Its high temperature detection is essential for protection of nature. Component-integration capable high-temperature sensors enable the control of combustion products. The requirements are quantitative detection of total NOx and high selectivity at temperatures above 500°C. This study reports various approaches to detect NO and NO2 selectively under lean and humid conditions at temperatures from 300°C to 800°C. All tested electrochemical sensors were fabricated in planar design to enable componentintegration. We suggest first an impedance-metric gas sensor for total NOx-detection consisting of NiO- or NiCr2O4-SE and PYSZ-electrolyte. The electrolyte-layer is about 200μm thickness and constructed of quasi-single crystalline columns. The sensing-electrode (SE) is magnetron sputtered thin-layers of NiO or NiCr2O4. Sensor sensitivity for detection of total NOx has been measured by applying impedance analysis. The cross-sensitivity to other emission gases such as CO, CO2, CH4 and oxygen (5 vol.%) has been determined under 0-1000ppm NO. Sensor maintains its high sensitivity at temperatures up to 550°C and 600°C, depending on the sensing-electrode. NiO-SE yields better selectivity to NO in the presence of oxygen and have shorter response times comparing to NiCr2O4-SE. For higher temperature NO2-sensing capability, a resistive DC-sensor having Al-doped TiO2-sensing layers has been employed. Sensor-sensitivity towards NO2 and cross-sensitivity to CO has been determined in the presence of H2O at temperatures 600°C and 800°C. NO2 concentrations varying from 25 to 100ppm and CO concentrations from 25 to 75ppm can be detected. By nano-tubular structuring of TiO2, NO2 sensitivity of the sensor was increased.

  9. Flow structure and heat exchange analysis in internal cooling channel of gas turbine blade

    Science.gov (United States)

    Szwaba, Ryszard; Kaczynski, Piotr; Doerffer, Piotr; Telega, Janusz

    2016-08-01

    This paper presents the study of the flow structure and heat transfer, and also their correlations on the four walls of a radial cooling passage model of a gas turbine blade. The investigations focus on heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of radial cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include corner fillet, ribs with fillet radii and special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which possesses very realistic features.

  10. Core temperature cooling in healthy volunteers after rapid intravenous infusion of cold and room temperature saline solution.

    Science.gov (United States)

    Moore, Tracy M; Callaway, Clifton W; Hostler, David

    2008-02-01

    Studies have suggested that inducing mild hypothermia improves neurologic outcomes after traumatic brain injury, major stroke, traumatic hemorrhage, and cardiac arrest. Although infusion of cold normal saline solution is a simple and inexpensive method for initiating hypothermia, human cold-defense mechanisms potentially make this route stressful or ineffective. We hypothesize that rapid infusion of 30 mL/kg of cold (4 degrees C, 39.2 degrees F) 0.9% saline solution during 30 minutes to healthy subjects (aged 27 [standard deviation (SD) 4] years) will reduce core body temperature to the therapeutic range of 33 degrees C to 35 degrees C (91.4 degrees F to 95 degrees F). Sixteen subjects were randomly assigned to receive either cold (4 degrees C, 39.2 degrees F) or room temperature (23 degrees C, 73.4 degrees F) normal saline solution. Subjects were not informed of their assignment, but blinding was not possible after initiation of the infusion. Core temperature, skin temperature, and vital signs were recorded every 2 minutes. Subjects indicated global discomfort during the infusion on a 100-mm visual analog scale at 5-minute intervals. Core temperature decreased in both the cold saline solution (1.0 degrees C [SD 0.4 degrees C]/1.8 degrees F [0.7 degrees F]) and room temperature saline solution (0.5 degrees C [SD 0.1 degrees C]/0.9 degrees F [0.2 degrees F]) groups, whereas skin temperature was unchanged. Slopes calculated from the core temperature cooling curves indicate that the majority of cooling occurred during the first half of the infusion. Examination of the core temperature cooling curves revealed a 2-phase temporal pattern in 30-minute cooling curves. The early phase, spanning 0 to 14 minutes, demonstrated rapid cooling in both groups, with a larger effect observed in subjects receiving cold saline solution. In this pilot study of healthy volunteers, rapid administration of cold saline solution to awake normothermic volunteers resulted in 1 degrees C (1

  11. Dilute helium mixtures at low temperatures : properties and cooling methods

    OpenAIRE

    Pentti, Elias

    2009-01-01

    This thesis describes experimental work on dilute mixtures of ³He in 4He, mainly at millikelvin temperatures. The isotopic helium mixture has the unique property of remaining a miscible liquid down to the absolute zero temperature. In the mK regime, it consists of two very different components: perfectly superfluid 4He, and a weakly interacting degenerate Fermi liquid of ³He, predicted by theory to undergo transition to the superfluid state at an extremely low temperature. To discover that tr...

  12. Prehospital surface cooling is safe and can reduce time to target temperature after cardiac arrest.

    Science.gov (United States)

    Uray, Thomas; Mayr, Florian B; Stratil, Peter; Aschauer, Stefan; Testori, Christoph; Sterz, Fritz; Haugk, Moritz

    2015-02-01

    Mild therapeutic hypothermia proved to be beneficial when induced after cardiac arrest in humans. Prehospital cooling with i.v. fluids was associated with adverse side effects. Our primary objective was to compare time to target temperature of out-of hospital cardiac arrest patients cooled non-invasively either in the prehospital setting vs. the in-hospital (IH) setting, to assess surface-cooling safety profile and long term outcome. In this retrospective, single center cohort study, a group of adult patients with restoration of spontaneous circulation (ROSC) after out-of hospital cardiac arrest were cooled with a surface cooling pad beginning either in the prehospital or IH setting for 24h. Time to target temperature (33.9°C), temperature on admission, time to admission after ROSC and outcome were compared. Also, rearrests and pulmonary edema were assessed. Neurologic outcome at 12 months was evaluated (Cerebral Performance Category, CPC 1-2, favorable outcome). Between September 2005 and February 2010, 56 prehospital cooled patients and 54 IH-cooled patients were treated. Target temperature was reached in 85 (66-117)min (prehospital) and in 135 (102-192)min (IH) after ROSC (ptemperature was 35.2 (34.2-35.8)°C, and in the IH-cooling patients initial temperature was 35.8 (35.2-36.3)°C (p=0.001). No difference in numbers of rearrests and pulmonary edema between groups was observed. In both groups, no skin lesions were observed. Favorable outcome was reached in 26.8% (prehospital) and in 37.0% (IH) of the patients (p=0.17). Using a non-invasive prehospital surface cooling method after cardiac arrest, target temperature can be reached faster without any major complications than starting cooling IH. The effect of early non-invasive cooling on long-term outcome remains to be determined in larger studies. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  13. Accident Analysis Simulation in Modular 300MWt Gas Cooled Fast Reactor

    Science.gov (United States)

    Zaki, Su'ud

    2017-01-01

    Safety analysis of 300MWt helium gas cooled long-life fast reactors has been performed. The analysis of unprotected loss of flow(ULOF) and unprotected rod run-out transient overpower (UTOP) are discussed. Some simulations for 300 MWt He gas cooled fast reactors has been performed and the results show that the reactor can anticipate complete pumping failure inherently by reducing power through reactivity feedback and remove the rest of heat through natural circulations. GCFR relatively has hard spectrum so it has relatively small Doppler coefficient. In the UTOP accident case the analysis has been performed against external reactivity up to 0.002dk/k. In addition the steam generator design has also consider excess power during severe UTOP case..

  14. Advanced gas cooled nuclear reactor materials evaluation and development program. Progress report, September 23, 1976--December 31, 1976

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    This report presents the results of work performed from September 23, 1976 through December 31, 1976 on the Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Process Heat and Direct Cycle Helium Turbine (DCHT) applications, in terms of the affect of simulated reactor primary coolant (impure Helium), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes progress to date on alloy selection for VHTR Nuclear Process Heat (NPH) applications and for DCHT applications. The present status on the simulated reactor helium loop design and on designs for the testing and analysis facilities and equipment is discussed.

  15. A Peltier cooling diamond anvil cell for low-temperature Raman spectroscopic measurements

    Science.gov (United States)

    Noguchi, Naoki; Okuchi, Takuo

    2016-12-01

    A new cooling system using Peltier modules is presented for a low-temperature diamond anvil cell instrument. This cooling system has many advantages: it is vibration-free, low-cost, and compact. It consists of double-stacked Peltier modules and heat sinks, where a cooled ethylene glycol-water mixture flows through a chiller. Current is applied to the Peltier modules by two programmable DC power supplies. Sample temperature can be controlled within the range 210-300 K with a precision of ±0.1 K via a Proportional-Integral-Differential (PID) control loop. A Raman spectroscopic study for the H2O ice VII-VIII transition is shown as an example of an application of the Peltier cooling diamond anvil cell system.

  16. 30 CFR 36.48 - Tests of surface temperature of engine and components of the cooling system.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of surface temperature of engine and... temperature of engine and components of the cooling system. (a) The surface temperatures of the engine... components shall have reached their respective equilibrium temperatures. The exhaust cooling system shall be...

  17. Results of scalp cooling during anthracycline containing chemotherapy depend on scalp skin temperature

    NARCIS (Netherlands)

    Komen, M.M.; Smorenburg, C.H.; Nortier, J.W.; Ploeg, T. van der; Hurk, C.J. van den; Hoeven, J.J. van der

    2016-01-01

    OBJECTIVES: The success of scalp cooling in preventing or reducing chemotherapy induced alopecia (CIA) is highly variable between patients undergoing similar chemotherapy regimens. A decrease of the scalp skin temperature seems to be an important factor, but data on the optimum temperature reached

  18. Frontal subcutaneous blood flow, and epi- and subcutaneous temperatures during scalp cooling in normal man

    DEFF Research Database (Denmark)

    Bülow, J; Friberg, L; Gaardsting, O

    1985-01-01

    Cooling of the scalp has been found to prevent hair loss following cytostatic treatment, but in order to obtain the hair preserving effect the subcutaneous temperature has to be reduced below 22 degrees C. In order to establish the relationship between epicutaneous and subcutaneous temperatures d...

  19. Microelectromechanical System (MEMS) Device Being Developed for Active Cooling and Temperature Control

    Science.gov (United States)

    Beach, Duane E.

    2003-01-01

    High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) using a Stirling thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface is being developed at the NASA Glenn Research Center to meet this need. The device can be used strictly in the cooling mode or can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly employ techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces, limited failure modes, and minimal induced vibration. The MEMS cooler has potential applications across a broad range of industries such as the biomedical, computer, automotive, and aerospace industries. The basic capabilities it provides can be categorized into four key areas: 1) Extended environmental temperature range in harsh environments; 2) Lower operating temperatures for electronics and other components; 3) Precision spatial and temporal thermal control for temperature-sensitive devices; and 4) The enabling of microsystem devices that require active cooling and/or temperature control. The rapidly expanding capabilities of semiconductor processing in general, and microsystems packaging in particular, present a new opportunity to extend Stirling-cycle cooling to the MEMS domain. The comparatively high capacity and efficiency possible with a MEMS Stirling cooler provides a level of active cooling that is impossible at the microscale with current state-of-the-art techniques. The MEMS cooler technology builds on decades of research at Glenn on Stirling-cycle machines, and capitalizes on Glenn s emerging microsystems capabilities.

  20. Control rod system useable for fuel handling in a gas-cooled nuclear reactor

    Science.gov (United States)

    Spurrier, Francis R.

    1976-11-30

    A control rod and its associated drive are used to elevate a complete stack of fuel blocks to a position above the core of a gas-cooled nuclear reactor. A fuel-handling machine grasps the control rod and the drive is unlatched from the rod. The stack and rod are transferred out of the reactor, or to a new location in the reactor, by the fuel-handling machine.

  1. Flow and heat transfer investigations in swirl tubes for gas turbine blade cooling

    OpenAIRE

    Biegger, Christoph

    2017-01-01

    A swirl tube is a very effective cooling technique for high thermal loaded components like gas turbine blades. Such a tube consists of one or more tangential inlet jets, which induce a highly 3D swirling flow. This swirling flow is characterized by large velocities near the wall and an enhanced turbulence in the tube which both increase the convective heat transfer. In the present work, the flow phenomena and the heat transfer in swirl tubes are studied experimentally and numerically. Therefo...

  2. Study of design and technology factors influencing gas turbine blade cooling

    Science.gov (United States)

    Shevchenko, I. V.; Garanin, I. V.; Rogalev, A. N.; Kindra, V. O.; Khudyakova, V. P.

    2017-11-01

    The knowledge of aerodynamic and thermal parameters of turbulators used in order to design an efficient blade cooling system. However, all experimental tests of the hydraulic and thermal characteristics of the turbulators were conducted on the rectangular shape channels with a strongly defined air flow direction. The actual blades have geometry of the channels that essentially differs from the rectangular shape. Specifically, the air flow in the back cavity of a blade with one and half-pass cooling channel changes its direction throughout the feather height. In most cases the ribs and pins are made with a tilt to the channel walls, which is determined by the moving element design of a mould for the ceramic rod element fabrication. All of the factors described above may result in the blade thermohydraulic model being developed failing to fully simulate the air flow and the heat exchange processes in some sections of the cooling path. Hence, the design temperature field will differ from the temperature field of an actual blade. This article studied the numerical data of design and technology factors influencing heat transfer in the cooling channels. The results obtained showed their substantial impact on the blade cooling efficiency.

  3. Production of cold beams of ND3 with variable rotational state distributions by electrostatic extraction of He and Ne buffer-gas-cooled beams.

    Science.gov (United States)

    Twyman, Kathryn S; Bell, Martin T; Heazlewood, Brianna R; Softley, Timothy P

    2014-07-14

    The measurement of the rotational state distribution of a velocity-selected, buffer-gas-cooled beam of ND3 is described. In an apparatus recently constructed to study cold ion-molecule collisions, the ND3 beam is extracted from a cryogenically cooled buffer-gas cell using a 2.15 m long electrostatic quadrupole guide with three 90° bends. (2+1) resonance enhanced multiphoton ionization spectra of molecules exiting the guide show that beams of ND3 can be produced with rotational state populations corresponding to approximately T(rot) = 9-18 K, achieved through manipulation of the temperature of the buffer-gas cell (operated at 6 K or 17 K), the identity of the buffer gas (He or Ne), or the relative densities of the buffer gas and ND3. The translational temperature of the guided ND3 is found to be similar in a 6 K helium and 17 K neon buffer-gas cell (peak kinetic energies of 6.92(0.13) K and 5.90(0.01) K, respectively). The characterization of this cold-molecule source provides an opportunity for the first experimental investigations into the rotational dependence of reaction cross sections in low temperature collisions.

  4. Irrigation Induced Surface Cooling in the Context of Modern and Increased Greenhouse Gas Forcing

    Science.gov (United States)

    Cook, Benjamin I.; Puma, Michael J.; Krakauer, Nir Y.

    2010-01-01

    There is evidence that expected warming trends from increased greenhouse gas (GHG) forcing have been locally masked by irrigation induced cooling, and it is uncertain how the magnitude of this irrigation masking effect will change in the future. Using an irrigation dataset integrated into a global general circulation model, we investigate the equilibrium magnitude of irrigation induced cooling under modern (Year 2000) and increased (A1B Scenario, Year 2050) GHG forcing, using modern irrigation rates in both scenarios. For the modern scenario, the cooling is largest over North America, India, the Middle East, and East Asia. Under increased GHG forcing, this cooling effect largely disappears over North America, remains relatively unchanged over India, and intensifies over parts of China and the Middle East. For North America, irrigation significantly increases precipitation under modern GHG forcing; this precipitation enhancement largely disappears under A1B forcing, reducing total latent heat fluxes and the overall irrigation cooling effect. Over India, irrigation rates are high enough to keep pace with increased evaporative demand from the increased GHG forcing and the magnitude of the cooling is maintained. Over China, GHG forcing reduces precipitation and shifts the region to a drier evaporative regime, leading to a relatively increased impact of additional water from irrigation on the surface energy balance. Irrigation enhances precipitation in the Middle East under increased GHG forcing, increasing total latent heat fluxes and enhancing the irrigation cooling effect. Ultimately, the extent to which irrigation will continue to compensate for the warming from increased GHG forcing will primarily depend on changes in the background evaporative regime, secondary irrigation effects (e.g. clouds, precipitation), and the ability of societies to maintain (or increase) current irrigation rates.

  5. Which is the temperature of granular systems? A mean field model of free cooling inelastic mixtures

    OpenAIRE

    Marconi, Umberto Marini Bettolo; Puglisi, Andrea

    2001-01-01

    We consider a mean field model describing the free cooling process of a two component granular mixture, a generalization of so called Maxwell model. The cooling is viewed as an ordering process and the scaling behavior is attributed to the presence of an attractive fixed point at $v=0$ for the dynamics. By means of asymptotic analysis of the Boltzmann equation and of numerical simulations we get the following results: 1)we establish the existence of two different partial granular temperatures...

  6. Optimum Temperature of Hot Rolled Reinforced Bars at the Cooling Bed

    Science.gov (United States)

    Musonda, V.; Akinlabi, ET; Jen, TC

    2017-08-01

    Maintaining high accuracy temperature measurements at the cooling section is essential in order to attain the overall quality of the finished product, and to realise the correct properties. A series of “heat” numbers or batches of molten steel from an Electric Arc Furnace (EAF) for the production of Y12 mm reinforced bars (rebars) were observed at a steel plant to establish the optimum temperature of the rebar at the cooling bed. The casting was done in billet casters and the billets with 100mm×100mm cross-section were then hot rolledto the required size. The finish rolling temperature was between 850-900°C at 11m/s rolling speed. There bars were water quenched in the water box, and lastlysent for cooling on the cooling bed. Tensile tests and bend tests were carried out on rebars every after 15 minutes during the production to ensure that correct mechanical properties were achieved. It was observed that 850°C was the best finishing temperature and 250 °C was the optimum temperature at the cooling bed after equalization. The results for the tensile tests and microstructures were consistent with prescribed standards. The rebar samples were all of low carbon steel.

  7. OPTIMAL SYSNTHESIS PROCESSES OF LOW-TEMPERATURE CONDENSATION ASSOCIATED OIL GAS PLANT REFRIGERATION SYSTEM

    Directory of Open Access Journals (Sweden)

    O. Ostapenko

    2015-10-01

    Full Text Available Design of modern high-efficient systems is a key priority for the Energy Sector of Ukraine. The cooling technological streams of gas and oil refineries, including air coolers, water cooling and refrigeration systems for specific refrigerants are the objectives of the present study. Improvement of the refrigeration unit with refrigerant separation into fractions is mandatory in order to increase cooling capacity, lowering the boiling point of coolant and increasing the coefficient of target hydrocarbons extraction from the associated gas flow. In this paper it is shown that cooling temperature plays significant role in low-temperature condensation process. Two operation modes for refrigeration unit were proposed: permanent, in which the concentration of the refrigerant mixture does not change and dynamic, in which the concentration of refrigerant mixtures depends on the ambient temperature. Based on the analysis of exergy losses the optimal concentration of refrigerant mixtures propane/ethane for both modes of operation of the refrigeration unit has been determined. On the basis of the conducted pinch-analysis the modification of refrigeration unit with refrigerant separation into fractions was developed. Additional recuperative heat exchangers for utilization heat were added to the scheme. Several important measures to increase the mass flow rate of refrigerant through the second section of the refrigeration centrifugal compressor from 22.5 to 25 kg/s without violating the agreed operational mode of the compressor sections were implemented.

  8. Theoretical study and design of a low-grade heat-driven pilot ejector refrigeration machine operating with butane and isobutane and intended for cooling of gas transported in a gas-main pipeline

    KAUST Repository

    Petrenko, V.O.

    2011-11-01

    This paper describes the construction and performance of a novel combined system intended for natural gas transportation and power production, and for cooling of gas transported in a gas-main pipeline. The proposed system includes a gas turbine compressor, a combined electrogenerating plant and an ejector refrigeration unit operating with a hydrocarbon refrigerant. The combined electrogenerating plant consists of a high-temperature steam-power cycle and a low-temperature hydrocarbon vapor power cycle, which together comprise a binary vapor system. The combined system is designed for the highest possible effectiveness of power generation and could find wide application in gas-transmission systems of gas-main pipelines. Application of the proposed system would enable year-round power generation and provide cooling of natural gas during periods of high ambient temperature operation. This paper presents the main results of a theoretical study and design performance specifications of a low-grade heat-driven pilot ejector refrigeration machine operating with butane and isobutane. © 2010 Elsevier Ltd and IIR. All rights reserved.

  9. Finite Temperature Green's Function Approach for Excited State and Thermodynamic Properties of Cool to Warm Dense Matter.

    Science.gov (United States)

    Kas, J J; Rehr, J J

    2017-10-27

    We present a finite-temperature extension of the retarded cumulant Green's function for calculations of exited-state, correlation, and thermodynamic properties of electronic systems. The method incorporates a cumulant to leading order in the screened Coulomb interaction W, and improves on the GW approximation of many-body perturbation theory. Results for the homogeneous electron gas are presented for a wide range of densities and temperatures, from cool to warm dense matter regimes, which reveal several hitherto unexpected properties. For example, correlation effects remain strong at high T while the exchange-correlation energy becomes small; also the spectral function broadens and damping increases with temperature, blurring the usual quasiparticle picture. These effects are evident, e.g., in Compton scattering which exhibits many-body corrections that persist at normal densities and intermediate T. The approach also yields exchange-correlation energies and potentials in good agreement with existing methods.

  10. Cooling down MiniGRAIL to milli-Kelvin temperatures

    NARCIS (Netherlands)

    de Waard, A.; de Waard, A.; Gottardi, L.; Bassan, M.; Coccia, E.; Fafone, V.; Flokstra, Jakob; Karbalai-Sadegh, A.; Minenkov, Y.; Moleti, A.; Pallottino, G.V.; Podt, M.; Pors, B.J.; Reincke, W; Rocchi, A.; Shumack, A.; Srinivas, S.; Visco, M.; Frossati, G.

    2004-01-01

    The latest developments in the construction of the ultra-cryogenic spherical detector MiniGRAIL are presented. The room temperature part of the vibration isolation system was improved and provided with an attenuation of about 60 dB around 3 kHz. The transfer function of the cryogenic stages gave

  11. Simulation of the temperature distribution within a steel block cooled ...

    African Journals Online (AJOL)

    Thus, the heat equation is solved by finite difference discretization using Fortran 90 as programming language. For matrix calculation, the successive overrelaxation (SOR) is the chosen appropriate method, well suited for this kind of problems. The simulation results are shown as illustrations of instantaneous temperature ...

  12. Advanced LED package with temperature sensors and microfluidic cooling

    NARCIS (Netherlands)

    Ye, H.; Zeijl, H. van; Sokolovskij, R.; Gielen, A.W.J.; Zhang, G.Q.

    2013-01-01

    Light-emitting diodes (LEDs) are revolutionizing the illumination with energy savings and enhanced functionality. However, around 80% of the input power will be still transferred to heat. As the elevated temperature negatively affects the maximum light output, efficiency, quality, reliability and

  13. Pyrometer mount for a closed-circuit thermal medium cooled gas turbine

    Science.gov (United States)

    Jones, Raymond Joseph; Kirkpatrick, Francis Lawrence; Burns, James Lee; Fulton, John Robert

    2002-01-01

    A steam-cooled second-stage nozzle segment has an outer band and an outer cover defining a plenum therebetween for receiving cooling steam for flow through the nozzles to the inner band and cover therefor and return flow through the nozzles. To measure the temperature of the buckets of the stage forwardly of the nozzle stage, a pyrometer boss is electron beam-welded in an opening through the outer band and TIG-welded to the outer cover plate. By machining a hole through the boss and seating a linearly extending tube in the boss, a line of sight between a pyrometer mounted on the turbine frame and the buckets is provided whereby the temperature of the buckets can be ascertained. The welding of the boss to the outer band and outer cover enables steam flow through the plenum without leakage, while providing a line of sight through the outer cover and outer band to measure bucket temperature.

  14. High Temperature Fission Chamber for He- and FLiBe-cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Zane W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Giuliano, Dominic R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lance, Michael J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, Roger G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Warmack, Robert J. Bruce [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    We have evaluated candidate technologies for in-core fission chambers for high-temperature reactors to monitor power level via measurements of neutron flux from start-up through full power at up to 800°C. This research is important because there are no commercially available instruments capable of operating above 550 °C. Component materials and processes were investigated for fission chambers suitable for operation at 800 °C in reactors cooled by molten fluoride salt (FLiBe) or flowing He, with an emphasis placed on sensitivity (≥ 1 cps/nv), service lifetime (2 years at full power), and resistance to direct immersion in FLiBe. The latter gives the instrument the ability to survive accidents involving breach of a thimble. The device is envisioned to be a two-gap, three-electrode instrument constructed from concentric nickel-plated alumina cylinders and using a noble gas–nitrogen fill-gas. We report the results of measurements and calculations of the response of fill gasses, impurity migration in nickel alloy, brazing of the alumina insulator, and thermodynamic calculations.

  15. An Analysis of Testing Requirements for Fluoride Salt Cooled High Temperature Reactor Components

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Cetiner, Sacit M [ORNL; Flanagan, George F [ORNL; Peretz, Fred J [ORNL; Yoder Jr, Graydon L [ORNL

    2009-11-01

    This report provides guidance on the component testing necessary during the next phase of fluoride salt-cooled high temperature reactor (FHR) development. In particular, the report identifies and describes the reactor component performance and reliability requirements, provides an overview of what information is necessary to provide assurance that components will adequately achieve the requirements, and then provides guidance on how the required performance information can efficiently be obtained. The report includes a system description of a representative test scale FHR reactor. The reactor parameters presented in this report should only be considered as placeholder values until an FHR test scale reactor design is completed. The report focus is bounded at the interface between and the reactor primary coolant salt and the fuel and the gas supply and return to the Brayton cycle power conversion system. The analysis is limited to component level testing and does not address system level testing issues. Further, the report is oriented as a bottom-up testing requirements analysis as opposed to a having a top-down facility description focus.

  16. Warm and Cool Droughts: The Influence of Temperature on Colorado River Flow

    Science.gov (United States)

    Woodhouse, C. A.; Pederson, G. T.

    2016-12-01

    Recent droughts in the western US have been exacerbated by warm temperatures, due in part to global climate change. While elevated temperatures commonly accompany droughts, how variable is the role of temperature in droughts? Here, we examine that question by assessing total annual streamflow for the upper Colorado River (UCRB) basin relative to cool season precipitation. Droughts in the 1950s, 1980s-90s and the 2000s had similar flow deficits, but the 1950s was characterized by lower precipitation with below average March-July temperatures, while the other two droughts had modest precipitation deficits and above average temperatures. Cooler temperatures appear to have offset drier conditions in the 1950s, while the reverse was true in more recent droughts. In order to assess the unusualness of the 1950s "cool" drought, reconstructions of streamflow and cool season precipitation for the UCRB for 1569-1997 were evaluated. Colorado River droughts were identified and average flow values were compared to average cool season precipitation for each set of drought years. This analysis suggests that even in the context of the past four centuries, the 1950s appears relatively unusual. Only two prior droughts are documented with flow deficits less than precipitation deficits, in the 1810s and in the 1870s-80s. Without a runoff season temperature reconstruction, it is impossible to confirm that these were relatively cool droughts, but a preliminary reconstruction of early summer temperatures suggests cooler temperatures may have played a role. In contrast, warm droughts inferred from greater flow deficits compared to precipitation are much more common.

  17. INFLUENCE OF SELF-TEMPERING TEMPERATURE ON STRENGTH OF RAILWAY WHEEL DISK AFTER ACCELERATED COOLING

    Directory of Open Access Journals (Sweden)

    L. I. Vakulenko

    2016-04-01

    Full Text Available Purpose. The paper aims at estimation of resource of strength increase for railway wheel disk. Methodology. The material for research was carbon steel of railway wheel containing 0.57%C, 0.65%Si, 0.45%Mn, 0.0029%S, 0,014%P, 0,11%Cr. A railway wheel was heated to the temperatures above and was held at this temperature until the completion of аustenite homogenization processes and then the disk was cooled at a growing rate to a certain temperature. A temperature interval of completion of the speed-up wheel disk cooling was 200-450C. Structure was studied with the use of research methods under electronic and light microscopes. After accelerated cooling the estimation of metal structure imperfection degree was carried out with the use of X-ray structural analysis method. The stress and yielding limit of carbon steel were determined at tension, at a speed of deformation . The microhardness of steel structural components was estimated using the microhardness tester of PMT-3 type. Findings. The properties complex of railway wheel carbon steel depending on the temperature of the accelerated cooling termination is determined by the correlation of soften and work-hardening processes development. The effect of work-hardening is based on blocking of mobile dislocations due to a precipitation carbon atoms and dispersion work-hardening from the formed particles of carbidic phase. At the temperatures of the accelerated cooling termination of carbon steel higher than 300-350C the decrease rate of strength properties is determined by the exceeding of total soften effect from disintegration of solid solution, acceleration of spheroidithation and coalescence of cementite particles above the dislocations blocking by the carbon atoms and dispersion work-hardening. Originality. Authors proved that the strength level of the railway wheel carbon steel from the temperature of accelerated cooling completion is determined by the influence ratio of the solid solution

  18. Thermosyphon Method for Cooling the Rotor Blades of High-Temperature Steam Turbines

    Directory of Open Access Journals (Sweden)

    Bogomolov Alexander R.

    2016-01-01

    Full Text Available The design scheme of closed two-phase thermosyphon were suggested that can provide standard thermal operation of blades of high-temperature steam turbine. The method for thermosyphon calculation is developed. The example of thermal calculation was implemented, it showed that to cool the steam turbine blades at their heating by high-temperature steam, the heat can be removed in the rear part of the blades by air with the temperature of about 440°C.

  19. EPB standard EN ISO 52016: calculation of the building’s energy needs for heating and cooling, internal temperatures and heating and cooling load

    NARCIS (Netherlands)

    Dijk, H.A.L. van; Spiekman, M.E.; Hoes-van Oeffelen, E.C.M.

    2016-01-01

    EN ISO 52016-1 presents a coherent set of calculation methods at different levels of detail, for the (sensible) energy needs for the space heating and cooling and (latent) energy needs (de)humidification of a building and/or internal temperatures and heating and/or cooling loads, including the

  20. Temperature Field Accurate Modeling and Cooling Performance Evaluation of Direct-Drive Outer-Rotor Air-Cooling In-Wheel Motor

    Directory of Open Access Journals (Sweden)

    Feng Chai

    2016-10-01

    Full Text Available High power density outer-rotor motors commonly use water or oil cooling. A reasonable thermal design for outer-rotor air-cooling motors can effectively enhance the power density without the fluid circulating device. Research on the heat dissipation mechanism of an outer-rotor air-cooling motor can provide guidelines for the selection of the suitable cooling mode and the design of the cooling structure. This study investigates the temperature field of the motor through computational fluid dynamics (CFD and presents a method to overcome the difficulties in building an accurate temperature field model. The proposed method mainly includes two aspects: a new method for calculating the equivalent thermal conductivity (ETC of the air-gap in the laminar state and an equivalent treatment to the thermal circuit that comprises a hub, shaft, and bearings. Using an outer-rotor air-cooling in-wheel motor as an example, the temperature field of this motor is calculated numerically using the proposed method; the results are experimentally verified. The heat transfer rate (HTR of each cooling path is obtained using the numerical results and analytic formulas. The influences of the structural parameters on temperature increases and the HTR of each cooling path are analyzed. Thereafter, the overload capability of the motor is analyzed in various overload conditions.

  1. Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants

    Energy Technology Data Exchange (ETDEWEB)

    Manohar S. Sohal; J. Stephen Herring

    2008-07-01

    Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830°C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazards related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present acceptable

  2. Laser Cooling of a Solid by 16K Starting from Room Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Mungan, C.; Buchwald, M.; Edwards, B.; Epstein, R.; Gosnell, T. [Los Alamos National Laboratory, Mail Stop E543, Los Alamos, New Mexico 87545 (United States)

    1997-02-01

    An Yb{sup 3+}-doped optical fiber is laser cooled {ital in vacuo}from 298 to 282K. Cooling results from anti-Stokes fluorescence of the ytterbium ions after optical pumping at a wavelength of 1015nm. The sample temperature is deduced from the emission spectrum, which is sensitive to the populations in the excited-state multiplet of the ions. The temperature change is limited by the coupling between the fiber and ambient blackbody radiation, as confirmed when samples suddenly exposed to the pump laser are found to exponentially relax towards thermal steady state with the expected time constants. {copyright} {ital 1997} {ital The American Physical Society}

  3. Measured gas and particle temperatures in VTT's entrained flow reactor

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Sørensen, L.H.

    2006-01-01

    Particle and gas temperature measurements were carried out in experiments on VTTs entrained flow reactor with 5% and 10% oxygen using Fourier transform infrared emission spectroscopy (FTIR). Particle temperature measurements were performed on polish coal,bark, wood, straw particles, and bark...... and wood particles treated with additive. A two-color technique with subtraction of the background light was used to estimate particle temperatures during experiments. A transmission-emission technique was used tomeasure the gas temperature in the reactor tube. Gas temperature measurements were in good...

  4. Maisotsenko cycle applications for multistage compressors cooling

    Science.gov (United States)

    Levchenko, D.; Yurko, I.; Artyukhov, A.; Baga, V.

    2017-08-01

    The present study provides the overview of Maisotsenko Cycle (M-Cycle) applications for gas cooling in compressor systems. Various schemes of gas cooling systems are considered regarding to their thermal efficiency and cooling capacity. Preliminary calculation of M-cycle HMX has been conducted. It is found that M-cycle HMX scheme allows to brake the limit of the ambient wet bulb temperature for evaporative cooling. It has demonstrated that a compact integrated heat and moisture exchange process can cool product fluid to the level below the ambient wet bulb temperature, even to the level of dew point temperature of the incoming air with substantially lower water and energy consumption requirements.

  5. Analysis of Mass Profiles and Cooling Flows of Bright, Early-Type Galaxies AO2, AO3 and Surface Brightness Profiles and Energetics of Intracluster Gas in Cool Galaxy Clusters AO3

    Science.gov (United States)

    White, Raymond E., III

    1998-01-01

    This final report uses ROSAT observations to analyze two different studies. These studies are: Analysis of Mass Profiles and Cooling Flows of Bright, Early-Type Galaxies; and Surface Brightness Profiles and Energetics of Intracluster Gas in Cool Galaxy Clusters.

  6. Helium turbine power generation in high temperature gas reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Yasuo [Tokyo Inst. of Tech. (Japan)

    1995-03-01

    This paper presents studies on the helium turbine power generator and important components in the indirect cycle of high temperature helium cooled reactor with multi-purpose use of exhaust thermal energy from the turbine. The features of this paper are, firstly the reliable estimation of adiabatic efficiencies of turbine and compressor, secondly the introduction of heat transfer enhancement by use of the surface radiative heat flux from the thin metal plates installed in the hot helium and between the heat transfer coil rows of IHX and RHX, thirdly the use of turbine exhaust heat to produce fresh water from seawater for domestic, agricultural and marine fields, forthly a proposal of plutonium oxide fuel without a slight possibility of diversion of plutonium for nuclear weapon production and finally the investigation of GT-HTGR of large output such as 500 MWe. The study of performance of GT-HTGR reduces the result that for the reactor of 450 MWt the optimum thermal efficiency is about 43% when the turbine expansion ratio is 3.9 for the turbine efficiency of 0.92 and compressor efficiency of 0.88 and the helium temperature at the compressor inlet is 45degC. The produced amount of fresh water is about 8640 ton/day. It is made clear that about 90% of the reactor thermal output is totally used for the electric power generation in the turbine and for the multi-puposed utilization of the heat from the turbine exhaust gas and compressed helium cooling seawater. The GT-Large HTGR is realized by the separation of the pressure and temperature boundaries of the pressure vessel, the increase of burning density of the fuel by 1.4 times, the extention of the nuclear core diameter and length by 1.2 times, respectively, and the enhancement of the heat flux along the nuclear fuel compact surface by 1.5 times by providing riblets with the peak in the flow direction. (J.P.N.).

  7. Coolant and ambient temperature control for chillerless liquid cooled data centers

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J.; David, Milnes P.; Iyengar, Madhusudan K.; Parida, Pritish R.; Simons, Robert E.

    2017-08-29

    Cooling control methods and systems include measuring a temperature of air provided to one or more nodes by an air-to-liquid heat exchanger; measuring a temperature of at least one component of the one or more nodes and finding a maximum component temperature across all such nodes; comparing the maximum component temperature to a first and second component threshold and comparing the air temperature to a first and second air threshold; and controlling a proportion of coolant flow and a coolant flow rate to the air-to-liquid heat exchanger and the one or more nodes based on the comparisons.

  8. Modelling of the temporal evolution of the gas temperature in N2 discharges

    Science.gov (United States)

    Pintassilgo, Carlos D.; Guerra, Vasco

    2017-05-01

    The time-dependent evolution of the energy transfer to gas heating in a pure N2 discharge produced in a cylindrical tube at low pressures (1-10 Torr) is studied for different fixed values of the reduced electric field and electron density. We consider a model based on the self-consistent solutions to the time-dependent gas thermal balance equation coupled to the electron, vibrational, and chemical kinetic equations for the most important heavy species produced in N2 plasma discharges. The results of this model provide the temporal variation of the radially averaged value of the gas temperature, as well as the corresponding gas heating mechanisms. It is shown that the pooling reactions N2(A) + N2(A) → N2(B) + N2 and N2(A) + N2(A) → N2(C) + N2 are responsible for a smooth increase in the gas temperature before the first millisecond. For longer times, gas heating is found to be mainly caused by vibrational energy exchanges from non-resonant vibration-vibration (V-V) processes between N2 molecules and by vibration-translation (V-T) N2-N collisions. The heating rates of these different gas heating mechanisms and the gas temperature are calculated for a reduced electric field of 50 and 100 Td (1 Td = 10-17 Vcm2), an electron density of 1010 and 1011 cm-3, and a pressure of 1 and 10 Torr. The fractional power converted to gas heating from electronic and vibrational excitation is also calculated for these parameters, being respectively ˜2% and in the range 10%-35%. The effect of having a contribution of non-resonant V-V processes to gas cooling within the time interval 0.1-1 ms is analysed. The role of the gas temperature on the temporal evolution of the vibrational distribution of N2(X, v) molecules is also discussed.

  9. Conduction cooled high temperature superconducting dipole magnet for accelerator applications

    DEFF Research Database (Denmark)

    Zangenberg, N.; Nielsen, G.; Hauge, N.

    2012-01-01

    A 3T proof-of-principle dipole magnet for accelerator applications, based on 2nd generation high temperature superconducting tape was designed, built, and tested by a consortium under the lead of Danfysik. The magnet was designed to have a straight, circular bore with a good field region of radius...... = 25 mm, and a magnetic length of 250 mm. A total length of 2.5 km YBCO-based copper stabilized conductor supplied by SuperPower Inc., NY, USA, was isolated with 0.025 mm of epoxy and subsequently wound into 14 saddle coils and 4 racetrack coils with a cosine theta like configuration. The coils were......-liquid free operation of an HTS accelerator magnet was demonstrated. The cold mass support design permits magnet orientation under arbitrary angles. Careful choice of materials in terms of magnetic, heat conducting and mechanical properties resulted in a robust and compact solution which opens up...

  10. The absorption and emission spectrum of radiative cooling galactic fountain gas

    Science.gov (United States)

    Benjamin, Robert A.; Shapiro, Paul R.

    1993-01-01

    We have calculated the time-dependent, nonequilibrium thermal and ionization history of gas cooling radiatively from 10(exp 6) K in a one-dimensional, planar, steady-state flow model of the galactic fountain, including the effects of radiative transfer. Our previous optically thin calculations explored the effects of photoionization on such a flow and demonstrated that self-ionization was sufficient to cause the flow to match the observed galactic halo column densities of C 4, Si 4, and N 5 and UV emission from C 4 and O 3 in the constant density (isochoric) limit, which corresponded to cooling regions homogeneous on scales D less than or approximately equal to 1 kpc. Our new calculations which take full account of radiative transfer confirm the importance of self-ionization in enabling such a flow to match the data but allow a much larger range for cooling region sizes, i.e. D(sub 0) greater than or approximately equal to 15 pc. For an initial flow velocity v(sub 0) approximately equal to 100 km/s, comparable to the sound speed of a 10(exp 6) K gas, the initial density is found to be n(sub h,0) is approximately 2 x 10(exp -2) cm(exp -3), in reasonable agreement with other observation estimates, and D(sub 0) is approximately equal to 40 pc. We also compare predicted H(alpha) fluxes, UV line emission, and broadband x-ray fluxes with observed values. One dimensional numerical hydrodynamical calculations including the effects of radiative cooling are also presented.

  11. Study on Performance Improvement and Economical Aspect of Gas Turbine Power Plant Using Evaporative Cooling System

    Directory of Open Access Journals (Sweden)

    Hilman Syaeful Alam

    2015-12-01

    Full Text Available The study is intended to improve the performance of gas turbine engines in order to meet both electrical power demand and peak load in the power plant. In this paper, evaporative cooling system had been applied to improve the performance of gas turbine in Pesanggaran power plant in southern Bali Island, Indonesia. Moreover, the economic analysis was conducted to determine the capacity cost, operating cost and payback period due to the investment cost of the system. Based on the evaluation results, the power improvement for the three gas turbine units (GT1, GT2 and GT3 are 2.09%, 1.38%, and 1.28%, respectively. These results were not very significant when compared to the previous studies as well as on the aspects of SFC (Specific Fuel Consumption, heat rate and thermal efficiency. Based on the evaluation of the economic aspects, the reduction of production costs due to the application of evaporative cooling system was not economical, because it could not compensate the investment cost of the system and it resulted a very long payback period. These unsatisfactory results could be caused by the high relative humidity. Therefore, further studies are needed to investigate the other alternative technologies which are more suitable to the climate conditions in Indonesia.

  12. Wide-range vortex shedding flowmeter for high-temperature helium gas

    Energy Technology Data Exchange (ETDEWEB)

    Baker, S.P.; Herndon, P.G.; Ennis, R.M. Jr.

    1983-01-01

    The existing design of a commercially available vortex shedding flowmeter (VSFM) was modified and optimized to produce three 4-in. and one 6-in. high-performance VSFMs for measuring helium flow in a gas-cooled fast reactor (GCFR) test loop. The project was undertaken because of the significant economic and performance advantages to be realized by using a single flowmeter capable of covering the 166:1 flow range (at 350/sup 0/C and 45:1 pressure range) of the tests. A detailed calibration in air and helium at the Colorado Engineering Experiment Station showed an accuracy of +-1% of reading for a 100:1 helium flow range and +-1.75% of reading for a 288:1 flow range in both helium and air. At an extended gas temperature of 450/sup 0/C, water cooling was necessary for reliable flowmeter operation.

  13. Simulation of temperature in office with building integrated heating and cooling system

    DEFF Research Database (Denmark)

    Weitzmann, Peter

    2002-01-01

    by raising the temperature of the concrete to slightly above the desired room temperature. Another way of solving the problem of cooling is by using building integrated cooling in floors. This technique utilizes the thermal mass of concrete in the floors, by integrating PEX pipes in the floor. By maintaining...... the temperature of the concrete to a level slightly below the desired room temperature, the concrete will work as an absorber for the excess heat in the office. This can significantly reduce the need for air conditioning, which will give both improved indoor climate and lower energy costs in the building...... and thermal comfort parameters. The model is based on a numerical Finite Control Volume (FCV) method for the heat transfer in walls, ceiling, windows and floor. The model uses both convective and radiative heat transfer to the room air and between the room surfaces. The simulation model can be used...

  14. What are the relative roles of heating and cooling in generating solar wind temperature anisotropies?

    Science.gov (United States)

    Maruca, B A; Kasper, J C; Bale, S D

    2011-11-11

    Temperature anisotropy in the solar wind results from a combination of mechanisms of anisotropic heating (e.g., cyclotron-resonant heating and dissipation of kinetic Alfvén waves) and cooling (e.g., Chew-Goldberger-Low double-adiabatic expansion). In contrast, anisotropy-driven instabilities such as the cyclotron, mirror, and firehose instabilities limit the allowable departure of the plasma from isotropy. This study used data from the Faraday cups on the Wind spacecraft to examine scalar temperature and temperature components of protons. Plasma unstable to the mirror or firehose instability was found to be about 3-4 times hotter than stable plasma. Since anisotropy-driven instabilities are not understood to heat the plasma, these results suggest that heating processes are more effective than cooling processes at creating and maintaining proton temperature anisotropy in the solar wind.

  15. The relationship between local scalp skin temperature and cutaneous perfusion during scalp cooling

    NARCIS (Netherlands)

    Janssen, Francis-Paul E.M.; Rajan, Vinayakrishnan; Steenbergen, Wiendelt; van Leeuwen, Gerard M.J.; van Steenhoven, Anton A.

    2007-01-01

    Cooling the scalp during administration of chemotherapy can prevent hair loss. It reduces both skin blood flow and hair follicle temperature, thus affecting drug supply and drug effect in the hair follicle. The extent to which these mechanisms contribute to the hair preservative effect of scalp

  16. Mesoscale climatic simulation of surface air temperature cooling by highly reflective greenhouses in SE Spain.

    Science.gov (United States)

    Campra, Pablo; Millstein, Dev

    2013-01-01

    A long-term local cooling trend in surface air temperature has been monitored at the largest concentration of reflective greenhouses in the world, at the Province of Almeria, SE Spain, associated with a dramatic increase in surface albedo in the area. The availability of reliable long-term climatic field data at this site offers a unique opportunity to test the skill of mesoscale meteorological models describing and predicting the impacts of land use change on local climate. Using the Weather Research and Forecast (WRF) mesoscale model, we have run a sensitivity experiment to simulate the impact of the observed surface albedo change on monthly and annual surface air temperatures. The model output showed a mean annual cooling of 0.25 °C associated with a 0.09 albedo increase, and a reduction of 22.8 W m(-2) of net incoming solar radiation at surface. Mean reduction of summer daily maximum temperatures was 0.49 °C, with the largest single-day decrease equal to 1.3 °C. WRF output was evaluated and compared with observations. A mean annual warm bias (MBE) of 0.42 °C was estimated. High correlation coefficients (R(2) > 0.9) were found between modeled and observed values. This study has particular interest in the assessment of the potential for urban temperature cooling by cool roofs deployment projects, as well as in the evaluation of mesoscale climatic models performance.

  17. High Cooling Water Temperature Effects on Design and Operational Safety of NPPs in the Gulf Region

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung Koo [Khalifa Univ., Abu Dhabi (United Arab Emirates); Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-12-15

    The Arabian Gulf region has one of the highest ocean temperatures, reaching above 35 degrees and ambient temperatures over 50 degrees in the summer. Two nuclear power plants (NPP) are being introduced in the region for the first time, one at Bushehr (1,000 MWe PWR plant from Russia), and a much larger one at Barakah (4Χ1,400 MWe PWR from Korea). Both plants take seawater from the Gulf for condenser cooling, having to modify the secondary/tertiary side cooling systems design by increasing the heat transfer surface area from the country of origin. This paper analyses the secondary side of a typical PWR plant operating under the Rankine cycle with a simplified thermal-hydraulic model. Parametric study of ocean cooling temperatures is conducted to estimate thermal efficiency variations and its associated design changes for the secondary side. Operational safety is reviewed to deliver rated power output with acceptable safety margins in line with technical specifications, mainly in the auxiliary systems together with the cooling water temperature. Impact on the Gulf seawater as the ultimate heat sink is considered negligible, affecting only the adjacent water near the NPP site, when compared to the solar radiation on the sea surface.

  18. Perceiving nasal patency through mucosal cooling rather than air temperature or nasal resistance.

    Science.gov (United States)

    Zhao, Kai; Blacker, Kara; Luo, Yuehao; Bryant, Bruce; Jiang, Jianbo

    2011-01-01

    Adequate perception of nasal airflow (i.e., nasal patency) is an important consideration for patients with nasal sinus diseases. The perception of a lack of nasal patency becomes the primary symptom that drives these patients to seek medical treatment. However, clinical assessment of nasal patency remains a challenge because we lack objective measurements that correlate well with what patients perceive. The current study examined factors that may influence perceived patency, including air temperature, humidity, mucosal cooling, nasal resistance, and trigeminal sensitivity. Forty-four healthy subjects rated nasal patency while sampling air from three facial exposure boxes that were ventilated with untreated room air, cold air, and dry air, respectively. In all conditions, air temperature and relative humidity inside each box were recorded with sensors connected to a computer. Nasal resistance and minimum airway cross-sectional area (MCA) were measured using rhinomanometry and acoustic rhinometry, respectively. General trigeminal sensitivity was assessed through lateralization thresholds to butanol. No significant correlation was found between perceived patency and nasal resistance or MCA. In contrast, air temperature, humidity, and butanol threshold combined significantly contributed to the ratings of patency, with mucosal cooling (heat loss) being the most heavily weighted predictor. Air humidity significantly influences perceived patency, suggesting that mucosal cooling rather than air temperature alone provides the trigeminal sensation that results in perception of patency. The dynamic cooling between the airstream and the mucosal wall may be quantified experimentally or computationally and could potentially lead to a new clinical evaluation tool.

  19. HIGH COOLING WATER TEMPERATURE EFFECTS ON DESIGN AND OPERATIONAL SAFETY OF NPPS IN THE GULF REGION

    Directory of Open Access Journals (Sweden)

    BYUNG KOO KIM

    2013-12-01

    Full Text Available The Arabian Gulf region has one of the highest ocean temperatures, reaching above 35 degrees and ambient temperatures over 50 degrees in the summer. Two nuclear power plants (NPP are being introduced in the region for the first time, one at Bushehr (1,000 MWe PWR plant from Russia, and a much larger one at Barakah (4X1,400 MWe PWR from Korea. Both plants take seawater from the Gulf for condenser cooling, having to modify the secondary/tertiary side cooling systems design by increasing the heat transfer surface area from the country of origin. This paper analyses the secondary side of a typical PWR plant operating under the Rankine cycle with a simplified thermal-hydraulic model. Parametric study of ocean cooling temperatures is conducted to estimate thermal efficiency variations and its associated design changes for the secondary side. Operational safety is reviewed to deliver rated power output with acceptable safety margins in line with technical specifications, mainly in the auxiliary systems together with the cooling water temperature. Impact on the Gulf seawater as the ultimate heat sink is considered negligible, affecting only the adjacent water near the NPP site, when compared to the solar radiation on the sea surface.

  20. Single-Mask Fabrication of Temperature Triggered MEMS Switch for Cooling Control in SSL System

    NARCIS (Netherlands)

    Wei, J.; Ye, H.; Van Zeijl, H.W.; Sarro, P.M.; Zhang, G.Q.

    2012-01-01

    A micro-electro-mechanical-system (MEMS) based, temperature triggered, switch is developed as a cost-effective solution for smart cooling control of solid-state-lighting systems. The switch (1.0x0.4 mm2) is embedded in a silicon substrate and fabricated with a single-mask 3D micro-machining process.

  1. Prediction of Ablation Rates from Solid Surfaces Exposed to High Temperature Gas Flow

    Science.gov (United States)

    Akyuzlu, Kazim M.; Coote, David

    2013-01-01

    A mathematical model and a solution algorithm is developed to study the physics of high temperature heat transfer and material ablation and identify the problems associated with the flow of hydrogen gas at very high temperatures and velocities through pipes and various components of Nuclear Thermal Rocket (NTR) motors. Ablation and melting can be experienced when the inner solid surface of the cooling channels and the diverging-converging nozzle of a Nuclear Thermal Rocket (NTR) motor is exposed to hydrogen gas flow at temperatures around 2500 degrees Kelvin and pressures around 3.4 MPa. In the experiments conducted on typical NTR motors developed in 1960s, degradation of the cooling channel material (cracking in the nuclear fuel element cladding) and in some instances melting of the core was observed. This paper presents the results of a preliminary study based on two types of physics based mathematical models that were developed to simulate the thermal-hydrodynamic conditions that lead to ablation of the solid surface of a stainless steel pipe exposed to high temperature hydrogen gas near sonic velocities. One of the proposed models is one-dimensional and assumes the gas flow to be unsteady, compressible and viscous. An in-house computer code was developed to solve the conservations equations of this model using a second-order accurate finite-difference technique. The second model assumes the flow to be three-dimensional, unsteady, compressible and viscous. A commercial CFD code (Fluent) was used to solve the later model equations. Both models assume the thermodynamic and transport properties of the hydrogen gas to be temperature dependent. In the solution algorithm developed for this study, the unsteady temperature of the pipe is determined from the heat equation for the solid. The solid-gas interface temperature is determined from an energy balance at the interface which includes heat transfer from or to the interface by conduction, convection, radiation, and

  2. Establishment of critical hygiene indices for meat cooling processes evaluated by a temperature function integration method.

    Science.gov (United States)

    Lovatt, Simon J; Bell, R Graham; Le Roux, Guillaume J

    2006-09-01

    A temperature function integration technique that involves the calculation of the potential growth of Escherichia coli to obtain a process hygiene index (PHI) is the New Zealand industry standard method for assessing the potential for growth of enteric bacteria during meat cooling processes. The existing criteria to determine the acceptability of a cooling process with PHI values take no account of the differences between meat products and thus limit processing flexibility. A methodology was developed to set criteria for processing acceptability, based on the frequency distribution of the indicator organism E. coli number on meat carcasses immediately after slaughter (in log2 CFU per square centimeter) and a requirement that the E. coli numbers at the end of the cooling process be less than or equal to some maximum acceptable level. This methodology was used, along with accepted guidelines for maximum acceptable levels of E. coli in the meat and measured initial E. coli numbers for the whole New Zealand meat industry, to develop a set of PHI criteria that would be satisfied by a good-practice meat processing operation. A Monte Carlo modeling approach was used to illustrate the implications of these criteria if they had been applied to cooling processes for beef and lamb previously evaluated by the authors. If the proposed criteria were adopted, the maximum allowable PHI for beef cooling could be higher than that for lamb cooling because of the lower initial E. coli numbers found on beef than on lamb carcasses.

  3. Performance of semi-transportation-cooled liner in high-temperature-rise combustors

    Science.gov (United States)

    Wear, J. D.; Trout, A. M.; Smith, J. M.

    1981-01-01

    Results from tests with the Lamilloy combustor liner are compared with results obtained from a conventionally designed, film cooled, step-louver liner. Operation of the Lamilloy liner with counterrotating swirl combustor fuel modules with mixing venturis was possible to a fuel-air ratio of 0.065 without obtaining excessive liner metal temperatures. At the 0.065 fuel-air condition the average liner metal temperature was 140 K and the maximum local temperature 280 K above the inlet air temperature. Combustion efficiency, pattern factor, and smoke data are discussed.

  4. Cooling supply system for stage 3 bucket of a gas turbine

    Science.gov (United States)

    Eldrid, Sacheverel Quentin; Burns, James Lee; Palmer, Gene David; Leone, Sal Albert; Drlik, Gary Joseph; Gibler, Edward Eugene

    2002-01-01

    In a land based gas turbine including a compressor, a combustor and turbine section including at least three stages, an improvement comprising an inlet into a third stage nozzle from the compressor for feeding cooling air from the compressor to the third stage nozzle; at least one passageway running substantially radially through each airfoil of the third stage nozzle and an associated diaphragm, into an annular space between the rotor and the diaphragm; and passageways communicating between the annular space and individual buckets of the third stage.

  5. Definition of the strain-stress distribution of porous glass in the retarded cooling temperature range

    Directory of Open Access Journals (Sweden)

    Grushko Irina

    2017-01-01

    Full Text Available The estimation of the strain-stress distribution (SSD of porous glass (foamed slag glass, FSG is assessed by annealing temperature curves according to the given values of the thermomechanical and thermophysical properties of porous glass, which are in correlation with the properties data of the host glass and its structure. When calculating cooling processes (cooling rate of porous glass products, the A.N. Dauvalter's formula, which takes into account only the stresses arising from the safe product cooling, but does not take into account those that remained there to the cooling start point, is usually used. The cooling rate in the interval of the annealing zone itself should be sufficiently low so that residual stresses, arising after they pass it, have small values. Since methods, that make it possible to determine the residual stresses that appear in the porous glass after passing through the initial annealing zone, are currently poorly developed, numerical simulation methods should be used to determine the porous glass SSD under the influence of thermal loads. Numerical study of the strain-stress distribution of porous glass allowing for thermal loads in the annealing temperature range was carried out in the Ansys Workbench software package.

  6. Compact photomultiplier housing with controlled cooling.

    Science.gov (United States)

    SHARDANAND

    1972-01-01

    Description of a compact photomultiplier housing which can provide controlled cooling to the photomultiplier tube down to -90 C. The cooling is accomplished by flowing liquid nitrogen cooled helium gas through a series of coils which envelop the photocathode portion of the tube. The temperature is controlled by controlling the flow of the gas with a fine adjustable needle valve. The temperature is measured near the photocathode of the photomultiplier by a calibrated thermistor.

  7. Gas Reactor International Cooperative Program. Interim report: assessment of gas-cooled reactor economics

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    The merits of introducing Pebble Bed Gas Reactors (PBRs) into the existing US electric generating sector are discussed. Information is presented concerning an economic model; nuclear fuel costs; capital cost targets; time comparison of nuclear power costs; introduction scenarios; domestic economic incentives; the selection of a discount rate for national energy supply studies; nuclear fuel cycle cost calculation code RAMMER; and PBR and HTGR fabrication and reprocessing costs.

  8. Prehospital cooling to improve successful targeted temperature management after cardiac arrest: A randomized controlled trial.

    Science.gov (United States)

    Scales, D C; Cheskes, S; Verbeek, P R; Pinto, R; Austin, D; Brooks, S C; Dainty, K N; Goncharenko, K; Mamdani, M; Thorpe, K E; Morrison, L J

    2017-10-05

    Targeted temperature management (TTM) improves survival with good neurological outcome after out-of-hospital cardiac arrest (OHCA), but is delivered inconsistently and often with delay. To determine if prehospital cooling by paramedics leads to higher rates of 'successful TTM', defined as achieving a target temperature of 32-34°C within 6h of hospital arrival. Pragmatic RCT comparing prehospital cooling (surface ice packs, cold saline infusion, wristband reminders) initiated 5min after return of spontaneous circulation (ROSC) versus usual resuscitation and transport. The primary outcome was rate of 'successful TTM'; secondary outcomes were rates of applying TTM in hospital, survival with good neurological outcome, pulmonary edema in emergency department, and re-arrest during transport. 585 patients were randomized to receive prehospital cooling (n=279) or control (n=306). Prehospital cooling did not increase rates of 'successful TTM' (30% vs 25%; RR, 1.17; 95% confidence interval [CI] 0.91-1.52; p=0.22), but increased rates of applying TTM in hospital (68% vs 56%; RR, 1.21; 95%CI 1.07-1.37; p=0.003). Survival with good neurological outcome (29% vs 26%; RR, 1.13, 95%CI 0.87-1.47; p=0.37) was similar. Prehospital cooling was not associated with re-arrest during transport (7.5% vs 8.2%; RR, 0.94; 95%CI 0.54-1.63; p=0.83) but was associated with decreased incidence of pulmonary edema in emergency department (12% vs 18%; RR, 0.66; 95%CI 0.44-0.99; p=0.04). Prehospital cooling initiated 5min after ROSC did not increase rates of achieving a target temperature of 32-34°C within 6h of hospital arrival but was safe and increased application of TTM in hospital. Copyright © 2017. Published by Elsevier B.V.

  9. Low cryogen inventory, forced flow Ne cooling system with room temperature compression stage and heat recuperation

    CERN Document Server

    Shornikov, A; Wolf, A

    2014-01-01

    We present design and commissioning results of a forced flow cooling system utilizing neon at 30 K. The cryogen is pumped through the system by a room-temperature compression stage. To decouple the cold zone from the compression stage a recuperating counterflow tube-in-tube heat exchanger is used. Commissioning demonstrated successful condensation of neon and transfer of up to 30 W cooling power to the load at 30 K using only 30 g of the cryogen circulating in the system at pressures below 170 kPa.

  10. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-11-01

    The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

  11. Cool Roofs in Guangzhou, China: Outdoor Air Temperature Reductions during Heat Waves and Typical Summer Conditions.

    Science.gov (United States)

    Cao, Meichun; Rosado, Pablo; Lin, Zhaohui; Levinson, Ronnen; Millstein, Dev

    2015-12-15

    In this paper, we simulate temperature reductions during heat-wave events and during typical summer conditions from the installation of highly reflective "cool" roofs in the Chinese megacity of Guangzhou. We simulate temperature reductions during six of the strongest historical heat-wave events over the past decade, finding average urban midday temperature reductions of 1.2 °C. In comparison, we simulate 25 typical summer weeks between 2004 and 2008, finding average urban midday temperature reductions of 0.8 °C, indicating that air temperature sensitivity to urban albedo in Guangzhou varies with meteorological conditions. We find that roughly three-fourths of the variance in air temperature reductions across all episodes can be accounted for by a linear regression, including only three basic properties related to the meteorological conditions: mean daytime temperature, humidity, and ventilation to the greater Guangzhou urban area. While these results highlight the potential for cool roofs to mitigate peak temperatures during heat waves, the temperature reductions reported here are based on the upper bound case, which increases albedos of all roofs (but does not modify road albedo or wall albedo).

  12. Development of the active magnetic regenerative refrigerator operating between 77 K and 20 K with the conduction cooled high temperature superconducting magnet

    Science.gov (United States)

    Park, Inmyong; Jeong, Sangkwon

    2017-12-01

    The experimental investigation of an active magnetic regenerative refrigerator (AMRR) operating between 77 K and 20 K is discussed in this paper, with detailed energy transfer analysis. A multi-layered active magnetic regenerator (AMR) is used, which consists of four different rare earth intermetallic compounds in the form of irregular powder. Numerical simulation confirms that the AMR can attain its target operating temperature range. Magnetic field alternation throughout the AMR is generated by a high temperature superconducting (HTS) magnet. The HTS magnet is cooled by a two stage Gifford-McMahon (GM) cryocooler. Helium gas was employed as a working fluid and its oscillating flow in the AMR is controlled in accordance with the magnetic field variation. The AMR is divided into two stages and each stage has a different mass flow rate as needed to achieve the desired cooling performance. The temperature variation of the AMR during the experiment is monitored by temperature sensors installed inside the AMR. The experimental results show that the AMRR is capable of achieving no-load temperature of 25.4 K while the warm end temperature is 77 K. The performance of the AMRR is analyzed by observing internal temperature variations at cyclic steady state. Furthermore, numerical estimation of the cooling capacity and the temperature variation of the AMR are examined and compared with the experimental results.

  13. Correlation of cylinder-head temperatures and coolant heat rejections of a multicylinder, liquid-cooled engine of 1710-cubic-inch displacement

    Science.gov (United States)

    Lundin, Bruce T; Povolny, John H; Chelko, Louis J

    1949-01-01

    Data obtained from an extensive investigation of the cooling characteristics of four multicylinder, liquid-cooled engines have been analyzed and a correlation of both the cylinder-head temperatures and the coolant heat rejections with the primary engine and coolant variables was obtained. The method of correlation was previously developed by the NACA from an analysis of the cooling processes involved in a liquid-cooled-engine cylinder and is based on the theory of nonboiling, forced-convection heat transfer. The data correlated included engine power outputs from 275 to 1860 brake horsepower; coolant flows from 50 to 320 gallons per minute; coolants varying in composition from 100 percent water to 97 percent ethylene glycol and 3 percent water; and ranges of engine speed, manifold pressure, carburetor-air temperature, fuel-air ratio, exhaust-gas pressure, ignition timing, and coolant temperature. The effect on engine cooling of scale formation on the coolant passages of the engine and of boiling of the coolant under various operating conditions is also discussed.

  14. Novel silica membranes for high temperature gas separations

    KAUST Repository

    Bighane, Neha

    2011-04-01

    This article describes fabrication of novel silica membranes derived via controlled oxidative thermolysis of polydimethylsiloxane and their gas separation performance. The optimized protocol for fabrication of the silica membranes is described and pure gas separation performance in the temperature range 35-80°C is presented. It is observed that the membranes exhibit activated transport for small gas penetrants such as He, H 2 and CO 2. The membranes can withstand temperatures up to 350°C in air and may ultimately find use in H 2/CO 2 separations to improve efficiency in the water-gas shift reactor process. © 2011 Elsevier B.V.

  15. Transient heat transfer behavior of water spray evaporative cooling on a stainless steel cylinder with structured surface for safety design application in high temperature scenario

    Science.gov (United States)

    Aamir, Muhammad; Liao, Qiang; Hong, Wang; Xun, Zhu; Song, Sihong; Sajid, Muhammad

    2017-02-01

    High heat transfer performance of spray cooling on structured surface might be an additional measure to increase the safety of an installation against any threat caused by rapid increase in the temperature. The purpose of present experimental study is to explore heat transfer performance of structured surface under different spray conditions and surface temperatures. Two cylindrical stainless steel samples were used, one with pyramid pins structured surface and other with smooth surface. Surface heat flux of 3.60, 3.46, 3.93 and 4.91 MW/m2 are estimated for sample initial average temperature of 600, 700, 800 and 900 °C, respectively for an inlet pressure of 1.0 MPa. A maximum cooling rate of 507 °C/s was estimated for an inlet pressure of 0.7 MPa at 900 °C for structured surface while for smooth surface maximum cooling rate of 356 °C/s was attained at 1.0 MPa for 700 °C. Structured surface performed better to exchange heat during spray cooling at initial sample temperature of 900 °C with a relative increase in surface heat flux by factor of 1.9, 1.56, 1.66 and 1.74 relative to smooth surface, for inlet pressure of 0.4, 0.7, 1.0 and 1.3 MPa, respectively. For smooth surface, a decreasing trend in estimated heat flux is observed, when initial sample temperature was increased from 600 to 900 °C. Temperature-based function specification method was utilized to estimate surface heat flux and surface temperature. Limited published work is available about the application of structured surface spray cooling techniques for safety of stainless steel structures at very high temperature scenario such as nuclear safety vessel and liquid natural gas storage tanks.

  16. Implant Surface Temperature Changes during Er:YAG Laser Irradiation with Different Cooling Systems.

    Directory of Open Access Journals (Sweden)

    Abbas Monzavi

    2014-04-01

    Full Text Available Peri-implantitis is one of the most common reasons for implant failure. Decontamination of infected implant surfaces can be achieved effectively by laser irradiation; although the associated thermal rise may cause irreversible bone damage and lead to implant loss. Temperature increments of over 10ºC during laser application may suffice for irreversible bone damage.The purpose of this study was to evaluate the temperature increment of implant surface during Er:YAG laser irradiation with different cooling systems.Three implants were placed in a resected block of sheep mandible and irradiated with Er:YAG laser with 3 different cooling systems namely water and air spray, air spray alone and no water or air spray. Temperature changes of the implant surface were monitored during laser irradiation with a K-type thermocouple at the apical area of the fixture.In all 3 groups, the maximum temperature rise was lower than 10°C. Temperature changes were significantly different with different cooling systems used (P<0.001.Based on the results, no thermal damage was observed during implant surface decontamination by Er:YAG laser with and without refrigeration. Thus, Er:YAG laser irradiation can be a safe method for treatment of periimplantitis.

  17. Growth of Cronobacter spp. under dynamic temperature conditions occurring during cooling of reconstituted powdered infant formula.

    Science.gov (United States)

    Kandhai, M C; Breeuwer, P; Gorris, L G M; Zwietering, M H; Reij, M W

    2009-12-01

    Reconstituted infant formulae are excellent growth media for Cronobacter spp. (formerly Enterobacter sakazakii) and other microorganisms that may be present in such products. Immediate consumption or rapid cooling and storage at a low temperature are therefore recommended as control measures to prevent microbial growth. Placing a container filled with reconstituted liquid formula in the refrigerator, however, does not mean that the temperature of the liquid is directly the same as the set-point of the refrigerator. This study describes the temperature profiles and methods to predict lag time and possible growth of Cronobacter spp. during the cooling process in three types of containers. The overall heat transfer coefficients (alpha) were determined and were shown to have a very large variability in both household refrigerators and an air-ventilated refrigerator equipped with a fan. A mathematical model was built to predict the growth of Cronobacter spp. under dynamic temperature conditions using three models for the lag time. The various estimations for the lag time had a remarkably strong impact on the predicted growth. The assumption of a constant k-value (k = lag time x specific growth rate = lambda x micro = 2.88) fitted the experimental data best. Predictions taking into account the large variability in heat transfer showed that proliferation of Cronobacter spp. during cooling may be prevented by limiting the volume to be cooled to portion size only, or by reconstituting at temperatures of 25 degrees C or lower. The model may also be used to predict growth in other situations where dynamic temperature conditions exist.

  18. Experimental study on the double-evaporator thermosiphon for cooling HTS (high temperature superconductor) system

    Science.gov (United States)

    Lee, Junghyun; Ko, Junseok; Kim, Youngkwon; Jeong, Sangkwon; Sung, Taehyun; Han, Younghee; Lee, Jeong-Phil; Jung, Seyong

    2009-08-01

    A cryogenic thermosiphons is an efficient heat transfer device between a cryocooler and a thermal load that is to be cooled. This paper presents an idea of thermosiphon which contains two vertically-separated evaporators. This unique configuration of the thermosiphon is suitable for the purpose of cooling simultaneously two superconducting bearings of the HTS (high temperature superconducting) flywheel system at the same temperature. A so-called double-evaporator thermosiphon was designed, fabricated and tested using nitrogen as the working fluid under sub-atmospheric pressure condition. The interior thermal condition of the double-evaporator thermosiphon was examined in detail during its cool-down process according to the internal thermal states. The double-evaporator thermosiphon has operated successfully at steady-state operation under sub-atmospheric pressure. At the heat flow of 10.6 W, the total temperature difference of the thermosiphon was only 1.59 K and the temperature difference between the evaporators was 0.64 K. The temperature difference of two evaporators is attributed to the conductive thermal resistance of the adiabatic section between the evaporators. The method to reduce this temperature difference has been investigated and presented in this paper. The proper area selection of condenser, evaporator 1, and evaporator 2 was studied by using thermal resistance model to optimize the performance of a thermosiphon. The superior heat transfer characteristic of the double-evaporator thermosiphon without involving any cryogenic pump can be a great potential advantage for cooling HTS bulk modules that are separated vertically.

  19. Effect of cooling to different sub-zero temperatures on boar sperm cryosurvival

    OpenAIRE

    Angelica Garcia-Olivares; Cesar Garzon-Perez; Oscar Gutierrez-Perez; Alfredo Medrano

    2016-01-01

    Objective: To compare different cooling temperatures before ice formation on pig sperm quality, before and after cryopreservation. Methods: Semen diluted in BF5 was cooled from 23 °C to 5 °C (1% glycerol, 200 × 106 cells/mL). Sperm were packaged in plastic straws, and maintained at +5 °C per 16 h. 1. Freezing point of diluted spermatozoa was determined by exposing straws to nitrogen vapors. 2. Straws (at +5 °C) were further cooled to −3 °C, −5 °C, and −7 °C, and rewarmed. 3. Straws (at +5 ...

  20. A Computational Study for the Utilization of Jet Pulsations in Gas Turbine Film Cooling and Flow Control

    Science.gov (United States)

    Kartuzova, Olga V.

    2012-01-01

    This report is the second part of a three-part final report of research performed under an NRA cooperative Agreement contract. The first part is NASA/CR-2012-217415. The third part is NASA/CR-2012-217417. Jets have been utilized in various turbomachinery applications in order to improve gas turbines performance. Jet pulsation is a promising technique because of the reduction in the amount of air removed from compressor. In this work two areas of pulsed jets applications were computationally investigated using the commercial code Fluent (ANSYS, Inc.); the first one is film cooling of High Pressure Turbine (HPT) blades and second one is flow separation control over Low Pressure Turbine (LPT) airfoil using Vortex Generator Jets (VGJ). Using pulsed jets for film cooling purposes can help to improve the effectiveness and thus allow higher turbine inlet temperature. Effects of the film hole geometry, blowing ratio and density ratio of the jet, pulsation frequency and duty cycle of blowing on the film cooling effectiveness were investigated. As for the low-pressure turbine (LPT) stages, the boundary layer separation on the suction side of airfoils can occur due to strong adverse pressure gradients. The problem is exacerbated as airfoil loading is increased. Active flow control could provide a means for minimizing separation under conditions where it is most severe (low Reynolds number), without causing additional losses under other conditions (high Reynolds number). The effects of the jet geometry, blowing ratio, density ratio, pulsation frequency and duty cycle on the size of the separated region were examined in this work. The results from Reynolds Averaged Navier-Stokes and Large Eddy Simulation computational approaches were compared with the experimental data.

  1. Demonstration of Enabling Spar-Shell Cooling Technology in Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Downs, James [Florida Turbine Technologies Inc., Jupiter, FL (United States)

    2014-12-29

    In this Advanced Turbine Program-funded Phase III project, Florida Turbine Technologies, Inc. (FTT) has developed and tested, at a pre-commercial prototypescale, spar-shell turbine airfoils in a commercial gas turbine. The airfoil development is based upon FTT’s research and development to date in Phases I and II of Small Business Innovative Research (SBIR) grants. During this program, FTT has partnered with an Original Equipment Manufacturer (OEM), Siemens Energy, to produce sparshell turbine components for the first pre-commercial prototype test in an F-Class industrial gas turbine engine and has successfully completed validation testing. This project will further the commercialization of this new technology in F-frame and other highly cooled turbine airfoil applications. FTT, in cooperation with Siemens, intends to offer the spar-shell vane as a first-tier supplier for retrofit applications and new large frame industrial gas turbines. The market for the spar-shell vane for these machines is huge. According to Forecast International, 3,211 new gas turbines units (in the >50MW capacity size range) will be ordered in ten years from 2007 to 2016. FTT intends to enter the market in a low rate initial production. After one year of successful extended use, FTT will quickly ramp up production and sales, with a target to capture 1% of the market within the first year and 10% within 5 years (2020).

  2. High-temperature turbine technology program. Turbine subsystem design report: Low-Btu gas

    Energy Technology Data Exchange (ETDEWEB)

    Horner, M.W.

    1980-12-01

    The objective of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) program is to bring to technology readiness a high-temperature (2600/sup 0/F to 3000/sup 0/F firing temperature) turbine within a 6- to 10-year duration, Phase II has addressed the performance of component design and technology testing in critical areas to confirm the design concepts identified in the earlier Phase I program. Based on the testing and support studies completed under Phase II, this report describes the updated turbine subsystem design for a coal-derived gas fuel (low-Btu gas) operation at 2600/sup 0/F turbine firing temperature. A commercial IGCC plant configuration would contain four gas turbines. These gas turbines utilize an existing axial flow compressor from the GE product line MS6001 machine. A complete description of the Primary Reference Design-Overall Plant Design Description has been developed and has been documented. Trends in overall plant performance improvement at higher pressure ratio and higher firing temperature are shown. It should be noted that the effect of pressure ratio on efficiency is significally enhanced at higher firing temperatures. It is shown that any improvement in overall plant thermal efficiency reflects about the same level of gain in Cost of Electricity (COE). The IGCC concepts are shown to be competitive in both performance and cost at current and near-term gas turbine firing temperatures of 1985/sup 0/F to 2100/sup 0/F. The savings that can be accumulated over a thirty-year plant life for a water-cooled gas turbine in an IGCC plant as compared to a state-of-the-art coal-fired steam plant are estimated. A total of $500 million over the life of a 1000 MW plant is projected. Also, this IGCC power plant has significant environmental advantages over equivalent coal-fired steam power plants.

  3. High-Temperature Air-Cooled Power Electronics Thermal Design: Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Waye, Scot [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    Power electronics that use high-temperature devices pose a challenge for thermal management. With the devices running at higher temperatures and having a smaller footprint, the heat fluxes increase from previous power electronic designs. This project overview presents an approach to examine and design thermal management strategies through cooling technologies to keep devices within temperature limits, dissipate the heat generated by the devices and protect electrical interconnects and other components for inverter, converter, and charger applications. This analysis, validation, and demonstration intends to take a multi-scale approach over the device, module, and system levels to reduce size, weight, and cost.

  4. The influence of heated or cooled seats on the acceptable ambient temperature range

    DEFF Research Database (Denmark)

    Zhang, Y.F.; Wyon, David Peter; Fang, Lei

    2007-01-01

    In 11 climate chamber experiments at air temperatures ranging from 15 to 45 degrees C, a total of 24 subjects, dressed in appropriate clothing for entering a vehicle at these temperatures, were each exposed to four different seat temperatures, ranging from cool to warm. In one simulated summer...... series, subjects were preconditioned to be too hot, while in other series they were preconditioned to be thermally neutral. They reported their thermal sensations, overall thermal acceptability and comfort on visual analogue scales at regular intervals. Instantaneous heat flow to the seat was measured...

  5. Temperature monitoring using fibre optic sensors in a lead-bismuth eutectic cooled nuclear fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    De Pauw, B., E-mail: bdepauw@vub.ac.be [Vrije Universiteit Brussel (VUB), Brussels Photonics Team (B-Phot), Brussels (Belgium); Vrije Universiteit Brussel (VUB), Acoustics and Vibration Research Group (AVRG), Brussels (Belgium); Belgian Nuclear Research Centre, (SCK-CEN), Boeretang 200, Mol (Belgium); Lamberti, A.; Ertveldt, J.; Rezayat, A.; Vanlanduit, S. [Vrije Universiteit Brussel (VUB), Acoustics and Vibration Research Group (AVRG), Brussels (Belgium); Van Tichelen, K. [Belgian Nuclear Research Centre, (SCK-CEN), Boeretang 200, Mol (Belgium); Berghmans, F. [Vrije Universiteit Brussel (VUB), Brussels Photonics Team (B-Phot), Brussels (Belgium)

    2016-02-15

    Highlights: • We demonstrate the use of optical fibre sensors in lead-bismuth cooled installations. • In this first of a kind experiment, we focus on temperature measurements of fuel rods • We acquire the surface temperature with a resolution of 30 mK. • We asses the condition of the installation during different steps of the operation. - Abstract: In-core temperature measurements are crucial to assess the condition of nuclear reactor components. The sensors that measure temperature must respond adequately in order, for example, to actuate safety systems that will mitigate the consequences of an undesired temperature excursion and to prevent component failure. This issue is exacerbated in new reactor designs that use liquid metals, such as for example a molten lead-bismuth eutectic, as coolant. Unlike water cooled reactors that need to operate at high pressure to raise the boiling point of water, liquid metal cooled reactors can operate at high temperatures whilst keeping the pressure at lower levels. In this paper we demonstrate the use of optical fibre sensors to measure the temperature distribution in a lead-bismuth eutectic cooled installation and we derive functional input e.g. the temperature control system or other systems that rely on accurate temperature actuation. This first-of-a-kind experiment demonstrates the potential of optical fibre based instrumentation in these environments. We focus on measuring the surface temperature of the individual fuel rods in the fuel assembly, but the technique can also be applied to other components or sections of the installation. We show that these surface temperatures can be experimentally measured with limited intervention on the fuel pin owing to the small geometry and fundamental properties of the optical fibres. The unique properties of the fibre sensors allowed acquiring the surface temperatures with a resolution of 30 mK. With these sensors, we assess the condition of the test section containing the fuel

  6. An Experimental and Numerical Investigation of Endwall Aerodynamics and Heat Transfer in a Gas Turbine Nozzle Guide Vane with Slot Film Cooling

    Science.gov (United States)

    Alqefl, Mahmood Hasan

    In many regions of the high-pressure gas turbine, film cooling flows are used to protect the turbine components from the combustor exit hot gases. Endwalls are challenging to cool because of the complex system of secondary flows that disturb surface film coolant coverage. The secondary flow vortices wash the film coolant from the surface into the mainstream significantly decreasing cooling effectiveness. In addition to being effected by secondary flow structures, film cooling flow can also affect these structures by virtue of their momentum exchange. In addition, many studies in the literature have shown that endwall contouring affects the strength of passage secondary flows. Therefore, to develop better endwall cooling schemes, a good understanding of passage aerodynamics and heat transfer as affected by interactions of film cooling flows with secondary flows is required. This experimental and computational study presents results from a linear, stationary, two-passage cascade representing the first stage nozzle guide vane of a high-pressure gas turbine with an axisymmetrically contoured endwall. The sources of film cooling flows are upstream combustor liner coolant and endwall slot film coolant injected immediately upstream of the cascade passage inlet. The operating conditions simulate combustor exit flow features, with a high Reynolds number of 390,000 and approach flow turbulence intensity of 11% with an integral length scale of 21% of the chord length. Measurements are performed with varying slot film cooling mass flow to mainstream flow rate ratios (MFR). Aerodynamic effects are documented with five-hole probe measurements at the exit plane. Heat transfer is documented through recovery temperature measurements with a thermocouple. General secondary flow features are observed. Total pressure loss measurements show that varying the slot film cooling MFR has some effects on passage loss. Velocity vectors and vorticity distributions show a very thin, yet intense

  7. The effect of cooling to different subzero temperatures on dog sperm cryosurvival.

    Science.gov (United States)

    Alcantar-Rodriguez, A; Medrano, A

    2017-06-01

    The objective was to assess the effect of cooling to different subzero temperatures around ice formation (-5°C) on dog sperm cryosurvival and plasma membrane fluidity. Semen was centrifuged, and sperm were resuspended in a Tris-egg yolk medium (3% glycerol). Diluted sperm were cooled from 22 to 5°C, and then, a Tris-egg yolk medium containing 7% glycerol was added (final concentration of 5% glycerol and 200 × 10 6  cells/ml). Sperm were packaged in 0.5-ml plastic straws, and equilibration was done 16 hr at 5°C before freezing. I. Straws (n = 47) at 5°C were exposed to nitrogen vapours to determine the freezing point. II. Other straws (from different ejaculates) processed as mentioned, were further cooled to -3, -5 or -7°C and immediately rewarmed in a water bath at 37°C. Motility, plasma membrane functionality and acrosome integrity were assessed. III. Other straws (from different ejaculates) processed as mentioned were further cooled to -3 or -5°C, frozen over nitrogen vapours and stored in liquid nitrogen for one month. Straws were thawed in a water bath at 38°C for 30 s. Motility, plasma membrane functionality, plasma membrane integrity, acrosome integrity, capacitation status and plasma membrane fluidity were assessed. Ice nucleation temperature was -14.3 ± 2.05°C (mean ± SD); cooling to +5, -3, -5 and -7°C, without freezing, produces no differences on sperm quality between target temperatures; cooling to +5, -3, and -5°C produced no differences on sperm survival and plasma membrane fluidity after freeze-thawing. In conclusion, cooling of dog spermatozoa to different subzero temperatures did not improve sperm cryosurvival and had no effect on plasma membrane fluidity after thawing. © 2017 Blackwell Verlag GmbH.

  8. Permeable pavements and its contribution to cooling effect of surrounding temperature

    Science.gov (United States)

    Buyung, Nurul Rezuana; Ghani, Abdul Naser Abdul

    2017-10-01

    Generally, the pavement surface temperature usually is higher compared to air temperature. It is caused by the absorption of solar energy onto the surface. The pavements temperature strongly influences the urban climate as an urbanization result. The increase of heat in the urban area are partly contributed by the pavement. Permeable pavement can be seen as a way of reducing the temperature of the pavement. This study reviews the existing technology and mechanism of permeable pavements cooling properties. There are various factors that could affect the pavement's temperature such as the solar reflectance, thermal properties, permeability, evaporation and others. However, previous researchers have found out that, permeable pavement tends to be hotter than conventional pavement during dry seasons. It was found that the presence of water could reduce the temperature of the pavement. Future studies can be conducted towards finding ways to maintain the wet condition within the pavement.

  9. Effects of different dentin thicknesses and air cooling on pulpal temperature rise during laser welding.

    Science.gov (United States)

    Secilmis, Asli; Bulbul, Mehmet; Sari, Tugrul; Usumez, Aslihan

    2013-01-01

    The neodymium/yttrium-aluminum-garnet (Nd/YAG) laser has been suggested to repair broken prostheses in the mouth. This study investigated the effects of different dentin thicknesses and air cooling on pulpal temperature rise during laser welding. Three intact human maxillary molars were prepared for full-veneer crown. For each tooth, dentin thicknesses in mesiobuccal cusp was 2, 3, or 4 mm. Twenty dies were duplicated from each of the prepared teeth. For metal copings with 0.5-mm thickness, wax patterns were prepared with dip wax technique directly onto each of dies. All patterns were sprued and invested. The castings were made using a nickel-chromium alloy (Nicromed Premium, Neodontics). A hole with 0.5-mm diameter was prepared on the mesiobuccal cusp of each crown. The Nd/YAG laser (9.85 W; 1 Hz repetition rate; fluence, 1.230 J/cm(2); Fidelis Plus 3, Fotona) was used for welding with or without air cooling (n = 10). The temperature rise was measured in pulpal chamber with a J-type thermocouple wire that was connected to a data logger. Differences between start and highest temperature reading were taken, and temperature rise values were compared using two-way analysis of variance and Tukey's honestly significant difference tests (α = .05). Pulpal temperature rise varied significantly depending on the dentin thickness and air cooling (p temperature increases. There were no significant differences between 2- and 3-mm dentin thicknesses groups (p > 0.05); however, pulpal temperature rise was the lowest for 4-mm dentin thickness group (p temperature rises known to adversely affect pulpal health when dentin thickness is 2 or 3 mm.

  10. Mid-section of a can-annular gas turbine engine with a cooling system for the transition

    Science.gov (United States)

    Wiebe, David J.; Rodriguez, Jose L.

    2015-12-08

    A cooling system is provided for a transition (420) of a gas turbine engine (410). The cooling system includes a cowling (460) configured to receive an air flow (111) from an outlet of a compressor section of the gas turbine engine (410). The cowling (460) is positioned adjacent to a region of the transition (420) to cool the transition region upon circulation of the air flow within the cowling (460). The cooling system further includes a manifold (121) to directly couple the air flow (111) from the compressor section outlet to an inlet (462) of the cowling (460). The cowling (460) is configured to circulate the air flow (111) within an interior space (426) of the cowling (460) that extends radially outward from an inner diameter (423) of the cowling to an outer diameter (424) of the cowling at an outer surface.

  11. Fast temperature programming in gas chromatography using resistive heating

    NARCIS (Netherlands)

    Dallüge, J.; Ou-Aissa, R.; Vreuls, J.J.; Brinkman, U.A.T.; Veraart, J.R.

    1999-01-01

    The features of a resistive-heated capillary column for fast temperature-programmed gas chromatography (GC) have been evaluated. Experiments were carried out using a commercial available EZ Flash GC, an assembly which can be used to upgrade existing gas chromatographs. The capillary column is placed

  12. Comparison of Two Surface Cooling Devices for Temperature Management in a Neurocritical Care Unit.

    Science.gov (United States)

    Aujla, Gurpreet Singh; Nattanmai, Premkumar; Premkumar, Keerthivaas; Newey, Christopher R

    2017-09-01

    Fever increases mortality and morbidity and length of stay in neurocritically ill patients. Various methods are used in the neuroscience intensive care unit (NSICU) to control fever. Two such methods involve the Arctic Sun hydrogel wraps and the Gaymar cooling wraps. The purpose of our study was to compare these two methods in neurocritical care patients who had temperature >37.5°C for more than three consecutive hours and that was refractory to standard treatments. Data of patients requiring cooling wraps for treatment of hyperthermia at an NSICU at an academic, tertiary referral center were retrospectively reviewed. The average temperature before cooling was 38.5°C ± 0.38°C and 38.4°C ± 0.99°C for the Gaymar and Arctic Sun groups, respectively (p = 0.89). The Gaymar group took on average 16 ± 21.9 hours to reach goal temperature, whereas the Arctic Sun group took 2.22 ± 1.39 hours (p = 0.08). The average time outside of the target temperature was 57.0 ± 58.0 hours in the Gaymar group compared with 13.7 ± 17.1 hours in the Arctic Sun group (p = 0.04). Average duration of using the cooling wraps was similar between the two groups; 81.8% of patients had rebound hyperthermia in the Gaymar group compared with 20% in the Arctic Sun group (p = 0.0089). The Arctic Sun group had a nonsignificant increased incidence of shivering compared with the Gaymar group (40% vs. 18.18%, p = 0.36). We found that Arctic Sun surface cooling device was more efficient in attaining the target temperature, had less incidence of rebound hyperthermia, and was able to maintain normothermia better than Gaymar cooling wraps. The incidence of shivering tended to be more common in the Arctic Sun group.

  13. Case study on natural gas application for district heating and cooling in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Maues, Jair Arone [Pontificia Universidade Catolica do Rio de Janeiro (IE/PUC-Rio), Rio de Janeiro, RJ (Brazil). Inst. de Energia; Akiyama, Junichi [Mitsui Gas e Energia do Brasil Ltda., Rio de janeiro, RJ (Brazil)

    2012-07-01

    The distributed cogeneration applying natural gas consists in an excellent alternative to use this source, but it is limited by a compatible heat demand that must be found in its application. District heating and cooling solutions can overcome this hurdle, especially in Brazil, a tropical country, where new industrial and commercial enterprises usually install central air conditioning systems. By 2020 natural gas demand shall reach a value of more than 200 MM m{sup 3} per day, accordingly to the Brazilian Energy Research Office (EPE, 2011). An expressive part of it could be consumed in cogeneration systems like the one described in this paper. This project had a special taxes exception rule applied. The chilled water and heated thermal oil produced were not taxed at all. But these two DHC utilities could obtain a different treatment if someone considers this is a tricky way of power and heat trading, which should be taxed as electricity and natural gas normally are. A bolder legislation with respect to the export of energy surplus would facilitate the project and operation of this kind of system, because the basic premise would be to attend the thermal demand with the electrical power installed, maximizing the global efficiency of the installation. An average 8 GW of Brazilian power demand, with roughly 50 MMm{sup 3}/day of natural gas consumption, could be attended by distributed energy gas cogeneration enterprises. If this prediction were totally accomplished it would bring the Brazilian participation of distributed energy in total power generation to values close to 10% in 2020, value already reached in average by the world biggest electricity's consumer countries (WADE, 2006). This also would mean an equivalent investment economy of approximately 11,000 MW in transmission and distribution lines capacity (author)

  14. A Real-Time Temperature Data Transmission Approach for Intelligent Cooling Control of Mass Concrete

    Directory of Open Access Journals (Sweden)

    Peng Lin

    2014-01-01

    Full Text Available The primary aim of the study presented in this paper is to propose a real-time temperature data transmission approach for intelligent cooling control of mass concrete. A mathematical description of a digital temperature control model is introduced in detail. Based on pipe mounted and electrically linked temperature sensors, together with postdata handling hardware and software, a stable, real-time, highly effective temperature data transmission solution technique is developed and utilized within the intelligent mass concrete cooling control system. Once the user has issued the relevant command, the proposed programmable logic controllers (PLC code performs all necessary steps without further interaction. The code can control the hardware, obtain, read, and perform calculations, and display the data accurately. Hardening concrete is an aggregate of complex physicochemical processes including the liberation of heat. The proposed control system prevented unwanted structural change within the massive concrete blocks caused by these exothermic processes based on an application case study analysis. In conclusion, the proposed temperature data transmission approach has proved very useful for the temperature monitoring of a high arch dam and is able to control thermal stresses in mass concrete for similar projects involving mass concrete.

  15. APPLICATION OF SOFT COMPUTING TECHNIQUES FOR PREDICTING COOLING TIME REQUIRED DROPPING INITIAL TEMPERATURE OF MASS CONCRETE

    Directory of Open Access Journals (Sweden)

    Santosh Bhattarai

    2017-07-01

    Full Text Available Minimizing the thermal cracks in mass concrete at an early age can be achieved by removing the hydration heat as quickly as possible within initial cooling period before the next lift is placed. Recognizing the time needed to remove hydration heat within initial cooling period helps to take an effective and efficient decision on temperature control plan in advance. Thermal properties of concrete, water cooling parameters and construction parameter are the most influencing factors involved in the process and the relationship between these parameters are non-linear in a pattern, complicated and not understood well. Some attempts had been made to understand and formulate the relationship taking account of thermal properties of concrete and cooling water parameters. Thus, in this study, an effort have been made to formulate the relationship for the same taking account of thermal properties of concrete, water cooling parameters and construction parameter, with the help of two soft computing techniques namely: Genetic programming (GP software “Eureqa” and Artificial Neural Network (ANN. Relationships were developed from the data available from recently constructed high concrete double curvature arch dam. The value of R for the relationship between the predicted and real cooling time from GP and ANN model is 0.8822 and 0.9146 respectively. Relative impact on target parameter due to input parameters was evaluated through sensitivity analysis and the results reveal that, construction parameter influence the target parameter significantly. Furthermore, during the testing phase of proposed models with an independent set of data, the absolute and relative errors were significantly low, which indicates the prediction power of the employed soft computing techniques deemed satisfactory as compared to the measured data.

  16. Nighttime Infrared radiative cooling and opacity inferred by REMS Ground Temperature Sensor Measurements

    Science.gov (United States)

    Martín-Torres, Javier; Paz Zorzano, María; Pla-García, Jorge; Rafkin, Scot; Lepinette, Alain; Sebastián, Eduardo; Gómez-Elvira, Javier; REMS Team

    2013-04-01

    Due to the low density of the Martian atmosphere, the temperature of the surface is controlled primarily by solar heating, and infrared cooling to the atmosphere and space, rather than heat exchange with the atmosphere. In the absence of solar radiation the infrared (IR) cooling, and then the nighttime surface temperatures, are directly controlled by soil termal inertia and atmospheric optical thickness (τ) at infrared wavelengths. Under non-wind conditions, and assuming no processes involving latent heat changes in the surface, for a particular site where the rover stands the main parameter controlling the IR cooling will be τ. The minimal ground temperature values at a fixed position may thus be used to detect local variations in the total dust/aerosols/cloud tickness. The Ground Temperature Sensor (GTS) and Air Temperature Sensor (ATS) in the Rover Environmental Monitoring Station (REMS) on board the Mars Science Laboratory (MSL) Curiosity rover provides hourly ground and air temperature measurements respectively. During the first 100 sols of operation of the rover, within the area of low thermal inertia, the minimal nightime ground temperatures reached values between 180 K and 190 K. For this season the expected frost point temperature is 200 K. Variations of up to 10 K have been observed associated with dust loading at Gale at the onset of the dust season. We will use these measurements together with line-by-line radiative transfer simulations using the Full Transfer By Optimized LINe-by-line (FUTBOLIN) code [Martín-Torres and Mlynczak, 2005] to estimate the IR atmospheric opacity and then dust/cloud coverage over the rover during the course of the MSL mission. Monitoring the dust loading and IR nightime cooling evolution during the dust season will allow for a better understanding of the influence of the atmosphere on the ground temperature and provide ground truth to models and orbiter measurements. References Martín-Torres, F. J. and M. G. Mlynczak

  17. Geothermal Energy Production from Oil/Gas Wells and Application for Building Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Honggang [Rutgers University; Liu, Xiaobing [ORNL

    2016-01-01

    One significant source of low-temperature geothermal energy is the coproduced hot water from oil/gas field production. In the United States, daily oil production has reached above 8 million barrels in recent years. Considering various conditions of wells, 5-10 times or more water can be coproduced in the range of temperature 120 F to 300 F. Like other geothermal resources, such energy source from oil/gas wells is under-utilized for its typical long distance from consumption sites. Many oil/gas fields, however, are relatively close (less than 10 miles) to consumers around cities. For instance, some petroleum fields in Pennsylvania are only a few miles away from the towns in Pittsburg area and some fields in Texas are quite close to Houston. In this paper, we evaluate geothermal potential from oil/gas wells by conducting numerical simulation and analysis of a fractured oil well in Hastings West field, Texas. The results suggest that hot water can be continuously coproduced from oil wells at a sufficient rate (about 4000 gallons/day from one well) for more than 100 years. Viable use of such geothermal source requires economical transportation of energy to consumers. The recently proposed two-step geothermal absorption (TSGA) system provides a promising energy transport technology that allows large-scale use of geothermal energy from thousands of oil/gas wells.

  18. High temperature heat pumps for industrial cooling; Hoejtemperatur varmepumper til industriel koeling

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lars; Nielsen, Jacob [Advansor A/S, Aarhus (Denmark); Kronborg, H. [Cronborg, Holstebro (Denmark); Skouenborg, K. [Jensens Koekken, Struer (Denmark)

    2013-03-15

    This report deals with theoretical analysis of various types of integration of heat pumps in the industry, as well as a demonstration plant that serves the project's practical execution. The report describes the system integration between heat pumps and existing industrial cooling systems. Ammonia plants in industry are estimated to have an allocation of 85%, which is why only an analysis of this type of installation as surplus heat supplier is included in this report. In contrast, heat pumps with both CO{sub 2} and Isobutane as the refrigerant are analysed, since these are the interesting coolants for generating high temperature heat. It can be seen through the project that the combination of heat pump with existing cooling installations may produce favorable situations where the efficiency of the heat pump is extremely high while at the same time electricity and water consumption for the cooling system is reduced. The analysis reflects that CO{sub 2} is preferred over Isobutane in the cases where a high level of temperature boost is desired, whereas Isobutane is preferable at low level of temperature boost. In the demonstration project, the report shows that the heat pump alone has a COP of 4.1, while the achieved COP is 5.5 when by considering the system as a whole. In addition to increased performance the solution profits by having a reduction in CO{sub 2} emissions of 81 tons/year and a saving of 470,000 DKK/year. (LN)

  19. GC/MS Gas Separator Operates At Lower Temperatures

    Science.gov (United States)

    Sinha, Mahadeva P.; Gutnikov, George

    1991-01-01

    Experiments show palladium/silver tube used to separate hydrogen carrier gas from gases being analyzed in gas-chromatography/mass-spectrometry (GC/MS) system functions satisfactorily at temperatures as low as 70 to 100 degrees C. Less power consumed, and catalytic hydrogenation of compounds being analyzed diminished. Because separation efficiency high even at lower temperatures, gas load on vacuum pump of mass spectrometer kept low, permitting use of smaller pump. These features facilitate development of relatively small, lightweight, portable GC/MS system for such uses as measuring concentrations of pollutants in field.

  20. External cooling efficiently controls intraosseous temperature rise caused by drilling in a drilling guide system: an in vitro study.

    Science.gov (United States)

    Boa, Kristof; Varga, Endre; Pinter, Gabor; Csonka, Akos; Gargyan, Istvan; Varga, Endre

    2015-12-01

    The purpose of this study was to measure the rise in intraosseous temperature caused by drilling through a drilling guide system. We compared the rise in temperature generated, and the number of increases of more than 10 °C, between drills that had been cooled with saline at room temperature (25 °C) and those that had not been cooled, for every step of the drilling sequence. Cortical layers of bovine ribs were used as specimens, and they were drilled through 3-dimensional printed surgical guides. Heat was measured with an infrared thermometer. The significance of differences was assessed with either a two-sample t test or Welch's test, depending on the variances. The mean rises (number of times that the temperature rose above 10 °C) for each group of measurements were: for the 2mm drill, 4.8 °C (0/48) when cooled and 7.0 °C (8/48) when not cooled; with the 2.5mm drill, 5.2 °C (1/48) when cooled and 8.5 °C (17/48) when not cooled (2 mm canal); with the 3 mm drill, 3.3 °C when cooled (0/48) and 8.5 °C (18/24) when not cooled (2.5 mm canal); and with the 3.5 mm drill, 4.8 °C when cooled (0/24) and 9.4 °C when not cooled (10/23) (3 mm canal). The temperature rose significantly less with cooling at every step of the drilling sequence (ptemperature within the safe range while drilling through an implant guide system, whereas drilling without irrigation can lead to temperatures that exceed the acceptable limit. Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  1. Reduction of diesel engine emissions through the recirculation of cooled exhaust gas; Senkung von Diesel-Emissionen durch Rueckfuehrung von gekuehltem Abgas

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, R. [Behr GmbH und Co., Stuttgart (Germany). Entwicklungsteam Abgaswaermeuebertrager

    1997-09-01

    More stringent exhaust regulations for diesel engines which will come into force in Europe (Euro III, 1999) and the USA (2004) will necessitate new methods of reducing emissions, one of which entails the recirculation of cooled exhaust gas. By this process, a certain volume of the exhaust gas is bled off upstream of the turbine, cooled by the engine coolant and remixed with the combustion air down-stream of the intercooler. By contrast with other methods of exhaust gas purification, such as a lean-NO{sub x} catalytic converter, this process needs no second activating agent, such as urea, and, in comparison with a modification of the combustion process, only slightly more fuel. The heat transfer system developed by Behr, which uses the engine coolant to cool the exhaust gas, is capable of withstanding the high temperatures and pressures in the forward section of the exhaust system, is resistant to the sulphuric acid in diesel condensation and, despite its compact design, exhibits a low level of flow resistance. Its exceptional cooling capacity is achieved by a new heat transfer system employing `winglet` turbulence generators. These reduce deposits of soot and other particles on the walls of the heat exchanger to a considerable extent, thereby contributing to its long-term efficiency. (orig.) [Deutsch] Durch die Einfuehrung neuer, strengerer Abgasvorschriften fuer Dieselmotoren 1999 in Europa und 2004 in den USA ruecken neue Techniken zur Emissionssenkung ins Blickfeld. Eine davon ist die gekuehlte Abgasrueckfuehrung, die eine Emissionssenkung bei nur minimalem Anstieg des Kraftstoffverbrauchs erlaubt. An den Waermeuebertrager fuer solch ein System werden hinsichtlich kompakter Bauweise und Leistung, Temperaturbestaendigkeit, Verschutzungs-Unempfindlichkeit und Korrosionsbestaendigkeit hohe Anforderungen gestellt. Der von Behr entwickelte Abgas-Kuehlmittel-Waermeuebertrager erfuellt diese Anforderungen und zeichnet sich durch eine hohe Leistungsdichte aus. Dies

  2. Urban temperature analysis and impact on the building cooling energy performances: an Italian case study

    Directory of Open Access Journals (Sweden)

    Michele Zinzi

    2016-06-01

    Full Text Available Climate changes and urban sprawl are dramatically increasing the heat island effect in urban environments, whatever the size and the latitude are, affecting these latter parameters the effect intensity. The urban heats island is a phenomenon observed since the last decades of the XIX century but demonstrated at large scale only one century later, characterised by the increase of air temperature in densely built urban environments respect to the countryside surround cities. Many studies are available, showing urban heat island intensities up to 12°C. This thermal stress causes social, health and environmental hazards, with major consequences on weaker social classes, as elderly and low income people, it is not by chance that survey demonstrated the increase of deaths in such categories during intense and extended heat waves. This study presents the firs results on the observation of air temperature measures in different spots of Rome, city characterised by a typical Mediterranean climate and by a complex urban texture, in which densely built areas are kept separated by relatively green or not-built zones. Six spots are monitored since June 2014 and include: historical city centre, semi-central zones with different construction typologies, surrounding areas again with various urban and building designs. The paper is focused on the analysis of summer temperature profiles, increase respect to the temperature outside the cities and the impact on the cooling performance of buildings. Temperature datasets and a reference building model were inputted into the well-known and calibrated dynamic tool TRNSYS. Cooling net energy demand of the reference building was calculated, as well as the operative temperature evolution in the not cooled building configuration. The results of calculation allow to compare the energy and thermal performances in the urban environment respect to the reference conditions, usually adopted by building codes. Advice and

  3. Film cooling effects on the tip flow characteristics of a gas turbine blade

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2015-03-01

    Full Text Available An experimental investigation of the tip flow characteristics between a gas turbine blade tip and the shroud was conducted by a pressure-test system and a particle image velocimetry (PIV system. A three-times scaled profile of the GE-E3 blade with five film cooling holes was used as specimen. The effects on flow characteristics by the rim width and the groove depth of the squealer tip were revealed. The rim widths were (a 0.9%, (b 2.1%, and (c 3.0% of the axial chord, and the groove depths were (a 2.8%, (b 4.8%, and (c 10% of the blade span. Several pressure taps on the top plate above the blades were connected to pressure gauges. By a CCD camera the PIV system recorded the velocity field around the leading edge zone including the five cooling holes. The flow distributions both in the tip clearance and in the passage were revealed, and the influence of the inlet velocity was determined. In this work, the tip flow characteristics with and without film cooling were investigated. The effects of different global blowing ratios of M=0.5, 1.0, 1.3 and 2.5 were established. It was found that decreasing the rim width resulted in a lower mass flow rate of the leakage flow, and the pressure distributions from the leading edge to the trailing edge showed a linearly increasing trend. It was also found that if the inlet velocity was less than 1.5 m/s, the flow field in the passage far away from the suction side appeared as a stagnation zone.

  4. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corporation, Columbus, Ohio

    Science.gov (United States)

    1980-01-01

    The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  5. The Influence of Mixing in High Temperature Gas Phase Reactions

    DEFF Research Database (Denmark)

    Østberg, Martin

    1996-01-01

    The objective of this thesis is to describe the mixing in high temperature gas phase reactions.The Selective Non-Catalytic Reduction of NOx (referred as the SNR process) using NH3 as reductant was chosen as reaction system. This in-furnace denitrification process is made at around 1200 - 1300 K b....... For temperatures below 1200 K the NO outlet concentration is unaffected because of lower reaction rates.The droplet diffusion model is used to model the experimental results and it can describe the influence of the carrier gas flow with a successful result....... to the injected gas as well.The effects of the NH3 flow and natural gas addition were as expected from earlier studies in laboratory reactors and pilot plants.The experiments indicates that the SNR process was only dependent on the O2 concentration in the flue gas without any effect due to variation of the O2...... concentrations in the injected gas between 0 - 20 vol%.Using a nozzle with a diameter of 1.9 mm the reduction of NO is dependent on the carrier gas flow for temperatures above 1200 K (1100 K when natural gas is added).It is shown that this effect can not be described by macromixing using a simple reactor model...

  6. Terahertz optical properties of LBO crystal upon cooling to liquid nitrogen temperature

    Science.gov (United States)

    Nikolaev, N. A.; Andreev, Yu M.; Kononova, N. G.; Mamrashev, A. A.; Antsygin, V. D.; Kokh, K. A.; Kokh, A. E.; Losev, V. F.; Potaturkin, O. I.

    2018-01-01

    The anisotropy of optical properties of nonlinear lithium borate (LBO) crystals in the range of 0.2–2 THz is investigated by time-domain THz spectroscopy at room temperature and at T = 81 K. It is shown that the birefringence dramatically decreases upon cooling, as a result of which phase-matching conditions cannot be implemented. At the same time, the absorption coefficients αx and αy are found to decrease significantly with decreasing temperature, due to which the LBO crystal becomes a promising material for generating THz radiation via optical rectification and fabricating periodic structures and optical elements.

  7. Method for forming a liquid cooled airfoil for a gas turbine

    Science.gov (United States)

    Grondahl, Clayton M.; Willmott, Leo C.; Muth, Myron C.

    1981-01-01

    A method for forming a liquid cooled airfoil for a gas turbine is disclosed. A plurality of holes are formed at spaced locations in an oversized airfoil blank. A pre-formed composite liquid coolant tube is bonded into each of the holes. The composite tube includes an inner member formed of an anti-corrosive material and an outer member formed of a material exhibiting a high degree of thermal conductivity. After the coolant tubes have been bonded to the airfoil blank, the airfoil blank is machined to a desired shape, such that a portion of the outer member of each of the composite tubes is contiguous with the outer surface of the machined airfoil blank. Finally, an external skin is bonded to the exposed outer surface of both the machined airfoil blank and the composite tubes.

  8. Review of ORNL-TSF shielding experiments for the gas-cooled Fast Breeder Reactor Program

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, L.S.; Ingersoll, D.T.; Muckenthaler, F.J.; Slater, C.O.

    1982-01-01

    During the period between 1975 and 1980 a series of experiments was performed at the ORNL Tower Shielding Facility in support of the shield design for a 300-MW(e) Gas Cooled Fast Breeder Demonstration Plant. This report reviews the experiments and calculations, which included studies of: (1) neutron streaming in the helium coolant passageways in the GCFR core; (2) the effectiveness of the shield designed to protect the reactor grid plate from radiation damage; (3) the adequacy of the radial shield in protecting the PCRV (prestressed concrete reactor vessel) from radiation damage; (4) neutron streaming between abutting sections of the radial shield; and (5) the effectiveness of the exit shield in reducing the neutron fluxes in the upper plenum region of the reactor.

  9. Methods for disassembling, replacing and assembling parts of a steam cooling system for a gas turbine

    Science.gov (United States)

    Wilson, Ian D.; Wesorick, Ronald R.

    2002-01-01

    The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows. The bore tube assembly, radial tubes, elbows, manifold segments and crossover tubes are removable from the turbine rotor and replaceable.

  10. Analysis of the energetic/environmental performances of gas turbine plant: Effect of thermal barrier coatings and mass of cooling air

    Directory of Open Access Journals (Sweden)

    Ion Ion V.

    2009-01-01

    Full Text Available Zirconia stabilized with 8 wt.% Y2O3 is the most common material to be applied in thermal barrier coatings owing to its excellent properties: low thermal conductivity, high toughness and thermal expansion coefficient as ceramic material. Calculation has been made to evaluate the gains of thermal barrier coatings applied on gas turbine blades. The study considers a top ceramic coating Zirconia stabilized with 8 wt.% Y2O3 on a NiCoCrAlY bond coat and Inconel 738LC as substrate. For different thickness and different cooling air flow rates, a thermodynamic analysis has been performed and pollutants emissions (CO, NOx have been estimated to analyze the effect of rising the gas inlet temperature. The effect of thickness and thermal conductivity of top coating and the mass flow rate of cooling air have been analyzed. The model for heat transfer analysis gives the temperature reduction through the wall blade for the considered conditions and the results presented in this contribution are restricted to a two considered limits: (1 maximum allowable temperature for top layer (1200ºC and (2 for blade material (1000ºC. The model can be used to analyze other materials that support higher temperatures helping in the development of new materials for thermal barrier coatings.

  11. A lab-based study of subground passive cooling system for indoor temperature control

    Science.gov (United States)

    Chok, Mun-Hong; Chan, Chee-Ming

    2017-11-01

    Passive cooling is an alternative cooling technique which helps to reduce high energy consumption. Respectively, dredged marine soil (DMS) is either being dumped or disposed as waste materials. Dredging works had resulted high labor cost, therefore reuse DMS as to fill it along the coastal area. In this study, DMS chosen to examine the effectiveness of passive cooling system by model tests. Soil characterization were carried out according to BS1377: Part 2: 1990. Model were made into scale of 3 cm to 1 m. Heat exchange unit consists of three pipe designs namely, parallel, ramp and spiral. Preliminary tests including flow rate test and soil sample selection were done to select the best heat exchange unit to carry out the model test. Model test is classified into 2 conditions, day and night, each condition consists of 4 configurations which the temperature results are determined. The result shows that window left open and fan switched on (WO/FO) recorded the most effective cooling effects, from 29 °C to 27 °C with drop of 6.9 %.

  12. Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle

    Science.gov (United States)

    Chen, Zhen; Zhu, Linxiao; Raman, Aaswath; Fan, Shanhui

    2016-01-01

    Radiative cooling technology utilizes the atmospheric transparency window (8–13 μm) to passively dissipate heat from Earth into outer space (3 K). This technology has attracted broad interests from both fundamental sciences and real world applications, ranging from passive building cooling, renewable energy harvesting and passive refrigeration in arid regions. However, the temperature reduction experimentally demonstrated, thus far, has been relatively modest. Here we theoretically show that ultra-large temperature reduction for as much as 60 °C from ambient is achievable by using a selective thermal emitter and by eliminating parasitic thermal load, and experimentally demonstrate a temperature reduction that far exceeds previous works. In a populous area at sea level, we have achieved an average temperature reduction of 37 °C from the ambient air temperature through a 24-h day–night cycle, with a maximal reduction of 42 °C that occurs when the experimental set-up enclosing the emitter is exposed to peak solar irradiance. PMID:27959339

  13. Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle

    Science.gov (United States)

    Chen, Zhen; Zhu, Linxiao; Raman, Aaswath; Fan, Shanhui

    2016-12-01

    Radiative cooling technology utilizes the atmospheric transparency window (8-13 μm) to passively dissipate heat from Earth into outer space (3 K). This technology has attracted broad interests from both fundamental sciences and real world applications, ranging from passive building cooling, renewable energy harvesting and passive refrigeration in arid regions. However, the temperature reduction experimentally demonstrated, thus far, has been relatively modest. Here we theoretically show that ultra-large temperature reduction for as much as 60 °C from ambient is achievable by using a selective thermal emitter and by eliminating parasitic thermal load, and experimentally demonstrate a temperature reduction that far exceeds previous works. In a populous area at sea level, we have achieved an average temperature reduction of 37 °C from the ambient air temperature through a 24-h day-night cycle, with a maximal reduction of 42 °C that occurs when the experimental set-up enclosing the emitter is exposed to peak solar irradiance.

  14. Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle.

    Science.gov (United States)

    Chen, Zhen; Zhu, Linxiao; Raman, Aaswath; Fan, Shanhui

    2016-12-13

    Radiative cooling technology utilizes the atmospheric transparency window (8-13 μm) to passively dissipate heat from Earth into outer space (3 K). This technology has attracted broad interests from both fundamental sciences and real world applications, ranging from passive building cooling, renewable energy harvesting and passive refrigeration in arid regions. However, the temperature reduction experimentally demonstrated, thus far, has been relatively modest. Here we theoretically show that ultra-large temperature reduction for as much as 60 °C from ambient is achievable by using a selective thermal emitter and by eliminating parasitic thermal load, and experimentally demonstrate a temperature reduction that far exceeds previous works. In a populous area at sea level, we have achieved an average temperature reduction of 37 °C from the ambient air temperature through a 24-h day-night cycle, with a maximal reduction of 42 °C that occurs when the experimental set-up enclosing the emitter is exposed to peak solar irradiance.

  15. Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Xu, Tengfang; Taha, Haider; Wray, Craig; Sathaye, Jayant; Garg, Vishal; Tetali, Surekha; Babu, M. Hari; Reddy, K. Niranjan

    2011-05-25

    energy in India. Meteorological simulations in this study indicated that a reduction of 2C in air temperature in the Hyderabad area would be likely if a combination of increased surface albedo and vegetative cover are used as urban heat-island control strategies. In addition, air-temperature reductions on the order of 2.5-3.5C could be achieved if moderate and aggressive heat-island mitigation measures are adopted, respectively. A large-scale deployment of mitigation measures can bring additional indirect benefit to the urban area. For example, cooling outside air can improve the efficiency of cooling systems, reduce smog and greenhouse gas (GHG) emissions, and indirectly reduce pollution from power plants - all improving environmental health quality. This study has demonstrated the effectiveness of cool-roof technology as one of the urban heat-island control strategies for the Indian industrial and scientific communities and has provided an estimate of the national energy savings potential of cool roofs in India. These outcomes can be used for developing cool-roof building standards and related policies in India. Additional field studies, built upon the successes and lessons learned from this project, may be helpful to further confirm the scale of potential energy savings from the application of cooler roofs in various regions of India. In the future, a more rigorous meteorological simulation using urbanized (meso-urban) meteorological models should be conducted, which may produce a more accurate estimate of the air-temperature reductions for the entire urban area.

  16. Pore Scale Thermal Hydraulics Investigations of Molten Salt Cooled Pebble Bed High Temperature Reactor with BCC and FCC Configurations

    Directory of Open Access Journals (Sweden)

    Shixiong Song

    2014-01-01

    CFD results and empirical correlations’ predictions of pressure drop and local Nusselt numbers. Local pebble surface temperature distributions in several default conditions are investigated. Thermal removal capacities of molten salt are confirmed in the case of nominal condition; the pebble surface temperature under the condition of local power distortion shows the tolerance of pebble in extreme neutron dose exposure. The numerical experiments of local pebble insufficient cooling indicate that in the molten salt cooled pebble bed reactor, the pebble surface temperature is not very sensitive to loss of partial coolant. The methods and results of this paper would be useful for optimum designs and safety analysis of molten salt cooled pebble bed reactors.

  17. Modern gas-based temperature and pressure measurements

    CERN Document Server

    Pavese, Franco

    2013-01-01

    This 2nd edition volume of Modern Gas-Based Temperature and Pressure Measurements follows the first publication in 1992. It collects a much larger set of information, reference data, and bibliography in temperature and pressure metrology of gaseous substances, including the physical-chemical issues related to gaseous substances. The book provides solutions to practical applications where gases are used in different thermodynamic conditions. Modern Gas-Based Temperature and Pressure Measurements, 2nd edition is the only comprehensive survey of methods for pressure measurement in gaseous media used in the medium-to-low pressure range closely connected with thermometry. It assembles current information on thermometry and manometry that involve the use of gaseous substances which are likely to be valid methods for the future. As such, it is an important resource for the researcher. This edition is updated through the very latest scientific and technical developments of gas-based temperature and pressure measurem...

  18. Brittle Materials Design, High Temperature Gas Turbine

    Science.gov (United States)

    1981-03-01

    Modulus and Poisson’s Ratio were determined by sonic techniques: thermal expansion values were measured on a differential dilatometer and thermal...accumulation of potentially explosive gases. 4. Thermal conductivity of the nitriding atmosphere is important for production of high quality RBSN...of varying MgO content. Measurements were conducted on a differential dilatometer from room temperatures up to 900°C, and are shown in Figure 3.2.3

  19. Research on enhancement of natural circulation capability in lead–bismuth alloy cooled reactor by using gas-lift pump

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Juanli, E-mail: Jenyzuo@163.com; Tian, Wenxi, E-mail: wxtian@mail.xjtu.edu.cn; Chen, Ronghua, E-mail: ronghua.chen@stu.xjtu.edu.cn; Qiu, Suizheng; Su, Guanghui, E-mail: ghsu@mail.xjtu.edu.cn

    2013-10-15

    Highlights: • The gas-lift pump has been adopted to enhance the natural circulation capability. • LENAC code is developed in my study. • The calculation results by LENAC code show good agreement with experiment results. • Gas mass flow rate, bubble diameter, rising pipe length are important parameters. -- Abstract: The gas-lift pump has been adopted to enhance the natural circulation capability in the type of lead–bismuth alloy cooled reactors such as Accelerator Driven System (ADS) and Liquid–metal Fast Reactor (LMFR). The natural circulation ability and the system safety are obviously influenced by the two phase flow characteristics of liquid metal–inert gas. In this study, LENAC (LEad bismuth alloy NAtural Circulation capability) code has been developed to evaluate the natural circulation capability of lead–bismuth cooled ADS with gas-lift pump. The drift flow theory, void fraction prediction model and friction pressure drop prediction model have been incorporated into LENAC code. The calculation results by LENAC code show good agreement with experiment results of CIRCulation Experiment (CIRCE) facility. The effects of the gas mass flow rate, void fraction, gas quality, bubble diameter and the rising pipe height or the potential difference between heat exchanger and reactor core on natural circulation capability of gas-lift pump have been analyzed. The results showed that in bubbly flow pattern, for a fixed value of gas mass flow rate, the natural circulation capability increased with the decrease of the bubble diameter. In the bubbly flow, slug flow, churn flow and annular flow pattern, with the gas mass flow rate increasing, the natural circulation capability initially increased and then declined. And the flow parameters influenced the thermal hydraulic characteristics of the reactor core significantly. The present work is helpful for revealing the law of enhancing the natural circulation capability by gas-lift pump, and providing theoretical

  20. Comfort air temperature influence on heating and cooling loads of a residential building

    Science.gov (United States)

    Stanciu, C.; Șoriga, I.; Gheorghian, A. T.; Stanciu, D.

    2016-08-01

    The paper presents the thermal behavior and energy loads of a two-level residential building designed for a family of four, two adults and two students, for different inside comfort levels reflected by the interior air temperature. Results are intended to emphasize the different thermal behavior of building elements and their contribution to the building's external load. The most important contributors to the building thermal loss are determined. Daily heating and cooling loads are computed for 12 months simulation in Bucharest (44.25°N latitude) in clear sky conditions. The most important aspects regarding sizing of thermal energy systems are emphasized, such as the reference months for maximum cooling and heating loads and these loads’ values. Annual maximum loads are encountered in February and August, respectively, so these months should be taken as reference for sizing thermal building systems, in Bucharest, under clear sky conditions.

  1. A p-version embedded model for simulation of concrete temperature fields with cooling pipes

    Directory of Open Access Journals (Sweden)

    Sheng Qiang

    2015-07-01

    Full Text Available Pipe cooling is an effective method of mass concrete temperature control, but its accurate and convenient numerical simulation is still a cumbersome problem. An improved embedded model, considering the water temperature variation along the pipe, was proposed for simulating the temperature field of early-age concrete structures containing cooling pipes. The improved model was verified with an engineering example. Then, the p-version self-adaption algorithm for the improved embedded model was deduced, and the initial values and boundary conditions were examined. Comparison of some numerical samples shows that the proposed model can provide satisfying precision and a higher efficiency. The analysis efficiency can be doubled at the same precision, even for a large-scale element. The p-version algorithm can fit grids of different sizes for the temperature field simulation. The convenience of the proposed algorithm lies in the possibility of locating more pipe segments in one element without the need of so regular a shape as in the explicit model.

  2. Measurement of the orientation of buffer-gas-cooled, electrostatically-guided ammonia molecules

    Science.gov (United States)

    Steer, Edward W.; Petralia, Lorenzo S.; Western, Colin M.; Heazlewood, Brianna R.; Softley, Timothy P.

    2017-02-01

    The extent to which the spatial orientation of internally and translationally cold ammonia molecules can be controlled as molecules pass out of a quadrupole guide and through different electric field regions is examined. Ammonia molecules are collisionally cooled in a buffer gas cell, and are subsequently guided by a three-bend electrostatic quadrupole into a detection chamber. The orientation of ammonia molecules is probed using (2 + 1) resonance-enhanced multiphoton ionisation (REMPI), with the laser polarisation axis aligned both parallel and perpendicular to the time-of-flight axis. Even with the presence of a near-zero field region, the ammonia REMPI spectra indicate some retention of orientation. Monte Carlo simulations propagating the time-dependent Schrödinger equation in a full basis set including the hyperfine interaction enable the orientation of ammonia molecules to be calculated - with respect to both the local field direction and a space-fixed axis - as the molecules pass through different electric field regions. The simulations indicate that the orientation of ∼95% of ammonia molecules in JK =11 could be achieved with the application of a small bias voltage (17 V) to the mesh separating the quadrupole and detection regions. Following the recent combination of the buffer gas cell and quadrupole guide apparatus with a linear Paul ion trap, this result could enable one to examine the influence of molecular orientation on ion-molecule reaction dynamics and kinetics.

  3. Determination of gas temperature in the plasmatron channel according to the known distribution of electronic temperature

    Directory of Open Access Journals (Sweden)

    Gerasimov Alexander V.

    2013-01-01

    Full Text Available An analytical method to calculate the temperature distribution of heavy particles in the channel of the plasma torch on the known distribution of the electronic temperature has been proposed. The results can be useful for a number of model calculations in determining the most effective conditions of gas blowing through the plasma torch with the purpose of heating the heavy component. This approach allows us to understand full details about the heating of cold gas, inpouring the plasma, and to estimate correctly the distribution of the gas temperature inside the channel.

  4. Radionuclides in primary coolant of a fluoride salt-cooled high-temperature reactor during normal operation

    National Research Council Canada - National Science Library

    Zhang, Guo-Qing; Wang, Shuai; Zhang, Hai-Qing; Zhu, Xing-Wang; Peng, Chao; Cai, Jun; He, Zhao-Zhong; Chen, Kun

    2017-01-01

    The release of fission products from coated particle fuel to primary coolant, as well as the activation of coolant and impurities, were analysed for a fluoride salt-cooled high-temperature reactor (FHR...

  5. Cooling system with compressor bleed and ambient air for gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, Jan H.; Marra, John J.

    2017-11-21

    A cooling system for a turbine engine for directing cooling fluids from a compressor to a turbine blade cooling fluid supply and from an ambient air source to the turbine blade cooling fluid supply to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The cooling system may include a compressor bleed conduit extending from a compressor to the turbine blade cooling fluid supply that provides cooling fluid to at least one turbine blade. The compressor bleed conduit may include an upstream section and a downstream section whereby the upstream section exhausts compressed bleed air through an outlet into the downstream section through which ambient air passes. The outlet of the upstream section may be generally aligned with a flow of ambient air flowing in the downstream section. As such, the compressed air increases the flow of ambient air to the turbine blade cooling fluid supply.

  6. Recent Development in Turbine Blade Film Cooling

    Directory of Open Access Journals (Sweden)

    Je-Chin Han

    2001-01-01

    Full Text Available Gas turbines are extensively used for aircraft propulsion, land-based power generation, and industrial applications. Thermal efficiency and power output of gas turbines increase with increasing turbine rotor inlet temperature (RIT. The current RIT level in advanced gas turbines is far above the .melting point of the blade material. Therefore, along with high temperature material development, a sophisticated cooling scheme must be developed for continuous safe operation of gas turbines with high performance. Gas turbine blades are cooled internally and externally. This paper focuses on external blade cooling or so-called film cooling. In film cooling, relatively cool air is injected from the inside of the blade to the outside surface which forms a protective layer between the blade surface and hot gas streams. Performance of film cooling primarily depends on the coolant to mainstream pressure ratio, temperature ratio, and film hole location and geometry under representative engine flow conditions. In the past number of years there has been considerable progress in turbine film cooling research and this paper is limited to review a few selected publications to reflect recent development in turbine blade film cooling.

  7. Gravitational collapse of a magnetized fermion gas with finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Delgado Gaspar, I. [Instituto de Geofisica y Astronomia (IGA), La Habana (Cuba); Perez Martinez, A. [Instituto de Cibernetica, Matematica y Fisica (ICIMAF), La Habana (Cuba); Sussman, Roberto A. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (ICN-UNAM), Mexico (Mexico); Ulacia Rey, A. [Instituto de Cibernetica, Matematica y Fisica (ICIMAF), La Habana (Cuba); Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (ICN-UNAM), Mexico (Mexico)

    2013-07-15

    We examine the dynamics of a self-gravitating magnetized fermion gas at finite temperature near the collapsing singularity of a Bianchi-I spacetime. Considering a general set of appropriate and physically motivated initial conditions, we transform Einstein-Maxwell field equations into a complete and self-consistent dynamical system amenable for numerical work. The resulting numerical solutions reveal the gas collapsing into both, isotropic (''point-like'') and anisotropic (''cigar-like''), singularities, depending on the initial intensity of the magnetic field. We provide a thorough study of the near collapse behavior and interplay of all relevant state and kinematic variables: temperature, expansion scalar, shear scalar, magnetic field, magnetization, and energy density. A significant qualitative difference in the behavior of the gas emerges in the temperature range T/m{sub f} {proportional_to} 10{sup -6} and T/m{sub f} {proportional_to} 10{sup -3}. (orig.)

  8. Parametrization of the average ionization and radiative cooling rates of carbon plasmas in a wide range of density and temperature

    OpenAIRE

    Gil de la Fe, Juan Miguel; Rodriguez Perez, Rafael; Florido, Ricardo; Garcia Rubiano, Jesus; Mendoza, M. A.; Nuez, A. de la; Espinosa, G.; Martel Escobar, Carlos; Mínguez Torres, Emilio

    2013-01-01

    In this work we present an analysis of the influence of the thermodynamic regime on the monochromatic emissivity, the radiative power loss and the radiative cooling rate for optically thin carbon plasmas over a wide range of electron temperature and density assuming steady state situations. Furthermore, we propose analytical expressions depending on the electron density and temperature for the average ionization and cooling rate based on polynomial fittings which are valid for the whole range...

  9. Low-Temperature Oxidation Reactions and Cool Flames at Earth and Reduced Gravity

    Science.gov (United States)

    Pearlman, Howard

    1999-01-01

    Non-isothermal studies of cool flames and low temperature oxidation reactions in unstirred closed vessels are complicated by the perturbing effects of natural convection at earth gravity. Buoyant convection due to self-heating during the course of slow reaction produces spatio-temporal variations in the thermal and thus specie concentration fields due to the Arrhenius temperature dependence of the reaction rates. Such complexities have never been quantitatively modeled and were the primary impetus for the development of CSTR's (continuously stirred tank reactors) 30 years ago. While CSTR's have been widely adopted since they offer the advantage of spatial uniformity in temperature and concentration, all gradients are necessarily destroyed along with any structure that may otherwise develop. Microgravity offers a unique environment where buoyant convection can be effectively minimized and the need for stirring eliminated. Moreover, eliminating buoyancy and the need for stirring eliminates complications associated with the induced hydrodynamic field whose influence on heat transport and hot spot formation, hence explosion limits, is not fully realized. The objective of this research is to quantitatively determine and understand the fundamental mechanisms that control the onset and evolution of low temperature reactions and cool flames in both static and flow reactors. Microgravity experiments will be conducted to obtain benchmark data on the structure (spatio-temporal temperature, concentration, flow fields), the dynamics of the chemical fronts, and the ignition diagrams (pressure vs. temperature). Ground-based experiments will be conducted to ascertain the role of buoyancy. Numerical simulations including detailed kinetics will be conducted and compared to experiment.

  10. Considerations of Alloy N for Fluoride Salt-Cooled High-Temperature Reactor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Weiju [ORNL; Muralidharan, Govindarajan [ORNL; Wilson, Dane F [ORNL; Holcomb, David Eugene [ORNL

    2011-01-01

    Fluoride Salt-Cooled High-Temperature Reactors (FHRs) are a promising new class of thermal-spectrum nuclear reactors. The reactor structural materials must possess high-temperature strength and chemical compatibility with the liquid fluoride salt as well as with a power cycle fluid such as supercritical water while remaining resistant to residual air within the containment. Alloy N was developed for use with liquid fluoride salts and it possesses adequate strength and chemical compatibility up to about 700 C. A distinctive property of FHRs is that their maximum allowable coolant temperature is restricted by their structural alloy maximum service temperature. As the reactor thermal efficiency directly increases with the maximum coolant temperature, higher temperature resistant alloys are strongly desired. This paper reviews the current status of Alloy N and its relevance to FHRs including its design principles, development history, high temperature strength, environmental resistance, metallurgical stability, component manufacturability, ASME codification status, and reactor service requirements. The review will identify issues and provide guidance for improving the alloy properties or implementing engineering solutions.

  11. Fissile compound - Inert matrix compatibility studies for the development of gas cooled fast reactor fuels

    Energy Technology Data Exchange (ETDEWEB)

    Rapaud, O.; Rado, C

    2004-07-01

    Helium-Cooled High-Temperature Fast Reactors have a high potential for transmutation of minor actinides (Pu, Am, Cm... ). In this kind of reactor, the fuel temperature would be 1200 deg C in use and the inert matrix should retain the fission products in the fuel structure up to 1600 deg C. The fissile compound would be (U,Pu)C or (U,Pu)N owing to their high density, good thermal conductivity and refractory behavior. SiC, TiC, ZrC and TiN, ZrN would be the inert matrix surrounding (U,Pu)C or (U,Pu)N fissile compounds. This study is devoted to the chemical compatibility between UC or UN and inert matrix in the 1200 deg C - 2000 deg C temperature range. In order to achieve a limited number of specific experiments, thermodynamic calculations are realized using the thermodynamic data provided either by the Thermodata database or from the literature. (authors)

  12. Performance Estimation of Supercritical Co2 Micro Modular Reactor (MMR) for Varying Cooling Air Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Yoonhan; Kim, Seong Gu; Cho, Seong Kuk; Lee, Jeong Ik [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-05-15

    A Small Modular Reactor (SMR) receives interests for the various application such as electricity co-generation, small-scale power generation, seawater desalination, district heating and propulsion. As a part of SMR development, supercritical CO2 Micro Modular Reactor (MMR) of 36.2MWth in power is under development by the KAIST research team. To enhance the mobility, the entire system including the power conversion system is designed for the full modularization. Based on the preliminary design, the thermal efficiency is 31.5% when CO2 is sufficiently cooled to the design temperature. A supercritical CO2 MMR is designed to supply electricity to the remote regions. The ambient temperature of the area can influence the compressor inlet temperature as the reactor is cooled with the atmospheric air. To estimate the S-CO2 cycle performance for various environmental conditions, A quasi-static analysis code is developed. For the off design performance of S-CO2 turbomachineries, the experimental result of Sandia National Lab (SNL) is utilized.

  13. Smoothing effect of the thermal interface material on the temperature distribution in a stepwise varying width microchannel cooling device

    Science.gov (United States)

    Riera, Sara; Barrau, Jérôme; Rosell, Joan I.; Fréchette, Luc G.; Omri, Mohamed; Vilarrubí, Montse; Laguna, Gerard

    2017-09-01

    The impact of the thermal interface material (TIM) layer on the performance of a stepwise varying width microchannel cooling device is analysed. A numerical model shows that the TIM layer, besides its well known negative impact on the temperature, also generates a smoothing effect on the temperature distribution. In this study, an analytical model is used to define a nondimensional parameter, called Smoothing Resistance ratio, as the quotient between the origin of the temperature non uniformities and the TIM thermal resistance that flatten the temperature distribution. The relationship between the temperature uniformity of the cooled device, expressed through the temperature standard deviation, and the Smoothing Resistance ratio is shown to be linear. These results lead to the definition of a new design procedure for this kind of cooling device, which aims to reduce the Smoothing Resistance ratio. Two solutions are identified and their drawbacks are analysed.

  14. Mechanical response of local rapid cooling by spray water on constrained steel frame structure at high temperature in fire

    Directory of Open Access Journals (Sweden)

    Xia Yunchun

    2015-01-01

    Full Text Available Locally rapid cooling of spray water had strong impact on high temperature steel structure. When temperature of beam reached 600°C and cooling rate was more than 20°C/s, the maximum axial tension could reach more than 5 times of the originally compressive force. The compressive bending moment at joint of beam-to-column changed to tensile bending moment, and the maximum bending moment could reach above 4 times as that when heated. After rapid cooling by spray water, deflection at mid-span increased slightly.

  15. Screening of Gas-Cooled Reactor Thermal-Hydraulic and Safety Analysis Tools and Experimental Database

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Kim, Min Hwan; Lee, Seung Wook (and others)

    2007-08-15

    This report is a final report of I-NERI Project, 'Screening of Gas-cooled Reactor Thermal Hydraulic and Safety Analysis Tools and Experimental Database 'jointly carried out by KAERI, ANL and INL. In this study, we developed the basic technologies required to develop and validate the VHTR TH/safety analysis tools and evaluated the TH/safety database information. The research tasks consist of; 1) code qualification methodology (INL), 2) high-level PIRTs for major nucleus set of events (KAERI, ANL, INL), 3) initial scaling and scoping analysis (ANL, KAERI, INL), 4) filtering of TH/safety tools (KAERI, INL), 5) evaluation of TH/safety database information (KAERI, INL, ANL) and 6) key scoping analysis (KAERI). The code qualification methodology identifies the role of PIRTs in the R and D process and the bottom-up and top-down code validation methods. Since the design of VHTR is still evolving, we generated the high-level PIRTs referencing 600MWth block-type GT-MHR and 400MWth pebble-type PBMR. Nucleus set of events that represents the VHTR safety and operational transients consists of the enveloping scenarios of HPCC (high pressure conduction cooling: loss of primary flow), LPCC/Air-Ingress (low pressure conduction cooling: loss of coolant), LC (load changes: power maneuvering), ATWS (anticipated transients without scram: reactivity insertion), WS (water ingress: water-interfacing system break) and HU (hydrogen-side upset: loss of heat sink). The initial scaling analysis defines dimensionless parameters that need to be reflected in mixed convection modeling and the initial scoping analysis provided the reference system transients used in the PIRTs generation. For the PIRTs phenomena, we evaluated the modeling capability of the candidate TH/safety tools and derived a model improvement need. By surveying and evaluating the TH/safety database information, a tools V and V matrix has been developed. Through the key scoping analysis using available database, the

  16. Efficient transfer of positrons from a buffer-gas-cooled accumulator into an orthogonally oriented superconducting solenoid for antihydrogen studies

    CERN Document Server

    Comeau, D; Fitzakerley, D; George, M C; Hessels, E A; Storry, C H; Weel, M; Grzonka, D; Oelert, W; Gabrielse, G; Kalra, R; Kolthammer, W S; McConnell, R; Richerme, P; Mullers, A; Walz, J

    2012-01-01

    Positrons accumulated in a room-temperature buffer-gas-cooled positron accumulator are efficiently transferred into a superconducting solenoid which houses the ATRAP cryogenic Penning trap used in antihydrogen research. The positrons are guided along a 9 m long magnetic guide that connects the central field lines of the 0.15 T field in the positron accumulator to the central magnetic field lines of the superconducting solenoid. Seventy independently controllable electromagnets are required to overcome the fringing field of the large-bore superconducting solenoid. The guide includes both a 15 degrees upward bend and a 105 degrees downward bend to account for the orthogonal orientation of the positron accumulator with respect to the cryogenic Penning trap. Low-energy positrons ejected from the accumulator follow the magnetic field lines within the guide and are transferred into the superconducting solenoid with nearly 100% efficiency. A 7 m long 5 cm diameter stainless-steel tube and a 20 mm long, 1.5 mm diamet...

  17. Helium heater design for the helium direct cycle component test facility. [for gas-cooled nuclear reactor power plant

    Science.gov (United States)

    Larson, V. R.; Gunn, S. V.; Lee, J. C.

    1975-01-01

    The paper describes a helium heater to be used to conduct non-nuclear demonstration tests of the complete power conversion loop for a direct-cycle gas-cooled nuclear reactor power plant. Requirements for the heater include: heating the helium to a 1500 F temperature, operating at a 1000 psia helium pressure, providing a thermal response capability and helium volume similar to that of the nuclear reactor, and a total heater system helium pressure drop of not more than 15 psi. The unique compact heater system design proposed consists of 18 heater modules; air preheaters, compressors, and compressor drive systems; an integral control system; piping; and auxiliary equipment. The heater modules incorporate the dual-concentric-tube 'Variflux' heat exchanger design which provides a controlled heat flux along the entire length of the tube element. The heater design as proposed will meet all system requirements. The heater uses pressurized combustion (50 psia) to provide intensive heat transfer, and to minimize furnace volume and heat storage mass.

  18. The development of high cooling power and low ultimate temperature superfluid Stirling refrigerators

    Science.gov (United States)

    Patel, Ashok B.

    The superfluid Stirling refrigerator (SSR) is a recuperative Stirling cycle refrigerator which provides cooling to below 2 K by using a liquid 3He-4He mixture as the working fluid. In 1990, Kotsubo and Swift demonstrated the first SSR, and by 1995, Brisson and Swift had developed an experimental prototype capable of reaching a low temperature of 296 mK. The goal of this thesis was to improve these capabilities by developing a better understanding of the SSR and building SSR's with higher cooling powers and lower ultimate temperatures. This thesis contains four main parts. In the first part, a numerical analysis demonstrates that the optimal design and ultimate performance of a recuperative Stirling refrigerator is fundamentally different from that of a standard regenerative Stirling refrigerator due to a mass flow imbalance within the recuperator. The analysis also shows that high efficiency recuperators remain a key to SSR performance. Due to a quantum effect called Kapitza resistance, the only realistic and economical method of creating higher efficiency recuperators for use with an SSR is to construct the heat exchangers from very thin (12 μm - 25 μm thick) plastic films. The second part of this thesis involves the design and construction of these recuperators. This research resulted in Kapton heat exchangers which are leaktight to superfluid helium and capable of surviving repeated thermal cycling. In the third part of this thesis, two different single stage SSR's are operated to test whether the plastic recuperators would actually improve SSR performance. Operating from a high temperature of 1.0 K and with 1.5% and 3.0% 3He-4He mixtures, these SSR's achieved a low temperature of 291 mK and delivered net cooling powers of 3705 μW at 750 mK, 977 μW at 500 mK, and 409 μW at 400 mK. Finally, this thesis describes the operation of three versions of a two stage SSR. Unfortunately, due to experimental difficulties, the merits of a two stage SSR were not

  19. The impact of humidity on evaporative cooling in small desert birds exposed to high air temperatures.

    Science.gov (United States)

    Gerson, Alexander R; Smith, Eric Krabbe; Smit, Ben; McKechnie, Andrew E; Wolf, Blair O

    2014-01-01

    Environmental temperatures that exceed body temperature (Tb) force endothermic animals to rely solely on evaporative cooling to dissipate heat. However, evaporative heat dissipation can be drastically reduced by environmental humidity, imposing a thermoregulatory challenge. The goal of this study was to investigate the effects of humidity on the thermoregulation of desert birds and to compare the sensitivity of cutaneous and respiratory evaporation to reduced vapor density gradients. Rates of evaporative water loss, metabolic rate, and Tb were measured in birds exposed to humidities ranging from ∼2 to 30 g H2O m(-3) (0%-100% relative humidity at 30°C) at air temperatures between 44° and 56°C. In sociable weavers, a species that dissipates heat primarily through panting, rates of evaporative water loss were inhibited by as much as 36% by high humidity at 48°C, and these birds showed a high degree of hyperthermia. At lower temperatures (40°-44°C), evaporative water loss was largely unaffected by humidity in this species. In Namaqua doves, which primarily use cutaneous evaporation, increasing humidity reduced rates of evaporative water loss, but overall rates of water loss were lower than those observed in sociable weavers. Our data suggest that cutaneous evaporation is more efficient than panting, requiring less water to maintain Tb at a given temperature, but panting appears less sensitive to humidity over the air temperature range investigated here.

  20. Cosmic Rays and Non-thermal Emission Induced by Accretion of Cool Gas onto the Galactic Disk

    Science.gov (United States)

    Inoue, Susumu; Uchiyama, Yasunobu; Arakawa, Masanori; Renaud, Matthieu; Wada, Keiichi

    2017-11-01

    On both observational and theoretical grounds, the disk of our Galaxy should be accreting cool gas with temperature ≲ {10}5 K via the halo at a rate ˜1 {{M}⊙ {yr}}-1. At least some of this accretion is mediated by high-velocity clouds (HVCs), observed to be traveling in the halo with velocities of a few 100 km s-1 and occasionally impacting the disk at such velocities, especially in the outer regions of the Galaxy. We address the possibility of particle acceleration in shocks triggered by such HVC accretion events, and the detectability of consequent non-thermal emission in the radio to gamma-ray bands and high-energy neutrinos. For plausible shock velocities ˜ 300 {km} {{{s}}}-1 and magnetic field strengths ˜ 0.3{--}10 μ {{G}}, electrons and protons may be accelerated up to ˜1-10 TeV and ˜ 30{--}{10}3 TeV, respectively, in sufficiently strong adiabatic shocks during their lifetime of ˜ {10}6 {{yr}}. The resultant pion decay and inverse Compton gamma-rays may be the origin of some unidentified Galactic GeV-TeV sources, particularly the “dark” source HESS J1503-582 that is spatially coincident with the anomalous H I structure known as “forbidden-velocity wings.” Correlation of their locations with star-forming regions may be weak, absent, or even opposite. Non-thermal radio and X-ray emission from primary and/or secondary electrons may be detectable with deeper observations. The contribution of HVC accretion to Galactic cosmic rays is subdominant, but could be non-negligible in the outer Galaxy. As the thermal emission induced by HVC accretion is likely difficult to detect, observations of such phenomena may offer a unique perspective on probing gas accretion onto the Milky Way and other galaxies.

  1. Influence of ambient air temperature on the cooling/heating load of a single cell protein jacketed fermenter operating on cheese whey under continuous conditions.

    Science.gov (United States)

    Ghaly, A E; Mahmoud, N S

    2002-01-01

    The heat generated by mixing and lactose metabolism, during the continuous production of single cell protein from cheese whey lactose using a jacketed fermenter with running cooling water, was calculated using a heat balance equation. The technique quantified the heat produced in and lost from the fermentation unit. Most of the heat generated by mixing in the cell-free system (97.47%) was lost with exhaust gas, while a very small amount (2.53%) was lost through the fermenter lid, wall, and bottom. The heat generated by mixing was significant (26.31% of the total heat generated in the fermentation system with an active yeast population present) and, therefore, cannot be ignored in heat balance calculations. About 19.71% of the total heat generated in the reactor was lost through the coolant at an ambient temperature of 22 +/- 0.5 degrees C, showing the need for a cooling system. A yeast population size of 986 million cells/mL and a lactose removal efficiency of 95.6% were observed. About 72.5% and 27.5% of the lactose consumed were used for growth and respiration, respectively. A yield of 0.66 g of cells/g of lactose was achieved. The heat released by unit biomass was 7.05 kJ/g of cells. The results showed the significant impact of ambient air temperature on the cooling load. The heat to be removed from the medium by the cooling system varied from 3.46 to 281.56 kJ/h when the temperature increased from 16 to 30 degrees C. A heating system is needed to maintain the medium temperature at 34 degrees C when the ambient air temperature is below 16 degrees C.

  2. Computational Analysis of Supercritical Carbon Dioxide Gas Turbine for Liquid Metal Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Wi S.; Suh, Kune Y. [Seoul National University, Seoul (Korea, Republic of)

    2008-10-15

    Energy demands at a remote site are increased as the world energy requirement diversifies so that they should generate power on their own site. A Small Modular Reactor (SMR) becomes a viable option for these sites. Generally, the economic feasibility of a high power reactor is greater than that for SMR. As a result the supercritical fluid driven Brayton cycle is being considered for a power conversion system to increase economic competitiveness of SMR. The Brayton cycle efficiency is much higher than that for the Rankine cycle. Moreover, the components of the Brayton cycle are smaller than Rankine cycle's due to high heat capacity when a supercritical fluid is adopted. A lead (Pb) cooled SMR, BORIS, and a supercritical fluid driven Brayton cycle, MOBIS, are being developed at the Seoul National University (SNU). Dostal et al. have compared some advanced power cycles and proposed the use of a supercritical carbon dioxide (SCO{sub 2}) driven Brayton cycle. According to their suggestion SCO{sub 2} is adopted as a working fluid for MOBIS. The turbo machineries are most important components for the Brayton cycle. The turbo machineries of Brayton cycle consists of a turbine to convert kinetic energy of the fluid into mechanical energy of the shaft, and a compressor to recompress and recover the driving force of the working fluid. Therefore, turbine performance is one of the pivotal factors in increasing the cycle efficiency. In MOBIS a supercritical gas turbine is designed in the Gas Advanced Turbine Operation (GATO) and analyzed in the Turbine Integrated Numerical Analysis (TINA). A three-dimensional (3D) numerical analysis is employed for more detailed design to account for the partial flow which the one-dimensional (1D) analysis cannot consider.

  3. Viscosity, pressure and support of the gas in simulations of merging cool-core clusters

    Science.gov (United States)

    Schmidt, W.; Byrohl, C.; Engels, J. F.; Behrens, C.; Niemeyer, J. C.

    2017-09-01

    Major mergers are considered to be a significant source of turbulence in clusters. We performed a numerical simulation of a major merger event using nested-grid initial conditions, adaptive mesh refinement, radiative cooling of primordial gas and a homogeneous ultraviolet background. By calculating the microscopic viscosity on the basis of various theoretical assumptions and estimating the Kolmogorov length from the turbulent dissipation rate computed with a subgrid-scale model, we are able to demonstrate that most of the warm-hot intergalactic mediums can sustain a fully turbulent state only if the magnetic suppression of the viscosity is considerable. Accepting this as premise, it turns out that ratios of turbulent and thermal quantities change only little in the course of the merger. This confirms the tight correlations between the mean thermal and non-thermal energy content for large samples of clusters in earlier studies, which can be interpreted as second self-similarity on top of the self-similarity for different halo masses. Another long-standing question is how and to which extent turbulence contributes to the support of the gas against gravity. From a global perspective, the ratio of turbulent and thermal pressures is significant for the clusters in our simulation. On the other hand, a local measure is provided by the compression rate, i.e. the growth rate of the divergence of the flow. Particularly for the intracluster medium, we find that the dominant contribution against gravity comes from thermal pressure, while compressible turbulence effectively counteracts the support. For this reason, it appears to be too simplistic to consider turbulence merely as an effective enhancement of thermal energy.

  4. Gas turbine ceramic-coated-vane concept with convection-cooled porous metal core

    Science.gov (United States)

    Kascak, A. F.; Liebert, C. H.; Handschuh, R. F.; Ludwig, L. P.

    1981-01-01

    Analysis and flow experiments on a ceramic-coated-porous-metal vane concept indicated the feasibility, from a heat transfer standpoint, of operating in a high-temperature (2500 F) gas turbine cascade facility. The heat transfer and pressure drop calculations provided a basis for selecting the ceramic layer thickness (to 0.08 in.), which was found to be the dominant factor in the overall heat transfer coefficient. Also an approximate analysis of the heat transfer in the vane trailing edge revealed that with trailing-edge ejection the ceramic thickness could be reduced to (0.01 in.) in this portion of the vane.

  5. Numerical simulation of wall temperature on gas pipeline due to radiation of natural gas during combustion

    Directory of Open Access Journals (Sweden)

    Ilić Marko N.

    2012-01-01

    Full Text Available This paper presents one of the possible hazardous situations during transportation of gas through the international pipeline. It describes the case when at high-pressure gas pipeline, due to mechanical or chemical effect, cracks and a gas leakage appears and the gas is somehow triggered to burn. As a consequence of heat impingement on the pipe surface, change of material properties (decreasing of strength at high temperatures will occur. In order to avoid greater rapture a reasonable pressure relief rate needs to be applied. Standards in this particular domain of depressurizing procedure are not so exact (DIN EN ISO 23251; API 521. This paper was a part of the project to make initial contribution in defining the appropriate procedure of gas operator behaving during the rare gas leakage and burning situations on pipeline network. The main part of the work consists of two calculations. The first is the numerical simulation of heat radiation of combustible gas, which affects the pipeline, done in the FLUENT software. The second is the implementation of obtained results as a boundary condition in an additional calculation of time resolved wall temperature of the pipe under consideration this temperature depending on the incident flux as well as a number of other heat flow rates, using the Matlab. Simulations were done with the help of the “E.ON Ruhrgas AG” in Essen.

  6. Dynamical cooling of galactic discs by molecular cloud collisions - origin of giant clumps in gas-rich galaxy discs

    Science.gov (United States)

    Li, Guang-Xing

    2017-10-01

    Different from Milky Way-like galaxies, discs of gas-rich galaxies are clumpy. It is believed that the clumps form because of gravitational instability. However, a necessary condition for gravitational instability to develop is that the disc must dissipate its kinetic energy effectively, this energy dissipation (also called cooling) is not well understood. We propose that collisions (coagulation) between molecular clouds dissipate the kinetic energy of the discs, which leads to a dynamical cooling. The effectiveness of this dynamical cooling is quantified by the dissipation parameter D, which is the ratio between the free-fall time t_ff≈ 1/ √{G ρ _{disc}} and the cooling time determined by the cloud collision process tcool. This ratio is related to the ratio between the mean surface density of the disc Σdisc and the mean surface density of molecular clouds in the disc Σcloud. When D 1/3 (which roughly corresponds to Σdisc > 1/3Σcloud), cloud-cloud collisions lead to a rapid cooling through which clumps form. On smaller scales, cloud-cloud collisions can drive molecular cloud turbulence. This dynamical cooling process can be taken into account in numerical simulations as a sub-grid model to simulate the global evolution of disc galaxies.

  7. Anisotropic ordering in a two-temperature lattice gas

    DEFF Research Database (Denmark)

    Szolnoki, Attila; Szabó, György; Mouritsen, Ole G.

    1997-01-01

    We consider a two-dimensional lattice gas model with repulsive nearest- and next-nearest-neighbor interactions that evolves in time according to anisotropic Kawasaki dynamics. The hopping of particles along the principal directions is governed by two heat baths at different temperatures T-x and T...

  8. Temperature-dependent gas transport and its correlation with kinetic ...

    Indian Academy of Sciences (India)

    2017-05-20

    May 20, 2017 ... Temperature-dependent gas transport and its correlation with kinetic diameter in polymer nanocomposite membrane. N K ACHARYA. Applied Physics Department, Faculty of Technology and Engineering, The M S University of Baroda,. Vadodara 390 001, India sarnavee@gmail.com. MS received 18 May ...

  9. Influence of different storage times and temperatures on blood gas ...

    African Journals Online (AJOL)

    The present study was designed to investigate the effects of storage temperature and time on blood gas and acid-base balance of ovine venous blood. Ten clinically healthy sheep were used in this study. A total number of 30 blood samples, were divided into three different groups, and were stored in a refrigerator adjusted ...

  10. Microstructural Characterization of Low Temperature Gas Nitrided Martensitic Stainless Steel

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2015-01-01

    The present work presents microstructural investigations of the surface zone of low temperature gas nitrided precipitation hardening martensitic stainless steel AISI 630. Grazing incidence X-ray diffraction was applied to investigate the present phases after successive removal of very thin sectio...

  11. Temperature control of micro heater using Pt thin film temperature sensor embedded in micro gas sensor

    Science.gov (United States)

    Kang, Jun-gu; Park, Joon-Shik; Park, Kwang-Bum; Shin, Junho; Lee, Eung-An; Noh, Sangsoo; Lee, Hoo-Jeong

    2017-12-01

    Pt thin film temperature sensors (Pt T sensors) are embedded in micro gas sensors to measure and control the working temperature. We characterized electrical resistances of Pt T sensors and micro heaters with temperature changing in the oven and by Joule heating. In order to enhance the accuracy of temperature measurement by the Pt T sensors, we investigated the correlation among the Pt T sensor, micro heater, and the working temperature, which was linear proportional relation expressed as the equation: T2 = 6.466R1-642.8, where T2 = temperature of the Pt micro heater and R1 = the electrical resistance of the Pt T sensor. As the error by physically separated gap between Pt T sensor and micro heater calibrated, measuring and controlling temperature of micro heater in micro gas sensors were possible through the Pt T sensors. For the practical use of Pt T sensor in micro gas sensor, the gas sensing properties of fabricated micro gas sensors to 25 ppm CO and 1 ppm HCHO gases were characterized.

  12. Enthalpy Relaxation of a DGEBA Epoxy as a function of Time, Temperature, and Cooling Rate

    Science.gov (United States)

    Clarkson, Caitlyn M.; McCoy, John D.; Kropka, Jamie M.

    2015-03-01

    Enthalpy relaxation resulting from physical aging of a DGEBA epoxy, Epon 828, cross-linked with an amine curative, Jeffamine T-403, was studied for two isothermal aging temperatures at sequential aging times up to two weeks. Results were analyzed using the peak shift method to obtain the relaxation parameters β, δ (H*), and χ. The individual effects of cooling rate from the equilibrated state, aging time, and aging temperature were isolated to understand the initial state of the glassy epoxy and its evolution during physical aging. [Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. Distinct unfolding and refolding pathways of ribonuclease a revealed by heating and cooling temperature jumps.

    Science.gov (United States)

    Torrent, Joan; Marchal, Stéphane; Ribó, Marc; Vilanova, Maria; Georges, Cédric; Dupont, Yves; Lange, Reinhard

    2008-05-15

    Heating and cooling temperature jumps (T-jumps) were performed using a newly developed technique to trigger unfolding and refolding of wild-type ribonuclease A and a tryptophan-containing variant (Y115W). From the linear Arrhenius plots of the microscopic folding and unfolding rate constants, activation enthalpy (DeltaH(#)), and activation entropy (DeltaS(#)) were determined to characterize the kinetic transition states (TS) for the unfolding and refolding reactions. The single TS of the wild-type protein was split into three for the Y115W variant. Two of these transition states, TS1 and TS2, characterize a slow kinetic phase, and one, TS3, a fast phase. Heating T-jumps induced protein unfolding via TS2 and TS3; cooling T-jumps induced refolding via TS1 and TS3. The observed speed of the fast phase increased at lower temperature, due to a strongly negative DeltaH(#) of the folding-rate constant. The results are consistent with a path-dependent protein folding/unfolding mechanism. TS1 and TS2 are likely to reflect X-Pro(114) isomerization in the folded and unfolded protein, respectively, and TS3 the local conformational change of the beta-hairpin comprising Trp(115). A very fast protein folding/unfolding phase appears to precede both processes. The path dependence of the observed kinetics is suggestive of a rugged energy protein folding funnel.

  14. Sensitivity analysis of an Advanced Gas-cooled Reactor control rod model

    Energy Technology Data Exchange (ETDEWEB)

    Scott, M.; Green, P.L. [Dynamics Research Group, Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); O’Driscoll, D. [EDF Energy, Barnett Way, Barnwood, Gloucester GL4 3RS (United Kingdom); Worden, K.; Sims, N.D. [Dynamics Research Group, Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2016-08-15

    Highlights: • A model was made of the AGR control rod mechanism. • The aim was to better understand the performance when shutting down the reactor. • The model showed good agreement with test data. • Sensitivity analysis was carried out. • The results demonstrated the robustness of the system. - Abstract: A model has been made of the primary shutdown system of an Advanced Gas-cooled Reactor nuclear power station. The aim of this paper is to explore the use of sensitivity analysis techniques on this model. The two motivations for performing sensitivity analysis are to quantify how much individual uncertain parameters are responsible for the model output uncertainty, and to make predictions about what could happen if one or several parameters were to change. Global sensitivity analysis techniques were used based on Gaussian process emulation; the software package GEM-SA was used to calculate the main effects, the main effect index and the total sensitivity index for each parameter and these were compared to local sensitivity analysis results. The results suggest that the system performance is resistant to adverse changes in several parameters at once.

  15. Pulse length of ultracold electron bunches extracted from a laser cooled gas

    Science.gov (United States)

    Franssen, J. G. H.; Frankort, T. L. I.; Vredenbregt, E. J. D.; Luiten, O. J.

    2017-01-01

    We present measurements of the pulse length of ultracold electron bunches generated by near-threshold two-photon photoionization of a laser-cooled gas. The pulse length has been measured using a resonant 3 GHz deflecting cavity in TM110 mode. We have measured the pulse length in three ionization regimes. The first is direct two-photon photoionization using only a 480 nm femtosecond laser pulse, which results in short (∼15 ps) but hot (∼104 K) electron bunches. The second regime is just-above-threshold femtosecond photoionization employing the combination of a continuous-wave 780 nm excitation laser and a tunable 480 nm femtosecond ionization laser which results in both ultracold (∼10 K) and ultrafast (∼25 ps) electron bunches. These pulses typically contain ∼103 electrons and have a root-mean-square normalized transverse beam emittance of 1.5 ± 0.1 nm rad. The measured pulse lengths are limited by the energy spread associated with the longitudinal size of the ionization volume, as expected. The third regime is just-below-threshold ionization which produces Rydberg states which slowly ionize on microsecond time scales. PMID:28396879

  16. Effect of Target Configuration on the Neutronic Performance of the Gas-Cooled ADS

    CERN Document Server

    Biss, K; Shetty, N; Nabbi, R

    2013-01-01

    With the utilization of nuclear energy transuranic elements like Pu, Am and Cm are produced causing high, long term radioactivity and radio toxicity, respectively. To reduce the radiological impact on the environment and to the repository Partitioning and Transmutation is considered as an efficient way. In this respect comprehensive research works are performed at different research institutes worldwide. The results show that the transmutation of TRU is achieved with fast neutrons due to the higher fission probability. Based on Accelerator Driven Systems (ADS) those neutrons are used in a particular system, in which mainly liquid metal eutectic (lead bismuth) is used as coolant. The neutronic performance of an ADS system based on gas cooling was studied in this work by using the simulation tool MCNPX. The usage of the Monte-Carlo method in MCNPX allows the simulation of the physical processes in a 3D-model of the core. In dependence of the spallation target material and design several parameters like the mult...

  17. A 50-100 kWe gas-cooled reactor for use on Mars.

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Curtis D. (.)

    2006-04-01

    In the space exploration field there is a general consensus that nuclear reactor powered systems will be extremely desirable for future missions to the outer solar system. Solar systems suffer from the decreasing intensity of solar radiation and relatively low power density. Radioisotope Thermoelectric Generators are limited to generating a few kilowatts electric (kWe). Chemical systems are short-lived due to prodigious fuel use. A well designed 50-100 kWe nuclear reactor power system would provide sufficient power for a variety of long term missions. This thesis will present basic work done on a 50-100 kWe reactor power system that has a reasonable lifespan and would function in an extraterrestrial environment. The system will use a Gas-Cooled Reactor that is directly coupled to a Closed Brayton Cycle (GCR-CBC) power system. Also included will be some variations on the primary design and their effects on the characteristics of the primary design. This thesis also presents a variety of neutronics related calculations, an examination of the reactor's thermal characteristics, feasibility for use in an extraterrestrial environment, and the reactor's safety characteristics in several accident scenarios. While there has been past work for space reactors, the challenges introduced by thin atmospheres like those on Mars have rarely been considered.

  18. High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion

    Science.gov (United States)

    Juhasz, Albert J.; Sawicki, Jerzy T.

    2003-01-01

    For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a partial energy conversion system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.

  19. Phase change based cooling for high burst mode heat loads with temperature regulation above the phase change temperature

    Science.gov (United States)

    The United States of America as represented by the United States Department of Energy

    2009-12-15

    An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.

  20. Low temperature catalytic combustion of natural gas - hydrogen - air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Newson, E.; Roth, F. von; Hottinger, P.; Truong, T.B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The low temperature catalytic combustion of natural gas - air mixtures would allow the development of no-NO{sub x} burners for heating and power applications. Using commercially available catalysts, the room temperature ignition of methane-propane-air mixtures has been shown in laboratory reactors with combustion efficiencies over 95% and maximum temperatures less than 700{sup o}C. After a 500 hour stability test, severe deactivation of both methane and propane oxidation functions was observed. In cooperation with industrial partners, scaleup to 3 kW is being investigated together with startup dynamics and catalyst stability. (author) 3 figs., 3 refs.

  1. Comparison of simulated and experimental results of temperature distribution in a closed two-phase thermosyphon cooling system

    Science.gov (United States)

    Shaanika, E.; Yamaguchi, K.; Miki, M.; Ida, T.; Izumi, M.; Murase, Y.; Oryu, T.; Yanamoto, T.

    2017-12-01

    Superconducting generators offer numerous advantages over conventional generators of the same rating. They are lighter, smaller and more efficient. Amongst a host of methods for cooling HTS machinery, thermosyphon-based cooling systems have been employed due to their high heat transfer rate and near-isothermal operating characteristics associated with them. To use them optimally, it is essential to study thermal characteristics of these cryogenic thermosyphons. To this end, a stand-alone neon thermosyphon cooling system with a topology resembling an HTS rotating machine was studied. Heat load tests were conducted on the neon thermosyphon cooling system by applying a series of heat loads to the evaporator at different filling ratios. The temperature at selected points of evaporator, adiabatic tube and condenser as well as total heat leak were measured. A further study involving a computer thermal model was conducted to gain further insight into the estimated temperature distribution of thermosyphon components and heat leak of the cooling system. The model employed boundary conditions from data of heat load tests. This work presents a comparison between estimated (by model) and experimental (measured) temperature distribution in a two-phase cryogenic thermosyphon cooling system. The simulation results of temperature distribution and heat leak compared generally well with experimental data.

  2. Solar heating and cooling system with absorption chiller and low temperature latent heat storage: Energetic performance and operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Helm, M.; Keil, C.; Hiebler, S.; Mehling, H.; Schweigler, C. [Bavarian Center for Applied Energy Research (ZAE Bayern) (Germany)

    2009-06-15

    Absorption cooling systems based on water/lithium bromide (LiBr) solution typically require an open wet cooling tower to transfer the reject heat to the ambient. Yet, water consumption, the need for water make-up and cleaning, formation of fog, and the risk of Legionella bacteria growth are hindering factors for the implementation of small solar cooling systems. The application of a latent heat storage supporting the heat rejection of the absorption chiller in conjunction with a dry cooling system allows eliminating the wet cooling tower. By that means heat rejection of the chiller is shifted to periods with lower ambient temperatures, i.e. night time or off-peak hours. The system concept and the hydraulic scheme together with an analysis of the energetic performance of the system are presented, followed by a report on the operation of a first pilot installation. (author)

  3. A method for calculation of forces acting on air cooled gas turbine blades based on the aerodynamic theory

    Directory of Open Access Journals (Sweden)

    Grković Vojin R.

    2013-01-01

    Full Text Available The paper presents the mathematical model and the procedure for calculation of the resultant force acting on the air cooled gas turbine blade(s based on the aerodynamic theory and computation of the circulation around the blade profile. In the conducted analysis was examined the influence of the cooling air mass flow expressed through the cooling air flow parameter λc, as well as, the values of the inlet and outlet angles β1 and β2, on the magnitude of the tangential and axial forces. The procedure and analysis were exemplified by the calculation of the tangential and axial forces magnitudes. [Projekat Ministarstva nauke Republike Srbije: Development and building the demonstrative facility for combined heat and power with gasification

  4. Coal/Biomass cogasification and high temperature gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Kiel, J.H.A.; Bos, A.; Den Uil, H.; Plaum, J.M.

    1995-08-01

    This paper reports on the cogasification of coal and biomass in a downdraught fixed-bed gasifier and on the high temperature removal of halides from the fuel gas produced. Air-blown downdraught gasifiers are considered as an interesting option especially for small and intermediate scale on-site fuel gas generation using high volatile feedstocks. The current test programme conducted with a 300 kW{sub th} downdraught gasifier at the Netherlands Energy Research Foundation (ECN) was focused on the effect of the partial replacement of the coal feedstock by two different biomass feedstocks, viz. Meranti wood waste and straw pellets (Danish winter wheat), on gasifier operability and fuel gas composition. For dry halide removal, several sorbents were evaluated based on literature data, thermodynamic calculations, and on laboratory and bench-scale experiments at atmospheric pressure. The evaluation was mainly focused on dry halide removal at a temperature level of 350-400C in a separate process located upstream of the desulphurisation process in an integrated system for high temperature gas cleaning. 8 figs., 11 tabs., 11 refs.

  5. METAL-POOR, COOL GAS IN THE CIRCUMGALACTIC MEDIUM OF A z = 2.4 STAR-FORMING GALAXY: DIRECT EVIDENCE FOR COLD ACCRETION?

    Energy Technology Data Exchange (ETDEWEB)

    Crighton, Neil H. M.; Hennawi, Joseph F. [Max-Planck-Institut für Astronomie, Königstuhl 17, Heidelberg D-69117 (Germany); Prochaska, J. Xavier, E-mail: neilcrighton@gmail.com [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2013-10-20

    In our current galaxy formation paradigm, high-redshift galaxies are predominantly fueled by accretion of cool, metal-poor gas from the intergalactic medium. Hydrodynamical simulations predict that this material should be observable in absorption against background sightlines within a galaxy's virial radius, as optically thick Lyman limit systems (LLSs) with low metallicities. Here we report the discovery of exactly such a strong metal-poor absorber at an impact parameter R = 58 kpc from a star-forming galaxy at z = 2.44. Besides strong neutral hydrogen (N{sub H{sup 0}}=10{sup 19.50±0.16} cm{sup -2}) we detect neutral deuterium and oxygen, allowing a precise measurement of the metallicity: log{sub 10}(Z/Z {sub ☉}) = –2.0 ± 0.17, or (7-15) × 10{sup –3} solar. Furthermore, the narrow deuterium linewidth requires a cool temperature <20,000 K. Given the striking similarities between this system and the predictions of simulations, we argue that it represents the direct detection of a high-redshift cold-accretion stream. The low-metallicity gas cloud is a single component of an absorption system exhibiting a complex velocity, ionization, and enrichment structure. Two other components have metallicities >0.1 solar, 10 times larger than the metal-poor component. We conclude that the photoionized circumgalactic medium (CGM) of this galaxy is highly inhomogeneous: the majority of the gas is in a cool, metal-poor and predominantly neutral phase, but the majority of the metals are in a highly ionized phase exhibiting weak neutral hydrogen absorption but strong metal absorption. If such inhomogeneity is common, then high-resolution spectra and detailed ionization modeling are critical to accurately appraise the distribution of metals in the high-redshift CGM.

  6. Fast cooling techniques for gravitational wave antennas

    CERN Document Server

    Furtado, S R

    2002-01-01

    The resonant-mass technique for the detection of gravitational waves may involve, in the near future, the cooling of very large masses (about 100 tons) from room temperature (300 K) to extreme cryogenic temperatures (20 mK). To cool these detectors to cryogenic temperatures an exchange gas (helium) is used, and the heat is removed from the antenna to the cold reservoir by thermal conduction and natural convection. With the current technique, cooling times of about 1 month can be obtained for cylindrical bar antennas of 2.5 tons. Should this same technique be used to cool a 100 ton spherical antenna the cooling time would be about 10 months, making the operation of these antennas impracticable. In this paper, we study the above-mentioned cooling technique and others, such as thermal switching and forced convection from room temperature to liquid nitrogen temperature (77 K) using an aluminium truncated icosahedron of 19 kg weight and 25 cm diameter.

  7. Temperature and distortion transients in gas tungsten-arc weldments

    Energy Technology Data Exchange (ETDEWEB)

    Glickstein, S.S.; Friedman, E.

    1979-10-01

    An analysis and test program to develop a fundamental understanding of the gas tungsten-arc welding process has been undertaken at the Bettis Atomic Power Laboratory to develop techniques to determine and control the various welding parameters and weldment conditions so as to result in optimum weld response characteristics. These response characteristics include depth of penetration, weld bead configuration, weld bead sink and roll, distortion, and cracking sensitivity. The results are documented of that part of the program devoted to analytical and experimental investigations of temperatures, weld bead dimensions, and distortions for moving gas tungsten-arc welds applied to Alloy 600 plates.

  8. Evolution of temperature and gas composition in coal piles

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, J.L.; Romero, C.; Andres, J.M.; Schmal, D. [CSIC, Zaragoza (Spain). Instituto de Carboquimica

    1995-12-31

    The evolution of temperature and gas composition in coal piles was followed for eleven months at three different depths using special probes. For all the piles studied the slope exposed to the wind showed the most severe weathering. The kind of coal in the piles has a strong effect on the extent of the oxidation which can reach 300{degree}C. The analysis of gas evolution showed a strong correlation between oxygen and carbon monoxide concentrations, pointing to a combined pyrolysis-combustion process. 3 refs., 3 figs., 1 tab.

  9. Optimized Feature Extraction for Temperature-Modulated Gas Sensors

    Directory of Open Access Journals (Sweden)

    Alexander Vergara

    2009-01-01

    Full Text Available One of the most serious limitations to the practical utilization of solid-state gas sensors is the drift of their signal. Even if drift is rooted in the chemical and physical processes occurring in the sensor, improved signal processing is generally considered as a methodology to increase sensors stability. Several studies evidenced the augmented stability of time variable signals elicited by the modulation of either the gas concentration or the operating temperature. Furthermore, when time-variable signals are used, the extraction of features can be accomplished in shorter time with respect to the time necessary to calculate the usual features defined in steady-state conditions. In this paper, we discuss the stability properties of distinct dynamic features using an array of metal oxide semiconductors gas sensors whose working temperature is modulated with optimized multisinusoidal signals. Experiments were aimed at measuring the dispersion of sensors features in repeated sequences of a limited number of experimental conditions. Results evidenced that the features extracted during the temperature modulation reduce the multidimensional data dispersion among repeated measurements. In particular, the Energy Signal Vector provided an almost constant classification rate along the time with respect to the temperature modulation.

  10. Sensitivity study on depressurized LOFC accidents with failure of RCCS in a modular gas-cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seyun [Nuclear Power Laboratory, Korea Electric Power Research Institute, Munji-ro 65, Yuseong, Daejeon 305-380 (Korea, Republic of); Tak, Nam-Il; Lim, Hong-Sik [Korea Atomic Energy Research Institute, 150 Dukjin-dong, Yuseong, Deajeon 305-353 (Korea, Republic of); Ha, Sang-Jun [Nuclear Power Laboratory, Korea Electric Power Research Institute, Munji-ro 65, Yuseong, Daejeon 305-380 (Korea, Republic of)

    2010-05-15

    A modular gas-cooled reactor design with a thermal output of 600 MWt and a core exit temperature of 950 deg. C has been designed by the Korea Atomic Energy Research Institute based on the GT-MHR reactor concept which adopts a prismatic core. A sensitivity study on the transient plant behavior during a postulated depressurized LOFC accident concurrent with the failure of the RCCS was performed. In the transient analysis, the GAMMA+ code which can handle multi-dimensional, multicomponent problems was used. The RCCS is a passive system which is very reliable and supplies a significant heat removal mechanism during abnormal conditions in a GCR. To investigate the safety characteristics of a GCR under the one of the worst accidental scenarios, a simultaneous failure of the RCCS with a depressurized LOFC was assumed. The thermal behavior of the reactor system was analyzed in various conditions. It is found that the maximum temperature of the reactor fuel compact could exceed 1600 deg. C at about 50 h at the condition of a depressurized LOFC with a failure of the RCCS. A problem with the structural integrity of the reactor pressure vessel could also be a critical factor. The insulation of a reactor cavity wall serves as a dominant obstacle against a heat transfer from the reactor vessel to the surrounding ground when the RCCS fails to operate. Without insulation material on the reactor cavity wall, the gradients of the increasing rate of the maximum temperature diminish and the peak values decrease. The maximum temperatures of the fuel compact and the reactor vessel are less sensitive to the concrete and surrounding soil properties, those are the thermal conductivity and volumetric heat capacity, when the insulation material is used. The uncertainties in the properties of the concrete and the surrounding soil become significant without an insulation material in the cavity. To improve the safety of a modular GCR, more effective and feasible heat removal mechanism need to

  11. Particle image velocimetry measurements in a representative gas-cooled prismatic reactor core model for the estimation of bypass flow

    Science.gov (United States)

    Conder, Thomas E.

    Core bypass flow is considered one of the largest contributors to uncertainty in fuel temperature within the Modular High Temperature Gas-cooled Reactor (MHTGR). It refers to the coolant that navigates through the interstitial regions between the graphite fuel blocks instead of traveling through the designated coolant channels. These flows are of concern because they reduce the desired flow rates in the coolant channels, and thereby have significant influence on the maximum fuel element and coolant exit temperatures. Thus, accurate prediction of the bypass flow is important because it directly impacts core temperature, influencing the life and efficiency of the reactor. An experiment was conducted at Idaho National Laboratory to quantify the flow in the coolant channels in relation to the interstitial gaps between fuel blocks in a representative MHTGR core. Particle Image Velocimetry (PIV) was used to measure the flow fields within a simplified model, which comprised of a stacked junction of six partial fuel blocks with nine coolant tubes, separated by a 6mm gap width. The model had three sections: The upper plenum, upper block, and lower block. Model components were fabricated from clear, fused quartz where optical access was needed for the PIV measurements. Measurements were taken in three streamwise locations: in the upper plenum and in the midsection of the large and small fuel blocks. A laser light sheet was oriented parallel to the flow, while velocity fields were measured at millimeter intervals across the width of the model, totaling 3,276 PIV measurement locations. Inlet conditions were varied to incorporate laminar, transition, and turbulent flows in the coolant channels---all which produced laminar flow in the gap and non-uniform, turbulent flow in the upper plenum. The images were analyzed to create vector maps, and the data was exported for processing and compilation. The bypass flow was estimated by calculating the flow rates through the coolant

  12. Comparison of waste heat driven and electrically driven cooling systems for a high ambient temperature, off-grid application

    Science.gov (United States)

    Horvath, Christopher P.

    Forward army bases in off-grid locations with high temperatures require power and cooling capacity. Each gallon of fuel providing electrical power passes through a complex network, introducing issues of safety and reliability if this network is interrupted. Instead of using an engine and an electrically powered cooling system, a more efficient combined heat and power (CHP) configuration with a smaller engine and LiBr/Water absorption system (AS) powered by waste heat could be used. These two configurations were simulated in both steady state and transient conditions, in ambient temperatures up to 52°C, providing up to 3 kW of non-cooling electricity, and 5.3 kW of cooling. Unlike conventional AS's which crystallize at high temperatures and use bulky cooling towers, the proposed AS's avoid crystallization and have air-cooled HXs for portability. For the hottest transient week, the results showed fuel savings of 34-37%, weight reduction of 11-19%, and a volumetric footprint 3-10% smaller.

  13. Effects of inlet distortion on gas turbine combustion chamber exit temperature profiles

    Science.gov (United States)

    Maqsood, Omar Shahzada

    Damage to a nozzle guide vane or blade, caused by non-uniform temperature distributions at the combustion chamber exit, is deleterious to turbine performance and can lead to expensive and time consuming overhaul and repair. A test rig was designed and constructed for the Allison 250-C20B combustion chamber to investigate the effects of inlet air distortion on the combustion chamber's exit temperature fields. The rig made use of the engine's diffuser tubes, combustion case, combustion liner, and first stage nozzle guide vane shield. Rig operating conditions simulated engine cruise conditions, matching the quasi-non-dimensional Mach number, equivalence ratio and Sauter mean diameter. The combustion chamber was tested with an even distribution of inlet air and a 4% difference in airflow at either side. An even distribution of inlet air to the combustion chamber did not create a uniform temperature profile and varying the inlet distribution of air exacerbated the profile's non-uniformity. The design of the combustion liner promoted the formation of an oval-shaped toroidal vortex inside the chamber, creating localized hot and cool sections separated by 90° that appeared in the exhaust. Uneven inlet air distributions skewed the oval vortex, increasing the temperature of the hot section nearest the side with the most mass flow rate and decreasing the temperature of the hot section on the opposite side. Keywords: Allison 250, Combustion, Dual-Entry, Exit Temperature Profile, Gas Turbine, Pattern Factor, Reverse Flow.

  14. Effects of Heating and Cooling Rates on Phase Transformations in 10 Wt Pct Ni Steel and Their Application to Gas Tungsten Arc Welding

    Science.gov (United States)

    Barrick, Erin J.; Jain, Divya; DuPont, John N.; Seidman, David N.

    2017-10-01

    10 wt pct Ni steel is a high-strength steel that possesses good ballistic resistance from the deformation induced transformation of austenite to martensite, known as the transformation-induced-plasticity effect. The effects of rapid heating and cooling rates associated with welding thermal cycles on the phase transformations and microstructures, specifically in the heat-affected zone, were determined using dilatometry, microhardness, and microstructural characterization. Heating rate experiments demonstrate that the Ac3 temperature is dependent on heating rate, varying from 1094 K (821 °C) at a heating rate of 1 °C/s to 1324 K (1051 °C) at a heating rate of 1830 °C/s. A continuous cooling transformation diagram produced for 10 wt pct Ni steel reveals that martensite will form over a wide range of cooling rates, which reflects a very high hardenability of this alloy. These results were applied to a single pass, autogenous, gas tungsten arc weld. The diffusion of nickel from regions of austenite to martensite during the welding thermal cycle manifests itself in a muddled, rod-like lath martensitic microstructure. The results of these studies show that the nickel enrichment of the austenite in 10 wt pct Ni steel plays a critical role in phase transformations during welding.

  15. Effects of Heating and Cooling Rates on Phase Transformations in 10 Wt Pct Ni Steel and Their Application to Gas Tungsten Arc Welding

    Science.gov (United States)

    Barrick, Erin J.; Jain, Divya; DuPont, John N.; Seidman, David N.

    2017-12-01

    10 wt pct Ni steel is a high-strength steel that possesses good ballistic resistance from the deformation induced transformation of austenite to martensite, known as the transformation-induced-plasticity effect. The effects of rapid heating and cooling rates associated with welding thermal cycles on the phase transformations and microstructures, specifically in the heat-affected zone, were determined using dilatometry, microhardness, and microstructural characterization. Heating rate experiments demonstrate that the Ac3 temperature is dependent on heating rate, varying from 1094 K (821 °C) at a heating rate of 1 °C/s to 1324 K (1051 °C) at a heating rate of 1830 °C/s. A continuous cooling transformation diagram produced for 10 wt pct Ni steel reveals that martensite will form over a wide range of cooling rates, which reflects a very high hardenability of this alloy. These results were applied to a single pass, autogenous, gas tungsten arc weld. The diffusion of nickel from regions of austenite to martensite during the welding thermal cycle manifests itself in a muddled, rod-like lath martensitic microstructure. The results of these studies show that the nickel enrichment of the austenite in 10 wt pct Ni steel plays a critical role in phase transformations during welding.

  16. Solar heating and cooling by a thermochemical process. First experiments of a prototype storing 60 kW h by a solid/gas reaction

    Energy Technology Data Exchange (ETDEWEB)

    Mauran, S.; Lahmidi, H.; Goetz, V. [PROMES-CNRS, UPR 8521, Laboratoire PROcedes, Materiaux et Energie Solaire, Rambla de la Thermodynamique, Tecnosud, 66100 Perpignan (France)

    2008-07-15

    The chemical heat pumps using monovariant solid/gas reactions and thermal solar energy are potentially interesting for the air-conditioning of building (heating in winter or mid-season and refreshing in summer). They provide a function of storage without loss and potentially at high energy density. The selected reaction involves SrBr{sub 2} as reactant and H{sub 2}O as refrigerant fluid. It is adapted to the thermodynamic constraints in temperature (heat provided by plane solar collector, heating and cooling on the level of the floor) and uses reagents having a weak impact for the environment and health. The reactive salt SrBr{sub 2} is implemented with an expanded natural graphite in the form of a consolidated material which has acceptable thermal conductivity and permeability adapted to low pressure. The prototype reactor has a total volume of 1 m{sup 3}. It is able to store, with a complete reaction, 60 kW h or 40 kW h for the heating or cooling function respectively. This prototype was tested under conditions representative of summer or mid-season; the mean heating or cooling powers, typically about 2.5-4 kW, are still insufficient because of a low heat transfer at the interface between the reactive layer and the exchanger wall. However this limitation can be clearly attenuated; that is the subject of current work in following these first experiments. (author)

  17. High temperature gas cleaning for pressurized gasification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Alden, H.; Hagstroem, P.; Hallgren, A.; Waldheim, L. [TPS Termiska Processer AB, Nykoeping (Sweden)

    2000-04-01

    The purpose of the project was to build an apparatus to study pressurized, high temperature gas cleaning of raw gasification gas generated from biomass. A flexible and easy to operate pressurized apparatus was designed and installed for the investigations in high temperature gas cleaning by means of thermal, catalytic or chemical procedures. A semi continuos fuel feeding concept, at a maximum rate of 700 g/h, allowed a very constant formation of a gas product at 700 deg C. The gas product was subsequently introduced into a fixed bed secondary reactor where the actual gas cleanup or reformation was fulfilled. The installation work was divided into four work periods and apart from a few delays the work was carried out according to the time plan. During the first work period (January - June 1994) the technical design, drawings etc. of the reactor and additional parts were completed. All material for the construction was ordered and the installation work was started. The second work period (July - December 1994) was dedicated to the construction and the installation of the different components. Initial tests with the electrical heating elements, control system and gas supply were assigned to the third work period (January - June 1995). After the commissioning and the resulting modifications, initial pyrolysis and tar decomposition experiments were performed. During the fourth and final work period, (June - December 1995) encouraging results from first tests allowed the experimental part of the project work to commence, however in a slightly reduced program. The experimental part of the project work comparatively studied tar decomposition as a function of the process conditions as well as of the choice of catalyst. Two different catalysts, dolomite and a commercial Ni-based catalyst, were evaluated in the unit. Their tar cracking ability in the pressure interval 1 - 20 bar and at cracker bed temperatures between 800 - 900 deg C was compared. Long term tests to study

  18. Fluoride-Salt-Cooled High-Temperature Reactor (FHR) for Power and Process Heat

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, Charles [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Hu, Lin-wen [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Peterson, Per [Univ. of California, Berkeley, CA (United States); Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States)

    2015-01-21

    In 2011 the U.S. Department of Energy through its Nuclear Energy University Program (NEUP) awarded a 3- year integrated research project (IRP) to the Massachusetts Institute of Technology (MIT) and its partners at the University of California at Berkeley (UCB) and the University of Wisconsin at Madison (UW). The IRP included Westinghouse Electric Company and an advisory panel chaired by Regis Matzie that provided advice as the project progressed. The first sentence of the proposal stated the goals: The objective of this Integrated Research Project (IRP) is to develop a path forward to a commercially viable salt-cooled solid-fuel high-temperature reactor with superior economic, safety, waste, nonproliferation, and physical security characteristics compared to light-water reactors. This report summarizes major results of this research.

  19. Fluoride Salt-Cooled High-Temperature Reactor Technology Development and Demonstration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Mays, Gary T [ORNL; Pointer, William David [ORNL; Robb, Kevin R [ORNL; Yoder Jr, Graydon L [ORNL

    2013-11-01

    Fluoride salt-cooled High-temperature Reactors (FHRs) are an emerging reactor class with potentially advantageous performance characteristics, and fully passive safety. This roadmap describes the principal remaining FHR technology challenges and the development path needed to address the challenges. This roadmap also provides an integrated overview of the current status of the broad set of technologies necessary to design, evaluate, license, construct, operate, and maintain FHRs. First-generation FHRs will not require any technology breakthroughs, but do require significant concept development, system integration, and technology maturation. FHRs are currently entering early phase engineering development. As such, this roadmap is not as technically detailed or specific as would be the case for a more mature reactor class. The higher cost of fuel and coolant, the lack of an approved licensing framework, the lack of qualified, salt-compatible structural materials, and the potential for tritium release into the environment are the most obvious issues that remain to be resolved.

  20. Fabrication of cermet bearings for the control system of a high temperature lithium cooled nuclear reactor

    Science.gov (United States)

    Yacobucci, H. G.; Heestand, R. L.; Kizer, D. E.

    1973-01-01

    The techniques used to fabricate cermet bearings for the fueled control drums of a liquid metal cooled reference-design reactor concept are presented. The bearings were designed for operation in lithium for as long as 5 years at temperatures to 1205 C. Two sets of bearings were fabricated from a hafnium carbide - 8-wt. % molybdenum - 2-wt. % niobium carbide cermet, and two sets were fabricated from a hafnium nitride - 10-wt. % tungsten cermet. Procedures were developed for synthesizing the material in high purity inert-atmosphere glove boxes to minimize oxygen content in order to enhance corrosion resistance. Techniques were developed for pressing cylindrical billets to conserve materials and to reduce machining requirements. Finishing was accomplished by a combination of diamond grinding, electrodischarge machining, and diamond lapping. Samples were characterized in respect to composition, impurity level, lattice parameter, microstructure and density.

  1. Experimental Analysis of Concrete Strength at High Temperatures and after Cooling

    Directory of Open Access Journals (Sweden)

    E. Klingsch

    2009-01-01

    Full Text Available In recent years, the cement industry has been criticized for emitting large amounts of carbon dioxide; hence it is developing environment-friendly cement, e.g., blended, supersulfated slag cement (SSC. This paper presents an experimental analysis of the compressive strength development of concrete made from blended cement in comparison to ordinary cement at high temperature. Three different types of cement were used during these tests, an ordinary portland cement (CEM I, a portland limestone cement (CEM II-A-LL and a new, supersulfated slag cement (SSC. The compressive strength development for a full thermal cycle, including cooling down phase, was investigated on concrete cylinders. It is shown that the SSC concrete specimens perform similar to ordinary cement specimens. 

  2. SIMULATION TOOL OF VELOCITY AND TEMPERATURE PROFILES IN THE ACCELERATED COOLING PROCESS OF HEAVY PLATES

    Directory of Open Access Journals (Sweden)

    Antônio Adel dos Santos

    2014-10-01

    Full Text Available The aim of this paper was to develop and apply mathematical models for determining the velocity and temperature profiles of heavy plates processed by accelerated cooling at Usiminas’ Plate Mill in Ipatinga. The development was based on the mathematical/numerical representation of physical phenomena occurring in the processing line. Production data from 3334 plates processed in the Plate Mill were used for validating the models. A user-friendly simulation tool was developed within the Visual Basic framework, taking into account all steel grades produced, the configuration parameters of the production line and these models. With the aid of this tool the thermal profile through the plate thickness for any steel grade and dimensions can be generated, which allows the tuning of online process control models. The simulation tool has been very useful for the development of new steel grades, since the process variables can be related to the thermal profile, which affects the mechanical properties of the steels.

  3. Thermal models of buildings. Determination of temperatures, heating and cooling loads. Theories, models and computer programs

    Energy Technology Data Exchange (ETDEWEB)

    Kaellblad, K.

    1998-05-01

    The need to estimate indoor temperatures, heating or cooling load and energy requirements for buildings arises in many stages of a buildings life cycle, e.g. at the early layout stage, during the design of a building and for energy retrofitting planning. Other purposes are to meet the authorities requirements given in building codes. All these situations require good calculation methods. The main purpose of this report is to present the authors work with problems related to thermal models and calculation methods for determination of temperatures and heating or cooling loads in buildings. Thus the major part of the report deals with treatment of solar radiation in glazing systems, shading of solar and sky radiation and the computer program JULOTTA used to simulate the thermal behavior of rooms and buildings. Other parts of thermal models of buildings are more briefly discussed and included in order to give an overview of existing problems and available solutions. A brief presentation of how thermal models can be built up is also given and it is a hope that the report can be useful as an introduction to this part of building physics as well as during development of calculation methods and computer programs. The report may also serve as a help for the users of energy related programs. Independent of which method or program a user choose to work with it is his or her own responsibility to understand the limits of the tool, else wrong conclusions may be drawn from the results 52 refs, 22 figs, 4 tabs

  4. Sea-state Dependence of Sea Surface Temperature Cooling and its Feedback on Tropical Cyclone Intensity

    Science.gov (United States)

    Blair, A.; Reichl, B. G.; Ginis, I.; Hara, T.; Thomas, B.

    2016-02-01

    Air-sea momentum and heat fluxes underneath tropical cyclones (TCs) are important controls on storm intensity. Increased upper ocean mixing due to TC winds can upwell cooler waters to the surface, reducing the heat flux from the ocean and weakening the storm. Therefore, improved representation of the wind forcing and the resulting sea surface temperature cooling in coupled ocean-wave-atmosphere models can help increase the accuracy of intensity predictions. However, the impact of surface waves (sea state) on these processes is not fully understood. The three most significant sea state dependent effects on upper ocean processes are the Coriolis-Stokes forcing, the air-sea flux budget (effect of growing/decaying surface waves), and the Langmuir turbulence (enhancement of the upper ocean mixing due to surface waves). In this study we focus on the first two effects. To examine these two effects a comparison is made using a series of idealized storms, with a range of translation speeds, with individual and combined implementations of these two components in a fully coupled ocean-wave-atmosphere model. The Princeton Ocean Model is used with a 1/12th degree resolution and 23 half-sigma levels and an initial temperature profile based on the Gulf of Mexico climatology. It is coupled to the WaveWatch III wave model, also at 1/12th degree resolution. The atmospheric component is the NOAA/GFDL hurricane model, which has 42 vertical levels and a three-level nested mesh. The inner two meshes are 1/18th and 1/6th degree resolution, with the finer inside the coarser, and move with the storm. It is found that both the Coriolis-stokes forcing and the sea state dependent air-sea flux modify the magnitude and the spatial distribution of the sea surface cooling, and that the combined effect may significantly modify the storm intensity predictions.

  5. Gas diffusion and temperature dependence of bubble nucleation during irradiation

    DEFF Research Database (Denmark)

    Foreman, A. J. E.; Singh, Bachu Narain

    1986-01-01

    of the diatomic nucleation of helium bubbles, assuming helium to diffuse substitutionally, with radiation-enhanced diffusion at lower temperatures. The calculated temperature dependence of the bubble density shows excellent agreement with that observed in 600 MeV proton irradiations, including a reduction...... in activation energy below Tm/2. The coalescence of diatomic nuclei due to Brownian motion markedly improves the agreement and also provides a well-defined terminal density. Bubble nucleation by this mechanism is sufficiently fast to inhibit any appreciable initial loss of gas to grain boundaries during...

  6. Gas detection using low-temperature reduced graphene oxide sheets

    Science.gov (United States)

    Lu, Ganhua; Ocola, Leonidas E.; Chen, Junhong

    2009-02-01

    We demonstrate a high-performance gas sensor using partially reduced graphene oxide (GO) sheets obtained through low-temperature step annealing (300 °C at maximum) in argon flow at atmospheric pressure. The electrical conductance of GO was measured after each heating cycle to interpret the level of reduction. The thermally reduced GO showed p-type semiconducting behavior in ambient conditions and were responsive to low-concentration NO2 diluted in air at room temperature. The sensitivity is attributed to the electron transfer from the reduced GO to adsorbed NO2, which leads to enriched hole concentration and enhanced electrical conduction in the reduced GO sheet.

  7. Study of Temperature Wave Propagation in Superfluid Helium Focusing on Radio-Frequency Cavity Cooling

    CERN Document Server

    Koettig, T; Avellino, S; Junginger, T; Bremer, J

    2015-01-01

    Oscillating Superleak Transducers (OSTs) can be used to localize quenches of superconducting radio-frequency cavities. Local hot spots at the cavity surface initiate temperature waves in the surrounding superfluid helium that acts as cooling fluid at typical temperatures in the range of 1.6 K to 2 K. The temperature wave is characterised by the properties of superfluid helium such as the second sound velocity. For high heat load densities second sound velocities greater than the standard literature values are observed. This fast propagation has been verified in dedicated small scale experiments. Resistors were used to simulate the quench spots under controlled conditions. The three dimensional propagation of second sound is linked to OST signals. The aim of this study is to improve the understanding of the OST signal especially the incident angle dependency. The characterised OSTs are used as a tool for quench localisation on a real size cavity. Their sensitivity as well as the time resolution was proven to b...

  8. A comparison between intravascular and traditional cooling for inducing and maintaining temperature control in patients following cardiac arrest.

    Science.gov (United States)

    Rosman, Jérémy; Hentzien, Maxime; Dramé, Moustapha; Roussel, Vincent; Just, Bernard; Jolly, Damien; Mateu, Philippe

    2016-11-29

    Therapeutic temperature control has been widely used during the last decade to improve clinical outcomes. We conducted this retrospective observational study to compare traditional cooling with endovascular cooling in post-cardiac arrest comatose survivors and to compare results with current guidelines. All patients admitted to our ICU for cardiac arrest and for whom temperature control was performed were included. Traditional cooling included cold infusions, ice packs and cooling blankets. Endovascular cooling consisted in the insertion of a catheter in which cold fluid circulates in a closed circuit provided by a heat exchanger. Temperature control was started at a target temperature of 32°C to 34°C. Rewarming was performed passively in the traditional group and via computer-assistance in endovascular group. We evaluated the delay prior to and speed of cooling, thermic stability during the maintenance phase and the speed of rewarming. Thirty-four patients were included. The speed of cooling was faster with the endovascular (-0.66±0.35°C/h) compared to the traditional (-0.35±0.38°C/h, P=0.006) technique, with target temperatures reached in 4.0 and 6.0h, respectively (P=0.14). Temperatures were more stable with the endovascular technique (0.03±0.05°C2) than with the traditional technique (0.26±0.16°C2, P<10-4). There were more deviations from the guideline target range in the traditional group (64.7% versus 17.6%, P=0.008). Rewarming was faster in the traditional group (+0.64±0.33°C/h, versus +0.36±0.12°C/h, P=0.01). No significant difference was found concerning mortality or length of stay in the ICU. Temperature control with a cooling catheter was associated with faster cooling, improved thermic stability in the target range, less overcooling or overheating and slower rewarming in comparison with traditional techniques. Copyright © 2016 Société française d'anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights

  9. Utilizing the response patterns of a temperature modulated chemoresistive gas sensor for gas diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Amini, Amir [Jannatabad College, Sama Organization, Islamic Azad University, Tehran (Iran, Islamic Republic of); Ghafarinia, Vahid, E-mail: amir.amini.elec@gmail.com, E-mail: ghafarinia@ee.kntu.ac.ir [Electrical Engineering Department, K. N. Toosi University of Technology, Tehran (Iran, Islamic Republic of)

    2011-02-15

    The observed features in the temporal response patterns of a temperature-modulated chemoresistive gas sensor were used for gas diagnosis. The patterns were recorded for clean air and air contaminated with different levels of some volatile organic compounds while a staircase heating voltage waveform had been applied to the microheater of a tin oxide gas sensor that modulated its operating temperature. Combining the steady-state and transient parameters of the recorded responses in the 50-400 deg. C range resulted in discriminatory feature vectors which were utilized for contaminant classification. The information content of these feature vectors was proved sufficient for discrimination of methanol, ethanol, 1-butanol, and acetone contaminations in a wide concentration range.

  10. Non-intrusive measurement of hot gas temperature in a gas turbine engine

    Science.gov (United States)

    DeSilva, Upul P.; Claussen, Heiko; Yan, Michelle Xiaohong; Rosca, Justinian; Ulerich, Nancy H.

    2016-09-27

    A method and apparatus for operating a gas turbine engine including determining a temperature of a working gas at a predetermined axial location within the engine. An acoustic signal is encoded with a distinct signature defined by a set of predetermined frequencies transmitted as a non-broadband signal. Acoustic signals are transmitted from an acoustic transmitter located at a predetermined axial location along the flow path of the gas turbine engine. A received signal is compared to one or more transmitted signals to identify a similarity of the received signal to a transmitted signal to identify a transmission time for the received signal. A time-of-flight is determined for the signal and the time-of-flight for the signal is processed to determine a temperature in a region of the predetermined axial location.

  11. Probabilistic Fracture Mechanics Analysis of Boling Water Reactor Vessel for Cool-Down and Low Temperature Over-Pressurization Transients

    Directory of Open Access Journals (Sweden)

    Jeong Soon Park

    2016-04-01

    Full Text Available The failure probabilities of the reactor pressure vessel (RPV for low temperature over-pressurization (LTOP and cool-down transients are calculated in this study. For the cool-down transient, a pressure–temperature limit curve is generated in accordance with Section XI, Appendix G of the American Society of Mechanical Engineers (ASME code, from which safety margin factors are deliberately removed for the probabilistic fracture mechanics analysis. Then, sensitivity analyses are conducted to understand the effects of some input parameters. For the LTOP transient, the failure of the RPV mostly occurs during the period of the abrupt pressure rise. For the cool-down transient, the decrease of the fracture toughness with temperature and time plays a main role in RPV failure at the end of the cool-down process. As expected, the failure probability increases with increasing fluence, Cu and Ni contents, and initial reference temperature-nil ductility transition (RTNDT. The effect of warm prestressing on the vessel failure probability for LTOP is not significant because most of the failures happen before the stress intensity factor reaches the peak value while its effect reduces the failure probability by more than one order of magnitude for the cool-down transient.

  12. Water freezing at outdoor temperatures higher than 0 °C by the effect of radiative cooling

    Science.gov (United States)

    Sugawara, M.; Tago, M.; Komatsu, Y.; Beer, H.

    2018-01-01

    A numerical analysis is adopted to construct a diagram for estimating freezing of thin water layers at outdoor temperatures higher than 0 °C by the effect of radiative cooling. Freezing is affected significantly by the wind-temperature and - velocity as well as cloud temperature which are encountered in winter seasons. On a fine day, the observed outdoor freezing data show fairly good agreement with the present diagram.

  13. Buffer-gas cooling of antiprotonic helium to 1.5 to 1.7 K, and antiproton-to–electron mass ratio

    CERN Document Server

    Hori, Masaki; Sótér, Anna; Barna, Daniel; Dax, Andreas; Hayano, Ryugo; Kobayashi, Takumi; Murakami, Yohei; Todoroki, Koichi; Yamada, Hiroyuki; Horváth, Dezső; Venturelli, Luca

    2016-01-01

    Charge, parity, and time reversal (CPT) symmetry implies that a particle and its antiparticle have the same mass. The antiproton-to-electron mass ratio Embedded Image can be precisely determined from the single-photon transition frequencies of antiprotonic helium. We measured 13 such frequencies with laser spectroscopy to a fractional precision of 2.5 × 10−9 to 16 × 10−9. About 2 × 109 antiprotonic helium atoms were cooled to temperatures between 1.5 and 1.7 kelvin by using buffer-gas cooling in cryogenic low-pressure helium gas; the narrow thermal distribution led to the observation of sharp spectral lines of small thermal Doppler width. The deviation between the experimental frequencies and the results of three-body quantum electrodynamics calculations was reduced by a factor of 1.4 to 10 compared with previous single-photon experiments. From this, Embedded Image was determined as 1836.1526734(15), which agrees with a recent proton-to-electron experimental value within 8 × 10−10.

  14. Study of the MWPC gas gain behaviour as a function of the gas pressure and temperature

    CERN Document Server

    Pinci, D

    2005-01-01

    The Muon System of the LHCb experiment is composed of five detection stations (M1-M5) equipped with 1368 Multi-Wire Proportional Chambers (MWPC) and 24 Triple-GEM detectors. The Multi Wire Proportional Chamber (MWPC) performances (detection efficiency, time resolution, pad-cluster size and ageing properties) are heavily dependent on the gas gain. The chamber gain depends on the gas density and therefore on the gas temperature and pressure. The impact of the environmental parameters on the MWPC gain has been studied in detail. The results, togheter with a simple method proposed to account for the gain variations, are reported in this note. The absolute gas gain at the testing voltage of 2750 V was also measured to be (1.2 +- 0.1)*10^5.

  15. Numerical Simulation of Plasma-Dynamical Processes in the Technological Inductively Coupled RF Plasmatron with Gas Cooling

    Directory of Open Access Journals (Sweden)

    Yu. M. Grishin

    2016-01-01

    Full Text Available The electrodeless inductively coupled RF plasmatron (ICP torches became widely used in various fields of engineering, science and technology. Presently, owing to development of new technologies to produce very pure substances, nanopowders, etc., there is a steadily increasing interest in the induction plasma. This generates a need for a broad range of theoretical and experimental studies to optimize the design and technological parameters of different ICP equipment.The paper presents a numerical model to calculate parameters of inductively coupled RF plasmatron with gas-cooling flow. A finite volume method is used for a numerical solution of a system of Maxwell's and heat transfer equations in the application package ANSYS CFX (14.5. The pseudo-steady approach to solving problems is used.A numerical simulation has been computed in the application package ANSYS CFX (14.5 for a specific design option of the technological ICP, which has a three-coils inductor and current amplitude in the range J к = 50-170 A (3 MHz. The pure argon flows in the ICP. The paper discusses how the value of discharge current impacts on the thermodynamic parameters (pressure, temperature and the power energy in discharge zone. It shows that the ICP can generate a plasma stream with a maximum temperature of about 10 kK and an output speed of 10-15 m/s. The work determines a length of the plasma stream with a weight average temperature of more than 4 kK. It has been found that in order to keep the quartz walls in normal thermal state, the discharge current amplitude should not exceed 150 A. The paper shows the features of the velocity field distribution in the channel of the plasma torch, namely, the formation of vortex in the position of the first coil. The results obtained are important for calculating the dynamics of heating and evaporation of quartz particles in the manufacturing processes for plasma processing of quartz concentrate into high-purity quartz and

  16. Pebble Bed Reactors Design Optimization Methods and their Application to the Pebble Bed Fluoride Salt Cooled High Temperature Reactor (PB-FHR)

    Science.gov (United States)

    Cisneros, Anselmo Tomas, Jr.

    The Fluoride salt cooled High temperature Reactor (FHR) is a class of advanced nuclear reactors that combine the robust coated particle fuel form from high temperature gas cooled reactors, direct reactor auxillary cooling system (DRACS) passive decay removal of liquid metal fast reactors, and the transparent, high volumetric heat capacitance liquid fluoride salt working fluids---flibe (33%7Li2F-67%BeF)---from molten salt reactors. This combination of fuel and coolant enables FHRs to operate in a high-temperature low-pressure design space that has beneficial safety and economic implications. In 2012, UC Berkeley was charged with developing a pre-conceptual design of a commercial prototype FHR---the Pebble Bed- Fluoride Salt Cooled High Temperature Reactor (PB-FHR)---as part of the Nuclear Energy University Programs' (NEUP) integrated research project. The Mark 1 design of the PB-FHR (Mk1 PB-FHR) is 236 MWt flibe cooled pebble bed nuclear heat source that drives an open-air Brayton combine-cycle power conversion system. The PB-FHR's pebble bed consists of a 19.8% enriched uranium fuel core surrounded by an inert graphite pebble reflector that shields the outer solid graphite reflector, core barrel and reactor vessel. The fuel reaches an average burnup of 178000 MWt-d/MT. The Mk1 PB-FHR exhibits strong negative temperature reactivity feedback from the fuel, graphite moderator and the flibe coolant but a small positive temperature reactivity feedback of the inner reflector and from the outer graphite pebble reflector. A novel neutronics and depletion methodology---the multiple burnup state methodology was developed for an accurate and efficient search for the equilibrium composition of an arbitrary continuously refueled pebble bed reactor core. The Burnup Equilibrium Analysis Utility (BEAU) computer program was developed to implement this methodology. BEAU was successfully benchmarked against published results generated with existing equilibrium depletion codes VSOP

  17. Maximal temperature of a gas in AdS spacetime

    Science.gov (United States)

    Dai, De-Chang; Stojkovic, Dejan

    2017-04-01

    Assuming only statistical mechanics and general relativity, we calculate the maximal temperature of gas of particles placed in anti-de Sitter (AdS) spacetime. If two particles with a given center of mass energy come close enough, according to classical gravity, they will form a black hole. We focus only on the black holes with a Hawking temperature lower than the environment, because they do not disappear. The number density of such black holes grows with the temperature in the system. At a certain finite temperature, the thermodynamical system will be dominated by black holes. This critical temperature is lower than the Planck temperature for the values of the AdS vacuum energy density below the Planck density. This result might be interesting from the AdS/CFT correspondence point of view, since it is different from the Hawking-Page phase transition, and it is not immediately clear what effect dynamically limits the maximal temperature of the thermal state on the CFT side of the correspondence.

  18. PH adjustment of power plant cooling water with flue gas/fly ash

    Science.gov (United States)

    Brady, Patrick V.; Krumhansl, James L.

    2015-09-22

    A system including a vessel including a heat source and a flue; a turbine; a condenser; a fluid conduit circuit disposed between the vessel, the turbine and the condenser; and a diverter coupled to the flue to direct a portion of an exhaust from the flue to contact with a cooling medium for the condenser water. A method including diverting a portion of exhaust from a flue of a vessel; modifying the pH of a cooling medium for a condenser with the portion of exhaust; and condensing heated fluid from the vessel with the pH modified cooling medium.

  19. Generation IV nuclear energy system initiative. Large GFR core subassemblydesign for the Gas-Cooled Fast Reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, E. A.; Kulak, R. F.; Therios, I. U.; Wei, T. Y. C.

    2006-07-31

    Gas-cooled fast reactor (GFR) designs are being developed to meet Gen IV goals of sustainability, economics, safety and reliability, and proliferation resistance and physical protection as part of an International Generation IV Nuclear Energy System Research Initiative effort. Different organizations are involved in the development of a variety of GFR design concepts. The current analysis has focused on the evaluation of low-pressure drop, pin-core designs with favorable passive cooling properties. Initial evaluation of the passive cooling safety case for the GFR during depressurized decay heat removal accidents with concurrent loss of electric power have resulted in requirements for a reduction of core power density to the 100 w/cc level and a low core pressure drop of 0.5 bars. Additional design constraints and the implementation of their constraints are evaluated in this study to enhance and passive cooling properties of the reactor. Passive cooling is made easier by a flat radial distribution of the decay heat. One goal of this study was to evaluate the radial power distribution and determine to what extent it can be flattened, since the decay heat is nearly proportional to the fission power at shutdown. In line with this investigation of the radial power profile, an assessment was also made of the control rod configuration. The layout provided a large number of control rod locations with a fixed area provided for control rods. The number of control rods was consistent with other fast reactor designs. The adequacy of the available control rod locations was evaluated. Future studies will be needed to optimize the control rod designs and evaluate the shutdown system. The case for low pressure drop core can be improved by the minimization of pressure drop sources such as the number of required fuel spacers in the subassembly design and by the details of the fuel pin design. The fuel pin design is determined by a number of neutronic, thermal-hydraulic (gas dynamics

  20. Prediction of temperature front in a gas turbine combustion chamber

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, F.Z.; Kubiak, J.; Gonzalez, G.; Urquiza, G. [Universidad Autonoma del Estado de Morelos, Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Cuernavaca, Morelos (Mexico)

    2005-06-01

    Numerical computation has been applied to investigate the temperature field in a gas turbine combustion chamber. The simulation assumed that pressure imbalance conditions of air flow between primary and secondary inlets occur. The combustion chamber under study is part of a 70 MW gas turbine from an operating combined cycle power plant. The combustion was simulated with normal fuel-air flow rate assuming stoichiometric conditions. Under these conditions characteristic temperature and pressure fields were obtained provided equity of boundary conditions at air inlets applies. However, with pressure distribution imbalances of the order of 3 kPa between primary and secondary air inlets, excessive heating in regions other than the combustion chamber core were obtained. Over heating in these regions helped to explain what was observed to produce permanent damage to auxiliary equipment surrounding the combustion chamber core, like the cross flame pipes. It is observed that high temperatures which normally develop in the central region of the combustion chamber may reach other surrounding upstream regions by modifying slightly the air pressure. Microscope scanning of the damaged pipes confirmed that the material was exposed to high temperatures such as predicted through the numerical computation. (Author)