WorldWideScience

Sample records for temperature fluctuations confirmation

  1. Thermal fluctuation effects far from the critical temperature

    International Nuclear Information System (INIS)

    Refai, T.F.

    1980-01-01

    We report the first measurements of thermal fluctuations in superconductors at temperatures far from the critical temperature T/sub c/ (T approx. 1/2 T/sub c/), and also the first measurements that use thermal fluctuations to probe the non-equilibrium dynamics of a superconductor. This is the first work that separately measures the fluctuations that cause a superconductor to switch to the dissipative state and those that cause it to switch back to the superconductor state. These unique measurements allowed: (1) The first measurement experimental confirmation of the theory of Langer, Ambegaokar, McCumber, and Halperin (LAMH) where T/sub c/ was not an adjustable parameter. This rigorous test of the theory was not previously possible because earlier measurements were carried out very near T/sub c/, where a change of many orders of magnitude of predicted effects occur if the assumed T/sub c/ changes a few millidegrees. Thus T/sub c/ in all previous work was always adjusted so as to get agreement with the theory. (2) The first verification of the LAMH model far from T/sub c/. (3) The first experimental confirmation of the relation between current and transition probability that was predicted in the LAMH model. (4) Confirmation that the Lamda model developed by Peters, Wolf, and Rachford (PWR) to explain the dynamics on the nonequilibrium region can be extended to explain fluctuation effects. This is based on an original phenomenological extension of the LAMH model that is developed in this work and on our data. (5) The most direct measurement to date of the nature of the decay of the dissipative region in a weak link. These measurements show that the region recovers exponentially in time as proposed in the Lamda model

  2. Silicon photomultiplier's gain stabilization by bias correction for compensation of the temperature fluctuations

    International Nuclear Information System (INIS)

    Dorosz, P.; Baszczyk, M.; Glab, S.; Kucewicz, W.; Mik, L.; Sapor, M.

    2013-01-01

    Gain of the silicon photomultiplier is strongly dependent on the value of bias voltage and temperature. This paper proposes a method for gain stabilization just by compensation of temperature fluctuations by bias correction. It has been confirmed that this approach gives good results and the gain can be kept very stable

  3. Temperature fluctuations superimposed on background temperature change

    International Nuclear Information System (INIS)

    Otto, James; Roberts, J.A.

    2016-01-01

    Proxy data allows the temperature of the Earth to be mapped over long periods of time. In this work the temperature fluctuations for over 200 proxy data sets were examined and from this set 50 sets were analyzed to test for periodic and quasi-periodic fluctuations in the data sets. Temperature reconstructions over 4 different time scales were analyzed to see if patterns emerged. Data were put into four time intervals; 4,000 years, 14,000 years, 1,000,000 years, and 3,000,000 years and analyzed with a goal to understanding periodic and quasi-periodic patterns in global temperature change superimposed on a “background” average temperature change. Quasi-periodic signatures were identified that predate the Industrial Revolution, during much of which direct data on temperature are not available. These data indicate that Earth temperatures have undergone a number of periodic and quasi-periodic intervals that contain both global warming and global cooling cycles. The fluctuations are superimposed on a background of temperature change that has a declining slope during the two periods, pre-ice age and post ice age with a transition about 12,000 BCE. The data are divided into “events” that span the time periods 3,000,000 BCE to “0” CE, 1,000,000 BCE to “0” CE, 12,000 BCE to 2,000 CE and 2,000 BCE to 2,000 CE. An equation using a quasi-periodic (frequency modulated sine waves) patterns was developed to analyze the date sets for quasi-periodic patterns. “Periodicities” which show reasonable agreement with the predictions of Milankovitch and other investigators were found in the data sets.

  4. Transition conductivity study of high temperature superconductor compounds: the role of fluctuations

    International Nuclear Information System (INIS)

    Pagnon, V.

    1991-04-01

    This memory subject is the transition conductivity study of high temperature superconductors in corelation with their anisotropy. Systematic conductivity measurements were made on YBaCuO and BaSrCaCuO in relation with temperature from 4.2 K to 1200 K, and with a magnetic field up to 8 T in several directions. Oxygen order has an effect on the characteristics at YBaCuO transition conductivity. The activation energy for oxygen absorption is about 0.5eV. One method of analysis of the conductivity fluctuations about the transition temperature is proposed. Two separate rates are noticeable in YBaCuO compound. The 3 D fluctuations rate in the immediate neighbourghood of the transition lets place to the 2 D fluctuations rate at high temperature. Transitions temperatures governing each rate are different, that's incompatible with the formula proposed by Lawrence and Doniach. On the other hand, the analogy with quasi-2 D magnetic systems seems more relevant. A magnetic field application or a lowering of oxygen concentration removes the 3 D fluctuations rate. Non ohmic effects observed at the transition conductivity foot are analysis as a non-linear 2 D excitation manifestation of the supraconductive phase. Finally, by measurements on strontium doped YBaCuO crystals, we confirm a metal-insulator transition along the C-Axe when oxygen concentration reduces. This is connected with the specific heat jump. All these results uplighten the fundamental bidimensional character of high transition temperature superconductivity [fr

  5. Transition conductivity study of high temperature superconductor compounds: the role of fluctuations; Etude de la transition resistive sur des composes supraconducteurs a haute temperature critique le role des fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Pagnon, V

    1991-04-01

    This memory subject is the transition conductivity study of high temperature superconductors in corelation with their anisotropy. Systematic conductivity measurements were made on YBaCuO and BaSrCaCuO in relation with temperature from 4.2 K to 1200 K, and with a magnetic field up to 8 T in several directions. Oxygen order has an effect on the characteristics at YBaCuO transition conductivity. The activation energy for oxygen absorption is about 0.5eV. One method of analysis of the conductivity fluctuations about the transition temperature is proposed. Two separate rates are noticeable in YBaCuO compound. The 3 D fluctuations rate in the immediate neighbourghood of the transition lets place to the 2 D fluctuations rate at high temperature. Transitions temperatures governing each rate are different, that`s incompatible with the formula proposed by Lawrence and Doniach. On the other hand, the analogy with quasi-2 D magnetic systems seems more relevant. A magnetic field application or a lowering of oxygen concentration removes the 3 D fluctuations rate. Non ohmic effects observed at the transition conductivity foot are analysis as a non-linear 2 D excitation manifestation of the supraconductive phase. Finally, by measurements on strontium doped YBaCuO crystals, we confirm a metal-insulator transition along the C-Axe when oxygen concentration reduces. This is connected with the specific heat jump. All these results uplighten the fundamental bidimensional character of high transition temperature superconductivity.

  6. Novikov Engine with Fluctuating Heat Bath Temperature

    Science.gov (United States)

    Schwalbe, Karsten; Hoffmann, Karl Heinz

    2018-04-01

    The Novikov engine is a model for heat engines that takes the irreversible character of heat fluxes into account. Using this model, the maximum power output as well as the corresponding efficiency of the heat engine can be deduced, leading to the well-known Curzon-Ahlborn efficiency. The classical model assumes constant heat bath temperatures, which is not a reasonable assumption in the case of fluctuating heat sources. Therefore, in this article the influence of stochastic fluctuations of the hot heat bath's temperature on the optimal performance measures is investigated. For this purpose, a Novikov engine with fluctuating heat bath temperature is considered. Doing so, a generalization of the Curzon-Ahlborn efficiency is found. The results can help to quantify how the distribution of fluctuating quantities affects the performance measures of power plants.

  7. Classical and quantum temperature fluctuations via holography

    Energy Technology Data Exchange (ETDEWEB)

    Balatsky, Alexander V. [KTH Royal Inst. of Technology, Stockholm (Sweden); Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gudnason, Sven Bjarke [KTH Royal Inst. of Technology, Stockholm (Sweden); Thorlacius, Larus [KTH Royal Inst. of Technology, Stockholm (Sweden); University of Iceland, Reykjavik (Iceland); Zarembo, Konstantin [KTH Royal Inst. of Technology, Stockholm (Sweden); Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Uppsala Univ. (Sweden); Krikun, Alexander [KTH Royal Inst. of Technology, Stockholm (Sweden); Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Kedem, Yaron [KTH Royal Inst. of Technology, Stockholm (Sweden)

    2014-05-27

    We study local temperature fluctuations in a 2+1 dimensional CFT on the sphere, dual to a black hole in asymptotically AdS space-time. The fluctuation spectrum is governed by the lowest-lying hydrodynamic sound modes of the system whose frequency and damping rate determine whether temperature fluctuations are thermal or quantum. We calculate numerically the corresponding quasinormal frequencies and match the result with the hydrodynamics of the dual CFT at large temperature. As a by-product of our analysis we determine the appropriate boundary conditions for calculating low-lying quasinormal modes for a four-dimensional Reissner-Nordstrom black hole in global AdS.

  8. Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure.

    Science.gov (United States)

    El-Mashad, Hamed M; Zeeman, Grietje; van Loon, Wilko K P; Bot, Gerard P A; Lettinga, Gatze

    2004-11-01

    The influence of temperature, 50 and 60 degrees C, at hydraulic retention times (HRTs) of 20 and 10 days, on the performance of anaerobic digestion of cow manure has been investigated in completely stirred tank reactors (CSTRs). Furthermore, the effect of both daily downward and daily upward temperature fluctuations has been studied. In the daily downward temperature fluctuation regime the temperatures of each reactor was reduced by 10 degrees C for 10 h while in the daily upward fluctuation regime the temperature of each reactor was increased 10 degrees C for 5 h. The results show that the methane production rate at 60 degrees C is lower than that at 50 degrees C at all experimental conditions of imposed HRT except when downward temperature fluctuations were applied at an HRT of 10 days. It also was found that the free ammonia concentration not only affects the acetate-utilising bacteria but also the hydrolysis and acidification process. The upward temperature fluctuation affects the maximum specific methanogenesis activity more severely as compared to imposed downward temperature fluctuations. The results clearly reveal the possibility of using available solar energy at daytime to heat up the reactor(s) without the need of heat storage during nights, especially at an operational temperature of 50 degrees C and at a 20 days HRT, and without the jeopardising of the overheating.

  9. Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure

    Energy Technology Data Exchange (ETDEWEB)

    El-Mashad, H.M. [Mansoura University, El-Mansoura (Egypt). Faculty of Agriculture, Department of Agricultural Engineering; Zeeman, G.; Van Loon, W.K.P.; Bot, G.P.A.; Lettinga, G. [Wageningen University Agrotechnion (Netherlands). Department of Agrotechnology and Food Sciences

    2004-11-01

    The influence of temperature, 50 and 60 {sup o}C, at hydraulic retention times (HRTs) of 20 and 10 days, on the performance of anaerobic digestion of cow manure has been investigated in completely stirred tank reactors (CSTRs). Furthermore, the effect of both daily downward and daily upward temperature fluctuations has been studied. In the daily downward temperature fluctuation regime the temperatures of each reactor was reduced by 10 {sup o}C for 10 h while in the daily upward fluctuation regime the temperature of each reactor was increased 10 {sup o}C for 5 h. The results show that the methane production rate at 60 {sup o}C is lower than that at 50 {sup o}C at all experimental conditions of imposed HRT except when downward temperature fluctuations were applied at an HRT of 10 days. It also was found that the free ammonia concentration not only affects the acetate-utilising bacteria but also the hydrolysis and acidification process. The upward temperature fluctuation affects the maximum specific methanogenesis activity more severely as compared to imposed downward temperature fluctuations. The results clearly reveal the possibility of using available solar energy at daytime to heat up the reactor(s) without the need of heat storage during nights, especially at an operational temperature of 50 {sup o}C and at a 20 days HRT, and without the jeopardising of the overheating. (author)

  10. Silicon photomultiplier's gain stabilization by bias correction for compensation of the temperature fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Dorosz, P., E-mail: pdorosz@agh.edu.pl [AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science and Electronics, Department of Electronics, 30-059 Krakow (Poland); Baszczyk, M.; Glab, S. [AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science and Electronics, Department of Electronics, 30-059 Krakow (Poland); Kucewicz, W., E-mail: kucewicz@agh.edu.pl [AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science and Electronics, Department of Electronics, 30-059 Krakow (Poland); Mik, L.; Sapor, M. [AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science and Electronics, Department of Electronics, 30-059 Krakow (Poland)

    2013-08-01

    Gain of the silicon photomultiplier is strongly dependent on the value of bias voltage and temperature. This paper proposes a method for gain stabilization just by compensation of temperature fluctuations by bias correction. It has been confirmed that this approach gives good results and the gain can be kept very stable.

  11. High-frequency fluctuations of surface temperatures in an urban environment

    Science.gov (United States)

    Christen, Andreas; Meier, Fred; Scherer, Dieter

    2012-04-01

    This study presents an attempt to resolve fluctuations in surface temperatures at scales of a few seconds to several minutes using time-sequential thermography (TST) from a ground-based platform. A scheme is presented to decompose a TST dataset into fluctuating, high-frequency, and long-term mean parts. To demonstrate the scheme's application, a set of four TST runs (day/night, leaves-on/leaves-off) recorded from a 125-m-high platform above a complex urban environment in Berlin, Germany is used. Fluctuations in surface temperatures of different urban facets are measured and related to surface properties (material and form) and possible error sources. A number of relationships were found: (1) Surfaces with surface temperatures that were significantly different from air temperature experienced the highest fluctuations. (2) With increasing surface temperature above (below) air temperature, surface temperature fluctuations experienced a stronger negative (positive) skewness. (3) Surface materials with lower thermal admittance (lawns, leaves) showed higher fluctuations than surfaces with high thermal admittance (walls, roads). (4) Surface temperatures of emerged leaves fluctuate more compared to trees in a leaves-off situation. (5) In many cases, observed fluctuations were coherent across several neighboring pixels. The evidence from (1) to (5) suggests that atmospheric turbulence is a significant contributor to fluctuations. The study underlines the potential of using high-frequency thermal remote sensing in energy balance and turbulence studies at complex land-atmosphere interfaces.

  12. Energy and temperature fluctuations in the single electron box

    International Nuclear Information System (INIS)

    Berg, Tineke L van den; Brange, Fredrik; Samuelsson, Peter

    2015-01-01

    In mesoscopic and nanoscale systems at low temperatures, charge carriers are typically not in thermal equilibrium with the surrounding lattice. The resulting, non-equilibrium dynamics of electrons has only begun to be explored. Experimentally the time-dependence of the electron temperature (deviating from the lattice temperature) has been investigated in small metallic islands. Motivated by these experiments, we investigate theoretically the electronic energy and temperature fluctuations in a metallic island in the Coulomb blockade regime, tunnel coupled to an electronic reservoir, i.e. a single electron box. We show that electronic quantum tunnelling between the island and the reservoir, in the absence of any net charge or energy transport, induces fluctuations of the island electron temperature. The full distribution of the energy transfer as well as the island temperature is derived within the framework of full counting statistics. In particular, the low-frequency temperature fluctuations are analysed, fully accounting for charging effects and non-zero reservoir temperature. The experimental requirements for measuring the predicted temperature fluctuations are discussed. (paper)

  13. Long term persistence in the sea surface temperature fluctuations

    OpenAIRE

    Monetti, Roberto A.; Havlin, Shlomo; Bunde, Armin

    2002-01-01

    We study the temporal correlations in the sea surface temperature (SST) fluctuations around the seasonal mean values in the Atlantic and Pacific oceans. We apply a method that systematically overcome possible trends in the data. We find that the SST persistence, characterized by the correlation $C(s)$ of temperature fluctuations separated by a time period $s$, displays two different regimes. In the short-time regime which extends up to roughly 10 months, the temperature fluctuations display a...

  14. ELECTRON TEMPERATURE FLUCTUATIONS AND CROSS-FIELD HEAT TRANSPORT IN THE EDGE OF DIII-D

    International Nuclear Information System (INIS)

    RUDAKOV, DL; BOEDO, JA; MOYER, RA; KRASENINNIKOV, S; MAHDAVI, MA; McKEE, GR; PORTER, GD; STANGEBY, PC; WATKINS, JG; WEST, WP; WHYTE, DG.

    2003-01-01

    OAK-B135 The fluctuating E x B velocity due to electrostatic turbulence is widely accepted as a major contributor to the anomalous cross-field transport of particles and heat in the tokamak edge and scrape-off layer (SOL) plasmas. This has been confirmed by direct measurements of the turbulent E x B transport in a number of experiments. Correlated fluctuations of the plasma radial velocity v r , density n, and temperature T e result in time-average fluxes of particles and heat given by (for electrons): Equation 1--Λ r ES = r > = 1/B varφ θ ; Equation 2--Q r ES = e (tilde v) r > ∼ 3/2 kT e Λ r ES + 3 n e /2 B varφ e (tilde E) θ > Q conv + Q cond . The first term in Equation 2 is referred to as convective and the second term as conductive heat flux. Experimental determination of fluxes given by Equations 1 and 2 requires simultaneous measurements of the density, temperature and poloidal electric field fluctuations with high spatial and temporal resolution. Langmuir probes provide most readily available (if not the only) tool for such measurements. However, fast measurements of electron temperature using probes are non-trivial and are not always performed. Thus, the contribution of the T e fluctuations to the turbulent fluxes is usually neglected. Here they report results of the studies of T e fluctuations and their effect on the cross-field transport in the SOL of DIII-D

  15. Time evolution of temperature fluctuation in a non-equilibrated system

    International Nuclear Information System (INIS)

    Bhattacharyya, Trambak; Garg, Prakhar; Sahoo, Raghunath; Samantray, Prasant

    2016-01-01

    The evolution equation for inhomogeneous and anisotropic temperature fluctuation inside a medium is derived within the ambit of Boltzmann Transport Equation (BTE) for a hot gas of massless particles. Also, specializing to a situation created after a heavy-ion collision (HIC), we analyze the Fourier space variation of temperature fluctuation of the medium using its temperature profile. The effect of viscosity on the variation of fluctuations in the latter case is investigated and possible implications for early universe cosmology, and its connection with HICs are also explored. (orig.)

  16. Time evolution of temperature fluctuation in a non-equilibrated system

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Trambak; Garg, Prakhar; Sahoo, Raghunath [Indian Institute of Technology Indore, Discipline of Physics, School of Basic Sciences, Simrol (India); Samantray, Prasant [Indian Institute of Technology Indore, Centre of Astronomy, School of Basic Sciences, Simrol (India)

    2016-09-15

    The evolution equation for inhomogeneous and anisotropic temperature fluctuation inside a medium is derived within the ambit of Boltzmann Transport Equation (BTE) for a hot gas of massless particles. Also, specializing to a situation created after a heavy-ion collision (HIC), we analyze the Fourier space variation of temperature fluctuation of the medium using its temperature profile. The effect of viscosity on the variation of fluctuations in the latter case is investigated and possible implications for early universe cosmology, and its connection with HICs are also explored. (orig.)

  17. Temperature fluctuations in the Atlantic Ocean

    International Nuclear Information System (INIS)

    Hjoello, Solfrid Saetre

    2005-01-01

    The article discusses the temperature fluctuations in connection with drought in Africa, the climate in North America, the European heat waves and the frequent tropical hurricanes in the Atlantic Ocean. Problems with climate modelling and some pollution aspects are mentioned

  18. Influence of temperature fluctuations on equilibrium ice sheet volume

    Science.gov (United States)

    Bøgeholm Mikkelsen, Troels; Grinsted, Aslak; Ditlevsen, Peter

    2018-01-01

    Forecasting the future sea level relies on accurate modeling of the response of the Greenland and Antarctic ice sheets to changing temperatures. The surface mass balance (SMB) of the Greenland Ice Sheet (GrIS) has a nonlinear response to warming. Cold and warm anomalies of equal size do not cancel out and it is therefore important to consider the effect of interannual fluctuations in temperature. We find that the steady-state volume of an ice sheet is biased toward larger size if interannual temperature fluctuations are not taken into account in numerical modeling of the ice sheet. We illustrate this in a simple ice sheet model and find that the equilibrium ice volume is approximately 1 m SLE (meters sea level equivalent) smaller when the simple model is forced with fluctuating temperatures as opposed to a stable climate. It is therefore important to consider the effect of interannual temperature fluctuations when designing long experiments such as paleo-spin-ups. We show how the magnitude of the potential bias can be quantified statistically. For recent simulations of the Greenland Ice Sheet, we estimate the bias to be 30 Gt yr-1 (24-59 Gt yr-1, 95 % credibility) for a warming of 3 °C above preindustrial values, or 13 % (10-25, 95 % credibility) of the present-day rate of ice loss. Models of the Greenland Ice Sheet show a collapse threshold beyond which the ice sheet becomes unsustainable. The proximity of the threshold will be underestimated if temperature fluctuations are not taken into account. We estimate the bias to be 0.12 °C (0.10-0.18 °C, 95 % credibility) for a recent estimate of the threshold. In light of our findings it is important to gauge the extent to which this increased variability will influence the mass balance of the ice sheets.

  19. On the assumption of vanishing temperature fluctuations at the wall for heat transfer modeling

    Science.gov (United States)

    Sommer, T. P.; So, R. M. C.; Zhang, H. S.

    1993-01-01

    Boundary conditions for fluctuating wall temperature are required for near-wall heat transfer modeling. However, their correct specifications for arbitrary thermal boundary conditions are not clear. The conventional approach is to assume zero fluctuating wall temperature or zero gradient for the temperature variance at the wall. These are idealized specifications and the latter condition could lead to an ill posed problem for fully-developed pipe and channel flows. In this paper, the validity and extent of the zero fluctuating wall temperature condition for heat transfer calculations is examined. The approach taken is to assume a Taylor expansion in the wall normal coordinate for the fluctuating temperature that is general enough to account for both zero and non-zero value at the wall. Turbulent conductivity is calculated from the temperature variance and its dissipation rate. Heat transfer calculations assuming both zero and non-zero fluctuating wall temperature reveal that the zero fluctuating wall temperature assumption is in general valid. The effects of non-zero fluctuating wall temperature are limited only to a very small region near the wall.

  20. Energy and Heat Fluctuations in a Temperature Quench

    Energy Technology Data Exchange (ETDEWEB)

    Zannetti, M.; Corberi, F. [Dipartimento di Fisica “E. Caianiello”, and CNISM, Unità di Salerno, Università di Salerno, via Giovanni Paolo II 132, 84084 Fisciano (Italy); Gonnella, G. [Dipartimento di Fisica, Università di Bari and INFN, Sezione di Bari, via Amendola 173, 70126 Bari (Italy); Piscitelli, A., E-mail: mrc.zannetti@gmail.com, E-mail: corberi@sa.infn.it, E-mail: gonnella@ba.infn.it, E-mail: antps@hotmial.it [Division of Physical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 (Singapore)

    2014-10-15

    Fluctuations of energy and heat are investigated during the relaxation following the instantaneous temperature quench of an extended system. Results are obtained analytically for the Gaussian model and for the large N model quenched below the critical temperature T{sub c}. The main finding is that fluctuations exceeding a critical threshold do condense. Though driven by a mechanism similar to that of Bose—Einstein condensation, this phenomenon is an out-of-equilibrium feature produced by the breaking of energy equipartition occurring in the transient regime. The dynamical nature of the transition is illustrated by phase diagrams extending in the time direction. (general)

  1. Temperature fluctuation reducing device for FBR type reactor

    International Nuclear Information System (INIS)

    Ootsuka, Fumio; Shiratori, Fumihiro.

    1991-01-01

    In existent FBR type reactors, since temperature fluctuation in the reactor upper portion has been inevitable, thermal fatigue may be caused possibly in reactor core upper mechanisms. Then, a valve is disposed to a control rod lower guide tube contained in a reactor container for automatically controlling the amount of passing coolants in accordance with the temperature of the passing coolants, to mix and control coolants passing through a fuel assembly in adjacent with the guide tube and coolants passing through the guide tube. Further, a rectification cylinder is disposed, in which a portion of coolants passing through the fuel assembly is caused to flow. An orifice is disposed to the cylinder with an exit being disposed to the upstream thereof such that the coolants not flown into the rectification cylinder and the coolants passing through the guide tube are mixed to moderate the temperature fluctuation. That is, a portion of the coolants flown into the rectification cylinder can not pass through the orifice, but flow backwardly to the upstream and is discharged out of the rectification cylinder from the coolants exit and mixed sufficiently with coolants passing through the guide tube. In this way, temperature fluctuation can be moderated. (N.H.)

  2. Electrostatic fluctuations measured in low temperature helical plasmas with low collisionality

    International Nuclear Information System (INIS)

    Takeuchi, M.; Ikeda, R.; Ito, T.; Toi, K.; Suzuki, C.; Matsunaga, G.

    2004-01-01

    Electrostatic fluctuations have been measured by Langmuir probes from edge to core plasma region in low temperature helical plasmas which are produced by 2.45 GHz microwaves at very low field less than 0.1 T. The principal dimensionless parameters of the plasmas, that is, the normalized electron-ion collision frequency ν ei , and averaged plasma β φ and others are in the same range of them in high temperature plasmas, except the normalized gyro radius ρ s . The data on fluctuation characteristics from the dimensionally similar low temperature plasmas may give an important insight into the understanding of turbulent transport in high temperature plasmas. Dependences of fluctuation amplitudes on the radial electric field shear, ρ s and ν ei are investigated. Electrostatic fluctuations propagating in electron-diamagnetic drift direction have been observed in the plasma edge region and in ion-diamagnetic drift direction in the plasma core region. (authors)

  3. Growth and survival of Apache Trout under static and fluctuating temperature regimes

    Science.gov (United States)

    Recsetar, Matthew S.; Bonar, Scott A.; Feuerbacher, Olin

    2014-01-01

    Increasing stream temperatures have important implications for arid-region fishes. Little is known about effects of high water temperatures that fluctuate over extended periods on Apache Trout Oncorhynchus gilae apache, a federally threatened species of southwestern USA streams. We compared survival and growth of juvenile Apache Trout held for 30 d in static temperatures (16, 19, 22, 25, and 28°C) and fluctuating diel temperatures (±3°C from 16, 19, 22 and 25°C midpoints and ±6°C from 19°C and 22°C midpoints). Lethal temperature for 50% (LT50) of the Apache Trout under static temperatures (mean [SD] = 22.8 [0.6]°C) was similar to that of ±3°C diel temperature fluctuations (23.1 [0.1]°C). Mean LT50 for the midpoint of the ±6°C fluctuations could not be calculated because survival in the two treatments (19 ± 6°C and 22 ± 6°C) was not below 50%; however, it probably was also between 22°C and 25°C because the upper limb of a ±6°C fluctuation on a 25°C midpoint is above critical thermal maximum for Apache Trout (28.5–30.4°C). Growth decreased as temperatures approached the LT50. Apache Trout can survive short-term exposure to water temperatures with daily maxima that remain below 25°C and midpoint diel temperatures below 22°C. However, median summer stream temperatures must remain below 19°C for best growth and even lower if daily fluctuations are high (≥12°C).

  4. Turbulent temperature fluctuations in liquid metals

    International Nuclear Information System (INIS)

    Lawn, C.J.

    1977-01-01

    Examination of experimental data for the spectral distribution of velocity (u and v) and temperature (theta) fluctuations in the fully turbulent region of heated pipe-flow has suggested a schematic representation which incorporates the essential features. Evidence is cited to suggest that the -vtheta correlation coefficient maintains higher values that the uv coefficient at wave-numbers in the inertial subrange. The theory of Batchelor, Howells and Townsend, and limited evidence from experiments in mercury, then suggests the form of the theta 2 spectra and -vtheta cross-spectra in liquid metals. From this information, a limiting Peclet number is deduced, above which the correlation coefficient of v and theta should be a fairly weak function of Pe alone. An attempt to check this inference from published data for the RMS level of temperature fluctuations, and for the turbulent Prandtl number, proves inconclusive, because many of the correlation coefficients so estimated have values greater than unity. It is concluded that all these results for theta tilde must therefore be in error. However, since there is no evidence of very low correlation coefficients, they almost certainly lie in the range 0.5 multiply/divide 2 over a large proportion of the radius. Thus theta tilde can be estimated for any fluid in which the fluctuations are induced by uniform heating, at least to within a factor of 2, using the analysis presented. (author)

  5. temperature fluctuation inside inert atmosphere silos

    African Journals Online (AJOL)

    ... the two silos for twenty-eight (28) months of storage were recorded in order to monitor temperature fluctuation at different sections inside the inert atmosphere silos loaded with two varieties of wheat namely LACRIWHT-2 (Cettia) and LACRIWHT-4 (Atilla-Gan-Atilla) from Lake Chad Research Institute, Maiduguri, Nigeria.

  6. Influence of temperature fluctuations on equilibrium ice sheet volume

    Directory of Open Access Journals (Sweden)

    T. B. Mikkelsen

    2018-01-01

    Full Text Available Forecasting the future sea level relies on accurate modeling of the response of the Greenland and Antarctic ice sheets to changing temperatures. The surface mass balance (SMB of the Greenland Ice Sheet (GrIS has a nonlinear response to warming. Cold and warm anomalies of equal size do not cancel out and it is therefore important to consider the effect of interannual fluctuations in temperature. We find that the steady-state volume of an ice sheet is biased toward larger size if interannual temperature fluctuations are not taken into account in numerical modeling of the ice sheet. We illustrate this in a simple ice sheet model and find that the equilibrium ice volume is approximately 1 m SLE (meters sea level equivalent smaller when the simple model is forced with fluctuating temperatures as opposed to a stable climate. It is therefore important to consider the effect of interannual temperature fluctuations when designing long experiments such as paleo-spin-ups. We show how the magnitude of the potential bias can be quantified statistically. For recent simulations of the Greenland Ice Sheet, we estimate the bias to be 30 Gt yr−1 (24–59 Gt yr−1, 95 % credibility for a warming of 3 °C above preindustrial values, or 13 % (10–25, 95 % credibility of the present-day rate of ice loss. Models of the Greenland Ice Sheet show a collapse threshold beyond which the ice sheet becomes unsustainable. The proximity of the threshold will be underestimated if temperature fluctuations are not taken into account. We estimate the bias to be 0.12 °C (0.10–0.18 °C, 95 % credibility for a recent estimate of the threshold. In light of our findings it is important to gauge the extent to which this increased variability will influence the mass balance of the ice sheets.

  7. Quantum-gravity fluctuations and the black-hole temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Institute, Jerusalem (Israel)

    2015-05-15

    Bekenstein has put forward the idea that, in a quantum theory of gravity, a black hole should have a discrete energy spectrum with concomitant discrete line emission. The quantized black-hole radiation spectrum is expected to be very different from Hawking's semi-classical prediction of a thermal black-hole radiation spectrum. One naturally wonders: Is it possible to reconcile the discrete quantum spectrum suggested by Bekenstein with the continuous semi-classical spectrum suggested by Hawking? In order to address this fundamental question, in this essay we shall consider the zero-point quantum-gravity fluctuations of the black-hole spacetime. In a quantum theory of gravity, these spacetime fluctuations are closely related to the characteristic gravitational resonances of the corresponding black-hole spacetime. Assuming that the energy of the black-hole radiation stems from these zero-point quantum-gravity fluctuations of the black-hole spacetime, we derive the effective temperature of the quantized black-hole radiation spectrum. Remarkably, it is shown that this characteristic temperature of the discrete (quantized) black-hole radiation agrees with the well-known Hawking temperature of the continuous (semi-classical) black-hole spectrum. (orig.)

  8. Quantum-gravity fluctuations and the black-hole temperature

    International Nuclear Information System (INIS)

    Hod, Shahar

    2015-01-01

    Bekenstein has put forward the idea that, in a quantum theory of gravity, a black hole should have a discrete energy spectrum with concomitant discrete line emission. The quantized black-hole radiation spectrum is expected to be very different from Hawking's semi-classical prediction of a thermal black-hole radiation spectrum. One naturally wonders: Is it possible to reconcile the discrete quantum spectrum suggested by Bekenstein with the continuous semi-classical spectrum suggested by Hawking? In order to address this fundamental question, in this essay we shall consider the zero-point quantum-gravity fluctuations of the black-hole spacetime. In a quantum theory of gravity, these spacetime fluctuations are closely related to the characteristic gravitational resonances of the corresponding black-hole spacetime. Assuming that the energy of the black-hole radiation stems from these zero-point quantum-gravity fluctuations of the black-hole spacetime, we derive the effective temperature of the quantized black-hole radiation spectrum. Remarkably, it is shown that this characteristic temperature of the discrete (quantized) black-hole radiation agrees with the well-known Hawking temperature of the continuous (semi-classical) black-hole spectrum. (orig.)

  9. Electron temperature fluctuation in the HT-7 tokamak plasma observed by electron cyclotron emission imaging

    International Nuclear Information System (INIS)

    Xiao-Yuan, Xu; Jun, Wang; Yi, Yu; Yi-Zhi, Wen; Chang-Xuan, Yu; Wan-Dong, Liu; Bao-Nian, Wan; Xiang, Gao; Luhmann, N. C.; Domier, C. W.; Wang, Jian; Xia, Z. G.; Shen, Zuowei

    2009-01-01

    The fluctuation of the electron temperature has been measured by using the electron cyclotron emission imaging in the Hefei Tokamak-7 (HT-7) plasma. The electron temperature fluctuation with a broadband spectrum shows that it propagates in the electron diamagnetic drift direction, and the mean poloidal wave-number k-bar θ is calculated to be about 1.58 cm −1 , or k-bar θρ s thickapprox 0.34. It indicates that the fluctuation should come from the electron drift wave turbulence. The linear global scaling of the electron temperature fluctuation with the gradient of electron temperature is consistent with the mixing length scale qualitatively. Evolution of spectrum of the fluctuation during the sawtooth oscillation phases is investigated, and the fluctuation is found to increase with the gradient of electron temperature increasing during most phases of the sawtooth oscillation. The results indicate that the electron temperature gradient is probably the driver of the fluctuation enhancement. The steady heat flux driven by electron temperature fluctuation is estimated and compared with the results from power balance estimation. (fluids, plasmas and electric discharges)

  10. Anisotropic magnetoresistance and thermodynamic fluctuations in high-temperature superconductors

    International Nuclear Information System (INIS)

    Heine, G.

    1999-05-01

    Measurements of the in-plane and out-of-plane resistivity and the transverse and longitudinal in-plane and out-of-plane magnetoresistance above T, are reported in the high-temperature superconductors Bi2Sr2CaCu208+' and YBa2CU307 b . The carrier concentration of the Bi2Sr2CaCu208+' single crystals covers a broad range of the phase diagram from the slightly under doped to the moderately over doped region. The doping concentration of the thin films ranges from strongly under doped to optimally doped. The in-plane resistivities obey a metallic-like temperature dependence with a positive magnetoresistance in the transverse and the longitudinal orientation of the magnetic field. The out-of-plane resistivities show an activated behavior above T, with a metallic region at higher temperatures and negative magnetoresistance. The data were analyzed in the framework of a model for superconducting order parameter fluctuations. The positive in-plane magnetoresistance of the highly anisotropic Bi2Sr2CaCu208+x single crystals is interpreted as the suppression of the fluctuation-conductivity enhancement including orbital and spin contributions, whereas the negative magnetoresistance arises from the reduction of the fluctuation-induced pseudogap in the single-electron density-of-states by the magnetic field. For higher temperatures a transition to the normal-state magnetoresistance occurs for the in-plane transport. In the less anisotropic YBa2CU307 b thin films the positive out-of-plane magnetoresistance near T, changes sign to a negative magnetoresistance at higher temperatures. This behavior is also consistent with predictions from the theory of thermodynamic order-parameter fluctuations. The agreement of the fluctuation theory with the experimental findings is excellent for samples from the over doped side of the phase diagram, but deteriorate with decreasing carrier concentration. This behavior is interpreted by the dominating d-wave symmetry of the superconducting order

  11. Fluctuations in macroscopically agitated plasma:quasiparticles and effective temperature

    International Nuclear Information System (INIS)

    Sosenko, P.P.; Gresillon, D.

    1994-01-01

    Fluctuations in the plasma, in which macroscopic fluid-like motion is agitated due to large-scale and low-frequency electro-magnetic fields, are studied. Such fields can be produced by external factors or internally, for example due to turbulence. Fluctuation spectral distributions are calculated with regard to the renormalization of the transition probability for a test-particle and of the test-particle shielding. If the correlation length for the random fluid-like motion is large as compared to the fluctuation scale lengths, then the fluctuation spectral distributions can be explained in terms of quasiparticles originating from macroscopic plasma agitation and of an effective temperature

  12. Density, potential and temperature fluctuations in Wendelstein 7-AS and ASDEX

    Energy Technology Data Exchange (ETDEWEB)

    Balbin, R; Hidalgo, C [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Carlson, A; Endler, M; Giannone, L.; Niedermeyer, H; Rudyj, A; Theimer, G [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1993-12-31

    Measurements of density, potential and temperature fluctuations in Wendelstein 7-AS stellarator (W7-AS) and ASDEX tokamak have been carried out. The properties of plasma fluctuations in a tokamak and stellarator can then be compared. A reciprocating Langmuir probe with an array of 19 graphite tips has been used to measure the radial profiles of fluctuations in the ion saturation current and floating potential in W7-AS and ASDEX. In both devices, a reversal in radial electric field and an associated velocity shear layer at the plasma boundary have been observed and in both cases the normalized ion saturation current fluctuation level decreases monotonically moving towards the plasma centre and through the shear layer. At the radial position where the phase velocity in the poloidal direction of the fluctuations goes to zero, the normalized ion saturation current fluctuation level of 0.25 are similar for edge plasma parameters of similar temperatures and densities. A spatial crosscorrelation between fluctuations in floating potential and ion saturation current has been observed in both machines. (author) 6 refs., 4 figs.

  13. Density, potential and temperature fluctuations in Wendelstein 7-AS and ASDEX

    International Nuclear Information System (INIS)

    Balbin, R.; Hidalgo, C.; Carlson, A.; Endler, M.; Giannone, L.; Herre, G.; Niedermeyer, H.; Rudyj, A.; Theimer, G.

    1992-01-01

    Measurements of ion saturation current, floating potential and temperature fluctuations in Wendelstein 7-AS stellarator (W7-AS) and ASDEX tokamak have been carried out. A reciprocating Langmuir probe with an array of 19 graphite tips has been used to obtain the radial profiles of these fluctuations in W7-AS and ASDEX. In both devices, a reversal of the radial electric field and an associated velocity shear layer at the plasma boundary have been observed. At the radial position where the phase velocity the poloidal direction of the fluctuations goes to zero, the normalised ion saturation current fluctuation level of 0.2 is the same for edge plasma parameters of similar temperatures and densities. A spatial crosscorrelation between floating potential and ion saturation current fluctuations has been observed in both machines and this feature can be explained in terms of turbulent eddies. A comparison of fluctuations in a tokamak and stellarator therefore shows many features in common. (orig.)

  14. Inverse heat conduction estimation of inner wall temperature fluctuations under turbulent penetration

    Science.gov (United States)

    Guo, Zhouchao; Lu, Tao; Liu, Bo

    2017-04-01

    Turbulent penetration can occur when hot and cold fluids mix in a horizontal T-junction pipe at nuclear plants. Caused by the unstable turbulent penetration, temperature fluctuations with large amplitude and high frequency can lead to time-varying wall thermal stress and even thermal fatigue on the inner wall. Numerous cases, however, exist where inner wall temperatures cannot be measured and only outer wall temperature measurements are feasible. Therefore, it is one of the popular research areas in nuclear science and engineering to estimate temperature fluctuations on the inner wall from measurements of outer wall temperatures without damaging the structure of the pipe. In this study, both the one-dimensional (1D) and the two-dimensional (2D) inverse heat conduction problem (IHCP) were solved to estimate the temperature fluctuations on the inner wall. First, numerical models of both the 1D and the 2D direct heat conduction problem (DHCP) were structured in MATLAB, based on the finite difference method with an implicit scheme. Second, both the 1D IHCP and the 2D IHCP were solved by the steepest descent method (SDM), and the DHCP results of temperatures on the outer wall were used to estimate the temperature fluctuations on the inner wall. Third, we compared the temperature fluctuations on the inner wall estimated by the 1D IHCP with those estimated by the 2D IHCP in four cases: (1) when the maximum disturbance of temperature of fluid inside the pipe was 3°C, (2) when the maximum disturbance of temperature of fluid inside the pipe was 30°C, (3) when the maximum disturbance of temperature of fluid inside the pipe was 160°C, and (4) when the fluid temperatures inside the pipe were random from 50°C to 210°C.

  15. Beam Energy Scan of Specific Heat Through Temperature Fluctuations in Heavy Ion Collisions

    Science.gov (United States)

    Basu, Sumit; Nandi, Basanta K.; Chatterjee, Sandeep; Chatterjee, Rupa; Nayak, Tapan

    2016-01-01

    Temperature fluctuations may have two distinct origins, first, quantum fluctuations that are initial state fluctuations, and second, thermodynamical fluctuations. We discuss a method of extracting the thermodynamic temperature from the mean transverse momentum of pions, by using controllable parameters such as centrality of the system, and range of the transverse momenta. Event-by-event fluctuations in global temperature over a large phase space provide the specific heat of the system. We present Beam Energy Scan of specific heat from data, AMPT and HRG model prediction. Experimental results from NA49, STAR, PHENIX, PHOBOS and ALICE are combined to obtain the specific heat as a function of beam energy. These results are compared to calculations from AMPT event generator, HRG model and lattice calculations, respectively.

  16. Effects of fluctuating temperature and food availability on reproduction and lifespan.

    Science.gov (United States)

    Schwartz, Tonia S; Pearson, Phillip; Dawson, John; Allison, David B; Gohlke, Julia M

    2016-12-15

    Experimental studies on energetics and aging often remove two major factors that in part regulate the energy budget in a normal healthy individual: reproduction and fluctuating environmental conditions that challenge homeostasis. Here we use the cyclical parthenogenetic Daphnia pulex to evaluate the role of a fluctuating thermal environment on both reproduction and lifespan across six food concentrations. We test the hypotheses that (1) caloric restriction extends lifespan; (2) maximal reproduction will come with a cost of shortened lifespan; and (3) at a given food concentration, relative to a metabolically equivalent constant temperature environment a diel fluctuating thermal environment will alter the allocation of energy to reproduction and lifespan to maintain homeostasis. We did not identify a level of food concentration that extended lifespan in response to caloric restriction, and we found no cost of reproduction in terms of lifespan. Rather, the individuals at the highest food levels generally had the highest reproductive output and the longest lifespans, the individuals at the intermediate food level decreased reproduction and maintained lifespan, and the individuals at the three lower food concentrations had a decrease in reproduction and lifespan as would be predicted with increasing levels of starvation. Fluctuating temperature had no effect on lifespan at any food concentration, but delayed time to reproductive maturity and decreased early reproductive output at all food concentrations. This suggests that a fluctuating temperature regimen activates molecular pathways that alter energy allocation. The costs of fluctuating temperature on reproduction were not consistent across the lifespan. Statistical interactions for age of peak reproduction and lifetime fecundity suggest that senescence of the reproductive system may vary between temperature regimens at the different food concentrations. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Temperature, density and potential fluctuations by a swept Langmuir probe in Wendelstein 7-AS

    Energy Technology Data Exchange (ETDEWEB)

    Giannone, L.; Niedermeyer, H; Endler, M; Theimer, G; Rudyj, A; Verplancke, Ph [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Balbin, R; Hidalgo, C [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain)

    1994-12-31

    Numerous experiments using a Langmuir probe to investigate the magnitude of temperature fluctuations and their contribution to heat transport in the edge region of tokamak plasmas have been carried out. Sweeping the voltage applied to a tip fast enough to ensure that the ion saturation current, floating potential and electron temperature may be assumed to be constant during the sweep is experimentally more difficult than alternative schemes but this disadvantage is compensated by the ability to measure all three of these quantities at one spatial location. Sweep frequencies up to 600 kHz have been employed to obtain the current-voltage characteristic. A radial scan in the vicinity of the velocity shear layer on W7-AS stellarator was performed. Inside and outside the shear layer the normalised magnitude of the temperature fluctuations was found to be approximately 30% larger than the magnitude of the electron density fluctuations, approaching a value of 0.12 and 0.09 respectively at a radial position 1 cm inside the shear layer. An increase in the coherency of the temperature, floating potential and density fluctuations between tips with a poloidal separation of 2 mm was also measured as the shear layer was crossed. Heat conduction produced by correlated temperature and poloidal electric field fluctuations is therefore possible. An increasing coherence of temperature and floating potential fluctuations leads to an increase in the coherence of temperature and plasma potential fluctuations as the shear layer was crossed. (author) 7 refs., 3 figs.

  18. Simulation of Temperature Fluctuations in Stirling Engine Regenerator Matrices

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegaard; Carlsen, Henrik; Thomsen, Per Grove

    2003-01-01

    The objective of this study has been to create a model for studying the effects of fluctuations in regenerator matrix temperatures on Stirling engine performance. A one-dimensional model with axial discretisation of engine components has been formulated using the balance equations for mass, energy...... and accurately calculated. Simulation results have been compared to experimental data for a 9 kW Stirling engine and reasonable agreement has been found over a wide range of operating conditions using Helium or Nitrogen as working gas. Simulation results indicate that fluctuations in the regenerator matrix...... temperatures have significant impact on the regenerator loss, the engine power output, and the cycle efficiency....

  19. Long-range correlations in rectal temperature fluctuations of healthy infants during maturation.

    Directory of Open Access Journals (Sweden)

    Georgette Stern

    Full Text Available BACKGROUND: Control of breathing, heart rate, and body temperature are interdependent in infants, where instabilities in thermoregulation can contribute to apneas or even life-threatening events. Identifying abnormalities in thermoregulation is particularly important in the first 6 months of life, where autonomic regulation undergoes critical development. Fluctuations in body temperature have been shown to be sensitive to maturational stage as well as system failure in critically ill patients. We thus aimed to investigate the existence of fractal-like long-range correlations, indicative of temperature control, in night time rectal temperature (T(rec patterns in maturing infants. METHODOLOGY/PRINCIPAL FINDINGS: We measured T(rec fluctuations in infants every 4 weeks from 4 to 20 weeks of age and before and after immunization. Long-range correlations in the temperature series were quantified by the correlation exponent, alpha using detrended fluctuation analysis. The effects of maturation, room temperature, and immunization on the strength of correlation were investigated. We found that T(rec fluctuations exhibit fractal long-range correlations with a mean (SD alpha of 1.51 (0.11, indicating that T(rec is regulated in a highly correlated and hence deterministic manner. A significant increase in alpha with age from 1.42 (0.07 at 4 weeks to 1.58 (0.04 at 20 weeks reflects a change in long-range correlation behavior with maturation towards a smoother and more deterministic temperature regulation, potentially due to the decrease in surface area to body weight ratio in the maturing infant. alpha was not associated with mean room temperature or influenced by immunization CONCLUSIONS: This study shows that the quantification of long-range correlations using alpha derived from detrended fluctuation analysis is an observer-independent tool which can distinguish developmental stages of night time T(rec pattern in young infants, reflective of maturation of

  20. Temperature fluctuation spectral analysis of turbulent flow in circular sections with internal roughness

    International Nuclear Information System (INIS)

    Blanco, Rosa L.D.; Moeller, Sergio V.

    1995-01-01

    The experimental study of the temperature fluctuation in a circular section pipe with artificial roughness is presented. Micro thermocouples are applied for the measurements of the temperature and its fluctuations. Auto spectral density functions as well as autocorrelation functions were obtained by means of a Fourier Analyzer. Results compared to measurements performed in a smooth pipe, show that the turbulent scales for the temperature fluctuations increase in the regions near the walls, without significant changes in the regions near the center of the pipe. (author). 15 refs, 10 figs

  1. Quenched disorder and thermopower fluctuations in high temperature superconductors

    International Nuclear Information System (INIS)

    Khalil, A.E.

    1997-01-01

    Thermopower behavior in high temperature superconductors YBa 2 Cu 3 O 7-δ single crystals near the transition temperature was examined. An expression for the thermoelectric power containing the divergent term (1-T/T c ) -s , where s is a scaling exponent that does not appear in Maki's calculations, was derived. This divergent term is the result of contributions due to the flow of currents across disordered conduction paths in the sample. These currents are driven by the density gradients of the conductivity fluctuations as a result of the increased disorder due to the existence of amorphous regions in the two-dimensional lattice. The present calculations include the most divergent effects to the thermopower due to the conductivity fluctuations near the transition temperature. The model predictions are in good agreement with recent experimental measurements reported in the literature. (orig.)

  2. Magnetoconductance fluctuations in a strongly correlated disordered ring system at low temperatures

    International Nuclear Information System (INIS)

    Chen, H.; Ishihara, M.; Li, Z.; Kawazoe, Y.

    1996-01-01

    Using a recursive real-space Green close-quote s-function technique in the tight-binding model, we study the influence of the electron-electron Hubbard interaction on the magnetoconductance fluctuations in a disordered ring at low temperatures. Our numerical results improve the previous theoretical predictions for the magnetoconductance fluctuations as a function of magnetic flux compared with experiments. Meanwhile, we find several anomalous phenomena at low temperatures, which do not survive at high temperatures. For the Fermi level E f =0.1t (t is the hopping integral) the envelope of magnetoconductance fluctuations drops to a lower value at some magnetic flux, while the Hubbard interaction causes the drop to occur at larger flux. The magnetoconductance fluctuations vary with the Hubbard interaction for magnetic flux around 20Φ 0 (Φ 0 =hc/e) mainly in the range of small U. The Hubbard interaction narrows the widths of the main peaks in the Fourier spectrum, but it does not change their positions. copyright 1996 The American Physical Society

  3. Impact of diurnal temperature fluctuations on larval settlement and growth of the reef coral Pocillopora damicornis

    Science.gov (United States)

    Jiang, Lei; Sun, You-Fang; Zhang, Yu-Yang; Zhou, Guo-Wei; Li, Xiu-Bao; McCook, Laurence J.; Lian, Jian-Sheng; Lei, Xin-Ming; Liu, Sheng; Cai, Lin; Qian, Pei-Yuan; Huang, Hui

    2017-12-01

    Diurnal fluctuations in seawater temperature are ubiquitous on tropical reef flats. However, the effects of such dynamic temperature variations on the early stages of corals are poorly understood. In this study, we investigated the responses of larvae and new recruits of Pocillopora damicornis to two constant temperature treatments (29 and 31 °C) and two diurnally fluctuating treatments (28-31 and 30-33 °C with daily means of 29 and 31 °C, respectively) simulating the 3 °C diel oscillations at 3 m depth on the Luhuitou fringing reef (Sanya, China). Results showed that the thermal stress on settlement at 31 °C was almost negated by the fluctuating treatment. Further, neither elevated temperature nor temperature fluctuations caused bleaching responses in recruits, while the maximum excitation pressure over photosystem II (PSII) was reduced under fluctuating temperatures. Although early growth and development were highly stimulated at 31 °C, oscillations of 3 °C had little effects on budding and lateral growth at either mean temperature. Nevertheless, daytime encounters with the maximum temperature of 33 °C in fluctuating 31 °C elicited a notable reduction in calcification compared to constant 31 °C. These results underscore the complexity of the effects caused by diel temperature fluctuations on early stages of corals and suggest that ecologically relevant temperature variability could buffer warming stress on larval settlement and dampen the positive effects of increased temperatures on coral growth.

  4. Impact of diurnal temperature fluctuations on larval settlement and growth of the reef coral Pocillopora damicornis

    Directory of Open Access Journals (Sweden)

    L. Jiang

    2017-12-01

    Full Text Available Diurnal fluctuations in seawater temperature are ubiquitous on tropical reef flats. However, the effects of such dynamic temperature variations on the early stages of corals are poorly understood. In this study, we investigated the responses of larvae and new recruits of Pocillopora damicornis to two constant temperature treatments (29 and 31 °C and two diurnally fluctuating treatments (28–31 and 30–33 °C with daily means of 29 and 31 °C, respectively simulating the 3 °C diel oscillations at 3 m depth on the Luhuitou fringing reef (Sanya, China. Results showed that the thermal stress on settlement at 31 °C was almost negated by the fluctuating treatment. Further, neither elevated temperature nor temperature fluctuations caused bleaching responses in recruits, while the maximum excitation pressure over photosystem II (PSII was reduced under fluctuating temperatures. Although early growth and development were highly stimulated at 31 °C, oscillations of 3 °C had little effects on budding and lateral growth at either mean temperature. Nevertheless, daytime encounters with the maximum temperature of 33 °C in fluctuating 31 °C elicited a notable reduction in calcification compared to constant 31 °C. These results underscore the complexity of the effects caused by diel temperature fluctuations on early stages of corals and suggest that ecologically relevant temperature variability could buffer warming stress on larval settlement and dampen the positive effects of increased temperatures on coral growth.

  5. An investigation of characteristics of thermal stress caused by fluid temperature fluctuation at a T-junction pipe

    International Nuclear Information System (INIS)

    Miyoshi, Koji; Nakamura, Akira; Utanohara, Yoichi

    2014-01-01

    Thermal fatigue cracking may initiate at a T-junction pipe where high and low temperature fluids flow in from different directions and mix. Thermal stress is caused by a temperature gradient in a structure and by its variation. It is possible to obtain stress distributions if the temperature distributions at the pipe inner surface are obtained by experiments. The wall temperature distributions at a T-junction pipe were measured by experiments. The thermal stress distributions were calculated using the experimental data. The circumferential and axial stress fluctuations were larger than the radial stress fluctuation range. The stress fluctuation at the position of the maximum stress fluctuation had 10sec period. The distribution of the stress fluctuation was similar to that of the temperature fluctuation. The large stress fluctuations were caused by the time variation of the heating region by the hot jet flow. (author)

  6. Evaluation of random temperature fluctuation problems with frequency response approach

    International Nuclear Information System (INIS)

    Lejeail, Yves; Kasahara, Naoto

    2000-01-01

    Since thermal striping is a coupled thermohydraulic and thermomechanical phenomenon, sodium mock-up tests were usually required to confirm structural integrity. Authors have developed the frequency response function to establish design-by-analysis methodology for this phenomenon. Applicability of this method to sinusoidal fluctuation was validated through two benchmark problems with FAENA and TIFFSS facilities under EJCC contract. This report describes the extension of the frequency response method to random fluctuations. As an example of application, fatigue strength of a Tee junction of PHENIX secondary piping system was investigated. (author)

  7. Interferometric investigation of turbulently fluctuating temperature in an LMFBR outlet plenum geometry

    International Nuclear Information System (INIS)

    Bennett, R.G.; Golay, M.W.

    1975-01-01

    A novel optical technique is described for the measurement of turbulently fluctuating temperature in a transparent fluid flow. The technique employs a Mach-Zehnder interferometer of extremely short field and a simple photoconductive diode detector. The system produces a nearly linear D.C. electrical analog of the turbulent temperature fluctuations in a small, 1 mm 3 volume. The frequency response extends well above 2500 Hz, and can be improved by the choice of a more sophisticated photodetector. The turbulent sodium mixing in the ANL 1 1 / 15 -scale FFTF outlet plenum is investigated with a scale model outlet mixing plenum, using flows of air. The scale design represents a cross section of the ANL outlet plenum, so that the average recirculating flow inside the test cell is two dimensional. The range of the instrument is 120 0 F above the ambient air temperature. The accuracy is generally +-5 0 F, with most of the error due to noise originating from building vibrations and room noise. The power spectral density of the fluctuating temperature has been observed experimentally at six different stations in the flow. A strong 300 Hz component is generated in the inlet region, which decays as the flow progresses along streamlines. The effect of the inlet Reynolds number and the temperature difference between the inlet flows on the power spectral density has also been investigated. Traces of the actual fluctuating temperature are included for the six stations

  8. Concentration fluctuations in miscible polymer blends: Influence of temperature and chain rigidity

    International Nuclear Information System (INIS)

    Dudowicz, Jacek; Freed, Karl F.; Douglas, Jack F.

    2014-01-01

    In contrast to binary mixtures of small molecule fluids, homogeneous polymer blends exhibit relatively large concentration fluctuations that can strongly affect the transport properties of these complex fluids over wide ranges of temperatures and compositions. The spatial scale and intensity of these compositional fluctuations are studied by applying Kirkwood-Buff theory to model blends of linear semiflexible polymer chains with upper critical solution temperatures. The requisite quantities for determining the Kirkwood-Buff integrals are generated from the lattice cluster theory for the thermodynamics of the blend and from the generalization of the random phase approximation to compressible polymer mixtures. We explore how the scale and intensity of composition fluctuations in binary blends vary with the reduced temperature τ ≡ (T − T c )/T (where T c is the critical temperature) and with the asymmetry in the rigidities of the components. Knowledge of these variations is crucial for understanding the dynamics of materials fabricated from polymer blends, and evidence supporting these expectations is briefly discussed

  9. Effective temperature and fluctuation-dissipation theorem in athermal granular systems: A review

    International Nuclear Information System (INIS)

    Chen Qiong; Hou Mei-Ying

    2014-01-01

    The definition and the previous measurements of a dynamics-relevant temperature-like quantity in granular media are reviewed for slow and fast particle systems. Especially, the validity of the fluctuation-dissipation theorem in such an athermal system is explored. Experimental evidences for the fluctuation-dissipation theorem relevant effect temperature support the athermal statistical mechanics, which has been widely explored in recent years by physicists. Difficulties encountered in defining temperature or establishing thermodynamics or statistical mechanics in non-equilibrium situations are discussed. (topical review - statistical physics and complex systems)

  10. Experimental evidence of significant temperature fluctuations in the plasma edge region of the TJ-I Tokamak

    International Nuclear Information System (INIS)

    Hidalgo, C.; Balbin, R.; Pedrosa, M.A.; Garcia-Cortes, I.; Ochando, M.A.

    1993-01-01

    Density and temperature fluctuations have been measured in the plasma bulk side of the velocity shear location of the TJ-I tokamak using a foast swept Langmuir probe technique. Evidence of sustantial temperature fluctuations which are in phase close to opposition with the corresponding density fluctuations has been found. This result suggests the possible role of radiation in determining edge fluctuation levels and call into question the determination of the density and potential fluctuations from the Langmuir current-probe and floating potential fluctuations. (Author)

  11. Experimental evidence of significant temperature fluctuations in the plasma EDGE region of the TJ-I Tokamak

    International Nuclear Information System (INIS)

    Hidalgo, C.; Balbin, R.; Pedrosa, M. A.; Garcia-Cortes, I.; Ochando, M. A.

    1993-01-01

    Density and temperature fluctuations have been measured in the plasma bulk side of the velocity shear location of the TJ-I tokamak using a feast swept Langmuir probe technique. Evidence of substantial temperature fluctuations which are in phase close to opposition with the corresponding density fluctuations has been found. This result suggests the possible role of radiation in determining edge fluctuation levels and call into question the determination of the density and potential fluctuations from the Langmuir current-probe and floating potential fluctuations. (Author) 16 refs

  12. Experimental evidence of significant temperature fluctuations in the plasma EDGE region of the TJ-I Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo, C; Balbin, R; Pedrosa, M A; Garcia-Cortes, I; Ochando, M A

    1993-07-01

    Density and temperature fluctuations have been measured in the plasma bulk side of the velocity shear location of the TJ-I tokamak using a feast swept Langmuir probe technique. Evidence of substantial temperature fluctuations which are in phase close to opposition with the corresponding density fluctuations has been found. This result suggests the possible role of radiation in determining edge fluctuation levels and call into question the determination of the density and potential fluctuations from the Langmuir current-probe and floating potential fluctuations. (Author) 16 refs.

  13. Biodegradation of Toluene Under Seasonal and Diurnal Fluctuations of Soil-Water Temperature.

    KAUST Repository

    Yadav, Brijesh K; Shrestha, Shristi R; Hassanizadeh, S Majid

    2012-01-01

    An increasing interest in bioremediation of hydrocarbon polluted sites raises the question of the influence of seasonal and diurnal changes on soil-water temperature on biodegradation of BTEX, a widespread group of (sub)-surface contaminants. Therefore, we investigated the impact of a wide range of varying soil-water temperature on biodegradation of toluene under aerobic conditions. To see the seasonal impact of temperature, three sets of batch experiments were conducted at three different constant temperatures: 10°C, 21°C, and 30°C. These conditions were considered to represent (1) winter, (2) spring and/or autumn, and (3) summer seasons, respectively, at many polluted sites. Three additional sets of batch experiments were performed under fluctuating soil-water temperature cases (21<>10°C, 30<>21°C, and 10<>30°C) to mimic the day-night temperature patterns expected during the year. The batches were put at two different temperatures alternatively to represent the day (high-temperature) and night (low-temperature) times. The results of constant- and fluctuating-temperature experiments show that toluene degradation is strongly dependent on soil-water temperature level. An almost two-fold increase in toluene degradation time was observed for every 10°C decrease in temperature for constant-temperature cases. Under fluctuating-temperature conditions, toluene degraders were able to overcome the temperature stress and continued thriving during all considered weather scenarios. However, a slightly longer time was taken compared to the corresponding time at daily mean temperature conditions. The findings of this study are directly useful for bioremediation of hydrocarbon-polluted sites having significant diurnal and seasonal variations of soil-water temperature.

  14. Biodegradation of Toluene Under Seasonal and Diurnal Fluctuations of Soil-Water Temperature.

    Science.gov (United States)

    Yadav, Brijesh K; Shrestha, Shristi R; Hassanizadeh, S Majid

    2012-09-01

    An increasing interest in bioremediation of hydrocarbon polluted sites raises the question of the influence of seasonal and diurnal changes on soil-water temperature on biodegradation of BTEX, a widespread group of (sub)-surface contaminants. Therefore, we investigated the impact of a wide range of varying soil-water temperature on biodegradation of toluene under aerobic conditions. To see the seasonal impact of temperature, three sets of batch experiments were conducted at three different constant temperatures: 10°C, 21°C, and 30°C. These conditions were considered to represent (1) winter, (2) spring and/or autumn, and (3) summer seasons, respectively, at many polluted sites. Three additional sets of batch experiments were performed under fluctuating soil-water temperature cases (2110°C, 3021°C, and 1030°C) to mimic the day-night temperature patterns expected during the year. The batches were put at two different temperatures alternatively to represent the day (high-temperature) and night (low-temperature) times. The results of constant- and fluctuating-temperature experiments show that toluene degradation is strongly dependent on soil-water temperature level. An almost two-fold increase in toluene degradation time was observed for every 10°C decrease in temperature for constant-temperature cases. Under fluctuating-temperature conditions, toluene degraders were able to overcome the temperature stress and continued thriving during all considered weather scenarios. However, a slightly longer time was taken compared to the corresponding time at daily mean temperature conditions. The findings of this study are directly useful for bioremediation of hydrocarbon-polluted sites having significant diurnal and seasonal variations of soil-water temperature.

  15. Biodegradation of Toluene Under Seasonal and Diurnal Fluctuations of Soil-Water Temperature.

    KAUST Repository

    Yadav, Brijesh K

    2012-05-12

    An increasing interest in bioremediation of hydrocarbon polluted sites raises the question of the influence of seasonal and diurnal changes on soil-water temperature on biodegradation of BTEX, a widespread group of (sub)-surface contaminants. Therefore, we investigated the impact of a wide range of varying soil-water temperature on biodegradation of toluene under aerobic conditions. To see the seasonal impact of temperature, three sets of batch experiments were conducted at three different constant temperatures: 10°C, 21°C, and 30°C. These conditions were considered to represent (1) winter, (2) spring and/or autumn, and (3) summer seasons, respectively, at many polluted sites. Three additional sets of batch experiments were performed under fluctuating soil-water temperature cases (21<>10°C, 30<>21°C, and 10<>30°C) to mimic the day-night temperature patterns expected during the year. The batches were put at two different temperatures alternatively to represent the day (high-temperature) and night (low-temperature) times. The results of constant- and fluctuating-temperature experiments show that toluene degradation is strongly dependent on soil-water temperature level. An almost two-fold increase in toluene degradation time was observed for every 10°C decrease in temperature for constant-temperature cases. Under fluctuating-temperature conditions, toluene degraders were able to overcome the temperature stress and continued thriving during all considered weather scenarios. However, a slightly longer time was taken compared to the corresponding time at daily mean temperature conditions. The findings of this study are directly useful for bioremediation of hydrocarbon-polluted sites having significant diurnal and seasonal variations of soil-water temperature.

  16. Fluctuations of the electron temperature measured by intensity interferometry on the W7-AS stellarator

    International Nuclear Information System (INIS)

    Sattler, S.

    1993-12-01

    Fluctuations of the electron temperature can cause a significant amount of the anomalous electron heat conductivity observed on fusion plasmas, even with relative amplitudes below one per cent. None of the standard diagnostics utilized for measuring the electron temperature in the confinement region of fusion plasmas is provided with sufficient spatial and temporal resolution and the sensitivity for small fluctuation amplitudes. In this work a new diagnostic for the measurement of electron temperature fluctuations in the confinement region of fusion plasmas was developed, built up, tested and successfully applied on the W7-AS Stellarator. Transport relevant fluctuations of the electron temperature can in principle be measured by radiometry of the electron cyclotron emission (ECE), but they might be buried completely in natural fluctuations of the ECE due to the thermal nature of this radiation. Fluctuations with relative amplitudes below one per cent can be measured with a temporal resolution in the μs-range and a spatial resolution of a few cm only with the help of correlation techniques. The intensity interferometry method, developed for radio astronomy, was applied here: two independent but identical radiometers are viewing the same emitting volume along crossed lines of sight. If the angle between the sightlines is chosen above a limiting value, which is determined by the spatial coherence properties of thermal radiation, the thermal noise is uncorrelated while the temperature fluctuations remain correlated. With the help of this technique relative amplitudes below 0.1% are accessible to measurement. (orig.)

  17. Numerical analysis of temperature fluctuation in core outlet region of China experimental fast reactor

    International Nuclear Information System (INIS)

    Zhu Huanjun; Xu Yijun

    2014-01-01

    The temperature fluctuation in core outlet region of China Experimental Fast Reactor (CEFR) was numerically simulated by the CFD software Star CCM+. With the core outlet temperatures, flows etc. under rated conditions given as boundary conditions, a 1/4 region model of the reactor core outlet region was established and calculated using LES method for this problem. The analysis results show that while CEFR operates under rated conditions, the temperature fluctuation in lower part of core outlet region is mainly concentrated in area over the edge components (steel components, control rod assembly), and one in upper part is remarkable in area above all the components. The largest fluctuation amplitude is 19 K and the remarkable frequency is below 5 Hz, and it belongs to typically low frequency fluctuation. The conclusion is useful for further experimental work. (authors)

  18. Effect of arc behaviour on the temperature fluctuation of carbon electrode in DC arc discharge

    International Nuclear Information System (INIS)

    Liang, F; Tanaka, M; Choi, S; Watanabe, T

    2014-01-01

    Diffuse and multiple arc-anode attachment modes were observed in a DC arc discharge with a carbon electrode. During the arc discharge, the surface temperature of the electrode was successfully measured by two-colour pyrometry combined with a high-speed camera which employs appropriate band-pass filters. The relationship between the arc-anode attachment mode and the temperature fluctuation of electrode surface was investigated. The diffuse arc-anode attachment mode leads to relatively large temperature fluctuation on anode surface due to the rotation of the arc spot. In the case of diffuse mode, the purity of synthesized multi-wall carbon nanotube was deteriorated with temperature fluctuation

  19. Transport and fluctuations in high temperature spheromak plasmas

    International Nuclear Information System (INIS)

    McLean, H.S.; Wood, R.D.; Cohen, B.I.; Hooper, E.B.; Hill, D.N.; Moller, J.M.; Romero-Talamas, C.; Woodruff, S.

    2006-01-01

    Higher electron temperature (T e >350 eV) and reduced electron thermal diffusivity (χ e 2 /s) is achieved in the Sustained Spheromak Physics Experiment (SSPX) by increasing the discharge current=I gun and gun bias flux=ψ gun in a prescribed manner. The internal current and q=safety factor profile derived from equilibrium reconstruction as well as the measured magnetic fluctuation amplitude can be controlled by programming the ratio λ gun =μ 0 I gun /ψ gun . Varying λ gun above and below the minimum energy eigenvalue=λ FC of the flux conserver (∇xB-vector=λ FC B-vector) varies the q profile and produces the m/n=poloidal/toroidal magnetic fluctuation mode spectrum expected from mode-rational surfaces with q=m/n. The highest T e is measured when the gun is driven with λ gun slightly less than λ FC , producing low fluctuation amplitudes ( e as T e increases, differing from Bohm or open field line transport models where χ e increases with T e . Detailed resistive magnetohydrodynamic simulations with the NIMROD code support the analysis of energy confinement in terms of the causal link with the q profile, magnetic fluctuations associated with low-order mode-rational surfaces, and the quality of magnetic surfaces

  20. Effects of ion temperature fluctuations on the stability of resistive ballooning modes

    International Nuclear Information System (INIS)

    Singh, R.; Nordman, H.; Jarmen, A.; Weiland, J.

    1996-01-01

    The influence of ion temperature fluctuations on the stability of resistive drift- and ballooning-modes is investigated using a two-fluid model. The Eigenmode equations are derived and solved analytically in a low beta model equilibrium. Parameters relevant to L-mode edge plasmas from the Texas Experimental Tokamak are used. The resistive modes are found to be destabilized by ion temperature fluctuations over a broad range of mode numbers. The scaling of the growth rate with magnetic shear and mode number is elucidated. 13 refs, 4 figs

  1. On turbulent motion caused by temperature fluctuations - a critical review on the Boussinesq approximation

    International Nuclear Information System (INIS)

    Ruediger, R.

    1977-01-01

    Fluctuating motions which are caused by a given stochastical temperature field acting in a gas with gravitation and T = constant are dealt with. It results that the often used Boussinesq approximation much underestimates the horizontal motions in case wide-spread temperature fluctuations occur. For sufficiently large scales the horizontal motion exceeds the vertical ones even in the case of the temperature field fluctuating completely isotropically. Scales of 1,000 km and 1 day in the Earth atmosphere lead to the observed value u'(horizontal)/u'(vertical) approximately 10. Finally besides the relation between density correlation and pressure correlation the expression for the turbulent mass transport vanishing with the molecular viscosity is determined. (author)

  2. Temperature fluctuation caused by coaxial-jet flow: Experiments on the effect of the velocity ratio R ⩾ 1

    International Nuclear Information System (INIS)

    Cao, Qiong; Li, Hongyuan; Lu, Daogang; Chang, Mu

    2017-01-01

    Highlights: • The effect on temperature fluctuation from velocity ratio was studied by experiment. • The distribution of time-averaged temperatures is the axial-symmetry in R ⩾ 1. • The region of intense temperature fluctuation in R = 1 is different from that of R > 1. • The intensity of temperature fluctuation under R > 1 is weaker than that of R = 1. - Abstract: The temperature fluctuation appears in the core outlet region due to the different of the temperature and velocity of the coolant, which can cause thermal stresses and the high-cycle thermal fatigue on solid boundaries. So, it is necessary to analyze the characteristics of the temperature fluctuation. In the present study, a comparative experiment was performed to analyze the effect on the temperature fluctuation caused by the coaxial-jet flow from the inlet cold and hot fluid velocity ratios (R ⩾ 1). In the condition of R ⩾ 1, the distribution of the time-averaged temperature is the axial-symmetry. In the cold fluid field, the temperature field is divided into four parts, including the first steady region, linear region, nonlinear region and the second steady region along the axial direction, while that is lack of the first steady state region in the hot fluid field. In the condition of R = 1, due to the velocity of the cold fluid is equivalent to that of the hot fluid, the cold fluid flow can be severely disturbed by the hot flow. The intense temperature fluctuation mainly distributed in the annular region at bottom region and the circular region in the upper region. While, in the condition of R > 1, the inertia of the cold fluid is larger than that of the hot fluid. The hot fluid will attach itself to the periphery of the cold fluid. The intense temperature fluctuation distributed in the annular region between the cold and hot fluid and the periphery of the hot fluid. However, the intensity of temperature fluctuation under R > 1 is weaker than that of R = 1.

  3. Temperature fluctuation caused by coaxial-jet flow: Experiments on the effect of the velocity ratio R ⩾ 1

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qiong, E-mail: lian24111@163.com [Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, North China Electric Power University, Beijing 102206 (China); Li, Hongyuan, E-mail: lihongyuan@ncepu.edu.cn [School of Control and Computer Engineering, North China Electric Power University, Beijing 102206 (China); Lu, Daogang, E-mail: ludaogang@ncepu.edu.cn [Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, North China Electric Power University, Beijing 102206 (China); Chang, Mu, E-mail: changmu123@163.com [Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, North China Electric Power University, Beijing 102206 (China)

    2017-04-01

    Highlights: • The effect on temperature fluctuation from velocity ratio was studied by experiment. • The distribution of time-averaged temperatures is the axial-symmetry in R ⩾ 1. • The region of intense temperature fluctuation in R = 1 is different from that of R > 1. • The intensity of temperature fluctuation under R > 1 is weaker than that of R = 1. - Abstract: The temperature fluctuation appears in the core outlet region due to the different of the temperature and velocity of the coolant, which can cause thermal stresses and the high-cycle thermal fatigue on solid boundaries. So, it is necessary to analyze the characteristics of the temperature fluctuation. In the present study, a comparative experiment was performed to analyze the effect on the temperature fluctuation caused by the coaxial-jet flow from the inlet cold and hot fluid velocity ratios (R ⩾ 1). In the condition of R ⩾ 1, the distribution of the time-averaged temperature is the axial-symmetry. In the cold fluid field, the temperature field is divided into four parts, including the first steady region, linear region, nonlinear region and the second steady region along the axial direction, while that is lack of the first steady state region in the hot fluid field. In the condition of R = 1, due to the velocity of the cold fluid is equivalent to that of the hot fluid, the cold fluid flow can be severely disturbed by the hot flow. The intense temperature fluctuation mainly distributed in the annular region at bottom region and the circular region in the upper region. While, in the condition of R > 1, the inertia of the cold fluid is larger than that of the hot fluid. The hot fluid will attach itself to the periphery of the cold fluid. The intense temperature fluctuation distributed in the annular region between the cold and hot fluid and the periphery of the hot fluid. However, the intensity of temperature fluctuation under R > 1 is weaker than that of R = 1.

  4. Temperature dependence of fluctuation time scales in spin glasses

    DEFF Research Database (Denmark)

    Kenning, Gregory G.; Bowen, J.; Sibani, Paolo

    2010-01-01

    Using a series of fast cooling protocols we have probed aging effects in the spin glass state as a function of temperature. Analyzing the logarithmic decay found at very long time scales within a simple phenomenological barrier model, leads to the extraction of the fluctuation time scale of the s...

  5. Temperature and flow fluctuations under local boiling in a simulated fuel subassembly

    International Nuclear Information System (INIS)

    Inujima, H.; Ogino, T.; Uotani, M.; Yamaguchi, K.

    1980-08-01

    Out-of-pile experiments were carried out with the sodium test loop SIENA in O-arai Engineering Center of PNC, and the feasibility studies had been made on the local boiling detection by use of temperature and flow fluctuations. The studies showed that the temperature fluctuation transferred the information on local boiling toward the end of the bundle, but hardly to the outlet. In addition, it was proved that the anomaly detection method, which used the algorithm of whiteness test method to the residual time series data of autoregressive model, is an effective one for detecting anomaly such as local boiling. (author)

  6. Correlation electron cyclotron emission diagnostic and improved calculation of turbulent temperature fluctuation levels on ASDEX Upgrade

    Science.gov (United States)

    Creely, A. J.; Freethy, S. J.; Burke, W. M.; Conway, G. D.; Leccacorvi, R.; Parkin, W. C.; Terry, D. R.; White, A. E.

    2018-05-01

    A newly upgraded correlation electron cyclotron emission (CECE) diagnostic has been installed on the ASDEX Upgrade tokamak and has begun to perform experimental measurements of electron temperature fluctuations. CECE diagnostics measure small amplitude electron temperature fluctuations by correlating closely spaced heterodyne radiometer channels. This upgrade expanded the system from six channels to thirty, allowing simultaneous measurement of fluctuation level radial profiles without repeat discharges, as well as opening up the possibility of measuring radial turbulent correlation lengths. Newly refined statistical techniques have been developed in order to accurately analyze the fluctuation data collected from the CECE system. This paper presents the hardware upgrades for this system and the analysis techniques used to interpret the raw data, as well as measurements of fluctuation spectra and fluctuation level radial profiles.

  7. Experimental investigation on effect of inlet velocity ratios for 3-D temperature fluctuation caused by coaxial-jet flow

    International Nuclear Information System (INIS)

    Cao Qiong; Lu Daogang; Zhang Pan; Shi Wenbo; Tian Lu

    2012-01-01

    An experiment was performed to study the effect of inlet velocity ratios for 3-D temperature fluctuation caused by coaxial-jet flows based on the 3-D temperature and 2-D velocity fields. The experiment results show that the mixing behavior is completed at the bottom of test section in R<1 condition. The averaged temperatures at the bottom of the flow field are asymmetric in Rtemperatures are asymmetric in these cases. With the increment of inlet velocity ratios, the gradients of cold fluid temperatures decrease in height direction, while those of hot fluid temperatures increase. In R>1 condition, the intensities of temperature fluctuations are less than those in R≤1 conditions. The strong temperature fluctuations occur in the regions between the hot and cold flow, as well as between the hot flow and environmental flow in this case. The frequencies of temperature fluctuations are less than 7 Hz. (authors)

  8. Evidence for large temperature fluctuations in quasar accretion disks from spectral variability

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, John J.; Anderson, Scott F.; Agol, Eric [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Dexter, Jason, E-mail: jruan@astro.washington.edu [Departments of Physics and Astronomy, University of California, Berkeley, CA 94720 (United States)

    2014-03-10

    The well-known bluer-when-brighter trend observed in quasar variability is a signature of the complex processes in the accretion disk and can be a probe of the quasar variability mechanism. Using a sample of 604 variable quasars with repeat spectra in the Sloan Digital Sky Survey-I/II (SDSS), we construct difference spectra to investigate the physical causes of this bluer-when-brighter trend. The continuum of our composite difference spectrum is well fit by a power law, with a spectral index in excellent agreement with previous results. We measure the spectral variability relative to the underlying spectra of the quasars, which is independent of any extinction, and compare to model predictions. We show that our SDSS spectral variability results cannot be produced by global accretion rate fluctuations in a thin disk alone. However, we find that a simple model of an inhomogeneous disk with localized temperature fluctuations will produce power-law spectral variability over optical wavelengths. We show that the inhomogeneous disk will provide good fits to our observed spectral variability if the disk has large temperature fluctuations in many independently varying zones, in excellent agreement with independent constraints from quasar microlensing disk sizes, their strong UV spectral continuum, and single-band variability amplitudes. Our results provide an independent constraint on quasar variability models and add to the mounting evidence that quasar accretion disks have large localized temperature fluctuations.

  9. Temperature fluctuation effect on microstructural evolution of vanadium

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Hideo; Ochiai, Kenso; Yoshida, Naoaki [Kyushu Univ., Kasuga, Fukuoka (Japan). Research Inst. for Applied Mechanics

    1996-04-01

    To compare the damage structure of vanadium and it`s alloy by irradiation at a constant and fluctuating temperature, the microstructure of samples irradiated by heavy ion were observed by an electron microscope. Pure vanadium (99.9%) from China was used as samples. After preparing the samples for the electron microscope, they are covered with Zr and Ta film, vacuum sealed and annealed for 2h at 1323K. Then the samples were irradiated by 3 MeV Cu ion of 0.75-100 dpa at 473-873K. Temperature was changed from low to high (473K/673K, 473K/873K, 673K/873K). On the irradiation experiments at constant temperature, the density of dislocation decreased with increasing temperature, but, more than 773K, the density became very low and the needle precipitation grown to <100> and void were observed. On the irradiation experiment at 673K/873K, the density of number of precipitation and void were decreased. (S.Y.)

  10. On the Reference State for Exergy when Ambient Temperature Fluctuates

    OpenAIRE

    Michel Pons

    2009-01-01

    Exergy (availability) is the amount of mechanical work that could be produced by reversible processes. This notion is revisited in the case when ambient temperature fluctuates. Simple examples are first considered, and then a theoretical approach is developed. It results that the most reliable way for combining entropy and total energy into an exergy function is a linear combination where entropy is multiplied by a constant temperature. It results that ambient air has non-zero exergy, but tha...

  11. Aster leafhopper survival and reproduction, and Aster yellows transmission under static and fluctuating temperatures, using ddPCR for phytoplasma quantification.

    Science.gov (United States)

    Bahar, Md H; Wist, Tyler J; Bekkaoui, Diana R; Hegedus, Dwayne D; Olivier, Chrystel Y

    2018-01-10

    Aster yellows (AY) is an important disease of Brassica crops and is caused by Candidatus Phytoplasma asteris and transmitted by the insect vector, Aster leafhopper (Macrosteles quadrilineatus). Phytoplasma-infected Aster leafhoppers were incubated at various constant and fluctuating temperatures ranging from 0 to 35 °C with the reproductive host plant barley (Hordium vulgare). At 0 °C, leafhopper adults survived for 18 days, but failed to reproduce, whereas at 35 °C insects died within 18 days, but successfully reproduced before dying. Temperature fluctuation increased thermal tolerance in leafhoppers at 25 °C and increased fecundity of leafhoppers at 5 and 20 °C. Leafhopper adults successfully infected and produced AY-symptoms in canola plants after incubating for 18 days at 0-20 °C on barley, indicating that AY-phytoplasma maintains its virulence in this temperature range. The presence and number of AY-phytoplasma in insects and plants were confirmed by droplet digital PCR (ddPCR) quantification. The number of phytoplasma in leafhoppers increased over time, but did not differ among temperatures. The temperatures associated with a typical crop growing season on the Canadian Prairies will not limit the spread of AY disease by their predominant insect vector. Also, ddPCR quantification is a useful tool for early detection and accurate quantification of phytoplasma in plants and insects.

  12. High-accuracy CFD prediction methods for fluid and structure temperature fluctuations at T-junction for thermal fatigue evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Shaoxiang, E-mail: qian.shaoxiang@jgc.com [EN Technology Center, Process Technology Division, JGC Corporation, 2-3-1 Minato Mirai, Nishi-ku, Yokohama 220-6001 (Japan); Kanamaru, Shinichiro [EN Technology Center, Process Technology Division, JGC Corporation, 2-3-1 Minato Mirai, Nishi-ku, Yokohama 220-6001 (Japan); Kasahara, Naoto [Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-07-15

    Highlights: • Numerical methods for accurate prediction of thermal loading were proposed. • Predicted fluid temperature fluctuation (FTF) intensity is close to the experiment. • Predicted structure temperature fluctuation (STF) range is close to the experiment. • Predicted peak frequencies of FTF and STF also agree well with the experiment. • CFD results show the proposed numerical methods are of sufficiently high accuracy. - Abstract: Temperature fluctuations generated by the mixing of hot and cold fluids at a T-junction, which is widely used in nuclear power and process plants, can cause thermal fatigue failure. The conventional methods for evaluating thermal fatigue tend to provide insufficient accuracy, because they were developed based on limited experimental data and a simplified one-dimensional finite element analysis (FEA). CFD/FEA coupling analysis is expected as a useful tool for the more accurate evaluation of thermal fatigue. The present paper aims to verify the accuracy of proposed numerical methods of simulating fluid and structure temperature fluctuations at a T-junction for thermal fatigue evaluation. The dynamic Smagorinsky model (DSM) is used for large eddy simulation (LES) sub-grid scale (SGS) turbulence model, and a hybrid scheme (HS) is adopted for the calculation of convective terms in the governing equations. Also, heat transfer between fluid and structure is calculated directly through thermal conduction by creating a mesh with near wall resolution (NWR) by allocating grid points within the thermal boundary sub-layer. The simulation results show that the distribution of fluid temperature fluctuation intensity and the range of structure temperature fluctuation are remarkably close to the experimental results. Moreover, the peak frequencies of power spectrum density (PSD) of both fluid and structure temperature fluctuations also agree well with the experimental results. Therefore, the numerical methods used in the present paper are

  13. Cross-correlation studies between CMB temperature anisotropies and 21 cm fluctuations

    International Nuclear Information System (INIS)

    Cooray, Asantha

    2004-01-01

    During the transition from a neutral to a fully reionized universe, scattering of cosmic microwave background (CMB) photons via free electrons leads to a new anisotropy contribution to the temperature distribution. If the reionization process is inhomogeneous and patchy, the era of reionization is also visible via brightness temperature fluctuations in the redshifted 21 cm line emission from neutral hydrogen. Since regions containing electrons and neutral hydrogen are expected to trace the same underlying density field, the two are (anti)correlated and this is expected to be reflected in the anisotropy maps via a correlation between arcminute-scale CMB temperature and the 21 cm background. In terms of the angular cross-power spectrum, unfortunately, this correlation is insignificant due to a geometric cancellation associated with second-order CMB anisotropies. The same cross correlation between ionized and neutral regions, however, can be studied using a bispectrum involving large-scale velocity field of ionized regions from the Doppler effect, arcminute-scale CMB anisotropies during reionization, and the 21 cm background. While the geometric cancellation is partly avoided, the signal-to-noise ratio related to this bispectrum is reduced due to the large cosmic variance related to velocity fluctuations traced by the Doppler effect. Unless the velocity field during reionization can be independently established, it is unlikely that the correlation information related to the relative distribution of ionized electrons and regions containing neutral hydrogen can be obtained with a combined study involving CMB and 21 cm fluctuations

  14. Molecular Rayleigh Scattering Diagnostic for Measurement of High Frequency Temperature Fluctuations

    Science.gov (United States)

    Mielke, Amy F.; Elam, Kristie A.

    2005-01-01

    A novel technique for measurement of high frequency temperature fluctuations in unseeded gas flows using molecular Rayleigh scattering is investigated. The spectrum of laser light scattered from molecules in a gas flow is resolved using a Fabry-Perot interferometer. The width of the spectral peak is broadened by thermal motion of the molecules and hence is related to gas temperature. The interference fringe pattern containing spectral information is divided into four concentric regions using a series of mirrors angled with respect to one another. Light from each of these regions is directed towards photomultiplier tubes and sampled at 10 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows measurement of gas temperature. Independently monitoring the total scattered intensity provides a measure of gas density. This technique also has the potential to simultaneously measure a single component of flow velocity by monitoring the spectral peak location. Measurements of gas temperature and density are demonstrated using a low speed heated air jet surrounded by an unheated air co-flow. Mean values of temperature and density are shown for radial scans across the jet flow at a fixed axial distance from the jet exit plane. Power spectra of temperature and density fluctuations at several locations in the jet are also shown. The instantaneous measurements have fairly high uncertainty; however, long data records provide highly accurate statistically quantities, which include power spectra. Mean temperatures are compared with thermocouple measurements as well as the temperatures derived from independent density measurements. The accuracy for mean temperature measurements was +/- 7 K.

  15. Intermittent electron density and temperature fluctuations and associated fluxes in the Alcator C-Mod scrape-off layer

    Science.gov (United States)

    Kube, R.; Garcia, O. E.; Theodorsen, A.; Brunner, D.; Kuang, A. Q.; LaBombard, B.; Terry, J. L.

    2018-06-01

    The Alcator C-Mod mirror Langmuir probe system has been used to sample data time series of fluctuating plasma parameters in the outboard mid-plane far scrape-off layer. We present a statistical analysis of one second long time series of electron density, temperature, radial electric drift velocity and the corresponding particle and electron heat fluxes. These are sampled during stationary plasma conditions in an ohmically heated, lower single null diverted discharge. The electron density and temperature are strongly correlated and feature fluctuation statistics similar to the ion saturation current. Both electron density and temperature time series are dominated by intermittent, large-amplitude burst with an exponential distribution of both burst amplitudes and waiting times between them. The characteristic time scale of the large-amplitude bursts is approximately 15 μ {{s}}. Large-amplitude velocity fluctuations feature a slightly faster characteristic time scale and appear at a faster rate than electron density and temperature fluctuations. Describing these time series as a superposition of uncorrelated exponential pulses, we find that probability distribution functions, power spectral densities as well as auto-correlation functions of the data time series agree well with predictions from the stochastic model. The electron particle and heat fluxes present large-amplitude fluctuations. For this low-density plasma, the radial electron heat flux is dominated by convection, that is, correlations of fluctuations in the electron density and radial velocity. Hot and dense blobs contribute only a minute fraction of the total fluctuation driven heat flux.

  16. Temperature fluctuations in a LiNbO 3 melt during crystal growth

    Science.gov (United States)

    Suzuki, Tetsuro

    2004-10-01

    Variations in temperature induced by forced convection on the surface of a LiNbO3 melt during crystal growth have been studied. Temperature measurements on the melt surface of single crystals growing (∅ 50 mm) at rotation rates of 15-40 rpm on an RF-heated Czochralski puller has revealed that the melt surface continuously alternates between a steady and unsteady state of flow. This was attributed to the intermittently turbulent flow mode at intermediate rotation rates. The fluctuation period is thought to depend on the thickness of its boundary layer. The boundary layer varies in thickness due to the melt flow, which stops as the interface moves toward the crystal and resumes once the interface reverts to its former position. By contrast, at above 60 rpm, the melt surface temperature drops without fluctuation, indicating that turbulent flow is dominant at faster rotation rates.

  17. Investigation of temperature fluctuation phenomena in a stratified steam-water two-phase flow in a simulating pressurizer spray pipe of a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, Koji, E-mail: miyoshi.koj@inss.co.jp; Takenaka, Nobuyuki; Ishida, Taisuke; Sugimoto, Katsumi

    2017-05-15

    Highlights: • Thermal hydraulics phenomena were discussed in a spray pipe of pressurizer. • Temperature fluctuation was investigated in a stratified steam-water two-phase. • Remarkable liquid temperature fluctuations were observed in the liquid layer. • The observed temperature fluctuations were caused by the internal gravity wave. • The temperature fluctuations decreased with increasing dissolved oxygen. - Abstract: Temperature fluctuation phenomena in a stratified steam-water two-phase flow in a horizontal rectangular duct, which simulate a pressurizer spray pipe of a pressurized water reactor, were studied experimentally. Vertical distributions of the temperature and the liquid velocity were measured with water of various dissolved oxygen concentrations. Large liquid temperature fluctuations were observed when the water was deaerated well and dissolved oxygen concentration was around 10 ppb. The large temperature fluctuations were not observed when the oxygen concentration was higher. It was shown that the observed temperature fluctuations were caused by the internal gravity wave since the Richardson numbers were larger than 0.25 and the temperature fluctuation frequencies were around the Brunt-Väisälä frequencies in the present experimental conditions. The temperature fluctuations decreased by the non-condensable gas since the non-condensable gas suppressed the condensation and the temperature difference in the liquid layer was small.

  18. Temperature fluctuation of sodium in annular flow channel heated by single-pin with blockage

    International Nuclear Information System (INIS)

    Miyazaki, Keiji; Kimura, Jiro; Ogawa, Masuro; Okada, Toshio

    1978-01-01

    Root mean square (RMS) value and power spectral density (PSD) of temperature fluctuation were measured with use of forced-circulating sodium in an annular channel (6.5 mm I.D., 20mm O.D.) with concentric disk to simulate blockage (about 80%) of sodium flow. The experimental range of the heat flux was 40 -- 150 W/cm 2 and the bulk flow velocity 0.14--0.41m/sec (Re=7.7x10 3 --2.3x10 4 ) under a temperature of 500--800 0 C. The RMS value measured at the exit of heating section (150mm downstream from the blockage) is larger by a factor of 2 -- 3 than that in the wake (10 -- 20mm downstream from the blockage), marking a few deg.C for a heat flux of 105W/cm 2 and a flow velocity of 0.27m/sec. The RMS value is proportional to the wall-to-bulk-fluid temperature difference in heat transfer, presenting the similar dependence on the heat flux and flow velocity. The fluctuations of temperature are greatly attenuated in the upper unheated section where the radial temperature gradient is absent, and consequently it is suggested that the fluctuations of temperature should be caused by the local turbulence of flow, such as a vortex street due to blockage in the present experiment, under the presence of large gradient of temperature near the heating surface. (auth.)

  19. Temperature dependence of the upper critical field of type II superconductors with fluctuation effects

    International Nuclear Information System (INIS)

    Mikitik, G.P.

    1992-01-01

    Fluctuations of the order parameter are taken into consideration in an analysis of the temperature dependence of the upper critical field of a type II superconductor with a three-dimensional superconductivity. This temperature dependence is of universal applicability, to all type II superconductors, if the magnetic fields and temperatures are expressed in appropriate units. This dependence is derived explicitly for the regions of strong and weak magnetic fields. The results are applied to high T c superconductors, for which fluctuation effects are important. For these superconductors, the H c2 (T) dependence is quite different from the linear dependence characteristic of the mean-field theory, over a broad range of magnetic fields

  20. Hawking temperature and scalar field fluctuations in the de-Sitter space

    International Nuclear Information System (INIS)

    Rozhanskij, L.V.

    1988-01-01

    It is shown that diffusion equation for scalar field fluctuations in the de-Sitter space corresponds to Hawking temperature. The relationship between stationary solution of the equation and Hartle-Hawking instanton at random space dimensionality and any type of gravitational effect has been established

  1. Thermal crackling: study of the mechanical effects of quick temperature fluctuations on metallic surfaces

    International Nuclear Information System (INIS)

    Pradel, P.

    1984-05-01

    After a brief overview of the thermohydraulical conditions of liquid sodium leading to important temperature fluctuations near the metallic surfaces, the author examines the transfer modes of these fluctuations in the structure thickness and the long term mechanical effects. Dimensioning models based on thermal and metallurgical properties are under study for structures subject to such sodium loads [fr

  2. Solitons in proteins at non-zero temperatures with allowance for the fluctuations of polarization

    International Nuclear Information System (INIS)

    Simo, E.; Caputo, J.G.

    2007-06-01

    A model for the nonlinear transfer of vibrational energy in molecular chains is derived at temperatures of realistic interest for transport in proteins. The study includes the influence of the fluctuations of polarization in the chain. This theory exhibits a new form of temperature-dependence in intrinsic parameters of alpha-helix, and consequently in the coefficients of the nonlinear Schroedinger equation governing the system and in the solitons' parameters. Thermal fluctuations are analysed in the basis of the non-Gaussian approximation and the total free-energy of the alpha-helix is determined to elucidate the denaturation process of the protein. (author)

  3. Current status of studies on temperature fluctuation phenomena in LMFRs

    International Nuclear Information System (INIS)

    Ohshima, H.; Muramatsu, T.; Kobayashi, J.; Yamaguchi, A.

    1994-01-01

    This paper describes the current status of studies being performed in PNC on temperature fluctuation phenomena occurring in fast reactors. The studies concentrate on four problems: thermal stratification, thermal striping, core-plenum interaction and free surface sloshing. Both experimental and analytical approaches to reveal these phenomena and to establish design and safety evaluation methods are presented together with future works. (author)

  4. Spin fluctuations and low temperature features of thermal coefficient of linear expansion of iron monosilicide

    International Nuclear Information System (INIS)

    Volkov, A.G.; Kortov, S.V.; Povzner, A.A.

    1996-01-01

    The low temperature measurements of thermal coefficient of linear expansion of strong paramagnet FeSi are carried out. The results obtained are discussed with in the framework of spin-fluctuation theory. It is shown that electronic part of the thermal coefficient of linear expansion is negative in the range of temperatures lower that of the semiconductor-metal phase transition. In metal phase it becomes positive. This specific features of the thermal coefficient is explained by the spin-fluctuation renormalization of d-electronic states density

  5. Three dimensional numerical simulation of a full scale CANDU reactor moderator to study temperature fluctuations

    International Nuclear Information System (INIS)

    Sarchami, Araz; Ashgriz, Nasser; Kwee, Marc

    2014-01-01

    Highlights: • 3D model of a Candu reactor is modeled to investigate flow distribution. • The results show the temperature distribution is not symmetrical. • Temperature contours show the hot regions at the top left-hand side of the tank. • Interactions of momentum flows and buoyancy flows create circulation zones. • The results indicate that the moderator tank operates in the buoyancy driven mode. -- Abstract: Three dimensional numerical simulations are conducted on a full scale CANDU Moderator and transient variations of the temperature and velocity distributions inside the tank are determined. The results show that the flow and temperature distributions inside the moderator tank are three dimensional and no symmetry plane can be identified. Competition between the upward moving buoyancy driven flows and the downward moving momentum driven flows in the center region of the tank, results in the formation of circulation zones. The moderator tank operates in the buoyancy driven mode and any small disturbances in the flow or temperature makes the system unstable and asymmetric. Different types of temperature fluctuations are noted inside the tank: (i) large amplitude are at the boundaries between the hot and cold; (ii) low amplitude are in the core of the tank; (iii) high frequency fluctuations are in the regions with high velocities and (iv) low frequency fluctuations are in the regions with lower velocities

  6. Estimation of piping temperature fluctuations based on external strain measurements

    International Nuclear Information System (INIS)

    Morilhat, P.; Maye, J.P.

    1993-01-01

    Due to the difficulty to carry out measurements at the inner sides of nuclear reactor piping subjected to thermal transients, temperature and stress variations in the pipe walls are estimated by means of external thermocouples and strain-gauges. This inverse problem is solved by spectral analysis. Since the wall harmonic transfer function (response to a harmonic load) is known, the inner side signal will be obtained by convolution of the inverse transfer function of the system and of the strain measurement enables detection of internal temperature fluctuations in a frequency range beyond the scope of the thermocouples. (authors). 5 figs., 3 refs

  7. Density, temperature, and potential fluctuation measurements by the swept Langmuir probe technique in Wendelstein 7-AS

    International Nuclear Information System (INIS)

    Giannone, L.; Balbin, R.; Niedermeyer, H.; Endler, M.; Herre, G.; Hidalgo, C.; Rudyj, A.; Theimer, G.; Verplanke, P.

    1994-01-01

    In the Wendelstein 7-AS stellarator (W7-AS) [Plasma Phys. Controlled Fusion 33, 1591 (1991)], current-voltage characteristics of the Langmuir probe at sweep frequencies in the range 400 kHz to 1 MHz were measured and it was found that the mean and fluctuation values of the ion saturation current, floating potential, and electron temperature were independent of the sweep frequency. A radial scan in the vicinity of the velocity shear layer was performed. The simultaneous sweeping of 3 probe tips showed a statistically significant spatial coherence of the fluctuations in the poloidal direction and a decrease in spatial coherence of the fluctuations with increasing tip separation could be demonstrated. The observation of a change in the propagation direction of fluctuations as the shear layer was crossed and a calculation of the transport spectrum show that the swept probe method is capable of reproducing known results. Apparent temperature fluctuations, due to variations of density and potential during a sweep, are shown by simulations to be only of importance at frequencies above half the Nyquist frequency

  8. Effects of rf power on electron density and temperature, neutral temperature, and Te fluctuations in an inductively coupled plasma

    International Nuclear Information System (INIS)

    Camparo, James; Fathi, Gilda

    2009-01-01

    Atomic clocks that fly on global-navigation satellites such as global positioning system (GPS) and Galileo employ light from low-temperature, inductively coupled plasmas (ICPs) for atomic signal generation and detection (i.e., alkali/noble-gas rf-discharge lamps). In this application, the performance of the atomic clock and the capabilities of the navigation system depend sensitively on the stability of the ICP's optical emission. In order to better understand the mechanisms that might lead to instability in these rf-discharge lamps, and hence the satellite atomic clocks, we studied the optical emission from a Rb/Xe ICP as a function of the rf power driving the plasma. Surprisingly, we found that the electron density in the plasma was essentially independent of increases in rf power above its nominal value (i.e., 'rf-power gain') and that the electron temperature was only a slowly varying function of rf-power gain. The primary effect of rf power was to increase the temperature of the neutrals in the plasma, which was manifested by an increase in Rb vapor density. Interestingly, we also found evidence for electron temperature fluctuations (i.e., fluctuations in the plasma's high-energy electron content). The variance of these fluctuations scaled inversely with the plasma's mean electron temperature and was consistent with a simple model that assumed that the total electron density in the discharge was independent of rf power. Taken as a whole, our results indicate that the electrons in alkali/noble-gas ICPs are little affected by slight changes in rf power and that the primary effect of such changes is to heat the plasma's neutral species.

  9. Insects in fluctuating thermal environments.

    Science.gov (United States)

    Colinet, Hervé; Sinclair, Brent J; Vernon, Philippe; Renault, David

    2015-01-07

    All climate change scenarios predict an increase in both global temperature means and the magnitude of seasonal and diel temperature variation. The nonlinear relationship between temperature and biological processes means that fluctuating temperatures lead to physiological, life history, and ecological consequences for ectothermic insects that diverge from those predicted from constant temperatures. Fluctuating temperatures that remain within permissive temperature ranges generally improve performance. By contrast, those which extend to stressful temperatures may have either positive impacts, allowing repair of damage accrued during exposure to thermal extremes, or negative impacts from cumulative damage during successive exposures. We discuss the mechanisms underlying these differing effects. Fluctuating temperatures could be used to enhance or weaken insects in applied rearing programs, and any prediction of insect performance in the field-including models of climate change or population performance-must account for the effect of fluctuating temperatures.

  10. Measurements of temperature fluctuations in the mixing of hot and cold air jets

    International Nuclear Information System (INIS)

    Sumner, V.W.

    1977-03-01

    In order to assess the effect of the mixing of 'hot' and 'cold' jets of sodium on structures in the above-core region of the fast reactor, temperature fluctuations have been measured in an experiment consisting of a heated jet of air surrounded by six unheated jets. Temperature spectra obtained from the experiment showed no strong peaks or bands. In considering the effect of thermal cycling of the above-core structures, it is the higher strain values at low frequencies which will be more limiting than the smaller values at high frequencies, due to the nature of strain-lifetime curves. Thus the spectra have been summarised using a low-frequency level and a cut-off frequency at which this level has fallen by an order of magnitude. Attenuation of temperature fluctuations due to the high thermal conductivity of sodium or by boundary layer effects has been considered; however, in the low-frequency, high-energy region of the spectra, little attenuation can be expected. (author)

  11. Simultaneous Microwave Imaging System for Density and Temperature Fluctuation Measurements on TEXTOR

    International Nuclear Information System (INIS)

    Park, H.; Mazzucato, E.; Munsat, T.; Domier, C.W.; Johnson, M.; Luhmann, N.C. Jr.; Wang, J.; Xia, Z.; Classen, I.G.J.; Donne, A.J.H.; Pol, M.J. van de

    2004-01-01

    Diagnostic systems for fluctuation measurements in plasmas have, of necessity, evolved from simple 1-D systems to multi-dimensional systems due to the complexity of the MHD and turbulence physics of plasmas illustrated by advanced numerical simulations. Using the recent significant advancements in millimeter wave imaging technology, Microwave Imaging Reflectometry (MIR) and Electron Cyclotron Emission Imaging (ECEI), simultaneously measuring density and temperature fluctuations, are developed for TEXTOR. The MIR system was installed on TEXTOR and the first experiment was performed in September, 2003. Subsequent MIR campaigns have yielded poloidally resolved spectra and assessments of poloidal velocity. The new 2-D ECE Imaging system (with a total of 128 channels), installed on TEXTOR in December, 2003, successfully captured a true 2-D images of Te fluctuations of m=1 oscillation (''sawteeth'') near the q ∼ 1 surface for the first time

  12. Normalized fluctuations, H2O vs n-hexane: Site-correlated percolation

    Science.gov (United States)

    Koga, Yoshikata; Westh, Peter; Sawamura, Seiji; Taniguchi, Yoshihiro

    1996-08-01

    Entropy, volume and the cross fluctuations were normalized to the average volume of a coarse grain with a fixed number of molecules, within which the local and instantaneous value of interest is evaluated. Comparisons were made between liquid H2O and n-hexane in the range from -10 °C to 120 °C and from 0.1 MPa to 500 MPa. The difference between H2O and n-hexane in temperature and pressure dependencies of these normalized fluctuations was explained in terms of the site-correlated percolation theory for H2O. In particular, the temperature increase was confirmed to reduce the hydrogen bond probability, while the pressure appeared to have little effect on the hydrogen bond probability. According to the Le Chatelier principle, however, the putative formation of ``ice-like'' patches at low temperatures due to the site-correlated percolation requirement is retarded by pressure increases. Thus, only in the limited region of low pressure (<300 MPa) and temperature (<60 °C), the fluctuating ice-like patches are considered to persist.

  13. Physiological Fluctuations in Brain Temperature as a Factor Affecting Electrochemical Evaluations of Extracellular Glutamate and Glucose in Behavioral Experiments

    Science.gov (United States)

    2013-01-01

    The rate of any chemical reaction or process occurring in the brain depends on temperature. While it is commonly believed that brain temperature is a stable, tightly regulated homeostatic parameter, it fluctuates within 1–4 °C following exposure to salient arousing stimuli and neuroactive drugs, and during different behaviors. These temperature fluctuations should affect neural activity and neural functions, but the extent of this influence on neurochemical measurements in brain tissue of freely moving animals remains unclear. In this Review, we present the results of amperometric evaluations of extracellular glutamate and glucose in awake, behaving rats and discuss how naturally occurring fluctuations in brain temperature affect these measurements. While this temperature contribution appears to be insignificant for glucose because its extracellular concentrations are large, it is a serious factor for electrochemical evaluations of glutamate, which is present in brain tissue at much lower levels, showing smaller phasic fluctuations. We further discuss experimental strategies for controlling the nonspecific chemical and physical contributions to electrochemical currents detected by enzyme-based biosensors to provide greater selectivity and reliability of neurochemical measurements in behaving animals. PMID:23448428

  14. Fluctuation effects in bulk polymer phase behavior

    International Nuclear Information System (INIS)

    Bates, F.S.; Rosedale, J.H.; Stepanek, P.; Lodge, T.P.; Wiltzius, P.; Hjelm R, Jr.; Fredrickson, G.H.

    1990-01-01

    Bulk polymer-polymer, and block copolymer, phase behaviors have traditionally been interpreted using mean-field theories. Recent small-angle neutron scattering (SANS) studies of critical phenomena in model binary polymer mixtures confirm that non-mean-field behavior is restricted to a narrow range of temperatures near the critical point, in close agreement with the Ginzburg criterion. In contrast, strong derivations from mean-field behavior are evident in SANS and rheological measurements on model block copolymers more than 50C above the order-disorder transition (ODT), which can be attributed to sizeable composition fluctuations. Such fluctuation effects undermine the mean-field assumption, conventionally applied to bulk polymers, and result in qualitative changes in phase behavior, such as the elimination of a thermodynamic stability limit in these materials. The influence of fluctuation effects on block copolymer and binary mixture phase behavior is compared and contrasted in this presentation

  15. Paramagnetic fluctuations in Pr0.65Ca0.35MnO3 around the charge-ordering temperature

    International Nuclear Information System (INIS)

    Daoud-Aladine, A; Roessli, B; Gvasaliya, S N; Perca, C; Pinsard-Gaudart, L; Rodriguez-Carvajal, J; Revcolevschi, A

    2006-01-01

    We have studied the ferromagnetic and antiferromagnetic fluctuations in the charge-ordered Pr 0.65 Ca 0.35 MnO 3 antiferromagnet by triple-axis neutron spectrometry. Whereas ferromagnetic fluctuations are observed above and below the charge-ordering transition (T CO ), the antiferromagnetic fluctuations develop only below T CO . The dynamical exponent z of both ferromagnetic and antiferromagnetic fluctuations are determined. The ferromagnetic fluctuations are not completely suppressed below T CO and their correlation lengths are short-ranged at all temperatures. The results are discussed with respect to the Zener polaron model recently introduced to describe the charge-ordered state of Pr 0.6 Ca 0.40 MnO 3

  16. Discriminating low frequency components from long range persistent fluctuations in daily atmospheric temperature variability

    Directory of Open Access Journals (Sweden)

    V. Cuomo

    2009-07-01

    Full Text Available This study originated from recent results reported in literature, which support the existence of long-range (power-law persistence in atmospheric temperature fluctuations on monthly and inter-annual scales. We investigated the results of Detrended Fluctuation Analysis (DFA carried out on twenty-two historical daily time series recorded in Europe in order to evaluate the reliability of such findings in depth. More detailed inspections emphasized systematic deviations from power-law and high statistical confidence for functional form misspecification. Rigorous analyses did not support scale-free correlation as an operative concept for Climate modelling, as instead suggested in literature. In order to understand the physical implications of our results better, we designed a bivariate Markov process, parameterised on the basis of the atmospheric observational data by introducing a slow dummy variable. The time series generated by this model, analysed both in time and frequency domains, tallied with the real ones very well. They accounted for both the deceptive scaling found in literature and the correlation details enhanced by our analysis. Our results seem to evidence the presence of slow fluctuations from another climatic sub-system such as ocean, which inflates temperature variance up to several months. They advise more precise re-analyses of temperature time series before suggesting dynamical paradigms useful for Climate modelling and for the assessment of Climate Change.

  17. Paradox of spontaneous cancer regression: implications for fluctuational radiothermy and radiotherapy

    International Nuclear Information System (INIS)

    Roy, Prasun K.; Dutta Majumder, D.; Biswas, Jaydip

    1999-01-01

    Spontaneous regression of malignant tumours without treatment is a most enigmatic phenomenon with immense therapeutic potentialities. We analyse such cases to find that the commonest cause is a preceding episode of high fever-induced thermal fluctuation which produce fluctuation of biochemical and immunological parameters. Using Prigogine-Glansdorff thermodynamic stability formalism and biocybernetic principles, we develop the theoretical foundation of tumour regression induced by thermal, radiational or oxygenational fluctuations. For regression, a preliminary threshold condition of fluctuations is derived, namely σ > 2.83. We present some striking confirmation of such fluctuation-induced regression of various therapy-resistant masses as Ewing tumour, neurogranuloma and Lewis lung carcinoma by utilising σ > 2.83. Our biothermodynamic stability model of malignancy appears to illuminate the marked increase of aggressiveness of mammalian malignancy which occurred around 250 million years ago when homeothermic warm-blooded pre-mammals evolved. Using experimental data, we propose a novel approach of multi-modal hyper-fluctuation therapy involving modulation of radiotherapeutic hyper-fractionation, temperature, radiothermy and immune-status. (author)

  18. Effects of environmental temperature fluctuations on the parameters of a thermoelectric battery

    International Nuclear Information System (INIS)

    Kozlov, Yu.F.; Oganov, E.P.

    1980-01-01

    A numerical analysis is presented for the effects of lags on the output parameters of a radioisotope thermoelectric battery under conditions of diurnal temperature variation in the environment. Allowance for the inertial effects causes a phase shift and change in amplitude of the variations in the thermal and electrical parameters. The amplitude of the temperature fluctuations in the hot junctions is substantially reduced, while the output electrical power increases. The data provide a more rigorous basis for choosing the parameters of radioisotope batteries during design. 9 refs

  19. Principle of minimal work fluctuations.

    Science.gov (United States)

    Xiao, Gaoyang; Gong, Jiangbin

    2015-08-01

    Understanding and manipulating work fluctuations in microscale and nanoscale systems are of both fundamental and practical interest. For example, in considering the Jarzynski equality 〈e-βW〉=e-βΔF, a change in the fluctuations of e-βW may impact how rapidly the statistical average of e-βW converges towards the theoretical value e-βΔF, where W is the work, β is the inverse temperature, and ΔF is the free energy difference between two equilibrium states. Motivated by our previous study aiming at the suppression of work fluctuations, here we obtain a principle of minimal work fluctuations. In brief, adiabatic processes as treated in quantum and classical adiabatic theorems yield the minimal fluctuations in e-βW. In the quantum domain, if a system initially prepared at thermal equilibrium is subjected to a work protocol but isolated from a bath during the time evolution, then a quantum adiabatic process without energy level crossing (or an assisted adiabatic process reaching the same final states as in a conventional adiabatic process) yields the minimal fluctuations in e-βW, where W is the quantum work defined by two energy measurements at the beginning and at the end of the process. In the classical domain where the classical work protocol is realizable by an adiabatic process, then the classical adiabatic process also yields the minimal fluctuations in e-βW. Numerical experiments based on a Landau-Zener process confirm our theory in the quantum domain, and our theory in the classical domain explains our previous numerical findings regarding the suppression of classical work fluctuations [G. Y. Xiao and J. B. Gong, Phys. Rev. E 90, 052132 (2014)].

  20. Changes in core electron temperature fluctuations across the ohmic energy confinement transition in Alcator C-Mod plasmas

    International Nuclear Information System (INIS)

    Sung, C.; White, A.E.; Howard, N.T.; Oi, C.Y.; Rice, J.E.; Gao, C.; Ennever, P.; Porkolab, M.; Parra, F.; Ernst, D.; Walk, J.; Hughes, J.W.; Irby, J.; Kasten, C.; Hubbard, A.E.; Greenwald, M.J.; Mikkelsen, D.

    2013-01-01

    The first measurements of long wavelength (k y ρ s < 0.3) electron temperature fluctuations in Alcator C-Mod made with a new correlation electron cyclotron emission diagnostic support a long-standing hypothesis regarding the confinement transition from linear ohmic confinement (LOC) to saturated ohmic confinement (SOC). Electron temperature fluctuations decrease significantly (∼40%) crossing from LOC to SOC, consistent with a change from trapped electron mode (TEM) turbulence domination to ion temperature gradient (ITG) turbulence as the density is increased. Linear stability analysis performed with the GYRO code (Candy and Waltz 2003 J. Comput. Phys. 186 545) shows that TEMs are dominant for long wavelength turbulence in the LOC regime and ITG modes are dominant in the SOC regime at the radial location (ρ ∼ 0.8) where the changes in electron temperature fluctuations are measured. In contrast, deeper in the core (ρ < 0.8), linear stability analysis indicates that ITG modes remain dominant across the LOC/SOC transition. This radial variation suggests that the robust global changes in confinement of energy and momentum occurring across the LOC/SOC transition are correlated to local changes in the dominant turbulent mode near the edge. (paper)

  1. Effects of the Relaxation of Upwelling-Favorable Winds on the Diurnal and Semidiurnal Water Temperature Fluctuations in the Santa Barbara Channel, California

    Science.gov (United States)

    Aristizábal, María. F.; Fewings, Melanie R.; Washburn, Libe

    2017-10-01

    In the Santa Barbara Channel, California, and around the Northern Channel Islands, water temperature fluctuations in the diurnal and semidiurnal frequency bands are intermittent, with amplitudes that vary on time scales of days to weeks. The cause of this intermittency is not well understood. We studied the effects of the barotropic tide, vertical stratification, propagation of coastal-trapped waves, regional wind relaxations, and diurnal-band winds on the intermittency of the temperature fluctuations during 1992-2015. We used temperature data from 43 moorings in 10-200 m water depth and wind data from two buoys and one land station. Subtidal-frequency changes in vertical stratification explain 20-40% of the intermittency in diurnal and semidiurnal temperature fluctuations at time scales of days to weeks. Along the mainland north of Point Conception and at the Northern Channel Islands, the relaxation of upwelling-favorable winds substantially increases vertical stratification, accounting for up to 55% of the subtidal-frequency variability in stratification. As a result of the enhanced stratification, wind relaxations enhance the diurnal and semidiurnal temperature fluctuations at those sites, even though the diurnal-band wind forcing decreases during wind relaxation. A linear model where the background stratification is advected vertically explains a substantial fraction of the temperature fluctuations at most sites. The increase of vertical stratification and subsequent increase in diurnal and semidiurnal temperature fluctuations during wind relaxation is a mechanism that can supply nutrients to the euphotic zone and kelp forests in the Channel in summer when upwelling is weak.

  2. Validation of gyrokinetic simulations with measurements of electron temperature fluctuations and density-temperature phase angles on ASDEX Upgrade

    Science.gov (United States)

    Freethy, S. J.; Görler, T.; Creely, A. J.; Conway, G. D.; Denk, S. S.; Happel, T.; Koenen, C.; Hennequin, P.; White, A. E.; ASDEX Upgrade Team

    2018-05-01

    Measurements of turbulent electron temperature fluctuation amplitudes, δTe ⊥/Te , frequency spectra, and radial correlation lengths, Lr(Te ⊥) , have been performed at ASDEX Upgrade using a newly upgraded Correlation ECE diagnostic in the range of scales k⊥scale non-linear gyrokinetic turbulence simulations of the outer core (ρtor = 0.75) of a low density, electron heated L-mode plasma, performed using the gyrokinetic simulation code, GENE. The ion and electron temperature gradients were scanned within uncertainties. It is found that gyrokinetic simulations are able to match simultaneously the electron and ion heat flux at this radius within the experimental uncertainties. The simulations were performed based on a reference discharge for which δTe ⊥/Te measurements were available, and Lr(Te ⊥) and αnT were then predicted using synthetic diagnostics prior to measurements in a repeat discharge. While temperature fluctuation amplitudes are overestimated by >50% for all simulations within the sensitivity scans performed, good quantitative agreement is found for Lr(Te ⊥) and αnT. A validation metric is used to quantify the level of agreement of individual simulations with experimental measurements, and the best agreement is found close to the experimental gradient values.

  3. Electron Temperature Fluctuation Measurements and Transport Model Validation at Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    White, Anne [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-06-22

    for studying core turbulence are needed in order to assess the accuracy of gyrokinetic models for turbulent-driven particle, heat and momentum transport. New core turbulence diagnostics at the world-class tokamaks Alcator C-Mod at MIT and ASDEX Upgrade at the Max Planck Institute for Plasma Physics have been designed, developed, and operated over the course of this project. These new instruments are capable of measuring electron temperature fluctuations and the phase angle between density and temperature fluctuations locally and quantitatively. These new data sets from Alcator C-Mod and ASDEX Upgrade are being used to fill key gaps in our understanding of turbulent transport in tokamaks. In particular, this project has results in new results on the topics of the Transport Shortfall, the role of ETG turbulence in tokamak plasmas, profile stiffness, the LOC/SOC transition, and intrinsic rotation reversals. These data are used in a rigorous process of “Transport model validation”, and this group is a world-leader on using turbulence models to design new hardware and new experiments at tokamaks. A correlation electron cyclotron emission (CECE) diagnostic is an instrument used to measure micro-scale fluctuations (mm-scale, compared to the machine size of meters) of electron temperature in magnetically confined fusion plasmas, such as those in tokamaks and stellarators. These micro-scale fluctuations are associated with drift-wave type turbulence, which leads to enhanced cooling and mixing of particles in fusion plasmas and limits achieving the required temperatures and densities for self-sustained fusion reactions. A CECE system can also be coupled with a reflectometer system that measured micro-scale density fluctuations, and from these simultaneous measurements, one can extract the phase between the density (n) and temperature (T) fluctuations, creating an nT phase diagnostic. Measurements of the fluctuations and the phase angle between them are extremely useful for

  4. Temperature fluctuation and heat capacity in relativistic heavy-ion collisions

    CERN Document Server

    Ma, Guo Liang; Chen Jin Gen; He Ze-Jun; Long Jia-Li; Lu Zhao-Hui; Ma Yu-Gang; Sá Ben-Hao; Shen Wen-Qing; Wang Kun; Wei Yi-Bin; Zhang Hu-Yong; Zhong Chen

    2004-01-01

    We used LUCIAE3.0 model to simulate the Pb+Pb and C+C in SPS energy. The heat capacity was then extracted from event-by-event temperature fluctuation. It is found that the heat capacity per hadron multiplicity decreases with the increasing of beam energy and impact parameter for a given reaction system. While the hadron mass increases, the heat capacity per hadron multiplicity rises. In addition, we found that, for a given hadron, the heat capacity per hadron multiplicity is almost the same regardless of the reaction system. Some discussions were also given.

  5. Climatic fluctuation of temperature and air circulation in the Mediterranean

    International Nuclear Information System (INIS)

    Bartzokas, A.; Metaxas, D.A.

    1991-01-01

    The study of the long term fluctuation of sea surface temperature and 1000/500 mb thickness data in the Mediterranean sea during the last 45 years has shown that the global warming does not appear everywhere. Warming is not apparent in the East Mediterranean but only during the last years, the time series of surface pressure and relative geostrophic vorticity were examined for possible explanation: a strengthening of the northerly wind force have occurred. Thus it can be assumed that local atmospheric circulation changes may support or oppose the global warming in some places

  6. Research on effect of turbulence models for numerical simulation of temperature fluctuation caused by coaxial-jet flow

    International Nuclear Information System (INIS)

    Cao Qiong; Lu Daogang; Lu Jing

    2012-01-01

    The 3D temperature fluctuation phenomenon caused by the mixing of the coaxial-jet hot and cold fluids was simulated by Fluent software. Several special turbulence models were applied to prediction of this phenomenon, i.e. large eddy simulation model (LES), Reynolds stress model (RSM) and standard k-ω model. By the comparison of the computed data and experimental ones, it is shown that LES is capable of predicting the mixing process. LES model best predicts the time-averaged temperature in the radius, height and azimuth directions. Reynolds averaged Navier-Stokes method (RANS) predicts the extended mixing of the hot and cold fluids. It is also shown that the transient temperature fluctuations are accurately predicted by LES model, while those not by RANS. (authors)

  7. Mathematical formulation of temperature fluctuation and control rod vibration in PARR

    International Nuclear Information System (INIS)

    Ansari, S.A.; Ayazuddin, S.K.

    This report describes the mathematical interpretation of experimental neutron noise spectra obtained for PARR core. A one dimensional thermal-hydraulic model of PARR core was developed to calculate the magnitude of neutron noise as a result of fluctuation in the core inlet coolant temperature. The sink structure of the neutron power spectral density as well as the dependence of observed neutron spectra on coolant velocity is also explained by the thermal hydraulic model. An attempt is made to explain the phenomena of control rod vibration by a simple eigen frequency vibration model. The calculated neutron power spectral density due to vibration and temperature noise were added and compared with the experimental power spectra obtained for PARR. (orig./A.B.)

  8. Measurements of density, temperature, and their fluctuations in turbulent supersonic flow using UV laser spectroscopy

    Science.gov (United States)

    Fletcher, Douglas G.; Mckenzie, R. L.

    1992-01-01

    Nonintrusive measurements of density, temperature, and their turbulent fluctuation levels were obtained in the boundary layer of an unseeded, Mach 2 wind tunnel flow. The spectroscopic technique that was used to make the measurements is based on the combination of laser-induced oxygen fluorescence and Raman scattering by oxygen and nitrogen from the same laser pulse. Results from this demonstration experiment are compared with previous measurements obtained in the same facility using conventional probes and an earlier spectroscopic technique. Densities and temperatures measured with the current technique agree with the previous surveys to within 3 percent and 2 percent, respectively. The fluctuation amplitudes for both variables agree with the measurements obtained using the earlier spectroscopic technique and show evidence of an unsteady, weak shock wave that perturbs the boundary layer.

  9. Clarifying the role of fire heat and daily temperature fluctuations as germination cues for Mediterranean Basin obligate seeders.

    Science.gov (United States)

    Santana, Victor M; Baeza, M Jaime; Blanes, M Carmen

    2013-01-01

    This study aims to determine the role that both direct effects of fire and subsequent daily temperature fluctuations play in the seed bank dynamics of obligate seeders from the Mediterranean Basin. The short yet high soil temperatures experienced due to passage of fire are conflated with the lower, but longer, temperatures experienced by daily fluctuations which occur after removing vegetation. These germination cues are able to break seed dormancy, but it is difficult to assess their specific level of influence because they occur consecutively after summer fires, just before the flush of germination in the wet season (autumn). By applying experimental fires, seed treatments were imposed that combined fire exposure/non-fire exposure with exposure to microhabitats under a gradient of disturbance (i.e. gaps opened by fire, mechanical brushing and intact vegetation). The seeds used were representative of the main families of obligate seeders (Ulex parviflorus, Cistus albidus and Rosmarinus officinalis). Specifically, an assessment was made of (1) the proportion of seeds killed by fire, (2) seedling emergence under field conditions and (3) seeds which remained ungerminated in soil. For the three species studied, the factors that most influenced seedling emergence and seeds remaining ungerminated were microhabitats with higher temperature fluctuations after fire (gaps opened by fire and brushing treatments). The direct effect of fire decreased the seedling emergence of U. parviflorus and reduced the proportion of seeds of R. officinalis remaining ungerminated. The relevance of depleting vegetation (and subsequent daily temperature fluctuation in summer) suggests that studies focusing on lower temperature thresholds for breaking seed dormancy are required. This fact also supports the hypothesis that the seeding capacity in Mediterranean Basin obligate seeders may have evolved as a response to a wide range of disturbances, and not exclusively to fire.

  10. Temperature fluctuations inside savanna termite mounds: Do size and plant shade matter?

    Science.gov (United States)

    Ndlovu, M; Pérez-Rodríguez, A

    2018-05-01

    Mound building termites are key ecosystem engineers of subtropical savanna regions. Mounds allow termites to maintain suitable conditions for termite reproduction and food cultivation ('fungus gardens'). We studied how the internal mound temperature of Macrotermes natalensis, a dominant mound-building termite of the subtropical savanna of southern Africa, responds to a number of environmental variables. We used general additive mixed models (GAMM) to determine how external temperature, mound size (volume) and the amount of vegetation shade affects mound internal temperature over a 24-h period. Internal mound temperature varied daily following changes of the external temperature, although the range of variation was much smaller. Active termite mounds maintained a higher internal temperature than inactive ones, and mound activity reinforced the positive effect of mound size and moderated the negative effect of vegetation shade on internal temperatures. In turn, external temperature fluctuations equally affected active and inactive mounds. Large mounds maintained near optimal internal temperatures compared to smaller sized mounds. We therefore conclude that termite mound size is a stronger determinant of internal mound temperature stability compared to plant shade cover. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Experimental study on high cycle thermal fatigue in T-junction. Effect of local flow velocity on transfer of temperature fluctuation from fluid to structure

    International Nuclear Information System (INIS)

    Kimura, Nobuyuki; Ono, Ayako; Miyakoshi, Hiroyuki; Kamide, Hideki

    2009-01-01

    A quantitative evaluation on high cycle thermal fatigue due to temperature fluctuation in fluid is of importance for structural integrity in the reactor. It is necessary for the quantitative evaluation to investigate occurrence and propagation processes of temperature fluctuation, e.g., decay of fluctuation intensity near structures and transfer of temperature fluctuation from fluid to structures. The JSME published a guideline for evaluation of high-cycle thermal fatigue of a pipe as the JSME guideline in 2003. This JSME standard covers T-pipe junction used in LWRs operated in Japan. In the guideline, the effective heat transfer coefficients were obtained from temperature fluctuations in fluid and structure in experiments. In the previous studies, the effective heat transfer coefficients were 2 - 10 times larger than the heat transfer coefficients under steady state conditions in a straight tube. In this study, a water experiment of T-junction was performed to evaluate the transfer characteristics of temperature fluctuation from fluid to structure. In the experiment, temperatures in fluid and structure were measured simultaneously at 20 positions to obtain spatial distributions of the effective heat transfer coefficient. In addition, temperatures in structure and local velocities in fluid were measured simultaneously to evaluate the correlation between the temperature and velocity under the non-stationary fields. The large heat transfer coefficients were registered at the region where the local velocity was high. Furthermore it was found that the heat transfer coefficients were correlated with the time-averaged turbulent heat flux near the pipe wall. (author)

  12. Quantum fluctuations from thermal fluctuations in Jacobson formalism

    Energy Technology Data Exchange (ETDEWEB)

    Faizal, Mir [University of British Columbia-Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada); Ashour, Amani; Alcheikh, Mohammad [Damascus University, Mathematics Department, Faculty of Science, Damascus (Syrian Arab Republic); Alasfar, Lina [Universite Clermont Auvergne, Laboratoire de Physique Corpusculaire de Clermont-Ferrand, Aubiere (France); Alsaleh, Salwa; Mahroussah, Ahmed [King Saud University, Department of Physics and Astronomy, Riyadh (Saudi Arabia)

    2017-09-15

    In the Jacobson formalism general relativity is obtained from thermodynamics. This is done by using the Bekenstein-Hawking entropy-area relation. However, as a black hole gets smaller, its temperature will increase. This will cause the thermal fluctuations to also increase, and these will in turn correct the Bekenstein-Hawking entropy-area relation. Furthermore, with the reduction in the size of the black hole, quantum effects will also start to dominate. Just as the general relativity can be obtained from thermodynamics in the Jacobson formalism, we propose that the quantum fluctuations to the geometry can be obtained from thermal fluctuations. (orig.)

  13. Simulated Seasonal Photoperiods and Fluctuating Temperatures Have Limited Effects on Blood Feeding and Life History in Aedes triseriatus (Diptera: Culicidae).

    Science.gov (United States)

    Westby, K M; Juliano, S A

    2015-09-01

    Biotic and abiotic factors change seasonally and impact life history in temperate-zone ectotherms. Temperature and photoperiod are factors that change in predictable ways. Most studies testing for effects of temperature on vectors use constant temperatures and ignore potential correlated effects of photoperiod. In two experiments, we tested for effects of larval rearing environments creating ecologically relevant temperatures and photoperiods simulating early and late season conditions (June and August), or constant temperatures (cool and warm) with the June or August photoperiods, respectively. We determined effects on survivorship, development, size, and a composite performance index in a temperate-zone population of Aedes triseriatus (Say). We followed cohorts of resulting females, all held under the same environmental conditions, to assess carry-over effects of rearing conditions for larvae on longevity, blood feeding, and egg production. Larval survivorship was affected by treatment in one experiment. Development time was greater in the June and cool treatments, but the constant and fluctuating temperatures did not differ. Significantly larger mosquitoes were produced in fluctuating versus constant temperature treatments. There were no significant treatment effects on the composite performance index. Adult female longevity was lower after rearing at constant versus fluctuating temperature, but there was no difference between June and August, nor did size affect longevity. There was no effect of treatments on blood feeding and a limited effect on egg production. We conclude that seasonal temperatures and photoperiods during development have limited effects on this population of A. triseriatus and find little evidence of strong effects of fluctuating versus constant temperatures. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. On the influence of density and temperature fluctuations on the formation of spectral lines in stellar atmospheres

    International Nuclear Information System (INIS)

    Stahlberg, J.

    1985-01-01

    A method taking into account the influence of temperature and density fluctuations generated by the velocity field in stellar atmospheres on the formation of spectral lines is presented. The influenced line profile is derived by exchanging the values in a static atmosphere by a mean value and a fluctuating one. The correlations are calculated with the help of the well-know hydrodynamic eqs. It results, that in normal stellar atmospheres the visual lines are only very weakly influenced by such fluctuations due to the small values of the gradients of the pressure and density and of the velocity dispersion. (author)

  15. The effect of simulated heat-shock and daily temperature fluctuations on seed germination of four species from fire-prone ecosystems

    Directory of Open Access Journals (Sweden)

    Talita Zupo

    2016-01-01

    Full Text Available ABSTRACT Seed germination in many species from fire-prone ecosystems may be triggered by heat shock and/or temperature fluctuation, and how species respond to such fire-related cues is important to understand post-fire regeneration strategies. Thus, we tested how heat shock and daily temperature fluctuations affect the germination of four species from fire-prone ecosystems; two from the Cerrado and two from the Mediterranean Basin. Seeds of all four species were subjected to four treatments: Fire (F, temperature fluctuations (TF, fire+temperature fluctuations (F+TF and control (C. After treatments, seeds were put to germinate for 60 days at 25ºC (dark. Responses differed according to species and native ecosystem. Germination percentage for the Cerrado species did not increase with any of the treatments, while germination of one Mediterranean species increased with all treatments and the other only with treatments that included fire. Although the Cerrado species did not respond to the treatments used in this study, their seeds survived the exposure to heat shock, which suggests they possess tolerance to fire. Fire frequency in the Cerrado is higher than that in Mediterranean ecosystems, thus traits related to fire-resistance would be more advantageous than traits related to post-fire recruitment, which are widespread among Mediterranean species.

  16. Measurement of turbulent electron temperature fluctuations on the ASDEX Upgrade tokamak using correlated electron cyclotron emission

    Energy Technology Data Exchange (ETDEWEB)

    Freethy, S. J., E-mail: simon.freethy@ipp.mpg.de [Max Planck Institute for Plasma Physics, 85748 Garching (Germany); Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Conway, G. D.; Happel, T.; Köhn, A. [Max Planck Institute for Plasma Physics, 85748 Garching (Germany); Classen, I.; Vanovac, B. [FOM Institute DIFFER, 5612 AJ Eindhoven (Netherlands); Creely, A. J.; White, A. E. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2016-11-15

    Turbulent temperature fluctuations are measured on the ASDEX Upgrade tokamak using pairs of closely spaced, narrow-band heterodyne radiometer channels and a standard correlation technique. The pre-detection spacing and bandwidth of the radiometer channel pairs is chosen such that they are physically separated less than a turbulent correlation length, but do not overlap. The radiometer has 4 fixed filter frequency channels and two tunable filter channels for added flexibility in the measurement position. Relative temperature fluctuation amplitudes are observed in a helium plasma to be δT/T = (0.76 ± 0.02)%, (0.67 ± 0.02)%, and (0.59 ± 0.03)% at normalised toroidal flux radius of ρ{sub tor} = 0.82, 0.75, and 0.68, respectively.

  17. Estimating radiative feedbacks from stochastic fluctuations in surface temperature and energy imbalance

    Science.gov (United States)

    Proistosescu, C.; Donohoe, A.; Armour, K.; Roe, G.; Stuecker, M. F.; Bitz, C. M.

    2017-12-01

    Joint observations of global surface temperature and energy imbalance provide for a unique opportunity to empirically constrain radiative feedbacks. However, the satellite record of Earth's radiative imbalance is relatively short and dominated by stochastic fluctuations. Estimates of radiative feedbacks obtained by regressing energy imbalance against surface temperature depend strongly on sampling choices and on assumptions about whether the stochastic fluctuations are primarily forced by atmospheric or oceanic variability (e.g. Murphy and Forster 2010, Dessler 2011, Spencer and Braswell 2011, Forster 2016). We develop a framework around a stochastic energy balance model that allows us to parse the different contributions of atmospheric and oceanic forcing based on their differing impacts on the covariance structure - or lagged regression - of temperature and radiative imbalance. We validate the framework in a hierarchy of general circulation models: the impact of atmospheric forcing is examined in unforced control simulations of fixed sea-surface temperature and slab ocean model versions; the impact of oceanic forcing is examined in coupled simulations with prescribed ENSO variability. With the impact of atmospheric and oceanic forcing constrained, we are able to predict the relationship between temperature and radiative imbalance in a fully coupled control simulation, finding that both forcing sources are needed to explain the structure of the lagged-regression. We further model the dependence of feedback estimates on sampling interval by considering the effects of a finite equilibration time for the atmosphere, and issues of smoothing and aliasing. Finally, we develop a method to fit the stochastic model to the short timeseries of temperature and radiative imbalance by performing a Bayesian inference based on a modified version of the spectral Whittle likelihood. We are thus able to place realistic joint uncertainty estimates on both stochastic forcing and

  18. Quantitative comparison of electron temperature fluctuations to nonlinear gyrokinetic simulations in C-Mod Ohmic L-mode discharges

    Energy Technology Data Exchange (ETDEWEB)

    Sung, C., E-mail: csung@physics.ucla.edu [University of California, Los Angeles, Los Angeles, California 90095 (United States); White, A. E.; Greenwald, M.; Howard, N. T. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Mikkelsen, D. R.; Churchill, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Holland, C. [University of California, San Diego, La Jolla, California 92093 (United States); Theiler, C. [Ecole Polytechnique Fédérale de Lausanne, SPC, Lausanne 1015 (Switzerland)

    2016-04-15

    Long wavelength turbulent electron temperature fluctuations (k{sub y}ρ{sub s} < 0.3) are measured in the outer core region (r/a > 0.8) of Ohmic L-mode plasmas at Alcator C-Mod [E. S. Marmar et al., Nucl. Fusion 49, 104014 (2009)] with a correlation electron cyclotron emission diagnostic. The relative amplitude and frequency spectrum of the fluctuations are compared quantitatively with nonlinear gyrokinetic simulations using the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] in two different confinement regimes: linear Ohmic confinement (LOC) regime and saturated Ohmic confinement (SOC) regime. When comparing experiment with nonlinear simulations, it is found that local, electrostatic ion-scale simulations (k{sub y}ρ{sub s} ≲ 1.7) performed at r/a ∼ 0.85 reproduce the experimental ion heat flux levels, electron temperature fluctuation levels, and frequency spectra within experimental error bars. In contrast, the electron heat flux is robustly under-predicted and cannot be recovered by using scans of the simulation inputs within error bars or by using global simulations. If both the ion heat flux and the measured temperature fluctuations are attributed predominantly to long-wavelength turbulence, then under-prediction of electron heat flux strongly suggests that electron scale turbulence is important for transport in C-Mod Ohmic L-mode discharges. In addition, no evidence is found from linear or nonlinear simulations for a clear transition from trapped electron mode to ion temperature gradient turbulence across the LOC/SOC transition, and also there is no evidence in these Ohmic L-mode plasmas of the “Transport Shortfall” [C. Holland et al., Phys. Plasmas 16, 052301 (2009)].

  19. Nest temperature fluctuations in a cavity nester, the southern ground-hornbill.

    Science.gov (United States)

    Combrink, L; Combrink, H J; Botha, A J; Downs, C T

    2017-05-01

    Southern ground-hornbills Bucorvus leadbeateri inhabit savanna and bushveld regions of South Africa. They nest in the austral summer, which coincides with the wet season and hottest daytime temperatures in the region. They are secondary cavity nesters and typically nest in large cavities in trees, cliffs and earth banks, but readily use artificial nest boxes. Southern ground-hornbills are listed as Endangered in South Africa, with reintroductions into suitable areas highlighted as a viable conservation intervention for the species. Nest microclimate, and the possible implications this may have for the breeding biology of southern ground-hornbills, have never been investigated. We used temperature dataloggers to record nest cavity temperature and ambient temperature for one artificial and 11 natural southern ground-hornbill tree cavity nests combined, spanning two breeding seasons. Mean hourly nest temperature, as well as mean minimum and mean maximum nest temperature, differed significantly between southern ground-hornbill nests in both breeding seasons. Mean nest temperature also differed significantly from mean ambient temperature for both seasons. Natural nest cavities provided a buffer against the ambient temperature fluctuations. The artificial nest provided little insulation against temperature extremes, being warmer and cooler than the maximum and minimum local ambient temperatures, respectively. Nest cavity temperature was not found to have an influence on the breeding success of the southern ground-hornbill groups investigated in this study. These results have potentially important implications for southern ground-hornbill conservation and artificial nest design, as they suggest that the birds can tolerate greater nest cavity temperature extremes than previously thought. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. ON THE NATURE OF X-RAY SURFACE BRIGHTNESS FLUCTUATIONS IN M87

    Energy Technology Data Exchange (ETDEWEB)

    Arévalo, P. [Instituto de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretana N 1111, Playa Ancha, Valparaíso (Chile); Churazov, E. [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, D-85741 Garching (Germany); Zhuravleva, I. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305-4085 (United States); Forman, W. R.; Jones, C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

    2016-02-10

    X-ray images of galaxy clusters and gas-rich elliptical galaxies show a wealth of small-scale features that reflect fluctuations in density and/or temperature of the intracluster medium. In this paper we study these fluctuations in M87/Virgo to establish whether sound waves/shocks, bubbles, or uplifted cold gas dominate the structure. We exploit the strong dependence of the emissivity on density and temperature in different energy bands to distinguish between these processes. Using simulations we demonstrate that our analysis recovers the leading type of fluctuation even in the presence of projection effects and temperature gradients. We confirm the isobaric nature of cool filaments of gas entrained by buoyantly rising bubbles, extending to 7′ to the east and southwest, and the adiabatic nature of the weak shocks at 40″ and 3′ from the center. For features of ∼5–10 kpc, we show that the central 4′ × 4′ region is dominated by cool structures in pressure equilibrium with the ambient hotter gas while up to 30% of the variance in this region can be ascribed to adiabatic fluctuations. The remaining part of the central 14′ × 14′ region, excluding the arms and shocks described above, is dominated by apparently isothermal fluctuations (bubbles) with a possible admixture (at the level of ∼30%) of adiabatic (sound waves) and by isobaric structures. Larger features, of about 30 kpc, show a stronger contribution from isobaric fluctuations. The results broadly agree with a model based on feedback from an active galactic nucleus mediated by bubbles of relativistic plasma.

  1. Finding new superconductors: the spin-fluctuation gateway to high Tc and possible room temperature superconductivity.

    Science.gov (United States)

    Pines, David

    2013-10-24

    We propose an experiment-based strategy for finding new high transition temperature superconductors that is based on the well-established spin fluctuation magnetic gateway to superconductivity in which the attractive quasiparticle interaction needed for superconductivity comes from their coupling to dynamical spin fluctuations originating in the proximity of the material to an antiferromagnetic state. We show how lessons learned by combining the results of almost three decades of intensive experimental and theoretical study of the cuprates with those found in the decade-long study of a strikingly similar family of unconventional heavy electron superconductors, the 115 materials, can prove helpful in carrying out that search. We conclude that, since Tc in these materials scales approximately with the strength of the interaction, J, between the nearest neighbor local moments in their parent antiferromagnetic state, there may not be a magnetic ceiling that would prevent one from discovering a room temperature superconductor.

  2. Lithium line radiation in turbulent edge plasmas: Effects of low and high frequency temperature fluctuations

    Science.gov (United States)

    Rosato, J.; Capes, H.; Catoire, F.; Kadomtsev, M. B.; Levashova, M. G.; Lisitsa, V. S.; Marandet, Y.; Rosmej, F. B.; Stamm, R.

    2011-08-01

    In lithium-wall-conditioned tokamaks, the line radiation due to the intrinsic impurities (Li/Li+/Li++) plays a significant role on the power balance. Calculations of the radiation losses are usually performed using a stationary collisional-radiative model, assuming constant values for the plasma parameters (Ne, Te,…). Such an approach is not suitable for turbulent plasmas where the various parameters are time-dependent. This is critical especially for the edge region, where the fluctuation rates can reach several tens of percents [e.g. J.A. Boedo, J. Nucl. Mater. 390-391 (2009) 29-37]. In this work, the role of turbulence on the radiated power is investigated with a statistical formalism. A special emphasis is devoted to the role of temperature fluctuations, successively for low-frequency fluctuations and in the general case where the characteristic turbulence frequencies can be comparable to the collisional and radiative rates.

  3. Temperature and precipitation fluctuations in the Czech Republic during the period of instrumental measurements

    Czech Academy of Sciences Publication Activity Database

    Brázdil, Rudolf; Zahradníček, Pavel; Pisoft, P.; Štěpánek, Petr; Bělinová, M.; Dobrovolný, Petr

    2012-01-01

    Roč. 110, 1-2 (2012), s. 17-34 ISSN 0177-798X R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : secular station * instrumental period * homogenization * air temperature * precipitation * fluctuation * cyclicity * wavelet analysis * Czech Republic Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.759, year: 2012

  4. Steady state RANS simulations of temperature fluctuations in single phase turbulent mixing

    International Nuclear Information System (INIS)

    Kickhofel, J.; Fokken, J.; Kapulla, R.; Prasser, H. M.

    2012-01-01

    Single phase turbulent mixing in nuclear power plant circuits where a strong temperature gradient is present is known to precipitate pipe failure due to thermal fatigue. Experiments in a square mixing channel offer the opportunity to study the phenomenon under simple and easily reproducible boundary conditions. Measurements of this kind have been performed extensively at the Paul Scherrer Inst. in Switzerland with a high density of instrumentation in the Generic Mixing Experiment (GEMIX). As a fundamental mixing phenomena study closely related to the thermal fatigue problem, the experimental results from GEMIX are valuable for the validation of CFD codes striving to accurately simulate both the temperature and velocity fields in single phase turbulent mixing. In the experiments two iso-kinetic streams meet at a shallow angle of 3 degrees and mix in a straight channel of square cross-section under various degrees of density, temperature, and viscosity stratification over a range of Reynolds numbers ranging from 5*10 3 to 1*10 5 . Conductivity measurements, using wire-mesh and wall sensors, as well as optical measurements, using particle image velocimetry, were conducted with high temporal and spatial resolutions (up to 2.5 kHz and 1 mm in the case of the wire mesh sensor) in the mixing zone, downstream of a splitter plate. The present paper communicates the results of RANS modeling of selected GEMIX tests. Steady-state CFD calculations using a RANS turbulence model represent an inexpensive method for analyzing large and complex components in commercial nuclear reactors, such as the downcomer and reactor pressure vessel heads. Crucial to real world applicability, however, is the ability to model turbulent heat fluctuations in the flow; the Turbulent Heat Flux Transport model developed by ANSYS CFX is capable, by implementation of a transport equation for turbulent heat fluxes, of readily modeling these values. Furthermore, the closure of the turbulent heat flux

  5. Non-linear trends and fluctuations in temperature during different growth stages of summer maize in the North China Plain from 1960 to 2014

    Science.gov (United States)

    Wang, Cailin; Wu, Jidong; Wang, Xu; He, Xin; Li, Ning

    2017-12-01

    North China Plain has undergone severe warming trends since the 1950s, but whether this trend is the same during different growth phases for crops remains unknown. Thus, we analyzed the non-linear changes in the minimum temperature (T min ), mean temperature (T mean ) and maximum temperature (T max ) using the Ensemble Empirical Mode Decomposition method during each growth stage of summer maize based on daily temperature data from 1960 to 2014. Our results strongly suggest that the trends and fluctuations in temperature change are non-linear. These changes can be categorized into four types of trend change according to the combinations of decreasing and increasing trends, and 8 fluctuation modes dominated by the fluctuations of expansion and shrinkage. The amplitude of the fluctuation is primarily expansion in the sowing-jointing stage and shrinkage in the jointing-maturity stage. Moreover, the temperature changes are inconsistent within each growth stage and are not consistent with the overall warming trend observed over the last 55 years. A transition period occurred in both the 1980s and the 1990s for temperatures during the sowing-tasseling stage. Furthermore, the cooling trend of the T max was significant in the sowing-emergence stage, while this cooling trend was not obvious for both T mean and T min in the jointing-tasseling stage. These results showed that temperature change was significantly different in different stages of the maize growth season. The results can serve as a scientific basis for a better understanding of the actual changes in the regional surface air temperature and agronomic heat resources.

  6. Lithium line radiation in turbulent edge plasmas: Effects of low and high frequency temperature fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Rosato, J., E-mail: joel.rosato@univ-provence.fr [PIIM, UMR 6633, Universite de Provence/CNRS, Centre de St.-Jerome, Case 232, F-13397 Marseille Cedex 20 (France); Capes, H.; Catoire, F. [PIIM, UMR 6633, Universite de Provence/CNRS, Centre de St.-Jerome, Case 232, F-13397 Marseille Cedex 20 (France); Kadomtsev, M.B.; Levashova, M.G.; Lisitsa, V.S. [ITP, Russian Research Center ' Kurchatov Institute' , Moscow (Russian Federation); Marandet, Y. [PIIM, UMR 6633, Universite de Provence/CNRS, Centre de St.-Jerome, Case 232, F-13397 Marseille Cedex 20 (France); Rosmej, F.B. [LULI, UMR 7605, Universite Pierre et Marie Curie/CNRS, 4 Place Jussieu, Case 128, F-75252 Paris Cedex 05 (France); Stamm, R. [PIIM, UMR 6633, Universite de Provence/CNRS, Centre de St.-Jerome, Case 232, F-13397 Marseille Cedex 20 (France)

    2011-08-01

    In lithium-wall-conditioned tokamaks, the line radiation due to the intrinsic impurities (Li/Li{sup +}/Li{sup ++}) plays a significant role on the power balance. Calculations of the radiation losses are usually performed using a stationary collisional-radiative model, assuming constant values for the plasma parameters (N{sub e}, T{sub e},...). Such an approach is not suitable for turbulent plasmas where the various parameters are time-dependent. This is critical especially for the edge region, where the fluctuation rates can reach several tens of percents [e.g. J.A. Boedo, J. Nucl. Mater. 390-391 (2009) 29-37]. In this work, the role of turbulence on the radiated power is investigated with a statistical formalism. A special emphasis is devoted to the role of temperature fluctuations, successively for low-frequency fluctuations and in the general case where the characteristic turbulence frequencies can be comparable to the collisional and radiative rates.

  7. Effect of temperature and density fluctuations on the spatially heterogeneous dynamics of glass-forming Van der Waals liquids under high pressure.

    Science.gov (United States)

    Koperwas, K; Grzybowski, A; Grzybowska, K; Wojnarowska, Z; Sokolov, A P; Paluch, M

    2013-09-20

    In this Letter, we show how temperature and density fluctuations affect the spatially heterogeneous dynamics at ambient and elevated pressures. By using high-pressure experimental data for van der Waals liquids, we examine contributions of the temperature and density fluctuations to the dynamics heterogeneity. We show that the dynamic heterogeneity decreases significantly with increasing pressure at a constant structural relaxation time (isochronal condition), while the broadening of the relaxation spectrum remains constant. This observation questions the relationship between spectral broadening and dynamic heterogeneity.

  8. Nonlocal fluctuational electromagnetic response and neutron magnetic scattering near the superconducting transition temperature

    International Nuclear Information System (INIS)

    Barash, Yu.S.; Galaktionov, A.V.

    1992-01-01

    A general expression is found for superconducting fluctuation contribution to transverse permittivity c tr f (Ω, Q) of a standard massive isotopic metal near T c at Ω c and Qζ 0 0 is the coherence length at zero temperature, Q is the external electromagnetic field pulse), depending on frequency and wave vector. Differential cross section of magnetic scattering of neutrons near T c in the region of comparatively small angles is considered

  9. Development of Pasteuria penetrans in Meloidogyne javanica females as affected by constantly high vs fluctuating temperature in an in-vivo system.

    Science.gov (United States)

    Darban, D A; Gowen, S R; Pembroke, B; Mahar, A N

    2005-03-01

    Growth room and glasshouse experiment was conducted to investigate the effect of constant and fluctuating temperatures on the development of Pasteuria penetrans a hyperparasite of root-knot nematodes. Tomato plants (Lycopersicon esculentum Mill) were inoculated with Meloidogyne javanica second-stage juveniles attached with endospores of P. penetrans and were grown in growth room at 26-29 degrees C and in glasshouse at 20-32 degrees C. The tomato plants were sampled from the growth room after 600 degree-days based on 17 degrees C/d, accumulating each day above a base temperature of 10 degrees C and from the glasshouse after 36 calendar days. Temperature affected the development of P. penetrans directly. The rate of development at constant temperature in growth room was faster than that in the glasshouse at fluctuating temperatures.

  10. Modelling growth of Penicillium expansum and Aspergillus niger at constant and fluctuating temperature conditions.

    Science.gov (United States)

    Gougouli, Maria; Koutsoumanis, Konstantinos P

    2010-06-15

    The growth of Penicillium expansum and Aspergillus niger, isolated from yogurt production environment, was investigated on malt extract agar with pH=4.2 and a(w)=0.997, simulating yogurt, at isothermal conditions ranging from -1.3 to 35 degrees C and from 5 to 42.3 degrees C, respectively. The growth rate (mu) and (apparent) lag time (lambda) of the mycelium growth were modelled as a function of temperature using a Cardinal Model with Inflection (CMI). The results showed that the CMI can describe successfully the effect of temperature on fungal growth within the entire biokinetic range for both isolates. The estimated values of the CMI for mu were T(min)=-5.74 degrees C, T(max)=30.97 degrees C, T(opt)=22.08 degrees C and mu(opt)=0.221 mm/h for P. expansum and T(min)=10.13 degrees C, T(max)=43.13 degrees C, T(opt)=31.44 degrees C, and mu(opt)=0.840 mm/h for A. niger. The cardinal values for lambda were very close to the respective values for mu indicating similar temperature dependence of the growth rate and the lag time of the mycelium growth. The developed models were further validated under fluctuating temperature conditions using various dynamic temperature scenarios. The time-temperature conditions studied included single temperature shifts before or after the end of the lag time and continuous periodic temperature fluctuations. The prediction of growth at changing temperature was based on the assumption that after a temperature shift the growth rate is adopted instantaneously to the new temperature, while the lag time was predicted using a cumulative lag approach. The results showed that when the temperature shifts occurred before the end of the lag, they did not cause any significant additional lag and the observed total lag was very close to the cumulative lag predicted by the model. In experiments with temperature shifts after the end of the lag time, accurate predictions were obtained when the temperature profile included temperatures which were inside the

  11. Mössbauer spectroscopy study of magnetic fluctuations in superconducting RbGd2Fe4As4O2

    Science.gov (United States)

    Li, Y.; Wang, Z. C.; Cao, G. H.; Zhang, J. M.; Zhang, B.; Wang, T.; Pang, H.; Li, F. S.; Li, Z. W.

    2018-05-01

    57Fe Mössbauer spectra were measured at different temperatures between 5.9 K and 300 K on the recently discovered self-doped superconducting RbGd2Fe4As4O2 with Tc as high as 35 K. Singlet pattern was observed down to the lowest temperature measured in this work, indicating the absence of static magnetic order on the Fe site. The intermediate isomer shift in comparison with that of the samples RbFe2As2 and GdFeAsO confirms the self doping induced local electronic structure change. Surprisingly, we observe two magnetic fluctuation induced spectral broadenings below ∼ 15 K and ∼ 100 K which are believed to be originated from the transferred magnetic fluctuations of the Gd3+ moments and that of the magnetic fluctuations of the Fe atoms, respectively.

  12. Dynamic heterogeneity and conditional statistics of non-Gaussian temperature fluctuations in turbulent thermal convection

    Science.gov (United States)

    He, Xiaozhou; Wang, Yin; Tong, Penger

    2018-05-01

    Non-Gaussian fluctuations with an exponential tail in their probability density function (PDF) are often observed in nonequilibrium steady states (NESSs) and one does not understand why they appear so often. Turbulent Rayleigh-Bénard convection (RBC) is an example of such a NESS, in which the measured PDF P (δ T ) of temperature fluctuations δ T in the central region of the flow has a long exponential tail. Here we show that because of the dynamic heterogeneity in RBC, the exponential PDF is generated by a convolution of a set of dynamics modes conditioned on a constant local thermal dissipation rate ɛ . The conditional PDF G (δ T |ɛ ) of δ T under a constant ɛ is found to be of Gaussian form and its variance σT2 for different values of ɛ follows an exponential distribution. The convolution of the two distribution functions gives rise to the exponential PDF P (δ T ) . This work thus provides a physical mechanism of the observed exponential distribution of δ T in RBC and also sheds light on the origin of non-Gaussian fluctuations in other NESSs.

  13. Fluctuation spectroscopy: From Rayleigh-Jeans waves to Abrikosov vortex clusters

    Science.gov (United States)

    Varlamov, A. A.; Galda, A.; Glatz, A.

    2018-01-01

    Superconducting (SC) fluctuations, discovered in the late 1960s, have constituted an important research area in superconductivity as they are manifest in a variety of phenomena. Indeed, the underlying physics of SC fluctuations makes it possible to elucidate the fundamental properties of the superconducting state. The interest in SC fluctuation phenomena was further enhanced with the discovery of cuprate high-temperature superconductors (HTSs). In these materials, superconducting fluctuations appear over a wide range of temperatures due to the superconductors extremely short coherence lengths and low effective dimensionality of the electron systems. These strong fluctuations lead to anomalous properties of the normal state in some HTS materials. Within the framework of the phenomenological Ginzburg-Landau theory, and more extensively in the diagrammatic microscopic approach based on BCS theory, SC fluctuations as well as other quantum contributions (weak localization, etc.) enabled a new way to investigate and characterize disordered electron systems, granular metals, Josephson structures, artificial superlattices, and others. The characteristic feature of SC fluctuations is its strong dependence on temperature and magnetic field in the vicinity of the superconducting phase transition. This dependence allows the separation of fluctuation effects from other contributions and provides information about the microscopic parameters of a material, in particular, the critical temperature and the zero-temperature critical magnetic field. As such, SC fluctuations are very sensitive to the relaxation processes that break phase coherence and can be used as a versatile characterization instrument for SCs: Fluctuation spectroscopy has emerged as a powerful tool for studying the properties of superconducting systems on a quantitative level. Here the physics of SC fluctuations is reviewed, commencing from a qualitative description of thermodynamic fluctuations close to the

  14. The fluctuating gap model

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xiaobin

    2011-01-15

    The quasi-one-dimensional systems exhibit some unusual phenomenon, such as the Peierls instability, the pseudogap phenomena and the absence of a Fermi-Dirac distribution function line shape in the photoemission spectroscopy. Ever since the discovery of materials with highly anisotropic properties, it has been recognized that fluctuations play an important role above the three-dimensional phase transition. This regime where the precursor fluctuations are presented can be described by the so called fluctuating gap model (FGM) which was derived from the Froehlich Hamiltonian to study the low energy physics of the one-dimensional electron-phonon system. Not only is the FGM of great interest in the context of quasi-one-dimensional materials, liquid metal and spin waves above T{sub c} in ferromagnets, but also in the semiclassical approximation of superconductivity, it is possible to replace the original three-dimensional problem by a directional average over effectively one-dimensional problem which in the weak coupling limit is described by the FGM. In this work, we investigate the FGM in a wide temperature range with different statistics of the order parameter fluctuations. We derive a formally exact solution to this problem and calculate the density of states, the spectral function and the optical conductivity. In our calculation, we show that a Dyson singularity appears in the low energy density of states for Gaussian fluctuations in the commensurate case. In the incommensurate case, there is no such kind of singularity, and the zero frequency density of states varies differently as a function of the correlation lengths for different statistics of the order parameter fluctuations. Using the density of states we calculated with non-Gaussian order parameter fluctuations, we are able to calculate the static spin susceptibility which agrees with the experimental data very well. In the calculation of the spectral functions, we show that as the correlation increases, the

  15. The fluctuating gap model

    International Nuclear Information System (INIS)

    Cao, Xiaobin

    2011-01-01

    The quasi-one-dimensional systems exhibit some unusual phenomenon, such as the Peierls instability, the pseudogap phenomena and the absence of a Fermi-Dirac distribution function line shape in the photoemission spectroscopy. Ever since the discovery of materials with highly anisotropic properties, it has been recognized that fluctuations play an important role above the three-dimensional phase transition. This regime where the precursor fluctuations are presented can be described by the so called fluctuating gap model (FGM) which was derived from the Froehlich Hamiltonian to study the low energy physics of the one-dimensional electron-phonon system. Not only is the FGM of great interest in the context of quasi-one-dimensional materials, liquid metal and spin waves above T c in ferromagnets, but also in the semiclassical approximation of superconductivity, it is possible to replace the original three-dimensional problem by a directional average over effectively one-dimensional problem which in the weak coupling limit is described by the FGM. In this work, we investigate the FGM in a wide temperature range with different statistics of the order parameter fluctuations. We derive a formally exact solution to this problem and calculate the density of states, the spectral function and the optical conductivity. In our calculation, we show that a Dyson singularity appears in the low energy density of states for Gaussian fluctuations in the commensurate case. In the incommensurate case, there is no such kind of singularity, and the zero frequency density of states varies differently as a function of the correlation lengths for different statistics of the order parameter fluctuations. Using the density of states we calculated with non-Gaussian order parameter fluctuations, we are able to calculate the static spin susceptibility which agrees with the experimental data very well. In the calculation of the spectral functions, we show that as the correlation increases, the quasi

  16. Cross-correlating CMB temperature fluctuations with high-energy γ-ray from Dark-Matter annihilation

    International Nuclear Information System (INIS)

    Pieri, L.

    2013-01-01

    In this paper we compute the Integrated Sachs-Wolfe effect due to the presence of dark-matter structures on cosmological scale. We cross-correlate the CMB temperature fluctuations with the extragalactic high-energy γ-ray flux map obtained with FERMI-LAT. We find a null signal consistent with the theory and conclude that the presence of halos and subhalos at galactic and extragalactic scale, if not excluded, will be hardly discoverable.

  17. Alternating Si and Fe deposition caused by temperature fluctuations in Precambrian oceans

    DEFF Research Database (Denmark)

    Posth, Nicole; Hegler, Florian; Konhauser, Kurt

    2008-01-01

    and geochemical modelling to study the potential for a microbial mechanism in the formation of alternating iron–silica bands. We find that the rate of biogenic iron(III) mineral formation by iron-oxidizing microbes reaches a maximum between 20 and 25 °C. Decreasing or increasing water temperatures slow microbial......Precambrian banded iron formations provide an extensive archive of pivotal environmental changes and the evolution of biological processes on early Earth. The formations are characterized by bands ranging from micrometre- to metre-scale layers of alternating iron- and silica-rich minerals. However...... iron mineral formation while promoting abiotic silica precipitation. We suggest that natural fluctuations in the temperature of the ocean photic zone during the period when banded iron formations were deposited could have led to the primary layering observed in these formations by successive cycles...

  18. Seasonal migrations, body temperature fluctuations, and infection dynamics in adult amphibians

    Directory of Open Access Journals (Sweden)

    David R. Daversa

    2018-05-01

    Full Text Available Risks of parasitism vary over time, with infection prevalence often fluctuating with seasonal changes in the annual cycle. Identifying the biological mechanisms underlying seasonality in infection can enable better prediction and prevention of future infection peaks. Obtaining longitudinal data on individual infections and traits across seasons throughout the annual cycle is perhaps the most effective means of achieving this aim, yet few studies have obtained such information for wildlife. Here, we tracked spiny common toads (Bufo spinosus within and across annual cycles to assess seasonal variation in movement, body temperatures and infection from the fungal parasite, Batrachochytrium dendrobatidis (Bd. Across annual cycles, toads did not consistently sustain infections but instead gained and lost infections from year to year. Radio-tracking showed that infected toads lose infections during post-breeding migrations, and no toads contracted infection following migration, which may be one explanation for the inter-annual variability in Bd infections. We also found pronounced seasonal variation in toad body temperatures. Body temperatures approached 0 °C during winter hibernation but remained largely within the thermal tolerance range of Bd. These findings provide direct documentation of migratory recovery (i.e., loss of infection during migration and escape in a wild population. The body temperature reductions that we observed during hibernation warrant further consideration into the role that this period plays in seasonal Bd dynamics.

  19. Stochastic heating of a single Brownian particle by charge fluctuations in a radio-frequency produced plasma sheath

    Science.gov (United States)

    Schmidt, Christian; Piel, Alexander

    2015-10-01

    The Brownian motion of a single particle in the plasma sheath is studied to separate the effect of stochastic heating by charge fluctuations from heating by collective effects. By measuring the particle velocities in the ballistic regime and by carefully determining the particle mass from the Epstein drag it is shown that for a pressure of 10 Pa, which is typical of many experiments, the proper kinetic temperature of the Brownian particle remains close to the gas temperature and rises only slightly with particle size. This weak effect is confirmed by a detailed model for charging and charge fluctuations in the sheath. A substantial temperature rise is found for decreasing pressure, which approximately shows the expected scaling with p-2. The system under study is an example for non-equilibrium Brownian motion under the influence of white noise without corresponding dissipation.

  20. Preliminary Results from Simulations of Temperature Fluctuations in Stirling Engine Regenerator Matrices

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Carlsen, Henrik; Thomsen, Per Grove

    2003-01-01

    The objective of this study has been to create a model for studying effects of temperature fluctuations in regenerator matrices on Stirling engine performance. A one-dimensional model with axial discretisation of engine components has been formulated using a fixed Eulerian grid. The model contains...... that adjusts solutions so that they satisfy the necessary cyclic boundary conditions as well as integral conditions for cyclic heat transfer for walls in the engine and for the mean cycle pressure. It has been found that it is possible to accurately solve the stiff ODE system that describes the coupled...

  1. Calculation and analysis of thermal–hydraulics fluctuations in pressurized water reactors

    International Nuclear Information System (INIS)

    Malmir, Hessam; Vosoughi, Naser

    2015-01-01

    Highlights: • Single-phase thermal–hydraulics noise equations are originally derived in the frequency domain. • The fluctuations of all the coolant parameters are calculated, without any simplifying assumptions. • The radial distribution of the temperature fluctuations in the fuel, gap and cladding are taken into account. • The closed-loop calculations are performed by means of the point kinetics noise theory. • Both the space- and frequency-dependence of the thermal–hydraulics fluctuations are analyzed. - Abstract: Analysis of thermal–hydraulics fluctuations in pressurized water reactors (e.g., local and global temperature or density fluctuations, as well as primary and charging pumps fluctuations) has various applications in calculation or measurement of the core dynamical parameters (temperature or density reactivity coefficients) in addition to thermal–hydraulics surveillance and diagnostics. In this paper, the thermal–hydraulics fluctuations in PWRs are investigated. At first, the single-phase thermal–hydraulics noise equations (in the frequency domain) are originally derived, without any simplifying assumptions. The fluctuations of all the coolant parameters, as well as the radial distribution of the temperature fluctuations in the fuel, gap and cladding are taken into account. Then, the derived governing equations are discretized using the finite volume method (FVM). Based on the discretized equations and the proposed algorithm of solving, a single heated channel noise calculation code (SHC-Noise) is developed, by which the steady-state and fluctuating parameters of PWR fuel assemblies can be calculated. The noise sources include the inlet coolant temperature and velocity fluctuations, in addition to the power density noises. The developed SHC-Noise code is benchmarked in different cases and scenarios. Furthermore, to show the effects of the power feedbacks, the closed-loop calculations are performed by means of the point kinetics noise

  2. Assessment of thermal fatigue damage caused by local fluid temperature fluctuation (part I: characteristics of constraint and stress caused by thermal striation and stratification)

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2014-01-01

    Highlights: • The source of the membrane constraint due to local temperature fluctuation was shown. • Thermal fatigue that occurred at a mixing tee and branched elbow was analyzed. • Cracking occurrence was reasonably explained by the constraint and stress conditions. - Abstract: This study was aimed at identifying the constraint conditions under local temperature fluctuation by thermal striping at a mixing tee and by thermal stratification at an elbow pipe branched from the main pipe. Numerical and analytical approaches were made to derive the thermal stress and its fluctuation. It was shown that an inhomogeneous temperature distribution in a straight pipe caused thermal stress due to a membrane constraint even if an external membrane constraint did not act on the pipe. Although the membrane constraint increased the mean stress at the mixing tee, it did not contribute to fluctuation of the thermal stress. On the other hand, the membrane constraint played an important role in the fatigue damage accumulation near the stratification layer of the branched elbow. Based on the constraint and stress conditions analyzed, the characteristics of the cracking observed in actual nuclear power plants were reasonably explained. Namely, at the mixing tee, where thermal crazing has been found, the lack of contribution of the membrane constraint to stress fluctuation caused a stress gradient in the thickness direction and arrested crack growth. On the other hand, at the branched elbow, where axial through-wall cracks have been found, the relatively large hoop stress fluctuation was brought about by movement of the stratified layer together with the membrane constraint even under a relatively low frequency of stress fluctuation

  3. A New Prediction Model for Transformer Winding Hotspot Temperature Fluctuation Based on Fuzzy Information Granulation and an Optimized Wavelet Neural Network

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2017-12-01

    Full Text Available Winding hotspot temperature is the key factor affecting the load capacity and service life of transformers. For the early detection of transformer winding hotspot temperature anomalies, a new prediction model for the hotspot temperature fluctuation range based on fuzzy information granulation (FIG and the chaotic particle swarm optimized wavelet neural network (CPSO-WNN is proposed in this paper. The raw data are firstly processed by FIG to extract useful information from each time window. The extracted information is then used to construct a wavelet neural network (WNN prediction model. Furthermore, the structural parameters of WNN are optimized by chaotic particle swarm optimization (CPSO before it is used to predict the fluctuation range of the hotspot temperature. By analyzing the experimental data with four different prediction models, we find that the proposed method is more effective and is of guiding significance for the operation and maintenance of transformers.

  4. Les fluctuations supraconductrices dans le compose praseodyme-cerium-oxyde de cuivre

    Science.gov (United States)

    Renaud, Jacques

    Ce travail etudie les fluctuations supraconductrices dans le compose supraconducteur a haute temperature critique dope aux electrons Pr2-xCe xCuO4+delta. La technique utilisee pour sonder ces fluctuations est le transport electrique DC dans le plan ab. Il s'agit, a notre connaissance, de la premiere etude de ce type dans la classe generale des supraconducteurs a haute temperature critique dopes aux electrons et, plus particulierement, dans Pr2-xCe xCuO4+delta. De plus, l'etude est effectuee pour trois regimes de dopage, soit sous-dope x = 0.135, dopage optimal x = 0.15 et surdope x = 0.17. Les echantillons etudies sont des couches minces d'epaisseur plus grande que 100 nm crues par ablation laser. Les mesures electriques DC effectuees dans ce travail sont la resistance en reponse lineaire et les courbes IV en reponse non lineaire en fonction de la temperature. La mise en oeuvre experimentale de ces mesures a necessite une grande attention au filtrage et aux effets de chauffage a haut courant. Nous montrons que, sans cette attention, les donnees experimentales sont toujours erronees dans le regime pertinent pour nos echantillons. Les resultats pour le dopage optimal x = 0.15 sont expliques de facon tres convaincante dans le cadre de fluctuations purement 2D. D'abord, le regime des fluctuations gaussiennes est tres bien decrit par le modele d'Aslamazov-Larkin en deux dimensions. Ensuite, le regime de fluctuations critiques, se trouvant a plus basse temperature que le regime gaussien, est tres bien decrit par la physique 2D de Kosterlitz-Thouless. Dans cette analyse, les deux regimes ont des temperatures critiques coherentes entre elles, ce qui semble confirmer ce scenario 2D. Une analyse des donnees dans le cadre de fluctuations 3D est exploree mais donne des conclusions incoherentes. Les resultats pour les autres dopages sont qualitativement equivalents avec le dopage optimal et permettent donc une explication purement 2D. Par contre, contrairement au dopage optimal

  5. Superconductivity versus quantum criticality: Effects of thermal fluctuations

    Science.gov (United States)

    Wang, Huajia; Wang, Yuxuan; Torroba, Gonzalo

    2018-02-01

    We study the interplay between superconductivity and non-Fermi liquid behavior of a Fermi surface coupled to a massless SU(N ) matrix boson near the quantum critical point. The presence of thermal infrared singularities in both the fermionic self-energy and the gap equation invalidates the Eliashberg approximation, and makes the quantum-critical pairing problem qualitatively different from that at zero temperature. Taking the large N limit, we solve the gap equation beyond the Eliashberg approximation, and obtain the superconducting temperature Tc as a function of N . Our results show an anomalous scaling between the zero-temperature gap and Tc. For N greater than a critical value, we find that Tc vanishes with a Berezinskii-Kosterlitz-Thouless scaling behavior, and the system retains non-Fermi liquid behavior down to zero temperature. This confirms and extends previous renormalization-group analyses done at T =0 , and provides a controlled example of a naked quantum critical point. We discuss the crucial role of thermal fluctuations in relating our results with earlier work where superconductivity always develops due to the special role of the first Matsubara frequency.

  6. Spatial mobility fluctuation induced giant linear magnetoresistance in multilayered graphene foam

    KAUST Repository

    Li, Peng

    2016-07-05

    Giant, positive, and near-temperature-independent linear magnetoresistance (LMR), as large as 340%, was observed in graphene foam with a three-dimensional flexible network. Careful analysis of the magnetoresistance revealed that Shubnikov–de Haas (SdH) oscillations occurred at low temperatures and decayed with increasing temperature. The average classical mobility ranged from 300 (2 K) to 150 (300 K) cm2V−1s−1, which is much smaller than that required by the observed SdH oscillations. To understand the mechanism behind the observation, we performed the same measurements on the microsized graphene sheets that constitute the graphene foam. Much more pronounced SdH oscillations superimposed on the LMR background were observed in these microscaled samples, which correspond to a quantum mobility as high as 26,500cm2V−1s−1. Moreover, the spatial mobility fluctuated significantly from 64,200cm2V−1s−1 to 1370cm2V−1s−1, accompanied by a variation of magnetoresistance from near 20,000% to less than 20%. The presence of SdH oscillations actually excludes the possibility that the observed LMR originated from the extreme quantum limit, because this would demand all electrons to be in the first Landau level. Instead, we ascribe the large LMR to the second case of the classical Parish and Littlewood model, in which spatial mobility fluctuation dominates electrical transport. This is an experimental confirmation of the Parish and Littlewood model by measuring the local mobility randomly (by measuring the microsized graphene sheets) and finding the spatial mobility fluctuation.

  7. Antiferromagnetic spin fluctuations in the heavy-fermion superconductor Ce2PdIn8

    Science.gov (United States)

    Tran, V. H.; Hillier, A. D.; Adroja, D. T.; Kaczorowski, D.

    2012-09-01

    Inelastic neutron scattering and muon spin relaxation/rotation (μSR) measurements were performed on the heavy-fermion superconductor Ce2PdIn8. The observed scaling of the imaginary part of the dynamical susceptibility χ''Tα∝f(ℏω/kBT) with α=3/2 revealed a non-Fermi liquid character of the normal state, being due to critical antiferromagnetic fluctuations near a T=0 quantum phase transition. The longitudinal-field μSR measurements indicated that superconductivity and antiferromagnetic spin fluctuations coexist in Ce2PdIn8 on a microscopic scale. The observed power-law temperature dependence of the magnetic penetration depth λ∝T3/2, deduced from the transverse-field μSR data, strongly confirms an unconventional superconductivity in this compound.

  8. Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214

    International Nuclear Information System (INIS)

    Yung Moo Huh

    2001-01-01

    Thermodynamics has been studied systematically for the high temperature cuprate superconductor La 2-x Sr x CuO 4-δ , La-214, in the entire superconductive region from strongly underdoped to strongly overdoped regimes. Magnetization studies with H(parallel)c have been made in order to investigate the changes in free energy of the system as the number of carriers is reduced. Above the superconducting transition temperature, the normal-state magnetization exhibits a two-dimensional Heisenberg antiferromagnetic behavior. Below T c , magnetization data are thermodynamically reversible over large portions of the H-T plane, so the free energy is well defined in these regions. As the Sr concentration is varied over the wide range from 0.060 (strongly underdoped) to 0.234 (strongly overdoped), the free energy change goes through a maximum at the optimum doped in a manner similar to the T c0 vs. x curve. The density of states, N(0), remains nearly constant in the overdoped and optimum doped regimes, taking a broad maximum around x = 0.188, and then drops abruptly towards zero in the underdoped regime. The La 2-x Sr x CuO 4 (La-214) system displays the fluctuating vortex behavior with the characteristic of either 2D or 3D fluctuations as indicated by clearly identifiable crossing points T* close to T c . The dimensional character of the fluctuations depends on both applied magnetic fields and the density of charge carriers. The dimensional crossover from 2D to 3D occurs in the strongly underdoped regime when the c-axis coherence distance ζ c becomes comparable to the spacing between adjacent CuO 2 layers s at sufficiently high magnetic fields near H c2

  9. Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214

    International Nuclear Information System (INIS)

    Finnemore, Douglas K.

    2001-01-01

    Thermodynamics has been studied systematically for the high temperature cuprate superconductor La 2-x Sr x CuO 4-δ , La-214, in the entire superconductive region from strongly underdoped to strongly overdoped regimes. Magnetization studies with H (parallel) c have been made in order to investigate the changes in free energy of the system as the number of carriers is reduced. Above the superconducting transition temperature, the normal-state magnetization exhibits a two-dimensional Heisenberg antiferromagnetic behavior. Below T c , magnetization data are thermodynamically reversible over large portions of the H-T plane, so the free energy is well defined in these regions. As the Sr concentration is varied over the wide range from 0.060 (strongly underdoped) to 0.234 (strongly overdoped), the free energy change goes through a maximum at the optimum doped in a manner similar to the T c0 vs. x curve. The density of states, N(0), remains nearly constant in the overdoped and optimum doped regimes, taking a broad maximum around x = 0.188, and then drops abruptly towards zero in the underdoped regime. The La 2-x Sr x CuO 4 (La-214) system displays the fluctuating vortex behavior with the characteristic of either 2D or 3D fluctuations as indicated by clearly identifiable crossing points T* close to T c . The dimensional character of the fluctuations depends on both applied magnetic fields and the density of charge carriers. The dimensional crossover from 2D to 3D occurs in the strongly underdoped regime when the c-axis coherence distance ξ c becomes comparable to the spacing between adjacent CuO 2 layers s at sufficiently high magnetic field near H c2

  10. Dominant bryophyte control over high-latitude soil temperature fluctuations predicted by heat transfer traits, field moisture regime and laws of thermal insulation.

    NARCIS (Netherlands)

    Soudzilovskaia, N.A.; Cornelissen, J.H.C.; van Bodegom, P.M.

    2013-01-01

    Bryophytes cover large territories in cold biomes, where they control soil temperature regime, and therefore permafrost, carbon and nutrient dynamics. The mechanisms of this control remain unclear. We quantified the dependence of soil temperature fluctuations under bryophyte mats on the interplay of

  11. Experimental investigations of turbulent temperature fluctuations and phase angles in ASDEX Upgrade

    Science.gov (United States)

    Freethy, Simon

    2017-10-01

    A complete experimental understanding of the turbulent fluctuations in tokamak plasmas is essential for providing confidence in the extrapolation of heat transport models to future experimental devices and reactors. Guided by ``predict first'' nonlinear gyrokinetic simulations with the GENE code, two new turbulence diagnostics were designed and have been installed on ASDEX Upgrade (AUG) to probe the fundamentals of ion-scale turbulent electron heat transport. The first, a 30-channel correlation ECE (CECE) radiometer, measures radial profiles (0.5 a levels are in the range 0.3 - 0.8%. The second is formed by the addition of a reflectometer on the same line of sight to enable measurements of the phase angle between turbulent density and temperature fluctuations. Design predictions are followed by a more traditional ``post-diction'' validation study with GENE. Using a cutting edge synthetic diagnostic GENE shows a factor 1.6 - 2 over-prediction of the fluctuation amplitude, while matching both ion and electron heat fluxes within experimental error. Detailed sensitivity scans are underway to understand the robustness of this disagreement and a detailed assessment of the experimental errors has been carried out. The discrepancy opens questions about the role of multi-scale turbulence physics, but also indicates the need for the comparison of more experimental turbulence properties to have a more complete validation hierarchy. In an effort to understand the discrepancy, predictions of the nT-phase and the radial correlation length have been made along with an assessment of their sensitivity to experimental errors. Comparison to experimental measurements will be discussed. This work is supported in part by the US DOE under Grants DE-SC0006419 and DE-SC0017381. This work has also received funding from the European Union's Horizon 2020 research and innovation programme under Grant agreement number 633053.

  12. Measurement of Turbulent Pressure and Temperature Fluctuations in a Gas Turbine Combustor

    Science.gov (United States)

    Povinelli, Louis (Technical Monitor); LaGraff, John E.; Bramanti, Cristina; Pldfield, Martin; Passaro, Andrea; Biagioni, Leonardo

    2004-01-01

    The report summarizes the results of the redesign efforts directed towards the gas-turbine combustor rapid-injector flow diagnostic probe developed under sponsorship of NASA-GRC and earlier reported in NASA-CR-2003-212540. Lessons learned during the theoretical development, developmental testing and field-testing in the previous phase of this research were applied to redesign of both the probe sensing elements and of the rapid injection device. This redesigned probe (referred to herein as Turboprobe) has been fabricated and is ready, along with the new rapid injector, for field-testing. The probe is now designed to capture both time-resolved and mean total temperatures, total pressures and, indirectly, one component of turbulent fluctuations.

  13. Shear-stress fluctuations and relaxation in polymer glasses

    Science.gov (United States)

    Kriuchevskyi, I.; Wittmer, J. P.; Meyer, H.; Benzerara, O.; Baschnagel, J.

    2018-01-01

    We investigate by means of molecular dynamics simulation a coarse-grained polymer glass model focusing on (quasistatic and dynamical) shear-stress fluctuations as a function of temperature T and sampling time Δ t . The linear response is characterized using (ensemble-averaged) expectation values of the contributions (time averaged for each shear plane) to the stress-fluctuation relation μsf for the shear modulus and the shear-stress relaxation modulus G (t ) . Using 100 independent configurations, we pay attention to the respective standard deviations. While the ensemble-averaged modulus μsf(T ) decreases continuously with increasing T for all Δ t sampled, its standard deviation δ μsf(T ) is nonmonotonic with a striking peak at the glass transition. The question of whether the shear modulus is continuous or has a jump singularity at the glass transition is thus ill posed. Confirming the effective time-translational invariance of our systems, the Δ t dependence of μsf and related quantities can be understood using a weighted integral over G (t ) .

  14. Weak antilocalization and conductance fluctuation in a single crystalline Bi nanowire

    International Nuclear Information System (INIS)

    Kim, Jeongmin; Lee, Seunghyun; Kim, MinGin; Lee, Wooyoung; Brovman, Yuri M.; Kim, Philip

    2014-01-01

    We present the low temperature transport properties of an individual single-crystalline Bi nanowire grown by the on-film formation of nanowire method. The temperature dependent resistance and magnetoresistance of Bi nanowires were investigated. The phase coherence length was obtained from the fluctuation pattern of the magnetoresistance below 40 K using universal conductance fluctuation theory. The obtained temperature dependence of phase coherence length and the fluctuation amplitude indicates that the transport of electrons shows 2-dimensional characteristics originating from the surface states. The temperature dependence of the coherence length derived from the weak antilocalization effect using the Hikami–Larkin–Nagaoka model is consistent with that from the universal conductance fluctuations theory

  15. Assessment of Fluctuation Patterns Similarity in Temperature and Vapor Pressure Using Discrete Wavelet Transform

    Directory of Open Access Journals (Sweden)

    A. Araghi

    2014-12-01

    Full Text Available Period and trend are two main effective and important factors in hydro-climatological time series and because of this importance, different methods have been introduced and applied to study of them, until now. Most of these methods are statistical basis and they are classified in the non-parametric tests. Wavelet transform is a mathematical based powerful method which has been widely used in signal processing and time series analysis in recent years. In this research, trend and main periodic patterns similarity in temperature and vapor pressure has been studied in Babolsar, Tehran and Shahroud synoptic stations during 55 years period (from 1956 to 2010, using wavelet method and the sequential Mann-Kendall trend test. The results show that long term fluctuation patterns in temperature and vapor pressure have more correlations in the arid and semi-arid climates, as well as short term oscillation patterns in temperature and vapor pressure in the humid climates, and these dominant periods increase with the aridity of region.

  16. Description of an identification method of thermocouple time constant based on application of recursive numerical filtering to temperature fluctuation

    International Nuclear Information System (INIS)

    Bernardin, B.; Le Guillou, G.; Parcy, JP.

    1981-04-01

    Usual spectral methods, based on temperature fluctuation analysis, aiming at thermocouple time constant identification are using an equipment too much sophisticated for on-line application. It is shown that numerical filtering is optimal for this application, the equipment is simpler than for spectral methods and less samples of signals are needed for the same accuracy. The method is described and a parametric study was performed using a temperature noise simulator [fr

  17. Simulation of leaf photosynthesis of C3 plants under fluctuating light and different temperatures

    DEFF Research Database (Denmark)

    Öztürk, Isik; Holst, Niels; Ottosen, Carl-Otto

    2012-01-01

    An induction-dependent empirical model was developed to simulate the C3 leaf photosynthesis under fluctuating light and different temperatures. The model also takes into account the stomatal conductance when the light intensity just exceeds the compensation point after a prolonged period...... of darkness (initial stomatal conductance, ). The model was parameterized for both Chrysanthemum morifolium and Spinacia oleracea by artificially changing the induction states of the leaves in the climate chamber. The model was tested under natural conditions that were including frequent light flecks due...... to partial cloud cover and varying temperatures. The temporal course of observed photosynthesis rate and the carbon gain was compared to the simulation. The ability of the current model to predict the carbon assimilation rate was assessed using different statistical indexes. The model predictions were...

  18. Large-eddy simulations of velocity and temperature fluctuations in hot and cold fluids mixing in a tee junction with an upstream straight or elbow main pipe

    International Nuclear Information System (INIS)

    Lu, T.; Attinger, D.; Liu, S.M.

    2013-01-01

    Highlights: • Temperature and velocity fluctuations in a tee junction are predicted using LES. • The numerical results are in good agreement with the experimental data. • Upstream elbow pipe has significant influence on those fluctuations. -- Abstract: Thermal striping resulting in thermal fatigue is an important safety issue for nuclear power plants. In this work, temperature and velocity fluctuations in hot and cold fluids mixing in a tee junction with the main pipe connected either to an upstream straight or elbow pipe have been numerically predicted using large-eddy simulations (LES) on the FLUENT platform with the assumption of fully-developed velocity at both main and branch pipe inlets. The numerical results for the case with an upstream straight pipe were found to be in reasonable agreement with the available experimental data. The reason for the small discrepancy between the numerical results and experimental data can be attributed to the turbulence velocity being 10% of the fully-developed velocity at the main and branch pipe inlets in the LES calculations, while in the experiments the turbulence velocity was about 10% of the average velocity upstream of the tee junction. The simulated normalized mean and root-mean square (RMS) temperatures and the velocities at both straight and elbow tees were then compared, as well as the power spectrum densities (PSD) of the temperature fluctuations. The elbow pipe upstream of the main pipe has a significant influence on the mixing, resulting in increased temperature and velocity fluctuations. The flow pattern of the elbow tee deviates from the wall jet due to the secondary flow in the upstream elbow pipe

  19. Study of ion cyclotron fluctuations. Application to the measurement of the ion temperature

    International Nuclear Information System (INIS)

    Lehner, T.

    1982-02-01

    A diagnostic technique for measuring the ion temperature of tokamak-type plasmas was developed. A theoretical study was made of the form factor associated with the ion cyclotron waves; the influence of Te/Ti on the frequency of the extrema of the dispersion relations was demonstrated. The different effects able to modify the spectral density (in particular the drift velocity and the impurities) were investigated. The mechanisms of suprathermal excitation of cylotron waves in tokamaks were reviewed together with the various effects stabilizing the spectrum: collisions, shear of the magnetic field lines. The experimental realization of the diagnostic technique is based on Thomson scattering by the electron density fluctuations [fr

  20. A hybrid computation method for determining fluctuations of temperature in branched structures

    International Nuclear Information System (INIS)

    Czomber, L.

    1982-01-01

    A hybrid computation method for determining temperature fluctuations at discrete points of slab like geometries is developed on the basis of a new formulation of the finite difference method. For this purpose, a new finite difference method is combined with an exact solution of the heat equation within the range of values of the Laplace transformation. Whereas the exact solution can be applied to arbitraryly large ranges, the finite difference formulation is given for structural ranges which need finer discretization. The boundary conditions of the exact solution are substituted by finite difference terms for the boundary residual flow or an internal heat source, depending on the problem. The resulting system of conditional equations contains only the node parameters of the finite difference method. (orig.) [de

  1. Giant current fluctuations in an overheated single-electron transistor

    Science.gov (United States)

    Laakso, M. A.; Heikkilä, T. T.; Nazarov, Yuli V.

    2010-11-01

    Interplay of cotunneling and single-electron tunneling in a thermally isolated single-electron transistor leads to peculiar overheating effects. In particular, there is an interesting crossover interval where the competition between cotunneling and single-electron tunneling changes to the dominance of the latter. In this interval, the current exhibits anomalous sensitivity to the effective electron temperature of the transistor island and its fluctuations. We present a detailed study of the current and temperature fluctuations at this interesting point. The methods implemented allow for a complete characterization of the distribution of the fluctuating quantities, well beyond the Gaussian approximation. We reveal and explore the parameter range where, for sufficiently small transistor islands, the current fluctuations become gigantic. In this regime, the optimal value of the current, its expectation value, and its standard deviation differ from each other by parametrically large factors. This situation is unique for transport in nanostructures and for electron transport in general. The origin of this spectacular effect is the exponential sensitivity of the current to the fluctuating effective temperature.

  2. Changes in atomic populations due to edge plasma fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Hammami, R., E-mail: ramzi.hammami@univ-provence.fr [PIIM, Aix-Marseille Université and CNRS, centre Saint Jérôme, Marseille 13397 (France); Capes, H. [PIIM, Aix-Marseille Université and CNRS, centre Saint Jérôme, Marseille 13397 (France); Catoire, F. [CELIA, Université de Bordeaux 1 and CNRS, Domaine du Haut Carré, Talence 33405 (France); Godbert-Mouret, L.; Koubiti, M.; Marandet, Y.; Mekkaoui, A.; Rosato, J.; Stamm, R. [PIIM, Aix-Marseille Université and CNRS, centre Saint Jérôme, Marseille 13397 (France)

    2013-07-15

    The population balance of atoms or ions in an edge plasma is calculated in the presence of fluctuating density or temperature. We have used a stochastic model taking advantage of the knowledge of the plasma parameter statistical properties, and assuming a stepwise constant stochastic process for the fluctuating variable. The model is applied to simplified atomic systems such as three level hydrogen atoms or the ionization balance of carbon affected by electronic temperature or density fluctuations obeying a gamma PDF, and an exponential waiting time distribution.

  3. Analysis of interference on over-temperature protection value ΔT in nuclear power plant

    International Nuclear Information System (INIS)

    Chen Yongwei; Fu Jingqiang

    2015-01-01

    In nuclear power plant, the over-temperature protection value ΔT prevents nucleate from boiling and protects the fuel cladding. This paper focused on the fluctuation of ΔT, which is one of the common-mode failures. After sensitivity analysis and simulations of explanatory variables on over-temperature protection value, the sources and objects of the interference are located. And according to investigations on the fluctuation phenomena, the cable layout design defects are confirmed as the causes. The solutions were thus given and successfully verified by on-site implementation. (authors)

  4. Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations.

    Science.gov (United States)

    Miao, Xinyu; Yin, Longfei; Zhuang, Wei; Luo, Bin; Dang, Anhong; Chen, Jingbiao; Guo, Hong

    2011-08-01

    We demonstrate an external-cavity laser system using an anti-reflection coated laser diode as gain medium with about 60 nm fluorescence spectrum, and a Rb Faraday anomalous dispersion optical filter (FADOF) as frequency-selecting element with a transmission bandwidth of 1.3 GHz. With 6.4% optical feedback, a single stable longitudinal mode is obtained with a linewidth of 69 kHz. The wavelength of this laser is operating within the center of the highest transmission peak of FADOF over a diode current range from 55 mA to 142 mA and a diode temperature range from 15 °C to 35 °C, thus it is immune to the fluctuations of current and temperature.

  5. Critical thermal limits affected differently by developmental and adult thermal fluctuations

    DEFF Research Database (Denmark)

    Salachan, Paul Vinu; Sørensen, Jesper Givskov

    2017-01-01

    the developmental and adult life stages. For developmental acclimation, we found mildly detrimental effects of high amplitude fluctuations for critical thermal minima, while the critical thermal maxima showed a beneficial response to higher amplitude fluctuations. For adult acclimation involving shifts between...... fluctuating and constant regimes, cold tolerance was shown to be dictated by developmental temperature conditions irrespective of the adult treatments, while the acquired heat tolerance was readily lost when flies developed at fluctuating temperature were shifted to a constant regime as adults. Interestingly......, we also found that effect of fluctuations at any life stage was gradually lost with prolonged adult maintenance suggesting a more prominent effect of fluctuations during developmental compared to adult acclimation in Drosophila melanogaster....

  6. Molecular dynamics study of CO2 hydrate dissociation: Fluctuation-dissipation and non-equilibrium analysis.

    Science.gov (United States)

    English, Niall J; Clarke, Elaine T

    2013-09-07

    Equilibrium and non-equilibrium molecular dynamics (MD) simulations have been performed to investigate thermal-driven break-up of planar CO2 hydrate interfaces in liquid water at 300-320 K. Different guest compositions, at 85%, 95%, and 100% of maximum theoretical occupation, led to statistically-significant differences in the observed initial dissociation rates. The melting temperatures of each interface were estimated, and dissociation rates were observed to be strongly dependent on temperature, with higher dissociation rates at larger over-temperatures vis-à-vis melting. A simple coupled mass and heat transfer model developed previously was applied to fit the observed dissociation profiles, and this helps to identify clearly two distinct régimes of break-up; a second well-defined region is essentially independent of composition and temperature, in which the remaining nanoscale, de facto two-dimensional system's lattice framework is intrinsically unstable. From equilibrium MD of the two-phase systems at their melting point, the relaxation times of the auto-correlation functions of fluctuations in number of enclathrated guest molecules were used as a basis for comparison of the variation in the underlying, non-equilibrium, thermal-driven dissociation rates via Onsager's hypothesis, and statistically significant differences were found, confirming the value of a fluctuation-dissipation approach in this case.

  7. Localized description of valence fluctuations

    International Nuclear Information System (INIS)

    Alascio, B.; Allub, R.; Aligia, A.

    1979-07-01

    The authors set up a model for intermediate valence equivalent to the ''atomic'' limit of the Anderson Hamiltonian. Detailed analysis of this model shows that most of the essential characteristics of valence fluctuators are already present in this crudely simplified Hamiltonian. The spin-spin and the 4f charge-charge correlation functions are studied and it is shown that it is possible to define a spin fluctuation frequency ωsub(s.f.) and a charge fluctuation frequency ωsub(ch.f.).ωsub(s.f.) and ωsub(ch.f.) can differ considerably for some values of the parameters of the model. The magnetic susceptibility and the specific heat are calculated as functions of temperature and it is shown how the results simulate the behaviour found in valence fluctuators. (author)

  8. Study by neutron diffusion of magnetic fluctuations in iron in the curie temperature region; Etude des fluctuations d'aimantation dans le fer au voisinage de la temperature de curie par diffusion des neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Ericson-Galula, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-12-15

    The critical diffusion of neutrons in iron is due to the magnetisation fluctuations which occur in ferromagnetic substances in the neighbourhood of the Curie temperature. The fluctuations can be described in correlation terms; a correlation function {gamma}{sub R{sub vector}} (t) is defined, {gamma}{sub R{sub vector}} (t) = mean value of the scalar product of a reference spin and a spin situated at a distance (R) from the first and considered at the instant t. In chapter I we recall the generalities on neutron diffusion cross-sections; a brief summary is given of the theory of VAN HOVE, who has shown that the magnetic diffusion cross section of neutrons is the Fourier transformation of the correlation function. In chapter Il we study the spatial dependence of the correlation function, assumed to be independent of time. It can then be characterised by two parameters K{sub 1} and r{sub 1}, by means of which the range and intensity of the correlations can be calculated respectively. After setting out the principle of the measurement of these parameters, we shall describe the experimental apparatus. The experimental values obtained are in good agreement with the calculations, and the agreement is better if it is supposed that the second and not the first neighbours of an iron atom are magnetically active, as proposed by Neel. In chapter III we study the evolution with time of the correlation function; this evolution is characterised by a parameter {lambda} depending on the temperature, which occurs in the diffusion equation obeyed by the magnetisation fluctuations: {delta}M{sub vector}/{delta}t = {lambda} {nabla}{sup 2} M{sub vector}. The principle of the measurement of {lambda} is given, after which the modifications carried out on the experimental apparatus mentioned in chapter II are described. The results obtained are then discussed and compared with the theoretical forecasts of De Gennes, mode by using the

  9. Skewness of the cosmic microwave background temperature fluctuations due to the non-linear gravitational instability

    International Nuclear Information System (INIS)

    Munshi, D.; Souradeep, T.; Starobinsky, A.A.

    1995-01-01

    The skewness of the temperature fluctuations of the cosmic microwave background (CMB) produced by initially Gaussian adiabatic perturbations with the flat (Harrison-Zeldovich) spectrum, which arises due to non-linear corrections to a gravitational potential at the matter-dominated stage, is calculated quantitatively. For the standard CDM model, the effect appears to be smaller than expected previously and lies below the cosmic variance limit even for small angles. The sign of the skewness is opposite to that of the skewness of density perturbations. (author)

  10. Computational characterization of ignition regimes in a syngas/air mixture with temperature fluctuations

    KAUST Repository

    Pal, Pinaki

    2016-07-27

    Auto-ignition characteristics of compositionally homogeneous reactant mixtures in the presence of thermal non-uniformities and turbulent velocity fluctuations were computationally investigated. The main objectives were to quantify the observed ignition characteristics and numerically validate the theory of the turbulent ignition regime diagram recently proposed by Im et al. 2015 [29] that provides a framework to predict ignition behavior . a priori based on the thermo-chemical properties of the reactant mixture and initial flow and scalar field conditions. Ignition regimes were classified into three categories: . weak (where deflagration is the dominant mode of fuel consumption), . reaction-dominant strong, and . mixing-dominant strong (where volumetric ignition is the dominant mode of fuel consumption). Two-dimensional (2D) direct numerical simulations (DNS) of auto-ignition in a lean syngas/air mixture with uniform mixture composition at high-pressure, low-temperature conditions were performed in a fixed volume. The initial conditions considered two-dimensional isotropic velocity spectrums, temperature fluctuations and localized thermal hot spots. A number of parametric test cases, by varying the characteristic turbulent Damköhler and Reynolds numbers, were investigated. The evolution of the auto-ignition phenomena, pressure rise, and heat release rate were analyzed. In addition, combustion mode analysis based on front propagation speed and computational singular perturbation (CSP) was applied to characterize the auto-ignition phenomena. All results supported that the observed ignition behaviors were consistent with the expected ignition regimes predicted by the theory of the regime diagram. This work provides new high-fidelity data on syngas ignition characteristics over a broad range of conditions and demonstrates that the regime diagram serves as a predictive guidance in the understanding of various physical and chemical mechanisms controlling auto

  11. Study by neutron diffusion of magnetic fluctuations in iron in the curie temperature region

    International Nuclear Information System (INIS)

    Ericson-Galula, M.

    1958-12-01

    The critical diffusion of neutrons in iron is due to the magnetisation fluctuations which occur in ferromagnetic substances in the neighbourhood of the Curie temperature. The fluctuations can be described in correlation terms; a correlation function γ R vector (t) is defined, γ R vector (t) = 0 vector (0) S R vector (t)> mean value of the scalar product of a reference spin and a spin situated at a distance (R) from the first and considered at the instant t. In chapter I we recall the generalities on neutron diffusion cross-sections; a brief summary is given of the theory of VAN HOVE, who has shown that the magnetic diffusion cross section of neutrons is the Fourier transformation of the correlation function. In chapter Il we study the spatial dependence of the correlation function, assumed to be independent of time. It can then be characterised by two parameters K 1 and r 1 , by means of which the range and intensity of the correlations can be calculated respectively. After setting out the principle of the measurement of these parameters, we shall describe the experimental apparatus. The experimental values obtained are in good agreement with the calculations, and the agreement is better if it is supposed that the second and not the first neighbours of an iron atom are magnetically active, as proposed by Neel. In chapter III we study the evolution with time of the correlation function; this evolution is characterised by a parameter Λ depending on the temperature, which occurs in the diffusion equation obeyed by the magnetisation fluctuations: δM vector /δt = Λ ∇ 2 M vector . The principle of the measurement of Λ is given, after which the modifications carried out on the experimental apparatus mentioned in chapter II are described. The results obtained are then discussed and compared with the theoretical forecasts of De Gennes, mode by using the Heinsenberg model and a simple band model; our values in good agreement with those calculated in the Heisenberg

  12. Pairing fluctuations in trapped Fermi gases

    International Nuclear Information System (INIS)

    Viverit, Luciano; Bruun, Georg M.; Minguzzi, Anna; Fazio, Rosario

    2004-01-01

    We examine the contribution of pairing fluctuations to the superfluid order parameter for harmonically trapped atomic Fermi gases in the BCS regime. In the limit of small systems we consider, both analytically and numerically, their space and temperature dependence. We predict a parity effect, i.e., that pairing fluctuations show a maximum or a minimum at the center of the trap, depending on the value of the last occupied shell being even or odd. We propose to detect pairing fluctuations by measuring the density-density correlation function after a ballistic expansion of the gas

  13. Effect of stable and fluctuating temperatures on the life history traits of Anopheles arabiensis and An. quadriannulatus under conditions of inter- and intra-specific competition.

    Science.gov (United States)

    Davies, Craig; Coetzee, Maureen; Lyons, Candice L

    2016-06-14

    Constant and fluctuating temperatures influence important life-history parameters of malaria vectors which has implications for community organization and the malaria disease burden. The effects of environmental temperature on the hatch rate, survivorship and development rate of Anopheles arabiensis and An. quadriannulatus under conditions of inter- and intra-specific competition are studied. The eggs and larvae of laboratory established colonies were reared under controlled conditions at one constant (25 °C) and two fluctuating (20-30 °C and 18-35 °C) temperature treatments at a ratio of 1:0 or 1:1 (An. arabiensis: An. quadriannulatus). Monitoring of hatch rate, development rate and survival was done at three intervals, 6 to 8 h apart depending on developmental stage. Parametric ANOVAs were used where assumptions of equal variances and normality were met, and a Welch ANOVA where equal variance was violated (α = 0.05). Temperature significantly influenced the measured life-history traits and importantly, this was evident when these species co-occurred. A constant temperature resulted in a higher hatch rate in single species, larval treatments (P competitor (P < 0.05). The influence of temperature treatment on the development rate and survival from egg/larvae to adult differed across species treatments. Fluctuating temperatures incorporating the extremes influence the key life-history parameters measured here with An. arabiensis outcompeting An. quadriannulatus under these conditions. The quantification of the response variables measured here improve our knowledge of the link between temperature and species interactions and provide valuable information for modelling of vector population dynamics.

  14. BULK THERMODYNAMICS AND CHARGE FLUCTUATIONS AT NON-VANISHING BARYON DENSITY

    International Nuclear Information System (INIS)

    MIAO, C.; SCHMIDT, C.

    2007-01-01

    We present results on bulk thermodynamic quantities as well as net baryon number, strangeness and electric charge fluctuations in QCD at non-zero density and temperature obtained from lattice calculations with almost physical quark masses for two values of the lattice cut-off aT = 1/4 and 1/6. We show that with our improved p4fa3-action the cut-off effects are under control when using lattices with a temporal extent of 6 or larger and that the contribution to the equation of state, which is due to a finite chemical potential is small for μ q /T < 1. Moreover, at vanishing chemical potential, i.e. under conditions almost realized at RHIC and the LHC, quartic fluctuations of net baryon number and strangeness are large in a narrow temperature interval characterizing the transition region from the low to high temperature phase. At non-zero baryon number density, strangeness fluctuations are enhanced and correlated to fluctuations of the net baryon number. If strangeness is furthermore forced to vanish, as it may be the case in systems created in heavy ion collisions, strangeness fluctuations are significantly smaller than baryon number fluctuations

  15. Oxygen isotope fluctuations in a modern North Sea oyster (Crassostrea gigas) compared with annual variations in seawater temperature

    DEFF Research Database (Denmark)

    Ullmann, Clemens Vinzenz; Wiechert, Uwe; Korte, Christoph

    2010-01-01

    A total of 181 oxygen isotope values from sequential samples of the left shell of a modern Pacific Oyster (Crassostrea gigas) that lived on a sub-tidal oyster bank in the List Basin (North Sea, Germany) shows periodically varying values between + 1.3‰ and -2.5‰. In order to test whether these d18O...... fluctuations reflect seawater temperature changes, the isotope values of the shell were compared to actual seawater temperature variations from the region. C. gigas serves as an excellent proxy for temperature of palaeoseawater and the results show that the examined oyster precipitated its shell in d18O...... equilibrium with the ambient seawater. A cessation of the oyster shell calcification starts at water temperatures below 6 °C, at lower temperatures than previously thought for Crassostrea. For palaeoclimate investigations the termination of shell production is important because the lowest temperatures might...

  16. Conductivity fluctuation in the high temperature superconductor with planar weight disparity Y0.5Sm0.5Ba2Cu3O7-δ

    International Nuclear Information System (INIS)

    Barrera, E.W.; Rojas Sarmiento, M.P.; Rincon, L.F.; Landinez Tellez, D.A.; Roa-Rojas, J.

    2007-01-01

    The synthesis of the Y 0.5 Sm 0.5 Ba 2 Cu 3 O 7-δ superconducting material by the standard solid state reaction is reported. DC resistivity measurements reveal the improvement of the critical temperature (T c ) when substitution of exact 50-50 mix of Yttrium and Samarium is performed. A bulk T c = 101 K was determined by the criterion of the maximum in the temperature derivative of electrical resistivity. Structure characterization by means the x-ray diffraction technique shows the crystalline appropriated distribution of Yttrium and Samarium to create substantial planar weight disparity (PWD) in alternating layers. This PWD increases T c in copper-oxide superconductors. In order to examine the effect of PWD on the pairing mechanism close to T c , conductivity fluctuation analysis was performed by the method of logarithmic temperature derivative of the conductivity excess. We found the occurrence of Gaussian and genuinely critical fluctuations. Our results are in agreement with reports on YBa 2 Cu 3 O 7-δ , but an enhancement of the Gaussian fluctuation regimes was experimentally detected as a result of the PWD. The correlations of the critical exponents with the dimensionality of the fluctuation system for each Gaussian regime were performed by using the Aslamazov-Larkin theory. The genuinely critical exponent is interpreted by the 3D-XY model as corresponding with the dynamical universality class of the E-model. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Magnetoresistance in RCo2 spin-fluctuation systems

    International Nuclear Information System (INIS)

    Gratz, E.; Nowotny, H.; Enser, J.; Bauer, E.; Hense, K.

    2004-01-01

    The effect of the spin fluctuations on the field and temperature dependence of the magnetoresistance in ScCo 2 and LuCo 2 was studied. The experimental data where explained assuming two competing mechanisms determining the magnetoresistance of these substances. One is the 'normal magnetoresistance' caused by the influence of the Lorentz force on conduction electron trajectories. The other is due to the suppression of the spin fluctuations caused by an external magnetic field. This interplay give rise to a pronounced drop of the magnetoresistance towards the lower temperature range

  18. Quantum critical scaling and fluctuations in Kondo lattice materials

    Science.gov (United States)

    Yang, Yi-feng; Pines, David; Lonzarich, Gilbert

    2017-01-01

    We propose a phenomenological framework for three classes of Kondo lattice materials that incorporates the interplay between the fluctuations associated with the antiferromagnetic quantum critical point and those produced by the hybridization quantum critical point that marks the end of local moment behavior. We show that these fluctuations give rise to two distinct regions of quantum critical scaling: Hybridization fluctuations are responsible for the logarithmic scaling in the density of states of the heavy electron Kondo liquid that emerges below the coherence temperature T∗, whereas the unconventional power law scaling in the resistivity that emerges at lower temperatures below TQC may reflect the combined effects of hybridization and antiferromagnetic quantum critical fluctuations. Our framework is supported by experimental measurements on CeCoIn5, CeRhIn5, and other heavy electron materials. PMID:28559308

  19. Limits on arcsecond-scale fluctuations in the cosmic microwave background

    International Nuclear Information System (INIS)

    Knoke, J.E.; Partridge, R.B.; Ratner, M.I.; Shapiro, I.I.

    1984-01-01

    We used the NRAO Very Large Array in its C configuration at a wavelength of 6 cm to set upper limits on the rms fluctuation of sky brightness on angular scales of 6''--18'' from sources too weak to be detected individually. At the highest resolution, we establish a limit of 8 μJy per beam area on the rms sky fluctuation. If this fluctuation level is the result of a Poisson distribution of unresolved sources, each of flux density S 0 Jy, then the number density of such sources per steradian must be less than 0.08 S 0 -2 sr -1 . For alternative models in which all sources are resolved, we derive less stringent limits. Our limits on the rms sky fluctuation also establish limits on the rms temperature fluctuation ΔT for simple models of fluctuations in the cosmic microwave background: (ΔT/2.7 K) -3 and (ΔT/2.7 K) -3 for Gaussian temperature fluctuations of angular scale 6'' and 18'', respectively

  20. Manifestly non-Gaussian fluctuations in superconductor-normal metal tunnel nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Laakso, Matti [Institut fuer Theorie der Statistischen Physik, RWTH Aachen University, Aachen (Germany); Low Temperature Laboratory, Aalto University, Espoo (Finland); Heikkilae, Tero [Low Temperature Laboratory, Aalto University, Espoo (Finland); Nazarov, Yuli [Kavli Institute of Nanoscience, Delft University of Technology, Delft (Netherlands)

    2013-07-01

    Recently, temperature fluctuation statistics has been studied in non-interacting islands and overheated single-electron transistors. We propose a mesoscopic setup which exhibits strong and manifestly non-Gaussian fluctuations of energy and temperature when suitably driven out of equilibrium. The setup consists of a normal metal island (N) coupled by tunnel junctions (I) to two superconducting leads (S), forming a SINIS structure, and is biased near the threshold voltage for quasiparticle tunneling, eV ∼ 2Δ. The fluctuations can be measured by monitoring the time-dependent electric current through the system, which makes the setup suitable for the realization of feedback schemes which allow to stabilize the temperature to the desired value.

  1. Fundamental study of FC-72 pool boiling surface temperature fluctuations and bubble behavior

    Science.gov (United States)

    Griffin, Alison R.

    A heater designed to monitor surface temperature fluctuations during pool boiling experiments while the bubbles were simultaneously being observed has been fabricated and tested. The heat source was a transparent indium tin oxide (ITO) layer commercially deposited on a fused quartz substrate. Four copper-nickel thin film thermocouples (TFTCs) on the heater surface measured the surface temperature, while a thin layer of sapphire or fused silica provided electrical insulation between the TFTCs and the ITO. The TFTCs were micro-fabricated using the liftoff process to deposit the nickel and copper metal films. The TFTC elements were 50 mum wide and overlapped to form a 25 mum by 25 mum junction. TFTC voltages were recorded by a DAQ at a sampling rate of 50 kHz. A high-speed CCD camera recorded bubble images from below the heater at 2000 frames/second. A trigger sent to the camera by the DAQ synchronized the bubble images and the surface temperature data. As the bubbles and their contact rings grew over the TFTC junction, correlations between bubble behavior and surface temperature changes were demonstrated. On the heaters with fused silica insulation layers, 1--2°C temperature drops on the order of 1 ms occurred as the contact ring moved over the TFTC junction during bubble growth and as the contact ring moved back over the TFTC junction during bubble departure. These temperature drops during bubble growth and departure were due to microlayer evaporation and liquid rewetting the heated surface, respectively. Microlayer evaporation was not distinguished as the primary method of heat removal from the surface. Heaters with sapphire insulation layers did not display the measurable temperature drops observed with the fused silica heaters. The large thermal diffusivity of the sapphire compared to the fused silica was determined as the reason for the absence of these temperature drops. These findings were confirmed by a comparison of temperature drops in a 2-D simulation of

  2. A novel self-powered wireless temperature sensor based on thermoelectric generators

    International Nuclear Information System (INIS)

    Shi, Yongming; Wang, Yao; Deng, Yuan; Gao, Hongli; Lin, Zhen; Zhu, Wei; Ye, Huihong

    2014-01-01

    Highlights: • A self-powered temperature sensor, based on thermoelectric generator, is presented. • This novel sensor can operate without any batteries or other power sources. • This sensor combines signal sensing and power supplying together. • The measurement error is 0.5 K during the sensor operating period. • This sensor can detect temperature fluctuation situations such as fire disaster. - Abstract: A novel self-powered wireless temperature sensor has been designed and presented for solving the power supply problem of temperature sensors. This sensor can autonomously measure temperature under positive temperature fluctuation situations. The self-powered characteristic, realized by using four thermoelectric generators, enables the sensor to operate without any batteries or other power sources. In order to obtain these features, attentions are not only focused on the method to combine signal sensing and power generating together, but also on the method to improve measurement accuracy. Experimental results confirm that this novel sensor has excellent measurement accuracy. The measured performance is consistent with the calculated characteristics. For typical application, this self-powered temperature sensor can detect fire before it develops to flashover state. And the maximum detection distance grows with the growth of burning rate. All the results indicate this innovative sensor is a promising self-powered device which can be used to measure temperature value in positive temperature fluctuation situations

  3. Modeling 100,000-year climate fluctuations in pre-Pleistocene time series

    Science.gov (United States)

    Crowley, Thomas J.; Kim, Kwang-Yul; Mengel, John G.; Short, David A.

    1992-01-01

    A number of pre-Pleistocene climate records exhibit significant fluctuations at the 100,000-year (100-ky) eccentricity period, before the time of such fluctuations in global ice volume. The origin of these fluctuations has been obscure. Results reported here from a modeling study suggest that such a response can occur over low-altitude land areas involved in monsoon fluctuations. The twice yearly passage of the sun across the equator and the seasonal timing of perihelion interact to increase both 100-ky and 400-ky power in the modeled temperature field. The magnitude of the temperature response is sufficiently large to leave an imprint on the geologic record, and simulated fluctuations resemble those found in records of Triassic lake levels.

  4. Fluctuations and correlations of conserved charges near the QCD critical point

    International Nuclear Information System (INIS)

    Fu Weijie; Wu Yueliang

    2010-01-01

    We study the fluctuations and correlations of conserved charges, such as the baryon number, the electric charge and the strangeness, at the finite temperature and the nonzero baryon chemical potential in an effective model. The fluctuations are calculated up to the fourth-order and the correlations to the third-order. We find that the second-order fluctuations and correlations have a peak or valley structure when the chiral phase transition takes place with the increase of the baryon chemical potential; the third-order fluctuations and correlations change their signs during the chiral phase transition; and the fourth-order fluctuations have two maxima and one minimum. We also depict contour plots of various fluctuations and correlations of conserved charges in the plane of temperature and the baryon chemical potential. It is found that higher-order fluctuations and correlations of conserved charges are superior to the second-order ones to be used to search for the critical point in heavy ion collision experiments.

  5. Effects of fluctuating temperature and food availability on reproduction and lifespan

    OpenAIRE

    Schwartz, Tonia S.; Pearson, Phillip; Dawson, John; Allison, David B.; Gohlke, Julia M.

    2016-01-01

    Experimental studies on energetics and aging often remove two major factors that in part regulate the energy budget in a normal healthy individual: reproduction and fluctuating environmental conditions that challenge homeostasis. Here we use the cyclical parthenogenetic Daphnia pulex to evaluate the role of a fluctuating thermal environment on both reproduction and lifespan across six food concentrations. We test the hypotheses that (1) caloric restriction extends lifespan; (2) maximal reprod...

  6. Unsteady Correlation between pressure and Temperature Field on Impinging Plate for Dual Underexpanded Jets

    Institute of Scientific and Technical Information of China (English)

    Minoru YAGA; Hiroyuki HIGA; MATSUDA; lzuru SENAHA

    2009-01-01

    eady behavior of the jets. After the confirmation of the cor-relation, a simple way to find the severe fluctuating region can be provided according to the two dimensional un-steady temperature images without a lot of unsteady pressure measurements.

  7. Effects of thermal and particle-number fluctuations on the giant isovector dipole modes for the 58Ni nucleus in the finite-temperature random-phase approximation

    International Nuclear Information System (INIS)

    Nguyen Dinhdang; Nguyen Zuythang

    1988-01-01

    Using the realistic single-particle energy spectrum obtained in the Woods-Saxon nucleon mean-field potential, we calculate the BCS pairing gap for 58 Ni as a function of temperature taking into account the thermal and particle-number fluctuations. The strength distributions of the electric dipole transitions and the centroids of the isovector giant dipole resonance (IV-GDR) are computed in the framework of the finite-temperature random-phase approximation (RPA) based on the Hamiltonian of the quasiparticle-phonon nuclear model with separate dipole forces. It is shown that the change of the pairing gap at finite temperature can noticeably influence the IV-GDR localisation in realistic nuclei. By taking both thermal and quasiparticle fluctuations in the pairing gap into account the effect of the phase transition from superfluid to normal in the temperature dependence of the IV-GDR centroid is completely smeared out. (author)

  8. Study of energy fluctuation effect on the statistical mechanics of equilibrium systems

    International Nuclear Information System (INIS)

    Lysogorskiy, Yu V; Wang, Q A; Tayurskii, D A

    2012-01-01

    This work is devoted to the modeling of energy fluctuation effect on the behavior of small classical thermodynamic systems. It is known that when an equilibrium system gets smaller and smaller, one of the major quantities that becomes more and more uncertain is its internal energy. These increasing fluctuations can considerably modify the original statistics. The present model considers the effect of such energy fluctuations and is based on an overlapping between the Boltzmann-Gibbs statistics and the statistics of the fluctuation. Within this o verlap statistics , we studied the effects of several types of energy fluctuations on the probability distribution, internal energy and heat capacity. It was shown that the fluctuations can considerably change the temperature dependence of internal energy and heat capacity in the low energy range and at low temperatures. Particularly, it was found that, due to the lower energy limit of the systems, the fluctuations reduce the probability for the low energy states close to the lowest energy and increase the total average energy. This energy increasing is larger for lower temperatures, making negative heat capacity possible for this case.

  9. Computer simulations of phospholipid - membrane thermodynamic fluctuations

    DEFF Research Database (Denmark)

    Pedersen, U.R.; Peters, Günther H.j.; Schröder, T.B.

    2008-01-01

    This paper reports all-atom computer simulations of five phospholipid membranes, DMPC, DPPC, DMPG, DMPS, and DMPSH, with a focus on the thermal equilibrium fluctuations of volume, energy, area, thickness, and order parameter. For the slow fluctuations at constant temperature and pressure (defined...... membranes, showing a similar picture. The cause of the observed strong correlations is identified by splitting volume and energy into contributions from tails, heads, and water, showing that the slow volume-energy fluctuations derive from the tail region’s van der Waals interactions and are thus analogous...

  10. THE EFFECTS OF WATER TEMPERATURE REGIME FLUCTUATIONS ON THE EMBRYONIC DEVELOPMENT OF SILVER CARP (HYPOPHTHALMICHTHYS MOLITRIX

    Directory of Open Access Journals (Sweden)

    А. Vodyanitskyi

    2015-03-01

    Full Text Available Purpose. To determine the effect of temperature regime fluctuations on the development of silver carp embryos, as well as the activity of enzymatic reactions in fish eggs. Methodology. The studies were conducted at the experimental station of the Institute of Hydrobiology of Bila Tserkov, Ukrainian National Academy of Sciences, from June to July. The biological materials were silver carp eggs, embryos and larvae. The dissolved oxygen content was determined using the Winkler method at four o’clock in the morning. Alkalinity phosphatase and LDG activity were determined using a set of reagents «Alkalinity phosphatase» and «LDG» (Phyllis diagnosis, Ukraine. SDH activity was determined by Vexy. The activity of Na, K-Mg-dependent-activated ATPase was determined as growth of inorganic phosphorus in the incubation medium by Kindratova M.N. et al. Protease activity was determined using immune enzymatic method of Tyurina et al. The obtained results were processed statistically in Statistica 5.5, Epaprobit analysis was used for calculating LC/EC values (Version 1.5. Findings The results showed that a delay of embryonic stages of development occur, the number of abnormal embryos increases, and the reproduction efficiency of fish reduces with an increase in water temperature and decrease in the dissolved oxygen content in water. The temperature factor had a significant effect on the activity of key enzymes, in particular the energetic metabolism changed from aerobic to anaerobic. Originality. It was found a negative effect of abiotic factors of water medium and drastic fluctuations in water temperature and gas regime of water bodies on the course of embryogenesis of silver carp that is especially important in the conditions of climate change. Practical value. The obtained results showed that the level of optimum and unfavorable environmental factors during the change of embryonic stages in embryonic and larval fish can be established based on the

  11. Lake level fluctuations boost toxic cyanobacterial "oligotrophic blooms".

    Directory of Open Access Journals (Sweden)

    Cristiana Callieri

    Full Text Available Global warming has been shown to strongly influence inland water systems, producing noticeable increases in water temperatures. Rising temperatures, especially when combined with widespread nutrient pollution, directly favour the growth of toxic cyanobacteria. Climate changes have also altered natural water level fluctuations increasing the probability of extreme events as dry periods followed by heavy rains. The massive appearance of Dolichospermum lemmermannii ( = planktonic Anabaena, a toxic species absent from the pelagic zone of the subalpine oligotrophic Lake Maggiore before 2005, could be a consequence of the unusual fluctuations of lake level in recent years. We hypothesized that these fluctuations may favour the cyanobacterium as result of nutrient pulses from the biofilms formed in the littoral zone when the lake level is high. To help verify this, we exposed artificial substrates in the lake, and evaluated their nutrient enrichment and release after desiccation, together with measurements of fluctuations in lake level, precipitation and D. lemmermannii population. The highest percentage of P release and the lowest C:P molar ratio of released nutrients coincided with the summer appearance of the D. lemmermannii bloom. The P pulse indicates that fluctuations in level counteract nutrient limitation in this lake and it is suggested that this may apply more widely to other oligotrophic lakes. In view of the predicted increase in water level fluctuations due to climate change, it is important to try to minimize such fluctuations in order to mitigate the occurrence of cyanobacterial blooms.

  12. Enhanced superconducting transition temperature in hyper-interlayer-expanded FeSe despite the suppressed electronic nematic order and spin fluctuations

    Science.gov (United States)

    Hrovat, Matevž Majcen; Jeglič, Peter; Klanjšek, Martin; Hatakeda, Takehiro; Noji, Takashi; Tanabe, Yoichi; Urata, Takahiro; Huynh, Khuong K.; Koike, Yoji; Tanigaki, Katsumi; Arčon, Denis

    2015-09-01

    The superconducting critical temperature, Tc, of FeSe can be dramatically enhanced by intercalation of a molecular spacer layer. Here we report on a 77Se,7Li , and 1H nuclear magnetic resonance (NMR) study of the powdered hyper-interlayer-expanded Lix(C2H8N2) yFe2 -zSe2 with a nearly optimal Tc=45 K. The absence of any shift in the 7Li and 1H NMR spectra indicates a complete decoupling of interlayer units from the conduction electrons in FeSe layers, whereas nearly temperature-independent 7Li and 1H spin-lattice relaxation rates are consistent with the non-negligible concentration of Fe impurities present in the insulating interlayer space. On the other hand, the strong temperature dependence of 77Se NMR shift and spin-lattice relaxation rate, 1 /77T1 , is attributed to the holelike bands close to the Fermi energy. 1 /77T1 shows no additional anisotropy that would account for the onset of electronic nematic order down to Tc. Similarly, no enhancement in 1 /77T1 due to the spin fluctuations could be found in the normal state. Yet, a characteristic power-law dependence 1 /77T1∝T4.5 still complies with the Cooper pairing mediated by spin fluctuations.

  13. Microstructural studies of 35 degrees C copper Ni-Ti orthodontic wire and TEM confirmation of low-temperature martensite transformation.

    Science.gov (United States)

    Brantley, William A; Guo, Wenhua; Clark, William A T; Iijima, Masahiro

    2008-02-01

    Previous temperature-modulated differential scanning calorimetry (TMDSC) study of nickel-titanium orthodontic wires revealed a large exothermic low-temperature peak that was attributed to transformation within martensitic NiTi. The purpose of this study was to use transmission electron microscopy (TEM) to verify this phase transformation in a clinically popular nickel-titanium wire, identify its mechanism and confirm other phase transformations found by TMDSC, and to provide detailed information about the microstructure of this wire. The 35 degrees C Copper nickel-titanium wire (Ormco) with cross-section dimensions of 0.016 in. x 0.022 in. used in the earlier TMDSC investigation was selected. Foils were prepared for TEM analyses by mechanical grinding, polishing, dimpling, ion milling and plasma cleaning. Standard bright-field and dark-field TEM images were obtained, along with convergent-beam electron diffraction patterns. A cryo-stage with the electron microscope (Phillips CM 200) permitted the specimen to be observed at -187, -45, and 50 degrees C, as well as at room temperature. Microstructures were also observed with an optical microscope and a scanning electron microscope. Room temperature microstructures had randomly oriented, elongated grains that were twinned. Electron diffraction patterns confirmed that phase transformations took place over temperature ranges previously found by TMDSC. TEM observations revealed a high dislocation density and fine-scale oxide particles, and that twinning is the mechanism for the low-temperature transformation in martensitic NiTi. TEM confirmed the low-temperature peak and other phase transformations observed by TMDSC, and revealed that twinning in martensite is the mechanism for the low-temperature peak. The high dislocation density and fine-scale oxide particles in the microstructure are the result of the wire manufacturing process.

  14. Magnetic fluctuations and heavy electron superconductivity

    International Nuclear Information System (INIS)

    Norman, M.R.

    1988-01-01

    A magnetic fluctuation self-energy based on neutron scattering data is used to calculate mass renormalizations, and superconducting critical temperatures and order parameters, for various heavy electron metals

  15. Evidence for pressure-tuned quantum structural fluctuations in KCuF3

    Science.gov (United States)

    Yuan, S.; Kim, M.; Seeley, J.; Lal, S.; Abbamonte, P.; Cooper, S. L.

    2012-02-01

    Frustrated magnetic systems are currently of great interest because of the possibility that these materials exhibit novel ground states such as orbital and spin liquids. We provide evidence in the orbital-ordering material KCuF3 for pressure-tuned quantum melting of a static structural phase to a phase that dynamically fluctuates even near T ˜ 0K.[1] Pressure-dependent Raman scattering measurements show that applied pressure above P* ˜ 7kbar reverses a low temperature structural distortion in KCuF3, resulting in the development of a φ ˜ 0 fluctuational (quasielastic) response near T ˜ 0K. This pressure-induced fluctuational response is temperature independent and exhibits a characteristic fluctuation rate that is much larger than the temperature, γ >> KBT, consistent with quantum fluctuations of the CuF6 octahedra. We show that a previous developed model of pseudospin-phonon coupling qualitatively describes both the temperature- and pressure-dependent evolution of the Raman spectra of KCuF3. Work supported by the U.S. Department of Energy under Award No. DE-FG02-07ER46453 and by the National Science Foundation under Grant NSF DMR 08-56321. [4pt] [1] S. Yuan et al., arXiv:1107.1433 (2011).

  16. Fluctuation diamagnetism near surfaces and twinning planes in superconductors

    International Nuclear Information System (INIS)

    Burmistrov, S.N.; Dubovskii, L.B.

    1984-01-01

    Fluctuations of the magnetic moment and of the specific heat near surfaces and twinning planes in superconductors are studied. Fluctuations near a surface yield an additional contribution to the effect of the usual bulk fluctuations on the diamagnetic moment. Such an additional contribution has a singularity near a temperature T/sub c/3(H), which is higher than the bulk superconducting transition temperature in a magnetic field T/sub c/2(H). Depending on the strength of the magnetic field, the singularity of the additional contribution to the magnetic moment can be either logarithmic (strong fields) or of square-root type (weak fields). Experiments which could reveal the aforementioned anomalous behavior are discussed in detail

  17. Fluctuation conductivity of thin superconductive vanadium films

    International Nuclear Information System (INIS)

    Dmitrenko, I.M.; Sidorenko, A.S.; Fogel, N.Y.

    1982-01-01

    Resistive transitions into the superconductive state are studied in thin [d >T/sub c/ the experimental data on the excess conductivity of the films agree qualitatively and quantitively with Aslamazov--Larkin theory. There is no Maki--Thompson contribution to fluctuation conductivity. Near T/sub c/ the excess conductivity sigma' changes exponentially with temperature in accordance with the predictions of the theory of the critical fluctuations of the order parameter. The values of the effective charge carrier mass defined from data on sigma' for the low fluctuation and critical fluctuation regions differ markedly. This difference is within the spread of effective masses for various charge carrier groups already known for vanadium. Causes of the difference in resistive behavior for the regions T >T/sub c/ are considered

  18. Spin fluctuation theory of itinerant electron magnetism

    CERN Document Server

    Takahashi, Yoshinori

    2013-01-01

    This volume shows how collective magnetic excitations determine most of  the magnetic properties of itinerant electron magnets. Previous theories were mainly restricted to the Curie-Weiss law temperature dependence of magnetic susceptibilities. Based on the spin amplitude conservation idea including the zero-point fluctuation amplitude, this book shows that the entire temperature and magnetic field dependence of magnetization curves, even in the ground state, is determined by the effect of spin fluctuations. It also shows that the theoretical consequences are largely in agreement with many experimental observations. The readers will therefore gain a new comprehensive perspective of their unified understanding of itinerant electron magnetism.

  19. Edge fluctuations in the MST [Madison Symmetric Torus] reversed field pinch

    International Nuclear Information System (INIS)

    Almagri, A.; Assadi, S.; Beckstead, J.; Chartas, G.; Crocker, N.; Den Hartog, D.; Dexter, R.; Hokin, S.; Holly, D.; Nilles, E.; Prager, S.; Rempel, T.; Sarff, J.; Scime, E.; Shen, W.; Spragins, C.; Sprott, J.; Starr, G.; Stoneking, M.; Watts, C.

    1990-10-01

    Edge magnetic and electrostatic fluctuations are measured in the Madison Symmetric Torus (MST) reversed field pinch. At low frequency ( e > p e /p e where φ and p e are the fluctuating potential and pressure, respectively). From measurements of the fluctuating density, temperature, and potential we infer that the electrostatic fluctuation induced transport of particles and energy can be substantial. 13 refs., 11 figs

  20. Temperature effects in the valence fluctuation of europium intermetallic compounds

    International Nuclear Information System (INIS)

    Menezes, O.L.T. de; Troper, A.; Gomes, A.A.

    1978-03-01

    A previously reported model for valence fluctuations in europium compound in order to account for thermal occupation effect. Experimental results are critically discussed and new experiments are suggested

  1. Suppression of spin fluctuations in TiBe2 by high magnetic fields

    International Nuclear Information System (INIS)

    Stewart, G.R.; Smith, J.L.; Brandt, B.L.

    1982-01-01

    Measurement of the low-temperature specific heat of a well-characterized 15.6-mg sample of TiBe 2 was performed in magnetic fields of 0, 6.5, 11.4, 14.2, and 17.0 T. The results indicate a striking depression of the spin-fluctuation-caused upturn with increasing field in the lower-temperature specific heat and very little change at higher temperatures where the spin fluctuations are less predominant. A field for full suppression of the spin fluctuations is extrapolated to be above about 25 T. The field at which the onset of spin-fluctuation depression occurs is 5.2 +- 0.3 T, suggesting that the previously observed anomalies in the susceptibility and differential susceptibility of TiBe 2 at 5.5 T are connected to the onset of the depression of spin fluctuations. Furthermore, this onset of spin-fluctuation depression at 5.2 +- 0.3 T coupled with the extrapolation to full suppression above 25 T serves to unify the interpretations of previous data on TiBe 2 by Wohlfarth, by Acker et al., and by van Deursen et al. which were previously thought to be in contradiction

  2. Condensate fluctuations of interacting Bose gases within a microcanonical ensemble.

    Science.gov (United States)

    Wang, Jianhui; He, Jizhou; Ma, Yongli

    2011-05-01

    Based on counting statistics and Bogoliubov theory, we present a recurrence relation for the microcanonical partition function for a weakly interacting Bose gas with a finite number of particles in a cubic box. According to this microcanonical partition function, we calculate numerically the distribution function, condensate fraction, and condensate fluctuations for a finite and isolated Bose-Einstein condensate. For ideal and weakly interacting Bose gases, we compare the condensate fluctuations with those in the canonical ensemble. The present approach yields an accurate account of the condensate fluctuations for temperatures close to the critical region. We emphasize that the interactions between excited atoms turn out to be important for moderate temperatures.

  3. Singlet ground-state fluctuations in praseodymium observed by muon spin relaxation in PrP and PrP0.9

    International Nuclear Information System (INIS)

    Noakes, D R; Waeppling, R; Kalvius, G M; Jr, M F White; Stronach, C E

    2005-01-01

    Muon spin relaxation (μSR) in the singlet ground-state compounds PrP and PrP 0.9 reveals the unusual situation of a Lorentzian local field distribution with fast-fluctuation-limit strong-collision dynamics, a case that does not show motional narrowing. Contrary to publications by others, where PrP 0.9 was asserted to have vacancy-induced spin-glass freezing, no spin-glass freezing is seen in PrP 0.9 or PrP down to ≤100mK. This was confirmed by magnetization measurements on these same samples. In both compounds, the muon spin relaxation rate does increase as temperature decreases, demonstrating increasing strength of the paramagnetic response. A Monte Carlo model of fluctuations of Pr ions out of their crystalline-electric-field singlet ground states into their magnetic excited states (and back down again) produces the strong-collision-dynamic Lorentzian relaxation functions observed at each individual temperature but not the observed temperature dependence. This model contains no exchange interaction, and so predicts decreasing paramagnetic response as the temperature decreases, contrary to the temperature dependence observed. Comparison of the simulations to the data suggests that the exchange interaction is causing the system to approach magnetic freezing (by mode softening), but fails to complete the process

  4. Short-term variability of Cyg X-1 and the accretion disk temperature fluctuation

    International Nuclear Information System (INIS)

    Doi, K.

    1980-01-01

    Recent theoretical models which have been proposed to explain the observed time-averaged spectrum of Cyg X-1 assume that the hard x-rays are emitted by inverse-Compton mechanism from an optically thin, hot accretion disk around a black hole. Results are reported here of balloon observations (20-68 keV) and compared with previous rocket observations (1.5-25 keV). Using the results an analysis is made of the variability of the source intensity in the hard x-ray range which suggests that the variation is essentially spectral indicating that it originated from temperature fluctuation in an accretive disk. Such a model, which explains the stochastic nature of the variability, its characteristic time scale and spectral features at the same time in the context of the conventional accretion disk model for Cyg X-1, is examined. (U.K.)

  5. Superconducting fluctuations and pseudogap in high-Tc cuprates

    Directory of Open Access Journals (Sweden)

    Alloul H.

    2012-03-01

    Full Text Available Large pulsed magnetic fields up to 60 Tesla are used to suppress the contribution of superconducting fluctuations (SCF to the ab-plane conductivity above Tc in a series of YBa2Cu3O6+x. These experiments allow us to determine the field Hc’(T and the temperature Tc’ above which the SCFs are fully suppressed. A careful investigation near optimal doping shows that Tc’ is higher than the pseudogap temperature T*, which is an unambiguous evidence that the pseudogap cannot be assigned to preformed pairs. Accurate determinations of the SCF contribution to the conductivity versus temperature and magnetic field have been achieved. They can be accounted for by thermal fluctuations following the Ginzburg-Landau scheme for nearly optimally doped samples. A phase fluctuation contribution might be invoked for the most underdoped samples in a T range which increases when controlled disorder is introduced by electron irradiation. Quantitative analysis of the fluctuating magnetoconductance allows us to determine the critical field Hc2(0 which is found to be be quite similar to Hc’ (0 and to increase with hole doping. Studies of the incidence of disorder on both Tc’ and T* allow us to to propose a three dimensional phase diagram including a disorder axis, which allows to explain most observations done in other cuprate families.

  6. Studying the ICM in clusters of galaxies via surface brightness fluctuations of the cosmic X-ray background

    Science.gov (United States)

    Kolodzig, Alexander; Gilfanov, Marat; Hütsi, Gert; Sunyaev, Rashid

    2018-02-01

    We study surface brightness fluctuations of the cosmic X-ray background (CXB) using Chandra data of XBOOTES. After masking out resolved sources we compute the power spectrum of fluctuations of the unresolved CXB for angular scales from {≈ } 2 arcsec to ≈3°. The non-trivial large-scale structure (LSS) signal dominates over the shot noise of unresolved point sources on angular scales above {˜ } 1 arcmin and is produced mainly by the intracluster medium (ICM) of unresolved clusters and groups of galaxies, as shown in our previous publication. The shot-noise-subtracted power spectrum of CXB fluctuations has a power-law shape with the slope of Γ = 0.96 ± 0.06. Their energy spectrum is well described by the redshifted emission spectrum of optically thin plasma with the best-fitting temperature of T ≈ 1.3 keV and the best-fitting redshift of z ≈ 0.40. These numbers are in good agreement with theoretical expectations based on the X-ray luminosity function and scaling relations of clusters. From these values we estimate the typical mass and luminosity of the objects responsible for CXB fluctuations, M500 ∼ 1013.6 M⊙ h-1 and L0.5-2.0 keV ∼ 1042.5 erg s-1. On the other hand, the flux-weighted mean temperature and redshift of resolved clusters are T ≈ 2.4 keV and z ≈ 0.23 confirming that fluctuations of unresolved CXB are caused by cooler (i.e. less massive) and more distant clusters, as expected. We show that the power spectrum shape is sensitive to the ICM structure all the way to the outskirts, out to ∼few × R500. We also searched for possible contribution of the warm-hot intergalactic medium (WHIM) to the observed CXB fluctuations. Our results underline the significant diagnostic potential of the CXB fluctuation analysis in studying the ICM structure in clusters.

  7. Ion heating and MHD dynamo fluctuations in the reversed field pinch

    International Nuclear Information System (INIS)

    Scime, E.; Hokin, S.; Watts, C.; Mattor, N.

    1992-01-01

    Ion temperature measurements, time resolved to 10 μs, have been made in the Madison Symmetric Torus reversed-field pinch with a five channel charge exchange analyzer. The ion temperature, T i ∼ 200 eV for I = 350 kA, increases by as much as 100% during discrete dynamo bursts in MST discharges. Magnetic field fluctuations in the range 0.5--5 MHz were also measured. Structure in the fluctuation frequency spectrum at the ion cyclotron frequency appears as the bursts terminate, suggesting that the mechanism of ion heating involves the dissipation of dynamo fluctuations at ion gyro-orbit scales

  8. Application of a gradient diffusion and dissipation time scale ratio model for prediction of mean and fluctuating temperature fields in liquid sodium downstream of a multi-bore jet block

    International Nuclear Information System (INIS)

    Bremhorst, K.; Listijono, J.B.H.; Krebs, L.; Mueller, U.

    1989-01-01

    A previously developed diffusivity based based model, for the prediction of mean and fluctuating temperatures in water flow downstream of a multi-bore jet block in which one jet is heated, is applied to a flow of sodium in apparatus of similar geometry. Some measurements not readily possible in sodium or water flows for this geometry are made using air in order to verify assumptions used in the model. The earlier derived mathematical model is modified to remove assumptions relating to turbulence. Reynolds number and turbulence Peclet number in the relationship between velocity and temperature microscales. Spalding's model, relating fluctuating velocity and temperature dissipation rates, is tested. A significant effect on this relationship due to the low Prandtl number of liquid sodium is identified. Measurements performed behind a multi-bore jet block with air as the working fluid have verified the non-isotropic nature of the large-scale flow. Results clearly show that measurements performed in water can be transferred to liquid sodium provided that molecular diffusion is included in the mean temperature equation, allowance is made for the Prandtl number effect on the dissipation time scale ratio and the coefficient of gradient diffusion of mean square temperature fluctuations is assumed equal to the eddy diffusivity of heat. (author)

  9. Maxwell's Demon at work: Two types of Bose condensate fluctuations in power-law traps.

    Science.gov (United States)

    Grossmann, S; Holthaus, M

    1997-11-10

    After discussing the idea underlying the Maxwell's Demon ensemble, we employ this ensemble for calculating fluctuations of ideal Bose gas condensates in traps with power-law single-particle energy spectra. Two essentially different cases have to be distinguished. If the heat capacity is continuous at the condensation point, the fluctuations of the number of condensate particles vanish linearly with temperature, independent of the trap characteristics. In this case, microcanonical and canonical fluctuations are practically indistinguishable. If the heat capacity is discontinuous, the fluctuations vanish algebraically with temperature, with an exponent determined by the trap, and the micro-canonical fluctuations are lower than their canonical counterparts.

  10. Magnetosheath density fluctuations and magnetopause motion

    Energy Technology Data Exchange (ETDEWEB)

    Sibeck, D.G. [Johns Hopkins Univ. Applied Physics Lab., Laurel, MD (United States); Gosling, J.T. [Los Alamos National Lab., NM (United States)

    1996-01-01

    The interplanetary magnetic field (IMF) orientation controls foreshock densities and modulates the fraction of the solar wind dynamic pressure applied to the magnetosphere. Such pressure variations produce bow shock and magnetopause motion and cause the radial profiles for various magnetosheath parameters to sweep inward and outward past nearly stationary satellites. The authors report ISEE 2 observations of correlated density and speed fluctuations, and anticorrelated density and temperature fluctuations, on an outbound pass through the northern dawnside magnetosheath. Densities decreased when the magnetic field rotated southward and draped about the magnetopause. In the absence of any significant solar wind density or dynamic pressure variations, they interpret the magnetosheath fluctuations as evidence for radial magnetosheath motion induced by variations in the IMF orientation. 41 refs., 8 figs.

  11. New fluctuation phenomena in the H-mode regime of PDX tokamak plasmas

    International Nuclear Information System (INIS)

    Slusher, R.E.; Surko, C.M.; Valley, J.F.; Crowley, T.; Mazzucato, E.; McGuire, K.

    1984-05-01

    A new kind of quasi-coherent fluctuation is observed near the edge of plasmas in the PDX tokamak during H-mode operation. (The H-mode occurs in neutral beam heated divertor plasmas and is characterized by improved energy containment as well as large density and temperature gradients near the plasma edge.) These fluctuations are evidenced as VUV and density fluctuation bursts at well-defined frequencies (Δω/ω less than or equal to 0.1) in the frequency range between 50 and 180 kHz. They affect the edge temperature-density product, and therefore they may be important for understanding the relationship between the large edge density and temperature gradients and the improved energy confinement

  12. Consideration of fluctuation in secondary beam intensity of heavy ion beam probe measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, A.; Iguchi, H.; Lee, S.; Hamada, Y.

    1997-01-01

    Heavy ion beam probes have capability to detect local electron density fluctuation in the interior of plasmas through the detected beam intensity fluctuation. However, the intensity fluctuation should suffer a certain degree of distortion from electron density and temperature fluctuations on the beam orbits, and as a result the signal can be quite different from the local density fluctuation. This paper will present a condition that the intensity fluctuation can be regarded as being purely local electron density fluctuation, together with discussion about the contamination of the fluctuation along the beam orbits to the beam intensity fluctuation. (author)

  13. Fluctuating hydrodynamics, current fluctuations, and hyperuniformity in boundary-driven open quantum chains.

    Science.gov (United States)

    Carollo, Federico; Garrahan, Juan P; Lesanovsky, Igor; Pérez-Espigares, Carlos

    2017-11-01

    We consider a class of either fermionic or bosonic noninteracting open quantum chains driven by dissipative interactions at the boundaries and study the interplay of coherent transport and dissipative processes, such as bulk dephasing and diffusion. Starting from the microscopic formulation, we show that the dynamics on large scales can be described in terms of fluctuating hydrodynamics. This is an important simplification as it allows us to apply the methods of macroscopic fluctuation theory to compute the large deviation (LD) statistics of time-integrated currents. In particular, this permits us to show that fermionic open chains display a third-order dynamical phase transition in LD functions. We show that this transition is manifested in a singular change in the structure of trajectories: while typical trajectories are diffusive, rare trajectories associated with atypical currents are ballistic and hyperuniform in their spatial structure. We confirm these results by numerically simulating ensembles of rare trajectories via the cloning method, and by exact numerical diagonalization of the microscopic quantum generator.

  14. Pressure dependence of critical temperature of bulk FeSe from spin fluctuation theory

    Science.gov (United States)

    Hirschfeld, Peter; Kreisel, Andreas; Wang, Yan; Tomic, Milan; Jeschke, Harald; Jacko, Anthony; Valenti, Roser; Maier, Thomas; Scalapino, Douglas

    2013-03-01

    The critical temperature of the 8K superconductor FeSe is extremely sensitive to pressure, rising to a maximum of 40K at about 10GPa. We test the ability of the current generation of fluctuation exchange pairing theories to account for this effect, by downfolding the density functional theory electronic structure for each pressure to a tight binding model. The Fermi surface found in such a procedure is then used with fixed Hubbard parameters to determine the pairing strength using the random phase approximation for the spin singlet pairing vertex. We find that the evolution of the Fermi surface captured by such an approach is alone not sufficient to explain the observed pressure dependence, and discuss alternative approaches. PJH, YW, AK were supported by DOE DE-FG02-05ER46236, the financial support of MT, HJ, and RV from the DFG Schwerpunktprogramm 1458 is kindly acknowledged.

  15. Stability and fluctuations in black hole thermodynamics

    International Nuclear Information System (INIS)

    Ruppeiner, George

    2007-01-01

    I examine thermodynamic fluctuations for a Kerr-Newman black hole in an extensive, infinite environment. This problem is not strictly solvable because full equilibrium with such an environment cannot be achieved by any black hole with mass M, angular momentum J, and charge Q. However, if we consider one (or two) of M, J, or Q to vary so slowly compared with the others that we can regard it as fixed, instances of stability occur, and thermodynamic fluctuation theory could plausibly apply. I examine seven cases with one, two, or three independent fluctuating variables. No knowledge about the thermodynamic behavior of the environment is needed. The thermodynamics of the black hole is sufficient. Let the fluctuation moment for a thermodynamic quantity X be √( 2 >). Fluctuations at fixed M are stable for all thermodynamic states, including that of a nonrotating and uncharged environment, corresponding to average values J=Q=0. Here, the fluctuation moments for J and Q take on maximum values. That for J is proportional to M. For the Planck mass it is 0.3990(ℎ/2π). That for Q is 3.301e, independent of M. In all cases, fluctuation moments for M, J, and Q go to zero at the limit of the physical regime, where the temperature goes to zero. With M fluctuating there are no stable cases for average J=Q=0. But, there are transitions to stability marked by infinite fluctuations. For purely M fluctuations, this coincides with a curve which Davies identified as a phase transition

  16. Magnetic fluctuations in heavy fermion systems

    International Nuclear Information System (INIS)

    Broholm, C.L.

    1989-06-01

    Magnetic order and fluctuations in the heavy Fermion systems UPt 3 , U 2 Zn 17 and URu 2 Si 2 have been studied by neutron scattering. Single crystalline samples and triple-axis neutron-scattering techniques with energy transfers between 0 and 40 meV and energy resolutions between 0.1 meV and 4 meV have been employed. UPt 3 develops an antiferromagnetically ordered moment of (0.02±0.005) μ B below T N = 5 K which doubles the unit cell in the basal plane and coexists with superconductivity below T c = 0.5 K. The magnetic fluctuations are relaxational, and enhanced at the antiferromagnetic zone center in a low-energy regime. The characteristic zone-center relaxation energy is 0.3 meV. The temperature- and field-dependence of the antiferromagnetic order in the superconducting phase suggest a close relation between these two properties in UPt 3 . U 2 Zn 17 has a broad spectrum of magnetic fluctuations, even below T N = 9.7 K, of which the transverse part below 10 meV is strongly enhanced at the antiferromagnetic zone center. The system has an anomalously extended critical region and the antiferromagnetic phase transition seems to be driven by the temperature-dependence of an effective RKKY interaction, as anticipated theoretically. URu 2 Si 2 , a strongly anisotropic heavy Fermion system, has a high-energy regime of antiferromagnetically-correlated overdamped magnetic fluctuations. Below T N = 17.5 K weak antiferromagnetic order, μ = (0.04±0.01)μ B , with finite correlations along the tetragonal c axis, develops along with a low-energy regime of strongly dispersive singlet-singlet excitations. Below T c = 1 K antiferromagnetism coexists with superconductivity. A phenomenological model describing the exchange-enhanced overdamped magnetic fluctuations of heavy Fermion systems is proposed. Our experimental results are compared to the anomalous bulk properties of heavy Fermion systems, and to magnetic fluctuations in other metallic magnets. (orig.)

  17. Addendum to ''Density fluctuations in liquid rubidium''

    International Nuclear Information System (INIS)

    Haan, S.W.; Mountain, R.D.; Hsu, C.S.; Rahman, A.

    1980-01-01

    We performed molecular-dynamics simulations of liquid rubidium and the Lennard-Jones fluid at several densities and temperatures, and of a system whose pair potential is the repulsive core of the rubidium potential. In all cases, propagating density fluctuations occurred in the rubidiumlike systems at much shorter wavelengths than in the Lennard-Jones system. This indicates that the repulsive part of the pair potential is the dominant factor in determining the relaxation of short-wavelength density fluctuations

  18. Thermal fluctuation within nests and predicted sex ratio of Morelet's Crocodile.

    Science.gov (United States)

    Escobedo-Galván, Armando H; López-Luna, Marco A; Cupul-Magaña, Fabio G

    2016-05-01

    Understanding the interplay between thermal variations and sex ratio in reptiles with temperature-dependent sex determination is the first step for developing long-term conservation strategies. In case of crocodilians, the information is fragmentary and insufficient for establishing a general framework to consider how thermal fluctuation influence sex determination under natural conditions. The main goal of this study was to analyze thermal variation in nests of Crocodylus moreletii and to discuss the potential implications for predicting offspring sex ratio. The study was carried out at the Centro de Estudios Tecnológicos del Mar N° 2 and at the Sistemas Productivos Cocodrilo, Campeche, Mexico. Data was collected in the nesting season of Morelet's Crocodiles during three consecutive seasons (2007-2009). Thermal fluctuations for multiple areas of the nest chamber were registered by data loggers. We calculate the constant temperature equivalent based on thermal profiles among nests to assess whether there are differences between the nest temperature and its equivalent to constant temperature. We observed that mean nest temperature was only different among nests, while daily thermal fluctuations vary depending on the depth position within the nest chamber, years and nests. The constant temperature equivalent was different among and within nests, but not among survey years. We observed differences between constant temperature equivalent and mean nest temperature both at the top and in the middle of the nest cavities, but were not significantly different at the bottom of nest cavities. Our results enable examine and discuss the relevance of daily thermal fluctuations to predict sex ratio of the Morelet's Crocodile. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Fluctuation diamagnetism in two-band superconductors

    Science.gov (United States)

    Adachi, Kyosuke; Ikeda, Ryusuke

    2016-04-01

    Anomalously large fluctuation diamagnetism around the superconducting critical temperature has been recently observed in iron selenide (FeSe) [Kasahara et al. (unpublished)]. This indicates that superconducting fluctuations (SCFs) play a more significant role in FeSe, which supposedly has a two-band structure, than in the familiar single-band superconductors. Motivated by the data on FeSe, SCF-induced diamagnetism is examined in a two-band system, on the basis of a phenomenological approach with a Ginzburg-Landau functional. The obtained results indicate that the SCF-induced diamagnetism may be more enhanced than that in a single-band system due to the existence of two distinct fluctuation modes. Such enhancement of diamagnetism unique to a two-band system seems consistent with the large diamagnetism observed in FeSe, though still far from a quantitative agreement.

  20. Analysis of Numerical Simulation Database for Pressure Fluctuations Induced by High-Speed Turbulent Boundary Layers

    Science.gov (United States)

    Duan, Lian; Choudhari, Meelan M.

    2014-01-01

    Direct numerical simulations (DNS) of Mach 6 turbulent boundary layer with nominal freestream Mach number of 6 and Reynolds number of Re(sub T) approximately 460 are conducted at two wall temperatures (Tw/Tr = 0.25, 0.76) to investigate the generated pressure fluctuations and their dependence on wall temperature. Simulations indicate that the influence of wall temperature on pressure fluctuations is largely limited to the near-wall region, with the characteristics of wall-pressure fluctuations showing a strong temperature dependence. Wall temperature has little influence on the propagation speed of the freestream pressure signal. The freestream radiation intensity compares well between wall-temperature cases when normalized by the local wall shear; the propagation speed of the freestream pressure signal and the orientation of the radiation wave front show little dependence on the wall temperature.

  1. Colloid mobilization and transport during capillary fringe fluctuations.

    Science.gov (United States)

    Aramrak, Surachet; Flury, Markus; Harsh, James B; Zollars, Richard L

    2014-07-01

    Capillary fringe fluctuations due to changing water tables lead to displacement of air-water interfaces in soils and sediments. These moving air-water interfaces can mobilize colloids. We visualized colloids interacting with moving air-water interfaces during capillary fringe fluctuations by confocal microscopy. We simulated capillary fringe fluctuations in a glass-bead-filled column. We studied four specific conditions: (1) colloids suspended in the aqueous phase, (2) colloids attached to the glass beads in an initially wet porous medium, (3) colloids attached to the glass beads in an initially dry porous medium, and (4) colloids suspended in the aqueous phase with the presence of a static air bubble. Confocal images confirmed that the capillary fringe fluctuations affect colloid transport behavior. Hydrophilic negatively charged colloids initially suspended in the aqueous phase were deposited at the solid-water interface after a drainage passage, but then were removed by subsequent capillary fringe fluctuations. The colloids that were initially attached to the wet or dry glass bead surface were detached by moving air-water interfaces in the capillary fringe. Hydrophilic negatively charged colloids did not attach to static air-bubbles, but hydrophobic negatively charged and hydrophilic positively charged colloids did. Our results demonstrate that capillary fringe fluctuations are an effective means for colloid mobilization.

  2. Calorimetric evidence for localized spin fluctuations in UA12

    International Nuclear Information System (INIS)

    Trainor, R.J.; Brodsky, M.B.; Isaacs, L.L.

    1974-01-01

    Results of heat capacity measurements on UAl 2 between 1.8 and 400 0 K are presented. The data are compared with recent resistivity and susceptibility measurements which indicate the existence of localized spin fluctuations in a narrow 5f band. Below about 50 0 K the electronic contribution to the heat capacity becomes large, equivalent to γ approximately 70 mJ/mole-K 2 . Below 6 0 K there is an upturn in C/T which is proportional to T 2 log (T/T/sub SF/), where T/sub SF/ = 10.6 0 K is identified as the spin fluctuation temperature. Extrapolation of this term to zero temperature yields m*/m approximately 2 for the spin-fluctuation mass enhancement. At 300 0 K, UAl 2 exhibits more typical metallic behavior, with γ approximately 15 mJ/mole-K 2 . Data are also presented for nonmagnetic URh 3 ; at low temperatures C = γT + βT 3 , with γ = 14.5 mJ/mole-K 2 and β corresponding to theta/sub D/ = 336 0 K. (U.S.)

  3. Fluctuation and dissipation in nonequilibrium quantum field theory

    International Nuclear Information System (INIS)

    Ramos, Rudnei O.

    1994-01-01

    The nonequilibrium dynamics of a scalar field is studied using perturbation theory and a real time finite temperature formulation. The evolution equation for the scalar field is explicitly obtained, and terms responsible for noise (fluctuations) and dissipation are identified and studied in the high temperature limit. (author)

  4. Glacial greenhouse-gas fluctuations controlled by ocean circulation changes.

    Science.gov (United States)

    Schmittner, Andreas; Galbraith, Eric D

    2008-11-20

    Earth's climate and the concentrations of the atmospheric greenhouse gases carbon dioxide (CO(2)) and nitrous oxide (N(2)O) varied strongly on millennial timescales during past glacial periods. Large and rapid warming events in Greenland and the North Atlantic were followed by more gradual cooling, and are highly correlated with fluctuations of N(2)O as recorded in ice cores. Antarctic temperature variations, on the other hand, were smaller and more gradual, showed warming during the Greenland cold phase and cooling while the North Atlantic was warm, and were highly correlated with fluctuations in CO(2). Abrupt changes in the Atlantic meridional overturning circulation (AMOC) have often been invoked to explain the physical characteristics of these Dansgaard-Oeschger climate oscillations, but the mechanisms for the greenhouse-gas variations and their linkage to the AMOC have remained unclear. Here we present simulations with a coupled model of glacial climate and biogeochemical cycles, forced only with changes in the AMOC. The model simultaneously reproduces characteristic features of the Dansgaard-Oeschger temperature, as well as CO(2) and N(2)O fluctuations. Despite significant changes in the land carbon inventory, CO(2) variations on millennial timescales are dominated by slow changes in the deep ocean inventory of biologically sequestered carbon and are correlated with Antarctic temperature and Southern Ocean stratification. In contrast, N(2)O co-varies more rapidly with Greenland temperatures owing to fast adjustments of the thermocline oxygen budget. These results suggest that ocean circulation changes were the primary mechanism that drove glacial CO(2) and N(2)O fluctuations on millennial timescales.

  5. Productivity and species composition of algal mat communities exposed to a fluctuating thermal regime

    International Nuclear Information System (INIS)

    Tison, D.L.; Wilde, E.W.; Pope, D.H.; Fliermans, C.B.

    1981-01-01

    Algal mat communities growing in thermal effluents of production nuclear reactors at the Savannah River Plant, near Aiken, SC, are exposed to large temperature fluctuations resulting from reactor operations. Rates of primary production and species composition were monitored at 4 sites along a thermal gradient in a trough microcosm to determine how these large temperature fluctuations affected productivity and algal community structure. Blue-green algae (cyanobacteria) were the only phototrophic primary producers growing in water above 45 0 C. These thermophiles were able to survive and apparently adapt to ambient temperatures when the reactor was shut down. The algal mat communities exposed to 14 C-labeled dissolved organic compounds and a decrease in primary production were observed during periods of thermal fluctuation. The results show that the dominant phototrophs in this artificially heated aquatic habitat have been selected for their abiity to survive large temperature fluctuations and are similar to those of natural hot springs

  6. A Regime Diagram for Autoignition of Homogeneous Reactant Mixtures with Turbulent Velocity and Temperature Fluctuations

    KAUST Repository

    Im, Hong G.

    2015-04-02

    A theoretical scaling analysis is conducted to propose a diagram to predict weak and strong ignition regimes for a compositionally homogeneous reactant mixture with turbulent velocity and temperature fluctuations. The diagram provides guidance on expected ignition behavior based on the thermo-chemical properties of the mixture and the flow/scalar field conditions. The analysis is an extension of the original Zeldovich’s analysis by combining the turbulent flow and scalar characteristics in terms of the characteristic Damköhler and Reynolds numbers of the system, thereby providing unified and comprehensive understanding of the physical and chemical mechanisms controlling ignition characteristics. Estimated parameters for existing experimental measurements in a rapid compression facility show that the regime diagram predicts the observed ignition characteristics with good fidelity.

  7. A Regime Diagram for Autoignition of Homogeneous Reactant Mixtures with Turbulent Velocity and Temperature Fluctuations

    KAUST Repository

    Im, Hong G.; Pal, Pinaki; Wooldridge, Margaret S.; Mansfield, Andrew B.

    2015-01-01

    A theoretical scaling analysis is conducted to propose a diagram to predict weak and strong ignition regimes for a compositionally homogeneous reactant mixture with turbulent velocity and temperature fluctuations. The diagram provides guidance on expected ignition behavior based on the thermo-chemical properties of the mixture and the flow/scalar field conditions. The analysis is an extension of the original Zeldovich’s analysis by combining the turbulent flow and scalar characteristics in terms of the characteristic Damköhler and Reynolds numbers of the system, thereby providing unified and comprehensive understanding of the physical and chemical mechanisms controlling ignition characteristics. Estimated parameters for existing experimental measurements in a rapid compression facility show that the regime diagram predicts the observed ignition characteristics with good fidelity.

  8. Influence of longitudinal spin fluctuations on the phase transition features in chiral magnets

    Science.gov (United States)

    Belemuk, A. M.; Stishov, S. M.

    2018-04-01

    Using the classical Monte Carlo calculations, we investigate the effects of longitudinal spin fluctuations on the helimagnetic transition in a Heisenberg magnet with the Dzyaloshinskii-Moriya interaction. We use variable spin amplitudes in the framework of the spin-lattice Hamiltonian. It is this kind of fluctuations that naturally occur in an itinerant system. We show that the basic features of the helical phase transition are not changed much by the longitudinal spin fluctuations though the transition temperature Tc and the fluctuation hump seen in specific heat at T >Tc is significantly affected. We report thermodynamic and structural effects of these fluctuations. By increasing the system size in the Monte Carlo modeling, we are able to reproduce the ring shape scattering intensity above the helimagnetic transition temperature Tc, which transforms into the spiral spots seen below Tc in the neutron scattering experiments.

  9. Mesoscopic fluctuations in the critical current in InAs-coupled Josephson junctions

    International Nuclear Information System (INIS)

    Takayanagi, Hideaki; Hansen, J.B.; Nitta, Junsaku

    1994-01-01

    Mesoscopic fluctuations were confirmed for the critical current in a p-type InAs-coupled Josephson junction. The critical current was measured as a function of the gate voltage corresponding to the change in the Fermi energy. The critical current showed a mesoscopic fluctuation and its behavior was the same as that of the conductance measured at the same time in both the weak and strong localization regimes. The magnitude and the typical period of the fluctuation are discussed and compared to theoretical predictions. ((orig.))

  10. Probing the critical behavior in the evolution of GDR width at very low temperatures in A∼100 mass region

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Balaram; Mondal, Debasish; Pandit, Deepak; Mukhopadhyay, S.; Pal, Surajit [Variable Energy Cyclotron Centre, 1/AF-Bidhannagar, Kolkata 700064 (India); Bhattacharya, Srijit [Department of Physics, Barasat Govt. College, Barasat, N 24 Pgs, Kolkata 700124 (India); De, A. [Department of Physics, Raniganj Girls' College, Raniganj 713358 (India); Banerjee, K. [Variable Energy Cyclotron Centre, 1/AF-Bidhannagar, Kolkata 700064 (India); Dinh Dang, N. [Theoretical Nuclear Physics Laboratory, RIKEN Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako city, Saitama 351-0198 (Japan); Quang Hung, N. [School of Engineering, Tan Tao University, Tan Tao University Avenue, Tan Duc Ecity, Duc Hoa, Long An Province (Viet Nam); Banerjee, S.R., E-mail: srb@vecc.gov.in [Variable Energy Cyclotron Centre, 1/AF-Bidhannagar, Kolkata 700064 (India)

    2014-04-04

    The influence of giant dipole resonance (GDR) induced quadrupole moment on GDR width at low temperatures is investigated experimentally by measuring GDR width systematically in the unexplored temperature range T=0.8–1.5 MeV, for the first time, in A∼100 mass region. The measured GDR widths, using alpha induced fusion reaction, for {sup 97}Tc confirm that the GDR width remains constant at the ground state value up to a critical temperature and increases sharply thereafter with increase in T. The data have been compared with the adiabatic Thermal Shape Fluctuation Model (TSFM), phenomenological Critical Temperature Fluctuation Model (CTFM) and microscopic Phonon Damping Model (PDM). Interestingly, CTFM and PDM give similar results and agree with the data, whereas the TSFM differs significantly even after incorporating the shell effects.

  11. Probing the critical behavior in the evolution of GDR width at very low temperatures in A∼100 mass region

    International Nuclear Information System (INIS)

    Dey, Balaram; Mondal, Debasish; Pandit, Deepak; Mukhopadhyay, S.; Pal, Surajit; Bhattacharya, Srijit; De, A.; Banerjee, K.; Dinh Dang, N.; Quang Hung, N.; Banerjee, S.R.

    2014-01-01

    The influence of giant dipole resonance (GDR) induced quadrupole moment on GDR width at low temperatures is investigated experimentally by measuring GDR width systematically in the unexplored temperature range T=0.8–1.5 MeV, for the first time, in A∼100 mass region. The measured GDR widths, using alpha induced fusion reaction, for 97 Tc confirm that the GDR width remains constant at the ground state value up to a critical temperature and increases sharply thereafter with increase in T. The data have been compared with the adiabatic Thermal Shape Fluctuation Model (TSFM), phenomenological Critical Temperature Fluctuation Model (CTFM) and microscopic Phonon Damping Model (PDM). Interestingly, CTFM and PDM give similar results and agree with the data, whereas the TSFM differs significantly even after incorporating the shell effects.

  12. Modeling the Lag Period and Exponential Growth of Listeria monocytogenes under Conditions of Fluctuating Temperature and Water Activity Values▿

    Science.gov (United States)

    Muñoz-Cuevas, Marina; Fernández, Pablo S.; George, Susan; Pin, Carmen

    2010-01-01

    The dynamic model for the growth of a bacterial population described by Baranyi and Roberts (J. Baranyi and T. A. Roberts, Int. J. Food Microbiol. 23:277-294, 1994) was applied to model the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity (aw) values. To model the duration of the lag phase, the dependence of the parameter h0, which quantifies the amount of work done during the lag period, on the previous and current environmental conditions was determined experimentally. This parameter depended not only on the magnitude of the change between the previous and current environmental conditions but also on the current growth conditions. In an exponentially growing population, any change in the environment requiring a certain amount of work to adapt to the new conditions initiated a lag period that lasted until that work was finished. Observations for several scenarios in which exponential growth was halted by a sudden change in the temperature and/or aw were in good agreement with predictions. When a population already in a lag period was subjected to environmental fluctuations, the system was reset with a new lag phase. The work to be done during the new lag phase was estimated to be the workload due to the environmental change plus the unfinished workload from the uncompleted previous lag phase. PMID:20208022

  13. Modeling the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity values.

    Science.gov (United States)

    Muñoz-Cuevas, Marina; Fernández, Pablo S; George, Susan; Pin, Carmen

    2010-05-01

    The dynamic model for the growth of a bacterial population described by Baranyi and Roberts (J. Baranyi and T. A. Roberts, Int. J. Food Microbiol. 23:277-294, 1994) was applied to model the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity (a(w)) values. To model the duration of the lag phase, the dependence of the parameter h(0), which quantifies the amount of work done during the lag period, on the previous and current environmental conditions was determined experimentally. This parameter depended not only on the magnitude of the change between the previous and current environmental conditions but also on the current growth conditions. In an exponentially growing population, any change in the environment requiring a certain amount of work to adapt to the new conditions initiated a lag period that lasted until that work was finished. Observations for several scenarios in which exponential growth was halted by a sudden change in the temperature and/or a(w) were in good agreement with predictions. When a population already in a lag period was subjected to environmental fluctuations, the system was reset with a new lag phase. The work to be done during the new lag phase was estimated to be the workload due to the environmental change plus the unfinished workload from the uncompleted previous lag phase.

  14. The Importance of Water Temperature Fluctuations in Relation to the Hydrological Factor. Case Study – Bistrita River Basin (Romania

    Directory of Open Access Journals (Sweden)

    Cojoc Gianina Maria

    2014-10-01

    Full Text Available The increase in most components of the climate over the past 50 years, including air and water temperature, is a real phenomenon, as attested by the numerous specialized researches according to IPCC (2013. The water temperature is one of the most important climatic components in analyzing the hydrological regime of the Bistrita River (Romania. The thermal regime of the Bistrita River basin and the frost phenomena associated with the risk factor are particularly important and frequently appear in this area. In recent years, under the Siret Water Basin Administration, this parameter was permanently monitored, so we could do an analysis, which shows that the water temperature fluctuations, influenced by air temperature, lead to the emergence of the ice jam phenomenon. The present study aims to analyze the water temperature, as compared to the air temperature, and the effect of these components on the liquid flow regime (the values were recorded at the hydrological stations on the main course of the Bistrita River. The negative effects resulted from the ice jam phenomenon require developing methods of damage prevention and defense. The frost phenomena recorded after the construction of the Bicaz dam are analyzed in this article

  15. Fluctuation current in superconducting loops

    International Nuclear Information System (INIS)

    Berger, Jorge

    2012-01-01

    A superconducting loop that encloses noninteger flux holds a permanent current. On the average, this current is also present above T c , and has been measured in recent years. We are able to evaluate the permanent current within the TDGL or the Kramer-Watts-Tobin models for loops of general configuration, i.e., we don't require uniform cross section, material or temperature. We can also consider situations in which the width is not negligible in comparison to the radius. Our results agree with experiments. The situations with which we deal at present include fluctuation superconductivity in two-band superconductors, equilibrium thermal fluctuations of supercurrent along a weak link, and ratchet effects.

  16. Spin wave collapse and incommensurate fluctuations in URu2Si2

    DEFF Research Database (Denmark)

    Buyers, W.J.L.; Tun, Z.; Petersen, T.

    1994-01-01

    To test if the T(N) = 17.7 K transition in URu2Si2 is driven by a divergence of a magnetic order parameter we performed high-resolution neutron scattering. At the ordering wave vector the spin-wave energy collapsed. and the susceptibility diverged as T(N) was approached. This confirms that the or...... that the order parameter is the magnetic dipole, as shown by recent symmetry arguments and polarized neutron experiments [1]. We also observe incommensurate fluctuations, suggesting that competing temperature-dependent interactions may influence this weak-moment transition.......To test if the T(N) = 17.7 K transition in URu2Si2 is driven by a divergence of a magnetic order parameter we performed high-resolution neutron scattering. At the ordering wave vector the spin-wave energy collapsed. and the susceptibility diverged as T(N) was approached. This confirms...

  17. Simultaneous measurement of 3 fluctuating plasma parameters

    International Nuclear Information System (INIS)

    Carlson, A.; Giannone, L.

    1991-01-01

    Langmuir triple probes can provide simultaneous measurements of n e , T e and V pl with good temporal and spatial resolution, and therefore are especially suited to detailed investigations of plasma turbulence in the scrape-off-layer. Unfortunately, the finite tip separation coupled with the fluctuating gradients prevents a simple interpretation of the results. We have developed a method using, essentially, two or more triple probes, which allows a good estimate of the three plasma parameters and their spatial derivatives at each point of time (assuming tip separation is much less than correlation length and dimensionless fluctuation levels are much less than unity). In particular, we can unambiguously measure the temperature fluctuations and the turbulent particle and heat flux. (author) 1 fig

  18. Simultaneous measurement of 3 fluctuating plasma parameters

    International Nuclear Information System (INIS)

    Carlson, A.; Giannone, L.

    1991-01-01

    Langmuir triple probes can provide simultaneous measurements of n e , T e , and V pl with good temporal and spatial resolution, and therefore are especially suited to detailed investigations of plasma turbulence in the scrape-off-layer. Unfortunately, the finite tip separation coupled with the fluctuating gradients prevents a simple interpretation of the results. We have developed a method using, essentially, two or more triple probes, which allows a good estimate of the three plasma parameters and their spatial derivatives at each point of time (assuming tip separation is much less than correlation length and dimensionless fluctuation levels are much less than unity). In particular, we can unambiguously measure the temperature fluctuations and the turbulent particle and heat flux. (orig.)

  19. Simultaneous measurement of 3 fluctuating plasma parameters

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, A; Giannone, L. (Max-Planck-Institut fuer Plasmaphysik, Garching (Germany))

    1991-01-01

    Langmuir triple probes can provide simultaneous measurements of n[sub e], T[sub e] and V[sub pl] with good temporal and spatial resolution, and therefore are especially suited to detailed investigations of plasma turbulence in the scrape-off-layer. Unfortunately, the finite tip separation coupled with the fluctuating gradients prevents a simple interpretation of the results. We have developed a method using, essentially, two or more triple probes, which allows a good estimate of the three plasma parameters and their spatial derivatives at each point of time (assuming tip separation is much less than correlation length and dimensionless fluctuation levels are much less than unity). In particular, we can unambiguously measure the temperature fluctuations and the turbulent particle and heat flux. (author) 1 fig.

  20. Growth, carcass characteristics, and incidence of ascites in broilers exposed to environmental fluctuations and oiled litter.

    Science.gov (United States)

    McGovern, R H; Feddes, J J; Robinson, F E; Hanson, J A

    2000-03-01

    The effects of diurnal temperature fluctuations and removal of respirable dust, by application of canola oil to straw litter, on growth, carcass traits, and the degree of ascites was evaluated with 1,200 male broilers studied in two replicated 6-wk trials. Each trial used four pens of 150 birds. The temperature treatment consisted of a fluctuation of 3 C in temperature above the required temperature during the day (0600 to 1800 h) and 3 C below the required temperature at night (1800 to 0600 h) for a 6 C change in daily temperature. The control temperature was constant. All pens had the same mean daily temperature. In each trial, one control temperature pen and one fluctuation temperature pen received bi-weekly applications of canola oil to the litter (1.1 L/m2 of oil over 6 wk). At 6 wk of age, 30 birds from each pen were killed for determination of breast muscle, fatpad, and heart weights. All birds were scored for lesions of ascites at time of processing. A score of 0 or 1 represented slight pericardial effusion, slight pulmonary congestion, and edema. A score of 4 represented birds with marked accumulation of ascitic fluid in one or more ceolomic cavities (other than the pericardium) and advanced liver lesions. A cross-sectional image of each 4-mm heart slice (cross-section of the ventricles) was digitally recorded, and with image analysis we determined the right ventricular area (RVA), left ventricular area (LVA), and total heart area (HA). The final BW of the broilers were significantly different, the oiled-litter treatment (2,249 g) had lower weight gain compared with the nonoiled litter treatment (2,293 g). There were no differences in fatpad weight, shank length, lung weight, and percentage breast muscle between the main treatments. The Pectoralis minor and Pectoralis major weight were significantly heavier in the temperature fluctuation treatment than in the control temperature treatment by 3.0 and 12.0 g, respectively. The birds subjected to the control

  1. Fluctuations in the cosmic microwave background on a 2.3 deg angular scale

    International Nuclear Information System (INIS)

    Calzolari, P.; Cortiglioni, S.; Mandolesi, N.

    1982-01-01

    The study of fluctuations in the temperature of the cosmic microwave background may provide important information on the origin of the large scale structures in the Universe. An experiment is in operation at Medicina (Bologna) for studying such temperature fluctuations on a 2 deg 3 angular scale at lambda=2.8 cm. Preliminary results seem to indicate ΔT/T -4

  2. Investigation of circulating temperature fluctuations of the primary coolant in order to develop an enhanced MTC estimator for VVER-440 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, Sandor; Lipcsei, Sandor [Hungarian Academy of Sciences, Budapest (Hungary). Centre for Energy Research - MTA

    2017-09-15

    Our aim was to develop a method based on noise diagnostics for the estimation of the moderator temperature coefficient of reactivity (MTC) for the Paks VVER-440 units in normal operation. The method requires determining core average neutron flux and temperature fluctuations. The circulation period of the primary coolant, transfer properties of the steam generators, as well as the source and the propagation of the temperature perturbations and the proportions of the perturbation components were investigated in order to estimate the feedback caused by the circulation of the primary coolant. Finally, after developing the new MTC estimator, determining its frequency range and optimal parameters, trends were produced based on an overall evaluation of measurements made with standard instrumentation during a one-year-long period at Paks NPP.

  3. Explanation of L→H mode transition based on gradient stabilization of edge thermal fluctuations

    International Nuclear Information System (INIS)

    Stacey, W.M.

    1996-01-01

    A linear analysis of thermal fluctuations, using a fluid model which treats the large radial gradient related phenomena in the plasma edge, leads to a constraint on the temperature and density gradients for stabilization of edge temperature fluctuations. A temperature gradient, or conductive edge heat flux, threshold is identified. It is proposed that the L→H transition takes place when the conductive heat flux to the edge produces a sufficiently large edge temperature gradient to stabilize the edge thermal fluctuations. The consequences following from this mechanism for the L→H transition are in accord with observed phenomena associated with the L→H transition and with the observed parameter dependences of the power threshold. First, a constraint is established on the edge temperature and density gradients that are sufficient for the stability of edge temperature fluctuations. A slab approximation for the thin plasma edge and a fluid model connected to account for the large radial gradients present in the plasma edge are used. Equilibrium solutions are characterized by the value of the density and of its gradient L n -1 double-bond - n -1 , etc. Temperature fluctuations expanded about the equilibrium value are then used in the energy balance equation summed over plasma ions, electrons and impurities to obtain, after linearization, an expression for the growth rate ω of edge localized thermal fluctuations. Thermal stability of the equilibrium solution requires ω ≤ 0, which establishes a constraint that must be satisfied by L n -1 and L T -1 . The limiting value of the constraint (ω = 0) leads to an expression for the minimum value of that is sufficient for thermal stability, for a given value of L T -1. It is found that there is a minimum value of the temperature gradient, (L T -1 ) min that is necessary for a stable solution to exist for any value of L n -1

  4. Nonequilibrium thermodynamics and fluctuation relations for small systems

    International Nuclear Information System (INIS)

    Cao Liang; Ke Pu; Qiao Li-Yan; Zheng Zhi-Gang

    2014-01-01

    In this review, we give a retrospect of the recent progress in nonequilibrium statistical mechanics and thermodynamics in small dynamical systems. For systems with only a few number of particles, fluctuations and nonlinearity become significant and contribute to the nonequilibrium behaviors of the systems, hence the statistical properties and thermodynamics should be carefully studied. We review recent developments of this topic by starting from the Gallavotti—Cohen fluctuation theorem, and then to the Evans—Searles transient fluctuation theorem, Jarzynski free-energy equality, and the Crooks fluctuation relation. We also investigate the nonequilibrium free energy theorem for trajectories involving changes of the heat bath temperature and propose a generalized free-energy relation. It should be noticed that the non-Markovian property of the heat bath may lead to the violation of the free-energy relation. (topical review - statistical physics and complex systems)

  5. Phase transitions and transport in anisotropic superconductors with large thermal fluctuations

    International Nuclear Information System (INIS)

    Fisher, D.S.

    1991-01-01

    Fluctuation effects in conventional superconductors such as broadening of phase transitions and flux creep tend to be very small primarily because of the large coherence lengths. Thus mean field theory, with only small fluctuation corrections, usually provides an adequate description of these systems. Regimes in which fluctuation effects cause qualitatively different physics are very difficult to study as they typically occur in very small regions of the phase diagram or, in transport, require measuring extremely small voltages. In striking contrast, in the high temperature cuprate superconductors a combination of factors - short coherence lengths, anisotropy and higher temperatures - make fluctuation effects many orders of magnitude larger. The current understanding of transport and phase transitions in the cuprate superconductors-particularly YBCO and BSCCO-is reviewed. New results are presented on the two-dimensional regimes and 2D-3D crossover in the strongly anisotropic case of BSCCO. The emphasis is on pinning and vortex glass behavior

  6. Dissipation and fluctuation of quantum fields in expanding universes

    International Nuclear Information System (INIS)

    Morikawa, M.

    1990-01-01

    A stochastic dynamics of a long-wavelength part of a scalar field in an expanding universe is derived by using the influence functional method. Dissipation as well as fluctuation are derived for general parameters: a mass, a coupling to the scalar curvature, and a cutoff scale parameter. A dissipation-fluctuation relation is found with a temperature which is proportional to the Hawking temperature, but system dependent. The method is further applied to an expanding universe with a power law and yields the dispersion which agrees with that obtained by the regularization method. The back reaction to the background de Sitter space itself is also obtained

  7. Life cycle and reproductive patterns of Triatoma rubrovaria (Blanchard, 1843 (Hemiptera: Reduviidae under constant and fluctuating conditions of temperature and humidity

    Directory of Open Access Journals (Sweden)

    Damborsky Miryam P.

    2005-01-01

    Full Text Available The aim of this study was to evaluate the temperature and relative humidity influence in the life cycle, mortality and fecundity patterns of Triatoma rubrovaria. Four cohorts with 60 recently laid eggs each were conformed. The cohorts were divided into two groups. In the controlled conditions group insects were maintained in a dark climatic chamber under constant temperature and humidity, whereas triatomines of the ambiental temperature group were maintained at room temperature. Average incubation time was 15.6 days in the controlled conditions group and 19.1 days in the ambiental temperature. In group controlled conditions the time from egg to adult development lasted 10 months while group ambiental temperature took four months longer. Egg eclosion rate was 99.1% and 98.3% in controlled conditions and ambiental temperature, respectively. Total nymphal mortality in controlled conditions was 52.6% whereas in ambiental temperature was 51.8%. Mean number of eggs/female was 817.6 controlled conditions and 837.1 ambiental temperature. Fluctuating temperature and humidity promoted changes in the life cycle duration and in the reproductive performance of this species, although not in the species mortality.

  8. Sensitivity of orthopositronium annihilation to density fluctuations in ethane gas

    International Nuclear Information System (INIS)

    Eftekhari, A.

    1982-01-01

    The annihilation rates of orthopositronium (o-Ps) and free positrons and positronium formation fractions have been measured in gaseous ethane at seven temperatures between 295 and 377 K for densities in the range 1.2-286 amagat. The pick off quenching rate of o-Ps is observed to vary with temperature at low densities of ethane. The observed behavior of the o-Ps annihilation rates with density and temperature is interpreted in terms of density fluctuations in ethane gas. A simple theoretical model is developed which explains the observed annihilation behavior reasonably well at those temperatures and densities where density fluctuations are small. The annihilation rates of flow-energy positrons indicate the formation of positron-ethane collision complexes and self-trapping of positrons in clusters of ethane molecules. The o-Ps yields appear to be independent of temperature and show a strong dependence on the density of the gas

  9. A reduced model for ion temperature gradient turbulent transport in helical plasmas

    International Nuclear Information System (INIS)

    Nunami, M.; Watanabe, T.-H.; Sugama, H.

    2013-07-01

    A novel reduced model for ion temperature gradient (ITG) turbulent transport in helical plasmas is presented. The model enables one to predict nonlinear gyrokinetic simulation results from linear gyrokinetic analyses. It is shown from nonlinear gyrokinetic simulations of the ITG turbulence in helical plasmas that the transport coefficient can be expressed as a function of the turbulent fluctuation level and the averaged zonal flow amplitude. Then, the reduced model for the turbulent ion heat diffusivity is derived by representing the nonlinear turbulent fluctuations and zonal flow amplitude in terms of the linear growth rate of the ITG instability and the linear response of the zonal flow potentials. It is confirmed that the reduced transport model results are in good agreement with those from nonlinear gyrokinetic simulations for high ion temperature plasmas in the Large Helical Device. (author)

  10. Fluctuation of heat current in Josephson junctions

    Directory of Open Access Journals (Sweden)

    P. Virtanen

    2015-02-01

    Full Text Available We discuss the statistics of heat current between two superconductors at different temperatures connected by a generic weak link. As the electronic heat in superconductors is carried by Bogoliubov quasiparticles, the heat transport fluctuations follow the Levitov–Lesovik relation. We identify the energy-dependent quasiparticle transmission probabilities and discuss the resulting probability density and fluctuation relations of the heat current. We consider multichannel junctions, and find that heat transport in diffusive junctions is unique in that its statistics is independent of the phase difference between the superconductors.

  11. Non-equilibrium concentration fluctuations in binary liquids with realistic boundary conditions.

    Science.gov (United States)

    Ortiz de Zárate, J M; Kirkpatrick, T R; Sengers, J V

    2015-09-01

    Because of the spatially long-ranged nature of spontaneous fluctuations in thermal non-equilibrium systems, they are affected by boundary conditions for the fluctuating hydrodynamic variables. In this paper we consider a liquid mixture between two rigid and impervious plates with a stationary concentration gradient resulting from a temperature gradient through the Soret effect. For liquid mixtures with large Lewis and Schmidt numbers, we are able to obtain explicit analytical expressions for the intensity of the non-equilibrium concentration fluctuations as a function of the frequency ω and the wave number q of the fluctuations. In addition we elucidate the spatial dependence of the intensity of the non-equilibrium fluctuations responsible for a non-equilibrium Casimir effect.

  12. Utilization of axisymmetrical models in the description of the fluctuating temperature field and in the calculation of turbulent thermal diffusivity

    International Nuclear Information System (INIS)

    Cintra Filho, J. de S.

    1981-01-01

    The fluctuating temperature field structure is studied for the case of turbulent circular pipe flow. Experimentally determined integral length scales are used in modeling this structure in terms of axisymmetric forms. It is found that the appropriate angle of axisymmetry is larger than the one for modeling the large scale velocity structure. The axisymmetric model is then used to examine the validity and the prediction capability of the Tyldesley and Silver's non-spherical eddy diffusivity theory. (Author) [pt

  13. Charge-Induced Fluctuation Forces in Graphitic Nanostructures

    Directory of Open Access Journals (Sweden)

    D. Drosdoff

    2016-01-01

    Full Text Available Charge fluctuations in nanocircuits with capacitor components are shown to give rise to a novel type of long-ranged interaction, which coexist with the regular Casimir–van der Waals force. The developed theory distinguishes between thermal and quantum mechanical effects, and it is applied to capacitors involving graphene nanostructures. The charge fluctuations mechanism is captured via the capacitance of the system with geometrical and quantum mechanical components. The dependence on the distance separation, temperature, size, and response properties of the system shows that this type of force can have a comparable and even dominant effect to the Casimir interaction. Our results strongly indicate that fluctuation-induced interactions due to various thermodynamic quantities can have important thermal and quantum mechanical contributions at the microscale and the nanoscale.

  14. Study of density fluctuation in L-mode and H-mode plasmas on JFT-2M by microwave reflectometer

    International Nuclear Information System (INIS)

    Shinohara, Kouji

    1997-08-01

    We propose the model which can explain the runaway phase. The model takes account of the scattered wave which is caused by the density fluctuation near the cut-off layer. We should take a new approach instead of the conventional phase measurement in order to derive the information of the density fluctuation from the data with the runaway phase. The complex spectrum and the rotary spectrum analyses are useful tools to analyze such data. The density fluctuation in L-mode and H-mode plasmas is discussed by using this new approach. We have observed that the reduction of the density fluctuation is localized in the edge region where the sheared electric field is produced. The fluctuations in the range of frequency lower than 100 kHz are mainly reduced. Two interesting features have been observed. One is the detection of the coherent mode around 100 kHz in H-mode. This mode appears about 10 ms after L to H transition. The timing corresponds to the formation of a steep density and temperature gradient in the edge region. The other is the enhancement of the fluctuations with the frequency higher than 300 kHz in H-mode in contrast to the reduction of the fluctuations with the frequency lower than 100 kHz. The Doppler shift is observed in the complex auto-power spectrum of the reflected wave when the plasma is actively moved. We have confirmed that the movement of the plasma is appropriately measured by using the low pass filter. The reflectometer can be used to measure the density profile by using a low pass filter even when the runaway phase phenomenon occurs. (author). 150 refs

  15. Thermal performance curves under daily thermal fluctuation: A study in helmeted water toad tadpoles.

    Science.gov (United States)

    Bartheld, José L; Artacho, Paulina; Bacigalupe, Leonardo

    2017-12-01

    Most research in physiological ecology has focused on the effects of mean changes in temperature under the classic "hot vs cold" acclimation treatment; however, current evidence suggests that an increment in both the mean and variance of temperature could act synergistically to amplify the negative effects of global temperature increase and how it would affect fitness and performance-related traits in ectothermic organisms. We assessed the effects of acclimation to daily variance of temperature on thermal performance curves of swimming speed in helmeted water toad tadpoles (Calyptocephalella gayi). Acclimation treatments were 20°C ± 0.1 SD (constant) and 20°C ± 1.5 SD (fluctuating). We draw two key findings: first, tadpoles exposed to daily temperature fluctuation had reduced maximal performance (Z max ), and flattened thermal performance curves, thus supporting the "vertical shift or faster-slower" hypothesis, and suggesting that overall swimming performance would be lower through an examination of temperatures under more realistic and ecologically-relevant fluctuating regimens; second, there was significant interindividual variation in performance traits by means of significant repeatability estimates. Our present results suggest that the widespread use of constant acclimation temperatures in laboratory experiments to estimate thermal performance curves (TPCs) may lead to an overestimation of actual organismal performance. We encourage the use of temperature fluctuation acclimation treatments to better understand the variability of physiological traits, which predict ecological and evolutionary responses to global change. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Measurements and modelling of electrostatic fluctuations in the scrape-off layer of ASDEX

    Energy Technology Data Exchange (ETDEWEB)

    Endler, M; Niedermeyer, H; Giannone, L.; Holzhauer, E; Rudyj, A; Theimer, G; Tsois, N [Association Euratom-Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); ASDEX Team

    1995-11-01

    In the edge plasma of the ASDEX tokamak, electrostatic fluctuations were observed with Langmuir probes and in H{sub {alpha}} light with high poloidal and temporal resolution. These fluctuations contribute a significant fraction to the `anomalous` radial particle transport in the scrape-off layer (SOL). The basic properties and the dependence of the fluctuations parameters on the discharge conditions are documented. A model for an instability mechanism specific to the SOL is introduced and the experimentally observed fluctuation parameters are compared with the predictions of the linearized version of this model. For plasma temperatures above {approx} 10eV in the SOL the observed parameter dependences of the fluctuations are well reproduced by the model. By mixing length arguments the radial transport and the resulting density and pressure gradients in the SOL are estimated from the model. Their dependence on plasma temperature and density qualitatively agrees with the behaviour observed in ohmic discharges on ASDEX. (author). 54 refs, 25 figs.

  17. Measurements and modelling of electrostatic fluctuations in the scrape-off layer of ASDEX

    International Nuclear Information System (INIS)

    Endler, M.; Niedermeyer, H.; Giannone, L.; Holzhauer, E.; Rudyj, A.; Theimer, G.; Tsois, N.

    1995-01-01

    In the edge plasma of the ASDEX tokamak, electrostatic fluctuations were observed with Langmuir probes and in H α light with high poloidal and temporal resolution. These fluctuations contribute a significant fraction to the 'anomalous' radial particle transport in the scrape-off layer (SOL). The basic properties and the dependence of the fluctuations parameters on the discharge conditions are documented. A model for an instability mechanism specific to the SOL is introduced and the experimentally observed fluctuation parameters are compared with the predictions of the linearized version of this model. For plasma temperatures above ∼ 10eV in the SOL the observed parameter dependences of the fluctuations are well reproduced by the model. By mixing length arguments the radial transport and the resulting density and pressure gradients in the SOL are estimated from the model. Their dependence on plasma temperature and density qualitatively agrees with the behaviour observed in ohmic discharges on ASDEX. (author). 54 refs, 25 figs

  18. Thermal fluctuation problems encountered in LMFRs

    International Nuclear Information System (INIS)

    Gelineau, O.; Sperandio, M.; Martin, P.; Ricard, J.B.; Martin, L.; Bougault, A.

    1994-01-01

    One of the most significant problems of LMFBRs deals with thermal fluctuations. The main reason is that LMFBRs operate with sodium coolant at very different temperatures which leads to the existence of several areas of transition between hot and cold sodium. These transitions areas which are the critical points, maybe found in the reactor block as well as in the secondary and auxiliary loops. The characteristics of these thermal fluctuations are not easy to quantify because of their complex (random) behaviour, and often demand the use of thermalhydraulic mock-up tests. A good knowledge of these phenomena is essential because of the potential high level of damage they can induce on structures. Two typical thermal fluctuation problems encountered on operation reactors are described. They were not originally anticipated at the design stage of the former Phenix and the latter Superphenix reactors. Description and the analyses performed to describe the damaging process are explained. A well known thermal fluctuation problem is presented. It is pointed out how the feedback from the damages observed on operating reactors is used to prevent the components from any high cycle fatigue

  19. The study of RMB exchange rate complex networks based on fluctuation mode

    Science.gov (United States)

    Yao, Can-Zhong; Lin, Ji-Nan; Zheng, Xu-Zhou; Liu, Xiao-Feng

    2015-10-01

    In the paper, we research on the characteristics of RMB exchange rate time series fluctuation with methods of symbolization and coarse gaining. First, based on fluctuation features of RMB exchange rate, we define the first type of fluctuation mode as one specific foreign currency against RMB in four days' fluctuating situations, and the second type as four different foreign currencies against RMB in one day's fluctuating situation. With the transforming method, we construct the unique-currency and multi-currency complex networks. Further, through analyzing the topological features including out-degree, betweenness centrality and clustering coefficient of fluctuation-mode complex networks, we find that the out-degree distribution of both types of fluctuation mode basically follows power-law distributions with exponents between 1 and 2. The further analysis reveals that the out-degree and the clustering coefficient generally obey the approximated negative correlation. With this result, we confirm previous observations showing that the RMB exchange rate exhibits a characteristic of long-range memory. Finally, we analyze the most probable transmission route of fluctuation modes, and provide probability prediction matrix. The transmission route for RMB exchange rate fluctuation modes exhibits the characteristics of partially closed loop, repeat and reversibility, which lays a solid foundation for predicting RMB exchange rate fluctuation patterns with large volume of data.

  20. Bona Fide Thermodynamic Temperature in Nonequilibrium Kinetic Ising Models

    OpenAIRE

    Sastre, Francisco; Dornic, Ivan; Chaté, Hugues

    2003-01-01

    We show that a nominal temperature can be consistently and uniquely defined everywhere in the phase diagram of large classes of nonequilibrium kinetic Ising spin models. In addition, we confirm the recent proposal that, at critical points, the large-time ``fluctuation-dissipation ratio'' $X_\\infty$ is a universal amplitude ratio and find in particular $X_\\infty \\approx 0.33(2)$ and $X_\\infty = 1/2$ for the magnetization in, respectively, the two-dimensional Ising and voter universality classes.

  1. Quantum fluctuations of vortices in Josephson-coupled superconductors

    International Nuclear Information System (INIS)

    Bulaevskii, L.N.; Maley, M.P.

    1994-01-01

    The effect of quantum fluctuations of vortices on the low temperature specific heat and reversible magnetization in the mixed state in highly anisotropic layered superconductors is discussed. For reversible magnetization, M, the change of slope in the dependence of M vs ln B, observed in Bi(2:2:1:2), is explained. In the mean, field approach this slope should be almost B independent. The specific heat due to the vortex fluctuation contribution is predicted to be linear in T at low T

  2. Conductivity fluctuation in the high temperature superconductor with planar weight disparity Y{sub 0.5}Sm{sub 0.5}Ba{sub 2}Cu{sub 3}O{sub 7-{delta}}

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, E.W.; Rojas Sarmiento, M.P.; Rincon, L.F.; Landinez Tellez, D.A.; Roa-Rojas, J. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, A.A. 14490, Bogota DC (Colombia)

    2007-07-01

    The synthesis of the Y{sub 0.5}Sm{sub 0.5}Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} superconducting material by the standard solid state reaction is reported. DC resistivity measurements reveal the improvement of the critical temperature (T{sub c}) when substitution of exact 50-50 mix of Yttrium and Samarium is performed. A bulk T{sub c} = 101 K was determined by the criterion of the maximum in the temperature derivative of electrical resistivity. Structure characterization by means the x-ray diffraction technique shows the crystalline appropriated distribution of Yttrium and Samarium to create substantial planar weight disparity (PWD) in alternating layers. This PWD increases T{sub c} in copper-oxide superconductors. In order to examine the effect of PWD on the pairing mechanism close to T{sub c}, conductivity fluctuation analysis was performed by the method of logarithmic temperature derivative of the conductivity excess. We found the occurrence of Gaussian and genuinely critical fluctuations. Our results are in agreement with reports on YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}, but an enhancement of the Gaussian fluctuation regimes was experimentally detected as a result of the PWD. The correlations of the critical exponents with the dimensionality of the fluctuation system for each Gaussian regime were performed by using the Aslamazov-Larkin theory. The genuinely critical exponent is interpreted by the 3D-XY model as corresponding with the dynamical universality class of the E-model. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Numerical simulations of pressure fluctuations at branch piping in BWR main steam line

    International Nuclear Information System (INIS)

    Morita, Ryo; Inada, Fumio; Yoshikawa, Kazuhiro; Takahashi, Shiro

    2009-01-01

    The power uprating of a nuclear power plant may increase/accelerate degradation phenomena such as flow-induced vibration and wall thinking. A steam dryer was damaged by a high cycle fatigue due to an acoustic-induced vibration at the branch piping of safety relief valves (SRVs) in main steam lines. In this study, we conducted the numerical simulations of steam/air flow around a simplified branch piping to clarify the basic characteristics of resonance. LES simulations were conducted in ordinary pressure/temperature air and steam under BWR plant conditions. In both cases, the excitation of the pressure fluctuations at the branch was observed under some inlet velocity conditions. These fluctuations and inlet conditions were normalized and the obtained results were compared. The normalized results showed that the range and maximum amplitude of pressure fluctuations were almost the same in low-pressure/temperature air and high-pressure/temperature steam. We found that ordinary pressure/temperature air experiments and simulations can possibly clarify the characteristics of the resonance in high-pressure/temperature steam. (author)

  4. Heat fluctuations in Ising models coupled with two different heat baths

    Energy Technology Data Exchange (ETDEWEB)

    Piscitelli, A; Gonnella, G [Dipartimento di Fisica, Universita di Bari and Istituto Nazionale di Fisica Nucleare, Sezione di Bari, via Amendola 173, 70126 Bari (Italy); Corberi, F [Dipartimento di Matematica ed Informatica, via Ponte don Melillo, Universita di Salerno, 84084 Fisciano (Italy)

    2008-08-22

    Monte Carlo simulations of Ising models coupled to heat baths at two different temperatures are used to study a fluctuation relation for the heat exchanged between the two thermostats in a time {tau}. Different kinetics (single-spin-flip or spin-exchange Kawasaki dynamics), transition rates (Glauber or Metropolis), and couplings between the system and the thermostats have been considered. In every case the fluctuation relation is verified in the large {tau} limit, both in the disordered and in the low temperature phase. Finite-{tau} corrections are shown to obey a scaling behavior. (fast track communication)

  5. Aster leafhopper survival and reproduction, and Aster yellows transmission under static and fluctuating temperatures, using ddPCR for phytoplasma quantification

    OpenAIRE

    Bahar, Md H.; Wist, Tyler J.; Bekkaoui, Diana R.; Hegedus, Dwayne D.; Olivier, Chrystel Y.

    2018-01-01

    Aster yellows (AY) is an important disease of Brassica crops and is caused by Candidatus Phytoplasma asteris and transmitted by the insect vector, Aster leafhopper (Macrosteles quadrilineatus). Phytoplasma-infected Aster leafhoppers were incubated at various constant and fluctuating temperatures ranging from 0 to 35 °C with the reproductive host plant barley (Hordium vulgare). At 0 °C, leafhopper adults survived for 18 days, but failed to reproduce, whereas at 35 °C insects died within 18 day...

  6. Bi-stability resistant to fluctuations

    Science.gov (United States)

    Caruel, M.; Truskinovsky, L.

    2017-12-01

    We study a simple micro-mechanical device that does not lose its snap-through behavior in an environment dominated by fluctuations. The main idea is to have several degrees of freedom that can cooperatively resist the de-synchronizing effect of random perturbations. As an inspiration we use the power stroke machinery of skeletal muscles, which ensures at sub-micron scales and finite temperatures a swift recovery of an abruptly applied slack. In addition to hypersensitive response at finite temperatures, our prototypical Brownian snap spring also exhibits criticality at special values of parameters which is another potentially interesting property for micro-scale engineering applications.

  7. Muon spin relaxation measurements of the fluctuation modes in spin-glass AgNm

    Energy Technology Data Exchange (ETDEWEB)

    Heffner, R.H.; Leon, M.; Schillaci, M.E.; MacLaughlin, D.E.; Dodds, S.A.

    1983-01-01

    Recently reported zero-field ..mu..SR measurements below the spin-glass transition temperature in AgMn (1.6 at%) show a temperature dependent inhomogeneous width. The authors discuss these data in terms of a model in which the local field undergoes limited-amplitude fluctuations. The authors find that both very slow (approx. = 0.3 ..mu..s/sup -1/) and rapid (approx. = 3000 ..mu..s/sup -1/) fluctuations are required. 10 references, 1 figure, 1 table.

  8. Finite-size fluctuations and photon statistics near the polariton condensation transition in a single-mode microcavity

    International Nuclear Information System (INIS)

    Eastham, P. R.; Littlewood, P. B.

    2006-01-01

    We consider polariton condensation in a generalized Dicke model, describing a single-mode cavity containing quantum dots, and extend our previous mean-field theory to allow for finite-size fluctuations. Within the fluctuation-dominated regime the correlation functions differ from their (trivial) mean-field values. We argue that the low-energy physics of the model, which determines the photon statistics in this fluctuation-dominated crossover regime, is that of the (quantum) anharmonic oscillator. The photon statistics at the crossover are different in the high-temperature and low-temperature limits. When the temperature is high enough for quantum effects to be neglected we recover behavior similar to that of a conventional laser. At low enough temperatures, however, we find qualitatively different behavior due to quantum effects

  9. Impact of neutral density fluctuations on gas puff imaging diagnostics

    Science.gov (United States)

    Wersal, C.; Ricci, P.

    2017-11-01

    A three-dimensional turbulence simulation of the SOL and edge regions of a toroidally limited tokamak is carried out. The simulation couples self-consistently the drift-reduced two-fluid Braginskii equations to a kinetic equation for neutral atoms. A diagnostic neutral gas puff on the low-field side midplane is included and the impact of neutral density fluctuations on D_α light emission investigated. We find that neutral density fluctuations affect the D_α emission. In particular, at a radial distance from the gas puff smaller than the neutral mean free path, neutral density fluctuations are anti-correlated with plasma density, electron temperature, and D_α fluctuations. It follows that the neutral fluctuations reduce the D_α emission in most of the observed region and, therefore, have to be taken into account when interpreting the amplitude of the D_α emission. On the other hand, higher order statistical moments (skewness, kurtosis) and turbulence characteristics (such as correlation length, or the autocorrelation time) are not significantly affected by the neutral fluctuations. At distances from the gas puff larger than the neutral mean free path, a non-local shadowing effect influences the neutral density fluctuations. There, the D_α fluctuations are correlated with the neutral density fluctuations, and the high-order statistical moments and measurements of other turbulence properties are strongly affected by the neutral density fluctuations.

  10. Ensemble-free configurational temperature for spin systems

    Science.gov (United States)

    Palma, G.; Gutiérrez, G.; Davis, S.

    2016-12-01

    An estimator for the dynamical temperature in an arbitrary ensemble is derived in the framework of the conjugate variables theorem. We prove directly that its average indeed gives the inverse temperature and that it is independent of the ensemble. We test this estimator numerically by a simulation of the two-dimensional X Y model in the canonical ensemble. As this model is critical in the whole region of temperatures below the Berezinski-Kosterlitz-Thouless critical temperature TBKT, we use a generalization of Wolff's unicluster algorithm. The numerical results allow us to confirm the robustness of the analytical expression for the microscopic estimator of the temperature. This microscopic estimator has also the advantage that it gives a direct measure of the thermalization process and can be used to compute absolute errors associated with statistical fluctuations. In consequence, this estimator allows for a direct, absolute, and stringent test of the ergodicity of the underlying Markov process, which encodes the algorithm used in a numerical simulation.

  11. Spin fluctuation and small polaron conduction dominated electrical ...

    Indian Academy of Sciences (India)

    Administrator

    temperature regime (20 K < T < 53 K), shows a minima near 53 K and increases with T ... Manganite nanoparticles; resistivity; spin fluctuation; electron–phonon interaction; electron– ... the low-doped regime because of the series of structural,.

  12. Resistance scaling function for two-dimensional superconductors and Monte Carlo vortex-fluctuation simulations

    International Nuclear Information System (INIS)

    Minnhagen, P.; Weber, H.

    1985-01-01

    A Monte Carlo simulation of the Ginsburg-Landau Coulomb-gas model for vortex fluctuations is described and compared to the measured resistance scaling function for two-dimensional superconductors. This constitutes a new, more direct way of confirming the vortex-fluctuation explanation for the resistive tail of high-sheet-resistance superconducting films. The Monte Carlo data obtained indicate a striking accordance between theory and experiments

  13. Contribution to the study of fluctuations in transistors (bipolar and junction field effect types); Contribution a l'etude des fluctuations dans les transistors (bipolaires et a effet champ a jonctions)

    Energy Technology Data Exchange (ETDEWEB)

    Borel, J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1970-07-01

    A brief review of the basic theory of fluctuations in semiconductors is given: shot, thermal low frequency noise. A measuring set has been built to draw noise spectrums (current or voltage). Noise parameters of bipolar transistors are given, mainly noise voltage. Noise current, noise factor and correlation between noise sources are also calculated. Measurements of noise parameters fit well with theory for various devices made in different technologies: alloyed, mesa, planar. Then we give results of the calculation of noise parameters in a FET starting from a simplified model of the device. Low frequency noise is taken into account. Measurements of the parameters and of the spectrum agree fairly well with the theory. Studies of low frequency noise versus temperature give the density and energy of traps located in the space charge layers and an idea of the impurity encountered in these space charge layers. [French] On rappelle les notions de base de la theorie des fluctuations dans les semiconducteurs: bruit de grenaille, bruit thermique, bruit basse frequence. Un appareillage mis au point pour tracer un spectre de bruit est decrit. On presente ensuite le calcul des parametres de bruit d'un transistor bipolaire en insistant plus particulierement sur la tension de bruit ramenee a l'entree de l'element. Le courant de bruit, le facteur de bruit et la correlation entre les sources de bruit sont calcules. La mesure des parametres de bruit est faite sur divers elements realises dans diverses technologies: alliee, mesa et plane. Les mesures confirment tres bien la theorie. On presente ensuite le calcul des parametres de bruit d'un transistor a effet de champ en definissant un schema equivalent simple de l'element. Le calcul theorique des fluctuations basse frequence est aussi fait. La mesure du spectre de bruit confirme tres bien les calculs theoriques. L'etude du bruit basse frequence en fonction de la temperature permet de remonter a la densite et a l'energie des pieges

  14. Decay of passive scalar fluctuations in axisymmetric turbulence

    Science.gov (United States)

    Yoshimatsu, Katsunori; Davidson, Peter A.; Kaneda, Yukio

    2016-11-01

    Passive scalar fluctuations in axisymmetric Saffman turbulence are examined theoretically and numerically. Theoretical predictions are verified by direct numerical simulation (DNS). According to the DNS, self-similar decay of the turbulence and the persistency of the large-scale anisotropy are found for its fully developed turbulence. The DNS confirms the time-independence of the Corrsin integral.

  15. Fluctuation relations in non-equilibrium stationary states of Ising models

    Energy Technology Data Exchange (ETDEWEB)

    Piscitelli, A; Gonnella, G [Dipartimento di Fisica, Universita di Bari and Istituto Nazionale di Fisica Nucleare, Sezione di Bari, via Amendola 173, 70126 Bari (Italy); Corberi, F [Dipartimento di Matematica ed Informatica, via Ponte don Melillo, Universita di Salerno, 84084 Fisciano (Italy); Pelizzola, A [Dipartimento di Fisica and Istituto Nazionale di Fisica Nucleare, Sezione di Torino, and CNISM, Politecnico di Torino, c. Duca degli Abruzzi 24, 10129 Torino (Italy)

    2009-01-15

    Fluctuation relations for the entropy production in non-equilibrium stationary states of Ising models are investigated by means of Monte Carlo simulations. Systems in contact with heat baths at two different temperatures or subject to external driving will be studied. In the first case, considering different kinetic rules and couplings with the baths, the behaviors of the probability distributions of the heat exchanged in time {tau} with the thermostats, both in the disordered phase and in the low temperature phase, are discussed. The fluctuation relation is always followed in the large {tau} limit and deviations from linear response theory are observed. Finite {tau} corrections are shown to obey a scaling behavior. In the other case the system is in contact with a single heat bath, but work is done by shearing it. Also for this system, using the statistics collected for the mechanical work we show the validity of the fluctuation relation and the preasymptotic corrections behave analogously to those for the case with two baths.

  16. Fluctuations effects in diblock copolymer fluids: Comparison of theories and experiment

    International Nuclear Information System (INIS)

    Guenza, M.; Schweizer, K.S.

    1997-01-01

    The analytic Polymer Reference Interaction Site Model (PRISM) theory of structurally and interaction symmetric Gaussian diblock copolymer fluids is reformulated, extended, and applied to make predictions for experimentally observable equilibrium properties of the disordered state. These include the temperature, degree of polymerization, copolymer composition, and polymer density or concentration dependences of the peak scattering intensity, effective chi-parameter, and heat capacity. The location of the order-disorder transition is empirically estimated based on the disordered, strongly fluctuating state scattering function. Detailed numerical applications of PRISM theory demonstrates it provides an excellent description of the data. An in depth comparison of the mathematical structure and predictions of PRISM theory with the highly coarse-grained, incompressible Brazovski endash Leibler endash Fredrickson endash Helfand (BLFH) fluctuation corrected field theory is also carried out. Under some conditions (nearly symmetric composition, high melt densities, moderate temperatures) there are striking mathematical similarities between the predictions of the physically very different theories, although quantitative differences always persist. However, for strongly asymmetric copolymer compositions, short chains, compressible copolymer solutions, and low temperatures many qualitative differences emerge. The possibility of multiple, self-consistent fluctuation feedback mechanisms within the most general PRISM approach are identified, their qualitative features discussed, and contrasted with alternative versions of the fluctuation-corrected incompressible field theories due to BLFH and Stepanow. The predictions of PRISM and BLFH theory for the composition, copolymer density, temperature, and molecular weight dependence of the effective chi-parameter are presented and qualitatively compared with recent experiments. copyright 1997 American Institute of Physics

  17. Controlling fluctuations in an ITB and comparison with gyrokinetic simulations

    Science.gov (United States)

    Ernst, D. R.; Fiore, C. L.; Dominguez, A.; Podpaly, Y.; Reinke, M. L.; Terry, J. L.; Tsujii, N.; Bespamyatnov, I.; Churchill, M.; Greenwald, M.; Hubbard, A.; Hughes, J. W.; Lee, J.; Ma, Y.; Wolfe, S.; Wukitch, S.

    2011-10-01

    We have modulated on-axis ICRF minority heating to trigger fluctuations and core electron transport in Alcator C-Mod Internal Transport Barriers (ITB's). Temperature swings of 50% produced strong bursts of density fluctuations, measured by phase contrast imaging (PCI), while edge fluctuations from reflectometry, Mirnov coils, and gas puff imaging (GPI) simultaneously diminished. The PCI fluctuations are in phase with sawteeth, further evidence that they originate within the ITB foot. Linear gyrokinetic analysis with GS2 shows TEMs are driven unstable in the ITB by the on-axis heating, as in Refs.,. Nonlinear gyrokinetic simulations of turbulence in the ITB are compared with fluctuation data using a synthetic diagnostic. Strong ITB's were produced with high quality ion and electron profile data. Supported by U.S. DoE awards DE-FC02-99ER54512, DE-FG02-91ER54109, DE-FC02-08ER54966.

  18. Ion heating and MHD dynamo fluctuations in the reversed field pinch

    International Nuclear Information System (INIS)

    Scime, E.E.

    1992-05-01

    Ion temperature measurements, time resolved to 10 μs, have been made in the Madison Symmetric Torus (MST) reversed field pinch (RFP) with a five channel charge exchange analyzer. The characteristic anomalously high ion temperature of RFP discharges has been observed in the MST. The evolution of the ion and electron temperature, as well as density and charge exchange power loss, were measured for a series of reproducible discharges. The ion heating expected from collisional processes with the electrons is calculated and shown too small to explain the measured ion temperatures. The charge exchange determined ion temperature is also compared to measurements of the thermally broadened CV 227.1 nm line. The ion temperature, T i ∼ 250 eV for I = 360 kA, increases by more than 100% during discrete dynamo bursts in MST discharges. Magnetic field fluctuations in the range 0.5 endash 5 MHz were also measured during the dynamo bursts. Structure in the fluctuation frequency spectrum at the ion cyclotron frequency appears as the bursts terminate, suggesting that the mechanism of ion heating involves the dissipation of dynamo fluctuations at ion cyclotron frequencies. Theoretical models for ion heating are reviewed and discussed in light of the experimental results. Similar electron heating mechanisms may be responsible for the discrepancy between measured and expected loop voltages in the RFP. The electrons, as well as the ions, may be heated by turbulent mechanisms, and a RFP energy budget including such phenomena is described

  19. Density fluctuations in ohmic-, L-mode an H-mode discharges of ASDEX

    Energy Technology Data Exchange (ETDEWEB)

    Dodel, G; Holzhauer, E [Stuttgart Univ. (Germany). Inst. fuer Plasmaforschung; Niedermeyer, H; Endler, M; Gerhardt, J; Giannone, L.; Wagner, F; Zohm, H [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1991-01-01

    The 119 [mu]m laser scattering device ASDEX was used to investigate the direction of propagation and temporal development of density fluctuations. In ohmic discharges the density fluctuations propagate predominantly in the electron-diamagnetic direction and change direction with NI co-injection. A strong drop in total scattered power together with a further increase in the frequency shift is observed after the build-up of the transport barrier. Similar observations have been reported on other tokamaks. Due to the finite spatial resolution of the scattering system the variation of the fluctuations with local parameters cannot be sufficiently resolved to confirm their nature. (author) 5 refs., 3 figs.

  20. Density fluctuations in ohmic-, L-mode an H-mode discharges of ASDEX

    International Nuclear Information System (INIS)

    Dodel, G.; Holzhauer, E.

    1991-01-01

    The 119 μm laser scattering device ASDEX was used to investigate the direction of propagation and temporal development of density fluctuations. In ohmic discharges the density fluctuations propagate predominantly in the electron-diamagnetic direction and change direction with NI co-injection. A strong drop in total scattered power together with a further increase in the frequency shift is observed after the build-up of the transport barrier. Similar observations have been reported on other tokamaks. Due to the finite spatial resolution of the scattering system the variation of the fluctuations with local parameters cannot be sufficiently resolved to confirm their nature. (author) 5 refs., 3 figs

  1. London penetration depth and thermal fluctuations in the sulphur hydride 203 K superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Talantsev, E.F.; Crump, W.P. [Robinson Research Institute, Victoria University of Wellington, Lower Hutt (New Zealand); Storey, J.G.; Tallon, J.L. [Robinson Research Institute, Victoria University of Wellington, Lower Hutt (New Zealand); MacDiarmid Institute for Advanced Materials and Nanotechnology, Lower Hutt (New Zealand)

    2017-03-15

    Recently, compressed H{sub 2}S has been shown to become superconducting at 203 K under a pressure of 155 GPa. One might expect fluctuations to dominate at such temperatures. Using the magnetisation critical current, we determine the ground-state London penetration depth, λ{sub 0} = 189 nm, and the superconducting energy gap, Δ{sub 0} = 27.8 meV, and find these parameters are similar to those of cuprate superconductors. We also determine the fluctuation temperature scale, T{sub fluc} = 1470 K, which shows that, unlike the cuprates, T{sub c} of the hydride is not limited by fluctuations. This is due to its three dimensionality and suggests the search for better superconductors should refocus on three-dimensional systems where the inevitable thermal fluctuations are less likely to reduce the observed T{sub c}. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Constraints on Stable Equilibria with Fluctuation-Induced (Casimir) Forces

    International Nuclear Information System (INIS)

    Rahi, Sahand Jamal; Kardar, Mehran; Emig, Thorsten

    2010-01-01

    We examine whether fluctuation-induced forces can lead to stable levitation. First, we analyze a collection of classical objects at finite temperature that contain fixed and mobile charges and show that any arrangement in space is unstable to small perturbations in position. This extends Earnshaw's theorem for electrostatics by including thermal fluctuations of internal charges. Quantum fluctuations of the electromagnetic field are responsible for Casimir or van der Waals interactions. Neglecting permeabilities, we find that any equilibrium position of items subject to such forces is also unstable if the permittivities of all objects are higher or lower than that of the enveloping medium, the former being the generic case for ordinary materials in vacuum.

  3. Constraints on stable equilibria with fluctuation-induced (Casimir) forces.

    Science.gov (United States)

    Rahi, Sahand Jamal; Kardar, Mehran; Emig, Thorsten

    2010-08-13

    We examine whether fluctuation-induced forces can lead to stable levitation. First, we analyze a collection of classical objects at finite temperature that contain fixed and mobile charges and show that any arrangement in space is unstable to small perturbations in position. This extends Earnshaw's theorem for electrostatics by including thermal fluctuations of internal charges. Quantum fluctuations of the electromagnetic field are responsible for Casimir or van der Waals interactions. Neglecting permeabilities, we find that any equilibrium position of items subject to such forces is also unstable if the permittivities of all objects are higher or lower than that of the enveloping medium, the former being the generic case for ordinary materials in vacuum.

  4. Superconducting fluctuations and characteristic time scales in amorphous WSi

    Science.gov (United States)

    Zhang, Xiaofu; Lita, Adriana E.; Sidorova, Mariia; Verma, Varun B.; Wang, Qiang; Nam, Sae Woo; Semenov, Alexei; Schilling, Andreas

    2018-05-01

    We study magnitudes and temperature dependencies of the electron-electron and electron-phonon interaction times which play the dominant role in the formation and relaxation of photon-induced hotspots in two-dimensional amorphous WSi films. The time constants are obtained through magnetoconductance measurements in a perpendicular magnetic field in the superconducting fluctuation regime and through time-resolved photoresponse to optical pulses. The excess magnetoconductivity is interpreted in terms of the weak-localization effect and superconducting fluctuations. Aslamazov-Larkin and Maki-Thompson superconducting fluctuations alone fail to reproduce the magnetic field dependence in the relatively high magnetic field range when the temperature is rather close to Tc because the suppression of the electronic density of states due to the formation of short-lifetime Cooper pairs needs to be considered. The time scale τi of inelastic scattering is ascribed to a combination of electron-electron (τe -e) and electron-phonon (τe -p h) interaction times, and a characteristic electron-fluctuation time (τe -f l) , which makes it possible to extract their magnitudes and temperature dependencies from the measured τi. The ratio of phonon-electron (τp h -e) and electron-phonon interaction times is obtained via measurements of the optical photoresponse of WSi microbridges. Relatively large τe -p h/τp h -e and τe -p h/τe -e ratios ensure that in WSi the photon energy is more efficiently confined in the electron subsystem than in other materials commonly used in the technology of superconducting nanowire single-photon detectors (SNSPDs). We discuss the impact of interaction times on the hotspot dynamics and compare relevant metrics of SNSPDs from different materials.

  5. Modelling of diffusion from equilibrium diffraction fluctuations in ordered phases

    International Nuclear Information System (INIS)

    Arapaki, E.; Argyrakis, P.; Tringides, M.C.

    2008-01-01

    Measurements of the collective diffusion coefficient D c at equilibrium are difficult because they are based on monitoring low amplitude concentration fluctuations generated spontaneously, that are difficult to measure experimentally. A new experimental method has been recently used to measure time-dependent correlation functions from the diffraction intensity fluctuations and was applied to measure thermal step fluctuations. The method has not been applied yet to measure superstructure intensity fluctuations in surface overlayers and to extract D c . With Monte Carlo simulations we study equilibrium fluctuations in Ising lattice gas models with nearest neighbor attractive and repulsive interactions. The extracted diffusion coefficients are compared to the ones obtained from equilibrium methods. The new results are in good agreement with the results from the other methods, i.e., D c decreases monotonically with coverage Θ for attractive interactions and increases monotonically with Θ for repulsive interactions. Even the absolute value of D c agrees well with the results obtained with the probe area method. These results confirm that this diffraction based method is a novel, reliable way to measure D c especially within the ordered region of the phase diagram when the superstructure spot has large intensity

  6. Seasonal variation in parasite infection patterns of marine fish species from the Northern Wadden Sea in relation to interannual temperature fluctuations

    Science.gov (United States)

    Schade, Franziska M.; Raupach, Michael J.; Mathias Wegner, K.

    2016-07-01

    Marine environmental conditions are naturally changing throughout the year, affecting life cycles of hosts as well as parasites. In particular, water temperature is positively correlated with the development of many parasites and pathogenic bacteria, increasing the risk of infection and diseases during summer. Interannual temperature fluctuations are likely to alter host-parasite interactions, which may result in profound impacts on sensitive ecosystems. In this context we investigated the parasite and bacterial Vibrionaceae communities of four common small fish species (three-spined stickleback Gasterosteus aculeatus, Atlantic herring Clupea harengus, European sprat Sprattus sprattus and lesser sand eel Ammodytes tobianus) in the Northern Wadden Sea over a period of two years. Overall, we found significantly increased relative diversities of infectious species at higher temperature differentials. On the taxon-specific level some macroparasite species (trematodes, nematodes) showed a shift in infection peaks that followed the water temperatures of preceding months, whereas other parasite groups showed no effects of temperature differentials on infection parameters. Our results show that even subtle changes in seasonal temperatures may shift and modify the phenology of parasites as well as opportunistic pathogens that can have far reaching consequences for sensitive ecosystems.

  7. Ion temperature and ∇B effects on ULF fluctuations at the magnetopause

    International Nuclear Information System (INIS)

    Pillay, R.

    1996-01-01

    In this paper, we present an extension of the work by Lakhina, Shukla and Stenflo (Geophys. Res. Lett. 20, 2419 1993) on the generation of ultralow frequency (ULF) fluctuations at the earth's magnetopause. A high beta model for the generation of these short wavelength fluctuations is described. In this model, drifts due to density and magnetic field gradients, present at the magnetopause, act as free energy sources for the excitation of the ULF waves. The model also considers both warm electrons and ions and is based on the SS equations (Shukla and Stenflo. J. Exp. Theor. Phys. 57, 692 1993) for low-frequency EM waves in non-uniform high beta magnetoplasmas. Using fluid theory the associated dispersion relation is first established, then numerically solved for unstable modes in different regions of parameter space. (orig.)

  8. Vortex-line fluctuations in model high-temperature superconductors

    International Nuclear Information System (INIS)

    Li, Y.; Teitel, S.

    1993-01-01

    We carry out Monte Carlo simulations of the uniformly frustrated three-dimensional XY model, as a model for vortex-line fluctuations in a high-T c superconductor in an external magnetic field. A density of vortex lines of f=1/25 is considered. We find two sharp phase transitions. The low-T superconducting phase is an ordered vortex-line lattice. The high-T normal phase is a vortex-line liquid, with much entangling, cutting, and loop excitations. An intermediate phase is found, which is characterized as a vortex-line liquid of disentangled, approximately straight, lines. In this phase, the system displays superconducting properties in the direction parallel to the magnetic field, but normal behavior in planes perpendicular to the field. A detailed analysis of the vortex structure function is carried out

  9. Emergence of a fluctuation relation for heat in nonequilibrium Landauer processes

    Science.gov (United States)

    Taranto, Philip; Modi, Kavan; Pollock, Felix A.

    2018-05-01

    In a generalized framework for the Landauer erasure protocol, we study bounds on the heat dissipated in typical nonequilibrium quantum processes. In contrast to thermodynamic processes, quantum fluctuations are not suppressed in the nonequilibrium regime and cannot be ignored, making such processes difficult to understand and treat. Here we derive an emergent fluctuation relation that virtually guarantees the average heat produced to be dissipated into the reservoir either when the system or reservoir is large (or both) or when the temperature is high. The implication of our result is that for nonequilibrium processes, heat fluctuations away from its average value are suppressed independently of the underlying dynamics exponentially quickly in the dimension of the larger subsystem and linearly in the inverse temperature. We achieve these results by generalizing a concentration of measure relation for subsystem states to the case where the global state is mixed.

  10. Scaling of magnetic fluctuations near a quantum phase transition

    DEFF Research Database (Denmark)

    Schröder, A.; Aeppli, G.; Bucher, E.

    1998-01-01

    ,0,0). The neutron data and earlier bulk susceptibility are consistent with the form chi(-1) similar to f(Q) + (-iE + aT)(alpha), with an anomalous exponent alpha approximate to 0.8 not equal 1. We confirm the earlier observation of quasilow dimensionality and show how both the magnetic fluctuations...

  11. Assessment of Pressure Fluctuation Effect for Thermal Fatigue in a T-junction Using Thermo-Hydro Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pyo, Jaebum; Kim, Jungwoo; Huh, Namsu [Seoul National Univ. of Science and Technology, Seoul (Korea, Republic of); Kim, Sunhye [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    As a result, when evaluating thermal fatigue for the mixing tee, temperature fluctuation is dominant for this phenomenon, it can be reasonably assumed that the pressure is constant on the pipe inner wall. Recently, thermal fatigue due to mixing of the fluids having different temperatures has been considered as an important issue on the fatigue evaluation of nuclear piping. Mainly, this phenomenon occurs in a T-junction operating with the fluids consisted of different temperatures. Because of the turbulent mixing of hot and cold water, the temperature on the inner wall of the pipe fluctuates rapidly, causing the variation of thermal stresses in the pipe and resulting in high cycle thermal fatigue. In practice, cracking by high cycle thermal fatigue is reported at a T-junction in the residual heat removal system at Civaux unit 1 in France. However, because of irregular flow inside the pipe, the pressure also fluctuates rapidly as well as temperature in the inner wall of the pipe. Therefore, in this paper, three-dimensional thermo-hydro analysis was performed for the mixing tee of the shutdown cooling system of the pressurized water reactor plant, examining the pressure variation at the pipe inner wall. Based on the analysis result, this study aims at assessing the pressure fluctuation effect on the thermal fatigue. In this paper, it is verified that there is pressure fluctuation as well as temperature on the inner wall of mixing tee operating with the fluids having different temperatures. However, since the amplitude of pressure is relatively smaller than design pressure of the shutdown cooling system, the effect wouldn't be important for the thermal fatigue.

  12. Nonlinear dynamics of mushy layers induced by external stochastic fluctuations.

    Science.gov (United States)

    Alexandrov, Dmitri V; Bashkirtseva, Irina A; Ryashko, Lev B

    2018-02-28

    The time-dependent process of directional crystallization in the presence of a mushy layer is considered with allowance for arbitrary fluctuations in the atmospheric temperature and friction velocity. A nonlinear set of mushy layer equations and boundary conditions is solved analytically when the heat and mass fluxes at the boundary between the mushy layer and liquid phase are induced by turbulent motion in the liquid and, as a result, have the corresponding convective form. Namely, the 'solid phase-mushy layer' and 'mushy layer-liquid phase' phase transition boundaries as well as the solid fraction, temperature and concentration (salinity) distributions are found. If the atmospheric temperature and friction velocity are constant, the analytical solution takes a parametric form. In the more common case when they represent arbitrary functions of time, the analytical solution is given by means of the standard Cauchy problem. The deterministic and stochastic behaviour of the phase transition process is analysed on the basis of the obtained analytical solutions. In the case of stochastic fluctuations in the atmospheric temperature and friction velocity, the phase transition interfaces (mushy layer boundaries) move faster than in the deterministic case. A cumulative effect of these noise contributions is revealed as well. In other words, when the atmospheric temperature and friction velocity fluctuate simultaneously due to the influence of different external processes and phenomena, the phase transition boundaries move even faster. This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'.This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'. © 2018 The Author(s).

  13. Active Brownian particles with velocity-alignment and active fluctuations

    International Nuclear Information System (INIS)

    Großmann, R; Schimansky-Geier, L; Romanczuk, P

    2012-01-01

    We consider a model of active Brownian particles (ABPs) with velocity alignment in two spatial dimensions with passive and active fluctuations. Here, active fluctuations refers to purely non-equilibrium stochastic forces correlated with the heading of an individual active particle. In the simplest case studied here, they are assumed to be independent stochastic forces parallel (speed noise) and perpendicular (angular noise) to the velocity of the particle. On the other hand, passive fluctuations are defined by a noise vector independent of the direction of motion of a particle, and may account, for example, for thermal fluctuations. We derive a macroscopic description of the ABP gas with velocity-alignment interaction. Here, we start from the individual-based description in terms of stochastic differential equations (Langevin equations) and derive equations of motion for the coarse-grained kinetic variables (density, velocity and temperature) via a moment expansion of the corresponding probability density function. We focus here on the different impact of active and passive fluctuations on onset of collective motion and show how active fluctuations in the active Brownian dynamics can change the phase-transition behaviour of the system. In particular, we show that active angular fluctuations lead to an earlier breakdown of collective motion and to the emergence of a new bistable regime in the mean-field case. (paper)

  14. Duality and reciprocity of fluctuation-dissipation relations in conductors.

    Science.gov (United States)

    Reggiani, Lino; Alfinito, Eleonora; Kuhn, Tilmann

    2016-09-01

    By analogy with linear response, we formulate the duality and reciprocity properties of current and voltage fluctuations expressed by Nyquist relations, including the intrinsic bandwidths of the respective fluctuations. For this purpose, we individuate total-number and drift-velocity fluctuations of carriers inside a conductor as the microscopic sources of noise. The spectral densities at low frequency of the current and voltage fluctuations and the respective conductance and resistance are related in a mutually exclusive way to the corresponding noise source. The macroscopic variances of current and voltage fluctuations are found to display a dual property via a plasma conductance that admits a reciprocal plasma resistance. Analogously, the microscopic noise sources are found to obey a dual property and a reciprocity relation. The formulation is carried out in the frame of the grand canonical (for current noise) and canonical (for voltage noise) ensembles, and results are derived that are valid for classical as well as degenerate statistics, including fractional exclusion statistics. The unifying theory so developed sheds new light on the microscopic interpretation of dissipation and fluctuation phenomena in conductors. In particular, it is proven that for fermions, as a consequence of the Pauli principle, nonvanishing single-carrier velocity fluctuations at zero temperature are responsible for diffusion but not for current noise, which vanishes in this limit.

  15. Spin fluctuations in iron based superconductors probed by NMR relaxation rate

    Energy Technology Data Exchange (ETDEWEB)

    Graefe, Uwe; Kuehne, Tim; Wurmehl, Sabine; Buechner, Bernd; Grafe, Hans-Joachim [IFW Dresden, Institute for Solid State Research, PF 270116, 01171 Dresden (Germany); Hammerath, Franziska [IFW Dresden, Institute for Solid State Research, PF 270116, 01171 Dresden (Germany); Department of Physics ' ' A. Volta' ' , University of Pavia-CNISM, I-27100 Pavia (Italy); Lang, Guillaume [3LPEM-UPR5, CNRS, ESPCI Paris Tech, 10 Rue Vauquelin, 75005 Paris (France)

    2013-07-01

    We present {sup 75}As nuclear magnetic resonance (NMR) results in F doped LaOFeAs iron pnictides. In the underdoped superconducting samples, pronounced spin fluctuations lead to a peak in the NMR spin lattice relaxation rate, (T{sub 1}T){sup -1}. The peak shows a typical field dependence that indicates a critical slowing of spin fluctuations: it is reduced in height and shifted to higher temperatures. In contrast, a similar peak in the underdoped magnetic samples at the ordering temperature of the spin density wave does not show such a field dependence. Furthermore, the peak is absent in optimally and overdoped samples, suggesting the absence of strong spin fluctuations. Our results indicate a glassy magnetic ordering in the underdoped samples that is in contrast to the often reported Curie Weiss like increase of spin fluctuations towards T{sub c}. Additional measurements of the linewidth and the spin spin relaxation rate are in agreement with such a glassy magnetic ordering that is most likely competing with superconductivity. Our results will be compared to Co doped BaFe{sub 2}As{sub 2}, where a similar peak in (T{sub 1}T){sup -1} has been observed.

  16. Potential Fluctuations at Low Temperatures in Mesoscopic-Scale SmTiO3/SrTiO3/SmTiO3 Quantum Well Structures.

    Science.gov (United States)

    Hardy, Will J; Isaac, Brandon; Marshall, Patrick; Mikheev, Evgeny; Zhou, Panpan; Stemmer, Susanne; Natelson, Douglas

    2017-04-25

    Heterointerfaces of SrTiO 3 with other transition metal oxides make up an intriguing family of systems with a bounty of coexisting and competing physical orders. Some examples, such as LaAlO 3 /SrTiO 3 , support a high carrier density electron gas at the interface whose electronic properties are determined by a combination of lattice distortions, spin-orbit coupling, defects, and various regimes of magnetic and charge ordering. Here, we study electronic transport in mesoscale devices made with heterostructures of SrTiO 3 sandwiched between layers of SmTiO 3 , in which the transport properties can be tuned from a regime of Fermi-liquid like resistivity (ρ ∝ T 2 ) to a non-Fermi liquid (ρ ∝ T 5/3 ) by controlling the SrTiO 3 thickness. In mesoscale devices at low temperatures, we find unexpected voltage fluctuations that grow in magnitude as T is decreased below 20 K, are suppressed with increasing contact electrode size, and are independent of the drive current and contact spacing distance. Magnetoresistance fluctuations are also observed, which are reminiscent of universal conductance fluctuations but not entirely consistent with their conventional properties. Candidate explanations are considered, and a mechanism is suggested based on mesoscopic temporal fluctuations of the Seebeck coefficient. An improved understanding of charge transport in these model systems, especially their quantum coherent properties, may lead to insights into the nature of transport in strongly correlated materials that deviate from Fermi liquid theory.

  17. Minute Temperature Fluctuations Detected in Eta Bootis

    Science.gov (United States)

    1994-11-01

    periods around 20 minutes. These periods are longer than those of the Sun, as expected for a star that is larger and heavier than the Sun. The figure accompanying this Press Release shows these oscillations in the form of a "power spectrum", i.e., the amount of temperature change at different values of the period. Most of the highest peaks correspond to the real oscillations in the star. The changes (fluctuations) of the temperature of Eta Bootis vary with the oscillation mode and, at the time of these observations, were mostly between 0.03 and 0.08 degrees. This diagramme provides the first strong evidence ever for solar-type oscillations in a star other than the Sun. An article with the detailed results will soon appear in the "Astronomical Journal". Agreement with Stellar Theory The measured periods of the main oscillation modes give important information about the interior of Eta Bootis. Theoretical models of the star have now been compared with these observations and the astronomers were pleased to find that the agreement is excellent, implying that current stellar theory is remarkably good. This shows that we apparently understand stars quite well, but there is of course still much to be learned. Future observations of this kind, with ground-based telescopes and possibly in a more distant future also from space, promise to open up a new and exciting way of studying stars. From now on, we will be able "to look inside" stars in great detail. Appendix: Spectral Analysis Dark spectral lines were first seen in the solar spectrum by the German physicist Johann Fraunhofer in 1814. Later, in the mid-nineteenth century, such lines were also seen in the spectra of other stars. It is now known that they are due to the upper, cooler layers in the solar and stellar atmospheres, whose atoms and molecules absorb the radiation from the hotter, deeper layers at specific wavelengths. These wavelengths serve as "footprints" of these atoms and molecules and allow astronomers to

  18. Double-valence-fluctuating molecules and superconductivity

    International Nuclear Information System (INIS)

    Hirsch, J.E.; Scalapino, D.J.

    1985-01-01

    We discuss the possibility of ''double-valence-fluctuating'' molecules, having two ground-state configurations differing by two electrons. We propose a possible realization of such a molecule, and experimental ways to look for it. We argue that a weakly coupled array of such molecules should give rise to a strong-coupling Shafroth-Blatt-Butler superconductor, with a high transition temperature

  19. Buckling of stiff polymers: Influence of thermal fluctuations

    Science.gov (United States)

    Emanuel, Marc; Mohrbach, Hervé; Sayar, Mehmet; Schiessel, Helmut; Kulić, Igor M.

    2007-12-01

    The buckling of biopolymers is a frequently studied phenomenon The influence of thermal fluctuations on the buckling transition is, however, often ignored and not completely understood. A quantitative theory of the buckling of a wormlike chain based on a semiclassical approximation of the partition function is presented. The contribution of thermal fluctuations to the force-extension relation that allows one to go beyond the classical Euler buckling is derived in the linear and nonlinear regimes as well. It is shown that the thermal fluctuations in the nonlinear buckling regime increase the end-to-end distance of the semiflexible rod if it is confined to two dimensions as opposed to the three-dimensional case. The transition to a buckled state softens at finite temperature. We derive the scaling behavior of the transition shift with increasing ratio of contour length versus persistence length.

  20. Order parameter fluctuations and collective modes in superconductors

    International Nuclear Information System (INIS)

    Carlson, R.V.

    1975-06-01

    Measurements of the frequency and wave vector dependence of the pair-field susceptibility and the dynamical structure factor of homogeneous, short mean free path aluminum films have been carried out. These measurements critically probe the dynamical nature of order parameter fluctuations in the vicinity of the superconducting phase transition. Two important results are found. The first is that at temperatures higher than the transition temperature of the aluminum film, the fluctuations of the order parameter can be described by a diffusive time-dependent generalization of the Ginzburg-Landau equation. Detailed comparison of the data to the results of theoretical calculations of Scalapino, and Shenoy and Lee is carried out. Except in the immediate vicinity of the transition, there is excellent agreement with the theories. A major discrepancy between theory and experiment does exist in the vicinity of the superconducting transition, in that the pair relaxation frequency falls well below the theoretical predictions. Possible explanations of this behavior are discussed. Below the transition temperature measurements of the structure factor (Fourier transform of the order parameter-order parameter correlation function) provide the first clear cut demonstration of the existence of a propagating, low frequency, order parameter collective mode which appears as a finite frequency peak in the structure factor. This mode has been identified with fluctuations in the phase of the order parameter and has a linear dispersion relation over the range in which it is observed. A detailed comparison to some of the theoretical explanations is made, with the conclusion that at this time, existing theories do not adequately explain the behavior of the mode over the range of temperature and magnetic field in which it is observed. (4 figures, 4 tables, 86 references) (U.S.)

  1. Formulation of stable Bacillus subtilis AH18 against temperature fluctuation with highly heat-resistant endospores and micropore inorganic carriers.

    Science.gov (United States)

    Chung, Soohee; Lim, Hyung Mi; Kim, Sang-Dal

    2007-08-01

    To survive the commercial market and to achieve the desired effect of beneficial organisms, the strains in microbial products must be cost-effectively formulated to remain dormant and hence survive through high and low temperatures of the environment during transportation and storage. Dormancy and stability of Bacillus subtilis AH18 was achieved by producing endospores with enhanced heat resistance and using inorganic carriers. Heat stability assays, at 90 degrees C for 1 h, showed that spores produced under a sublethal temperature of 57 degrees C was 100 times more heat-resistant than the ones produced by food depletion at the growing temperature of 37 degrees C. When these highly heat-resistant endospores were formulated with inorganic carriers of natural and synthetic zeolite or kaolin clay minerals having substantial amount of micropores, the dormancy of the endospores was maintained for 6 months at 15-25 degrees C. Meanwhile, macroporous perlite carriers with average pore diameter larger than 3.7 microm stimulated the germination of the spores and rapid proliferation of the bacteria. These results indicated that a B. subtilis AH18 product that can remain dormant and survive through environmental temperature fluctuation can be formulated by producing heat-stressed endospores and incorporating inorganic carriers with micropores in the formulation step.

  2. Fluid Fuel Fluctuations in the Spherical Tank

    Directory of Open Access Journals (Sweden)

    H. D. Nguyen

    2014-01-01

    Full Text Available Many authors tried to solve a task concerning small fluctuations of the incompressible ideal liquid, which partially fills a stationary tank of any shape. There is a long list of references to this subject. The article presents a task solution on own fluctuations of liquid in spherical capacity, with boundary conditions on a free surface and a surface with a resistance – drain surface. Relevance of problem consists in assessment of influence of intra tank devices (measuring, intaking, damping devices, etc. on the liquid fuel fluctuations. The special attention is paid to finding the own values and frequencies of the equations of disturbed flow fluctuations with dissipation available on the boundary surfaces. In contrast to the previous examples, the lowering speed and the free surface area at undisturbed state are variable.The article also considers a variation formulation of the auxiliary boundary tasks. In solution of variation tasks, the attached Legendre's functions were used as coordinate functions. Further, after substitution of the variation tasks solution in the boundary conditions and the subsequent mathematical operations the characteristic equation was obtained. To obtain solutions of the cubic characteristic equation Cardano formulas were used. The article also considers the task on the own motions of liquid filling a capacity between two concentric spheres and flowing out via the intake in case there is a free surface. Reliability of the obtained numerical results is confirmed by comparison with calculation results of frequencies resulting from solutions of a task on the own fluctuations of liquid in the spherical capacity with the constant depth of liquid. All numerical calculations were performed using the Matlab environment.

  3. Fast temporal fluctuations in single-molecule junctions.

    Science.gov (United States)

    Ochs, Roif; Secker, Daniel; Elbing, Mark; Mayor, Marcel; Weber, Heiko B

    2006-01-01

    The noise within the electrical current through single-molecule junctions is studied cryogenic temperature. The organic sample molecules were contacted with the mechanically controlled break-junction technique. The noise spectra refer to a where only few Lorentzian fluctuators occur in the conductance. The frequency dependence shows qualitative variations from sample to sample.

  4. Coherence properties of holes subject to a fluctuating spin chirality

    International Nuclear Information System (INIS)

    Wheatley, J.M.; Hong, T.M.

    1991-01-01

    The coherence properties of holes coupled to short-ranged chiral spin fluctuations with a characteristic chiral spin fluctuation time τ ch =ω ch -1 are investigated in two dimensions. At temperatures kT much-lt 4π 2 left-angle φ 2 right-angle -1 ℎω ch hole quasiparticles exist and propagate with a renormalized mass m * /m=1+left-angle φ 2 right-angle ℎ/16πma 0 2 ω ch . $langle phi sup 2 rangle--- is the amplitude of the local fictitious flux fluctuation and a 0 is a lattice cutoff. At temperatures kT much-gt 4π 2 left-angle φ 2 right-angle -1 ℎω ch an effective-mass approximation is invalid and we find that the hole diffuses according to a logarithmic diffusion law in the quasistatic chiral field. The unusual diffusion law is a consequence of the long-ranged nature of the gauge field. The result shows that the holes do not form a coherent quantum fluid in the quasistatic regime

  5. Determination of plasma velocity from light fluctuations in a cutting torch

    International Nuclear Information System (INIS)

    Prevosto, L.; Mancinelli, B.; Kelly, H.

    2009-01-01

    Measurements of plasma velocities in a 30 A high energy density cutting torch are reported. The velocity diagnostic is based on the analysis of the light fluctuations emitted by the arc which are assumed to propagate with the flow velocity. These light fluctuations originate from plasma temperature and plasma density fluctuations mainly due to hydrodynamic instabilities. Fast photodiodes are employed as the light sensors. The arc core velocity was obtained from spectrally filtered light fluctuations measurements using a band-pass filter to detect light emission fluctuations emitted only from the arc axis. Maximum plasma jet velocities of 5000 m s -1 close to the nozzle exit and about 2000 m s -1 close to the anode were found. The obtained velocity values are in good agreement with those values predicted by a numerical code for a similar torch to that employed in this work.

  6. Role of excited state solvent fluctuations on time-dependent fluorescence Stokes shift

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tanping, E-mail: tanping@lsu.edu, E-mail: revatik@lsu.edu; Kumar, Revati, E-mail: tanping@lsu.edu, E-mail: revatik@lsu.edu [Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)

    2015-11-07

    We explore the connection between the solvation dynamics of a chromophore upon photon excitation and equilibrium fluctuations of the solvent. Using molecular dynamics simulations, fluorescence Stokes shift for the tryptophan in Staphylococcus nuclease was examined using both nonequilibrium calculations and linear response theory. When the perturbed and unperturbed surfaces exhibit different solvent equilibrium fluctuations, the linear response approach on the former surface shows agreement with the nonequilibrium process. This agreement is excellent when the perturbed surface exhibits Gaussian statistics and qualitative in the case of an isomerization induced non-Gaussian statistics. However, the linear response theory on the unperturbed surface breaks down even in the presence of Gaussian fluctuations. Experiments also provide evidence of the connection between the excited state solvent fluctuations and the total fluorescence shift. These observations indicate that the equilibrium statistics on the excited state surface characterize the relaxation dynamics of the fluorescence Stokes shift. Our studies specifically analyze the Gaussian fluctuations of the solvent in the complex protein environment and further confirm the role of solvent fluctuations on the excited state surface. The results are consistent with previous investigations, found in the literature, of solutes dissolved in liquids.

  7. temperature fluctuation inside inert atmosphere silos

    African Journals Online (AJOL)

    user

    significant difference in the mean temperature at different position or sections of the silos and as well between the two silos. ... environment since the constituents are present normally in ... fungi, thereby reducing the production of mycotoxins;.

  8. Long time-scale fluctuations in the evolution of the Earth

    International Nuclear Information System (INIS)

    McCrea, W.H.

    1981-01-01

    Current knowledge about certain terrestrial phenomena is reviewed: (a) to discover the extent to which the behaviour of the Earth may be influenced by fluctuations in its astronomical environment and (b) to see if new knowledge of that environment may be gained from its influence on the Earth. Fluctuations in geomagnetism, climate, glaciation, biological extinctions etc. are surveyed with special regard to datings and characteristic time-intervals; correlations between such fluctuations are discussed. Astronomical phenomena, within the Solar System and elsewhere in the Galaxy, that might cause terrestrial effects are reviewed. Fluctuations of glaciation within an ice-epoch may result from changes of insolation accompanying fluctuations of the Earth's motion relative to the Sun. Some evidence suggests that an ice-epoch may be triggered by variations of the astronomical environment encountered in the Sun's motion relative to the Galaxy; but tectonic changes on Earth may be the main trigger. Impacts of planetesimals may be more important than hitherto recognized. Although the intensity of solar 'activity' is variable, terrestrial effects provide no confirmation that the Sun is a 'variable star'. As for the Galaxy, impacting planetesimals may originate in interstellar clouds, and so provide on Earth samples of interstellar matter. Some unsolved problems emphasized by the review are listed. (U.K.)

  9. Long time-scale fluctuations in the evolution of the Earth

    Energy Technology Data Exchange (ETDEWEB)

    McCrea, W H [Sussex Univ., Brighton (UK). Astronomy Centre

    1981-02-18

    Current knowledge about certain terrestrial phenomena is reviewed: (a) to discover the extent to which the behaviour of the Earth may be influenced by fluctuations in its astronomical environment and (b) to see if new knowledge of that environment may be gained from its influence on the Earth. Fluctuations in geomagnetism, climate, glaciation, biological extinctions etc. are surveyed with special regard to datings and characteristic time-intervals; correlations between such fluctuations are discussed. Astronomical phenomena, within the Solar System and elsewhere in the Galaxy, that might cause terrestrial effects are reviewed. Fluctuations of glaciation within an ice-epoch may result from changes of insolation accompanying fluctuations of the Earth's motion relative to the Sun. Some evidence suggests that an ice-epoch may be triggered by variations of the astronomical environment encountered in the Sun's motion relative to the Galaxy; but tectonic changes on Earth may be the main trigger. Impacts of planetesimals may be more important than hitherto recognized. Although the intensity of solar 'activity' is variable, terrestrial effects provide no confirmation that the Sun is a 'variable star'. As for the Galaxy, impacting planetesimals may originate in interstellar clouds, and so provide on Earth samples of interstellar matter. Some unsolved problems emphasized by the review are listed.

  10. Fluctuation and thermal energy balance for drift-wave turbulence

    International Nuclear Information System (INIS)

    Kim, Chang-Bae; Horton, W.

    1990-05-01

    Energy conservation for the drift-wave system is shown to be separated into the wave-energy power balance equation and an ambient thermal-energy transport equation containing the anomalous transport fluxes produced by the fluctuations. The wave energy equation relates the wave energy density and wave energy flux to the anomalous transport flux and the dissipation of the fluctuations. The thermal balance equation determines the evolution of the temperature profiles from the divergence of the anomalous heat flux, the collisional heating and cooling mechanisms and the toroidal pumping effect. 16 refs., 1 tab

  11. Fluctuation and thermal energy balance for drift-wave turbulence

    International Nuclear Information System (INIS)

    Changbae Kim; Horton, W.

    1991-01-01

    Energy conservation for the drift-wave system is shown to be separated into the wave-energy power balance equation and an ambient thermal-energy transport equation containing the anomalous transport fluxes produced by the fluctuations. The wave energy equation relates the wave energy density and wave energy flux to the anomalous transport flux and the dissipation of the fluctuations. The thermal balance equation determines the evolution of the temperature profiles from the divergence of the anomalous heat flux, the collisional heating and cooling mechanisms and the toroidal pumping effect. (author)

  12. Quantum and superconducting fluctuations effects in disordered Nb 1- xTa x thin films above Tc

    Science.gov (United States)

    Giannouri, M.; Papastaikoudis, C.

    1999-05-01

    Disordered Nb 1- xTa x thin films are prepared with e-gun coevaporation. The influence of the β-phase of tantalum in the critical temperature Tc is observed as a function of the substrate temperature. The measurements of transverse magnetoresistance at various isothermals are interpreted in terms of weak-localization and superconducting fluctuations. From the fitting procedure, the phase breaking rate τφ-1 and the Larkin parameter βL are estimated as a function of temperature. Conclusions about the dominant inelastic scattering mechanisms at various temperature regions as well as for the dominant mechanism of superconducting fluctuations near the transition temperature are extracted.

  13. The effect of climate fluctuation on chimpanzee birth sex ratio.

    Directory of Open Access Journals (Sweden)

    Hjalmar S Kühl

    Full Text Available Climate and weather conditions, such as the North Atlantic Oscillation, precipitation and temperature influence the birth sex ratio (BSR of various higher latitude species, including deer, elephant seals or northern human populations. Although, tropical regions show only little variation in temperature, climate and weather conditions can fluctuate with consequences for phenology and food resource availability. Here, we evaluate, whether the BSR of chimpanzees, inhabiting African tropical forests, is affected by climate fluctuations as well. Additionally, we evaluate, if variation in consumption of a key food resource with high nutritional value, Coula edulis nuts, is linked to both climate fluctuations and variation in BSR. We use long-term data from two study groups located in Taï National Park, Côte d'Ivoire to assess the influence of local weather conditions and the global climate driver El Niño Southern Oscillation (ENSO on offspring sex. Côte d'Ivoire has experienced considerable climate variation over the last decades, with increasing temperature and declining precipitation. For both groups we find very similar time windows around the month of conception, in which offspring sex is well predicted by ENSO, with more males following low ENSO values, corresponding to periods of high rainfall. Furthermore, we find that the time spent cracking and feeding on Coula nuts is strongly influenced by climate conditions. Although, some of our analysis suggest that a higher proportion of males is born after periods with higher nut consumption frequency, we cannot conclude decisively at this point that nut consumption may influence shifts in BSR. All results combined suggest that also chimpanzees may experience climate related shifts in offspring sex ratios as response to climate fluctuation.

  14. Generalized theory of spin fluctuations in itinerant electron magnets: Crucial role of spin anharmonicity

    International Nuclear Information System (INIS)

    Solontsov, A.

    2015-01-01

    The paper critically overviews the recent developments of the theory of spatially dispersive spin fluctuations (SF) in itinerant electron magnetism with particular emphasis on spin-fluctuation coupling or spin anharmonicity. It is argued that the conventional self-consistent renormalized (SCR) theory of spin fluctuations is usually used aside of the range of its applicability actually defined by the constraint of weak spin anharmonicity based on the random phase approximation (RPA) arguments. An essential step in understanding SF in itinerant magnets beyond RPA-like arguments was made recently within the soft-mode theory of SF accounting for strong spin anharmonicity caused by zero-point SF. In the present paper we generalize it to apply for a wider range of temperatures and regimes of SF and show it to lead to qualitatively new results caused by zero-point effects. - Highlights: • We review the spin-fluctuation theory of itinerant electron magnets with account of zero-point effects. • We generalize the existing theory to account for different regimes of spin fluctuations. • We show that zero-point spin fluctuations play a crucial role in both low- and high-temperature properties of metallic magnets. • We argue that a new scheme of calculation of ground state properties of magnets is needed including zero-point effects

  15. Electronic structure and quantum spin fluctuations at the magnetic phase transition in MnSi

    Science.gov (United States)

    Povzner, A. A.; Volkov, A. G.; Nogovitsyna, T. A.

    2018-05-01

    The effect of spin fluctuations on the heat capacity and homogeneous magnetic susceptibility of the chiral magnetic MnSi in the vicinity of magnetic transition has been investigated by using the free energy functional of the coupled electron and spin subsystems and taking into account the Dzyaloshinsky-Moriya interaction. For helical ferromagnetic ordering, we found that zero-point fluctuations of the spin density are large and comparable with fluctuations of the non-uniform magnetization. The amplitude of zero-point spin fluctuations shows a sharp decrease in the region of the magnetic phase transition. It is shown that sharp decrease of the amplitude of the quantum spin fluctuations results in the lambda-like maxima of the heat capacity and the homogeneous magnetic susceptibility. Above the temperature of the lambda anomaly, the spin correlation radius becomes less than the period of the helical structure and chiral fluctuations of the local magnetization appear. It is shown that formation of a "shoulder" on the temperature dependence of the heat capacity is due to disappearance of the local magnetization. Our finding allows to explain the experimentally observed features of the magnetic phase transition of MnSi as a result of the crossover of quantum and thermodynamic phase transitions.

  16. Temperature dependence of CsI(Tl) gamma-ray excited scintillation characteristics

    International Nuclear Information System (INIS)

    1993-01-01

    Gamma-ray excited emission spectrum, absolute scintillation yield, rise and decay time constants, and thermoluminescence emissions of CsI(Tl) were measured at -100 to +50 C, for crystals from 4 different vendors. The thermoluminescence glow curves were the only property that varied significantly from crystal to crystal; room temperature operation in current mode could be susceptible to temperature fluctuations. The CsI(Tl) emission spectrum has emission bands peaking around 400 and 560 nm; the former band disappears between -50 and -75 C. The RT absolute scintillation yield was calculated to be 65,500±4,100 photons/MeV. The two primary decay time constants increases about exponentially with inverse temperature. An ultra-fast decay component was confirmed. Applications are discussed

  17. Heat Flux and Entropy Produced by Thermal Fluctuations

    DEFF Research Database (Denmark)

    Ciliberto, S.; Imparato, Alberto; Naert, A.

    2013-01-01

    , and a conservation law for the fluctuating entropy, which we justify theoretically. The system is ruled by the same equations as two Brownian particles kept at different temperatures and coupled by an elastic force. Our results set strong constraints on the energy exchanged between coupled nanosystems held...

  18. Fluctuations and Photons

    International Nuclear Information System (INIS)

    Gupta, Sourendu

    2007-01-01

    In this talk I discuss measures of fluctuations, especially those leading to the proof that the quark gluon plasma indeed contains quarks. I discuss the quark mass dependence of the critical end point of QCD. Then I discuss probes of the QCD critical point. Non-gaussian behaviour of event-to-event fluctuations of conserved quantum numbers is one such probe. Another is due to the coupling of fluctuations in baryon number and electrical charge, giving rise to long range random fluctuations of local charge density which relax slowly. These fluctuations can scatter photons, giving rise to critical opalescence

  19. Fluctuations and Photons

    Science.gov (United States)

    Gupta, Sourendu

    2007-02-01

    In this talk I discuss measures of fluctuations, especially those leading to the proof that the quark gluon plasma indeed contains quarks. I discuss the quark mass dependence of the critical end point of QCD. Then I discuss probes of the QCD critical point. Non-gaussian behaviour of event-to-event fluctuations of conserved quantum numbers is one such probe. Another is due to the coupling of fluctuations in baryon number and electrical charge, giving rise to long range random fluctuations of local charge density which relax slowly. These fluctuations can scatter photons, giving rise to critical opalescence.

  20. Fluctuations and Photons

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sourendu [Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India)

    2007-02-15

    In this talk I discuss measures of fluctuations, especially those leading to the proof that the quark gluon plasma indeed contains quarks. I discuss the quark mass dependence of the critical end point of QCD. Then I discuss probes of the QCD critical point. Non-gaussian behaviour of event-to-event fluctuations of conserved quantum numbers is one such probe. Another is due to the coupling of fluctuations in baryon number and electrical charge, giving rise to long range random fluctuations of local charge density which relax slowly. These fluctuations can scatter photons, giving rise to critical opalescence.

  1. Topological-Sector Fluctuations and Curie-Law Crossover in Spin Ice

    Directory of Open Access Journals (Sweden)

    L. D. C. Jaubert

    2013-02-01

    Full Text Available At low temperatures, a spin ice enters a Coulomb phase—a state with algebraic correlations and topologically constrained spin configurations. We show how analytical and numerical approaches for model spin-ice systems reveal a crossover between two Curie laws. One of these laws characterizes the high-temperature paramagnetic regime, while the other, which we call the “spin-liquid Curie law,” characterizes the low-temperature Coulomb-phase regime, which provides implicit evidence that the topological sector fluctuates. We compare our theory with experiment for Ho_{2}Ti_{2}O_{7}, where this process leads to a nonstandard temperature evolution of the bulk susceptibility and the wave-vector-dependent magnetic susceptibility, as measured by neutron scattering. Theory and experiment agree for bulk quantities and at large scattering wave vectors, but differences at small wave vectors indicate that the classical spin-ice states are not equally populated at low temperatures. More generally, the crossover appears to be a generic property of the emergent gauge field for a classical spin liquid, and it sheds light on the experimental difficulty of measuring a precise Curie-Weiss temperature in frustrated materials. The susceptibility at finite wave vectors is shown to be a local probe of fluctuations among topological sectors on varying length scales.

  2. Measurement of core velocity fluctuations and the dynamo in a reversed-field pinch

    International Nuclear Information System (INIS)

    Den Hartog, D.J.; Craig, D.; Fiksel, G.; Fontana, P.W.; Prager, S.C.; Sarff, J.S.; Chapman, J.T.

    1998-01-01

    Plasma flow velocity fluctuations have been directly measured in the high temperature magnetically confined plasma in the Madison Symmetric Torus (MST) Reversed-Field Pinch (RFP). These measurements show that the flow velocity fluctuations are correlated with magnetic field fluctuations. This initial measurement is subject to limitations of spatial localization and other uncertainties, but is evidence for sustainment of the RFP magnetic field configuration by the magnetohydrodynamic (MHD) dynamo. Both the flow velocity and magnetic field fluctuations are the result of global resistive MHD modes of helicity m = 1, n = 5--10 in the core of MST. Chord-averaged flow velocity fluctuations are measured in the core of MST by recording the Doppler shift of impurity line emission with a specialized high resolution and throughput grating spectrometer. Magnetic field fluctuations are recorded with a large array of small edge pickup coils, which allows spectral decomposition into discrete modes and subsequent correlation with the velocity fluctuation data

  3. Topology of microwave background fluctuations - Theory

    Science.gov (United States)

    Gott, J. Richard, III; Park, Changbom; Bies, William E.; Bennett, David P.; Juszkiewicz, Roman

    1990-01-01

    Topological measures are used to characterize the microwave background temperature fluctuations produced by 'standard' scenarios (Gaussian) and by cosmic strings (non-Gaussian). Three topological quantities: total area of the excursion regions, total length, and total curvature (genus) of the isotemperature contours, are studied for simulated Gaussian microwave background anisotropy maps and then compared with those of the non-Gaussian anisotropy pattern produced by cosmic strings. In general, the temperature gradient field shows the non-Gaussian behavior of the string map more distinctively than the temperature field for all topology measures. The total contour length and the genus are found to be more sensitive to the existence of a stringy pattern than the usual temperature histogram. Situations when instrumental noise is superposed on the map, are considered to find the critical signal-to-noise ratio for which strings can be detected.

  4. Conserved charge fluctuations at vanishing and non-vanishing chemical potential

    Science.gov (United States)

    Karsch, Frithjof

    2017-11-01

    Up to 6th order cumulants of fluctuations of net baryon-number, net electric charge and net strangeness as well as correlations among these conserved charge fluctuations are now being calculated in lattice QCD. These cumulants provide a wealth of information on the properties of strong-interaction matter in the transition region from the low temperature hadronic phase to the quark-gluon plasma phase. They can be used to quantify deviations from hadron resonance gas (HRG) model calculations which frequently are used to determine thermal conditions realized in heavy ion collision experiments. Already some second order cumulants like the correlations between net baryon-number and net strangeness or net electric charge differ significantly at temperatures above 155 MeV in QCD and HRG model calculations. We show that these differences increase at non-zero baryon chemical potential constraining the applicability range of HRG model calculations to even smaller values of the temperature.

  5. Fluctuations in the DNA double helix

    Science.gov (United States)

    Peyrard, M.; López, S. C.; Angelov, D.

    2007-08-01

    DNA is not the static entity suggested by the famous double helix structure. It shows large fluctuational openings, in which the bases, which contain the genetic code, are temporarily open. Therefore it is an interesting system to study the effect of nonlinearity on the physical properties of a system. A simple model for DNA, at a mesoscopic scale, can be investigated by computer simulation, in the same spirit as the original work of Fermi, Pasta and Ulam. These calculations raise fundamental questions in statistical physics because they show a temporary breaking of equipartition of energy, regions with large amplitude fluctuations being able to coexist with regions where the fluctuations are very small, even when the model is studied in the canonical ensemble. This phenomenon can be related to nonlinear excitations in the model. The ability of the model to describe the actual properties of DNA is discussed by comparing theoretical and experimental results for the probability that base pairs open an a given temperature in specific DNA sequences. These studies give us indications on the proper description of the effect of the sequence in the mesoscopic model.

  6. Similar temperature dependencies of glycolytic enzymes : An evolutionary adaptation to temperature dynamics?

    NARCIS (Netherlands)

    Cruz, L.A.B.; Hebly, M.; Duong, G.H.; Wahl, S.A.; Pronk, J.T.; Heijnen, J.J.; Daran-Lapujade, P.; Van Gulik, W.M.

    2012-01-01

    Background Temperature strongly affects microbial growth, and many microorganisms have to deal with temperature fluctuations in their natural environment. To understand regulation strategies that underlie microbial temperature responses and adaptation, we studied glycolytic pathway kinetics in

  7. Enhancement of tunnel conductivity by Cooper pair fluctuations in electron-hole bilayer

    International Nuclear Information System (INIS)

    Efimkin, D K; Lozovik, Yu E

    2012-01-01

    Influence of Cooper pair fluctuations that are precursor of pairing of electrons and holes located on opposite surfaces of topological insulator film on tunnel conductivity between the surfaces is investigated. Due to restrictions caused by momentum and energy conservation dependence of tunnel conductivity on external bias voltage has peak that becomes more prominent with decreasing of disorder and temperature. We have shown that Cooper pair fluctuations considerably enhance tunneling and height of the peak diverges in vicinity of critical temperature with critical index ν = 2. Width of the peak tends to zero in proximity of critical temperature. Pairing of electrons and holes can be suppressed by disorder and in vicinity of quantum critical point height of the peak also diverges as function of Cooper pair damping with critical index μ = 2.

  8. Magnetic fluctuations associated with density fluctuations in the tokamak edge

    International Nuclear Information System (INIS)

    Kim, Y.J.; Gentle, K.W.; Ritz, C.P.; Rhodes, T.L.; Bengtson, R.D.

    1989-01-01

    Electrostatic density and potential fluctuations occurring with high amplitude near the edge of a tokamak are correlated with components of the fluctuating magnetic field measured outside the limiter radius. It has been established that this turbulence is associated with fluctuations in current as well as density and potential. The correlation extends for substantial toroidal distances, but only if the probes are displaced approximately along field lines, consistent with the short coherence lengths poloidally but long coherence lengths parallel to the field which are characteristic for this turbulence. Furthermore, the correlation can be found only with density fluctuations measured inside the limiter radius; density fluctuations behind the limiter have no detectable magnetic concomitant for the toroidally spaced probes used here. (author). Letter-to-the-editor. 12 refs, 3 figs

  9. Local polar fluctuations in lead halide perovskites

    Science.gov (United States)

    Tan, Liang; Yaffe, Omer; Guo, Yinsheng; Brus, Louis; Rappe, Andrew; Egger, David; Kronik, Leeor

    The lead halide perovskites have recently attracted much attention because of their large and growing photovoltaic power conversion efficiencies. However, questions remain regarding the temporal and spatial correlations of the structural fluctuations, their atomistic nature, and how they affect electronic and photovoltaic properties. To address these questions, we have performed a combined ab initio molecular dynamics (MD) and density functional theory (DFT) study on CsPbBr3. We have observed prevalent anharmonic motion in our MD trajectories, with local polar fluctuations involving head-to-head motion of A-site Cs cations coupled with Br window opening. We calculate Raman spectra from the polarizability auto-correlation functions obtained from these trajectories and show that anharmonic A-site cation motion manifests as a broad central peak in the Raman spectrum, which increases in intensity with temperature. A comparison of the experimental Raman spectrum of hybrid organometallic MAPbBr3 and fully inorganic CsPbBr3 suggests that structural fluctuations in lead-halide perovskites is more general than rotation of polar organic cations and is intimately coupled to the inorganic framework.

  10. Design of the electromagnetic fluctuations diagnostic for MFTF-B

    International Nuclear Information System (INIS)

    House, P.A.; Goerz, D.A.; Martin, R.

    1983-01-01

    The Electromagnetic Fluctuations (EMF) diagnostic will be used to monitor ion fluctuations which could be unstable in MFTF-B. Each probe assembly includes a high impedance electrostatic probe to measure potential fluctuations, and a group of nested, single turn loops to measure magnetic fluctuations in three directions. Eventually, more probes and loops will be added to each probe assembly for making more detailed measurements. The sensors must lie physically close to the plasma edge and are radially positionable. Also, probes at separate axial locations can be positioned to connect along the same magnetic field line. These probes are similar in concept to the rf probes used on TMX, but the high thermal load for 30-second shots on MFTF-B requires a water-cooled design along with temperature monitors. Each signal channel has a bandwidth of .001 to 150 MHz and is monitored by up to four different data channels which obtain amplitude and frequency information. This paper describes the EMF diagnostic and presents the detailed mechanical and electrical designs

  11. Structure of density fluctuations in the edge plasma of ASDEX

    International Nuclear Information System (INIS)

    Rudyj, A.; Carlson, A.; Endler, M.; Giannone, L.; Niedermeyer, H.; Theimer, G.

    1990-01-01

    It is now generally believed that the anomalous particle and energy transport in tokamaks is caused by turbulent fluctuations. The physical nature of these fluctuations (mode type, the driving mechanism) have still to be identified experimentally before a self consistent transport theory can be developed. In contrast to the confinement region the plasma edge can be well diagnosed. H α -light, which is emitted at the edge, reacts to density and to some extend to temperature fluctuations. It delivers information about radially integrated spectra and correlations. Langmuir probes measure density and potential fluctuations with good spatial resolution. The edge transport governs the physics in the scrape-off layer and in the divertor which is extremely important for a reactor and therefore deserves a major experimental effort. In this paper we report on an attempt to gain detailed information about the spatial and temporal structure of the edge turbulence hoping to reduce the degrees of freedom for theoretical models to a manageable number. (author) 3 refs., 3 figs

  12. Effect of pressure on spin fluctuations and superconductivity in heavy-fermion UPt3

    International Nuclear Information System (INIS)

    Willis, J.O.; Thompson, J.D.; Fisk, Z.; de Visser, A.; Franse, J.J.M.; Menovsky, A.

    1985-01-01

    We have determined the effect of hydrostatic pressure on the susceptibility, on the T 2 temperature dependence of the spin-fluctuation resistivity, and on superconductivity in UPt 3 . The spin-fluctuation temperature T/sub s/, derived from the slope of resistivity versus T 2 , is used within a Fermi-liquid picture to calculate the susceptibility chi at T = 0 K. The depression of this calculated chi with pressure agrees with the directly measured value partial lnchi/partialP = -24 Mbar -1 . Both the superconducting transition temperature T/sub c/ and the initial slope of the upper critical field also decrease under pressure. We find that partial lnT/sub c//partialP = -25 Mbar -1 and speculate upon correlations between chi and T/sub c/

  13. Study of thermal - hydraulic sensors signal fluctuations in PWR

    International Nuclear Information System (INIS)

    Hennion, F.

    1987-10-01

    This thesis deals with signal fluctuations of thermal-hydraulic sensors in the main coolant primary of a pressurized water reactor. The aim of this work is to give a first response about the potentiality of use of these noise signals for the functionning monitoring. Two aspects have been studied: - the modelisation of temperature fluctuations of core thermocouples, by a Monte-Carlo method, gives the main characteristics of these signals and their domain of application. - the determination of eigenfrequency in the primary by an acoustic representation could permit the monitoring of local and global thermo-hydraulic conditions [fr

  14. A correlation electron cyclotron emission diagnostic and the importance of multifield fluctuation measurements for testing nonlinear gyrokinetic turbulence simulations.

    Science.gov (United States)

    White, A E; Schmitz, L; Peebles, W A; Carter, T A; Rhodes, T L; Doyle, E J; Gourdain, P A; Hillesheim, J C; Wang, G; Holland, C; Tynan, G R; Austin, M E; McKee, G R; Shafer, M W; Burrell, K H; Candy, J; DeBoo, J C; Prater, R; Staebler, G M; Waltz, R E; Makowski, M A

    2008-10-01

    A correlation electron cyclotron emission (CECE) diagnostic has been used to measure local, turbulent fluctuations of the electron temperature in the core of DIII-D plasmas. This paper describes the hardware and testing of the CECE diagnostic and highlights the importance of measurements of multifield fluctuation profiles for the testing and validation of nonlinear gyrokinetic codes. The process of testing and validating such codes is critical for extrapolation to next-step fusion devices. For the first time, the radial profiles of electron temperature and density fluctuations are compared to nonlinear gyrokinetic simulations. The CECE diagnostic at DIII-D uses correlation radiometry to measure the rms amplitude and spectrum of the electron temperature fluctuations. Gaussian optics are used to produce a poloidal spot size with w(o) approximately 1.75 cm in the plasma. The intermediate frequency filters and the natural linewidth of the EC emission determine the radial resolution of the CECE diagnostic, which can be less than 1 cm. Wavenumbers resolved by the CECE diagnostic are k(theta) < or = 1.8 cm(-1) and k(r) < or = 4 cm(-1), relevant for studies of long-wavelength turbulence associated with the trapped electron mode and the ion temperature gradient mode. In neutral beam heated L-mode plasmas, core electron temperature fluctuations in the region 0.5 < r/a < 0.9, increase with radius from approximately 0.5% to approximately 2%, similar to density fluctuations that are measured simultaneously with beam emission spectroscopy. After incorporating "synthetic diagnostics" to effectively filter the code output, the simulations reproduce the characteristics of the turbulence and transport at one radial location r/a = 0.5, but not at a second location, r/a = 0.75. These results illustrate that measurements of the profiles of multiple fluctuating fields can provide a significant constraint on the turbulence models employed by the code.

  15. Density Fluctuations in Uniform Quantum Gases

    International Nuclear Information System (INIS)

    Bosse, J.; Pathak, K. N.; Singh, G. S.

    2011-01-01

    Analytical expressions are given for the static structure factor S(k) and the pair correlation function g(r) for uniform ideal Bose-Einstein and Fermi-Dirac gases for all temperatures. In the vicinity of Bose Einstein condensation (BEC) temperature, g(r) becomes long ranged and remains so in the condensed phase. In the dilute gas limit, g(r) of bosons and fermions do not coincide with Maxwell-Boltzmann gas but exhibit bunching and anti-bunching effect respectively. The width of these functions depends on the temperature and is scaled as √(inverse atomic mass). Our numerical results provide the precise quantitative values of suppression/increase (antibunching and bunching) of the density fluctuations at small distances in ideal quantum gases in qualitative agreement with the experimental observation for almost non-trapped dilute gases.

  16. Association between magnetic field fluctuations and energetic particle bursts in the earth's magnetotail

    Science.gov (United States)

    Lui, A. T. Y.; Krimigis, S. M.; Armstrong, T. P.

    1982-01-01

    The association between energetic protons (0.29-0.50 MeV) and simultaneous local fluctuations of magnetic field at 35 to 45 earth radii in the magnetotail is examined statistically with data from APL/JHU particle telescopes aboard IMP 7 and IMP 8. About four satellite years of 5.5 min averaged measurements are used in this study. In addition to confirming that the level of magnetic field fluctuations generally increases with the presence of energetic protons and their streaming anisotropy, it is found that increases in occurrence frequency of streaming of energetic protons are ordered far better by magnetic field fluctuations than by proximity to the neutral sheet. However, the presence of large magnetic field fluctuations (delta B greater than 5 nT or delta B/B greater than 50%) is neither a necessary nor a sufficient condition for the detection of large streaming in energetic protons.

  17. Distinctive behavior of superconducting fluctuations and pseudogap in nearly optimally doped single crystal of HgBa2CuO4+δ

    International Nuclear Information System (INIS)

    Grbic, M.S.; Barisic, N.; Dulcic, A.; Kupcic, I.; Li, Y.; Zhao, X.; Yu, G.; Dressel, M.; Greven, M.; Pozek, M.

    2010-01-01

    We have applied an unconventional microwave measurement approach to a nearly optimally doped HgBa 2 CuO 4+δ single crystal. The sample geometry assured the total lateral penetration of microwaves due to weak c-axis screening currents. With this configuration, one can achieve excellent sensitivity to small changes in conductivity. The data show that the pseudogap opens at T*=185(15)K, which is almost twice the superconducting critical temperature T c =94.3 K. In contrast, the superconducting fluctuation regime is clearly confined to a narrow temperature range T c ' ∼105(2)K, far below T*. This is confirmed by the magnetic field dependence of the microwave absorption. Hence, our results support the distinction between the physical processes of pseudogap and the superconducting ordering.

  18. Gambling with Superconducting Fluctuations

    Science.gov (United States)

    Foltyn, Marek; Zgirski, Maciej

    2015-08-01

    Josephson junctions and superconducting nanowires, when biased close to superconducting critical current, can switch to a nonzero voltage state by thermal or quantum fluctuations. The process is understood as an escape of a Brownian particle from a metastable state. Since this effect is fully stochastic, we propose to use it for generating random numbers. We present protocol for obtaining random numbers and test the experimentally harvested data for their fidelity. Our work is prerequisite for using the Josephson junction as a tool for stochastic (probabilistic) determination of physical parameters such as magnetic flux, temperature, and current.

  19. Pseudogap temperature T* of cuprate superconductors from the Nernst effect

    Science.gov (United States)

    Cyr-Choinière, O.; Daou, R.; Laliberté, F.; Collignon, C.; Badoux, S.; LeBoeuf, D.; Chang, J.; Ramshaw, B. J.; Bonn, D. A.; Hardy, W. N.; Liang, R.; Yan, J.-Q.; Cheng, J.-G.; Zhou, J.-S.; Goodenough, J. B.; Pyon, S.; Takayama, T.; Takagi, H.; Doiron-Leyraud, N.; Taillefer, Louis

    2018-02-01

    We use the Nernst effect to delineate the boundary of the pseudogap phase in the temperature-doping phase diagram of hole-doped cuprate superconductors. New data for the Nernst coefficient ν (T ) of YBa2Cu3Oy (YBCO), La1.8 -xEu0.2SrxCuO4 (Eu-LSCO), and La1.6 -xNd0.4SrxCuO4 (Nd-LSCO) are presented and compared with previously published data on YBCO, Eu-LSCO, Nd-LSCO, and La2 -xSrxCuO4 (LSCO). The temperature Tν at which ν /T deviates from its high-temperature linear behavior is found to coincide with the temperature at which the resistivity ρ (T ) deviates from its linear-T dependence, which we take as the definition of the pseudogap temperature T★—in agreement with the temperature at which the antinodal spectral gap detected in angle-resolved photoemission spectroscopy (ARPES) opens. We track T★ as a function of doping and find that it decreases linearly vs p in all four materials, having the same value in the three LSCO-based cuprates, irrespective of their different crystal structures. At low p ,T★ is higher than the onset temperature of the various orders observed in underdoped cuprates, suggesting that these orders are secondary instabilities of the pseudogap phase. A linear extrapolation of T★(p ) to p =0 yields T★(p →0 ) ≃TN (0), the Néel temperature for the onset of antiferromagnetic order at p =0 , suggesting that there is a link between pseudogap and antiferromagnetism. With increasing p ,T★(p ) extrapolates linearly to zero at p ≃pc 2 , the critical doping below which superconductivity emerges at high doping, suggesting that the conditions which favor pseudogap formation also favor pairing. We also use the Nernst effect to investigate how far superconducting fluctuations extend above the critical temperature Tc, as a function of doping, and find that a narrow fluctuation regime tracks Tc, and not T★. This confirms that the pseudogap phase is not a form of precursor superconductivity, and fluctuations in the phase of the

  20. Molecular Rayleigh Scattering Diagnostic for Dynamic Temperature, Velocity, and Density Measurements

    Science.gov (United States)

    Mielke, Amy R.; Elam, Kristie A.; Sung, Chi-Jen

    2006-01-01

    A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 16 kHz. A high power CW laser beam is focused at a point in an air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 16 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. A low speed heated jet is used to validate the measurement of temperature fluctuations and an acoustically excited nozzle flow is studied to validate velocity fluctuation measurements. Power spectral density calculations of the property fluctuations, as well as mean and fluctuating quantities are presented. Temperature fluctuation results are compared with constant current anemometry measurements and velocity fluctuation results are compared with constant temperature anemometry measurements at the same locations.

  1. Evidence for fluctuations in statistical model cross sections from the study of {sup 27}Al(d,{alpha}) {sup 25}Mg reaction; Mise en evidence des fluctuations de sections efficaces du modele statistique par l'etude de la reaction {sup 27}Al(d,{alpha}) {sup 25}Mg

    Energy Technology Data Exchange (ETDEWEB)

    Papineau born Heller, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-06-01

    A complete set of experimental data has been obtained for the reaction {sup 27}Al(d, {alpha}){sup 25}Mg for excitation energies in the compound nucleus {sup 29}Si between 19.7 and 27.4 MeV, in order to compare with the theoretical predictions of the statistical model of nuclear reactions including fluctuations. Numerical calculations of the theoretical cross sections were made and contributions to methods of analysis of fluctuating excitation functions are given. The results confirm strong evidence for statistical fluctuations in nuclear cross sections. (author) [French] On a obtenu un ensemble complet de donnees experimentales de la reaction {sup 27}Al(d, {alpha}){sup 25}Mg pour des energies d'excitation du noyau compose {sup 29}Si comprises entre 19,7 et 27,4 MeV, permettant la comparaison avec les previsions theoriques du modele statistique des reactions nucleaires dans sa version complete comprenant les fluctuations. Des calculs numeriques de sections efficaces theoriques ont ete effectues et des contributions ont ete apportees aux methodes d'analyse de fonctions d'excitation presentant des fluctuations. Les resultats ont clairement confirme l'existence de fluctuations statistiques de sections efficaces. (auteur)

  2. Enhanced quantum spin fluctuations in a binary Bose-Einstein condensate

    Science.gov (United States)

    Bisset, R. N.; Kevrekidis, P. G.; Ticknor, C.

    2018-02-01

    For quantum fluids, the role of quantum fluctuations may be significant in several regimes such as when the dimensionality is low, the density is high, the interactions are strong, or for low particle numbers. In this paper, we propose a fundamentally different regime for enhanced quantum fluctuations without being restricted by any of the above conditions. Instead, our scheme relies on the engineering of an effective attractive interaction in a dilute, two-component Bose-Einstein condensate (BEC) consisting of thousands of atoms. In such a regime, the quantum spin fluctuations are significantly enhanced (atom bunching with respect to the noninteracting limit) since they act to reduce the interaction energy, a remarkable property given that spin fluctuations are normally suppressed (antibunching) at zero temperature. In contrast to the case of true attractive interactions, our approach is not vulnerable to BEC collapse. We numerically demonstrate that these quantum fluctuations are experimentally accessible by either spin or single-component Bragg spectroscopy, offering a useful platform on which to test beyond-mean-field theories. We also develop a variational model and use it to analytically predict the shift of the immiscibility critical point, finding good agreement with our numerics.

  3. Photoinduced second harmonic generation of LaFe4Sb12near spin fluctuated critical points

    International Nuclear Information System (INIS)

    Nouneh, K.; Viennois, R.; Kityk, I.V.; Terki, F.; Charar, S.; Benet, S.; Paschen, S.

    2004-01-01

    The temperature dependence of the resistivity, the Seebeck coefficient and photoinduced second harmonic generation (PISHG) are studied near the quantum critical point in the skutterudite compound LaFe 4 Sb 12 , possessing increased spin fluctuations. We observed a large maximum of the PISHG at a temperature of about 15 K. The PISHG signal increases substantially below 35 K. We found a correlation between the temperature dependences of PISHG, resistivity and Seebeck coefficient. We proposed a phenomenological explanation for the occurrence of the PISHG signal in LaFe 4 Sb 12 implying strong spin fluctuations exist in this system, which may present some interest for the study of other spin fluctuation systems. Physical insight into the phenomenon observed is grounded in the participation of anharmonic electron-phonon and electron-paramagnon interactions stimulated by inducing light in the interactions with the photoexcited dipole moments. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Correlated volume-energy fluctuations of phospholipid membranes: A simulation study

    DEFF Research Database (Denmark)

    Pedersen, Ulf. R.; Peters, Günther H.J.; Schröder, Thomas B.

    2010-01-01

    This paper reports all-atom computer simulations of five phospholipid membranes (DMPC, DPPC, DMPG, DMPS, and DMPSH) with focus on the thermal equilibrium fluctuations of volume, energy, area, thickness, and chain order. At constant temperature and pressure, volume and energy exhibit strong...... membranes, showing a similar picture. The cause of the observed strong correlations is identified by splitting volume and energy into contributions from tails, heads, and water, and showing that the slow volume−energy fluctuations derive from van der Waals interactions of the tail region; they are thus...

  5. Spontaneous excitation of a circularly accelerated atom coupled to electromagnetic vacuum fluctuations

    International Nuclear Information System (INIS)

    Jin, Yao; Hu, Jiawei; Yu, Hongwei

    2014-01-01

    We study, using the formalism proposed by Dalibard, Dupont-Roc and Cohen-Tannoudji, the contributions of the vacuum fluctuation and radiation reaction to the rate of change of the mean atomic energy for a circularly accelerated multilevel atom coupled to vacuum electromagnetic fields in the ultrarelativistic limit. We find that the balance between vacuum fluctuation and radiation reaction is broken, which causes spontaneous excitations of accelerated ground state atoms in vacuum. Unlike for a circularly accelerated atom coupled to vacuum scalar fields, the contribution of radiation reaction is also affected by acceleration, and this term takes the same form as that of a linearly accelerated atom coupled to vacuum electromagnetic fields. For the contribution of vacuum fluctuations, we find that in contrast to the linear acceleration case, terms proportional to the Planckian factor are replaced by those proportional to a non-Planck exponential term, and this indicates that the radiation perceived by a circularly orbiting observer is no longer thermal as is in the linear acceleration case. However, for an ensemble of two-level atoms, an effective temperature can be defined in terms of the atomic transition rates, which is found to be dependent on the transition frequency of the atom. Specifically, we calculate the effective temperature as a function of the transition frequency and find that in contrast to the case of circularly accelerated atoms coupled to the scalar field, the effective temperature in the current case is always larger than the Unruh temperature. -- Highlights: •We study the spontaneous excitation of a circularly accelerated atom. •Contribution of radiation reaction to the excitation is affected by acceleration. •The radiation perceived by a circularly orbiting observer is no longer thermal. •An effective temperature can be defined in terms of atomic transition rates. •Effective temperature is larger than Unruh temperature and frequency-dependent

  6. Confinement and fluctuations in the MST [Madison Symmetric Torus] reversed field pinch

    International Nuclear Information System (INIS)

    Sprott, J.C.; Almagri, A.F.; Assadi, S.; Beckstead, J.A.; Chartas, G.; Dexter, N.; Den Hartog, D.J.; Hokin, S.A.; Holly, D.J.; Prager, S.C.; Rempel, T.D.; Sarff, J.S.; Scime, E.; Shen, W.; Spragins, C.W.; Watts, C.

    1990-09-01

    MST is a large (R 0 /a = 1.5/0.52 m) RFP which to date has obtained 80 ms discharges at a peak plasma current of 0.6 MA. Low loop voltages (15 volts) and modest temperatures (T e /T i ∼ 350/250 eV) are routinely obtained giving estimated unoptimized energy confinement times of about 1 ms. Loop voltage and ion temperature are anomalous. Magnetic fluctuations are typically 0.5% with most of the power at frequencies below 30 kHz and mode numbers in agreement with MHD prediction for tearing modes. Electrostatic fluctuations are typically 10 to 20% with a spectrum that decreases with frequency. 5 refs., 2 figs

  7. Thermal Fluctuations in Smooth Dissipative Particle Dynamics simulation of mesoscopic thermal systems

    Science.gov (United States)

    Gatsonis, Nikolaos; Yang, Jun

    2013-11-01

    The SDPD-DV is implemented in our work for arbitrary 3D wall bounded geometries. The particle position and momentum equations are integrated with a velocity-Verlet algorithm and the entropy equation is integrated with a Runge-Kutta algorithm. Simulations of nitrogen gas are performed to evaluate the effects of timestep and particle scale on temperature, self-diffusion coefficient and shear viscosity. The hydrodynamic fluctuations in temperature, density, pressure and velocity from the SDPD-DV simulations are evaluated and compared with theoretical predictions. Steady planar thermal Couette flows are simulated and compared with analytical solutions. Simulations cover the hydrodynamic and mesocopic regime and show thermal fluctuations and their dependence on particle size.

  8. Climatology of Wind Direction Fluctuations at Risø

    DEFF Research Database (Denmark)

    Kristensen, Leif; Panofsky, H. A.

    1976-01-01

    Standard deviations of wind direction fluctuations at 76 m at Risø for the first half year of 1975 have been analyzed as functions of wind speed and temperature lapse rate, either measured near the surface or near the level of the azimuth variations. Between 31 and 37% of the variance of the stan...

  9. Buckling of thermally fluctuating spherical shells: Parameter renormalization and thermally activated barrier crossing

    Science.gov (United States)

    Baumgarten, Lorenz; Kierfeld, Jan

    2018-05-01

    We study the influence of thermal fluctuations on the buckling behavior of thin elastic capsules with spherical rest shape. Above a critical uniform pressure, an elastic capsule becomes mechanically unstable and spontaneously buckles into a shape with an axisymmetric dimple. Thermal fluctuations affect the buckling instability by two mechanisms. On the one hand, thermal fluctuations can renormalize the capsule's elastic properties and its pressure because of anharmonic couplings between normal displacement modes of different wavelengths. This effectively lowers its critical buckling pressure [Košmrlj and Nelson, Phys. Rev. X 7, 011002 (2017), 10.1103/PhysRevX.7.011002]. On the other hand, buckled shapes are energetically favorable already at pressures below the classical buckling pressure. At these pressures, however, buckling requires to overcome an energy barrier, which only vanishes at the critical buckling pressure. In the presence of thermal fluctuations, the capsule can spontaneously overcome an energy barrier of the order of the thermal energy by thermal activation already at pressures below the critical buckling pressure. We revisit parameter renormalization by thermal fluctuations and formulate a buckling criterion based on scale-dependent renormalized parameters to obtain a temperature-dependent critical buckling pressure. Then we quantify the pressure-dependent energy barrier for buckling below the critical buckling pressure using numerical energy minimization and analytical arguments. This allows us to obtain the temperature-dependent critical pressure for buckling by thermal activation over this energy barrier. Remarkably, both parameter renormalization and thermal activation lead to the same parameter dependence of the critical buckling pressure on temperature, capsule radius and thickness, and Young's modulus. Finally, we study the combined effect of parameter renormalization and thermal activation by using renormalized parameters for the energy

  10. Spontaneous magnetic fluctuations and collisionless regulation of the Earth's plasma sheet

    Science.gov (United States)

    Moya, P. S.; Espinoza, C.; Stepanova, M. V.; Antonova, E. E.; Valdivia, J. A.

    2017-12-01

    Even in the absence of instabilities, plasmas often exhibit inherent electromagnetic fluctuations which are present due to the thermal motion of charged particles, sometimes called thermal (quasi-thermal) noise. One of the fundamental and challenging problems of laboratory, space, and astrophysical plasma physics is the understanding of the relaxation processes of nearly collisionless plasmas, and the resultant state of electromagnetic plasma turbulence. The study of thermal fluctuations can be elegantly addressed by using the Fluctuation-Dissipation Theorem that describes the average amplitude of the fluctuations through correlations of the linear response of the media with the perturbations of the equilibrium state (the dissipation). Recently, it has been shown that solar wind plasma beta and temperature anisotropy observations are bounded by kinetic instabilities such as the ion cyclotron, mirror, and firehose instabilities. The magnetic fluctuations observed within the bounded area are consistent with the predictions of the Fluctuation-Dissipation theorem even far below the kinetic instability thresholds, with an enhancement of the fluctuation level near the thresholds. Here, for the very first time, using in-situ magnetic field and plasma data from the THEMIS spacecraft, we show that such regulation also occurs in the Earth's plasma sheet at the ion scales and that, regardless of the clear differences between the solar wind and the magnetosphere environments, spontaneous fluctuation and their collisionless regulation seem to be fundamental features of space and astrophysical plasmas, suggesting the universality of the processes.

  11. The influence of non-equilibrium fluctuations on radiation damage and recovery of metals under irradiation

    International Nuclear Information System (INIS)

    Dubinko, V.I.; Klepikov, V.F.

    2007-01-01

    In the conventional theory of radiation damage, it is assumed that the main effect of irradiation is due to formation of Frenkel pairs of vacancies and self-interstitial atoms (SIAs) and their clusters. The difference in absorption of vacancies and SIAs by primary or radiation-induced extended defects (EDs) is thought to be the main reason of microstructural evolution under irradiation. On the other hand, the recovery of radiation damage is thought to be driven exclusively by thermal fluctuations resulting in the vacancy evaporation from voids (void annealing) or dislocations (thermal creep) and in the fluctuation-driven overcoming of obstacles by gliding dislocations (plastic strain). However, these recovery mechanisms can be efficient only at sufficiently high temperatures. At lower irradiation temperatures, the main driving force of the recovery processes may be due to nonequilibrium fluctuations of energy states of the atoms surrounding EDs arising as a result of scattering of radiation-induced excitations of atomic and electronic structure at EDs. In the present paper, the mechanisms of nonequilibrium fluctuations that result in such phenomena as the void shrinkage under irradiation at low temperatures (or high dose rates), irradiation creep and irradiation-induced increase of plasticity under sub-threshold irradiation was considered

  12. Fluctuations in the site-disordered traveling salesman problem

    Energy Technology Data Exchange (ETDEWEB)

    Dean, David S [Laboratoire de Physique Theorique, UMR CNRS 5152, IRSAMC, Universite Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 04 (France); Lancaster, David [Harrow School of Computer Science, University of Westminster, Harrow HA1 3TP (United Kingdom)

    2007-11-16

    We extend a previous statistical mechanical treatment of the traveling salesman problem by defining a discrete 'site-disordered' problem in which fluctuations about saddle points can be computed. The results clarify the basis of our original treatment, and illuminate but do not resolve the difficulties of taking the zero-temperature limit to obtain minimal path lengths.

  13. Fast temperature fluctuation measurements in SOL of tokamak TCV

    DEFF Research Database (Denmark)

    Horacek, J.; Nielsen, Anders Henry; Pitts, R.A.

    to compare the statistical character of turbulence in the SOL particle flux on TCV with results from the 2D fluid electrostatic model ESEL [2][4]. Using results from the fast sweeping, similar comparisons can now be made with the fluctuating Te and will be described in this contribution. We also present...... basic statistics derived from the Te time series obtained at different radii in the SOL plasma and show, in particular, that the relationship between higher moments of the probability distribution function from both experimental and simulated Te’s may be well described by the Beta probability...... distribution function, introduced for SOL turbulence in [5]. The fast Te capability also allows the SOL response to Edge Localised Modes (ELMs) to be studied and new results will be presented for the far SOL Te response during Type III ELMs....

  14. Suppression of alloy fluctuations in GaAs-AlGaAs core-shell nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Loitsch, Bernhard; Winnerl, Julia; Parzinger, Eric; Matich, Sonja; Wurstbauer, Ursula; Riedl, Hubert; Abstreiter, Gerhard; Finley, Jonathan J.; Koblmüller, Gregor [Walter Schottky Institut and Physik Department, Technische Universität München, 85748 Garching (Germany); Jeon, Nari; Lauhon, Lincoln J. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Döblinger, Markus [Department of Chemistry, Ludwig-Maximilians-Universität Munich, 81377 München (Germany)

    2016-08-29

    Probing localized alloy fluctuations and controlling them by growth kinetics have been relatively limited so far in nanoscale structures such as semiconductor nanowires (NWs). Here, we demonstrate the tuning of alloy fluctuations in molecular beam epitaxially grown GaAs-AlGaAs core-shell NWs by modifications of shell growth temperature, as investigated by correlated micro-photoluminescence, scanning transmission electron microscopy, and atom probe tomography. By reducing the shell growth temperature from T > 600 °C to below 400 °C, we find a strong reduction in alloy fluctuation mediated sharp-line luminescence, concurrent with a decrease in the non-randomness of the alloy distribution in the AlGaAs shell. This trend is further characterized by a change in the alloy compositional structure from unintentional quasi-superlattices of Ga- and Al-rich AlGaAs layers at high T to a nearly homogeneous random alloy distribution at low T.

  15. Response functions of cold neutron matter: density, spin and current fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jochen; Sedrakian, Armen [Institut fuer Theoretische Physik, Goethe-Universitaet, Frankfurt am Main (Germany)

    2014-07-01

    We study the response of a single-component pair-correlated baryonic Fermi-liquid to density, spin, and their current perturbations. A complete set of response functions is calculated in the low-temperature regime. We derive the spectral functions of collective excitations associated with the density, density-current, spin, and spin-current perturbations. The dispersion relations of density and spin fluctuations are determined and it is shown that the density fluctuations lead to exciton-like undamped bound states, whereas the spin excitations correspond to diffusive modes above the pair-breaking threshold. The contribution of the collective pair-breaking modes to the specific heat of neutron matter at subnuclear densities is computed and is shown to be comparable to that of the degenerate electron gas at not too low temperatures.

  16. Kinetic-freezing and unfreezing of local-region fluctuations in a glass structure observed by heat capacity hysteresis

    Energy Technology Data Exchange (ETDEWEB)

    Aji, D. P. B.; Johari, G. P., E-mail: joharig@mcmaster.ca [Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L7 (Canada)

    2015-06-07

    Fluctuations confined to local regions in the structure of a glass are observed as the Johari-Goldstein (JG) relaxation. Properties of these regions and their atomic configuration are currently studied by relaxation techniques, by electron microscopy, and by high-energy X-ray scattering and extended x-ray absorption fine structure methods. One expects that these fluctuations (i) would kinetically freeze on cooling a glass, and the temperature coefficient of its enthalpy, dH/dT, would consequently show a gradual decrease with decrease in T, (ii) would kinetically unfreeze on heating the glass toward the glass-liquid transition temperature, T{sub g}, and dH/dT would gradually increase, and (iii) there would be a thermal hysteresis indicating the time and temperature dependence of the enthalpy. Since no such features have been found, thermodynamic consequences of these fluctuations are debated. After searching for these features in glasses of different types, we found it in one of the most stable metal alloy glasses of composition Pd{sub 40}Ni{sub 10}Cu{sub 30}P{sub 20}. On cooling from its T{sub g}, dH/dT decreased along a broad sigmoid-shape path as local-region fluctuations kinetically froze. On heating thereafter, dH/dT increased along a similar path as these fluctuations unfroze, and there is hysteresis in the cooling and heating paths, similar to that observed in the T{sub g}-endotherm range. After eliminating other interpretations, we conclude that local-region fluctuations seen as the JG relaxation in the non-equilibrium state of a glass contribute to its entropy, and we suggest conditions under which such fluctuations may be observed.

  17. Kinetic-freezing and unfreezing of local-region fluctuations in a glass structure observed by heat capacity hysteresis

    International Nuclear Information System (INIS)

    Aji, D. P. B.; Johari, G. P.

    2015-01-01

    Fluctuations confined to local regions in the structure of a glass are observed as the Johari-Goldstein (JG) relaxation. Properties of these regions and their atomic configuration are currently studied by relaxation techniques, by electron microscopy, and by high-energy X-ray scattering and extended x-ray absorption fine structure methods. One expects that these fluctuations (i) would kinetically freeze on cooling a glass, and the temperature coefficient of its enthalpy, dH/dT, would consequently show a gradual decrease with decrease in T, (ii) would kinetically unfreeze on heating the glass toward the glass-liquid transition temperature, T g , and dH/dT would gradually increase, and (iii) there would be a thermal hysteresis indicating the time and temperature dependence of the enthalpy. Since no such features have been found, thermodynamic consequences of these fluctuations are debated. After searching for these features in glasses of different types, we found it in one of the most stable metal alloy glasses of composition Pd 40 Ni 10 Cu 30 P 20 . On cooling from its T g , dH/dT decreased along a broad sigmoid-shape path as local-region fluctuations kinetically froze. On heating thereafter, dH/dT increased along a similar path as these fluctuations unfroze, and there is hysteresis in the cooling and heating paths, similar to that observed in the T g -endotherm range. After eliminating other interpretations, we conclude that local-region fluctuations seen as the JG relaxation in the non-equilibrium state of a glass contribute to its entropy, and we suggest conditions under which such fluctuations may be observed

  18. Evaluation of short-term tracer fluctuations in groundwater and soil air in a two year study

    Science.gov (United States)

    Jenner, Florian; Mayer, Simon; Aeschbach, Werner; Weissbach, Therese

    2016-04-01

    The application of gas tracers like noble gases (NGs), SF6 or CFCs in groundwater studies such as paleo temperature determination requires a detailed understanding of the dynamics of reactive and inert gases in the soil air with which the infiltrating water equilibrates. Due to microbial gas consumption and production, NG partial pressures in soil air can deviate from atmospheric air, an effect that could bias noble gas temperatures estimates if not taken into account. So far, such an impact on NG contents in groundwater has not been directly demonstrated. We provide the first long-term study of the above mentioned gas tracers and physical parameters in both the saturated and unsaturated soil zone, sampled continuously for more than two years near Mannheim (Germany). NG partial pressures in soil air correlate with soil moisture and the sum value of O2+CO2, with a maximal significant enhancement of 3-6% with respect to atmospheric air during summer time. Observed seasonal fluctuations result in a mass dependent fractionation of NGs in soil air. Concentrations of SF6 and CFCs in soil air are determined by corresponding fluctuations in local atmospheric air, caused by industrial emissions. Arising concentration peaks are damped with increasing soil depth. Shallow groundwater shows short-term NG fluctuations which are smoothed within a few meters below the water table. A correlation between NG contents of soil air and of groundwater is observable during strong recharge events. However, there is no evidence for a permanent influence of seasonal variations of soil air composition on shallow groundwater. Fluctuating NG contents in shallow groundwater are rather determined by variations of soil temperature and water table level. Our data gives evidence for a further temperature driven equilibration of groundwater with entrapped air bubbles within the topmost saturated zone, which permanently occurs even some years after recharge. Local subsurface temperature fluctuations

  19. Effect of spin fluctuations on the electronic structure in iron-based superconductors

    Science.gov (United States)

    Heimes, Andreas; Grein, Roland; Eschrig, Matthias

    2012-08-01

    Magnetic inelastic neutron scattering studies of iron-based superconductors reveal a strongly temperature-dependent spin-fluctuation spectrum in the normal conducting state, which develops a prominent low-energy resonance feature when entering the superconducting state. Angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling spectroscopy (STS) allow us to study the fingerprints of fluctuation modes via their interactions with electronic quasiparticles. We calculate such fingerprints in 122 iron pnictides using an experimentally motivated spin-fluctuation spectrum and make a number of predictions that can be tested in ARPES and STS experiments. This includes discussions of the quasiparticle scattering rate and the superconducting order parameter. In quantitative agreement with experiment we reproduce the quasiparticle dispersions obtained from momentum distribution curves as well as energy distribution curves. We discuss the relevance of the coupling between spin fluctuations and electronic excitations for the superconducting mechanism.

  20. Structure of density fluctuations in the edge plasma of ASDEX

    Energy Technology Data Exchange (ETDEWEB)

    Rudyj, A; Carlson, A; Endler, M; Giannone, L.; Niedermeyer, H; Theimer, G [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1990-01-01

    It is now generally believed that the anomalous particle and energy transport in tokamaks is caused by turbulent fluctuations. The physical nature of these fluctuations (mode type, the driving mechanism) have still to be identified experimentally before a self consistent transport theory can be developed. In contrast to the confinement region the plasma edge can be well diagnosed. H{sub {alpha}}-light, which is emitted at the edge, reacts to density and to some extend to temperature fluctuations. It delivers information about radially integrated spectra and correlations. Langmuir probes measure density and potential fluctuations with good spatial resolution. The edge transport governs the physics in the scrape-off layer and in the divertor which is extremely important for a reactor and therefore deserves a major experimental effort. In this paper we report on an attempt to gain detailed information about the spatial and temporal structure of the edge turbulence hoping to reduce the degrees of freedom for theoretical models to a manageable number. (author) 3 refs., 3 figs.

  1. Fluctuations in an Inorganic Glass Forming System Capable of Liquid-Liquid Phase Separation

    Science.gov (United States)

    Bogdanov, V.; Maksimov, L.; Anan'ev, A.; Nemilov, S.; Rusan, V.

    2012-08-01

    Rayleigh and Mandel'shtam-Brillouin scattering (RMBS) spectroscopy and high temperature ultrasonic study (HTUS) are applied to PbO-Al2O3-B2O3 glass forming system characterized by over liquidus miscibility gap. Temperature dependences of ultrasonic velocity of glass melts were measured in 600-1200°C range. "Frozen-in" density fluctuations in two phase glasses were estimated from HTUS data by Macedo-Shroeder formulation. Landau-Placzek ratios were found from RMBS spectra of single phase glasses at room temperature. Results of RMBS and HTUS were compared with well-known SAXS data. It was found that contribution of "frozen-in" density fluctuations into light scattering by two-phase glasses is much smaller than the scattering on particles of the second glassy phase causing opalescence of the glasses. Abnormal "water-like" growth of ultrasonic velocity with melt temperature can be explained by coexistence of two types of packaging of structural elements.

  2. Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes

    International Nuclear Information System (INIS)

    Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti

    2016-01-01

    Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.

  3. Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti, E-mail: arti@iitm.ac.in [Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600036 (India)

    2016-08-28

    Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.

  4. Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes

    Science.gov (United States)

    Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti

    2016-08-01

    Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.

  5. Fluctuation relation for heat exchange in Markovian open quantum systems

    Science.gov (United States)

    Ramezani, M.; Golshani, M.; Rezakhani, A. T.

    2018-04-01

    A fluctuation relation for the heat exchange of an open quantum system under a thermalizing Markovian dynamics is derived. We show that the probability that the system absorbs an amount of heat from its bath, at a given time interval, divided by the probability of the reverse process (releasing the same amount of heat to the bath) is given by an exponential factor which depends on the amount of heat and the difference between the temperatures of the system and the bath. Interestingly, this relation is akin to the standard form of the fluctuation relation (for forward-backward dynamics). We also argue that the probability of the violation of the second law of thermodynamics in the form of the Clausius statement (i.e., net heat transfer from a cold system to its hot bath) drops exponentially with both the amount of heat and the temperature differences of the baths.

  6. A Generalization of Electromagnetic Fluctuation-Induced Casimir Energy

    Directory of Open Access Journals (Sweden)

    Yi Zheng

    2015-01-01

    Full Text Available Intermolecular forces responsible for adhesion and cohesion can be classified according to their origins; interactions between charges, ions, random dipole—random dipole (Keesom, random dipole—induced dipole (Debye are due to electrostatic effects; covalent bonding, London dispersion forces between fluctuating dipoles, and Lewis acid-base interactions are due to quantum mechanical effects; pressure and osmotic forces are of entropic origin. Of all these interactions, the London dispersion interaction is universal and exists between all types of atoms as well as macroscopic objects. The dispersion force between macroscopic objects is called Casimir/van der Waals force. It results from alteration of the quantum and thermal fluctuations of the electrodynamic field due to the presence of interfaces and plays a significant role in the interaction between macroscopic objects at micrometer and nanometer length scales. This paper discusses how fluctuational electrodynamics can be used to determine the Casimir energy/pressure between planar multilayer objects. Though it is confirmation of the famous work of Dzyaloshinskii, Lifshitz, and Pitaevskii (DLP, we have solved the problem without having to use methods from quantum field theory that DLP resorted to. Because of this new approach, we have been able to clarify the contributions of propagating and evanescent waves to Casimir energy/pressure in dissipative media.

  7. Elastic constants from microscopic strain fluctuations

    Science.gov (United States)

    Sengupta; Nielaba; Rao; Binder

    2000-02-01

    Fluctuations of the instantaneous local Lagrangian strain epsilon(ij)(r,t), measured with respect to a static "reference" lattice, are used to obtain accurate estimates of the elastic constants of model solids from atomistic computer simulations. The measured strains are systematically coarse-grained by averaging them within subsystems (of size L(b)) of a system (of total size L) in the canonical ensemble. Using a simple finite size scaling theory we predict the behavior of the fluctuations as a function of L(b)/L and extract elastic constants of the system in the thermodynamic limit at nonzero temperature. Our method is simple to implement, efficient, and general enough to be able to handle a wide class of model systems, including those with singular potentials without any essential modification. We illustrate the technique by computing isothermal elastic constants of "hard" and "soft" disk triangular solids in two dimensions from Monte Carlo and molecular dynamics simulations. We compare our results with those from earlier simulations and theory.

  8. Measurements of fluctuations in the flux of runaway electrons to the PLT limiter

    International Nuclear Information System (INIS)

    Barnes, C.W.; Strachan, J.D.

    1982-07-01

    Fluctuations in the flux of runaway electrons to the limiter have been measured during many PLT discharges. Oscillations at 60, 120, and 720 Hz are driven by variations in the vertical magnetic field which moves the plasma major radius. Fluctuations are seen in the range of 2 → 20 kHz due to MHD magnetic islands which extend to the plasma surface. A continuous spectrum of fluctuations is observed up to 200 kHz which correlates with drift-wave turbulence. The magnitude of the driven fluctuations can be used to measure transport properties of the runaway electrons. The amplitude of electron motion due to the MHD and drift-wave oscillations, and hence a measure of the radial size of the instability, can be determined as a function of frequency. The slope of the frequency power spectrum of the drift-wave-induced fluctuations steepens with increasing runaway electron drift orbit displacement during the current drop at the end of the discharge, and as the power in the MHD oscillations increases. A magnetic probe was used to confirm the presence of oscillating magnetic fields capable of perturbing the electron orbits

  9. Sphalerons, small fluctuations, and baryon-number violation in electroweak theory

    International Nuclear Information System (INIS)

    Arnold, P.; McLerran, L.

    1987-01-01

    We study the formalism of the sphaleron approximation to baryon-number violation in the standard model at temperatures near 1 TeV. We investigate small fluctuations of the sphaleron, the competition of large-scale sphalerons with thermal fluctuations, and the damping of the transition rate in the plasma. We find a suppression of the rate due to Landau damping and due to factors arising from zero modes. Our approximations are valid in the regime 2M/sub W/(T) 2 . We find that the rate of baryon-number violation is still significantly larger than the expansion rate of the Universe

  10. Bistability and displacement fluctuations in a quantum nanomechanical oscillator

    Science.gov (United States)

    Avriller, R.; Murr, B.; Pistolesi, F.

    2018-04-01

    Remarkable features have been predicted for the mechanical fluctuations at the bistability transition of a classical oscillator coupled capacitively to a quantum dot [Micchi et al., Phys. Rev. Lett. 115, 206802 (2015), 10.1103/PhysRevLett.115.206802]. These results have been obtained in the regime ℏ ω0≪kBT ≪ℏ Γ , where ω0, T , and Γ are the mechanical resonating frequency, the temperature, and the tunneling rate, respectively. A similar behavior could be expected in the quantum regime of ℏ Γ ≪kBT ≪ℏ ω0 . We thus calculate the energy- and displacement-fluctuation spectra and study their behavior as a function of the electromechanical coupling constant when the system enters the Frank-Condon regime. We find that in analogy with the classical case, the energy-fluctuation spectrum and the displacement spectrum widths show a maximum for values of the coupling constant at which a mechanical bistability is established.

  11. Net-baryon number fluctuations using Tsallis statistics

    International Nuclear Information System (INIS)

    Garg, P.; Singh, B.K.; Mishra, D.K.; Netrakanti, P.K.; Mohanty, A.K.

    2014-01-01

    In the present work, we show that the HRG-Tsallis model with a temperature dependent nonextensive q parameter reproduces the energy dependence of Sσ and kσ 2 for most peripheral collisions as well as Sσ for central collisions. However, the energy dependence of kσ 2 of central collision deviate significantly from the HRG-Tsallis model predictions particularly at energies 19.6 GeV and 27 GeV. We argue here that the predictions of HRG-Tsallis characterized by a temperature dependent q parameter should be taken as the baseline to study (experimentally) fluctuations of dynamical origin if any, which is still not contained in the Tsallis non-extensive thermodynamics

  12. Statistical fluctuations in reactors (1960); Fluctuations statistiques dans les piles (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Raievski, V [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The theory of space dependent fluctuations is developed, taking into account the effect of delayed neutrons. The 'diffusion equation' or Fokker-Planck equation is worked out in the case of age and two group theory, but the first one because of in physical significance is used in this report. The theory is applied to the study of the spectral density of fluctuations and fluctuations of counting rate and current flowing through the charge resistor of an ionisation chamber, the effect of the entrance capacity is discussed. The space dependent theory shows that the fluctuations in the core and reflector of a near critical pile obey to the same law. The spectral densities in the core and reflector are similar, there is no sensible attenuation of high frequency fluctuations in the reflector. Compared to the space independent theory, this theory give better agreement with experience, one can use the simple space independent theory but in checking with experiment it is necessary to introduce numerical factors given by the space dependent theory. (author) [French] La theorie des fluctuations statistiques est developpee dans le cas spatial en tenant compte des neutrons retardes, et dans le cadre de la theorie de l'age vitesse. L'equation d'evolution de la probabilite est egalement etablie dans le cadre de la theorie a deux groupes. Ces considerations sont appliquees a l'etude de la densite spectrale des fluctuations et aux fluctuations des taux de comptage et du courant circulant dans la resistance de charge du detecteur. On etudie en particulier l'effet de la constante de temps introduite par la capacite d'entree. Cette theorie etablit que les fluctuations dans le coeur et le reflecteur suivent la meme loi pour une pile critique, il en est de meme pour la densite spectrale meme a frequence elevee. Par rapport a la theorie d'ensemble, la theorie spatiale donne des coefficients numeriques ou facteurs de forme, qui permettent d'obtenir un bon accord entre la theorie et l

  13. Analysis of the fluctuations of the tumour/host interface

    Science.gov (United States)

    Milotti, Edoardo; Vyshemirsky, Vladislav; Stella, Sabrina; Dogo, Federico; Chignola, Roberto

    2017-11-01

    In a recent analysis of metabolic scaling in solid tumours we found a scaling law that interpolates between the power laws μ ∝ V and μ ∝V 2 / 3, where μ is the metabolic rate expressed as the glucose absorption rate and V is the tumour volume. The scaling law fits quite well both in vitro and in vivo data, however we also observed marked fluctuations that are associated with the specific biological properties of individual tumours. Here we analyse these fluctuations, in an attempt to find the population-wide distribution of an important parameter (A) which expresses the total extent of the interface between the solid tumour and the non-cancerous environment. Heuristic considerations suggest that the values of the A parameter follow a lognormal distribution, and, allowing for the large uncertainties of the experimental data, our statistical analysis confirms this.

  14. Thermal fluctuation based study of aqueous deficient dry eyes by non-invasive thermal imaging.

    Science.gov (United States)

    Azharuddin, Mohammad; Bera, Sumanta Kr; Datta, Himadri; Dasgupta, Anjan Kr

    2014-03-01

    In this paper we have studied the thermal fluctuation patterns occurring at the ocular surface of the left and right eyes for aqueous deficient dry eye (ADDE) patients and control subjects by thermal imaging. We conducted our experiment on 42 patients (84 eyes) with aqueous deficient dry eyes and compared with 36 healthy volunteers (72 eyes) without any history of ocular surface disorder. Schirmer's test, Tear Break-up Time, tear Meniscus height and fluorescein staining tests were conducted. Ocular surface temperature measurement was done, using an FL-IR thermal camera and thermal fluctuation in left and right eyes was calculated and analyzed using MATLAB. The time series containing the sum of squares of the temperature fluctuation on the ocular surface were compared for aqueous deficient dry eye and control subjects. Significant statistical difference between the fluctuation patterns for control and ADDE was observed (p eyes are significantly correlated in controls but not in ADDE subjects. The possible origin of such correlation in control and lack of correlation in the ADDE subjects is discussed in the text. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Renormalization group analysis of order parameter fluctuations in fermionic superfluids

    International Nuclear Information System (INIS)

    Obert, Benjamin

    2014-01-01

    In this work fluctuation effects in two interacting fermion systems exhibiting fermionic s-wave superfluidity are analyzed with a modern renormalization group method. A description in terms of a fermion-boson theory allows an investigation of order parameter fluctuations already on the one-loop level. In the first project a quantum phase transition between a semimetal and a s-wave superfluid in a Dirac cone model is studied. The interplay between fermions and quantum critical fluctuations close to and at the quantum critical point at zero and finite temperatures are studied within a coupled fermion-boson theory. At the quantum critical point non-Fermi liquid and non-Gaussian behaviour emerge. Close to criticality several quantities as the susceptibility show a power law behaviour with critical exponents. We find an infinite correlation length in the entire semimetallic ground state also away from the quantum critical point. In the second project, the ground state of an s-wave fermionic superfluid is investigated. Here, the mutual interplay between fermions and order parameter fluctuations is studied, especially the impact of massless Goldstone fluctuations, which occur due to spontaneous breaking of the continuous U(1)-symmetry. Fermionic gap and bosonic order parameter are distinguished. Furthermore, the bosonic order parameter is decomposed in transverse and longitudinal fluctuations. The mixing between transverse and longitudinal fluctuations is included in our description. Within a simple truncation of the fermion-boson RG flow, we describe the fermion-boson theory for the first time in a consistent manner. Several singularities appear due the Goldstone fluctuations, which partially cancel due to symmetry. Our RG flow captures the correct infrared asymptotics of the system, where the collective excitations act as an interacting Bose gas. Lowest order Ward identities and the massless Goldstone mode are fulfilled in our truncation.

  16. An experimental investigation on the velocity fluctuation characteristics in a triple air jet

    International Nuclear Information System (INIS)

    Nam, Ho Yun; Kim, Jong Man; Choi, Jong Hyeon; Choi, Seok Ki

    2005-01-01

    The thermal striping which occurs due to a turbulent thermal mixing in the upper plenum of a liquid metal reactor causes a temperature fluctuation on the adjacent solid materials and it is an important parameter in the design of a liquid metal reactor. An experimental apparatus which is a mock up of the fuel assembly in the liquid metal reactor is devised, and the average velocity and the velocity fluctuation in a two-dimensional jet from three nozzles are measured. In the present paper the characteristics of the velocity fluctuation which is used for a validation of a thermal hydraulic computer code is described

  17. Air temperature investigation in microenvironment around a human body

    DEFF Research Database (Denmark)

    Licina, Dusan; Melikov, Arsen Krikor; Sekhar, Chandra

    2015-01-01

    The aim of this study is to investigate the temperature boundary layer around a human body in a quiescent indoor environment. The air temperature, mean in time and standard deviation of the temperature fluctuations around a breathing thermal manikin are examined in relation to the room temperature......, body posture and human respiratory flow. To determine to what extent the experiments represent the realistic scenario, the additional experiments were performed with a real human subject. The results show that at a lower room air temperature (20°C), the fluctuations of air temperature increased close...... to the surface of the body. The large standard deviation of air temperature fluctuations, up to 1.2°C, was recorded in the region of the chest, and up to 2.9°C when the exhalation was applied. The manikin leaned backwards increased the air temperature in the breathing zone, which was opposite from the forward...

  18. Gas Temperature and Radiative Heat Transfer in Oxy-fuel Flames

    DEFF Research Database (Denmark)

    Bäckström, Daniel; Johansson, Robert; Andersson, Klas

    This work presents measurements of the gas temperature, including fluctuations, and its influence on the radiative heat transfer in oxy-fuel flames. The measurements were carried out in the Chalmers 100 kW oxy-fuel test unit. The in-furnace gas temperature was measured by a suction pyrometer...... on the radiative heat transfer shows no effect of turbulence-radiation interaction. However, by comparing with temperature fluctuations in other flames it can be seen that the fluctuations measured here are relatively small. Further research is needed to clarify to which extent the applied methods can account...

  19. Adapted Method for Separating Kinetic SZ Signal from Primary CMB Fluctuations

    Directory of Open Access Journals (Sweden)

    Forni Olivier

    2005-01-01

    Full Text Available In this first attempt to extract a map of the kinetic Sunyaev-Zel'dovich (KSZ temperature fluctuations from the cosmic microwave background (CMB anisotropies, we use a method which is based on simple and minimal assumptions. We first focus on the intrinsic limitations of the method due to the cosmological signal itself. We demonstrate using simulated maps that the KSZ reconstructed maps are in quite good agreement with the original input signal with a correlation coefficient between original and reconstructed maps of on average, and an error on the standard deviation of the reconstructed KSZ map of only % on average. To achieve these results, our method is based on the fact that some first-step component separation provides us with (i a map of Compton parameters for the thermal Sunyaev-Zel'dovich (TSZ effect of galaxy clusters, and (ii a map of temperature fluctuations which is the sum of primary CMB and KSZ signals. Our method takes benefit from the spatial correlation between KSZ and TSZ effects which are both due to the same galaxy clusters. This correlation allows us to use the TSZ map as a spatial template in order to mask, in the map, the pixels where the clusters must have imprinted an SZ fluctuation. In practice, a series of TSZ thresholds is defined and for each threshold, we estimate the corresponding KSZ signal by interpolating the CMB fluctuations on the masked pixels. The series of estimated KSZ maps is finally used to reconstruct the KSZ map through the minimisation of a criterion taking into account two statistical properties of the KSZ signal (KSZ dominates over primary anisotropies at small scales, KSZ fluctuations are non-Gaussian distributed. We show that the results are quite sensitive to the effect of beam convolution, especially for large beams, and to the corruption by instrumental noise.

  20. Interplay of quantum and classical fluctuations near quantum critical points

    International Nuclear Information System (INIS)

    Continentino, Mucio Amado

    2011-01-01

    For a system near a quantum critical point (QCP), above its lower critical dimension d L , there is in general a critical line of second-order phase transitions that separates the broken symmetry phase at finite temperatures from the disordered phase. The phase transitions along this line are governed by thermal critical exponents that are different from those associated with the quantum critical point. We point out that, if the effective dimension of the QCP, d eff = d + z (d is the Euclidean dimension of the system and z the dynamic quantum critical exponent) is above its upper critical dimension d c there is an intermingle of classical (thermal) and quantum critical fluctuations near the QCP. This is due to the breakdown of the generalized scaling relation ψ = νz between the shift exponent ψ of the critical line and the crossover exponent νz, for d + z > d c by a dangerous irrelevant interaction. This phenomenon has clear experimental consequences, like the suppression of the amplitude of classical critical fluctuations near the line of finite temperature phase transitions as the critical temperature is reduced approaching the QCP. (author)

  1. Critical composition fluctuations in artificial and cell-derived lipid membranes

    Science.gov (United States)

    Honerkamp-Smith, Aurelia

    2014-03-01

    Cell plasma membranes contain a mixture of lipid types which can segregate into coexisting liquids, a thermodynamic phenomenon which may contribute to biological functions. Simplified, artificial three-component lipid vesicles can be prepared which display a critical miscibility transition near room temperature. We found that such vesicles exhibit concentration fluctuations whose size, composition, and timescales vary consistently with critical exponents for two-dimensional conserved order parameter systems. However, the critical miscibility transition is also observed in vesicles formed directly from the membranes of living cells, despite their more complex composition and the presence of membrane proteins. I will describe our critical fluctuation measurements and also review a variety of more recent work by other researchers. Proximity to a critical point alters the spatial distribution and aggregation tendencies of proteins, and makes lipid mixtures more susceptible to domain formation by protein-mediated interactions, such as adhesion zones. Recent work suggests that critical temperature depression may also be relevant to the mechanism of anaesthetic action.

  2. Recent results of studies of plasma fluctuations in stellarators by microwave scattering technique

    International Nuclear Information System (INIS)

    Skvortsova, N.N.; Batanov, G.M.; Kolik, L.V.; Petrov, A.E.; Pshenichnikov, A.A.; Sarksyan, K.A.; Kharchev, N.K.; Khol'nov, Yu.V.; Kubo, S.; Sanchez, J.

    2005-01-01

    Microwave scattering diagnostics are described that allow direct measurements of the turbulent processes in a high-temperature plasma of magnetic confinement systems. Plasma density fluctuations in the heating region of the L-2M stellarator were measured from microwave scattering at the fundamental and the second harmonics of the heating gyrotron radiation. In the TJ-II stellarator, a separate 2-mm microwave source was used to produce a probing beam; the measurements were performed at the middle of the plasma radius. Plasma density fluctuations in the axial (heating) region of the LHD stellarator were measured from microwave scattering at the fundamental harmonic of the heating gyrotron radiation. Characteristic features of fluctuations, common for all three devices, are revealed with the methods of statistical and spectral analysis. These features are the wide frequency Fourier and wavelet spectra, autocorrelation functions with slowly decreasing tails, and non-Gaussian probability distributions of the magnitudes and the increments of the magnitude of fluctuations. The drift-dissipative instability and the instability driven by trapped electrons are examined as possible sources of turbulence in a high-temperature plasma. Observations showed the high level of coherence between turbulent fluctuations in the central region and at the edge of the plasma in L-2M. It is shown in L-2M that the relative intensity of the second harmonic of gyrotron radiation on the axis of a microwave beam after quasi-optical filtering in a four-mirror quasi-optical transmission line is about -50 dB of the total radiation intensity. Spatiotemporal structures in plasma density fluctuations were observed in the central region of the plasma column. The correlation time between the structures was found to be on the order of 1 ms. It is shown that, the spectrum of the signal from the second-harmonic scattering extends to higher frequencies in comparison with that from the fundamental

  3. Power injected in dissipative systems and the fluctuation theorem

    Science.gov (United States)

    Aumaître, S.; Fauve, S.; McNamara, S.; Poggi, P.

    We consider three examples of dissipative dynamical systems involving many degrees of freedom, driven far from equilibrium by a constant or time dependent forcing. We study the statistical properties of the injected and dissipated power as well as the fluctuations of the total energy of these systems. The three systems under consideration are: a shell model of turbulence, a gas of hard spheres colliding inelastically and excited by a vibrating piston, and a Burridge-Knopoff spring-block model. Although they involve different types of forcing and dissipation, we show that the statistics of the injected power obey the ``fluctuation theorem" demonstrated in the case of time reversible dissipative systems maintained at constant total energy, or in the case of some stochastic processes. Although this may be only a consequence of the theory of large deviations, this allows a possible definition of ``temperature" for a dissipative system out of equilibrium. We consider how this ``temperature" scales with the energy and the number of degrees of freedom in the different systems under consideration.

  4. Electronic and magnetic phase separation in EuB6. Fluctuation spectroscopy and nonlinear transport

    International Nuclear Information System (INIS)

    Amyan, Adham

    2013-01-01

    The main topics of this thesis are electrical, stationary, and time-resolved transport measurements on EuB 6 as well as the further development of measuring methods and analysis procedures of the fluctuation spectroscopy. The first part of this thesis was dedicated to the further development of the already known measuring methods under application of a fast data-acquisition card. The second part deals with the electrical transport properties of EuB 6 and the understanding of the coupling between charge and magnetic degrees of freedom. By means of resistance and nonlinear-transport measurements as well as fluctuation spectroscopy hypotheses of other scientists were systematically verified as well as new knowledge obtained. The magnetoresistance was studied as function of the temperature in small external magnetic fields between 1 mT and 700 mT. Measurements of the third harmonic resistance as function of the temperature show maxima at T MI and T C . Electrical-resistance fluctuations were measured without external magnetic field between 5 and 100 K as well in presence of a magnetic field between 18 K and 32 K. At constant temperature measurements of the spectral power density in external magnetic fields were performed in the temperature range from 18 K to 32 K. Highly resolving measurements of the thermal expansion coefficient showed a very strong coupling of the magnetic (polaronic) degrees of freedom to the crystal lattice.

  5. Effects of high frequency fluctuations on DNS of turbulent open-channel flow with high Pr passive scalar transport

    International Nuclear Information System (INIS)

    Yamamoto, Yoshinobu; Kunugi, Tomoaki; Serizawa, Akimi

    2002-01-01

    In this study, investigation on effects of high frequency fluctuations on DNS of turbulent open-channel flows with high Pr passive scalar transport was conducted. As the results, although significant differences of energy spectra behaviors in temperature fields, are caused at high wave number region where insignificant area for velocity components, large difference dose not caused in mean and statistic behaviors in temperature component. But, if the buoyancy were considered, this temperature high-frequency fluctuations would be greatly changed mean and statistics behaviors from the difference of the accuracy and resolution at high wave number region. (author)

  6. Observation of voltage fluctuations in a superconducting magnet during MHD power generation

    International Nuclear Information System (INIS)

    Smith, R.P.; Niemann, R.C.; Kraimer, M.R.; Zinneman, T.E.

    1978-01-01

    Fluctuating voltage signals on the potential taps of the ANL 5.0 T MHD Superconducting Dipole Magnet have been observed during MHD power generation at the U-25B Facility at the High Temperature Institute (IVTAN) Moscow, USSR. Various other thermodynamic and electrical parameters of the U-25B flow train have been recorded, and statistical analysis concerning correlations between the phenomena with a view of discerning causal interdependence is in progress. Voltage fluctuations observed at the magnet terminals are analyzed with special emphasis on magnet stability

  7. Fluctuating Charge-Order in Optimally Doped Bi- 2212 Revealed by Momentum-resolved Electron Energy Loss Spectroscopy

    Science.gov (United States)

    Husain, Ali; Vig, Sean; Kogar, Anshul; Mishra, Vivek; Rak, Melinda; Mitrano, Matteo; Johnson, Peter; Gu, Genda; Fradkin, Eduardo; Norman, Michael; Abbamonte, Peter

    Static charge order is a ubiquitous feature of the underdoped cuprates. However, at optimal doping, charge-order has been thought to be completely suppressed, suggesting an interplay between the charge-ordering and superconducting order parameters. Using Momentum-resolved Electron Energy Loss Spectroscopy (M-EELS) we show the existence of diffuse fluctuating charge-order in the optimally doped cuprate Bi2Sr2CaCu2O8+δ (Bi-2212) at low-temperature. We present full momentum-space maps of both elastic and inelastic scattering at room temperature and below the superconducting transition with 4meV resolution. We show that the ``rods'' of diffuse scattering indicate nematic-like fluctuations, and the energy width defines a fluctuation timescale of 160 fs. We discuss the implications of fluctuating charge-order on the dynamics at optimal doping. This work was supported by the Gordon and Betty Moore Foundation's EPiQS Initiative through Grant GBMF-4542. An early prototype of the M-EELS instrument was supported by the DOE Center for Emergent Superconductivity under Award No. DE-AC02-98CH10886.

  8. Fluctuations and structure of amphiphilic films; Fluctuations et structure de films d`amphiphiles

    Energy Technology Data Exchange (ETDEWEB)

    Gourier, CH

    1996-07-01

    This thesis is divided in three parts.The first part exposes in a theoretical point of view, how the fluctuations spectrum of an amphiphilic film is governed by its properties and its bidimensional characteristics.The measurements of fluctuations spectra of an interface are accessible with the measurement of intensity that interface diffuses out of the specular angle, we present in the second chapter the principles of the X rays diffusion by a real interface and see how the diffuse diffusion experiments allow to determine the fluctuations spectrum of an amphiphilic film. The second part is devoted to the different experimental techniques that have allowed to realize the study of fluctuation as well as the structural study.The third part is devoted to experimental results concerning the measurements of fluctuations spectra and to the study of the structure of amphiphilic films. We show that it is possible by using an intense source of X rays (ESRF: European Synchrotron Radiation Facility) to measure the water and amphiphilic films fluctuations spectra until molecular scales. The last chapter is devoted to the structural study and film fluctuations made of di-acetylenic molecules. (N.C.)

  9. 1/ f noise from the laws of thermodynamics for finite-size fluctuations.

    Science.gov (United States)

    Chamberlin, Ralph V; Nasir, Derek M

    2014-07-01

    Computer simulations of the Ising model exhibit white noise if thermal fluctuations are governed by Boltzmann's factor alone; whereas we find that the same model exhibits 1/f noise if Boltzmann's factor is extended to include local alignment entropy to all orders. We show that this nonlinear correction maintains maximum entropy during equilibrium fluctuations. Indeed, as with the usual way to resolve Gibbs' paradox that avoids entropy reduction during reversible processes, the correction yields the statistics of indistinguishable particles. The correction also ensures conservation of energy if an instantaneous contribution from local entropy is included. Thus, a common mechanism for 1/f noise comes from assuming that finite-size fluctuations strictly obey the laws of thermodynamics, even in small parts of a large system. Empirical evidence for the model comes from its ability to match the measured temperature dependence of the spectral-density exponents in several metals and to show non-Gaussian fluctuations characteristic of nanoscale systems.

  10. Phase Fluctuations and the Absence of Topological Defects in Photo-excited Charge Ordered Nickelate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.S.; Chuang, Y.D.; Moore, R.G.; Zhu, Y.; Patthey, L.; Trigo, M.; Lu, D.H.; Kirchmann, P.S.; Krupin, O.; Yi, M.; Langner, M.; Huse, N.; Robinson, J.S.; Chen, Y.; Zhou, S.Y.; Coslovich, G.; Huber, B.; Reis, D.A.; Kaindl, R.A.; Schoenlein, R.W.; Doering, D.

    2012-05-15

    The dynamics of an order parameter's amplitude and phase determines the collective behaviour of novel states emerging in complex materials. Time- and momentum-resolved pump-probe spectroscopy, by virtue of measuring material properties at atomic and electronic time scales out of equilibrium, can decouple entangled degrees of freedom by visualizing their corresponding dynamics in the time domain. Here we combine time-resolved femotosecond optical and resonant X-ray diffraction measurements on charge ordered La{sub 1.75}Sr{sub 0.25}NiO{sub 4} to reveal unforeseen photoinduced phase fluctuations of the charge order parameter. Such fluctuations preserve long-range order without creating topological defects, distinct from thermal phase fluctuations near the critical temperature in equilibrium. Importantly, relaxation of the phase fluctuations is found to be an order of magnitude slower than that of the order parameter's amplitude fluctuations, and thus limits charge order recovery. This new aspect of phase fluctuations provides a more holistic view of the phase's importance in ordering phenomena of quantum matter.

  11. Influence of thermal fluctuations on ligament break-up: a fluctuating lattice Boltzmann study

    Science.gov (United States)

    Xue, Xiao; Biferale, Luca; Sbragaglia, Mauro; Toschi, Federico

    2017-11-01

    Thermal fluctuations are essential ingredients in a nanoscale system, driving Brownian motion of particles and capillary waves at non-ideal interfaces. Here we study the influence of thermal fluctuations on the breakup of liquid ligaments at the nanoscale. We offer quantitative characterization of the effects of thermal fluctuations on the Plateau-Rayleigh mechanism that drives the breakup process of ligaments. Due to thermal fluctuations, the droplet sizes after break-up need to be analyzed in terms of their distribution over an ensemble made of repeated experiments. To this aim, we make use of numerical simulations based on the fluctuating lattice Boltzmann method (FLBM) for multicomponent mixtures. The method allows an accurate and efficient simulation of the fluctuating hydrodynamics equations of a binary mixture, where both stochastic viscous stresses and diffusion fluxes are introduced. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No 642069.

  12. Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure

    NARCIS (Netherlands)

    Mashad, El H.; Zeeman, G.; Loon, van W.K.P.; Bot, G.P.A.; Lettinga, G.

    2004-01-01

    The influence of temperature, 50 and 60 °C, at hydraulic retention times (HRTs) of 20 and 10 days, on the performance of anaerobic digestion of cow manure has been investigated in completely stirred tank reactors (CSTRs). Furthermore, the effect of both daily downward and daily upward temperature

  13. Observation of MHD fluctuation by ECE on W7-X first experimental campaign

    Science.gov (United States)

    Tsuchiya, Hayato; Hirsch, Matthias; Weir, Gavin; Hofel, Udo; Beurskens, Marc; Masuzaki, Suguru; W7-X Team

    2016-10-01

    Wendelstein 7-X is an optimized stellarator for ECRH high density steady-state discharges at reactor relevant collisionality regimes. The first experiment (OP1.1) was successfully conducted from Dec.2015. ECE (Electron Cyclotron Emission diagnostic) is one of the main diagnostic during the first experimental campaign. The 2nd harmonic x-mode emission is obtained by outside-antenna and detected by 32-channel heterodyne radiometer. The frequency band is from 126GHz to 162GHz. Radiometers are calibrated by LN2 temperature and room temperature. The absolute calibration error was estimated to be 10%. The electron temperature radial profile obtained by ECE agrees the Thomson scattering and imaging X-ray spectroscopy result. The asymmetric profile is still indicated due to mix of O2-mode. Fluctuations derived from MHD instability are often observed by electron temperature and magnetic fluctuations. The radial mode structure is clearly identified by ECE. It indicates the existence of magnetic island and from its appearance on both sides of the X2 emission spectrum the knowledge on the localization of the ECE channels can be improved by symmetrization.

  14. Modeling the response of a standard accretion disc to stochastic viscous fluctuations

    Science.gov (United States)

    Ahmad, Naveel; Misra, Ranjeev; Iqbal, Naseer; Maqbool, Bari; Hamid, Mubashir

    2018-01-01

    The observed variability of X-ray binaries over a wide range of time-scales can be understood in the framework of a stochastic propagation model, where viscous fluctuations at different radii induce accretion rate variability that propagate inwards to the X-ray producing region. The scenario successfully explains the power spectra, the linear rms-flux relation as well as the time-lag between different energy photons. The predictions of this model have been obtained using approximate analytical solutions or empirically motivated models which take into account the effect of these propagating variability on the radiative process of complex accretion flows. Here, we study the variation of the accretion rate due to such viscous fluctuations using a hydro-dynamical code for the standard geometrically thin, gas pressure dominated α-disc with a zero torque boundary condition. Our results confirm earlier findings that the time-lag between a perturbation and the resultant inner accretion rate variation depends on the frequency (or time-period) of the perturbation. Here we have quantified that the time-lag tlag ∝f-0.54 , for time-periods less than the viscous time-scale of the perturbation radius and is nearly constant otherwise. This, coupled with radiative process would produce the observed frequency dependent time-lag between different energy bands. We also confirm that if there are random Gaussian fluctuations of the α-parameter at different radii, the resultant inner accretion rate has a power spectrum which is a power-law.

  15. Bond-length fluctuations in the copper oxide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, John B [Texas Materials Institute, ETC 9.102, University of Texas at Austin, Austin, TX 78712 (United States)

    2003-02-26

    Superconductivity in the copper oxides occurs at a crossover from localized to itinerant electronic behaviour, a transition that is first order. A spinodal phase segregation is normally accomplished by atomic diffusion; but where it occurs at too low a temperature for atomic diffusion, it may be realized by cooperative atomic displacements. Locally cooperative, fluctuating atomic displacements may stabilize a distinguishable phase lying between a localized-electron phase and a Fermi-liquid phase; this intermediate phase exhibits quantum-critical-point behaviour with strong electron-lattice interactions making charge transport vibronic. Ordering of the bond-length fluctuations at lower temperatures would normally stabilize a charge-density wave (CDW), which suppresses superconductivity. It is argued that in the copper oxide superconductors, crossover occurs at an optimal doping concentration for the formation of ordered two-electron/two-hole bosonic bags of spin S = 0 in a matrix of localized spins; the correlation bags contain two holes in a linear cluster of four copper centres ordered within alternate Cu-O-Cu rows of a CuO{sub 2} sheet. This ordering is optimal at a hole concentration per Cu atom of p {approx} 1/6, but it is not static. Hybridization of the vibronic electrons with the phonons that define long-range order of the fluctuating (Cu-O) bond lengths creates barely itinerant, vibronic quasiparticles of heavy mass. The heavy itinerant vibrons form Cooper pairs having a coherence length of the dimension of the bosonic bags. It is the hybridization of electrons and phonons that, it is suggested, stabilizes the superconductive state relative to a CDW state. (topical review)

  16. Core fluctuations and current profile dynamics in the MST reversed-field pinch

    International Nuclear Information System (INIS)

    Brower, D.L.; Ding, W.X.; Lei, J.

    2003-01-01

    First measurements of the current density profile, magnetic field fluctuations and electrostatic (e.s.) particle flux in the core of a high-temperature reversed-field pinch (RFP) are presented. We report three new results: (1) The current density peaks during the slow ramp phase of the sawtooth cycle and flattens promptly at the crash. Profile flattening can be linked to magnetic relaxation and the dynamo which is predicted to drive anti-parallel current in the core. Measured core magnetic fluctuations are observed to increases four-fold at the crash. Between sawtooth crashes, measurements indicate the particle flux driven by e.s. fluctuations is too small to account for the total radial particle flux. (2) Core magnetic fluctuations are observed to decrease at least twofold in plasmas where energy confinement time improves ten-fold. In this case, the radial particle flux is also reduced, suggesting core e.s. fluctuation-induced transport may play role in confinement. (3) The parallel current density increases in the outer region of the plasma during high confinement, as expected, due to the applied edge parallel electric field. However, the core current density also increases due to dynamo reduction and the emergence of runaway electrons. (author)

  17. Conductance fluctuations in high mobility monolayer graphene: Nonergodicity, lack of determinism and chaotic behavior.

    Science.gov (United States)

    da Cunha, C R; Mineharu, M; Matsunaga, M; Matsumoto, N; Chuang, C; Ochiai, Y; Kim, G-H; Watanabe, K; Taniguchi, T; Ferry, D K; Aoki, N

    2016-09-09

    We have fabricated a high mobility device, composed of a monolayer graphene flake sandwiched between two sheets of hexagonal boron nitride. Conductance fluctuations as functions of a back gate voltage and magnetic field were obtained to check for ergodicity. Non-linear dynamics concepts were used to study the nature of these fluctuations. The distribution of eigenvalues was estimated from the conductance fluctuations with Gaussian kernels and it indicates that the carrier motion is chaotic at low temperatures. We argue that a two-phase dynamical fluid model best describes the transport in this system and can be used to explain the violation of the so-called ergodic hypothesis found in graphene.

  18. Large fluctuations of the macroscopic current in diffusive systems: a numerical test of the additivity principle.

    Science.gov (United States)

    Hurtado, Pablo I; Garrido, Pedro L

    2010-04-01

    Most systems, when pushed out of equilibrium, respond by building up currents of locally conserved observables. Understanding how microscopic dynamics determines the averages and fluctuations of these currents is one of the main open problems in nonequilibrium statistical physics. The additivity principle is a theoretical proposal that allows to compute the current distribution in many one-dimensional nonequilibrium systems. Using simulations, we validate this conjecture in a simple and general model of energy transport, both in the presence of a temperature gradient and in canonical equilibrium. In particular, we show that the current distribution displays a Gaussian regime for small current fluctuations, as prescribed by the central limit theorem, and non-Gaussian (exponential) tails for large current deviations, obeying in all cases the Gallavotti-Cohen fluctuation theorem. In order to facilitate a given current fluctuation, the system adopts a well-defined temperature profile different from that of the steady state and in accordance with the additivity hypothesis predictions. System statistics during a large current fluctuation is independent of the sign of the current, which implies that the optimal profile (as well as higher-order profiles and spatial correlations) are invariant upon current inversion. We also demonstrate that finite-time joint fluctuations of the current and the profile are well described by the additivity functional. These results suggest the additivity hypothesis as a general and powerful tool to compute current distributions in many nonequilibrium systems.

  19. Tension moderation and fluctuation spectrum in simulated lipid membranes under an applied electric potential

    DEFF Research Database (Denmark)

    Loubet, Bastien; Lomholt, Michael Andersen; Khandelia, Himanshu

    2013-01-01

    , and bilayer thickness are investigated in detail. In particular, the least square fitting technique is used to calculate the fluctuation spectra. The simulations confirm a recently proposed theory that the effect of an applied electric potential on the membrane will be moderated by the elastic properties...

  20. Phase fluctuations in two coaxial quasi-one-dimensional superconducting cylindrical surfaces serving as a model system for superconducting nanowire bundles

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.H., E-mail: ch.kh.vong@urfu.ru [Institute of Physics and Technology, Ural Federal University, Clear Water Bay, Kowloon (Russian Federation); Wu, R.P.H., E-mail: pak-hong-raymond.wu@connect.polyu.hk [Department of Applied Physics, The Hong Kong Polytechnic University (Hong Kong); Lortz, R., E-mail: lortz@ust.hk [Department of Physics, Hong Kong University of Science and Technology (Hong Kong)

    2017-03-15

    The dimensional crossover from a 1D fluctuating state at high temperatures to a 3D phase coherent state in the low temperature regime in two coaxial weakly-coupled cylindrical surfaces formed by two-dimensional arrays of parallel nanowires is studied via an 8-state 3D-XY model. This system serves as a model for quasi-one-dimensional superconductors in the form of bundles of weakly-coupled superconducting nanowires. A periodic variation of the dimensional crossover temperature T{sub DC} is observed when the inner superconducting cylindrical surface is rotated in the angular plane. T{sub DC} reaches a maximum when the relative angle between the cylinders is 2.81°, which corresponds to the maximum separation of nanowires between the two cylindrical surfaces. We demonstrate that the relative strength of phase fluctuations in this system is controllable by the rotational angle between the two surfaces with a strong suppression of the fluctuation strength at 2.81°. The phase fluctuations are suppressed gradually upon cooling, before they abruptly vanish below T{sub DC}. Our model thus allows us to study how phase fluctuations can be suppressed in quasi-one-dimensional superconductors in order to achieve a global phase coherent state throughout the nanowire array with zero electric resistance.

  1. Effect of programmed circadian temperature fluctuations on ...

    African Journals Online (AJOL)

    to our knowledge of the effects of temperature on the population dynamics of freshwater snails and its bearing on their .... 28"C regime as reflected by the net reproduction rate recorded in Table 1. It was demonstrated by De Kock & .... ANDREW ARlHA, H.G. & BIRCH, L.C. 1954. The distribution and abundance of animals.

  2. Possible mechanism to enhance spin-fluctuation-mediated superconductivity in two-dimensional organic conductor

    Energy Technology Data Exchange (ETDEWEB)

    Nonoyama, Yoshito; Maekawa, Yukiko; Kobayashi, Akito; Suzumura, Yoshikazu [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Yamada, Jun-ichi [Department of Material Science, Graduate School of Material Science, University of Hyogo, Hyogo 678-1297 (Japan)], E-mail: nonoyama@slab.phys.nagoya-u.ac.jp

    2008-10-15

    Mechanisms of superconductivity in quasi-two-dimensional organic conductors have been investigated using an extended Hubbard model by using the transfer energies between BDA-TTP molecules for {beta}-(BDA-TTP){sub 2}I{sub 3} based on the X-ray experiment data and the extended Hueckel calculation. We obtain several mean-field solutions with charge orderings which may represent short-range orderings or low-energy fluctuations in the low-dimensional electronic system. In the pressure-temperature phase diagram, a charge ordered metal state almost degenerates with a normal metal state between an insulating phase with charge ordering and the normal metal phase. Using the random phase approximation (RPA) and the linearized gap equation, the transition temperature of the superconducting state is estimated for the charge-ordered metal state and the normal metal state. It is found that transition temperature of the superconductivity induced by spin fluctuations in the charge-ordered metal state is much higher than that of the normal metal state and that the superconductivity in the charge-ordered metal state is the gapless d-wave. This suggests that the short range charge ordering may also contribute to an enhancement of spin-fluctuation-mediated superconductivity. The difference in the superconducting states between {beta}-(BDA-TTP){sub 2}I{sub 3} and {beta}-(BDA-TTP){sub 2}SbF{sub 6} are briefly discussed.

  3. Possible mechanism to enhance spin-fluctuation-mediated superconductivity in two-dimensional organic conductor

    International Nuclear Information System (INIS)

    Nonoyama, Yoshito; Maekawa, Yukiko; Kobayashi, Akito; Suzumura, Yoshikazu; Yamada, Jun-ichi

    2008-01-01

    Mechanisms of superconductivity in quasi-two-dimensional organic conductors have been investigated using an extended Hubbard model by using the transfer energies between BDA-TTP molecules for β-(BDA-TTP) 2 I 3 based on the X-ray experiment data and the extended Hueckel calculation. We obtain several mean-field solutions with charge orderings which may represent short-range orderings or low-energy fluctuations in the low-dimensional electronic system. In the pressure-temperature phase diagram, a charge ordered metal state almost degenerates with a normal metal state between an insulating phase with charge ordering and the normal metal phase. Using the random phase approximation (RPA) and the linearized gap equation, the transition temperature of the superconducting state is estimated for the charge-ordered metal state and the normal metal state. It is found that transition temperature of the superconductivity induced by spin fluctuations in the charge-ordered metal state is much higher than that of the normal metal state and that the superconductivity in the charge-ordered metal state is the gapless d-wave. This suggests that the short range charge ordering may also contribute to an enhancement of spin-fluctuation-mediated superconductivity. The difference in the superconducting states between β-(BDA-TTP) 2 I 3 and β-(BDA-TTP) 2 SbF 6 are briefly discussed.

  4. Nonmonotonic Thermal Casimir Force from Geometry-Temperature Interplay

    International Nuclear Information System (INIS)

    Weber, Alexej; Gies, Holger

    2010-01-01

    The geometry dependence of Casimir forces is significantly more pronounced in the presence of thermal fluctuations due to a generic geometry-temperature interplay. We show that the thermal force for standard sphere-plate or cylinder-plate geometries develops a nonmonotonic behavior already in the simple case of a fluctuating Dirichlet scalar. In particular, the attractive thermal force can increase for increasing distances below a critical temperature. This anomalous behavior is triggered by a reweighting of relevant fluctuations on the scale of the thermal wavelength. The essence of the phenomenon becomes transparent within the worldline picture of the Casimir effect.

  5. The theory of electromagnetic wave scattering by density fluctuations in nonequilibrium plasma

    International Nuclear Information System (INIS)

    Pavlenko, V.N.; Panchenko, V.G.

    1993-01-01

    Scattering of electromagnetic waves by density fluctuations in a magnetized plasma in the presence of the external pump field is investigated. The spectral density of electron density fluctuations is calculated. The pump wave is supposed to decay into a lower hybrid wave and low frequency oscillations (ion-acoustic wave, modified convective cell and ion-cyclotron wave with ion-temperature anisotropy). When the pump wave amplitude tends to the threshold strength of the electric field, the scattering cross section increases anomalously, i.e. there is the critical opalescence. The differential scattering cross section dependence on the pump amplitude and ion temperature anisotropy is obtained in the region above the parametric instability threshold. For characteristic parameters of fusion and space plasmas it is shown that the pump field terms considerably surmount the thermal noise contribution to the scattering cross section

  6. Fluctuating Thermodynamics for Biological Processes

    Science.gov (United States)

    Ham, Sihyun

    Because biomolecular processes are largely under thermodynamic control, dynamic extension of thermodynamics is necessary to uncover the mechanisms and driving factors of fluctuating processes. The fluctuating thermodynamics technology presented in this talk offers a practical means for the thermodynamic characterization of conformational dynamics in biomolecules. The use of fluctuating thermodynamics has the potential to provide a comprehensive picture of fluctuating phenomena in diverse biological processes. Through the application of fluctuating thermodynamics, we provide a thermodynamic perspective on the misfolding and aggregation of the various proteins associated with human diseases. In this talk, I will present the detailed concepts and applications of the fluctuating thermodynamics technology for elucidating biological processes. This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1401-13.

  7. Thermodynamic theory of equilibrium fluctuations

    International Nuclear Information System (INIS)

    Mishin, Y.

    2015-01-01

    The postulational basis of classical thermodynamics has been expanded to incorporate equilibrium fluctuations. The main additional elements of the proposed thermodynamic theory are the concept of quasi-equilibrium states, a definition of non-equilibrium entropy, a fundamental equation of state in the entropy representation, and a fluctuation postulate describing the probability distribution of macroscopic parameters of an isolated system. Although these elements introduce a statistical component that does not exist in classical thermodynamics, the logical structure of the theory is different from that of statistical mechanics and represents an expanded version of thermodynamics. Based on this theory, we present a regular procedure for calculations of equilibrium fluctuations of extensive parameters, intensive parameters and densities in systems with any number of fluctuating parameters. The proposed fluctuation formalism is demonstrated by four applications: (1) derivation of the complete set of fluctuation relations for a simple fluid in three different ensembles; (2) fluctuations in finite-reservoir systems interpolating between the canonical and micro-canonical ensembles; (3) derivation of fluctuation relations for excess properties of grain boundaries in binary solid solutions, and (4) derivation of the grain boundary width distribution for pre-melted grain boundaries in alloys. The last two applications offer an efficient fluctuation-based approach to calculations of interface excess properties and extraction of the disjoining potential in pre-melted grain boundaries. Possible future extensions of the theory are outlined.

  8. Superconductivity and spin fluctuations

    International Nuclear Information System (INIS)

    Scalapino, D.J.

    1999-01-01

    The organizers of the Memorial Session for Herman Rietschel asked that the author review some of the history of the interplay of superconductivity and spin fluctuations. Initially, Berk and Schrieffer showed how paramagnon spin fluctuations could suppress superconductivity in nearly-ferromagnetic materials. Following this, Rietschel and various co-workers wrote a number of papers in which they investigated the role of spin fluctuations in reducing the Tc of various electron-phonon superconductors. Paramagnon spin fluctuations are also believed to provide the p-wave pairing mechanism responsible for the superfluid phases of 3 He. More recently, antiferromagnetic spin fluctuations have been proposed as the mechanism for d-wave pairing in the heavy-fermion superconductors and in some organic materials as well as possibly the high-Tc cuprates. Here the author will review some of this early history and discuss some of the things he has learned more recently from numerical simulations

  9. Temperature-insensitive laser frequency locking near absorption lines

    International Nuclear Information System (INIS)

    Kostinski, Natalie; Olsen, Ben A.; Marsland, Robert III; McGuyer, Bart H.; Happer, William

    2011-01-01

    Combined magnetically induced circular dichroism and Faraday rotation of an atomic vapor are used to develop a variant of the dichroic atomic vapor laser lock that eliminates lock sensitivity to temperature fluctuations of the cell. Operating conditions that eliminate first-order sensitivity to temperature fluctuations can be determined by low-frequency temperature modulation. This temperature-insensitive gyrotropic laser lock can be accurately understood with a simple model, that is in excellent agreement with observations in potassium vapor at laser frequencies in a 2 GHz range about the 770.1 nm absorption line. The methods can be readily adapted for other absorption lines.

  10. Ground state and elementary excitations of a model valence-fluctuation system

    International Nuclear Information System (INIS)

    Brandow, B.H.

    1979-01-01

    The nature of the valence fluctuation problem is described, and motivations are given for an Anderson-lattice model Hamiltonian. A simple trial wave function is posed for the ground state, and the variational problem is solved. This demonstrates clearly that there is no Kondo-like divergence; the present concentrated Kondo problem is thus more simple mathematically than the sngle-impurity problem. Elementary excitations are studies by the Green's function techniques of Zubarev and Hubbard. Quenching of local moments and a large specific heat are found at low temperatures. The quasi-particle spectrum exhibits a gap, but epsilon/sub F/ does not lie in this gap. The insulation-like feature of SmB 6 , SmS, and TmSe at very low temperatures is explained in terms of a strongly reduced mobility for states near the gap, and reasons are given why this feature is not observed in other valence-fluctuation compounds. 73 references

  11. Influence of wind velocity fluctuation on air temperature difference between the fan and ground levels and the effect of frost protective fan operation

    International Nuclear Information System (INIS)

    Araki, T.; Matsuo, K.; Miyama, D.; Sumikawa, O.; Araki, S.

    2008-01-01

    We invested the influence of wind velocity fluctuation on air temperature difference between the fan (4.8 m) and ground levels (0.5 m) and the effect of frost protective fan operation in order to develop a new method to reduce electricity consumption due to frost protective fan operation. The results of the investigations are summarized as follows: (1) Air temperature difference between the fan (4.8 m) and ground levels (0.5 m) was decreased following an increase in wind velocity, and the difference was less than 1°C for a wind velocity more than 3.0 m/s at a height of 6.5 m. (2) When the wind velocity was more than 2-3 m/s, there was hardly any increase in the temperature of the leaves. In contrast, when the wind velocity was less than 2-3 m/s, an increase in the temperature of the leaves was observed. Based on these results, it is possible that when the wind velocity is greater than 2-3 m, it prevents thermal inversion. Therefore, there would be no warmer air for the frost protective fan to return to the tea plants and the air turbulence produced by the frost protective fan would not reach the plants under the windy condition

  12. Random-matrix physics: spectrum and strength fluctuations

    International Nuclear Information System (INIS)

    Brody, T.A.; Flores, J.; French, J.B.; Mello, P.A.; Pandey, A.; Wong, S.S.M.

    1981-01-01

    It now appears that the general nature of the deviations from uniformity in the spectrum of a complicated nucleus is essentially the same in all regions of the spectrum and over the entire Periodic Table. This behavior, moreover, is describable in terms of standard Hamiltonian ensembles which could be generated on the basis of simple information-theory concepts, and which give also a good account of fluctuation phenomena of other kinds and, apparently, in other many-body systems besides nuclei. The main departures from simple behavior are ascribable to the moderation of the level repulsion by effects due to symmetries and collectivities, for the description of which more complicated ensembles are called for. One purpose of this review is to give a self-contained account of the theory, using methods: sometimes approximate: which are consonant with the usual theory of stochastic processes. Another purpose is to give a proper foundation for the use of ensemble theory, to make clear the origin of the simplicities in the observable fluctuations, and to derive other general fluctuation results. In comparing theory and experiment, the authors give an analysis of much of the nuclear-energy-level data, as well as an extended discussion of observable effects in nuclear transitions and reactions and in the low-temperature thermodynamics of aggregates of small metallic particles

  13. Pulsed Neutron Scattering Studies of Strongly Fluctuating solids, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Collin Broholm

    2006-06-22

    The conventional description of a solid is based on a static atomic structure with small amplitude so-called harmonic fluctuations about it. This is a final technical report for a project that has explored materials where fluctuations are sufficiently strong to severely challenge this approach and lead to unexpected and potentially useful materials properties. Fluctuations are enhanced when a large number of configurations share the same energy. We used pulsed spallation source neutron scattering to obtain detailed microscopic information about structure and fluctuations in such materials. The results enhance our understanding of strongly fluctuating solids and their potential for technical applications. Because new materials require new experimental techniques, the project has also developed new techniques for probing strongly fluctuating solids. Examples of material that were studied are ZrW2O8 with large amplitude molecular motion that leads to negative thermal expansion, NiGa2S4 where competing interactions lead to an anomalous short range ordered magnet, Pr1- xBixRu2O7 where a partially filled electron shell (Pr) in a weakly disordered environment produces anomalous metallic properties, and TbMnO3 where competing interactions lead to a magneto-electric phase. The experiments on TbMnO3 exemplify the relationship between research funded by this project and future applications. Magneto-electric materials may produce a magnetic field when an electric field is applied or vise versa. Our experiments have clarified the reason why electric and magnetic polarization is coupled in TbMnO3. While this knowledge does not render TbMnO3 useful for applications it will focus the search for a practical room temperature magneto-electric for applications.

  14. Soundness confirmation through cold test of the system equipment of HTTR

    International Nuclear Information System (INIS)

    Ono, Masato; Shinohara, Masanori; Iigaki, Kazuhiko; Tochio, Daisuke; Nakagawa, Shigeaki; Shimazaki, Yosuke

    2014-01-01

    HTTR was established at the Oarai Research and Development Center of Japan Atomic Energy Agency, for the purpose of the establishment and upgrading of high-temperature gas-cooled reactor technology infrastructure. Currently, it performs a safety demonstration test in order to demonstrate the safety inherent in high-temperature gas-cooled reactor. After the Great East Japan Earthquake, it conducted confirmation test for the purpose of soundness survey of facilities and equipment, and it confirmed that the soundness of the equipment was maintained. After two years from the confirmation test, it has not been confirmed whether the function of dynamic equipment and the soundness such as the airtightness of pipes and containers are maintained after receiving the influence of damage or deterioration caused by aftershocks generated during two years or aging. To confirm the soundness of these facilities, operation under cold state was conducted, and the obtained plant data was compared with confirmation test data to evaluate the presence of abnormality. In addition, in order to confirm through cold test the damage due to aftershocks and degradation due to aging, the plant data to compare was supposed to be the confirmation test data, and the evaluation on abnormality of the plant data of machine starting time and normal operation data was performed. (A.O.)

  15. Phase fluctuations and the absence of topological defects in a photo-excited charge-ordered nickelate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W. S.; Chuang, Y. D.; Moore, R. G.; Zhu, Y.; Patthey, L.; Trigo, M.; Lu, D. H.; Kirchmann, P. S.; Krupin, O.; Yi, M.; Langner, M.; Huse, N.; Robinson, J. S.; Chen, Y.; Zhou, S. Y.; Coslovich, G.; Huber, B.; Reis, D. A.; Kaindl, R. A.; Schoenlein, R. W.; Doering, D.; Denes, P.; Schlotter, W. F.; Turner, J. J.; Johnson, S. L.; Först, M.; Sasagawa, T.; Kung, Y. F.; Sorini, A. P.; Kemper, A. F.; Moritz, B.; Devereaux, T. P.; Lee, D. -H.; Shen, Z. X.; Hussain, Z.

    2012-05-15

    The dynamics of an order parameter's amplitude and phase determines the collective behaviour of novel states emerging in complex materials. Time- and momentum-resolved pump-probe spectroscopy, by virtue of measuring material properties at atomic and electronic time scales out of equilibrium, can decouple entangled degrees of freedom by visualizing their corresponding dynamics in the time domain. Here we combine time-resolved femotosecond optical and resonant X-ray diffraction measurements on charge ordered La1.75Sr0.25NiO4 to reveal unforeseen photoinduced phase fluctuations of the charge order parameter. Such fluctuations preserve long-range order without creating topological defects, distinct from thermal phase fluctuations near the critical temperature in equilibrium. Importantly, relaxation of the phase fluctuations is found to be an order of magnitude slower than that of the order parameter's amplitude fluctuations, and thus limits charge order recovery. This new aspect of phase fluctuations provides a more holistic view of the phase's importance in ordering phenomena of quantum matter.

  16. Fluctuations of wavefunctions about their classical average

    International Nuclear Information System (INIS)

    Benet, L; Flores, J; Hernandez-Saldana, H; Izrailev, F M; Leyvraz, F; Seligman, T H

    2003-01-01

    Quantum-classical correspondence for the average shape of eigenfunctions and the local spectral density of states are well-known facts. In this paper, the fluctuations of the quantum wavefunctions around the classical value are discussed. A simple random matrix model leads to a Gaussian distribution of the amplitudes whose width is determined by the classical shape of the eigenfunction. To compare this prediction with numerical calculations in chaotic models of coupled quartic oscillators, we develop a rescaling method for the components. The expectations are broadly confirmed, but deviations due to scars are observed. This effect is much reduced when both Hamiltonians have chaotic dynamics

  17. Creation of Magnetic Fields by Electrostatic and Thermal Fluctuations

    International Nuclear Information System (INIS)

    Saleem, Hamid

    2009-01-01

    It is pointed out that the electrostatic and thermal fluctuations are the main source of magnetic fields in unmagnetized inhomogeneous plasmas. The unmagnetized inhomogeneous plasmas can support a low frequency electromagnetic ion wave as a normal mode like Alfven wave of magnetized plasmas. But this is a coupled mode produced by the mixing of longitudinal and transverse components of perturbed electric field due to density inhomogeneity. The ion acoustic wave does not remain electrostatic in non-uniform plasmas. On the other hand, a low frequency electrostatic wave can also exist in the pure electron plasmas and it couples with ion acoustic wave when ions are dynamic. These waves can become unstable when density and temperature gradients are parallel to each other as can be the case of laser plasmas and is the common situation in stellar cores. The main instability condition for the electrostatic and electromagnetic modes is the same (2/3)κ n T (where κ n and κ T are inverse of the scale lengths of gradients of density and electron temperature, respectively). This indicates that the electrostatic and magnetic field fluctuations are strongly coupled in unmagnetized nonuniform plasmas.

  18. Experimental confirmation of the ITER cryopump high temperature regeneration scheme

    International Nuclear Information System (INIS)

    Day, C.; Haas, H.

    2007-01-01

    Forschungszentrum Karlsruhe (FZK) is developing the ITER high vacuum pumping systems for evacuation and maintenance of the required pressure levels in the torus (during burn and dwell, conditioning and leak detection), the neutral beam injectors and the cryostat vessel. All ITER high vacuum systems share the same concept of accumulative cryosorption pumping. The pumping surfaces, forced-cooled by 4.5 K supercritical helium, are coated with activated charcoal so as to be able to adsorb helium and hydrogens. All other gases are cryopumped by cryogenic phase transition from gaseous into the liquid/solid state. For the hydrogen processing pumps in the torus and the NBI, the maximum pumping time is given by the limitation of the maximum hydrogen inventory such that the resulting pressure in case of a loss of vacuum event and a corresponding oxy-hydrogen explosion is compatible to the design criteria of the vacuum vessel. To limit the gas accumulation, a staggered regeneration philosophy has been adopted, which involves three different temperature levels in order to achieve high regeneration efficiencies at best availability of the pumping system. The regular regeneration step is performed at a charcoal temperature of 90 K to release all hydrogen isotopomers (and helium), which are subsequently pumped out by the forevacuum pumping system. The second step at ambient temperature leads to the release of all air-like species. It has to be performed less frequently, probably over-night. Any water-like species with strong sorption bonding forces need still higher temperatures for effective desorption from the charcoal. These species comprise not only water itself but also high molecular tracers added to the water circuits in case of leak localisation and any pumped higher hydrocarbons from the plasma exhaust or. The latter in their tritiated forms may contribute significantly to the semi-permanent tritium inventory; a good knowledge of their regeneration characteristics is

  19. Short-term fluctuations in bivalve larvae compared with some environmental factors in a coastal lagoon (South Portugal

    Directory of Open Access Journals (Sweden)

    Luis M.Z. Chícaro

    2000-12-01

    Full Text Available In this study, short-term fluctuations in bivalve larvae were compared with some triggering factors for a period of sixteen months. Data on the abundance of planktonic larvae, collected two to three times a week were related to water temperature, salinity, wind velocity, tidal amplitude and chlorophyll a. Higher densities of planktonic bivalve larvae were caught between May and August, but intense fluctuations in abundance were observed. Planktonic bivalve larvae of eighteen taxa were identified. Larvae of Mytilus galloprovincialis, Cerastoderma edule, Ruditapes decussates and Venerupis spp. were the most abundant. The seasonal fluctuations of bivalve abundance seem to be controlled by temperature, the major factor in the timing of the reproduction of bivalves. Nevertheless, advection may be also a key factor during the planktonic life of bivalve species in coastal systems, such as the Ria Formosa.

  20. Non-Gaussian conductivity fluctuations in semiconductors

    International Nuclear Information System (INIS)

    Melkonyan, S.V.

    2010-01-01

    A theoretical study is presented on the statistical properties of conductivity fluctuations caused by concentration and mobility fluctuations of the current carriers. It is established that mobility fluctuations result from random deviations in the thermal equilibrium distribution of the carriers. It is shown that mobility fluctuations have generation-recombination and shot components which do not satisfy the requirements of the central limit theorem, in contrast to the current carrier's concentration fluctuation and intraband component of the mobility fluctuation. It is shown that in general the mobility fluctuation consist of thermal (or intraband) Gaussian and non-thermal (or generation-recombination, shot, etc.) non-Gaussian components. The analyses of theoretical results and experimental data from literature show that the statistical properties of mobility fluctuation and of 1/f-noise fully coincide. The deviation from Gaussian statistics of the mobility or 1/f fluctuations goes hand in hand with the magnitude of non-thermal noise (generation-recombination, shot, burst, pulse noises, etc.).

  1. Fluctuations in quantum chaos

    International Nuclear Information System (INIS)

    Casati, G.; Chirikov, B.V.

    1996-01-01

    Various fluctuations in quantum systems with discrete spectrum are discussed, including recent unpublished results. Open questions and unexplained peculiarities of quantum fluctuations are formulated [ru

  2. Fluorescence fluctuation of Rhodamine 6G dye for high repetition rate laser excitation

    International Nuclear Information System (INIS)

    Singh, Nageshwar; Patel, Hemant K.; Dixit, S.K.; Vora, H.S.

    2013-01-01

    In this paper, fluorescence from Rhodamine 6G dye for stationary and flowing liquid medium, excited by copper vapor laser, operating at 6 kHz pulse repetition frequency, was investigated. Large fluctuations in spectral width (about 5 nm) and spectral intensity in the fluorescence from stationary dye solution were observed, while fluctuations in the spectral width diminish in a flowing dye medium. However, this increases spectral intensity and slightly red shifts the fluorescence peak emission wavelength. Theoretical analysis was carried out to explain the observed results by incorporating the temperature induced refractive index, beam deflection and spectral variation in stationary dye solution. Numerical analysis of thermal load and contour of temperature in the optical pumped region inside the dye cell in stationary, 0.2 and 1.5 m/s flow velocity was also investigated to support our analysis. - Highlights: ► High repetition rate excitation generates inhomogeneity in the gain medium. ► Fluorescence of Rhodamine 6G in stationary and flowing medium was carried out. ► Fluorescence fluctuations lessen in flowing medium in contrast to stationary medium. ► Our theoretical and numerical analysis enlightens the experimented outcome trend.

  3. Thermal fatigue analysis of vertical annulus with inner rotating cylinder induced by two temperature fluid mixing

    International Nuclear Information System (INIS)

    Miyano, Hiroshi; Narabayashi, Tadashi

    2011-01-01

    Mechanical seal for nuclear reactor coolant recirculation pump must purge the cold water supply from the outside. The cold purge water is flowing into the hot water zone in the pump through a narrow gap between pump shaft and casing over. On the mixing region of the cold purge water and hot water in the narrow gap, the random level temperature fluctuation occurs on the structural metal surface of casing cover and pump shaft. Then it could lead to cyclic thermal stress and fatigue damage. The experiments and analysis have done, made clear the mechanism of generation of temperature fluctuations. Also, it was studied how to measure the structure of the mixing zone temperature control and how to prevent the occurrence of a large temperature fluctuation. In addition, it is proposed the method of evaluating a random temperature fluctuation by using the envelope curve and its fatigue by OOR counting to applying to the evaluation of the similar random fluid temperature fluctuation problems. (author)

  4. Quantized fluctuational electrodynamics for three-dimensional plasmonic structures

    DEFF Research Database (Denmark)

    Partanen, Mikko; Häyrynen, Teppo; Tulkki, Jukka

    2017-01-01

    We recently introduced a quantized fluctuational electrodynamics (QFED) formalism that provides a physically insightful definition of an effective position-dependent photon-number operator and the associated ladder operators. However, this far the formalism has been applicable only for the normal...... formalism, we apply it to study the local steady-state photon numbers and field temperatures in a light-emitting near-surface InGaN quantum-well structure with a metallic coating supporting surface plasmons....

  5. Fluctuation-Induced Pattern Formation in a Surface Reaction

    DEFF Research Database (Denmark)

    Starke, Jens; Reichert, Christian; Eiswirth, Markus

    2006-01-01

    Spontaneous nucleation, pulse formation, and propagation failure have been observed experimentally in CO oxidation on Pt(110) at intermediate pressures ($\\approx 10^{-2}$mbar). This phenomenon can be reproduced with a stochastic model which includes temperature effects. Nucleation occurs randomly...... due to fluctuations in the reaction processes, whereas the subsequent damping out essentially follows the deterministic path. Conditions for the occurence of stochastic effects in the pattern formation during CO oxidation on Pt are discussed....

  6. Effects of density gradients and fluctuations at the plasma edge on ECEI measurements at ASDEX Upgrade

    Science.gov (United States)

    Vanovac, B.; Wolfrum, E.; Denk, S. S.; Mink, F.; Laggner, F. M.; Birkenmeier, G.; Willensdorfer, M.; Viezzer, E.; Hoelzl, M.; Freethy, S. J.; Dunne, M. G.; Lessig, A.; Luhmann, N. C., Jr.; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2018-04-01

    Electron cyclotron emission imaging (ECEI) provides measurements of electron temperature (T e ) and its fluctuations (δT e ). However, when measuring at the plasma edge, in the steep gradient region, radiation transport effects must be taken into account. It is shown that due to these effects, the scrape-off layer region is not accessible to the ECEI measurements in steady state conditions and that the signal is dominated by the shine-through emission. Transient effects, such as filaments, can change the radiation transport locally, but cannot be distinguished from the shine-through. Local density measurements are essential for the correct interpretation of the electron cyclotron emission, since the density fluctuations influence the temperature measurements at the plasma edge. As an example, a low frequency 8 kHz mode, which causes 10%-15% fluctuations in the signal level of the ECEI, is analysed. The same mode has been measured with the lithium beam emission spectroscopy density diagnostic, and is very well correlated in time with high frequency magnetic fluctuations. With radiation transport modelling of the electron cyclotron radiation in the ECEI geometry, it is shown that the density contributes significantly to the radiation temperature (T rad) and the experimental observations have shown the amplitude modulation in both density and temperature measurements. The poloidal velocity of the low frequency mode measured by the ECEI is 3 km s-1. The calculated velocity of the high frequency mode measured with the magnetic pick-up coils is about 25 km s-1. Velocities are compared with the E × B background flow velocity and possible explanations for the origin of the low frequency mode are discussed.

  7. Two methods to measure granular gas temperature

    Science.gov (United States)

    Chastaing, J.-Y.; Géminard, J.-C.; Naert, A.

    2017-07-01

    Grains are vibrated so as to achieve a granular gas, here regarded as an archetype of a dissipative non equilibrium steady state (NESS). We report on two distinct and concordant experimental measures of the system effective temperature. To do so, a blade fastened to the shaft of a small DC-motor, immersed in the grains, behaves as a driven 1D Brownian rotator, which is used as both actuator and sensor simultaneously. On the one hand, the Gallavotti-Cohen fluctuation theorem, which involves a measure of the asymmetry of the energy exchanges between the rotator and the NESS reservoir, provides a first effective temperature. On the other hand, the fluctuation-dissipation theorem, which involves the relation between the spontaneous fluctuations and the response to a weak perturbation, defines a second, independent, effective temperature. Both methods, even though they are based on drastically different ideas, give nicely concordant results.

  8. Fluorescence fluctuation spectroscopy (FFS)

    CERN Document Server

    Tetin, Sergey

    2012-01-01

    This new volume of Methods in Enzymology continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers fluorescence fluctuation spectroscopy and includes chapters on such topics as Förster resonance energy transfer (fret) with fluctuation algorithms, protein corona on nanoparticles by FCS, and FFS approaches to the study of receptors in live cells. Continues the legacy of this premier serial with quality chapters authored by leaders in the field Covers fluorescence fluctuation spectroscopy Contains chapters on such topics as Förster resonance energy transfer (fret) with fluctuation algorithms, protein corona on nanoparticles by FCS, and FFS approaches to the study of receptors in live cells.

  9. Association between ambient temperature and blood pressure and blood pressure regulators: 1831 hypertensive patients followed up for three years.

    Directory of Open Access Journals (Sweden)

    Qing Chen

    Full Text Available Several studies have suggested an association between ambient air temperature and blood pressure. However, this has not been reliably confirmed by longitudinal studies. Also, whether the reaction to temperature stimulation is modified by other factors such as antihypertensive medication is rarely investigated. The present study explores the relationship between ambient temperature and blood pressure, without and with antihypertensive medication, in a study of 1,831 hypertensive patients followed up for three years, in two or four weekly check ups, accumulating 62,452 follow-up records. Both baseline and follow-up blood pressure showed an inverse association with ambient temperature, which explained 32.4% and 65.6% of variation of systolic blood pressure and diastolic blood pressure (P<0.05 respectively. The amplitude of individual blood pressure fluctuation with temperature throughout a year (a 29 degrees centigrade range was 9.4/7.3 mmHg. Medication with angiotensin converting enzyme inhibitor benazepril attenuated the blood pressure fluctuation by 2.4/1.3 mmHg each year, though the inverse association of temperature and blood pressure remained. Gender, drinking behavior and body mass index were also found to modify the association between temperature and diastolic blood pressure. The results indicate that ambient temperature may negatively regulate blood pressure. Hypertensive patients should monitor and treat blood pressure more carefully in cold days, and it could be especially important for the males, thinner people and drinkers.

  10. Nonstandard primordial fluctuations from a polynomial inflation potential

    International Nuclear Information System (INIS)

    Hodges, H.M.; Kofman, L.A.; Primack, J.R.; California Univ., Santa Cruz, CA; California Univ., Berkeley, CA

    1990-01-01

    We examine in detail the properties of inflation determined from the most general renormalizable potential for a single real scalar field Φ: V(Φ)=AΦ 4 /4+BΦ 3 /3+CΦ 2 /2+V 0 . We find sets of parameters that can strongly break scale invariance, with a valley in the usual Zel'dovich spectrum. Such a valley can lead to earlier galaxy formation and more large scale structure in the Universe than in the usual scale-invariant cold dark matter scenario. We also find that the parameters of the potential can be many orders of magnitude larger than what would be allowed without the inclusion of the cubic term, which can lead to high reheat temperatures T reh ≅ 10 15 GeV. We have mapped out all regions of parameter space and have identified those regions that produce interesting behavior, as well as the entire region that leads to an acceptable inflationary scenario with small enough fluctuations. We further explore the possibility of generating interesting non-gaussian adiabatic density fluctuations from this potential, and find that it is unlikely for general single scalar field potentials that do not contain false vacua in the path of the inflaton, as significant non-gaussian behavior implies too large a fluctuation amplitude. (orig.)

  11. Experimental study of the spatial distribution of the velocity field of sedimenting particles: mean velocity, pseudo-turbulent fluctuations, intrinsic convection

    International Nuclear Information System (INIS)

    Bernard-Michel, G.

    2001-01-01

    This work follows previous experiments from Nicolai et al. (95), Peysson and Guazzelli (98) and Segre et al. (97), which consisted in measures of the velocity of particles sedimenting in a liquid at low particular Reynolds numbers. Our goal, introduced in the first part with a bibliographic study, is to determinate the particles velocity fluctuations properties. The fluctuations are indeed of the same order as the mean velocity. We are proceeding with PIV Eulerian measures. The method is described in the second part. Its originality comes from measures obtained in a thin laser light sheet, from one side to the other of the cells, with a square section: the measures are therefore spatially localised. Four sets of cells and three sets of particles were used, giving access to ratios 'cell width over particle radius' ranging from about 50 up to 800. In the third part, we present the results concerning the velocity fluctuations structure and their spatial distribution. The intrinsic convection between to parallel vertical walls is also studied. The velocity fluctuations are organised in eddy structures. Their size (measured with correlation length) is independent of the volume fraction, contradicting the results of Segre et al. (97). The results concerning the velocity fluctuations spatial profiles - from one side to the other of the cell - confirm those published by Peysson and Guazzelli (98) in the case of stronger dilution. The evolution of the spatial mean velocity fluctuations confirms the results obtained by Segre et al. (97). The intrinsic convection is also observed in the case of strong dilutions. (author)

  12. The Role of Higher-Order Modes on the Electromagnetic Whistler-Cyclotron Wave Fluctuations of Thermal and Non-Thermal Plasmas

    Science.gov (United States)

    Vinas, Adolfo F.; Moya, Pablo S.; Navarro, Roberto; Araneda, Jamie A.

    2014-01-01

    Two fundamental challenging problems of laboratory and astrophysical plasmas are the understanding of the relaxation of a collisionless plasmas with nearly isotropic velocity distribution functions and the resultant state of nearly equipartition energy density with electromagnetic plasma turbulence. Here, we present the results of a study which shows the role that higher-order-modes play in limiting the electromagnetic whistler-like fluctuations in a thermal and non-thermal plasma. Our main results show that for a thermal plasma the magnetic fluctuations are confined by regions that are bounded by the least-damped higher order modes. We further show that the zone where the whistler-cyclotron normal modes merges the electromagnetic fluctuations shifts to longer wavelengths as the beta(sub e) increases. This merging zone has been interpreted as the beginning of the region where the whistler-cyclotron waves losses their identity and become heavily damped while merging with the fluctuations. Our results further indicate that in the case of nonthermal plasmas, the higher-order modes do not confine the fluctuations due to the effective higher-temperature effects and the excess of suprathermal plasma particles. The analysis presented here considers the second-order theory of fluctuations and the dispersion relation of weakly transverse fluctuations, with wave vectors parallel to the uniform background magnetic field, in a finite temperature isotropic bi-Maxwellian and Tsallis-kappa-like magnetized electron-proton plasma. Our results indicate that the spontaneously emitted electromagnetic fluctuations are in fact enhanced over these quasi modes suggesting that such modes play an important role in the emission and absorption of electromagnetic fluctuations in thermal or quasi-thermal plasmas.

  13. Fluctuation dynamics in geoelectrical data: an investigation by using multifractal detrended fluctuation analysis

    International Nuclear Information System (INIS)

    Telesca, Luciano; Colangelo, Gerardo; Lapenna, Vincenzo; Macchiato, Maria

    2004-01-01

    We analyzed fluctuations in the time dynamics of nonstationary geoelectrical data, recorded in a seismic area of southern Italy, by means of the multifractal detrended fluctuation analysis (MF-DFA). The multifractal character of the signal depends mostly on the different long-range properties for small and large fluctuations. The time variation of indices, denoting the departure from monofractal behaviour, reveals an enhancement of the multifractality of the signal prior seismic occurrences

  14. Isolating long-wavelength fluctuation from structural relaxation in two-dimensional glass: cage-relative displacement

    Science.gov (United States)

    Shiba, Hayato; Keim, Peter; Kawasaki, Takeshi

    2018-03-01

    It has recently been revealed that long-wavelength fluctuation exists in two-dimensional (2D) glassy systems, having the same origin as that given by the Mermin-Wagner theorem for 2D crystalline solids. In this paper, we discuss how to characterise quantitatively the long-wavelength fluctuation in a molecular dynamics simulation of a lightly supercooled liquid. We employ the cage-relative mean-square displacement (MSD), defined on relative displacement to its cage, to quantitatively separate the long-wavelength fluctuation from the original MSD. For increasing system size the amplitude of acoustic long wavelength fluctuations not only increases but shifts to later times causing a crossover with structural relaxation of caging particles. We further analyse the dynamic correlation length using the cage-relative quantities. It grows as the structural relaxation becomes slower with decreasing temperature, uncovering an overestimation by the four-point correlation function due to the long-wavelength fluctuation. These findings motivate the usage of cage-relative MSD as a starting point for analysis of 2D glassy dynamics.

  15. A study of power fluctuations in a flip fuel reactor using the technique of noise analysis

    Energy Technology Data Exchange (ETDEWEB)

    Randall, J D; Wood, G C; Edwards, M A [Texas A and M University (United States)

    1974-07-01

    The Nuclear Science Center Reactor at Texas A and M University has experienced minor power fluctuations when operating at or near 1 megawatt. A noise analysis system was developed to investigate these fluctuations assuming that void formation, primarily due to nucleate boiling, was the cause. Experiments were carried out to correlate boiling noise with power level, fission product poisoning, and pool temperature. Results show that void formation in the core is the probable cause of the fluctuations with the onset of boiling occurring at 400 Kw. Data was also obtained that indicated the presence of boiling in a standard TRIGA core. (author)

  16. Strain fluctuations and elastic constants

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, M.; Rahman, A.

    1982-03-01

    It is shown that the elastic strain fluctuations are a direct measure of elastic compliances in a general anisotropic medium; depending on the ensemble in which the fluctuation is measured either the isothermal or the adiabatic compliances are obtained. These fluctuations can now be calculated in a constant enthalpy and pressure, and hence, constant entropy, ensemble due to recent develpments in the molecular dynamics techniques. A calculation for a Ni single crystal under uniform uniaxial 100 tensile or compressive load is presented as an illustration of the relationships derived between various strain fluctuations and the elastic modulii. The Born stability criteria and the behavior of strain fluctuations are shown to be related.

  17. Effect of Temperature Regimes on Seed Germination Asafoetida (Ferula Assafoetida L.

    Directory of Open Access Journals (Sweden)

    Zangoie M.

    2014-12-01

    Full Text Available Asafoetida is a medicinal plant belonging to the Apiaceae family. Gum obtained from the lower part of the stem and roots of this plant has many industrial and pharmaceutical applications. This plant is subject to extinction in its natural habitats due to over-utilization. Understanding the biology of seed germination can help to restore such degradation by implementing agricultural development programs. The present study is an attempt to determine the germination responses to two temperature regimes (constant and fluctuating during the course of the study. The experiment was planned based on a factorial-completely randomized design with two factors (constant and fluctuating temperature regimes at 3 levels each (15, 20 and 25°C with 4 replications. The results showed that the characteristics of germination in asafoetida were significantly improved under the fluctuating temperature as compared with the constant regime. It showed a mean germination time of 1.88 days for the fluctuating regime, while it was 4.88 days for the constant regime. The same results were found on germination rates in favor of fluctuating (0.62 per day in comparison with constant regime (0.33 per day. Under the fluctuating regime, the lowest level of imposed temperature (daily application of 10 and 20 degree during the first and the second 12 hours, respectively was the best for seed germination in this experiment.

  18. Void nucleation at elevated temperatures under cascade-damage irradiation

    International Nuclear Information System (INIS)

    Semenov, A.A.; Woo, C.H.

    2002-01-01

    The effects on void nucleation of fluctuations respectively due to the randomness of point-defect migratory jumps, the random generation of free point defects in discrete packages, and the fluctuating rate of vacancy emission from voids are considered. It was found that effects of the cascade-induced fluctuations are significant only at sufficiently high total sink strength. At lower sink strengths and elevated temperatures, the fluctuation in the rate of vacancy emission is the dominant factor. Application of the present theory to the void nucleation in annealed pure copper neutron-irradiated at elevated temperatures with doses of 10 -4 -10 -2 NRT dpa showed reasonable agreement between theory and experiment. This application also predicts correctly the temporal development of large-scale spatial heterogeneous microstructure during the void nucleation stage. Comparison between calculated and experimental void nucleation rates in neutron-irradiated molybdenum at temperatures where vacancy emission from voids is negligible showed reasonable agreement as well. It was clearly demonstrated that the athermal shrinkage of relatively large voids experimentally observable in molybdenum at such temperatures may be easily explained in the framework of the present theory

  19. A fluctuation relation for the probability of energy backscatter

    Science.gov (United States)

    Vela-Martin, Alberto; Jimenez, Javier

    2017-11-01

    We simulate the large scales of an inviscid turbulent flow in a triply periodic box using a dynamic Smagorinsky model for the sub-grid stresses. The flow, which is forced to constant kinetic energy, is fully reversible and can develop a sustained inverse energy cascade. However, due to the large number of degrees freedom, the probability of spontaneous mean inverse energy flux is negligible. In order to quantify the probability of inverse energy cascades, we test a local fluctuation relation of the form log P(A) = - c(V , t) A , where P(A) = p(| Cs|V,t = A) / p(| Cs|V , t = - A) , p is probability, and | Cs|V,t is the average of the least-squared dynamic model coefficient over volume V and time t. This is confirmed when Cs is averaged over sufficiently large domains and long times, and c is found to depend linearly on V and t. In the limit in which V 1 / 3 is of the order of the integral scale and t is of the order of the eddy-turnover time, we recover a global fluctuation relation that predicts a negligible probability of a sustained inverse energy cascade. For smaller V and t, the local fluctuation relation provides useful predictions on the occurrence of local energy backscatter. Funded by the ERC COTURB project.

  20. Non-classical homogeneous precipitation mediated by compositional fluctuations in titanium alloys

    International Nuclear Information System (INIS)

    Nag, S.; Zheng, Y.; Williams, R.E.A.; Devaraj, A.; Boyne, A.; Wang, Y.; Collins, P.C.; Viswanathan, G.B.; Tiley, J.S.; Muddle, B.C.; Banerjee, R.

    2012-01-01

    This paper presents experimental evidence of homogeneous precipitation of the α-phase within the β matrix of a titanium alloy, and then accounts for this phase transformation by a new, non-classical mechanism involving compositional fluctuations, based on the pseudo-spinodal concept [1]. This mechanism involves local compositional fluctuations of small amplitude which, when of a certain magnitude, can favor thermodynamically certain regions of the β matrix to transform congruently to the α-phase but with compositions far from equilibrium. Subsequently, as measured experimentally using the tomographical atom probe, continuous diffusional partitioning between the parent β- and product α-phases during isothermal annealing drives their compositions towards equilibrium. For a given alloy composition, the decomposition mechanism is strongly temperature dependent, which would be expected for homogeneous precipitation via the compositional fluctuation-mediated mechanism but not necessarily for one based on classical nucleation theory. The applicability of this mechanism to phase transformations in general is noted.

  1. Concentration fluctuations in non-isothermal reaction-diffusion systems. II. The nonlinear case

    NARCIS (Netherlands)

    Bedeaux, D.; Ortiz de Zárate, J.M.; Pagonabarraga, I.; Sengers, J.V.; Kjelstrup, S.

    2011-01-01

    In this paper, we consider a simple reaction-diffusion system, namely, a binary fluid mixture with an association-dissociation reaction between two species. We study fluctuations at hydrodynamic spatiotemporal scales when this mixture is driven out of equilibrium by the presence of a temperature

  2. Comparison of rechargeable versus battery-operated insulin pumps: temperature fluctuations.

    Science.gov (United States)

    Vereshchetin, Paul; McCann, Thomas W; Ojha, Navdeep; Venugopalan, Ramakrishna; Levy, Brian L

    2016-01-01

    The role of continuous subcutaneous insulin infusion (insulin pumps) has become increasingly important in diabetes management, and many different types of these systems are currently available. This exploratory study focused on the reported heating issues that lithium-ion battery-powered pumps may have during charging compared with battery-operated pumps. It was found that pump temperature increased by 6.4°C during a long charging cycle of a lithiumion battery-operated pump under ambient temperatures. In an environmental-chamber kept at 35°C, the pump temperature increased by 4.4°C, which indicates that the pump temperature was above that of the recommended safety limit for insulin storage of 37°C. When designing new pumps, and when using currently available rechargeable pumps in warmer climates, the implications of these temperature increases should be taken into consideration. Future studies should also further examine insulin quality after charging.

  3. A Trial for Earthquake Prediction by Precise Monitoring of Deep Ground Water Temperature

    Science.gov (United States)

    Nasuhara, Y.; Otsuki, K.; Yamauchi, T.

    2006-12-01

    A near future large earthquake is estimated to occur off Miyagi prefecture, northeast Japan within 20 years at a probability of about 80 %. In order to predict this earthquake, we have observed groundwater temperature in a borehole at Sendai city 100 km west of the asperity. This borehole penetrates the fault zone of NE-trending active reverse fault, Nagamachi-Rifu fault zone, at 820m depth. Our concept of the ground water observation is that fault zones are natural amplifier of crustal strain, and hence at 820m depth we set a very precise quartz temperature sensor with the resolution of 0.0002 deg. C. We confirmed our observation system to work normally by both the pumping up tests and the systematic temperature changes at different depths. Since the observation started on June 20 in 2004, we found mysterious intermittent temperature fluctuations of two types; one is of a period of 5-10 days and an amplitude of ca. 0.1 deg. C, and the other is of a period of 11-21 days and an amplitude of ca. 0.2 deg. C. Based on the examination using the product of Grashof number and Prantl number, natural convection of water can be occurred in the borehole. However, since these temperature fluctuations are observed only at the depth around 820 m, thus it is likely that they represent the hydrological natures proper to the Nagamachi-Rifu fault zone. It is noteworthy that the small temperature changes correlatable with earth tide are superposed on the long term and large amplitude fluctuations. The amplitude on the days of the full moon and new moon is ca. 0.001 deg. C. The bottoms of these temperature fluctuations always delay about 6 hours relative to peaks of earth tide. This is interpreted as that water in the borehole is sucked into the fault zone on which tensional normal stress acts on the days of the full moon and new moon. The amplitude of the crustal strain by earth tide was measured at ca. 2∗10^-8 strain near our observation site. High frequency temperature noise of

  4. Superconductivity and fluctuations in Ba_1_–_pK_pFe_2As_2 and Ba(Fe_1_–_nCo_n)_2As_2

    International Nuclear Information System (INIS)

    Böhm, T.; Hosseinian Ahangharnejhad, R.; Technical University of Munich, Garching

    2016-01-01

    In this paper, we study the interplay of fluctuations and superconductivity in BaFe_2As_2 (Ba-122) compounds with Ba and Fe substituted by K (p doping) and Co (n doping), respectively. To this end, we measured electronic Raman spectra as a function of polarization and temperature. We observe gap excitations and fluctuations for all doping levels studied. The response from fluctuations is much stronger for Co substitution and, according to the selection rules and the temperature dependence, originates from the exchange of two critical spin fluctuations with characteristic wave vectors (±π,0) and (0,±π). At 22% K doping (p = 0.22), we find the same selection rules and spectral shape for the fluctuations but the intensity is smaller by a factor of 5. Since there exists no nematic region above the orthorhombic spin-density-wave (SDW) phase, the identification of the fluctuations via the temperature dependence is not possible. The gap excitations in the superconducting state indicate strongly anisotropic near-nodal gaps for Co substitution which make the observation of collective modes difficult. The variation with doping of the spectral weights of the A_1_g and B_1_g gap features does not support the influence of fluctuations on Cooper pairing. Thus, the observation of Bardasis–Schrieffer modes inside the nearly clean gaps on the K-doped side remains the only experimental evidence for the relevance of fluctuations for pairing.

  5. Fluctuations measured by flush mounted versus proud divertor Langmuir probes - why are they different?

    Science.gov (United States)

    Garcia, O. E.; Kuang, A. Q.; Brunner, D.; Labombard, B.; Kube, R.

    2017-10-01

    A flush-mounted, toroidally-elongated, and field-aligned divertor `rail' Langmuir probe array was installed in Alcator C-Mod in 2015. This geometry is heat flux tolerant and effectively mitigates sheath expansion effects down to incident field line angles of 0.5 degree. Further complications have arisen that cannot be explained by sheath-expansion. In particular, the `rail' probe geometry measures significantly higher plasma fluctuation levels in the common flux region compared to traditional proud probes, whereas they are similar in the private flux zone. In some instances, the amplitudes of ion saturation current fluctuations normalized to the mean are a factor of 2 higher; probability distribution functions correspondingly record large amplitude events that are not seen by the proud probes. This discrepancy also appears to depend on divertor plasma regime. For example, fluctuations become similar near the strikepoint when the electron temperature is low. To ensure that these discrepancies were not due to perturbations caused by the voltage bias or currents collected by the probes, the two Langmuir probe systems were left to `float' and the fluctuation statistics analyzed. Yet, even in this non-perturbative situation, there exist clear differences in the fluctuation characteristics. The raises two questions: how does the probe geometry affect plasma fluctuations measurements and what are the true plasma fluctuations experienced by the divertor surface? Supported by USDoE awards DE-FC02-99ER54512.

  6. Temperature experienced during incubation affects antioxidant capacity but not oxidative damage in hatchling red-eared slider turtles (Trachemys scripta elegans).

    Science.gov (United States)

    Treidel, L A; Carter, A W; Bowden, R M

    2016-02-01

    Our understanding of how oxidative stress resistance phenotypes are affected by the developmental environment is limited. One component of the developmental environment, which is likely central to early life oxidative stress among ectothermic and oviparous species, is that of temperature. We investigated how incubation temperature manipulations affect oxidative damage and total antioxidant capacity (TAC) in red-eared slider turtle (Trachemys scripta elegans) hatchlings. First, to determine whether temperature fluctuations elicit oxidative stress, eggs from clutches were randomly assigned to either a constant (29.5 °C) or daily fluctuating temperature incubation (28.7 ± 3 °C) treatment. Second, to assess the effect of temperature fluctuation frequency on oxidative stress, eggs were incubated in one of three fluctuating incubation regimes: 28.7 ± 3 °C fluctuations every 12 h (hyper), 24 h (normal) or 48 h (hypo). Third, we tested the influence of average incubation temperature by incubating eggs in a daily fluctuating incubation temperature regime with a mean temperature of 26.5 °C (low), 27.1 °C (medium) or 27.7 °C (high). Although the accumulation of oxidative damage in hatchlings was unaffected by any thermal manipulation, TAC was affected by both temperature fluctuation frequency and average incubation temperature. Individuals incubated with a low frequency of temperature fluctuations had reduced TAC, while incubation at a lower average temperature was associated with enhanced TAC. These results indicate that although sufficient to prevent oxidative damage, TAC is influenced by developmental thermal environments, potentially because of temperature-mediated changes in metabolic rate. The observed differences in TAC may have important future consequences for hatchling fitness and overwinter survival. © 2016. Published by The Company of Biologists Ltd.

  7. Nonequilibrium fluctuations in a resistor.

    Science.gov (United States)

    Garnier, N; Ciliberto, S

    2005-06-01

    In small systems where relevant energies are comparable to thermal agitation, fluctuations are of the order of average values. In systems in thermodynamical equilibrium, the variance of these fluctuations can be related to the dissipation constant in the system, exploiting the fluctuation-dissipation theorem. In nonequilibrium steady systems, fluctuations theorems (FT) additionally describe symmetry properties of the probability density functions (PDFs) of the fluctuations of injected and dissipated energies. We experimentally probe a model system: an electrical dipole driven out of equilibrium by a small constant current I, and show that FT are experimentally accessible and valid. Furthermore, we stress that FT can be used to measure the dissipated power P = R I2 in the system by just studying the PDFs' symmetries.

  8. Three responses to small changes in stream temperature by autumn-emerging aquatic insects

    Science.gov (United States)

    Judith L. Li; Sherri L. Johnson; Janel Banks. Sobota

    2011-01-01

    In this experimental study, conducted in coastal Oregon USA, we examined how small increases in summer water temperatures affected aquatic insect growth and autumn emergence. We maintained naturally fluctuating temperatures from 2 nearby streams and a 3rd regime, naturally fluctuating temperatures warmed by 3-5°C, in flow-through troughs from mid...

  9. Proceedings of RIKEN BNL Resarch Center Workshop: Fluctuations, Correlations and RHIC Low Energy Runs

    Energy Technology Data Exchange (ETDEWEB)

    Karsch, F.; Kojo, T.; Mukherjee, S.; Stephanov, M.; Xu, N.

    2011-10-27

    Most of our visible universe is made up of hadronic matter. Quantum Chromodynamics (QCD) is the theory of strong interaction that describes the hadronic matter. However, QCD predicts that at high enough temperatures and/or densities ordinary hadronic matter ceases to exist and a new form of matter is created, the so-called Quark Gluon Plasma (QGP). Non-perturbative lattice QCD simulations shows that for high temperature and small densities the transition from the hadronic to the QCD matter is not an actual phase transition, rather it takes place via a rapid crossover. On the other hand, it is generally believed that at zero temperature and high densities such a transition is an actual first order phase transition. Thus, in the temperature-density phase diagram of QCD, the first order phase transition line emanating from the zero temperature high density region ends at some higher temperature where the transition becomes a crossover. The point at which the first order transition line turns into a crossover is a second order phase transition point belonging to three dimensional Ising universality class. This point is known as the QCD Critical End Point (CEP). For the last couple of years the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been performing experiments at lower energies in search of the elusive QCD CEP. In general critical behaviors are manifested through appearance of long range correlations and increasing fluctuations associated with the presence of mass-less modes in the vicinity of a second order phase transition. Experimental signatures of the CEP are likely to be found in observables related to fluctuations and correlations. Thus, one of the major focuses of the RHIC low energy scan program is to measure various experimental observables connected to fluctuations and correlations. On the other hand, with the start of the RHIC low energy scan program, a flurry of activities are taking place to provide solid theoretical

  10. Doping evolution of spin fluctuations and their peculiar suppression at low temperatures in Ca(Fe 1 -xCox)2As2

    Science.gov (United States)

    Sapkota, A.; Das, P.; Böhmer, A. E.; Ueland, B. G.; Abernathy, D. L.; Bud'ko, S. L.; Canfield, P. C.; Kreyssig, A.; Goldman, A. I.; McQueeney, R. J.

    2018-05-01

    Results of inelastic neutron scattering measurements are reported for two annealed compositions of Ca(Fe 1 -xCox)2As2,x =0.026 and 0.030, which possess stripe-type antiferromagnetically ordered and superconducting ground states, respectively. In the AFM ground state, well-defined and gapped spin waves are observed for x =0.026 , similar to the parent CaFe2As2 compound. We conclude that the well-defined spin waves are likely to be present for all x corresponding to the AFM state. This behavior is in contrast to the smooth evolution to overdamped spin dynamics observed in Ba(Fe 1 -xCox)2As2 , wherein the crossover corresponds to microscopically coexisting AFM order and SC at low temperature. The smooth evolution is likely absent in Ca(Fe 1 -xCox)2As2 due to the mutual exclusion of AFM ordered and SC states. Overdamped spin dynamics characterize paramagnetism of the x =0.030 sample and high-temperature x =0.026 sample. A sizable loss of magnetic intensity is observed over a wide energy range upon cooling the x =0.030 sample, at temperatures just above and within the superconducting phase. This phenomenon is unique amongst the iron-based superconductors and is consistent with a temperature-dependent reduction in the fluctuating moment. One possible scenario ascribes this loss of moment to a sensitivity to the c -axis lattice parameter in proximity to the nonmagnetic collapsed tetragonal phase and another scenario ascribes the loss to a formation of a pseudogap.

  11. Logarithmic spatial variations and universal f-1 power spectra of temperature fluctuations in turbulent Rayleigh-Bénard convection.

    Science.gov (United States)

    He, Xiaozhou; van Gils, Dennis P M; Bodenschatz, Eberhard; Ahlers, Guenter

    2014-05-02

    We report measurements of the temperature variance σ(2)(z,r) and frequency power spectrum P(f,z,r) (z is the distance from the sample bottom and r the radial coordinate) in turbulent Rayleigh-Bénard convection (RBC) for Rayleigh numbers Ra = 1.6 × 10(13) and 1.1 × 10(15) and for a Prandtl number Pr ≃ 0.8 for a sample with a height L = 224 cm and aspect ratio D/L=0.50 (D is the diameter). For z/L ≲ 0.1 σ(2)(z,r) was consistent with a logarithmic dependence on z, and there was a universal (independent of Ra, r, and z) normalized spectrum which, for 0.02 ≲ fτ(0) ≲ 0.2, had the form P(fτ(0)) = P(0)(fτ(0))(-1) with P(0) = 0.208 ± 0.008 a universal constant. Here τ(0) = sqrt[2R] where R is the radius of curvature of the temperature autocorrelation function C(τ) at τ = 0. For z/L ≃ 0.5 the measurements yielded P(fτ(0))∼(fτ(0))(-α) with α in the range from 3/2 to 5/3. All the results are similar to those for velocity fluctuations in shear flows at sufficiently large Reynolds numbers, suggesting the possibility of an analogy between the flows that is yet to be determined in detail.

  12. Plasma parameters, fluctuations and kinetics in a magnetic field line reconnection experiment

    International Nuclear Information System (INIS)

    Wild, N.C. Jr.

    1983-01-01

    The processes associated with reconnecting magnetic field lines have been studied in a large experimental laboratory plasma. Detailed time- and space-resolved probe measurements of the plasma density, temperature, potential and electric and magnetic fields are discussed. Plasma currents are seen to modify the vacuum magnetic field topology. A flat neutral sheet develops along the separatrix where magnetic flux is transferred from regions of private to common flux. Forced tearing and magnetic island formation are also observed. Rapid electron heating, density and temperature nonuniformities and plasma potential gradients are all observed. The pressure is found to peak at the two edges of the neutral sheet. The dissipation E.J is determined and analyzed in terms of particle heating and fluid acceleration. A consistent, detailed picture of the energy flow via Poynting's theorem is also described. Significant temporal fluctuations in the magnetic fields and electron velocity distribution are measured and seen to give rise to anomalously high values for the plasma resistivity, the ion viscosity and the cross-field thermal conductivity. Electron temperature fluctuations, double layers associated with partial current disruptions, and whistler wave magnetic turbulence have all been identified and studied during the course of the reconnection event

  13. Conductivity fluctuation and superconducting parameters of the YBa2Cu3-x (PO4) x O7-δ material

    International Nuclear Information System (INIS)

    Rojas Sarmiento, M.P.; Uribe Laverde, M.A.; Vera Lopez, E.; Landinez Tellez, D.A.; Roa-Rojas, J.

    2007-01-01

    Synthesis of the YBa 2 Cu 3- x (PO 4 ) x O 7- δ superconducting material by the standard solid-state reaction is reported. DC resistivity measurements reveal the improvement of the critical temperature (T C ) when substitution of phosphate in the Cu sites is performed. A bulk T C =97 K was determined by the criterion of the maximum in the temperature derivative of electrical resistivity. Structure characterization by means the X-ray diffraction technique shows the crystalline appropriated distribution of PO 4 into the CuO 2 superconducting planes. In order to examine the effect of phosphates on the pairing mechanism close to T C , conductivity fluctuation analysis was performed by the method of logarithmic temperature derivative of the conductivity excess. We found the occurrence of Gaussian-like fluctuations. The correlations of the critical exponents with the dimensionality of the fluctuation system for each Gaussian regime were performed by using the Aslamazov-Larkin theory. The Ginzburg number for this superconducting material is predicted and the critical magnetic fields, critical current density and the jump in the specific heat at the critical temperature are theoretically determined

  14. Interwell Radiative Recombination in the Presence of Random Potential Fluctuations in GaAs/AlGaAs Biased Double Quantum Wells

    DEFF Research Database (Denmark)

    Timofeev, V.B.; Larionov, A.V.; Ioselevich, A.S.

    1999-01-01

    The interwell luminescence (PL) of spatially separated e-h pairs exhibits systematic narrowing with temperature increase which are explained in terms of lateral thermo-activated tunneling of e-h pairs localized by random potential fluctuations (RPF). At critical temperatures the quasi-equilibrium......The interwell luminescence (PL) of spatially separated e-h pairs exhibits systematic narrowing with temperature increase which are explained in terms of lateral thermo-activated tunneling of e-h pairs localized by random potential fluctuations (RPF). At critical temperatures the quasi......-equilibrium of carriers, undergoes an abrupt transition. This occurs with significant redistribution of the electrical field inside the structure and give rise to a low frequency noice appearing in the luminescence. Below critical temperature the new steady state results in the accumulation of 2DEG in one of the well....

  15. Kinetic evolution and correlation of fluctuations in an expanding quark gluon plasma

    Science.gov (United States)

    Sarwar, Golam; Alam, Jan-E.

    2018-03-01

    Evolution of spatially anisotropic perturbation created in the system formed after Relativistic Heavy Ion Collisions has been studied. The microscopic evolution of the fluctuations has been examined within the ambit of Boltzmann Transport Equation (BTE) in a hydrodynamically expanding background. The expansion of the background composed of quark gluon plasma (QGP) is treated within the framework of relativistic hydrodynamics. Spatial anisotropic fluctuations with different geometries have been evolved through Boltzmann equation. It is observed that the trace of such fluctuation survives the evolution. Within the relaxation time approximation, analytical results have been obtained for the evolution of these anisotropies. Explicit relations between fluctuations and transport coefficients have been derived. The mixing of various Fourier (or k) modes of the perturbations during the evolution of the system has been explicitly demonstrated. This study is very useful in understanding the presumption that the measured anisotropies in the data from heavy ion collisions at relativistic energies imitate the initial state effects. The evolution of correlation function for the perturbation in pressure has been studied and shows that the initial correlation between two neighbouring points in real space evolves to a constant value at later time which gives rise to Dirac delta function for the correlation function in Fourier space. The power spectrum of the fluctuation in thermodynamic quantities (like temperature estimated in this work) can be connected to the fluctuation in transverse momentum of the thermal hadrons measured experimentally. The bulk viscous coefficient of the QGP has been estimated by using correlations of pressure fluctuation with the help of Green-Kubo relation. Angular power spectrum of the anisotropies has been estimated in the appendix.

  16. Topological terms induced by finite temperature and density fluctuations

    International Nuclear Information System (INIS)

    Niemi, A.J.; Department of Physics, The Ohio State University, Columbus, Ohio 43210)

    1986-01-01

    In (3+1)-dimensional finite-temperature and -density SU(2) gauge theories with left-handed fermions, the three-dimensional Chern-Simons term (topological mass) can be induced by radiative corrections. This result is derived by use of a family's index theorem which also implies that in many other quantum field theories various additional lower-dimensional topological terms can be induced. In the high-temperature limit these terms dominate the partition function, which suggests applications to early-Universe cosmology

  17. Thermodynamic and physico-chemical fluctuations in hydrothermal systems suitable for the geological cradle of life

    Science.gov (United States)

    Kompanichenko, Vladimir

    Thermodynamic and physico-chemical fluctuations in the medium seem are the necessary factor for the origin of life. Fluctuations are usual phenomena in hydrothermal systems including their outcrops in ocean or terrestrial groundwater aquifers. Investigation of the fluctuations regimes in natural hydrothermal systems can be used in advanced laboratory experiments on prebiotic organic synthesis under changeable conditions. To characterize a scale of the thermodynamic and physic-chemical fluctuations four hydrothermal systems were explored: several terrestrial hydrothermal systems, primarily on the Russian Far East. Temperature of water and water-steam mixture (from boreholes) in Mutnovsky and Pauzhetsky hydrothermal fields (Kamchatka peninsula) ranges from less than 100 o C up to 240 o C. Water from Kuldur thermal basin (in-tracontinental part of the Russian Far East) is characterized with the lower temperature: 60-70 o C. Data of monitoring of pressure, temperature and some chemical parameters in the boreholes of these fields were mathematically processed. Periods of long-range macrofluctuations of pres-sure and temperature in Mutnovsky and Kuldur fields are 2-4.5 months, maximum amplitudes of temperature in the wells' orifices are 53o C and 9 o C correspondingly, maximum amplitude of pressure in Mutnovsky field 34 bars. Periods of minioscillations are from 10 to 70 minutes in Mutnovsky and Pauzhetsky fields, average amplitudes of pressure are 0.2-0.7 bars. These data are comparable with similar data from Mura basin in Slovenia: amplitudes of temperature and pH minioscillations are about 1-2o C and 0.2 correspondingly; there exists strict positive correlation of temperature with pH, K+, Na+, Ca2+, HCO3-, SO42-, Cl-, F-, but concentra-tions of Mg2+, NH4+, CO2 change independently (Kralj, 2000).. The general conclusion is that minifluctuations of thermodynamic and physic-chemical parameters in hydrothermal sys-tems are usual phenomenon. From time to time the

  18. Evidence for nonuniversal behavior of paraconductivity caused by predominant short-wavelength Gaussian fluctuations in YBa2Cu3O6.9

    International Nuclear Information System (INIS)

    Gauzzi, A.; Pavuna, D.

    1995-01-01

    We report on in-plane paraconductivity measurements in thin YBa 2 Cu 3 O 6.9 films. Our analysis of the data shows that the temperature dependence of paraconductivity is affected by lattice disorder and deviates at all temperatures from the universal power laws predicted by both scaling and mean-field theories. This gives evidence for the absence of critical fluctuations and for the failure of the Aslamazov-Larkin universal relation between critical exponent and dimensionality of the spectrum of Gaussian fluctuations. We account quantitatively for the data within the experimental error by introducing a short-wavelength cutoff into this spectrum. This implies that three-dimensional short-wavelength Gaussian fluctuations dominate in YBa 2 Cu 3 O 6.9 and suggests a rapid attenuation of these fluctuations with decreasing wavelength in short-coherence-length systems as compared to the case of the conventional Ginzburg-Landau theory

  19. Numerical study of pressure fluctuations in different guide vanes' opening angle in pump mode of a pump turbine

    International Nuclear Information System (INIS)

    Sun, Y K; Zuo, Z G; Liu, S H; Wu, Y L; Liu, J T

    2012-01-01

    A numerical model based on a pumped storage power station was built to develop the numerical simulation, to analyze the pressure fluctuations in a pump turbine in different guide vanes' opening angle. The different guide vanes' opening angles were simulated using the SST k-ω turbulence model and SIMPLEC Pressure-Velocity coupling scheme. The pressure sensor were placed in mainly three positions, they are: bottom ring between runner and the wicket gates, downstream and left side in the draft tube cone below the runner. All the peak to peak values of pressure fluctuation meet signal probability of 97%. The frequency is gained by Fast Fourier Transform. The pressure fluctuations in different positions of the model in pump condition were showed when the guide vanes' opening angels were different. The simulation results confirmed the results gained in model tests. The results show that pressure fluctuations in design opening angle were much lower than those in off design opening angle. The main source of pressure fluctuations between runner and guide vanes is rotor stator interaction. While a lower frequency is the main frequency of the pressure fluctuation in draft tube.

  20. Multifractal fluctuations in joint angles during infant spontaneous kicking reveal multiplicativity-driven coordination

    International Nuclear Information System (INIS)

    Stephen, Damian G.; Hsu, Wen-Hao; Young, Diana; Saltzman, Elliot L.; Holt, Kenneth G.; Newman, Dava J.; Weinberg, Marc; Wood, Robert J.; Nagpal, Radhika; Goldfield, Eugene C.

    2012-01-01

    Previous research has considered infant spontaneous kicking as a form of exploration. According to this view, spontaneous kicking provides information about motor degrees of freedom and may shape multijoint coordinations for more complex movement patterns such as gait. Recent work has demonstrated that multifractal, multiplicative fluctuations in exploratory movements index energy flows underlying perceptual-motor information. If infant spontaneous kicking is exploratory and occasions an upstream flow of information from the motor periphery, we expected not only that multiplicativity of fluctuations at the hip should promote multiplicativity of fluctuations at more distal joints (i.e., reflecting downstream effects of neural control) but also that multiplicativity at more distal joints should promote multiplicativity at the hip. Multifractal analysis demonstrated that infant spontaneous kicking in four typically developing infants for evidence of multiplicative fluctuations in multiple joint angles along the leg (i.e., hip, knee, and ankle) exhibited multiplicativity. Vector autoregressive modeling demonstrated that only one leg exhibited downstream effects but that both legs exhibited upstream effects. These results confirm the exploratory aspect of infant spontaneous kicking and suggest chaotic dynamics in motor coordination. They also resonate with existing models of chaos-controlled robotics and noise-based interventions for rehabilitating motor coordination in atypically developing patients.

  1. On the distribution of energy versus Alfvénic correlation for polar wind fluctuations

    Directory of Open Access Journals (Sweden)

    B. Bavassano

    2006-11-01

    Full Text Available Previous analyses have shown that polar wind fluctuations at MHD scales appear as a mixture of Alfvénic fluctuations and variations with an energy imbalance in favour of the magnetic term. In the present study, by separately examining the behaviour of kinetic and magnetic energies versus the Alfvénic correlation level, we unambiguously confirm that the second population is essentially related to a large increase of the magnetic energy with respect to that of the Alfvénic population. The relevant new result is that this magnetic population, though of secondary importance in terms of occurrence frequency, corresponds to a primary peak in the distribution of total energy. The fact that this holds in the case of polar wind, which is the least structured type of interplanetary plasma flow and with the slowest evolving Alfvénic turbulence, strongly suggests the general conclusion that magnetic structures cannot be neglected when modeling fluctuations for all kinds of wind regime.

  2. Hydrodynamical fluctuations in smooth shear flows

    International Nuclear Information System (INIS)

    Chagelishvili, G.D.; Khujadze, G.R.; Lominadze, J.G.

    1999-11-01

    Background of hydrodynamical fluctuations in a intrinsically/stochastically forced, laminar, uniform shear flow is studied. The employment of so-called nonmodal mathematical analysis makes it possible to represent the background of fluctuations in a new light and to get more insight into the physics of its formation. The basic physical processes responsible for the formation of vortex and acoustic wave fluctuation backgrounds are analyzed. Interplay of the processes at low and moderate shear rates is described. Three-dimensional vortex fluctuations around a given macroscopic state are numerically calculated. The correlation functions of the fluctuations of physical quantities are analyzed. It is shown that there exists subspace D k in the wave-number space (k-space) that is limited externally by spherical surface with radius k ν ≡ A/ν (where A is the velocity shear parameter, ν - the kinematic viscosity) in the nonequilibrium open system under study. The spatial Fourier harmonics of vortex as well as acoustic wave fluctuations are strongly subjected by flow shear (by the open character of the system) at wave-numbers satisfying the condition k ν . Specifically it is shown that in D k : The fluctuations are non-Markovian; the spatial spectral density of energy of the vortex fluctuations by far exceeds the white-noise; the term of a new type associated to the hydrodynamical fluctuation of velocity appears in the correlation function of pressure; the fluctuation background of the acoustic waves is completely different at low and moderate shear rates (at low shear rates it is reduced in D k in comparison to the uniform (non-shear) flow; at moderate shear rates it it comparable to the background of the vortex fluctuations). The fluctuation background of both the vortex and the acoustic wave modes is anisotropic. The possible significance of the fluctuation background of vortices for the subcritical transition to turbulence and Brownian motion of small macroscopic

  3. Fluctuations and dark count rates in superconducting NbN single-photon detectors

    International Nuclear Information System (INIS)

    Engel, Andreas; Semenov, Alexei; Huebers, Heinz-Wilhelm; Il'in, Kostya; Siegel, Michael

    2005-01-01

    We measured the temperature- and current-dependence of dark count rates of a superconducting singlephoton detector. The detector's key element is a 84 nm wide meander strip line fabricated from a 5 nm thick NbN film. Due to its reduced dimensions various types of fluctuations can cause temporal and localized transitions into a resistive state leading to dark count events. Adopting a recent refinement of the hotspot model we achieve a satisfying description of the experimental dark count rates taking into account fluctuations of the Cooper-pair density and current-assisted unbinding of vortex-antivortex pairs. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Quantum work fluctuations in connection with the Jarzynski equality.

    Science.gov (United States)

    Jaramillo, Juan D; Deng, Jiawen; Gong, Jiangbin

    2017-10-01

    A result of great theoretical and experimental interest, the Jarzynski equality predicts a free energy change ΔF of a system at inverse temperature β from an ensemble average of nonequilibrium exponential work, i.e., 〈e^{-βW}〉=e^{-βΔF}. The number of experimental work values needed to reach a given accuracy of ΔF is determined by the variance of e^{-βW}, denoted var(e^{-βW}). We discover in this work that var(e^{-βW}) in both harmonic and anharmonic Hamiltonian systems can systematically diverge in nonadiabatic work protocols, even when the adiabatic protocols do not suffer from such divergence. This divergence may be regarded as a type of dynamically induced phase transition in work fluctuations. For a quantum harmonic oscillator with time-dependent trapping frequency as a working example, any nonadiabatic work protocol is found to yield a diverging var(e^{-βW}) at sufficiently low temperatures, markedly different from the classical behavior. The divergence of var(e^{-βW}) indicates the too-far-from-equilibrium nature of a nonadiabatic work protocol and makes it compulsory to apply designed control fields to suppress the quantum work fluctuations in order to test the Jarzynski equality.

  5. Hadronic Correlations and Fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Volker

    2008-10-09

    We will provide a review of some of the physics which can be addressed by studying fluctuations and correlations in heavy ion collisions. We will discuss Lattice QCD results on fluctuations and correlations and will put them into context with observables which have been measured in heavy-ion collisions. Special attention will be given to the QCD critical point and the first order co-existence region, and we will discuss how the measurement of fluctuations and correlations can help in an experimental search for non-trivial structures in the QCD phase diagram.

  6. Entropy transport in high-Tc superconductors in the fluctuation regime

    International Nuclear Information System (INIS)

    Maki, K.

    1991-01-01

    Making use of the expression for the heat current associated with the space-time-dependent order parameter for the s-wave superconductor, we calculate, in the clean limit, the heat current induced by an electric field. In the absence of a magnetic field we find an extra Peltier coefficient associated with the fluctuations, which diverges logarithmically as the temperature T approaches the transition temperature T c . In the presence of a magnetic field perpendicular to the ab plane, the fluctuation gives rise to the Ettingshausen effect. In a small magnetic field, the corresponding entropy transported by magnetic flux is calculated: left-angle S φ right-angle f =[2π 3 τT/21ζ(3)d](h/var-epsilon)(1 +2α) -1/2 where τ and d are the transport lifetime and the interlayer spacing, ζ(3)=1.202. . ., h=2eξ a 2 B, var-epsilon=ln(T/T c ), and α=2(ξ c /d) 2 var-epsilon -1 . The result is compared with a recent observation of the Ettinghausen effect in a single crystal of YBa 2 Cu 3 O 7

  7. The Unruh effect and quantum fluctuations of electrons in storage rings

    International Nuclear Information System (INIS)

    Bell, J.S.; Leinaas, J.M.

    1987-01-01

    The quantum fluctuation of electron orbits in ideal storage rings is a sort of Fulling-Unruh effect (heating by acceleration in vacuum). To spell this out, the effect is analyzed in an appropriate comoving, and so accelerating and rotating, co-ordinate system. The depolarization of the electrons is a related effect, but is greatly complicated by spin-orbit coupling. This analysis confirms the standard result for the polarization, except in the neighbourhood of a narrow resonance. (orig.)

  8. The Unruh effect and quantum fluctuations of electrons in storage rings

    International Nuclear Information System (INIS)

    Bell, J.S.; Leinaas, J.M.

    1995-01-01

    The quantum fluctuation of electron orbits in ideal storage rings is a sort of Fulling-Unruh effect (heating by acceleration in vacuum). To spell this out, the effect is analyzed in an appropriate comoving, and so accelerating and rotating, co-ordinate system. The depolarization of the electrons is a related effect, but is greatly complicated by spin-orbit coupling. This analysis confirms the standard result for the polarization, except in the neighbourhood of a narrow resonance. (author)

  9. Dependence of Tc on the q -ω structure of the spin-fluctuation spectrum

    Science.gov (United States)

    Dahm, Thomas; Scalapino, D. J.

    2018-05-01

    A phenomenological spin-fluctuation analysis [Dahm et al., Nat. Phys. 5, 217 (2009), 10.1038/nphys1180], based upon inelastic neutron scattering (INS) and angular resolved photoemission spectroscopy (ARPES) data for YBCO6.6(Tc=61 K) , is used to calculate the functional derivative of the d -wave eigenvalue λd of the linearized gap equation with respect to the imaginary part of the spin susceptibility χ''(q ,ω ) at 70 K. For temperatures near Tc, the variation of Tc with respect to χ''(q ,ω ) is proportional to this functional derivative. We find that above an energy ˜4 Tc the functional derivative becomes positive so that adding spin-fluctuation spectral weight at higher frequencies leads to an increase in Tc. The strongest pairing occurs for large momentum transfers, and small momentum spin-fluctuations suppress the pairing.

  10. Temperature fluctuations in little bang : hydrodynamical approach

    International Nuclear Information System (INIS)

    Basu, Sumit; Chatterjee, Rupa; Nayak, Tapan K.

    2015-01-01

    The physics of heavy-ion collisions at ultra-relativistic energies, popularly known as little bangs, has often been compared to the Big Bang phenomenon of early universe. The matter produced at extreme conditions of energy density (ε) and temperature (T) in heavy-ion collisions is a Big Bang replica in a tiny scale. In little bangs, the produced fireball goes through a rapid evolution from an early state of partonic quark-gluon plasma (QGP) to a hadronic phase, and finally freezes out within a few tens of fm

  11. Effect of thermodynamic fluctuations of magnetization on the bound magnetic polaron state in ferromagnetic semiconductors

    International Nuclear Information System (INIS)

    Bednarski, Henryk; Spałek, Józef

    2014-01-01

    We extend the theory of the bound magnetic polaron (BMP) in diluted paramagnetic semiconductors to the situation with a ferromagnetic phase transition. This is achieved by including the classical Gaussian fluctuations of magnetization from the quartic (non-Gaussian) term in the effective Ginzburg–Landau Hamiltonian for the spins. Within this approach, we find a ferromagnetically ordered state within the BMP in the temperature range well above the Curie temperature for the host magnetic semiconductor. Numerical results are compared directly with the recently available experimental data for the ferromagnetic semiconductor GdN. The agreement is excellent, given the simplicity of our model, and is because the polaron size (≃1.4 nm) encompasses a relatively large but finite number (N≈400) of quasiclassical spins S=7/2 coming from Gd 3+ ions. The presence of BMP invalidates the notion of critical temperature and thus makes the incorporation of classical Gaussian fluctuations sufficient to realistically describe the situation. (paper)

  12. Measurement of magnetic fluctuations at small spatial scales in the Tokapole II tokamak

    International Nuclear Information System (INIS)

    Haines, E.J.

    1991-08-01

    This thesis is a presentation of the measurements of short-wavelength, high-frequency radial magnetic fluctuations performed on the Tokapole 2 tokamak at the University of Wisconsin-Madison. Theories of electron temperature gradient (η e ) driven turbulence predict the existence of increased magnetic fluctuation power at small spatial scales near the collisionless skin depth c/ω pe and over a wide range of frequencies near and below the electron diamagnetic drift frequency ω* ne . Small magnetic probes of sizes down to 1 m m have been constructed and used to resolve short poloidal and radial wavelength magnetic fluctuations. These probes have been used with larger probes to make comparisons of fluctuation spectra measured in various ranges of wavelength and over the range of frequencies from 10 kHz to 6 MHz in Tokapole 2 plasmas. A calculation of the short-wavelength, high-frequency response of an electrostatically shielded model B r probe has been performed to guide the interpretation of the power comparison measurements. Comparisons of magnetic fluctuation spectra at various positions within the plasma, and for discharges with edge safety factor 1, 2, and 3 are presented. The linear and nonlinear theories and numerical simulations of η e turbulence are reviewed and compared, where possible with the experimental parameters and results

  13. Thermal fluctuations in the classical superconductor Nb3Sn from high-resolution specific-heat measurements

    International Nuclear Information System (INIS)

    Lortz, Rolf; Wang Yuxing; Junod, Alain; Toyota, Naoki

    2007-01-01

    The range of thermal fluctuations in 'classical' bulk superconductors is extremely small and especially in low-fields hardly experimentally accessible. With a new type of calorimeter we were able to detect a tiny lambda anomaly in the specific-heat of the superconductor Nb 3 Sn within a narrow temperature range around the H c2 line. We show that the evolution of the anomaly as a function of magnetic field follows scaling laws expected in the presence of critical thermal fluctuations

  14. Statistical properties of the energy exchanged between two heat baths coupled by thermal fluctuations

    DEFF Research Database (Denmark)

    Ciliberto, S.; Imparato, A.; Naert, A.

    2013-01-01

    Brownian particles kept at different temperatures and coupled by an elastic force. We measure the heat flowing between the two reservoirs and the thermodynamic work done by one part of the system on the other. We show that these quantities exhibit a long-time fluctuation theorem. Furthermore, we evaluate...... the fluctuating entropy, which satisfies a conservation law. These experimental results are fully justified by the theoretical analysis. Our results give more insight into the energy transfer in the famous Feynman ratchet, widely studied theoretically but never in an experiment....

  15. Fluctuating ideal-gas lattice Boltzmann method with fluctuation dissipation theorem for nonvanishing velocities.

    Science.gov (United States)

    Kaehler, G; Wagner, A J

    2013-06-01

    Current implementations of fluctuating ideal-gas descriptions with the lattice Boltzmann methods are based on a fluctuation dissipation theorem, which, while greatly simplifying the implementation, strictly holds only for zero mean velocity and small fluctuations. We show how to derive the fluctuation dissipation theorem for all k, which was done only for k=0 in previous derivations. The consistent derivation requires, in principle, locally velocity-dependent multirelaxation time transforms. Such an implementation is computationally prohibitively expensive but, with a small computational trick, it is feasible to reproduce the correct FDT without overhead in computation time. It is then shown that the previous standard implementations perform poorly for non vanishing mean velocity as indicated by violations of Galilean invariance of measured structure factors. Results obtained with the method introduced here show a significant reduction of the Galilean invariance violations.

  16. Extended irreversible thermodynamics and non-equilibrium temperature

    Directory of Open Access Journals (Sweden)

    Casas-Vazquez, Jose'

    2008-02-01

    Full Text Available We briefly review the concept of non-equilibrium temperature from the perspectives of extended irreversible thermodynamics, fluctuation theory, and statistical mechanics. The relations between different proposals are explicitly examined in two especially simple systems: an ideal gas in steady shear flow and a forced harmonic oscillator in a thermal bath. We examine with special detail temperatures related to the average molecular kinetic energy along different spatial directions, to the average configurational energy, to the derivative of the entropy with respect to internal energy, to fluctuation-dissipation relation and discuss their measurement.

  17. Fluctuations in Schottky barrier heights

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1984-01-01

    A double Schottky barrier is often formed at the grain boundary in polycrystalline semiconductors. The barrier height is shown to fluctuate in value due to the random nature of the impurity positions. The magnitude of the fluctuations is 0.1 eV, and the fluctuations cause the barrier height measured by capacitance to differ from the one measured by electrical conductivity

  18. Effect of magnetic configuration on density fluctuation and particle transport in LHD

    International Nuclear Information System (INIS)

    Tanaka, K.; Michael, C.; Yamagishi, O.; Ida, K.; Yamada, H.; Yoshinuma, M.; Yokoyama, M.; Miyazawa, J.; Morita, S.; Kawahata, K.; Tokzawa, T.; Shoji, M.; Vyacheslavov, L.N.; Sanin, A.L.

    2005-01-01

    The study of fluctuations and particle transport is important issue in heliotron and stellarator devices as well as in tokamaks. A two dimensional phase contrast interferometer (2D PCI) was developed to investigate fluctuation characteristics, which play role in confinement. The current 2D PCI can detect fluctuations for which -1 0.3 -1 and 5< f<500kHz. With the use of magnetic shear and the 2D detector, the spatial resolution around 20% of averaged minor radius is possible presently. The strongest fluctuations are localized in the plasma edge, where density gradients are negative, but fluctuations also exist in the positive density gradient region of the hollow density profile. The phase velocity of fluctuations in the positive gradient region is close to plasma ErxBt rotation. On the other hand, fluctuations in the negative density gradient region propagate in the ion diamagnetic direction in the plasma frame and do not follow ErxBt rotation. This suggests there is a different nature of the fluctuations in the positive and negative density gradient regions. A particle transport was studied by means of density modulation experiments. The systematic study was done at Rax=3.6m, which is so-called standard configuration. The density profiles vary from peaked to hollow with increasing heating power. It was also found that particle diffusion and convection are functions of electron temperature and its gradient respectively. The magnetic configuration is another parameter, which characterizes particle confinement. At more outward shifted configurations, helical ripple becomes larger and the ergodic region becomes thicker, then neoclassical transport becomes larger. However estimated diffusion coefficients are still around one order of magnitude larger than neoclassical values in edge region, where ρ = 0.7 ∼ 1.0 and they are larger at more outward configurations. At the same time the convection velocity is found to be comparable with neoclassical prediction at Rax=3

  19. Fully Quantum Fluctuation Theorems

    Science.gov (United States)

    Åberg, Johan

    2018-02-01

    Systems that are driven out of thermal equilibrium typically dissipate random quantities of energy on microscopic scales. Crooks fluctuation theorem relates the distribution of these random work costs to the corresponding distribution for the reverse process. By an analysis that explicitly incorporates the energy reservoir that donates the energy and the control system that implements the dynamic, we obtain a quantum generalization of Crooks theorem that not only includes the energy changes in the reservoir but also the full description of its evolution, including coherences. Moreover, this approach opens up the possibility for generalizations of the concept of fluctuation relations. Here, we introduce "conditional" fluctuation relations that are applicable to nonequilibrium systems, as well as approximate fluctuation relations that allow for the analysis of autonomous evolution generated by global time-independent Hamiltonians. We furthermore extend these notions to Markovian master equations, implicitly modeling the influence of the heat bath.

  20. Curvature of fluctuation geometry and its implications on Riemannian fluctuation theory

    International Nuclear Information System (INIS)

    Velazquez, L

    2013-01-01

    Fluctuation geometry was recently proposed as a counterpart approach of the Riemannian geometry of inference theory (widely known as information geometry). This theory describes the geometric features of the statistical manifold M of random events that are described by a family of continuous distributions dp(x|θ). A main goal of this work is to clarify the statistical relevance of the Levi-Civita curvature tensor R ijkl (x|θ) of the statistical manifold M. For this purpose, the notion of irreducible statistical correlations is introduced. Specifically, a distribution dp(x|θ) exhibits irreducible statistical correlations if every distribution dp(x-check|θ) obtained from dp(x|θ) by considering a coordinate change x-check = φ(x) cannot be factorized into independent distributions as dp(x-check|θ) = prod i dp (i) (x-check i |θ). It is shown that the curvature tensor R ijkl (x|θ) arises as a direct indicator about the existence of irreducible statistical correlations. Moreover, the curvature scalar R(x|θ) allows us to introduce a criterium for the applicability of the Gaussian approximation of a given distribution function. This type of asymptotic result is obtained in the framework of the second-order geometric expansion of the distribution family dp(x|θ), which appears as a counterpart development of the high-order asymptotic theory of statistical estimation. In physics, fluctuation geometry represents the mathematical apparatus of a Riemannian extension for Einstein’s fluctuation theory of statistical mechanics. Some exact results of fluctuation geometry are now employed to derive the invariant fluctuation theorems. Moreover, the curvature scalar allows us to express some asymptotic formulae that account for the system fluctuating behavior beyond the Gaussian approximation, e.g.: it appears as a second-order correction of the Legendre transformation between thermodynamic potentials, P(θ)=θ i x-bar i -s( x-bar |θ)+k 2 R(x|θ)/6. (paper)

  1. Multiscale gyrokinetics for rotating tokamak plasmas: fluctuations, transport and energy flows.

    Science.gov (United States)

    Abel, I G; Plunk, G G; Wang, E; Barnes, M; Cowley, S C; Dorland, W; Schekochihin, A A

    2013-11-01

    This paper presents a complete theoretical framework for studying turbulence and transport in rapidly rotating tokamak plasmas. The fundamental scale separations present in plasma turbulence are codified as an asymptotic expansion in the ratio ε = ρi/α of the gyroradius to the equilibrium scale length. Proceeding order by order in this expansion, a set of coupled multiscale equations is developed. They describe an instantaneous equilibrium, the fluctuations driven by gradients in the equilibrium quantities, and the transport-timescale evolution of mean profiles of these quantities driven by the interplay between the equilibrium and the fluctuations. The equilibrium distribution functions are local Maxwellians with each flux surface rotating toroidally as a rigid body. The magnetic equilibrium is obtained from the generalized Grad-Shafranov equation for a rotating plasma, determining the magnetic flux function from the mean pressure and velocity profiles of the plasma. The slow (resistive-timescale) evolution of the magnetic field is given by an evolution equation for the safety factor q. Large-scale deviations of the distribution function from a Maxwellian are given by neoclassical theory. The fluctuations are determined by the 'high-flow' gyrokinetic equation, from which we derive the governing principle for gyrokinetic turbulence in tokamaks: the conservation and local (in space) cascade of the free energy of the fluctuations (i.e. there is no turbulence spreading). Transport equations for the evolution of the mean density, temperature and flow velocity profiles are derived. These transport equations show how the neoclassical and fluctuating corrections to the equilibrium Maxwellian act back upon the mean profiles through fluxes and heating. The energy and entropy conservation laws for the mean profiles are derived from the transport equations. Total energy, thermal, kinetic and magnetic, is conserved and there is no net turbulent heating. Entropy is produced

  2. Temperature-dependent structure of Tb-doped magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rice, Katherine P.; Russek, Stephen E., E-mail: stephen.russek@nist.gov; Shaw, Justin M.; Usselman, Robert J.; Evarts, Eric R.; Silva, Thomas J.; Nembach, Hans T. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Geiss, Roy H. [Colorado State University, Fort Collins, Colorado 80523 (United States); Arenholz, Elke [Lawrence Berkeley National Laboratory, Advanced Light Source, Berkeley, California 94720 (United States); Idzerda, Yves U. [Department of Physics, Montana State University, Bozeman, Montana 59717 (United States)

    2015-02-09

    High quality 5 nm cubic Tb-doped magnetite nanoparticles have been synthesized by a wet-chemical method to investigate tailoring of magnetic properties for imaging and biomedical applications. We show that the Tb is incorporated into the octahedral 3+ sites. High-angle annular dark-field microscopy shows that the dopant is well-distributed throughout the particle, and x-ray diffraction measurements show a small lattice parameter shift with the inclusion of a rare-earth dopant. Magnetization and x-ray magnetic circular dichroism data indicate that the Tb spins are unpolarized and weakly coupled to the iron spin lattice at room temperature, and begin to polarize and couple to the iron oxide lattice at temperatures below 50 K. Broadband ferromagnetic resonance measurements show no increase in magnetic damping at room temperature for Tb-doped nanoparticles relative to undoped nanoparticles, further confirming weak coupling between Fe and Tb spins at room temperature. The Gilbert damping constant, α, is remarkably low for the Tb-doped nanoparticles, with α = 0.024 ± 0.003. These nanoparticles, which have a large fixed moment, a large fluctuating moment and optically active rare-earth elements, are potential high-relaxivity T1 and T2 MRI agents with integrated optical signatures.

  3. Temperature-dependent structure of Tb-doped magnetite nanoparticles

    International Nuclear Information System (INIS)

    Rice, Katherine P.; Russek, Stephen E.; Shaw, Justin M.; Usselman, Robert J.; Evarts, Eric R.; Silva, Thomas J.; Nembach, Hans T.; Geiss, Roy H.; Arenholz, Elke; Idzerda, Yves U.

    2015-01-01

    High quality 5 nm cubic Tb-doped magnetite nanoparticles have been synthesized by a wet-chemical method to investigate tailoring of magnetic properties for imaging and biomedical applications. We show that the Tb is incorporated into the octahedral 3+ sites. High-angle annular dark-field microscopy shows that the dopant is well-distributed throughout the particle, and x-ray diffraction measurements show a small lattice parameter shift with the inclusion of a rare-earth dopant. Magnetization and x-ray magnetic circular dichroism data indicate that the Tb spins are unpolarized and weakly coupled to the iron spin lattice at room temperature, and begin to polarize and couple to the iron oxide lattice at temperatures below 50 K. Broadband ferromagnetic resonance measurements show no increase in magnetic damping at room temperature for Tb-doped nanoparticles relative to undoped nanoparticles, further confirming weak coupling between Fe and Tb spins at room temperature. The Gilbert damping constant, α, is remarkably low for the Tb-doped nanoparticles, with α = 0.024 ± 0.003. These nanoparticles, which have a large fixed moment, a large fluctuating moment and optically active rare-earth elements, are potential high-relaxivity T1 and T2 MRI agents with integrated optical signatures

  4. Net charge fluctuations and local charge compensation

    International Nuclear Information System (INIS)

    Fu Jinghua

    2006-01-01

    We propose net charge fluctuation as a measure of local charge correlation length. It is demonstrated that, in terms of a schematic multiperipheral model, net charge fluctuation satisfies the same Quigg-Thomas relation as satisfied by charge transfer fluctuation. Net charge fluctuations measured in finite rapidity windows depend on both the local charge correlation length and the size of the observation window. When the observation window is larger than the local charge correlation length, the net charge fluctuation only depends on the local charge correlation length, while forward-backward charge fluctuations always have strong dependence on the observation window size. Net charge fluctuations and forward-backward charge fluctuations measured in the present heavy ion experiments show characteristic features similar to those from multiperipheral models. But the data cannot all be understood within this simple model

  5. A Langevin model for fluctuating contact angle behaviour parametrised using molecular dynamics.

    Science.gov (United States)

    Smith, E R; Müller, E A; Craster, R V; Matar, O K

    2016-12-06

    Molecular dynamics simulations are employed to develop a theoretical model to predict the fluid-solid contact angle as a function of wall-sliding speed incorporating thermal fluctuations. A liquid bridge between counter-sliding walls is studied, with liquid-vapour interface-tracking, to explore the impact of wall-sliding speed on contact angle. The behaviour of the macroscopic contact angle varies linearly over a range of capillary numbers beyond which the liquid bridge pinches off, a behaviour supported by experimental results. Nonetheless, the liquid bridge provides an ideal test case to study molecular scale thermal fluctuations, which are shown to be well described by Gaussian distributions. A Langevin model for contact angle is parametrised to incorporate the mean, fluctuation and auto-correlations over a range of sliding speeds and temperatures. The resulting equations can be used as a proxy for the fully-detailed molecular dynamics simulation allowing them to be integrated within a continuum-scale solver.

  6. High frequency ground temperature fluctuation in a Convective Boundary Layer

    NARCIS (Netherlands)

    Garai, A.; Kleissl, J.; Lothon, M.; Lohou, F.; Pardyjak, E.; Saïd, F.; Cuxart, J.; Steeneveld, G.J.; Yaguë, C.; Derrien, S.; Alexander, D.; Villagrasa, D.M.

    2012-01-01

    To study influence of the turbulent structures in the convective boundary layer (CBL) on the ground temperature, during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) observational campaign, high frequency ground temperature was recorded through infra-red imagery from 13 June - 8

  7. Modelling of temperature distribution and pulsations in fast reactor units

    International Nuclear Information System (INIS)

    Ushakov, P.A.; Sorokin, A.P.

    1994-01-01

    Reasons for the occurrence of thermal stresses in reactor units have been analyzed. The main reasons for this analysis are: temperature non-uniformity at the output of reactor core and breeder and the ensuing temperature pulsation; temperature pulsations due to mixing of sodium jets of a different temperature; temperature nonuniformity and pulsations resulting from the part of loops (circuits) un-plug; temperature nonuniformity and fluctuations in transient and accidental shut down of reactor or transfer to cooling by natural circulation. The results of investigating the thermal hydraulic characteristics are obtained by modelling the processes mentioned above. Analysis carried out allows the main lines of investigation to be defined and conclusions can be drawn regarding the problem of temperature distribution and fluctuation in fast reactor units

  8. Quantum fluctuations and inflation

    International Nuclear Information System (INIS)

    Bardeen, J.M.; Bublik, G.J.

    1986-05-01

    We study the effect of quantum fluctuations on the roll-down rate of the inflation field in a semiclassical approximation; this is done by treating the inflation field as a classical random field. The quantum fluctuations are simulated by a noise term in the equation of motion. We consider two different inflationary scenarios (new and chaotic inflation) and find that the roll-down rate of the median value of the inflation field is increased by the quantum fluctuations. Non-linear effects may become important in the later stages of the inflationary regime. 8 refs., 2 figs

  9. Quantum fluctuations and inflation

    International Nuclear Information System (INIS)

    Bardeen, J.M.; Bublik, G.J.

    1987-01-01

    The authors study the effect of quantum fluctuations on the roll-down rate of the inflation field in a semiclassical approximation; this is done by treating the inflation field as a classical random field. The quantum fluctuations are simulated by a noise term in the equation of motion. Two different inflationary scenarios (new and chaotic inflation) are considered and it is found that the roll-down rate of the median value of the inflation field is increased by the quantum fluctuations. Non-linear effects may become important in the later stages of the inflationary regime. (author)

  10. Current density fluctuations and ambipolarity of transport

    International Nuclear Information System (INIS)

    Shen, W.; Dexter, R.N.; Prager, S.C.

    1991-10-01

    The fluctuation in the plasma current density is measured in the MIST reversed field pinch experiment. Such fluctuations, and the measured radial profile of the k spectrum of magnetic fluctuations, supports the view and that low frequency fluctuations (f r >) demonstrates that radial particle transport from particle motion parallel to a fluctuating magnetic field is ambipolar over the full frequency range

  11. Theory of spin-fluctuation induced superconductivity in iron-based superconductors

    International Nuclear Information System (INIS)

    Zhang, Junhua

    2011-01-01

    In this dissertation we focus on the investigation of the pairing mechanism in the recently discovered high-temperature superconductor, iron pnictides. Due to the proximity to magnetic instability of the system, we considered short-range spin fluctuations as the major mediating source to induce superconductivity. Our calculation supports the magnetic fluctuations as a strong candidate that drives Cooper-pair formation in this material. We find the corresponding order parameter to be of the so-called ss-wave type and show its evolution with temperature as well as the capability of supporting high transition temperature up to several tens of Kelvin. On the other hand, our itinerant model calculation shows pronounced spin correlation at the observed antiferromagnetic ordering wave vector, indicating the underlying electronic structure in favor of antiferromagnetic state. Therefore, the electronic degrees of freedom could participate both in the magnetic and in the superconducting properties. Our work shows that the interplay between magnetism and superconductivity plays an important role to the understanding of the rich physics in this material. The magnetic-excitation spectrum carries important information on the nature of magnetism and the characteristics of superconductivity. We analyze the spin excitation spectrum in the normal and superconducting states of iron pnictides in the magnetic scenario. As a consequence of the sign-reversed gap structure obtained in the above, a spin resonance mode appears below the superconducting transition temperature. The calculated resonance energy, scaled with the gap magnitude and the magnetic correlation length, agrees well with the inelastic neutron scattering (INS) measurements. More interestingly, we find a common feature of those short-range spin fluctuations that are capable of inducing a fully gapped ss state is the momentum anisotropy with elongated span along the direction transverse to the antiferromagnetic momentum

  12. Nematic fluctuations, fermiology and the pairing potential in iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kretzschmar, Florian

    2015-08-18

    The thesis comprises a systematic study on the doping, temperature and momentum dependent electron dynamics in iron-based superconductors using inelastic light scattering. The observation of Bardasis-Schrieffer modes in the excitation spectrum of superconducting Ba{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2} is reported and the energy and symmetry dependence of the modes are analyzed. The analysis yields the identification of a strong subdominant component of the interaction potential V(k,k{sup '}). Strong nematic fluctuations are investigated in Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2}. The nature of the fluctuations and the origin of nematicity in Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} are identified.

  13. Energy and transverse momentum fluctuations in the equilibrium quantum systems

    International Nuclear Information System (INIS)

    Gorenstein, M.I.; Rybczyński, M.

    2014-01-01

    The fluctuations in the ideal quantum gases are studied using the strongly intensive measures Δ[A,B] and Σ[A,B] defined in terms of two extensive quantities A and B. In the present Letter, these extensive quantities are taken as the motional variable, A=X, the system energy E or transverse momentum P T , and number of particles, B=N. This choice is most often considered in studying the event-by-event fluctuations and correlations in high energy nucleus–nucleus collisions. The recently proposed special normalization ensures that Δ and Σ are dimensionless and equal to unity for fluctuations given by the independent particle model. In statistical mechanics, the grand canonical ensemble formulation within the Boltzmann approximation gives an example of independent particle model. Our results demonstrate the effects due to the Bose and Fermi statistics. Estimates of the effects of quantum statistics in the hadron gas at temperatures and chemical potentials typical for thermal models of hadron production in high energy collisions are presented. In the case of massless particles and zero chemical potential the Δ and Σ measures are calculated analytically/

  14. Assessment of impacts from water level fluctuations on fish in the Hanford Reach, Columbia River

    Energy Technology Data Exchange (ETDEWEB)

    Becker, C.D.; Fickeisen, D.H.; Montgomery, J.C.

    1981-05-01

    Observations on the effects of water level fluctuations in the Hanford Reach of the Columbia River, Washington, were made in 1976 and 1977. The two years provided contrasting flow regimes: high water and fluctuations of greater magnitude prevailed in 1976; low water and higher temperatures prevailed in 1977. Situations where fish and other aquatic organisms were destroyed by changing water levels were observed and evaluated each year in three study areas: Hanford, F-Area, and White Bluffs sloughs. Losses primarily were due to stranding, entrapment (with or without complete dewatering), and predation. Juvenile fish were more susceptible to entrapment and stranding than were adult fish. Estimates of actual losses were biased and conservative because relatively few fish could be found after each decline of water level and dewatering. The most valued species of fish affected by water level fluctuations at Hanford were the anadromus fall chinook salmon (Oncorhynchus tshawytscha) and the resident smallmouth bass (Micropterus dolomieui). Crucial periods for chinook salmon occurred during winter when incubating eggs were in the gravel of the main channel, and before and during seaward migration in the spring when fry were abundant in shoreline zones. The crucial period for smallmouth bass was during spring and early summer when adults were spawning in warmed sloughs and shoreline zones. Chinook salmon and smallmouth bass fry were vulnerable to stranding and entrapment, and smallmouth bass nests were susceptible to exposure and temperature changes resulting from repeated water level fluctuations. Thus, flow manipulation may be crucial to their survival. The extent to which other species of riverine fish were affected by water level fluctuations depended upon their use of shoreline zones for spawning and rearing young.

  15. The Spectrum of Wind Power Fluctuations

    Science.gov (United States)

    Bandi, Mahesh

    2016-11-01

    Wind is a variable energy source whose fluctuations threaten electrical grid stability and complicate dynamical load balancing. The power generated by a wind turbine fluctuates due to the variable wind speed that blows past the turbine. Indeed, the spectrum of wind power fluctuations is widely believed to reflect the Kolmogorov spectrum; both vary with frequency f as f - 5 / 3. This variability decreases when aggregate power fluctuations from geographically distributed wind farms are averaged at the grid via a mechanism known as geographic smoothing. Neither the f - 5 / 3 wind power fluctuation spectrum nor the mechanism of geographic smoothing are understood. In this work, we explain the wind power fluctuation spectrum from the turbine through grid scales. The f - 5 / 3 wind power fluctuation spectrum results from the largest length scales of atmospheric turbulence of order 200 km influencing the small scales where individual turbines operate. This long-range influence spatially couples geographically distributed wind farms and synchronizes farm outputs over a range of frequencies and decreases with increasing inter-farm distance. Consequently, aggregate grid-scale power fluctuations remain correlated, and are smoothed until they reach a limiting f - 7 / 3 spectrum. This work was funded by the Collective Interactions Unit, OIST Graduate University, Japan.

  16. Some fundamental aspects of fluctuations and coherence in charged-particle beams in storage rings

    International Nuclear Information System (INIS)

    Chattopadhyay, S.

    1984-01-01

    A conceptual survey and exposition is presented of some fundamental aspects of fluctuations and coherence, as well as the interplay between the two, in coasting charged-particle beams - both continuous and bunched - in storage rings. A detailed study is given of the spectral properties of the incoherent phase-space Schottky fluctuations, their propagation as waves in the beam, and the analytic complex coherent beam electromagnetic response or transfer function. The modification or distortion of these by collective interactions is examined in terms of simple regeneration mechanisms. Collective or coherent forces in the beam-storage-ring system are described by defining suitable impedance functions or propagators, and a brief discussion of the coherent collective modes and their stability is provided, including a general and rigorous description of the Nyquist stability criterion. The nature of the critical fluctuations near an instability threshold is explored. The concept of Landau damping and its connection with phase-mixing within the beam is outlined. The important connection between the incoherent fluctuations and the beam response, namely the Fluctuation-Dissipation relation, is revealed. A brief discussion is given of the information degrees of freedom, and effective temperature of the fluctuation signals. Appendices provide a short resume of some general aspects of various interactions in a charged-particle beam-environment system in a storage ring and a general introduction to kinetic theory as applied to particle beams. (orig.)

  17. Interplanetary Alfvenic fluctuations: A stochastic model

    International Nuclear Information System (INIS)

    Barnes, A.

    1981-01-01

    The strong alignment of the average directions of minimum magnetic variance and mean magnetic field in interplanetary Alfvenic fluctuations is inconsistent with the usual wave-propagation models. We investigate the concept of minimum variance for nonplanar Alfvenic fluctuations in which the field direction varies stochastically. It is found that the tendency of the minimum variance and mean field directions to be aligned may be purely a consequence of the randomness of the field direction. In particular, a well-defined direction of minimum variance does not imply that the fluctuations are necessarily planar. The fluctuation power spectrum is a power law for frequencies much higher than the inverse of the correlation time. The probability distribution of directions a randomly fluctuating field of constant magnitude is calculated. A new approach for observational studies of interplanetary fluctuations is suggested

  18. Nickel-titanium alloys: stress-related temperature transitional range.

    Science.gov (United States)

    Santoro, M; Beshers, D N

    2000-12-01

    The inducement of mechanical stress within nickel-titanium wires can influence the transitional temperature range of the alloy and therefore the expression of the superelastic properties. An analogous variation of the transitional temperature range may be expected during orthodontic therapy, when the archwires are engaged into the brackets. To investigate this possibility, samples of currently used orthodontic nickel-titanium wires (Sentalloy, GAC; Copper Ni-Ti superelastic at 27 degrees C, 35 degrees C, 40 degrees C, Ormco; Nitinol Heat-Activated, 3M-Unitek) were subjected to temperature cycles ranging between 4 degrees C and 60 degrees C. The wires were mounted in a plexiglass loading device designed to simulate clinical situations of minimum and severe dental crowding. Electrical resistivity was used to monitor the phase transformations. The data were analyzed with paired t tests. The results confirmed the presence of displacements of the transitional temperature ranges toward higher temperatures when stress was induced. Because nickel-titanium wires are most commonly used during the aligning stage in cases of severe dental crowding, particular attention was given to the performance of the orthodontic wires under maximum loading. An alloy with a stress-related transitional temperature range corresponding to the fluctuations of the oral temperature should express superelastic properties more consistently than others. According to our results, Copper Ni-Ti 27 degrees C and Nitinol Heat-Activated wires may be considered suitable alloys for the alignment stage.

  19. Effect of spin fluctuations in magnetocaloric and magnetoresistance properties of Dy10Co20Si70 alloy

    Science.gov (United States)

    Rashid, T. P.; Arun, K.; Curlik, Ivan; Ilkovic, Sergej; Reiffers, Marian; Dzubinska, Andrea; Nagalakshmi, R.

    2017-09-01

    Systematic investigations on the structure, magnetic, thermodynamic, magnetocaloric and magnetoresistance (MR) properties of the arc melted Dy10Co20Si70 alloy are presented. The Dy10Co20Si70 alloy crystallizes in tetragonal BaNiSn3-type DyCoSi3 (space group = I4mm; No. 107) as a major phase and CaF2-type CoSi2 (space group = Fm-3m; No. 225) and C-type Si (space group = Fd-3m; No. 227) as minor phases. The title compound exhibits multiple magnetic transitions having antiferromagnetic ordering at temperatures, viz., T1 = 10.8 K, T2 = 8.8 K and T3 = 3.3 K. The magnetic and thermodynamic studies confirm these magnetic anomalies in the compound. The large value of maximum magnetic entropy change, -ΔSMM a x = 16.4 and 26.6 J/kg K for the field change ΔH of 50 and 90 kOe, respectively, observed in the compound is associated with field induced magnetic transitions. Asymmetric broadening of the magnetic entropy change peaks above the ordering temperatures resulting in significant refrigerant capacities of 361 and 868 J/kg for ΔH = 50 and 90 kOe, respectively, in the compound is due to the spin fluctuation effect. The sign reversal in MR measurements is attributed to the field induced antiferromagnetic to ferromagnetic transition. A large positive MR (42% in 90 kOe) is observed at 2 K. The H2 dependence of both the magnetocaloric effect (MCE) and MR in the paramagnetic regime indicates the role of the applied magnetic field in suppressing the spin fluctuations. The large MCE and MR together with no thermal or magnetic hysteresis establish this new compound as an attractive multifunctional magnetic material.

  20. Spin fluctuation mechanism to normal state resistivity of iron-based superconductors La(O1-xFx)FeAs

    International Nuclear Information System (INIS)

    Choudhary, K.K.; Singh, S.; Prasad, D.; Kaurav, N.; Varshney, Dinesh

    2010-01-01

    Temperature-dependant resistivity of iron-based superconductors La(O 1-x F x )FeAs (for x = 0.12) is theoretically analysed by considering the strong spin fluctuations effect. In addition to the spin fluctuation-induced contribution the electron-phonon ρ e-ph (T) = AT, and electron-electron ρ e-e (T) = BT 2 contributions are also incorporated for complete understanding of experimental data. (author)