WorldWideScience

Sample records for temperature electron

  1. ECE imaging of electron temperature and electron temperature fluctuations (invited)

    NARCIS (Netherlands)

    Deng, B.H.; Domier, C.W.; N C Luhmann Jr.,; Brower, D.L.; Cima, G.; Donne, A. J. H.; Oyevaar, T.; van de Pol, M.J.

    2001-01-01

    Electron cyclotron emission imaging (ECE imaging or ECEI) is a novel plasma diagnostic technique for the study of electron temperature profiles and fluctuations in magnetic fusion plasma devices. Instead of a single receiver located in the tokamak midplane as in conventional ECE radiometers, ECEI

  2. SPECTROSCOPIC DIAGNOSIS IN ELECTRONIC TEMPERATURE ...

    African Journals Online (AJOL)

    ABSTRACT. In this work, we are interested in the diagnostics in electronic temperature of a plasma purely photoionized, based on the intensity ration of lines emitted by ions helium-like, which have an atomic number Z relatively small. We considered the three lines corresponding to the transitions starting from the excited ...

  3. Determination of electron temperature and electron density in ...

    African Journals Online (AJOL)

    The electron temperatures and electron densities of air and argon have been measured at various pds (pressure times distance). The electron temperatures have been computed using the Johnson-Malter double-probe method. The electron densities have been computed using the total positive ion current and the ...

  4. Electrons and Phonons in High Temperature Superconductors

    Directory of Open Access Journals (Sweden)

    Anu Singh

    2013-01-01

    Full Text Available The defect-induced anharmonic phonon-electron problem in high-temperature superconductors has been investigated with the help of double time thermodynamic electron and phonon Green’s function theory using a comprehensive Hamiltonian which includes the contribution due to unperturbed electrons and phonons, anharmonic phonons, impurities, and interactions of electrons and phonons. This formulation enables one to resolve the problem of electronic heat transport and equilibrium phenomenon in high-temperature superconductors in an amicable way. The problem of electronic heat capacity and electron-phonon problem has been taken up with special reference to the anharmonicity, defect concentration electron-phonon coupling, and temperature dependence.

  5. Passive electronic identification with temperature monitoring. [Temperature monitor for cattle

    Energy Technology Data Exchange (ETDEWEB)

    Holm, D.M.; Bobbett, R.E.; Koelle, A.R.; Landt, J.A.; Sanders, W.M.; Depp, S.W.; Seawright, G.L.

    1976-01-01

    The United States Department of Agriculture (USDA) and the Energy Research and Development Administration (ERDA) have been supporting an electronic identification and temperature monitoring project at the Los Alamos Scientific Laboratory (LASL) since early 1973. The development, so far, indicates that a subdermally-implanted, electronic transponder (having no batteries) can be remotely activated and transmit temperature and identification information back to a receiver in a few tenths of a second. If this electronic identification and temperature monitoring system is developed into a commercially available product line, and is widely accepted by the cattle industry, it will enable them to carry out more extensive management practices. Better management can result in greater efficiency and productivity. The system will also enable regulatory agencies to trace the movements of diseased animals through commerce, and thus assist in disease control measures. Work so far has been concentrated primarily on determining the technical feasibility of the electronic concepts. (auth)

  6. Parametric dependencies of JET electron temperature profiles

    Energy Technology Data Exchange (ETDEWEB)

    Schunke, B. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Imre, K.; Riedel, K. [New York Univ., NY (United States)

    1994-07-01

    The JET Ohmic, L-Mode and H-Mode electron temperature profiles obtained from the LIDAR Thomson Scattering Diagnostic are parameterized in terms of the normalized flux parameter and a set of the engineering parameters like plasma current, toroidal field, line averages electron density... It is shown that the electron temperature profiles fit a log-additive model well. It is intended to use the same model to predict the profile shape for D-T discharges in JET and in ITER. 2 refs., 5 figs.

  7. Deep Trek High Temperature Electronics Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  8. Electron Density and Temperature Measurements, and Abundance ...

    Indian Academy of Sciences (India)

    Using spectra obtained from the SUMER (Solar Ultraviolet Measurements of Emitted Radiation) spectrograph on the spacecraft SOHO (Solar and Heliospheric Observatory), we investigate the height dependence of electron density, temperature and abundance anomalies in the solar atmosphere. In particular, we present ...

  9. Tokamak Plasmas: Electron temperature $(T_ {e}) $ measurements ...

    Indian Academy of Sciences (India)

    Thomson scattering technique based on high power laser has already proved its superoirity in measuring the electron temperature (e) and density (e) in fusion plasma devices like tokamaks. The method is a direct and unambiguous one, widely used for the localised and simultaneous measurements of the above ...

  10. Spectroscopic diagnosis in electronic temperature of photoionise ...

    African Journals Online (AJOL)

    In this work, we are interested in the diagnostics in electronic temperature of a plasma purely photoionized, based on the intensity ration of lines emitted by ions helium-like, which have an atomic number Z relatively small. We considered the three lines corresponding to the transitions starting from the excited levels 1s2l ...

  11. Diamond switches for high temperature electronics

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, R.R.; Rondeau, G.; Qi, Niansheng [Alameda Applied Sciences Corp., San Leandro, CA (United States)] [and others

    1996-04-25

    Diamond switches are well suited for use in high temperature electronics. Laboratory feasibility of diamond switching at 1 kV and 18 A was demonstrated. DC blocking voltages up to 1 kV were demonstrated. A 50 {Omega} load line was switched using a diamond switch, with switch on-state resistivity {approx}7 {Omega}-cm. An electron beam, {approx}150 keV energy, {approx}2 {mu}s full width at half maximum was used to control the 5 mm x 5 mm x 100 {mu}m thick diamond switch. The conduction current temporal history mimics that of the electron beam. These data were taken at room temperature.

  12. Electron beam damage in high temperature polymers

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. (Dayton Univ., OH (USA). Research Inst.); Adams, W.W. (Air Force Materials Lab., Wright-Patterson AFB, OH (USA))

    1990-01-01

    Electron microscopic studies of polymers are limited due to beam damage. Two concerns are the damage mechanism in a particular material, and the maximum dose for a material before damage effects are observed. From the knowledge of the dose required for damage to the polymer structure, optimum parameters for electron microscopy imaging can be determined. In the present study, electron beam damage of polymers has been quantified by monitoring changes in the diffraction intensity as a function of electron dose. The beam damage characteristics of the following polymers were studied: poly(p-phenylene benzobisthiazole) (PBZT); poly(p-phenylene benzobisoxazole) (PBO); poly(benzoxazole) (ABPBO); poly(benzimidazole) (ABPBI); poly(p-phenylene terephthalamide) (PPTA); and poly(aryl ether ether ketone) (PEEK). Previously published literature results on polyethylene (PE), polyoxymethylene (POM), nylon-6, poly(ethylene oxide) (PEO), PBZT, PPTA, PPX, iPS, poly(butylene terephthalate) (PBT), and poly(phenylene sulphide) (PPS) were reviewed. This study demonstrates the strong dependence of the electron beam resistivity of a polymer on its thermal stability/melt temperature. (author).

  13. Wide Temperature Cycling Tolerant Electronic Packaging Substrates Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Planetary exploration missions require electronics packaging that can withstand extreme temperatures and numerous temperature cycles (-230C to +350C). The present...

  14. Effects of emitted electron temperature on the plasma sheath

    Energy Technology Data Exchange (ETDEWEB)

    Sheehan, J. P., E-mail: sheehanj@umich.edu [Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Kaganovich, I. D.; Wang, H.; Raitses, Y. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Sydorenko, D. [Physics Department, University of Alberta, Edmonton, Alberta T6G 2E9 (Canada); Hershkowitz, N. [Department of Engineering Physics, University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States)

    2014-06-15

    It has long been known that electron emission from a surface significantly affects the sheath surrounding that surface. Typical fluid theory of a planar sheath with emitted electrons assumes that the plasma electrons follow the Boltzmann relation and the emitted electrons are emitted with zero energy and predicts a potential drop of 1.03T{sub e}/e across the sheath in the floating condition. By considering the modified velocity distribution function caused by plasma electrons lost to the wall and the half-Maxwellian distribution of the emitted electrons, it is shown that ratio of plasma electron temperature to emitted electron temperature significantly affects the sheath potential when the plasma electron temperature is within an order of magnitude of the emitted electron temperature. When the plasma electron temperature equals the emitted electron temperature the emissive sheath potential goes to zero. One dimensional particle-in-cell simulations corroborate the predictions made by this theory. The effects of the addition of a monoenergetic electron beam to the Maxwellian plasma electrons were explored, showing that the emissive sheath potential is close to the beam energy only when the emitted electron flux is less than the beam flux.

  15. Packaging Technology for SiC High Temperature Electronics

    Science.gov (United States)

    Chen, Liang-Yu; Neudeck, Philip G.; Spry, David J.; Meredith, Roger D.; Nakley, Leah M.; Beheim, Glenn M.; Hunter, Gary W.

    2017-01-01

    High-temperature environment operable sensors and electronics are required for long-term exploration of Venus and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500 C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors in relevant environments. This talk will discuss a ceramic packaging system developed for high temperature electronics, and related testing results of SiC integrated circuits at 500 C facilitated by this high temperature packaging system, including the most recent progress.

  16. Electronic phase separation and high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kivelson, S.A. [Univ. of California, Los Angeles, CA (United States). Dept. of Physics; Emery, V.J. [Brookhaven National Lab., Upton, NY (United States)

    1994-01-11

    The authors review the extensive evidence from model calculations that neutral holes in an antiferromagnet separate into hole-rich and hole-poor phases. All known solvable limits of models of holes in a Heisenberg antiferromagnet exhibit this behavior. The authors show that when the phase separation is frustrated by the introduction of long-range Coulomb interactions, the typical consequence is either a modulated (charge density wave) state or a superconducting phase. The authors then review some of the strong experimental evidence supporting an electronically-driven phase separation of the holes in the cuprate superconductors and the related Ni oxides. Finally, the authors argue that frustrated phase separation in these materials can account for many of the anomalous normal state properties of the high temperature superconductors and provide the mechanism of superconductivity. In particular, it is shown that the T-linear resistivity of the normal state is a paraconductivity associated with a novel composite pairing, although the ordered superconducting state is more conventional.

  17. Modeling of Electron Temperature in H- Ion Source

    Science.gov (United States)

    Morishita, Takatoshi; Ogasawara, Masatada; Hatayama, Akiyoshi

    2000-05-01

    The equation of electron temperature is included in a two point numerical code for a high power hydrogen negative ion source. The calculated results of the electron temperature are in good agreement with Japan Atomic Energy Research Institute (JAERI)’s experimental results. The scaling law of electron temperature is estimated as a function of input power and gas pressure. Energy input by arc discharge, energy loss by ionization, dissociation and loss on the wall are considered in the electron energy equation. The leak width on the wall at the cusp magnet is also calculated numerically. Energy loss on the wall is dominant, and is larger than the ionization loss. In a similarly enlarged JAERI’s Kamaboko source, electron density increases and electron temperature decreases under a constant energy input per unit volume. In this situation, H- extraction current increases despite the decrease in H- density because of the enlargement of the H- extraction area.

  18. Observation of isotropic electron temperature in the turbulent E region

    Directory of Open Access Journals (Sweden)

    S. Saito

    Full Text Available Using EISCAT radar data, we find that electrons are strongly heated in the magnetic field-line direction during high electric field events. The remote site data show that the electron temperature increases in almost the same way in the field-perpendicular direction; electron heating by E region plasma turbulence is isotropic. We discuss the implications of our observation for the "plasmon"-electron as well as the wave Joule heating models of the anomalous electron heating in the E region.

    Key words. Ionosphere (auroral ionosphere; plasma temperature and density; plasma waves and instabilities

  19. Dissociative electron attachment to HBr: A temperature effect

    OpenAIRE

    Fedor, Juraj; Cingel, M.; Skalný, J. D.; Scheier, P.; Märk, T.D.; Čížek, M.; Kolorenč, P.; Horáček, J

    2007-01-01

    The effects of rovibrational temperature on dissociative electron attachment to hydrogen bromide has been investigated from the experimental and theoretical point of view. Theoretical calculations based on the nonlocal resonance model predict a strong temperature effect on the Br⁻ fragment ion yield due to population of higher vibrational and rotational states. A crossed beam experimental setup consisting of a temperature controlled effusive molecular beam and a trochoidal electron monochroma...

  20. First high-temperature electronics products survey 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Normann, Randy Allen

    2006-04-01

    On April 4-5, 2005, a High-Temperature Electronics Products Workshop was held. This workshop engaged a number of governmental and private industry organizations sharing a common interest in the development of commercially available, high-temperature electronics. One of the outcomes of this meeting was an agreement to conduct an industry survey of high-temperature applications. This report covers the basic results of this survey.

  1. High temperature electronics and instrumentation seminar proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Veneruso, A.F.; Arnold, C.; Simpson, R.S. (eds.)

    1980-05-01

    This seminar was tailored to address the needs of the borehole logging industry and to stimulate the development and application of this technology, for logging geothermal, hot oil and gas, and steam injection wells. The technical sessions covered the following topics: hybrid circuits, electronic devices, transducers, cables and connectors, materials, mechanical tools and thermal protection. Thirty-eight papers are included. Separate entries were prepared for each one. (MHR)

  2. Electronic Modeling and Design for Extreme Temperatures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We are developing CAD tools, models and methodologies for electronics design for circuit operation in extreme environments with focus on very low temperatures...

  3. Electronic Modeling and Design for Extreme Temperatures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop electronics for operation at temperatures that range from -230oC to +130oC. This new technology will minimize the requirements for external...

  4. Structural disorder and electron transport in graphene at low temperatures

    Science.gov (United States)

    Bobenko, N. G.; Egorushkin, V. E.; Melnikova, N. V.; Ponomarev, A. N.; Belosludtseva, A. A.; Barkalov, L. D.

    2017-12-01

    A theoretical study of electron transport characteristics of metalized epitaxial graphene with impurities and structural inhomogeneous of the short-range order type was performed. The electron relaxation time, mean free path, and diffusion coefficient were calculated and shown to be of the same order of magnitude as the corresponding values for phonon characteristics. It means that electron scattering on the short-range ordered domains has to be taken into account, especially at low temperatures when it may dominate phonon scattering.

  5. Electronic Components and Circuits for Extreme Temperature Environments

    Science.gov (United States)

    Patterson, Richard L.; Hammoud, Ahmad; Dickman, John E.; Gerber, Scott

    2003-01-01

    Planetary exploration missions and deep space probes require electrical power management and control systems that are capable of efficient and reliable operation in very low temperature environments. Presently, spacecraft operating in the cold environment of deep space carry a large number of radioisotope heating units in order to maintain the surrounding temperature of the on-board electronics at approximately 20 C. Electronics capable of operation at cryogenic temperatures will not only tolerate the hostile environment of deep space but also reduce system size and weight by eliminating or reducing the radioisotope heating units and their associate structures; thereby reducing system development as well as launch costs. In addition, power electronic circuits designed for operation at low temperatures are expected to result in more efficient systems than those at room temperature. This improvement results from better behavior and tolerance in the electrical and thermal properties of semiconductor and dielectric materials at low temperatures. The Low Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electrical components, circuits, and systems suitable for applications in the aerospace environment and deep space exploration missions. Research is being conducted on devices and systems for reliable use down to cryogenic temperatures. Some of the commercial-off-the-shelf as well as developed components that are being characterized include switching devices, resistors, magnetics, and capacitors. Semiconductor devices and integrated circuits including digital-to-analog and analog-to-digital converters, DC/DC converters, operational amplifiers, and oscillators are also being investigated for potential use in low temperature applications. An overview of the NASA Glenn Research Center Low Temperature Electronic Program will be presented in this paper. A description of the low temperature test facilities along with

  6. Temperature-Dependent Electron-Electron Interaction in Graphene on SrTiO3.

    Science.gov (United States)

    Ryu, Hyejin; Hwang, Jinwoong; Wang, Debin; Disa, Ankit S; Denlinger, Jonathan; Zhang, Yuegang; Mo, Sung-Kwan; Hwang, Choongyu; Lanzara, Alessandra

    2017-10-11

    The electron band structure of graphene on SrTiO3 substrate has been investigated as a function of temperature. The high-resolution angle-resolved photoemission study reveals that the spectral width at Fermi energy and the Fermi velocity of graphene on SrTiO3 are comparable to those of graphene on a BN substrate. Near the charge neutrality, the energy-momentum dispersion of graphene exhibits a strong deviation from the well-known linearity, which is magnified as temperature decreases. Such modification resembles the characteristics of enhanced electron-electron interaction. Our results not only suggest that SrTiO3 can be a plausible candidate as a substrate material for applications in graphene-based electronics but also provide a possible route toward the realization of a new type of strongly correlated electron phases in the prototypical two-dimensional system via the manipulation of temperature and a proper choice of dielectric substrates.

  7. Signature of electron-phonon interaction in high temperature superconductors

    Directory of Open Access Journals (Sweden)

    Vinod Ashokan

    2011-09-01

    Full Text Available The theory of thermal conductivity of high temperature superconductors (HTS based on electron and phonon line width (life times formulation is developed with Quantum dynamical approach of Green's function. The frequency line width is observed as an extremely sensitive quantity in the transport phenomena of HTS as a collection of large number of scattering processes. The role of resonance scattering and electron-phonon interaction processes is found to be most prominent near critical temperature. The theory successfully explains the spectacular behaviour of high Tc superconductors in the vicinity of transition temperature. A successful agreement between theory and experiment has been obtained by analyzing the thermal conductivity data for the sample La1.8Sr0.2CuO4 in the temperature range 0 − 200K. The theory is equally and successfully applicable to all other high Tc superconductors.

  8. Mixing of Proton and Electron Scales - Effects of Proton Temperature Anisotropy on the Electron Firehose Instability

    Science.gov (United States)

    Maneva, Y. G.; Lazar, M.; Vinas, A. F.; Poedts, D. S.

    2015-12-01

    We perform kinetic linear theory instability analysis in a non-drifting anisotropic electron-proton plasma to study the effects of proton temperature anisotropies on the electron firehose instability in the collisionless solar wind. We solve the Vlasov linear theory dispersion relation for hot highly anisotropic electron-proton plasma in high-beta regime to study the behavior of the solar wind plasma close to the instability thresholds as observed by different spacecraft at 1 AU. We consider temperature and anisotropy regimes for which the electrons and the protons can interact via the excited electromagnetic fluctuations. For the selected parameters simultaneous electron and proton firehose instabilities can be observed with the growth rate of the electron firehose instability extending towards the proton scales. The co-existance of the proton and the electron firehose and the mixing of scales for the electromagnetic fluctuations excited by the two instabilities depends on the initial temperatures, anisotropies and angle of propagation. In the case of parallel wave propagation both left and right-hand polarized waves are simultaneously excited. As we increase the angle of propagation the electron firehose starts to dominate with excitation of large-amplitude aperiodic fluctuations over a large range of wave-numbers, starting at the protons scales and extending up to the smaller electron scales. We calculate the maximum growth rate of the oblique electron firehose as a function of the proton temperature anisotropy and discuss the implications of the electron-proton scale mixing for the observed plasma properties and instability thresholds in the undisturbed solar wind.

  9. Electron Temperatures in W51 Complex from High Resolution, Low ...

    Indian Academy of Sciences (India)

    2001-03-09

    Mar 9, 2001 ... All the RRL results quoted above have been derived under the LTE approximation. The electron temperature is one of the most important parameters in understanding the physical properties of thermal HII regions. Low frequency continuum observations in the optically thick regime offer a direct estimate of ...

  10. Printed circuit board metal powder filters for low electron temperatures

    NARCIS (Netherlands)

    Müller, F.; Mueller, Filipp; Schouten, Raymond N.; Brauns, M.; Gang, T.; Lim, Wee Han; Lai, Nai Shyan; Dzurak, Andrew S.; van der Wiel, Wilfred Gerard; Zwanenburg, Floris Arnoud

    2013-01-01

    We report the characterisation of printed circuit boards (PCB) metal powder filters and their influence on the effective electron temperature which is as low as 22 mK for a quantum dot in a silicon MOSFET structure in a dilution refrigerator. We investigate the attenuation behaviour (10 MHz–20 GHz)

  11. Electronic and Magnetic Properties of High Temperature Electrolytes.

    Science.gov (United States)

    Measurements are reported on the electrical conductance in the Cs-CsCl and Rb- RbCl molten systems as a function of composition and temperature. The...in salt are evaluated from freezing point data, and are large and positive for the Cs-CsCl and Rb- RbCl systems. Electron spin resonance has been

  12. Electronically induced nuclear transitions - temperature dependence and Rabi oscillations

    CERN Document Server

    Niez, J J

    2002-01-01

    This paper deals with a nucleus electromagnetically coupled with the bound states of its electronic surroundings. It describes the temperature dependence of its dynamics and the onset of potential Rabi oscillations by means of a Master Equation. The latter is generalized in order to account for possible strong resonances. Throughout the paper the approximation schemes are discussed and tested. (authors)

  13. Measurements of plasma temperature and electron density in laser ...

    Indian Academy of Sciences (India)

    nique to provide remote, in-situ, rapid and multi-elemental analysis of bulk and trace sample in any phase (solid, liquid and gas) with no or minimal sample prepa- ration [2–4]. The characterization of LIPs by determining their temperature and electron den- sity is essential and has gained considerable interest in recent years ...

  14. Measurements of plasma temperature and electron density in laser ...

    Indian Academy of Sciences (India)

    Abstract. Plasma produced by a 355 nm pulsed Nd:YAG laser with a pulse duration of 6 ns focussed onto a copper solid sample in air at atmospheric pressure is studied spectroscopically. The temperature and electron density characterizing the plasma are measured by time-resolved spectroscopy of neutral atom and ion ...

  15. Approximation of Engine Casing Temperature Constraints for Casing Mounted Electronics

    Science.gov (United States)

    Kratz, Jonathan L.; Culley, Dennis E.; Chapman, Jeffryes W.

    2017-01-01

    The performance of propulsion engine systems is sensitive to weight and volume considerations. This can severely constrain the configuration and complexity of the control system hardware. Distributed Engine Control technology is a response to these concerns by providing more flexibility in designing the control system, and by extension, more functionality leading to higher performing engine systems. Consequently, there can be a weight benefit to mounting modular electronic hardware on the engine core casing in a high temperature environment. This paper attempts to quantify the in-flight temperature constraints for engine casing mounted electronics. In addition, an attempt is made at studying heat soak back effects. The Commercial Modular Aero Propulsion System Simulation 40k (C-MAPSS40k) software is leveraged with real flight data as the inputs to the simulation. A two-dimensional (2-D) heat transfer model is integrated with the engine simulation to approximate the temperature along the length of the engine casing. This modification to the existing C-MAPSS40k software will provide tools and methodologies to develop a better understanding of the requirements for the embedded electronics hardware in future engine systems. Results of the simulations are presented and their implications on temperature constraints for engine casing mounted electronics is discussed.

  16. The hydrated electron and its reactions at high temperatures

    DEFF Research Database (Denmark)

    Christensen, Hilbert; Sehested, Knud

    1986-01-01

    The spectrum of the hydrated electron was determined in the temperature range 5-300 "C by using strongly alkaline solutions and high hydrogen pressure. At temperatures up to about 150 "C the temperature coefficients of E, and AE1/2 are -2.8 X and 2 X lo4 eV K-', respectively. E,, is the energy....... The rate constant of the second-order decay (2k) is (1.00 f 0.05) X 1O'O dm3 mol-] s-I at 20 "C, independent of pH. The activation energy of the reaction is 23 f 1 kJ mol-] (5.4 f 0.2 kcal mol-') at temperatures up to 150 "C. The decay at temperatures above 150 "C becomes slower with increasing...... the electron spectrum, half-width, or em& to any significant degree at ambient and higher temperatures. -Th e simplest mechanism capable of describing the kinetic data at various temperatures is the equilibrium e,; + e,; F-? (e22-)aq H2 where the dissociation reaction has a higher activation energy than...

  17. Molecular Dynamics Simulation of Electron-Ion Temperature Relaxation in Dense Hydrogen: Electronic Quantum Effects

    Science.gov (United States)

    Ma, Qian; Dai, Jiayu; Zhao, Zengxiu

    2016-10-01

    The electron-ion temperature relaxation is an important non-equilibrium process in the generation of dense plasmas, particularly in Inertial Confinement Fusion. Classical molecular dynamics considers electrons as point charges, ignoring important quantum processes. We use an Electron Force Field (EFF) method to study the temperature relaxation processes, considering the nuclei as semi-classical point charges and assume electrons as Gaussian wave packets which includes the influences of the size and the radial motion of electrons. At the same time, a Pauli potential is used to describe the electronic exchange effect. At this stage, quantum effects such as exchange, tunneling can be included in this model. We compare the results from EFF and classical molecular dynamics, and find that the relaxation time is much longer with including quantum effects, which can be explained directly by the deference of collision cross sections between quantum particles and classical particles. Further, the final thermal temperature of electron and ion is different compared with classical results that the electron quantum effects cannot be neglected.

  18. Low temperature electron microscopy and electron diffraction of the purple membrane of Halobacterium halobium

    Energy Technology Data Exchange (ETDEWEB)

    Hayward, S.B.

    1978-09-01

    The structure of the purple membrane of Halobacterium halobium was studied by high resolution electron microscopy and electron diffraction, primarily at low temperature. The handedness of the purple membrane diffraction pattern with respect to the cell membrane was determined by electron diffraction of purple membranes adsorbed to polylysine. A new method of preparing frozen specimens was used to preserve the high resolution order of the membranes in the electron microscope. High resolution imaging of glucose-embedded purple membranes at room temperature was used to relate the orientation of the diffraction pattern to the absolute orientation of the structure of the bacteriorhodopsin molecule. The purple membrane's critical dose for electron beam-induced damage was measured at room temperature and at -120/sup 0/C, and was found to be approximately five times greater at -120/sup 0/C. Because of this decrease in radiation sensitivity, imaging of the membrane at low temperature should result in an increased signal-to-noise ratio, and thus better statistical definition of the phases of weak reflections. Higher resolution phases may thus be extracted from images than can be determined by imaging at room temperature. To achieve this end, a high resolution, liquid nitrogen-cooled stage was built for the JEOL-100B. Once the appropriate technology for taking low dose images at very high resolution has been developed, this stage will hopefully be used to determine the high resolution structure of the purple membrane.

  19. Sourcebook on high-temperature electronics and instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Veneruso, A.F. (ed.)

    1981-10-01

    This sourcebook summarizes the high-temperature characteristics of a number of commercially available electronic components and materials required in geothermal well-logging instruments that must operate to 275/sup 0/C. The sourcebook is written to provide a starting place for instrument designers, who need to know the high-temperature electronic products that are available and the design and performance limitations of these products. The electronic component information given includes the standard repertoire of passive devices such as resistors, capacitors, and magnetics; the active devices and integrated circuits sections emphasize silicon semiconductor JFETs and CMOS circuits; and, to complete the electronics, interconnections and packaging of hybrid microelectronics are described. Thermal insulation and refrigeration alternatives are also presented in the sourcebook. Finally, instrument housing materials and high-temperature cables and cablehead connectors are listed. This information was compiled as part of the Geothermal Logging Instrumentation Development Program that Sandia National Laboratories conducted for the US Department of Energy's Divison of Geothermal Energy from 1976 to 1981.

  20. SPECTROSCOPIC DIAGNOSIS IN ELECTRONIC TEMPERATURE OF PHOTOIONISE PLASMAS

    Directory of Open Access Journals (Sweden)

    A. K. Ferouani

    2015-08-01

    Full Text Available In this work, we are interested in the diagnostics in electronic temperature of a plasma purely photoionized, based on the intensity ration of lines emitted by ions helium-like, which have an atomic number Z relatively small. We considered the three lines corresponding to the transitions starting from the excited levels 1s2l towards the fundamental level 1s2 1S0, like appropriate lines. More precisely, the line of resonance w due to the transition 1s2p 1P1 --- 1s2 1 S0, the line of intercombinaison (x,y 1s2p 3 P2,1 --- 1s2 1 S0  as well as prohibited line z due to the transition 1s2 3 S1 --- 1s2 1 S0. These lines appear clearly in the spectra of astrophysical plasmas. As helium-like ion, we chose two, the oxygen O6+ (Z=8 and neon Ne8+ (Z=10. We carried out calculations of the ration of lines intensity G=(z+x+y/w of O6+ and Ne8+  according to the electronic temperature in the range going from 105 to 107 K. We will see that, like it was shown by Gabriel and Jordan in 1969 [1], this intensity ration can be very sensitive to the temperature electronic and practically independent of the electronic density. Consequently, the ration G can be used to determine in a reliable way the electronic temperature of plasma observed [2].

  1. Preliminary Low Temperature Electron Irradiation of Triple Junction Solar Cells

    Science.gov (United States)

    Stella, Paul M.; Mueller, Robert L.; Scrivner, Roy L.; Helizon, Roger S.

    2007-01-01

    For many years extending solar power missions far from the sun has been a challenge not only due to the rapid falloff in solar intensity (intensity varies as inverse square of solar distance) but also because some of the solar cells in an array may exhibit a LILT (low intensity low temperature) degradation that reduces array performance. Recent LILT tests performed on commercial triple junction solar cells have shown that high performance can be obtained at solar distances as great as approx. 5 AU1. As a result, their use for missions going far from the sun has become very attractive. One additional question that remains is whether the radiation damage experienced by solar cells under low temperature conditions will be more severe than when measured during room temperature radiation tests where thermal annealing may take place. This is especially pertinent to missions such as the New Frontiers mission Juno, which will experience cell irradiation from the trapped electron environment at Jupiter. Recent testing2 has shown that low temperature proton irradiation (10 MeV) produces cell degradation results similar to room temperature irradiations and that thermal annealing does not play a factor. Although it is suggestive to propose the same would be observed for low temperature electron irradiations, this has not been verified. JPL has routinely performed radiation testing on commercial solar cells and has also performed LILT testing to characterize cell performance under far sun operating conditions. This research activity was intended to combine the features of both capabilities to investigate the possibility of any room temperature annealing that might influence the measured radiation damage. Although it was not possible to maintain the test cells at a constant low temperature between irradiation and electrical measurements, it was possible to obtain measurements with the cell temperature kept well below room temperature. A fluence of 1E15 1MeV electrons was

  2. Printed circuit board metal powder filters for low electron temperatures

    OpenAIRE

    Müller, F.; Mueller, Filipp; Schouten, Raymond N.; Brauns, M.; Gang, T.; Lim, Wee Han; Lai, Nai Shyan; Dzurak, Andrew S.; van der Wiel, Wilfred Gerard; Zwanenburg, Floris Arnoud

    2013-01-01

    We report the characterisation of printed circuit boards (PCB) metal powder filters and their influence on the effective electron temperature which is as low as 22 mK for a quantum dot in a silicon MOSFET structure in a dilution refrigerator. We investigate the attenuation behaviour (10 MHz–20 GHz) of filter made of four metal powders with a grain size below 50 μm. The room-temperature attenuation of a stainless steel powder filter is more than 80 dB at frequencies above 1.5 GHz. In all metal...

  3. Temperature dependence of electron impact ionization coefficient in bulk silicon

    Science.gov (United States)

    Ahmed, Mowfaq Jalil

    2017-09-01

    This work exhibits a modified procedure to compute the electron impact ionization coefficient of silicon for temperatures between 77 and 800K and electric fields ranging from 70 to 400 kV/cm. The ionization coefficients are computed from the electron momentum distribution function through solving the Boltzmann transport equation (BTE). The arrangement is acquired by joining Legendre polynomial extension with BTE. The resulting BTE is solved by differences-differential method using MATLAB®. Six (X) equivalent ellipsoidal and non-parabolic valleys of the conduction band of silicon are taken into account. Concerning the scattering mechanisms, the interval acoustic scattering, non-polar optical scattering and II scattering are taken into consideration. This investigation showed that the ionization coefficients decrease with increasing temperature. The overall results are in good agreement with previous experimental and theoretical reported data predominantly at high electric fields.

  4. Decoherence Assisted Single Electron Trapping at Room Temperature

    Science.gov (United States)

    Elhalawany, Ahmed; Leuenberger, Michael

    2012-02-01

    In this work, we theoretically investigate electron transport in heterostructure semiconductor nanowire (NW). We develop a new mechanism to trap an electron in a quantum dot (QD) by means of decoherence. There are six QDs in the NW. Bias voltage (Vb) is applied across the NW and gate voltage (Vg) is applied to the auxiliary QD to control single charge tunneling. The single electron dynamics along the NW is calculated by means of the generalized master equation based on the tight binding model taking into account electron LO phonon interaction (ELOPI) and thermal broadening inside the QDs. It is shown that the decoherence, which is in the pico-second (ps) regime, speeds up the trapping of the electron in the central QD with probability of 70% in less than 2 ps. Our results can be used for the implementation of high temperature single photon source (SPS) or single electron transistor (SET). We acknowledge support from NSF (Grant No. ECCS-0725514), DARPA/MTO (Grant No. HR0011-08-1-0059), NSF (Grant No. ECCS-0901784), AFOSR (Grant No. FA9550-09-1-0450), and NSF (Grant No. ECCS-1128597).

  5. Positronium formation at low temperatures: The role of trapped electrons

    DEFF Research Database (Denmark)

    Hirade, T.; Maurer, F.H.J.; Eldrup, Morten Mostgaard

    2000-01-01

    Measurements have been carried out of electron spin densities (by electron spin resonance technique) and positronium (Ps) formation probability as functions of Co-60 gamma-irradiation dose in poly(methyl methacrylate) and linear poly(ethylene) at 77 K. We observe a linear relationship between the...... as a reaction of free positrons with trapped electrons produced by the previously injected positrons. (C) 2000 Elsevier Science Ltd. All rights reserved.......Measurements have been carried out of electron spin densities (by electron spin resonance technique) and positronium (Ps) formation probability as functions of Co-60 gamma-irradiation dose in poly(methyl methacrylate) and linear poly(ethylene) at 77 K. We observe a linear relationship between...... the enhancement of the Ps formation and the density of trapped electrons in both polymers. This clear correlation strongly supports the previous suggestion by the authors that the increase in Ps formation with time (that has been observed at low temperatures for a number of polymers) can be explained...

  6. High Temperature Wireless Communication And Electronics For Harsh Environment Applications

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Beheim, G. M.; Ponchak, G. E.; Chen, L.-Y

    2007-01-01

    In order for future aerospace propulsion systems to meet the increasing requirements for decreased maintenance, improved capability, and increased safety, the inclusion of intelligence into the propulsion system design and operation becomes necessary. These propulsion systems will have to incorporate technology that will monitor propulsion component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This implies the development of sensors, actuators, and electronics, with associated packaging, that will be able to operate under the harsh environments present in an engine. However, given the harsh environments inherent in propulsion systems, the development of engine-compatible electronics and sensors is not straightforward. The ability of a sensor system to operate in a given environment often depends as much on the technologies supporting the sensor element as the element itself. If the supporting technology cannot handle the application, then no matter how good the sensor is itself, the sensor system will fail. An example is high temperature environments where supporting technologies are often not capable of operation in engine conditions. Further, for every sensor going into an engine environment, i.e., for every new piece of hardware that improves the in-situ intelligence of the components, communication wires almost always must follow. The communication wires may be within or between parts, or from the engine to the controller. As more hardware is added, more wires, weight, complexity, and potential for unreliability is also introduced. Thus, wireless communication combined with in-situ processing of data would significantly improve the ability to include sensors into high temperature systems and thus lead toward more intelligent engine systems. NASA Glenn Research Center (GRC) is presently leading the development of electronics, communication systems, and sensors capable of prolonged stable

  7. Electronic Structure of the Bismuth Family of High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Lisa

    2002-03-07

    High temperature superconductivity remains the central intellectual problem in condensed matter physics fifteen years after its discovery. Angle resolved photoemission spectroscopy (ARPES) directly probes the electronic structure, and has played an important role in the field of high temperature superconductors. With the recent advances in sample growth and the photoemission technique, we are able to study the electronic structure in great detail, and address regimes that were previously inaccessible. This thesis work contains systematic photoemission studies of the electronic structure of the Bi-family of high temperature superconductors, which include the single-layer system (Bi2201), the bi-layer system (Bi2212), and the tri-layer system (Bi2223). We show that, unlike conventional BCS superconductors, phase coherence information emerges in the single particle excitation spectrum of high temperature superconductors as the superconducting peak in Bi2212. The universality and various properties of this superconducting peak are studied in various systems. We argue that the origin of the superconducting peak may provide the key to understanding the mechanism of High-Tc superconductors. In addition, we identified a new experimental energy scale in the bilayer material, the anisotropic intra-bilayer coupling energy. For a long time, it was predicted that this energy scale would cause bilayer band splitting. We observe this phenomenon, for the first time, in heavily overdoped Bi2212. This new observation requires the revision of the previous picture of the electronic excitation in the Brillouin zone boundary. As the first ARPES study of a trilayer system, various detailed electronic proper- ties of Bi2223 are examined. We show that, comparing with Bi2212, both superconducting gap and relative superconducting peak intensity become larger in Bi2223, however, the strength of the interlayer coupling within each unit cell is possibly weaker. These results suggest that the

  8. Applications of Silicon Carbide for High Temperature Electronics and Sensors

    Science.gov (United States)

    Shields, Virgil B.

    1995-01-01

    Silicon carbide (SiC) is a wide bandgap material that shows great promise in high-power and high temperature electronics applications because of its high thermal conductivity and high breakdown electrical field. The excellent physical and electronic properties of SiC allows the fabrication of devices that can operate at higher temperatures and power levels than devices produced from either silicon or GaAs. Although modern electronics depends primarily upon silicon based devices, this material is not capable of handling may special requirements. Devices which operate at high speeds, at high power levels and are to be used in extreme environments at high temperatures and high radiation levels need other materials with wider bandgaps than that of silicon. Many space and terrestrial applications also have a requirement for wide bandgap materials. SiC also has great potential for high power and frequency operation due to a high saturated drift velocity. The wide bandgap allows for unique optoelectronic applications, that include blue light emitting diodes and ultraviolet photodetectors. New areas involving gas sensing and telecommunications offer significant promise. Overall, the properties of SiC make it one of the best prospects for extending the capabilities and operational regimes of the current semiconductor device technology.

  9. Temperature dependences in electron-stimulated desorption of neutral europium

    CERN Document Server

    Ageev, V N; Madey, T E

    2003-01-01

    The electron-stimulated desorption (ESD) yield for neutral europium (Eu) atoms from Eu layers adsorbed on oxygen-covered tungsten surfaces has been measured as a function of electron energy, europium coverage and degree of oxidation of tungsten, with an emphasis on effects of substrate temperature. The measurements have been carried out using a time-of-flight method and surface ionization detector. We expand on an earlier report, and compare ESD of multivalent Eu with ESD of monovalent alkali atoms, studied previously. The Eu atom ESD is a complicated function of Eu coverage, electron energy and substrate temperature. In the coverage range 0.05-0.35 monolayer (ML), overlapping resonant-like Eu atom yield peaks are observed at electron energies E sub e of 36 and 41 eV that might be associated with Eu or W shallow core level excitations. Additional resonant-like peaks are seen at E sub e of 54 and 84 eV that are associated with W 5p and 5s level excitations. The Eu atom yield peaks at 36 and 41 eV are seen only...

  10. Temperature dependence of electron density and electron-electron interactions in monolayer epitaxial graphene grown on SiC

    Science.gov (United States)

    Liu, Chieh-Wen; Chuang, Chiashain; Yang, Yanfei; Elmquist, Randolph E.; Ho, Yi-Ju; Lee, Hsin-Yen; Liang, Chi-Te

    2017-06-01

    We report carrier density measurements and electron-electron (e-e) interactions in monolayer epitaxial graphene grown on SiC. The temperature (T)-independent carrier density determined from the Shubnikov-de Haas (SdH) oscillations clearly demonstrates that the observed logarithmic temperature dependence of the Hall slope in our system must be due to e-e interactions. Since the electron density determined from conventional SdH measurements does not depend on e-e interactions based on Kohn’s theorem, SdH experiments appear to be more reliable compared with the classical Hall effect when one studies the T dependence of the carrier density in the low T regime. On the other hand, the logarithmic T dependence of the Hall slope δR xy /δB can be used to probe e-e interactions even when the conventional conductivity method is not applicable due to strong electron-phonon scattering.

  11. Determination of gas temperature in the plasmatron channel according to the known distribution of electronic temperature

    Directory of Open Access Journals (Sweden)

    Gerasimov Alexander V.

    2013-01-01

    Full Text Available An analytical method to calculate the temperature distribution of heavy particles in the channel of the plasma torch on the known distribution of the electronic temperature has been proposed. The results can be useful for a number of model calculations in determining the most effective conditions of gas blowing through the plasma torch with the purpose of heating the heavy component. This approach allows us to understand full details about the heating of cold gas, inpouring the plasma, and to estimate correctly the distribution of the gas temperature inside the channel.

  12. Packaging Technologies for High Temperature Electronics and Sensors

    Science.gov (United States)

    Chen, Liangyu; Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Spry, David J.; Meredith, Roger D.

    2013-01-01

    This paper reviews ceramic substrates and thick-film metallization based packaging technologies in development for 500degC silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chiplevel packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550degC. A 96% alumina based edge connector for a PCB level subsystem interconnection has also been demonstrated recently. The 96% alumina packaging system composed of chip-level packages and PCBs has been tested with high temperature SiC devices at 500degC for over 10,000 hours. In addition to tests in a laboratory environment, a SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE-7 suite to the International Space Station via a Shuttle mission. This packaged SiC transistor was successfully tested in orbit for eighteen months. A spark-plug type sensor package designed for high temperature SiC capacitive pressure sensors was developed. This sensor package combines the high temperature interconnection system with a commercial high temperature high pressure stainless steel seal gland (electrical feed-through). Test results of a packaged high temperature capacitive pressure sensor at 500degC are also discussed. In addition to the pressure sensor package, efforts for packaging high temperature SiC diode-based gas chemical sensors are in process.

  13. Temperature dependence of the electronic structure of semiconductors and insulators

    Energy Technology Data Exchange (ETDEWEB)

    Poncé, S., E-mail: samuel.pon@gmail.com; Gillet, Y.; Laflamme Janssen, J.; Gonze, X. [European Theoretical Spectroscopy Facility and Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Chemin des étoiles 8, bte L07.03.01, B-1348 Louvain-la-neuve (Belgium); Marini, A. [Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km 29.3, CP 10, 00016 Monterotondo Stazione (Italy); Verstraete, M. [European Theoretical Spectroscopy Facility and Physique des matériaux et nanostructures, Université de Liège, Allée du 6 Août 17, B-4000 Liège (Belgium)

    2015-09-14

    The renormalization of electronic eigenenergies due to electron-phonon coupling (temperature dependence and zero-point motion effect) is sizable in many materials with light atoms. This effect, often neglected in ab initio calculations, can be computed using the perturbation-based Allen-Heine-Cardona theory in the adiabatic or non-adiabatic harmonic approximation. After a short description of the recent progresses in this field and a brief overview of the theory, we focus on the issue of phonon wavevector sampling convergence, until now poorly understood. Indeed, the renormalization is obtained numerically through a slowly converging q-point integration. For non-zero Born effective charges, we show that a divergence appears in the electron-phonon matrix elements at q → Γ, leading to a divergence of the adiabatic renormalization at band extrema. This problem is exacerbated by the slow convergence of Born effective charges with electronic wavevector sampling, which leaves residual Born effective charges in ab initio calculations on materials that are physically devoid of such charges. Here, we propose a solution that improves this convergence. However, for materials where Born effective charges are physically non-zero, the divergence of the renormalization indicates a breakdown of the adiabatic harmonic approximation, which we assess here by switching to the non-adiabatic harmonic approximation. Also, we study the convergence behavior of the renormalization and develop reliable extrapolation schemes to obtain the converged results. Finally, the adiabatic and non-adiabatic theories, with corrections for the slow Born effective charge convergence problem (and the associated divergence) are applied to the study of five semiconductors and insulators: α-AlN, β-AlN, BN, diamond, and silicon. For these five materials, we present the zero-point renormalization, temperature dependence, phonon-induced lifetime broadening, and the renormalized electronic band structure.

  14. Heat Transport in Interacting Magnetized Electron Temperature Filaments

    Science.gov (United States)

    Sydora, Richard; Karbashewski, Scott; van Compernolle, Bart; Poulos, Matt; Morales, George

    2017-10-01

    Results are presented from basic heat transport experiments and numerical simulations of multiple magnetized electron temperature filaments in close proximity. This arrangement samples cross-field transport from nonlinear drift-Alfven waves and large scale convective cells. Experiments are performed in the Large Plasma Device (LAPD) at UCLA. The setup consists of three biased CeB6 crystal cathodes that inject low energy electrons (below ionization energy) along a strong magnetic field into a pre-existing large and cold plasma forming 3 electron temperature filaments embedded in a colder plasma, and far from the machine walls. A triangular spatial pattern is chosen for the thermal sources and multiple axial and transverse probe measurements allow for determination of the cross-field mode patterns and axial filament length. We have characterized the spontaneous thermal waves and drift-Alfven waves that develop on an individual filament when a single source is activated. When the 3 sources are activated, and in close proximity, a complex wave pattern emerges due to interference of the various wave modes leading to enhanced cross-field transport and chaotic mixing. Steep thermal gradients develop in a periphery region of the filaments where higher azimuthal wavenumber drift-Alfven modes are excited. Detailed spectral analysis and comparison with nonlinear fluid and gyrokinetic simulations will be reported. Work Supported by NSERC, Canada and NSF-DOE, USA.

  15. Regulation of electron temperature gradient turbulence by zonal flows driven by trapped electron modes

    Energy Technology Data Exchange (ETDEWEB)

    Asahi, Y., E-mail: y.asahi@nr.titech.ac.jp; Tsutsui, H.; Tsuji-Iio, S. [Tokyo Institute of Technology, Tokyo 152-8550 (Japan); Ishizawa, A.; Watanabe, T.-H. [National Institute for Fusion Science, Gifu 509-5292 (Japan)

    2014-05-15

    Turbulent transport caused by electron temperature gradient (ETG) modes was investigated by means of gyrokinetic simulations. It was found that the ETG turbulence can be regulated by meso-scale zonal flows driven by trapped electron modes (TEMs), which are excited with much smaller growth rates than those of ETG modes. The zonal flows of which radial wavelengths are in between the ion and the electron banana widths are not shielded by trapped ions nor electrons, and hence they are effectively driven by the TEMs. It was also shown that an E × B shearing rate of the TEM-driven zonal flows is larger than or comparable to the growth rates of long-wavelength ETG modes and TEMs, which make a main contribution to the turbulent transport before excitation of the zonal flows.

  16. Using IDA to Understand Electron Temperature Structures in High Temperature Discharges in the Madison Symmetric Torus

    Science.gov (United States)

    Reusch, L. M.; Galante, M. E.; den Hartog, D. J.; Franz, P.; Johnson, J. R.; McGarry, M. B.; Stephens, H. D.

    2014-10-01

    The Madison Symmetric Torus (MST) Reversed-Field Pinch is equipped with two independent electron temperature (Te) diagnostics: Thomson scattering (TS) and double-filter soft x-ray (SXR). Both diagnostics are able to measure Te at a rate up to 25 kHz and are in good qualitative agreement in the hot plasma core, where Te > 1 keV. We are able to combine information from both TS and SXR diagnostics along with prior physics knowledge using integrated data analysis techniques (IDA) [R. Fischer and A. Dinklage, Rev. Sci. Instrum. 75, 4237 (2004)] to improve the precision and utility of Te measurements on MST. Using IDA, there is a factor of 4 improvement in the uncertainty of all temperature measurements. We have also implemented a Markov Chain Monte Carlo analysis for analyzing the various temperature structures that MST is capable of sustaining. We have compared emissivity maps and flux surface reconstructions to the electron temperatures from several discharges to characterize the phenomenology of temperature structures in high temperature plasmas in MST. Work supported by US DOE and NSF.

  17. Low latitude electron temperature observed by the CHAMP satellite

    DEFF Research Database (Denmark)

    Stolle, Claudia; Truhlik, V.; Richards, P.

    2012-01-01

    In recent years a growing number of satellite measurements in the ionosphere and thermosphere provide long and continuous data records which enable the investigation of climatological trends and the quantification of regular variations or isolated events. The CHAMP mission provides a valuable base...... Te morning overshoot (MO). Both, data and model revealed an anti-correlation between the equatorial MO amplitude and solar EUV flux at these altitudes. The CHAMP observations also reveal a post sunset electron temperature anomaly in analogy to the equatorial ionisation anomaly at altitudes below 400...

  18. High-Temperature Electronic Materials: Silicon Carbide and Diamond

    Science.gov (United States)

    Willander, Magnus; Friesel, Milan; Wahab, Qamar-Ul; Straumal, Boris

    The physical and chemical properties of wide-band-gap semiconductors make these materials an ideal choice for device fabrication for applications in many different areas, e.g. light emitters, high-temperature and high-power electronics, high-power microwave devices, micro-electromechanical system (MEM) technology, and substrates for semiconductor preparation. These semiconductors have been recognized for several decades as being suitable for these applications, but until recently the low material quality has not allowed the fabrication of high-quality devices. In this chapter, we review the wide-band-gap semiconductors, silicon carbide and diamond.

  19. Electron attachment to POCl3: Measurement and theoretical analysis of rate constants and branching ratios as a function of gas pressure and temperature, electron temperature, and electron energy

    Science.gov (United States)

    Van Doren, Jane M.; Friedman, Jeffery F.; Miller, Thomas M.; Viggiano, A. A.; Denifl, S.; Scheier, P.; Märk, T. D.; Troe, J.

    2006-03-01

    Two experimental techniques, electron swarm and electron beam, have been applied to the problem of electron attachment to POCl3, with results indicating that there is a competition between dissociation of the resonant POCl3-* state and collisional stabilization of the parent anion. In the electron beam experiment at zero electron energy, the fragment ion POCl2- is the dominant ion product of attachment (96%), under single-collision conditions. Small amounts (˜2% each) of POCl3- and Cl - were observed. POCl3- and POCl2- ion products were observed only at zero electron energy, but higher-energy resonances were recorded for POCl-, Cl-, and Cl2- ion products. In the electron swarm experiment, which was carried out in 0.4-7Torr of He buffer gas, the parent anion branching ratio increased significantly with pressure and decreased with temperature. The electron attachment rate constant at 297K was measured to be (2.5±0.6)×10-7cm3s-1, with ion products POCl2- (71%) and POCl3- (29%) in 1Torr of He gas. The rate constant decreased as the electron temperature was increased above 1500K. Theory is developed for (a) the unimolecular dissociation of the nascent POCl3-* and (b) a stepladder collisional stabilization mechanism using the average energy transferred per collision as a parameter. These ideas were then used to model the experimental data. The modeling showed that D0o(Cl -POCl2-) and EA(POCl3) must be the same within ±0.03eV.

  20. Numerical simulation of transient moisture and temperature distribution in polycarbonate and aluminum electronic enclosures

    DEFF Research Database (Denmark)

    Shojaee Nasirabadi, Parizad; Jabbaribehnam, Mirmasoud; Hattel, Jesper Henri

    2016-01-01

    The challenge of developing a reliable electronic product requires huge amounts of resources and knowledge. Temperature and thermal features directly affect the life of electronic products. Furthermore, moisture can be damaging for electronic components. Nowadays, computational fluid dynamics (CF...

  1. Phonons, electronic charge response and electron-phonon interaction in the high-temperature superconductors

    Science.gov (United States)

    Falter, Claus

    2005-01-01

    We investigate the complete phonon dispersion, the phonon induced electronic charge response and the corresponding self-consistent change of the crystal potential an electron feels as a direct measure of the electron-phonon interaction in the high-temperature superconductors within a microscopic model in the framework of linear response theory. Moreover, dielectric and infrared properties are calculated. The experimentally observed strong renormalization of the in-plane oxygen bond-stretching modes which appears upon doping in the high-temperature superconductors is discussed. It is shown that the characteristic softening, indicating a strong nonlocal electron-phonon interaction, is most likely a generic effect of the CuO plane and is driven by a nonlocal coupling of the displaced ions to the localized charge-fluctuations at the Cu and the Oxy ions. At hand of the oxygen bond-stretching modes it is illustrated how lattice-, charge- and spin-degrees of freedom may act synergetically for anisotropic pairing in the high-temperature superconductors. The different behaviour of these modes during the insulator-metal transition via the underdoped phase is calculated and from a comparison of these generic modes in the different phases conclusions about the electronic state are drawn. For the non-cuprate potassium doped high-temperature superconductor Ba-Bi-O also a very strong and anisotropic renormalization of the oxygen bond-stretching modes is predicted. In another investigation c-axis polarized infrared- and Raman-active modes of the HTSC's are calculated in terms of charge fluctuations and anisotropic dipole-fluctuations. Mode assignments discussed controversially in the literature are proposed. Finally, interlayer phonons propagating along the c-axis and their accompanying charge response are investigated. Depending on the strength of the interlayer coupling calculations are performed ranging from the static, adiabatic response regime to the non-adiabatic regime

  2. 500 C Electronic Packaging and Dielectric Materials for High Temperature Applications

    Science.gov (United States)

    Chen, Liang-yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.

    2016-01-01

    High-temperature environment operable sensors and electronics are required for exploring the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high temperature electronics, and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by these high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed. High-temperature environment operable sensors and electronics are required for probing the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and eventual applications of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high electronics and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed.

  3. Nonlocal control of electron temperature in short direct current glow discharge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Demidov, V. I. [Department of Optics and Spectroscopy, St. Petersburg State University, St. Petersburg 199034 (Russian Federation); International Laboratory “Nonlocal Plasma in Nanotechnology and Medicine”, ITMO University, Kronverkskiy pr. 49, St. Petersburg 197101 (Russian Federation); Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506 (United States); Kudryavtsev, A. A.; Stepanova, O. M. [Department of Optics and Spectroscopy, St. Petersburg State University, St. Petersburg 199034 (Russian Federation); Kurlyandskaya, I. P. [International Laboratory “Nonlocal Plasma in Nanotechnology and Medicine”, ITMO University, Kronverkskiy pr. 49, St. Petersburg 197101 (Russian Federation); St. Petersburg University of State Fire Service of EMERCOM RF, Murmansk Branch, Murmansk 183040 (Russian Federation)

    2014-09-15

    To demonstrate controlling the electron temperature in nonlocal plasma, experiments have been performed on a short (without positive column) dc glow discharge with a cold cathode by applying different voltages to the conducting discharge wall. The experiments have been performed for low-pressure noble gas discharges. The applied voltage can modify trapping the energetic electrons emitted from the cathode sheath and arising from the atomic and molecular processes in the plasma within the device volume. This phenomenon results in the energetic electrons heating the slow plasma electrons, which consequently modifies the electron temperature. Furthermore, a numerical model of the discharge has demonstrated the electron temperature modification for the above case.

  4. Temperature dependence of electronic heat capacity in Holstein model of DNA

    Science.gov (United States)

    Fialko, N.; Sobolev, E.; Lakhno, V.

    2016-04-01

    The dynamics of charge migration was modeled to calculate temperature dependencies of its thermodynamic equilibrium values such as energy and electronic heat capacity in homogeneous adenine fragments. The energy varies from nearly polaron one at T ∼ 0 to midpoint of the conductivity band at high temperatures. The peak on the graph of electronic heat capacity is observed at the polaron decay temperature.

  5. Electron energy distribution function, effective electron temperature, and dust charge in the temporal afterglow of a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Denysenko, I. B.; Azarenkov, N. A. [School of Physics and Technology, V. N. Karazin Kharkiv National University, Svobody sq. 4, 61022 Kharkiv (Ukraine); Kersten, H. [Institut für Experimentelle und Angewandte Physik, Leibnizstr. 19, Kiel D-24098 (Germany)

    2016-05-15

    Analytical expressions describing the variation of electron energy distribution function (EEDF) in an afterglow of a plasma are obtained. Especially, the case when the electron energy loss is mainly due to momentum-transfer electron-neutral collisions is considered. The study is carried out for different EEDFs in the steady state, including Maxwellian and Druyvesteyn distributions. The analytical results are not only obtained for the case when the rate for momentum-transfer electron-neutral collisions is independent on electron energy but also for the case when the collisions are a power function of electron energy. Using analytical expressions for the EEDF, the effective electron temperature and charge of the dust particles, which are assumed to be present in plasma, are calculated for different afterglow durations. An analytical expression for the rate describing collection of electrons by dust particles for the case when the rate for momentum-transfer electron-neutral collisions is independent on electron energy is also derived. The EEDF profile and, as a result, the effective electron temperature and dust charge are sufficiently different in the cases when the rate for momentum-transfer electron-neutral collisions is independent on electron energy and when the rate is a power function of electron energy.

  6. The effects of incident electron current density and temperature on the total electron emission yield of polycrystalline CVD diamond

    Energy Technology Data Exchange (ETDEWEB)

    Belhaj, M; Tondu, T; Inguimbert, V [ONERA/DESP 2, Avenue Edouard Belin, 31400 Toulouse Cedex (France); Barroy, Pierre; Silva, Francois; Gicquel, Alix, E-mail: Mohamed.Belhaj@onera.f [LIMHP, Universite Paris 13, CNRS Institut Galilee, 99 Avenue Jean-Baptiste Clement, 93430 Villetaneuse (France)

    2010-04-07

    The effects of temperature and incident electron current density on the total electron emission yield (TEEY) of polycrystalline diamond deposited by the chemical vapour deposition technique (CVD) were investigated at low electron beam fluence. It was found that the TEEY reversibly increases with the temperature and reversibly decreases with the current density. This behaviour is explained on the basis of a dynamic competition between the accumulation of holes (positive space charge), which internally reduces the secondary electron emission, and the thermally activated conductivity that tends to reduce the space charge formation.

  7. Electronic chemical response indexes at finite temperature in the canonical ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Franco-Pérez, Marco, E-mail: qimfranco@hotmail.com, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx; Gázquez, José L., E-mail: qimfranco@hotmail.com, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México, D. F. 09340, México (Mexico); Departamento de Química, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, México, D. F. 07360, México (Mexico); Vela, Alberto, E-mail: qimfranco@hotmail.com, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx [Departamento de Química, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, México, D. F. 07360, México (Mexico)

    2015-07-14

    Assuming that the electronic energy is given by a smooth function of the number of electrons and within the extension of density functional theory to finite temperature, the first and second order chemical reactivity response functions of the Helmholtz free energy with respect to the temperature, the number of electrons, and the external potential are derived. It is found that in all cases related to the first or second derivatives with respect to the number of electrons or the external potential, there is a term given by the average of the corresponding derivative of the electronic energy of each state (ground and excited). For the second derivatives, including those related with the temperature, there is a thermal fluctuation contribution that is zero at zero temperature. Thus, all expressions reduce correctly to their corresponding chemical reactivity expressions at zero temperature and show that, at room temperature, the corrections are very small. When the assumption that the electronic energy is given by a smooth function of the number of electrons is replaced by the straight lines behavior connecting integer values, as required by the ensemble theorem, one needs to introduce directional derivatives in most cases, so that the temperature dependent expressions reduce correctly to their zero temperature counterparts. However, the main result holds, namely, at finite temperature the thermal corrections to the chemical reactivity response functions are very small. Consequently, the present work validates the usage of reactivity indexes calculated at zero temperature to infer chemical behavior at room and even higher temperatures.

  8. Revisiting the definition of the electronic chemical potential, chemical hardness, and softness at finite temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Franco-Pérez, Marco, E-mail: qimfranco@hotmail.com, E-mail: jlgm@xanum.uam.mx [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México D. F. 09340 (Mexico); Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Gázquez, José L., E-mail: qimfranco@hotmail.com, E-mail: jlgm@xanum.uam.mx [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México D. F. 09340 (Mexico); Ayers, Paul W. [Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Vela, Alberto [Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), Av. Instituto Politécnico Nacional 2508, México D. F. 07360 (Mexico)

    2015-10-21

    We extend the definition of the electronic chemical potential (μ{sub e}) and chemical hardness (η{sub e}) to finite temperatures by considering a reactive chemical species as a true open system to the exchange of electrons, working exclusively within the framework of the grand canonical ensemble. As in the zero temperature derivation of these descriptors, the response of a chemical reagent to electron-transfer is determined by the response of the (average) electronic energy of the system, and not by intrinsic thermodynamic properties like the chemical potential of the electron-reservoir which is, in general, different from the electronic chemical potential, μ{sub e}. Although the dependence of the electronic energy on electron number qualitatively resembles the piecewise-continuous straight-line profile for low electronic temperatures (up to ca. 5000 K), the introduction of the temperature as a free variable smoothens this profile, so that derivatives (of all orders) of the average electronic energy with respect to the average electron number exist and can be evaluated analytically. Assuming a three-state ensemble, well-known results for the electronic chemical potential at negative (−I), positive (−A), and zero values of the fractional charge (−(I + A)/2) are recovered. Similarly, in the zero temperature limit, the chemical hardness is formally expressed as a Dirac delta function in the particle number and satisfies the well-known reciprocity relation with the global softness.

  9. Revisiting the definition of the electronic chemical potential, chemical hardness, and softness at finite temperatures

    Science.gov (United States)

    Franco-Pérez, Marco; Gázquez, José L.; Ayers, Paul W.; Vela, Alberto

    2015-10-01

    We extend the definition of the electronic chemical potential (μe) and chemical hardness (ηe) to finite temperatures by considering a reactive chemical species as a true open system to the exchange of electrons, working exclusively within the framework of the grand canonical ensemble. As in the zero temperature derivation of these descriptors, the response of a chemical reagent to electron-transfer is determined by the response of the (average) electronic energy of the system, and not by intrinsic thermodynamic properties like the chemical potential of the electron-reservoir which is, in general, different from the electronic chemical potential, μe. Although the dependence of the electronic energy on electron number qualitatively resembles the piecewise-continuous straight-line profile for low electronic temperatures (up to ca. 5000 K), the introduction of the temperature as a free variable smoothens this profile, so that derivatives (of all orders) of the average electronic energy with respect to the average electron number exist and can be evaluated analytically. Assuming a three-state ensemble, well-known results for the electronic chemical potential at negative (-I), positive (-A), and zero values of the fractional charge (-(I + A)/2) are recovered. Similarly, in the zero temperature limit, the chemical hardness is formally expressed as a Dirac delta function in the particle number and satisfies the well-known reciprocity relation with the global softness.

  10. Micromachined Joule-Thomson coolers for cooling low-temperature detectors and electronics

    NARCIS (Netherlands)

    Ter Brake, H. J.M.; Lerou, P. P.P.M.; Burger, J. F.; Holland, H. J.; Derking, J. H.; Rogalla, H.

    2017-01-01

    The performance of electronic devices can often be improved by lowering the operating temperature resulting in lower noise and larger speed. Also, new phenomena can be applied at low temperatures, as for instance superconductivity. In order to fully exploit lowtemperature electronic devices, the

  11. The dust-acoustic mode in two-temperature electron plasmas with ...

    Indian Academy of Sciences (India)

    the effect will introduce a dissipation on the mode, and the dispersion and the dissipation depend on the temperature ratio and number density ratio of hot and cold electrons. Keywords. Dusty plasmas; dust charging; Maxwellian distribution; two-temperature electron. PACS Nos 52.27.Lw; 52.30.Ex; 52.35.Dm. 1. Introduction.

  12. High-Temperature Electronics: Status and Future Prospects in the 21st Century

    Directory of Open Access Journals (Sweden)

    F. Touati

    2006-12-01

    Full Text Available This paper reviews the state of current electronics and states the drive toward high-temperature electronics. The problems specific to high-temperature effects on conventional electronics and prospects of alternative technologies like silicon-on-insulator, silicon carbide, and diamond are discussed. Improving petroleum recovery from oil wells with hightemperature coverage of downhole electronics, making combustion processes more efficient utilizing embedded electronics, programs for More Electric Aircraft and Vehicles necessitating distributed control systems, and environmental protection issues stress the need to use and develop high-temperature electronics. This makes high-temperature electronics a key-enabling technology in the 21st century. Actual applications using high-temperature electronics are discussed in some details. Also information and guidelines are included about supporting electronics needed to make a complete high-temperature system. The technology has been making major advancements and is expected to account for 20% of the electronics market by 2010. However, many technical challenges have to be solved.

  13. Temperature dependence of electron mobility in N-type organic molecular crystals: Theoretical study

    Science.gov (United States)

    Lin, Lili; Fan, Jianzhong; Jiang, Supu; Wang, Zhongjie; Wang, Chuan-Kui

    2017-11-01

    The temperature dependence of electron mobility in three Fx-TCNQ molecular crystals is studied. The electron mobility calculated based on Marcus charge transfer rate for all three molecules increases, as the temperature becomes high. Nevertheless, the electron mobility calculated based on quantum charge transfer rate shows opposite temperature dependence and indicates bandlike transport mechanism. Similar intrinsic transport properties are obtained for three systems. The different temperature dependence for Fx-TCNQ molecules detected should be induced by different transfer paths or external factors. Our investigation could help one better understand experimental results and provide intuitive view on the transfer mechanism in molecular crystals.

  14. High-temperature behavior of supported graphene: Electron-phonon coupling and substrate-induced doping

    DEFF Research Database (Denmark)

    Ulstrup, Søren; Bianchi, Marco; Guan, Dandan

    2012-01-01

    The temperature-dependent electronic structure and electron-phonon coupling of weakly doped supported graphene is studied by angle-resolved photoemission spectroscopy and ab initio molecular dynamics simulations. The electron-phonon coupling is found to be extremely weak, reaching the lowest valu...

  15. An insertion to eliminate horizontal temperature of high energy electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Burov, A.V. [AN SSSR, Novosibirsk (Russian Federation). Inst. Yadernoj Fiziki; Danilov, V.V. [AN SSSR, Novosibirsk (Russian Federation). Inst. Yadernoj Fiziki

    1998-03-16

    High energy electron cooling with a circulated electron bunch could significantly increase the luminosity of hadron colliders. One of the significant obstacles is high horizontal temperature of electron bunches, suppressing dramatically calculated cooling rates. Recently, a transformation of betatron coordinates and angles for elimination of the radial temperature was found. In our paper, we present a simple scheme to make up this transformation by thin quadruples, drifts and a solenoid.

  16. SSVD Extreme Temperature Electronics for Planned Venus Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to demonstrate the feasibility of a new class of electronic devices called solid state vacuum devices (SSVDTMs), a highly enabling...

  17. SSVD Extreme Temperature Electronics for Planned Venus Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to demonstrate, based on a new class of electronic devices called solid state vacuum devices (SSVD?s), a highly promising enabling...

  18. Temperature Regulating System for Use with an Electron Spin Resonance Spectrometer

    DEFF Research Database (Denmark)

    Fenger, J.

    1965-01-01

    A servosystem that controls the sample temperature in an electron spin resonance spectrometer is described. It is based upon the regulation of the combination of two nitrogen gas flows of different temperatures. The temperature can be preset with an accuracy to about 1 degC between -140 and 100°C...

  19. Time resolved temperature measurement of polymer surface irradiated by mid-IR free electron laser

    Science.gov (United States)

    Araki, Mitsunori; Chiba, Tomoyuki; Oyama, Takahiro; Imai, Takayuki; Tsukiyama, Koichi

    2017-08-01

    We have developed the time-resolved temperature measurement system by using a radiation thermometer FLIR SC620. Temporal temperature profiles of an acrylic resin surface by the irradiation of infrared free electron laser (FEL) pulse were recorded in an 8 ms resolution to measure an instantaneous temperature rise and decay profile. Under the single-shot condition, a peak temperature defined as the temperature jump from the ambient temperature was found to be proportional to the absorbance. Under the multi-shot condition, the temperature accumulation was found to reach a roughly constant value where the supply and release of the heat is balanced.

  20. Electron-Temperature Dependence of the Recombination of NH4(+)((NH3)(sub n) Ions with Electrons

    Science.gov (United States)

    Skrzypkowski, M. P.; Johnson, R.

    1997-01-01

    The two-body recombination of NH4(+)(NH3)(sub 2,3) cluster-ions with electrons has been studied in an afterglow experiment in which the electron temperature T, was elevated by radio-frequency heating from 300 K up to 900 K. The recombination coefficients for the n = 2 and n = 3 cluster ions were found to be equal, alpha(sub 2, sup(2)) = alpha(sub 3, sup(2)) = (4.8 +/- 0.5) x 10(exp - 6)cu cm/s, and to vary with electron temperature as T(sub c, sup -0.65) rather than to be nearly temperature-independent as had been inferred from measurements in microwave-heated plasmas.

  1. Analysis of the enhanced negative correlation between electron density and electron temperature related to earthquakes

    Directory of Open Access Journals (Sweden)

    X. H. Shen

    2015-04-01

    Full Text Available Ionospheric perturbations in plasma parameters have been observed before large earthquakes, but the correlation between different parameters has been less studied in previous research. The present study is focused on the relationship between electron density (Ne and temperature (Te observed by the DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions satellite during local nighttime, in which a positive correlation has been revealed near the equator and a weak correlation at mid- and low latitudes over both hemispheres. Based on this normal background analysis, the negative correlation with the lowest percent in all Ne and Te points is studied before and after large earthquakes at mid- and low latitudes. The multiparameter observations exhibited typical synchronous disturbances before the Chile M8.8 earthquake in 2010 and the Pu'er M6.4 in 2007, and Te varied inversely with Ne over the epicentral areas. Moreover, statistical analysis has been done by selecting the orbits at a distance of 1000 km and ±7 days before and after the global earthquakes. Enhanced negative correlation coefficients lower than −0.5 between Ne and Te are found in 42% of points to be connected with earthquakes. The correlation median values at different seismic levels show a clear decrease with earthquakes larger than 7. Finally, the electric-field-coupling model is discussed; furthermore, a digital simulation has been carried out by SAMI2 (Sami2 is Another Model of the Ionosphere, which illustrates that the external electric field in the ionosphere can strengthen the negative correlation in Ne and Te at a lower latitude relative to the disturbed source due to the effects of the geomagnetic field. Although seismic activity is not the only source to cause the inverse Ne–Te variations, the present results demonstrate one possibly useful tool in seismo-electromagnetic anomaly differentiation, and a comprehensive analysis with multiple

  2. Effect of nonthermal distributed electrons and temperature on phase ...

    Indian Academy of Sciences (India)

    Abstract. Interaction of nonplanar ion-acoustic solitary waves is an important source of infor- mation for studying the nature and characteristics of ion-acoustic solitary waves (IASWs). The head-on collision between two cylindrical/spherical IASWs in un-magnetized plasmas compris- ing of nonthermal distributed electrons ...

  3. Effect of nonthermal distributed electrons and temperature on phase ...

    Indian Academy of Sciences (India)

    Interaction of nonplanar ion-acoustic solitary waves is an important source of information for studying the nature and characteristics of ion-acoustic solitary waves (IASWs). The head-on collision between two cylindrical/spherical IASWs in un-magnetized plasmas comprising of nonthermal distributed electrons and warm ions ...

  4. Phonon, magnon and electron contributions to low temperature ...

    Indian Academy of Sciences (India)

    0.15MnO3 and Er0.8Y0.2MnO3 manganites. Fermion component as the electronic specific heat coefficient is deduced using the band structure calculations. Later on, following double-exchange mechanism the role of magnon is assessed ...

  5. Electron Beam Cured Epoxy Resin Composites for High Temperature Applications

    Science.gov (United States)

    Janke, Christopher J.; Dorsey, George F.; Havens, Stephen J.; Lopata, Vincent J.; Meador, Michael A.

    1997-01-01

    Electron beam curing of Polymer Matrix Composites (PMC's) is a nonthermal, nonautoclave curing process that has been demonstrated to be a cost effective and advantageous alternative to conventional thermal curing. Advantages of electron beam curing include: reduced manufacturing costs; significantly reduced curing times; improvements in part quality and performance; reduced environmental and health concerns; and improvement in material handling. In 1994 a Cooperative Research and Development Agreement (CRADA), sponsored by the Department of Energy Defense Programs and 10 industrial partners, was established to advance the electron beam curing of PMC technology. Over the last several years a significant amount of effort within the CRADA has been devoted to the development and optimization of resin systems and PMCs that match the performance of thermal cured composites. This highly successful materials development effort has resulted in a board family of high performance, electron beam curable cationic epoxy resin systems possessing a wide range of excellent processing and property profiles. Hundreds of resin systems, both toughened and untoughened, offering unlimited formulation and processing flexibility have been developed and evaluated in the CRADA program.

  6. Effects of rf power on electron density and temperature, neutral temperature, and Te fluctuations in an inductively coupled plasma

    Science.gov (United States)

    Camparo, James; Fathi, Gilda

    2009-05-01

    Atomic clocks that fly on global-navigation satellites such as global positioning system (GPS) and Galileo employ light from low-temperature, inductively coupled plasmas (ICPs) for atomic signal generation and detection (i.e., alkali/noble-gas rf-discharge lamps). In this application, the performance of the atomic clock and the capabilities of the navigation system depend sensitively on the stability of the ICP's optical emission. In order to better understand the mechanisms that might lead to instability in these rf-discharge lamps, and hence the satellite atomic clocks, we studied the optical emission from a Rb/Xe ICP as a function of the rf power driving the plasma. Surprisingly, we found that the electron density in the plasma was essentially independent of increases in rf power above its nominal value (i.e., "rf-power gain") and that the electron temperature was only a slowly varying function of rf-power gain. The primary effect of rf power was to increase the temperature of the neutrals in the plasma, which was manifested by an increase in Rb vapor density. Interestingly, we also found evidence for electron temperature fluctuations (i.e., fluctuations in the plasma's high-energy electron content). The variance of these fluctuations scaled inversely with the plasma's mean electron temperature and was consistent with a simple model that assumed that the total electron density in the discharge was independent of rf power. Taken as a whole, our results indicate that the electrons in alkali/noble-gas ICPs are little affected by slight changes in rf power and that the primary effect of such changes is to heat the plasma's neutral species.

  7. Hotspot electron temperature from x-ray continuum measurements on the NIF.

    Science.gov (United States)

    Jarrott, L C; Benedetti, L R; Chen, H; Izumi, N; Khan, S F; Ma, T; Nagel, S R; Landen, O L; Pak, A; Patel, P K; Schneider, M; Scott, H A

    2016-11-01

    We report on measurements of the electron temperature in the hotspot of inertially confined, layered, spherical implosions on the National Ignition Facility using a differential filtering diagnostic. Measurements of the DT and DD ion temperatures using neutron time-of-flight detectors are complicated by the contribution of hot spot motion to the peak width, which produce an apparent temperature higher than the thermal temperature. The electron temperature is not sensitive to this non-thermal velocity and is thus a valuable input to interpreting the stagnated hot spot conditions. Here we show that the current differential filtering diagnostic provides insufficient temperature resolution for the hot spot temperatures of interest. We then propose a new differential filter configuration utilizing larger pinhole size to increase spectral fluence, as well as thicker filtration. This new configuration will improve measurement uncertainty by more than a factor of three, allowing for a more accurate hotspot temperature.

  8. Hotspot electron temperature from x-ray continuum measurements on the NIF

    Science.gov (United States)

    Jarrott, L. C.; Benedetti, L. R.; Chen, H.; Izumi, N.; Khan, S. F.; Ma, T.; Nagel, S. R.; Landen, O. L.; Pak, A.; Patel, P. K.; Schneider, M.; Scott, H. A.

    2016-11-01

    We report on measurements of the electron temperature in the hotspot of inertially confined, layered, spherical implosions on the National Ignition Facility using a differential filtering diagnostic. Measurements of the DT and DD ion temperatures using neutron time-of-flight detectors are complicated by the contribution of hot spot motion to the peak width, which produce an apparent temperature higher than the thermal temperature. The electron temperature is not sensitive to this non-thermal velocity and is thus a valuable input to interpreting the stagnated hot spot conditions. Here we show that the current differential filtering diagnostic provides insufficient temperature resolution for the hot spot temperatures of interest. We then propose a new differential filter configuration utilizing larger pinhole size to increase spectral fluence, as well as thicker filtration. This new configuration will improve measurement uncertainty by more than a factor of three, allowing for a more accurate hotspot temperature.

  9. Encapsulation for smart textile electronics - humidity and temperature sensor.

    Science.gov (United States)

    Larsson, Andreas; Tran, Thanh-Nam; Aasmundtveit, Knut E; Seeberg, Trine M

    2015-01-01

    A combined humidity and temperature sensor was packaged by vacuum casting onto three different types of textiles; cotton, nylon and a waterproof fabric. This was done in order to integrate the sensor in a jacket in a soft and reliable way without changing the sensor performance. A membrane was custom made and integrated into the device to protect the sensor from the environment. The packaged sensors performance was characterized in a climate chamber were the relative humidity and temperature ranged from 25 % to 95 % and -10 °C to 75 °C respectively. The packaged sensors showed insignificant to limited performance degradation.

  10. Dual – Temperature Electron distribution in a Laboratory Plasma ...

    African Journals Online (AJOL)

    The dual-temperature distribution function is used to investigate theoretically the effect of a perturbation of Maxwell distribution function on density ratios in a laboratory plasma produced solely by collision. By assuming a foreknowledge of collision coefficients and cross-sections and an atomic model which sets at two ...

  11. Blocking layer modeling for temperature analysis of electron transfer ...

    African Journals Online (AJOL)

    In this article, we simulate thermal effects on the electron transfer rate from three quantum dots CdSe, CdS and CdTe to three metal oxides TiO2, SnO2 and ZnO2 in the presence of four blocking layers ZnS, ZnO, TiO2 and Al2O3, in a porous quantum dot sensitized solar cell (QDSSC) structure, using Marcus theory.

  12. Electron acoustic wave propagation in a two-electron-temperature plasma layer applied to the problem of hypersonic vehicle communication

    Science.gov (United States)

    Sotnikov, Vladimir; Rose, David

    2008-11-01

    Problem of electromagnetic wave propagation through a plasma sheath surrounding reentry vehicles and vehicles traveling at hypersonic velocities at high altitudes attracts the attention of many researchers. High plasma density inside a plasma sheath around a hypersonic vehicle prevents propagation of electromagnetic waves with the frequencies below the local plasma frequency. This results in RF frequency communication problems. One possibility to mitigate this problem is to induce a two-temperature electron distribution inside the plasma sheath. This allows electron acoustic waves (EAWs) with frequencies well below the local plasma frequency (fp ˜ 9 GHz) to propagate through a plasma layer, enabling communication. A small hot electron population is produced in the sheath by injection of an energetic electron beam in the sheath from the vehicle. Excitation, propagation, and attenuation of EAWs inside a plasma sheath in the presence of an electron beam has been investigated as well as efficiency of transformation of EAWs into electromagnetic waves on the sheath boundary.

  13. Improved Design of Radiation Hardened, Wide-Temperature Analog and Mixed-Signal Electronics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA space exploration missions require the electronics for avionic systems, components, and controllers that are capable of operating in the extreme temperature and...

  14. Electron density and temperature measurements in a laser produced carbon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, S.S.; Bindhu, C.V.; Issac, R.C.; Nampoori, V.P.; Vallabhan, C.P. [Laser Division, International School of Photonics, Cochin University of Science Technology, Cochin 682 022 (India)

    1997-09-01

    Plasma generated by fundamental radiation from a Nd:YAG laser focused onto a graphite target is studied spectroscopically. Measured line profiles of several ionic species were used to infer electron temperature and density at several sections located in front of the target surface. Line intensities of successive ionization states of carbon were used for electron temperature calculations. Stark broadened profiles of singly ionized species have been utilized for electron density measurements. Electron density as well as electron temperature were studied as functions of laser irradiance and time elapsed after the incidence of laser pulse. The validity of the assumption of local thermodynamic equilibrium is discussed in light of the results obtained. {copyright} {ital 1997 American Institute of Physics.}

  15. Rapid method to estimate temperature changes in electronics elements

    Directory of Open Access Journals (Sweden)

    Oborskii G. A., Savel’eva O. S., Shikhireva Yu. V.

    2014-06-01

    Full Text Available Thermal behavior of electronic equipment is the determining factor for performing rapid assessment of the effectiveness of design and operation of the equipment. The assessment method proposed in this article consists in fixation of an infrared video stream from the surface of the device and converting it into a visible flow by means of a thermal imager, splitting it into component colors and their further processing using parabolic transformation. The result of the transformation is the number used as a rapid criterion for estimation of distribution stability of heat in the equipment.

  16. Electron cyclotron emission measurements on JET: Michelson interferometer, new absolute calibration, and determination of electron temperature

    NARCIS (Netherlands)

    Schmuck, S.; Fessey, J.; Gerbaud, T.; Alper, B.; Beurskens, M. N. A.; de la Luna, E.; Sirinelli, A.; Zerbini, M.

    2012-01-01

    At the fusion experiment JET, a Michelson interferometer is used to measure the spectrum of the electron cyclotron emission in the spectral range 70-500 GHz. The interferometer is absolutely calibrated using the hot/cold technique and, in consequence, the spatial profile of the plasma electron

  17. Room temperature 2D electron gas at the (001)-SrTiO3 surface

    Science.gov (United States)

    Gonzalez, Sara; Mathieu, Claire; Copie, Olivier; Feyer, Vitaliy; Schneider, Claus M.; Barrett, Nicholas

    2017-10-01

    Functional oxides and phenomena such as a 2D electron gas (2DEG) at oxide interfaces represent potential technological breakthroughs for post-CMOS electronics. Non-invasive techniques are required to study the surface chemistry and electronic structure, underlying their often unique electrical properties. The sensitivity of photoemission electron microscopy to chemistry and electronic structure makes it an invaluable tool for probing the near surface region of microscopic regions and domains of functional materials. We present results demonstrating a room temperature 2DEG at the (001)-SrTiO3 surface. The 2DEG is switched on by soft X-ray irradiation.

  18. Diverse electron-induced optical emissions from space observatory materials at low temperatures

    Science.gov (United States)

    Dennison, J. R.; Evans Jensen, Amberly; Wilson, Gregory; Dekany, Justin; Bowers, Charles W.; Meloy, Robert

    2013-09-01

    Electron irradiation experiments have investigated the diverse electron-induced optical and electrical signatures observed in ground-based tests of various space observatory materials at low temperature. Three types of light emission were observed: (i); long-duration cathodoluminescence which persisted as long as the electron beam was on (ii) short-duration (fiberglass-epoxy composites, and macroscopically-conductive carbon-loaded polyimides). We conclude that electron-induced optical emissions resulting from interactions between observatory materials and the space environment electron flux can, in specific circumstances, make significant contributions to the stray light background that could possibly adversely affect the performance of space-based observatories.

  19. Electron-trapping probability in natural dosemeters as a function of irradiation temperature

    DEFF Research Database (Denmark)

    Wallinga, J.; Murray, A.S.; Wintle, A.G.

    2002-01-01

    The electron-trapping probability in OSL traps as a function of irradiation temperature is investigated for sedimentary quartz and feldspar. A dependency was found for both minerals; this phenomenon could give rise to errors in dose estimation when the irradiation temperature used in laboratory...... procedures is different from that in the natural environment. No evidence was found for the existence of shallow trap saturation effects that Could give rise to a dose-rate dependency of electron trapping....

  20. Calculating the electron temperature in the lightning channel by continuous spectrum

    Science.gov (United States)

    Xiangcheng, DONG; Jianhong, CHEN; Xiufang, WEI; Ping, YUAN

    2017-12-01

    Based on the theory of plasma continuous radiation, the relationship between the emission intensity of bremsstrahlung and recombination radiation and the plasma electron temperature is obtained. During the development process of a return stroke of ground flash, the intensity of continuous radiation spectrum is separated on the basis of the spectrums with obviously different luminous intensity at two moments. The electron temperature of the lightning discharge channel is obtained through the curve fitting of the continuous spectrum intensity. It is found that electron temperature increases with the increase of wavelength and begins to reduce after the peak. The peak temperature of the two spectra is close to 25 000 K. To be compared with the result of discrete spectrum, the electron temperature is fitted by the O I line and N II line of the spectrum respectively. The comparison shows that the high temperature value is in good agreement with the temperature of the lightning core current channel obtained from the ion line information, and the low temperature at the high band closes to the calculation result of the atomic line, at a low band is lower than the calculation of the atomic line, which reflects the temperature of the luminous channel of the outer corona.

  1. Electron Attachment to POCl3: Measurement and Theoretical Analysis of Rate Constants and Branching Ratios as a Function of Gas Pressure and Temperature, Electron Temperature, and Electron Energy

    National Research Council Canada - National Science Library

    Van Doren, Jane M; Friedman, Jeffrey F; Miller, Thomas M; Viggiano, A. A; Denifl, S; Scheier, P; Mark, T. D; Troe, J

    2006-01-01

    ... of the resonant POCl3 state and collisional stabilization of the parent anion. In the electron beam experiment at zero electron energy, the fragment ion POCl2- is the dominant ion product of attachment (96...

  2. Four ways to determine the electron density in low-temperature plasmas

    NARCIS (Netherlands)

    Meulenbroeks, R.F.G.; Steenbakkers, M.F.M.; Qing, Z.; van de Sanden, M.C.M.; Schram, D.C.

    Four ways to measure the electron density in low-temperature plasmas are presented: Thomson scattering, Langmuir probe, optical-emission spectroscopy, and continuum-radiation analysis. The results of the four methods are compared to each other and discussed. For the electron-density range of

  3. Electron Temperature of the Arc Discharge for Nanomaterial Synthesis

    Science.gov (United States)

    Feurer, Matthew; Vekselman, Vladislav; Startton, Brentley; Raitses, Yevgeny; LaboratoryPlasma Nanosynthesis Team

    2016-10-01

    Since the discovery of different allotropes of carbon in the twentieth century many uses have been found for carbon based nanomaterials such as buckyballs, nanotubes (CNTs), and graphene. An atmospheric pressure arc discharge with graphite electrodes is a promising technique for producing large volumes of these carbon nanostructures. Plasma drives the synthesis providing carbon feedstock by anode ablation and sustaining required composition and temperature of nanomaterial species, as such it is important to characterize the plasma used in this process in order to control the quality and attributes of the resulting carbon nanostructures. In work we present detailed in-situ measurements of spatial distribution of arc plasma parameters obtained with optical emission spectroscopy (OES) diagnostics. The plasma temperature has been determined using Boltzmann diagram method with collisional radiative modeling due to plasma deviation from complete local thermodynamic equilibrium (LTE). Results of these measurements demonstrate a strong correlation between arc plasma and synthesis processes. This work was supported by US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  4. Temperature-dependent electronic decay profiles in CZT: probe of bulk and surface properties

    Science.gov (United States)

    Kessick, Royal; Maupin, Hugh; Tepper, Gary C.; Szeles, Csaba

    2003-01-01

    The electronic performance of CZT-based gamma radiation spectrometers is governed by a synergism of bulk and surface properties. Compensation is used to increase the bulk resistivity of Cd1-xZnxTe (x~0.1), but the same electronic states that are introduced to increase the material resistivity can also trap charge and reduce the carrier lifetime. Electrical and mechanical surface defects introduced during or subsequent to crystal harvesting are also known to interfere with device performance. Using a contactless, pulsed laser microwave cavity perturbation technique, electronic decay profiles were studied in high pressure Bridgman CZT as a function of temperature. The electronic decay profile was found to depend very strongly on temperature and was modeled using a function consisting of two exponential terms with temperature-dependent amplitudes and time constants. The model was used to relate the observed temperature dependent decay kinetics in CZT to specific trap energies. It was found that, at low temperatures, the electronic decay process is dominated by a deep trap with an energy of approximately 0.69 +/- 0.1 eV from the band edge. As the temperature is increased, the charge trapping becomes dominated by a second trap with an energy of approximately 0.60 +/- 0.1 eV from the band edge. Surface damage introduces additional charge traps that significantly alter the decay kinetics particularly at low temperatures.

  5. Comparing the temperature dependence of photosynthetic electron transfer in Chloroflexus aurantiacus and Rhodobactor sphaeroides reaction centers.

    Science.gov (United States)

    Guo, Zhi; Lin, Su; Xin, Yueyong; Wang, Haiyu; Blankenship, Robert E; Woodbury, Neal W

    2011-09-29

    The process of electron transfer from the special pair, P, to the primary electron donor, H(A), in quinone-depleted reaction centers (RCs) of Chloroflexus (Cf.) aurantiacus has been investigated over the temperature range from 10 to 295 K using time-resolved pump-probe spectroscopic techniques. The kinetics of the electron transfer reaction, P* → P(+)H(A)(-), was found to be nonexponential, and the degree of nonexponentiality increased strongly as temperature decreased. The temperature-dependent behavior of electron transfer in Cf. aurantiacus RCs was compared with that of the purple bacterium Rhodobacter (Rb.) sphaeroides . Distinct transitions were found in the temperature-dependent kinetics of both Cf. aurantiacus and Rb. sphaeroides RCs, at around 220 and 160 K, respectively. Structural differences between these two RCs, which may be associated with those differences, are discussed. It is suggested that weaker protein-cofactor hydrogen bonding, stronger electrostatic interactions at the protein surface, and larger solvent interactions likely contribute to the higher transition temperature in Cf. aurantiacus RCs temperature-dependent kinetics compared with that of Rb. sphaeroides RCs. The reaction-diffusion model provides an accurate description for the room-temperature electron transfer kinetics in Cf. aurantiacus RCs with no free parameters, using coupling and reorganization energy values previously determined for Rb. sphaeroides , along with an experimental measure of protein conformational diffusion dynamics and an experimental literature value of the free energy gap between P* and P(+)H(A)(-). © 2011 American Chemical Society

  6. Temperature control of electronic components using fluidised beds

    Science.gov (United States)

    Bean, R.

    1981-06-01

    This paper introduces the concept of fluidized bed cooling applied to electronic systems. It is shown that, when fluidized with air, the cooling efficiency and the pumping power are principally dependent on particle characteristics; in particular the mean diameter should not be less than 100 microns. Design rules are developed and applied to two types of fluid-bed systems: (1) a small bed of alumina particles cooling single devices of 40 W power dissipation where the fluidizing air is the main heat transporting medium, and (2) a large bed of cenospheres with a simple integrated heat exchanger to extract more than 1 KW of heat from complete sub-rack assemblies of up to 40 printed circuit boards, for a fluidizing power of about 3 W. The effect of board spacing on the overall thermal performance is considered, and a minimum spacing of 10-20 mm is shown to be required to maintain cooling efficiency.

  7. Variations in erosive wear of metallic materials with temperature via the electron work function

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaochen; Yu, Bin [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 (Canada); Yan, X.G. [School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi (China); Li, D.Y., E-mail: dongyang.li@ualberta.ca [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 (Canada); School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi (China)

    2016-04-01

    Mechanical properties of metals are intrinsically determined by their electron behavior, which is largely reflected by the electron work function (EWF or φ). Since the work function varies with temperature, the dependence of material properties on temperature could be predicted via variations in work function with temperature. Combining a hardness – φ relationship and the dependence of work function on temperature, a temperature-dependent model for predicting solid-particle erosion is proposed. Erosive wear losses of copper, nickel, and carbon steel as sample materials were measured at different temperatures. Results of the tests are consistent with the theoretical prediction. This study demonstrates a promising parameter, electron work function, for looking into fundamental aspects of wear phenomena, which would also help develop alternative methodologies for material design. - Highlights: • Metallic materials' wear resistance is influenced by temperature. • Electron work function (EWF) intrinsically determines materials' wear resistance. • An EWF-based temperature-dependent solid-particle erosion model is proposed.

  8. Electron transport and room temperature single-electron charging in 10 nm scale PtC nanostructures formed by electron beam induced deposition

    Science.gov (United States)

    Durrani, Z. A. K.; Jones, M. E.; Wang, C.; Scotuzzi, M.; Hagen, C. W.

    2017-11-01

    Nanostructures of platinum-carbon nanocomposite material have been formed by electron-beam induced deposition. These consist of nanodots and nanowires with a minimum size ∼20 nm, integrated within ∼100 nm nanogap n-type silicon-on-insulator transistor structures. The nanodot transistors use ∼20 nm Pt/C nanodots, tunnel-coupled to Pt/C nanowire electrodes, bridging the Si nanogaps. Room-temperature single-electron transistor operation has been measured, and single-electron current oscillations and ‘Coulomb diamonds’ observed. In nanowire transistors, the temperature dependence from 290 to 8 K suggests that the current is a combination of thermally activated and tunnelling transport of carriers across potential barriers along the current path, and that the Pt/C is p-type at low temperature.

  9. Modelling an Ar-Hg fluorescent lamp plasma using a 3 electron-temperature approximation

    Energy Technology Data Exchange (ETDEWEB)

    Hartgers, A.; Mullen, J.A.M. van der [Department of Physics, Eindhoven University of Technology, Eindhoven (Netherlands)]. E-mail: j.j.a.m.v.d.mullen@tue.nl

    2001-06-21

    By using a 3 electron-group model to describe the deviation from a Maxwellian electron energy distribution, a collisional radiative model describing a low temperature Ar-Hg plasma is greatly improved. Previously, the ionisation mechanisms of such plasmas, commonly used in fluorescent lamps, could not be satisfactory modelled. Where using a Maxwellian electron energy distribution showed the production of argon ions to be dominating over the production of mercury ions, the 3 temperature approximation yields a mercury ionization rate which is 30 times larger than the argon ionization rate. (author)

  10. Phonon and electron temperature and non-Fourier heat transport in thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Carlomagno, I.; Cimmelli, V.A. [Department of Mathematics, Computer Science and Economics, University of Basilicata, Campus Macchia Romana, Viale dell' Ateneo Lucano 10, 85100 Potenza (Italy); Sellitto, A. [Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (Italy)

    2017-04-15

    We present a thermodynamic model of heat conductor which allows for different temperatures of phonons and electrons. This model is applied to calculate the steady-state radial temperature profile in a circular thin layer. The compatibility of the obtained temperature profiles with the second law of thermodynamics is investigated in view of the requirement of positive entropy production and of a nonlocal constitutive equation for the entropy flux.

  11. High-Temperature Air-Cooled Power Electronics Thermal Design: Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Waye, Scot [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    Power electronics that use high-temperature devices pose a challenge for thermal management. With the devices running at higher temperatures and having a smaller footprint, the heat fluxes increase from previous power electronic designs. This project overview presents an approach to examine and design thermal management strategies through cooling technologies to keep devices within temperature limits, dissipate the heat generated by the devices and protect electrical interconnects and other components for inverter, converter, and charger applications. This analysis, validation, and demonstration intends to take a multi-scale approach over the device, module, and system levels to reduce size, weight, and cost.

  12. Two-dimensional time resolved measurements of the electron temperature in MST

    Energy Technology Data Exchange (ETDEWEB)

    Franz, P. [Consorzio RFX, Euratom-ENEA Assocation, Padova (Italy); Bonomo, F. [Consorzio RFX, Euratom-ENEA Assocation, Padova (Italy); Univ. di Padova, Padova, (Italy). Dipart. di Fisica; Marrelli, L. [Consorzio RFX, Euratom-ENEA Assocation, Padova (Italy); Martin, P. [Consorzio RFX, Euratom-ENEA Assocation, Padova (Italy); Univ. di Padova, Padova, (Italy). Dipart. di Fisica; Piovesan, P. [Consorzio RFX, Euratom-ENEA Assocation, Padova (Italy); Spizzo, G. [Consorzio RFX, Euratom-ENEA Assocation, Padova (Italy); Chapman, B. E. [Univ. of Wisconsin-Madison, Madison, WI (United States). Dept. of Physics; Craig, D. [Univ. of Wisconsin-Madison, Madison, WI (United States). Dept. of Physics and Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas; Den Hartog, D. J. [Univ. of Wisconsin-Madison, Madison, WI (United States). Dept. of Physics and Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas; Goetz, J. A. [Univ. of Wisconsin-Madison, Madison, WI (United States). Dept. of Physics; O’Connell, R. [Univ. of Wisconsin-Madison, Madison, WI (United States). Dept. of Physics; Prager, S. C. [Univ. of Wisconsin-Madison, Madison, WI (United States). Dept. of Physics and Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas; Reyfman, M. [Univ. of Wisconsin-Madison, Madison, WI (United States). Dept. of Physics; Sarff, J. S. [Univ. of Wisconsin-Madison, Madison, WI (United States). Dept. of Physics and Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas

    2006-01-01

    Two-dimensional (2D) time resolved images of the electron temperature profile in the core of the MST reversed field pinchplasma are presented. The measurements have been obtained with a soft x-ray (SXR) tomographic diagnostic comprised of four cameras, each with a multichannel photodiode array, viewing the plasma from different poloidal angles, with a total of 74 channels. The 2D electron temperature profile is estimated by simultaneously measuring the SXR emissivity through different beryllium foils using the standard double-filter technique. With these methods, fast temperature variation in the core of the plasma (up to 100 kHz) can be analyzed.

  13. Validity of Eucken formula and Stokes’ viscosity relation in high-temperature electronically excited gases

    Energy Technology Data Exchange (ETDEWEB)

    Istomin, V. A.; Kustova, E. V.; Mekhonoshina, M. A. [Department of Mathematics and Mechanics, Saint Petersburg State University, 198504 Universitetskiy pr., 28, Saint Petersburg (Russian Federation)

    2014-12-09

    In the present work we evaluate the accuracy of the Eucken formula and Stokes’ viscosity relation in high temperature non-equilibrium air species with electronic excitation. The thermal conductivity coefficient calculated using the exact kinetic theory methods is compared with that obtained applying approximate formulas in the temperature range 200–20000 K. A modification of the Eucken formula providing a good agreement with exact calculations is proposed. It is shown that the Stokes viscosity relation is not valid in electronically excited monoatomic gases at temperatures higher than 2000 K.

  14. Microstructural stability of wrought, laser and electron beam glazed NARloy-Z alloy at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, J.; Jerman, G.; Bhat, B.; Poorman, R.

    1993-11-01

    Microstructure of wrought, laser, and electron-beam glazed NARloy-Z(Cu-3 wt.% Ag-0.5 wt.% Zr) was investigated for thermal stability at elevated temperatures (539 to 760 C (1,100 to 1,400 F)) up to 94 h. Optical and scanning electron microscopy and electron probe microanalysis were employed for studying microstructural evolution and kinetics of precipitation. Grain boundary precipitation and precipitate free zones (PFZ`s) were observed in the wrought alloy after exposing to temperatures above 605 C (1,120 F). The fine-grained microstructure observed in the laser and electron-beam glazed NARloy-Z was much more stable at elevated temperatures. Microstructural changes correlated well with hardness measurements.

  15. Translational, rotational, vibrational and electron temperatures of a gliding arc discharge.

    Science.gov (United States)

    Zhu, Jiajian; Ehn, Andreas; Gao, Jinlong; Kong, Chengdong; Aldén, Marcus; Salewski, Mirko; Leipold, Frank; Kusano, Yukihiro; Li, Zhongshan

    2017-08-21

    Translational, rotational, vibrational and electron temperatures of a gliding arc discharge in atmospheric pressure air were experimentally investigated using in situ, non-intrusive optical diagnostic techniques. The gliding arc discharge was driven by a 35 kHz alternating current (AC) power source and operated in a glow-type regime. The two-dimensional distribution of the translational temperature (Tt) of the gliding arc discharge was determined using planar laser-induced Rayleigh scattering. The rotational and vibrational temperatures were obtained by simulating the experimental spectra. The OH A-X (0, 0) band was used to simulate the rotational temperature (Tr) of the gliding arc discharge whereas the NO A-X (1, 0) and (0, 1) bands were used to determine its vibrational temperature (Tv). The instantaneous reduced electric field strength E/N was obtained by simultaneously measuring the instantaneous length of the plasma column, the discharge voltage and the translational temperature, from which the electron temperature (Te) of the gliding arc discharge was estimated. The uncertainties of the translational, rotational, vibrational and electron temperatures were analyzed. The relations of these four different temperatures (Te>Tv>Tr >Tt) suggest a high-degree non-equilibrium state of the gliding arc discharge.

  16. Sensitivity of Inferred Electron Temperature from X-ray Emission of NIF Cryogenic DT Implosions

    Energy Technology Data Exchange (ETDEWEB)

    Klem, Michael [Univ. of Dallas, Irving, TX (United States)

    2015-05-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory seeks to achieve thermonuclear ignition through inertial confinement fusion. The accurate assessment of the performance of each implosion experiment is a crucial step. Here we report on work to derive a reliable electron temperature for the cryogenic deuteriumtritium implosions completed on the NIF using the xray signal from the Ross filter diagnostic. These Xrays are dominated by bremsstrahlung emission. By fitting the xray signal measured through each of the individual Ross filters, the source bremsstrahlung spectrum can be inferred, and an electron temperature of the implosion hot spot inferred. Currently, each filter is weighted equally in this analysis. We present work quantifying the errors with such a technique and the results from investigating the contribution of each filter to the overall accuracy of the temperature inference. Using this research, we also compare the inferred electron temperature against other measured implosion quantities to develop a more complete understanding of the hotspot physics.

  17. Packaging Technology Developed for High-Temperature SiC Sensors and Electronics

    Science.gov (United States)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Lei, Jih-Fen

    2000-01-01

    A ceramic- and thick-film-materials-based prototype electronic package designed for silicon carbide (SiC) high-temperature sensors and electronics has been successfully tested at 500 C in an oxygen-containing air environment for 500 hours. This package was designed, fabricated, assembled, and electronically evaluated at the NASA Glenn Research Center at Lewis Field with an in-house-fabricated SiC semiconductor test chip. High-temperature electronics and sensors are necessary for harsh-environment space and aeronautical applications, such as space missions to the inner solar system or the emission control electronics and sensors in aeronautical engines. Single-crystal SiC has such excellent physical and chemical material properties that SiC-based semiconductor electronics can operate at temperatures over 600 C, which is significantly higher than the limit for Si-based semiconductor devices. SiC semiconductor chips were recently demonstrated to be operable at temperatures as high as 600 C, but only in the probe station environment because suitable packaging technology for sensors and electronics at temperatures of 500 C and beyond did not exist. Thus, packaging technology for SiC-based sensors and electronics is immediately needed for both application and commercialization of high-temperature SiC sensors and electronics. In response to this need, researchers at Glenn designed, fabricated, and assembled a prototype electronic package for high-temperature electronics, sensors, and microelectromechanical systems (MEMS) using aluminum nitride (AlN) substrate and gold (Au) thick-film materials. This prototype package successfully survived a soak test at 500 C in air for 500 hours. Packaging components tested included thick-film high-temperature metallization, internal wire bonds, external lead bonds, and a SiC diode chip die-attachment. Each test loop, which was composed of thick-film printed wire, wire bond, and lead bond was subjected to a 50-mA direct current for 250

  18. Experimental observation of electron-temperature-gradient turbulence in a laboratory plasma.

    Science.gov (United States)

    Mattoo, S K; Singh, S K; Awasthi, L M; Singh, R; Kaw, P K

    2012-06-22

    We report the observation of electron-temperature-gradient (ETG) driven turbulence in the laboratory plasma of a large volume plasma device. The removal of unutilized primary ionizing and nonthermal electrons from uniform density plasma and the imposition and control of the gradient in the electron temperature (T[Symbol: see text] T(e)) are all achieved by placing a large (2 m diameter) magnetic electron energy filter in the middle of the device. In the dressed plasma, the observed ETG turbulence in the lower hybrid range of frequencies ν = (1-80 kHz) is characterized by a broadband with a power law. The mean wave number k perpendicular ρ(e) = (0.1-0.2) satisfies the condition k perpendicular ρ(e) ≤ 1, where ρ(e) is the electron Larmor radius.

  19. High-temperature sensitivity and its acclimation for photosynthetic electron reactions of desert succulents

    Energy Technology Data Exchange (ETDEWEB)

    Chetti, M.B.; Nobel, P.S. (Univ. of California, Los Angeles (USA))

    1987-08-01

    Photosynthetic electron reactions of succulent plants from hot deserts are able to tolerate extremely high temperatures and to acclimate to seasonal increase in temperature. In this study, we report the influence of relatively long, in vivo, high-temperature treatments on electron transport reactions for two desert succulents, Agave deserti and Opuntia ficus-indica, species which can tolerate 60{degree}C. Whole chain electron transport averaged 3{degree}C more sensitive to a 1-hour high-temperature treatment than did PSII (Photosystem II) which in turn averaged 3{degree}C more sensitive than did PSI. For plants maintained at day/night air temperatures of 30{degree}C/20{degree}C, treatment at 50{degree}C cause these reactions to be inhibited an average of 39% during the first hour, an additional 31% during the next 4 hours, and 100% by 12 hours. Upon shifting the plants from 30{degree}C/20{degree}C to 45{degree}C/35{degree}C, the high temperatures where activity was inhibited 50% increased 3{degree}C to 8{degree}C for the three electron transport reactions, the half-times for acclimation averaging 5 days for A. deserti and 4 days for O. ficus-indica. For the 45{degree}C/35{degree}C plants treated at 60{degree}C for 1 hour, PSI activity was reduced by 54% for A. deserti and 36% for O. ficus-indica. Acclimation leads to a toleration of very high temperatures without substantial disruption of electron transport for these desert succulents, facilitating their survival in hot deserts. Indeed, the electron transport reactions of these species tolerate longer periods at higher temperatures than any other vascular plants so far reported.

  20. Molecular anion formation in 9,10-anthraquinone: Dependence of the electron detachment rate on temperature and incident electron energy

    Science.gov (United States)

    Pshenichnyuk, Stanislav A.; Vorob'ev, Alexander S.; Asfandiarov, Nail L.; Modelli, Alberto

    2010-06-01

    Attachment of low-energy electrons to gas phase 9,10-anthraquinone (AQ) was observed with electron transmission (ET) spectroscopy, and interpreted with the support of quantum chemical calculations. The ET spectrum displays three shape resonances at 0.45, 0.7, and 2.2 eV, associated with temporary electron capture into empty π∗ molecular orbitals of AQ, the first two anion states being stable. According to TD-B3LYP calculations, the first π-π ∗ core-excited resonance lies at about 1.8 eV, although no experimental evidence for this anion state was found. The long-lived parent molecular anion [AQ]- was observed by means of Electron Attachment Spectroscopy (EAS) using two different mass spectrometers and also by measuring the total anion current at the collision chamber walls. The molecular anion current shows maxima at zero energy, around 0.6 eV and at 1.8 eV. Association of these maxima with the corresponding resonant anion states is discussed. The experimentally measured electron detachment times from [AQ]- as a function of the incident electron energy and the temperature of the target molecule show a pronounced change of slope around 1.5 eV, regardless of the temperature. This unexpected behavior can be qualitatively reproduced within the framework of a multiexponential approach which describes the electron detachment event in terms of a redistribution of the anion excess energy, regardless of the initial mechanism of temporary anion formation.

  1. Laser Thomson scattering measurements of electron temperature and density in a hall-effect plasma

    Science.gov (United States)

    Washeleski, Robert L.

    Hall-effect thrusters (HETs) are compact electric propulsion devices with high specific impulse used for a variety of space propulsion applications. HET technology is well developed but the electron properties in the discharge are not completely understood, mainly due to the difficulty involved in performing accurate measurements in the discharge. Measurements of electron temperature and density have been performed using electrostatic probes, but presence of the probes can significantly disrupt thruster operation, and thus alter the electron temperature and density. While fast-probe studies have expanded understanding of HET discharges, a non-invasive method of measuring the electron temperature and density in the plasma is highly desirable. An alternative to electrostatic probes is a non-perturbing laser diagnostic technique that measures Thomson scattering from the plasma. Thomson scattering is the process by which photons are elastically scattered from the free electrons in a plasma. Since the electrons have thermal energy their motion causes a Doppler shift in the scattered photons that is proportional to their velocity. Like electrostatic probes, laser Thomson scattering (LTS) can be used to determine the temperature and density of free electrons in the plasma. Since Thomson scattering measures the electron velocity distribution function directly no assumptions of the plasma conditions are required, allowing accurate measurements in anisotropic and non-Maxwellian plasmas. LTS requires a complicated measurement apparatus, but has the potential to provide accurate, non-perturbing measurements of electron temperature and density in HET discharges. In order to assess the feasibility of LTS diagnostics on HETs non-invasive measurements of electron temperature and density in the near-field plume of a Hall thruster were performed using a custom built laser Thomson scattering diagnostic. Laser measurements were processed using a maximum likelihood estimation method

  2. Electron temperature measurement of Ba photoplasma by using an electrostatic probe

    Science.gov (United States)

    Furtlehner, J. P.; Blanchet, A.; Leloutre, B.

    1994-09-01

    We study experimentally and theoretically the time evolution of the electron temperature Te of a photoionized barium vapor which expands freely into a vacuum. Using the gas dynamics fundamental equations and assuming the plasma expansion to be adiabatic, a model is built and analytical expressions are derived for the electron and ion temperatures, velocity, and density time evolutions. The experimental apparatus consists essentially of a vacuum chamber, a Joule effect furnace which produces the Ba vapor. A cylindrical plasma created between the two vertical plates is produced by two-step ionization of the vapor. The electron temperature is measured with a cylindrical electrostatic probe biased by a slowly variable voltage ramp. The current-voltage curve is built step by step with a boxcar averager. The results involve different parameter variations like vapor density or sampling time of the probe current for studying the time evolution of electron temperature. Finally, it was found that the adiabatic cooling model agrees well with the experimental electron temperature evolution, but was limited below 0.025 eV by the Langmuir probe accuracy.

  3. Characteristics of temporal evolution of particle density and electron temperature in helicon discharge

    Science.gov (United States)

    Yang, Xiong; Cheng, Mousen; Guo, Dawei; Wang, Moge; Li, Xiaokang

    2017-10-01

    On the basis of considering electrochemical reactions and collision relations in detail, a direct numerical simulation model of a helicon plasma discharge with three-dimensional two-fluid equations was employed to study the characteristics of the temporal evolution of particle density and electron temperature. With the assumption of weak ionization, the Maxwell equations coupled with the plasma parameters were directly solved in the whole computational domain. All of the partial differential equations were solved by the finite element solver in COMSOL MultiphysicsTM with a fully coupled method. In this work, the numerical cases were calculated with an Ar working medium and a Shoji-type antenna. The numerical results indicate that there exist two distinct modes of temporal evolution of the electron and ground atom density, which can be explained by the ion pumping effect. The evolution of the electron temperature is controlled by two schemes: electromagnetic wave heating and particle collision cooling. The high RF power results in a high peak electron temperature while the high gas pressure leads to a low steady temperature. In addition, an OES experiment using nine Ar I lines was conducted using a modified CR model to verify the validity of the results by simulation, showing that the trends of temporal evolution of electron density and temperature are well consistent with the numerically simulated ones.

  4. Consequences of Part Temperature Variability in Electron Beam Melting of Ti-6Al-4V

    Science.gov (United States)

    Fisher, Brian A.; Mireles, Jorge; Ridwan, Shakerur; Wicker, Ryan B.; Beuth, Jack

    2017-12-01

    To facilitate adoption of Ti-6Al-4V (Ti64) parts produced via additive manufacturing (AM), the ability to ensure part quality is critical. Measuring temperatures is an important component of part quality monitoring in all direct metal AM processes. In this work, surface temperatures were monitored using a custom infrared camera system attached to an Arcam electron beam melting (EBM®) machine. These temperatures were analyzed to understand their possible effect on solidification microstructure based on solidification cooling rates extracted from finite element simulations. Complicated thermal histories were seen during part builds, and temperature changes occurring during typical Ti64 builds may be large enough to affect solidification microstructure. There is, however, enough time between fusion of individual layers for spatial temperature variations (i.e., hot spots) to dissipate. This means that an effective thermal control strategy for EBM® can be based on average measured surface temperatures, ignoring temperature variability.

  5. Consequences of Part Temperature Variability in Electron Beam Melting of Ti-6Al-4V

    Science.gov (United States)

    Fisher, Brian A.; Mireles, Jorge; Ridwan, Shakerur; Wicker, Ryan B.; Beuth, Jack

    2017-09-01

    To facilitate adoption of Ti-6Al-4V (Ti64) parts produced via additive manufacturing (AM), the ability to ensure part quality is critical. Measuring temperatures is an important component of part quality monitoring in all direct metal AM processes. In this work, surface temperatures were monitored using a custom infrared camera system attached to an Arcam electron beam melting (EBM®) machine. These temperatures were analyzed to understand their possible effect on solidification microstructure based on solidification cooling rates extracted from finite element simulations. Complicated thermal histories were seen during part builds, and temperature changes occurring during typical Ti64 builds may be large enough to affect solidification microstructure. There is, however, enough time between fusion of individual layers for spatial temperature variations (i.e., hot spots) to dissipate. This means that an effective thermal control strategy for EBM® can be based on average measured surface temperatures, ignoring temperature variability.

  6. The effect of sample matrix on electron density, electron temperature and gas temperature in the argon inductively coupled plasma examined by Thomson and Rayleigh scattering

    Science.gov (United States)

    Hanselman, D. S.; Sesi, N. N.; Huang, M.; Hieftje, G. M.

    1994-05-01

    Spatially-resolved electron temperature ( Te), electron number density ( ne) and gas-kinetic temperature ( Tg) maps of the inductively coupled plasma (ICP) have been obtained for two central-gas flow rates, four heights above the load coil (ALC) and in the presence and absence of interferants with a wide range of first ionization potentials. The radial profiles demonstrate how the directly measured fundamental parameters neTe and Tg can be significantly enhanced and/or depressed with added interferent, depending upon plasma operating conditions and observation region. In general, the magnitude of ne, and Te change is found to be an inverse function of interferent ionization potential; furthermore, ne enhancements in the central channel might be the result of electron redistribution from high to low electron density regions rather than from ionization of the matrix. The large measured increases in ne cannot be attributed solely to matrix ionization, especially when measurement uncertainties and the probable over-estimation in calculated ne, enhancements are taken into account. Changes in ne and Te have been correlated with axial Ca atom and ion emission profiles. A brief review of the mechanisms most likely involved in interelement matrix interferences is given within the context of the present study. This article is an electronic publication in Spectrochimica Acta Electronica (SAE), the electronic section of Spectrochimica Acta Part B (SAB). The hardcopy text is accompanied by a disk for the Macintosh computer with data files stored in ASCII format. The main article discusses the scientific aspects of the subject and gives an interpretation of the results contained in the data files.

  7. Effects of electron-ion temperature equilibration on inertial confinement fusion implosions.

    Science.gov (United States)

    Xu, Barry; Hu, S X

    2011-07-01

    The electron-ion temperature relaxation essentially affects both the laser absorption in coronal plasmas and the hot-spot formation in inertial confinement fusion (ICF). It has recently been reexamined for plasma conditions closely relevant to ICF implosions using either classical molecular-dynamics simulations or analytical methods. To explore the electron-ion temperature equilibration effects on ICF implosion performance, we have examined two Coulomb logarithm models by implementing them into our hydrocodes, and we have carried out hydrosimulations for ICF implosions. Compared to the Lee-More model that is currently used in our standard hydrocodes, the two models predict substantial differences in laser absorption, coronal temperatures, and neutron yields for ICF implosions at the OMEGA Laser Facility [Boehly et al. Opt. Commun. 133, 495 (1997)]. Such effects on the triple-picket direct-drive design at the National Ignition Facility (NIF) have also been explored. Based on the validity of the two models, we have proposed a combined model of the electron-ion temperature-relaxation rate for the overall ICF plasma conditions. The hydrosimulations using the combined model for OMEGA implosions have shown ∼6% more laser absorption, ∼6%-15% higher coronal temperatures, and ∼10% more neutron yield, when compared to the Lee-More model prediction. It is also noticed that the gain for the NIF direct-drive design can be varied by ∼10% among the different electron-ion temperature-relaxation models.

  8. Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach

    Science.gov (United States)

    Yong, WANG; Cong, LI; Jielin, SHI; Xingwei, WU; Hongbin, DING

    2017-11-01

    As advanced linear plasma sources, cascaded arc plasma devices have been used to generate steady plasma with high electron density, high particle flux and low electron temperature. To measure electron density and electron temperature of the plasma device accurately, a laser Thomson scattering (LTS) system, which is generally recognized as the most precise plasma diagnostic method, has been established in our lab in Dalian University of Technology. The electron density has been measured successfully in the region of 4.5 × 1019 m-3 to 7.1 × 1020 m-3 and electron temperature in the region of 0.18 eV to 0.58 eV. For comparison, an optical emission spectroscopy (OES) system was established as well. The results showed that the electron excitation temperature (configuration temperature) measured by OES is significantly higher than the electron temperature (kinetic electron temperature) measured by LTS by up to 40% in the given discharge conditions. The results indicate that the cascaded arc plasma is recombining plasma and it is not in local thermodynamic equilibrium (LTE). This leads to significant error using OES when characterizing the electron temperature in a non-LTE plasma.

  9. Integrated electronic transport and thermometry at milliKelvin temperatures and in strong magnetic fields.

    Science.gov (United States)

    Samkharadze, N; Kumar, A; Manfra, M J; Pfeiffer, L N; West, K W; Csáthy, G A

    2011-05-01

    We fabricated a He-3 immersion cell for transport measurements of semiconductor nanostructures at ultra low temperatures and in strong magnetic fields. We have a new scheme of field-independent thermometry based on quartz tuning fork Helium-3 viscometry which monitors the local temperature of the sample's environment in real time. The operation and measurement circuitry of the quartz viscometer is described in detail. We provide evidence that the temperature of two-dimensional electron gas confined to a GaAs quantum well follows the temperature of the quartz viscometer down to 4 mK.

  10. Ion and electron sheath characteristics in a low density and low temperature plasma

    Science.gov (United States)

    Borgohain, Binita; Bailung, H.

    2017-11-01

    Ion and electron sheath characteristics in a low electron temperature (Te ˜ 0.25-0.40 eV) and density (ne ˜ 106-107 cm-3) plasma are described. The plasma is produced in the experimental volume through diffusion from a hot cathode discharge plasma source by using a magnetic filter. The electron energy distribution function in the experimental plasma volume is measured to be a narrow Maxwellian distribution indicating the absence of primary and energetic electrons which are decoupled in the source side by the cusp magnetic field near the filter. An emissive probe is used to measure the sheath potential profiles in front of a metal plate biased negative and positive with respect to the plasma potential. For a positive plate bias, the electron density decreases considerably and the electron sheath expands with a longer presheath region compared to the ion sheath. The sheath potential structures are found to follow the Debye sheath model.

  11. Electron density and temperature diagnostics in laser-induced hydrogen plasma

    Science.gov (United States)

    Gautam, G.; Parigger, C. G.

    2017-02-01

    Laser-induced optical breakdown is achieved by using Q-switched, Nd:YAG radiation focused into ultra-high-purity (UHP) hydrogen gas at a pressure of 1.08 ± 0.03 × 105 Pa inside a cell. The plasma emission spectra are dispersed by a Czerny-Turner type spectrometer and detected with an intensified charge-coupled device (ICCD). Stark-broadened hydrogen Balmer series H α and Hβ line profiles are used as a spectroscopic tool for the determination of electron density and excitation temperature. Spatial variation of electron density and temperature at 0.40 µs are extracted from the recorded intensities of H α and Hβ lines. Temporal variations of electron density and excitation temperature are also presented for the time delay range of 0.15 µs to 1.4 µs.

  12. Calibration of a two-color soft x-ray diagnostic for electron temperature measurement

    Energy Technology Data Exchange (ETDEWEB)

    Reusch, L. M., E-mail: lmmcguire@wisc.edu; Den Hartog, D. J.; Goetz, J.; McGarry, M. B. [University of Wisconsin - Madison, Madison, Wisconsin 53703 (United States); Franz, P. [Consorzio RFX, Padova (Italy); Stephens, H. D. [University of Wisconsin - Madison, Madison, Wisconsin 53703 (United States); Pierce College Fort Steilacoom, Lakewood, Washington 98498 (United States)

    2016-11-15

    The two-color soft x-ray (SXR) tomography diagnostic on the Madison Symmetric Torus is capable of making electron temperature measurements via the double-filter technique; however, there has been a 15% systematic discrepancy between the SXR double-filter (SXR{sub DF}) temperature and Thomson scattering (TS) temperature. Here we discuss calibration of the Be filters used in the SXR{sub DF} measurement using empirical measurements of the transmission function versus energy at the BESSY II electron storage ring, electron microprobe analysis of filter contaminants, and measurement of the effective density. The calibration does not account for the TS and SXR{sub DF} discrepancy, and evidence from experiments indicates that this discrepancy is due to physics missing from the SXR{sub DF} analysis rather than instrumentation effects.

  13. Measurement of turbulent electron temperature fluctuations on the ASDEX Upgrade tokamak using correlated electron cyclotron emission

    Energy Technology Data Exchange (ETDEWEB)

    Freethy, S. J., E-mail: simon.freethy@ipp.mpg.de [Max Planck Institute for Plasma Physics, 85748 Garching (Germany); Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Conway, G. D.; Happel, T.; Köhn, A. [Max Planck Institute for Plasma Physics, 85748 Garching (Germany); Classen, I.; Vanovac, B. [FOM Institute DIFFER, 5612 AJ Eindhoven (Netherlands); Creely, A. J.; White, A. E. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2016-11-15

    Turbulent temperature fluctuations are measured on the ASDEX Upgrade tokamak using pairs of closely spaced, narrow-band heterodyne radiometer channels and a standard correlation technique. The pre-detection spacing and bandwidth of the radiometer channel pairs is chosen such that they are physically separated less than a turbulent correlation length, but do not overlap. The radiometer has 4 fixed filter frequency channels and two tunable filter channels for added flexibility in the measurement position. Relative temperature fluctuation amplitudes are observed in a helium plasma to be δT/T = (0.76 ± 0.02)%, (0.67 ± 0.02)%, and (0.59 ± 0.03)% at normalised toroidal flux radius of ρ{sub tor} = 0.82, 0.75, and 0.68, respectively.

  14. Visualisation of high temperature magnetisation states in magnetite grains using off-axis electron holography

    Science.gov (United States)

    Almeida, T. P.; Muxworthy, A. R.; Kovács, A.; Williams, W.; Dunin-Borkowski, R. E.

    2015-10-01

    The production of a synthetic basalt comprising Fe3O4 grains (∼ 50 nm to ∼ 500 nm), via a glass ceramic method, has been confirmed using transmission electron microscopy and X-ray diffractometry. Off-axis electron holography combined with in situ heating allowed for the visualisation of non-uniform vortex states present in saturation remanent structures, and their variation approaching the Curie temperature; determined separately by bulk thermomagnetic measurements.

  15. High Temperature Pt/Alumina Co-Fired System for 500 C Electronic Packaging Applications

    Science.gov (United States)

    Chen, Liang-Yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.

    2015-01-01

    Gold thick-film metallization and 96 alumina substrate based prototype packaging system developed for 500C SiC electronics and sensors is briefly reviewed, the needs of improvement are discussed. A high temperature co-fired alumina material system based packaging system composed of 32-pin chip-level package and printed circuit board is discussed for packaging 500C SiC electronics and sensors.

  16. Radiation and temperature effects on electronic components investigated under the CSTI high capacity power project

    Science.gov (United States)

    Schwarze, Gene E.; Niedra, Janis M.; Frasca, Albert J.; Wieserman, William R.

    1993-01-01

    The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the Civilian Space Technology Initiative (CSTI) high capacity power project are presented: (1) neutron, gamma ray, and temperature effects on power semiconductor switches, (2) temperature and frequency effects on soft magnetic materials; and (3) temperature effects on rare earth permanent magnets.

  17. Two-Temperature Model of non-equilibrium electron relaxation: A Review

    OpenAIRE

    Singh, Navinder

    2007-01-01

    The present paper is a review of the phenomena related to non-equilibrium electron relaxation in bulk and nano-scale metallic samples. The workable Two-Temperature Model (TTM) based on Boltzmann-Bloch-Peierls (BBP) kinetic equation has been applied to study the ultra-fast(femto-second) electronic relaxation in various metallic systems. The advent of new ultra-fast (femto-second) laser technology and pump-probe spectroscopy has produced wealth of new results for micro and nano-scale electronic...

  18. Electron temperature from x-ray continuum measurements on the NIF

    Science.gov (United States)

    Jarrott, Leonard; Bachmann, Benjamin; Benedetti, Robin; Izumi, Nobuhiko; Khan, Shahab; Landen, Otto; Ma, Tammy; Nagel, Sabrina; Pak, Arthur; Patel, Prav; Schneider, Marilyn; Springer, Paul; LLNL Collaboration

    2017-10-01

    We report on measurements of the electron temperature within the hot spot of inertially confined, layered implosions on the NIF using a titanium differential filtering x-ray diagnostic. The electron temperature from x-ray emission is insensitive to non-thermal velocity flows as is the case with ion temperature measurements and is thus a critical parameter in interpreting stagnated hot spot conditions. Here we discuss measurements using titanium filters ranging from 10 μm to 1mm in thickness with a sensitivity band of 10-30keV coupled with penumbral pinholes. The use of larger pinhole diameters increases x-ray fluence improving sensitivity of photon energies with minimal attenuation from the compressed fuel/shell. This diagnostic has been fielded on a series of cryogenic shots with DT ion temperatures ranging from 2-5keV. Analysis of the measurement will be presented along with a comparison against simulated electron temperatures and x-ray spectra as well as a comparison to DT ion temperature measurements. This work was performed under the auspices of U.S. DoE by LLNL under Contract No. DE-AC52-07NA27344.

  19. A density-temperature description of the outer electron radiation belt during geomagnetic storms

    Energy Technology Data Exchange (ETDEWEB)

    Borovsky, Joseph E [Los Alamos National Laboratory; Cayton, Thomas E [Los Alamos National Laboratory; Denton, Michael H [LANCASTER UNIV

    2009-01-01

    Electron flux measurements from 7 satellites in geosynchronous orbit from 1990-2007 are fit with relativistic bi-Maxwellians, yielding a number density n and temperature T description of the outer electron radiation belt. For 54.5 spacecraft years of measurements the median value ofn is 3.7x10-4 cm-3 and the median value ofT is 142 keY. General statistical properties of n, T, and the 1.1-1.5 MeV flux J are investigated, including local-time and solar-cycle dependencies. Using superposed-epoch analysis triggered on storm onset, the evolution of the outer electron radiation belt through high-speed-steam-driven storms is investigated. The number density decay during the calm before the storm is seen, relativistic-electron dropouts and recoveries from dropout are investigated, and the heating of the outer electron radiation belt during storms is examined. Using four different triggers (SSCs, southward-IMF CME sheaths, southward-IMF magnetic clouds, and minimum Dst), CME-driven storms are analyzed with superposed-epoch techniques. For CME-driven storms an absence of a density decay prior to storm onset is found, the compression of the outer electron radiation belt at time of SSC is analyzed, the number-density increase and temperature decrease during storm main phase is seen, and the increase in density and temperature during storm recovery phase is observed. Differences are found between the density-temperature and the flux descriptions, with more information for analysis being available in the density-temperature description.

  20. Corrosion reliability of electronics: the influence of solder temperature on the decomposition of flux activators

    DEFF Research Database (Denmark)

    Piotrowska, Kamila; Conseil, Helene; Jellesen, Morten Stendahl

    2014-01-01

    This manuscript gives a brief overview on the studies of thermal decomposition of solder flux systems commonly used in the electronic industry. Changes in chemical composition and structural changes of the flux components have been investigated as a function of temperature. Six weak organic acids...

  1. The dust-acoustic mode in two-temperature electron plasmas with ...

    Indian Academy of Sciences (India)

    ... charging fluctuations, the dispersion peculiarities of dust-acoustic waves are studied based on dust fluid dynamics. The present results show that the effect will introduce a dissipation on the mode, and the dispersion and the dissipation depend on the temperature ratio and number density ratio of hot and cold electrons.

  2. Solar flux variation of the electron temperature morning overshoot in the equatorial F region

    DEFF Research Database (Denmark)

    Stolle, Claudia; Liu, H.; Truhlik, V.

    2011-01-01

    Using 8 years of CHAMP satellite observations of the equatorial electron temperature, T-e, we investigate its behavior during the morning overshoot and at ionospheric altitudes below 450 km including its variation with solar activity. The morning T-e has a maximum at the dip equator and decreases...

  3. Study on the correlation between plasma electron temperature and penetration depth in laser welding processes

    NARCIS (Netherlands)

    Sibillano, T.; Ancona, A.; Rizzi, D.; Saludes Rodil, S.; Rodriguez Nieto, J.; Konuk, A.R.; Aarts, Ronald G.K.M.; Huis in 't Veld, Bert

    2010-01-01

    The plasma electron temperature has been estimated starting from the spectroscopic analysis of the optical emission of the laser-generated plasma plume during quite diverse stainless steel welding procedures (c.w. CO2 and pulsed Nd:YAG). Although the optical emissions present different spectral

  4. Study on the correlation between plasma electron temperature and penetration depth in laser welding processes

    NARCIS (Netherlands)

    Sibillano, T.; Ancona, A.; Rizzi, D.; Saludes Rodil, S.; Rodriguez Nieto, J.; Konuk, A.R.; Aarts, R.G.K.M.; Huis in 't Veld, A.J.

    2010-01-01

    The plasma electron temperature has been estimated starting from the spectroscopic analysis of the optical emission of the lasergenerated plasma plume during quite diverse stainless steel welding procedures (c.w. CO2 and pulsed Nd:YAG). Although the optical emissions present different spectral

  5. Elements of solid state electronics based on soi-structures and si whiskers for cryogenic temperatures

    Directory of Open Access Journals (Sweden)

    Druzhinin A. A.

    2014-12-01

    Full Text Available The paper presents the study results of electrical properties of polycrystalline silicon films in silicon-on-insulator structures and Si whiskers in the temperature range of 4,2—70 K obtained by impedance measurements in the frequency range from 10 Hz to 250 kHz and the possibility of their use in solid-state electronics, functioning at cryogenic temperatures. Characteristics of samples obtained with impedance measurements allow to predict certain specifications of reactive elements of solid state electronics based on polycrystalline and single crystalline silicon, operable at low temperatures. Using the established dependencies, separate elements in the form of solid-state electronics capacitive and inductive elements as well as a combined system in an oscillatory circuit, operable at cryogenic temperatures, have been suggested. The features of developed system depend on the structure of samples and their doping level, which allows to change the required parameters of the elements of solid state electronics in a wide range.

  6. Room temperature Compton profiles of conduction electrons in α-Ga ...

    Indian Academy of Sciences (India)

    Room temperature Compton profiles of momentum distribution of conduction electrons in -Ga metal are calculated in band model. For this purpose, the ... N C Mohapatra2. Department of Physics, Chikiti Mahavidyalaya, Chikiti 761 010, India; Department of Physics, Berhampur University, Berhampur 760 007, India ...

  7. A Technique for Temperature and Ultimate Load Calculations of Thin Targets in a Pulsed Electron Beam

    DEFF Research Database (Denmark)

    Hansen, Jørgen-Walther; Lundsager, Per

    1979-01-01

    A technique is presented for the calculation of transient temperature distributions and ultimate load of rotationally symmetric thin membranes with uniform lateral load and exposed to a pulsed electron beam from a linear accelerator. Heat transfer by conduction is considered the only transfer...

  8. High time resolution reconstruction of electron temperature profiles with a neural network in C-2U

    Science.gov (United States)

    Player, Gabriel; Magee, Richard; Trask, Erik; Korepanov, Sergey; Clary, Ryan; Tri Alpha Energy Team

    2017-10-01

    One of the most important parameters governing fast ion dynamics in a plasma is the electron temperature, as the fast ion-electron collision rate goes as νei Te3 / 2 . Unfortunately, the electron temperature is difficult to directly measure-methods relying on high-powered laser pulses or fragile probes lead to limited time resolution or measurements restricted to the edge. In order to rectify the lack of time resolution on the Thomson scattering data in the core, a type of learning algorithm, specifically a neural network, was implemented. This network uses 3 hidden layers to correlate information from nearly 250 signals, including magnetics, interferometers, and several arrays of bolometers, with Thomson scattering data over the entire C-2U database, totalling nearly 20,000 samples. The network uses the Levenberg-Marquardt algorithm with Bayesian regularization to learn from the large number of samples and inputs how to accurately reconstruct the entire electron temperature time history at a resolution of 500 kHz, a huge improvement over the 2 time points per shot provided by Thomson scattering. These results can be used in many different types of analysis and plasma characterization-in this work, we use the network to quantify electron heating.

  9. Effect of electronic contribution on temperature-dependent thermal transport of antimony telluride thin film

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won-Yong; Park, No-Won [Department of Physics, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Hong, Ji-Eun [Department of Materials Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Yoon, Soon-Gil, E-mail: sgyoon@cnu.ac.kr [Department of Materials Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Koh, Jung-Hyuk [School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lee, Sang-Kwon, E-mail: sangkwonlee@cau.ac.kr [Department of Physics, Chung-Ang University, Seoul 156-756 (Korea, Republic of)

    2015-01-25

    Highlights: • We investigated thermal transport of the antimony telluride thin films. • The contribution of the electronic thermal conductivity increased up to ∼77% at 300 K. • We theoretically analyze and explain the high contribution of electronic component. - Abstract: We study the theoretical and experimental characteristics of thermal transport of 100 nm and 500 nm-thick antimony telluride (Sb{sub 2}Te{sub 3}) thin films prepared by radio frequency magnetron sputtering. The thermal conductivity was measured at temperatures ranging from 20 to 300 K, using four-point-probe 3-ω method. Out-of-plane thermal conductivity of the Sb{sub 2}Te{sub 3} thin film was much lesser in comparison to the bulk material in the entire temperature range, confirming that the phonon- and electron-boundary scattering are enhanced in thin films. Moreover, we found that the contribution of the electronic thermal conductivity (κ{sub e}) in total thermal conductivity (κ) linearly increased up to ∼77% at 300 K with increasing temperature. We theoretically analyze and explain the high contribution of electronic component of thermal conductivity towards the total thermal conductivity of the film by a modified Callaway model. Further, we find the theoretical model predictions to correspond well with the experimental results.

  10. The low-temperature method for study of coniferous tissues in the environmental scanning electron microscope.

    Science.gov (United States)

    Neděla, Vilém; Tihlaříková, Eva; Hřib, Jiří

    2015-01-01

    The use of non-standard low-temperature conditions in environmental scanning electron microscopy might be promising for the observation of coniferous tissues in their native state. This study is aimed to analyse and evaluate the method based on the principle of low-temperature sample stabilization. We demonstrate that the upper mucous layer is sublimed and a microstructure of the sample surface can be observed with higher resolution at lower gas pressure conditions, thanks to a low-temperature method. An influence of the low-temperature method on sample stability was also studied. The results indicate that high-moisture conditions are not suitable for this method and often cause the collapse of samples. The potential improvement of stability to beam damage has been demonstrated by long-time observation at different operation parameters. We finally show high applicability of the low-temperature method on different types of conifers and Oxalis acetosella. © 2014 Wiley Periodicals, Inc.

  11. Translational, rotational, vibrational and electron temperatures of a gliding arc discharge

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Ehn, Andreas; Gao, Jinlong

    2017-01-01

    Translational, rotational, vibrational and electron temperatures of a gliding arc discharge in atmospheric pressure air were experimentally investigated using in situ, non-intrusive optical diagnostic techniques. The gliding arc discharge was driven by a 35 kHz alternating current (AC) power source...... and operated in a glow-type regime. The two-dimensional distribution of the translational temperature (Tt) of the gliding arc discharge was determined using planar laser-induced Rayleigh scattering. The rotational and vibrational temperatures were obtained by simulating the experimental spectra. The OH A–X (0......, 0) band was used to simulate the rotational temperature (Tr) of the gliding arc discharge whereas the NO A–X (1, 0) and (0, 1) bands were used to determine its vibrational temperature (Tv). The instantaneous reduced electric field strength E/N was obtained by simultaneously measuring...

  12. Discontinuous variation of the surface plasmon linewidth of small sodium nanoparticles with electron temperatures

    Science.gov (United States)

    Wang, Guozhong; Zheng, Yizhuang; Zi, Jian

    2015-05-01

    We found a novel behavior of the surface plasmon linewidth of small sodium nanoparticles, which monotonically decreases with the electron temperature and bears a sudden drop or rise at high electron temperatures. Our calculation is based on the model constructed by splitting the total Hamiltonian of all valence electrons of a metallic nanoparticle into two sub-Hamiltonians and the coupling between them. This novel behavior of the surface plasma resonance linewidth can be verified by pump-probe femtosecond spectroscopy experiments and is able to take place for metallic particles with sizes less than few nanometers. In addition, we propose that it is the size uncertainty of small nanoparticles that yields the intrinsic linewidth of the surface plasmon resonance, which is supported by experimental and theoretical results of nanoparticles Na8 and Na20.

  13. Temperature dependence of the surface plasmon resonance in small electron gas fragments, self consistent field approximation

    Science.gov (United States)

    Fasolato, C.; Sacchetti, F.; Tozzi, P.; Petrillo, C.

    2017-07-01

    The temperature dependence of the surface plasmon resonance in small metal spheres is calculated using an electron gas model within the Random Phase Approximation. The calculation is mainly devoted to the study of spheres with diameters up to at least 10 nm, where quantum effects can still be relevant and a simple plasmon pole approximation for the dielectric function is no more appropriate. We find a possible blue shift of the plasmon resonance position when the temperature is increased while keeping the size of the sphere fixed. The blue shift is appreciable only when the temperature is a large fraction of the Fermi energy. These results provide a guide for pump and probe experiments with a high time resolution, tailored to study the excited electron system before thermalisation with the lattice takes place.

  14. Temperature dependent electron paramagnetic resonance study on magnetoelectric YCrO3

    Science.gov (United States)

    Mall, Ashish Kumar; Dixit, Ambesh; Garg, Ashish; Gupta, Rajeev

    2017-12-01

    We report temperature dependent electron paramagnetic resonance (EPR) studies on polycrystalline YCrO3 samples at X-band (9.46 GHz) in the temperature range of 120 K–298 K. The EPR spectra exhibit a single broad line across the whole temperature range, attributed to Cr3+ ions. The variation of EPR spectra parameters (line width, integrated intensity, and g-factor) as a function of temperature was analyzed to understand the nature of spin-dynamics in the paramagnetic region of YCrO3. A peak in the g-factor suggests the presence of a new phase within the paramagnetic state at an intermediate point of temperature T IP ~ 230 K, attributed to the onset of short range canted antiferromagnetic correlations in the material much above 140 K, Néel temperature (T N) of YCrO3. The EPR intensity increases with a decrease in temperature up to T N due to the renormalization of the magnetic moments arising from the appearance of canted antiferromagnetic correlations. Further, temperature dependent dielectric measurements also exhibit an anomaly at ~230 K suggesting the presence of magnetodielectric coupling in YCrO3, with a possibility towards a relatively high temperature magnetodielectric system.

  15. On the electron temperature downstream of the solar wind termination shock

    Directory of Open Access Journals (Sweden)

    I. V. Chashei

    2013-07-01

    Full Text Available In this paper we study the temperatures of electrons convected with the solar wind to large solar distances and finally transported over the solar wind termination shock. Nearly nothing, unless at high energies in the cosmic ray regime, is known about the thermodynamical behaviour of these distant electrons from in~situ plasma observations. Hence it is tacitly assumed these electrons, due to their adiabatic behaviour and vanishing heat conduction or energization processes, have rapidly cooled off to very low temperatures once they eventually arrive at the solar wind termination shock (at about 100 AU. In this paper we show that such electrons, however, at their passage over the termination shock due to the shock–electric field action undergo an over-adiabatic heating and therefore appear on the downstream side as a substantially heated plasma species. Looking quantitatively into this heating process we find that solar wind electrons achieve temperatures of the order of 2–4 × 106 K downstream of the termination shock, depending on the upstream solar wind bulk velocity and the shock compression ratio. Hence these electrons therewith play an important dynamical role in structuring this shock and determining the downstream plasma flow properties. Furthermore, they present an additional ionization source for incoming neutral interstellar hydrogen and excite X-ray emission. They also behave similar to cosmic ray electrons and extend to some limited region upstream of the shock of the order of 0.1 AU by spatial diffusion and thereby also modify the upstream solar wind properties.

  16. A harsh environment wireless pressure sensing solution utilizing high temperature electronics.

    Science.gov (United States)

    Yang, Jie

    2013-02-27

    Pressure measurement under harsh environments, especially at high temperatures, is of great interest to many industries. The applicability of current pressure sensing technologies in extreme environments is limited by the embedded electronics which cannot survive beyond 300 °C ambient temperature as of today. In this paper, a pressure signal processing and wireless transmission module based on the cutting-edge Silicon Carbide (SiC) devices is designed and developed, for a commercial piezoresistive MEMS pressure sensor from Kulite Semiconductor Products, Inc. Equipped with this advanced high-temperature SiC electronics, not only the sensor head, but the entire pressure sensor suite is capable of operating at 450 °C. The addition of wireless functionality also makes the pressure sensor more flexible in harsh environments by eliminating the costly and fragile cable connections. The proposed approach was verified through prototype fabrication and high temperature bench testing from room temperature up to 450 °C. This novel high-temperature pressure sensing technology can be applied in real-time health monitoring of many systems involving harsh environments, such as military and commercial turbine engines.

  17. A Harsh Environment Wireless Pressure Sensing Solution Utilizing High Temperature Electronics

    Science.gov (United States)

    Yang, Jie

    2013-01-01

    Pressure measurement under harsh environments, especially at high temperatures, is of great interest to many industries. The applicability of current pressure sensing technologies in extreme environments is limited by the embedded electronics which cannot survive beyond 300 °C ambient temperature as of today. In this paper, a pressure signal processing and wireless transmission module based on the cutting-edge Silicon Carbide (SiC) devices is designed and developed, for a commercial piezoresistive MEMS pressure sensor from Kulite Semiconductor Products, Inc. Equipped with this advanced high-temperature SiC electronics, not only the sensor head, but the entire pressure sensor suite is capable of operating at 450 °C. The addition of wireless functionality also makes the pressure sensor more flexible in harsh environments by eliminating the costly and fragile cable connections. The proposed approach was verified through prototype fabrication and high temperature bench testing from room temperature up to 450 °C. This novel high-temperature pressure sensing technology can be applied in real-time health monitoring of many systems involving harsh environments, such as military and commercial turbine engines. PMID:23447006

  18. Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor.

    Science.gov (United States)

    Liu, Defa; Zhang, Wenhao; Mou, Daixiang; He, Junfeng; Ou, Yun-Bo; Wang, Qing-Yan; Li, Zhi; Wang, Lili; Zhao, Lin; He, Shaolong; Peng, Yingying; Liu, Xu; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Hu, Jiangping; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X J

    2012-07-03

    The recent discovery of high-temperature superconductivity in iron-based compounds has attracted much attention. How to further increase the superconducting transition temperature (T(c)) and how to understand the superconductivity mechanism are two prominent issues facing the current study of iron-based superconductors. The latest report of high-T(c) superconductivity in a single-layer FeSe is therefore both surprising and significant. Here we present investigations of the electronic structure and superconducting gap of the single-layer FeSe superconductor. Its Fermi surface is distinct from other iron-based superconductors, consisting only of electron-like pockets near the zone corner without indication of any Fermi surface around the zone centre. Nearly isotropic superconducting gap is observed in this strictly two-dimensional system. The temperature dependence of the superconducting gap gives a transition temperature T(c)~ 55 K. These results have established a clear case that such a simple electronic structure is compatible with high-T(c) superconductivity in iron-based superconductors.

  19. Investigations on electronic, Fermi surface, Curie temperature and optical properties of Zr2CoAl

    Science.gov (United States)

    Wei, Xiao-Ping; Sun, Weiwei; Zhang, Ya-Ling; Sun, Xiao-Wei; Song, Ting; Wang, Ting; Zhang, Jia-Liang; Su, Hao; Deng, Jian-Bo; Zhu, Xing-Feng

    2017-03-01

    Using full-potential local-orbital minimum-basis along with spin-polarized relativistic Korringa-Kohn-Rostoker methods, we study the electronic, Fermi surface, Curie temperature and optical properties of Zr2CoAl alloy. The alloy with Li2AgSb and Cu2MnAl structures are compared in terms of magnetic properties, and the electronic structures in two structures are also discussed. According to the calculated electronic states, it finds that the Zr2CoAl with Li2AgSb structure is half-metallic ferromagnet with an integral magnetic moment of 2.00μB , meanwhile we also notice the d-d and p-d hybridizations are responsible for the formation of minority-spin gap, furthermore, the fat-bands are applied to discuss the mixture between d and p electrons in the vicinity of the Fermi level. The Fermi surfaces related to the valence bands are constructed, and it is found that the spin-up valence bands 26, 27 and 28 across the Fermi energy dominate the nature of electrons. By mapping the system onto a Heisenberg Hamiltonian, we obtain the exchange coupling parameters, and observe that the Zr(A)-Co(C) and Zr(A)-Zr(B) interactions provide a major contribution for exchange interactions. Based on the calculated exchange coupling parameters, the Curie temperature is estimated to be 287.86 K at equilibrium, and also the dependence of Curie temperature on lattice constant related to the tunable Curie temperature in Zr2CoAl alloy is studied. Finally, we report the optical properties of Zr2CoAl alloy, and present the photon energy dependence of the absorption, the optical conductivity and the loss function.

  20. Electron emission yield and charging process of alkali-silicate glass submitted to an electron beam under the varying temperature condition

    Energy Technology Data Exchange (ETDEWEB)

    Belhaj, M., E-mail: Mohamed.Belhaj@onera.fr [ONERA - French Aerospace Lab, F-31055 Toulouse (France); Tondu, T.; Inguimbert, V. [ONERA - French Aerospace Lab, F-31055 Toulouse (France); Elsafi, B.; Fakhfakh, S. [LaMaCop, Faculte des Sciences de SFAX, Route Soukra Km 3, BP 1171, C.P 3000 Sfax (Tunisia); Jbara, O., E-mail: omar.jbara@univ-reims.fr [GRESPI/Materiaux Fonctionnels, UFR Sciences, BP 1039, 51687 Reims Cedex 2 (France)

    2012-01-01

    The electron emission due to electron impact of alkali-silicate glasses is measured with a technique based on the use of a Kelvin probe (KP method) and a pulsed electron beam. The KP method, allows a clear discrimination between the external and internal effects of charging process. The effect of the incident charge fluence, incident charge fluency and the temperature on the yield curve is investigated. It was found that, at room temperature as well as at 80 Degree-Sign C, electron emission varies with charge fluence. The effects of the temperature on charging mechanisms and charge transport characteristics of alkali-silicate glasses where also studied using the measurement of displacement and leakage currents under continuous electron irradiation in scanning electron microscope (SEM). The results clearly establish a correlation between charge carriers mobility and secondary electron emission yield. The enhancement of charge carrier mobility with increasing the temperature prevents the formation of a positive space charge (i.e. creation of positive ions and/or holes) that internally reduces the secondary electron (SE) emission. The higher is the temperature and the higher is the electron emission yield (EEY).

  1. Modeling of temperature profiles in an environmental transmission electron microscope using computational fluid dynamics

    DEFF Research Database (Denmark)

    Mortensen, Peter Mølgaard; Jensen, Anker Degn; Hansen, Thomas Willum

    2015-01-01

    The temperature and velocity field, pressure distribution, and the temperature variation across the sample region inside an environmental transmission electron microscope (ETEM) have been modeled by means of computational fluid dynamics (CFD). Heating the sample area by a furnace type TEM holder ...... difference over the TEM grid is less than 5. °C, at what must be considered typical conditions, and it is concluded that the conditions on the sample grid in the ETEM can be considered as isothermal during general use....... gives rise to temperature gradients over the sample area. Three major mechanisms have been identified with respect to heat transfer in the sample area: radiation from the grid, conduction in the grid, and conduction in the gas. A parameter sensitivity analysis showed that the sample temperature...

  2. Unusual temperature dependence of the dissociative electron attachment cross section of 2-thiouracil

    Energy Technology Data Exchange (ETDEWEB)

    Kopyra, Janina [Faculty of Science, Siedlce University, 3 Maja 54, 08-110 Siedlce (Poland); Abdoul-Carime, Hassan [Université de Lyon, F-69003 Lyon (France); Université Lyon 1, Villeurbanne (France); CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon, Lyon (France)

    2016-01-21

    At low energies (<3 eV), molecular dissociation is controlled by dissociative electron attachment for which the initial step, i.e., the formation of the transient negative ion, can be initiated by shape resonance or vibrational Feshbach resonance (VFR) mediated by the formation of a dipole bound anion. The temperature dependence for shape-resonances is well established; however, no experimental information is available yet on the second mechanism. Here, we show that the dissociation cross section for VFRs mediated by the formation of a dipole bound anion decreases as a function of a temperature. The change remains, however, relatively small in the temperature range of 370-440 K but it might be more pronounced at the extended temperature range.

  3. GaN-Based High Temperature and Radiation-Hard Electronics for Harsh Environments

    Science.gov (United States)

    Son, Kyung-ah; Liao, Anna; Lung, Gerald; Gallegos, Manuel; Hatakeh, Toshiro; Harris, Richard D.; Scheick, Leif Z.; Smythe, William D.

    2010-01-01

    We develop novel GaN-based high temperature and radiation-hard electronics to realize data acquisition electronics and transmitters suitable for operations in harsh planetary environments. In this paper, we discuss our research on metal-oxide-semiconductor (MOS) transistors that are targeted for 500 (sup o)C operation and >2 Mrad radiation hardness. For the target device performance, we develop Schottky-free AlGaN/GaN MOS transistors, where a gate electrode is processed in a MOS layout using an Al2O3 gate dielectric layer....

  4. Variation with temperature of the electron attachment to SO2F2

    Science.gov (United States)

    Datskos, P. G.; Christophorou, L. G.

    1989-03-01

    The total electron attachment rate constant ka(,T) for SO2F2 has been measured, in a buffer gas of N2, as a function of the mean electron energy (0.046-0.911 eV) and temperature T (300-700 K) using an electron swarm technique. From the measured ka(,T), the total electron attachment cross sections σa(ɛ,T) were determined. At 300 K the σa(ɛ,T) exhibits a maximum at ˜0.22 eV which is due to dissociative electron attachment and an increase below ˜0.1 eV which is due to the formation of parent negative ions SO2F-2 at near zero energy. At T=400 K, σa(ɛ,T) has only one main peak at ˜0.13 eV which is due only to dissociative electron attachment reflecting the depletion of the parent anions and the prevalence of the fragment negative ions as T increases. The main peak of σa(ɛ,T) shifts to lower electron energies with increasing T so that at 700 K the peak is located at ˜0.03 eV. The value, σda(ɛmax), of the total electron attachment cross section at the peak energy ɛmax increases by a factor of ˜32 as T increases from 300 to 700 K. The analysis of these results—and similar earlier work—leads to the conclusion that the increase in σda(ɛ,T) for the dissociative electron attachment processes in molecules, with increasing T results mainly from an increase with T of the internal energy (principally vibrational) of the molecule.

  5. The Use of Low Temperature Detectors for Direct Measurements of the Mass of the Electron Neutrino

    Directory of Open Access Journals (Sweden)

    A. Nucciotti

    2016-01-01

    Full Text Available Recent years have witnessed many exciting breakthroughs in neutrino physics. The detection of neutrino oscillations has proved that neutrinos are massive particles, but the assessment of their absolute mass scale is still an outstanding challenge in today particle physics and cosmology. Since low temperature detectors were first proposed for neutrino physics experiments in 1984, there has been tremendous technical progress: today this technique offers the high energy resolution and scalability required to perform competitive experiments challenging the lowest electron neutrino masses. This paper reviews the thirty-year effort aimed at realizing calorimetric measurements with sub-eV neutrino mass sensitivity using low temperature detectors.

  6. A 2.5-2.7 THz Room Temperature Electronic Source

    Science.gov (United States)

    Maestrini, Alain; Mehdi, Imran; Lin, Robert; Siles, Jose Vicente; Lee, Choonsup; Gill, John; Chattopadhyay, Goutam; Schlecht, Erich; Bertrand, Thomas; Ward, John

    2011-01-01

    We report on a room temperature 2.5 to 2.7 THz electronic source based on frequency multipliers. The source utilizes a cascade of three frequency multipliers with W-band power amplifiers driving the first stage multiplier. Multiple-chip multipliers are utilized for the two initial stages to improve the power handling capability and a sub-micron anode is utilized for the final stage tripler. Room temperature measurements indicate that the source can put out a peak power of about 14 microwatts with more than 4 microwatts in the 2.5 to 2.7 THz range.

  7. Probing the local, electronic and magnetic structure of matter under extreme conditions of temperature and pressure

    DEFF Research Database (Denmark)

    Torchio, R.; Boccato, S.; Cerantola, V.

    2016-01-01

    In this paper we present recent achievements in the field of investigation of the local, electronic and magnetic structure of the matter under extreme conditions of pressure and temperature. These results were obtained thanks to the coupling of a compact laser heating system to the energy......-dispersive XAS technique available on the ID24 beamline at the ESRF synchrotron. The examples chosen concern the melting and the liquid structure of 3d metals and alloys under high pressures (HPs) and the observation of temperature-induced spin crossover in FeCO3 at HP....

  8. Modelling coronal electron density and temperature profiles based on solar magnetic field observations

    Science.gov (United States)

    Rodríguez Gómez, J. M.; Antunes Vieira, L. E.; Dal Lago, A.; Palacios, J.; Balmaceda, L. A.; Stekel, T.

    2017-10-01

    The density and temperature profiles in the solar corona are complex to describe, the observational diagnostics is not easy. Here we present a physics-based model to reconstruct the evolution of the electron density and temperature in the solar corona based on the configuration of the magnetic field imprinted on the solar surface. The structure of the coronal magnetic field is estimated from Potential Field Source Surface (PFSS) based on magnetic field from both observational synoptic charts and a magnetic flux transport model. We use an emission model based on the ionization equilibrium and coronal abundances from CHIANTI atomic database 8.0. The preliminary results are discussed in details.

  9. Arbitrary amplitude ion-acoustic solitary waves in a two-temperature nonextensive electron plasma

    Science.gov (United States)

    Hatami, M. M.; Tribeche, M.

    2018-02-01

    Effects of presence of ions on the existence and structure of arbitrary amplitude ion-acoustic solitary waves in a plasma consisting of thermal ions and two-temperature nonextensive electrons are investigated. It is shown that solitons of both polarity (compressive and rarefactive) can exist in such a plasma, depending on the range of the plasma parameters. Also, it is seen that the maximum amplitude and the width of both soliton types depend sensitively on the temperature and concentration of ions. To better understand the role of positive ions, the presented model is reduced to a Maxwellian plasma and the results are compared to their Maxwellian counterparts.

  10. Continuous point-like high-temperature laser discharge produced by terahertz free electron laser

    Directory of Open Access Journals (Sweden)

    V. V. Kubarev

    2017-09-01

    Full Text Available A continuous point-like laser discharge of record high temperature has been produced in argon at atmospheric pressure with focusing of the radiation of the Novosibirsk terahertz free electron laser (NovoFEL. According to spectral measurements, the temperature in the center of the millimeter-sized plasma sphere was 28000 K at a plasma density of 1.5×1017 cm-3 and an average NovoFEL power of 200 W at a wavelength of 130 μm (2.3 THz.

  11. Modeling of temperature profiles in an environmental transmission electron microscope using computational fluid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Mølgaard Mortensen, Peter [Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Willum Hansen, Thomas [Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Birkedal Wagner, Jakob, E-mail: jakob.wagner@cen.dtu.dk [Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Degn Jensen, Anker, E-mail: aj@kt.dtu.dk [Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2015-05-15

    The temperature and velocity field, pressure distribution, and the temperature variation across the sample region inside an environmental transmission electron microscope (ETEM) have been modeled by means of computational fluid dynamics (CFD). Heating the sample area by a furnace type TEM holder gives rise to temperature gradients over the sample area. Three major mechanisms have been identified with respect to heat transfer in the sample area: radiation from the grid, conduction in the grid, and conduction in the gas. A parameter sensitivity analysis showed that the sample temperature was affected by the conductivity of the gas, the emissivity of the sample grid, and the conductivity of the grid. Ideally the grid should be polished and made from a material with good conductivity, e.g. copper. With hydrogen gas, which has the highest conductivity of the gases studied, the temperature difference over the TEM grid is less than 5 °C, at what must be considered typical conditions, and it is concluded that the conditions on the sample grid in the ETEM can be considered as isothermal during general use. - Highlights: • Computational fluid dynamics used for mapping flow and temperature in ETEM setup. • Temperature gradient across TEM grid in furnace based heating holder very small in ETEM. • Conduction from TEM grid and gas in addition to radiation from TEM grid most important. • Pressure drop in ETEM limited to the pressure limiting apertures.

  12. A method for estimating the temperature in high energy density free electron laser experiments

    Energy Technology Data Exchange (ETDEWEB)

    Principi, Emiliano, E-mail: emiliano.principi@unicam.i [CNISM, Dipartimento di Fisica, Universita degli Studi di Camerino via Madonna delle Carceri, I-62032 Camerino (Italy); Ferrante, Carino; Filipponi, Adriano [Dipartimento di Fisica, Universita degli Studi dell' Aquila, Via Vetoio, I-67100 L' Aquila (Italy); Bencivenga, Filippo; D' Amico, Francesco; Masciovecchio, Claudio [Synchrotron ELETTRA, Strada Statale 14-I-34149 Basovizza, Trieste (Italy); Di Cicco, Andrea [CNISM, Dipartimento di Fisica, Universita degli Studi di Camerino via Madonna delle Carceri, I-62032 Camerino (Italy); IMPMC, Universite Paris 6, CNRS, 140 rue de Lourmel, 75015 Paris (France)

    2010-09-21

    Present and forthcoming free electron laser (FEL) large scale facilities deliver high fluence ultrafast soft and hard X-ray pulses able to create and probe warm dense matter (WDM). Proper diagnostic for basic physical quantities, like temperature and density, is necessary, but the short lifetime of the WDM state (few ps) makes their measurements a challenging task. In this work we propose a method to estimate the WDM temperature using the experimental information from a slow temperature pyrometric probe exploiting the properties of the heat diffusion equation. Numerical simulations show that for typical thin foil samples, a temperature measurement with 1-10{mu}s temporal resolution at the distance of about 300-500{mu}m from the beam center contains sufficient information to retrieve the initial spatial temperature distribution with sufficient accuracy providing information on the temperature reached in the WDM regime. The inversion of the experimental information is obtained by means of a Bayesian approach exploiting a Metropolis Monte Carlo numerical procedure. The model and calculations presented in this work provide the theoretical background for the development of a device for temperature diagnostics of the TIMEX end-station at the Fermi-Elettra FEL facility.

  13. Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, J. M.; Michler, J. [EMPA - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, Thun CH-3602 (Switzerland)

    2013-04-15

    A general nano-mechanical test platform capable of performing variable temperature and variable strain rate testing in situ in the scanning electron microscope is described. A variety of test geometries are possible in combination with focused ion beam machining or other fabrication techniques: indentation, micro-compression, cantilever bending, and scratch testing. The system is intrinsically displacement-controlled, which allows it to function directly as a micro-scale thermomechanical test frame. Stable, elevated temperature indentation/micro-compression requires the indenter tip and the sample to be in thermal equilibrium to prevent thermal displacement drift due to thermal expansion. This is achieved through independent heating and temperature monitoring of both the indenter tip and sample. Furthermore, the apex temperature of the indenter tip is calibrated, which allows it to act as a referenced surface temperature probe during contact. A full description of the system is provided, and the effects of indenter geometry and of radiation on imaging conditions are discussed. The stabilization time and temperature distribution throughout the system as a function of temperature is characterized. The advantages of temperature monitoring and thermal calibration of the indenter tip are illustrated, which include the possibility of local thermal conductivity measurement. Finally, validation results using nanoindentation on fused silica and micro-compression of <100> silicon micro-pillars as a function of temperature up to 500 Degree-Sign C are presented, and procedures and considerations taken for these measurements are discussed. A brittle to ductile transition from fracture to splitting then plastic deformation is directly observed in the SEM for silicon as a function of temperature.

  14. Determination of the electronic temperature in the torsatron TJ-I Upgrade by the two filters

    Energy Technology Data Exchange (ETDEWEB)

    Medina, F.; Ochando, M.

    1994-07-01

    A Te monitor for the TJ-IU torsatron, based on the two-filters method, has been designed. It will consist of two surface-barrier silicon detectors looking at the same plasma region through berylium filters of different thickness. Plasma electron temperature is deduced from the ratio of the soft-x-ray fluxes transmitted through the two filters. The flexibility in magnetic configuration of TJ-IU plasmas has been taken into account in the mechanical design of this diagnostic. It will be attached to an upper 1 port of the vacuum vessel and the whole system will be movable both, to change the spatial resolution when needed and to enable the scan of the full plasma cross-section to obtain the radial profile of electron temperature in a shot-to-shot basis. (Author) 7 refs.

  15. Electron Temperature Measurement of Buried Layer Targets Using Time Resolved K-shell Spectroscopy

    Science.gov (United States)

    Marley, Edward; Foord, M. E.; Shepherd, R.; Beiersdorfer, P.; Brown, G.; Chen, H.; Emig, J.; Schneider, M.; Widmann, K.; Scott, H.; London, R.; Martin, M.; Wilson, B.; Iglesias, C.; Mauche, C.; Whitley, H.; Nilsen, J.; Hoarty, D.; James, S.; Brown, C. R. D.; Hill, M.; Allan, P.; Hobbs, L.

    2016-10-01

    Short pulse laser-heated buried layer experiments have been performed with the goal of creating plasmas with mass densities >= 1 g/cm3 and electron temperatures >= 500 eV. The buried layer geometry has the advantage of rapid energy deposition before significant hydrodynamic expansion occurs. For brief periods (< 40 ps) this provides a low gradient, high density platform for studying emission characteristics under extreme plasma conditions. A study of plasma conditions achievable using the Orion laser facility has been performed. Time resolved K-shell spectroscopy was used to determine the temperature evolution of buried layer aluminum foil targets. The measured evolution is compared to a 2-D PIC simulation done using LSP, which shows late time heating from the non-thermal electron population. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  16. Electron energy loss spectroscopy of excitons in two-dimensional-semiconductors as a function of temperature

    KAUST Repository

    Tizei, Luiz H. G.

    2016-04-21

    We have explored the benefits of performing monochromated Electron Energy Loss Spectroscopy(EELS) in samples at cryogenic temperatures. As an example, we have observed the excitonic absorption peaks in single layer Transition Metal Dichalcogenides. These peaks appear separated by small energies due to spin orbit coupling. We have been able to distinguish the split for MoS2 below 300 K and for MoSe2 below 220 K. However, the distinction between peaks is only clear at 150 K. We have measured the change in absorption threshold between 150 K and 770 K for MoS2 and MoSe2. We discuss the effect of carbon and ice contamination in EELSspectra. The increased spectral resolution available made possible with modern monochromators in electron microscopes will require the development of stable sample holders which reaches temperatures far below that of liquid nitrogen.

  17. Dust ion acoustic freak waves in a plasma with two temperature electrons featuring Tsallis distribution

    Science.gov (United States)

    Chahal, Balwinder Singh; Singh, Manpreet; Shalini; Saini, N. S.

    2018-02-01

    We present an investigation for the nonlinear dust ion acoustic wave modulation in a plasma composed of charged dust grains, two temperature (cold and hot) nonextensive electrons and ions. For this purpose, the multiscale reductive perturbation technique is used to obtain a nonlinear Schrödinger equation. The critical wave number, which indicates where the modulational instability sets in, has been determined precisely for various regimes. The influence of plasma background nonextensivity on the growth rate of modulational instability is discussed. The modulated wavepackets in the form of either bright or dark type envelope solitons may exist. Formation of rogue waves from bright envelope solitons is also discussed. The investigation indicates that the structural characteristics of these envelope excitations (width, amplitude) are significantly affected by nonextensivity, dust concentration, cold electron-ion density ratio and temperature ratio.

  18. Measurement of the electron and ion temperatures by the x-ray imaging crystal spectrometer on joint Texas experimental tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Yan, W.; Chen, Z. Y., E-mail: zychen@hust.edu.cn; Huang, D. W.; Tong, R. H.; Wang, S. Y.; Wei, Y. N.; Ma, T. K.; Zhuang, G. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan (China); Jin, W. [Center of Interface Dynamics for Sustainability, China Academy of Engineering Physics, Chengdu, Sichuan 610200 (China); Lee, S. G. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Shi, Y. J. [Department of Nuclear Engineering, Seoul National University, Seoul 08826 (Korea, Republic of)

    2016-11-15

    An x-ray imaging crystal spectrometer has been developed on joint Texas experimental tokamak for the measurement of electron and ion temperatures from the K{sub α} spectra of helium-like argon and its satellite lines. A two-dimensional multi-wire proportional counter has been applied to detect the spectra. The electron and ion temperatures have been obtained from the Voigt fitting with the spectra of helium-like argon ions. The profiles of electron and ion temperatures show the dependence on electron density in ohmic plasmas.

  19. Vibrational Inelastic Electron Tunneling Spectroscopy of Surface Adsorbed Single Molecules at Sub-Kelvin Temperature

    OpenAIRE

    Jiang, Chi-Lun

    2015-01-01

    With a 600mk homebuilt UHV STM system, we studied molecular vibration at the solid surface with inelastic electron tunneling spectroscopy (IETS) of Acetylene single molecules adsorbed on Cu(100) surface and revealed five new vibrational modes that were previously inaccessible to STM-IETS at 8K temperature. The identification of vibrational IETS features with normalized conductance change (Δσ/σ) as low as 0.24% was demonstrated. Facilitated by the high energy resolution, we also revealed the a...

  20. Room-temperature gas sensing through electronic coupling between tin oxide nanocrystal and carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Lu, G.; Ocola, L.; Chen, J.; Center for Nanoscale Materials; Univ. of Wisconsin at Milwaukee

    2009-01-01

    A new gas-sensing platform for low-concentration gases (NO{sub 2}, H{sub 2}, and CO) comprises discrete SnO{sub 2} nanocrystals uniformly distributed on the surface of multiwalled carbon nanotubes (CNTs). The resulting hybrid nanostructures are highly sensitive, even at room temperature, because their gas sensing abilities rely on electron transfer between the nanocrystals and the CNTs.

  1. High-energy electron-induced damage production at room temperature in aluminum-doped silicon

    Science.gov (United States)

    Corbett, J. W.; Cheng, L. J.; Jaworowski, A.; Karins, J. P.; Lee, Y. H.; Lindstroem, L.; Mooney, P. M.; Oehrlen, G.; Wang, K. L.

    1979-01-01

    DLTS and EPR measurements are reported on aluminum-doped silicon that was irradiated at room temperature with high-energy electrons. Comparisons are made to comparable experiments on boron-doped silicon. Many of the same defects observed in boron-doped silicon are also observed in aluminum-doped silicon, but several others were not observed, including the aluminum interstitial and aluminum-associated defects. Damage production modeling, including the dependence on aluminum concentration, is presented.

  2. Electron-induced dry reforming of methane in a temperature-controlled dielectric barrier discharge reactor

    KAUST Repository

    Zhang, Xuming

    2013-09-23

    Dry reforming of methane has the potential to reduce the greenhouse gases methane and carbon dioxide and to generate hydrogen-rich syngas. In reforming methane, plasma-assisted reforming processes may have advantages over catalytic processes because they are free from coking and their response time for mobile applications is quick. Although plasma-assisted reforming techniques have seen recent developments, systematic studies that clarify the roles that electron-induced chemistry and thermo-chemistry play are needed for a full understanding of the mechanisms of plasma-assisted reformation. Here, we developed a temperature-controlled coaxial dielectric barrier discharge (DBD) apparatus to investigate the relative importance of electron-induced chemistry and thermo-chemistry in dry reforming of methane. In the tested background temperature range 297-773 K, electron-induced chemistry, as characterized by the physical properties of micro-discharges, was found to govern the conversions of CH4 and CO2, while thermo-chemistry influenced the product selectivities because they were found to depend on the background temperature. Comparisons with results from arc-jet reformation indicated that thermo-chemistry is an efficient conversion method. Our findings may improve designs of plasma-assisted reformers by using relatively hotter plasma sources. However, detailed chemical kinetic studies are needed. © 2013 IOP Publishing Ltd.

  3. Room-Temperature-Processable Wire-Templated Nanoelectrodes for Flexible and Transparent All-Wire Electronics.

    Science.gov (United States)

    Min, Sung-Yong; Lee, Yeongjun; Kim, Se Hyun; Park, Cheolmin; Lee, Tae-Woo

    2017-04-25

    Sophisticated preparation of arbitrarily long conducting nanowire electrodes on a large area is a significant requirement for development of transparent nanoelectronics. We report a position-customizable and room-temperature-processable metallic nanowire (NW) electrode array using aligned NW templates and a demonstration of transparent all-NW-based electronic applications by simple direct-printing. Well-controlled electroless-plating chemistry on a polymer NW template provided a highly conducting Au NW array with a very low resistivity of 7.5 μΩ cm (only 3.4 times higher than that of bulk Au), high optical transmittance (>90%), and mechanical bending stability. This method enables fabrication of all-NW-based electronic devices on various nonplanar surfaces and flexible plastic substrates. Our approach facilitates realization of advanced future electronics.

  4. Development of Ultra Low-Temperature Electronics for the AEgIS Experiment

    CERN Document Server

    Kaltenbacher, Thomas; Kellerbauer, Alban; Doser, Michael; Caspers, Friedhelm

    This thesis presents the development of electronics for operation at cryogenic temperatures, with particular emphasis on the cryogenic electronics required for the Antimatter Experiment: Gravity, Interferometry, Spectroscopy (AEgIS) experiment at the European Organisation for Nuclear Research (CERN). The research is focused on a highly sensitive charged particle detection system for a Penning trap, on cryogenic low-pass filters and on a low-loss DC-contact RF switch. The detection system consists of a high quality factor tuned circuit including a superconducting coil, and a low-noise amplifier. Since the experimental setup of the AEgIS experiment requires it, the developed electronics must reliably operate at 4.2 K (~269C) and in high constant magnetic field of more than 1 Tesla. Therefore, the performance of the cryogenic electronic designs were carefully evaluated at low-temperature/high magnetic field, the result of which have important implications for the AEgIS experiment. Moreover, a new possibility of ...

  5. Quasi-optical design for systems to diagnose the electron temperature and density fluctuations on EAST

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qifo; Liu, Yong; Zhao, Hailin, E-mail: zhaohailin@ipp.ac.cn; Zhou, Tianfu; Ti, Ang; Hu, Liqun [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-11-15

    A system to simultaneously diagnose the electron temperature and density fluctuations is proposed for Experimental Advanced Superconducting Tokamak device. This system includes a common quasi-optical antenna, a correlation electron cyclotron emission (CECE) system that is used to measure the electron temperature fluctuations and a Doppler backscattering (DBS) system that is used to measure the electron density fluctuations. The frequency range of the proposed CECE system is 108-120 GHz, and this corresponds to a radial coverage of normalized radius ((R − R{sub 0})/a, R{sub 0} = 1850 mm, a = 450 mm) from 0.2 to 0.67 for the plasma operation with a toroidal magnetic field of 2.26 T. This paper focuses on the design of the quasi-optical antenna and aims at optimizing the poloidal resolution for different frequency bands. An optimum result gives the beam radius for the CECE system of 13-15 mm and this corresponds to a wave number range of k{sub θ} < 2.4 cm{sup −1}. The beam radius is 20-30 mm for V band (50-75 GHz) and 15-20 mm for W band (75-110 GHz).

  6. Low-Temperature Sintering Bonding Using Silver Nanoparticle Paste for Electronics Packaging

    Directory of Open Access Journals (Sweden)

    Wei Guo

    2015-01-01

    Full Text Available Ag nanoparticles (NPs with about 40 nm diameter covered with 5–8 nm organic shell were prepared by chemical reduction reaction. The thermal characteristics of Ag nanoparticle (NP paste were measured by thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. The low-temperature sintering bonding processes using Ag NP paste were carried out at the temperature range of 150–350°C for 5 min under the pressure of 3 MPa. The microstructures of the sintered joint and the fracture morphology were evaluated by scanning electron microscopy (SEM. The shear strength was used to evaluate the mechanical property of the sintered joint. TGA-DSC test showed that the Ag content is approximately 95.5 mass% in Ag NP paste. The average shear strength of the joint fabricated at 250°C for 5 min under the pressure of 3 MPa was about 28 MPa, which could meet the requirements of electronics packaging working at high temperature. The joint shear strength increased with the increase of the sintering temperature due to much denser sintered Ag NPs and more comprehensive metallurgical bonds formed in the joint.

  7. Magnetospheric Whistler Mode Ray Tracing with the Inclusion of Finite Electron and Ion Temperature

    Science.gov (United States)

    Maxworth, A. S.; Golkowski, M.

    2015-12-01

    Ray tracing is an important technique for the study of whistler mode wave propagation in the Earth's magnetosphere. In numerical ray tracing the trajectory of a wave packet is calculated at each point in space by solving the Haselgrove equations, assuming a smooth, loss-less medium with no mode coupling. Previous work on ray tracing has assumed a cold plasma environment with negligible electron and ion temperatures. In this work we present magnetospheric whistler mode wave ray tracing results with the inclusion of finite ion and electron temperature. The inclusion of finite temperature effects makes the fourth order dispersion relation become sixth order. We compare our results with the work done by previous researchers for cold plasma environments, using two near earth space models (NGO and GCPM). Inclusion of finite temperature closes the otherwise open refractive index surface near the lower hybrid resonance frequency and affects the magnetospheric reflection of whistler waves. We also asses the main changes in the ray trajectory and implications for cyclotron resonance wave particle interactions including energetic particle precipitation.

  8. The Electron Temperature and Anisotropy in the Solar Wind. Comparison of the Core and Halo Populations

    Science.gov (United States)

    Pierrard, V.; Lazar, M.; Poedts, S.; Štverák, Š.; Maksimovic, M.; Trávníček, P. M.

    2016-08-01

    Estimating the temperature of solar wind particles and their anisotropies is particularly important for understanding the origin of their deviations from thermal equilibrium and the effects this has. In the absence of energetic events, the velocity distribution of electrons reveals a dual structure with a thermal (Maxwellian) core and a suprathermal (kappa) halo. This article presents a detailed observational analysis of these two components, providing estimations of their temperatures and temperature anisotropies, and decoding any potential interdependence that their properties may indicate. The dataset used in this study includes more than 120 000 of the distributions measured by three missions in the ecliptic within an extended range of heliocentric distances from 0.3 to over 4 AU. The core temperature is found to decrease with the radial distance, while the halo temperature slightly increases, clarifying an apparent contradiction in previous observational analyses and providing valuable clues about the temperature of the kappa-distributed populations. For low values of the power-index kappa, these two components manifest a clear tendency to deviate from isotropy in the same direction, which seems to confirm the existence of mechanisms with similar effects on both components, e.g., the solar wind expansion, or the particle heating by the fluctuations. However, the existence of plasma states with anticorrelated anisotropies of the core and halo populations and the increase in their number for high values of the power-index kappa suggest a dynamic interplay of these components, mediated, most probably, by the anisotropy-driven instabilities.

  9. Temperature dependence of the cross section for the fragmentation of thymine via dissociative electron attachment

    Energy Technology Data Exchange (ETDEWEB)

    Kopyra, Janina [Faculty of Science, Siedlce University, 3 Maja 54, 08-110 Siedlce (Poland); Abdoul-Carime, Hassan, E-mail: hcarime@ipnl.in2p3.fr [Université de Lyon, Université Claude Bernard Lyon1, Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex (France)

    2015-05-07

    Providing experimental values for absolute Dissociative Electron Attachment (DEA) cross sections for nucleobases at realistic biological conditions is a considerable challenge. In this work, we provide the temperature dependence of the cross section, σ, of the dehydrogenated thymine anion (T − H){sup −} produced via DEA. Within the 393-443 K temperature range, it is observed that σ varies by one order of magnitude. By extrapolating to a temperature of 313 K, the relative DEA cross section for the production of the dehydrogenated thymine anion at an incident energy of 1 eV decreases by 2 orders of magnitude and the absolute value reaches approximately 6 × 10{sup −19} cm{sup 2}. These quantitative measurements provide a benchmark for theoretical prediction and also a contribution to a more accurate description of the effects of ionizing radiation on molecular medium.

  10. Measurement of the Electronic Thermal Conductance Channels and Heat Capacity of Graphene at Low Temperature

    Directory of Open Access Journals (Sweden)

    Kin Chung Fong

    2013-10-01

    Full Text Available The ability to transport energy is a fundamental property of the two-dimensional Dirac fermions in graphene. Electronic thermal transport in this system is relatively unexplored and is expected to show unique fundamental properties and to play an important role in future applications of graphene, including optoelectronics, plasmonics, and ultrasensitive bolometry. Here, we present measurements of bipolar thermal conductances due to electron diffusion and electron-phonon coupling and infer the electronic specific heat, with a minimum value of 10k_{B} (10^{-22}  J/K per square micron. We test the validity of the Wiedemann-Franz law and find that the Lorenz number equals 1.32×(π^{2}/3(k_{B}/e^{2}. The electron-phonon thermal conductance has a temperature power law T^{2} at high doping levels, and the coupling parameter is consistent with recent theory, indicating its enhancement by impurity scattering. We demonstrate control of the thermal conductance by electrical gating and by suppressing the diffusion channel using NbTiN superconducting electrodes, which sets the stage for future graphene-based single-microwave photon detection.

  11. Electron-phonon coupling in bilayer and single-layer graphene at sub-Kelvin temperatures

    Science.gov (United States)

    McKitterick, Chris; Vora, Heli; Du, Xu; Rooks, Michael; Prober, Daniel

    2014-03-01

    Graphene has been proposed by many groups as a detector of terahertz photons1 , 2 , 3, due to its very small heat capacity and predicted low thermal conductance. We present Johnson noise thermometry measurements of single and bilayer graphene samples fabricated at Stony Brook University and at Yale University. These measurements probe the graphene electron-phonon coupling at sub-Kelvin temperatures. The devices are fabricated with superconducting contacts (NbN at Stony Brook, Al and Nb at Yale) to confine the hot electrons in the graphene device, diminishing the contribution of electron out-diffusion in cooling the electron system. By using commercially-available CVD-grown graphene for some samples, we can define large area sections, allowing us to emphasize the thermal conductance due to electron-phonon coupling. These measurements allow for performance estimates for using similar graphene devices to detect terahertz photons. 1C. B. McKitterick, D. E. Prober, B. S. Karasik, Journal of Applied Physics 113, 044512 (2013). 2H. Vora, P. Kumaravadivel, B. Nielsen, X. Du, Applied Physics Letters 100, 153507 (2012). 3K. Fong, K. Schwab, Physical Review X 2, 1 (2012). This work supported by NSF-DMR 0907082.

  12. Effect of Rabi splitting on the low-temperature electron paramagnetic resonance signal of anthracite.

    Science.gov (United States)

    Fedaruk, Ryhor; Strzelczyk, Roman; Tadyszak, Krzysztof; Markevich, Siarhei A; Augustyniak-Jabłokow, Maria Aldona

    2017-01-01

    Specific distortions of the EPR signal of bulk anthracite are observed at low temperatures. They are accompanied by variations in the microwave oscillator frequency and are explained by the manifestation of the Rabi splitting due to the strong coupling between electron spins and the cavity, combined with the use of an automatic frequency-control (AFC) system. EPR signals are recorded at negligible saturation in the temperature range of 4-300K with use of the AFC system to keep the oscillator frequency locked to the resonant frequency of the TM110 cylinder cavity loaded with the sample. For the sample with a mass of 3.6mg the line distortions are observed below 50K and increase with temperature lowering. The oscillator frequency variations are used to estimate the coupling strength as well as the number of spins in the sample. It is shown that the spin-cavity coupling strength is inversely proportional to temperature and can be used for the absolute determination of the number of spins in a sample. Our results indicate that at low temperatures even 10 16 spins of the anthracite sample, with a mass of about 0.5mg, can distort the EPR line. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Comparing density, electron temperature, and magnetic fluctuations with gyrokinetic simulations using new synthetic diagnostics

    Science.gov (United States)

    Ernst, D. R.; Bergerson, W.; Ennever, P.; Greenwald, M.; Hubbard, A.; Irby, J.; Phillips, P.; Porkolab, M.; Rowan, W.; Terry, J. L.; Xu, P.; Alcator C-Mod Team

    2013-10-01

    Three new synthetic turbulence diagnostics are implemented in GS2 and compared with measurements: phase contrast imaging, polarimetry, and electron-cyclotron (ECE) emission. Our new synthetic diagnostic framework is based on transforming to a real-space annulus in Cartesian coordinates. This allows straightforward convolution with diagnostic point-spread functions, or integration over viewing chords. Wavenumber spectra and fluctuation amplitudes, as well as transport fluxes, are compared with measurements. Both phase contrast imaging and newly observed ECE electron temperature fluctuations, closely follow the electron temperature in an internal transport barrier during on-axis heating pulses, consistent with the role of TEM turbulence. New C-Mod polarimetry measurements, showing strong broadband core magnetic fluctuations, will also be examined against gyrokinetic simulations. The new framework is readily extended to other fluctuation measurements such as two-color interferometry, beam emission spectroscopy, Doppler back-scattering, ECE imaging, and microwave imaging reflectometry. Supported by U.S. DoE awards DE-FC02-08ER54966, DE-FC02-99ER54512, DE-FG03-96ER54373.

  14. Temperature dependence of band gaps in semiconductors: electron-phonon interaction

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, Reinhard K.; Cardona, M.; Lauck, R. [MPI for Solid State Research, Stuttgart (Germany); Bhosale, J.; Ramdas, A.K. [Physics Dept., Purdue University, West Lafayette, IN (United States); Burger, A. [Fisk University, Dept. of Life and Physical Sciences, Nashville, TN (United States); Munoz, A. [MALTA Consolider Team, Dept. de Fisica Fundamental II, Universidad de La Laguna, Tenerife (Spain); Instituto de Materiales y Nanotecnologia, Universidad de La Laguna, Tenerife (Spain); Romero, A.H. [CINVESTAV, Dept. de Materiales, Unidad Queretaro, Mexico (Mexico); MPI fuer Mikrostrukturphysik, Halle an der Saale (Germany)

    2013-07-01

    We investigate the temperature dependence of the energy gap of several semiconductors with chalcopyrite structure and re-examine literature data and analyze own high-resolution reflectivity spectra in view of our new ab initio calculations of their phonon properties. This analysis leads us to distinguish between materials with d-electrons in the valence band (e.g. CuGaS{sub 2}, AgGaS{sub 2}) and those without d-electrons (e.g. ZnSnAs{sub 2}). The former exhibit a rather peculiar non-monotonic temperature dependence of the energy gap which, so far, has resisted cogent theoretical description. We demonstrate it can well be fitted by including two Bose-Einstein oscillators with weights of opposite sign leading to an increase at low-T and a decrease at higher T's. We find that the energy of the former correlates well with characteristic peaks in the phonon density of states associated with low-energy vibrations of the d-electron constituents.

  15. TEMPERATURE AND ELECTRON DENSITY DIAGNOSTICS OF A CANDLE-FLAME-SHAPED FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Guidoni, S. E. [NASA Goddard Space Flight Center/CUA, Code 674, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); McKenzie, D. E.; Longcope, D. W.; Yoshimura, K. [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States); Plowman, J. E., E-mail: silvina.e.guidoni@nasa.gov [High Altitude Observatory, National Center for Atmospheric Research P.O. Box 3000, Boulder, CO 80307-3000 (United States)

    2015-02-10

    Candle-flame-shaped flares are archetypical structures that provide indirect evidence of magnetic reconnection. A flare resembling Tsuneta's famous 1992 candle-flame flare occurred on 2011 January 28; we present its temperature and electron density diagnostics. This flare was observed with Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA), Hinode/X-Ray Telescope (XRT), and Solar Terrestrial Relations Observatory Ahead (STEREO-A)/Extreme Ultraviolet Imager, resulting in high-resolution, broad temperature coverage, and stereoscopic views of this iconic structure. The high-temperature images reveal a brightening that grows in size to form a tower-like structure at the top of the posteruption flare arcade, a feature that has been observed in other long-duration events. Despite the extensive work on the standard reconnection scenario, there is no complete agreement among models regarding the nature of this high-intensity elongated structure. Electron density maps reveal that reconnected loops that are successively connected at their tops to the tower develop a density asymmetry of about a factor of two between the two legs, giving the appearance of ''half-loops''. We calculate average temperatures with a new fast differential emission measure (DEM) method that uses SDO/AIA data and analyze the heating and cooling of salient features of the flare. Using STEREO observations, we show that the tower and the half-loop brightenings are not a line-of-sight projection effect of the type studied by Forbes and Acton. This conclusion opens the door for physics-based explanations of these puzzling, recurrent solar flare features, previously attributed to projection effects. We corroborate the results of our DEM analysis by comparing them with temperature analyses from Hinode/XRT.

  16. Coplanar photonic bandgap resonators for low temperature electron and nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Sigillito, A. J.; Tyryshkin, A. M.; Lyon, S. A.

    In recent years, superconducting coplanar waveguide (CPW) resonators have become a useful tool for low temperature pulsed electron spin resonance (ESR), even at dilution refrigerator temperatures. Their small mode volumes make CPW resonators particularly well suited to measuring small numbers of spins near the resonator surface, since in this region the spin sensitivity is very high. While these resonators have proven useful for ESR at single microwave frequencies, it is difficult to also manipulate nuclear spins in electron-nuclear-double resonance (ENDOR) experiments, since manipulation of nuclear spins requires radio frequency (RF) magnetic fields. Ideally one would simply generate these fields by passing RF currents through the CPW, but because conventional CPW resonators are capacitively coupled, they will not transmit low-frequency RF currents. In this talk, we discuss the use of one dimensional photonic bandgap (PBG) resonators to overcome this challenge. PBG resonators are a promising alternative to conventional CPW resonators since they offer high quality factors at microwave frequencies, while simultaneously allowing transmission of nonresonant RF currents below the photonic bandgap. Here, we will discuss PBG resonator designs and present data showing their use for low temperature ESR of donors in 28Si. Initial ENDOR results will also be presented.

  17. Spectral evolution of soft x-ray emission from optically thin, high electron temperature platinum plasmas

    Directory of Open Access Journals (Sweden)

    Hiroyuki Hara

    2017-08-01

    Full Text Available The soft x-ray spectra of heavy element plasmas are frequently dominated by unresolved transition array (UTA emission. We describe the spectral evolution of an intense UTA under optically thin conditions in platinum plasmas. The UTA was observed to have a peak wavelength around 4.6 nm at line-of-sight averaged electron temperatures less than 1.4 keV at electron densities of (2.5–7.5 × 1013 cm−3. The UTA spectral structure was due to emission from 4d–4f transitions in highly charged ions with average charge states of q = 20–40. A numerical simulation successfully reproduced the observed spectral behavior.

  18. Spectral evolution of soft x-ray emission from optically thin, high electron temperature platinum plasmas

    Science.gov (United States)

    Hara, Hiroyuki; Ohashi, Hayato; Li, Bowen; Dunne, Padraig; O'Sullivan, Gerry; Sasaki, Akira; Suzuki, Chihiro; Tamura, Naoki; Sakaue, Hiroyuki A.; Kato, Daiji; Murakami, Izumi; Higashiguchi, Takeshi; LHD Experiment Group

    2017-08-01

    The soft x-ray spectra of heavy element plasmas are frequently dominated by unresolved transition array (UTA) emission. We describe the spectral evolution of an intense UTA under optically thin conditions in platinum plasmas. The UTA was observed to have a peak wavelength around 4.6 nm at line-of-sight averaged electron temperatures less than 1.4 keV at electron densities of (2.5-7.5) × 1013 cm-3. The UTA spectral structure was due to emission from 4d-4f transitions in highly charged ions with average charge states of q = 20-40. A numerical simulation successfully reproduced the observed spectral behavior.

  19. Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs

    Science.gov (United States)

    Dongmo, Pernell; Zhong, Yujun; Attia, Peter; Bomberger, Cory; Cheaito, Ramez; Ihlefeld, Jon F.; Hopkins, Patrick E.; Zide, Joshua

    2012-11-01

    We report room temperature electronic and thermoelectric properties of Si-doped In0.52Ga0.48BiyAs1-y with varying Bi concentrations. These films were grown epitaxially on a semi-insulating InP substrate by molecular beam epitaxy. We show that low Bi concentrations are optimal in improving the conductivity, Seebeck coefficient, and thermoelectric power factor, possibly due to the surfactant effects of bismuth. We observed a reduction in thermal conductivity with increasing Bi concentration, which is expected because of alloy scattering. We report a peak ZT of 0.23 at 300 K.

  20. An All-Elastomeric Transparent and Stretchable Temperature Sensor for Body-Attachable Wearable Electronics.

    Science.gov (United States)

    Trung, Tran Quang; Ramasundaram, Subramaniyan; Hwang, Byeong-Ung; Lee, Nae-Eung

    2016-01-20

    A transparent stretchable (TS) gated sensor array with high optical transparency, conformality, and high stretchability of up to 70% is demonstrated. The TS-gated sensor array has high responsivity to temperature changes in objects and human skin. This unprecedented TS-gated sensor array, as well as the integrated platform of the TS-gated sensor with a transparent and stretchable strain sensor, show great potential for application to wearable skin electronics for recognition of human activity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Spatial and temporal variations of electron temperatures and densities from EUV-emitting lithium plasmas.

    Science.gov (United States)

    Coons, R W; Harilal, S S; Polek, M; Hassanein, A

    2011-07-01

    Planar slabs of pure Li were irradiated with 1.064 nm, 6 ns Nd:YAG laser pulses. Determination of plasma densities at both the earliest times of plasma formation and near the target surface was performed using Nomarski interferometry. The plasma parameters at later times were evaluated using optical emission spectroscopy. The space- and time-dependent electron densities and temperatures of the plasma were determined from their Stark broadening and the relative intensities of the spectral lines, respectively. The advantages and disadvantages of both of these techniques are evaluated and discussed.

  2. Electron temperature and heat load measurements in the COMPASS divertor using the new system of probes

    Czech Academy of Sciences Publication Activity Database

    Adámek, Jiří; Seidl, Jakub; Horáček, Jan; Komm, Michael; Eich, T.; Pánek, Radomír; Cavalier, J.; Devitre, A.; Peterka, Matěj; Vondráček, Petr; Stöckel, Jan; Šesták, David; Grover, Ondřej; Bílková, Petra; Böhm, Petr; Varju, Jozef; Havránek, Aleš; Weinzettl, Vladimír; Lovell, J.; Dimitrova, Miglena; Mitošinková, Klára; Dejarnac, Renaud; Hron, Martin

    2017-01-01

    Roč. 57, č. 11 (2017), č. článku 116017. ISSN 0029-5515 R&D Projects: GA ČR(CZ) GA15-10723S; GA ČR(CZ) GA16-14228S; GA MŠk(CZ) LM2015045 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : COMPASS * divertor * heat load * ELM * electron temperature * Ball-pen probe Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/1741-4326/aa7e09

  3. Electron temperature structures associated with magnetic tearing modes in the Madison Symmetric Torus

    Science.gov (United States)

    Stephens, Hillary Dianne

    Tearing mode induced magnetic islands have a significant impact on the thermal characteristics of magnetically confined plasmas such as those in the reversed-field-pinch. Using a state-of-the-art Thomson scattering (TS) diagnostic, electron temperature fluctuations correlated with magnetic tearing modes have been observed on the Madison Symmetric Torus reversed-field-pinch. The TS diagnostic consists of two independently triggerable Nd:YAG lasers that can each pulse up to 15 times each plasma discharge and 21 General Atomics polchromators equipped with avalanche photodiode modules. Detailed calibrations focusing on accuracy, ease of use and repeatability and in-situ measurements have been performed on the system. Electron temperature (Te) profiles are acquired at 25 kHz with 2 cm or less resolution along the minor radius, sufficient to measure the effect of an island on the profile as the island rotates by the measurement point. Bayesian data analysis techniques are developed and used to detect fluctuations over an ensemble of shots. Four cases are studied; standard plasmas in quiescent periods, through sawteeth, through core reconnection events and in plasmas where the tearing mode activity is decreased. With a spectrum of unstable tearing modes, remnant islands that tend to flatten the temperature profile are present in the core between sawtooth-like reconnection events. This flattening is characteristic of rapid parallel heat conduction along helical magnetic field lines. The spatial structure of the temperature fluctuations show that the location of the rational surface of the m/n = 1/6 tearing mode is significantly further in than equilibrium suggestions predict. The fluctuations also provide a measurement of the remnant island width which is significantly smaller than the predicted full island width. These correlated fluctuations disappear during both global and core reconnection events. In striking contrast to temperature flattening, a temperature gradient

  4. Nanostructured Ferrite Based Electronic Nose Sensitive to Ammonia at Room Temperature

    Directory of Open Access Journals (Sweden)

    U. B. GAWAS

    2011-11-01

    Full Text Available Manganese and Nickel doped Zinc Ferrite powder (Mn0.3Ni0.3Zn0.4Fe2O4 was synthesized by autocatalytic thermal decomposition technique. The average crystallite size in the material powder was found to be of 10 – 13 nm. Characterization techniques such as X-Ray diffraction studies, Transmission electron microscopy, Infra-Red spectroscopy, etc, were employed to study the average particle size, phase and composition of the ferrite. Thick films of Mn0.3Ni0.3Zn0.4Fe2O4 were prepared by screen printing technique. These films were observed to be sensitive to 10 ppm NH3 at room temperature. The effects of surface microstructure, operating temperature, gas concentrations, etc., on the gas response, selectivity, response and recovery times of the sensor in the presence of NH3 and other gases were studied and discussed.

  5. Temperature dependence of Q-band electron paramagnetic resonance spectra of nitrosyl heme proteins

    Energy Technology Data Exchange (ETDEWEB)

    Flores, Marco; Wajnberg, Eliane; Bemski, George

    1997-11-01

    The Q-band (35 GHz) electron paramagnetic resonance (EPR) spectra of nitrosyl hemoglobin (Hb N O) and nitrosyl myoglobin (Mb NO) were studied as a function of temperature between 19 K and 200 K. The spectra of both heme proteins show classes of variations as a function of temperature. The first one has previously been associated with the existence of two paramagnetic species, one with rhombic and the other with axial symmetry. The second one manifests itself in changes in the g-factors and linewidths of each species. These changes are correlated with the conformational substates model and associate the variations of g-values with changes in the angle of the N(his)-Fe-N (NO) bond in the rhombic species and with changes in the distance between Fe and N of the proximal (F8) histidine in the axial species. (author) 24 refs., 6 figs.

  6. Improved Models and Tools for Prediction of Radiation Effects on Space Electronics in Wide Temperature Range Project

    Data.gov (United States)

    National Aeronautics and Space Administration — All NASA exploration systems operate in the extreme environments of space (Moon, Mars, etc.) and require reliable electronics capable of handling a wide temperature...

  7. Improved Models and Tools for Prediction of Radiation Effects on Space Electronics in Wide Temperature Range Project

    Data.gov (United States)

    National Aeronautics and Space Administration — All NASA exploration systems operate in the extreme environments of space and require reliable electronics capable of handling a wide temperature range (-180:C to...

  8. Measurements of Relativistic Effects in Collective Thomson Scattering at Electron Temperatures less than 1 keV

    Energy Technology Data Exchange (ETDEWEB)

    Ross, James Steven [Univ. of California, San Diego, CA (United States)

    2010-01-01

    Simultaneous scattering from electron-plasma waves and ion-acoustic waves is used to measure local laser-produced plasma parameters with high spatiotemporal resolution including electron temperature and density, average charge state, plasma flow velocity, and ion temperature. In addition, the first measurements of relativistic modifications in the collective Thomson scattering spectrum from thermal electron-plasma fluctuations are presented [1]. Due to the high phase velocity of electron-plasma fluctuations, relativistic effects are important even at low electron temperatures (Te < 1 keV). These effects have been observed experimentally and agree well with a relativistic treatment of the Thomson scattering form factor [2]. The results are important for the interpretation of scattering measurements from laser produced plasmas. Thomson scattering measurements are used to characterize the hydrodynamics of a gas jet plasma which is the foundation for a broad series of laser-plasma interaction studies [3, 4, 5, 6]. The temporal evolution of the electron temperature, density and ion temperature are measured. The measured electron density evolution shows excellent agreement with a simple adiabatic expansion model. The effects of high temperatures on coupling to hohlraum targets is discussed [7]. A peak electron temperature of 12 keV at a density of 4.7 × 1020cm-3 are measured 200 μm outside the laser entrance hole using a two-color Thomson scattering method we developed in gas jet plasmas [8]. These measurements are used to assess laser-plasma interactions that reduce laser hohlraum coupling and can significantly reduce the hohlraum radiation temperature.

  9. The role of electron transport in determining the temperature dependence of the photosynthetic rate in spinach leaves grown at contrasting temperatures.

    Science.gov (United States)

    Yamori, Wataru; Noguchi, Ko; Kashino, Yasuhiro; Terashima, Ichiro

    2008-04-01

    The temperature response of the uncoupled whole-chain electron transport rate (ETR) in thylakoid membranes differs depending on the growth temperature. However, the steps that limit whole-chain ETR are still unclear and the question of whether the temperature dependence of whole-chain ETR reflects that of the photosynthetic rate remains unresolved. Here, we determined the whole-chain, PSI and PSII ETR in thylakoid membranes isolated from spinach leaves grown at 30 degrees C [high temperature (HT)] and 15 degrees C [low temperature (LT)]. We measured temperature dependencies of the light-saturated photosynthetic rate at 360 microl l(-1) CO2 (A360) in HT and LT leaves. Both of the temperature dependences of whole-chain ETR and of A360 were different depending on the growth temperature. Whole-chain ETR was less than the rates of PSI ETR and PSII ETR in the broad temperature range, indicating that the process was limited by diffusion processes between the PSI and PSII. However, at high temperatures, whole-chain ETR appeared to be limited by not only the diffusion processes but also PSII ETR. The C3 photosynthesis model was used to evaluate the limitations of A360 by whole-chain ETR (Pr) and ribulose bisphosphate carboxylation (Pc). In HT leaves, A360 was co-limited by Pc and Pr at low temperatures, whereas at high temperatures, A360 was limited by Pc. On the other hand, in LT leaves, A360 was solely limited by Pc over the entire temperature range. The optimum temperature for A360 was determined by Pc in both HT and LT leaves. Thus, this study showed that, at low temperatures, the limiting step of A360 was different depending on the growth temperature, but was limited by Pc at high temperatures regardless of the growth temperatures.

  10. [Effects of carbon sources, temperature and electron acceptors on biological phosphorus removal].

    Science.gov (United States)

    Han, Yun; Xu, Song; Dong, Tao; Wang, Bin-Fan; Wang, Xian-Yao; Peng, Dang-Cong

    2015-02-01

    Effects of carbon sources, temperature and electron acceptors on phosphorus uptake and release were investigated in a pilot-scale oxidation ditch. Phosphorus uptake and release rates were measured with different carbon sources (domestic sewage, sodium acetate, glucose) at 25 degrees C. The results showed that the minimum phosphorus uptake and release rates of glucose were 5.12 mg x (g x h)(-1) and 6.43 mg x (g x h)(-1), respectively, and those of domestic sewage are similar to those of sodium acetate. Phosphorus uptake and release rates increased with the increase of temperature (12, 16, 20 and 25 degrees C) using sodium acetate as carbon sources. Anoxic phosphorus uptake rate decreased with added COD. Electron acceptors (oxygen, nitrate, nitrite) had significant effects on phosphorus uptake rate and their order was in accordance with oxygen > nitrate > nitrite. The mass ratio of anoxic P uptake and N consumption (P(uptake)/N (consumption)) of nitrate and nitrite were 0.96 and 0.65, respectively.

  11. Electron temperature and heat load measurements in the COMPASS divertor using the new system of probes

    Science.gov (United States)

    Adamek, J.; Seidl, J.; Horacek, J.; Komm, M.; Eich, T.; Panek, R.; Cavalier, J.; Devitre, A.; Peterka, M.; Vondracek, P.; Stöckel, J.; Sestak, D.; Grover, O.; Bilkova, P.; Böhm, P.; Varju, J.; Havranek, A.; Weinzettl, V.; Lovell, J.; Dimitrova, M.; Mitosinkova, K.; Dejarnac, R.; Hron, M.; The COMPASS Team; The EUROfusion MST1 Team

    2017-11-01

    A new system of probes was recently installed in the divertor of tokamak COMPASS in order to investigate the ELM energy density with high spatial and temporal resolution. The new system consists of two arrays of rooftop-shaped Langmuir probes (LPs) used to measure the floating potential or the ion saturation current density and one array of Ball-pen probes (BPPs) used to measure the plasma potential with a spatial resolution of ~3.5 mm. The combination of floating BPPs and LPs yields the electron temperature with microsecond temporal resolution. We report on the design of the new divertor probe arrays and first results of electron temperature profile measurements in ELMy H-mode and L-mode. We also present comparative measurements of the parallel heat flux using the new probe arrays and fast infrared termography (IR) data during L-mode with excellent agreement between both techniques using a heat power transmission coefficient γ  =  7. The ELM energy density {{\\varepsilon }\\parallel } was measured during a set of NBI assisted ELMy H-mode discharges. The peak values of {{\\varepsilon }\\parallel } were compared with those predicted by model and with experimental data from JET, AUG and MAST with a good agreement.

  12. Temperature and energy effects on secondary electron emission from SiC ceramics induced by Xe17+ions.

    Science.gov (United States)

    Zeng, Lixia; Zhou, Xianming; Cheng, Rui; Wang, Xing; Ren, Jieru; Lei, Yu; Ma, Lidong; Zhao, Yongtao; Zhang, Xiaoan; Xu, Zhongfeng

    2017-07-25

    Secondary electron emission yield from the surface of SiC ceramics induced by Xe 17+ ions has been measured as a function of target temperature and incident energy. In the temperature range of 463-659 K, the total yield gradually decreases with increasing target temperature. The decrease is about 57% for 3.2 MeV Xe 17+ impact, and about 62% for 4.0 MeV Xe 17+ impact, which is much larger than the decrease observed previously for ion impact at low charged states. The yield dependence on the temperature is discussed in terms of work function, because both kinetic electron emission and potential electron emission are influenced by work function. In addition, our experimental data show that the total electron yield gradually increases with the kinetic energy of projectile, when the target is at a constant temperature higher than room temperature. This result can be explained by electronic stopping power which plays an important role in kinetic electron emission.

  13. Direct writing of flexible electronics through room temperature liquid metal ink.

    Science.gov (United States)

    Gao, Yunxia; Li, Haiyan; Liu, Jing

    2012-01-01

    Conventional approaches of making a flexible circuit are generally complex, environment unfriendly, time and energy consuming, and thus expensive. Here, we describe for the first time the method of using high-performance GaIn(10)-based electrical ink, a significantly neglected room temperature liquid metal, as both electrical conductors and interconnects, for directly writing flexible electronics via a rather easy going and cost effective way. The new generation electric ink was made and its wettability with various materials was modified to be easily written on a group of either soft or rigid substrates such as epoxy resin board, glass, plastic, silica gel, paper, cotton, textiles, cloth and fiber etc. Conceptual experiments were performed to demonstrate and evaluate the capability of directly writing the electrical circuits via the invented metal ink. Mechanisms involved were interpreted through a series of fundamental measurements. The electrical resistivity of the fluid like GaIn(10)-based material was measured as 34.5 µΩ·cm at 297 K by four point probe method and increased with addition of the oxygen quantity, which indicates it as an excellent metal ink. The conductive line can be written with features that are approximately 10 µm thick. Several functional devices such as a light emitting diode (LED) array showing designed lighting patterns and electrical fan were made to work by directly writing the liquid metal on the specific flexible substrates. And satisfactory performances were obtained. The present method opens the way to directly and quickly writing flexible electronics which can be as simple as signing a name or drawing a picture on the paper. The unique merit of the GaIn(10)-based liquid metal ink lies in its low melting temperature, well controlled wettability, high electrical conductivity and good biocompability. The new electronics writing strategy and basic principle has generalized purpose and can be extended to more industrial areas, even

  14. Silicotungstate, a Potential Electron Transporting Layer for Low-Temperature Perovskite Solar Cells.

    Science.gov (United States)

    Choi, Yoon Ho; Kim, Hyun Bin; Yang, In Seok; Sung, Sang Do; Choi, Young Sik; Kim, Jeongho; Lee, Wan In

    2017-08-02

    Thin films of a heteropolytungstate, lithium silicotungstate (Li 4 SiW 12 O 40 , termed Li-ST), prepared by a solution process at low temperature, were successfully applied as electron transporting layer (ETL) of planar-type perovskite solar cells (PSCs). Dense and uniform Li-ST films were prepared on FTO glass by depositing a thin Li-ST buffer layer, followed by coating of a main Li-ST layer. The film thickness was controlled by varying the number of coating cycles, consisting of spin-coating and thermal treatment at 150 °C. In particular, by employing 60 nm-thick Li-ST layer obtained by two cycles of coating, the fabricated CH 3 NH 3 PbI 3 PSC device demonstrates the photovoltaic conversion efficiency (PCE) of 14.26% with J SC of 22.16 mA cm -2 , V OC of 0.993 mV and FF of 64.81%. The obtained PCE is significantly higher than that of the PSC employing a TiO 2 layer processed at the same temperature (PCE = 12.27%). Spectroscopic analyses by time-resolved photoluminescence and pulsed light-induced transient measurement of photocurrent indicate that the Li-ST layer collects electrons from CH 3 NH 3 PbI 3 more efficiently and also exhibits longer electron lifetime than the TiO 2 layer thermally treated at 150 °C. Thus, Li-ST is considered to be a promising ETL material that can be applied for the fabrication of flexible PSC devices.

  15. Direct Writing of Flexible Electronics through Room Temperature Liquid Metal Ink

    Science.gov (United States)

    Gao, Yunxia; Li, Haiyan; Liu, Jing

    2012-01-01

    Background Conventional approaches of making a flexible circuit are generally complex, environment unfriendly, time and energy consuming, and thus expensive. Here, we describe for the first time the method of using high-performance GaIn10-based electrical ink, a significantly neglected room temperature liquid metal, as both electrical conductors and interconnects, for directly writing flexible electronics via a rather easy going and cost effective way. Methods The new generation electric ink was made and its wettability with various materials was modified to be easily written on a group of either soft or rigid substrates such as epoxy resin board, glass, plastic, silica gel, paper, cotton, textiles, cloth and fiber etc. Conceptual experiments were performed to demonstrate and evaluate the capability of directly writing the electrical circuits via the invented metal ink. Mechanisms involved were interpreted through a series of fundamental measurements. Results The electrical resistivity of the fluid like GaIn10-based material was measured as 34.5 µΩ·cm at 297 K by four point probe method and increased with addition of the oxygen quantity, which indicates it as an excellent metal ink. The conductive line can be written with features that are approximately 10 µm thick. Several functional devices such as a light emitting diode (LED) array showing designed lighting patterns and electrical fan were made to work by directly writing the liquid metal on the specific flexible substrates. And satisfactory performances were obtained. Conclusions The present method opens the way to directly and quickly writing flexible electronics which can be as simple as signing a name or drawing a picture on the paper. The unique merit of the GaIn10-based liquid metal ink lies in its low melting temperature, well controlled wettability, high electrical conductivity and good biocompability. The new electronics writing strategy and basic principle has generalized purpose and can be

  16. Direct writing of flexible electronics through room temperature liquid metal ink.

    Directory of Open Access Journals (Sweden)

    Yunxia Gao

    Full Text Available BACKGROUND: Conventional approaches of making a flexible circuit are generally complex, environment unfriendly, time and energy consuming, and thus expensive. Here, we describe for the first time the method of using high-performance GaIn(10-based electrical ink, a significantly neglected room temperature liquid metal, as both electrical conductors and interconnects, for directly writing flexible electronics via a rather easy going and cost effective way. METHODS: The new generation electric ink was made and its wettability with various materials was modified to be easily written on a group of either soft or rigid substrates such as epoxy resin board, glass, plastic, silica gel, paper, cotton, textiles, cloth and fiber etc. Conceptual experiments were performed to demonstrate and evaluate the capability of directly writing the electrical circuits via the invented metal ink. Mechanisms involved were interpreted through a series of fundamental measurements. RESULTS: The electrical resistivity of the fluid like GaIn(10-based material was measured as 34.5 µΩ·cm at 297 K by four point probe method and increased with addition of the oxygen quantity, which indicates it as an excellent metal ink. The conductive line can be written with features that are approximately 10 µm thick. Several functional devices such as a light emitting diode (LED array showing designed lighting patterns and electrical fan were made to work by directly writing the liquid metal on the specific flexible substrates. And satisfactory performances were obtained. CONCLUSIONS: The present method opens the way to directly and quickly writing flexible electronics which can be as simple as signing a name or drawing a picture on the paper. The unique merit of the GaIn(10-based liquid metal ink lies in its low melting temperature, well controlled wettability, high electrical conductivity and good biocompability. The new electronics writing strategy and basic principle has generalized

  17. Electron-ion temperature ratio estimations in the summer polar mesosphere when subject to HF radio wave heating

    Science.gov (United States)

    Pinedo, H.; La Hoz, C.; Havnes, O.; Rietveld, M.

    2014-10-01

    We have inferred the electron temperature enhancements above mesospheric altitudes under Polar Mesospheric Summer Echoes (PMSE) conditions when the ionosphere is exposed to artificial HF radio wave heating. The proposed method uses the dependence of the radar cross section on the electron-to-ion temperature ratio to infer the heating factor from incoherent scatter radar (ISR) power measurements above 90 km. Model heating temperatures match our ISR estimations between 90 and 130 km with 0.94 Pearson correlation index. The PMSE strength measured by the MORRO MST radar is about 50% weaker during the heater-on period when the modeled electron-to-ion mesospheric temperature is approximately 10 times greater than the unperturbed value. No PMSE weakening is found when the mesospheric temperature enhancement is by a factor of three or less. The PMSE weakening and its absence are consistent with the modeled mesospheric electron temperatures. This consistency supports to the proposed method for estimating mesospheric electron temperatures achieved by independent MST and ISR radar measurements.

  18. Ion temperature effects on magnetotail Alfvén wave propagation and electron energization: ION TEMPERATURE EFFECTS ON ALFVÉN WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Damiano, P. A. [Princeton Center for Heliophysics, Princeton Plasma Physics Laboratory, Princeton University, Princeton New Jersey USA; Johnson, J. R. [Princeton Center for Heliophysics, Princeton Plasma Physics Laboratory, Princeton University, Princeton New Jersey USA; Chaston, C. C. [Space Sciences Laboratory, University of California, Berkeley California USA; School of Physics, University of Sydney, Sydney New South Wales Australia

    2015-07-01

    A new 2-D self-consistent hybrid gyrofluid-kinetic electron model in dipolar coordinates is presented and used to simulate dispersive-scale Alfvén wave pulse propagation from the equator to the ionosphere along an L = 10 magnetic field line. The model is an extension of the hybrid MHD-kinetic electron model that incorporates ion Larmor radius corrections via the kinetic fluid model of Cheng and Johnson (1999). It is found that consideration of a realistic ion to electron temperature ratio decreases the propagation time of the wave from the plasma sheet to the ionosphere by several seconds relative to a ρi=0 case (which also implies shorter timing for a substorm onset signal) and leads to significant dispersion of wave energy perpendicular to the ambient magnetic field. Additionally, ion temperature effects reduce the parallel current and electron energization all along the field line for the same magnitude perpendicular electric field perturbation.

  19. Linear mean free path and quadratic temperature dependence of electron-phonon scattering rate in V82Al18-xFex alloys at low temperature

    Directory of Open Access Journals (Sweden)

    R. N. Jana

    2015-05-01

    Full Text Available We have reported a comprehensive study on temperature and disorder dependence of inelastic electron dephasing scattering rate in disordered V82Al18-xFex alloys. The dephasing scattering time has been measured by analysis of low field magnetoresistance using the weak localization theory. In absence of magnetic field the variation of low temperature resistivity rise follows the relation Δ ρ ( T ∝ − ρ 0 5 / 2 T , which is well described by three-dimensional electron-electron interactions. The temperature-independent dephasing rate strongly depends on disorder and follows the relation τ 0 − 1 ∝ l e , where le is the electron elastic mean free path. The inelastic electron-phonon scattering rate obeying the anomalous relation τ e − p h − 1 ∝ T 2 l e . This anomalous behavior of τ e − p h − 1 cannot be explained in terms of current theories for electron-phonon scattering in impure dirty conductors.

  20. Electron Temperature and Density in Local Helicity Injection and High betat Plasmas

    Science.gov (United States)

    Schlossberg, David J.

    Tokamak startup in a spherical torus (ST) and an ST-based fusion nuclear science facility can greatly benefit from using non-inductive methods. The Pegasus Toroidal Experiment has developed a non-inductive startup technique using local helicity injection (LHI). Electron temperature, T e(r), and density, ne( r), profiles during LHI are unknown. These profiles are critical for understanding both the physics of the injection and relaxation mechanisms, as well as for extrapolating this technique to larger devices. A new Thomson scattering system has been designed, installed, and used to characterize Te(r, t) and ne(r, t) during LHI. The diagnostic leverages new technology in image intensified CCD cameras, high-efficiency diffraction gratings, and reliable Nd:YAG lasers. Custom systems for stray light mitigation, fast shuttering, and precision timing have been developed and implemented. The overall system provides a low-maintenance, economic, and effective means to explore novel physics regimes in Pegasus. Electron temperature and density profiles during LHI have been measured for the first time. Results indicate Te(r) peaked in the core of plasmas, and sustained while plasmas are coupled to injection drive. Electron densities also peak near the core of the tokamak, up to local values of n e ˜ 1.5 x 1019 m -3. A comparison of Te( r, t) has been made between discharges with dominant drive voltage from induction versus helicity injection. In both cases Te ( r, t) profiles remain peaked, with values for Te ,max > 150 eV in dominantly helicity-driven plasmas using high-field side LHI. Sustained values of betat ˜ 100% have been demonstrated in a tokamak for the first time. Plasmas are created and driven entirely non-solenoidally, and exhibit MHD stability. Measured temperature and density profiles are used to constrain magnetic equilibrium reconstructions, which calculate 80% ramp-down. For a continued decrease in the toroidal field these plasmas disrupt near the ideal MHD

  1. Mechanical energy losses in plastically deformed and electron plus neutron irradiated high purity single crystalline molybdenum at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zelada, Griselda I. [Laboratorio de Materiales, Escuela de Ingenieria Electrica, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Avda. Pellegrini 250, 2000 Rosario (Argentina); Lambri, Osvaldo Agustin [Laboratorio de Materiales, Escuela de Ingenieria Electrica, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Avda. Pellegrini 250, 2000 Rosario (Argentina); Instituto de Fisica Rosario - CONICET, Member of the CONICET& #x27; s Research Staff, Avda. Pellegrini 250, 2000 Rosario (Argentina); Bozzano, Patricia B. [Laboratorio de Microscopia Electronica, Unidad de Actividad Materiales, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Avda. Gral. Paz 1499, 1650 San Martin (Argentina); Garcia, Jose Angel [Departamento de Fisica Aplicada II, Facultad de Ciencias y Tecnologia, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao, Pais Vasco (Spain)

    2012-10-15

    Mechanical spectroscopy (MS) and transmission electron microscopy (TEM) studies have been performed in plastically deformed and electron plus neutron irradiated high purity single crystalline molybdenum, oriented for single slip, in order to study the dislocation dynamics in the temperature range within one third of the melting temperature. A damping peak related to the interaction of dislocation lines with both prismatic loops and tangles of dislocations was found. The peak temperature ranges between 900 and 1050 K, for an oscillating frequency of about 1 Hz. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Development of a Method for Local Electron Temperature and Density Measurements in the Divertor of the JET Tokamak

    Science.gov (United States)

    Jupen, C.; Meigs, A.; Bhatia, A. K.; Brezinsek, S.; OMullane, M.

    2004-01-01

    Plasma volume recombination in the divertor, a process in which charged particles recombine to neutral atoms, contributes to plasma detachment and hence cooling at the divertor target region. Detachment has been observed at JET and other tokamaks and is known to occur at low electron temperatures (T(sub e)10(exp 20)/m(exp 3)). The ability to measure such low temperatures is therefore of interest for modelling the divertor. In present work we report development of a new spectroscopic technique for investigation of local electron density (n(sub e)) and temperature (T,) in the outer divertor at JET.

  3. Implementation of multifilter based twin-prototypes for core electron temperature measurements in the TJ-II stellarator.

    Science.gov (United States)

    Baião, D; Medina, F; Ochando, M A; Varandas, C; Molinero, A; Chércoles, J

    2010-10-01

    The design and preliminary results from a prototype of a multifilter based electron temperature diagnostic for the TJ-II stellarator are presented. The diagnostic consists of four photodiodes with filters of different thicknesses to determine the electron temperature in a wide variety of plasma compositions, thanks to the set of six different signal-pairs ratios available. The impurity transport code IONEQ, the TJ-II soft x-ray tomography, and the VUV survey diagnostics give the necessary information to assess the proposed diagnostic reliability. In parallel, a vacuum-compatible multichannel electronic board has been designed for a future linear array to determine electron temperature profiles in high-density plasmas.

  4. Precise finite-temperature properties of disordred strongly-correlated electronic systems

    Science.gov (United States)

    Khatami, Ehsan

    The interplay between disorder and electronic interactions in quantum many-body systems is not well understood. Experiments with ultracold atoms on optical lattices hold a great promise for exploring the different competing phases that arise in these systems by simulating disordered quantum lattice models in the presence of interactions. However, these experiments often rely on precise and approximate-free results from numerical calculations for various static and dynamic properties of these models in order to characterize the experimental systems. In this talk, I will present recently obtained data for the thermodynamic properties and magnetic correlations of the disordered three-dimensional Hubbard model using the determinant quantum Monte Carlo. I will also discuss new techniques within the numerical linked-cluster expansions that allow for fast and precise calculation of finite-temperature properties of disordered systems in the thermodynamic limit.

  5. Josephson STM at mK temperatures: Coupling to the electronic environment

    Science.gov (United States)

    Dreyer, Michael; Dana, Rami; Liao, Wan-Ting; Lobb, Cris; Wellstood, Fred; Anderson, Bob

    Ultra-small Josephson junctions can couple to modes in the electronic environment. This leads to sub-gap peaks in the I(V) curve in addition to the phase diffuse supercurrent. The I(V) curve can - in principle - be explained by P(E) theory which describes the probability of tunneling at energy E. A recent study showed that antenna modes of the STM tips could be responsible for the observed sideband structures. In our case the explanation appears to be less simple. We employ a dual tip STM at a temperature of 30 mK. The I(V) spectra of the two tips show distinct patterns with only one shared mode. While the supercurrent branch for the ''inner'' tip is visible, it is obscured by a resonance for the ``outer'' tip. Possible causes and applications to other systems will be discussed. Support from NSF (DMR- 0605763) and Laboratory for Physical Sciences.

  6. Thermal Balloon Endometrial Ablation: Safety Aspects Evaluated by Serosal Temperature, Light Microscopy and Electron Microscopy

    DEFF Research Database (Denmark)

    Andersen, L F; Meinert, L; Rygaard, Carsten

    1998-01-01

    OBJECTIVES: Thermal balloon endometrial ablation is a new method for treating menorrhagia. The technique appears to be less difficult compared to standard hysteroscopic ablation techniques and to be significantly safer. The influence into the uterine wall of the thermal balloon ablation procedure...... was investigated with special reference to the ability of total destruction of the endometrium and the thermal action on the myometrium and the serosa. STUDY DESIGN: Temperatures were measured at the uterine serosal surface during thermal balloon endometrial ablation for 8-16 min in eight patients. After...... in all patients, with a maximum depth of 11.5 mm. By electron microscopy no influence of heat could be demonstrated beyond 15 mm from the endometrial surface. CONCLUSION: Up to 16 min of thermal balloon endometrial ablation therapy can destroy the endometrium and the submucosal layers. The myometrium...

  7. Thermal balloon endometrial ablation: safety aspects evaluated by serosal temperature, light microscopy and electron microscopy

    DEFF Research Database (Denmark)

    Andersen, L F; Meinert, L; Rygaard, Carsten

    1998-01-01

    OBJECTIVES: Thermal balloon endometrial ablation is a new method for treating menorrhagia. The technique appears to be less difficult compared to standard hysteroscopic ablation techniques and to be significantly safer. The influence into the uterine wall of the thermal balloon ablation procedure...... was investigated with special reference to the ability of total destruction of the endometrium and the thermal action on the myometrium and the serosa. STUDY DESIGN: Temperatures were measured at the uterine serosal surface during thermal balloon endometrial ablation for 8-16 min in eight patients. After...... in all patients, with a maximum depth of 11.5 mm. By electron microscopy no influence of heat could be demonstrated beyond 15 mm from the endometrial surface. CONCLUSION: Up to 16 min of thermal balloon endometrial ablation therapy can destroy the endometrium and the submucosal layers. The myometrium...

  8. Supersonic helium beam diagnostic for fluctuation measurements of electron temperature and density at the Tokamak TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Kruezi, U.; Stoschus, H.; Schweer, B.; Sergienko, G.; Samm, U. [Institute of Energy and Climate Research, Plasma Physics, Forschungszentrum Juelich GmbH, Association EURATOM-FZJ, Partner in the Trilateral Euregio Cluster, Juelich (Germany)

    2012-06-15

    A supersonic helium beam diagnostic, based on the line-ratio technique for high resolution electron density and temperature measurements in the plasma edge (r/a > 0.9) was designed, built, and optimised at TEXTOR (Torus Experiment for Technology Oriented Research). The supersonic injection system, based on the Campargue skimmer-nozzle concept, was developed and optimised in order to provide both a high neutral helium beam density of n{sub 0}= 1.5 Multiplication-Sign 10{sup 18} m{sup -3} and a low beam divergence of {+-}1 Degree-Sign simultaneously, achieving a poloidal resolution of {Delta}{sub poloidal}= 9 mm. The setup utilises a newly developed dead volume free piezo valve for operation in a high magnetic field environment of up to 2 T with a maximum repetition rate of 80 Hz. Gas injections are realised for a duration of 120 ms at a repetition rate of 2 Hz (duty cycle 1/3). In combination with a high sensitivity detection system, consisting of three 32 multi-channel photomultipliers (PMTs), measurements of edge electron temperature and density with a radial resolution of {Delta}{sub radial}= 2 mm and a maximum temporal resolution of {Delta}t Asymptotically-Equal-To 2 {mu}s (470 kHz) are possible for the first time. The diagnostic setup at TEXTOR is presented. The newly developed injection system and its theoretical bases are discussed. The applicability of the stationary collisional-radiative model as basis of the line-ratio technique is shown. Finally, an example of a fluctuation analysis demonstrating the unique high temporal and spatial resolution capabilities of this new diagnostic is presented.

  9. Theoretical approaches to the temperature and zero-point motion effects on the electronic band structure

    Energy Technology Data Exchange (ETDEWEB)

    Gonze, X. [European Theoretical Spectroscopy Facility, Institute of Condensed Matter and Nanosciences, Universite Catholique de Louvain, 1, Place Croix du Sud, 1348 Louvain-la-neuve (Belgium); Boulanger, P. [European Theoretical Spectroscopy Facility, Institute of Condensed Matter and Nanosciences, Universite Catholique de Louvain, 1, Place Croix du Sud, 1348 Louvain-la-neuve (Belgium); Departement de physique, Universite de Montreal, Montreal (Canada); Cote, M. [Departement de physique, Universite de Montreal, Montreal (Canada)

    2011-01-15

    The modifications of the electronic band structure of solids due to electron-phonon interactions (temperature and zero-point motion effects) have been explored by Manuel Cardona from both the experimental and theoretical sides. In the present contribution, we focus on the theoretical approaches to such effects. Although the situation has improved since the seventies, the wish for a fully developed theory (and associated efficient implementations) is not yet fulfilled. We review noticeable semi-empirical and first-principle studies, with a special emphasis on the Allen-Heine-Cardona (AHC) approach. We then focus on the non-diagonal Debye-Waller contribution, appearing beyond the rigid-ion approximation, in a Density-Functional Theory (DFT) approach. A numerical study shows that they can be sizeable (10%-50%) for diatomic molecules. We also present the basic idea of a new formalism, based on Density-Functional Perturbation Theory, that allows one to avoid the sums over a large number of empty states, and speed up the calculation by one order of magnitude, compared to the straightforward implementation of the AHC approach within DFT. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Chitin and Cellulose Processing in Low-Temperature Electron Beam Plasma

    Directory of Open Access Journals (Sweden)

    Tatiana Vasilieva

    2017-11-01

    Full Text Available Polysaccharide processing by means of low-temperature Electron Beam Plasma (EBP is a promising alternative to the time-consuming and environmentally hazardous chemical hydrolysis in oligosaccharide production. The present paper considers mechanisms of the EBP-stimulated destruction of crab shell chitin, cellulose sulfate, and microcrystalline cellulose, as well as characterization of the produced oligosaccharides. The polysaccharide powders were treated in oxygen EBP for 1–20 min at 40 °C in a mixing reactor placed in the zone of the EBP generation. The chemical structure and molecular mass of the oligosaccharides were analyzed by size exclusion and the reversed phase chromatography, FTIR-spectroscopy, XRD-, and NMR-techniques. The EBP action on original polysaccharides reduces their crystallinity index and polymerization degree. Water-soluble products with lower molecular weight chitooligosaccharides (weight-average molecular mass, Mw = 1000–2000 Da and polydispersity index 2.2 and cellulose oligosaccharides with polymerization degrees 3–10 were obtained. The 1H-NMR analysis revealed 25–40% deacetylation of the EBP-treated chitin and FTIR-spectroscopy detected an increase of carbonyl- and carboxyl-groups in the oligosaccharides produced. Possible reactions of β-1,4-glycosidic bonds’ destruction due to active oxygen species and high-energy electrons are given.

  11. Enhancement in electron and ion temperatures due to solar flares as measured by SROSS-C2 satellite

    Directory of Open Access Journals (Sweden)

    D. K. Sharma

    2004-06-01

    Full Text Available The observations on the ionospheric electron and ion temperatures (Te and Ti measured by the RPA payload aboard the SROSS-C2 satellite have been used to study the effect of solar flares on ionospheric heating. The data on solar flare has been obtained from the National Geophysical Data Center (NGDC Boulder, Colorado (USA. It has been found that the electron and ion temperatures have a consistent enhancement during the solar flares on the dayside Earth's ionosphere. The estimated enhancement for the average electron temperature is from 1.3 to 1.9 times whereas for ion temperature it is from 1.2 to 1.4 times to the normal days average temperature. The enhancement of ionospheric temperatures due to solar flares is correlated with the diurnal variation of normal days' ionospheric temperatures. The solar flare does not have any significant effect on the nightside ionosphere. A comparison with the temperature obtained from the IRI-95 model also shows a similar enhancement.

  12. Enhancement in electron and ion temperatures due to solar flares as measured by SROSS-C2 satellite

    Directory of Open Access Journals (Sweden)

    D. K. Sharma

    2004-06-01

    Full Text Available The observations on the ionospheric electron and ion temperatures (Te and Ti measured by the RPA payload aboard the SROSS-C2 satellite have been used to study the effect of solar flares on ionospheric heating. The data on solar flare has been obtained from the National Geophysical Data Center (NGDC Boulder, Colorado (USA. It has been found that the electron and ion temperatures have a consistent enhancement during the solar flares on the dayside Earth's ionosphere. The estimated enhancement for the average electron temperature is from 1.3 to 1.9 times whereas for ion temperature it is from 1.2 to 1.4 times to the normal days average temperature. The enhancement of ionospheric temperatures due to solar flares is correlated with the diurnal variation of normal days' ionospheric temperatures. The solar flare does not have any significant effect on the nightside ionosphere. A comparison with the temperature obtained from the IRI-95 model also shows a similar enhancement.

  13. On the harmonic technique to measure electron temperature with high time resolution

    Science.gov (United States)

    Boedo, J. A.; Gray, D.; Conn, R. W.; Luong, P.; Schaffer, M.; Ivanov, R. S.; Chernilevsky, A. V.; Van Oost, G.

    1999-07-01

    A detailed study of the harmonic technique, which exploits the generation of harmonics resulting from excitation of the nonlinearity of the single Langmuir probe characteristic, is presented. The technique is used to measure electron temperature and its fluctuations in tokamak plasmas and the technical issues relevant to extending the technique to high bandwidth (200 kHz) are discussed. The technique has been implemented in a fast reciprocating probe in the TEXTOR tokamak, gaining the ability to study denser and hotter plasmas than previously possible. A corrected analytical expression is derived for the harmonic currents. Measurement of the probe current by inductive pickup is introduced to improve electrical isolation and bandwidth. The temperature profiles in the boundary plasma of TEXTOR have been measured with high spatial (˜2 mm) and temporal (200 kHz) resolution and compared to those obtained with a double probe. The exact expansion of the probe characteristic in terms of Bessel functions is compared to a computationally efficient power series. Various aspects of the interpretation of the measurement are discussed such as the influence of plasma potential and density fluctuations. The technique is well suited to study fast phenomena such as transient plasma discharges or turbulence and turbulent transport in plasmas.

  14. Low-temperature photo-activated inorganic electron transport layers for flexible inverted polymer solar cells

    Science.gov (United States)

    Lee, Jung-Wook; Lee, Soo-Hyoung; Kim, Yong-Hoon; Park, Sung Kyu

    2014-09-01

    A simple and versatile route of forming sol-gel-derived metal oxide n-type electron transport layers (ETLs) for flexible inverted polymer solar cells (PSCs) is proposed using low-temperature photochemical activation process. The photochemical activation, which is induced by deep ultraviolet irradiation on sol-gel films, allows formation of metal oxide n-type ETLs such as zinc oxide (ZnO) and indium gallium zinc oxide films at a low temperature. Compared to poly(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester inverted PSCs with thermally annealed ZnO ETLs (optimized efficiency of 3.26 ± 0.03 %), the inverted PSCs with photo-activated ZnO ETLs showed an improved efficiency of 3.60 ± 0.02 %. The enhanced photovoltaic property is attributed to efficient charge collection from low overall series resistance and high surface area-to-geometric area ratio by the photo-activated ZnO ETLs.

  15. On the temperature dependence of the optical spectral weight in correlated electron systems

    Energy Technology Data Exchange (ETDEWEB)

    Millis, A.J. [AT& T Bell Laboratories, Murray Hill, NJ (United States)

    1994-12-31

    A temperature dependence of the low frequency optical spectral weight has recently been observed in several strongly correlated insulating or nearly insulating systems including FeSi, Ce{sub 3}Bi{sub 4}Pt{sub 3} and V{sub 2}O{sub 3{minus}y}, and Bi{sub 2}Te{sub 3}. This temperature dependence is at first sight surprising because one is accustomed to thinking of optical spectral weigth in terms of the f-sum rule, which in its most general form states that the integral of any of the diagonal components of the optical conductivity {sigma}{sub ii}({omega}) is {pi}ne{sup 2}/2m. This is not very useful in most condensed matter physics contexts because the quantity n is the total number of electrons, including e.g. those in core levels, and because one must extend the integral to energies greater than the binding energy of the 1s shell to exhaust the sum rule. In condensed matter problems one typically focuses on a small number of bands close to the chemical potential. One may then ask what is the restricted sum rule governing optical transitions involving only these bands. Of course, the answer to this question is useful only if optical transitions involving bands retained in the model can be separated from those involving bands not retained.

  16. An AES Study of the Room Temperature Surface Conditioning of Technological Metal Surfaces by Electron Irradiation

    CERN Document Server

    Scheuerlein, C; Taborelli, M; Brown, A; Baker, M A

    2002-01-01

    The modifications to technological copper and niobium surfaces induced by 2.5 keV electron irradiation have been investigated in the context of the conditioning process occurring in particle accelerator ultra high vacuum systems. Changes in the elemental surface composition have been found using Scanning Auger Microscopy (SAM) by monitoring the carbon, oxygen and metal Auger peak intensities as a function of electron irradiation in the dose range 10-6 to 10-2 C mm-2. The surface analysis results are compared with electron dose dependent secondary electron and electron stimulated desorption yield measurements. Initially the electron irradiation causes a surface cleaning through electron stimulated desorption, in particular of hydrogen. During this period both the electron stimulated desorption and secondary electron yield decrease as a function of electron dose. When the electron dose exceeds 10-4 C mm-2 electron stimulated desorption yields are reduced by several orders of magnitude and the electron beam indu...

  17. Correlational and thermodynamic properties of finite-temperature electron liquids in the hypernetted-chain approximation

    Science.gov (United States)

    Tanaka, Shigenori

    2016-12-01

    Correlational and thermodynamic properties of homogeneous electron liquids at finite temperatures are theoretically analyzed in terms of dielectric response formalism with the hypernetted-chain (HNC) approximation and its modified version. The static structure factor and the local-field correction to describe the strong Coulomb-coupling effects beyond the random-phase approximation are self-consistently calculated through solution to integral equations in the paramagnetic (spin unpolarized) and ferromagnetic (spin polarized) states. In the ground state with the normalized temperature θ =0 , the present HNC scheme well reproduces the exchange-correlation energies obtained by quantum Monte Carlo (QMC) simulations over the whole fluid phase (the coupling constant rs≤100 ), i.e., within 1% and 2% deviations from putative best QMC values in the paramagnetic and ferromagnetic states, respectively. As compared with earlier studies based on the Singwi-Tosi-Land-Sjölander and modified convolution approximations, some improvements on the correlation energies and the correlation functions including the compressibility sum rule are found in the intermediate to strong coupling regimes. When applied to the electron fluids at intermediate Fermi degeneracies (θ ≈1 ), the static structure factors calculated in the HNC scheme show good agreements with the results obtained by the path integral Monte Carlo (PIMC) simulation, while a small negative region in the radial distribution function is observed near the origin, which may be associated with a slight overestimation for the exchange-correlation hole in the HNC approximation. The interaction energies are calculated for various combinations of density and temperature parameters ranging from strong to weak degeneracy and from weak to strong coupling, and the HNC values are then parametrized as functions of rs and θ. The HNC exchange-correlation free energies obtained through the coupling-constant integration show reasonable

  18. Correlational and thermodynamic properties of finite-temperature electron liquids in the hypernetted-chain approximation.

    Science.gov (United States)

    Tanaka, Shigenori

    2016-12-07

    Correlational and thermodynamic properties of homogeneous electron liquids at finite temperatures are theoretically analyzed in terms of dielectric response formalism with the hypernetted-chain (HNC) approximation and its modified version. The static structure factor and the local-field correction to describe the strong Coulomb-coupling effects beyond the random-phase approximation are self-consistently calculated through solution to integral equations in the paramagnetic (spin unpolarized) and ferromagnetic (spin polarized) states. In the ground state with the normalized temperature θ=0, the present HNC scheme well reproduces the exchange-correlation energies obtained by quantum Monte Carlo (QMC) simulations over the whole fluid phase (the coupling constant rs≤100), i.e., within 1% and 2% deviations from putative best QMC values in the paramagnetic and ferromagnetic states, respectively. As compared with earlier studies based on the Singwi-Tosi-Land-Sjölander and modified convolution approximations, some improvements on the correlation energies and the correlation functions including the compressibility sum rule are found in the intermediate to strong coupling regimes. When applied to the electron fluids at intermediate Fermi degeneracies (θ≈1), the static structure factors calculated in the HNC scheme show good agreements with the results obtained by the path integral Monte Carlo (PIMC) simulation, while a small negative region in the radial distribution function is observed near the origin, which may be associated with a slight overestimation for the exchange-correlation hole in the HNC approximation. The interaction energies are calculated for various combinations of density and temperature parameters ranging from strong to weak degeneracy and from weak to strong coupling, and the HNC values are then parametrized as functions of rs and θ. The HNC exchange-correlation free energies obtained through the coupling-constant integration show reasonable

  19. Ab initio structure determination of nanocrystals of organic pharmaceutical compounds by electron diffraction at room temperature using a Timepix quantum area direct electron detector

    Energy Technology Data Exchange (ETDEWEB)

    Genderen, E. van; Clabbers, M. T. B. [Biophysical Structural Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden (Netherlands); Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, CH-4058 Basel (Switzerland); Das, P. P. [Nanomegas SPRL, Boulevard Edmond Machtens 79, B 1080, Brussels (Belgium); Stewart, A. [Department of Physics and Energy, Materials and Surface Science Institute (MSSI), University of Limerick, Limerick (Ireland); Nederlof, I. [Biophysical Structural Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden (Netherlands); Amsterdam Scientific Instruments, Postbus 41882, 1009 DB Amsterdam (Netherlands); Barentsen, K. C. [Biophysical Structural Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden (Netherlands); Portillo, Q. [Nanomegas SPRL, Boulevard Edmond Machtens 79, B 1080, Brussels (Belgium); Centres Científics i Tecnològics de la Universitat de Barcelona, University of Barcelona, Carrer de Lluís Solé i Sabaris, 1-3, Barcelona (Spain); Pannu, N. S. [Biophysical Structural Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden (Netherlands); Nicolopoulos, S. [Nanomegas SPRL, Boulevard Edmond Machtens 79, B 1080, Brussels (Belgium); Gruene, T., E-mail: tim.gruene@psi.ch [Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), 5232 Villigen (Switzerland); Abrahams, J. P., E-mail: tim.gruene@psi.ch [Biophysical Structural Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden (Netherlands); Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, CH-4058 Basel (Switzerland); Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), 5232 Villigen (Switzerland)

    2016-02-05

    A specialized quantum area detector for electron diffraction studies makes it possible to solve the structure of small organic compound nanocrystals in non-cryo conditions by direct methods. Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼0.013 e{sup −} Å{sup −2} s{sup −1}) were collected at room temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014)

  20. Final Technical Report - 300°C Capable Electronics Platform and Temperature Sensor System For Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Cheng-Po; Shaddock, David; Sandvik, Peter; Saia, Rich; Amita Patil, Alexey Vert; Zhang, Tan

    2012-11-30

    A silicon carbide (SiC) based electronic temperature sensor prototype has been demonstrated to operate at 300°C. We showed continuous operation of 1,000 hours with SiC operational amplifier and surface mounted discreet resistors and capacitors on a ceramic circuit board. This feasibility demonstration is a major milestone in the development of high temperature electronics in general and high temperature geothermal exploration and well management tools in particular. SiC technology offers technical advantages that are not found in competing technologies such as silicon-on-insulator (SOI) at high temperatures of 200°C to 300°C and beyond. The SiC integrated circuits and packaging methods can be used in new product introduction by GE Oil and Gas for high temperature down-hole tools. The existing SiC fabrication facility at GE is sufficient to support the quantities currently demanded by the marketplace, and there are other entities in the United States and other countries capable of ramping up SiC technology manufacturing. The ceramic circuit boards are different from traditional organic-based electronics circuit boards, but the fabrication process is compatible with existing ceramic substrate manufacturing. This project has brought high temperature electronics forward, and brings us closer to commercializing tools that will enable and reduce the cost of enhanced geothermal technology to benefit the public in terms of providing clean renewable energy at lower costs.

  1. Temperature dependence of persistent spin currents in a spin-orbit-coupled electron gas: A density-matrix approach

    Science.gov (United States)

    Bencheikh, K.; Vignale, G.

    2008-04-01

    We present a simple analytical method, based on the canonical density matrix, for the calculation of the equilibrium spin current as a function of temperature in a two-dimensional electron gas with both Rashba and Dresselhaus spin-orbit coupling terms. We find that the persistent spin current is extremely robust against thermal disorder: its variation with temperature is exponentially small (∝e-TF/T) at temperatures much smaller than the Fermi temperature TF and changes to a power law TF/T for T≫TF .

  2. Electron-Phonon Coupling and Energy Flow in a Simple Metal beyond the Two-Temperature Approximation

    Directory of Open Access Journals (Sweden)

    Lutz Waldecker

    2016-04-01

    Full Text Available The electron-phonon coupling and the corresponding energy exchange are investigated experimentally and by ab initio theory in nonequilibrium states of the free-electron metal aluminium. The temporal evolution of the atomic mean-squared displacement in laser-excited thin freestanding films is monitored by femtosecond electron diffraction. The electron-phonon coupling strength is obtained for a range of electronic and lattice temperatures from density functional theory molecular dynamics simulations. The electron-phonon coupling parameter extracted from the experimental data in the framework of a two-temperature model (TTM deviates significantly from the ab initio values. We introduce a nonthermal lattice model (NLM for describing nonthermal phonon distributions as a sum of thermal distributions of the three phonon branches. The contributions of individual phonon branches to the electron-phonon coupling are considered independently and found to be dominated by longitudinal acoustic phonons. Using all material parameters from first-principles calculations except the phonon-phonon coupling strength, the prediction of the energy transfer from electrons to phonons by the NLM is in excellent agreement with time-resolved diffraction data. Our results suggest that the TTM is insufficient for describing the microscopic energy flow even for simple metals like aluminium and that the determination of the electron-phonon coupling constant from time-resolved experiments by means of the TTM leads to incorrect values. In contrast, the NLM describing transient phonon populations by three parameters appears to be a sufficient model for quantitatively describing electron-lattice equilibration in aluminium. We discuss the general applicability of the NLM and provide a criterion for the suitability of the two-temperature approximation for other metals.

  3. Determination of the Electron Density and Electron Temperature in A Magnetron Discharge Plasma Using Optical Spectroscopy and the Collisional-Radiative Model of Argon

    Science.gov (United States)

    Evdokimov, K. E.; Konishchev, M. E.; Pichugin, V. F.; Pustovalova, A. A.; Ivanova, N. M.; Sun', Ch.

    2017-09-01

    A method for determining the electron temperature and electron density in a plasma is proposed that is based on minimization of the difference between the experimental relative intensities of the spectral argon (Ar) lines and those same intensities calculated with the aid of the collisional-radiative model. The model describes the kinetics of the ground state and 40 excited states of the Ar atom and takes into account the following processes: excitation and deactivation of the states of the atom by electron impact, radiative decay of the excited states, self-absorption of radiation, ionization of excited states by electron impact, and quenching of metastable states as a consequence of collisions with the chamber walls. Using the given method, we have investigated the plasma of a magnetron discharge on a laboratory setup for intermediate-frequency magnetron sputtering for a few selected operating regimes.

  4. Very low electron temperature in warm dense matter formed by focused picosecond soft x-ray laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ishino, Masahiko, E-mail: ishino.masahiko@jaea.go.jp; Hasegawa, Noboru; Nishikino, Masaharu; Kawachi, Tetsuya; Yamagiwa, Mitsuru [Quantum Beam Science Center, Japan Atomic Energy Agency, 8-1-7, Umemidai, Kizugawa, Kyoto 619-0215 (Japan); Pikuz, Tatiana [Joint Institute for High Temperatures, Russian Academy of Sciences, 13-2, Izhorskaya Street, Moscow 125412 (Russian Federation); Graduate School of Engineering, Osaka University, 1-1, Yamadaoka, Suita, Osaka 565-0871 (Japan); Skobelev, Igor [Joint Institute for High Temperatures, Russian Academy of Sciences, 13-2, Izhorskaya Street, Moscow 125412 (Russian Federation); National Research Nuclear University, Moscow Engineering Physics Institute, 31, Kashirskoe Shosse, Moscow 115409 (Russian Federation); Faenov, Anatoly [Joint Institute for High Temperatures, Russian Academy of Sciences, 13-2, Izhorskaya Street, Moscow 125412 (Russian Federation); Institute for Academic Initiatives, Osaka University, 1-1, Yamadaoka, Suita, Osaka 565-0871 (Japan); Inogamov, Nail [Landau Institute for Theoretical Physics, Russian Academy of Sciences, 1-A, Akademika Semenova av., Chernogolovka, Moscow Region 142432 (Russian Federation)

    2014-11-14

    We investigated the optical emission from the ablating surfaces induced by the irradiations of soft x-ray laser (SXRL) pulses with the aim of estimation of the maximum electron temperature. No emission signal in the spectral range of 400–800 nm could be observed despite the formation of damage structures on the target surfaces. Hence, we estimated an upper limit for the electron temperature of 0.4–0.7 eV for the process duration of 100–1000 ps. Our results imply that the ablation and/or surface modification by the SXRL is not accompanied by plasma formation but is induced by thermo-mechanical pressure, which is so called a spallative ablation. This spallative ablation process occurs in the low electron temperature region of a non-equilibrium state of warm dense matter.

  5. Effects of charge non-neutrality and finite beta on the electron temperature gradient modes in Tokamaks

    Science.gov (United States)

    Hirose, A.; Liu, D. Z.; Livingstone, S.

    2004-03-01

    Local kinetic analysis of the electron temperature gradient (ETG) mode in Tokamaks indicates that the effects of charge non-neutrality are significant in the parameter regime of Tokamaks. The maximum growth rate occurs at (k/k(De))(2) 0.5 when the electron temperature and density are varied over a wide range. The growth rate becomes dependent on the beta factor even though the ETG mode is predominantly electrostatic. Finite beta stabilization of the ETG mode requires a large ballooning parameter so as to cause an effective drift reversal. Mixing length estimate yields an electron thermal diffusivity chi(e) qnu(Te) (c/omega(pe))(2) rootbeta(e) / L-n where c/omega(pe) is the electron skin depth.

  6. Electron transport and low-temperature electrical and galvanomagnetic properties of zinc oxide and indium oxide films

    Science.gov (United States)

    Kulbachinskii, V. A.; Kytin, V. G.; Reukova, O. V.; Burova, L. I.; Kaul, A. R.; Ulyashin, A. G.

    2015-02-01

    The electrical and galvanomagnetic properties of zinc oxide films with and without gallium, aluminum, and cobalt doping and of tin-doped indium oxide films are studied over a wide range of temperatures and magnetic fields. It is shown that the mechanism for electron transport in these films changes from band to hopping transport as the degree of crystallinity of the films is reduced because of the methods and conditions for their synthesis. The change in the dimensionality of the films with band electron transport at low temperatures is studied in terms of the weak localization induced by a magnetic field. The localization radius and density of electron states in the Fermi level are estimated for the films with a hopping electron transport.

  7. Changes in core electron temperature fluctuations across the ohmic energy confinement transition in Alcator C-Mod plasmas

    Science.gov (United States)

    Sung, C.; White, A. E.; Howard, N. T.; Oi, C. Y.; Rice, J. E.; Gao, C.; Ennever, P.; Porkolab, M.; Parra, F.; Mikkelsen, D.; Ernst, D.; Walk, J.; Hughes, J. W.; Irby, J.; Kasten, C.; Hubbard, A. E.; Greenwald, M. J.; the Alcator C-Mod Team

    2013-08-01

    The first measurements of long wavelength (kyρs < 0.3) electron temperature fluctuations in Alcator C-Mod made with a new correlation electron cyclotron emission diagnostic support a long-standing hypothesis regarding the confinement transition from linear ohmic confinement (LOC) to saturated ohmic confinement (SOC). Electron temperature fluctuations decrease significantly (∼40%) crossing from LOC to SOC, consistent with a change from trapped electron mode (TEM) turbulence domination to ion temperature gradient (ITG) turbulence as the density is increased. Linear stability analysis performed with the GYRO code (Candy and Waltz 2003 J. Comput. Phys. 186 545) shows that TEMs are dominant for long wavelength turbulence in the LOC regime and ITG modes are dominant in the SOC regime at the radial location (ρ ∼ 0.8) where the changes in electron temperature fluctuations are measured. In contrast, deeper in the core (ρ < 0.8), linear stability analysis indicates that ITG modes remain dominant across the LOC/SOC transition. This radial variation suggests that the robust global changes in confinement of energy and momentum occurring across the LOC/SOC transition are correlated to local changes in the dominant turbulent mode near the edge.

  8. First results of electron temperature measurements by the use of multi-pass Thomson scattering system in GAMMA 10

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, M., E-mail: yosikawa@prc.tsukuba.ac.jp; Nagasu, K.; Shimamura, Y.; Shima, Y.; Kohagura, J.; Sakamoto, M.; Nakashima, Y.; Imai, T.; Ichimura, M. [Plasma Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Yasuhara, R.; Yamada, I.; Funaba, H.; Kawahata, K. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan); Minami, T. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2014-11-15

    A multi-pass Thomson scattering (TS) has the advantage of enhancing scattered signals. We constructed a multi-pass TS system for a polarisation-based system and an image relaying system modelled on the GAMMA 10 TS system. We undertook Raman scattering experiments both for the multi-pass setting and for checking the optical components. Moreover, we applied the system to the electron temperature measurements in the GAMMA 10 plasma for the first time. The integrated scattering signal was magnified by approximately three times by using the multi-pass TS system with four passes. The electron temperature measurement accuracy is improved by using this multi-pass system.

  9. Very heavily electron-doped CrSi2 as a high-performance high-temperature thermoelectric material

    Science.gov (United States)

    Parker, David; Singh, David J.

    2012-03-01

    We analyze the thermoelectric behavior, using first principles and Boltzmann transport calculations, of very heavily electron-doped CrSi2 and find that at temperatures of 900-1250 K and electron dopings of 1-4 × 1021 cm-3, thermopowers as large in magnitude as 200 μV K-1 may be found. Such high thermopowers at such high carrier concentrations are extremely rare, and suggest that excellent thermoelectric performance may be found in these ranges of temperature and doping.

  10. Compact electronic soma and synapse circuits fabricated using a low temperature approach

    Science.gov (United States)

    Subramaniam, Anand

    Digital circuits using the von Neumann architecture and complementary metal-oxide-semiconductor (CMOS) electronic devices dominate large-scale processing systems today and are extremely efficient at performing well-defined operations. However, these systems are less efficient at tasks which involve processing large amounts of imprecise information originating from the surrounding environment, such as pattern recognition and outcome prediction. The human brain is the best processor of such information sets, and consists of a large number of primitive elements (1010 neurons and 1014 synapses). Neuromorphic systems are a class of circuits that draw inspiration from the extremely parallel architecture of the brain. A major goal is thus to develop neuromorphic circuits using a large-area, low-power, and highly dense approach. The major focus of this work is the fabrication of a compact circuit which can implement a biologically realistic synaptic learning rule using low-temperature materials. Ambipolar nanocrystalline-silicon (nc-Si) thin-film transistors (TFTs) are selected as basic building blocks of spiking soma circuits. These TFTs are fabricated at the nanoscale using a CMOS-compatible fabrication process at a maximum temperature of 250 °C. High-κ gate dielectrics are incorporated to achieve lower subthreshold swings and threshold voltages. Soma circuits which consist of a few nc-Si TFTs and capacitors are fabricated and shown to display spiking behavior similar to biological neurons. Electronic synapses are fabricated using Au nanoparticle (NP) memory devices based on nc-Si TFTs and TiN/HfO2/TiN memristors. These are then integrated with the soma circuit to achieve an action potential pair-based learning rule, namely spike-timing-dependent plasticity (STDP). The STDP rule is experimentally demonstrated for the first time using simple rectangular voltage pulses alone. The soma circuits are shown to be capable of driving a significant number of synapses in a large

  11. Half-life of the electron-capture decay of Ru97: Precision measurement shows no temperature dependence

    Science.gov (United States)

    Goodwin, J. R.; Golovko, V. V.; Iacob, V. E.; Hardy, J. C.

    2009-10-01

    We have measured the half-life of the electron-capture (ec) decay of Ru97 in a metallic environment, both at low temperature (19K), and also at room temperature. We find the half-lives at both temperatures to be the same within 0.1%. This demonstrates that a recent claim that the ec decay half-life for Be7 changes by 0.9%±0.2% under similar circumstances certainly cannot be generalized to other ec decays. Our results for the half-life of Ru97, 2.8370(14) d at room temperature and 2.8382(14) d at 19 K, are consistent with, but much more precise than, previous room-temperature measurements. In addition, we have also measured the half-lives of the β--emitters Ru103 and Rh105 at both temperatures, and found them also to be unchanged.

  12. Plasma potential and electron temperature evaluated by ball-pen and Langmuir probes in the COMPASS tokamak

    Science.gov (United States)

    Dimitrova, M.; Popov, Tsv K.; Adamek, J.; Kovačič, J.; Ivanova, P.; Hasan, E.; López-Bruna, D.; Seidl, J.; Vondráček, P.; Dejarnac, R.; Stöckel, J.; Imríšek, M.; Panek, R.; the COMPASS Team

    2017-12-01

    The radial distributions of the main plasma parameters in the scrape-off-layer of the COMPASS tokamak are measured during L-mode and H-mode regimes by using both Langmuir and ball-pen probes mounted on a horizontal reciprocating manipulator. The radial profile of the plasma potential derived previously from Langmuir probes data by using the first derivative probe technique is compared with data derived using ball-pen probes. A good agreement can be seen between the data acquired by the two techniques during the L-mode discharge and during the H-mode regime within the inter-ELM periods. In contrast with the first derivative probe technique, the ball-pen probe technique does not require a swept voltage and, therefore, the temporal resolution is only limited by the data acquisition system. In the electron temperature evaluation, in the far scrape-off layer and in the limiter shadow, where the electron energy distribution is Maxwellian, the results from both techniques match well. In the vicinity of the last closed flux surface, where the electron energy distribution function is bi-Maxwellian, the ball-pen probe technique results are in agreement with the high-temperature components of the electron distribution only. We also discuss the application of relatively large Langmuir probes placed in parallel and perpendicularly to the magnetic field lines to studying the main plasma parameters. The results obtained by the two types of the large probes agree well. They are compared with Thomson scattering data for electron temperatures and densities. The results for the electron densities are compared also with the results from ASTRA code calculation of the electron source due to the ionization of the neutrals by fast electrons and the origin of the bi-Maxwellian electron energy distribution function is briefly discussed.

  13. Effects of High Energy Electron Irradiation on a Yttrium Barium(2) Copper(3) Oxygen(7-delta) High Temperature Superconductor

    Science.gov (United States)

    1991-09-01

    expulsion of magnetic fields from the interior of a superconductor such that B = 0 and is the phenome- non that explains magnetic levitation . From Ohm’s Law...2Cu 30 7 - HIGH TEMPERATURE SUPERCONDUCTOR by Sean Mark Connors September 1991 Thesis Advisor: X. K. Maruyama Approved for public release...if necessary and identify by btock numbe,) FiE GP<P ,€ 5 pCOO HIGH TEMPERATURE SUPERCONDUCTORS , IRRADIATION EFFECTS, ELECTRON IRRADIATION

  14. High Bismuth Alloys as Lead-Free Alternatives for Interconnects in High-Temperature Electronics

    Science.gov (United States)

    Mallampati, Sandeep

    Predominant high melting point solders for high-temperature electronics (operating temperatures from 200 to 250°C) are Pb-based which are being banned from usage due to their toxic nature. In this study, high bismuth alloy compositions (Bi-14Cu-8Sn, Bi-20Sb-10Cu, Bi-15Sb-10Cu and Bi-10Sb-10Cu) were designed, cast, and characterized to understand their potential as replacements. The desirable aspect of Bi is its high melting temperature, which is 271°C. Alloying elements Sn, Sb and Cu were added to improve some of its properties such as thermal conductivity, plasticity, and reactivity with Cu and Ni surface. Metallographic sectioning and microstructure analysis were performed on the bulk alloys to compare the evolution of phases predicted from equilibrium phase diagrams. Reflow processes were developed to make die-attach samples out of the proposed alloys and die-shear testing was carried out to characterize mechanical integrity of the joint. Thermal shock between -55°C to 200°C and high temperature storage at 200°C were performed on the assembled die-attach samples to study microstructure evolution and mechanical behavior of the reflowed alloys under accelerated testing conditions. In addition, heat dissipation capabilities, using flash diffusivity, were measured on the bulk alloys and also on the die-attach assembly. Finally, tensile testing was performed on the dogbone specimens to identify the potential for plastic deformation and electron backscatter diffraction (EBSD) analysis was used to study the grain orientations on the fracture surfaces and their influence on the crack propagation. Bi-14Cu-8Sn has formed BiNi by on the die backside metallization and the reaction with Cu was poor. This has resulted in weaker substrate side interface. It was observed that Bi-Sb alloys have strong reactivity with Ni (forming Bi3Ni, BiNi and NiSb intermetallic phases), and with Cu (forming Cu2Sb, Cu4Sb). Spallation was observed in NiSb interfacial intermetallic layer and

  15. Electronic Structure of Low-Temperature Solution-Processed Amorphous Metal Oxide Semiconductors for Thin-Film Transistor Applications.

    Science.gov (United States)

    Socratous, Josephine; Banger, Kulbinder K; Vaynzof, Yana; Sadhanala, Aditya; Brown, Adam D; Sepe, Alessandro; Steiner, Ullrich; Sirringhaus, Henning

    2015-03-25

    The electronic structure of low temperature, solution-processed indium-zinc oxide thin-film transistors is complex and remains insufficiently understood. As commonly observed, high device performance with mobility >1 cm(2) V(-1) s(-1) is achievable after annealing in air above typically 250 °C but performance decreases rapidly when annealing temperatures ≤200 °C are used. Here, the electronic structure of low temperature, solution-processed oxide thin films as a function of annealing temperature and environment using a combination of X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and photothermal deflection spectroscopy is investigated. The drop-off in performance at temperatures ≤200 °C to incomplete conversion of metal hydroxide species into the fully coordinated oxide is attributed. The effect of an additional vacuum annealing step, which is beneficial if performed for short times at low temperatures, but leads to catastrophic device failure if performed at too high temperatures or for too long is also investigated. Evidence is found that during vacuum annealing, the workfunction increases and a large concentration of sub-bandgap defect states (re)appears. These results demonstrate that good devices can only be achieved in low temperature, solution-processed oxides if a significant concentration of acceptor states below the conduction band minimum is compensated or passivated by shallow hydrogen and oxygen vacancy-induced donor levels.

  16. Limitations to the room temperature mobility of two- and three-dimensional electron liquids in SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mikheev, Evgeny; Himmetoglu, Burak; Kajdos, Adam P.; Moetakef, Pouya; Cain, Tyler A.; Van de Walle, Chris G.; Stemmer, Susanne [Materials Department, University of California, Santa Barbara, California 93106-5050 (United States)

    2015-02-09

    We analyze and compare the temperature dependence of the electron mobility of two- and three-dimensional electron liquids in SrTiO{sub 3}. The contributions of electron-electron scattering must be taken into account to accurately describe the mobility in both cases. For uniformly doped, three-dimensional electron liquids, the room temperature mobility crosses over from longitudinal optical (LO) phonon-scattering-limited to electron-electron-scattering-limited as a function of carrier density. In high-density, two-dimensional electron liquids, LO phonon scattering is completely screened and the mobility is dominated by electron-electron scattering up to room temperature. The possible origins of the observed behavior and the consequences for approaches to improve the mobility are discussed.

  17. Polarization induced water molecule dissociation below the first-order electronic-phase transition temperature

    CERN Document Server

    Arulsamy, Andrew Das; Elersic, Kristina; Modic, Martina; Subramani, Uma Shankar

    2011-01-01

    Hydrogen produced from the photocatalytic splitting of water is one of the reliable alternatives to replace the polluting fossil and the radioactive nuclear fuels. Here, we provide unequivocal evidence for the existence of blue- and red-shifting O$-$H covalent bonds within a single water molecule adsorbed on MgO surface as a result of asymmetric displacement polarizabilities. The adsorbed H-O-H on MgO gives rise to one weaker H-O bond, while the other O-H covalent bond from the same adsorbed water molecule compensates this effect with a stronger bond. The weaker bond (nearest to the surface), the interlayer tunneling electrons and the silver substrate are shown to be the causes for the smallest dissociative activation energy on MgO monolayer. The origin that is responsible to initiate the splitting mechanism is proven to be due to the changes in the polarizability of an adsorbed water molecule, which are further supported by the temperature-dependent static dielectric constant measurements for water below the...

  18. Large-scale drifts observed on electron temperature measurements on JET plasmas

    CERN Document Server

    Gerbaud, Thomas; Alper, Barry; Beausang, Kieran; Beurskens, Marc; Flanagan, Joanne; Kempenaars, Mark; Sirinelli, Antoine; Maslov, Mikhail; Dif-Pradalier, Guilhem; Contributors, JET EFDA

    2012-01-01

    Between 1995 and 2009, electron temperature (Te) measurements of more than 15000 plasmas produced in the Joint European Torus (JET) have been carefully reviewed using the two main diagnostics available over this time period: Michelson interferometer and Thomson scattering systems. Long term stability of JET Te is experimentaly observed by defining the ECE TS ratio as the ratio of central Te measured by Michelson and LIDAR. This paper, based on a careful review of Te measurement from 15 years of JET plasmas, concludes that JET Te exhibits a 15-20% effective uncertainty mostly made of large-scale temporal drifts, and an overall uncertainty of 16-22%. Variations of 18 plasma parameters are checked in another data set, made of a "reference data set" made of ohmic pulses as similar as possible between 1998 and 2009. Time drifts of ECE TS ratios appear to be mostly disconnected from the variations observed on these 18 plasma parameters, except for the very low amplitude variations of the field which are well correl...

  19. Ion scale nonlinear interaction triggered by disparate scale electron temperature gradient mode

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Chanho, E-mail: moon@nifs.ac.jp [Department of Electronic Engineering, Tohoku University, Sendai 980-8579 (Japan); National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Kobayashi, Tatsuya; Itoh, Kimitaka [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Hatakeyama, Rikizo; Kaneko, Toshiro [Department of Electronic Engineering, Tohoku University, Sendai 980-8579 (Japan)

    2015-05-15

    We have observed that the disparate scale nonlinear interactions between the high-frequency (∼0.4 MHz) electron temperature gradient (ETG) mode and the ion-scale low-frequency fluctuations (∼kHz) were enhanced when the amplitude of the ETG mode exceeded a certain threshold. The dynamics of nonlinear coupling between the ETG mode and the drift wave (DW) mode has already been reported [C. Moon, T. Kaneko, and R. Hatakeyama, Phys. Rev. Lett. (2013)]. Here, we have newly observed that another low-frequency fluctuation with f ≃ 3.6 kHz, i.e., the flute mode, was enhanced, corresponding to the saturation of the DW mode growth. Specifically, the bicoherence between the flute mode and the DW mode reaches a significant level when the ∇T{sub e}/T{sub e} strength exceeded 0.54 cm{sup −1}. Thus, it is shown that the ETG mode energy was transferred to the DW mode, and then the energy was ultimately transferred to the flute mode, which was triggered by the disparate scale nonlinear interactions between the ETG and ion-scale low-frequency modes.

  20. Quantitative comparison of electron temperature fluctuations to nonlinear gyrokinetic simulations in C-Mod Ohmic L-mode discharges

    Energy Technology Data Exchange (ETDEWEB)

    Sung, C., E-mail: csung@physics.ucla.edu [University of California, Los Angeles, Los Angeles, California 90095 (United States); White, A. E.; Greenwald, M.; Howard, N. T. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Mikkelsen, D. R.; Churchill, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Holland, C. [University of California, San Diego, La Jolla, California 92093 (United States); Theiler, C. [Ecole Polytechnique Fédérale de Lausanne, SPC, Lausanne 1015 (Switzerland)

    2016-04-15

    Long wavelength turbulent electron temperature fluctuations (k{sub y}ρ{sub s} < 0.3) are measured in the outer core region (r/a > 0.8) of Ohmic L-mode plasmas at Alcator C-Mod [E. S. Marmar et al., Nucl. Fusion 49, 104014 (2009)] with a correlation electron cyclotron emission diagnostic. The relative amplitude and frequency spectrum of the fluctuations are compared quantitatively with nonlinear gyrokinetic simulations using the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] in two different confinement regimes: linear Ohmic confinement (LOC) regime and saturated Ohmic confinement (SOC) regime. When comparing experiment with nonlinear simulations, it is found that local, electrostatic ion-scale simulations (k{sub y}ρ{sub s} ≲ 1.7) performed at r/a ∼ 0.85 reproduce the experimental ion heat flux levels, electron temperature fluctuation levels, and frequency spectra within experimental error bars. In contrast, the electron heat flux is robustly under-predicted and cannot be recovered by using scans of the simulation inputs within error bars or by using global simulations. If both the ion heat flux and the measured temperature fluctuations are attributed predominantly to long-wavelength turbulence, then under-prediction of electron heat flux strongly suggests that electron scale turbulence is important for transport in C-Mod Ohmic L-mode discharges. In addition, no evidence is found from linear or nonlinear simulations for a clear transition from trapped electron mode to ion temperature gradient turbulence across the LOC/SOC transition, and also there is no evidence in these Ohmic L-mode plasmas of the “Transport Shortfall” [C. Holland et al., Phys. Plasmas 16, 052301 (2009)].

  1. Electron Temperature Fluctuation Measurements and Transport Model Validation at Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    White, Anne [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-06-22

    for studying core turbulence are needed in order to assess the accuracy of gyrokinetic models for turbulent-driven particle, heat and momentum transport. New core turbulence diagnostics at the world-class tokamaks Alcator C-Mod at MIT and ASDEX Upgrade at the Max Planck Institute for Plasma Physics have been designed, developed, and operated over the course of this project. These new instruments are capable of measuring electron temperature fluctuations and the phase angle between density and temperature fluctuations locally and quantitatively. These new data sets from Alcator C-Mod and ASDEX Upgrade are being used to fill key gaps in our understanding of turbulent transport in tokamaks. In particular, this project has results in new results on the topics of the Transport Shortfall, the role of ETG turbulence in tokamak plasmas, profile stiffness, the LOC/SOC transition, and intrinsic rotation reversals. These data are used in a rigorous process of “Transport model validation”, and this group is a world-leader on using turbulence models to design new hardware and new experiments at tokamaks. A correlation electron cyclotron emission (CECE) diagnostic is an instrument used to measure micro-scale fluctuations (mm-scale, compared to the machine size of meters) of electron temperature in magnetically confined fusion plasmas, such as those in tokamaks and stellarators. These micro-scale fluctuations are associated with drift-wave type turbulence, which leads to enhanced cooling and mixing of particles in fusion plasmas and limits achieving the required temperatures and densities for self-sustained fusion reactions. A CECE system can also be coupled with a reflectometer system that measured micro-scale density fluctuations, and from these simultaneous measurements, one can extract the phase between the density (n) and temperature (T) fluctuations, creating an nT phase diagnostic. Measurements of the fluctuations and the phase angle between them are extremely useful for

  2. Primary defect transformations in high-resistivity p-type silicon irradiated with electrons at cryogenic temperatures

    CERN Document Server

    Makarenko, L F; Korshunov, F P; Murin, L I; Moll, M

    2009-01-01

    It has been revealed that self-interstitials formed under low intensity electron irradiationin high resistivity p-type silicon can be retained frozen up to room temperature. Low thermal mobility of the self-interstitials suggests that Frenkelpair sinsilicon can be stable at temperatures of about or higher than 100K. A broad DLTS peak with activation energy of 0.14–0.17eV can be identified as related to Frenkel pairs. This peak anneals out at temperatures of 120 140K. Experimental evidences are presented that be coming more mobile under forwardcurrent injection the self-interstitials change their charge state to a less positive one.

  3. Feasibility Studies of the Two Filters Method in TJ-II for Electron Temperature Measurements in High Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Baiao, D.; Medina, F.; Ochando, M.; Varandas, C.

    2009-07-01

    The TJ-II plasma soft X-ray emission was studied in order to establish an adequate setup for an electron temperature diagnostic suitable for high density, with spatial and temporal resolutions, based on the two-filters method. The preliminary experimental results reported were obtained with two diagnostics (an X-ray PHA based on a Ge detector and a tomography system) already installed in TJ-II stellarator. These results lead to the conclusion that the two-filters method was a suitable option for an electron temperature diagnostic for high-density plasmas in TJ-II. We present the design and fi rst results obtained with a prototype for the measurement of electron temperature in TJ-II plasmas heated with energetic neutral beams. This system consists in two AXUV20A detectors which measure the soft X-ray plasma emissivity trough beryllium filters of different thickness. From the two-filters technique it is possible to estimate the electron temperature. The analyses carried out allowed concluding which filter thicknesses are most suited for TJ-II plasmas, and enhanced the need of a computer code to simulate signals and plasma compositions. (Author) 7 refs.

  4. Multichord time-resolved electron temperature measurements by the x-ray absorber-foil method on TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Kiraly, J.; Bitter, M.; Efthimion, P.; von Goeler, S.; Grek, B.; Hill, K.W.; Johnson, D.; McGuire, K.; Sauthoff, N.; Sesnic, S.

    1985-09-01

    Absorber foils have been installed in the TFTR X-Ray Imaging System to permit measurement of the electron temperature along 10 to 30 chords spaced at 5-12.5 cm with a time resolution of less than 100 ..mu..s. The technique uses the ratio of x-ray fluxes transmitted through two different foils. The ratio depends mainly on electron temperature. Simulations show that strong impurity line radiation can distort this ratio. To correct for these effects, special beryllium-scandium filters are employed to select the line-free region between 2 and 4.5 keV. Other filter pairs allow corrections for Fe L and Ni L line radiation as well as Ti K and Ni K emission. Good accuracy is also obtained with simple beryllium filters, provided that impurity corrections are incorporated in the analysis, taking line intensities from the x-ray pulse-height analysis diagnostic. A description of modeling calculations and a comparison of temperature values from this diagnostic with data from the x-ray pulse height analysis, the electron cyclotron emission, and the Thomson scattering diagnostics are presented. Several applications of the absorber foil electron temperature diagnostic on TFTR are discussed.

  5. Magnon, phonon, and electron temperature profiles and the spin Seebeck effect in magnetic insulator/normal metal hybrid structures

    NARCIS (Netherlands)

    Schreier, M.; Kamra, A.; Weiler, M.; Xiao, J.; Bauer, G.E.W.; Gross, R.; Goennenwein, S.T.B.

    2013-01-01

    We calculate the phonon, electron, and magnon temperature profiles in yttrium iron garnet/platinum bilayers by diffusive theory with appropriate boundary conditions, in particular taking into account interfacial thermal resistances. Our calculations show that in thin film hybrids, the interface

  6. Room temperature formation of high-mobility two-dimensional electron gases at crystalline complex oxide interfaces

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Bovet, N.; Kasama, Takeshi

    2014-01-01

    Well-controlled sub-unit-cell layer-bylayer epitaxial growth of spinel alumina is achieved at room temperature on a TiO2-terminated SrTiO3 single-crystalline substrate. By tailoring the interface redox reaction, 2D electron gases with mobilities exceeding 3000 cm 2 V−1 s−1 are achieved...

  7. Electronic spin transport and spin precession in single graphene layers at room temperature

    NARCIS (Netherlands)

    Tombros, Nikolaos; Jozsa, Csaba; Popinciuc, Mihaita; Jonkman, Harry T.; van Wees, Bart J.

    2007-01-01

    Electronic transport in single or a few layers of graphene is the subject of intense interest at present. The specific band structure of graphene, with its unique valley structure and Dirac neutrality point separating hole states from electron states, has led to the observation of new electronic

  8. Time-Resolved Electron Paramagnetic Resonance and Theoretical Investigations of Metal-Free Room-Temperature Triplet Emitters.

    Science.gov (United States)

    Matsuoka, Hideto; Retegan, Marius; Schmitt, Lisa; Höger, Sigurd; Neese, Frank; Schiemann, Olav

    2017-09-20

    Utilization of triplets is important for preparing organic light-emitting diodes with high efficiency. Very recently, both electrophosphorescence and electrofluorescence could be observed at room temperature for thienyl-substituted phenazines without any heavy metals ( Ratzke et al. J. Phys. Chem. Lett. , 2016 , 7 , 4802 ). It was found that the phosphorescence efficiency depends on the orientation of fused thiophenes. In this work, the thienyl-substituted phenazines are investigated in more detail by time-resolved electron paramagnetic resonance (EPR) and quantum chemical calculations. Spin dynamics, zero-field splitting constants, and electron-spin structures of the excited triplet states for the metal-free room-temperature triplet emitters are correlated with phosphorescence efficiency. Complete active space self-consistent field (CASSCF) calculations clearly show that the electron spin density distributions of the first excited triplet states are strongly affected by the molecular geometry. For the phosphorescent molecules, the electron spins are localized on the phenazine unit, in which the sulfur atom of the fused thiophene points upward. The electron spins are delocalized onto the thiophene unit just by changing the orientation of the fused thiophenes from upward to downward, resulting in the suppression of phosphorescence. Time-resolved EPR measurements and time-dependent density functional theory (TD-DFT) calculations demonstrate that the electron spins delocalized onto the thiophene unit lead to the acceleration of nonradiative decays, in conjunction with the narrowing of the singlet-triplet energy gap.

  9. Accurate electronic free energies of the 3 d ,4 d , and 5 d transition metals at high temperatures

    Science.gov (United States)

    Zhang, Xi; Grabowski, Blazej; Körmann, Fritz; Freysoldt, Christoph; Neugebauer, Jörg

    2017-04-01

    Free energies of bulk materials are nowadays routinely computed by density functional theory. In particular for metals, electronic excitations can significantly contribute to the free energy. For an ideal static lattice, this contribution can be obtained at low computational cost, e.g., from the electronic density of states derived at T =0 K or by utilizing the Sommerfeld approximation. The error introduced by these approximations at elevated temperatures is rarely known. The error arising from the ideal lattice approximation is likewise unexplored but computationally much more challenging to overcome. In order to shed light on these issues we have computed the electronic free energies for all 3 d ,4 d , and 5 d transition elements on the ideal lattices of the bcc, fcc, and hcp structures using finite-temperature density-functional theory. For a subset of elements we have explored the impact of explicit thermal vibrations on the electronic free energies by using ab initio molecular dynamics simulations. We provide an analysis of the observed chemical trends in terms of the electronic density of states and the canonical d band model and quantify the errors in the approximate methods. The electronic contribution to the heat capacities and the corresponding errors due to the different approximations are studied as well.

  10. Probing environment fluctuations by two-dimensional electronic spectroscopy of molecular systems at temperatures below 5 K

    Energy Technology Data Exchange (ETDEWEB)

    Rancova, Olga; Abramavicius, Darius [Department of Theoretical Physics, Vilnius University, Sauletekio al 9-III, 10222 Vilnius (Lithuania); Jankowiak, Ryszard [Department of Chemistry and Department of Physics, Kansas State University, 213 CBC Building Manhattan, Kansas 66506-0401 (United States)

    2015-06-07

    Two-dimensional (2D) electronic spectroscopy at cryogenic and room temperatures reveals excitation energy relaxation and transport, as well as vibrational dynamics, in molecular systems. These phenomena are related to the spectral densities of nuclear degrees of freedom, which are directly accessible by means of hole burning and fluorescence line narrowing approaches at low temperatures (few K). The 2D spectroscopy, in principle, should reveal more details about the fluctuating environment than the 1D approaches due to peak extension into extra dimension. By studying the spectral line shapes of a dimeric aggregate at low temperature, we demonstrate that 2D spectra have the potential to reveal the fluctuation spectral densities for different electronic states, the interstate correlation of static disorder and, finally, the time scales of spectral diffusion with high resolution.

  11. Temperature dependence of the rate constant for reactions of hydrated electrons with H, OH and H2O2

    DEFF Research Database (Denmark)

    Christensen, H.; Sehested, K.; Løgager, T.

    1994-01-01

    The temperature dependence of the rate constants, for the reactions of hydrated electrons with H atoms, OH radicals and H2O2 has been determined. The reaction with H atoms, studied in the temperature range 20-250-degrees-C gives k(20-degrees-C) = 2.4 x 10(10) M-1 s-1 and the activation energy E...... of hydrated electron with H2PO4- was determined to k(20-degrees-C) = 1.5 x 10(7) M-1 s-1 and E(A) = 7.4 kJ mol-1 (1.8 kcal mol-1) in the temperature range 20-200-degrees-C....

  12. Laser heated boron doped diamond electrodes: effect of temperature on outer sphere electron transfer processes.

    Science.gov (United States)

    Meng, Lingcong; Iacobini, James G; Joseph, Maxim B; Macpherson, Julie V; Newton, Mark E

    2014-01-01

    Thermoelectrochemical experiments can reveal significant information about electrochemical processes compared to ambient only measurements. Typical thermoelectrochemistry is performed using resistively heated wires or laser heated electrodes, both of which can suffer drawbacks associated with the electrode material employed. Boron doped diamond (BDD) is ideal for thermoelectrochemical investigations due to its extremely high thermal conductivity and diffusivity, extreme resistance to thermal ablation (can withstand laser power densities, Pd, of GW cm(-2) for nanosecond pulses) and excellent electrochemical properties (low background currents and wide potential window). In this paper we describe the use of a pulsed laser technique to heat the rear of a 1 mm diameter conducting BDD disc electrode, which drives electrochemical solution reactions at the front face. Maximum electrode temperatures of 90.0 °C were recorded experimentally and confirmed by finite element modelling (FEM). The effect of laser pulsed heating (maximum 3.8 kW cm(-2); 10 ms on and 90 ms off) on the cyclic voltammetric response of two fast (reversible) outer sphere electron transfer redox mediators (Ru(NH3)6(3+/2+) and IrCl6(2-/3-)) are investigated. In particular, we observe pulsed increases in the current, which increase with increasing Pd. The potential of the peak current is shifted positively for the Ru(NH3)6(3+/2+) couple (in accordance with a positive temperature coefficient, β, +0.68 mV K(-1)) and negatively for the IrCl6(3-/2-) couple (β = -0.48 mV K(-1)). Scanning backwards, in contrast to that observed for a macrodisc electrode in ambient solution, a cathodic peak is again observed for Ru(NH3)6(3+/2+) and an anodic peak for IrCl6(3-/2-) couple. We attribute this response to the entropy of the redox reaction and the time-dependant change in mass transport due to the induced thermal gradients at the electrode/electrolyte interface. The observed responses are in qualitative agreement

  13. Electron velocity distribution function in a plasma with temperature gradient and in the presence of suprathermal electrons: application to incoherent-scatter plasma lines

    Directory of Open Access Journals (Sweden)

    P. Guio

    1998-10-01

    Full Text Available The plasma dispersion function and the reduced velocity distribution function are calculated numerically for any arbitrary velocity distribution function with cylindrical symmetry along the magnetic field. The electron velocity distribution is separated into two distributions representing the distribution of the ambient electrons and the suprathermal electrons. The velocity distribution function of the ambient electrons is modelled by a near-Maxwellian distribution function in presence of a temperature gradient and a potential electric field. The velocity distribution function of the suprathermal electrons is derived from a numerical model of the angular energy flux spectrum obtained by solving the transport equation of electrons. The numerical method used to calculate the plasma dispersion function and the reduced velocity distribution is described. The numerical code is used with simulated data to evaluate the Doppler frequency asymmetry between the up- and downshifted plasma lines of the incoherent-scatter plasma lines at different wave vectors. It is shown that the observed Doppler asymmetry is more dependent on deviation from the Maxwellian through the thermal part for high-frequency radars, while for low-frequency radars the Doppler asymmetry depends more on the presence of a suprathermal population. It is also seen that the full evaluation of the plasma dispersion function gives larger Doppler asymmetry than the heat flow approximation for Langmuir waves with phase velocity about three to six times the mean thermal velocity. For such waves the moment expansion of the dispersion function is not fully valid and the full calculation of the dispersion function is needed.Key words. Non-Maxwellian electron velocity distribution · Incoherent scatter plasma lines · EISCAT · Dielectric response function

  14. Electron velocity distribution function in a plasma with temperature gradient and in the presence of suprathermal electrons: application to incoherent-scatter plasma lines

    Directory of Open Access Journals (Sweden)

    P. Guio

    Full Text Available The plasma dispersion function and the reduced velocity distribution function are calculated numerically for any arbitrary velocity distribution function with cylindrical symmetry along the magnetic field. The electron velocity distribution is separated into two distributions representing the distribution of the ambient electrons and the suprathermal electrons. The velocity distribution function of the ambient electrons is modelled by a near-Maxwellian distribution function in presence of a temperature gradient and a potential electric field. The velocity distribution function of the suprathermal electrons is derived from a numerical model of the angular energy flux spectrum obtained by solving the transport equation of electrons. The numerical method used to calculate the plasma dispersion function and the reduced velocity distribution is described. The numerical code is used with simulated data to evaluate the Doppler frequency asymmetry between the up- and downshifted plasma lines of the incoherent-scatter plasma lines at different wave vectors. It is shown that the observed Doppler asymmetry is more dependent on deviation from the Maxwellian through the thermal part for high-frequency radars, while for low-frequency radars the Doppler asymmetry depends more on the presence of a suprathermal population. It is also seen that the full evaluation of the plasma dispersion function gives larger Doppler asymmetry than the heat flow approximation for Langmuir waves with phase velocity about three to six times the mean thermal velocity. For such waves the moment expansion of the dispersion function is not fully valid and the full calculation of the dispersion function is needed.

    Key words. Non-Maxwellian electron velocity distribution · Incoherent scatter plasma lines · EISCAT · Dielectric response function

  15. O3 Layers via Spray Pyrolysis at Low Temperatures and Their Application in High Electron Mobility Transistors

    KAUST Repository

    Isakov, Ivan

    2017-04-06

    The growth mechanism of indium oxide (InO) layers processed via spray pyrolysis of an aqueous precursor solution in the temperature range of 100-300 °C and the impact on their electron transporting properties are studied. Analysis of the droplet impingement sites on the substrate\\'s surface as a function of its temperature reveals that Leidenfrost effect dominated boiling plays a crucial role in the growth of smooth, continuous, and highly crystalline InO layers via a vapor phase-like process. By careful optimization of the precursor formulation, deposition conditions, and choice of substrate, this effect is exploited and ultrathin and exceptionally smooth layers of InO are grown over large area substrates at temperatures as low as 252 °C. Thin-film transistors (TFTs) fabricated using these optimized InO layers exhibit superior electron transport characteristics with the electron mobility reaching up to 40 cm V s, a value amongst the highest reported to date for solution-processed InO TFTs. The present work contributes enormously to the basic understanding of spray pyrolysis and highlights its tremendous potential for large-volume manufacturing of high-performance metal oxide thin-film transistor electronics.

  16. Low-Temperature Modification of ZnO Nanoparticles Film for Electron-Transport Layers in Perovskite Solar Cells.

    Science.gov (United States)

    Han, Gill Sang; Shim, Hyun-Woo; Lee, Seongha; Duff, Matthew L; Lee, Jung-Kun

    2017-06-09

    An electron-transport layer (ETL) that selectively collects photogenerated electrons is an important constituent of halide perovskite solar cells (PSCs). Although TiO 2 films are widely used as ETL of PSCs, the processing of TiO 2 films with high electron mobility requires high-temperature annealing and TiO 2 dissociates the perovskite layer through a photocatalytic reaction. Here, we report an effective surface-modification method of a room-temperature processed ZnO nanoparticles (NPs) layer as an alternative to the TiO 2 ETL. A combination of simple UV exposure and nitric acid treatment effectively removes the hydroxyl group and passivates surface defects in ZnO NPs. The surface modification of ZnO NPs increases the power conversion efficiency (PCE) of PSCs to 14 % and decreases the aging of PSCs under light soaking. These results suggest that the surface-modified ZnO film can be a good ETL of PSCs and provide a path toward low-temperature processing of efficient and stable PSCs that are compatible with flexible electronics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Temperature and relative humidity dependence of radiochromic film dosimeter response to gamma electron radiation

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Puhl, J.M.; Miller, A.

    1995-01-01

    on some earlier studies, their response functions have been reported to be dependent on the temperature and relative humidity during irradiation. The present study investigates differences in response over practical ranges of temperature, relative humidity, dose, and for different recent batches of films...... humidity) and should be calibrated under environmental conditions (temperature) at which they will be used routinely....

  18. Reliability Assessment of Advanced Flip-clip Interconnect Electronic Package Assemblies under Extreme Cold Temperatures (-190 and -120 C)

    Science.gov (United States)

    Ramesham, Rajeshuni; Ghaffarian, Reza; Shapiro, Andrew; Napala, Phil A.; Martin, Patrick A.

    2005-01-01

    Flip-chip interconnect electronic package boards have been assembled, underfilled, non-destructively evaluated and subsequently subjected to extreme temperature thermal cycling to assess the reliability of this advanced packaging interconnect technology for future deep space, long-term, extreme temperature missions. In this very preliminary study, the employed temperature range covers military specifications (-55 C to 100 C), extreme cold Martian (-120 C to 115 C) and asteroid Nereus (-180 C to 25 C) environments. The resistance of daisy-chained, flip-chip interconnects were measured at room temperature and at various intervals as a function of extreme temperature thermal cycling. Electrical resistance measurements are reported and the tests to date have not shown significant change in resistance as a function of extreme temperature thermal cycling. However, the change in interconnect resistance becomes more noticeable with increasing number of thermal cycles. Further research work has been carried out to understand the reliability of flip-chip interconnect packages under extreme temperature applications (-190 C to 85 C) via continuously monitoring the daisy chain resistance. Adaptation of suitable diagnostic techniques to identify the failure mechanisms is in progress. This presentation will describe the experimental test results of flip-chip testing under extreme temperatures.

  19. The Influence of Electron Temperature and Magnetic Field Strength on Cosmic-Ray Injection in High Mach Number Shocks

    Science.gov (United States)

    Schmitz, H.; Chapman, S. C.; Dendy, R. O.

    2002-05-01

    Electron preacceleration from thermal to mildly relativistic energies in high Mach number shocks (the injection problem) is an outstanding issue in understanding synchrotron radiation from supernova remnants. At high Alfvénic Mach numbers, collisionless perpendicular shocks reflect a fraction of the upstream ions. This gives rise to two-stream instabilities, which in turn can accelerate ions. However, in astrophysical plasmas, the value of β-the ratio of kinetic pressure to magnetic pressure-is not well known. We have used a particle in cell simulation code to investigate the influence of β on the shock structure and on the electron acceleration (assuming thermodynamic equilibrium in the undisturbed plasma, β=βi=βe). Previous simulations at low values of β showed that the phase space distributions of electrons and ions became highly structured: characteristic holes appear in the electron phase space, and the shock dynamics exhibit reformation processes. However, we find that all these features disappear at higher β due to the high initial thermal velocity of the electrons. It follows that the electron cosmic-ray injection mechanism depends strongly on β, that is, on the electron temperature normalized to the magnetic field upstream.

  20. New method in computer simulations of electron and ion densities and temperatures in the plasmasphere and low-latitude ionosphere

    Directory of Open Access Journals (Sweden)

    A. V. Pavlov

    Full Text Available A new theoretical model of the Earth’s low- and mid-latitude ionosphere and plasmasphere has been developed. The new model uses a new method in ionospheric and plasmaspheric simulations which is a combination of the Eulerian and Lagrangian approaches in model simulations. The electron and ion continuity and energy equations are solved in a Lagrangian frame of reference which moves with an individual parcel of plasma with the local plasma drift velocity perpendicular to the magnetic and electric fields. As a result, only the time-dependent, one-dimension electron and ion continuity and energy equations are solved in this Lagrangian frame of reference. The new method makes use of an Eulerian computational grid which is fixed in space co-ordinates and chooses the set of the plasma parcels at every time step, so that all the plasma parcels arrive at points which are located between grid lines of the regularly spaced Eulerian computational grid at the next time step. The solution values of electron and ion densities Ne and Ni and temperatures Te and Ti at the Eulerian computational grid are obtained by interpolation. Equations which determine the trajectory of the ionospheric plasma perpendicular to magnetic field lines and take into account that magnetic field lines are "frozen" in the ionospheric plasma are derived and included in the new model. We have presented a comparison between the modeled NmF2 and hmF2 and NmF2 and hmF2 which were observed at the anomaly crest and close to the geomagnetic equator simultaneously by the Huancayo, Chiclayo, Talara, Bogota, Panama, and Puerto Rico ionospheric sounders during the 7 October 1957 geomagnetically quiet time period at solar maximum. The model calculations show that there is a need to revise the model local time dependence of the equatorial upward E × B drift velocity given by Scherliess and Fejer (1999 at solar maximum during quiet

  1. New method in computer simulations of electron and ion densities and temperatures in the plasmasphere and low-latitude ionosphere

    Directory of Open Access Journals (Sweden)

    A. V. Pavlov

    2003-07-01

    Full Text Available A new theoretical model of the Earth’s low- and mid-latitude ionosphere and plasmasphere has been developed. The new model uses a new method in ionospheric and plasmaspheric simulations which is a combination of the Eulerian and Lagrangian approaches in model simulations. The electron and ion continuity and energy equations are solved in a Lagrangian frame of reference which moves with an individual parcel of plasma with the local plasma drift velocity perpendicular to the magnetic and electric fields. As a result, only the time-dependent, one-dimension electron and ion continuity and energy equations are solved in this Lagrangian frame of reference. The new method makes use of an Eulerian computational grid which is fixed in space co-ordinates and chooses the set of the plasma parcels at every time step, so that all the plasma parcels arrive at points which are located between grid lines of the regularly spaced Eulerian computational grid at the next time step. The solution values of electron and ion densities Ne and Ni and temperatures Te and Ti at the Eulerian computational grid are obtained by interpolation. Equations which determine the trajectory of the ionospheric plasma perpendicular to magnetic field lines and take into account that magnetic field lines are "frozen" in the ionospheric plasma are derived and included in the new model. We have presented a comparison between the modeled NmF2 and hmF2 and NmF2 and hmF2 which were observed at the anomaly crest and close to the geomagnetic equator simultaneously by the Huancayo, Chiclayo, Talara, Bogota, Panama, and Puerto Rico ionospheric sounders during the 7 October 1957 geomagnetically quiet time period at solar maximum. The model calculations show that there is a need to revise the model local time dependence of the equatorial upward E × B drift velocity given by Scherliess and Fejer (1999 at solar maximum during quiet daytime equinox conditions. Uncertainties in the calculated Ni

  2. Electron Stimulated Molecular Desorption of a NEG St 707 at Room Temperature

    CERN Document Server

    Le Pimpec, F; Laurent, Jean Michel

    2001-01-01

    Electron stimulated molecular desorption (ESD) from a NEG St 707 (SAES GettersTM) sample after conditioning and after saturation with isotopic carbon monoxide2,13C18O, has been studied on a laboratory setup. Measurements were performed using an electron beam of 300 eV kinetic energy, with an average electron intensity of 1.6 1015 electrons s-1. The electrons were impinging on the 15 cm2 target surface at perpendicular incidence. It is found that the desorption yields h (molecules/electron) of the characteristic gases in an UHV system (hydrogen, methane, water, carbon monoxide, carbon dioxide) for a fully activated NEG as well as for a NEG fully saturated with 13C18O are lower than for OFHC copper baked at 120oC. A small fraction only of the gas which is required to saturate the getter surface can be re-desorbed and thus appears to be accessible to ESD.

  3. Evaluating the Uncertainties in the Electron Temperature and Radial Speed Measurements Using White Light Corona Eclipse Observations

    Science.gov (United States)

    Reginald, Nelson L.; Davilla, Joseph M.; St. Cyr, O. C.; Rastaetter, Lutz

    2014-01-01

    We examine the uncertainties in two plasma parameters from their true values in a simulated asymmetric corona. We use the Corona Heliosphere (CORHEL) and Magnetohydrodynamics Around the Sphere (MAS) models in the Community Coordinated Modeling Center (CCMC) to investigate the differences between an assumed symmetric corona and a more realistic, asymmetric one. We were able to predict the electron temperatures and electron bulk flow speeds to within +/-0.5 MK and +/-100 km s(exp-1), respectively, over coronal heights up to 5.0 R from Sun center.We believe that this technique could be incorporated in next-generation white-light coronagraphs to determine these electron plasma parameters in the low solar corona. We have conducted experiments in the past during total solar eclipses to measure the thermal electron temperature and the electron bulk flow speed in the radial direction in the low solar corona. These measurements were made at different altitudes and latitudes in the low solar corona by measuring the shape of the K-coronal spectra between 350 nm and 450 nm and two brightness ratios through filters centered at 385.0 nm/410.0 nm and 398.7 nm/423.3 nm with a bandwidth of is approximately equal to 4 nm. Based on symmetric coronal models used for these measurements, the two measured plasma parameters were expected to represent those values at the points where the lines of sight intersected the plane of the solar limb.

  4. Effects of design parameters and puff topography on heating coil temperature and mainstream aerosols in electronic cigarettes

    Science.gov (United States)

    Zhao, Tongke; Shu, Shi; Guo, Qiuju; Zhu, Yifang

    2016-06-01

    Emissions from electronic cigarettes (ECs) may contribute to both indoor and outdoor air pollution and the number of users is increasing rapidly. ECs operate based on the evaporation of e-liquid by a high-temperature heating coil. Both puff topography and design parameters can affect this evaporation process. In this study, both mainstream aerosols and heating coil temperature were measured concurrently to study the effects of design parameters and puff topography. The heating coil temperatures and mainstream aerosols varied over a wide range across different brands and within same brand. The peak heating coil temperature and the count median diameter (CMD) of EC aerosols increased with a longer puff duration and a lower puff flow rate. The particle number concentration was positively associated with the puff duration and puff flow rate. These results provide a better understanding of how EC emissions are affected by design parameters and puff topography and emphasize the urgent need to better regulate EC products.

  5. Photo-stimulated low electron temperature high current diamond film field emission cathode

    Science.gov (United States)

    Shurter,; Roger Philips, Devlin [Los Alamos, NM; David James, Moody [Santa Fe, NM; Nathan Andrew, Taccetti [Los Alamos, NM; Jose Martin, Russell [Santa Fe, NM; John, Steven [Los Alamos, NM

    2012-07-24

    An electron source includes a back contact surface having a means for attaching a power source to the back contact surface. The electron source also includes a layer comprising platinum in direct contact with the back contact surface, a composite layer of single-walled carbon nanotubes embedded in platinum in direct contact with the layer comprising platinum. The electron source also includes a nanocrystalline diamond layer in direct contact with the composite layer. The nanocrystalline diamond layer is doped with boron. A portion of the back contact surface is removed to reveal the underlying platinum. The electron source is contained in an evacuable container.

  6. Kinetic Temperature and Electron Density Measurement in an Inductively Coupled Plasma Torch using Degenerate Four-Wave Mixing

    Science.gov (United States)

    Schafer, Julia; Lyons, Wendy; Tong, WIlliam G.; Danehy, Paul M.

    2008-01-01

    Laser wave mixing is presented as an effective technique for spatially resolved kinetic temperature measurements in an atmospheric-pressure radio-frequency inductively-coupled plasma. Measurements are performed in a 1 kW, 27 MHz RF plasma using a continuous-wave, tunable 811.5-nm diode laser to excite the 4s(sup 3)P2 approaches 4p(sup 3)D3 argon transition. Kinetic temperature measurements are made at five radial steps from the center of the torch and at four different torch heights. The kinetic temperature is determined by measuring simultaneously the line shape of the sub-Doppler backward phase-conjugate degenerate four-wave mixing and the Doppler-broadened forward-scattering degenerate four-wave mixing. The temperature measurements result in a range of 3,500 to 14,000 K+/-150 K. Electron densities measured range from 6.1 (+/-0.3) x 10(exp 15)/cu cm to 10.1 (+/-0.3) x 10(exp 15)/cu cm. The experimental spectra are analyzed using a perturbative treatment of the backward phase-conjugate and forward-geometry wave-mixing theory. Stark width is determined from the collisional broadening measured in the phase-conjugate geometry. Electron density measurements are made based on the Stark width. The kinetic temperature of the plasma was found to be more than halved by adding deionized water through the nebulizer.

  7. Noise measurement system at electron temperature down to 20 mK with combinations of the low pass filters.

    Science.gov (United States)

    Hashisaka, Masayuki; Yamauchi, Yoshiaki; Chida, Kensaku; Nakamura, Shuji; Kobayashi, Kensuke; Ono, Teruo

    2009-09-01

    We developed a quantum noise measurement system in a dilution refrigerator by using three kinds of cryogenic low pass filters. One of them is a commercial low pass filter inserted into the noise measurement lines instead of the conventional powder filter, which assures well-defined circuit parameters necessary for the noise measurement at a finite frequency. We checked that this filter gives sufficiently large attenuation up to 20 GHz at room temperature, 77 and 4.2 K. The electron temperature of the mesoscopic device placed in the present system was confirmed to be down to around 20 mK by measuring the thermal noise of the device.

  8. High temperature electron beam ion source for the production of single charge ions of most elements of the Periodic Table

    CERN Document Server

    Panteleev, V N; Barzakh, A E; Fedorov, D V; Ivanov, V S; Moroz, F V; Orlov, S Y; Seliverstov, D M; Stroe, L; Tecchio, L B; Volkov, Y M

    2003-01-01

    A new type of a high temperature electron beam ion source (HTEBIS) with a working temperature up to 2500 deg. C was developed for production of single charge ions of practically all elements. Off-line tests and on-line experiments making use of the developed ion source coupled with uranium carbide targets of different density, have been carried out. The ionization efficiency measured for stable atoms of many elements varied in the interval of 1-6%. Using the HTEBIS, the yields and on-line production efficiency of neutron rich isotopes of Mn, Fe, Co, Cu, Rh, Pd, Ag, Cd, In, Sn and isotopes of heavy elements Pb, Bi, Po and some others have been determined. The revealed confinement effect of the ions produced in the narrow electron beam inside a hot ion source cavity has been discussed.

  9. Improved Design of Radiation Hardened, Wide-Temperature Analog and Mixed-Signal Electronics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA space exploration projects require avionic systems, components, and controllers that are capable of operating in the extreme temperature and radiation...

  10. Performance of electronic switching circuits based on bipolar power transistors at low temperature

    Science.gov (United States)

    El-Ghanam, S. M.; Abdel Basit, W.

    2011-03-01

    In this paper, the performance of the bipolar power transistor of the type MJE13007 was evaluated under very low temperature levels. The investigation was carried out to establish a baseline on functionality and to determine suitability of this device for use in space applications under cryogenic temperatures. The static and dynamic electrical characteristics of the proposed transistor were studied at low temperature levels ranging from room level (300 K) down to 100 K. From which, it is clear that, several electrical parameters were affected due to operation on such very low temperature range, e.g. the threshold voltage ( V γ) increasing from 0.62 up to 1.05 V; while the current gain h FE decreases significantly from 26 down to 0.54. Also, the capacitance-voltage relationships ( C- V) of the collector-base and emitter-base junctions were studied at cryogenic temperatures, where a pronounced decrease was observed in the capacitances value due to temperature decrease. For example, at F = 50 kHz; CCB and CBE decreased from 2.33 nF down to 0.07 nF and from 36.2 down to 12 nF, respectively due to decreasing of temperature level from 300 down to 100 K. Finally the study was extended to include the dynamic characteristics and switching properties of the tested high power transistor. The dependency of both the rise and fall times ( t r, t f) on the temperature shows great variations with temperature.

  11. A novel method for simultaneous observations of plasma ion and electron temperatures using a semiconductor-detector array

    CERN Document Server

    Cho, T; Kohagura, J; Hirata, M; Minami, R; Watanabe, H; Sasuga, T; Nishizawa, Y; Yoshida, M; Nagashima, S; Nakashima, Y; Ogura, K; Tamano, T; Yatsu, K; Miyoshi, S

    2002-01-01

    A new method for a simultaneous observation of both plasma ion and electron temperatures is proposed using one semiconductor-detector array alone. This method will provide a new application of semiconductor-detector arrays for monitoring the key parameter set of nuclear-fusion triple product (i.e., ion temperatures, densities, and confinement time) as well as for clarifying physics mechanisms of energy transport between plasma ions and electrons under various plasma confining conditions. This method is developed on the basis of an alternative 'positive' use of a semiconductor 'dead layer'; that is, an SiO sub 2 layer is employed as a reliable ultra-thin energy analysis filter for low-energy charge-exchanged neutral particles from plasmas ranging in ion temperatures from 0.1 to several tens of kilo-electron-volts. Using recent fabrication techniques for the thin and uniform SiO sub 2 layers of the order of tens to hundreds of angstrom, our computer simulation and its experimental verification show the availabi...

  12. Room-temperature electronically-controlled ferromagnetism at the LaAlO₃/SrTiO₃ interface.

    Science.gov (United States)

    Bi, Feng; Huang, Mengchen; Ryu, Sangwoo; Lee, Hyungwoo; Bark, Chung-Wung; Eom, Chang-Beom; Irvin, Patrick; Levy, Jeremy

    2014-09-25

    Reports of emergent conductivity, superconductivity and magnetism have helped to fuel intense interest in the rich physics and technological potential of complex-oxide interfaces. Here we employ magnetic force microscopy to search for room-temperature magnetism in the well-studied LaAlO3/SrTiO3 system. Using electrical top gating to control the electron density at the oxide interface, we directly observe the emergence of an in-plane ferromagnetic phase as electrons are depleted from the interface. Itinerant electrons that are reintroduced into the interface align antiferromagnetically with the magnetization at first screening and then destabilizing it as the conductive regime is approached. Repeated cycling of the gate voltage results in new, uncorrelated magnetic patterns. This newfound control over emergent magnetism at the interface between two non-magnetic oxides portends a number of important technological applications.

  13. Pulse Radiolysis Studies of Temperature Dependent Electron Transfers among Redox Centers in ba(3)-Cytochrome c Oxidase from Thermus thermophilus

    DEFF Research Database (Denmark)

    Farver, Ole; Wherland, Scot; Antholine, William E

    2010-01-01

    in cytochrome ba(3) had no effect on the rate of this reaction whereas the II-Met160Leu Cu(A)-mutation was slower by an amount corresponding to a decreased driving force of ∼0.06 eV. The structures support the presence of a common, electron-conducting "wire" between Cu(A) and heme-a(b). The transfer......The functioning of cytochrome c oxidases involves orchestration of long-range electron transfer (ET) events among the four redox active metal centers. We report the temperature dependence of electron transfer from the Cu(A)(r) site to the low-spin heme-(a)b(o) site, i.e., Cu(A)(r) + heme...

  14. Electronic nonadiabatic effects in low temperature radical-radical reactions. I. C(3P) + OH(2Π).

    Science.gov (United States)

    Maergoiz, A I; Nikitin, E E; Troe, J

    2014-07-28

    The formation of collision complexes, as a first step towards reaction, in collisions between two open-electronic shell radicals is treated within an adiabatic channel approach. Adiabatic channel potentials are constructed on the basis of asymptotic electrostatic, induction, dispersion, and exchange interactions, accounting for spin-orbit coupling within the multitude of electronic states arising from the separated reactants. Suitable coupling schemes (such as rotational + electronic) are designed to secure maximum adiabaticity of the channels. The reaction between C((3)P) and OH((2)Π) is treated as a representative example. The results show that the low temperature association rate coefficients in general cannot be represented by results obtained with a single (generally the lowest) potential energy surface of the adduct, asymptotically reaching the lowest fine-structure states of the reactants, and a factor accounting for the thermal population of the latter states. Instead, the influence of non-Born-Oppenheimer couplings within the multitude of electronic states arising during the encounter markedly increases the capture rates. This effect extends up to temperatures of several hundred K.

  15. Current Analysis and Modeling of Fullerene Single-Electron Transistor at Room Temperature

    Science.gov (United States)

    Khadem Hosseini, Vahideh; Ahmadi, Mohammad Taghi; Afrang, Saeid; Ismail, Razali

    2017-07-01

    Single-electron transistors (SETs) are interesting electronic devices that have become key elements in modern nanoelectronic systems. SETs operate quickly because they use individual electrons, with the number transferred playing a key role in their switching behavior. However, rapid transmission of electrons can cause their accumulation at the island, affecting the I- V characteristic. Selection of fullerene as a nanoscale zero-dimensional material with high stability, and controllable size in the fabrication process, can overcome this charge accumulation issue and improve the reliability of SETs. Herein, the current in a fullerene SET is modeled and compared with experimental data for a silicon SET. Furthermore, a weaker Coulomb staircase and improved reliability are reported. Moreover, the applied gate voltage and fullerene diameter are found to be directly associated with the I- V curve, enabling the desired current to be achieved by controlling the fullerene diameter.

  16. Single-Molecule Electronics with Cross- Conjugated Molecules: Quantum Interference, IETS and Non-Equilibrium "Temperatures"

    DEFF Research Database (Denmark)

    Jørgensen, Jacob Lykkebo

    Abstract The idea of using single-molecules as components in electronic devices is fas- cinating. For this idea to come into fruition, a number of technical and theo- retical challenges must be overcome. In this PhD thesis, the electron-phonon interaction is studied for a special class of molecules......, the electrons can tunnel in- elastically from the left to the right electrode. This is the process behind inelastic electron tunnelling spectroscopy (IETS), which is a single-molecule spectroscopic method, where the vibrational ngerprint of a molecule is di- rectly observed by the tunnelling current...... This process has been studied in detail for ordinary conjugated or saturated molecules. Selection rules does not exist in IETS, but some modes are favoured over others, and this is the bases for the propensity rules in IETS that has been rationalised. In this thesis, we study IETS for cross...

  17. The DNA electronic specific heat at low temperature: The role of aperiodicity

    Energy Technology Data Exchange (ETDEWEB)

    Sarmento, R.G. [Departamento de Física, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil); Mendes, G.A. [Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil); Albuquerque, E.L., E-mail: eudenilson@gmail.com [Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil); Fulco, U.L. [Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil); Vasconcelos, M.S. [Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil); Ujsághy, O. [Department of Theoretical Physics and Condensed Matter Research Group of the Hungarian Academy of Sciences, Budapest University of Technology and Economics, Budafoki út 8, H-1521 Budapest (Hungary); Freire, V.N. [Departamento de Física, Universidade Federal do Ceará, 60455-760, Fortaleza, CE (Brazil); Caetano, E.W.S. [Instituto Federal de Educação, Ciência e Tecnologia do Ceará, 60040-531, Fortaleza, CE (Brazil)

    2012-07-16

    The electronic specific heat spectra at constant volume (C{sub V}) of a long-range correlated extended ladder model, mimicking a DNA molecule, is theoretically analyzed for a stacked array of a double-stranded structure made up from the nucleotides guanine G, adenine A, cytosine C and thymine T. The role of the aperiodicity on C{sub V} is discussed, considering two different nucleotide arrangements with increasing disorder, namely the Fibonacci and the Rudin–Shapiro quasiperiodic structures. Comparisons are made for different values of the band fillings, considering also a finite segment of natural DNA, as part of the human chromosome Ch22. -- Highlights: ► Quasiperiodic sequence to mimic the DNA nucleotides arrangement. ► Electronic tight-binding Hamiltonian model. ► Electronic density of states. ► Electronic specific heat spectra.

  18. Primary defect transformations in high-resistivity p-type silicon irradiated with electrons at cryogenic temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Makarenko, L.F., E-mail: makarenko@bsu.b [Department of Applied Mathematics and Computer Science, Belarusian State University, Independence Ave. 4, 220030 Minsk (Belarus); Lastovski, S.B.; Korshunov, F.P.; Murin, L.I. [Scientific-Practical Materials Research Centre of NAS of Belarus, Minsk (Belarus); Moll, M. [CERN, Geneva (Switzerland)

    2009-12-15

    It has been revealed that self-interstitials formed under low intensity electron irradiation in high resistivity p-type silicon can be retained frozen up to room temperature. Low thermal mobility of the self-interstitials suggests that Frenkel pairs in silicon can be stable at temperatures of about or higher than 100 K. A broad DLTS peak with activation energy of 0.14-0.17 eV can be identified as related to Frenkel pairs. This peak anneals out at temperatures of 120-140 K. Experimental evidences are presented that becoming more mobile under forward current injection the self-interstitials change their charge state to a less positive one.

  19. Auger electron spectroscopy study of oxidation of a PdCr alloy used for high-temperature sensors

    Science.gov (United States)

    Boyd, Darwin L.; Zeller, Mary V.; Vargas-Aburto, Carlos

    1993-01-01

    A Pd-13 wt. percent Cr solid solution is a promising high-temperature strain gage alloy. In bulk form it has a number of properties that are desirable in a resistance strain gage material, such as a linear electrical resistance versus temperature curve to 1000 C and stable electrical resistance in air at 1000 C. However, unprotected fine wire gages fabricated from this alloy perform well only to 600 C. At higher temperatures severe oxidation degrades their electrical performance. In this work Auger electron spectroscopy was used to study the oxidation chemistry of the alloy wires and ribbons. Results indicate that the oxidation is caused by a complex mechanism that is not yet fully understood. As expected, during oxidation, a layer of chromium oxide is formed. This layer, however, forms beneath a layer of metallic palladium. The results of this study have increased the understanding of the oxidation mechanism of Pd-13 wt. percent Cr.

  20. Temperature-Induced Wavelength Shift of Electron-Beam-Pumped Lasers from CdSe, CdS, and ZnO

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher

    1971-01-01

    Experimental results on the temperature dependence of the laser frequency and threshold pump power are presented in the range from liquid helium to room temperature for electron-beam-pumped CdSe, CdS, and ZnO lasers. A linear shift of the laser frequency at high temperatures and a relatively slow...

  1. Wide Temperature Range DC-DC Boost Converters for Command/Control/Drive Electronics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We shall develop wide temperature range DC-DC boost converters that can be fabricated using commercial CMOS foundries. The boost converters will increase the low...

  2. Electronic temperature monitoring during the decompression surgery of the facial nerve.

    Science.gov (United States)

    Paula, Patricia M C; Rodrigues, Suelia S R; Altoe, Mirella Lorrainy; Santos, Larissa S; Rocha, Adson F

    2010-01-01

    Despite of its apparent protection by being located deep in a bony canal, the facial nerve is a cranial pair of nerves more vulnerable to traumatic injuries. The surgical accidents are the most frequent causes of intratemporal complications of the facial nerve. Among the postoperative sequelae, the thermal injuries are common due to overheating of the otologic burr resulting in facial paralysis. For the prevention of thermal injuries in the facial nerve was designed a data acquisition board to obtain the temperature measured by thermocouples using a PC and parallel communication. The signals from the temperature sensors passed through conditioning for amplification and analog to digital data conversion. Afterwards, they were stored on a computer for the statistical analysis and the visualization of the curves of variation of the measured temperatures. These curves provide the verification of the facial nerve temperature ascending and descending time during surgery steps to access the nerve. These data provide a substantial safe working margin to the surgeon.

  3. Magnetic resonance force microscopy of paramagnetic electron spins at millikelvin temperatures.

    Science.gov (United States)

    Vinante, A; Wijts, G; Usenko, O; Schinkelshoek, L; Oosterkamp, T H

    2011-12-06

    Magnetic resonance force microscopy (MRFM) is a powerful technique to detect a small number of spins that relies on force detection by an ultrasoft magnetically tipped cantilever and selective magnetic resonance manipulation of the spins. MRFM would greatly benefit from ultralow temperature operation, because of lower thermomechanical noise and increased thermal spin polarization. Here we demonstrate MRFM operation at temperatures as low as 30 mK, thanks to a recently developed superconducting quantum interference device (SQUID)-based cantilever detection technique, which avoids cantilever overheating. In our experiment, we detect dangling bond paramagnetic centres on a silicon surface down to millikelvin temperatures. Fluctuations of such defects are supposedly linked to 1/f magnetic noise and decoherence in SQUIDs, as well as in several superconducting and single spin qubits. We find evidence that spin diffusion has a key role in the low-temperature spin dynamics.

  4. The resolution dependence of optimal exposures in liquid nitrogen temperature electron cryomicroscopy of catalase crystals.

    Science.gov (United States)

    Baker, Lindsay A; Smith, Eric A; Bueler, Stephanie A; Rubinstein, John L

    2010-03-01

    Electron beam damage is the fundamental limit to resolution in electron cryomicroscopy (cryo-EM) of frozen, hydrated specimens. Radiation damage increases with the number of electrons used to obtain an image and affects information at higher spatial frequencies before low-resolution information. For the experimentalist, a balance exists between electron exposures sufficient to obtain a useful signal-to-noise ratio (SNR) in images and exposures that limit the damage to structural features. In single particle cryo-EM this balance is particularly delicate: low-resolution features must be imaged with a sufficient SNR to allow image alignment so that high-resolution features recorded below the noise level can be recovered by averaging independent images. By measuring the fading of Fourier components from images obtained at 200 kV of thin crystals of catalase embedded in ice, we have determined the electron exposures that will maximize the SNR at resolutions between 86 and 2.9A. These data allow for a rational choice of exposure for single particle cryo-EM. For example, for 20A resolution, the SNR is maximized at approximately 20e(-)/A(2), whereas for 3A resolution, it is maximized at approximately 10 e(-)/A(2). We illustrate the effects of exposure in single particle cryo-EM with data collected at approximately 12-15 and approximately 24-30 e(-)/A(2). (c) 2009 Elsevier Inc. All rights reserved.

  5. Application of Temperature-Controlled Thermal Atomization for Printing Electronics in Space

    Science.gov (United States)

    Wu, Chih-Hao; Thompson, Furman V.

    2017-01-01

    Additive Manufacturing (AM) is a technology that builds three dimensional objects by adding material layer-upon-layer throughout the fabrication process. The Electrical, Electronic and Electromechanical (EEE) parts packaging group at Marshall Space Flight Center (MSFC) is investigating how various AM and 3D printing processes can be adapted to the microgravity environment of space to enable on demand manufacturing of electronics. The current state-of-the art processes for accomplishing the task of printing electronics through non-contact, direct-write means rely heavily on the process of atomization of liquid inks into fine aerosols to be delivered ultimately to a machine's print head and through its nozzle. As a result of cumulative International Space Station (ISS) research into the behaviors of fluids in zero-gravity, our experience leads us to conclude that the direct adaptation of conventional atomization processes will likely fall short and alternative approaches will need to be explored. In this report, we investigate the development of an alternative approach to atomizing electronic materials by way of thermal atomization, to be used in place of conventional aerosol generation and delivery processes for printing electronics in space.

  6. Measurements of electron-induced neutrons as a tool for determination of electron temperature of fast electrons in the task of optimization laser-produced plasma ions acceleration.

    Science.gov (United States)

    Sakaki, H; Nishiuchi, M; Maeda, S; Sagisaka, A; Pirozhkov, A S; Pikuz, T; Faenov, A; Ogura, K; Fukami, T; Matsukawa, K; Kanasaki, M; Fukuda, Y; Yogo, A; Esirkepov, T; Kiriyama, H; Shimomura, T; Nakai, Y; Tanoue, M; Torimoto, K; Okamoto, M; Sato, T; Niita, K; Tamura, J; Nishio, K; Sako, H; Yamauchi, T; Watanabe, Y; Bulanov, S; Kondo, K

    2014-02-01

    High intensity laser-plasma interaction has attracted considerable interest for a number of years. The laser-plasma interaction is accompanied by generation of various charged particle beams, such as high-energy proton and ions with high charge to mass ratio (Q/M; same as multi-charged ions). Results of simultaneous novel measurements of electron-induced photonuclear neutrons (photoneutron), which are a diagnostic of the laser-plasma interaction, are proposed to use for optimization of the laser-plasma ion generation. The proposed method is demonstrated by the laser irradiation with the intensity of 1 × 10(21) W/cm(2) on the metal foil target. The photoneutrons are measured by using NE213 liquid scintillation detectors. Heavy-ion signal is registered with the CR-39 track detector simultaneously. The measured signals of the electron-induced photoneutrons are well reproduced by using the Particle and Heavy Ion Transport code System. The results obtained provide useful approach for analyzing the various laser based ion beams.

  7. Low temperature dynamics of surface and bulk electronic structure of quantum dots

    Science.gov (United States)

    Krishnamurthy Grandhi, G.; Tomar, Renu; Viswanatha, Ranjani

    2017-09-01

    Absolute energies of band edges have proven to be very important for various applications like hydrogen generation, solar water splitting and solar cell optimization. Energy differences as small as 50-100 meV have been shown to largely affect device efficiencies. Device operational temperature can vary largely and temperature dependence of band gap is well known in bulk semiconductor literature. However, there are only a few studies on variation of band gap in quantum dots and none of them characterize the relative energy variation of band edges in spite of their importance in various applications. This is mainly due to the absence of an internal standard that can be used to study the variation of band edges. Here, in this paper, we introduce a technique wherein we utilize Cu dopant emission as an internal probe. Using this technique, we report the variation of band gap, conduction band and valence band edges of CdS and CdSe quantum dots as a function of temperature and size. We found that band gap variation is similar to that of bulk but with a higher average phonon energy. The band edge variation is characterized by a dominant conduction band shift for larger sizes with decreasing temperature while the smaller size QDs show the variation in both conduction band and valence band. Further, we have also utilized this method to study the binding energy of the trap states as a function of temperature using Cu photoluminescence quantum yield and average lifetime of Cu photoluminescence.

  8. Temperature and pH responsive behaviours of CMC/AAc hydrogels prepared by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    El-Naggar, Abdel Wahab M. [Department of Radiation Chemistry, National Center for Radiation Research and Technology, P.O. Box 29, Nasr City, Cairo (Egypt)]. E-mail: ab_nagga@yahoo.com; Alla, Safaa G. Abd [Department of Radiation Chemistry, National Center for Radiation Research and Technology, P.O. Box 29, Nasr City, Cairo (Egypt); Said, Hossam M. [Department of Radiation Chemistry, National Center for Radiation Research and Technology, P.O. Box 29, Nasr City, Cairo (Egypt)

    2006-01-10

    The temperature and pH-responsive characters of hydrogels prepared from aqueous solutions containing 4.2 and 25% (w/v) carboxymethyl cellulose (CMC) and acrylic acid (AAc), respectively under the effect of accelerated electrons was investigated. Even though the initial content of hydrogels solution is constant, the swelling in water and responsive characters were greatly dependent on electron beam irradiation dose. In this regard, the percentage swelling in water of the hydrogel prepared at 50 kGy is relatively higher than that prepared at 80 kGy. However, both hydrogels displayed super water absorbing behaviour at room temperature in the range of {approx}3500-4000%. The hydrogels exhibit a relatively low tendency to swell in methanol with respect to water, in which the overall swelling in water is {approx}12 times that in methanol. The deswelling of the hydrogels at 40 deg. C in water from the equilibrium swelling state at 25 deg. C showed a lower rate than the swelling process. The results showed that the CMC/AAc hydrogel prepared at 50 kGy has a temperature-response character within the temperature range 25 + 15 deg. C at any time of swelling, while the hydrogel prepared at 80 kGy, does not show this character within this range of temperature. While the swelling of CMC/AAc hydrogel prepared at 50 kGy was found to substantially increase with increasing pH values from 3 to 10, the hydrogel prepared at 80 kGy was found to display pH responsive character below and above 7.

  9. Room-Temperature Processed Nb2O5as the Electron-Transporting Layer for Efficient Planar Perovskite Solar Cells.

    Science.gov (United States)

    Ling, Xufeng; Yuan, Jianyu; Liu, Dongyang; Wang, Yongjie; Zhang, Yannan; Chen, Si; Wu, Haihua; Jin, Feng; Wu, Fupeng; Shi, Guozheng; Tang, Xun; Zheng, Jiawei; Liu, Shengzhong Frank; Liu, Zhike; Ma, Wanli

    2017-07-12

    In this work, we demonstrate high-efficiency planar perovskite solar cells (PSCs), using room-temperature sputtered niobium oxide (Nb 2 O 5 ) as the electron-transporting layer (ETL). Widely spread ETL-like TiO 2 often requires high-temperature (>450 °C) sintering, which is not desired for the fabrication of flexible devices. The amorphous Nb 2 O 5 (labeled as a-Nb 2 O 5 ) ETL, without any heat treatment, can give a best power conversion efficiency (PCE) of 17.1% for planar PSCs. Interestingly, the crystalline Nb 2 O 5 (labeled as c-Nb 2 O 5 ), with high-temperature (500 °C) annealing, results in a very similar PCE of 17.2%, indicating the great advantage of a-Nb 2 O 5 in energy saving. We thus carried out a systematical investigation on the properties of the a-Nb 2 O 5 film. The Hall effect measurements indicate both high mobility and conductivity of the a-Nb 2 O 5 film. Kelvin probe force microscopy measurements define the Fermi levels of a-Nb 2 O 5 and c-Nb 2 O 5 as -4.31 and -4.02 eV, respectively, which allow efficient electron extraction at the Nb 2 O 5 /perovskite interface, regardless of the additional heat treatment on Nb 2 O 5 film. Benefitting from the low-temperature process, we further demonstrated flexible PSCs based on a-Nb 2 O 5 , with a considerable PCE of 12.1%. The room-temperature processing and relatively high device performance of a-Nb 2 O 5 suggest a great potential for its application in optoelectrical devices.

  10. Electronic structure of ion arsenic high temperature superconductors studied by angle resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    The main purpose of the present thesis is to present our ARPES results on the iron arsenic superconductors. As revealed by a series of ARPES measurements on both the AEFe2As2 and the RFeAs(O,F) families (parent compound and carrier-doped systems), the electronic structures of the pnictides are complicated, three dimensional, and closely linked to their superconducting behavior (13; 14; 15; 16; 17; 18; 19). Parent compounds of these materials exhibit the basic hole-electron pocket dual plus an apparent Fermi surface reconstruction caused by long range antiferromagnetism (13; 15). When carriers are introduced, the chemical potential shifts in accordance with the Luttinger theorem and the rigid band shifting picture (13). Importantly, both the appearance and disappearance of the superconducting dome at low and high doping levels have intimate relation with topological changes at the Fermi surfaces, resulting in a specific Fermi topology being favored by superconductivity (15; 16). On the low doping side, superconductivity emerges in the phase diagram once the antiferromagnetic reconstruction disappears below the Fermi level, returning the Fermi surface to its paramagnetic-like appearance. On the high doping side, superconductivity disappears around a doping level at which the central hole pocket vanishes due to increasing electron concentration. Such phenomena are evidence for the governing role the electronic structure plays in their superconducting behavior.

  11. Photodetachment, electron cooling, and recombination, in a series of neat aliphatic room temperature ionic liquids.

    Science.gov (United States)

    Molins i Domenech, Francesc; Healy, Andrew T; Blank, David A

    2015-08-14

    Transient absorption following photodetachment of a series of neat methyl-alkyl-pyrrolidinium bis(trifluoromethylsulfonyl)amides at 6.20 eV was measured with sub-picosecond time resolution in the visible and near-IR portions of the spectrum. This series spans the onset of structuring in the liquids in the form of polarity alternation. Excitation promotes the electron into a delocalized state with a very large reactive radius. Strong transient absorption is observed in the visible spectrum with a ∼700 fs lifetime, and much weaker, long-lived absorption is observed in the near-IR spectrum. Absorption in the visible is shown to be consistent with the hole, and absorption in the near-IR is assigned to the free solvated electron. Yield of free electrons is estimated at ∼4%, is insensitive to the size of the cation, and is determined in less than 1 ps. Solvation of free electrons depends strongly on the size of the cation and correlates well with the viscosity of the liquid. In addition to radiolytic stability of the aliphatic cations, ultrafast, efficient recombination of separated charge in NTf2 (-) based ionic liquids following photo-excitation near the band-gap may prevent subsequent reactive damage associated with anions.

  12. Electron Attachment to C2 Fluorocarbon Radicals at High Temperature (Postprint)

    Science.gov (United States)

    2016-01-28

    constant curve for C2F3. Figure 3 shows an extrap - olation of the electron attachment rate constant for C2F3 as a function of Tgas and Tel similar to...weight to the use of kinetic modeling to extrap - olate data taken over narrower ranges. ACKNOWLEDGMENTS The project was funded by the United States Air

  13. Impact of Temperature and Non-Gaussian Statistics on Electron Transfer in Donor-Bridge-Acceptor Molecules.

    Science.gov (United States)

    Waskasi, Morteza M; Newton, Marshall D; Matyushov, Dmitry V

    2017-03-30

    A combination of experimental data and theoretical analysis provides evidence of a bell-shaped kinetics of electron transfer in the Arrhenius coordinates ln k vs 1/T. This kinetic law is a temperature analogue of the familiar Marcus bell-shaped dependence based on ln k vs the reaction free energy. These results were obtained for reactions of intramolecular charge shift between the donor and acceptor separated by a rigid spacer studied experimentally by Miller and co-workers. The non-Arrhenius kinetic law is a direct consequence of the solvent reorganization energy and reaction driving force changing approximately as hyperbolic functions with temperature. The reorganization energy decreases and the driving force increases when temperature is increased. The point of equality between them marks the maximum of the activationless reaction rate. Reaching the consistency between the kinetic and thermodynamic experimental data requires the non-Gaussian statistics of the donor-acceptor energy gap described by the Q-model of electron transfer. The theoretical formalism combines the vibrational envelope of quantum vibronic transitions with the Q-model describing the classical component of the Franck-Condon factor and a microscopic solvation model of the solvent reorganization energy and the reaction free energy.

  14. Electron transport in mercury vapor: cross sections, pressure and temperature dependence of transport coefficients and NDC effects★

    Science.gov (United States)

    Mirić, Jasmina; Simonović, Ilija; Petrović, Zoran Lj.; White, Ronald D.; Dujko, Saša

    2017-11-01

    In this work we propose a complete and consistent set of cross sections for electron scattering in mercury vapor. The set is validated through a series of comparisons between swarm data calculated using a multi term theory for solving the Boltzmann equation and Monte Carlo simulations, and the available experimental data. Other sets of cross sections for electron scattering in mercury vapor were also used as input in our numerical codes with the aim of testing their completeness, consistency and accuracy. The calculated swarm parameters are compared with measurements in order to assess the quality of the cross sections in providing data for plasma modeling. In particular, we discuss the dependence of transport coefficients on the pressure and temperature of mercury vapor, and the occurrence of negative differential conductivity (NDC) in the limit of lower values of E/N. We have shown that the phenomenon of NDC is induced by the presence of mercury dimers and that can be controlled by varying either pressure or temperature of mercury vapor. The effective inelastic cross section for mercury dimers is estimated for a range of pressures and temperatures. It is shown that the measured and calculated drift velocities agree very well only if the effective inelastic cross section for mercury dimers and thermal motion of mercury atoms are carefully considered and implemented in numerical calculations. Contribution to the Topical Issue "Physics of Ionized Gases (SPIG 2016)", edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.

  15. Ion and electron temperatures in the SUMMA mirror device by emission spectroscopy

    Science.gov (United States)

    Patch, R. W.; Voss, D. E.; Reinmann, J. J.; Snyder, A.

    1974-01-01

    Ion temperatures were obtained in the SUMMA mirror device by observing the Doppler-broadened charge-exchange component of the 667.8and 587.6-nm He lines in He plasma and the H alpha and H beta lines in H2 plasma. The second moment of the line profiles was used as the parameter to determine ion temperature. Corrections for magnetic splitting, fine structure, monochromator slit function, and variation in charge-exchange cross section with energy are derived and included. Even for constant cross section, no magnetic splitting or fine structure, and infinitely narrow slit function, the line profile is not Gaussian, because the excitation results from a change-exchange process. Comparison is made with temperatures from a neutral particle analyzer.-

  16. [Development of electronic clinical device for concentrated measurement of body temperature].

    Science.gov (United States)

    Zhang, Xu; Ouyang, Bin-lin

    2009-11-01

    An kind of device for concentrated measurement of body temperature which takes ATmega16 microcontroller as the core is designed according to the current situation of measuring body temperature in the hospitals of our country. Taking DS18B20 as the transducer, the device uses PTR8000 wireless communication module to realize the communication from multi-point to single-point. Meanwhile photoelectric detection and USB interfaces are added in the design. Clock chip PCF8563, voice chip ISD1820 and LCD screen I JM12864M are used to realize the functions such as timekeeping, playing voice and displaying and so on.

  17. Upgrade possibilities for continuous wave rf electron guns based on room-temperature very high frequency technology

    Science.gov (United States)

    Sannibale, F.; Filippetto, D.; Johnson, M.; Li, D.; Luo, T.; Mitchell, C.; Staples, J.; Virostek, S.; Wells, R.; Byrd, J. M.

    2017-11-01

    The past decade was characterized by an increasing scientific demand for extending towards higher repetition rates (MHz class and beyond) the performance of already operating lower repetition rate accelerator-based instruments such as x-ray free electron lasers (FELs) and ultrafast electron diffraction (UED) and microscopy (UEM) instruments. Such a need stimulated a worldwide spread of a vibrant R&D activity targeting the development of high-brightness electron sources capable of operating at these challenging rates. Among the different technologies pursued, rf guns based on room-temperature structures resonating in the very high frequency (VHF) range (30-300 MHz) and operating in continuous wave successfully demonstrated in the past few years the targeted brightness and reliability. Nevertheless, recently proposed upgrades for x-ray FELs and the always brightness-frontier applications such as UED and UEM are now requiring a further step forward in terms of beam brightness in electron sources. In this paper, we present a few possible upgrade paths that would allow one to extend, in a relatively simple and cost-effective way, the performance of the present VHF technology to the required new goals.

  18. Upgrade possibilities for continuous wave rf electron guns based on room-temperature very high frequency technology

    Directory of Open Access Journals (Sweden)

    F. Sannibale

    2017-11-01

    Full Text Available The past decade was characterized by an increasing scientific demand for extending towards higher repetition rates (MHz class and beyond the performance of already operating lower repetition rate accelerator-based instruments such as x-ray free electron lasers (FELs and ultrafast electron diffraction (UED and microscopy (UEM instruments. Such a need stimulated a worldwide spread of a vibrant R&D activity targeting the development of high-brightness electron sources capable of operating at these challenging rates. Among the different technologies pursued, rf guns based on room-temperature structures resonating in the very high frequency (VHF range (30–300 MHz and operating in continuous wave successfully demonstrated in the past few years the targeted brightness and reliability. Nevertheless, recently proposed upgrades for x-ray FELs and the always brightness-frontier applications such as UED and UEM are now requiring a further step forward in terms of beam brightness in electron sources. In this paper, we present a few possible upgrade paths that would allow one to extend, in a relatively simple and cost-effective way, the performance of the present VHF technology to the required new goals.

  19. Computational Search for Two-Dimensional MX2 Semiconductors with Possible High Electron Mobility at Room Temperature

    Directory of Open Access Journals (Sweden)

    Zhishuo Huang

    2016-08-01

    Full Text Available Neither of the two typical two-dimensional materials, graphene and single layer MoS 2 , are good enough for developing semiconductor logical devices. We calculated the electron mobility of 14 two-dimensional semiconductors with composition of MX 2 , where M (=Mo, W, Sn, Hf, Zr and Pt are transition metals, and Xs are S, Se and Te. We approximated the electron phonon scattering matrix by deformation potentials, within which long wave longitudinal acoustical and optical phonon scatterings were included. Piezoelectric scattering in the compounds without inversion symmetry is also taken into account. We found that out of the 14 compounds, WS 2 , PtS 2 and PtSe 2 are promising for logical devices regarding the possible high electron mobility and finite band gap. Especially, the phonon limited electron mobility in PtSe 2 reaches about 4000 cm 2 ·V - 1 ·s - 1 at room temperature, which is the highest among the compounds with an indirect bandgap of about 1.25 eV under the local density approximation. Our results can be the first guide for experiments to synthesize better two-dimensional materials for future semiconductor devices.

  20. Temperature persistent bistability and threshold switching in a single barrier heterostructure hot-electron diode

    DEFF Research Database (Denmark)

    Stasch, R.; Hey, R.; Asche, M.

    1996-01-01

    Bistable current–voltage characteristics caused by competition of tunneling through and field-enhanced thermionic emission across a single barrier are investigated in an n–-GaAs/Al0.34Ga0.66As/n+-GaAs structure. The S-shaped part of the characteristic persists in the whole temperature regime betw...

  1. Room temperature Compton profiles of conduction electrons in α-Ga ...

    Indian Academy of Sciences (India)

    B P PANDA and N C MOHAPATRA*. Department of Physics, Chikiti Mahavidyalaya, Chikiti 761 010, India. £Department of Physics, Berhampur University, Berhampur 760 007, India. Email: ncmphy123@hotmail.com. MS received 18 January 2003; accepted 21 June 2003. Abstract. Room temperature Compton profiles of ...

  2. High-temperature stability of electron transport in semiconductors with strong spin-orbital interaction

    Science.gov (United States)

    Tomaka, G.; Grendysa, J.; ŚliŻ, P.; Becker, C. R.; Polit, J.; Wojnarowska, R.; Stadler, A.; Sheregii, E. M.

    2016-05-01

    Experimental results of the magnetotransport measurements (longitudinal magnetoresistance Rx x and the Hall resistance Rx y) are presented over a wide interval of temperatures for several samples of Hg1 -xCdxTe (x ≈0.13 -0.15 ) grown by MBE—thin layers (thickness about 100 nm) strained and not strained and thick ones with thickness about 1 μ m . An amazing temperature stability of the SdH-oscillation period and amplitude is observed in the entire temperature interval of measurements up to 50 K. Moreover, the quantum Hall effect (QHE) behavior of the Hall resistance is registered in the same temperature interval. These peculiarities of the Rx x and Rx y for strained thin layers are interpreted using quantum Hall conductivity (QHC) on topologically protected surface states (TPSS) [C. Brüne et al., Phys. Rev. Lett. 106, 126803 (2011), 10.1103/PhysRevLett.106.126803]. In the case of not strained layers it is assumed that the QHC on the TPSS (or on the resonant interface states) contributes also to the conductance of the bulk samples.

  3. Mechanistic elucidation of C-H oxidation by electron rich non-heme iron(IV)-oxo at room temperature.

    Science.gov (United States)

    Rana, Sujoy; Dey, Aniruddha; Maiti, Debabrata

    2015-10-04

    Non-heme iron(IV)-oxo species form iron(III) intermediates during hydrogen atom abstraction (HAA) from the C-H bond. While synthesizing a room temperature stable, electron rich, non-heme iron(IV)-oxo compound, we obtained iron(III)-hydroxide, iron(III)-alkoxide and hydroxylated-substrate-bound iron(II) as the detectable intermediates. The present study revealed that a radical rebound pathway was operative for benzylic C-H oxidation of ethylbenzene and cumene. A dissociative pathway for cyclohexane oxidation was established based on UV-vis and radical trap experiments. Interestingly, experimental evidence including O-18 labeling and mechanistic study suggested an electron transfer mechanism to be operative during C-H oxidation of alcohols (e.g. benzyl alcohol and cyclobutanol). The present report, therefore, unveils non-heme iron(IV)-oxo promoted substrate-dependent C-H oxidation pathways which are of synthetic as well as biological significance.

  4. Electronic properties of Al/DNA/p-Si MIS diode: Application as temperature sensor

    Energy Technology Data Exchange (ETDEWEB)

    Guellue, O., E-mail: omergullu@gmail.com [Batman University, Science and Art Faculty, Department of Physics, 72060 Batman (Turkey); Osmaniye Korkut Ata University, Science and Art Faculty, Department of Physics, 80000 Osmaniye (Turkey); Tueruet, A. [Atatuerk University, Science Faculty, Department of Physics, 25240 Erzurum (Turkey)

    2011-01-21

    Research highlights: > This work proposes that DNA molecules should be considered, among other candidates, as a potential organic thin film for metal-interface layer-semiconductor devices. > We successfully fabricated Al/DNA/p-Si device with interlayer by a simple cast method. > The temperature is found to significantly effect the electrical properties of the Al/DNA/p-Si device. > The facts: (i) that the technology of the fabrication of a Al/DNA/p-Si Schottky diode much simpler and economical than that for the Si p-n junction and (ii) the sensibility of the Al/DNA/p-Si Schottky diode as temperature sensor is 42% higher than that of a Si p-n junction, indicate that the Al/DNA/p-Si Schottky diode is a good alternative as temperature sensor. - Abstract: The current-voltage (I-V) measurements were performed in the temperature range (200-300 K) on Al/DNA/p-Si Schottky barrier type diodes. The Schottky diode shows non-ideal I-V behaviour with ideality factors n equal to 1.34 {+-} 0.02 and 1.70 {+-} 0.02 at 300 K and 200 K, respectively, and is thought to have a metal-interface layer-semiconductor (MIS) configuration. The zero-bias barrier height {Phi}{sub b} determined from the I-V measurements was 0.75 {+-} 0.01 eV at 300 K and decreases to 0.61 {+-} 0.01 eV at 200 K. The forward voltage-temperature (V{sub F}-T) characteristics were obtained from the I-V measurements in the temperature range 200-300 K at different activation currents (I{sub F}) in the range 20 nA-6 {mu}A. The V{sub F}-T characteristics were linear for three activation currents in the diode. From the V{sub F}-T characteristics at 20 nA, 100 nA and 6 {mu}A, the values of the temperature coefficients of the forward bias voltage (dV{sub F}/dT) for the diode were determined as -2.30 mV K{sup -1}, -2.60 mV K{sup -1} and -3.26 mV K{sup -1} with a standard error of 0.05 mV K{sup -1}, respectively.

  5. Temperature dependence of electron magnetic resonance spectra of iron oxide nanoparticles mineralized in Listeria innocua protein cages

    Science.gov (United States)

    Usselman, Robert J.; Russek, Stephen E.; Klem, Michael T.; Allen, Mark A.; Douglas, Trevor; Young, Mark; Idzerda, Yves U.; Singel, David J.

    2012-10-01

    Electron magnetic resonance (EMR) spectroscopy was used to determine the magnetic properties of maghemite (γ-Fe2O3) nanoparticles formed within size-constraining Listeria innocua (LDps)-(DNA-binding protein from starved cells) protein cages that have an inner diameter of 5 nm. Variable-temperature X-band EMR spectra exhibited broad asymmetric resonances with a superimposed narrow peak at a gyromagnetic factor of g ≈ 2. The resonance structure, which depends on both superparamagnetic fluctuations and inhomogeneous broadening, changes dramatically as a function of temperature, and the overall linewidth becomes narrower with increasing temperature. Here, we compare two different models to simulate temperature-dependent lineshape trends. The temperature dependence for both models is derived from a Langevin behavior of the linewidth resulting from "anisotropy melting." The first uses either a truncated log-normal distribution of particle sizes or a bi-modal distribution and then a Landau-Liftshitz lineshape to describe the nanoparticle resonances. The essential feature of this model is that small particles have narrow linewidths and account for the g ≈ 2 feature with a constant resonance field, whereas larger particles have broad linewidths and undergo a shift in resonance field. The second model assumes uniform particles with a diameter around 4 nm and a random distribution of uniaxial anisotropy axes. This model uses a more precise calculation of the linewidth due to superparamagnetic fluctuations and a random distribution of anisotropies. Sharp features in the spectrum near g ≈ 2 are qualitatively predicted at high temperatures. Both models can account for many features of the observed spectra, although each has deficiencies. The first model leads to a nonphysical increase in magnetic moment as the temperature is increased if a log normal distribution of particles sizes is used. Introducing a bi-modal distribution of particle sizes resolves the unphysical

  6. Numerical simulation of the charge balance and temperature evolution in an electron beam ion trap

    Directory of Open Access Journals (Sweden)

    Xiaojun Lu

    2009-01-01

    Full Text Available A computer code has been developed to simulate and study the evolution of ion charge states inside the trap region of an electron beam ion trap. In addition to atomic physics phenomena previously included in similar codes such as electron impact ionization, radiative recombination, and charge exchange, several aspects of the relevant physics such as dielectronic recombination, ionization heating, and ion cloud expansion have been included for the first time in the model. The code was developed using object oriented concepts with database support, making it readable, accurate, and well organized. The simulation results show a good agreement with various experiments, and give useful information for selection of operating conditions and experiment design.

  7. Determination of the electron energy distribution function of a low temperature plasma from optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dodt, Dirk Hilar

    2009-01-05

    The experimental determination of the electron energy distribution of a low pressure glow discharge in neon from emission spectroscopic data has been demonstrated. The spectral data were obtained with a simple overview spectrometer and analyzed using a strict probabilistic, Bayesian data analysis. It is this Integrated Data Analysis (IDA) approach, which allows the significant extraction of non-thermal properties of the electron energy distribution function (EEDF). The results bear potential as a non-invasive alternative to probe measurements. This allows the investigation of spatially inhomogeneous plasmas (gradient length smaller than typical probe sheath dimensions) and plasmas with reactive constituents. The diagnostic of reactive plasmas is an important practical application, needed e.g. for the monitoring and control of process plasmas. Moreover, the experimental validation of probe theories for magnetized plasmas as a long-standing topic in plasma diagnostics could be addressed by the spectroscopic method. (orig.)

  8. Quantitative Detection of Trace Explosive Vapors by Programmed Temperature Desorption Gas Chromatography-Electron Capture Detector

    Science.gov (United States)

    Field, Christopher R.; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C.; Rose-Pehrsson, Susan L.

    2014-01-01

    The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples. PMID:25145416

  9. High-temperature optically activated GaAs power switching for aircraft digital electronic control

    Science.gov (United States)

    Berak, J. M.; Grantham, D. H.; Swindal, J. L.; Black, J. F.; Allen, L. B.

    1983-01-01

    Gallium arsenide high-temperature devices were fabricated and assembled into an optically activated pulse-width-modulated power control for a torque motor typical of the kinds used in jet engine actuators. A bipolar heterojunction phototransistor with gallium aluminum arsenide emitter/window, a gallium arsenide junction field-effect power transistor and a gallium arsenide transient protection diode were designed and fabricated. A high-temperature fiber optic/phototransistor coupling scheme was implemented. The devices assembled into the demonstrator were successfully tested at 250 C, proving the feasibility of actuator-located switching of control power using optical signals transmitted by fibers. Assessments of the efficiency and technical merits were made for extension of this high-temperature technology to local conversion of optical power to electrical power and its control at levels useful for driving actuators. Optical power sources included in the comparisons were an infrared light-emitting diode, an injection laser diode, tungsten-halogen lamps and arc lamps. Optical-to-electrical power conversion was limited to photovoltaics located at the actuator. Impedance matching of the photovoltaic array to the load was considered over the full temperature range, -55 C to 260 C. Loss of photovoltaic efficiency at higher temperatures was taken into account. Serious losses in efficiency are: (1) in the optical source and the cooling which they may require in the assumed 125 C ambient, (2) in the decreased conversion efficiency of the gallium arsenide photovoltaic at 260 C, and (3) in impedance matching. Practical systems require improvements in these areas.

  10. Defect-tolerant single-electron charging at room temperature in metal nanoparticle decorated biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Berven, C.A.; Clarke, L.; Wybourne, M.N. [Dartmouth Coll., Hanover, NH (United States). Dept. of Physics and Astronomy; Mooster, J.L.; Hutchison, J.E. [Oregon Univ., Eugene, OR (United States). Dept. of Chemistry

    2001-01-16

    Gold nanoparticles assembled on a biopolymer template between metal electrodes on an insulating substrate are shown to exhibit unambiguous single electron charging effects that are found to depend on the nanoparticle properties and the geometrical contraints imposed by the biopolymer. The results support the idea of using nanoparticles in conjunction with biomolecular organization to produce nanoscale systems with defect-tolerant current-voltage behavior. (orig.)

  11. Adrenaline: communication by electron emission. Effect of concentration and temperature. Product analysis.

    Science.gov (United States)

    Getoff, Nikola; Huber, C; Hartmann, J; Huber, J C; Quint, R M

    2010-08-01

    BACKGROUND: Based on the recent findings about the ability of sexual hormones to emit electrons (e(aq) (-)) and to act as electron mediator, it was of interest to investigate adrenaline as an important neurotransmitter. MATERIALS AND METHODS: Highest purity adrenaline (ADR) and chemicals were used for preparation of aqueous solutions (pH ~7.4). The excitation of ADR in singlet state was achieved by irradiation of airfree aqueous solution with monochromatic UV light at λ = 254 nm. The emitted "solvated electrons" (e(aq) (-)) were scavenged by chloroethanol, where the quantum yield of Cl(-) ions, Q(Cl(-))=Q(e(aq) (-)). ADR degradation and formation of photolytic products were followed by HPLC analysis. RESULTS AND CONCLUSION: It was found that Q(e(aq) (-)) values decrease with increasing ADR concentration: for 2.5×10(-5) mol/L ADR was determined as Q(e(aq) (-))=6×10(-3), whereas for 1×10(-3) mol/L ADR was found to be 0.9×10(-3). This is explained by formation of associates in ground state, which consume a part of emitted e(aq) (-). As a main photolytic product aminochrome was determined.

  12. Development and characterization of high temperature, high energy density dielectric materials to establish routes towards power electronics capacitive devices

    Science.gov (United States)

    Shay, Dennis P.

    The maximum electrostatic energy density of a capacitor is a function of the relative permittivity (epsilonr) and the square of the dielectric breakdown strength (Eb). Currently, state-of-the art high temperature (>200 °C), SiC-based power electronics utilize CaZrO3-rich NP0/C0G-type capacitors, which have low relative permittivities of epsilonr ˜ 30-40, high breakdown strengths (> 1.0 MV/cm), and are chosen for their minimal change in energy storage with temperature. However, with operating temperatures exceeding the rated temperatures for such capacitors, there is an opportunity to develop new dielectric ceramics having higher energy densities and volumetric efficiencies at high temperatures (>200 °C) by utilizing higher permittivity dielectrics while maintaining high breakdown strengths via doping. The solid solution behavior of was characterized in order to determine the optimal composition for balancing permittivity and dielectric breakdown strength to obtain high energy densities at elevated temperatures. Characterization by X-ray diffraction (XRD) showed Vegard's law behavior across the solid solution with minimal 2nd phases. To determine a Ca(TixZr1-x)O3 composition that will also minimize electronic or band conduction, the optical properties of the Ca(TixZr1-x)O3 solid solution were investigated to identify a composition on the CaTiO3 - rich end of the solid solution with a large band gap. Both ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis) and spectroscopic ellipsometry were utilized to determine the Ca(TixZr1-x)O3 band gaps and optical properties. The resistivity at 250 °C scaled with the band gap energy across the solid solution. Comparing the current-voltage (I--V) behavior at 250 °C for Ca(Tix-yMnyZr0.2)O3 (CTZ + Mn) where x = 0.7, 0.8, 0.9, and y = 0.005, it was found that the Ca(Ti 0.795Mn0.005Zr0.2)O3 composition showed the lowest current density and a decrease in current density of 5 orders of magnitude compared to the un

  13. Effect of Temperature and Pressure on Correlation Energy in a Triplet State of a Two Electron Spherical Quantum Dot

    Directory of Open Access Journals (Sweden)

    A. Rejo Jeice

    2013-09-01

    Full Text Available The combined effect of hydrostatic pressure and temperature on correlation energy in a triplet state of two electron spherical quantum dot with square well potential is computed. The result is presented taking GaAs dot as an example. Our result shows the correlation energies are inegative in the triplet state contrast to the singlet state ii it increases with increase in pressure  iiifurther decreases due to the application  of temperature iv it approaches zero as dot size approaches infinity and v it contribute 10% decrement in total confined energy to the narrow dots. All the calculations have been carried out with finite models and the results are compared with existing literature.

  14. High-temperature electron irradiation and radiation-thermal technology for utilization, purification and production of some metals

    CERN Document Server

    Solovetskii, Y; Lunin, V

    1998-01-01

    High-temperature irradiation by the beam of 1.2-1.6 MeV accelerated electrons has been used for production Pt, Pd, Mo, Co, Cu and Ni from desactivated Pt(Pd)-containing reforming catalysts, molybdenum sulfide hydrodesulphurization catalysts and hydrogenation catalyst waste material. The radiation-induced decomposition of supported Ni(Co)-Mo/Al sub 2 O sub 3 sulfide catalyst and organic fragments of hydrogenation catalyst wastes has been studied. Radiolysis product distributions are shown as function of time (time up to 1,0 h) and temperature (570-1400K). There was made a principle scheme of the first technological unit for radiation-thermal utilization, purification and production of some metals from solid wastes material.

  15. Thermally Stable Ohmic Contacts on Silicon Carbide Developed for High- Temperature Sensors and Electronics

    Science.gov (United States)

    Okojie, Robert S.

    2001-01-01

    The NASA aerospace program, in particular, requires breakthrough instrumentation inside the combustion chambers of engines for the purpose of, among other things, improving computational fluid dynamics code validation and active engine behavioral control (combustion, flow, stall, and noise). This environment can be as high as 600 degrees Celsius, which is beyond the capability of silicon and gallium arsenide devices. Silicon-carbide- (SiC-) based devices appear to be the most technologically mature among wide-bandgap semiconductors with the proven capability to function at temperatures above 500 degrees Celsius. However, the contact metalization of SiC degrades severely beyond this temperature because of factors such as the interdiffusion between layers, oxidation of the contact, and compositional and microstructural changes at the metal/semiconductor interface. These mechanisms have been proven to be device killers. Very costly and weight-adding packaging schemes that include vacuum sealing are sometimes adopted as a solution.

  16. Electron spin resonance of melanin from hair. Effects of temperature, pH and light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Arnaud, R.; Perbet, G. (Clermont-Ferrand-2 Univ., 63 - Aubiere (France)); Deflandre, A.; Lang, G. (Centre de Recherches de la Societe L' Oreal, Aulnay Sous Bois (France) Dept. de Chimie Generale)

    1983-08-01

    The variation with temperature, pH and light of the ESR signal of hydrated melanin powders from Japanese black hair has been studied. An explanation of the results is proposed on the basis of quinhydrone type complexes and of acid-base equilibria of melanin and its semiquinone radicals. During exposure to light of wavelengths 254-600 nm, both stable and unstable radicals have been observed. The action spectrum for the formation of stable melanin radicals has been determined.

  17. Trap Characterization in High Field, High Temperature Stressed Gallium Nitride High Electron Mobility Transistors

    Science.gov (United States)

    2013-03-01

    to a one dimensional Poisson - Schrodinger model with the same parameters of the fabricated device. The largest dispersion occurred before threshold...of self -heating to further improve reliability. The use of sapphire and diamond as a substrate to improve thermal characteristics was investigated...This is consistent with prior work [14]. Devices tested at higher temperatures had higher drain currents. This was to be expected due to additional

  18. Low temperature, autotrophic microbial denitrification using thiosulfate or thiocyanate as electron donor.

    Science.gov (United States)

    Broman, Elias; Jawad, Abbtesaim; Wu, Xiaofen; Christel, Stephan; Ni, Gaofeng; Lopez-Fernandez, Margarita; Sundkvist, Jan-Eric; Dopson, Mark

    2017-08-01

    Wastewaters generated during mining and processing of metal sulfide ores are often acidic (pH concentrations of nitrate, nitrite, and ammonium from nitrogen based explosives. In addition, wastewaters from sulfide ore treatment plants and tailings ponds typically contain large amounts of inorganic sulfur compounds, such as thiosulfate and tetrathionate. Release of these wastewaters can lead to environmental acidification as well as an increase in nutrients (eutrophication) and compounds that are potentially toxic to humans and animals. Waters from cyanidation plants for gold extraction will often conjointly include toxic, sulfur containing thiocyanate. More stringent regulatory limits on the release of mining wastes containing compounds such as inorganic sulfur compounds, nitrate, and thiocyanate, along the need to increase production from sulfide mineral mining calls for low cost techniques to remove these pollutants under ambient temperatures (approximately 8 °C). In this study, we used both aerobic and anaerobic continuous cultures to successfully couple inorganic sulfur compound (i.e. thiosulfate and thiocyanate) oxidation for the removal of nitrogenous compounds under neutral to acidic pH at the low temperatures typical for boreal climates. Furthermore, the development of the respective microbial communities was identified over time by DNA sequencing, and found to contain a consortium including populations aligning within Flavobacterium, Thiobacillus, and Comamonadaceae lineages. This is the first study to remediate mining waste waters by coupling autotrophic thiocyanate oxidation to nitrate reduction at low temperatures and acidic pH by means of an identified microbial community.

  19. Spectroscopic measurements of the density and electronic temperature at the plasma edge in Tore Supra; Mesures spectroscopiques de la densite et de la temperature electronique au bord du plasma dans Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Lediankine, A

    1996-09-30

    The profiles of temperature and electronic density at the plasma edge are important to study the wall-plasma interaction and the radiative layers in the Tokamak plasmas. The laser ablation technique of the lithium allows to measure the profile of electronic density. To measure the profile of temperature, it has been used for the first time, the injection of a fluorine neutral atoms beam. The experiments, the results are described in this work. (N.C.)

  20. Radiation-Hardening of Best-in-Class SiGe Mixed-Signal and RF Electronics for Ultra-Wide Temperature Range Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative, reliable, low-power, and low-noise electronics that can operate over a wide temperature range and high radiation are critical for future NASA missions....

  1. Electronic temperature measurement on the deca II plasma using the Bremsstrahlung; Mesure de la temperature electronique du plasma de deca II par etude du rayonnement de freinage

    Energy Technology Data Exchange (ETDEWEB)

    Dumas, A. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-06-01

    The electronic temperature of the DECA II machine's plasma is determined by studying the Bremsstrahlung. Two types of detectors are used for this measurement, a set scintillator-photo-multiplicator and a photoelectric effect detector with a massive silver target. The method used is the classical 'absorbent method', The absorbents used are thin formvar foils whose thickness is between 600 and 12 500 angstrom. The measurements done in two different working conditions of the DECA II machine have given: Te {approx_equal} 200 eV in the first case and Te {approx_equal} 70 eV in the second case. (author) [French] Nous avons determine la temperature electronique du plasma de la machine DECA II par l'etude du rayonnement de freinage. Pour cette mesure nous avons utilise deux types de detecteurs: des ensembles scintillateur-photomultiplicateur et un detecteur a effet photoelectrique a cible massive en argent. La methode utilisee pour cette mesure est la classique methode des absorbants. Nous avons utilise des feuilles de format tres mince (de 600 a 12 500 angstrom) comme absorbant. Les mesures faites dans deux regimes de travail differents de la machine DECA II nous ont conduit a: Te {approx_equal} 200 eV dans un cas et Te {approx_equal} eV dans l'autre cas. (auteur)

  2. EFFECTS OF NEUTRINO ELECTROMAGNETIC FORM FACTORS ON NEUTRINO INTERACTION WITH FINITE TEMPERATURE ELECTRON MATTERS

    Directory of Open Access Journals (Sweden)

    Anto Sulaksono

    2011-11-01

    Full Text Available The differential cross-section of neutrino interaction with dense and warm electron gasses has been calculated by takinginto account the neutrino electromagnetic form factors. The significant effect of electromagnetic properties of neutrinocan be found if the neutrino dipole moment, μ ν , is ≥ 5.10-9 μB and neutrino charge radius, Rv, is ≥ 5.10-6 MeV-1. Theimportance of the retarded correction, detailed balance and Pauli blocking factors is shown and analyzed. Many-bodyeffects on the target matter which are included via random phase approximation (RPA correlation as well as photoneffective mass are also investigated.

  3. Electron spin resonance spectroscopy of high purity crystals at millikelvin temperatures

    Science.gov (United States)

    Farr, Warrick G.; Creedon, Daniel L.; Goryachev, Maxim; Benmessai, Karim; Tobar, Michael E.

    2013-12-01

    Progress in the emerging field of engineered quantum systems requires the development of devices that can act as quantum memories. The realisation of such devices by doping solid state cavities with paramagnetic ions imposes a trade-off between ion concentration and cavity coherence time. Here, we investigate an alternative approach involving interactions between photons and naturally occurring impurity ions in ultra-pure crystalline microwave cavities exhibiting exceptionally high quality factors. We implement a hybrid Whispering Gallery/Electron Spin Resonance method to perform rigorous spectroscopy of an undoped single-crystal sapphire resonator over the frequency range 8{19 GHz, and at external applied DC magnetic fields up to 0.9 T. Measurements of a high purity sapphire cooled close to 100 mK reveal the presence of Fe3+, Cr3+, and V2+ impurities. A host of electron transitions are measured and identified, including the two-photon classically forbidden quadrupole transition (Δms = 2) for Fe3+, as well as hyperfine transitions of V2+.

  4. Soot structure and reactivity analysis by Raman microspectroscopy, temperature-programmed oxidation, and high-resolution transmission electron microscopy.

    Science.gov (United States)

    Knauer, Markus; Schuster, Manfred E; Su, Dangsheng; Schlögl, Robert; Niessner, Reinhard; Ivleva, Natalia P

    2009-12-17

    Raman microspectroscopy (RM), temperature-programmed oxidation (TPO), high-resolution transmission electron microscopy (HRTEM), and electron energy loss spectroscopy (EELS) were combined to get comprehensive information on the relationship between structure and reactivity of soot in samples of spark discharge (GfG), heavy duty engine diesel (EURO VI and IV) soot, and graphite powder upon oxidation by oxygen at increasing temperatures. GfG soot and graphite powder represent the higher and lower reactivity limits. Raman microspectroscopic analysis was conducted by determination of spectral parameters using a five band fitting procedure (G, D1-D4) as well as by evaluation of the dispersive character of the D mode. The analysis of spectral parameters shows a higher degree of disorder and a higher amount of molecular carbon for untreated GfG soot samples than for samples of untreated EURO VI and EURO IV soot. The structural analysis based on the dispersive character of the D mode revealed substantial differences in ordering descending from graphite powder, EURO IV, VI to GfG soot. HRTEM images and EELS analysis of EURO IV and VI samples indicated a different morphology and a higher structural order as compared to GfG soot in full agreement with the Raman analysis. These findings are also confirmed by the reactivity of soot during oxidation (TPO), where GfG soot was found to be the most reactive and EURO IV and VI soot samples exhibited a moderate reactivity.

  5. Existence domain of the compressive ion acoustic super solitary wave in a two electron temperature warm multi-ion plasma

    Science.gov (United States)

    Steffy, S. V.; Ghosh, S. S.

    2017-10-01

    The transition of an ion acoustic solitary wave into a "supersoliton," or a super solitary wave have been explored in a two electron temperature warm multi-ion plasma using the Sagdeev pseudopotential technique. It is generally believed that the ion acoustic solitary wave can be transformed to a super solitary wave only through a double layer. The present work shows that the transition route of an ion acoustic solitary wave to a super solitary wave is not unique. Depending on the electron temperature ratio, a regular solitary wave may transform to a super solitary wave either via the double layer, or through an extra-nonlinear solitary structure whose morphology differs from that of a regular one. These extra-nonlinear structures are associated with a fluctuation of the charge separation within the potential profile and are named as "variable solitary waves." Depending on these analyses, the upper and lower bounds of a super solitary wave have been deciphered and its existence domain has been delineated in the parametric space. It reveals that super solitary waves are a subset of a more generalized class of extra-nonlinear solitary structures called variable solitary waves.

  6. Comparison of electron temperature fluctuations with gyrokinetic sumulations across the ohmic energy confinement transition in Alcator C-Mod

    Science.gov (United States)

    Sung, C.; White, A.; Howard, N.; Mikkelsen, D.; Rice, J.; Reinke, M.; Gao, C.; Ennever, P.; Porkolab, M.; Churchill, R.; Theiler, C.; Hubbard, A.; Greenwald, M.

    2013-10-01

    Long wavelength electron temperature fluctuations (kyρs < 0 . 3) near the edge (r / a ~ 0 . 85) are reduced across the ohmic confinement transition from Linear Ohmic Confinement(LOC) regime to Saturated Ohmic Confinement(SOC) regime in Alcator C-Mod. Linear stability analysis shows that the dominant mode of long wavelength turbulence near the edge is changed from Trapped Electron Mode(TEM) to Ion Temperature Gradient(ITG) mode while the dominant mode is not changed deeper in the core (r / a ~ 0 . 5). This indicates that local turbulence changes near the edge might be responsible for the change of global energy confinement in ohmic plasmas. Further study using nonlinear gyrokinetic simulations is being performed to clarify the relation between the change of local turbulence and global ohmic energy confinement. Through nonlinear gyrokinetic simulation (GYRO), we will investigate the change of fluctuating quantities (T~ , ñ , ϕ~) and their phase relations across ohmic confinement transitions, and relate them to the change of energy transport. A synthetic CECE diagnostic for C-Mod has been developed, and it will be used to validate the gyrokinetic simulations. Research supported by USDoE awards DE-SC0006419, DE-FC02-99ER54512.

  7. Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing

    Science.gov (United States)

    Kim, Myung-Gil; Kanatzidis, Mercouri G.; Facchetti, Antonio; Marks, Tobin J.

    2011-05-01

    The development of large-area, low-cost electronics for flat-panel displays, sensor arrays, and flexible circuitry depends heavily on high-throughput fabrication processes and a choice of materials with appropriate performance characteristics. For different applications, high charge carrier mobility, high electrical conductivity, large dielectric constants, mechanical flexibility or optical transparency may be required. Although thin films of metal oxides could potentially meet all of these needs, at present they are deposited using slow and equipment-intensive techniques such as sputtering. Recently, solution processing schemes with high throughput have been developed, but these require high annealing temperatures (Tanneal>400 °C), which are incompatible with flexible polymeric substrates. Here we report combustion processing as a new general route to solution growth of diverse electronic metal oxide films (In2O3, a-Zn-Sn-O, a-In-Zn-O, ITO) at temperatures as low as 200 °C. We show that this method can be implemented to fabricate high-performance, optically transparent transistors on flexible plastic substrates.

  8. Circuit for Communication over DC Power Line Using High Temperature Electronics

    Science.gov (United States)

    Krasowski, Michael J. (Inventor); Prokop, Norman F. (Inventor)

    2014-01-01

    A high temperature communications circuit includes a power conductor for concurrently conducting electrical energy for powering circuit components and transmitting a modulated data signal, and a demodulator for demodulating the data signal and generating a serial bit stream based on the data signal. The demodulator includes an absolute value amplifier for conditionally inverting or conditionally passing a signal applied to the absolute value amplifier. The absolute value amplifier utilizes no diodes to control the conditional inversion or passing of the signal applied to the absolute value amplifier.

  9. Optoelectronic devices, low temperature preparation methods, and improved electron transport layers

    KAUST Repository

    Eita, Mohamed S.

    2016-08-04

    An optoelectronic device such as a photovoltaic device which has at least one layer, such as an electron transport layer, which comprises a plurality of alternating, oppositely charged layers including metal oxide layers. The metal oxide can be zinc oxide. The plurality of layers can be prepared by layer-by-layer processing in which alternating layers are built up step-by-step due to electrostatic attraction. The efficiency of the device can be increased by this processing method compared to a comparable method like sputtering. The number of layers can be controlled to improve device efficiency. Aqueous solutions can be used which is environmentally friendly. Annealing can be avoided. A quantum dot layer can be used next to the metal oxide layer to form a quantum dot heterojunction solar device.

  10. Low frequency solitons and double layers in a magnetized plasma with two temperature electrons

    Energy Technology Data Exchange (ETDEWEB)

    Rufai, O. R. [Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Bharuthram, R. [Office of the Deputy Vice Chancellor (Academic), University of the Western Cape, Bellville (South Africa); Singh, S. V. [Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai-410218 (India); School of Chemistry and Physics, University of Kwa-Zulu Natal, Durban (South Africa); Lakhina, G. S. [Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai-410218 (India)

    2012-12-15

    Finite amplitude non-linear ion-acoustic solitary waves and double layers are studied in a magnetized plasma with cold ions fluid and two distinct groups of Boltzmann electrons, using the Sagdeev pseudo-potential technique. The conditions under which the solitary waves and double layers can exist are found both analytically and numerically. We have shown the existence of negative potential solitary waves and double layers for subsonic Mach numbers, whereas in the unmagnetized plasma they can only in the supersonic Mach number regime. For the plasma parameters in the auroral region, the electric field amplitude of the solitary structures comes out to be 49 mV/m which is in agreement of the Viking observations in this region.

  11. The temperature effect on the glycine decomposition induced by 2 keV electron bombardment in space analog conditions

    Science.gov (United States)

    Pilling, Sergio; Nair, Binu G.; Escobar, Antonio; Fraser, Helen; Mason, Nigel

    2014-03-01

    Glycine is the simplest proteinaceous amino acid that has been extensively detected in carbonaceous meteorites and was recently observed in the cometary samples returned to Earth by NASA's Stardust spacecraft. In space, such species is exposed to several radiation fields at different temperatures. In aqueous solutions, this species appears mainly as zwitterionic glycine (+NH3CH2COO-) however, in solid phase, it may be found in amorphous or crystalline forms. Here, we present an experimental study on the destruction of two zwitterionic glycine crystals ( α- and β-form) at two different temperatures (300 K and 14 K) by 2 keV electrons in an attempt to test the behavior and stability of this molecular species in different space environments. The samples were analyzed in situ by Fourier transform infrared spectrometry at electron fluences. The experiments were carried out under ultra-high vacuum conditions at the Molecular Physics Laboratory at the Open University at Milton Keynes, UK. The dissociation cross section of glycine is approximately 5 times higher for the 14 K samples when compared to the 300 K samples. In contrast, no significant differences emerged between the dissociation cross sections of α- and β-forms of glycine for fixed temperature experiments. We therefore conclude that the destruction cross section is more heavily dependent on temperature than the phase of the condensed glycine material. This may be associated with the opening of additional reaction routes in the frozen samples involving the trapped daughter species (e.g. CO2 and CO). The half-life of studied samples extrapolated to space conditions shows that glycine molecules on the surface of interstellar grains has less survivability and they are highly sensitive to ambient radiations, however, they can survive extended period of time in the solar system like environments. Survivability increases by a factor of 5 if the samples are at 300 K when compared to low temperature experiments at 14

  12. Cyclic electron flow plays an important role in photoprotection of tropical trees illuminated at temporal chilling temperature.

    Science.gov (United States)

    Huang, Wei; Zhang, Shi-Bao; Cao, Kun-Fang

    2011-02-01

    Our previous study indicated that PSII is more sensitive to chilling and light stress than PSI in tropical trees, and Erythrophleum guineense is more sensitive to chilling stress than Dalbergia odorifera and Khaya ivorensis, but the underlying physiological mechanisms are unclear. Although recent studies have reported that cyclic electron flow (CEF) plays an important role in photoprotection, the role of CEF in protecting PSI and PSII of tropical tree species remains unclear. We investigated the effect of temporal chilling temperature on energy distribution in PSII, the redox state of P700 and CEF in the above-mentioned tropical evergreen tree species grown in an open field. Our results indicated that the overclosure of PSII reaction centers at chilling temperature led to excess excitation pressure in PSII. At the temporal chilling temperature under low light, PSI acceptor side limitation [Y(NA)] was lower than those at 25°C for all species. Although the effective quantum yield of CEF [Y(CEF)] was not significantly stimulated in E. guineense and K. ivorensis under temporal chilling at low light levels, the ratio of Y(CEF) to the effective quantum yield of PSII [Y(II)] significantly increased. Under chilling conditions Y(CEF)/Y(II) was stimulated much more in K. ivorensis and D. odorifera compared with that in the chilling-sensitive E. guineense. These results suggested that stimulation of Y(CEF)/Y(II) plays an important role in protecting PSI and PSII from photoinhibition caused by chilling stress.

  13. Single-Molecule Electronics with Cross- Conjugated Molecules: Quantum Interference, IETS and Non-Equilibrium "Temperatures"

    DEFF Research Database (Denmark)

    Jørgensen, Jacob Lykkebo

    , which is characterised by destructive quantum interference. The molecules are cross-conjugated, which means that the two parts of the molecules are conjugated to a third part, but not to each other. This gives rise to an anti-resonance in the trans- mission. In the low bias and low temperature regime......-resonance in the transmission. We then go on to study current induced heating and cooling, and nd that there is a basis for using quantum interference to design molecules that can be cooling by the tunnelling current. The basic idea is to align the incoming and the outgoing transmission channels such that absorption...... of a phonon is favoured over emission of a phonon. The incoming and outgoing channels are usually very alike, but by separating them using quantum interference it is possible to tune the system to observe a cooling eect. The basis is illus- trated in a simple tight-binding model, and the subsequent cooling...

  14. Modelling coronal electron density and temperature profiles of the Active Region NOAA 11855

    Science.gov (United States)

    Rodríguez Gómez, J. M.; Antunes Vieira, L. E.; Dal Lago, A.; Palacios, J.; Balmaceda, L. A.; Stekel, T.

    2017-10-01

    The magnetic flux emergence can help understand the physical mechanism responsible for solar atmospheric phenomena. Emerging magnetic flux is frequently related to eruptive events, because when emerging they can reconnected with the ambient field and release magnetic energy. We will use a physic-based model to reconstruct the evolution of the solar emission based on the configuration of the photospheric magnetic field. The structure of the coronal magnetic field is estimated by employing force-free extrapolation NLFFF based on vector magnetic field products (SHARPS) observed by HMI instrument aboard SDO spacecraft from Sept. 29 (2013) to Oct. 07 (2013). The coronal plasma temperature and density are described and the emission is estimated using the CHIANTI atomic database 8.0. The performance of the our model is compared to the integrated emission from the AIA instrument aboard SDO spacecraft in the specific wavelengths 171Å and 304Å.

  15. High-speed measurement of single-electron circuits at low temperatures with bolometric and calorimetric applications

    Science.gov (United States)

    Swenson, Loren

    2007-12-01

    This thesis consists primarily of the description of two single-electron circuits that I fabricated and measured utilizing radio-frequency techniques. A short summary of the background material necessary for understanding this area of condensed matter experiment is included as well as a discussion of the utility of these devices as charge-sensing or energy-sensing circuit elements. In the first measurement, by configuring a radio-frequency single-electron transistor as a mixer, we demonstrate a unique implementation of this device, that achieves good charge sensitivity with large bandwidth about a tunable center frequency. In our implementation we achieve a measurement bandwidth of 16 MHz, with a tunable center frequency from 0 to 1.2 GHz, demonstrated with the transistor operating at 300 mK. Ultimately this device is limited in center frequency by the RC time of the transistor's center island, which for our device is ˜1.6 GHz, close to the measured value. The measurement bandwidth is determined by the quality factor of the readout tank circuit. In the second measurement, we detect the energy-selective diffusion of electrons through a tunnel junction to perform a new type of passive, low-power dissipation thermometry. The thermometer is based on a novel, three-junction single electron transistor, which is made with a superconducting nanoscale metal island, coupled to two tunnel junctions and a capacitive gate in the standard single-electron transistor configuration, and in addition a third tunnel junction couples the transistor island to a normal metal thin-film volume, which serves as a calorimeter. Passive diffusion of electrons from the calorimeter through the third junction changes the transistor conductance, providing a thermometric signal. This device dissipates minimal power in the calorimeter, removing a stringent limit on the minimum temperatures and energy sensitivities achievable in nanoscale calorimeters and bolometers. High speed measurements were

  16. Magnetically insulated baffled probe for real-time monitoring of equilibrium and fluctuating values of space potentials, electron and ion temperatures, and densities.

    Science.gov (United States)

    Demidov, V I; Koepke, M E; Raitses, Y

    2010-10-01

    By restricting the electron-collection area of a cold Langmuir probe compared to the ion-collection area, the probe floating potential can become equal to the space potential, and thus conveniently monitored, rather than to a value shifted from the space potential by an electron-temperature-dependent offset, i.e., the case with an equal-collection-area probe. This design goal is achieved by combining an ambient magnetic field in the plasma with baffles, or shields, on the probe, resulting in species-selective magnetic insulation of the probe collection area. This permits the elimination of electron current to the probe by further adjustment of magnetic insulation which results in an ion-temperature-dependent offset when the probe is electrically floating. Subtracting the floating potential of two magnetically insulated baffled probes, each with a different degree of magnetic insulation, enables the electron or ion temperature to be measured in real time.

  17. Vibration Sensitivity of a Wide-Temperature Electronically Scanned Pressure Measurement (ESP) Module

    Science.gov (United States)

    Zuckerwar, Allan J.; Garza, Frederico R.

    2001-01-01

    A vibration sensitivity test was conducted on a Wide-Temperature ESP module. The test object was Module "M4," a 16-channel, 4 psi unit scheduled for installation in the Arc Sector of NTF. The module was installed on a vibration exciter and loaded to positive then negative full-scale pressures (+/-2.5 psid). Test variables were the following: Vibration frequencies: 20, 55, 75 Hz. Vibration level: 1 g. Vibration axes: X, Y, Z. The pressure response was measured on each channel, first without and then with the vibration turned on, and the difference analyzed by means of the statistical t-test. The results show that the vibration sensitivity does not exceed 0.01% Full Scale Output per g (with the exception of one channel on one axis) to a 95 percent confidence level. This specification, limited by the resolution of the pressure source, lies well below the total uncertainty specification of 0.1 percent Full Scale Output.

  18. Oxidation of UC: An in situ high temperature environmental scanning electron microscopy study

    Science.gov (United States)

    Gasparrini, Claudia; Podor, Renaud; Horlait, Denis; Rushton, Michael J. D.; Fiquet, Olivier; Lee, William Edward

    2017-10-01

    In situ HT-ESEM oxidation of sintered UC fragments revealed the morphological changes occurring during the transformation between UC to UO2 and UO2 to U3O8 at 723-848 K and in an atmosphere of 10-100 Pa O2. Two main oxidation pathways were revealed. Oxidation at 723 K in atmospheres ≤25 Pa O2 showed the transformation from UC to UO2+x, as confirmed by post mortem HRTEM analysis. This oxidation pathway was comprised of three steps: (i) an induction period, where only surface UC particles oxidised, (ii) a sample area expansion accompanied by crack formation and propagation, (iii) a stabilisation of the total crack length inferring that crack propagation had stopped. Samples oxidised under 50 Pa O2 at 723 K and at 773-848 K for 10-100 Pa O2 showed an ;explosive; oxidation pathway: (i) sample area expansion occurred as soon as oxygen was inserted into the chamber and crack propagation and crack length followed an exponential law; (ii) cracks propagated as a network and the oxide layer fragmented, (iii) an ;explosion; occurred causing a popcorn-like transformation, typical for oxidation from UO2 to U3O8. HRTEM characterisation revealed U3O8 preferentially grow in the [001] direction. The explosive growth, triggered by ignition of UC, proceeded as a self-propagating high-temperature synthesis reaction, with a propagation speed of 150-500 ± 50 μm/s.

  19. Low temperature atmospheric microplasma jet array for uniform treatment of polymer surface for flexible electronics

    Science.gov (United States)

    Wang, Tao; Wang, Xiaolin; Yang, Bin; Chen, Xiang; Yang, Chunsheng; Liu, Jingquan

    2017-07-01

    In this paper, the uniformity of polymer film etching by an atmospheric pressure He/O2 microplasma jet array (μPJA) is first investigated with different applied voltage. Plasma characteristics of μPJA were recorded by optical discharge images. Morphologies and chemical compositions of polymer film etched by μPJA were analyzed by optical microscopy, scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS). By increasing the applied voltage from 8.5 kV to 16.4 kV, the non-uniformity of the luminous intensity of the plasma jets increases. It is interesting that the plasma treated regions are actually composed of an etched region and modification region, with distinct morphologies and chemical compositions. The diameters of the etched parylene-C film show the increase of non-uniformity with higher applied voltage. SEM results show that the non-uniformity of surface morphologies of both the modification regions and etched regions increases with the increase of applied voltage. EDS and XPS results also present the significant effect of higher applied voltage on the non-uniformity of surface chemical compositions of both modification and etched regions. The Coulomb interaction of the streamer heads and the hydrodynamic interaction between the plasma jets and the surrounding air are considered to be responsible for this phenomenon. The results shown in this work can help improve the processing quality of polymer film etched by an atmospheric pressure microplasma jet array and two applications are demonstrated to illustrate the uniform downstream surface treatment.

  20. Next generation non-vacuum, maskless, low temperature nanoparticle ink laser digital direct metal patterning for a large area flexible electronics.

    Directory of Open Access Journals (Sweden)

    Junyeob Yeo

    Full Text Available Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition- and photolithography-based conventional metal patterning processes. The "digital" nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm and high-performance flexible organic field effect transistor arrays.

  1. Next generation non-vacuum, maskless, low temperature nanoparticle ink laser digital direct metal patterning for a large area flexible electronics.

    Science.gov (United States)

    Yeo, Junyeob; Hong, Sukjoon; Lee, Daehoo; Hotz, Nico; Lee, Ming-Tsang; Grigoropoulos, Costas P; Ko, Seung Hwan

    2012-01-01

    Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition- and photolithography-based conventional metal patterning processes. The "digital" nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm) and high-performance flexible organic field effect transistor arrays.

  2. Next Generation Non-Vacuum, Maskless, Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics

    Science.gov (United States)

    Yeo, Junyeob; Hong, Sukjoon; Lee, Daehoo; Hotz, Nico; Lee, Ming-Tsang; Grigoropoulos, Costas P.; Ko, Seung Hwan

    2012-01-01

    Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition– and photolithography-based conventional metal patterning processes. The “digital” nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm) and high-performance flexible organic field effect transistor arrays. PMID:22900011

  3. Comparison of the measured and modelled electron densities and temperatures in the ionosphere and plasmasphere during 20-30 January, 1993

    Directory of Open Access Journals (Sweden)

    A. V. Pavlov

    2000-10-01

    Full Text Available We present a comparison of the electron density and temperature behaviour in the ionosphere and plasmasphere measured by the Millstone Hill incoherent-scatter radar and the instruments on board of the EXOS-D satellite with numerical model calculations from a time-dependent mathematical model of the Earth's ionosphere and plasmasphere during the geomagnetically quiet and storm period on 20–30 January, 1993. We have evaluated the value of the additional heating rate that should be added to the normal photoelectron heating in the electron energy equation in the daytime plasmasphere region above 5000 km along the magnetic field line to explain the high electron temperature measured by the instruments on board of the EXOS-D satellite within the Millstone Hill magnetic field flux tube in the Northern Hemisphere. The additional heating brings the measured and modelled electron temperatures into agreement in the plasmasphere and into very large disagreement in the ionosphere if the classical electron heat flux along magnetic field line is used in the model. A new approach, based on a new effective electron thermal conductivity coefficient along the magnetic field line, is presented to model the electron temperature in the ionosphere and plasmasphere. This new approach leads to a heat flux which is less than that given by the classical Spitzer-Harm theory. The evaluated additional heating of electrons in the plasmasphere and the decrease of the thermal conductivity in the topside ionosphere and the greater part of the plasmasphere found for the first time here allow the model to accurately reproduce the electron temperatures observed by the instruments on board the EXOS-D satellite in the plasmasphere and the Millstone Hill incoherent-scatter radar in the ionosphere. The effects of the daytime additional plasmaspheric heating of electrons on the electron temperature and density are small at the F-region altitudes if the modified electron heat flux is

  4. Weavable and Highly Efficient Organic Light-Emitting Fibers for Wearable Electronics: A Scalable, Low-Temperature Process.

    Science.gov (United States)

    Kwon, Seonil; Kim, Hyuncheol; Choi, Seungyeop; Jeong, Eun Gyo; Kim, Dohong; Lee, Somin; Lee, Ho Seung; Seo, Young Cheol; Choi, Kyung Cheol

    2018-01-10

    Fiber-based wearable displays, one of the most desirable requisites of electronic textiles (e-textiles), have emerged as a technology for their capability to revolutionize textile and fashion industries in collaboration with the state-of-the-art electronics. Nonetheless, challenges remain for the fibertronic approaches, because fiber-based light-emitting devices suffer from much lower performance than those fabricated on planar substrates. Here, we report weavable and highly efficient fiber-based organic light-emitting diodes (fiber OLEDs) based on a simple, cost-effective and low-temperature solution process. The values obtained for the fiber OLEDs, including efficiency and lifetime, are similar to that of conventional glass-based counterparts, which means that these state-of-the-art, highly efficient solution processed planar OLEDs can be applied to cylindrical shaped fibers without a reduction in performance. The fiber OLEDs withstand tensile strain up to 4.3% at a radius of 3.5 mm and are verified to be weavable into textiles and knitted clothes by hand-weaving demonstrations. Furthermore, to ensure the scalability of the proposed scheme fiber OLEDs with several diameters of 300, 220, 120, and 90 μm, thinner than a human hair, are demonstrated successfully. We believe that this approach, suitable for cost-effective reel-to-reel production, can realize low-cost commercially feasible fiber-based wearable displays in the future.

  5. Effects of solar wind ultralow-frequency fluctuations on plasma sheet electron temperature: Regression analysis with support vector machine

    Science.gov (United States)

    Wang, Chih-Ping; Kim, Hee-Jeong; Yue, Chao; Weygand, James M.; Hsu, Tung-Shin; Chu, Xiangning

    2017-04-01

    To investigate whether ultralow-frequency (ULF) fluctuations from 0.5 to 8.3 mHz in the solar wind and interplanetary magnetic field (IMF) can affect the plasma sheet electron temperature (Te) near geosynchronous distances, we use a support vector regression machine technique to decouple the effects from different solar wind parameters and their ULF fluctuation power. Te in this region varies from 0.1 to 10 keV with a median of 1.3 keV. We find that when the solar wind ULF power is weak, Te increases with increasing southward IMF Bz and solar wind speed, while it varies weakly with solar wind density. As the ULF power becomes stronger during weak IMF Bz ( 0) or northward IMF, Te becomes significantly enhanced, by a factor of up to 10. We also find that mesoscale disturbances in a time scale of a few to tens of minutes as indicated by AE during substorm expansion and recovery phases are more enhanced when the ULF power is stronger. The effect of ULF powers may be explained by stronger inward radial diffusion resulting from stronger mesoscale disturbances under higher ULF powers, which can bring high-energy plasma sheet electrons further toward geosynchronous distance. This effect of ULF powers is particularly important during weak southward IMF or northward IMF when convection electric drift is weak.

  6. Stable Magnetic Skyrmion States at Room Temperature Confined to Corrals of Artificial Surface Pits Fabricated by a Focused Electron Beam.

    Science.gov (United States)

    Matsumoto, Takao; So, Yeong-Gi; Kohno, Yuji; Ikuhara, Yuichi; Shibata, Naoya

    2018-02-14

    Stable confinement of elemental magnetic nanostructures, such as a single magnetic domain, is fundamental in modern magnetic recording technology. It is well-known that various magnetic textures can be stabilized by geometrical confinement using artificial nanostructures. The magnetic skyrmion, with novel spin texture and promise for future memory devices because of its topological protection and dimension at the nanometer scale, is no exception. So far, skyrmion confinement techniques using large-scale boundaries with limited geometries such as isolated disks and stripes prepared by conventional microfabrication techniques have been used. Here, we demonstrate an alternative technique confining skyrmions to artificial nanostructures (corrals) built from surface pits fabricated by a focused electron beam. Using aberration-corrected differential phase contrast scanning transmission electron microscopy, we directly visualized stable skyrmion states confined at a room temperature to corrals made of artificial surface pits on a thin plate of Co 8 Zn 8 Mn 4 . We observed a stable single-skyrmion state confined to a triangular corral and a unique transition into a triple-skyrmions state depending on the perpendicular magnetic field. Furthermore, we made an array of stable single-skyrmion states by using concatenated triangular corrals. Artificial control of skyrmion states with the present technique should be a powerful way to realize future nonvolatile memory devices using skyrmions.

  7. Three-dimensional mesostructures as high-temperature growth templates, electronic cellular scaffolds, and self-propelled microrobots

    Science.gov (United States)

    Yan, Zheng; Han, Mengdi; Shi, Yan; Badea, Adina; Yang, Yiyuan; Kulkarni, Ashish; Hanson, Erik; Kandel, Mikhail E.; Wen, Xiewen; Zhang, Fan; Luo, Yiyue; Lin, Qing; Zhang, Hang; Guo, Xiaogang; Huang, Yuming; Nan, Kewang; Jia, Shuai; Oraham, Aaron W.; Mevis, Molly B.; Lim, Jaeman; Guo, Xuelin; Gao, Mingye; Ryu, Woomi; Yu, Ki Jun; Nicolau, Bruno G.; Petronico, Aaron; Rubakhin, Stanislav S.; Lou, Jun; Ajayan, Pulickel M.; Thornton, Katsuyo; Popescu, Gabriel; Fang, Daining; Sweedler, Jonathan V.; Braun, Paul V.; Zhang, Haixia; Nuzzo, Ralph G.; Huang, Yonggang; Zhang, Yihui; Rogers, John A.

    2017-11-01

    Recent work demonstrates that processes of stress release in prestrained elastomeric substrates can guide the assembly of sophisticated 3D micro/nanostructures in advanced materials. Reported application examples include soft electronic components, tunable electromagnetic and optical devices, vibrational metrology platforms, and other unusual technologies, each enabled by uniquely engineered 3D architectures. A significant disadvantage of these systems is that the elastomeric substrates, while essential to the assembly process, can impose significant engineering constraints in terms of operating temperatures and levels of dimensional stability; they also prevent the realization of 3D structures in freestanding forms. Here, we introduce concepts in interfacial photopolymerization, nonlinear mechanics, and physical transfer that bypass these limitations. The results enable 3D mesostructures in fully or partially freestanding forms, with additional capabilities in integration onto nearly any class of substrate, from planar, hard inorganic materials to textured, soft biological tissues, all via mechanisms quantitatively described by theoretical modeling. Illustrations of these ideas include their use in 3D structures as frameworks for templated growth of organized lamellae from AgCl–KCl eutectics and of atomic layers of WSe2 from vapor-phase precursors, as open-architecture electronic scaffolds for formation of dorsal root ganglion (DRG) neural networks, and as catalyst supports for propulsive systems in 3D microswimmers with geometrically controlled dynamics. Taken together, these methodologies establish a set of enabling options in 3D micro/nanomanufacturing that lie outside of the scope of existing alternatives.

  8. Warmed-over flavour analysis in low temperature-long time processed meat by an "electronic nose".

    Science.gov (United States)

    Grigioni, G M; Margaría, C A; Pensel, N A; Sánchez, G; Vaudagna, S R

    2000-11-01

    The ability of an electronic nose, comprising 32 conducting polymer sensors, to identify and classify warmed-over flavour (WOF) aroma in bovine semitendinosus muscle, processed by vacuum cook-in-bag/tray technology (VCT) and storage under refrigerated conditions, was evaluated. The VCT process employed low temperature-long time (50°C-390 min) thermal treatments. Multivariate analysis showed that VCT processed beef aroma profiles were sorted into two groups, one included samples stored for up to 20 days and the other included samples with 34 to 45 days of storage. WOF odour standard samples were recognised to have similar aroma as samples of the second group. Lipid oxidation results, measured by thiobarbituric acid reactive substances, showed an increment in oxidation level for samples stored for 34 days or more (P<0.05). This study shows that electronic nose technology can be applied to WOF odour identification and classification in VCT beef meat, complementing chemical and sensory techniques used in this field.

  9. The role of vector potential coupling in the hot electron cooling power in bilayer graphene at low temperature

    Science.gov (United States)

    Kubakaddi, S. S.

    2018-01-01

    We have studied, in bilayer graphene (BLG), the hot electron cooling power FVP (T, ns) due to acoustic phonons via vector potential (VP) coupling. It is calculated as a function of electron concentration ns and temperature T and compared with FDP (T, ns), the contribution from the deformation potential (DP) coupling. For the ns around 1 × 1012 cm-2, FVP (T, ns) is much smaller than FDP (T, ns). With increase of ns, FDP (T, ns) decreases faster than FVP (T, ns) does. A cross over is predicted and dominant contribution of FVP (T, ns) can be observed at large ns. In the Bloch- Grüneisen (BG) regime FVP (T, ns) ns-1/2 and FDP (T, ns) ns-3/2. Both FVP (T, ns) and FDP (T, ns) have the same T dependence with T4 power law in the BG regime. Behaviour of FDP (T, ns) ns-3/2 and T4 is in agreement with the experimental results at moderate ns. Besides, in the BG regime, we have predicted, for both the VP and DP coupling, a relation between F(T,ns) and the acoustic phonon limited mobility μp, opening a new door to determine μp from the measurements of F(T,ns)

  10. Amorphous Tin Oxide as a Low-Temperature-Processed Electron-Transport Layer for Organic and Hybrid Perovskite Solar Cells.

    Science.gov (United States)

    Barbé, Jérémy; Tietze, Max L; Neophytou, Marios; Murali, Banavoth; Alarousu, Erkki; Labban, Abdulrahman El; Abulikemu, Mutalifu; Yue, Wan; Mohammed, Omar F; McCulloch, Iain; Amassian, Aram; Del Gobbo, Silvano

    2017-04-05

    Chemical bath deposition (CBD) of tin oxide (SnO 2 ) thin films as an electron-transport layer (ETL) in a planar-heterojunction n-i-p organohalide lead perovskite and organic bulk-heterojunction (BHJ) solar cells is reported. The amorphous SnO 2 (a-SnO 2 ) films are grown from a nontoxic aqueous bath of tin chloride at a very low temperature (55 °C) and do not require postannealing treatment to work very effectively as an ETL in a planar-heterojunction n-i-p organohalide lead perovskite or organic BHJ solar cells, in lieu of the commonly used ETL materials titanium oxide (TiO 2 ) and zinc oxide (ZnO), respectively. Ultraviolet photoelectron spectroscopy measurements on the glass/indium-tin oxide (ITO)/SnO 2 /methylammonium lead iodide (MAPbI 3 )/2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene device stack indicate that extraction of photogenerated electrons is facilitated by a perfect alignment of the conduction bands at the SnO 2 /MAPbI 3 interface, while the deep valence band of SnO 2 ensures strong hole-blocking properties. Despite exhibiting very low electron mobility, the excellent interfacial energetics combined with high transparency (E gap,optical > 4 eV) and uniform substrate coverage make the a-SnO 2 ETL prepared by CBD an excellent candidate for the potentially low-cost and large-scale fabrication of organohalide lead perovskite and organic photovoltaics.

  11. Amorphous Tin Oxide as a Low-Temperature-Processed Electron-Transport Layer for Organic and Hybrid Perovskite Solar Cells

    KAUST Repository

    Barbe, Jeremy

    2017-02-08

    Chemical bath deposition (CBD) of tin oxide (SnO) thin films as an electron-transport layer (ETL) in a planar-heterojunction n-i-p organohalide lead perovskite and organic bulk-heterojunction (BHJ) solar cells is reported. The amorphous SnO (a-SnO) films are grown from a nontoxic aqueous bath of tin chloride at a very low temperature (55 °C) and do not require postannealing treatment to work very effectively as an ETL in a planar-heterojunction n-i-p organohalide lead perovskite or organic BHJ solar cells, in lieu of the commonly used ETL materials titanium oxide (TiO) and zinc oxide (ZnO), respectively. Ultraviolet photoelectron spectroscopy measurements on the glass/indium-tin oxide (ITO)/SnO/methylammonium lead iodide (MAPbI)/2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene device stack indicate that extraction of photogenerated electrons is facilitated by a perfect alignment of the conduction bands at the SnO/MAPbI interface, while the deep valence band of SnO ensures strong hole-blocking properties. Despite exhibiting very low electron mobility, the excellent interfacial energetics combined with high transparency (E > 4 eV) and uniform substrate coverage make the a-SnO ETL prepared by CBD an excellent candidate for the potentially low-cost and large-scale fabrication of organohalide lead perovskite and organic photovoltaics.

  12. Spatially Resolved Spectra from a new X-ray Imaging Crystal Spectrometer for Measurements of Ion and Electron Temperature Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Bitter, M; Stratton, B; Roquemore, A; Mastrovito, D; Lee, S; Bak, J; Moon, M; Nam, U; Smith, G; Rice, J; Beiersdorfer, P; Fraenkel, B

    2004-08-10

    A new type of high-resolution X-ray imaging crystal spectrometer is being developed to measure ion and electron temperature profiles in tokamak plasmas. The instrument is particularly valuable for diagnosing plasmas with purely Ohmic heating and rf heating, since it does not require the injection of a neutral beam - although it can also be used for the diagnosis of neutral-beam heated plasmas. The spectrometer consists of a spherically bent quartz crystal and a two-dimensional position-sensitive detector. It records spectra of helium-like argon (or krypton) from multiple sightlines through the plasma and projects a de-magnified image of a large plasma cross-section onto the detector. The spatial resolution in the plasma is solely determined by the height of the crystal, its radius of curvature, and the Bragg angle. This new X-ray imaging crystal spectrometer may also be of interest for the diagnosis of ion temperature profiles in future large tokamaks, such as KSTAR and ITER, where the application of the presently used charge-exchange spectroscopy will be difficult, if the neutral beams do not penetrate to the plasma center. The paper presents the results from proof-of-principle experiments performed with a prototype instrument at Alcator C-Mod.

  13. Progress on Low-Temperature Pulsed Electron Deposition of CuInGaSe2 Solar Cells

    Directory of Open Access Journals (Sweden)

    Massimo Mazzer

    2016-03-01

    Full Text Available The quest for single-stage deposition of CuInGaSe2 (CIGS is an open race to replace very effective but capital intensive thin film solar cell manufacturing processes like multiple-stage coevaporation or sputtering combined with high pressure selenisation treatments. In this paper the most recent achievements of Low Temperature Pulsed Electron Deposition (LTPED, a novel single stage deposition process by which CIGS can be deposited at 250 °C, are presented and discussed. We show that selenium loss during the film deposition is not a problem with LTPED as good crystalline films are formed very close to the melting temperature of selenium. The mechanism of formation of good ohmic contacts between CIGS and Mo in the absence of any MoSe2 transition layers is also illustrated, followed by a brief summary of the measured characteristics of test solar cells grown by LTPED. The 17% efficiency target achieved by lab-scale CIGS devices without bandgap modulation, antireflection coating or K-doping is considered to be a crucial milestone along the path to the industrial scale-up of LTPED. The paper ends with a brief review of the open scientific and technological issues related to the scale-up and the possible future applications of the new technology.

  14. Localized injection of large-amplitude Pc 1 waves and electron temperature enhancement near the plasmapause observed by DE2 in the upper ionosphere

    Science.gov (United States)

    Iyemori, T.; Sugiura, M.; Oka, A.; Morita, Y.; Ishii, M.; Slavin, J. A.; Brace, L. H.; Hoffman, R. A.; Winningham, J. D.

    1994-01-01

    The relation between electron temperature enhancement and large amplitude Pc 1 wave injections in the upper ionosphere is investigated using the data obtained by the Dynamics Explorer 2 spacecraft. Results can be summarized as follows: (1) The region of the temperature enhancement coincides with that of the wave injection which is latitudinally very narrow (less than 100 km) in comparison with the wavelength along the ambient magnetic field (several hundred kilometers). (2) The duration of the wave injection (or the temperature enhancement) seems to be less than a few hours even under quiet geomagnetic conditions, and/or the injection seems to be very localized, not only latitudinally, but also longitudinally. (3) The appearance and the magnitude of temperature enhancement depend on both the wave amplitude and the satellite altitude. (4) Two of the 22 events that were analyzed show a clear enhancement of low-energy electron flux (5 to 30 eV) at the wave injection, and the flux is field-aligned both downward and upward. The region of the temperature enhancement coincides with that of the downward electron flux. From these results, it is suggested that the temperature enhancement which accompanies large-amplitude waves with Pc 1 pulsation frequencies (0.2 to 5 Hz) is caused by the direct acceleration of thermal electrons at low altitudes by the parallel electric field (0.01 to 0.001 mV/m) of the ion-cyclotron waves (kinetic Alfven waves) having an oblique wave normal.

  15. Estimation of electron temperature and density by de convolving the absorption part of the plasma dispersion function

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez D, H.; Cabral P, A.; Melendez L, L.; Lopez C, R.; Colunga S, S.; Valencia A, R.; Cruz J, S.; Gaytan G, E.; Chavez A, E

    1992-04-15

    In this work a method to estimate the temperature and density of the electron (T{sub e}, n{sub e}), based on the deconvolution of the part of absorption of the dispersion function of the plasma is suggested. The absorptive part of this function, is proportional to the convolution of a Gauss distribution with a Lorentz function. The Gaussian represents to the Maxwell function of velocities distribution of the electrons of the plasma. The Lorentzian represents to the form of it lines of an linearized electrostatic wave that spreads with reduction in the plasma. The complex variable z of the plasma dispersion function is written as: z = u + ia, where u = 2 (w-w{sub 0}) {radical} Ln 2 /{gamma}{sub G} is the dimensionless frequency variable, a = {gamma}{sub L} {radical} Ln 2 /{gamma}{sub G} is the Posener parameter, {gamma}{sub G} = k {gamma}{sup '}{sub G} where k is the wave number of the oscillatory phenomenon, {gamma}{sup '}{sub G} is the FWHM of the Gaussian and {gamma}{sub L} = 2 {alpha}, {alpha} being the damping constant; i.e the imaginary part of the frequency {omega}. In this method, it will be assumed that a wave of frequency , and of amplitude small enough to avoid non-linear effects, propagates in the plasma and decays in such a way {alpha} is the Landau damping. With this assumption, the method is only valid in the interval k < < k{sub D}, where k{sub D} is the Debye wave number. Deconvolution of the detected absorption frequency spectrum of the signal, gives the values of {gamma}{sub G} and {gamma}{sub L} from which the values of n{sub e} and T{sub e} can be deduced. (Author)

  16. Nanoparticle Metamorphosis: An in Situ High-Temperature Transmission Electron Microscopy Study of the Structural Evolution of Heterogeneous Au:Fe 2 O 3 Nanoparticles

    KAUST Repository

    Baumgardner, William J.

    2014-05-27

    High-temperature in situ electron microscopy and X-ray diffraction have revealed that Au and Fe2O3 particles fuse in a fluid fashion at temperatures far below their size-reduced melting points. With increasing temperature, the fused particles undergo a sequence of complex structural transformations from surface alloy to phase segregated and ultimately core-shell structures. The combination of in situ electron microscopy and spectroscopy provides insights into fundamental thermodynamic and kinetic aspects governing the formation of heterogeneous nanostructures. The observed structural transformations present an interesting analogy to thin film growth on the curved surface of a nanoparticle. Using single-particle observations, we constructed a phase diagram illustrating the complex relationships among composition, morphology, temperature, and particle size. © 2014 American Chemical Society.

  17. Temperature-dependent anisotropic resistivity in electron, hole and isoelectron - doped BaFe2As2 superconductors

    Science.gov (United States)

    Tanatar, M. A.

    2012-02-01

    Anisotropic electrical resistivity, ρ(T), was studied in iron-arsenide superconductors, obtained by doping the parent BaFe2As2 compound on three different sites: (1) electron donor transition metal (Co,Ni,Rh,Pd) substitution of Fe [1,2]; (2) hole donor K substitution of Ba [3]; (3) isoelectron P substitution of As. For all three types of dopants a range of T-linear behavior is found at the optimal doping in both the in-plane and the inter-plane ρ(T) above Tc. At some higher temperature this range of T-linear resistivity is capped by a slope-changing anomaly, which, by comparison with NMR, magnetic susceptibility and Hall effect measurements, can be identified with the onset of carrier activation over the pseudogap [1]. The doping-evolution of anisotropic temperature dependent ρ(T) and of the pseudogap are quite different for three types of doping. A three-dimensional T-H phase diagram summarizing our results will be presented. Furthermore, potential correlation of the anisotropic normal state transport and anisotropic superconducting state heat transport will be discussed. [4pt] In collaboration with N. Ni, A. Thaler, S.L.Bud'ko, P.C. Canfield, R. Prozorov, Bing Shen, Hai-Hu Wen, K. Hashimoto, S. Kasahara, T. Terashima, T. Shibauchi and Y. Matsuda. [4pt] [1] M.A.Tanatar et al. PRB 82, 134528 (2010)[0pt] [2] M.A.Tanatar et al. PRB 84, 014519 (2011)[0pt] [3] M.A.Tanatar et al. arXiv:1106.0533

  18. Effects of pre-irradiation annealing at high temperature on optical absorption and electron paramagnetic resonance of natural pumpellyite mineral

    Energy Technology Data Exchange (ETDEWEB)

    Javier-Ccallata, Henry, E-mail: henrysjc@gmail.com [Escuela de Ingeniería Electrónica y Telecomunicaciones, Universidad Alas Peruanas Filial Arequipa, Urb. D. A. Carrión G-14, J. L. Bustamante y Rivero, Arequipa (Peru); Laboratório de Sistemas Nanoestruturados, Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina (Brazil); Filho, Luiz Tomaz [Departamento de Física Nuclear, Instituto de Física, Universidade de São Paulo, Rua do Matão, travessa R, 187, CEP 05508-900 São Paulo, SP (Brazil); Faculdade de Tecnologia e Ciências Exatas, Universidade São Judas Tadeu, Rua Taquari 546, São Paulo, SP (Brazil); Sartorelli, Maria L. [Laboratório de Sistemas Nanoestruturados, Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina (Brazil); Watanabe, Shigueo [Departamento de Física Nuclear, Instituto de Física, Universidade de São Paulo, Rua do Matão, travessa R, 187, CEP 05508-900 São Paulo, SP (Brazil)

    2013-09-15

    Highlights: •Natural pumpellyite mineral presents superposition bands around 900 and 1060 nm due Fe{sup 2+}and Fe{sup 3+}. •High temperature annealing influences the EPR and OA spectra. •The behavior of EPR line for 800 and 900 °C can be attributed to forbidden dd transitions due the Fe{sup 3+}. -- Abstract: Natural silicate mineral of pumpellyite, Ca{sub 2}MgAl{sub 2}(SiO{sub 4})(Si{sub 2}O{sub 7})(OH){sub 2}·(H{sub 2}O), point group A2/m, has been studied concerning high temperature annealing and γ-radiation effects on Optical Absorption (OA) and Electron Paramagnetic Resonance (EPR) properties. Chemical analysis revealed that besides Si, Al, Ca and Mg, other oxides i.e., Fe, Mn, Na, K, Ti and P are present in the structure as impurities. OA measurements of natural and annealed pumpellyite revealed several bands in the visible region due to spin forbidden transitions of Fe{sup 2+} and Fe{sup 3+}. The behaviour of bands around 900 and 1060 nm, with pre-annealing and γ radiation dose, indicating a transition Fe{sup 2+} → e{sup −} + Fe{sup 3+}. On the other hand, EPR measurements reveal six lines of Mn{sup 2+}, and satellites due to hyperfine interaction, superimposed on the signal of Fe{sup 3+} around of g = 2. For heat treatment from 800 °C the signal grows significantly and for 900 °C a strong signal of Fe{sup 3+} hides all Mn{sup 2+} lines. The strong growth of this signal indicates that the transitions are due to Fe{sup 3+} dipole–dipole interactions.

  19. Effect of Annealing Temperature on CuInSe2/ZnS Thin-Film Solar Cells Fabricated by Using Electron Beam Evaporation

    Directory of Open Access Journals (Sweden)

    H. Abdullah

    2013-01-01

    Full Text Available CuInSe2 (CIS thin films are successfully prepared by electron beam evaporation. Pure Cu, In, and Se powders were mixed and ground in a grinder and made into a pellet. The pallets were deposited via electron beam evaporation on FTO substrates and were varied by varying the annealing temperatures, at room temperature, 250°C, 300°C, and 350°C. Samples were analysed by X-ray diffractometry (XRD for crystallinity and field-emission scanning electron microscopy (FESEM for grain size and thickness. I-V measurements were used to measure the efficiency of the CuInSe2/ZnS solar cells. XRD results show that the crystallinity of the films improved as the temperature was increased. The temperature dependence of crystallinity indicates polycrystalline behaviour in the CuInSe2 films with (1 1 1, (2 2 0/(2 0 4, and (3 1 2/(1 1 6 planes at 27°, 45°, and 53°, respectively. FESEM images show the homogeneity of the CuInSe2 formed. I-V measurements indicated that higher annealing temperatures increase the efficiency of CuInSe2 solar cells from approximately 0.99% for the as-deposited films to 1.12% for the annealed films. Hence, we can conclude that the overall cell performance is strongly dependent on the annealing temperature.

  20. Strong evidence for d-electron spin transport at room temperature at a LaAlO3/SrTiO3 interface

    Science.gov (United States)

    Ohshima, Ryo; Ando, Yuichiro; Matsuzaki, Kosuke; Susaki, Tomofumi; Weiler, Mathias; Klingler, Stefan; Huebl, Hans; Shikoh, Eiji; Shinjo, Teruya; Goennenwein, Sebastian T. B.; Shiraishi, Masashi

    2017-06-01

    A d-orbital electron has an anisotropic electron orbital and is a source of magnetism. The realization of a two-dimensional electron gas (2DEG) embedded at a LaAlO3/SrTiO3 interface surprised researchers in materials and physical sciences because the 2DEG consists of 3d-electrons of Ti with extraordinarily large carrier mobility, even in the insulating oxide heterostructure. To date, a wide variety of physical phenomena, such as ferromagnetism and the quantum Hall effect, have been discovered in this 2DEG system, demonstrating the ability of d-electron 2DEG systems to provide a material platform for the study of interesting physics. However, because of both ferromagnetism and the Rashba field, long-range spin transport and the exploitation of spintronics functions have been believed difficult to implement in d-electron 2DEG systems. Here, we report the experimental demonstration of room-temperature spin transport in a d-electron-based 2DEG at a LaAlO3/SrTiO3 interface, where the spin relaxation length is about 300 nm. Our finding, which counters the conventional understandings of d-electron 2DEGs, highlights the spin-functionality of conductive oxide systems and opens the field of d-electron spintronics.

  1. Inverted Organic Solar Cells with Low-Temperature Al-Doped-ZnO Electron Transport Layer Processed from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Qianni Zhang

    2018-01-01

    Full Text Available The aqueous-based Zn-ammine complex solutions represent one of the most promising routes to obtain the ZnO electron transport layer (ETL at a low temperature in inverted organic solar cells (OSCs. However, to dope the ZnO film processed from the Zn-ammine complex solutions is difficult since the introduction of metal ions into the Zn-ammine complex is a nontrivial process as ammonium hydroxide tends to precipitate metal salts due to acid-base neutralization reactions. In this paper, we investigate the inverted OSCs with Al-doped-ZnO ETL made by immersion of metallic Al into the Zn-ammine precursor solution. The effects of ZnO layer with different immersion time of Al on film properties and solar cell performance have been studied. The results show that, with the Al-doped-ZnO ETL, an improvement of the device performance could be obtained compared with the device with the un-doped ZnO ETL. The improved device performance is attributed to the enhancement of charge carrier mobility leading to a decreased charge carrier recombination and improved charge collection efficiency. The fabricated thin film transistors with the same ZnO or AZO films confirm the improved electrical characteristics of the Al doped ZnO film.

  2. On the effect of electron temperature fluctuations on turbulent heat transport in the edge plasma of tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Baudoin, C.; Tamain, P.; Ciraolo, G.; Futtersack, R.; Gallo, A.; Ghendrih, P.; Nace, N.; Norscini, C. [CEA, IRFM, Saint-Paul-lez-Durance (France); Marandet, Y. [Aix-Marseille Universite, CNRS, PIIM, UMR 7345, Marseille (France)

    2016-08-15

    In this paper we study the impact of electron temperature fluctuations in a two-dimensional turbulent model. This modification adds a second linear instability, known as sheath-driven conducting-wall instability, with respect to the previous isothermal model only driven by the interchange instability. Non-linear simulations, backed up by the linear analysis, show that the additional mechanism can change drastically the dynamics of turbulence (scales, density-potential correlation, and statistical momentum). Moreover, its importance relatively to the interchange instability should be more significant in the private flux region than in the main scrape of layer. Its effect on heat transport is also investigated for different regimes of parameters, results show that both instabilities are at play in the heat transport. Finally, the sheath negative resistance instability could be responsible for the existence of corrugated heat flux profiles in the scrape-off layer leading to a multiple decay length. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Electron temperature measurements inside the ablating plasma of gas-filled hohlraums at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Barrios, M. A.; Liedahl, D. A.; Schneider, M. B.; Jones, O.; Brown, G. V.; Fournier, K. B.; Moore, A. S.; Ross, J. S.; Landen, O.; Kauffman, R. L.; Nikroo, A.; Kroll, J.; Callahan, D. A.; Hinkel, D. E.; Bradley, D.; Moody, J. D. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Regan, S. P. [Laboratory for Laser Energetics, Rochester, New York 14623 (United States); Jaquez, J.; Huang, H. [General Atomics, San Diego, California 92121 (United States); Hansen, S. B. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States)

    2016-05-15

    The first measurement of the electron temperature (T{sub e}) inside a National Ignition Facility hohlraum is obtained using temporally resolved K-shell X-ray spectroscopy of a mid-Z tracer dot. Both isoelectronic- and interstage-line ratios are used to calculate the local T{sub e} via the collisional–radiative atomic physics code SCRAM [Hansen et al., High Energy Density Phys 3, 109 (2007)]. The trajectory of the mid-Z dot as it is ablated from the capsule surface and moves toward the laser entrance hole (LEH) is measured using side-on x-ray imaging, characterizing the plasma flow of the ablating capsule. Data show that the measured dot location is farther away from the LEH in comparison to the radiation-hydrodynamics simulation prediction using HYDRA [Marinak et al., Phys. Plasmas 3, 2070 (1996)]. To account for this discrepancy, the predicted simulation T{sub e} is evaluated at the measured dot trajectory. The peak T{sub e}, measured to be 4.2 keV ± 0.2 keV, is ∼0.5 keV hotter than the simulation prediction.

  4. High-performance double-filter soft x-ray diagnostic for measurement of electron temperature structure and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    McGarry, M. B.; Den Hartog, D. J.; Goetz, J. A.; Thomas, M. A.; Reyfman, M.; Kumar, S. T. A. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Franz, P. [Consorzio RFX, Associazione Euratom-ENEA per la Fusione, Padova (Italy)

    2012-10-15

    A new soft x-ray (SXR) T{sub e} and tomography diagnostic has been developed for MST that can be used for simultaneous SXR spectrum measurement, tomographically reconstructed emissivity, and reconstructed and line-of-sight electron temperature. The diagnostic utilizes high-performance differential transimpedance amplifiers (gain 10{sup 5}-10{sup 9}) to provide fast time response (up to 125 kHz), allowing for the study of plasma structure dynamics. SXR double-foil T{sub e} measurements are consistent with Thomson scattering. SXR brightness through a variety of filter thicknesses has been combined with charge exchange recombination spectroscopy (CHERS) impurity density measurements to determine the plasma energy spectrum. Magnetic pickup from the fluctuating magnetic fields in the plasma (B(tilde sign){approx}20 gauss at 10-20 kHz) has been dramatically reduced by improving the detector and housing design, so that nanoampere diode currents are now measured without interference from the substantial fluctuating magnetic field incident on the plasma facing surface of the probe.

  5. A New Global Empirical Model of the Electron Temperature with the Inclusion of the Solar Activity Variations for IRI

    Science.gov (United States)

    Truhlik, V.; Triskova, L.

    2012-01-01

    A data-base of electron temperature (T(sub e)) comprising of most of the available LEO satellite measurements in the altitude range from 350 to 2000 km has been used for the development of a new global empirical model of T(sub e) for the International Reference Ionosphere (IRI). For the first time this will include variations with solar activity. Variations at five fixed altitude ranges centered at 350, 550, 850, 1400, and 2000 km and three seasons (summer, winter, and equinox) were represented by a system of associated Legendre polynomials (up to the 8th order) in terms of magnetic local time and the earlier introduced in vdip latitude. The solar activity variations of T(sub e) are represented by a correction term of the T(sub e) global pattern and it has been derived from the empirical latitudinal profiles of T(sub e) for day and night (Truhlik et al., 2009a). Comparisons of the new T(sub e) model with data and with the IRI 2007 Te model show that the new model agrees well with the data generally within standard deviation limits and that the model performs better than the current IRI T(sub e) model.

  6. Density and temperature of energetic electrons in the Earth's magnetotail derived from high-latitude GPS observations during the declining phase of the solar cycle

    Directory of Open Access Journals (Sweden)

    M. H. Denton

    2011-10-01

    Full Text Available Single relativistic-Maxwellian fits are made to high-latitude GPS-satellite observations of energetic electrons for the period January 2006–November 2010; a constellation of 12 GPS space vehicles provides the observations. The derived fit parameters (for energies ~0.1–1.0 MeV, in combination with field-line mapping on the nightside of the magnetosphere, provide a survey of the energetic electron density and temperature distribution in the magnetotail between McIlwain L-values of L=6 and L=22. Analysis reveals the characteristics of the density-temperature distribution of energetic electrons and its variation as a function of solar wind speed and the Kp index. The density-temperature characteristics of the magnetotail energetic electrons are very similar to those found in the outer electron radiation belt as measured at geosynchronous orbit. The energetic electron density in the magnetotail is much greater during increased geomagnetic activity and during fast solar wind. The total electron density in the magnetotail is found to be strongly correlated with solar wind speed and is at least a factor of two greater for high-speed solar wind (VSW=500–1000 km s−1 compared to low-speed solar wind (VSW=100–400 km s−1. These results have important implications for understanding (a how the solar wind may modulate entry into the magnetosphere during fast and slow solar wind, and (b if the magnetotail is a source or a sink for the outer electron radiation belt.

  7. Density and temperature of energetic electrons in the Earth's magnetotail derived from high-latitude GPS observations during the declining phase of the solar cycle

    Directory of Open Access Journals (Sweden)

    M. H. Denton

    2011-10-01

    Full Text Available Single relativistic-Maxwellian fits are made to high-latitude GPS-satellite observations of energetic electrons for the period January 2006–November 2010; a constellation of 12 GPS space vehicles provides the observations. The derived fit parameters (for energies ~0.1–1.0 MeV, in combination with field-line mapping on the nightside of the magnetosphere, provide a survey of the energetic electron density and temperature distribution in the magnetotail between McIlwain L-values of L=6 and L=22. Analysis reveals the characteristics of the density-temperature distribution of energetic electrons and its variation as a function of solar wind speed and the Kp index. The density-temperature characteristics of the magnetotail energetic electrons are very similar to those found in the outer electron radiation belt as measured at geosynchronous orbit. The energetic electron density in the magnetotail is much greater during increased geomagnetic activity and during fast solar wind. The total electron density in the magnetotail is found to be strongly correlated with solar wind speed and is at least a factor of two greater for high-speed solar wind (VSW=500–1000 km s−1 compared to low-speed solar wind (VSW=100–400 km s−1. These results have important implications for understanding (a how the solar wind may modulate entry into the magnetosphere during fast and slow solar wind, and (b if the magnetotail is a source or a sink for the outer electron radiation belt.

  8. Electron Microscopy.

    Science.gov (United States)

    Beer, Michael

    1980-01-01

    Reviews technical aspects of structure determination in biological electron microscopy (EM). Discusses low dose EM, low temperature microscopy, electron energy loss spectra, determination of mass or molecular weight, and EM of labeled systems. Cites 34 references. (CS)

  9. Correlation of growth temperature with stress, defect states and electronic structure in an epitaxial GaN film grown on c-sapphire via plasma MBE.

    Science.gov (United States)

    Krishna, Shibin; Aggarwal, Neha; Mishra, Monu; Maurya, K K; Singh, Sandeep; Dilawar, Nita; Nagarajan, Subramaniyam; Gupta, Govind

    2016-03-21

    The relationship of the growth temperature with stress, defect states, and electronic structure of molecular beam epitaxy grown GaN films on c-plane (0001) sapphire substrates is demonstrated. A minimum compressively stressed GaN film is grown by tuning the growth temperature. The correlation of dislocations/defects with the stress relaxation is scrutinized by high-resolution X-ray diffraction and photoluminescence measurements which show a high crystalline quality with significant reduction in the threading dislocation density and defect related bands. A substantial reduction in yellow band related defect states is correlated with the stress relaxation in the grown film. Temperature dependent Raman analysis shows the thermal stability of the stress relaxed GaN film which further reveals a downshift in the E2 (high) phonon frequency owing to the thermal expansion of the lattice at elevated temperatures. Electronic structure analysis reveals that the Fermi level of the films is pinned at the respective defect states; however, for the stress relaxed film it is located at the charge neutrality level possessing the lowest electron affinity. The analysis demonstrates that the generated stress not only affects the defect states, but also the crystal quality, surface morphology and electronic structure/properties.

  10. Electron temperature maps of the low solar corona: ISCORE results from the total solar eclipse of 1 August 2008 in China

    Science.gov (United States)

    Reginald, Nelson L.; Davila, Joseph M.; St. Cyr, Orville C.; Rabin, Douglas M.

    2017-06-01

    We conducted an experiment in conjunction with the total solar eclipse of 1 August 2008 in China to determine the thermal electron temperature in the low solar corona close to the solar limb. The instrument, Imaging Spectrograph of Coronal Electrons (ISCORE), consisted of an 8 inch f/10 Schmidt Cassegrain telescope with a thermoelectrically cooled CCD camera at the focal plane. Results are electron temperatures of 1 MK at 1.08 R⊙ and 1.13 R⊙ from the Sun center in the polar and equatorial regions, respectively. This experiment confirms the results of an earlier experiment conducted in conjunction with the total eclipse of 29 March 2006 in Libya, and results are that at a given coronal height the electron temperature in the polar region is larger than at the equatorial region. In this paper we show the importance of using the correct photospheric spectrum pertinent to the solar activity phase at the time of the experiment, which is a required parameter for modeling the underlying theoretical concept for temperature interpretation of the measured intensity ratios using color filters.

  11. Electron density and temperature determination in a Tokamak plasma using light scattering; Determinacion de la densidad y temperatura electronicas en un Tokamak mediante difusion luminosa

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Navarro Gomerz, A.; Zurro Hernandez, B.

    1976-07-01

    A theoretical foundation review for light scattering by plasmas is presented. Furthermore, we have included a review of the experimental methods for electron density and temperature measurements, with spatial and time resolution, in a Tokamak plasma using spectral analysis of the scattered radiation. (Author) 13 refs.

  12. Electron Temperatures and Flow Speeds of the Low Solar Corona: MACS Results from the Total Solar Eclipse of 29 March 2006 in Libya

    Science.gov (United States)

    Reginald, Nelson L.; Davila, Joseph M.; SaintCyr, O.; Rabin, Douglas M.; Guhathakurta, Madhulika; Hassler, Donald M.; Gashut, Hadi

    2011-01-01

    An experiment was conducted in conjunction with the total solar eclipse on 29 March 2006 in Libya to measure both the electron temperature and its flow speed simultaneously at multiple locations in the low solar corona by measuring the visible K-coronal spectrum. Coronal model spectra incorporating the effects of electron temperature and its flow speed were matched with the measured K-coronal spectra to interpret the observations. Results show electron temperatures of (1.10 +/- 0.05) MK, (0.70 +/- 0.08) MK, and (0.98 +/- 0.12) MK, at 1.1 Solar Radius from Sun center in the solar north, east and west, respectively, and (0.93 +/- 0.12) MK, at 1.2 Solar Radius from Sun center in the solar west. The corresponding outflow speeds obtained from the spectral fit are (103 +/- 92) km/s, (0 + 10) km/s, (0+10) km/s, and (0+10) km/s. Since the observations were taken only at 1.1 Solar Radius and 1.2 Solar Radius from Sun center, these speeds, consistent with zero outflow, are in agreement with expectations and provide additional confirmation that the spectral fitting method is working. The electron temperature at 1.1 Solar Radius from Sun center is larger at the north (polar region) than the east and west (equatorial region).

  13. UV-Sintered Low-Temperature Solution-Processed SnO2as Robust Electron Transport Layer for Efficient Planar Heterojunction Perovskite Solar Cells.

    Science.gov (United States)

    Huang, Like; Sun, Xiaoxiang; Li, Chang; Xu, Jie; Xu, Rui; Du, Yangyang; Ni, Jian; Cai, Hongkun; Li, Juan; Hu, Ziyang; Zhang, Jianjun

    2017-07-05

    Recently, low temperature solution-processed tin oxide (SnO 2 ) as a versatile electron transport layer (ETL) for efficient and robust planar heterojunction (PH) perovskite solar cells (PSCs) has attracted particular attention due to its outstanding properties such as high optical transparency, high electron mobility, and suitable band alignment. However, for most of the reported works, an annealing temperature of 180 °C is generally required. This temperature is reluctantly considered to be a low temperature, especially with respect to the flexible application where 180 °C is still too high for the polyethylene terephthalate flexible substrate to bear. In this contribution, low temperature (about 70 °C) UV/ozone treatment was applied to in situ synthesis of SnO 2 films deposited on the fluorine-doped tin oxide substrate as ETL. This method is a facile photochemical treatment which is simple to operate and can easily eliminate the organic components. Accordingly, PH PSCs with UV-sintered SnO 2 films as ETL were successfully fabricated for the first time. The device exhibited excellent photovoltaic performance as high as 16.21%, which is even higher than the value (11.49%) reported for a counterpart device with solution-processed and high temperature annealed SnO 2 films as ETL. These low temperature solution-processed and UV-sintered SnO 2 films are suitable for the low-cost, large yield solution process on a flexible substrate for optoelectronic devices.

  14. FT-IR spectroscopy, scanning electron microscopy and porosity measurements to determine the firing temperature of ancient megalithic period potteries excavated at Adichanallur in Tamilnadu, South India

    Science.gov (United States)

    Velraj, G.; Ramya, R.; Hemamalini, R.

    2012-11-01

    Scientific examination of archaeological pottery mainly aims to determine the style of production and the techniques involved in its manufacture. Technological characterization includes the evaluation of the original firing conditions. Maximum firing temperatures may be evaluated by firing clays of compositions similar to those used for the production of the ancient objects. In the present work, some of the ancient pottery samples were collected from recently excavated site at Adichanallur, Tirunelveli District, Tamilnadu, India to estimate the firing temperature of the pottery samples and atmosphere prevailed at the time of manufacturing those potteries by the ancient artisans. From the Fourier transform infrared spectra of the samples the lower limit of firing temperature have been determined. The upper limit of firing temperature was evaluated by porosimetry method. The scanning electron microscopic analysis is used to narrow down the range of firing temperature and the results are consistent with the results obtained from FT-IR spectroscopic study and porosimetry method.

  15. Temperature-dependent electronic properties of inorganic-organic hybrid halide perovskite (CH3NH3PbBr3) single crystal

    Science.gov (United States)

    Cui, Xiaolei; Yuan, Sijian; Zhang, Huotian; Zhang, Xin; Wang, Pengfei; Tu, Li; Sun, Zhengyi; Wang, Jiao; Zhan, Yiqiang; Zheng, Lirong

    2017-12-01

    In this paper, the temperature-dependent electronic properties of inorganic-organic hybrid halide perovskite (CH3NH3PbBr3) single crystals are investigated. The dynamic current-time measurement results at different temperatures directly demonstrate that the electrical properties of the perovskite single crystal are dependent on the work temperature. We find that the Poole-Frankel conduction mechanism fits the current-voltage curves at small bias voltage (0-1 V) under darkness, which is mainly attributed to the surface defect states. The capability of carriers de-trapping from defects varies with different work temperatures, resulting in an increased current as the temperature increases under both darkness and illumination. In addition, the different transient photocurrent responses of incident light at two wavelengths (470 nm, 550 nm) further confirm the existence of defect states on the single crystal surface.

  16. Superposed epoch analysis of vertical ion velocity, electron temperature, field-aligned current, and thermospheric wind in the dayside auroral region as observed by DMSP and CHAMP

    Science.gov (United States)

    Kervalishvili, G.; Lühr, H.

    2016-12-01

    This study reports on the results obtained by a superposed epoch analysis (SEA) method applied to the electron temperature, vertical ion velocity, field-aligned current (FAC), and thermospheric zonal wind velocity at high-latitudes in the Northern Hemisphere. The SEA study is performed in a magnetic latitude versus magnetic local time (MLat-MLT) frame. The obtained results are based on observations collected during the years 2001-2005 by the CHAMP and DMSP (F13 and F15) satellites. The dependence on interplanetary magnetic field (IMF) orientations is also investigated using data from the NASA/GSFC's OMNI database. Further, the obtained results are subdivided into three Lloyd seasons of 130 days each, which are defined as follows: local winter (1 January ± 65 days), combined equinoxes (1 April and 1 October ± 32days), and local summer (1 July ± 65 days). A period of 130 days is needed by the CHAMP satellite to pass through all local times. The time and location of the electron temperature peaks from CHAMP measurements near the cusp region are used as the reference parameter for the SEA method to investigate the relationship between the electron temperature and other ionospheric quantities. The SEA derived MLat profiles of the electron temperature show a seasonal dependence, increasing from winter to summer, as expected. But, the temperature rise (difference between the reference temperature peak and the background electron temperature) strongly decreases towards local summer. The SEA derived MLat profiles of the ion vertical velocity at DMSP altitude show the same seasonal behaviour as the electron temperature rice. There exists a clear linear relation between these two variables with a quiet large correlation coefficient value, >0.9. The SEA derived MLat profiles of both, thermospheric zonal wind velocity and FAC, show a clear IMF By orientation dependence for all local seasons. The zonal wind velocity is prominently directed towards west in the MLat-MLT frame

  17. The impact of alloy cluster scattering on low-temperature mobility of 2D electron gas in Zn1-xMgxO/ZnO heterostructures

    Directory of Open Access Journals (Sweden)

    Hongyan Chen

    2017-06-01

    Full Text Available The influence of alloy cluster scattering on the electron transport properties in undoped Zn1-xMgxO/ZnO heterostructures was studied theoretically. Alloy cluster scattering is treated as an elastic scattering occurring between MgZnO clusters and electrons. The electron energies and wave functions are obtained to calculate the scattering rates of two-dimensional electron gas (2DEG by solving the Schrödinger and Poisson equations self-consistently. The total low-temperature mobility is then calculated by using Matthiessen’s rule. It is found that the composition fluctuation of the Zn1-xMgxO barrier affects the mobility of electrons confined in the ZnO well via alloy cluster scattering. The electron mobility limited by alloy cluster scattering decreases with Mg composition fluctuation increased from 0.01 to 0.05. Furthermore, alloy cluster scattering is one of the dominant scattering mechanisms at low temperature. When alloy cluster scattering is taken into consideration, the simulated results are in better agreement with the experimental values for lower mobility samples with higher Mg composition. This work is useful for designing Zn1-xMgxO/ZnO heterostructure devices.

  18. Electronic characteristics of doped InAs/GaAs quantum dot photodetector: temperature dependent dark current and noise density

    Science.gov (United States)

    Liao, Chung-Chi; Tang, Shiang-Feng; Chen, Tzu-Chiang; Chiang, Cheng-Der; Yang, San-Te; Su, Wen-Kuan

    2006-02-01

    The noise characteristics associated with dark current, photoconductive gain (PC), capture probability in doped InAs dots embedded in In 0.1Ga 0.9As/GaAs spacer layer have been proposed. The photoconductive and photovoltaic behaviors of the InAs/GaAs quantum dot infrared photodetector (QDIP) from the intersubband transition measurements are also clearly observed. Through noise measurement in dynamic signal analyzer (HP35670A) 1, the electronic bandpass filter frequencies are set up ranging from 3 to 10 KHz in a low noise current preamplifier (SR570) 2. The lock-in amplifier (SR830) 3 can be also used to measure and calibrate the noise density by means of the mean average deviation (MAD) contrast with noise spectra from HP35670A. The InAs/GaAs QDIP studied in this work belongs to n +-n-n + structure with the top and free blocking barrier layers. It is observed that the owing blocking layer of QDIP not only suppress dark current successfully but also probably reduce the photocurrent 4-6. By systematically optoelectronic measurements and simulations, the modified model of noise current, photoconductive gain, and capture probability in the quantum devices have been proposed. It is shown that photoconductive gain is almost independent of bias under the lower bias, then increasing exponentially under higher bias and below the temperature of 80K. In contrast to quantum well infrared photodetector (QWIP), a higher photoconductive gain of the quantum dot infrared photodetector has been demonstrated and attributed to the longer lifetimes of excited carriers in quantum dots 7-10. At 80K, a photoconductive gain of tens of thousand is shown in the regions of higher biases. It is clear to note that the highest detectivity of the QDIP surprisingly approach to 3.0×10 12 cmHz 1/2/W at -0.6V under measured temperature 20 K. Under 80K, the average D* is obtained ~10 10 cmHz 1/2/W. To our knowledge, this is the one of highest D* data in the world.

  19. Strong correlation between D 2 density and electron temperature at the target of divertors found in SOLPS analysis

    Science.gov (United States)

    Stangeby, P. C.; Sang, Chaofeng

    2017-05-01

    A companion paper (Sang et al 2016 Nucl. Fusion (https://doi.org/10.1088/1741-4326/aa6548)) reports an assessment, using the SOLPS5.0 (B2-EIRENE) code, of the relative importance of two key aspects of divertor-baffle geometry: (i) divertor closure, and (ii) field-target angle. A wide range of the degree of divertor closure and field-target angle were modeled. An unexpectedly strong and simple correlation has been discovered in these data (and is reported here) between the electron temperature, T et, and the D 2 density, n{{D2}t}{} at the target, for T et  grid spanning two power decay widths outward from the separatrix. This may imply that achievement of low T et reduces, essentially, to identifying the divertor-baffle geometry which achieves the highest gas density near the target. To try to identify the controlling physics involved, two-point model formatting (2PMF) has been applied to the code output; it finds an equally strong and simple correlation between the 2PMF volumetric power-loss factor, {{f}\\text{vol-\\text{pwr}-\\text{loss}}} , and n{{D2}t}{} for each flux tube: {{f}\\text{vol-\\text{pwr}-\\text{loss}}}=1.2× {{10}29}n{{D2}t}-1.54~ with R 2 = 0.93. While these trends are broadly as would be expected, the simplicity, tightness and span of the correlations are not understood at present. Additionally, since more of the volumetric power loss is due to impurities than to deuterium, and as the impurities do not radiate just at the target, it is not evident why {{f}\\text{vol-\\text{pwr}-\\text{loss}}} is so strongly correlated with n{{D2}t}{} . To address these questions, in future work 2PMF analysis will be extended to compute the individual contributions to {{f}\\text{vol-\\text{pwr}-\\text{loss}}} .

  20. The effect of NaCl on room-temperature-processed indium oxide nanoparticle thin films for printed electronics

    Energy Technology Data Exchange (ETDEWEB)

    Häming, M., E-mail: Marc.Haeming@yahoo.de [Karlsruhe Institute of Technology (KIT), Institute for Photon Science and Synchrotron Radiation (IPS), D-76344 Eggenstein-Leopoldshafen (Germany); Baby, T.T. [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, 76344 Eggenstein-Leopoldshafen (Germany); Garlapati, S.K. [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, 76344 Eggenstein-Leopoldshafen (Germany); Technische Universität Darmstadt, KIT-TUD Joint Research Laboratory for Nanomaterials, Jovanka-Bontschits-Str. 2, 64287 Darmstadt (Germany); Krause, B. [Karlsruhe Institute of Technology (KIT), Institute for Photon Science and Synchrotron Radiation (IPS), D-76344 Eggenstein-Leopoldshafen (Germany); Hahn, H. [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, 76344 Eggenstein-Leopoldshafen (Germany); Technische Universität Darmstadt, KIT-TUD Joint Research Laboratory for Nanomaterials, Jovanka-Bontschits-Str. 2, 64287 Darmstadt (Germany); Karlsruhe Institute of Technology (KIT), Helmholtz Institute Ulm, Albert-Einstein-Allee 11, 89081 Ulm (Germany); Dasgupta, S. [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, 76344 Eggenstein-Leopoldshafen (Germany); Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Weinhardt, L.; Heske, C. [Karlsruhe Institute of Technology (KIT), Institute for Photon Science and Synchrotron Radiation (IPS), D-76344 Eggenstein-Leopoldshafen (Germany); Karlsruhe Institute of Technology (KIT), Institute for Chemical Technology and Polymer Chemistry (ITCP), 76128 Karlsruhe (Germany); University of Nevada, Las Vegas (UNLV), Department of Chemistry and Biochemistry, Las Vegas, NV 89154-4003 (United States)

    2017-02-28

    Highlights: • The effect of NaCl ink additive on indium oxide nanoparticle thin films is analyzed. • NaCl changes the thin film morphology and its chemical structure. • NaCl decomposes the nanoparticle shell leading to lower charge transport barriers. • Explanation of the increase in field effect mobility from 1 to >12 cm{sup 2}/Vs. • Understanding of the ink drying process and the nanoparticle agglomeration behavior. - Abstract: One of the major challenges in flexible electronics industry is the fabrication of high-mobility field-effect transistors (FETs) at ambient conditions and on inexpensive polymer substrates compatible with roll-to-roll printing technology. In this context, a novel and general route towards room-temperature fabrication of printed FETs with remarkably high field-effect mobility (μ{sub FET}) above 12 cm{sup 2}/Vs has recently been developed. A detailed understanding of the chemical structure of the involved nanoparticle (NP) thin films, prepared by chemical flocculation, is essential for further optimization of the charge transport properties of such devices. In this study, we thus analyze indium oxide NP thin films with and without NaCl additive using x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). It is demonstrated that the introduction of a sodium chloride additive to the ink leads to a strongly altered film morphology and a modification of the NP shell. The results suggest that, as a consequence of the additive, the charge-transport barriers between individual indium oxide NPs are lowered, facilitating long-range charge percolation paths despite the presence of a significant concentration of carbonaceous residues.

  1. Nanoporous gold synthesized by plasma-assisted inert gas condensation: room temperature sintering, nanoscale mechanical properties and stability against high energy electron irradiation

    Science.gov (United States)

    Weyrauch, S.; Wagner, C.; Suckfuell, C.; Lotnyk, A.; Knolle, W.; Gerlach, J. W.; Mayr, S. G.

    2018-02-01

    With a plasma assisted gas condensation system it is possible to achieve high-purity nanoporous Au (np-Au) structures with minimal contaminations and impurities. The structures consist of single Au-nanoparticles, which partially sintered together due to their high surface to volume ratio. Through electron microscopy investigations a porosity  >50% with ligament sizes between 20–30 nm was revealed. The elastic modulus of the np-Au was determined via peak force quantitative nanomechanical mapping and resulted in values of 7.5  ±  1.5 GPa. The presented structures partially sintered at room temperature, but proved to be stable to electron irradiation with energies of 7 MeV up to doses of 100 MGy. The electron irradiation stability opens the venue for electron assisted functionalization with biomolecules.

  2. Dual Effort to Correlate the Electron Field Emission Performance of Carbon Nanotubes with Synthesis As Well As Annealing Temperature: Theoretical Support of the Experimental Finding.

    Science.gov (United States)

    Maity, Supratim; Banerjee, Diptonil; Das, Nirmalya Sankar; Chattopadhyay, Kalyan Kumar

    2016-05-01

    Here a dual approach has been adopted to study the effect of both synthesis as well as annealing temperature on the electron field emission property of differently synthesized carbon nanotubes (CNTs) that include solid state chemical reaction as well as chemical vapour deposition (CVD). Experimental findings were supported by theoretical simulation. All the samples were characterized by X-ray diffraction (XRD), Fourier transformed infrared spectroscopy, Raman spectroscopy, field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). XRD as well as TEM study confirms the amorphous nature (aCNTs) of the samples for both the synthesis techniques which is attributed to lower synthesis temperature. Prominent morphological differences of these two types of aCNTs are clearly observed from both FESEM and TEM images. It is found that electron field emission characteristics of aCNTs synthesized by CVD shows better field emission properties as compared to aCNTs synthesized by solid state reaction. Finite element based simulation shows that temperature has prominent effect on morphology, screening effect or degree of graphitization that leads to improved field emission characteristics for the CVD synthesized aCNTs.

  3. Effect of temperature and discharge voltage on the properties of Co-doped ZnO thin films deposited by pulsed electron beam ablation

    Science.gov (United States)

    Ali, Asghar; Henda, Redhouane; Fagerberg, Ragnar

    2017-11-01

    Cobalt-doped ZnO (CZO) thin films have been deposited from CoxZn1-xO (x = 0.20) target on Si (100) substrate by pulsed electron beam ablation (PEBA). The effects of process temperature (350 °C-800 °C) and electron beam acceleration voltage (15 kV, 16 kV) on the deposited films have been assessed. The films have been prepared at constant beam pulse frequency (2 Hz) and Argon background pressure (∼3 mTorr). The structure and surface morphology of CZO films have been investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). As per SEM data, the results show that the films consist of Co rich nano-sized globules (∼20 nm-300 nm). Energy dispersive x-ray (EDX) measurements reveal that Co content in the films seems to be unaffected by accelerating voltage while it increases with temperature in the range 350 °C-450 °C. At higher deposition temperatures (600 °C & 800 °C), the films exhibit faceted particles and are relatively rough. The films deposited at 800 °C consist of a predominantly Co phase. X-ray photoelectron spectroscopy (XPS) data confirm the presence of metallic cobalt in the films, whose content increases with temperature but is practically unaffected by beam voltage. X-ray diffraction (XRD) analysis confirms the presence of herxagonal close-packed (hcp) metallic cobalt in the films.

  4. Study of argon ions density and electron temperature and density in magnetron plasma by optical emission spectroscopy and collisional-radiative model

    Directory of Open Access Journals (Sweden)

    Kirill E. Evdokimov

    2017-06-01

    Full Text Available Optical emission spectroscopy (OES combined with the models of plasma light emission becomes non-intrusive and versatile method of plasma parameters determination. In this paper we have studied the densities of charge carriers and electron temperature in Ar plasma of pulsed DC magnetron in different experimental conditions. Electron density and temperature were determined by fitting of relative emission line intensities calculated from collisional-radiative model (CRM to experimental ones. The model describes the kinetics of the first 40 excited states of neutral argon Ar and takes into account the following processes: electron impact excitation/deexcitation, spontaneous light emission, radiation trapping, electron impact ionization, and metastable quenching due to diffusion to walls. Then, ions density was determined from relative intensity of 488 nm Ar+ emission line and simple CRM accounting excitation from ground states of neutral Ar and ion Ar+. The values of electron and ion density agree very well. To test the stability of results, we performed Monte-Carlo calculations with random variation of experimental spectrum as well as of excitation cross-sections and estimated confidence intervals and errors for plasma parameters. Also, we validated OES study by comparison with Langmuir probe measurements. The agreement between optical and probe techniques is satisfactory.

  5. Electronic setup for fluorescence emission measurements and long-time constant-temperature maintenance of Single-Walled Carbon Nano-Tubes in water solutions

    Directory of Open Access Journals (Sweden)

    De Rosa Matteo

    2017-03-01

    Full Text Available In our previous research we have observed that the fluorescence emission from water solutions of Single-Walled Carbon Nano-Tubes (SWCNT, excited by a laser with a wavelength of 830nm, diminishes with the time. We have already proved that such a fading is a function of the storage time and the storage temperature. In order to study the emission of the SWCNT as a function of these two parameters we have designed and realized a special measurement compartment with a cuvette holder where the SWCNT solutions can be measured and stored at a fixed constant temperature for periods of time as long as several weeks. To maintain the measurement setup under a constant temperature we have designed special experimental setup based on two Peltier cells with electronic temperature control.

  6. Characterization of free radicals by electron spin resonance spectroscopy in biochars from pyrolysis at high heating rates and at high temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Peter Arendt; Jensen, Anker Degn

    2016-01-01

    The concentration and type of free radicals from the decay (termination stage) of pyrolysis at slow and fast heating rates and at high temperatures (above 1000°C) in biomass char have been studied. A room temperature electron spin resonance spectroscopy study was conducted on original wood......, herbaceous biomass, holocelluloses, lignin and their chars, prepared at high temperatures in a wire mesh reactor, an entrained flow reactor, and a tubular reactor. The radical concentrations in the chars from the decay stage range up between 7·1016 and 1.5·1018 spins g -1. The results indicated....... The results show that at high temperatures, mostly aliphatic radicals (g = 2.0026-2.0028) and PAH radicals (g = 2.0027e2.0031) were formed....

  7. Model for the high-temperature oxygen-ordering thermodynamics in YBa2Cu3O6+x - inclusion of electron spin and charge degrees of freedom

    DEFF Research Database (Denmark)

    Schleger, P.; Hardy, W.N.; Casalta, H.

    1994-01-01

    A lattice-gas model for the high temperature oxygen-ordering thermodynamics in YBa2Cu3O6+x is presented, which assumes constant effective pair interactions between oxygen atoms and includes in a simple fashion the effect of the electron spin and charge degrees of freedom. This is done using...... a commonly utilized picture relating the creation of mobile electron holes and unpaired spins to the insertion of oxygen into the basal plane. The model is solved using the nearest-neighbor square approximation of the cluster-variation method. In addition, preliminary Monte Carlo results using next...

  8. Cooperative transition of electronic states of antisite As defects in Be-doped low-temperature-grown GaAs layers

    Science.gov (United States)

    Ambri Mohamed, Mohd; Tien Lam, Pham; Bae, K. W.; Otsuka, N.

    2011-12-01

    Magnetic properties resulting from localized spins associated with antisite arsenic ions AsGa+ in Be-doped low-temperature-grown GaAs (LT-GaAs) layers were studied by measuring the magnetization of lift-off samples. With fast cooling, the magnetization of samples at 1.8 K becomes significantly lower than that expected from Curie-type paramagnetism in the range of the applied field to 7 T, and a transition from low magnetization to the magnetization of paramagnetism occurs upon the heating of samples to 4.5 K. With slow cooling, on the other hand, samples have a paramagnetic temperature dependence throughout the measurement-temperature range. The magnetization was found to decrease monotonically when a sample was kept at a fixed low temperature. These observations are explained by the cooperative transition of electron states of AsGa defects, which is closely related to the normal-metastable state transition of EL2 defects in semi-insulating GaAs. The results of the magnetization measurements in the present study suggest that AsGa+ ions are spontaneously displaced at low temperature without photoexcitation in Be-doped LT-GaAs. The similarity of the transition observed in this system to the normal-metastable state transition of the EL2 defect was also suggested by first-principle calculations of the electron state of an AsGa defect with a doped Be atom.

  9. Implementation of a multichannel soft x-ray diagnostic for electron temperature measurements in TJ-II high-density plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Baiao, D.; Varandas, C. [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, 1049-001 Lisboa (Portugal); Medina, F.; Ochando, M.; Pastor, I. [Laboratorio Nacional de Fusion, Asociacion EURATOM-CIEMAT, 28040 Madrid (Spain); Molinero, A.; Chercoles, J. [Laboratorio General de Electronica y Automatica-CIEMAT, 28040 Madrid (Spain)

    2012-10-15

    Based on the multi-foil technique, a multichannel soft x-ray diagnostic for electron temperature measurements has been recently implemented in the TJ-II stellarator. The diagnostic system is composed by four photodiodes arrays with beryllium filters of different thickness. An in-vacuum amplifier board is coupled to each array, aiming at preventing induced noise currents. The Thomson scattering and the vacuum ultraviolet survey diagnostics are used for assessing plasma profiles and composition, being the analysis carried out with the radiation code IONEQ. The electron temperature is determined through the different signal-pair ratios with temporal and spatial resolution. The design and preliminary results from the diagnostic are presented.

  10. Simultaneous time-averaged measurements of gas temperature and electron density in a copper-vapor laser using hydrogen emission spectroscopy

    Science.gov (United States)

    Blau, P.; Smilanski, I.; Rosenwaks, S.

    1992-08-01

    Measurements of the gas temperature and electron density in the plasma of a 100 W copper-vapor laser are presented. These parameters are simultaneously deduced from the Doppler and Stark broadening of the first four Balmer lines of the hydrogen atom emission. The analysis of the Doppler and Stark broadening involves evaluation of all other line-broadening mechanisms, including natural, pressure (van der Waals and resonance), instrumental, self-absorption, and fine-structure splitting. Iterative algorithm is employed to deconvolve the different line-shape components. The longitudinally integrated, time-averaged temperature and electron density are measured along the laser axis and found to be 4300 K and 1.3 × 1013 cm-3, respectively.

  11. Parametric dependence of ion temperature and electron density in the SUMMA hot-ion plasma using laser light scattering and emission spectroscopy

    Science.gov (United States)

    Snyder, A.; Patch, R. W.; Lauver, M. R.

    1980-01-01

    Hot-ion plasma experiments were conducted in the NASA Lewis SUMMA facility. A steady-state modified Penning discharge was formed by applying a radially inward dc electric field of several kilovolts near the magnetic mirror maxima. Results are reported for a hydrogen plasma covering a wide range in midplane magnetic flux densities from 0.5 to 3.37 T. Input power greater than 45 kW was obtained with water-cooled cathodes. Steady-state plasmas with ion kinetic temperatures from 18 to 830 eV were produced and measured spectroscopically. These ion temperatures were correlated with current, voltage, and magnetic flux density as the independent variables. Electron density measurements were made using an unusually sensitive Thomson scattering apparatus. The measured electron densities range from 2.1 x 10 to the 11th to 6.8 x 10 to the 12th per cu cm.

  12. Low-temperature solution-processed hydrogen molybdenum and vanadium bronzes for an efficient hole-transport layer in organic electronics.

    Science.gov (United States)

    Xie, Fengxian; Choy, Wallace C H; Wang, Chuandao; Li, Xinchen; Zhang, Shaoqing; Hou, Jianhui

    2013-04-11

    A simple one-step method is reported to synthesize low-temperature solution-processed transition metal oxides (TMOs) of molybdenum oxide and vanadium oxide with oxygen vacancies for a good hole-transport layer (HTL). The oxygen vacancy plays an essential role for TMOs when they are employed as HTLs: TMO films with excess oxygen are highly undesirable for their application in organic electronics. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A SnOx-brookite TiO2 bilayer electron collector for hysteresis-less high efficiency plastic perovskite solar cells fabricated at low process temperature.

    Science.gov (United States)

    Kogo, Atsushi; Ikegami, Masashi; Miyasaka, Tsutomu

    2016-06-21

    Thin plastic film-based CH3NH3PbI3-xClx perovskite solar cells were fabricated at low process temperature using a bilayer comprising an amorphous SnOx and mesoporous brookite TiO2 as electron collectors. Void-less high quality heterojunction structures achieve hysteresis-less photovoltaic performance with a power conversion efficiency as high as 13.4% and mechanical stability against cyclic bending.

  14. Temperature dependent evolution of the electronic and local atomic structure in the cubic colossal magnetoresistive manganite La1-xSrxMnO3

    Energy Technology Data Exchange (ETDEWEB)

    Arenholz, Elke; Mannella, N.; Booth, C.H.; Rosenhahn, A.; Sell, B.C.; Nambu, A.; Marchesini, S.; Mun, B. S.; Yang, S.-H.; Watanabe, M.; Ibrahim, K.; Arenholz, E.; Young, A.; Guo, J.; Tomioka, Y.; Fadley, C.S.

    2007-12-06

    We have studied the temperature-dependent evolution of the electronic and local atomic structure in the cubic colossal magnetoresistive manganite La{sub 1-x}Sr{sub x}MnO{sub 3} (x= 0.3-0.4) with core and valence level photoemission (PE), x-ray absorption spectroscopy (XAS), x-ray emission spectroscopy (XES), resonant inelastic x-ray scattering (RIXS), extended x-ray absorption fine structure (EXAFS) spectroscopy and magnetometry. As the temperature is varied across the Curie temperature T{sub c}, our PE experiments reveal a dramatic change of the electronic structure involving an increase in the Mn spin moment from {approx} 3 {micro}B to {approx} 4 {micro}B, and a modification of the local chemical environment of the other constituent atoms indicative of electron localization on the Mn atom. These effects are reversible and exhibit a slow-timescale {approx}200 K-wide hysteresis centered at T{sub c}. Based upon the probing depths accessed in our PE measurements, these effects seem to survive for at least 35-50 {angstrom} inward from the surface, while other consistent signatures for this modification of the electronic structure are revealed by more bulk sensitive spectroscopies like XAS and XES/RIXS. We interpret these effects as spectroscopic fingerprints for polaron formation, consistent with the presence of local Jahn-Teller distortions of the MnO{sub 6} octahedra around the Mn atom, as revealed by the EXAFS data. Magnetic susceptibility measurements in addition show typical signatures of ferro-magnetic clusters formation well above the Curie temperature.

  15. Theoretical Phase Diagram for the Room-Temperature Electron-Hole Liquid in Photoexcited Quasi-Two-Dimensional Monolayer MoS2.

    Science.gov (United States)

    Rustagi, Avinash; Kemper, Alexander F

    2017-12-12

    Strong correlations between electrons and holes can drive the existence of an electron-hole liquid (EHL) state, typically at high carrier densities and low temperatures. The recent emergence of quasi-two-dimensional (2D) monolayer transition metal dichalcogenides (TMDCs) provides ideal systems to explore the EHL state since ineffective screening of the out-of-plane field lines in these quasi-2D systems allows for stronger charge carrier correlations in contrast to conventional 3D bulk semiconductors and enables the existence of the EHL at high temperatures. Here we construct the phase diagram for the photoinduced first-order phase transition from a plasma of electron-hole pairs to a correlated EHL state in suspended monolayer MoS2. We show that the quasi-2D nature of monolayer TMDCs and the ineffective screening of the out-of-plane field lines allow for this phase transition to occur at and above room temperature, thereby opening avenues for studying many-body phenomena without the constraint of cryogenics.

  16. All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Seung H [Department of Mechanical Engineering, University of California, 6177 Etcheverry Hall, Berkeley, CA 94720-1740 (United States); Pan Heng [Department of Mechanical Engineering, University of California, 6177 Etcheverry Hall, Berkeley, CA 94720-1740 (United States); Grigoropoulos, Costas P [Department of Mechanical Engineering, University of California, 6177 Etcheverry Hall, Berkeley, CA 94720-1740 (United States); Luscombe, Christine K [Department of Chemistry, University of California, Berkeley, CA 94720-1460 (United States); Frechet, Jean M J [Department of Chemistry, University of California, Berkeley, CA 94720-1460 (United States); Poulikakos, Dimos [Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich (Switzerland)

    2007-08-29

    All-printed electronics is the key technology to ultra-low-cost, large-area electronics. As a critical step in this direction, we demonstrate that laser sintering of inkjet-printed metal nanoparticles enables low-temperature metal deposition as well as high-resolution patterning to overcome the resolution limitation of the current inkjet direct writing processes. To demonstrate this process combined with the implementation of air-stable carboxylate-functionalized polythiophenes, high-resolution organic transistors were fabricated in ambient pressure and room temperature without utilizing any photolithographic steps or requiring a vacuum deposition process. Local thermal control of the laser sintering process could minimize the heat-affected zone and the thermal damage to the substrate and further enhance the resolution of the process. This local nanoparticle deposition and energy coupling enable an environmentally friendly and cost-effective process as well as a low-temperature manufacturing sequence to realize large-area, flexible electronics on polymer substrates.

  17. Electron Density from Balmer Series Hydrogen Lines and Ionization Temperatures in Inductively Coupled Argon Plasma Supplied by Aerosol and Volatile Species

    Directory of Open Access Journals (Sweden)

    Jolanta Borkowska-Burnecka

    2016-01-01

    Full Text Available Electron density and ionization temperatures were measured for inductively coupled argon plasma at atmospheric pressure. Different sample introduction systems were investigated. Samples containing Sn, Hg, Mg, and Fe and acidified with hydrochloric or acetic acids were introduced into plasma in the form of aerosol, gaseous mixture produced in the reaction of these solutions with NaBH4 and the mixture of the aerosol and chemically generated gases. The electron densities measured from Hα, Hβ, Hγ, and Hδ lines on the base of Stark broadening were compared. The study of the H Balmer series line profiles showed that the ne values from Hγ and Hδ were well consistent with those obtained from Hβ which was considered as a common standard line for spectroscopic measurement of electron density. The ne values varied from 0.56·1015 to 1.32·1015 cm−3 and were the highest at loading mixture of chemically generated gases. The ionization temperatures of plasma, determined on the base of the Saha approach from ion-to-atom line intensity ratios, were lower for Sn and Hg (6500–7200 K than those from Fe and Mg lines (7000–7800 K. The Sn II/Sn I and Hg II/Hg I, Fe II/Fe I, and Mg II/Mg I intensity ratios and the electron densities (ne were dependent on experimental conditions of plasma generation. Experimental and theoretically calculated ionization degrees were compared.

  18. Electron spin resonance in neutron-irradiated graphite. Dependence on temperature and effect of annealing; Resonance paramagnetique du graphite irradie aux neutrons. Variation en fonction de la temperature et experiences de recuit

    Energy Technology Data Exchange (ETDEWEB)

    Kester, T. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires, Laboratoire de resonance magnetique

    1967-09-01

    The temperature dependence of the electron spin resonance signal from neutron irradiated graphite has been studied. The results lead to an interpretation of the nature of the paramagnetic centers created by irradiation. In annealing experiments on graphite samples, which had been irradiated at low temperature, two annealing peaks and one anti-annealing peak were found. Interpretations are proposed for these peaks. (author) [French] Le graphite irradie aux neutrons a ete etudie par resonance paramagnetique electronique en fonction de la temperature. La nature des centres paramagnetiques crees par irradiation est interpretee a l'aide des resultats. Des experiences de recuit sur des echantillons de graphite irradie a 77 deg. K ont permis de mettre en evidence deux pics de recuit et un pic d'anti-recuit, pour lesquels des interpretations sont proposees. (auteur)

  19. Electron stimulated molecular desorption of a non-evaporable Zr-V-Fe alloy getter at room temperature

    CERN Document Server

    Le Pimpec, Frederic; Laurent, Jean Michel

    2002-01-01

    Electron stimulated molecular desorption (ESD) from a non-evaporable getters (NEG) St 707 registered trademark (SAES Getters trademark ) sample after conditioning and after saturation with isotopic carbon monoxide (cf. nomenclature in Handbook of Chemistry and Physics, CRC Press, 1994), **1**3C**1**8O, has been studied on a laboratory setup. Measurements were performed using an electron beam of 300 eV kinetic energy, with an average electron intensity of 1.6 multiplied by 10**1**5 electrons s**-**1. The electrons were impinging on the 15 cm **2 target surface at perpendicular incidence. It is found that the desorption yields eta (molecules/electron) of the characteristic gases in an UHV system (hydrogen, methane, water, carbon monoxide, carbon dioxide) for a fully activated NEG as well as for a NEG fully saturated with **1**3C**1**8O are lower than for OFHC copper baked at 120 degree C. A small fraction only of the gas which is required to saturate the getter surface can be re-desorbed and thus appears to be ...

  20. Positive dependence of thermal conductivity on temperature in GeTe/Bi2Te3 superlattices: the contribution of electronic and particle wave lattice thermal conductivity

    Science.gov (United States)

    Tong, H.; Lan, F.; Liu, Y. J.; Zhou, L. J.; Wang, X. J.; He, Q.; Wang, K. Z.; Miao, X. S.

    2017-09-01

    Temperature-dependent thermal conductivity of phase-change material, GeTe/Bi2Te3 superlattices, has been investigated in the temperature range of 40-300 K. We have found that thermal conductivity increases with increasing temperature, which is contrary to the common results indicated by other works. In this paper, two possible mechanisms are suggested for this result. One is that the thermal conductivity is affected by the thermal boundary resistance at the interfaces between layers, and the other considers the factor of electronic thermal conductivity in the partially coherent regime which is based on the very wave-particle duality of phonons. Finally, the periodic thickness dependence of the thermal conductivity in GeTe/Bi2Te3 superlattices have been measured at room temperature, and the results indicate the main contribution of electron in the total thermal conductivity and the partially coherent regime of phonon. Thus we believe that the second explanation is more reasonable. The work here deepens the understanding of basic mechanisms of thermal transport in phase-change superlattices, and is instructive in modeling and simulation of phase change memories.

  1. Optical and electronic properties of sub-surface conducting layers in diamond created by MeV B-implantation at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Willems van Beveren, L. H., E-mail: laurensw@unimelb.edu.au; Bowers, H.; Ganesan, K.; Johnson, B. C.; McCallum, J. C.; Prawer, S. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Liu, R. [SIMS Facility, Office of the Deputy-Vice Chancellor (Research and Development) Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751 (Australia)

    2016-06-14

    Boron implantation with in-situ dynamic annealing is used to produce highly conductive sub-surface layers in type IIa (100) diamond plates for the search of a superconducting phase transition. Here, we demonstrate that high-fluence MeV ion-implantation, at elevated temperatures avoids graphitization and can be used to achieve doping densities of 6 at. %. In order to quantify the diamond crystal damage associated with implantation Raman spectroscopy was performed, demonstrating high temperature annealing recovers the lattice. Additionally, low-temperature electronic transport measurements show evidence of charge carrier densities close to the metal-insulator-transition. After electronic characterization, secondary ion mass spectrometry was performed to map out the ion profile of the implanted plates. The analysis shows close agreement with the simulated ion-profile assuming scaling factors that take into account an average change in diamond density due to device fabrication. Finally, the data show that boron diffusion is negligible during the high temperature annealing process.

  2. Temperature-dependent photoluminescence analysis of 1-MeV electron irradiation-induced nonradiative recombination centers in GaAs/Ge space solar cells

    Science.gov (United States)

    Tiancheng, Yi; Pengfei, Xiao; Yong, Zheng; Juan, Tang; Rong, Wang

    2016-03-01

    The effects of irradiation of 1-MeV electrons on p+-n GaAs/Ge solar cells have been investigated by temperature-dependent photoluminescence (PL) measurements in the temperature range of 10-290 K. The temperature dependence of the PL peak energy agrees well with the Varnish relation, and the thermal quenching of the total integrated PL intensity is well explained by the thermal quenching theory. Meanwhile, the thermal quenching of temperature-dependent PL confirmed that there are two nonradiative recombination centers in the solar cells, and the thermal activation energies of these centers are determined by Arrhenius plots of the total integrated PL intensity. Furthermore, the nonradiative recombination center, as a primary defect, is identified as the H3 hole trap located at Ev + 0.71 eV at room temperature and the H2 hole trap located at Ev + 0.41 eV in the temperature range of 100-200 K, by comparing the thermal activation and ionization energies of the defects.

  3. Temperature distribution in a sample with second-phase microinclusions during irradiation by a low-energy high-current pulsed electron beam

    Science.gov (United States)

    Shepel', D. A.; Markov, A. B.

    2017-02-01

    Using the methods of numerical integration, a temperature field has been calculated that arose in the surface layer of titanium nickelide target with NiTi2 intermetallic inclusions during irradiation by a lowenergy high-current electron beam with a duration of the order of a microsecond. The calculated temperature field has been compared with that obtained previously for a target of stainless steel 316L containing MnS inclusions. It has been found that, as in the case of stainless steel, the regions of inclusions are overheated. However, the temperature increase for NiTi2 (12 K) is significantly lower than in the case of stainless steel 316L (283 K). The dynamics of melting of these systems are also considerably different.

  4. Enhanced Performance of Planar Perovskite Solar Cells Using Low-Temperature Solution-Processed Al-Doped SnO2 as Electron Transport Layers

    Science.gov (United States)

    Chen, Hao; Liu, Detao; Wang, Yafei; Wang, Chenyun; Zhang, Ting; Zhang, Peng; Sarvari, Hojjatollah; Chen, Zhi; Li, Shibin

    2017-03-01

    Lead halide perovskite solar cells (PSCs) appear to be the ideal future candidate for photovoltaic applications owing to the rapid development in recent years. The electron transport layers (ETLs) prepared by low-temperature process are essential for widespread implementation and large-scale commercialization of PSCs. Here, we report an effective approach for producing planar PSCs with Al3+ doped SnO2 ETLs prepared by using a low-temperature solution-processed method. The Al dopant in SnO2 enhanced the charge transport behavior of planar PSCs and increased the current density of the devices, compared with the undoped SnO2 ETLs. Moreover, the enhanced electrical property also improved the fill factors (FF) and power conversion efficiency (PCE) of the solar cells. This study has indicated that the low-temperature solution-processed Al-SnO2 is a promising ETL for commercialization of planar PSCs.

  5. Enhanced Performance of Planar Perovskite Solar Cells Using Low-Temperature Solution-Processed Al-Doped SnO2 as Electron Transport Layers.

    Science.gov (United States)

    Chen, Hao; Liu, Detao; Wang, Yafei; Wang, Chenyun; Zhang, Ting; Zhang, Peng; Sarvari, Hojjatollah; Chen, Zhi; Li, Shibin

    2017-12-01

    Lead halide perovskite solar cells (PSCs) appear to be the ideal future candidate for photovoltaic applications owing to the rapid development in recent years. The electron transport layers (ETLs) prepared by low-temperature process are essential for widespread implementation and large-scale commercialization of PSCs. Here, we report an effective approach for producing planar PSCs with Al(3+) doped SnO2 ETLs prepared by using a low-temperature solution-processed method. The Al dopant in SnO2 enhanced the charge transport behavior of planar PSCs and increased the current density of the devices, compared with the undoped SnO2 ETLs. Moreover, the enhanced electrical property also improved the fill factors (FF) and power conversion efficiency (PCE) of the solar cells. This study has indicated that the low-temperature solution-processed Al-SnO2 is a promising ETL for commercialization of planar PSCs.

  6. Surface passivation of p-type Ge substrate with high-quality GeNx layer formed by electron-cyclotron-resonance plasma nitridation at low temperature

    Science.gov (United States)

    Fukuda, Yukio; Okamoto, Hiroshi; Iwasaki, Takuro; Otani, Yohei; Ono, Toshiro

    2011-09-01

    We have investigated the effects of the formation temperature and postmetallization annealing (PMA) on the interface properties of GeNx/p-Ge fabricated by the plasma nitridation of Ge substrates using an electron-cyclotron-resonance-generated nitrogen plasma. The nitridation temperature is found to be a critical parameter in improving the finally obtained GeNx/Ge interface properties. The GeNx/Ge formed at room temperature and treated by PMA at 400 °C exhibits the best interface properties with an interface trap density of 1 × 1011 cm-2 eV-1. The GeNx/Ge interface is unpinned and the Fermi level at the Ge surface can move from the valence band edge to the conduction band edge.

  7. Characteristics of the Shanghai high-temperature superconducting electron-beam ion trap and studies of the space-charge effect under ultralow-energy operating conditions

    Science.gov (United States)

    Tu, B.; Lu, Q. F.; Cheng, T.; Li, M. C.; Yang, Y.; Yao, K.; Shen, Y.; Lu, D.; Xiao, J.; Hutton, R.; Zou, Y.

    2017-10-01

    A high-temperature superconducting electron-beam ion trap (EBIT) has been set up at the Shanghai EBIT Laboratory for spectroscopic studies of low-charge-state ions. In the study reported here, beam trajectory simulations are implemented in order to provide guidance for the operation of this EBIT under ultralow-energy conditions, which has been successfully achieved with a full-transmission electron-beam current of 1-8.7 mA at a nominal electron energy of 30-120 eV. The space-charge effect is studied through both simulations and experiments. A modified iterative formula is proposed to estimate the space-charge potential of the electrons and shows very good agreement with the simulation results. In addition, space-charge compensation by trapped ions is found in extreme ultraviolet spectroscopic measurements of carbon ions and is studied through simulation of ion behavior in the EBIT. Based on the simulation results, the ion-cloud radius, ion density, and electron-ion overlap are obtained.

  8. Central role of electronic temperature for photoelectron charge and spin mobilities in p{sup +}-GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Cadiz, F., E-mail: fabian.cadiz@polytechnique.edu; Paget, D.; Rowe, A. C. H. [Physique de la Matière Condensée, Ecole Polytechnique, CNRS, 91128 Palaiseau (France); Peytavit, E.; Arscott, S. [Institut d' Electronique, de Microélectronique et de Nanotechnologie (IEMN), University of Lille, CNRS, Avenue Poincaré, Cité Scientifique, 59652 Villeneuve d' Ascq (France)

    2015-03-02

    The charge and spin mobilities of minority photoelectrons in p{sup +}-GaAs are determined by monitoring the effect of an electric field on the spatial profiles of the luminescence and of its polarization. By using electric fields to increase the photoelectron temperature T{sub e} without significantly changing the hole or lattice temperatures, the charge and spin mobilities are shown to be principally dependent on T{sub e}. For T{sub e} > 70 K, both the charge and spin mobilities vary as T{sub e}{sup −1.3}, while at lower temperatures this changes to an even more rapid T{sub e}{sup −4.3} law. This finding suggests that current theoretical models based on degeneracy of majority carriers cannot fully explain the observed temperature dependence of minority carrier mobility.

  9. Effect of finite energy of intravalley acoustic phonons on the temperature of non-equilibrium electrons in a quantum surface

    Energy Technology Data Exchange (ETDEWEB)

    Nag, S. [Department of Physics, Jadavpur University, Kolkata 700032 (India); Bhattacharya, D.P., E-mail: d_p_bhattacharya@rediffmail.co [Department of Physics, Jadavpur University, Kolkata 700032 (India)

    2009-11-15

    The effect of finite energy of intravalley acoustic phonons on the electric field dependence of the temperature of the non-equilibrium carriers in a quantum surface has been studied here. The calculations have been made, for a rather pure material, at low lattice temperature. Numerical results are obtained for GaAs and Si. The results are interesting being significantly different from what one obtains by neglecting the phonon energy.

  10. Cold priming drives the sub-cellular antioxidant systems to protect photosynthetic electron transport against subsequent low temperature stress in winter wheat.

    Science.gov (United States)

    Li, Xiangnan; Cai, Jian; Liu, Fulai; Dai, Tingbo; Cao, Weixing; Jiang, Dong

    2014-09-01

    Low temperature seriously depresses the growth of wheat through inhibition of photosynthesis, while earlier cold priming may enhance the tolerance of plants to subsequent low temperature stress. Here, winter wheat plants were firstly cold primed (5.2 °C lower temperature than the ambient temperature, viz., 10.0 °C) at the Zadoks growth stage 28 (i.e. re-greening stage, starting on 20th of March) for 7 d, and after 14 d of recovery the plants were subsequently subjected to a 5 d low temperature stress (8.4 °C lower than the ambient temperature, viz., 14.1 °C) at the Zadoks growth stage 31 (i.e. jointing stage, starting on 8th April). Compared to the non-primed plants, the cold-primed plants possessed more effective oxygen scavenging systems in chloroplasts and mitochondria as exemplified by the increased activities of SOD, APX and CAT, resulting in a better maintenance in homeostasis of ROS production. The trapped energy flux (TRO/CSO) and electron transport (ETO/CSO) in the photosynthetic apparatus were found functioning well in the cold-primed plants leading to higher photosynthetic rate during the subsequent low temperature stress. Collectively, the results indicate that cold priming activated the sub-cellular antioxidant systems, depressing the oxidative burst in photosynthetic apparatus, hereby enhanced the tolerance to subsequent low temperature stress in winter wheat plants. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Electronic quenching of OH(A) by water in atmospheric pressure plasmas and its influence on the gas temperature determination by OH(A-X) emission

    Energy Technology Data Exchange (ETDEWEB)

    Bruggeman, Peter; Schram, Daan C [Department of Applied Physics, Technische Universiteit Eindhoven, PO Box 513, 5600 MB Eindhoven (Netherlands); Iza, Felipe; Kong, Michael G [Department of Electronic and Electrical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom); Guns, Peter; Lauwers, Daniel; Leys, Christophe [Department of Applied Physics, Ghent University, Jozef Plateaustraat 22, B-9000 Ghent (Belgium); Gonzalvo, Yolanda Aranda [Plasma and Surface Analysis Division, Hiden Analytical Ltd, 420 Europa Boulevard, Warrington WA5 7UN (United Kingdom)], E-mail: p.j.bruggeman@tue.nl

    2010-02-15

    In this paper it is shown that electronic quenching of OH(A) by water prevents thermalization of the rotational population distribution of OH(A). This means that the observed ro-vibrational OH(A-X) emission band is (at least partially) an image of the formation process and is determined not only by the gas temperature. The formation of negative ions and clusters for larger water concentrations can contribute to the non-equilibrium. The above is demonstrated in RF excited atmospheric pressure glow discharges in He-water mixtures in a parallel metal plate reactor by optical emission spectroscopy. For this particular case a significant overpopulation of high rotational states appears around 1000 ppm H{sub 2}O in He. The smallest temperature parameter of a non-Boltzmann (two-temperature) distribution fitted to the experimental spectrum of OH(A-X) gives a good representation of the gas temperature. Only the rotational states with the smallest rotational numbers (J {<=} 7) are thermalized and representative for the gas temperature.

  12. Strong Electron Correlation in the High-Temperature Phase of (EDO-TTF)2PF6 as a Quasi-One-Dimensional Molecular Conductor

    Science.gov (United States)

    Iwano, Kaoru; Shimoi, Yukihiro

    2010-10-01

    We focus on the electronic property of the high-temperature phase of (EDO-TTF)2PF6. Applying a cluster-based density-functional theory (DFT) calculation augmented by a self-consistent environment, we recognize a strong electron-electron repulsion in a dimer-Mott-type ground state. On the basis of this ground state, we obtain an absorption spectrum that takes a form of a single peak in the mid-infrared (mid-IR) region. We next analyze a Hubbard model with alternate transfers, of which the values are determined by the DFT calculations. The obtained absorption peak energy is comparable to the mid-IR peak energy observed in the experiment. Finally, we also investigate other one-dimensional conductors, (TMTSF)2PF6 and (TMTTF)2PF6, which are known as correlated metals, and conclude that (EDO-TTF)2PF6 also falls in this category, in spite of its unique (0110)-type charge ordering observed in the low-temperature phase.

  13. Electronic structure and Landé g-factor of a quantum ring in the presence of spin-orbit coupling: Temperature and Zeeman effect

    Science.gov (United States)

    Zamani, A.; Setareh, F.; Azargoshasb, T.; Niknam, E.

    2017-10-01

    A wide variety of semiconductor nanostructures have been fabricated experimentally and both theoretical and experimental investigations of their features imply the great role they have in new generation technological devices. However, mathematical modeling provide a powerful means due to definitive goal of predicting the features and understanding of such structures behavior under different circumstances. Therefore, effective Hamiltonian for an electron in a quantum ring with axial symmetry in the presence of both Rashba and Dresselhaus spin-orbit interactions (SOI) is derived. Here we report our study of the electronic structure and electron g-factor in the presence of spin-orbit (SO) couplings under the influence of external magnetic field at finite temperature. This investigation shows that, when Rashba and Dresselhaus couplings are simultaneously present, the degeneracy is removed and energy levels split into two branches. Furthermore, with enhancing the applied magnetic field, separation of former degenerate levels increases and also avoided crossings (anti-crossing) in the energy spectra is detected. It is also discussed how the energy levels of the system can be adjusted with variation of temperature as well as the magnetic field and geometrical sizes.

  14. Room- and low-temperature assessment of pseudomorphic AlGaAs/InGaAs/GaAS high-electron-mobility transistor structures by photoluminescence spectroscopy

    Science.gov (United States)

    Gilperez, J. M.; Sanchez-Rojas, J. L.; Munoz, E.; Calleja, E.; David, J. P. R.; Reddy, M.; Hill, G.; Sanchez-Dehesa, J.

    1994-11-01

    The use of room- and low-temperature photoluminescence (PL) spectroscopy for the assessment of n-type pseudomorphic AlGaAs/InGaAs/GaAs high-electron-mobility transistor stransitor structures is reported. We describe a method to determine the InAs mole fraction x, the channel layer thickness L, and the confined two-dimensional electron gas density (n(sub s)), based on the comparison between the PL transitions and the recombination energies derived from self-consistent calculations of the subband structure. A detailed analysis of the optical transitions and their dependence on the Fermi level position and temperature is performed. It is shown that, in real devices, the high sensitivity of the recombination energies and intensities on small changes of the parameters x, L, and n(sub s) allows us to detect deviations from their nominal structural parameters within the uncertainty of the molecular beam epitaxy growth technique. The present assessment procedure has been applied to a significant number of samples, and it has been backed by independent measurements of these parameters by more sophisticated techniques such as Shubnikov-de Haas and PL excitation in standard and gated samples, and by physical techniques like transmission electron microscopy and Auger spectroscopy.

  15. Exploring connections between statistical mechanics and Green's functions for realistic systems: Temperature dependent electronic entropy and internal energy from a self-consistent second-order Green's function

    Science.gov (United States)

    Welden, Alicia Rae; Rusakov, Alexander A.; Zgid, Dominika

    2016-11-01

    Including finite-temperature effects from the electronic degrees of freedom in electronic structure calculations of semiconductors and metals is desired; however, in practice it remains exceedingly difficult when using zero-temperature methods, since these methods require an explicit evaluation of multiple excited states in order to account for any finite-temperature effects. Using a Matsubara Green's function formalism remains a viable alternative, since in this formalism it is easier to include thermal effects and to connect the dynamic quantities such as the self-energy with static thermodynamic quantities such as the Helmholtz energy, entropy, and internal energy. However, despite the promising properties of this formalism, little is known about the multiple solutions of the non-linear equations present in the self-consistent Matsubara formalism and only a few cases involving a full Coulomb Hamiltonian were investigated in the past. Here, to shed some light onto the iterative nature of the Green's function solutions, we self-consistently evaluate the thermodynamic quantities for a one-dimensional (1D) hydrogen solid at various interatomic separations and temperatures using the self-energy approximated to second-order (GF2). At many points in the phase diagram of this system, multiple phases such as a metal and an insulator exist, and we are able to determine the most stable phase from the analysis of Helmholtz energies. Additionally, we show the evolution of the spectrum of 1D boron nitride to demonstrate that GF2 is capable of qualitatively describing the temperature effects influencing the size of the band gap.

  16. Exploring connections between statistical mechanics and Green's functions for realistic systems: Temperature dependent electronic entropy and internal energy from a self-consistent second-order Green's function.

    Science.gov (United States)

    Welden, Alicia Rae; Rusakov, Alexander A; Zgid, Dominika

    2016-11-28

    Including finite-temperature effects from the electronic degrees of freedom in electronic structure calculations of semiconductors and metals is desired; however, in practice it remains exceedingly difficult when using zero-temperature methods, since these methods require an explicit evaluation of multiple excited states in order to account for any finite-temperature effects. Using a Matsubara Green's function formalism remains a viable alternative, since in this formalism it is easier to include thermal effects and to connect the dynamic quantities such as the self-energy with static thermodynamic quantities such as the Helmholtz energy, entropy, and internal energy. However, despite the promising properties of this formalism, little is known about the multiple solutions of the non-linear equations present in the self-consistent Matsubara formalism and only a few cases involving a full Coulomb Hamiltonian were investigated in the past. Here, to shed some light onto the iterative nature of the Green's function solutions, we self-consistently evaluate the thermodynamic quantities for a one-dimensional (1D) hydrogen solid at various interatomic separations and temperatures using the self-energy approximated to second-order (GF2). At many points in the phase diagram of this system, multiple phases such as a metal and an insulator exist, and we are able to determine the most stable phase from the analysis of Helmholtz energies. Additionally, we show the evolution of the spectrum of 1D boron nitride to demonstrate that GF2 is capable of qualitatively describing the temperature effects influencing the size of the band gap.

  17. Noise temperature and beam pattern of an NbN hot electron bolometer mixer at 5.25 THz

    NARCIS (Netherlands)

    Zhang, W.; Khosropanah, P.; Gao, J.R.; Bansal, T.; Klapwijk, T.M.; Miao, W.; Shi, S.C.

    2010-01-01

    We report the measured sensitivities of a superconducting NbN hot electron bolometer (HEB) heterodyne receiver at 5.25 THz. Terahertz (THz) radiation is quasioptically coupled to a HEB mixer with a lens and a spiral antenna. Using a measurement setup with black body calibration sources and a beam

  18. Main-ion temperature and plasma rotation measurements based on scattering of electron cyclotron heating waves in ASDEX Upgrade

    DEFF Research Database (Denmark)

    Pedersen, Morten Stejner; Rasmussen, Jesper; Nielsen, Stefan Kragh

    2017-01-01

    We demonstrate measurements of spectra of O-mode electron cyclotron resonance heating (ECRH) waves scattered collectively from microscopic plasma fluctuations in ASDEX Upgrade discharges with an ITER-like ECRH scenario. The measured spectra are shown to allow determination of the main ion...

  19. A Critical Review of Published Data on the Gas Temperature and the Electron Density in the Electrolyte Cathode Atmospheric Glow Discharges

    Directory of Open Access Journals (Sweden)

    Tamás Cserfalvi

    2012-05-01

    Full Text Available Electrolyte Cathode Discharge (ELCAD spectrometry, a novel sensitive multielement direct analytical method for metal traces in aqueous solutions, was introduced in 1993 as a new sensing principle. Since then several works have tried to develop an operational mechanism for this exotic atmospheric glow plasma technique, however these attempts cannot be combined into a valid model description. In this review we summarize the conceptual and technical problems we found in this upcoming research field of direct sensors. The TG gas temperature and the ne electron density values published up to now for ELCAD are very confusing. These data were evaluated by three conditions. The first is the gas composition of the ELCAD plasma, since TG was determined from the emitted intensity of the N2 and OH bands. Secondly, since the ELCAD is an atmospheric glow discharge, thus, the obtained TG has to be close to the Te electron temperature. This can be used for the mutual validation of the received temperature data. Thirdly, as a consequence of the second condition, the values of TG and ne have to agree with the Engel-Brown approximation of the Saha-equation related to weakly ionized glow discharge plasmas. Application of non-adequate experimental methods and theoretical treatment leads to unreliable descriptions which cannot be used to optimize the detector performance.

  20. Effects of temperature, packaging and electron beam irradiation processing conditions on the property behaviour of Poly (ether-block-amide) blends

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Kieran A., E-mail: kmurray@research.ait.ie [Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath (Ireland); Kennedy, James E., E-mail: jkennedy@ait.ie [Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath (Ireland); McEvoy, Brian, E-mail: Brian.Mcevoy@synergyhealthplc.com [Synergy Health, IDA Business and Technology Park, Sragh, Tullamore, Co. Offaly (Ireland); Vrain, Olivier, E-mail: Olivier.Vrain@synergyhealthplc.com [Synergy Health, IDA Business and Technology Park, Sragh, Tullamore, Co. Offaly (Ireland); Ryan, Damien, E-mail: Damien.Ryan@synergyhealthplc.com [Synergy Health, IDA Business and Technology Park, Sragh, Tullamore, Co. Offaly (Ireland); Cowman, Richard, E-mail: Richard.Cowman@synergyhealthplc.com [Synergy Health, IDA Business and Technology Park, Sragh, Tullamore, Co. Offaly (Ireland); Higginbotham, Clement L., E-mail: chigginbotham@ait.ie [Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath (Ireland)

    2014-06-01

    The radiation stability of Poly (ether-block-amide) (PEBA) blended with a multifunctional phenolic antioxidant and a hindered amide light stabiliser was examined under various temperatures, packaging and electron beam processing conditions. FTIR revealed that there were slight alterations to the PEBA before irradiation; however, these became more pronounced following irradiation. The effect of varying the temperature, packaging and processing conditions on the resultant PEBA properties was apparent. For example, rheology demonstrated that the structural properties could be enhanced by manipulating the aforementioned criteria. Mechanical testing exhibited less radiation resistance when the PEBA samples were vacuum packed and exposed to irradiation. MFI and AFM confirmed that the melting strength and surface topography could be reduced/increased depending on the conditions employed. From this study it was concluded that virgin PEBA submerged in dry ice with non-vacuum packaging during the irradiation process, provided excellent radiation resistance (20.9% improvement) in contrast to the traditional method. - Highlights: • PEBA was melt blended with Irganox 565 and Tinuvin 783. • All virgin and blended PEBA samples were exposed to electron beam irradiation. • Virgin and blended PEBA was exposed to different temperatures during irradiation. • Non-vacuum and vacuum packed PEBA samples were compared following irradiation. • Virgin PEBA with non-vacuum packaging in dry ice improved the radiation resistance.

  1. Diurnal, seasonal and latitudinal variations of electron temperature measured by the SROSS C2 satellite at 500 km altitude and comparison with the IRI

    Directory of Open Access Journals (Sweden)

    P. K. Bhuyan

    2002-06-01

    Full Text Available The diurnal, seasonal and latitudinal variations of electron temperature Te, measured by the SROSS C2 satellite at equatorial and the low-latitudes during the low solar activity period of 1995–1997 are investigated. The average height of the satellite was ~ 500 km and it covered the latitude belt of –31° to 34° and the longitude range of 40°–100°. Te varies between 700–800 K during night-time (20:00–04:00 LT, rises sharply during sunrise (04:00–06:00 LT to reach a level of ~ 3500 K within a couple of hours and then falls between 07:00–10:00 LT to a daytime average value of ~ 1600 K. A secondary maximum is observed around 16:00–18:00 LT in summer. Latitudinal gradients in Te have been observed during the morning enhancement and daytime hours. Comparison of measured and International Reference Ionosphere (IRI predicted electron temperature reveals that the IRI predicts nighttime Te well within ~ 100 K of observation, but at other local times, the predicted Te is less than that measured in all seasons.Key words. Ionosphere, equatorial ionosphere, plasma temperature, and density

  2. Enhanced electron mobility at the two-dimensional metallic surface of BaSnO3 electric-double-layer transistor at low temperatures

    Science.gov (United States)

    Fujiwara, Kohei; Nishihara, Kazuki; Shiogai, Junichi; Tsukazaki, Atsushi

    2017-05-01

    Wide-bandgap oxides exhibiting high electron mobility hold promise for the development of useful electronic and optoelectronic devices as well as for basic research on two-dimensional electron transport phenomena. A perovskite-type tin oxide, BaSnO3, is currently one of such targets owing to distinctly high mobility at room temperature. The challenge to overcome towards the use of BaSnO3 thin films in applications is suppression of dislocation scattering, which is one of the dominant scattering origins for electron transport. Here, we show that the mobility of the BaSnO3 electric-double-layer transistor reaches 300 cm2 V-1 s-1 at 50 K. The improved mobility indicates that charged dislocation scattering is effectively screened by electrostatically doped high-density charge carriers. We also observed metallic conduction persisting down to 2 K, which is attributed to the transition to the degenerate semiconductor. The experimental verification of bulk-level mobility at the densely accumulated surface sheds more light on the importance of suppression of dislocation scattering by interface engineering in doped BaSnO3 thin films for transparent electrode applications.

  3. The Effect of Post-Baking Temperature and Thickness of ZnO Electron Transport Layers for Efficient Planar Heterojunction Organometal-Trihalide Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Kun-Mu Lee

    2017-11-01

    Full Text Available Solution-processed zinc oxide (ZnO-based planar heterojunction perovskite photovoltaic device is reported in this study. The photovoltaic device benefits from the ZnO film as a high-conductivity and high-transparent electron transport layer. The optimal electron transport layer thickness and post-baking temperature for ZnO are systematically studied by scanning electron microscopy, photoluminescence and time-resolved photoluminescence spectroscopy, and X-ray diffraction. Optimized perovskite solar cells (PSCs show an open-circuit voltage, a short-circuit current density, and a fill factor of 1.04 V, 18.71 mA/cm2, and 70.2%, respectively. The highest power conversion efficiency of 13.66% was obtained when the device was prepared with a ZnO electron transport layer with a thickness of ~20 nm and when post-baking at 180 °C for 30 min. Finally, the stability of the highest performance ZnO-based PSCs without encapsulation was investigated in detail.

  4. Effect of dust charge fluctuations on dust acoustic structures in magnetized dusty plasma containing nonextensive electrons and two-temperature isothermal ions

    Energy Technology Data Exchange (ETDEWEB)

    Araghi, F. [Islamic Azad University, North Tehran Branch, Physics Department, Science Faculty (Iran, Islamic Republic of); Dorranian, D., E-mail: doran@srbiau.ac.ir [Islamic Azad University, Laser Laboratory, Plasma Physics Research Center, Science and Research Branch (Iran, Islamic Republic of)

    2016-02-15

    Effect of dust electrical charge fluctuations on the nature of dust acoustic solitary waves (DASWs) in a four-species magnetized dusty plasma containing nonextensive electrons and two-temperature isothermal ions has been investigated. In this model, the negative dust electric charge is considered to be proportional to the plasma space potential. The nonlinear Zakharov–Kuznetsov (ZK) and modified Zakharov–Kuznetsov (mZK) equations are derived for DASWs by using the standard reductive perturbation method. The combined effects of electron nonextensivity and dust charge fluctuations on the DASW profile are analyzed. The different ranges of the nonextensive q-parameter are considered. The results show that solitary waves the amplitude and width of which depend sensitively on the nonextensive q-parameter can exist. Due to the electron nonextensivity and dust charge fluctuation rate, our dusty plasma model can admit both positive and negative potential solitons. The results show that the amplitude of the soliton increases with increasing electron nonextensivity, but its width decreases. Increasing the electrical charge fluctuations leads to a decrease in both the amplitude and width of DASWs.

  5. Thermoelectric, electronic, optical and chemical bonding properties of Ba{sub 2}PrRuO{sub 6}: At temperature 7 K and 150 K

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A.H. [New Technologies-Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, Kangar, Perlis 01007 Malaysia (Malaysia); Khan, Wilayat, E-mail: walayat76@gmail.com [New Technologies-Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic)

    2015-01-15

    Highlights: • DFT-FPLAPW method used for calculating the electronic structure. • The Fermi surface of BPRO (7 K and 150 K) is also calculated. • The complex dielectric function has been calculated. • Thermoelectric properties were also calculated using BoltzTraP code. • Power factor shows that both compounds are good thermoelectric materials at 600 K. - Abstract: We present first principles calculations of the band structure, density of states, electronic charge density, Fermi surface and optical properties of Ba{sub 2}PrRuO{sub 6} single crystals at two different temperatures. The atomic positions were optimized by minimizing the forces acting on the atoms. We have employed the full potential linear augmented plane wave method within local density approximation, generalized gradient approximation and Engel–Vosko generalized gradient approximation to treat the exchange correlation potential. The calculation shows that the compound is superconductor with strong hybridization near the Fermi energy level. Fermi surface is composed of two sheets. The calculated electronic specific heat capacities indicate, very close agreement with the experimental one. The bonding features of the compounds are analyzed using the electronic charge density in the (1 0 0) and (0–10) crystallographic planes. The dispersion of the optical constants was calculated and discussed. The thermoelectric properties are also calculated using the BoltzTrap code.

  6. Electronic structure and transport in the low-temperature thermoelectric CsBi4Te6: Semiclassical transport equations

    DEFF Research Database (Denmark)

    Lykke, Lars; Iversen, Bo Brummerstedt; Madsen, Georg

    2006-01-01

    The band structure of the low-temperature thermoelectric material, CsBi4Te6, is calculated and analyzed using the semiclassic transport equations. It is shown that to obtain a quantitative agreement with measured transport properties, a band gap of 0.08 eV must be enforced. A gap in reasonable ag...

  7. Temperature and Electron Density Determination on Laser-Induced Breakdown Spectroscopy (LIBS) Plasmas: A Physical Chemistry Experiment

    Science.gov (United States)

    Najarian, Maya L.; Chinni, Rosemarie C.

    2013-01-01

    This laboratory is designed for physical chemistry students to gain experience using laser-induced breakdown spectroscopy (LIBS) in understanding plasma diagnostics. LIBS uses a high-powered laser that is focused on the sample causing a plasma to form. The emission of this plasma is then spectrally resolved and detected. Temperature and electron…

  8. High electron mobility thin-film transistors based on Ga{sub 2}O{sub 3} grown by atmospheric ultrasonic spray pyrolysis at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Stuart R., E-mail: s.thomas09@imperial.ac.uk, E-mail: thomas.anthopoulos@imperial.ac.uk; Lin, Yen-Hung; Faber, Hendrik; Anthopoulos, Thomas D., E-mail: s.thomas09@imperial.ac.uk, E-mail: thomas.anthopoulos@imperial.ac.uk [Department of Physics, Blackett Laboratory, Imperial College London, London SW7 2BW (United Kingdom); Adamopoulos, George [Department of Engineering, Engineering Building, Lancaster University, Bailrigg, Lancaster LA1 4YR (United Kingdom); Sygellou, Labrini [Institute of Chemical Engineering and High Temperature Processes (ICEHT), Foundation of Research and Technology Hellas (FORTH), Stadiou Strasse Platani, P.O. Box 1414, Patras GR-265 04 (Greece); Stratakis, Emmanuel [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion 71003 (Greece); Materials Science and Technology Department, University, of Crete, Heraklion 71003 (Greece); Pliatsikas, Nikos; Patsalas, Panos A. [Laboratory of Applied Physics, Department of Physics, Aristotle University of Thessaloniki, Thessaloniki GR-54124 (Greece)

    2014-09-01

    We report on thin-film transistors based on Ga{sub 2}O{sub 3} films grown by ultrasonic spray pyrolysis in ambient atmosphere at 400–450 °C. The elemental, electronic, optical, morphological, structural, and electrical properties of the films and devices were investigated using a range of complementary characterisation techniques, whilst the effects of post deposition annealing at higher temperature (700 °C) were also investigated. Both as-grown and post-deposition annealed Ga{sub 2}O{sub 3} films are found to be slightly oxygen deficient, exceptionally smooth and exhibit a wide energy bandgap of ∼4.9 eV. Transistors based on as-deposited Ga{sub 2}O{sub 3} films show n-type conductivity with the maximum electron mobility of ∼2 cm{sup 2}/V s.

  9. On the relationship between the population of the fine structure levels of the ground electronic state of atomic oxygen and the translational temperature

    Science.gov (United States)

    Sharma, R.; Zygelman, B.; von Esse, F.; Dalgarno, A.

    1994-08-01

    Using a recent calculation of the cross sections for fine structure changing collisions during an encounter between two oxygen atoms in the ground electronic state, we determine the population of the fine structure levels of oxygen as a function of altitude for four model atmospheres representing conditions at 0 deg longitude, 45 deg latitude, at midday and midnight, and high and low solar and geomagnetic activity. We include the effect of electron impacts. The fine structure levels are shown to be in local thermodynamic equilibrium (LTE) at the local neutral atom translational temperature for altitudes up to 350 km and 400 km for midnight and midday, respectively, at low activity, and up to at least 600 km at high activity. At higher altitudes spotaneous emission causes deviation from LTE and overpopulates the lowest (J = 2) level at the expense of the other two levels.

  10. Low-temperature, solution-processed aluminum-doped zinc oxide as electron transport layer for stable efficient polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Qianqian [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Bao, Xichang, E-mail: baoxc@qibebt.ac.cn [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Yu, Jianhua [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Zhu, Dangqiang [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Zhang, Qian [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Gu, Chuantao [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Dong, Hongzhou [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Yang, Renqiang [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Dong, Lifeng, E-mail: DongLifeng@qust.edu.cn [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Department of Physics, Hamline University, St. Paul, MN 55104 (United States)

    2016-04-30

    A simple low-temperature solution-processed zinc oxide (ZnO) and aluminum-doped ZnO (AZO) were synthesized and investigated as an electron transport layer (ETL) for inverted polymer solar cells. A solar cell with a blend of poly(4,8-bis-alkyloxy-benzo[1,2-b:4,5-b′] dithiophene-alt-alkylcarbonyl-thieno [3,4-b] thiophene) and (6,6)-phenyl-C71-butyric acid methyl ester as an active layer and AZO as ETL demonstrates a high power conversion efficiency (PCE) of 7.36% under the illumination of AM 1.5G, 100 mW/cm{sup 2}. Compared to the cells with ZnO ETL (PCE of 6.85%), the PCE is improved by 7.45% with the introduction of an AZO layer. The improved PCE is ascribed to the enhanced short circuit current density, which results from the electron transport property of the AZO layer. Moreover, AZO is a more stable interfacial layer than ZnO. The PCE of the solar cells with AZO as ETL retain 85% of their original value after storage for 120 days, superior to the 39% of cells with ZnO ETL. The results above indicate that a simple low-temperature solution-processed AZO film is an efficient and economical ETL for high-performance inverted polymer solar cells. Due to its environmental friendliness, good electrical properties, and simple preparation approach, AZO has the potential to be applied in high-performance, large-scale industrialization of solar cells and other electronic devices. - Highlights: • ZnO and AZO were synthesized by a simple low-temperature solution-processed method. • AZO films show high transmittance and conductivity. • The photovoltaic performance can be improved with AZO as ETL. • AZO-based devices demonstrate excellent stability, with 85% retained after 120 days.

  11. Density dependence of electron-spin polarization and relaxation in intrinsic GaAs at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Teng, L H; Chen, K; Wen, J H; Lin, W Z; Lai, T S, E-mail: stslts@mail.sysu.edu.c [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Zhongshan (Sen Yat-Sen) University, Guangzhou, Guangdong 510275 (China)

    2009-07-07

    Time-resolved circularly polarized pump-probe spectroscopy is used to study the carrier-density dependence of the electron-spin polarization and spin relaxation dynamics in bulk intrinsic GaAs near the bottom of the conduction band. The experimental result shows that the initial degree of the electron-spin polarization is less than 0.5, and both the initial degree of spin polarization and the spin relaxation time decrease with increasing carrier densities. The simulation calculation shows that the band-gap renormalization effect has a significant influence on the initial degree of spin polarization, but it is not the physical origin of the decrease in the electron-spin polarization. Contrarily, the initial degree of spin polarization can be greatly enhanced by the band-gap renormalization effect for carrier densities above 3.5 x 10{sup 17} cm{sup -3}. In intrinsic GaAs, both the D'yakonov-Perel' and the Bir-Aronov-Pikus mechanisms play an important role. The Bir-Aronov-Pikus mechanism becomes stronger with the increase in the carrier density, and becomes dominant at high carrier density.

  12. Density dependence of electron-spin polarization and relaxation in intrinsic GaAs at room temperature

    Science.gov (United States)

    Teng, L. H.; Chen, K.; Wen, J. H.; Lin, W. Z.; Lai, T. S.

    2009-07-01

    Time-resolved circularly polarized pump-probe spectroscopy is used to study the carrier-density dependence of the electron-spin polarization and spin relaxation dynamics in bulk intrinsic GaAs near the bottom of the conduction band. The experimental result shows that the initial degree of the electron-spin polarization is less than 0.5, and both the initial degree of spin polarization and the spin relaxation time decrease with increasing carrier densities. The simulation calculation shows that the band-gap renormalization effect has a significant influence on the initial degree of spin polarization, but it is not the physical origin of the decrease in the electron-spin polarization. Contrarily, the initial degree of spin polarization can be greatly enhanced by the band-gap renormalization effect for carrier densities above 3.5 × 1017 cm-3. In intrinsic GaAs, both the D'yakonov-Perel' and the Bir-Aronov-Pikus mechanisms play an important role. The Bir-Aronov-Pikus mechanism becomes stronger with the increase in the carrier density, and becomes dominant at high carrier density.

  13. Development of a spectroscopic technique for simultaneous magnetic field, electron density, and temperature measurements in ICF-relevant plasmas (Conference Presentation)

    Science.gov (United States)

    Dutra, Eric C.; Covington, Aaron M.; Darling, Timothy; Mancini, Roberto C.; Haque, Showera; Angermeier, William A.

    2016-09-01

    Visible spectroscopic techniques are often used in plasma experiments to measure B-field induced Zeeman splitting, electron densities via Stark broadening and temperatures from Doppler broadening. However, when electron densities and temperatures are sufficiently high, the broadening of the Stark and Doppler components can dominate the emission spectra and obscure the Zeeman component. In this research, we are developing a time-resolved multi-axial technique for measuring the Zeeman, Stark, and Doppler broadened line emission of dense magnetized plasmas for Z-pinch and Dense Plasma Focus (DPF) accelerators. The line emission is used to calculate the electron densities, temperatures, and B-fields. In parallel, we are developing a line-shape modeling code that incorporates the broadening effects due to Stark, Doppler, and Zeeman effects for dense magnetized plasma. Experiments conducted at the University of Nevada (Reno) at the Nevada Terawatt Facility (NTF) using the 1 MA Z-pinch (Zebra). The research explored the response of Al III doublet, 4p 2P3/2 to 4s 2S1/2 and 4p 2P1/2 to 4s 2S1/2 transitions. Optical light emitted from the pinch is fiber coupled to high-resolution spectrometers. The dual spectrometers are coupled to two high-speed visible streak cameras to capture time-resolved emission spectra from the experiment. The data reflects emission spectra from 100 ns before the current peak to 100 ns after the current peak, where the current peak is approximately the time at which the pinch occurs. The Al III doublet is used to measure Zeeman, Stark, and Doppler broadened emission. The line emission is then used to calculate the temperature, electron density, and B-fields. The measured quantities are used as initial parameters for the line shape code to simulate emission spectra and compare to experimental results. Future tests are planned to evaluate technique and modeling on other material wire array, gas puff, and DPF platforms. This work was done by National

  14. DFT calculations for the high-temperature structure of (EDO-TTF)2PF6: Identification of an electronic molecular dimer

    Science.gov (United States)

    Iwano, Kaoru; Shimoi, Yukihiro

    2009-02-01

    Density-functional theory (DFT) calculations are performed based on the high-temperature structure of (EDO-TTF)2PF6, a quasi-one-dimensional molecular compound that shows both thermal and photoinduced phase transitions. In this structure, the EDO-TTF molecules are one-dimensionally aligned, accompanied with weak dimerization. Contrary to a common sense, our DFT calculations reveal that the pair having a shorter mutual distance has a weaker intermolecular coupling than the pair with a longer one; the latter is appropriate to be called an electronic dimer. We also estimate the corresponding transfer energies and discuss their relevance to spin correlations and optical excitations.

  15. LASER EMISSIONS FROM CO2 VIBRATIONAL TRANSITIONS IN A LOW TEMPERATURE SUPERSONIC FLOW EXCITED BY A PULSED ELECTRON BEAM STABILIZED DISCHARGE

    OpenAIRE

    Fontaine, B.; Forestier, B.; Gross, P.; Koudriavtsev, E.

    1980-01-01

    High power long pulse infrared laser emission has been achieved on CO2 molecule with the high density and very low temperature supersonic flow-electron beam-stabilized discharge excitation device developped at I.M.F.M. ([MATH] [MATH] 2 amagats, T [MATH] 70 - 150 K). Laser emission at [MATH] = 10.6 µ has been achieved for a resonant cavity set at the discharge location and also 3 cm downstream of the discharge location. With Ar/CO2, Ar/CO2/H2, He/CO2, and He/CO2/N2 mixtures, lasing energy and ...

  16. Electron standing waves on the GaN(0001)-pseudo (1 × 1) surface: a FT-STM study at room temperature.

    Science.gov (United States)

    Sun, G F; Liu, Y; Qi, Y; Jia, J F; Xue, Q K; Weinert, M; Li, L

    2010-10-29

    We report the direct imaging of standing waves on a GaN(0001)-pseudo (1 × 1) metallic surface, which consists of two atomic Ga layers with the top layer incommensurate. Two types of periodic oscillation are observed by scanning tunneling microscopy at room temperature. The longer wavelength standing waves are due to electron scattering by dislocation-induced steps and two-dimensional InN islands. The localized shorter wavelength waves are attributed to a structural transition of the incommensurate Ga bilayer to a tetrahedral Ga bilayer after the growth of the InN islands.

  17. Ionization measurement at very low temperature for nuclear and electron recoils discrimination by ionization-heat simultaneous measurement for dark matter research

    CERN Document Server

    Navick, X F; Tourbot, R

    2000-01-01

    To achieve a high level of discrimination between nuclear recoils and electron recoils for dark matter research, we realized and studied ionization-heat detectors working at very low temperature (10-20 mK). To understand the mechanisms underlying the ionization measurement at this temperature range, we made systematic studies of detectors performances (time stability, energy resolution, etc.) in X- and gamma-rays detection for Ge and Si detectors. Results are presented and discussed. We found that the time stability is governed by the progressive space charge build-up due to impurities ionization by far-infrared radiation. Moreover if the energy resolution of HPGe-pin detectors is limited by the noise, it appears to be intrinsically limited by carrier trapping on neutral impurities in Si detectors.

  18. Energy-filtered environmental transmission electron microscopy for the assessment of solid-gas reactions at elevated temperature: NiO/YSZ-H2 as a case study

    DEFF Research Database (Denmark)

    Jeangros, Q.; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2016-01-01

    in 1.3mbar of H2. Three-window elemental maps and jump-ratio images of the O K edge and total inelastic mean free path images are recorded as a function of temperature and used to provide local and quantitative information about the reaction kinetics and the volume changes that result from the reaction......A novel approach, which is based on the analysis of sequences of images recorded using energy-filtered transmission electron microscopy and can be used to assess the reaction of a solid with a gas at elevated temperature, is illustrated for the reduction of a NiO/ceramic solid oxide fuel cell anode....... Under certain assumptions, the speed of progression of the reaction front in all three dimensions is obtained, thereby providing a three-dimensional understanding of the reaction....

  19. Temperature Effects on The Electrical Characteristics of In0.15Ga0.85As Pseudomorphic High-Electron-Mobility Transistors

    Directory of Open Access Journals (Sweden)

    BECHLAGHEM Fatima Zohra

    2017-10-01

    Full Text Available Nowadays, GaAs-based HEMTs and pseudomorphic HEMTs are speedily replacing conventional MESFET technology in military and commercial applications including, communication, radar and automotive technologies having need of high gain, and low noise figures especially at millimeter-wave frequencies. In this work, a short gate length pseudomorphic HEMT "p-HEMT" on GaAs substrate is treated. As temperature dependence study is a very important part of the complete characterization on active devices, the impact of temperature variation on the electrical properties of our 30nm short gate length pseudomorphic high-electron mobility In0.15Ga0.85As device is investigated. All our static DC device characteristics and RF response have been obtained using a device simulator that is Silvaco software to examine temperature impact on our device output current, transconductance and cutoff frequency. The 30nm gate pseudomorphic HEMT reported here exhibit superior DC and RF performances, Our results reveals a maximum drain-source current IDS up to 537.16 mA/mm, a peak extrinsic transconductance Gm of 345.4 mS/mm, a cutoff frequency Ft of 285.9 GHz, and a maximum frequency Fmax of 1580 GHz at room temperature.

  20. Effect of Heat Treatment on Low Temperature Toughness of Reduced Pressure Electron Beam Weld Metal of Type 316L Stainless Steel

    Science.gov (United States)

    Nakagawa, H.; Fujii, H.; Tamura, M.

    2006-03-01

    Austenitic stainless steels are considered to be the candidate materials for liquid hydrogen vessels and the related equipments, and those welding parts that require high toughness at cryogenic temperature. The authors have found that the weld metal of Type 316L stainless steel processed by reduced pressure electron beam (RPEB) welding has high toughness at cryogenic temperature, which is considered to be due to the single-pass welding process without reheating effect accompanied by multi-pass welding process. In this work, the effect of heat treatment on low temperature toughness of the RPEB weld metal of Type 316L was investigated by Charpy impact test at 77K. The absorbed energy decreased with higher temperature and longer holding time of heat treatment. The remarkable drop in the absorbed energy was found with heat treatment at 1073K for 2 hours, which is as low as that of conventional multi-pass weld metal such as tungsten inert gas welding. The observations of fracture surface and microstructure revealed that the decrease in the absorbed energy with heat treatment resulted from the precipitation of intermetallic compounds near delta-ferrite phase.

  1. Temperature-induced martensite in magnetic shape memory Fe{sub 2}MnGa observed by photoemission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, Catherine; Scholl, Andreas; Kainuma, R.; Elmers, Hans-Joachim; Omori, Toshihiro

    2012-01-18

    The magnetic domain structure in single crystals of a Heusler shape memory compound near the composition Fe{sub 2}MnGa was observed during phase transition by photoelectron emission microscopy at Beamline 11.0.1.1 of the Advanced Light Source. The behavior is comparable with recent observations of an adaptive martensite phase in prototype Ni{sub 2}MnGa, although the pinning in the recent work is an epitaxial interface and in this work the e ective pinning plane is a boundary between martensitic variants that transform in a self-accommodating way from the single crystal austenite phase present at high temperatures. Temperature dependent observations of the twinning structure give information as to the coupling behavior between the magnetism and the structural evolution.

  2. Effects of basal-plane thermal conductivity and interface thermal conductance on the hot spot temperature in graphene electronic devices

    Science.gov (United States)

    Choi, David; Poudel, Nirakar; Cronin, Stephen B.; Shi, Li

    2017-02-01

    Electrostatic force microscopy and scanning thermal microscopy are employed to investigate the electric transport and localized heating around defects introduced during transfer of graphene grown by chemical vapor deposition to an oxidized Si substrate. Numerical and analytical models are developed to explain the results based on the reported basal-plane thermal conductivity, κ, and interfacial thermal conductance, G, of graphene and to investigate their effects on the peak temperature. Irrespective of the κ values, increasing G beyond 4 × 107 W m-2 K-1 can reduce the peak temperature effectively for graphene devices made on sub-10 nm thick gate dielectric, but not for the measured device made on 300-nm-thick oxide dielectric, which yields a cross-plane thermal conductance (Gox) much smaller than the typical G of graphene. In contrast, for typical G values reported for graphene, increasing κ from 300 W m-1 K-1 toward 3000 W m-1 K-1 is effective in reducing the hot spot temperature for the 300-nm-thick oxide devices but not for the sub-10 nm gate dielectric case, because the heat spreading length (l) can be appreciably increased relative to the micron-scale localized heat generation spot size (r0) only when the oxide layer is sufficiently thick. As such, enhancement of κ increases the vertical heat transfer area above the gate dielectric only for the thick oxide case. In all cases considered, the hot spot temperature is sensitive to varying G and κ only when the G/Gox ratio and r0/l ratio are below about 5, respectively.

  3. Application of High-Temperature Superconducting Thin-Film Devices to Electro-Optical and Electronic Warfare Systems

    Science.gov (United States)

    1990-02-01

    Duzer , and S. E. Schwarz, "A Planar shifters, and circulators. The likeliest form that most of Antenna-Coupled Superconductor-Insulator-Superconductor...34Experimen- 2"T. Van Duzer and C. XV. Turner, Principles of Supqer- I 4’ THL JUj’.\\S HOP~tN. UNNVES TN APPLIED PHYSICS LABORMTORY I A.,REL ARYLANfl I...Electronics Fabrication Facility (15 Sep 1988). "’K. E. Irwin, T. Van Duzer , and S. E. Schwarz, "A 44 U THE JOHNS HOPKINS UNIVERSITY APPLIED

  4. Marginal stability, characteristic frequencies, and growth rates of gradient drift modes in partially magnetized plasmas with finite electron temperature

    Science.gov (United States)

    Lakhin, V. P.; Ilgisonis, V. I.; Smolyakov, A. I.; Sorokina, E. A.; Marusov, N. A.

    2018-01-01

    The detailed analysis of stability of azimuthal oscillations in partially magnetized plasmas with crossed electric and magnetic fields is presented. The instabilities are driven by the transverse electron current which, in general, is due to a combination of E ×B and electron diamagnetic drifts. Marginal stability boundary is determined for a wide range of the equilibrium plasma parameters. It is shown that in some regimes near the instability threshold, only the low-frequency long-wavelength oscillations are unstable, while the short-wavelength high-frequency modes are stabilized by the finite Larmor radius effects. Without such stabilization, the high-frequency modes have much larger growth rates and dominate. A new regime of the instability driven exclusively by the magnetic field gradient is identified. Such instability takes place in the region of the weak electric field and for relatively large gradients of plasma density ( ρs/ln>1 , where ρs is the ion-sound Larmor radius and ln is the scale length of plasma density inhomogeneity).

  5. Electronic and stereochemical characterizations of the photoinduced intermediates of nitrosyl complexes of metal (S = 5/2)-substituted hemoproteins trapped at low temperature.

    Science.gov (United States)

    Hori, H; Ikeda-Saito, M; Lang, G; Yonetani, T

    1990-09-05

    Low temperature photolysis of nitric oxide from the nitrosyl complexes of ferric myoglobin (NO-Fe(III)Mb) and manganese(II)-porphyrin-substituted myoglobin (NO-Mn(II)Mb) was examined by electron paramagnetic resonance (EPR) spectroscopy in order to elucidate the electronic and structural natures of the photoinduced intermediates of these hemoprotein-ligand complexes trapped at low temperature. The photoproduct of NO-Fe(III)Mb at 5 K exhibited entirely new X-band EPR absorptions in the magnetic field strength from 0 to 0.4 tesla. The widespread absorption together with distinct, sharp zero-field absorption was consistently observed in the photoproduct of the isoelectronic NO-Mn(II)Mb. These novel ERP signals indicate a spin-coupled pair with an effective spin of S = 2 between the high spin metal center (S = 5/2) and the photodissociated NO (S = 1/2) trapped adjacent to the metal center. On the other hand, the photolyzed form of nitrosyl complexes of Fe(III)- and Mn(II)-Glycera hemoglobins, in which the distal histidine of Mb is replaced by a leucyl residue, exhibited somewhat broader EPR absorptions similar to those of the corresponding native Fe(III)- or unliganded Mn(II)-Glycera hemoglobins, respectively, indicating that the photodissociated NO molecule moved farther away from the metal center in the heme pocket. These observations show the importance of the interaction of the distal residue with the ligand in determining the nature of the photolyzed states.

  6. Determination of the electron temperature in the modified ionosphere over HAARP using the HF pumped Stimulated Brillouin Scatter (SBS emission lines

    Directory of Open Access Journals (Sweden)

    P. A. Bernhardt

    2009-12-01

    Full Text Available An ordinary mode electromagnetic wave can decay into an ion acoustic wave and a scattered electromagnetic wave by a process called stimulated Brillouin scatter (SBS. The first detection of this process during ionospheric modification with high power radio waves was reported by Norin et al. (2009 using the HAARP transmitter in Alaska. Subsequent experiments have provided additional verification of this process and quantitative interpretation of the scattered wave frequency offsets to yield measurements of the electron temperatures in the heated ionosphere. Using the SBS technique, electron temperatures between 3000 and 4000 K were measured over the HAARP facility. The matching conditions for decay of the high frequency pump wave show that in addition to the production of an ion-acoustic wave, an electrostatic ion cyclotron wave may also be produced by the generalized SBS processes. Based on the matching condition theory, the first profiles of the scattered wave amplitude are produced using the stimulated Brillouin scatter (SBS matching conditions. These profiles are consistent with maximum ionospheric interactions at the upper-hybrid resonance height and at a region just below the plasma resonance altitude where the pump wave electric fields reach their maximum values.

  7. Measurement of radio wave reflection due to temperature rising from rock salt and ice irradiated by an electron beam for an ultra-high-energy neutrino detector

    Energy Technology Data Exchange (ETDEWEB)

    Tanikawa, Takahiro; Chiba, Masami; Kamijo, Toshio; Yabuki, Fumiaki; Yasuda, Osamu; Akiyama, Hidetoshi; Chikashige, Yuichi; Kon, Tadashi; Shimizu, Yutaka; Utsumi, Michiaki; Fujii, Masatoshi [Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji-shi, Tokyo 192-0397 (Japan); Faculty of Science and Technology, Seikei University, Musashino-shi, Tokyo 180-8633 (Japan); Department of Applied Science and Energy Engineering, School of Engineering, Tokai University, Hiratsuka-shi, Kanagawa 259-1292 (Japan); School of Medicine, Shimane University, Izumo-shi, Shimane 693-8501 (Japan)

    2012-11-12

    An ultra-high-energy neutrino (UHE{nu}) gives temperature rise along the hadronic and electromagnetic shower when it enters into rock salt or ice. Permittivities of them arise with respect the temperatures at ionization processes of the UHE{nu} shower. It is expected by Fresnel's formula that radio wave reflects at the irregularity of the permittivity in the medium. We had found the radio wave reflection effect in rock salt. The reflection effect and long attenuation length of radio wave in rock salt and ice would yield a new UHE{nu} detection method. An experiment for ice was performed to study the reflection effect. A coaxial tube was filled with rock salt powder or ice. Open end of the coaxial tube was irradiated by a 2 MeV electron beam. Radio wave of 435 MHz was introduced to the coaxial tube. We measured the reflection wave from the open end. We found the radio wave reflection effect due to electron beam irradiation in ice as well as in rock salt.

  8. Correlation of Chemisorption and Electronic Effects for Metal Oxide Interfaces: Transducing Principles for Temperature Programmed Gas Microsensors (Final Report)

    Energy Technology Data Exchange (ETDEWEB)

    S. Semancik; R. E. Cavicchi; D. L. DeVoe; T. J. McAvoy [National Institute of Standards and Technology (US)]|[University of Maryland (US)

    2001-12-21

    This Final Report describes efforts and results for a 3-year DoE/OST-EMSP project centered at NIST. The multidisciplinary project investigated scientific and technical concepts critical for developing tunable, MEMS-based, gas and vapor microsensors that could be applied for monitoring the types of multiple analytes (and differing backgrounds) encountered at DoE waste sites. Micromachined ''microhotplate'' arrays were used as platforms for fabricating conductometric sensor prototypes, and as microscale research tools. Efficient microarray techniques were developed for locally depositing and then performance evaluating thin oxide films, in order to correlate gas sensing characteristics with properties including composition, microstructure, thickness and surface modification. This approach produced temperature-dependent databases on the sensitivities of sensing materials to varied analytes (in air) which enable application-specific tuning of microsensor arrays. Mechanistic studies on adsorb ate transient phenomena were conducted to better understand the ways in which rapid temperature programming schedules can be used to produce unique response signatures and increase information density in microsensor signals. Chemometric and neural network analyses were also employed in our studies for recognition and quantification of target analytes.

  9. High Temperature Electronic and Thermal Transport Properties of EuGa2- x In x Sb2

    Science.gov (United States)

    Chanakian, Sevan; Weber, Rochelle; Aydemir, Umut; Ormeci, Alim; Fleurial, Jean-Pierre; Bux, Sabah; Snyder, G. Jeffrey

    2017-08-01

    The Zintl phase EuGa2Sb2 was synthesized via ball milling followed by hot pressing. The crystal structure of EuGa2Sb2 is comprised of a 3-D network of polyanionic [Ga2Sb2]2- tunnels filled with Eu cations that provide charge balance (Eu2+[Ga2Sb2]2-). Here we report the temperature-dependent resistivity, Hall Effect, Seebeck coefficient and thermal conductivity for EuGa2- x In x Sb2 ( x = 0, 0.05, 0.1) from 300 K to 775 K. Experimental results demonstrate that the material is a p-type semiconductor. However, a small band gap (˜0.1 eV) prevents EuGa2Sb2 from having high zT at higher temperatures. Isoelectronic substitution of In on the Ga site leads to point defect scattering of holes and phonons, thus reducing thermal conductivity and resulting in a slight improvement in zT.

  10. Impact of Gate Dielectric in Carrier Mobility in Low Temperature Chalcogenide Thin Film Transistors for Flexible Electronics

    KAUST Repository

    Salas-Villasenor, A. L.

    2010-06-29

    Cadmium sulfide thin film transistors were demonstrated as the n-type device for use in flexible electronics. CdS thin films were deposited by chemical bath deposition (70° C) on either 100 nm HfO2 or SiO2 as the gate dielectrics. Common gate transistors with channel lengths of 40-100 μm were fabricated with source and drain aluminum top contacts defined using a shadow mask process. No thermal annealing was performed throughout the device process. X-ray diffraction results clearly show the hexagonal crystalline phase of CdS. The electrical performance of HfO 2 /CdS -based thin film transistors shows a field effect mobility and threshold voltage of 25 cm2 V-1 s-1 and 2 V, respectively. Improvement in carrier mobility is associated with better nucleation and growth of CdS films deposited on HfO2. © 2010 The Electrochemical Society.

  11. Electrical, Chemical, And Microstructural Analysis of the Thermal Stability of Nickel-based Ohmic Contacts to Silicon Carbide for High-Temperature Electronics

    Science.gov (United States)

    Virshup, Ariel R.

    With increasing attention on curbing the emission of pollutants into the atmosphere, chemical sensors that can be used to monitor and control these unwanted emissions are in great demand. Examples include monitoring of hydrocarbons from automobile engines and monitoring of flue gases such as CO emitted from power plants. One of the critical limitations in high-temperature SiC gas sensors, however, is the degradation of the metal-SiC contacts over time. In this dissertation, we investigated the high-temperature stability of Pt/TaSix/Ni/SiC ohmic contacts, which have been implemented in SiC-based gas sensors developed for applications in diesel engines and power plants. The high-temperature stability of a Pt/TaSi2/Ni/SiC ohmic contact metallization scheme was characterized using a combination of current-voltage measurements, Auger electron spectroscopy, secondary ion mass spectrometry, and transmission electron microscope imaging and associated analytical techniques. Increasing the thicknesses of the Pt and TaSi2 layers promoted electrical stability of the contacts, which remained ohmic at 600°C in air for over 300 h; the specific contact resistance showed only a gradual increase from an initial value of 5.2 x 10-5 O-cm 2. We observed a continuous silicon-oxide layer in the thinner contact structures, which failed after 36 h of heating. It was found that the interface between TaSix and NiySi was weakened by the accumulation of free carbon (produced by the reaction of Ni and SiC), which in turn facilitated oxygen diffusion from the contact edges. Additional oxygen diffusion occurred along grain boundaries in the Pt overlayer. Meanwhile, thicker contacts, with less interfacial free carbon and enhanced electrical stability contained a much lower oxygen concentration that was distributed across the contact layers, precluding the formation of an electrically insulating contact structure.

  12. A procedure for estimating the electron temperature and the departure of the LTE condition in a time-dependent, spatially homogeneous, optically thin plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bredice, F. [Centro de Investigaciones Opticas, La Plata (Argentina); Borges, F.O., E-mail: borges@if.uff.br [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Instituto de Fisica. Lab. de Plasma e Espectroscopia; Di Rocco, H.O. [Instituto de Fisica Arroyo Seco (IFAS), Universidad Nacional del Centro, Tandil (Argentina); Mercado, R.S. [Grupo de Espectroscopia Optica de Emision y Laser (GEOEL), Universidad del Atlantico, Barranquilla (Colombia); Villagran-Muniz, M. [Laboratorio de Fotofisica, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico (Mexico); Palleschi, V. [Applied Laser Spectroscopy Laboratory, ICCOM-CNR, Pisa (Italy)

    2013-08-15

    We present a method to estimate the temperature of transient plasmas and their degree of departure from local thermodynamic equilibrium conditions. Our method is based on application of the Saha–Boltzmann equations on the temporal variation of the intensity of the spectral lines of the plasma, under the assumption that the plasmas at the different times when the spectra were obtained are in local thermodynamic equilibrium. The method requires no knowledge of the spectral efficiency of the spectrometer/detector, transition probabilities of the considered lines, or degeneracies of the upper and lower levels. Provided that the conditions of optically thin, homogeneous plasma in local thermodynamic equilibrium are satisfied, the accuracy of the procedure is limited only by the precision with which the line intensities and densities can be determined at two different temperatures. The procedure generates an equation describing the temporal evolution of the electron number density of transient plasmas under local thermodynamic equilibrium conditions. The method is applied to the analysis of two laser-induced breakdown spectra of cadmium at different temperatures. (author)

  13. Transport properties of magnetic tunnel junctions with Co2MnSi electrode: influence of temperature-dependent interface magnetization and electronic band structure

    Energy Technology Data Exchange (ETDEWEB)

    Schmalhorst, Jan; Thomas, Andy; Schebaum, Oliver; Ebke, Daniel; Sacher, Marc; Huetten, Andreas; Reiss, Guenter [Thin Films and Nano Structures, Department of Physics, Bielefeld University (Germany); Turchanin, Andrej; Goelzhaeuser, Armin [Department of Physics, Bielefeld University (Germany); Arenholz, Elke [Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2007-07-01

    The investigation of the temperature-dependent magnetic and chemical properties of the Co{sub 2}MnSi/Al-O interface in Co{sub 2}MnSi/Al-O/Co-Fe MTJs showed, that with increasing degree of disorder, interfacial magnetic moments are reduced and their temperature dependences are more pronounced. Magnon excitation is stronger at the Co{sub 2}MnSi/Al-O interface compared with Co-Fe-B based tunnel junctions and bulk Co{sub 2}MnSi. We suggest, that mainly this contributes to the larger bias voltage and temperature dependence of the TMR in the Co{sub 2}MnSi based junctions by means of enhanced magnon-assisted tunneling. Furthermore, several fingerprints of the ideal Co2MnSi bandstructure of atomically ordered Co{sub 2}MnSi films are revealed by the XAS-, XMCD- and XPS-investigations in accordance with SPR-KKR calculations. Finally, we suggest that the observed inversion of the TMR effect occuring when electrons are tunneling from the Co-Fe into the atomically ordered Co{sub 2}MnSi electrode is the most striking bandstructure effect.

  14. Effect of low-temperature ethylene oxide and electron beam sterilization on the in vitro and in vivo function of reconstituted extracellular matrix-derived scaffolds.

    Science.gov (United States)

    Proffen, Benedikt L; Perrone, Gabriel S; Fleming, Braden C; Sieker, Jakob T; Kramer, Joshua; Hawes, Michael L; Murray, Martha M

    2015-10-01

    Reconstituted extracellular matrix (ECM)-derived scaffolds are commonly utilized in preclinical tissue engineering studies as delivery vehicles for cells and growth factors. Translation into clinical use requires identifying a sterilization method that effectively removes bacteria but does not harm scaffold function. To determine effectiveness of sterilization and impact on ECM scaffold integrity and function, low-temperature ethylene oxide and 15 kGy electron beam irradiation techniques were evaluated. Scaffold sterility was assessed in accordance to United States Pharmacopeia Chapter 71. Scaffold matrix degradation was determined in vitro using enzymatic resistance tests and gel electrophoresis. Scaffold mechanics including elastic modulus, yield stress and collapse modulus were tested. Lastly, 14 Yorkshire pigs underwent ACL transection and bio-enhanced ACL repair using sterilized scaffolds. Histologic response of ligament, synovium, and lymph nodes was compared at 4, 6, and 8 weeks. Ethylene oxide as well as electron beam irradiation yielded sterile scaffolds. Scaffold resistance to enzymatic digestion and protein integrity slightly decreased after electron beam irradiation while ethylene oxide altered scaffold matrix. Scaffold elastic modulus and yield stress were increased after electron beam treatment, while collapse modulus was increased after ethylene oxide treatment. No significant changes in ACL dimensions, in vivo scaffold resorption rate, or histologic response of synovium, ligament, and lymph nodes with either terminal sterilization technique were detectable. In conclusion, this study identifies two methods to terminally sterilize an ECM scaffold. In vitro scaffold properties were slightly changed without significantly influencing the biologic responses of the surrounding tissues in vivo. This is a critical step toward translating new tissue engineering strategies to clinical trials. © The Author(s) 2015.

  15. Effect of Low Temperature Ethylene Oxide and Electron Beam Sterilization on the In Vitro and In Vivo Function of Reconstituted Extracellular Matrix-Derived Scaffolds

    Science.gov (United States)

    Proffen, Benedikt L.; Perrone, Gabriel S.; Fleming, Braden C.; Sieker, Jakob T.; Kramer, Joshua; Hawes, Michael L.; Murray, Martha M.

    2015-01-01

    Reconstituted extracellular matrix (ECM) -derived scaffolds are commonly utilized in preclinical tissue engineering studies as delivery vehicles for cells and growth factors. Translation into clinical use requires identifying a sterilization method that effectively removes bacteria but doesn’t harm scaffold function. To determine effectiveness of sterilization and impact on ECM scaffold integrity and function low temperature ethylene oxide and 15kGy electron beam irradiation techniques were evaluated. Scaffold sterility was assessed in accordance to United States Pharmacopeia Chapter 71. Scaffold matrix degradation was determined in vitro using enzymatic resistance tests and gel electrophoresis. Scaffold mechanics including elastic modulus, yield stress and collapse modulus were tested. Lastly, 14 Yorkshire pigs underwent ACL transection and bio-enhanced ACL repair using sterilized scaffolds. Histologic response of ligament, synovium and lymph nodes was compared at 4, 6, and 8 weeks. Ethylene oxide as well as electron beam irradiation yielded sterile scaffolds. Scaffold resistance to enzymatic digestion and protein integrity slightly decreased after electron beam irradiation while ethylene oxide altered scaffold matrix. Scaffold elastic modulus and yield stress were increased after electron beam treatment, while collapse modulus was increased after ethylene oxide treatment. No significant changes in ACL dimensions, in vivo scaffold resorption rate, or histologic response of synovium, ligament and lymph nodes with either terminal sterilization technique were detectable. In conclusion, this study identifies two methods to terminally sterilize an ECM scaffold. In vitro scaffold properties were slightly changed without significantly influencing the biologic responses of the surrounding tissues in vivo. This is a critical step toward translating new tissue engineering strategies to clinical trials. PMID:26088294

  16. Comparison of electron beam and laser beam powder bed fusion additive manufacturing process for high temperature turbine component materials

    Energy Technology Data Exchange (ETDEWEB)

    Dryepondt, Sebastien N [ORNL; Kirka, Michael M [ORNL; Pint, Bruce A [ORNL; Ryan, Daniel [Solar Turbines, Inc.

    2016-04-01

    The evolving 3D printer technology is now at the point where some turbine components could be additive manufactured (AM) for both development and production purposes. However, this will require a significant evaluation program to qualify the process and components to meet current design and quality standards. The goal of the project was to begin characterization of the microstructure and mechanical properties of Nickel Alloy X (Ni-22Cr-18Fe-9Mo) test bars fabricated by powder bed fusion (PBF) AM processes that use either an electron beam (EB) or laser beam (LB) power source. The AM materials produced with the EB and LB processes displayed significant differences in microstructure and resultant mechanical properties. Accordingly, during the design analysis of AM turbine components, the specific mechanical behavior of the material produced with the selected AM process should be considered. Comparison of the mechanical properties of both the EB and LB materials to those of conventionally processed Nickel Alloy X materials indicates the subject AM materials are viable alternatives for manufacture of some turbine components.

  17. X-Ray diffraction and scanning electron microscopy-energy dispersive spectroscopic analysis of ceramõmetal interface at different firing temperatures

    Directory of Open Access Journals (Sweden)

    Monika Saini

    2010-01-01

    Full Text Available Objective: Porcelain chipping from porcelain fused to metal restoration has been Achilles heel till date. There has been advent of newer ceramics in past but but none of them has been a panacea for Porcelain fracture. An optimal firing is thus essential for the clinical success of the porcelain-fused to metal restoration. The aim of the present study was to evaluate ceramo-metal interface at different firing temperature using XRD and SEM-EDS analysis. Clinical implication of the study was to predict the optimal firing temperature at which porcelain should be fused with metal in order to possibly prevent the occasional failure of the porcelain fused to metal restorations. Materials and Methods: To meet the above-mentioned goal, porcelain was fused to metal at different firing temperatures (930-990°C in vacuum. The microstructural observations of interface between porcelain and metal were evaluated using X-ray diffraction and scanning electron microscopy with energy dispersive spectroscopy. Results: Based on the experimental investigation of the interaction zone of porcelain fused to metal samples, it was observed that as the firing temperature was increased, the pores became less in number as well as the size of the pores decreased at the porcelain/metal interface upto 975°C but increased in size at 990°C. The least number of pores with least diameter were found in samples fired at 975°C. Several oxides like Cr 2 O 3 , NiO, and Al 2 O 3 and intermetallic compounds (CrSi 2 , AlNi 3 were also formed in the interaction zone. Conclusions : It is suggested that the presence of pores may trigger the crack propagation along the interface, causing the failure of the porcelain fused to metal restoration during masticatory action.

  18. Study the Effect of Substrate Temperature on Structural and Electrical Properties of Electron Beam Evaporated In{sub 1−x}Sb{sub x} Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Rahul, E-mail: rhl.jaunpur@gmail, E-mail: srvfzb@rediffmail.com; Vishwakarma, S. R., E-mail: rhl.jaunpur@gmail, E-mail: srvfzb@rediffmail.com; Verma, Aneet Kumar, E-mail: rhl.jaunpur@gmail, E-mail: srvfzb@rediffmail.com; Tripathi, Ravishankar Nath, E-mail: rhl.jaunpur@gmail, E-mail: srvfzb@rediffmail.com [Advance thin films laboratory, Department of Physics and Electronics, Dr. R. M. L Avadh University, Faizabad‐ 224001 (U.P) (India)

    2011-10-20

    Indium Antimonide (InSb) is a promising materials for mid and long wavelength infrared and high speed devices applications because of its small band gap. The Indium Antimonide (InSb) thin films have been deposited onto well cleaned glass substrate at different substrate temperatures (300 K, 323 K, 373 K) by electron beam evaporation technique in the high vacuum chamber at vacuum pressure ∼10{sup −5} torr using prepared non‐stoichiometric InSb powder using formula In{sub 1−x}Sb{sub x}(0.2temperature. X‐ray diffraction studies of thin films confirmed the polycrystalline and show preferential orientation along the (111) plane. The particle size (D), dislocation density (δ) and strain (ε) were evaluated. The particle size increases with increase of substrate temperature while dislocation density and strain are decreases. Hall measurements indicate that the films were n‐type, having carrier concentration ∼10{sup 14} cm{sup −3} and mobility ∼10{sup 3} cm{sup 2}/Vs for the film thickness of 300 nm. It is also observed that the carrier concentration (N) decreases and the Hall mobility (μ) increases with the increase of substrate temperature. At the request of all authors, Rahul, S. R. Vishwakarma, Aneet Kumar Verma, and Ravi Shankar Nath Tripathi, and due to errors in the article, the paper is retracted from the scientific record.

  19. Cross effect of temperature, pH and free ammonia on autotrophic denitrification process with sulphide as electron donor.

    Science.gov (United States)

    Fajardo, Carmen; Mora, Mabel; Fernández, Isaac; Mosquera-Corral, Anuska; Campos, José Luis; Méndez, Ramón

    2014-02-01

    Autotrophic denitrification is a suitable technology to simultaneously remove oxidised nitrogen compounds and reduced sulphur compounds yielding nitrogen gas, sulphur and sulphate as the main products. In this work, several batch tests were conducted to investigate the cross effect of temperature, pH and free ammonia on the autotrophic denitrification. Denitrification efficiencies above 95% were achieved at 35°C and pH 7.5-8.0 with maximum specific autotrophic denitrifying activities up to 188mgN2g(-1)VSSd(-1). Free ammonia did not show any effect on denitrification at concentrations up to 53mg NH3-NL(-1). Different sulphide concentrations were also tested with stoichiometric nitrite and nitrate concentrations. Sulphide inhibited denitrification at concentrations higher than 200mgS(2-)L(-1). A 50% inhibition was also found at nitrite concentrations above 48mg NO2(-)-NL(-1). The maximum specific activity decreased until a value of 25mgN2g(-1) VSSd(-1) at 232mg NO2(-)-NL(-1). The Haldane model was used to describe denitrification inhibition caused by nitrite. Kinetic parameters determined from the fitting of experimental data were rmax=176mgN2g(-1)VSSd(-1), Ks=10.7mg NO2(-)-NL(-1) and Ki=34.7mg NO2(-)-NL(-1). The obtained model allowed optimising an autotrophic denitrification process by avoiding situations of inhibition and thus obtaining higher denitrification efficiencies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Electron spin resonance studies of Bi1-xScxFeO3 nanoparticulates: Observation of an enhanced spin canting over a large temperature range

    Science.gov (United States)

    Titus, S.; Balakumar, S.; Sakar, M.; Das, J.; Srinivasu, V. V.

    2017-12-01

    Bi1-xScxFeO3 (x = 0.0, 0.1, 0.15, 0.25) nano particles were synthesized by sol gel method. We then probed the spin system in these nano particles using electron spin resonance technique. Our ESR results strongly suggest the scenario of modified spin canted structures. Spin canting parameter Δg/g as a function of temperature for Scandium doped BFO is qualitatively different from undoped BFO. A broad peak is observed for all the Scandium doped BFO samples and an enhanced spin canting over a large temperature range (75-210 K) in the case of x = 0.15 doping. We also showed that the asymmetry parameter and thereby the magneto-crystalline anisotropy in these BSFO nanoparticles show peaks around 230 K for (x = 0.10 and 0.15) and beyond 300 K for x = 0.25 system. Thus, we established that the Sc doping significantly modifies the spin canting and magneto crystalline anisotropy in the BFO system.

  1. Morphology and electronic transport of polycrystalline silicon films deposited by SiF sub 4 /H sub 2 at a substrate temperature of 200 deg. C

    CERN Document Server

    Hazra, S; Ray, S

    2002-01-01

    Undoped and phosphorous doped polycrystalline silicon (poly-Si) films were deposited using a SiF sub 4 /H sub 2 gas mixture at a substrate temperature of 200 deg. C by radio frequency plasma enhanced chemical vapor deposition (rf-PECVD). Fourier transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD) experiments reveal that the present poly-Si films are equivalent to the poly-Si films deposited at high temperature (>600 deg. C). XRD and scanning electron microscope observations show that the crystalline quality of slightly P-doped film is better compared to that of undoped poly-Si films. Phosphorus atom concentration in the slightly P-doped poly-Si film is 5.0x10 sup 1 sup 6 atoms/cm sup 3. Association of a few phosphorous atoms in the silicon matrix enhances crystallization as eutectic-forming metals do. Dark conductivity of slightly P-doped film is 4 orders of magnitude higher, although mobility-lifetime product (eta mu tau) is 2 orders of magnitude lower than that of undoped film. The presence o...

  2. Electron-phonon coupling in solubilized LHC II complexes of green plants investigated by line-narrowing and temperature-dependent fluorescence spectroscopy

    CERN Document Server

    Pieper, J K; Renger, G; Schödel, R; Voigt, J

    2001-01-01

    Line-narrowed and temperature-dependent fluorescence spectra are reported for the solubilized trimeric light-harvesting complex of Photosystem II (LHC II). Special attention has been paid to eliminate effects owing to reabsorption and to ensure that the line-narrowed fluorescence spectra are virtually unaffected by hole burning or scattering artifacts. Analysis of line-narrowed fluorescence spectra at 4.2 K indicates that the lowest Q//y-state of LHC II is characterized by weak electron-phonon coupling with a Huang-Rhys factor of similar to 0.9 and a broad and strongly asymmetric one- phonon profile with a peak frequency omega//m of 15 cm**-**1 and a width of Gamma = 105 cm**-**1. The 4.2 K fluorescence data are further consistent with the assignment of the lowest Q//y-state at similar to 680.0 nm and an inhomogeneous width of similar to 80 cm**- **1 gathered from a recent hole-burning study (Pieper et al. J. Phys. Chem. A 1999, 103, 2412). The temperature dependence of the fluorescence spectra of LHC II is s...

  3. An easy-to-fabricate low-temperature TiO2 electron collection layer for high efficiency planar heterojunction perovskite solar cells

    Directory of Open Access Journals (Sweden)

    B. Conings

    2014-08-01

    Full Text Available Organometal trihalide perovskite solar cells arguably represent the most auspicious new photovoltaic technology so far, as they possess an astonishing combination of properties. The impressive and brisk advances achieved so far bring forth highly efficient and solution processable solar cells, holding great promise to grow into a mature technology that is ready to be embedded on a large scale. However, the vast majority of state-of-the-art perovskite solar cells contains a dense TiO2 electron collection layer that requires a high temperature treatment (>450 °C, which obstructs the road towards roll-to-roll processing on flexible foils that can withstand no more than ∼150 °C. Furthermore, this high temperature treatment leads to an overall increased energy payback time and cumulative energy demand for this emerging photovoltaic technology. Here we present the implementation of an alternative TiO2 layer formed from an easily prepared nanoparticle dispersion, with annealing needs well within reach of roll-to-roll processing, making this technology also appealing from the energy payback aspect. Chemical and morphological analysis allows to understand and optimize the processing conditions of the TiO2 layer, finally resulting in a maximum obtained efficiency of 13.6% for a planar heterojunction solar cell within an ITO/TiO2/CH3NH3PbI3-xClxpoly(3-hexylthiophene/Ag architecture.

  4. Calibrating IR Cameras for In-Situ Temperature Measurement During the Electron Beam Melting Process using Inconel 718 and Ti-Al6-V4

    Energy Technology Data Exchange (ETDEWEB)

    Dinwiddie, Ralph Barton [ORNL; Lloyd, Peter D [ORNL; Dehoff, Ryan R [ORNL; Lowe, Larry E [ORNL

    2016-01-01

    The Department of Energy s (DOE) Manufacturing Demonstration Facility (MDF) at Oak Ridge National Laboratory (ORNL) provides world-leading capabilities in advanced manufacturing (AM) facilities which leverage previous, on-going government investments in materials science research and characterization. MDF contains systems for fabricating components with complex geometries using AM techniques (i.e. 3D-Printing). Various metal alloy printers, for example, use electron beam melting (EBM) systems for creating these components which are otherwise extremely difficult- if not impossible- to machine. ORNL has partnered with manufacturers on improving the final part quality of components and developing new materials for further advancing these devices. One method being used to study (AM) processes in more depth relies on the advanced imaging capabilities at ORNL. High performance mid-wave infrared (IR) cameras are used for in-situ process monitoring and temperature measurements. However, standard factory calibrations are insufficient due to very low transmissions of the leaded glass window required for X-ray absorption. Two techniques for temperature calibrations will be presented and compared. In-situ measurement of emittance will also be discussed. Ample information can be learned from in-situ IR process monitoring of the EBM process. Ultimately, these imaging systems have the potential for routine use for online quality assurance and feedback control.

  5. Analysis of hexachlorocyclohexanes in aquatic samples by one-step microwave-assisted headspace controlled-temperature liquid-phase microextraction and gas chromatography with electron capture detection.

    Science.gov (United States)

    Tsai, Ming-Yuen; Kumar, Ponnusamy Vinoth; Li, Hong-Ping; Jen, Jen-Fon

    2010-03-19

    A microwave-assisted headspace controlled-temperature liquid-phase microextraction (HS-CT-LPME) technique was applied for the one-step sample extraction of hexachlorocyclohexanes (HCHs) from aqueous samples with complicate matrices, followed by gas chromatographic (GC) analysis with electron capture detector (ECD). Microwave heating was applied to accelerate the evaporation of HCHs into the headspace and an external-cooling system was used to control the temperature in the sampling zone for HS-LPME. Parameters affecting extraction efficiency, such as LPME solvent, sampling position and temperature, microwave power and irradiation time (the same as sampling time), sample pH, and salt addition were thoroughly investigated. From experimental results, the following conditions were selected for the extraction of HCHs from 10-mL water sample (pH 2.0) by using 1-octanol as the LPME solvent, with sampling done at 38 degrees C for 6 min under 167 W of microwave irradiation. The detections were linear in the concentration of 0.1-10 microg/L for alpha-HCH and gamma-HCH, and 1-100 microg/L for beta-HCH and delta-HCH. Detection limits were 0.05, 0.4, 0.03 and 0.1 microg/L for alpha-, beta-, gamma- and delta-HCH, respectively. Environmental water samples were analyzed with recovery between 86.4% and 102.4% for farm-field water, and between 92.2% and 98.6% for river water. The proposed method proved to serve as a simple, rapid, sensitive, inexpensive, and eco-friendly procedure for the determination of HCHs in aqueous samples. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Conformational properties of 1-silyl-1-silacyclohexane, C(5)H(10)SiHSiH(3): gas electron diffraction, low-temperature NMR, temperature-dependent Raman spectroscopy, and quantum chemical calculations (&).

    Science.gov (United States)

    Wallevik, Sunna O; Bjornsson, Ragnar; Kvaran, Agúst; Jonsdottir, Sigridur; Arnason, Ingvar; Belyakov, Alexander V; Baskakov, Alexander A; Hassler, Karl; Oberhammer, Heinz

    2010-02-11

    The molecular structure of axial and equatorial conformers of 1-silyl-silacyclohexane, C(5)H(10)SiHSiH(3), and the thermodynamic equilibrium between these species were investigated by means of gas electron diffraction (GED), dynamic nuclear magnetic resonance (DNMR), temperature-dependent Raman spectroscopy, and quantum chemical calculations (CCSD(T), MP2 and DFT methods). According to GED, the compound exists as a mixture of two conformers possessing the chair conformation of the six-membered ring and C(s) symmetry and differing in the axial or equatorial position of the SiH(3) group (axial = 57(7) mol %/equatorial = 43(7) mol %) at T = 321 K. This corresponds to an A value (free energy difference = G(axial) - G(equatorial)) of -0.17(15) kcal mol(-1). A low-temperature (13)C NMR experiment using SiD(4) as a solvent resulted in an axial/equatorial ratio of 45(3)/55(3) mol % at 110 K corresponding to an A value of 0.05(3) kcal mol(-1), and a DeltaG(#) value of 5.7(2) kcal mol(-1) was found at 124 K. Temperature-dependent Raman spectroscopy in the temperature range of 210-300 K of the neat liquid, a THF solution, and a heptane solution indicates that the axial conformer is favored over the equatorial one by 0.26(10), 0.23(10), and 0.22(10) kcal mol(-1) (DeltaH values), respectively. CCSD(T)/CBS and MP2/CBS calculations in general predict both conformations to have very similar stability and are, thus, in excellent agreement with the DNMR result but in a slight disagreement with the GED and Raman results. Two DFT functionals, that account for dispersion interactions, M06-2X/pc-3 and B2PLYP-D/QZVPP, deviate from the high-level coupled cluster and MP2 calculations by only 0.1 kcal mol(-1) on average, whereas B3LYP/pc-3 calculations greatly overestimate the stability of the equatorial conformer.

  7. Combination of the ionic-to-atomic line intensity ratios from two test elements for the diagnostic of plasma temperature and electron number density in Inductively Coupled Plasma Atomic Emission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tognoni, E. [Istituto per i Processi Chimico-Fisici, Area della Ricerca del Consiglio Nazionale delle Ricerche Via Moruzzi 1, 56124 Pisa (Italy)], E-mail: tognoni@ipcf.cnr.it; Hidalgo, M.; Canals, A. [Departamento de Quimica Analitica, Nutricion y Bromatologia. Universidad de Alicante. Apdo. 99, 03080, Alicante (Spain); Cristoforetti, G.; Legnaioli, S.; Salvetti, A.; Palleschi, V. [Istituto per i Processi Chimico-Fisici, Area della Ricerca del Consiglio Nazionale delle Ricerche Via Moruzzi 1, 56124 Pisa (Italy)

    2007-05-15

    In Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) spectrochemical analysis, the MgII(280.270 nm)/MgI(285.213 nm) ionic to atomic line intensity ratio is commonly used as a monitor of the robustness of operating conditions. This approach is based on the univocal relationship existing between intensity ratio and plasma temperature, for a pure argon atmospheric ICP in thermodynamic equilibrium. In a multi-elemental plasma in the lower temperature range, the measurement of the intensity ratio may not be sufficient to characterize temperature and electron density. In such a range, the correct relationship between intensity ratio and plasma temperature can be calculated only when the complete plasma composition is known. We propose the combination of the line intensity ratios of two test elements (double ratio) as an effective diagnostic tool for a multi-elemental low temperature LTE plasma of unknown composition. In particular, the variation of the double ratio allows us discriminating changes in the plasma temperature from changes in the electron density. Thus, the effects on plasma excitation and ionization possibly caused by introduction of different samples and matrices in non-robust conditions can be more accurately interpreted. The method is illustrated by the measurement of plasma temperature and electron density in a specific analytic case.

  8. Temperature dependence of photoluminescence spectra of bilayer two-dimensional electron gases in LaAlO3/SrTiO3 superlattices: coexistence of Auger recombination and single-carrier trapping

    Directory of Open Access Journals (Sweden)

    H. J. Harsan Ma

    2015-06-01

    Full Text Available We report emerging photoluminescence (PL of bilayer two-dimensional electron gases (2DEG in LaAlO3/SrTiO3 (LAO/STO systems. A strong blue PL emerges in bilayer-2DEGs in LAO/STO/LAO/STO which doesn’t show in LAO/STO. PL band in bilayer-2DEGs includes both nearly temperature independent Auger recombination and temperature dependent free electron trapping while it crossovers from Auger recombination to single carrier trapping in LAO/STO. The PL signal of free electron trapping appears at high temperatures and it is much stronger than Auger recombination in the conducting channel in bilayer 2DEGs. This observation shows that high mobility carriers dominate the carrier dynamics in bilayer-2DEGs in LAO/STO superlattices.

  9. Reducing Hysteresis and Enhancing Performance of Perovskite Solar Cells Using Low-Temperature Processed Y-Doped SnO2 Nanosheets as Electron Selective Layers.

    Science.gov (United States)

    Yang, Guang; Lei, Hongwei; Tao, Hong; Zheng, Xiaolu; Ma, Junjie; Liu, Qin; Ke, Weijun; Chen, Zhiliang; Xiong, Liangbin; Qin, Pingli; Chen, Zhao; Qin, Minchao; Lu, Xinhui; Yan, Yanfa; Fang, Guojia

    2017-01-01

    Despite the rapid increase of efficiency, perovskite solar cells (PSCs) still face some challenges, one of which is the current-voltage hysteresis. Herein, it is reported that yttrium-doped tin dioxide (Y-SnO2 ) electron selective layer (ESL) synthesized by an in situ hydrothermal growth process at 95 °C can significantly reduce the hysteresis and improve the performance of PSCs. Comparison studies reveal two main effects of Y doping of SnO2 ESLs: (1) it promotes the formation of well-aligned and more homogeneous distribution of SnO2 nanosheet arrays (NSAs), which allows better perovskite infiltration, better contacts of perovskite with SnO2 nanosheets, and improves electron transfer from perovskite to ESL; (2) it enlarges the band gap and upshifts the band energy levels, resulting in better energy level alignment with perovskite and reduced charge recombination at NSA/perovskite interfaces. As a result, PSCs using Y-SnO2 NSA ESLs exhibit much less hysteresis and better performance compared with the cells using pristine SnO2 NSA ESLs. The champion cell using Y-SnO2 NSA ESL achieves a photovoltaic conversion efficiency of 17.29% (16.97%) when measured under reverse (forward) voltage scanning and a steady-state efficiency of 16.25%. The results suggest that low-temperature hydrothermal-synthesized Y-SnO2 NSA is a promising ESL for fabricating efficient and hysteresis-less PSC. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Conformational properties of 1-cyano-1-silacyclohexane, C5H10SiHCN: Gas electron diffraction, low-temperature NMR and quantum chemical calculations

    Science.gov (United States)

    Belyakov, Alexander V.; Sigolaev, Yrii F.; Shlykov, Sergey A.; Wallevik, Sunna Ó.; Jonsdottir, Nanna R.; Jonsdottir, Sigridur; Kvaran, Ágúst; Bjornsson, Ragnar; Arnason, Ingvar

    2017-03-01

    The conformational preference of the cyano group of the 1-cyano-1-silacyclohexane was studied experimentally by means of gas electron diffraction (GED) and dynamic nuclear magnetic resonance (DNMR) as well as by quantum chemical (QC) calculations applying high-level coupled cluster methods as well as DFT methods. According to the GED experiment, the compound exists in the gas-phase as a mixture of two conformers possessing the chair conformation of the six-membered ring and Cs symmetry while differing in the axial or equatorial position of the substituent (axial = 84(12) mol %/equatorial = 16(12) mol %) at T = 279(3) K, corresponding to an A value (Gax - Geq) of -1.0(4) kcal mol-1. Gas-phase CCSD(T) calculations predict an A value of -0.72 kcal mol-1 at 279 K. In contrast, the low-temperature 13C NMR experiments resulted in an axial/equatorial ratio of 35/65 mol % at 120 K corresponding to an A value of 0.14 kcal mol-1. An average value for ΔG#e→a = 5.6 ± 0.1 kcal mol-1 was obtained for the temperature range 110-145 K. The dramatically different conformational behaviour in the gas-phase (GED) compared to the liquid phase (DNMR) suggests a strong solvation effect. According to natural bond orbital analysis the axial conformer of the title compound is an example of stabilization of a form, which is not favored by electrostatic effects and is favored predominantly by steric and conjugation effects.

  11. Using Secondary Nuclear Reaction Products to Infer the Fuel Areal Density, Convergence, and Electron Temperatures of Imploding D2 and D3 He Filled Capsules on the NIF

    Science.gov (United States)

    Lahmann, B.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Hartouni, E. P.; Yeamans, C. B.; Rinderknecht, H. G.; Sayre, D. B.; Grim, G.; Baker, K.; Casey, D. T.; Dewald, E.; Goyon, C.; Jarrott, L. C.; Khan, S.; Lepape, S.; Ma, T.; Pickworth, L.; Shah, R.; Kline, J. L.; Perry, T.; Zylstra, A.; Yi, S. A.

    2017-10-01

    In deuterium-filled inertial confinement fusion implosions, 0.82 MeV 3He and 1.01 MeV T (generated by the primary DD reaction branches) can undergo fusion reactions with the thermal deuterium plasma to create secondary D3He protons and DT neutrons, respectively. In regimes of moderate fuel areal density (ρR 5 - 100 mg/cm2) the ratio of both of these secondary yields to the primary yield can be used to infer the fuel ρR, convergence ratio (CR), and an electron temperature (Te) . This technique has been used on a myriad of deuterium filled capsule implosion experiments on the NIF using the neutron time of flight (nTOF) diagnostics to measure the yield of secondary DT neutrons and CR-39 based wedge range filters (WRFs) to measure the yield of secondary D3He protons. This work is supported in part by the U.S. DoE and LLNL.

  12. Three-dimensional electromagnetic strong turbulence: Dependence of the statistics and dynamics of strong turbulence on the electron to ion temperature ratio

    Science.gov (United States)

    Graham, D. B.; Cairns, Iver H.; Skjaeraasen, O.; Robinson, P. A.

    2012-02-01

    The temperature ratio Ti/Te of ions to electrons affects both the ion-damping rate and the ion-acoustic speed in plasmas. The effects of changing the ion-damping rate and ion-acoustic speed are investigated for electrostatic strong turbulence and electromagnetic strong turbulence in three dimensions. When ion damping is strong, density wells relax in place and act as nucleation sites for the formation of new wave packets. In this case, the density perturbations are primarily density wells supported by the ponderomotive force. For weak ion damping, corresponding to low Ti/Te, ion-acoustic waves are launched radially outwards when wave packets dissipate at burnout, thereby increasing the level of density perturbations in the system and thus raising the level of scattering of Langmuir waves off density perturbations. Density wells no longer relax in place so renucleation at recent collapse sites no longer occurs, instead wave packets form in background low density regions, such as superpositions of troughs of propagating ion-acoustic waves. This transition is found to occur at Ti/Te ≈ 0.1. The change in behavior with Ti/Te is shown to change the bulk statistical properties, scaling behavior, spectra, and field statistics of strong turbulence. For Ti/Te>rsim0.1, the electrostatic results approach the predictions of the two-component model of Robinson and Newman, and good agreement is found for Ti/Te>rsim0.15.

  13. Enhancing the Performance of Quantum Dot Light-Emitting Diodes Using Room-Temperature-Processed Ga-Doped ZnO Nanoparticles as the Electron Transport Layer

    KAUST Repository

    Cao, Sheng

    2017-04-19

    Colloidal ZnO nanoparticle (NP) films are recognized as efficient electron transport layers (ETLs) for quantum dot light-emitting diodes (QD-LEDs) with good stability and high efficiency. However, because of the inherently high work function of such films, spontaneous charge transfer occurs at the QD/ZnO interface in such a QD-LED, thus leading to reduced performance. Here, to improve the QD-LED performance, we prepared Ga-doped ZnO NPs with low work functions and tailored band structures via a room-temperature (RT) solution process without the use of bulky organic ligands. We found that the charge transfer at the interface between the CdSe/ZnS QDs and the doped ZnO NPs was significantly weakened because of the incorporated Ga dopants. Remarkably, the as-assembled QD-LEDs, with Ga-doped ZnO NPs as the ETLs, exhibited superior luminances of up to 44 000 cd/m2 and efficiencies of up to 15 cd/A, placing them among the most efficient red-light QD-LEDs ever reported. This discovery provides a new strategy for fabricating high-performance QD-LEDs by using RT-processed Ga-doped ZnO NPs as the ETLs, which could be generalized to improve the efficiency of other optoelectronic devices.

  14. Analyses of Levofloxacin Adsorption on Pretreated Barley Straw with Respect to Temperature: Kinetics, π-π Electron-Donor-Acceptor Interaction and Site Energy Distribution.

    Science.gov (United States)

    Yan, Bei; Niu, Catherine Hui; Wang, Jian

    2017-07-18

    Levofloxacin, representative of an important class of fluoroquinolone antibiotics, has been considered to be one of the emerging pollutants in various water sources. In this paper, adsorption of levofloxacin from artificial contaminated water was done by pretreated barley straw adsorbent obtained from raw barley straw after modification by H3PO4 impregnation and microwave heating. The adsorption kinetics was investigated at various temperatures and levofloxacin concentrations, and the activation energy was determined. In addition, site energy distribution of the pretreated barley straw for levofloxacin adsorption was estimated based on the equilibrium adsorption data. The average site energy and standard deviation of the distribution were determined and applied to analyze the interaction strength between the adsorbent and adsorbate, and adsorption site heterogeneity. The π-π electron-donor-acceptor interactions between the π* aromatic C═C of pretreated barley straw adsorbent and π* carbon atom in benzene ring attached to fluorine of levofloxacin was investigated by C K-edge X-ray absorption near-edge structure spectroscopy. The results and methodologies in this work could be transferrable to investigate extended systems of water treatment.

  15. Soft x-ray absorption spectroscopy of metalloproteins and high-valent metal-complexes at room temperature using free-electron lasers.

    Science.gov (United States)

    Kubin, Markus; Kern, Jan; Gul, Sheraz; Kroll, Thomas; Chatterjee, Ruchira; Löchel, Heike; Fuller, Franklin D; Sierra, Raymond G; Quevedo, Wilson; Weniger, Christian; Rehanek, Jens; Firsov, Anatoly; Laksmono, Hartawan; Weninger, Clemens; Alonso-Mori, Roberto; Nordlund, Dennis L; Lassalle-Kaiser, Benedikt; Glownia, James M; Krzywinski, Jacek; Moeller, Stefan; Turner, Joshua J; Minitti, Michael P; Dakovski, Georgi L; Koroidov, Sergey; Kawde, Anurag; Kanady, Jacob S; Tsui, Emily Y; Suseno, Sandy; Han, Zhiji; Hill, Ethan; Taguchi, Taketo; Borovik, Andrew S; Agapie, Theodor; Messinger, Johannes; Erko, Alexei; Föhlisch, Alexander; Bergmann, Uwe; Mitzner, Rolf; Yachandra, Vittal K; Yano, Junko; Wernet, Philippe

    2017-09-01

    X-ray absorption spectroscopy at the L-edge of 3d transition metals provides unique information on the local metal charge and spin states by directly probing 3d-derived molecular orbitals through 2p-3d transitions. However, this soft x-ray technique has been rarely used at synchrotron facilities for mechanistic studies of metalloenzymes due to the difficulties of x-ray-induced sample damage and strong background signals from light elements that can dominate the low metal signal. Here, we combine femtosecond soft x-ray pulses from a free-electron laser with a novel x-ray fluorescence-yield spectrometer to overcome these difficulties. We present L-edge absorption spectra of inorganic high-valent Mn complexes (Mn ∼ 6-15 mmol/l) with no visible effects of radiation damage. We also present the first L-edge absorption spectra of the oxygen evolving complex (Mn4CaO5) in Photosystem II (Mn < 1 mmol/l) at room temperature, measured under similar conditions. Our approach opens new ways to study metalloenzymes under functional conditions.

  16. Soft x-ray absorption spectroscopy of metalloproteins and high-valent metal-complexes at room temperature using free-electron lasers

    Directory of Open Access Journals (Sweden)

    Markus Kubin

    2017-09-01

    Full Text Available X-ray absorption spectroscopy at the L-edge of 3d transition metals provides unique information on the local metal charge and spin states by directly probing 3d-derived molecular orbitals through 2p-3d transitions. However, this soft x-ray technique has been rarely used at synchrotron facilities for mechanistic studies of metalloenzymes due to the difficulties of x-ray-induced sample damage and strong background signals from light elements that can dominate the low metal signal. Here, we combine femtosecond soft x-ray pulses from a free-electron laser with a novel x-ray fluorescence-yield spectrometer to overcome these difficulties. We present L-edge absorption spectra of inorganic high-valent Mn complexes (Mn ∼ 6–15 mmol/l with no visible effects of radiation damage. We also present the first L-edge absorption spectra of the oxygen evolving complex (Mn4CaO5 in Photosystem II (Mn < 1 mmol/l at room temperature, measured under similar conditions. Our approach opens new ways to study metalloenzymes under functional conditions.

  17. Analysis of electron temperature, impurity transport and MHD activity with multi-energy soft x-ray diagnostic in EAST tokamak

    Science.gov (United States)

    Heng, LAN; Guosheng, XU; Kevin, TRITZ; Ning, YAN; Tonghui, SHI; Yongliang, LI; Tengfei, WANG; Liang, WANG; Jingbo, CHEN; Yanmin, DUAN; Yi, YUAN; Youwen, SUN; Shuai, GU; Qing, ZANG; Ran, CHEN; Liang, CHEN; Xingwei, ZHENG; Shuliang, CHEN; Huan, LIU; Yang, YE; Huiqian, WANG; Baonian, WAN; the EAST Team

    2017-12-01

    A new edge tangential multi-energy soft x-ray (ME-SXR) diagnostic with high temporal (≤ 0.1 ms) and spatial (∼1 cm) resolution has been developed for a variety of physics topics studies in the EAST tokamak plasma. The fast edge electron temperature profile (approximately from r/a∼ 0.6 to the scrape-off layer) is investigated using ME-SXR diagnostic system. The data process was performed by the ideal ‘multi-foil’ technique, with no priori assumptions of plasma profiles. Reconstructed ME-SXR emissivity profiles for a variety of EAST experimental scenarios are presented here for the first time. The applications of the ME-SXR for study of the effects of resonant magnetic perturbation on edge localized modes and the first time neon radiating divertor experiment in EAST are also presented in this work. It has been found that neon impurity can suppress the 2/1 tearing mode and trigger a 3/1 MHD mode.

  18. Temperature dependent electronic structure and magnetism of metallic systems with localized moments. Application on gadolinium; Temperaturabhaengige elektronische Struktur und Magnetismus von metallischen Systemen mit lokalisierten Momenten. Anwendung auf Gadolinium

    Energy Technology Data Exchange (ETDEWEB)

    Santos, C.A.M. dos

    2005-06-24

    This thesis focuses on the theoretical investigation of the temperature dependent electronic and magnetic properties of metallic 4f-systems with localized magnetic moments. The presented theory is based on the Kondo-lattice model, which describes the interaction between a system of 4f-localized magnetic moments and the itinerant conduction band electrons. This interaction is responsible for a remarkable temperature dependence of the electronic structure mainly induced by the subsystem of 4f-localized moments. The many-body problem provoked by the Kondo-lattice model is solved by using a moment conserving Green function technique, which takes care of several special limiting cases. This method reproduces the T=0-exact solvable limiting case of the ferromagnetically saturated semiconductor. The temperature dependent magnetic properties of the 4f-localized subsystem are evaluated by means of a modified Rudermann-Kittel-Kasuya-Yosida (RKKY) type procedure, which together with the solution of the electronic part allows for a self-consistent calculation of all the electronic and magnetic properties of the model. Results of model calculations allow to deduce the conditions for ferromagnetism in dependence of the electron density n, exchange coupling J and temperature T. The self-consistently calculated Curie temperature T{sub C} is presented and discussed in dependence of relevant parameters (J, n, and W) of the model. The second part of the thesis is concerned with the investigation of the temperature dependence of the electronic and magnetic properties of the rare-earth metal Gadolinium (Gd). The original Kondo-lattice model is extended to a multi-band Kondo-lattice model and combined with an ab-initio band structure calculation to take into account for the multi-bands in real systems. The single-particle energies of the model are taken from an augmented spherical wave (ASW) band structure calculation. The proposed method avoids the double counting of relevant

  19. Comparison of 2 electronic cowside tests to detect subclinical ketosis in dairy cows and the influence of the temperature and type of blood sample on the test results.

    Science.gov (United States)

    Iwersen, M; Klein-Jöbstl, D; Pichler, M; Roland, L; Fidlschuster, B; Schwendenwein, I; Drillich, M

    2013-01-01

    The objective of this study was to determine the suitability of 2 electronic hand-held devices [FreeStyle Precision (FSP), Abbott GmbH & Co. KG, Wiesbaden, Germany and GlucoMen LX Plus (GLX), A. Menarini GmbH, Vienna, Austria] for measuring β-hydroxybutyrate (BHBA) in dairy cows. Three experiments were conducted to evaluate (1) the diagnostic performance of the devices, (2) the effect of the type of blood sample, and (3) the influence of the ambient temperature on the determined results. A total of 415 blood samples from lactating Holstein and Simmental cows were collected and analyzed with both devices (whole blood) and in a laboratory (serum). Correlation coefficients between whole-blood and serum BHBA concentrations were highly significant, with 94% for the FSP and 80% for the GLX device. Based on thresholds for subclinical ketosis of 1.2 and 1.4 mmol of BHBA/L, results obtained with the hand-held devices were evaluated by receiver operating characteristics analyses. This resulted in adjusted thresholds of 1.2 and 1.4 mmol/L for the FSP and 1.1 and 1.3 mmol/L for the GLX device. Applying these thresholds, sensitivities were 98 and 100% for the FSP and 80 and 86% for the GLX device, respectively. Corresponding specificities were 90 and 97% for the FSP and 87 and 96% for the GLX device, respectively. Additionally, concentrations of BHBA were tested with both devices in whole blood, EDTA-added whole blood, and in their resulting serum and plasma, collected from 65 animals. Determined BHBA concentrations were similar within each device for whole and EDTA-added blood, and in serum and plasma, but differed between whole blood and serum and between EDTA-added blood and plasma. Blood samples with low (0.4 mmol/L), medium (1.1 mmol/L), and high (1.6 mmol/L) BHBA concentrations were stored between +5 to +32°C and analyzed repeatedly at temperature levels differing by 4°C. Additionally, devices and test strips were stored at equal conditions and used for measurement

  20. Ab initio and Monte Carlo investigations of structural, electronic and magnetic properties of new ferromagnetic Heusler alloys with high Curie temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Dannenberg, Antje

    2011-08-30

    The mechanism which causes many of the unusual thermomechanical properties of martensitic alloys, as for example, superelasticity and the shape-memory effect, is the martensitic transformation. The prototype ferromagnetic shape memory alloy (FSMA) is Ni{sub 2}MnGa. But a technological breakthrough is missing due to its poor ductility and low operation temperatures. The goal of this thesis is the proposal of new FSMA appropriate for future technological applications. I focus on X{sub 2}YZ Heusler alloys which are mainly based on Mn, Fe, Co, and Ni for the X and Y sites and Z=Ga or Zn. The big challenge of this work is to find material classes which combine the unique magnetomechanical properties of FSMA which are large recoverable magnetostrictive strains, high magnetocrystalline anisotropy energy, and highly mobile twin boundaries with transformation temperatures clearly above room temperature and a reduced brittleness. Such a study, providing material classes which from a theoretical point of view are promising candidates for future FSMA, will help the experimental physicists to select interesting subgroups in the vast number of possible chemical compositions of X{sub 2}YZ Heusler alloys. I have systematically varied the composition in the new Heusler alloys in order to find trends indicating generic tendencies of the material properties, for instance, as a function of the valence electron concentration e/a. A main feature of this thesis is the attempt to find the origin of the competing structural ordering tendencies between conventional X{sub 2}YZ and inverse (XY)XZ Heusler structures which are observed for all systems investigated. In the first part of this work the accuracy and predictive power of ab initio and Monte Carlo simulations is demonstrated by reproducing the experimental phase diagram of Ni-Mn-(Ga,In,Sn,Sb). The linear increasing and decreasing slopes of T{sub M} and T{sub C} can be reproduced by total and free energy calculations and the analysis