WorldWideScience

Sample records for temperature electrolysis system

  1. Hydrogen Production System with High Temperature Electrolysis for Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kentaro, Matsunaga; Eiji, Hoashi; Seiji, Fujiwara; Masato, Yoshino; Taka, Ogawa; Shigeo, Kasai

    2006-01-01

    Steam electrolysis with solid oxide cells is one of the most promising methods for hydrogen production, which has the potential to be high efficiency. Its most parts consist of environmentally sound and common materials. Recent development of ceramics with high ionic conductivity suggests the possibility of widening the range of operating temperature with maintaining the high efficiency. Toshiba is constructing a hydrogen production system with solid oxide electrolysis cells for nuclear power plants. Tubular-type cells using YSZ (Yttria-Stabilized- Zirconia) as electrolyte showed good performance of steam electrolysis at 800 to 900 deg C. Larger electrolysis cells with present configuration are to be combined with High Temperature Reactors. The hydrogen production efficiency on the present designed system is expected around 50% at 800 to 900 deg C of operating temperature. For the Fast Reactors, 'advanced cell' with higher efficiency at lower temperature are to be introduced. (authors)

  2. HYFIRE: fusion-high temperature electrolysis system

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.; Benenati, R.; Dang, V.D.; Horn, F.; Isaacs, H.; Lazareth, O.; Makowitz, H.; Usher, J.

    1980-01-01

    The Brookhaven National Laboratory (BNL) is carrying out a comprehensive conceptual design study called HYFIRE of a commercial fusion Tokamak reactor, high-temperature electrolysis system. The study is placing particular emphasis on the adaptability of the STARFIRE power reactor to a synfuel application. The HYFIRE blanket must perform three functions: (a) provide high-temperature (approx. 1400 0 C) process steam at moderate pressures (in the range of 10 to 30 atm) to the high-temperature electrolysis (HTE) units; (b) provide high-temperature (approx. 700 to 800 0 C) heat to a thermal power cycle for generation of electricity to the HTE units; and (c) breed enough tritium to sustain the D-T fuel cycle. In addition to thermal energy for the decomposition of steam into its constitutents, H 2 and O 2 , electrical input is required. Power cycle efficiencies of approx. 40% require He cooling for steam superheat. Fourteen hundred degree steam coupled with 40% power cycle efficiency results in a process efficiency (conversion of fusion energy to hydrogen chemical energy) of 50%

  3. HYFIRE: a tokamak-high-temperature electrolysis system

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.; Benenati, R.; Horn, F.; Isaacs, H.; Lazareth, O.W.; Makowitz, H.; Usher, J.

    1980-01-01

    Brookhaven National Laboratory (BNL) is carrying out a comprehensive conceptual design study called HYFIRE of a commercial fusion Tokamak reactor, high-temperature electrolysis system. The study is placing particular emphasis on the adaptability of the STARFIRE power reactor to a synfuel application. The HYFIRE blanket must perform three functions: (a) provide high-temperature (approx. 1400 0 C) process steam at moderate pressures (in the range of 10 to 30 atm) to the high-temperature electrolysis (HTE) units; (b) provide high-temperature (approx. 700 0 to 800 0 C) heat to a thermal power cycle for generation of electricity to the HTE units; and (c) breed enough tritium to sustain the D-T fuel cycle. In addition to thermal energy for the decomposition of steam into its constituents, H 2 and O 2 , electrical input is required. Fourteen hundred degree steam coupled with 40% power efficiency results in a process efficiency (conversion of fusion energy to hydrogen chemical energy) of 50%

  4. HYFIRE: a tokamak-high-temperature electrolysis system

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.; Benenati, R.; Horn, F.; Isaacs, H.; Lazareth, O.W.; Makowitz, H.; Usher, J.

    1980-01-01

    Brookhaven National Laboratory (BNL) is carrying out a comprehensive conceptual design study called HYFIRE of a commercial fusion Tokamak reactor, high-temperature electrolysis system. The study is placing particular emphasis on the adaptability of the STARFIRE power reactor to a synfuel application. The HYFIRE blanket must perform three functions: (a) provide high-temperature (approx. 1400 0 C) process steam at moderate pressures (in the range of 10 to 30 atm) to the high-temperature electrolysis (HTE) units; (b) provide high-temperature (approx. 700 0 to 800 0 C) heat to a thermal power cycle for generation of electricity to the HTE units; and (c) breed enough tritium to sustain the D-T fuel cycle. In addition to thermal energy for the decomposition of steam into its constituents, H 2 and O 2 , electrical input is required. Fourteen hundred degree steam coupled with 40% power cycle efficiency results in a process efficiency (conversion of fusion energy to hydrogen chemical energy) of 50%

  5. High Temperature Electrolysis

    DEFF Research Database (Denmark)

    Elder, Rachael; Cumming, Denis; Mogensen, Mogens Bjerg

    2015-01-01

    High temperature electrolysis of carbon dioxide, or co-electrolysis of carbon dioxide and steam, has a great potential for carbon dioxide utilisation. A solid oxide electrolysis cell (SOEC), operating between 500 and 900. °C, is used to reduce carbon dioxide to carbon monoxide. If steam is also i...

  6. HYFIRE: a tokamak/high-temperature electrolysis system

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.P.; Benenati, R.; Varljen, T.C.; Chi, J.W.H.; Karbowski, J.S.

    1981-01-01

    The HYFIRE studies to date have investigated a number of technical approaches for using the thermal energy produced in a high-temperature Tokamak blanket to provide the electrical and thermal energy required to drive a high-temperature (> 1000 0 C) water electrolysis process. Current emphasis is on two design points, one consistent with electrolyzer peak inlet temperatures of 1400 0 C, which is an extrapolation of present experience, and one consistent with a peak electrolyzer temperature of 1100 0 C. This latter condition is based on current laboratory experience with high-temperature solid electrolyte fuel cells. Our major conclusion to date is that the technical integration of fusion and high-temperature electrolysis appears to be feasible and that overall hydrogen production efficiencies of 50 to 55% seem possible

  7. Highly efficient high temperature electrolysis

    DEFF Research Database (Denmark)

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard

    2008-01-01

    High temperature electrolysis of water and steam may provide an efficient, cost effective and environmentally friendly production of H-2 Using electricity produced from sustainable, non-fossil energy sources. To achieve cost competitive electrolysis cells that are both high performing i.e. minimum...... internal resistance of the cell, and long-term stable, it is critical to develop electrode materials that are optimal for steam electrolysis. In this article electrolysis cells for electrolysis of water or steam at temperatures above 200 degrees C for production of H-2 are reviewed. High temperature...... electrolysis is favourable from a thermodynamic point of view, because a part of the required energy can be supplied as thermal heat, and the activation barrier is lowered increasing the H-2 production rate. Only two types of cells operating at high temperature (above 200 degrees C) have been described...

  8. Hydrogen production by high-temperature electrolysis of water vapor steam. Test results obtained with an electrolysis tube

    International Nuclear Information System (INIS)

    Hino, Ryutaro; Miyamoto, Yoshiaki

    1995-01-01

    High-temperature electrolysis of water vapor steam is an advanced hydrogen production process decomposing high temperature steam up to 1,000degC, which applies an electro-chemical reaction reverse to the solid oxide fuel cell. At Japan Atomic Energy Research Institute, laboratory-scale experiments have been conducted using a practical electrolysis tube with 12 electrolysis cells in order to develop heat utilization systems for high-temperature gas-cooled reactors. The electrolysis cells of which electrolyte was yttria-stabilized zirconia were formed on a porous ceramic tube in series by plasma spraying. In the experiments, water steam mixed with argon carrier gas was supplied into the electrolysis tube heated at a constant temperature regulated in the range from 850degC to 950degC, and electrolysis power was supplied by a DC power source. Hydrogen production rate increased with applied voltage and electrolysis temperature; the maximum production rate was 6.9Nl/h at 950degC. Hydrogen production rate was correlated with applied current densities on the basis of experimental data. High energy efficiency was achieved under the applied current density ranging from 80 to 100 mA/cm 2 . (author)

  9. Thermodynamic analysis of the efficiency of high-temperature steam electrolysis system for hydrogen production

    Science.gov (United States)

    Mingyi, Liu; Bo, Yu; Jingming, Xu; Jing, Chen

    High-temperature steam electrolysis (HTSE), a reversible process of solid oxide fuel cell (SOFC) in principle, is a promising method for highly efficient large-scale hydrogen production. In our study, the overall efficiency of the HTSE system was calculated through electrochemical and thermodynamic analysis. A thermodynamic model in regards to the efficiency of the HTSE system was established and the quantitative effects of three key parameters, electrical efficiency (η el), electrolysis efficiency (η es), and thermal efficiency (η th) on the overall efficiency (η overall) of the HTSE system were investigated. Results showed that the contribution of η el, η es, η th to the overall efficiency were about 70%, 22%, and 8%, respectively. As temperatures increased from 500 °C to 1000 °C, the effect of η el on η overall decreased gradually and the η es effect remained almost constant, while the η th effect increased gradually. The overall efficiency of the high-temperature gas-cooled reactor (HTGR) coupled with the HTSE system under different conditions was also calculated. With the increase of electrical, electrolysis, and thermal efficiency, the overall efficiencies were anticipated to increase from 33% to a maximum of 59% at 1000 °C, which is over two times higher than that of the conventional alkaline water electrolysis.

  10. PEM Water Electrolysis at Elevated Temperatures

    DEFF Research Database (Denmark)

    Hansen, Martin Kalmar

    . This is followed in chapter 4 by a description of the electrolysis setups and electrolysis cells used during the work. Two different setups were used, one operating at atmospheric pressure and another that could operate at elevated pressure so that liquid water electrolysis could be performed at temperature above...... such as porosity and resistance which were supported by images acquired using scanning electron microscopy (SEM). In chapters 6 and 7 the results of the steam electrolysis and pressurised water electrolysis, respectively, are presented and discussed. The steam electrolysis was tested at 130 °C and atmospheric...... needed and hence it has become acute to be able to store the energy. Hydrogen has been identified as a suitable energy carrier and water electrolysis is one way to produce it in a sustainable and environmentally friendly way. In this thesis an introduction to the subject (chapter 1) is given followed...

  11. Fabrication of cathode supported tubular solid oxide electrolysis cell for high temperature steam electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Le; Wang, Shaorong; Qian, Jiqin; Xue, Yanjie; Liu, Renzhu

    2011-01-15

    In recent years, hydrogen has been identified as a potential alternative fuel and energy carrier for the future energy supply. Water electrolysis is one of the important hydrogen production technologies which do not emit carbon dioxide. High temperature steam electrolysis (HTSE) consumes even less electrical energy than low temperature water electrolysis. Theoretically, HTSE using solid oxide electrolysis cells (SOEC) can efficiently utilize renewable energy to produce hydrogen, and it is also possible to operate the SOEC in reverse mode as the solid oxide fuel cell (SOFC) to produce electricity. Tubular SOFC have been widely investigated. In this study, tubular solid oxide cells were fabricated by dip-coating and cosintering techniques. In SOEC mode, results suggested that steam ratio had a strong impact on the performance of the tubular cell; the tubular SOEC preferred to be operated at high steam ratio in order to avoid concentration polarization. The microstructure of the tubular SOEC should therefore be optimized for high temperature steam electrolysis.

  12. High temperature electrolysis for hydrogen production using nuclear energy

    International Nuclear Information System (INIS)

    Herring, J. Stephen; O'brien, James E.; Stoots, Carl M.; Hawkes, Grant L.; Hartvigsen, Joseph J.

    2005-01-01

    High-temperature nuclear reactors have the potential for substantially increasing the efficiency of hydrogen production from water splitting, which can be accomplished via high-temperature electrolysis (HTE) or thermochemical processes. In order to achieve competitive efficiencies, both processes require high-temperature operation (∼850degC). High-temperature electrolytic water splitting supported by nuclear process heat and electricity has the potential to produce hydrogen with overall system efficiencies of 45 to 55%. At the Idaho National Laboratory, we are developing solid-oxide cells to operate in the steam electrolysis mode. The research program includes both experimental and modeling activities. Experimental results were obtained from ten-cell and 22-cell planar electrolysis stacks, fabricated by Ceramatec, Inc. The electrolysis cells are electrolyte-supported, with scandia-stabilized zirconia electrolytes (∼200 μm thick, 64 cm 2 active area), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions, gas glow rates, and current densities. Hydrogen production rates greater than 100 normal liters per hour for 196 hours have been demonstrated. In order to evaluate the performance of large-scale HTE operations, we have developed single-cell models, based on FLUENT, and a process model, using the systems-analysis code HYSYS. (author)

  13. LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS

    International Nuclear Information System (INIS)

    O'Brien, James E.

    2010-01-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demand for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a 'hydrogen economy.' The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.

  14. Carbon dioxide and water vapor high temperature electrolysis

    Science.gov (United States)

    Isenberg, Arnold O.; Verostko, Charles E.

    1989-01-01

    The design, fabrication, breadboard testing, and the data base obtained for solid oxide electrolysis systems that have applications for planetary manned missions and habitats are reviewed. The breadboard tested contains sixteen tubular cells in a closely packed bundle for the electrolysis of carbon dioxide and water vapor. The discussion covers energy requirements, volume, weight, and operational characteristics related to the measurement of the reactant and product gas compositions, temperature distribution along the electrolyzer tubular cells and through the bundle, and thermal energy losses. The reliability of individual cell performance in the bundle configuration is assessed.

  15. Study on hydrogen production by high temperature electrolysis of steam

    International Nuclear Information System (INIS)

    Hino, Ryutaro; Aita, Hideki; Sekita, Kenji; Haga, Katsuhiro; Iwata, Tomo-o.

    1997-09-01

    In JAERI, design and R and D works on hydrogen production process have been conducted for connecting to the HTTR under construction at the Oarai Research Establishment of JAERI as a nuclear heat utilization system. As for a hydrogen production process by high-temperature electrolysis of steam, laboratory-scale experiments were carried out with a practical electrolysis tube with 12 cells connected in series. Hydrogen was produced at a maximum density of 44 Nml/cm 2 h at 950degC, and know-how of operational procedures and operational experience were also accumulated. Thereafter, a planar electrolysis cell supported by a metallic plate was fabricated in order to improve hydrogen production performance and durability against thermal cycles. In the preliminary test with the planar cell, hydrogen has been produced continuously at a maximum density of 33.6 Nml/cm 2 h at an electrolysis temperature of 950degC. This report presents typical test results mentioned above, a review of previous studies conducted in the world and R and D items required for connecting to the HTTR. (author)

  16. Hydrogen Production from Nuclear Energy via High Temperature Electrolysis

    International Nuclear Information System (INIS)

    James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Grant L. Hawkes

    2006-01-01

    This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production

  17. Development of Non-Platinum Catalysts for Intermediate Temperature Water Electrolysis

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey Valerievich; Petrushina, Irina Michailovna; Bjerrum, Niels J.

    2014-01-01

    Water electrolysis is recognized as an efficient energy storage (in the form of hydrogen) supplement in renewable energy production. However, industrial alkaline water electrolyzers are rather ineffective and space requiring for a commercial use in connection with energy storage. The most effective...... modern water electrolyzers are based on polymeric proton-conducting membrane electrolytes (PEM), e.g. Nafion®, a perfluorocarbon-sulfonic acid polymer. These electrolyzers work at temperatures up to around 80 °C, and, in extreme cases, up to 130-140 °C. The most developed PEM electrolyzers...... as electrolytes for the intermediate temperature applications, such as CsHSO4, KHSO45. The most successful systems have been developed with CsH2PO4 (solid acid fuel cells (SAFCs) and Sn0.9In0.1P2O7 electrolytes6,7. While developing materials for the promising medium temperature electrolysis systems...

  18. Hydrogen production from high temperature electrolysis and fusion reactor

    International Nuclear Information System (INIS)

    Dang, V.D.; Steinberg, J.F.; Issacs, H.S.; Lazareth, O.; Powell, J.R.; Salzano, F.J.

    1978-01-01

    Production of hydrogen from high temperature electrolysis of steam coupled with a fusion reactor is studied. The process includes three major components: the fusion reactor, the high temperature electrolyzer and the power conversion cycle each of which is discussed in the paper. Detailed process design and analysis of the system is examined. A parametric study on the effect of process efficiency is presented

  19. Preconceptual design of hyfire. A fusion driven high temperature electrolysis plant

    International Nuclear Information System (INIS)

    Varljen, T.C.; Chi, J.W.H.; Karbowski, J.S.

    1983-01-01

    Brookhaven National Laboratory has been engaged in a scoping study to investigate the potential merits of coupling a fusion reactor with a high temperature blanket to a high temperature electrolysis (HTE) process to produce hydrogen and oxygen. Westinghouse is assisting this study in the areas of systems design integration, plasma engineering, balance of plant design and electrolyzer technology. The aim of the work done in the past year has been to focus on a reference design point for the plant, which has been designated HYFIRE. In prior work, the STARFIRE commercial tokamak fusion reactor was directly used as the fusion driver. This report describes a new design obtained by scaling the basic STARFIRE design to permit the achievement of a blanket power of 6000 MWt. The high temperature blanket design employs a thermally insulated refractory oxide region which provides high temperature (>1000 deg. C) steam at moderate pressures to high temperature electrolysis units. The electrolysis process selected is based on the high temperature, solid electrolyte fuel cell technology developed by Westinghouse. An initial process design and plant layout has been completed; component cost and plant economics studies are now underway to develop estimates of hydrogen production costs and to determine the sensitivity of this cost to changes in major design parameters. (author)

  20. Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants

    Energy Technology Data Exchange (ETDEWEB)

    Manohar S. Sohal; J. Stephen Herring

    2008-07-01

    Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830°C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazards related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present acceptable

  1. Hydrogen production from fusion reactors coupled with high temperature electrolysis

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and complement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Processes which may be considered for this purpose include electrolysis, thermochemical decomposition or thermochemical-electrochemical hybrid cycles. Preliminary studies at Brookhaven indicate that high temperature electrolysis has the highest potential efficiency for production of hydrogen from fusion. Depending on design electric generation efficiencies of approximately 40 to 60 percent and hydrogen production efficiencies of approximately 50 to 70 percent are projected for fusion reactors using high temperature blankets

  2. THE HIGH-TEMPERATURE ELECTROLYSIS PROGRAM AT THE IDAHO NATIONAL LABORATORY: OBSERVATIONS ON PERFORMANCE DEGRADATION

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; C. M. Stoots; J. S. Herring; K. G. Condie; G. K. Housley

    2009-06-01

    This paper presents an overview of the high-temperature electrolysis research and development program at the Idaho National Laboratory, with selected observations of electrolysis cell degradation at the single-cell, small stack and large facility scales. The objective of the INL program is to address the technical and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for hydrogen production from steam. In the envisioned application, high-temperature electrolysis would be coupled to an advanced nuclear reactor for efficient large-scale non-fossil non-greenhouse-gas hydrogen production. The program supports a broad range of activities including small bench-scale experiments, larger scale technology demonstrations, detailed computational fluid dynamic modeling, and system modeling. A summary of the current status of these activities and future plans will be provided, with a focus on the problem of cell and stack degradation.

  3. Status of the INL high-temperature electrolysis research program –experimental and modeling

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; C. M. Stoots; M. G. McKellar; E. A. Harvego; K. G. Condie; G. K. Housley; J. S. Herring; J. J. Hartvigsen

    2009-04-01

    This paper provides a status update on the high-temperature electrolysis (HTE) research and development program at the Idaho National Laboratory (INL), with an overview of recent large-scale system modeling results and the status of the experimental program. System analysis results have been obtained using the commercial code UniSim, augmented with a custom high-temperature electrolyzer module. The process flow diagrams for the system simulations include an advanced nuclear reactor as a source of high-temperature process heat, a power cycle and a coupled steam electrolysis loop. Several reactor types and power cycles have been considered, over a range of reactor coolant outlet temperatures. In terms of experimental research, the INL has recently completed an Integrated Laboratory Scale (ILS) HTE test at the 15 kW level. The initial hydrogen production rate for the ILS test was in excess of 5000 liters per hour. Details of the ILS design and operation will be presented. Current small-scale experimental research is focused on improving the degradation characteristics of the electrolysis cells and stacks. Small-scale testing ranges from single cells to multiple-cell stacks. The INL is currently in the process of testing several state-of-the-art anode-supported cells and is working to broaden its relationship with industry in order to improve the long-term performance of the cells.

  4. Preliminary estimations on the heat recovery method for hydrogen production by the high temperature steam electrolysis

    International Nuclear Information System (INIS)

    Koh, Jae Hwa; Yoon, Duck Joo

    2009-01-01

    As a part of the project 'development of hydrogen production technologies by high temperature electrolysis using very high temperature reactor', we have developed an electrolyzer model for high temperature steam electrolysis (HTSE) system and carried out some preliminary estimations on the effects of heat recovery on the HTSE hydrogen production system. To produce massive hydrogen by using nuclear energy, the HTSE process is one of the promising technologies with sulfur-iodine and hybrid sulfur process. The HTSE produces hydrogen through electrochemical reaction within the solid oxide electrolysis cell (SOEC), which is a reverse reaction of solid oxide fuel cell (SOFC). The HTSE system generally operates in the temperature range of 700∼900 .deg. C. Advantages of HTSE hydrogen production are (a) clean hydrogen production from water without carbon oxide emission, (b) synergy effect due to using the current SOFC technology and (c) higher thermal efficiency of system when it is coupled nuclear reactor. Since the HTSE system operates over 700 .deg. C, the use of heat recovery is an important consideration for higher efficiency. In this paper, four different heat recovery configurations for the HTSE system have been investigated and estimated

  5. HIGH-TEMPERATURE ELECTROLYSIS FOR HYDROGEN PRODUCTION FROM NUCLEAR ENERGY

    Energy Technology Data Exchange (ETDEWEB)

    James E. O& #39; Brien; Carl M. Stoots; J. Stephen Herring; Joseph J. Hartvigsen

    2005-10-01

    An experimental study is under way to assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. Results presented in this paper were obtained from a ten-cell planar electrolysis stack, with an active area of 64 cm2 per cell. The electrolysis cells are electrolyte-supported, with scandia-stabilized zirconia electrolytes (~140 µm thick), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions (0.1 - 0.6), gas flow rates (1000 - 4000 sccm), and current densities (0 to 0.38 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. Cell operating potentials and cell current were varied using a programmable power supply. Hydrogen production rates up to 90 Normal liters per hour were demonstrated. Values of area-specific resistance and stack internal temperatures are presented as a function of current density. Stack performance is shown to be dependent on inlet steam flow rate.

  6. Hydrogen production through high-temperature electrolysis in a solid oxide cell

    International Nuclear Information System (INIS)

    Herring, J.St.; Lessing, P.; O'Brien, J.E.; Stoots, C.; Hartvigsen, J.; Elangovan, S.

    2004-01-01

    An experimental research programme is being conducted by the INEEL and Ceramatec, Inc., to test the high-temperature, electrolytic production of hydrogen from steam using a solid oxide cell. The research team is designing and testing solid oxide cells for operation in the electrolysis mode, producing hydrogen rising a high-temperature heat and electrical energy. The high-temperature heat and the electrical power would be supplied simultaneously by a high-temperature nuclear reactor. Operation at high temperature reduces the electrical energy requirement for electrolysis and also increases the thermal efficiency of the power-generating cycle. The high-temperature electrolysis process will utilize heat from a specialized secondary loop carrying a steam/hydrogen mixture. It is expected that, through the combination of a high-temperature reactor and high-temperature electrolysis, the process will achieve an overall thermal conversion efficiency of 40 to 50%o while avoiding the challenging chemistry and corrosion issues associated with the thermochemical processes. Planar solid oxide cell technology is being utilised because it has the best potential for high efficiency due to minimized voltage and current losses. These losses also decrease with increasing temperature. Initial testing has determined the performance of single 'button' cells. Subsequent testing will investigate the performance of multiple-cell stacks operating in the electrolysis mode. Testing is being performed both at Ceramatec and at INEEL. The first cells to be tested were single cells based on existing materials and fabrication technology developed at Ceramatec for production of solid oxide fuel cells. These cells use a relatively thick (∼ 175 μm) electrolyte of yttria- or scandia-stabilised zirconia, with nickel-zirconia cermet anodes and strontium-doped lanthanum manganite cathodes. Additional custom cells with lanthanum gallate electrolyte have been developed and tested. Results to date have

  7. Can high temperature steam electrolysis function with geothermal heat?

    International Nuclear Information System (INIS)

    Sigurvinsson, J.; Mansilla, C.; Werkoff, F.; Lovera, P.

    2007-01-01

    It is possible to improve the performance of electrolysis processes by operating at a high temperature. This leads to a reduction in electricity consumption but requires a part of the energy necessary for the dissociation of water to be in the form of thermal energy. Iceland produces low cost electricity and very low cost geothermal heat. However, the temperature of geothermal heat is considerably lower than the temperature required at the electrolyser's inlet, making heat exchangers necessary to recuperate part of the heat contained in the gases at the electrolyser's outlet. A techno-economic optimisation model devoted to a high-temperature electrolysis (HTE) process which includes electrolysers as well as a high temperature heat exchanger network was created. Concerning the heat exchangers, the unit costs used in the model are based on industrial data. For the electrolyser cells, the unit cost scaling law and the physical sub-model we used were formulated using analogies with solid oxide fuel cells. The method was implemented in a software tool, which performs the optimisation using genetic algorithms. The first application of the method is done by taking into account the prices of electricity and geothermal heat in the Icelandic context. It appears that even with a geothermal temperature as low as 230 degrees C, the HTE could compete with alkaline electrolysis. (authors)

  8. System Evaluation and Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen-Production Plant

    International Nuclear Information System (INIS)

    Harvego, E.A.; McKellar, M.G.; Sohal, M.S.; O'Brien, J.E.; Herring, J.S.

    2010-01-01

    A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled nuclear reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540 C and 900 C, respectively. The electrolysis unit used to produce hydrogen includes 4,009,177 cells with a per-cell active area of 225 cm2. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating current (AC) to direct current (DC) conversion efficiency is 96%. The overall system thermal-to-hydrogen production efficiency (based on the lower heating value of the produced hydrogen) is 47.1% at a hydrogen production rate of 2.356 kg/s. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.23/kg of hydrogen was calculated assuming an internal rate of return of 10%.

  9. Hydrogen production by high temperature electrolysis of water vapour and nuclear reactors

    International Nuclear Information System (INIS)

    Jean-Pierre Py; Alain Capitaine

    2006-01-01

    This paper presents hydrogen production by a nuclear reactor (High Temperature Reactor, HTR or Pressurized Water Reactor, PWR) coupled to a High Temperature Electrolyser (HTE) plant. With respect to the coupling of a HTR with a HTE plant, EDF and AREVA NP had previously selected a combined cycle HTR scheme to convert the reactor heat into electricity. In that case, the steam required for the electrolyser plant is provided either directly from the steam turbine cycle or from a heat exchanger connected with such cycle. Hydrogen efficiency production is valued using high temperature electrolysis. Electrolysis production of hydrogen can be performed with significantly higher thermal efficiencies by operating in the steam phase than in the water phase. The electrolysis performance is assessed with solid oxide and solid proton electrolysis cells. The efficiency from the three operating conditions (endo-thermal, auto-thermal and thermo-neutral) of a high temperature electrolysis process is evaluated. The technical difficulties to use the gases enthalpy to heat the water are analyzed, taking into account efficiency and technological challenges. EDF and AREVA NP have performed an analysis to select an optimized process giving consideration to plant efficiency, plant operation, investment and production costs. The paper provides pathways and identifies R and D actions to reach hydrogen production costs competitive with those of other hydrogen production processes. (authors)

  10. Present status of r and d on hydrogen production by high temperature electrolysis of steam

    International Nuclear Information System (INIS)

    Hino, Ryutaro; Aita, Hideki; Sekita, Kenji; Haga, Katsuhiro; Miyamoto, Yoshiaki; Iwata, Tomo-o.

    1995-08-01

    In JAERI, design and R and D works on hydrogen production process have been conducted for connecting to the HTTR under construction at the Oarai Establishment of the JAERI as the nuclear heat utilization system. As for a hydrogen production process by high-temperature electrolysis of steam, laboratory-scale experiments have been conducted using a practical electrolysis tube with 12 cells connected in series. Hydrogen was produced at a maximum density of 44 Nml/cm 2 h at 950degC, and know-how of operational procedures and operational experience have been also accumulated. Then, a self-supporting planar electrolysis cell was fabricated in order to improve hydrogen production performance. In the preliminary test with the planar cell, hydrogen has been produced continuously at a maximum density of 36 Nml/cm 2 h at lower electrolysis temperature of 850degC. This report presents typical test results mentioned above, a review of previous studies conducted in the world and R and D items required for connecting to the HTTR. (author)

  11. Solid polymer electrolyte water electrolysis system development. [to generate oxygen for manned space station applications

    Science.gov (United States)

    1975-01-01

    Solid polymer electrolyte technology used in a water electrolysis system (WES) to generate oxygen and hydrogen for manned space station applications was investigated. A four-man rated, low pressure breadboard water electrolysis system with the necessary instrumentation and controls was fabricated and tested. A six man rated, high pressure, high temperature, advanced preprototype WES was developed. This configuration included the design and development of an advanced water electrolysis module, capable of operation at 400 psig and 200 F, and a dynamic phase separator/pump in place of a passive phase separator design. Evaluation of this system demonstrated the goal of safe, unattended automated operation at high pressure and high temperature with an accumulated gas generation time of over 1000 hours.

  12. Electrolysis test of different composite membranes at elevated temperatures

    DEFF Research Database (Denmark)

    Hansen, Martin Kalmar

    temperatures, phosphoric acid (H3PO4)[1] and zirconium phosphate (ZrP)[2] were introduced. These composite membranes were tested in an electrolysis setup. A typical electrolysis test was performed at 130°C with a galvanostatic load. Polarization curves were recorded under stationary conditions. Testing...... night at 150°C in a zirconium phosphate saturated 85wt% phosphoric acid solution. Different thicknesses of membranes were tested and as expected, the performance increased when the thickness of the membranes decreased. Furthermore composite membranes only treated with phosphoric acid or only treated...

  13. Water electrolysis system refurbishment and testing

    Science.gov (United States)

    Greenough, B. M.

    1972-01-01

    The electrolytic oxygen generator for the back-up water electrolysis system in a 90-day manned test was refurbished, improved and subjected to a 182-day bench test. The performance of the system during the test demonstrated the soundness of the basic electrolysis concept, the high development status of the automatic controls which allowed completely hands-off operation, and the capability for orbital operation. Some design improvements are indicated.

  14. Progress in Aluminum Electrolysis Control and Future Direction for Smart Aluminum Electrolysis Plant

    Science.gov (United States)

    Zhang, Hongliang; Li, Tianshuang; Li, Jie; Yang, Shuai; Zou, Zhong

    2017-02-01

    The industrial aluminum reduction cell is an electrochemistry reactor that operates under high temperatures and highly corrosive conditions. However, these conditions have restricted the measurement of key control parameters, making the control of aluminum reduction cells a difficult problem in the industry. Because aluminum electrolysis control systems have a significant economic influence, substantial research has been conducted on control algorithms, control systems and information systems for aluminum reduction cells. This article first summarizes the development of control systems and then focuses on the progress made since 2000, including alumina concentration control, temperature control and electrolyte molecular ratio control, fault diagnosis, cell condition prediction and control system expansion. Based on these studies, the concept of a smart aluminum electrolysis plant is proposed. The frame construction, key problems and current progress are introduced. Finally, several future directions are discussed.

  15. High Temperature and Pressure Alkaline Electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank

    against conventional technologies for hydrogen production, such as natural gas reforming, the production and investment costs have to be reduced. A reduction of the investment costs may be achieved by increasing the operational pressure and temperature of the electrolyzer, as this will result in: 1.......3 A cm-2 combined with relatively small production costs may lead to both reduced investment and operating costs for hydrogen and oxygen production. One of the produced electrolysis cells was operated for 350 h. Based on the successful results a patent application covering this novel cell was filed...

  16. CHALLENGES IN GENERATING HYDROGEN BY HIGH TEMPERATURE ELECTROLYSIS USING SOLID OXIDE CELLS

    Energy Technology Data Exchange (ETDEWEB)

    M. S. Sohal; J. E. O' Brien; C. M. Stoots; M. G. McKellar; J. S. Herring; E. A. Harvego

    2008-03-01

    Idaho National Laboratory’s (INL) high temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells is presented in this paper. The research results reported here have been obtained in a laboratory-scale apparatus. These results and common scale-up issues also indicate that for the technology to be successful in a large industrial setting, several technical, economical, and manufacturing issues have to be resolved. Some of the issues related to solid oxide cells are stack design and performance optimization, identification and evaluation of cell performance degradation parameters and processes, integrity and reliability of the solid oxide electrolysis (SOEC) stacks, life-time prediction and extension of the SOEC stack, and cost reduction and economic manufacturing of the SOEC stacks. Besides the solid oxide cells, balance of the hydrogen generating plant also needs significant development. These issues are process and ohmic heat source needed for maintaining the reaction temperature (~830°C), high temperature heat exchangers and recuperators, equal distribution of the reactants into each cell, system analysis of hydrogen and associated energy generating plant, and cost optimization. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.23/kg of hydrogen assuming an internal rate of return of 10%. These issues need interdisciplinary research effort of federal laboratories, solid oxide cell manufacturers, hydrogen consumers, and other such stakeholders. This paper discusses research and development accomplished by INL on such issues and highlights associated challenges that need to

  17. Effect of water electrolysis temperature of hydrogen production system using direct coupling photovoltaic and water electrolyzer

    Directory of Open Access Journals (Sweden)

    Tetsuhiko Maeda

    2016-01-01

    Full Text Available We propose control methods of a photovoltaic (PV-water electrolyzer (ELY system that generates hydrogen by controlling the number of ELY cells. The advantage of this direct coupling between PV and ELY is that the power loss of DC/DC converter is avoided. In this study, a total of 15 ELY cells are used. In the previous researches, the electrolyzer temperature was constantly controlled with a thermostat. Actually, the electrolyzer temperature is decided by the balance of the electrolysis loss and the heat loss to the outside. Here, the method to control the number of ELY cells was investigated. Maximum Power Point Tracking efficiency of more than 96% was achieved without ELY temperature control. Furthermore we construct a numerical model taking into account of ELY temperature. Using this model, we performed a numerical simulation of 1-year. Experimental data and the simulation results shows the validity of the proposed control method.

  18. The analysis of energy efficiency in water electrolysis under high temperature and high pressure

    Science.gov (United States)

    Hourng, L. W.; Tsai, T. T.; Lin, M. Y.

    2017-11-01

    This paper aims to analyze the energy efficiency of water electrolysis under high pressure and high temperature conditions. The effects of temperature and pressure on four different kinds of reaction mechanisms, namely, reversible voltage, activation polarization, ohmic polarization, and concentration polarization, are investigated in details. Results show that the ohmic and concentration over-potentials are increased as temperature is increased, however, the reversible and activation over-potentials are decreased as temperature is increased. Therefore, the net efficiency is enhanced as temperature is increased. The efficiency of water electrolysis at 350°C/100 bars is increased about 17%, compared with that at 80°C/1bar.

  19. Mathematical Analysis of High-Temperature Co-electrolysis of CO2 and O2 Production in a Closed-Loop Atmosphere Revitalization System

    Energy Technology Data Exchange (ETDEWEB)

    Michael G. McKellar; Manohar S. Sohal; Lila Mulloth; Bernadette Luna; Morgan B. Abney

    2010-03-01

    NASA has been evaluating two closed-loop atmosphere revitalization architectures based on Sabatier and Bosch carbon dioxide, CO2, reduction technologies. The CO2 and steam, H2O, co-electrolysis process is another option that NASA has investigated. Utilizing recent advances in the fuel cell technology sector, the Idaho National Laboratory, INL, has developed a CO2 and H2O co-electrolysis process to produce oxygen and syngas (carbon monoxide, CO and hydrogen, H2 mixture) for terrestrial (energy production) application. The technology is a combined process that involves steam electrolysis, CO2 electrolysis, and the reverse water gas shift (RWGS) reaction. A number of process models have been developed and analyzed to determine the theoretical power required to recover oxygen, O2, in each case. These models include the current Sabatier and Bosch technologies and combinations of those processes with high-temperature co-electrolysis. The cases of constant CO2 supply and constant O2 production were evaluated. In addition, a process model of the hydrogenation process with co-electrolysis was developed and compared. Sabatier processes require the least amount of energy input per kg of oxygen produced. If co-electrolysis replaces solid polymer electrolyte (SPE) electrolysis within the Sabatier architecture, the power requirement is reduced by over 10%, but only if heat recuperation is used. Sabatier processes, however, require external water to achieve the lower power results. Under conditions of constant incoming carbon dioxide flow, the Sabatier architectures require more power than the other architectures. The Bosch, Boudouard with co-electrolysis, and the hydrogenation with co-electrolysis processes require little or no external water. The Bosch and hydrogenation processes produce water within their reactors, which aids in reducing the power requirement for electrolysis. The Boudouard with co-electrolysis process has a higher electrolysis power requirement because carbon

  20. System Evaluation and Life-Cycle Cost Analysis of a Commercial-Scale High-Temperature Electrolysis Hydrogen Production Plant

    Energy Technology Data Exchange (ETDEWEB)

    Edwin A. Harvego; James E. O' Brien; Michael G. McKellar

    2012-11-01

    Results of a system evaluation and lifecycle cost analysis are presented for a commercial-scale high-temperature electrolysis (HTE) central hydrogen production plant. The plant design relies on grid electricity to power the electrolysis process and system components, and industrial natural gas to provide process heat. The HYSYS process analysis software was used to evaluate the reference central plant design capable of producing 50,000 kg/day of hydrogen. The HYSYS software performs mass and energy balances across all components to allow optimization of the design using a detailed process flow sheet and realistic operating conditions specified by the analyst. The lifecycle cost analysis was performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes Microsoft Excel spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. The results of the lifecycle analyses indicate that for a 10% internal rate of return, a large central commercial-scale hydrogen production plant can produce 50,000 kg/day of hydrogen at an average cost of $2.68/kg. When the cost of carbon sequestration is taken into account, the average cost of hydrogen production increases by $0.40/kg to $3.08/kg.

  1. Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen Production Plant

    International Nuclear Information System (INIS)

    E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

    2008-01-01

    A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled nuclear reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540 C and 900 C, respectively. The electrolysis unit used to produce hydrogen includes 4,009,177 cells with a per-cell active area of 225 cm2. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating-current, AC, to direct-current, DC, conversion efficiency is 96%. The overall system thermal-to-hydrogen production efficiency (based on the lower heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.23/kg of hydrogen was calculated assuming an internal rate of return of 10%

  2. High Temperature Electrolysis using Electrode-Supported Cells

    International Nuclear Information System (INIS)

    O'Brien, J.E.; Stoots, C.M.

    2010-01-01

    An experimental study is under way to assess the performance of electrode-supported solid-oxide cells operating in the steam electrolysis mode for hydrogen production. The cells currently under study were developed primarily for the fuel cell mode of operation. Results presented in this paper were obtained from single cells, with an active area of 16 cm2 per cell. The electrolysis cells are electrode-supported, with yttria-stabilized zirconia (YSZ) electrolytes (∼10 (micro)m thick), nickel-YSZ steam/hydrogen electrodes (∼1400 (micro)m thick), and manganite (LSM) air-side electrodes (∼90 (micro)m thick). The purpose of the present study was to document and compare the performance and degradation rates of these cells in the fuel cell mode and in the electrolysis mode under various operating conditions. Initial performance was documented through a series of DC potential sweeps and AC impedance spectroscopy measurements. Degradation was determined through long-duration testing, first in the fuel cell mode, then in the electrolysis mode over more than 500 hours of operation. Results indicate accelerated degradation rates in the electrolysis mode compared to the fuel cell mode, possibly due to electrode delamination. The paper also includes details of the single-cell test apparatus developed specifically for these experiments.

  3. Electrolysis

    DEFF Research Database (Denmark)

    Smith, Anders; Pedersen, Allan Schrøder

    2014-01-01

    Electrolysis is a well-established technology with many different applications. In particular, it can be used to produce hydrogen by using electricity to split water. As an increasing part of the energy system consists of fluctuating power sources such as wind and solar it becomes increasingly...... necessary to be able to store large amounts of electrical energy. One option is to do it in the form of hydrogen or hydrogen-rich synthetic compounds. This has led to increased interest in electrolysis with new cell types being developed. This entry provides an overview of the status and technological...... challenges of electrolysis systems and discusses their role in the future energy system....

  4. Experiment Plan of High Temperature Steam and Carbon dioxide Co-electrolysis for Synthetic Gas Production

    International Nuclear Information System (INIS)

    Yoon, Duk-Joo; Ko, Jae-Hwa

    2008-01-01

    Currently, Solid oxide fuel cells (SOFC) come into the spotlight in the middle of the energy technologies of the future for highly effective conversion of fossil fuels into electricity without carbon dioxide emission. The SOFC is a reversible cell. By applying electrical power to the cell, which is solid oxide electrolysis cell (SOEC), it is possible to produce synthetic gas (syngas) from high temperature steam and carbon dioxide. The produced syngas (hydrogen and carbon monoxide) can be used for synthetic fuels. This SOEC technology can use high temperature from VHTRs for high efficiency. This paper describes KEPRI's experiment plan of high temperature steam and carbon co-electrolysis for syngas production using SOEC technology

  5. Development of a static feed water electrolysis system

    Science.gov (United States)

    Schubert, F. H.; Lantz, J. B.; Hallick, T. M.

    1982-01-01

    A one person level oxygen generation subsystem was developed and production of the one person oxygen metabolic requirements, 0.82 kg, per day was demonstrated without the need for condenser/separators or electrolyte pumps. During 650 hours of shakedown, design verification, and endurance testing, cell voltages averaged 1.62 V at 206 mA/sq cm and at average operating temperature as low as 326 K, virtually corresponding to the state of the art performance previously established for single cells. This high efficiency and low waste heat generation prevented maintenance of the 339 K design temperature without supplemental heating. Improved water electrolysis cell frames were designed, new injection molds were fabricated, and a series of frames was molded. A modified three fluid pressure controller was developed and a static feed water electrolysis that requires no electrolyte in the static feed compartment was developed and successfully evaluated.

  6. Water electrolysis system

    International Nuclear Information System (INIS)

    Mizoguchi, Tadao; Ikehara, Masahisa; Kataoka, Noboru; Ueno, Syuichi; Ishikawa, Nobuhide.

    1996-01-01

    Nissho Iwai Co. and Ebara Co. received an order for hydrogen and oxygen generating system (water electrolysis system) to be installed at Tokai-2 power station of The Japan Atomic Power Company, following the previous order at Tsuruga-1 where the gas injection from FY1996 is planned. Hydrogen gas generated by the system will be injected to coolant of boiling water reactors to improve corrosive environment. The system is being offered by a tripartite party, Nissho Iwai, Ebara, and Norsk Hydro Electrolysers of Norway (NHEL). NHEL provides a electrolyser unit, as a core of the system. Ebara provides procurement, installation, and inspection as well as total engineering work, under the basic design by NHEL which has over 60 years-experience in this field. (author)

  7. System Evaluation and Economic Analysis of a HTGR Powered High-Temperature Electrolysis Hydrogen Production Plant

    International Nuclear Information System (INIS)

    McKellar, Michael G.; Harvego, Edwin A.; Gandrik, Anastasia A.

    2010-01-01

    A design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322 C and 750 C, respectively. The power conversion unit will be a Rankine steam cycle with a power conversion efficiency of 40%. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 40.4% at a hydrogen production rate of 1.75 kg/s and an oxygen production rate of 13.8 kg/s. An economic analysis of this plant was performed with realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.67/kg of hydrogen assuming an internal rate of return, IRR, of 12% and a debt to equity ratio of 80%/20%. A second analysis shows that if the power cycle efficiency increases to 44.4%, the hydrogen production efficiency increases to 42.8% and the hydrogen and oxygen production rates are 1.85 kg/s and 14.6 kg/s respectively. At the higher power cycle efficiency and an IRR of 12% the cost of hydrogen production is $3.50/kg.

  8. Degradation in Solid Oxide Cells During High Temperature Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Manohar Sohal

    2009-05-01

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells. One goal of that project is to address the technical and degradation issues associated with solid oxide electrolysis cells. This report covers a variety of these degradation issues, which were discussed during a workshop on “Degradation in Solid Oxide Electrolysis Cells and Strategies for its Mitigation,” held in Phoenix, AZ on October 27, 2008. Three major degradation issues related to solid oxide electrolysis cells discussed at the workshop are: • Delamination of O2-electrode and bond layer on steam/O2-electrode side • Contaminants (Ni, Cr, Si, etc.) on reaction sites (triple-phase boundary) • Loss of electrical/ionic conductivity of electrolyte. This list is not all inclusive, but the workshop summary can be useful in providing a direction for future research related to the degradation of solid oxide electrolysis cells.

  9. Optimized Flow Sheet for a Reference Commercial-Scale Nuclear-Driven High-Temperature Electrolysis Hydrogen Production Plant

    International Nuclear Information System (INIS)

    M. G. McKellar; J. E. O'Brien; E. A. Harvego; J. S. Herring

    2007-01-01

    This report presents results from the development and optimization of a reference commercial scale high-temperature electrolysis (HTE) plant for hydrogen production. The reference plant design is driven by a high-temperature helium-cooled reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540 C and 900 C, respectively. The electrolysis unit used to produce hydrogen consists of 4.176 - 10 6 cells with a per-cell active area of 225 cm2. A nominal cell area-specific resistance, ASR, value of 0.4 Ohm-cm2 with a current density of 0.25 A/cm2 was used, and isothermal boundary conditions were assumed. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The overall system thermal-to-hydrogen production efficiency (based on the low heating value of the produced hydrogen) is 49.07% at a hydrogen production rate of 2.45 kg/s with the high-temperature helium-cooled reactor concept. The information presented in this report is intended to establish an optimized design for the reference nuclear-driven HTE hydrogen production plant so that parameters can be compared with other hydrogen production methods and power cycles to evaluate relative performance characteristics and plant economics

  10. Operational Modelling of High Temperature Electrolysis (HTE)

    International Nuclear Information System (INIS)

    Patrick Lovera; Franck Blein; Julien Vulliet

    2006-01-01

    Solid Oxide Fuel Cells (SOFC) and High Temperature Electrolysis (HTE) work on two opposite processes. The basic equations (Nernst equation, corrected by a term of over-voltage) are thus very similar, only a few signs are different. An operational model, based on measurable quantities, was finalized for HTE process, and adapted to SOFCs. The model is analytical, which requires some complementary assumptions (proportionality of over-tensions to the current density, linearization of the logarithmic term in Nernst equation). It allows determining hydrogen production by HTE using a limited number of parameters. At a given temperature, only one macroscopic parameter, related to over-voltages, is needed for adjusting the model to the experimental results (SOFC), in a wide range of hydrogen flow-rates. For a given cell, this parameter follows an Arrhenius law with a satisfactory precision. The prevision in HTE process is compared to the available experimental results. (authors)

  11. Fiscal 1975 Sunshine Project research report. R and D on hydrogen production technology by high-temperature high- pressure water electrolysis; 1975 nendo koon koatsusui denkaiho ni yoru suiso seizo gijutsu no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-05-29

    This report details the research result in fiscal 1975. Part 1 'Outlines' includes the research target, the summary of fiscal 1974 research results, the summary of fiscal 1975 research results, and responsible researchers. Part 2 'Details of the research' includes the fiscal 1975 research results. Chapter 1 reports 'Study on constant-load high- temperature high-pressure (multi-electrode type) diaphragm water electrolysis tank' promoted by Mitsubishi Kakoki Kaisha. Chapter 2 reports 'Study on Teflon system diaphragm for high-temperature high-pressure water electrolysis tanks' promoted by Yuasa Battery Co. through Mitsubishi Kakoki Kaisha. Chapter 3 reports 'Study on variable-load high- temperature high-pressure diaphragm water electrolysis tank' promoted by Showa Denko K.K. Chapter 4 reports 'The first detailed design of the electrolysis tank for a small test plant' promoted by Hitachi Zosen Corp. through Showa Denko K.K. Chapter 5 reports 'Research on the applicability of water electrolysis systems to various fields' promoted by Mitsubishi Research Institute, Inc. through Showa Denko K.K. (NEDO)

  12. Syntrophic interactions drive the hydrogen production from glucose at low temperature in microbial electrolysis cells

    KAUST Repository

    Lu, Lu; Xing, Defeng; Ren, Nanqi; Logan, Bruce E.

    2012-01-01

    H2 can be obtained from glucose by fermentation at mesophilic temperatures, but here we demonstrate that hydrogen can also be obtained from glucose at low temperatures using microbial electrolysis cells (MECs). H2 was produced from glucose at 4°C

  13. Thermodynamic evaluation of geothermal energy powered hydrogen production by PEM water electrolysis

    International Nuclear Information System (INIS)

    Yilmaz, Ceyhun; Kanoglu, Mehmet

    2014-01-01

    Thermodynamic energy and exergy analysis of a PEM water electrolyzer driven by geothermal power for hydrogen production is performed. For this purpose, work is produced from a geothermal resource by means of the organic Rankine cycle; the resulting work is used as a work input for an electrolysis process; and electrolysis water is preheated by the waste geothermal water. The first and second-law based performance parameters are identified for the considered system and the system performance is evaluated. The effects of geothermal water and electrolysis temperatures on the amount of hydrogen production are studied and these parameters are found to be proportional to each other. We consider a geothermal resource at 160 °C available at a rate of 100 kg/s. Under realistic operating conditions, 3810 kW power can be produced in a binary geothermal power plant. The produced power is used for the electrolysis process. The electrolysis water can be preheated to 80 °C by the geothermal water leaving the power plant and hydrogen can be produced at a rate of 0.0340 kg/s. The energy and exergy efficiencies of the binary geothermal power plant are 11.4% and 45.1%, respectively. The corresponding efficiencies for the electrolysis system are 64.0% and 61.6%, respectively, and those for the overall system are 6.7% and 23.8%, respectively. - Highlights: • Thermodynamic analysis of hydrogen production by PEM electrolysis powered by geothermal energy. • Power is used for electrolyser; used geothermal water is for preheating electrolysis water. • Effect of geothermal water and electrolysis temperatures on the amount of hydrogen production. • Hydrogen can be produced at a rate of 0.0340 kg/s for a resource at 160 °C available at 100 kg/s. • Energy and exergy efficiencies of the overall system are 6.7% and 23.8%, respectively

  14. Intermediate Temperature Steam Electrolysis with Phosphate-Based Electrolytes

    DEFF Research Database (Denmark)

    Prag, Carsten Brorson

    as the technological issues and challenges faced. A setup suitable for intermediate temperature electrolysis has been constructed in order to accommodate testing in the IT region. This included the evaluation of multiple generations of components such as end plates and flow plates. Chemical vapour deposition...... treatment step of the synthesis. It was found that initial heating of the synthesis precursors to 270 _C gave a high quality sample in a reproducible fashion. Investigations of two additional novel phosphates was attempted. These were phosphoric acid treated Nb5P7O30 and a mixture of Bi2P4O13, BiPO4 and 2...

  15. Fiscal 1975 Sunshine Project research report. R and D on hydrogen production technology by high-temperature high- pressure water electrolysis; 1975 nendo koon koatsusui denkaiho ni yoru suiso seizo gijutsu no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-05-29

    This report details the research result in fiscal 1975. Part 1 'Outlines' includes the research target, the summary of fiscal 1974 research results, the summary of fiscal 1975 research results, and responsible researchers. Part 2 'Details of the research' includes the fiscal 1975 research results. Chapter 1 reports 'Study on constant-load high- temperature high-pressure (multi-electrode type) diaphragm water electrolysis tank' promoted by Mitsubishi Kakoki Kaisha. Chapter 2 reports 'Study on Teflon system diaphragm for high-temperature high-pressure water electrolysis tanks' promoted by Yuasa Battery Co. through Mitsubishi Kakoki Kaisha. Chapter 3 reports 'Study on variable-load high- temperature high-pressure diaphragm water electrolysis tank' promoted by Showa Denko K.K. Chapter 4 reports 'The first detailed design of the electrolysis tank for a small test plant' promoted by Hitachi Zosen Corp. through Showa Denko K.K. Chapter 5 reports 'Research on the applicability of water electrolysis systems to various fields' promoted by Mitsubishi Research Institute, Inc. through Showa Denko K.K. (NEDO)

  16. Carbon dioxide reduction in a tubular solid oxide electrolysis cell for a carbon recycling energy system

    Energy Technology Data Exchange (ETDEWEB)

    Dipu, Arnoldus Lambertus, E-mail: dipu.a.aa@m.titech.ac.jp [Department of Nuclear Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Ujisawa, Yutaka [Nippon Steel and Sumitomo Metal Corporation, 16-1, Sunayama, Kamisu, Ibaraki 314-0255 (Japan); Ryu, Junichi; Kato, Yukitaka [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-22, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-05-01

    A new energy transformation system based on carbon recycling is proposed called the active carbon recycling energy system (ACRES). A high-temperature gas reactor was used as the main energy source for ACRES. An experimental study based on the ACRES concept of carbon monoxide (CO) regeneration via high-temperature reduction of carbon dioxide (CO{sub 2}) was carried out using a tubular solid oxide electrolysis cell employing Ni-LSM cermet|YSZ|YSZ-LSM as the cathode|electrolyte|anode. The current density increased with increasing CO{sub 2} concentration at the cathode, which was attributed to a decrease in cathode activation and concentration overpotential. Current density, as well as the CO and oxygen (O{sub 2}) production rates, increased with increasing operating temperature. The highest CO and O{sub 2} production rates of 1.24 and 0.64 μmol/min cm{sup 2}, respectively, were measured at 900 °C. Based on the electrolytic characteristics of the cell, the scale of a combined ACRES CO{sub 2} electrolysis/iron production facility was estimated.

  17. Sensitivity Studies of Advanced Reactors Coupled to High Temperature Electrolysis (HTE) Hydrogen Production Processes

    International Nuclear Information System (INIS)

    Edwin A. Harvego; Michael G. McKellar; James E. O'Brien; J. Stephen Herring

    2007-01-01

    High Temperature Electrolysis (HTE), when coupled to an advanced nuclear reactor capable of operating at reactor outlet temperatures of 800 C to 950 C, has the potential to efficiently produce the large quantities of hydrogen needed to meet future energy and transportation needs. To evaluate the potential benefits of nuclear-driven hydrogen production, the UniSim process analysis software was used to evaluate different reactor concepts coupled to a reference HTE process design concept. The reference HTE concept included an Intermediate Heat Exchanger and intermediate helium loop to separate the reactor primary system from the HTE process loops and additional heat exchangers to transfer reactor heat from the intermediate loop to the HTE process loops. The two process loops consisted of the water/steam loop feeding the cathode side of a HTE electrolysis stack, and the steam or air sweep loop used to remove oxygen from the anode side. The UniSim model of the process loops included pumps to circulate the working fluids and heat exchangers to recover heat from the oxygen and hydrogen product streams to improve the overall hydrogen production efficiencies. The reference HTE process loop model was coupled to separate UniSim models developed for three different advanced reactor concepts (a high-temperature helium cooled reactor concept and two different supercritical CO2 reactor concepts). Sensitivity studies were then performed to evaluate the affect of reactor outlet temperature on the power cycle efficiency and overall hydrogen production efficiency for each of the reactor power cycles. The results of these sensitivity studies showed that overall power cycle and hydrogen production efficiencies increased with reactor outlet temperature, but the power cycle producing the highest efficiencies varied depending on the temperature range considered

  18. Study of the effect of pressure on electrolysis of H2O and co-electrolysis of H2O and CO2 at high temperature

    International Nuclear Information System (INIS)

    Bernadet, Lucile

    2016-01-01

    This thesis work investigates the behavior of a solid oxide cell operating under pressure in high temperature steam electrolysis and co-electrolysis mode (H 2 O and CO 2 ). The experimental study of single cell associated with the development of multi-physical models have been set up. The experiments, carried out using an original test bench developed by the CEA-Grenoble on two types of cells between 1 and 10 bar and 700 to 800 C, allowed to identify in both operating modes that the pressure has a positive or negative effect on performance depending on the cell operating point (current, voltage). In addition, gas analyzes performed in co-electrolysis led to detect in situ CH 4 production under pressure. These pressure effects were simulated by models calibrated at atmospheric pressure. Simulations analysis helped identify the pressure dependent mechanisms and propose operating conditions thanks to the establishment of operating maps. (author) [fr

  19. Tritium separation from heavy water using electrolysis

    International Nuclear Information System (INIS)

    Ogata, Y.; Sakuma, Y.; Ohtani, N.; Kodaka, M.

    2001-01-01

    A tritium separation from heavy water by the electrolysis using a solid polymer electrode (SPE) was specified on investigation. The heavy water (∼10 Bq g -1 ) and the light water (∼70 Bq g -1 ) were electrolysed using an electrolysis device (Tripure XZ001, Permelec Electrode Ltd.) with the SPE layer. The cathode was made of stainless steel (SUS314). The electrolysis was carried out at 20 A x 60 min, with the electrolysis temperature at 10, 20, or 30degC, and 15 A x 80 min at 5degC. The produced hydrogen and oxygen gases were recombined using a palladium catalyst (ND-101, N.E. Chemcat Ltd.) with nitrogen gas as a carrier. The activities of the water in the cell and of the recombined water were analyzed using a liquid scintillation counter. The electrolysis potential to keep the current 20 A was 2-3 V. The yields of the recombined water were more than 90%. The apparent separation factors (SF) for the heavy water and the light water were ∼2 and ∼12, respectively. The SF value was in agreement with the results in other work. The factors were changed with the cell temperature. The electrolysis using the SPE is applicable for the tritium separation, and is able to perform the small-scale apparatus at the room temperature. (author)

  20. Degradation of 3,3'-iminobis-propanenitrile in aqueous solution by Fe(0)/GAC micro-electrolysis system.

    Science.gov (United States)

    Lai, Bo; Zhou, Yuexi; Yang, Ping; Yang, Jinghui; Wang, Juling

    2013-01-01

    The degradation of 3,3'-iminobis-propanenitrile was investigated using the Fe(0)/GAC micro-electrolysis system. Effects of influent pH value, Fe(0)/GAC ratio and granular activated carbon (GAC) adsorption on the removal efficiency of the pollutant were studied in the Fe(0)/GAC micro-electrolysis system. The degradation of 3,3'-iminobis-propanenitrile was affected by influent pH, and a decrease of the influent pH values from 8.0 to 4.0 led to the increase of degradation efficiency. Granular activated carbon was added as cathode to form macroscopic galvanic cells between Fe(0) and GAC and enhance the current efficiency of the Fe(0)/GAC micro-electrolysis system. The GAC could only adsorb the pollutant and provide buffer capacity for the Fe(0)/GAC micro-electrolysis system, and the macroscopic galvanic cells of the Fe(0)/GAC micro-electrolysis system played a leading role in degradation of 3,3'-iminobis-propanenitrile. With the analysis of the degradation products with GC-MS, possible reaction pathway for the degradation of 3,3'-iminobis-propanenitrile by the Fe(0)/GAC micro-electrolysis system was suggested. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Intensified nitrogen and phosphorus removal in a novel electrolysis-integrated tidal flow constructed wetland system.

    Science.gov (United States)

    Ju, Xinxin; Wu, Shubiao; Zhang, Yansheng; Dong, Renjie

    2014-08-01

    A novel electrolysis-integrated tidal flow constructed wetland (CW) system was developed in this study. The dynamics of intensified nitrogen and phosphorus removal and that of hydrogen sulphide control were evaluated. Ammonium removal of up to 80% was achieved with an inflow concentration of 60 mg/L in wetland systems with and without electrolysis integration. Effluent nitrate concentration decreased from 2 mg/L to less than 0.5 mg/L with the decrease in current intensity from 1.5 mA/cm(2) to 0.57 mA/cm(2) in the electrolysis-integrated wetland system, thus indicating that the current intensity of electrolysis plays an important role in nitrogen transformations. Phosphorus removal was significantly enhanced, exceeding 95% in the electrolysis-integrated CW system because of the in-situ formation of a ferric iron coagulant through the electro-dissolution of a sacrificial iron anode. Moreover, the electrolyzed wetland system effectively inhibits sulphide accumulation as a result of a sulphide precipitation coupled with ferrous-iron electro-dissolution and/or an inhibition of bacterial sulphate reduction under increased aerobic conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Fusion reactors-high temperature electrolysis (HTE)

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1978-01-01

    Results of a study to identify and develop a reference design for synfuel production based on fusion reactors are given. The most promising option for hydrogen production was high-temperature electrolysis (HTE). The main findings of this study are: 1. HTE has the highest potential efficiency for production of synfuels from fusion; a fusion to hydrogen energy efficiency of about 70% appears possible with 1800 0 C HTE units and 60% power cycle efficiency; an efficiency of about 50% possible with 1400 0 C HTE units and 40% power cycle efficiency. 2. Relative to thermochemical or direct decomposition methods HTE technology is in a more advanced state of development, 3. Thermochemical or direct decomposition methods must have lower unit process or capital costs if they are to be more attractive than HTE. 4. While design efforts are required, HTE units offer the potential to be quickly run in reverse as fuel cells to produce electricity for restart of Tokamaks and/or provide spinning reserve for a grid system. 5. Because of the short timescale of the study, no detailed economic evaluation could be carried out.A comparison of costs could be made by employing certain assumptions. For example, if the fusion reactor-electrolyzer capital installation is $400/(KW(T) [$1000/KW(E) equivalent], the H 2 energy production cost for a high efficiency (about 70 %) fusion-HTE system is on the same order of magnitude as a coal based SNG plant based on 1976 dollars. 6. The present reference design indicates that a 2000 MW(th) fusion reactor could produce as much at 364 x 10 6 scf/day of hydrogen which is equivalent in heating value to 20,000 barrels/day of gasoline. This would fuel about 500,000 autos based on average driving patterns. 7. A factor of three reduction in coal feed (tons/day) could be achieved for syngas production if hydrogen from a fusion-HTE system were used to gasify coal, as compared to a conventional syngas plant using coal-derived hydrogen

  3. Electrochemical performances of LSM/YSZ composite electrode for high temperature steam electrolysis

    International Nuclear Information System (INIS)

    Kyu-Sung Sim; Ki-Kwang Bae; Chang-Hee Kim; Ki-Bae Park

    2006-01-01

    The (La 0.8 Sr 0.2 ) 0.95 MnO 3 /Yttria-stabilized Zirconia composite electrodes were investigated as anode materials for high temperature steam electrolysis using X-ray diffractometry, scanning electron microscopy, galvano-dynamic and galvano-static polarization method. For this study, the LSM perovskites were fabricated in powders by the co-precipitation method and then were mixed with 8 mol% YSZ powders in different molar ratios. The LSM/YSZ composite electrodes were deposited on 8 mol% YSZ electrolyte disks by screen printing method, followed by sintering at temperature above 1100 C. From the experimental results, it is concluded that the electrochemical properties of pure and composite electrodes are closely related to their micro-structure and operating temperature. (authors)

  4. Development of solid electrolytes for water electrolysis at intermediate temperatures. Task 3 report; Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Linkous, C.A.; Anderson, R.; Kopitzke, R.W.

    1995-12-01

    This project is an attempt to synthesize and fabricate proton exchange membranes for hydrogen production via water electrolysis that can take advantage of the better kinetic and thermodynamic conditions that exist at higher temperatures. Current PEM technology is limited to the 125--150 C range. Based on previous work evaluating thermohydrolytic stability, some 5 families of polymers were chosen as viable candidates: polyether ketones, polyether sulfones, fluorinated polyimides, polybenzimidazoles, and polyphenyl quinoxalines. Several of these have been converted into ionomers via sulfonation and fashioned into membranes for evaluation. In particular, the sulfonated polyetheretherketone, or SPEEK, was tested for water uptake, thermo-conductimetric analysis, and performance as the solid electrolyte material in an electrolysis cell. Results comparable to commercial perfluorocarbon sulfonates were obtained.

  5. Parametric Evaluation of Large-Scale High-Temperature Electrolysis Hydrogen Production Using Different Advanced Nuclear Reactor Heat Sources

    International Nuclear Information System (INIS)

    Harvego, Edwin A.; McKellar, Michael G.; O'Brien, James E.; Herring, J. Stephen

    2009-01-01

    High Temperature Electrolysis (HTE), when coupled to an advanced nuclear reactor capable of operating at reactor outlet temperatures of 800 C to 950 C, has the potential to efficiently produce the large quantities of hydrogen needed to meet future energy and transportation needs. To evaluate the potential benefits of nuclear-driven hydrogen production, the UniSim process analysis software was used to evaluate different reactor concepts coupled to a reference HTE process design concept. The reference HTE concept included an Intermediate Heat Exchanger and intermediate helium loop to separate the reactor primary system from the HTE process loops and additional heat exchangers to transfer reactor heat from the intermediate loop to the HTE process loops. The two process loops consisted of the water/steam loop feeding the cathode side of a HTE electrolysis stack, and the sweep gas loop used to remove oxygen from the anode side. The UniSim model of the process loops included pumps to circulate the working fluids and heat exchangers to recover heat from the oxygen and hydrogen product streams to improve the overall hydrogen production efficiencies. The reference HTE process loop model was coupled to separate UniSim models developed for three different advanced reactor concepts (a high-temperature helium cooled reactor concept and two different supercritical CO2 reactor concepts). Sensitivity studies were then performed to evaluate the affect of reactor outlet temperature on the power cycle efficiency and overall hydrogen production efficiency for each of the reactor power cycles. The results of these sensitivity studies showed that overall power cycle and hydrogen production efficiencies increased with reactor outlet temperature, but the power cycles producing the highest efficiencies varied depending on the temperature range considered

  6. Achievement report for fiscal 1974 on Sunshine Program. Research and development of hydrogen production technology using high-temperature and high-pressure water electrolysis; 1974 nendo koon koatsusui denkaiho ni yoru suiso seizo gijutsu no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-05-30

    The goals at present are to clarify conditions for the realization of the water electrolysis process relative to various primary energy sources and to experimentally construct a small practical electrobath to operate at high temperature and high pressure for the attainment of high economic efficiency. Efforts in this fiscal year are mentioned below. Surveys and studies are conducted about hydrogen production by water electrolysis and about achievements in the past and problems at present concerning hydrogen production by water electrolysis in Japan and overseas. The expected role of water electrolysis in various primary energy sources is also studied and evaluated. For a high-temperature high-pressure water electrolysis bath conceptual design (small test plant, bathing temperature 120 degrees C, pressure 20atm, hydrogen production rate 2Nm{sup 3}/h), studies are conducted about a constant-load type high-temperature high-pressure (bipolar) diaphragm-assisted water electrolysis bath and a variable-load type high-temperature high-pressure diaphragm-assisted water electrolysis bath. Surveys and studies are also conducted about the expected role of water electrolysis in various primary energy sources, and the role is evaluated. (NEDO)

  7. Economic Analysis of the Reference Design for a Nuclear-Driven High-Temperature-Electrolysis Hydrogen Production Plant

    International Nuclear Information System (INIS)

    E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

    2008-01-01

    A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540 C and 900 C, respectively. The electrolysis unit used to produce hydrogen consists of 4,009,177 cells with a per-cell active area of 225 cm2. A nominal cell area-specific resistance, ASR, value of 0.4 Ohm-cm2 with a current density of 0.25 A/cm2 was used, and isothermal boundary conditions were assumed. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating current, AC, to direct current, DC, conversion is 96%. The overall system thermal-to-hydrogen production efficiency (based on the low heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of the plant was also performed using the H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost using realistic financial and cost estimating assumptions. A required cost of $3.23 per kg of hydrogen produced was calculated assuming an internal rate of return of 10%. Approximately 73% of this cost ($2.36/kg) is the result of capital costs associated with

  8. Solid oxide electrolysis cell for decomposition of tritiated water

    International Nuclear Information System (INIS)

    Konishi, S.; Katsuta, H.; Naruse, Y.; Ohno, H.; Yoshida, H.

    1984-01-01

    The decomposition of tritiated water vapor with solid oxide electrolysis cell was proposed for the application to the D-T fusion reactor system. This method is essentially free from problems such as large tritium inventory, radiation damage, and generation of solid waste, so it is expected to be a promising one. Electrolysis of water vapor in argon carrier was performed using tube-type stabilized zirconia cell with porous platinum electrodes in the temperature range of 500 0 C to 950 0 C. High conversion ratio from water to hydrogen up to 99.9% was achieved. The characteristics of the cell is deduced from the Nernst's equation and conversion ratio is described as the function of the open circuit voltage. Experimental results agreed with the equation. Isotope effect in electrolysis is also discussed and experiments with heavy water were carried out. Obtained separation factor was slightly higher than the theoretical value

  9. FY 1974 report on the results of the Sunshine Project. R and D of hydrogen production technology by the high-temperature/high-pressure water electrolysis method (outline); 1974 nendo koon koatsusui denkaiho ni yoru suiso seizo gijutsu no kenkyu kaihatsu seika hokokusho. Gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-05-30

    As the R and D of hydrogen production technology by the high-temperature/high pressure water electrolysis method, this paper outlined (1) the concept design and the investigational research on the constant load type high-temperature/high-pressure (multi-pole type) diaphragm water electrolysis tank (in charge of Mitsubishi Kakoki Kaisha, Ltd.); (2) the concept design and the investigational research on the load variation type high-temperature/high-pressure diaphragm water electrolysis equipment (in charge of Showa Denko K.K. and Hitachi Zosen Corp.); (3) the investigational research on the role of water electrolysis in various primary energy sources and the evaluation (in charge of Mitsubishi Research Institute Inc.). In (1), the concept design of a small test plant was made, and the detailed design and test plan on the material test equipment were drew up. In (2), Showa Denko K.K. is running the water electrolysis plant. As a result of studying the electric power unit and operational conditions of hydrogen production, it was concluded that high-temperature/high-pressure operation should be tried for making the water electrolysis tank highly efficient. Hitachi Zosen Corp. made the study of the multi-pole type pressurized filter system high-pressure water electrolysis equipment which was developed for submarine and the design of the bubble behavior observing tank and material test tank for the concept design of load variation type test plant. (NEDO)

  10. High Temperature Co-electrolysis of Steam and CO2 in an SOC stack: Performance and Durability

    DEFF Research Database (Denmark)

    Chen, Ming; Høgh, Jens Valdemar Thorvald; Nielsen, Jens Ulrik

    2012-01-01

    C and -0.5 A/cm2 with no long term degradation, as long as the inlet gases to the Ni/YSZ electrode were cleaned [3]. In this work, co-electrolysis of steam and carbon dioxide was studied in a TOFC® 10-cell stack, containing 3 different types ofNi/YSZ electrode supported cells with a footprint of 12X12 cm2....... The stack was operated at 800 oC and -0.75 A/cm2 with 60% conversion for a period of 1000 hours. One type of the cells showed no long term degradation but actually activation during the entire electrolysis period, while the other two types degraded. The performance and durability of the different cell types...... is discussed with respect to cell material composition and microstructure. The results of this study show that long term electrolysis is feasible without notable degradation also at lower temperature (800 oC) and higher current density (-0.75 A/cm2)....

  11. A Demonstration of Carbon-Assisted Water Electrolysis

    Directory of Open Access Journals (Sweden)

    Olalekan D. Adeniyi

    2013-03-01

    Full Text Available It is shown that carbon fuel cell technology can be combined with that of high temperature steam electrolysis by the incorporation of carbon fuel at the cell anode, with the resulting reduction of the required electrolysis voltage by around 1 V. The behaviour of the cell current density and applied voltage are shown to be connected with the threshold of electrolysis and the main features are compared with theoretical results from the literature. The advantage arises from the avoidance of efficiency losses associated with electricity generation using thermal cycles, as well as the natural separation of the carbon dioxide product stream for subsequent processing.

  12. Synergistic Effects of Micro-electrolysis-Photocatalysis on Water Treatment and Fish Performance in Saline Recirculating Aquaculture System

    OpenAIRE

    Ye, Zhangying; Wang, Shuo; Gao, Weishan; Li, Haijun; Pei, Luowei; Shen, Mingwei; Zhu, Songming

    2017-01-01

    A new physico-chemical process for TAN (total ammonia nitrogen) removal and disinfection is introduced in saline recirculating aquaculture system (RAS), in which the biofilter is replaced with an integrated electrolysis cell and an activated carbon filter. The electrolysis cell which is based on micro current electrolysis combined with UV-light was self-designed. After the fundamental research, a small pilot scale RAS was operated for 30 days to verify the technical feasibility. The system wa...

  13. Solid oxide electrolysis cell for decomposition of tritiated water

    International Nuclear Information System (INIS)

    Konishi, S.; Ohno, H.; Yoshida, H.; Katsuta, H.; Naruse, Y.

    1986-01-01

    The decomposition of tritiated water vapor by means of solid oxide electrolysis cells has been proposed for the application to the D-T fusion reactor system. This method is essentially free from problems such as large tritium inventory, radiation damage, and generation of solid waste, so it is expected to be a promising one. Electrolysis of water vapor in an argon carrier was performed using a tube-type stabilized zirconia cell with porous platinum electrodes over the temperature range 500-950 0 C. High conversion ratios from water to hydrogen, of up to 99.9%, were achieved. The characteristics of the cell were deduced from the Nernst equation and the conversion ratios expressed as a function of the IR-free voltage. Experimental results agreed with the equation. The isotope effect in electrolysis is also discussed and experiments with heavy water were carried out. The obtained separation factor was slightly higher than the theoretical value. (author)

  14. Water electrolysis system - H2 and O2 generation. [for spacecraft atmosphere revitalization

    Science.gov (United States)

    Schubert, F. H.; Lee, M. K.; Davenport, R. J.; Quattrone, P. D.

    1978-01-01

    An oxygen generation system design based on the static feed water electrolysis concept is described. The system is designed to generate 4.20 kg/d of oxygen to satisfy the metabolic needs of a three-person crew, to compensate for spacecraft leakage, and to provide the oxygen required by the electrochemical depolarized CO2 concentrator. The system has a fixed hardware weight of 75 kg, occupies a volume of 0.11 cu m, and requires only 1.1 kw of electrical power. The static feed electrolysis concept is discussed, and experimental data on the high-performance electrode are presented.

  15. Test results of six-month test of two water electrolysis systems

    Science.gov (United States)

    Mills, E. S.; Wells, G. W.

    1972-01-01

    The two water electrolysis systems used in the NASA space station simulation 90-day manned test of a regenerative life support system were refurbished as required and subjected to 26-weeks of testing. The two electrolysis units are both promising systems for oxygen and hydrogen generation and both needed extensive long-term testing to evaluate the performance of the respective cell design and provide guidance for further development. Testing was conducted to evaluate performance in terms of current, pressure, variable oxygen demands, and orbital simulation. An automatic monitoring system was used to record, monitor and printout performance data at one minute, ten minute or one-hour intervals. Performance data is presented for each day of system operation for each module used during the day. Failures are analyzed, remedial action taken to eliminate problems is discussed and recommendations for redesign for future space applications are stated.

  16. Fusion reactors for hydrogen production via electrolysis

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.

    1979-01-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets

  17. Kinetic modelling of methane production during bio-electrolysis from anaerobic co-digestion of sewage sludge and food waste.

    Science.gov (United States)

    Prajapati, Kalp Bhusan; Singh, Rajesh

    2018-05-10

    In present study batch tests were performed to investigate the enhancement in methane production under bio-electrolysis anaerobic co-digestion of sewage sludge and food waste. The bio-electrolysis reactor system (B-EL) yield more methane 148.5 ml/g COD in comparison to reactor system without bio-electrolysis (B-CONT) 125.1 ml/g COD. Whereas bio-electrolysis reactor system (C-EL) Iron Scraps amended yield lesser methane (51.2 ml/g COD) in comparison to control bio-electrolysis reactor system without Iron scraps (C-CONT - 114.4 ml/g COD). Richard and Exponential model were best fitted for cumulative methane production and biogas production rates respectively as revealed modelling study. The best model fit for the different reactors was compared by Akaike's Information Criterion (AIC) and Bayesian Information Criterion (BIC). The bioelectrolysis process seems to be an emerging technology with lesser the loss in cellulase specific activity with increasing temperature from 50 to 80 °C. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. A model-based understanding of solid-oxide electrolysis cells (SOECs) for syngas production by H2O/CO2 co-electrolysis

    Science.gov (United States)

    Menon, Vikram; Fu, Qingxi; Janardhanan, Vinod M.; Deutschmann, Olaf

    2015-01-01

    High temperature co-electrolysis of H2O and CO2 offers a promising route for syngas (H2, CO) production via efficient use of heat and electricity. The performance of a SOEC during co-electrolysis is investigated by focusing on the interactions between transport processes and electrochemical parameters. Electrochemistry at the three-phase boundary is modeled by a modified Butler-Volmer approach that considers H2O electrolysis and CO2 electrolysis, individually, as electrochemically active charge transfer pathways. The model is independent of the geometrical structure. A 42-step elementary heterogeneous reaction mechanism for the thermo-catalytic chemistry in the fuel electrode, the dusty gas model (DGM) to account for multi-component diffusion through porous media, and a plug flow model for flow through the channels are used in the model. Two sets of experimental data are reproduced by the simulations, in order to deduce parameters of the electrochemical model. The influence of micro-structural properties, inlet cathode gas velocity, and temperature are discussed. Reaction flow analysis is performed, at OCV, to study methane production characteristics and kinetics during co-electrolysis. Simulations are carried out for configurations ranging from simple one-dimensional electrochemical button cells to quasi-two-dimensional co-flow planar cells, to demonstrate the effectiveness of the computational tool for performance and design optimization.

  19. Achievement report for fiscal 1976 on Sunshine Program. Research and development of hydrogen production technology using high-temperature high-pressure water electrolysis; 1976 nendo koon koatsusui denkaiho ni yoru suiso seizo gijutsu no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    Basic data are collected for the construction of a high-temperature high-pressure membrane-assisted water electrolysis test plant of the constant load type and another of the variable load type. To collect the data, basic experiments are conducted on a small water electrolysis unit, diaphragms are fabricated and tested for performance, design calculation is performed using a computer, a test unit for testing electrolysis bath constituting materials is built for the construction of a gas/liquid separation unit. The ultimate goal of this project is to develop a high-temperature high-pressure water electrolysis test apparatus. The first part of this report is titled 'Outline' and states the objectives of this research, summarizes the achievements of fiscal 1974, 1975, and 1976, and mentions the names of officers responsible for the execution of the research and development, etc. The second part is titled 'Contents of research' and reports the details of the research conducted in fiscal 1976. The subjects taken up in the second part are 'Research on constant-load type high-temperature high-pressure (bipolar) diaphragm-assisted water electrolysis bath,' 'Research on Teflon-based diaphragms for high-temperature high-pressure water electrolysis baths,' 'Research on variable-load type high-temperature high-pressure diaphragm-assisted water electrolysis bath,' 'Research on small test plant electrolysis bath design,' etc., which are being undertaken by Showa Denko K.K. and four other corporations. (NEDO)

  20. Thermodynamic analysis of synthetic hydrocarbon fuel production in pressurized solid oxide electrolysis cells

    DEFF Research Database (Denmark)

    Sun, Xiufu; Chen, Ming; Jensen, Søren Højgaard

    2012-01-01

    A promising way to store wind and solar electricity is by electrolysis of H2O and CO2 using solid oxide electrolysis cells (SOECs) to produce synthetic hydrocarbon fuels that can be used in existing fuel infrastructure. Pressurized operation decreases the cell internal resistance and enables...... improved system efficiency, potentially lowering the fuel production cost significantly. In this paper, we present a thermodynamic analysis of synthetic methane and dimethyl ether (DME) production using pressurized SOECs, in order to determine feasible operating conditions for producing the desired......, and outlet gas composition. For methane production, low temperature and high pressure operation could improve the system efficiency, but might lead to a higher capital cost. For DME production, high pressure SOEC operation necessitates higher operating temperature in order to avoid carbon formation at higher...

  1. Mediated water electrolysis in biphasic systems.

    Science.gov (United States)

    Scanlon, Micheál D; Peljo, Pekka; Rivier, Lucie; Vrubel, Heron; Girault, Hubert H

    2017-08-30

    The concept of efficient electrolysis by linking photoelectrochemical biphasic H 2 evolution and water oxidation processes in the cathodic and anodic compartments of an H-cell, respectively, is introduced. Overpotentials at the cathode and anode are minimised by incorporating light-driven elements into both biphasic reactions. The concepts viability is demonstrated by electrochemical H 2 production from water splitting utilising a polarised water-organic interface in the cathodic compartment of a prototype H-cell. At the cathode the reduction of decamethylferrocenium cations ([Cp 2 *Fe (III) ] + ) to neutral decamethylferrocene (Cp 2 *Fe (II) ) in 1,2-dichloroethane (DCE) solvent takes place at the solid electrode/oil interface. This electron transfer process induces the ion transfer of a proton across the immiscible water/oil interface to maintain electroneutrality in the oil phase. The oil-solubilised proton immediately reacts with Cp 2 *Fe (II) to form the corresponding hydride species, [Cp 2 *Fe (IV) (H)] + . Subsequently, [Cp 2 *Fe (IV) (H)] + spontaneously undergoes a chemical reaction in the oil phase to evolve hydrogen gas (H 2 ) and regenerate [Cp 2 *Fe (III) ] + , whereupon this catalytic Electrochemical, Chemical, Chemical (ECC') cycle is repeated. During biphasic electrolysis, the stability and recyclability of the [Cp 2 *Fe (III) ] + /Cp 2 *Fe (II) redox couple were confirmed by chronoamperometric measurements and, furthermore, the steady-state concentration of [Cp 2 *Fe (III) ] + monitored in situ by UV/vis spectroscopy. Post-biphasic electrolysis, the presence of H 2 in the headspace of the cathodic compartment was established by sampling with gas chromatography. The rate of the biphasic hydrogen evolution reaction (HER) was enhanced by redox electrocatalysis in the presence of floating catalytic molybdenum carbide (Mo 2 C) microparticles at the immiscible water/oil interface. The use of a superhydrophobic organic electrolyte salt was critical to

  2. Production of hydrogen using composite membrane in PEM water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Santhi priya, E.L.; Mahender, C.; Mahesh, Naga; Himabindu, V. [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad-500 085, A.P (India); Anjaneyulu, Y. [Director, TLGVRC, JSU Box 18739, JSU, Jackson, MS 32917-0939 (United States)

    2012-07-01

    Electrolysis of water is the best known technology till today to produce hydrogen. The only practical way to produce hydrogen using renewable energy sources is by proton exchange membrane (PEM) water electrolysis. The most commonly used PEM membrane is Nafion. Composite membrane of TiO2 is synthesized by casting method using Nafion 5wt% solution. RuO2 is used as anode and 10 wt% Pd on activated carbon is used as cathode in the water electrolyser system. The performance of this Composite membrane is studied by varying voltage range 1.8 to 2.6V with respect to hydrogen yield and at current density 0.1, 0.2, 0.3, 0.4, and 0.5(A cm-2). This Composite membrane has been tested using in-house fabricated single cell PEM water electrolysis cell with 10cm2 active area at temperatures ranging from 30,45,65 850c and at 1 atmosphere pressure.

  3. Summary Report on Solid-oxide Electrolysis Cell Testing and Development

    Energy Technology Data Exchange (ETDEWEB)

    J.E. O' Brien; X. Zhang; R.C. O' Brien; G.L. Hawkes

    2012-01-01

    Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cells (SOECs) for large-scale hydrogen production from steam over a temperature range of 800 to 900 C. From 2003 to 2009, this work was sponsored by the United States Department of Energy Nuclear Hydrogen Initiative, under the Office of Nuclear Energy. Starting in 2010, the high-temperature electrolysis (HTE) research program has been sponsored by the INL Next Generation Nuclear Plant Project. This report provides a summaryof program activities performed in Fiscal Year (FY) 2011 and the first quarter of FY-12, with a focus on small-scale testing and cell development activities. HTE research priorities during this period have included the development and testing of SOEC and stack designs that exhibit high-efficiency initial performance and low, long-term degradation rates. This report includes contributions from INL and five industry partners: Materials and Systems Research, Incorporated (MSRI); Versa Power Systems, Incorporated (VPS); Ceramatec, Incorporated; National Aeronautics and Space Administration - Glenn Research Center (NASA - GRC); and the St. Gobain Advanced Materials Division. These industry partners have developed SOEC cells and stacks for in-house testing in the electrolysis mode and independent testing at INL. Additional fundamental research and post-test physical examinations have been performed at two university partners: Massachusetts Institute of Technology (MIT) and the University of Connecticut. Summaries of these activities and test results are also presented in this report.

  4. A Study on the Preparation of Regular Multiple Micro-Electrolysis Filler and the Application in Pretreatment of Oil Refinery Wastewater

    OpenAIRE

    Yang, Ruihong; ZHU, Jianzhong; Li, Yingliu; Zhang, Hui

    2016-01-01

    Through a variety of material screening experiments, Al was selected as the added metal and constituted a multiple micro-electrolysis system of Fe/C/Al. The metal proportion of alloy-structured filler was also analyzed with the best Fe/C/Al ratio of 3:1:1. The regular Fe/C/Al multiple micro-electrolysis fillers were prepared using a high-temperature anaerobic roasting method. The optimum conditions for oil refinery wastewater treated by Fe/C/Al multiple micro-electrolysis were determined to b...

  5. System Evaluations and Life-Cycle Cost Analyses for High-Temperature Electrolysis Hydrogen Production Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Edwin A. Harvego; James E. O' Brien; Michael G. McKellar

    2012-05-01

    This report presents results of system evaluations and lifecycle cost analyses performed for several different commercial-scale high-temperature electrolysis (HTE) hydrogen production concepts. The concepts presented in this report rely on grid electricity and non-nuclear high-temperature process heat sources for the required energy inputs. The HYSYS process analysis software was used to evaluate both central plant designs for large-scale hydrogen production (50,000 kg/day or larger) and forecourt plant designs for distributed production and delivery at about 1,500 kg/day. The HYSYS software inherently ensures mass and energy balances across all components and it includes thermodynamic data for all chemical species. The optimized designs described in this report are based on analyses of process flow diagrams that included realistic representations of fluid conditions and component efficiencies and operating parameters for each of the HTE hydrogen production configurations analyzed. As with previous HTE system analyses performed at the INL, a custom electrolyzer model was incorporated into the overall process flow sheet. This electrolyzer model allows for the determination of the average Nernst potential, cell operating voltage, gas outlet temperatures, and electrolyzer efficiency for any specified inlet steam, hydrogen, and sweep-gas flow rates, current density, cell active area, and external heat loss or gain. The lifecycle cost analyses were performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. There are standard default sets of assumptions that the methodology uses to ensure consistency when comparing the cost of different production or plant design options. However, these assumptions may also be varied within the

  6. Carbon dioxide electrolysis using a ceramic electrolyte. [for space processing

    Science.gov (United States)

    Erstfeld, T. E.; Mullins, O., Jr.; Williams, R. J.

    1979-01-01

    This paper discusses the results of an experimental study of the electrical aspects of carbon dioxide electrolysis using a ceramic electrolyte. The electrolyte compositions used in this study are 8% Y2O3 stabilized ZrO2, 7.5% CaO stabilized ZrO2, and 5% Y2O3 stabilized ThO2. Results indicate that the 8% Y2O3 stabilized ZrO2 is the best material to use for electrolysis, in terms of current as a function of voltage and temperature, and in terms of efficiency of oxide ion flow through it. The poorest results were obtained with the 5% Y2O3 stabilized ThO2 composition. An electrolysis system which might be employed to reclaim oxygen and carbon from effluents of space manufacturing, assuming that an industry would have to electrolyze 258,000 tonnes of CO2 per year, is predicted to require a total cell area of 110,000 sq m of 1 mm thickness and electrical capacity of 441 MW.

  7. Water Electrolysis for In-Situ Resource Utilization (ISRU)

    Science.gov (United States)

    Lee, Kristopher A.

    2016-01-01

    Sending humans to Mars for any significant amount of time will require capabilities and technologies that enable Earth independence. To move towards this independence, the resources found on Mars must be utilized to produce the items needed to sustain humans away from Earth. To accomplish this task, NASA is studying In Situ Resource Utilization (ISRU) systems and techniques to make use of the atmospheric carbon dioxide and the water found on Mars. Among other things, these substances can be harvested and processed to make oxygen and methane. Oxygen is essential, not only for sustaining the lives of the crew on Mars, but also as the oxidizer for an oxygen-methane propulsion system that could be utilized on a Mars ascent vehicle. Given the presence of water on Mars, the electrolysis of water is a common technique to produce the desired oxygen. Towards this goal, NASA designed and developed a Proton Exchange Membrane (PEM) water electrolysis system, which was originally slated to produce oxygen for propulsion and fuel cell use in the Mars Atmosphere and Regolith COllector/PrOcessor for Lander Operations (MARCO POLO) project. As part of the Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA) project, this same electrolysis system, originally targeted at enabling in situ propulsion and power, operated in a life-support scenario. During HESTIA testing at Johnson Space Center, the electrolysis system supplied oxygen to a chamber simulating a habitat housing four crewmembers. Inside the chamber, oxygen was removed from the atmosphere to simulate consumption by the crew, and the electrolysis system's oxygen was added to replenish it. The electrolysis system operated nominally throughout the duration of the HESTIA test campaign, and the oxygen levels in the life support chamber were maintained at the desired levels.

  8. Durability of solid oxide electrolysis cells for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Hauch, A.; Hoejgaard Jensen, S.; Dalgaard Ebbesen, S.

    2007-05-15

    In the perspective of the increasing interest in renewable energy and hydrogen economy, the reversible solid oxide cells (SOCs) is a promising technology as it has the potential of providing efficient and cost effective hydrogen production by high temperature electrolysis of steam (HTES). Furthermore development of such electrolysis cells can gain from the results obtained within the R and D of SOFCs. For solid oxide electrolysis cells (SOEC) to become interesting from a technological point of view, cells that are reproducible, high performing and long-term stable need to be developed. In this paper we address some of the perspectives of the SOEC technology i.e. issues such as a potential H2 production price as low as 0.71 US dollar/kg H{sub 2} using SOECs for HTES; is there a possible market for the electrolysers? and what R and D steps are needed for the realisation of the SOEC technology? In the experimental part we present electrolysis test results on SOCs that have been optimized for fuel cell operation but applied for HTES. The SOCs are produced on a pre-pilot scale at Risoe National Laboratory. These cells have been shown to have excellent initial electrolysis performance, but the durability of such electrolysis cells are not optimal and examples of results from SOEC tests over several hundreds of hours are given here. The long-term tests have been run at current densities of -0.5 A/cm{sup 2} and -1 A/cm{sup 2}, temperatures of 850 deg. C and 950 deg. C and p(H{sub 2}O)/p(H{sub 2}) of 0.5/0.5 and 0.9/0.1. Long-term degradation rates are shown to be up to 5 times higher for SOECs compared to similar SOFC testing. Furthermore, hydrogen and synthetic fuel production prices are calculated using the experimental results from long-term electrolysis test as input and a short outlook for the future work on SOECs will be given as well. (au)

  9. The electrolysis time on electrosynthesis of hydroxyapatite with bipolar membrane

    Science.gov (United States)

    Nur, Adrian; Jumari, Arif; Budiman, Anatta Wahyu; Puspitaningtyas, Stella Febianti; Cahyaningrum, Suci; Nazriati, Nazriati; Fajaroh, Fauziatul

    2018-02-01

    The electrochemical method with bipolar membrane has been successfully used for the synthesis of hydroxyapatite. In this work, we have developed 2 chambers electrolysis system separated by a bipolar membrane. The membrane was used to separate cations (H+ ions produced by the oxidation of water at the anode) and anions (OH- ions produced by the reduction of water at the cathode). With this system, we have designed that OH- ions still stay in the anions chamber because OH- ions was very substantial in the hydroxyapatite particles formation. The aim of this paper was to compare the electrolysis time on electrosynthesis of hydroxyapatite with and without the bipolar membrane. The electrosynthesis was performed at 500 mA/cm2 for 0.5 to 2 hours at room temperature and under ultrasonic cleaner to void agglomeration with and without the bipolar membrane. The electrosynthesis of hydroxyapatite with the bipolar membrane more effective than without the bipolar membrane. The hydroxyapatite has been appeared at 0.5 h of the electrolysis time with the bipolar membrane (at the cathode chamber) while it hasn't been seen without the bipolar membrane. The bipolar membrane prevents OH- ions migrate to the cation chamber. The formation of HA becomes more effective because OH- ions just formed HA particle.

  10. High Temperature Electrolysis for Hydrogen Production from Nuclear Energy - Technology Summary

    International Nuclear Information System (INIS)

    O'Brien, J.E.; Stoots, C.M.; Herring, J.S.; McKellar, M.G.; Harvego, E.A.; Sohal, M.S.; Condie, K.G.

    2010-01-01

    The Department of Energy, Office of Nuclear Energy, has requested that a Hydrogen Technology Down-Selection be performed to identify the hydrogen production technology that has the best potential for timely commercial demonstration and for ultimate deployment with the Next Generation Nuclear Plant (NGNP). An Independent Review Team has been assembled to execute the down-selection. This report has been prepared to provide the members of the Independent Review Team with detailed background information on the High Temperature Electrolysis (HTE) process, hardware, and state of the art. The Idaho National Laboratory has been serving as the lead lab for HTE research and development under the Nuclear Hydrogen Initiative. The INL HTE program has included small-scale experiments, detailed computational modeling, system modeling, and technology demonstration. Aspects of all of these activities are included in this report. In terms of technology demonstration, the INL successfully completed a 1000-hour test of the HTE Integrated Laboratory Scale (ILS) technology demonstration experiment during the fall of 2008. The HTE ILS achieved a hydrogen production rate in excess of 5.7 Nm3/hr, with a power consumption of 18 kW. This hydrogen production rate is far larger than has been demonstrated by any of the thermochemical or hybrid processes to date.

  11. Study and modelling of an industrial plant for hydrogen production by High Temperature Steam Electrolysis

    International Nuclear Information System (INIS)

    Bertier, L.

    2012-01-01

    HTSE field (High Temperature Steam Electrolysis) is moving from the research phase to development phase. It's now necessary to prove and to possibly improve the technology competitiveness. Therefore we need a tool able to allow communication between hydrogen producers and electrolysis cell stack designers. Designers seek where their efforts have to focus, for example by searching what are the operating best conditions for HTSE (voltage, temperature). On the contrary, the producer wants to choose the most suitable stack for its needs and under the best conditions: hydrogen has to be produced at the lowest price. Two main constraints have been identified to reach this objective: the tool has to be inserted into a process simulation software and needs to be representative of the cell and stack used technology. These constraints are antagonistic. Making an object model in a process simulation usually involves a highly simplified representation of it. To meet these constraints, we have built a model chain starting from the electrode models and leading to a representative model of the HTSE technology used process. Work and added value of this thesis mainly concern a global and local energy optimization approach. Our model allows at each scale an appropriate analysis of the main phenomena occurring in each object and a quantification of the energy and economic impacts of the technology used. This approach leads to a tool able to achieve the technical and economic optimization of a HTSE production unit. (author) [fr

  12. Real-time measurement of dynamic structure for Pd-D system in heavy-water electrolysis cell

    International Nuclear Information System (INIS)

    Wang Jun; Zeng Xianxin; Yang Jilian; Zhang Baisheng; Ruan Jinghui

    1993-01-01

    The real-time dynamic structure of Pd-D system in D 2 O electrolysis cell is measured on neutron powder diffractometer in CIAE. Diffraction patterns in 2 θ range of 34 degree-95 degree are obtained under the conditions of electrolysing for 0, 3 and 48 A ·h respectively, and the gradual transition of Pd-D system from α-phase to β-phase is observed. The real-time measurements of β peak of (220) reflection show that intensity of β peak almost reaches the saturation point after electrolysing for 0.65 A · h and increases slowly with further electrolysis afterwards

  13. Hydrogen Generation From Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Steven Cohen; Stephen Porter; Oscar Chow; David Henderson

    2009-03-06

    Small-scale (100-500 kg H2/day) electrolysis is an important step in increasing the use of hydrogen as fuel. Until there is a large population of hydrogen fueled vehicles, the smaller production systems will be the most cost-effective. Performing conceptual designs and analyses in this size range enables identification of issues and/or opportunities for improvement in approach on the path to 1500 kg H2/day and larger systems. The objectives of this program are to establish the possible pathways to cost effective larger Proton Exchange Membrane (PEM) water electrolysis systems and to identify areas where future research and development efforts have the opportunity for the greatest impact in terms of capital cost reduction and efficiency improvements. System design and analysis was conducted to determine the overall electrolysis system component architecture and develop a life cycle cost estimate. A design trade study identified subsystem components and configurations based on the trade-offs between system efficiency, cost and lifetime. Laboratory testing of components was conducted to optimize performance and decrease cost, and this data was used as input to modeling of system performance and cost. PEM electrolysis has historically been burdened by high capital costs and lower efficiency than required for large-scale hydrogen production. This was known going into the program and solutions to these issues were the focus of the work. The program provided insights to significant cost reduction and efficiency improvement opportunities for PEM electrolysis. The work performed revealed many improvement ideas that when utilized together can make significant progress towards the technical and cost targets of the DOE program. The cell stack capital cost requires reduction to approximately 25% of today’s technology. The pathway to achieve this is through part count reduction, use of thinner membranes, and catalyst loading reduction. Large-scale power supplies are available

  14. Techno-economic study of hydrogen production by high temperature electrolysis coupled with an EPR-water steam production and coupling possibilities

    International Nuclear Information System (INIS)

    Tinoco, R. R.; Bouallou, C.; Mansilla, C.; Werkoff, F.

    2007-01-01

    Nuclear reactors present a wide range of coupling possibilities with several industrial processes, hydrogen production being one of them. Among the Pressurised Water nuclear Reactors (PWR), the new European Pressurised Reactor (EPR) offers the water steam production at low-medium temperatures, from 230 degree Celsius to 330 degree Celsius for the primary and secondary exchange circuits. The use of this water steam for hydrogen production by High Temperature Electrolysis is the subject of this study, under a French context. The study of this coupling, has considered two hypotheses. First, water steam drawing off in secondary circuit has been evaluated in terms of possible impact in electricity production and reactor availability. After the drawing off at 78 bar (EPR secondary circuit pressure), pressure has to be dropped in order to protect the high temperature electrolyser from damage, so an isenthalpic drop has been considered. Liquid-vapour equilibrium happens with pressure drops, so separation of gas phase and recycling of liquid phase are proposed. Second, only water steam production with an EPR has been evaluated. The feed water enters the secondary circuit and passes from liquid phase to vapour in the steam generators, and then all steam is canalized to the high temperature electrolyser. The potentiality of water steam production in the EPR has been evaluated from 15 to 40 bar. Small reactors could be the best choice if only water steam production is considered. After steam production, it steam enters into the High Temperature Electrolysis process, like a cold stream for two parallel series of three heat exchangers reaching temperatures up to 950 degree Celsius. Then the steam is heated by an electric device and finally it enters the electrolyser. The electrolysis product streams (hydrogen-steam mixture and oxygen) are used in the heat exchangers like hot streams. For both hypotheses, information about water composition has been studied in order to minimise

  15. Phosphonate removal from discharged circulating cooling water using iron-carbon micro-electrolysis.

    Science.gov (United States)

    Zhou, Zhen; Qiao, Weimin; Lin, Yangbo; Shen, Xuelian; Hu, Dalong; Zhang, Jianqiao; Jiang, Lu-Man; Wang, Luochun

    2014-01-01

    Phosphonate is a commonly used corrosion and scale inhibitor for a circulating cooling water (CCW) system. Its discharge could cause eutrophication of receiving waters. The iron-carbon (Fe/C) micro-electrolysis technology was used to degrade and remove phosphonate from discharged CCW. The influences of initial pH, Fe/C ratio (FCR) and temperature on phosphonate removal were investigated in a series of batch tests and optimized by response surface methodology. The quadratic model of phosphonate removal was obtained with satisfactory degrees of fitness. The optimum conditions with total phosphorus removal efficiency of 95% were obtained at pH 7.0, FCR of 1.25, and temperature of 45 °C. The phosphonate removal mechanisms were also studied. Phosphonate removal occurred predominantly via two consecutive reactive phases: the degradation of phosphonate complexes (Ca-phosphonate) and the precipitation of Fe/C micro-electrolysis products (PO₄(3-), Ca²⁺ and Fe³⁺).

  16. Separation factor dependence upon cathode material for tritium separation from heavy water by electrolysis

    International Nuclear Information System (INIS)

    Ogata, Y.; Sakuma, Y.; Ohtani, N.; Kotaka, M.

    2002-01-01

    Using three cathode materials, i.e. carbon (C), stainless steel (SUS), and nickel (Ni), tritium was separated from heavy water by electrolysis, and the separation factors were compared. To separate hydrogen isotopes, heavy water was electrolyzed by an electrolysis device with a solid polymer electrode (SPE), which needed no electrolyte additives for electrolysis. The anode was made of 3 mm thickness of a sintered porous titanium plate covered with iridium oxide. The cathode was made of the same thickness of a sintered porous carbon, stainless steel, or nickel plate. Heavy water or light water spiked with tritiated water was electrolyzed 20 A x 60 min with the electrolysis cell temperature at 10, 20 or 30degC, and 15 A x 80 min at 5degC. The produced hydrogen and oxygen gases were recombined using a palladium catalyst with nitrogen gas as a carrier. The activities of the water in the electrolysis cell and of the recombined water were analyzed using a liquid scintillation counter. The apparent D-T separation factor (SF D/T ) and H-T separation factor (SF H/T ) were calculated as quotient the specific activity of the water in the cell divided by that of the recombined water. The electrolysis potential to keep the current 20 A was 2-3 V. The average yields of the recombined water were 95%. At the cell temperature of 20degC, SF D/T (C), SF D/T (SUS), and SF D/T (Ni) were 2.42, 2.17, and 2.05, respectively. At the same temperature, SF H/T (C), SF H/T (SUS), and SF H/T (Ni) were 12.5, 10.8, and 11.8, respectively. The SFs were in agreement with the results in other works. The SFs were changed with the cell temperature. (author)

  17. Alkaline electrolysis cell at high temperature and pressure of 250 °C and 42 bar

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2013-01-01

    A new type of alkaline electrolysis cells with nickel foam based gas diffusion electrodes and KOH (aq) immobilized in mesoporous SrTiO3 has been developed and tested at temperatures and pressures up to 250 °C and 42 bar, respectively. Current densities of 1.0 A cm−2 have been measured at a cell v...... voltage of 1.5 V without the use of expensive noble metal catalysts. High electrical efficiency and current density combined with relatively small production costs may lead to both reduced investment and operating costs for hydrogen and oxygen production....

  18. High Temperature Electrolysis for Hydrogen Production from Nuclear Energy – TechnologySummary

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; C. M. Stoots; J. S. Herring; M. G. McKellar; E. A. Harvego; M. S. Sohal; K. G. Condie

    2010-02-01

    The Department of Energy, Office of Nuclear Energy, has requested that a Hydrogen Technology Down-Selection be performed to identify the hydrogen production technology that has the best potential for timely commercial demonstration and for ultimate deployment with the Next Generation Nuclear Plant (NGNP). An Independent Review Team has been assembled to execute the down-selection. This report has been prepared to provide the members of the Independent Review Team with detailed background information on the High Temperature Electrolysis (HTE) process, hardware, and state of the art. The Idaho National Laboratory has been serving as the lead lab for HTE research and development under the Nuclear Hydrogen Initiative. The INL HTE program has included small-scale experiments, detailed computational modeling, system modeling, and technology demonstration. Aspects of all of these activities are included in this report. In terms of technology demonstration, the INL successfully completed a 1000-hour test of the HTE Integrated Laboratory Scale (ILS) technology demonstration experiment during the fall of 2008. The HTE ILS achieved a hydrogen production rate in excess of 5.7 Nm3/hr, with a power consumption of 18 kW. This hydrogen production rate is far larger than has been demonstrated by any of the thermochemical or hybrid processes to date.

  19. Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides

    KAUST Repository

    Bi, Lei; Boulfrad, Samir; Traversa, Enrico

    2014-01-01

    Energy crisis and environmental problems caused by the conventional combustion of fossil fuels boost the development of renewable and sustainable energies. H2 is regarded as a clean fuel for many applications and it also serves as an energy carrier for many renewable energy sources, such as solar and wind power. Among all the technologies for H2 production, steam electrolysis by solid oxide electrolysis cells (SOECs) has attracted much attention due to its high efficiency and low environmental impact, provided that the needed electrical power is generated from renewable sources. However, the deployment of SOECs based on conventional oxygen-ion conductors is limited by several issues, such as high operating temperature, hydrogen purification from water, and electrode stability. To avoid these problems, proton-conducting oxides are proposed as electrolyte materials for SOECs. This review paper provides a broad overview of the research progresses made for proton-conducting SOECs, summarizing the past work and finding the problems for the development of proton-conducting SOECs, as well as pointing out potential development directions.

  20. Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides.

    Science.gov (United States)

    Bi, Lei; Boulfrad, Samir; Traversa, Enrico

    2014-12-21

    Energy crisis and environmental problems caused by the conventional combustion of fossil fuels boost the development of renewable and sustainable energies. H2 is regarded as a clean fuel for many applications and it also serves as an energy carrier for many renewable energy sources, such as solar and wind power. Among all the technologies for H2 production, steam electrolysis by solid oxide electrolysis cells (SOECs) has attracted much attention due to its high efficiency and low environmental impact, provided that the needed electrical power is generated from renewable sources. However, the deployment of SOECs based on conventional oxygen-ion conductors is limited by several issues, such as high operating temperature, hydrogen purification from water, and electrode stability. To avoid these problems, proton-conducting oxides are proposed as electrolyte materials for SOECs. This review paper provides a broad overview of the research progresses made for proton-conducting SOECs, summarizing the past work and finding the problems for the development of proton-conducting SOECs, as well as pointing out potential development directions.

  1. Field-scale electrolysis/ceramic membrane system for the treatment of sewage from decentralized small communities.

    Science.gov (United States)

    Son, Dong-Jin; Kim, Woo-Yeol; Yun, Chan-Young; Kim, Dae-Gun; Chang, Duk; Sunwoo, Young; Hong, Ki-Ho

    2017-07-05

    The electrolysis process adopting copper electrodes and ceramic membrane with pore sizes of 0.1-0.2 μm were consisted to a system for the treatment of sewage from decentralized small communities. The system was operated under an HRT of 0.1 hour, voltage of 24 V, and TMP of 0.05 MPa. The system showed average removals of organics, nitrogen, phosphorus, and solids of up to 80%, 52%, 92%, and 100%, respectively. Removal of organics and nitrogen dramatically increased in proportion to increment of influent loading. Phosphorus and solids were remarkably eliminated by both electro-coagulation and membrane filtration. The residual particulate constituents could also be removed successfully through membrane process. A system composed of electrolysis process with ceramic membrane would be a compact, reliable, and flexible option for the treatment of sewage from decentralized small communities.

  2. Advancements in oxygen generation and humidity control by water vapor electrolysis

    Science.gov (United States)

    Heppner, D. B.; Sudar, M.; Lee, M. C.

    1988-01-01

    Regenerative processes for the revitalization of manned spacecraft atmospheres or other manned habitats are essential for realization of long-term space missions. These processes include oxygen generation through water electrolysis. One promising technique of water electrolysis is the direct conversion of the water vapor contained in the cabin air to oxygen. This technique is the subject of the present program on water vapor electrolysis development. The objectives were to incorporate technology improvements developed under other similar electrochemical programs and add new ones; design and fabricate a mutli-cell electrochemical module and a testing facility; and demonstrate through testing the improvements. Each aspect of the water vapor electrolysis cell was reviewed. The materials of construction and sizing of each element were investigated analytically and sometime experimentally. In addition, operational considerations such as temperature control in response to inlet conditions were investigated. Three specific quantitative goals were established.

  3. Hydrogen Production Performance of a 10-Cell Planar Solid-Oxide Electrolysis Stack

    International Nuclear Information System (INIS)

    James O'Brien; Carl Stoots; Steve Herring; J. Hartvigsen

    2005-01-01

    An experimental study is under way to assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900 C. Results presented in this paper were obtained from a ten-cell planar electrolysis stack, with an active area of 64 cm2 per cell. The electrolysis cells are electrolyte supported, with scandia-stabilized zirconia electrolytes (∼140 (micro)m thick), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions (0.1-0.6), gas flow rates (1000-4000 sccm), and current densities (0 to 0.38 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. Cell operating potentials and cell current were varied using a programmable power supply. Hydrogen production rates up to 100 Normal liters per hour were demonstrated. Values of area-specific resistance and stack internal temperatures are presented as a function of current density. Stack performance is shown to be dependent on inlet steam flow rate

  4. Electrochemical deposition of La-Mg alloys in LaCl3-MgCl2-KCl system with molten salt electrolysis process

    Directory of Open Access Journals (Sweden)

    Sahoo Kumar D.

    2014-01-01

    Full Text Available La-Mg alloys of different compositions were prepared by electrolysis of LaCl3-MgCl2-KCl melts. Different phases of La-Mg alloys were characterized by X-ray diffraction (XRD and Scanning Electron Microscopy (SEM. Energy dispersive spectrometry (EDS and Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES analyses showed that chemical compositions of La-Mg alloys were consistent with phase structures of XRD pattern, and magnesium content in the alloy could be controlled by electrolysis parameters. The effects of various process parameters such as concentration of magnesium chloride in the bath, temperature of electrolysis and cathode current density on the current efficiency have been investigated. A maximum current efficiency of 85% and yield of 80% was obtained from the bath at 12.5A/cm2 current density at an operating temp 850°C.

  5. Syntrophic interactions drive the hydrogen production from glucose at low temperature in microbial electrolysis cells

    KAUST Repository

    Lu, Lu

    2012-11-01

    H2 can be obtained from glucose by fermentation at mesophilic temperatures, but here we demonstrate that hydrogen can also be obtained from glucose at low temperatures using microbial electrolysis cells (MECs). H2 was produced from glucose at 4°C in single-chamber MECs at a yield of about 6mol H2mol-1 glucose, and at rates of 0.25±0.03-0.37±0.04m3 H2m-3d-1. Pyrosequencing of 16S rRNA gene and electrochemical analyses showed that syntrophic interactions combining glucose fermentation with the oxidization of fermentation products by exoelectrogens was the predominant pathway for current production at a low temperature other than direct glucose oxidization by exoelectrogens. Another syntrophic interaction, methanogenesis and homoacetogenesis, which have been found in 25°C reactors, were not detected in MECs at 4°C. These results demonstrate the feasibility of H2 production from abundant biomass of carbohydrates at low temperature in MECs. © 2012 Elsevier Ltd.

  6. Hydrogen production by alkaline water electrolysis

    Directory of Open Access Journals (Sweden)

    Diogo M. F. Santos

    2013-01-01

    Full Text Available Water electrolysis is one of the simplest methods used for hydrogen production. It has the advantage of being able to produce hydrogen using only renewable energy. To expand the use of water electrolysis, it is mandatory to reduce energy consumption, cost, and maintenance of current electrolyzers, and, on the other hand, to increase their efficiency, durability, and safety. In this study, modern technologies for hydrogen production by water electrolysis have been investigated. In this article, the electrochemical fundamentals of alkaline water electrolysis are explained and the main process constraints (e.g., electrical, reaction, and transport are analyzed. The historical background of water electrolysis is described, different technologies are compared, and main research needs for the development of water electrolysis technologies are discussed.

  7. Proton hopping mechanism in solid polymer electrolysis demonstrated by tritium enrichment and electro-osmotic drag measurement

    International Nuclear Information System (INIS)

    Saito, Masaaki; Imaizumi, Hiroshi; Kato, Norio; Ishii, Yoshiyuki; Saito, Keiichi

    2010-01-01

    Anomalies in tritium enrichment cannot be explained only by isotopic effects in water electrolysis. The temperature dependence of the enrichment factor had been reported as increasing with 1/T. However, the increase was difficult to explain on the basis of kinetics. In this study, electro-osmotic drag (EOD, number of water molecule accompanied by a proton) and tritium enrichment ratio were investigated using light water (H 2 O) and heavy water (D 2 O) by solid polymer electrolysis. The EOD decreased and tritium enrichment ratio increased at low temperature for H 2 O. Electrolysis showed no temperature dependence for D 2 O. It was revealed that proton hopping by a hydrogen bond network of water molecules (the Grotthuss mechanism) affects the temperature dependence of EOD and tritium enrichment in the case of H 2 O. (author)

  8. High Temperature Co‐Electrolysis of Steam and CO2 in an SOC Stack: Performance and Durability

    DEFF Research Database (Denmark)

    Chen, Ming; Høgh, Jens Valdemar Thorvald; Nielsen, J. U.

    2013-01-01

    In this work, co‐electrolysis of steam and carbon dioxide was studied in a Topsoe Fuel Cell (TOFC®) 10‐cell stack, containing three different types of Ni/yttria stabilized zirconia (YSZ) electrode supported solid oxide electrolysis cells with a footprint of 12 × 12 cm. The stack was operated at 800...

  9. Experiments on a ceramic electrolysis cell and a palladium diffuser at the tritium systems test assembly

    International Nuclear Information System (INIS)

    Konishi, Satoshi; Yoshida, Hiroshi; Ohno, Hideo; Naruse, Yuji; Coffin, D.O.; Walthers, C.R.; Binning, K.E.

    1985-01-01

    A ceramic electrolysis cell and a palladium diffuser are developed in Japan and is tested with tritium in Tritium Systems Test Assembly (TSTA) of the Los Alamos National Laboratory, in order to confirm the feasibility as possible upgrades for the fuel cleanup system (PCU). The ceramic electrolysis cell made of stabilized zirconia was operated at 630 0 C for an extended period with a mixture of 3% T 2 O in He carrier gas in the circulation system with oxidizing catalyst bed. The palladium diffuser was tested with circulated pure tritium gas at 280 0 C to verify the compatibility of the alloy with tritium, since the 3 He produced in the metal could cause a degradation. The isotopic effects were also measured for both devices

  10. Endurance Test and Evaluation of Alkaline Water Electrolysis Cells

    Science.gov (United States)

    Kovach, Andrew J.; Schubert, Franz H.; Chang, B. J.; Larkins, Jim T.

    1985-01-01

    The overall objective of this program is to assess the state of alkaline water electrolysis cell technology and its potential as part of a Regenerative Fuel Cell System (RFCS) of a multikilowatt orbiting powerplant. The program evaluates the endurance capabilities of alkaline electrolyte water electrolysis cells under various operating conditions, including constant condition testing, cyclic testing and high pressure testing. The RFCS demanded the scale-up of existing cell hardware from 0.1 sq ft active electrode area to 1.0 sq ft active electrode area. A single water electrolysis cell and two six-cell modules of 1.0 sq ft active electrode area were designed and fabricated. The two six-cell 1.0 sq ft modules incorporate 1.0 sq ft utilized cores, which allow for minimization of module assembly complexity and increased tolerance to pressure differential. A water electrolysis subsystem was designed and fabricated to allow testing of the six-cell modules. After completing checkout, shakedown, design verification and parametric testing, a module was incorporated into the Regenerative Fuel Cell System Breadboard (RFCSB) for testing at Life Systems, Inc., and at NASA JSC.

  11. Status on the Component Models Developed in the Modelica Framework: High-Temperature Steam Electrolysis Plant & Gas Turbine Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Suk Kim, Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKellar, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-10-01

    This report has been prepared as part of an effort to design and build a modeling and simulation (M&S) framework to assess the economic viability of a nuclear-renewable hybrid energy system (N-R HES). In order to facilitate dynamic M&S of such an integrated system, research groups in multiple national laboratories have been developing various subsystems as dynamic physics-based components using the Modelica programming language. In fiscal year (FY) 2015, Idaho National Laboratory (INL) performed a dynamic analysis of two region-specific N-R HES configurations, including the gas-to-liquid (natural gas to Fischer-Tropsch synthetic fuel) and brackish water reverse osmosis desalination plants as industrial processes. In FY 2016, INL has developed two additional subsystems in the Modelica framework: a high-temperature steam electrolysis (HTSE) plant and a gas turbine power plant (GTPP). HTSE has been proposed as a high priority industrial process to be integrated with a light water reactor (LWR) in an N-R HES. This integrated energy system would be capable of dynamically apportioning thermal and electrical energy (1) to provide responsive generation to the power grid and (2) to produce alternative industrial products (i.e., hydrogen and oxygen) without generating any greenhouse gases. A dynamic performance analysis of the LWR/HTSE integration case was carried out to evaluate the technical feasibility (load-following capability) and safety of such a system operating under highly variable conditions requiring flexible output. To support the dynamic analysis, the detailed dynamic model and control design of the HTSE process, which employs solid oxide electrolysis cells, have been developed to predict the process behavior over a large range of operating conditions. As first-generation N-R HES technology will be based on LWRs, which provide thermal energy at a relatively low temperature, complementary temperature-boosting technology was suggested for integration with the

  12. Results of tritium experiments on ceramic electrolysis cells and palladium diffusers for application to fusion reactor fuel cleanup systems

    International Nuclear Information System (INIS)

    Carlson, R.V.; Binning, K.E.; Konishi, S.; Yoshida, H.; Naruse, Y.

    1987-01-01

    Tritium tests at the Tritium Systems Test Assembly have demonstrated that ceramic electrolysis cells and palladium alloy diffuser developed in Japan are possible components for a fusion reactor fuel cleanup system. Both components have been successfully operated with tritium for over a year. A failure of the first electrolysis cell was most likely the result of an over voltage on the ceramic. A simple circuit was developed to eliminate this mode of failure. The palladium diffusers tubes exhibited some degradation of mechanical properties as a result of the build up of helium from the tritium decay, after 450 days of operation with tritium, however the effects were not significant enough to affect the performance. New models of the diffuser and electrolysis cell, providing higher flow rates and more tritium compatible designs are currently being tested with tritium. 8 refs., 5 figs

  13. A Study on the Preparation of Regular Multiple Micro-Electrolysis Filler and the Application in Pretreatment of Oil Refinery Wastewater.

    Science.gov (United States)

    Yang, Ruihong; Zhu, Jianzhong; Li, Yingliu; Zhang, Hui

    2016-04-29

    Through a variety of material screening experiments, Al was selected as the added metal and constituted a multiple micro-electrolysis system of Fe/C/Al. The metal proportion of alloy-structured filler was also analyzed with the best Fe/C/Al ratio of 3:1:1. The regular Fe/C/Al multiple micro-electrolysis fillers were prepared using a high-temperature anaerobic roasting method. The optimum conditions for oil refinery wastewater treated by Fe/C/Al multiple micro-electrolysis were determined to be an initial pH value of 3, reaction time of 80 min, and 0.05 mol/L Na₂SO₄ additive concentration. The reaction mechanism of the treatment of oil refinery wastewater by Fe/C/Al micro-electrolysis was investigated. The process of the treatment of oil refinery wastewater with multiple micro-electrolysis conforms to the third-order reaction kinetics. The gas chromatography-mass spectrometry (GC-MS) used to analyze the organic compounds of the oil refinery wastewater before and after treatment and the Ultraviolet-visible spectroscopy (UV-VIS) absorption spectrum analyzed the degradation process of organic compounds in oil refinery wastewater. The treatment effect of Fe/C/Al multiple micro-electrolysis was examined in the continuous experiment under the optimum conditions, which showed high organic compound removal and stable treatment efficiency.

  14. High performance of nitrogen and phosphorus removal in an electrolysis-integrated biofilter.

    Science.gov (United States)

    Gao, Y; Xie, Y W; Zhang, Q; Yu, Y X; Yang, L Y

    A novel electrolysis-integrated biofilter system was developed in this study to evaluate the intensified removal of nitrogen and phosphorus from contaminated water. Two laboratory-scale biofilter systems were established, one with electrolysis (E-BF) and one without electrolysis (BF) as control. The dynamics of intensified nitrogen and phosphorus removal and the changes of inflow and outflow water qualities were also evaluated. The total nitrogen (TN) removal rate was 94.4% in our newly developed E-BF, but only 74.7% in the control BF. Ammonium removal rate was up to 95% in biofilters with or without electrolysis integration with an influent ammonium concentration of 40 mg/L, and the accumulation of nitrate and nitrite was much lower in the effluent of E-BF than that of BF. Thus electrolysis plays an important role in TN removal especially the nitrate and nitrite removal. Phosphorus removal was significantly enhanced, exceeding 90% in E-BF by chemical precipitation, physical adsorption, and flocculation of phosphorus because of the in situ formation of ferric ions by the anodizing of sacrificial iron anodes. Results from this study indicate that the electrolysis integrated biofilter is a promising solution for intensified nitrogen and phosphorus removal.

  15. System Identification of a Non-Uniformly Sampled Multi-Rate System in Aluminium Electrolysis Cells

    Directory of Open Access Journals (Sweden)

    Håkon Viumdal

    2014-07-01

    Full Text Available Standard system identification algorithms are usually designed to generate mathematical models with equidistant sampling instants, that are equal for both input variables and output variables. Unfortunately, real industrial data sets are often disrupted by missing samples, variations of sampling rates in the different variables (also known as multi-rate systems, and intermittent measurements. In industries with varying events based maintenance or manual operational measures, intermittent measurements are performed leading to uneven sampling rates. Such is the case with aluminium smelters, where in addition the materials fed into the cell create even more irregularity in sampling. Both measurements and feeding are mostly manually controlled. A simplified simulation of the metal level in an aluminium electrolysis cell is performed based on mass balance considerations. System identification methods based on Prediction Error Methods (PEM such as Ordinary Least Squares (OLS, and the sub-space method combined Deterministic and Stochastic system identification and Realization (DSR, and its variants are applied to the model of a single electrolysis cell as found in the aluminium smelters. Aliasing phenomena due to large sampling intervals can be crucial in avoiding unsuitable models, but with knowledge about the system dynamics, it is easier to optimize the sampling performance, and hence achieve successful models. The results based on the simulation studies of molten aluminium height in the cells using the various algorithms give results which tally well with the synthetic data sets used. System identification on a smaller data set from a real plant is also implemented in this work. Finally, some concrete suggestions are made for using these models in the smelters.

  16. Development of a separate tank with an electrolysis-dependent bacteria controlling system for the long term storage of potable water.

    Science.gov (United States)

    Ishizuka, Akinori; Tanji, Masataka; Hayashi, Nobuatsu; Wakabayashi, Akihiro; Tatsumoto, Hideki; Hotta, Kunimoto

    2006-12-01

    For the long term storage of tap water, we developed a separate type of tank (5 m3) equipped with an electrolysis system to control bacterial growth. The electrolysis conditions using 20A direct current and a water flow rate of 10 L/min were capable of producing available chlorine (AC) at the rate of 5-8mg/min and raising the AC level of the stored tap water by about 0.2 mg/kg within 20-30 min The electrolyzed tap water with 0.2 mg/kg AC showed a capability per ml of killing 10(5)-10(6) cfu of bacteria such as Escherichia coli and Pseudomonas aeruginosa within 15 sec. A 6-month trial operation of the storage system with an automatic electrolysis control to keep AC level ranging 0.2-0.4 mg/kg demonstrated that the system worked well for the stored tap water in suppressing bacterial growth as well as in keeping good potable quality with reference to the 46 parameters specified for Japanese tap water. Actually, the electrolysis treatment was administered intermittently with an interval of about two weeks. Thus we believe the developed system has good potential to secure a potable water supply not only in the occasion of emergencies but also in countries having problems in the supply of safe drinking water.

  17. Technology advancement of the static feed water electrolysis process

    Science.gov (United States)

    Schubert, F. H.; Wynveen, R. A.

    1977-01-01

    A program to advance the technology of oxygen- and hydrogen-generating subsystems based on water electrolysis was studied. Major emphasis was placed on static feed water electrolysis, a concept characterized by low power consumption and high intrinsic reliability. The static feed based oxygen generation subsystem consists basically of three subassemblies: (1) a combined water electrolysis and product gas dehumidifier module; (2) a product gas pressure controller and; (3) a cyclically filled water feed tank. Development activities were completed at the subsystem as well as at the component level. An extensive test program including single cell, subsystem and integrated system testing was completed with the required test support accessories designed, fabricated, and assembled. Mini-product assurance activities were included throughout all phases of program activities. An extensive number of supporting technology studies were conducted to advance the technology base of the static feed water electrolysis process and to resolve problems.

  18. From Oxygen Generation to Metals Production: In Situ Resource Utilization by Molten Oxide Electrolysis

    Science.gov (United States)

    Khetpal, Deepak; Ducret, Andrew C.; Sadoway, Donald R.

    2003-01-01

    For the exploration of other bodies in the solar system, electrochemical processing is arguably the most versatile technology for conversion of local resources into usable commodities: by electrolysis one can, in principle, produce (1) breathable oxygen, (2) silicon for the fabrication of solar cells, (3) various reactive metals for use as electrodes in advanced storage batteries, and (4) structural metals such as steel and aluminum. Even so, to date there has been no sustained effort to develop such processes, in part due to the inadequacy of the database. The objective here is to identify chemistries capable of sustaining molten oxide electrolysis in the cited applications and to examine the behavior of laboratory-scale cells designed to generate oxygen and to produce metal. The basic research includes the study of the underlying high-temperature physical chemistry of oxide melts representative of lunar regolith and of Martian soil. To move beyond empirical approaches to process development, the thermodynamic and transport properties of oxide melts are being studied to help set the limits of composition and temperature for the processing trials conducted in laboratory-scale electrolysis cells. The goal of this investigation is to deliver a working prototype cell that can use lunar regolith and Martian soil to produce breathable oxygen along with metal by-product. Additionally, the process can be generalized to permit adaptation to accommodate different feedstock chemistries, such as those that will be encountered on other bodies in the solar system. The expected results of this research include: (1) the identification of appropriate electrolyte chemistries; (2) the selection of candidate anode and cathode materials compatible with electrolytes named above; and (3) performance data from a laboratory-scale cell producing oxygen and metal. On the strength of these results it should be possible to assess the technical viability of molten oxide electrolysis for in

  19. High Temperature Alkaline Electrolysis Cells with Metal Foam Based Gas Diffusion Electrodes

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Allebrod, Frank; Mogensen, Mogens Bjerg

    2016-01-01

    Alkaline electrolysis cells operating at 250°C and 40 bar are able to convert electrical energy into hydrogen at very high efficiencies and power densities. In the present work we demonstrate the application of a PTFE hydrophobic network and Ag nanowires as oxygen evolution electrocatalyst...

  20. Treatment of chitin-producing wastewater by micro-electrolysis-contact oxidization.

    Science.gov (United States)

    Yang, Yue-ping; Xu, Xin-hua; Chen, Hai-feng

    2004-04-01

    The technique of micro-electrolysis-contact oxidization was exploited to treat chitin-producing wastewater. Results showed that Fe-C micro-electrolysis can remove about 30% COD(cr), raise pH from 0.7 to 5.5. The COD(cr) removal efficiency by biochemical process can be more than 80%. During a half year's operation, the whole system worked very stably and had good results, as proved by the fact that every quality indicator of effluent met the expected discharge standards; which means that chitin wastewater can be treated by the technique of micro-electrolysis, contact oxidization.

  1. A study of metallic coatings obtained by electrolysis of molten salts

    International Nuclear Information System (INIS)

    Broc, Michel.

    1978-06-01

    An appropriate technique has been developed for obtaining compact metallic coatings from electrolysis of molten salts. Through the use of this method, it has been possible to produce pure metal deposits which, until now, has been extremely difficult to do. The apparatus used and the main steps of the process such as dehydration of the solvant, degassing of the equipment, and starting of the electrolytic process, are first described. This is followed by a discussion of the deposits of the metals beryllium, uranium, tantalum and tungsten obtained from electrolysis of molten fluorides at temperatures between 600 and 800 0 C. The metal coatings so obtained are homogeneous and show continuity, their thicknesses varying from a few microns to a millimeter or more. They have been studied by measurements. As potential applications of this new technique, one can mention the growth of diffusion barriers and the production of cathodes for thermoionic emission. The method can also be used for electroforming. An intermetallic diffusion between the deposit and the substrate has been observed in some cases. The advantage of the technique of melt electrolysis in obtaining metal coatings of enhanced thicknesses is illustrated by taking the beryllium-nickel system as an example. It is shown that the thickness obtained is proportional to the square root of growth time and is about 6 to 8 times larger than that obtained by conventional techniques [fr

  2. A Study on the Preparation of Regular Multiple Micro-Electrolysis Filler and the Application in Pretreatment of Oil Refinery Wastewater

    Directory of Open Access Journals (Sweden)

    Ruihong Yang

    2016-04-01

    Full Text Available Through a variety of material screening experiments, Al was selected as the added metal and constituted a multiple micro-electrolysis system of Fe/C/Al. The metal proportion of alloy-structured filler was also analyzed with the best Fe/C/Al ratio of 3:1:1. The regular Fe/C/Al multiple micro-electrolysis fillers were prepared using a high-temperature anaerobic roasting method. The optimum conditions for oil refinery wastewater treated by Fe/C/Al multiple micro-electrolysis were determined to be an initial pH value of 3, reaction time of 80 min, and 0.05 mol/L Na2SO4 additive concentration. The reaction mechanism of the treatment of oil refinery wastewater by Fe/C/Al micro-electrolysis was investigated. The process of the treatment of oil refinery wastewater with multiple micro-electrolysis conforms to the third-order reaction kinetics. The gas chromatography–mass spectrometry (GC–MS used to analyze the organic compounds of the oil refinery wastewater before and after treatment and the Ultraviolet–visible spectroscopy (UV–VIS absorption spectrum analyzed the degradation process of organic compounds in oil refinery wastewater. The treatment effect of Fe/C/Al multiple micro-electrolysis was examined in the continuous experiment under the optimum conditions, which showed high organic compound removal and stable treatment efficiency.

  3. Investigation of a novel concept for hydrogen production by PEM water electrolysis integrated with multi-junction solar cells

    International Nuclear Information System (INIS)

    Ferrero, Domenico; Santarelli, Massimo

    2017-01-01

    Highlights: • A 2D model of a PEM water electrolyzer is developed and validated. • A novel system integrating PEM and multi-junction solar cells is proposed. • The model is applied to the simulation of the novel system. • The integration of PEM and MJ cells enhances the hydrogen production efficiency. - Abstract: A 2D finite element model of a high-pressure PEM water electrolyzer is developed and validated over experimental data obtained from a demonstration prototype. The model includes the electrochemical, fluidic and thermal description of the repeating unit of a PEM electrolyzer stack. The model is applied to the simulation of a novel system composed by a high-temperature, high-pressure PEM electrochemical cell coupled with a photovoltaic multi-junction solar cell installed in a solar concentrator. The thermo-electrochemical characterization of the solar-driven PEM electrolysis system is presented and the advantages of the high-temperature operation and of the direct coupling of electrolyzer and solar cell are assessed. The results show that the integration of the multi-junction cell enhances the performance of the electrolyzer and allows to achieve higher system efficiency compared to separated photovoltaic generation and hydrogen production by electrolysis.

  4. Techno-economic study of hydrogen production by high temperature electrolysis and coupling with different thermal energy sources

    International Nuclear Information System (INIS)

    Rivera-Tinoco, R.

    2009-03-01

    This work focuses on the techno-economic study of massive hydrogen production by the High Temperature Electrolysis (HTE) process and also deals with the possibility of producing the steam needed in the process by using different thermal energy sources. Among several sources, those retained in this study are the biomass and domestic waste incineration units, as well as two nuclear reactors (European Pressurised water Reactor - EPR and Sodium Fast Reactor - SFR). Firstly, the technical evaluation of the steam production by each of these sources was carried out. Then, the design and modelling of the equipments composing the process, specially the electrolysers (Solid Oxides Electrolysis Cells), are presented. Finally, the hydrogen production cost for each energy sources coupled with the HTE process is calculated. Moreover, several sensibility studies were performed in order to determine the process key parameter and to evaluate the influence of the unit size effect, the electric energy cost, maintenance, the cells current density, their investment cost and their lifespan on the hydrogen production cost. Our results show that the thermal energy cost is much more influent on the hydrogen production cost than the steam temperature at the outlet stream of the thermal source. It seems also that the key parameters for this process are the electric energy cost and the c ells lifespan. The first one contributes for more than 70% of the hydrogen production cost. From several cell lifespan values, it seems that a 3 year value, rather than 1 year, could lead to a hydrogen production cost reduced on 34%. However, longer lifespan values going from 5 to 10 years would only lead to a 8% reduction on the hydrogen production cost. (author)

  5. Static Feed Water Electrolysis Subsystem Testing and Component Development

    Science.gov (United States)

    Koszenski, E. P.; Schubert, F. H.; Burke, K. A.

    1983-01-01

    A program was carried out to develop and test advanced electrochemical cells/modules and critical electromechanical components for a static feed (alkaline electrolyte) water electrolysis oxygen generation subsystem. The accomplishments were refurbishment of a previously developed subsystem and successful demonstration for a total of 2980 hours of normal operation; achievement of sustained one-person level oxygen generation performance with state-of-the-art cell voltages averaging 1.61 V at 191 ASF for an operating temperature of 128F (equivalent to 1.51V when normalized to 180F); endurance testing and demonstration of reliable performance of the three-fluid pressure controller for 8650 hours; design and development of a fluid control assembly for this subsystem and demonstration of its performance; development and demonstration at the single cell and module levels of a unitized core composite cell that provides expanded differential pressure tolerance capability; fabrication and evaluation of a feed water electrolyte elimination five-cell module; and successful demonstration of an electrolysis module pressurization technique that can be used in place of nitrogen gas during the standby mode of operation to maintain system pressure and differential pressures.

  6. Water vapor pressure over molten KH2PO4 and demonstration of water electrolysis at ∼300ºC

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Nikiforov, Aleksey Valerievich; Petrushina, Irina

    2016-01-01

    A new potentially high-efficiency electrolyte for water electrolysis: molten monobasic potassium phosphate, KH2PO4 or KDP has been investigated at temperatures ∼275–325 °C. At these temperatures, KH2PO4 was found to dissociate into H2O gas in equilibrium with a melt mixture of KH2PO4—K2H2P2O7—KPO3...... of water and methane or hydrogen to be 0.40 ± 0.02 or 1.2 ± 0.03. At equilibrium the vapor pressure was much lower than the vapor pressure above liquid water at the same temperature. Electrolysis was realized by passing current through closed ampoules (vacuum sealed quartz glass electrolysis cells...... with platinum electrodes and the electrolyte melt). The formation of mixtures of hydrogen and oxygen gases as well as the water vapor was detected by Raman spectroscopy. In this way it was demonstrated that water is present in the new electrolyte: molten KH2PO4 can be split by electrolysis via the reaction 2H2O...

  7. Polybenzimidazole membranes for zero gap alkaline electrolysis cells

    DEFF Research Database (Denmark)

    Kraglund, Mikkel Rykær; Aili, David; Christensen, Erik

    Membranes of m-PBI doped in KOH (aq), 15-35 wt%, show high ionic conductivity in the temperature range 20-80 ºC. In electrolysis cells with nickel foam electrodes m-PBI membranesprovide low internal resistance. With a 60 µm membraneat 80ºC in 20 wt% KOH,1000 mA/cm2 is achieved at 2.25....

  8. Development of Hydrogen Electrodes for Alkaline Water Electrolysis

    DEFF Research Database (Denmark)

    Kjartansdóttir, Cecilía Kristín

    , production of electricity via fuel cells, fuel for internal combustion engines or gas turbines, or as a raw material for the production of synthetic fuels via Sabatier or Fischer - Tropsch process. In some situations it may be suitable to simply inject hydrogen into the existing natural gas based...... will be needed. Producing hydrogen via water electrolysis using surplus, low cost, power from renewables offers the possibility of increased production capacity and load management with no greenhouse emissions. Hydrogen is a valuable energy carrier, which is able to contribute to various forms of energy, such as...... infrastructure. Alkaline water electrolysis (AWE) is the current standard (stat of the art) for industrial large-scale water electrolysis systems. One of the main criteria for industrial AWE is efficient and durable electrodes. The aim of the present PhD study was to develop electrode materials for hydrogen...

  9. Hydrogen production by alkaline water electrolysis

    OpenAIRE

    Santos, Diogo M. F.; Sequeira, César A. C.; Figueiredo, José L.

    2013-01-01

    Water electrolysis is one of the simplest methods used for hydrogen production. It has the advantage of being able to produce hydrogen using only renewable energy. To expand the use of water electrolysis, it is mandatory to reduce energy consumption, cost, and maintenance of current electrolyzers, and, on the other hand, to increase their efficiency, durability, and safety. In this study, modern technologies for hydrogen production by water electrolysis have been investigated. In this article...

  10. Electrocatalysis in Water Electrolysis with Solid Polymer Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Rasten, Egil

    2001-10-01

    Development and optimization of the electrodes in a water electrolysis system using a polymer membrane as electrolyte have been carried out in this work. A cell voltage of 1.59 V (energy consumption of about 3.8 kWh/Nm{sub 3} H{sub 2}) has been obtained at practical operation conditions of the electrolysis cell (10 kA . m2, 90{sup o}C) using a total noble metal loading of less than 2.4 mg.cm{sub 2} and a Nafion -115 membrane. It is further shown that a cell voltage of less than 1.5 V is possible at the same conditions by combination of the best electrodes obtained in this work. The most important limitation of the electrolysis system using polymer membrane as electrolyte has proven to be the electrical conductivity of the catalysts due to the porous backing/current collector system, which increases the length of the current path and decreases the cross section compared to the apparent one. A careful compromise must therefore be obtained between electrical conductivity and active surface area, which can be tailored by preparation and annealing conditions of the metal oxide catalysts. Anode catalysts of different properties have been developed. The mixed oxide of Ir-Ta (85 mole% Ir) was found to exhibit highest voltage efficiency at a current density of 10 kA.m{sub 2} or below, whereas the mixed oxide of Ir and Ru (60-80 mole% Ir) was found to give the highest voltage efficiency for current densities of above 10 kA.m{sub 2}. Pt on carbon particles, was found to be less suitable as cathode catalyst in water electrolysis. The large carbon particles introduced an unnecessary porosity into the catalytic layer, which resulted in a high ohmic drop. Much better voltage efficiency was obtained by using Pt-black as cathode catalyst, which showed a far better electrical conductivity. Ru-oxide as cathode catalyst in water electrolysis systems using a polymer electrolyte was not found to be of particular interest due to insufficient electrochemical activity and too low

  11. Hydrogen Generation by Koh-Ethanol Plasma Electrolysis Using Double Compartement Reactor

    Science.gov (United States)

    Saksono, Nelson; Sasiang, Johannes; Dewi Rosalina, Chandra; Budikania, Trisutanti

    2018-03-01

    This study has successfully investigated the generation of hydrogen using double compartment reactor with plasma electrolysis process. Double compartment reactor is designed to achieve high discharged voltage, high concentration, and also reduce the energy consumption. The experimental results showed the use of double compartment reactor increased the productivity ratio 90 times higher compared to Faraday electrolysis process. The highest hydrogen production obtained is 26.50 mmol/min while the energy consumption can reach up 1.71 kJ/mmol H2 at 0.01 M KOH solution. It was shown that KOH concentration, addition of ethanol, cathode depth, and temperature have important effects on hydrogen production, energy consumption, and process efficiency.

  12. Solid oxide electrolysis cells - Performance and durability

    Energy Technology Data Exchange (ETDEWEB)

    Hauch, A.

    2007-10-15

    In this work H2 electrode supported solid oxide cells (SOC) produced at Risoe National Laboratory, DTU, have been used for steam electrolysis. Electrolysis tests have been performed at temperatures from 650AeC to 950AeC, p(H2O)/p(H2) from 0.99/0.01 to 0.30/0.70 and current densities from -0.25 A/cm2 to -2 A/cm2. The solid oxide electrolysis cells (SOEC) have been characterised by iV curves and electrochemical impedance spectroscopy (EIS) at start and end of tests and by EIS under current load during electrolysis testing. The tested SOCs have shown the best initial electrolysis performance reported in literature to date. Area specific resistances of 0.26 Oecm2 at 850AeC and 0.17 Oecm2 at 950AeC were obtained from electrolysis iV curves. The general trend for the SOEC tests was: 1) a short-term passivation in first few hundred hours, 2) then an activation and 3) a subsequent and underlying long-term degradation. The transient phenomenon (passivation/activation) was shown to be a set-up dependent artefact caused by the albite glass sealing with a p(Si(OH)4) of 1.10-7 atm, leading to silica contamination of the triple-phase boundaries (TPBs) of the electrode. The long-term degradation for the SOECs was more pronounced than for fuel cell testing of similar cells. Long-term degradation of 2%/1000 h was obtained at 850AeC, p(H2O)/p(H2) = 0.5/0.5 and -0.5 A/cm2, whereas the degradation rate increased to 6%/1000h at 950AeC, p(H2O)/p(H2) = 0.9/0.1 and -1.0 A/cm2. Both the short-term passivation and the long-term degradation appear mainly to be related to processes in the H2 electrode. Scanning electron microscopy micrographs show that only limited changes occur in the Ni particle size distribution and these are not the main degradation mechanism for the SOECs. Micro and nano analysis using energy dispersive spectroscopy in combination with transmission electron microscopy (TEM) and scanning TEM reveals that glassy phase impurities have accumulated at the TPBs as a result of

  13. Direct LiT Electrolysis in a Metallic Fusion Blanket

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Luke [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-30

    A process that simplifies the extraction of tritium from molten lithium-based breeding blankets was developed. The process is based on the direct electrolysis of lithium tritide using a ceramic Li ion conductor that replaces the molten salt extraction step. Extraction of tritium in the form of lithium tritide in the blankets/targets of fusion/fission reactors is critical in order to maintain low concentrations. This is needed to decrease the potential tritium permeation to the surroundings and large releases from unforeseen accident scenarios. Extraction is complicated due to required low tritium concentration limits and because of the high affinity of tritium for the blanket. This work identified, developed and tested the use of ceramic lithium ion conductors capable of recovering hydrogen and deuterium through an electrolysis step at high temperatures.

  14. Direct LiT Electrolysis in a Metallic Fusion Blanket

    International Nuclear Information System (INIS)

    Olson, Luke

    2016-01-01

    A process that simplifies the extraction of tritium from molten lithium-based breeding blankets was developed. The process is based on the direct electrolysis of lithium tritide using a ceramic Li ion conductor that replaces the molten salt extraction step. Extraction of tritium in the form of lithium tritide in the blankets/targets of fusion/fission reactors is critical in order to maintain low concentrations. This is needed to decrease the potential tritium permeation to the surroundings and large releases from unforeseen accident scenarios. Extraction is complicated due to required low tritium concentration limits and because of the high affinity of tritium for the blanket. This work identified, developed and tested the use of ceramic lithium ion conductors capable of recovering hydrogen and deuterium through an electrolysis step at high temperatures.

  15. Removal of heavy metals from fly ash leachate using combined bioelectrochemical systems and electrolysis

    International Nuclear Information System (INIS)

    Tao, Hu-Chun; Lei, Tao; Shi, Gang; Sun, Xiao-Nan; Wei, Xue-Yan; Zhang, Li-Juan; Wu, Wei-Min

    2014-01-01

    Highlights: • Heavy metals removal from MSWI fly ash with BES and electrolysis was confirmed. • 98.5% of Cu(II), 95.4% of Zn(II) and 98.1% of Pb(II) removal were achieved in reactors. • BESs can remove some heavy metals in fly ash with energy saving. -- Abstract: Based on environmental and energetic analysis, a novel combined approach using bioelectrochemical systems (BES) followed by electrolysis reactors (ER) was tested for heavy metals removal from fly ash leachate, which contained high detectable levels of Zn, Pb and Cu according to X-ray diffraction analysis. Acetic acid was used as the fly ash leaching agent and tested under various leaching conditions. A favorable condition for the leaching process was identified to be liquid/solid ratio of 14:1 (w/w) and leaching duration 10 h at initial pH 1.0. It was confirmed that the removal of heavy metals from fly ash leachate with the combination of BESs and ER is feasible. The metal removal efficiency was achieved at 98.5%, 95.4% and 98.1% for Cu(II), Zn(II), and Pb(II), respectively. Results of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) indicated that Cu(II) was reduced and recovered mainly as metal Cu on cathodes related to power production, while Zn(II) and Pb(II) were not spontaneously reduced in BESs without applied voltage and basically electrolyzed in the electrolysis reactors

  16. Treatment of high salt oxidized modified starch waste water using micro-electrolysis, two-phase anaerobic aerobic and electrolysis for reuse

    Science.gov (United States)

    Yi, Xuenong; Wang, Yulin

    2017-06-01

    A combined process of micro-electrolysis, two-phase anaerobic, aerobic and electrolysis was investigated for the treatment of oxidized modified starch wastewater (OMSW). Optimum ranges for important operating variables were experimentally determined and the treated water was tested for reuse in the production process of corn starch. The optimum hydraulic retention time (HRT) of micro-electrolysis, methanation reactor, aerobic process and electrolysis process were 5, 24, 12 and 3 h, respectively. The addition of iron-carbon fillers to the acidification reactor was 200 mg/L while the best current density of electrolysis was 300 A/m2. The biodegradability was improved from 0.12 to 0.34 by micro-electrolysis. The whole treatment was found to be effective with removal of 96 % of the chemical oxygen demand (COD), 0.71 L/day of methane energy recovery. In addition, active chlorine production (15,720 mg/L) was obtained by electrolysis. The advantage of this hybrid process is that, through appropriate control of reaction conditions, effect from high concentration of salt on the treatment was avoided. Moreover, the process also produced the material needed in the production of oxidized starch while remaining emission-free and solved the problem of high process cost.

  17. High-temperature electrolysis of CO2-enriched mixtures by using fuel-electrode supported La0.6Sr0.4CoO3/YSZ/Ni-YSZ solid oxide cells

    Science.gov (United States)

    Kim, Si-Won; Bae, Yonggyun; Yoon, Kyung Joong; Lee, Jong-Ho; Lee, Jong-Heun; Hong, Jongsup

    2018-02-01

    To mitigate CO2 emissions, its reduction by high-temperature electrolysis using solid oxide cells is extensively investigated, for which excessive steam supply is assumed. However, such condition may degrade its feasibility due to massive energy required for generating hot steam, implying the needs for lowering steam demand. In this study, high-temperature electrolysis of CO2-enriched mixtures by using fuel-electrode supported La0.6Sr0.4CoO3/YSZ/Ni-YSZ solid oxide cells is considered to satisfy such needs. The effect of internal and external steam supply on its electrochemical performance and gas productivity is elucidated. It is shown that the steam produced in-situ inside the fuel-electrode by a reverse water gas shift reaction may decrease significantly the electrochemical resistance of dry CO2-fed operations, attributed to self-sustaining positive thermo-electrochemical reaction loop. This mechanism is conspicuous at low current density, whereas it is no longer effective at high current density in which total reactant concentrations for electrolysis is critical. To overcome such limitations, a small amount of external steam supply to the CO2-enriched feed stream may be needed, but this lowers the CO2 conversion and CO/H2 selectivity. Based on these results, it is discussed that there can be minimum steam supply sufficient for guaranteeing both low electrochemical resistance and high gas productivity.

  18. Facile preparation of graphene by high-temperature electrolysis and its application in supercapacitor.

    Science.gov (United States)

    Jiao, Chen-Xu; Xing, Bao-Yan; Zhao, Jian-Guo; Geng, Yu; Li, Zuo-Peng

    2014-01-01

    Graphene is well known owing to its astonishing properties: stronger than diamond, more conductive than copper and more flexible than rubber. Because of its potential uses in industry, researchers have been searching for less toxicity ways to make graphene in large amount with lower cost. We demonstrated an efficient method to prepare graphene by high temperature electrolysis technique. High resolution scanning electron microscopy and raman spectroscopy were used to characterize the microstructure of graphene. Graphene was assembled into the supercapacitor and its performance of electrochemical capacitor was investigated by constant current charge and discharge, cyclic voltammetry and AC impedance. The results showed that the micro-morphology of the prepared graphene was multilayer and it was favorable when the electrolytic voltage was 1.5 V. When the current density is 1 mA/cm(2), the specific capacitance of the graphene supercapacitor can reach 78.01 F/g in 6 mol/L KOH electrolyte, which was an increase of 114% compared with 36.43 F/g of conventional KOH electrolyte.

  19. Feasibility Study of Seawater Electrolysis for Photovoltaic/Fuel Cell Hybrid Power System for the Coastal Areas in Thailand

    Science.gov (United States)

    Srisiriwat, A.; Pirom, W.

    2017-10-01

    Solar photovoltaic cell and fuel cell are the practicable options to realize as a possible hybrid power system because the power of the sun cannot be utilized at night or cloudy days but hydrogen has been found as an ideal energy carrier for being transportable, storable, and converting energy though fuel cell. Hydrogen storage is chosen for its ability to obtain a clean energy option. Electrolysis, which is the simplest process to produce hydrogen, can be powered by the dc voltage from the photovoltaic cell instead of using the battery as power supply. This paper concentrates on a feasibility study of seawater electrolysis using photovoltaic power integrated fuel cell system for the coastal cities in Thailand. The proposed system composed of photovoltaic arrays, seawater electrolyzer and fuel cell is presented when the 10-kW of fuel cell electrical power is considered. The feasibility study of hydrogen production and energy analysis of this proposed system is also evaluated.

  20. Iron migration from the anode surface in alumina electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravleva, Elena N.; Drozdova, Tatiana N.; Ponomareva, Svetlana V. [Siberian Federal University, Krasnoyarsk, 660041 (Russian Federation); Kirik, Sergei D., E-mail: kiriksd@yandex.ru [Siberian Federal University, Krasnoyarsk, 660041 (Russian Federation); Institute of Chemistry and Chemical Technology SB RAS, Krasnoyarsk, 660036 (Russian Federation)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Corrosion destruction of two-component iron-based alloys in high-temperature aluminum electrolysis in the cryolite alumina melt has been studied. Black-Right-Pointing-Pointer It was found that at the first stage oxidative polarization of iron atoms on the anode surface into Fe{sup 2+} takes place. Black-Right-Pointing-Pointer Fe{sup 2+} interacts with cryolite melt producing FeF{sub 2}. Black-Right-Pointing-Pointer FeF{sub 2} gives oxides FeAl{sub 2}O{sub 4}, Fe{sub 3}O{sub 4}, Fe{sub 2}O{sub 3}. Black-Right-Pointing-Pointer The participation of oxygen in the corrosion has not been observed. - Abstract: Corrosion destruction of two-component iron-based alloys used as an anode in high-temperature alumina electrolysis in the melt of NaF/KF/AlF{sub 3} electrolyte has been considered. Ni, Si, Cu, Cr, Mn, Al, Ti in the amount of up to 10% have been tested as the dopants to an anode alloys. The composition of the corrosion products has been studied using X-ray diffraction, scanning electron microscopy and electron microprobe analysis. It has been established that the anode corrosion is induced by a surface electrochemical polarization and iron atom oxidation. Iron ions come into an exchange interaction with the fluoride components of the melted electrolyte, producing FeF{sub 2}. The last interacts with oxyfluoride species transforming into the oxide forms: FeAl{sub 2}O{sub 4}, Fe{sub 3}O{sub 4}, Fe{sub 2}O{sub 3}. Due to the low solubility, the iron oxides are accumulated in the near-electrode sheath. The only small part of iron from anode migrates to cathode that makes an production of high purity aluminum of a real task. The alloy dopants are also subjected to corrosion in accordance with electromotive series resulting corrosion tunnels on the anode surface. The oxides are final compounds which collect in the same area. The corrosion products form an anode shell which is electronic conductor at electrolysis temperature. The

  1. Water vapor pressure over molten KH_2PO_4 and demonstration of water electrolysis at ∼300 °C

    International Nuclear Information System (INIS)

    Berg, R.W.; Nikiforov, A.V.; Petrushina, I.M.; Bjerrum, N.J.

    2016-01-01

    Highlights: • The vapor pressure over molten KH_2PO_4 was measured by Raman spectroscopy to be about 8 bars at ∼300 °C. • Raman spectroscopy shows that molten KH_2PO_4 under its own vapor pressure contains much dissolved water. • It is demonstrated spectroscopically that water electrolysis is possible in KH_2PO_4 electrolyte forming H_2 and O_2 at 300 °C. • Molten KH_2PO_4 is a possible electrolyte for water electrolysis. - Abstract: A new potentially high-efficiency electrolyte for water electrolysis: molten monobasic potassium phosphate, KH_2PO_4 or KDP has been investigated at temperatures ∼275–325 °C. At these temperatures, KH_2PO_4 was found to dissociate into H_2O gas in equilibrium with a melt mixture of KH_2PO_4−K_2H_2P_2O_7−KPO_3−H_2O. The water vapor pressure above the melt, when contained in a closed ampoule, was determined quantitatively vs. temperature by use of Raman spectroscopy with methane or hydrogen gas as an internal calibration standard, using newly established relative ratios of Raman scattering cross sections of water and methane or hydrogen to be 0.40 ± 0.02 or 1.2 ± 0.03. At equilibrium the vapor pressure was much lower than the vapor pressure above liquid water at the same temperature. Electrolysis was realized by passing current through closed ampoules (vacuum sealed quartz glass electrolysis cells with platinum electrodes and the electrolyte melt). The formation of mixtures of hydrogen and oxygen gases as well as the water vapor was detected by Raman spectroscopy. In this way it was demonstrated that water is present in the new electrolyte: molten KH_2PO_4 can be split by electrolysis via the reaction 2H_2O → 2H_2 + O_2 at temperatures ∼275–325 °C. At these temperatures, before the start of the electrolysis, the KH_2PO_4 melt gives off H_2O gas that pressurizes the cell according to the following dissociations: 2KH_2PO_4 ↔ K_2H_2P_2O_7 + H_2O ↔ 2KPO_3 + 2H_2O. The spectra show however that the water by

  2. Recycling Carbon Dioxide into Sustainable Hydrocarbon Fuels: Electrolysis of Carbon Dioxide and Water

    Science.gov (United States)

    Graves, Christopher Ronald

    Great quantities of hydrocarbon fuels will be needed for the foreseeable future, even if electricity based energy carriers begin to partially replace liquid hydrocarbons in the transportation sector. Fossil fuels and biomass are the most common feedstocks for production of hydrocarbon fuels. However, using renewable or nuclear energy, carbon dioxide and water can be recycled into sustainable hydrocarbon fuels in non-biological processes which remove oxygen from CO2 and H2O (the reverse of fuel combustion). Capture of CO2 from the atmosphere would enable a closed-loop carbon-neutral fuel cycle. The purpose of this work was to develop critical components of a system that recycles CO2 into liquid hydrocarbon fuels. The concept is examined at several scales, beginning with a broad scope analysis of large-scale sustainable energy systems and ultimately studying electrolysis of CO 2 and H2O in high temperature solid oxide cells as the heart of the energy conversion, in the form of three experimental studies. The contributions of these studies include discoveries about electrochemistry and materials that could significantly improve the overall energy use and economics of the CO2-to-fuels system. The broad scale study begins by assessing the sustainability and practicality of the various energy carriers that could replace petroleum-derived hydrocarbon fuels, including other hydrocarbons, hydrogen, and storage of electricity on-board vehicles in batteries, ultracapacitors, and flywheels. Any energy carrier can store the energy of any energy source. This sets the context for CO2 recycling -- sustainable energy sources like solar and wind power can be used to provide the most energy-dense, convenient fuels which can be readily used in the existing infrastructure. The many ways to recycle CO2 into hydrocarbons, based on thermolysis, thermochemical loops, electrolysis, and photoelectrolysis of CO2 and/or H 2O, are critically reviewed. A process based on high temperature co-electrolysis

  3. Poisoning of Solid Oxide Electrolysis Cells by Impurities

    DEFF Research Database (Denmark)

    Ebbesen, Sune; Graves, Christopher R.; Hauch, Anne

    2010-01-01

    Electrolysis of H2O, CO2, and co-electrolysis of H2O and CO2 was studied in Ni/yttria-stabilized zirconia (YSZ) electrode supported solid oxide electrolysis cells (SOECs) consisting of a Ni/YSZ support, a Ni/YSZ electrode layer, a YSZ electrolyte, and an lanthanum strontium manganite (LSM)/YSZ ox...

  4. CFD Model Of A Planar Solid Oxide Electrolysis Cell For Hydrogen Production From Nuclear Energy

    International Nuclear Information System (INIS)

    Grant L. Hawkes; James E. O'Brien; Carl M. Stoots; J. Stephen Herring

    2005-01-01

    A three-dimensional computational fluid dynamics (CFD) model has been created to model high temperature steam electrolysis in a planar solid oxide electrolysis cell (SOEC). The model represents a single cell as it would exist in an electrolysis stack. Details of the model geometry are specific to a stack that was fabricated by Ceramatec2, Inc. and tested at the Idaho National Laboratory. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT2. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Mean model results are shown to compare favorably with experimental results obtained from an actual ten-cell stack tested at INL

  5. Alkaline water electrolysis technology for Space Station regenerative fuel cell energy storage

    Science.gov (United States)

    Schubert, F. H.; Hoberecht, M. A.; Le, M.

    1986-01-01

    The regenerative fuel cell system (RFCS), designed for application to the Space Station energy storage system, is based on state-of-the-art alkaline electrolyte technology and incorporates a dedicated fuel cell system (FCS) and water electrolysis subsystem (WES). In the present study, emphasis is placed on the WES portion of the RFCS. To ensure RFCS availability for the Space Station, the RFCS Space Station Prototype design was undertaken which included a 46-cell 0.93 cu m static feed water electrolysis module and three integrated mechanical components.

  6. A Vivens Ex Vivo Study on the Synergistic Effect of Electrolysis and Freezing on the Cell Nucleus.

    Science.gov (United States)

    Lugnani, Franco; Zanconati, Fabrizio; Marcuzzo, Thomas; Bottin, Cristina; Mikus, Paul; Guenther, Enric; Klein, Nina; Rubinsky, Liel; Stehling, Michael K; Rubinsky, Boris

    2015-01-01

    Freezing-cryosurgery, and electrolysis-electrochemical therapy (EChT), are two important minimally invasive surgery tissue ablation technologies. Despite major advantages they also have some disadvantages. Cryosurgery cannot induce cell death at high subzero freezing temperatures and requires multiple freeze thaw cycles, while EChT requires high concentrations of electrolytic products-which makes it a lengthy procedure. Based on the observation that freezing increases the concentration of solutes (including products of electrolysis) in the frozen region and permeabilizes the cell membrane to these products, this study examines the hypothesis that there could be a synergistic effect between freezing and electrolysis in their use together for tissue ablation. Using an animal model we refer to as vivens ex vivo, which may be of value in reducing the use of animals for experiments, combined with a Hematoxylin stain of the nucleus, we show that there are clinically relevant protocols in which the cell nucleus appears intact when electrolysis and freezing are used separately but is affected by certain combinations of electrolysis and freezing.

  7. Testing And Performance Analysis Of NASA 5 CM BY 5 CM Bi-Supported Solid Oxide Electrolysis Cells Operated In Both Fuel Cell And Steam Electrolysis Modes

    International Nuclear Information System (INIS)

    O'Brien, R.C.; O'Brien, J.E.; Stoots, C.M.; Zhang, X.; Farmer, S.C.; Cable, T.L.; Setlock, J.A.

    2011-01-01

    A series of 5 cm by 5 cm bi-supported Solid Oxide Electrolysis Cells (SOEC) were produced by NASA for the Idaho National Laboratory (INL) and tested under the INL High Temperature Steam Electrolysis program. The results from the experimental demonstration of cell operation for both hydrogen production and operation as fuel cells is presented. An overview of the cell technology, test apparatus and performance analysis is also provided. The INL High Temperature Steam Electrolysis laboratory has developed significant test infrastructure in support of single cell and stack performance analyses. An overview of the single cell test apparatus is presented. The test data presented in this paper is representative of a first batch of NASA's prototypic 5 cm by 5 cm SOEC single cells. Clearly a significant relationship between the operational current density and cell degradation rate is evident. While the performance of these cells was lower than anticipated, in-house testing at NASA Glenn has yielded significantly higher performance and lower degradation rates with subsequent production batches of cells. Current post-test microstructure analyses of the cells tested at INL will be published in a future paper. Modification to cell compositions and cell reduction techniques will be altered in the next series of cells to be delivered to INL with the aim to decrease the cell degradation rate while allowing for higher operational current densities to be sustained. Results from the testing of new batches of single cells will be presented in a future paper.

  8. The recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor

    International Nuclear Information System (INIS)

    Ren Xiulian; Wei Qifeng; Hu Surong; Wei Sijie

    2010-01-01

    This paper reports the optimization of the process parameters for recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor. The experiments were carried out in an ammoniacal ammonium chloride system. The influence of composition of electrolytes, pH, stirring rate, current density and temperature, on cathodic current efficiency, specific power consumption and anodic dissolution of Zn were investigated. The results indicate that the cathode current efficiency increases and the hydrogen evolution decreased with increasing the cathode current density. The partial current for electrodeposition of Zn has liner relationship with ω 1/2 (ω: rotation rate). The highest current efficiency for dissolving zinc was obtained when NH 4 Cl concentration was 53.46 g L -1 and the anodic dissolution of zinc was determined by mass transfer rate at stirring rate 0-300 r min -1 . Increase in temperature benefits to improve CE and dissolution of Zn, and reduce cell voltage. Initial pH of electrolytes plays an important role in the deposition and anodic dissolution of Zn. The results of single factor experiment show that about 50% energy consumption was saved for electrodeposition of Zn in the anion-exchange membrane electrolysis reactor.

  9. Synergistic Effects of Micro-electrolysis-Photocatalysis on Water Treatment and Fish Performance in Saline Recirculating Aquaculture System

    Science.gov (United States)

    Ye, Zhangying; Wang, Shuo; Gao, Weishan; Li, Haijun; Pei, Luowei; Shen, Mingwei; Zhu, Songming

    2017-03-01

    A new physico-chemical process for TAN (total ammonia nitrogen) removal and disinfection is introduced in saline recirculating aquaculture system (RAS), in which the biofilter is replaced with an integrated electrolysis cell and an activated carbon filter. The electrolysis cell which is based on micro current electrolysis combined with UV-light was self-designed. After the fundamental research, a small pilot scale RAS was operated for 30 days to verify the technical feasibility. The system was stocked by 42 GIFT tilapia (Oreochromis niloticus) fish with the rearing density of 13 kg/m3. During the experiments, the TAN concentration remained below 1.0 mg/L. The nitrite concentration was lower than 0.2 mg/L and the nitrate concentration had increased continuously to 12.79 mg/L at the end. Furthermore, the concentration of residual chlorine in culture ponds remained below 0.3 mg/L, ORP maintained slight fluctuations in the range of 190~240 mV, and pH of the water showed the downtrend. Tilapia weight increased constantly to 339.3 ± 10 g. For disinfection, the active chlorine generated by electrochemical treatment caused Escherichia coli inactivation. Enzyme activity assay indicated that the activity of glutamate dehydrogenase, carbonic anhydrase and glutamic pyruvic transaminase increased within the normal range. The preliminary feasibility was verified by using this physico-chemical technology in the RAS.

  10. Synergistic Effects of Micro-electrolysis-Photocatalysis on Water Treatment and Fish Performance in Saline Recirculating Aquaculture System.

    Science.gov (United States)

    Ye, Zhangying; Wang, Shuo; Gao, Weishan; Li, Haijun; Pei, Luowei; Shen, Mingwei; Zhu, Songming

    2017-03-27

    A new physico-chemical process for TAN (total ammonia nitrogen) removal and disinfection is introduced in saline recirculating aquaculture system (RAS), in which the biofilter is replaced with an integrated electrolysis cell and an activated carbon filter. The electrolysis cell which is based on micro current electrolysis combined with UV-light was self-designed. After the fundamental research, a small pilot scale RAS was operated for 30 days to verify the technical feasibility. The system was stocked by 42 GIFT tilapia (Oreochromis niloticus) fish with the rearing density of 13 kg/m 3 . During the experiments, the TAN concentration remained below 1.0 mg/L. The nitrite concentration was lower than 0.2 mg/L and the nitrate concentration had increased continuously to 12.79 mg/L at the end. Furthermore, the concentration of residual chlorine in culture ponds remained below 0.3 mg/L, ORP maintained slight fluctuations in the range of 190~240 mV, and pH of the water showed the downtrend. Tilapia weight increased constantly to 339.3 ± 10 g. For disinfection, the active chlorine generated by electrochemical treatment caused Escherichia coli inactivation. Enzyme activity assay indicated that the activity of glutamate dehydrogenase, carbonic anhydrase and glutamic pyruvic transaminase increased within the normal range. The preliminary feasibility was verified by using this physico-chemical technology in the RAS.

  11. Endurance test and evaluation of alkaline water electrolysis cells

    Science.gov (United States)

    Burke, K. A.; Schubert, F. H.

    1981-01-01

    Utilization in the development of multi-kW low orbit power systems is discussed. The following technological developments of alkaline water electrolysis cells for space power application were demonstrated: (1) four 92.9 cm2 single water electrolysis cells, two using LST's advanced anodes and two using LST's super anodes; (2) four single cell endurance test stands for life testing of alkaline water electrolyte cells; (3) the solid performance of the advanced electrode and 355 K; (4) the breakthrough performance of the super electrode; (5) the four single cells for over 5,000 hours each significant cell deterioration or cell failure. It is concluded that the static feed water electrolysis concept is reliable and due to the inherent simplicity of the passive water feed mechanism coupled with the use of alkaline electrolyte has greater potential for regenerative fuel cell system applications than alternative electrolyzers. A rise in cell voltage occur after 2,000-3,000 hours which was attributed to deflection of the polysulfone end plates due to creepage of the thermoplastic. More end plate support was added, and the performance of the cells was restored to the initial performance level.

  12. Towards solid oxide electrolysis plants in 2020

    DEFF Research Database (Denmark)

    Chen, Ming; Blennow, Peter; Mathiesen, Brian Vad

    The goal of the project is to further improve performance and durability of solid oxide electrolysis cells (SOECs) and stacks targeting applications specifically for regulating the future Danish power system with a high amount of fluctuating renewable energies, and at the same time enhance the co...

  13. Innovative anode materials and architectured cells for high temperature steam electrolysis operation

    International Nuclear Information System (INIS)

    Ogier, Tiphaine

    2012-01-01

    In order to improve the electrochemical performances of cells for high temperature steam electrolysis (HTSE), innovative oxygen electrode materials have been studied. The compounds Ln_2NiO_4_+_δ (Ln = La, Pr or Nd), Pr_4Ni_3O_1_0_±_δ and La_0_,_6S_r0_,_4Fe_0_,_8Co_0_,_2O_3_-_δ have been selected for their mixed electronic and ionic conductivity. First, their physical and chemical properties have been investigated. Then, the electrodes were shaped on symmetrical half cells,adding a thin ceria-based interlayer between the electrode and the yttria doped zirconia-based electrolyte. These architectured cells lead to low polarization resistances (RP≤ 0.1 Ω.cm"2 at 800 C) as well as reduced anodic over potentials. An electrochemical model has been developed in order to describe and analyze the experimental polarization curves.The electrode with the lower overpotential, i.e. Pr_2NiO_4_+δ, has been selected and characterized into complete cermet-supported cells. Under HTSE operation, at 800 C, a high current density was measured, close to i = -0.9 A.cm"-"2 for a cell voltage equals to 1.3 V, the conversion rate being about 60%. (author) [fr

  14. Durable SOC stacks for production of hydrogen and synthesis gas by high temperature electrolysis

    DEFF Research Database (Denmark)

    Ebbesen, Sune Dalgaard; Høgh, Jens Valdemar Thorvald; Nielsen, Karsten Agersted

    2011-01-01

    . The degradation of the electrolysis cells was found to be influenced by the adsorption of impurities from the applied inlet gases, whereas the application of chromium containing interconnect plates and glass sealings do not seem to influence the durability when operated at 850 °C. Cleaning the inlet gases...

  15. La0.8Sr0.2Co0.8Ni0.2O3-δ impregnated oxygen electrode for H2O/CO2 co-electrolysis in solid oxide electrolysis cells

    Science.gov (United States)

    Zheng, Haoyu; Tian, Yunfeng; Zhang, Lingling; Chi, Bo; Pu, Jian; Jian, Li

    2018-04-01

    High-temperature H2O/CO2 co-electrolysis through reversible solid oxide electrolysis cell (SOEC) provides potentially a feasible and eco-friendly way to convert electrical energy into chemicals stored in syngas. In this work, La0.8Sr0.2Co0.8Ni0.2O3-δ (LSCN) impregnated Gd0.1Ce0.9O1.95 (GDC)-(La0.8Sr0.2)0.95MnO3-δ (LSM) composite oxygen electrode is studied as high-performance electrode for H2O/CO2 co-electrolysis. The LSCN impregnated cell exhibits competitive performance with the peak power density of 1057 mW cm-2 at 800 °C in solid oxide fuel cell (SOFC) mode; in co-electrolysis mode, the current density can reach 1.60 A cm-2 at 1.5 V at 800 °C with H2O/CO2 ratio of 2/1. With LSCN nanoparticles dispersed on the surface of GDC-LSM to maximize the reaction active sites, the LSCN impregnated cell shows significant enhanced electrochemical performance at both SOEC and SOFC modes. The influence of feed gas composition (H2O-H2-CO2) and operating voltages on the performance of co-electrolysis are discussed in detail. The cell shows a very stable performance without obvious degradation for more than 100 h. Post-test characterization is analyzed in detail by multiple measurements.

  16. Hydrogen electrolysis using a NASICON solid protonic conductor

    Energy Technology Data Exchange (ETDEWEB)

    Gulens, J.; Longhurst, T.H.; Kuriakose, A.K.; Canaday, J.D.

    1988-09-01

    A protonic conductor based on a bonded NASICON disc has been used for hydrogen electrolysis at 300 K. Currents up to 200 mA can be passed through the disc, and the electrolysis proceeds with 100% current efficiency. The resistance of the ceramic is affected by its extent of hydration. Degradation and failure of the ceramic occurs at the cathode as a result of electrolysis.

  17. Static feed water electrolysis module

    Science.gov (United States)

    Powell, J. D.; Schubert, F. H.; Jensen, F. C.

    1974-01-01

    An advanced static feed water electrolysis module (SFWEM) and associated instrumentation for generating breathable O2 was developed. The system also generates a H2 byproduct for use in an air revitalization system for O2 recovery from metabolic CO2. Special attention was given to: (1) eliminating water feed compartment degassing, (2) eliminating need for zero gravity condenser/separators, (3) increasing current density capability, and (4) providing a self contained module so that operation is independent of laboratory instrumentation and complicated startup/shutdown procedures.

  18. Hydrogen production methods efficiency coupled to an advanced high temperature accelerator driven system

    International Nuclear Information System (INIS)

    Rodríguez, Daniel González; Lira, Carlos Alberto Brayner de Oliveira

    2017-01-01

    The hydrogen economy is one of the most promising concepts for the energy future. In this scenario, oil is replaced by hydrogen as an energy carrier. This hydrogen, rather than oil, must be produced in volumes not provided by the currently employed methods. In this work two high temperature hydrogen production methods coupled to an advanced nuclear system are presented. A new design of a pebbled-bed accelerator nuclear driven system called TADSEA is chosen because of the advantages it has in matters of transmutation and safety. For the conceptual design of the high temperature electrolysis process a detailed computational fluid dynamics model was developed to analyze the solid oxide electrolytic cell that has a huge influence on the process efficiency. A detailed flowsheet of the high temperature electrolysis process coupled to TADSEA through a Brayton gas cycle was developed using chemical process simulation software: Aspen HYSYS®. The model with optimized operating conditions produces 0.1627 kg/s of hydrogen, resulting in an overall process efficiency of 34.51%, a value in the range of results reported by other authors. A conceptual design of the iodine-sulfur thermochemical water splitting cycle was also developed. The overall efficiency of the process was calculated performing an energy balance resulting in 22.56%. The values of efficiency, hydrogen production rate and energy consumption of the proposed models are in the values considered acceptable in the hydrogen economy concept, being also compatible with the TADSEA design parameters. (author)

  19. Hydrogen production methods efficiency coupled to an advanced high temperature accelerator driven system

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Daniel González; Lira, Carlos Alberto Brayner de Oliveira [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Fernández, Carlos García, E-mail: danielgonro@gmail.com, E-mail: mmhamada@ipen.br [Instituto Superior de Tecnologías y Ciencias aplicadas (InSTEC), La Habana (Cuba)

    2017-07-01

    The hydrogen economy is one of the most promising concepts for the energy future. In this scenario, oil is replaced by hydrogen as an energy carrier. This hydrogen, rather than oil, must be produced in volumes not provided by the currently employed methods. In this work two high temperature hydrogen production methods coupled to an advanced nuclear system are presented. A new design of a pebbled-bed accelerator nuclear driven system called TADSEA is chosen because of the advantages it has in matters of transmutation and safety. For the conceptual design of the high temperature electrolysis process a detailed computational fluid dynamics model was developed to analyze the solid oxide electrolytic cell that has a huge influence on the process efficiency. A detailed flowsheet of the high temperature electrolysis process coupled to TADSEA through a Brayton gas cycle was developed using chemical process simulation software: Aspen HYSYS®. The model with optimized operating conditions produces 0.1627 kg/s of hydrogen, resulting in an overall process efficiency of 34.51%, a value in the range of results reported by other authors. A conceptual design of the iodine-sulfur thermochemical water splitting cycle was also developed. The overall efficiency of the process was calculated performing an energy balance resulting in 22.56%. The values of efficiency, hydrogen production rate and energy consumption of the proposed models are in the values considered acceptable in the hydrogen economy concept, being also compatible with the TADSEA design parameters. (author)

  20. Water Electrolysis at Different Current - Voltage Regimes

    International Nuclear Information System (INIS)

    Kleperis, J.; Blums, J.; Vanags, M.

    2007-01-01

    Full text: Electrochemical impedance and volt-amperic methods were used to compare an efficiency of water electrolysis for different materials and different electrode configurations. Two and three electrode measurements were made, using standard calomel reference electrode. Non-standard capacitative electrolysis was analyzed in special cell made from cylindrical steel electrodes. Volt-amperic measurements from - 15V to +15V DC didn't indicated the presence of oxidation - reduction reactions when distilled water was used as electrolyte. Impedance measurements showed unusual frequency behavior when the AC voltage increased till 0.5V. Different nickel and carbon electrodes (plate, porous and textile - type) were used to learn classical Faraday electrolysis in strong alkali solutions. Flying increase of current was indicator of the presence of electrolysis, and characteristic potential was used differ between materials accordingly they effectiveness for usage in an electrolyser device. (Aithors)

  1. Micro-electrolysis technology for industrial wastewater treatment.

    Science.gov (United States)

    Jin, Yi-Zhong; Zhang, Yue-Feng; Li, Wei

    2003-05-01

    Experiments were conducted to study the role of micro-electrolysis in removing chromaticity and COD and improving the biodegradability of wastewater from pharmaceutical, dye-printing and papermaking plants. Results showed that the use of micro-electrolysis technology could remove more than 90% of chromaticity and more than 50% of COD and greatly improved the biodegradability of pharmaceutical wastewater. Lower initial pH could be advantageous to the removal of chromaticity. A retention time of 30 minutes was recommended for the process design of micro-electrolysis. For the use of micro-electrolysis in treatment of dye-printing wastewater, the removal rates of both chromaticity and COD were increased from neutral condition to acid condition for disperse blue wastewater; more than 90% of chromaticity and more than 50% of COD could be removed in neutral condition for vital red wastewater.

  2. Method and system for purification of gas/liquid streams for fuel cells or electrolysis cells

    DEFF Research Database (Denmark)

    2013-01-01

    at least one scrubber in the gas/liquid stream at the inlet side of the first electrode of the fuel cell or electrolysis cell; and/or providing at least one scrubber in the gas/liquid stream at the inlet side of the second electrode of the fuel cell or electrolysis cell; and - purifying the gas....../liquid streams towards the first and second electrode; wherein the at least one scrubber in the gas/liquid stream at the inlet side of the first electrode and/or the at least one scrubber in the gas/liquid stream at the inlet side of the second electrode comprises a material suitable as an electrolyte material...... with the at least one scrubber, with the proviso that the fuel cell or electrolysis cell is not a solid oxide cell....

  3. Treatment of coking wastewater by a novel electric assisted micro-electrolysis filter.

    Science.gov (United States)

    Xie, Ruosong; Wu, Miaomiao; Qu, Guangfei; Ning, Ping; Cai, Yingying; Lv, Pei

    2018-04-01

    A newly designed electric assisted micro-electrolysis filter (E-ME) was developed to investigate its degradation efficiency for coking wastewater and correlated characteristics. The performance of the E-ME system was compared with separate electrolysis (SE) and micro-electrolysis (ME) systems. The results showed a prominent synergistic effect on COD removal in E-ME systems. Gas chromatography/mass spectrometry (GC-MS) analysis confirmed that the applied electric field enhanced the degradation of phenolic compounds. Meanwhile, more biodegradable oxygen-bearing compounds were detected. SEM images of granular activated carbon (GAC) showed that inactivation and blocking were inhibited during the E-ME process. The effects of applied voltage and initial pH in E-ME systems were also studied. The best voltage value was 1V, but synergistic effects existed even with lower applied voltage. E-ME systems exhibited some pH buffering capacity and attained the best efficiency in neutral media, which means that there is no need to adjust pH prior to or during the treatment process. Therefore, E-ME systems were confirmed as a promising technology for treatment of coking wastewater and other refractory wastewater. Copyright © 2017. Published by Elsevier B.V.

  4. An Analysis of Methanol and Hydrogen Production via High-Temperature Electrolysis Using the Sodium Cooled Advanced Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shannon M. Bragg-Sitton; Richard D. Boardman; Robert S. Cherry; Wesley R. Deason; Michael G. McKellar

    2014-03-01

    Integration of an advanced, sodium-cooled fast spectrum reactor into nuclear hybrid energy system (NHES) architectures is the focus of the present study. A techno-economic evaluation of several conceptual system designs was performed for the integration of a sodium-cooled Advanced Fast Reactor (AFR) with the electric grid in conjunction with wind-generated electricity. Cases in which excess thermal and electrical energy would be reapportioned within an integrated energy system to a chemical plant are presented. The process applications evaluated include hydrogen production via high temperature steam electrolysis and methanol production via steam methane reforming to produce carbon monoxide and hydrogen which feed a methanol synthesis reactor. Three power cycles were considered for integration with the AFR, including subcritical and supercritical Rankine cycles and a modified supercritical carbon dioxide modified Brayton cycle. The thermal efficiencies of all of the modeled power conversions units were greater than 40%. A thermal efficiency of 42% was adopted in economic studies because two of the cycles either performed at that level or could potentially do so (subcritical Rankine and S-CO2 Brayton). Each of the evaluated hybrid architectures would be technically feasible but would demonstrate a different internal rate of return (IRR) as a function of multiple parameters; all evaluated configurations showed a positive IRR. As expected, integration of an AFR with a chemical plant increases the IRR when “must-take” wind-generated electricity is added to the energy system. Additional dynamic system analyses are recommended to draw detailed conclusions on the feasibility and economic benefits associated with AFR-hybrid energy system operation.

  5. Thermodynamic Analysis of Three Compressed Air Energy Storage Systems: Conventional, Adiabatic, and Hydrogen-Fueled

    Directory of Open Access Journals (Sweden)

    Hossein Safaei

    2017-07-01

    Full Text Available We present analyses of three families of compressed air energy storage (CAES systems: conventional CAES, in which the heat released during air compression is not stored and natural gas is combusted to provide heat during discharge; adiabatic CAES, in which the compression heat is stored; and CAES in which the compression heat is used to assist water electrolysis for hydrogen storage. The latter two methods involve no fossil fuel combustion. We modeled both a low-temperature and a high-temperature electrolysis process for hydrogen production. Adiabatic CAES (A-CAES with physical storage of heat is the most efficient option with an exergy efficiency of 69.5% for energy storage. The exergy efficiency of the conventional CAES system is estimated to be 54.3%. Both high-temperature and low-temperature electrolysis CAES systems result in similar exergy efficiencies (35.6% and 34.2%, partly due to low efficiency of the electrolyzer cell. CAES with high-temperature electrolysis has the highest energy storage density (7.9 kWh per m3 of air storage volume, followed by A-CAES (5.2 kWh/m3. Conventional CAES and CAES with low-temperature electrolysis have similar energy densities of 3.1 kWh/m3.

  6. Microbial electrolysis cells as innovative technology for hydrogen production

    International Nuclear Information System (INIS)

    Chorbadzhiyska, Elitsa; Hristov, Georgi; Mitov, Mario; Hubenova, Yolina

    2011-01-01

    Hydrogen production is becoming increasingly important in view of using hydrogen in fuel cells. However, most of the production of hydrogen so far comes from the combustion of fossil fuels and water electrolysis. Microbial Electrolysis Cell (MEC), also known as Bioelectrochemically Assisted Microbial Reactor, is an ecologically clean, renewable and innovative technology for hydrogen production. Microbial electrolysis cells produce hydrogen mainly from waste biomass assisted by various bacteria strains. The principle of MECs and their constructional elements are reviewed and discussed. Keywords: microbial Electrolysis Cells, hydrogen production, waste biomass purification

  7. TESTING AND PERFORMANCE ANALYSIS OF NASA 5 CM BY 5 CM BI-SUPPORTED SOLID OXIDE ELECTROLYSIS CELLS OPERATED IN BOTH FUEL CELL AND STEAM ELECTROLYSIS MODES

    Energy Technology Data Exchange (ETDEWEB)

    R. C. O' Brien; J. E. O' Brien; C. M. Stoots; X. Zhang; S. C. Farmer; T. L. Cable; J. A. Setlock

    2011-11-01

    A series of 5 cm by 5 cm bi-supported Solid Oxide Electrolysis Cells (SOEC) were produced by NASA for the Idaho National Laboratory (INL) and tested under the INL High Temperature Steam Electrolysis program. The results from the experimental demonstration of cell operation for both hydrogen production and operation as fuel cells is presented. An overview of the cell technology, test apparatus and performance analysis is also provided. The INL High Temperature Steam Electrolysis laboratory has developed significant test infrastructure in support of single cell and stack performance analyses. An overview of the single cell test apparatus is presented. The test data presented in this paper is representative of a first batch of NASA's prototypic 5 cm by 5 cm SOEC single cells. Clearly a significant relationship between the operational current density and cell degradation rate is evident. While the performance of these cells was lower than anticipated, in-house testing at NASA Glenn has yielded significantly higher performance and lower degradation rates with subsequent production batches of cells. Current post-test microstructure analyses of the cells tested at INL will be published in a future paper. Modification to cell compositions and cell reduction techniques will be altered in the next series of cells to be delivered to INL with the aim to decrease the cell degradation rate while allowing for higher operational current densities to be sustained. Results from the testing of new batches of single cells will be presented in a future paper.

  8. A study of water electrolysis using ionic polymer-metal composite for solar energy storage

    Science.gov (United States)

    Keow, Alicia; Chen, Zheng

    2017-04-01

    Hydrogen gas can be harvested via the electrolysis of water. The gas is then fed into a proton exchange membrane fuel cell (PEMFC) to produce electricity with clean emission. Ionic polymer-metal composite (IPMC), which is made from electroplating a proton-conductive polymer film called Nafion encourages ion migration and dissociation of water under application of external voltage. This property has been proven to be able to act as catalyst for the electrolysis of pure water. This renewable energy system is inspired by photosynthesis. By using solar panels to gather sunlight as the source of energy, the generation of electricity required to activate the IPMC electrolyser is acquired. The hydrogen gas is collected as storable fuel and can be converted back into energy using a commercial fuel cell. The goal of this research is to create a round-trip energy efficient system which can harvest solar energy, store them in the form of hydrogen gas and convert the stored hydrogen back to electricity through the use of fuel cell with minimal overall losses. The effect of increasing the surface area of contact is explored through etching of the polymer electrolyte membrane (PEM) with argon plasma or manually sanding the surface and how it affects the increase of energy conversion efficiency of the electrolyser. In addition, the relationship between temperature and the IPMC is studied. Experimental results demonstrated that increases in temperature of water and changes in surface area contact correlate with gas generation.

  9. Advancements in water vapor electrolysis technology. [for Space Station ECLSS

    Science.gov (United States)

    Chullen, Cinda; Heppner, Dennis B.; Sudar, Martin

    1988-01-01

    The paper describes a technology development program whose goal is to develop water vapor electrolysis (WVE) hardware that can be used selectively as localized topping capability in areas of high metabolic activity without oversizing the central air revitalization system on long-duration manned space missions. The WVE will be used primarily to generate O2 for the crew cabin but also to provide partial humidity control by removing water vapor from the cabin atmosphere. The electrochemically based WVE interfaces with cabin air which is controlled in the following ranges: dry bulb temperature of 292 to 300 K; dew point temperature of 278 to 289 K; relative humidity of 25 to 75 percent; and pressure of 101 + or - 1.4 kPa. Design requirements, construction details, and results for both single-cell and multicell module testing are presented, and the preliminary sizing of a multiperson subsystem is discussed.

  10. Technoeconomic analysis of a methanol plant based on gasification of biomass and electrolysis of water

    DEFF Research Database (Denmark)

    Clausen, Lasse Røngaard; Houbak, N.; Elmegaard, Brian

    2010-01-01

    , and the low-temperature waste heat is used for district heat production. This results in high total energy efficiencies (similar to 90%) for the plants. The specific methanol costs for the six plants are in the range 11.8-25.3 (sic)/GJ(exergy). The lowest cost is obtained by a plant using electrolysis......Methanol production process configurations based on renewable energy sources have been designed. The processes were analyzed in the thermodynamic process simulation tool DNA. The syngas used for the catalytic methanol production was produced by gasification of biomass, electrolysis of water, CO2...... with a different syngas production method, were compared. The plants achieve methanol exergy efficiencies of 59-72%, the best from a configuration incorporating autothermal reforming of biogas and electrolysis of water for syngas production. The different processes in the plants are highly heat integrated...

  11. New Electrolytes for CO2 Electrolysis Cells

    DEFF Research Database (Denmark)

    Mollerup, Pia Lolk

    The aim of this thesis has been to explore the potential of aqueous immobilized K2CO3 as a possible electrolyte for co-electrolysis of CO2 and water at approx. 200 °C. This has been done by exploring the properties of pure K2CO3 (aq) and immobilized K2CO3 (aq) as well as the properties...... was observed for 10 wt% K2CO3 immobilized in TiO2 when changing the atmosphere from N2 to CO2. K2CO3 (aq) immobilized in TiO2 shows good promise as a potential electrolyte for co-electrolysis of CO2 and water at 200 °C....... in a 10 wt% K2CO3 (aq) solution are K+ and HCO3-. The water partial pressure as well as the amount of water vapour at different temperatures, pressures and K2CO3 (aq) concentrations was also calculated using FactSage. K2CO3 (aq) was immobilized in both SrTiO3 and TiO2. It was found that a loss...

  12. Development and Study of Tantalum and Niobium Carbides as Electrocatalyst Supports for the Oxygen Electrode for PEM Water Electrolysis at Elevated Temperatures

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Prag, Carsten Brorson

    2013-01-01

    Polymer electrolyte membrane (PEM) water electrolysis is a prospective method of producing hydrogen. We focused on one of its issues – the lack of a suitable support material for the anode electrocatalyst. TaC and NbC were studied as possible electrocatalyst supports for the PEM water electrolysis...

  13. Diagnosis of a cathode-supported solid oxide electrolysis cell by electrochemical impedance spectroscopy

    NARCIS (Netherlands)

    Nechache, A.; Mansuy, A.; Petitjean, M.; Mougin, J.; Mauvy, F.; Boukamp, Bernard A.; Cassir, M.; Ringuede, A.

    2016-01-01

    High-temperature electrolysis (HTSE) is a quite recent topic where most of the studies are focused on performance measurements and degradation observations, mainly achieved by polarization curve. However, it mainly leads to the overall cell behaviour. To get more specific knowledge on the operation

  14. Reversibility of the SOFC for the hydrogen production by high temperature electrolysis

    International Nuclear Information System (INIS)

    Brisse, A.; Marrony, M.; Perednis, D.; Schefold, J.; Jose-Garcia, M.; Zahid, M.

    2007-01-01

    The behaviour of two SOFC cells in electrolysis mode is studied. The performances of these solid oxide cells, reversible at 800 C and for current densities between 0 and -0.42 A/cm 2 , are presented. A weaker polarisation resistance has been measured for the cell containing a mixed conductor as oxygen electrode. For each cell, a limitation by gaseous diffusion has been observed under current. This phenomenon appears for current densities which are higher for the mixed conductor cell as oxygen electrode. (O.M.)

  15. In situ x-ray diffraction study of crystal structure of Pd during hydrogen isotope loading by solid-state electrolysis at moderate temperatures 250−300 °C

    Energy Technology Data Exchange (ETDEWEB)

    Fukada, Yoshiki, E-mail: yoshiki_fukada@mail.toyota.co.jp [Toyota Motor Corporation, 1200 Mishuku, Susono-shi, Shizuoka-ken, 410-1193 (Japan); Hioki, Tatsumi; Motohiro, Tomoyoshi [Toyota Central R& D Labs.,Inc, 41-1, Yokomichi, Nagakute, Aichi, 480-1192 (Japan); Green Mobility Collaborative Research Center & Graduate School of Engineering Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603 (Japan); Ohshima, Shigeki [Toyota Central R& D Labs.,Inc, 41-1, Yokomichi, Nagakute, Aichi, 480-1192 (Japan)

    2015-10-25

    Hydrogen isotopes and metal interaction with respect to Pd under high hydrogen isotope potential at moderate temperature region around 300 °C was studied. A dry electrolysis technique using BaZr{sub 1−x} Y{sub x}O{sub 3} solid state electrolyte was developed to generate high hydrogen isotope potential. Hydrogen or deuterium was loaded into a 200 nm thick Pd cathode. The cathode is deposited on SiO{sub 2} substrate and covered with the solid state electrolyte and a Pd anode layer. Time resolved in situ monochromatic x-ray diffraction measurement was performed during the electrolysis. Two phase states of the Pd cathodes with large and small lattice parameters were observed during the electrolysis. Numerous sub-micron scale voids in the Pd cathode and dendrite-like Pd precipitates in the solid state electrolyte were found from the recovered samples. Hydrogen induced super-abundant-vacancy may take role in those phenomena. The observed two phase states may be attributed to phase separation into vacancy-rich and vacancy-poor states. The voids formed in the Pd cathodes seem to be products of vacancy coalescence. Isotope effects were also observed. The deuterium loaded samples showed more rapid phase changes and more formation of voids than the hydrogen doped samples. - Highlights: • High amount hydrogen loading into Pd by all solid-state electrolysis was performed. • Two phase states with large and small lattice parameters were observed. • Lattice contractions were observed suggesting formations of super-abundant-vacancy. • The absence of mechanical pressure might stimulate the formation of the vacancy. • Sub-micron void formations were found in the Pd from recovered samples.

  16. In situ x-ray diffraction study of crystal structure of Pd during hydrogen isotope loading by solid-state electrolysis at moderate temperatures 250−300 °C

    International Nuclear Information System (INIS)

    Fukada, Yoshiki; Hioki, Tatsumi; Motohiro, Tomoyoshi; Ohshima, Shigeki

    2015-01-01

    Hydrogen isotopes and metal interaction with respect to Pd under high hydrogen isotope potential at moderate temperature region around 300 °C was studied. A dry electrolysis technique using BaZr 1−x Y x O 3 solid state electrolyte was developed to generate high hydrogen isotope potential. Hydrogen or deuterium was loaded into a 200 nm thick Pd cathode. The cathode is deposited on SiO 2 substrate and covered with the solid state electrolyte and a Pd anode layer. Time resolved in situ monochromatic x-ray diffraction measurement was performed during the electrolysis. Two phase states of the Pd cathodes with large and small lattice parameters were observed during the electrolysis. Numerous sub-micron scale voids in the Pd cathode and dendrite-like Pd precipitates in the solid state electrolyte were found from the recovered samples. Hydrogen induced super-abundant-vacancy may take role in those phenomena. The observed two phase states may be attributed to phase separation into vacancy-rich and vacancy-poor states. The voids formed in the Pd cathodes seem to be products of vacancy coalescence. Isotope effects were also observed. The deuterium loaded samples showed more rapid phase changes and more formation of voids than the hydrogen doped samples. - Highlights: • High amount hydrogen loading into Pd by all solid-state electrolysis was performed. • Two phase states with large and small lattice parameters were observed. • Lattice contractions were observed suggesting formations of super-abundant-vacancy. • The absence of mechanical pressure might stimulate the formation of the vacancy. • Sub-micron void formations were found in the Pd from recovered samples

  17. Hydrogen generation through static-feed water electrolysis

    Science.gov (United States)

    Jensen, F. C.; Schubert, F. H.

    1975-01-01

    A static-feed water electrolysis system (SFWES), developed under NASA sponsorship, is presented for potential applicability to terrestrial hydrogen production. The SFWES concept uses (1) an alkaline electrolyte to minimize power requirements and materials-compatibility problems, (2) a method where the electrolyte is retained in a thin porous matrix eliminating bulk electrolyte, and (3) a static water-feed mechanism to prevent electrode and electrolyte contamination and to promote system simplicity.

  18. The recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ren Xiulian [College of Ocean, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Wei Qifeng, E-mail: weiqifeng163@163.com [College of Ocean, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Hu Surong; Wei Sijie [College of Ocean, Harbin Institute of Technology at Weihai, Weihai 264209 (China)

    2010-09-15

    This paper reports the optimization of the process parameters for recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor. The experiments were carried out in an ammoniacal ammonium chloride system. The influence of composition of electrolytes, pH, stirring rate, current density and temperature, on cathodic current efficiency, specific power consumption and anodic dissolution of Zn were investigated. The results indicate that the cathode current efficiency increases and the hydrogen evolution decreased with increasing the cathode current density. The partial current for electrodeposition of Zn has liner relationship with {omega}{sup 1/2} ({omega}: rotation rate). The highest current efficiency for dissolving zinc was obtained when NH{sub 4}Cl concentration was 53.46 g L{sup -1} and the anodic dissolution of zinc was determined by mass transfer rate at stirring rate 0-300 r min{sup -1}. Increase in temperature benefits to improve CE and dissolution of Zn, and reduce cell voltage. Initial pH of electrolytes plays an important role in the deposition and anodic dissolution of Zn. The results of single factor experiment show that about 50% energy consumption was saved for electrodeposition of Zn in the anion-exchange membrane electrolysis reactor.

  19. The recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor.

    Science.gov (United States)

    Ren, Xiulian; Wei, Qifeng; Hu, Surong; Wei, Sijie

    2010-09-15

    This paper reports the optimization of the process parameters for recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor. The experiments were carried out in an ammoniacal ammonium chloride system. The influence of composition of electrolytes, pH, stirring rate, current density and temperature, on cathodic current efficiency, specific power consumption and anodic dissolution of Zn were investigated. The results indicate that the cathode current efficiency increases and the hydrogen evolution decreased with increasing the cathode current density. The partial current for electrodeposition of Zn has liner relationship with omega(1/2) (omega: rotation rate). The highest current efficiency for dissolving zinc was obtained when NH(4)Cl concentration was 53.46 g L(-1) and the anodic dissolution of zinc was determined by mass transfer rate at stirring rate 0-300 r min(-1). Increase in temperature benefits to improve CE and dissolution of Zn, and reduce cell voltage. Initial pH of electrolytes plays an important role in the deposition and anodic dissolution of Zn. The results of single factor experiment show that about 50% energy consumption was saved for electrodeposition of Zn in the anion-exchange membrane electrolysis reactor. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Development status of solid polymer electrolyte water electrolysis for manned spacecraft life support systems

    Science.gov (United States)

    Nuttall, L. J.; Titterington, W. A.

    1974-01-01

    Details of the design and system verification test results are presented for a six-man-rated oxygen generation system. The system configuration incorporates components and instrumentation for computer-controlled operation with automatic start-up/shutdown sequencing, fault detection and isolation, and with self-contained sensors and controls for automatic safe emergency shutdown. All fluid and electrical components, sensors, and electronic controls are designed to be easily maintainable under zero-gravity conditions. On-board component spares are utilized in the system concept to sustain long-term operation (six months minimum) in a manned spacecraft application. The system is centered on a 27-cell solid polymer electrolyte water electrolysis module which, combined with the associated system components and controls, forms a total system envelope 40 in. high, 40 in. wide, and 30 in. deep.

  1. Experimental and thermodynamic study on the performance of water electrolysis by solid oxide electrolyzer cells with Nb-doped Co-based perovskite anode

    International Nuclear Information System (INIS)

    Pan, Zehua; Liu, Qinglin; Zhang, Lan; Zhou, Juan; Zhang, Caizhi; Chan, Siew Hwa

    2017-01-01

    Highlights: • BCFN was applied on traditional YSZ electrolyte with GDC interlayer. • Dense YSZ-GDC bilayer electrolyte was obtained by co-sintering at 1300 °C. • Area specific resistance of full cell is 0.195 Ω cm"2 at 800 °C with 60% water vapor. • Cell voltage is 1.13 V at 1 A cm"−"2 at 800 °C with feedstock of 60% H_2O-40% H_2. • The electricity to hydrogen efficiency is 73% with generation rate of 4180 L h"−"1 m"−"2. - Abstract: In this work, Solid Oxide Electrolyzer Cell (SOEC) based on Ba_0_._9Co_0_._7Fe_0_._2Nb_0_._1O_3_-_δ (BCFN) air electrode and YSZ-GDC bilayer electrolyte was systematically investigated and the efficiency of high-temperature water electrolysis by such a cell was analyzed. Firstly, chemical compatibility test between BCFN and YSZ showed that BaZrO_3 formed after heat treatment at 1000 °C for 5 h, which adversely influenced the performance of BCFN dramatically. A fully dense GDC interlayer was thus developed by co-sintering GDC layer, with addition of 0.5 at.% Fe_2O_3, with YSZ electrolyte at only 1300 °C. The as-prepared fuel electrode-supported eletrolyzer cell consisting of Ni-YSZ fuel electrode, YSZ-GDC bilayer electrolyte and BCFN air electrode was evaluated for water electrolysis. Specifically, at 800 °C using a feedstock of 60% H_2O-40% H_2, the cell showed total area specific resistance of 0.195 Ω cm"2 and the cell voltage was 1.13 V with an electrolysis current of 1 A cm"−"2. After short-term stability test for 120 h with 1 A cm"−"2 electrolysis current at 800 °C, the cell showed no microstructural changes as observed by scanning electron microscopy. At last, a high-temperature water electrolysis system based on the cell studied was proposed and the system analysis shows that the overall electricity to hydrogen efficiency can reach 73% based on lower heating value of hydrogen, with a hydrogen generation rate of 4180 L h"−"1 m"−"2.

  2. High-pressure water electrolysis: Electrochemical mitigation of product gas crossover

    International Nuclear Information System (INIS)

    Schalenbach, Maximilian; Stolten, Detlef

    2015-01-01

    Highlights: • New technique to reduce gas crossover during water electrolysis • Increase of the efficiency of pressurized water electrolysis • Prevention of safety hazards due to explosive gas mixtures caused by crossover • Experimental realization for a polymer electrolyte membrane electrolyzer • Discussion of electrochemical crossover mitigation for alkaline water electrolysis - Abstract: Hydrogen produced by water electrolysis can be used as an energy carrier storing electricity generated from renewables. During water electrolysis hydrogen can be evolved under pressure at isothermal conditions, enabling highly efficient compression. However, the permeation of hydrogen through the electrolyte increases with operating pressure and leads to efficiency loss and safety hazards. In this study, we report on an innovative concept, where the hydrogen crossover is electrochemically mitigated by an additional electrode between the anode and the cathode of the electrolysis cell. Experimentally, the technique was applied to a proton exchange membrane water electrolyzer operated at a hydrogen pressure that was fifty times larger than the oxygen pressure. Therewith, the hydrogen crossover was reduced and the current efficiency during partial load operation was increased. The concept is also discussed for water electrolysis that is operated at balanced pressures, where the crossover of hydrogen and oxygen is mitigated using two additional electrodes

  3. Electrolysis activities at FCH Test Center

    DEFF Research Database (Denmark)

    Ravn Nielsen, Eva; Nygaard, Frederik Berg

    FCH Test Center for fuel cell and hydrogen technologies was established in 2010 at Risø DTU in Denmark. Today, the test center is part of DTU Energy Conversion. The center gives industry access to advanced testing and demonstration of components and systems. A number of national projects and EU...... projects regarding water electrolysis involve FCH Test Center as a partner. This presentation gives an overview of the activities....

  4. Procedure and technique critique for tritium enrichment by electrolysis at the IAEA Laboratory (effective November 1976)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-11-05

    This publication gives a detailed description of the experimental and calculation procedures for tritium enrichment. Most descriptive sections are divided into 2 parts: Section A describes the procedure in the IAEA laboratory; section B discusses the reasons behind the various procedures, and may indicate alternative acceptable, or in some cases even better, procedures. The description of the equipment focuses on electrolysis cells, cooling system and power supply. Routine procedures are discussed including handling and checking of samples after receipt, 'spike' and blank water, initial sample distillation, preparation of cells and samples for electrolysis, electrolysis and completion of electrolysis (weighing of cells, neutralisation and distillation) and precautions against contaminations (prevention, detection and cure). A list of equipment required for electrolytic enrichment of tritium is provided.

  5. Procedure and technique critique for tritium enrichment by electrolysis at the IAEA Laboratory (effective November 1976)

    International Nuclear Information System (INIS)

    1976-01-01

    This publication gives a detailed description of the experimental and calculation procedures for tritium enrichment. Most descriptive sections are divided into 2 parts: Section A describes the procedure in the IAEA laboratory; section B discusses the reasons behind the various procedures, and may indicate alternative acceptable, or in some cases even better, procedures. The description of the equipment focuses on electrolysis cells, cooling system and power supply. Routine procedures are discussed including handling and checking of samples after receipt, 'spike' and blank water, initial sample distillation, preparation of cells and samples for electrolysis, electrolysis and completion of electrolysis (weighing of cells, neutralisation and distillation) and precautions against contaminations (prevention, detection and cure). A list of equipment required for electrolytic enrichment of tritium is provided

  6. The Use of Multi-Reactor Cascade Plasma Electrolysis for Linear Alkylbenzene Sulfonate Degradation

    Science.gov (United States)

    Saksono, Nelson; Ibrahim; Zainah; Budikania, Trisutanti

    2018-03-01

    Plasma electrolysis is a method that can produce large amounts of hydroxyl radicals to degrade organic waste. The purpose of this study is to improve the effectiveness of Linear alkylbenzene sulfonate (LAS) degradation by using multi-reactor cascade plasma electrolysis. The reactor which operated in circulation system, using 3 reactors series flow and 6 L of LAS with initial concentration of 100 ppm. The results show that the LAS degradation can be improved multi-reactor cascade plasma electrolysis. The greatest LAS degradation is achieved up to 81.91% with energy consumption of 2227.34 kJ/mmol that is obtained during 120 minutes by using 600 Volt, 0.03 M of KOH, and 0.5 cm of the anode depth.

  7. Game Changing Development Program - Next Generation Life Support Project: Oxygen Recovery From Carbon Dioxide Using Ion Exchange Membrane Electrolysis Technology

    Science.gov (United States)

    Burke, Kenneth A.; Jiao, Feng

    2016-01-01

    This report summarizes the Phase I research and development work performed during the March 13, 2015 to July 13, 2016 period. The proposal for this work was submitted in response to NASA Research Announcement NNH14ZOA001N, "Space Technology Research, Development, Demonstration, and Infusion 2014 (SpaceTech-REDDI-2014)," Appendix 14GCD-C2 "Game Changing Development Program, Advanced Oxygen Recovery for Spacecraft Life Support Systems Appendix" The Task Agreement for this Phase I work is Document Control Number: GCDP-02-TA-15015. The objective of the Phase I project was to demonstrate in laboratories two Engineering Development Units (EDU) that perform critical functions of the low temperature carbon dioxide electrolysis and the catalytic conversion of carbon monoxide into carbon and carbon dioxide. The low temperature carbon dioxide electrolysis EDU was built by the University of Delaware with Dr. Feng Jiao as the principal investigator in charge of this EDU development (under NASA Contract NNC15CA04C). The carbon monoxide catalytic conversion EDU was built by the NASA Glenn Research Center with Kenneth Burke as the principal investigator and overall project leader for the development of both EDUs. Both EDUs were successfully developed and demonstrated the critical functions for each process. The carbon dioxide electrolysis EDU was delivered to the NASA Johnson Space Center and the carbon monoxide catalytic conversion EDU was delivered to the NASA Marshall Spaceflight Center.

  8. Foam Based Gas Diffusion Electrodes for Reversible Alkaline Electrolysis Cells

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2014-01-01

    Alkaline electrolysis cells operated at 250 °C and 40 bar have shown to be able to convert electrical energy into chemical energy in the form of hydrogen at very high efficiencies and power densities. Foam based gas diffusion electrodes and a liquid immobilized electrolyte allow the operation...... of the newly designed electrolysis cell as a fuel cell, but condensation of steam may lead to blocked pores, thereby inhibiting gas diffusion and decreasing the performance of the cell. In the here presented work we present the application of a hydrophobic, porous, and electro-catalytically active layer...... the electrochemical characteristics of the cell. The thickness of the electrolyte matrix was reduced to 200 µm, thereby achieving a serial resistance and area specific resistance as low as 60 mΩ cm2 and 150 mΩ cm2, respectively, at a temperature of 200 °C and 20 bar pressure. A new production method was developed...

  9. The development of a non-cryogenic nitrogen/oxygen supply system. [using hydrazine/water electrolysis

    Science.gov (United States)

    Greenough, B. M.; Mahan, R. E.

    1974-01-01

    A hydrazine/water electrolysis process system module design was fabricated and tested to demonstrate component and module performance. This module is capable of providing both the metabolic oxygen for crew needs and the oxygen and nitrogen for spacecraft leak makeup. The component designs evolved through previous R and D efforts, and were fabricated and tested individually and then were assembled into a complete module which was successfully tested for 1000 hours to demonstrate integration of the individual components. A survey was made of hydrazine sensor technology and a cell math model was derived.

  10. Time efficiency of tritium measurement in the environmental water by electrolysis enrichment (2)

    International Nuclear Information System (INIS)

    Ogata, Y.; Koganezawa, T.; Iida, T.

    2003-01-01

    Now the electrolysis enrichment is necessary for tritium measurement of the environmental water in Japan. Generally, the electrolysis needs distilling the sample water before and after the electrolysis. To save the time to measure, it was investigated that a possibility of the omission of the distillation after the electrolysis and of the substitution the filtration for the distillation before the electrolysis. The electrolysis was carried out with a device using solid polymer electrolyte layer, which was recently developed in Japan. Initially, impurities eluted from the device were measured by enrichment of ultra pure water. Although some impurities eluted from the layer, the concentrations were so low that the enriched water brought ineffectual quenching for the liquid scintillation counting. Secondly, two filtration methods, i.e.; micro filtration with the pore size of 0.1 μm and reverse osmosis, were applied to eliminate the impurities in the environmental waters before the electrolysis. Although the impurity concentrations in the samples by the filtrations were higher than those by the distillation, the filtered water brought only slight quenching. However, the frequent electrolysis of the water treated with the micro filtration caused degradation of the electrolysis cell. Consequently, the distillation after the electrolysis may omit, and the reverse osmosis treatment may alternate the distillation before the electrolysis. Improving the treatment will not only save the time and labor but also reduce the error with the treatment. The measurement technique proposed here will take 25 hours to measure one sample using the electrolysis device produced commercially. A hypothetic electrolysis device of which final sample volume were 20 cm 3 could allow the measuring time of 10 hours. (author)

  11. Comparative costs of hydrogen produced from photovoltaic electrolysis and from photoelectrochemical processes

    International Nuclear Information System (INIS)

    Block, D.L.

    1998-01-01

    The need for hydrogen produced from renewable energy sources is the key element to the world's large-scale usage of hydrogen and to the hydrogen economy envisioned by the World Hydrogen Energy Association. Renewables-produced hydrogen is also the most technically difficult problem to be solved. Hydrogen will never achieve large-scale usage until it can be competitively produced from renewable energy. One of the important questions that has to be addressed is: What are the economics of present and expected future technologies that will be used to produce hydrogen from renewables? The objective of this study is to give an answer to this question by determining the cost of hydrogen (in U.S.$/MBtu) from competing renewable production technologies. It should be noted that the costs and efficiencies assumed in this paper are assumptions of the author, and that the values are expected to be achieved after additional research on photoelectrochemical process technologies. The cost analysis performed is for three types of hydrogen (H 2 ) produced from five different types of renewable processes: photovoltaic (PV) electrolysis, three photoelectrochemical (PEC) processes and higher temperature electrolysis (HTE). The costs and efficiencies for PV, PEC and HTE processes are established for present day, and for expected costs and efficiencies 10 years into the future. A second objective of this analysis is to set base case costs of PV electrolysis. For any other renewable process, the costs for PV electrolysis, which is existing technology, sets the numbers which the other processes must better. (author)

  12. Studies on membrane acid electrolysis for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marco Antonio Oliveira da; Linardi, Marcelo; Saliba-Silva, Adonis Marcelo [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Celulas a Combustivel e Hidrogenio], Email: saliba@ipen.br

    2010-07-01

    Hydrogen represents great opportunity to be a substitute for fossil fuels in the future. Water as a renewable source of hydrogen is of great interest, since it is abundant and can decompose, producing only pure H{sub 2} and O{sub 2}. This decomposition of water can be accomplished by processes such as electrolysis, thermal decomposition and thermochemical cycles. The electrolysis by membrane has been proposed as a viable process for hydrogen production using thermal and electrical energy derived from nuclear energy or any renewable source like solar energy. In this work, within the context of optimization of the electrolysis process, it is intended to develop a mathematical model that can simulate and assist in parameterization of the electrolysis performed by polymer membrane electrolytic cell. The experimental process to produce hydrogen via the cell membrane, aims to optimize the amount of gas produced using renewable energy with noncarbogenic causing no harm by producing gases deleterious to the environment. (author)

  13. Oxidation of organic pollutants on BDD anodes using modulated current electrolysis

    International Nuclear Information System (INIS)

    Panizza, M.; Kapalka, Agnieszka; Comninellis, Ch.

    2008-01-01

    In this paper, a theoretical model is presented for organic pollutants mineralization at high current efficiency (close to 100%) and low energy consumption on boron-doped diamond electrodes. The model is formulated for a perfect mixed electrochemical reactor operated as a batch recirculation system under multiple current steps, in which the applied current is adjusted during the electrolysis to be close to the limiting value. An experimental validation with the anodic oxidation of 3,4,5-trihydroxybenzoic acid is also provided. The results have shown that multiple current steps electrolysis and continuous current control allowed obtaining high oxidation rate and current efficiency

  14. Oxidation of organic pollutants on BDD anodes using modulated current electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Panizza, M. [Department of Chemical and Process Engineering, University of Genoa, P.le J.F. Kennedy 1, 16129 Genova (Italy)], E-mail: marco.panizza@unige.it; Kapalka, Agnieszka [Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Comninellis, Ch. [Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)], E-mail: christos.comninellis@epfl.ch

    2008-01-01

    In this paper, a theoretical model is presented for organic pollutants mineralization at high current efficiency (close to 100%) and low energy consumption on boron-doped diamond electrodes. The model is formulated for a perfect mixed electrochemical reactor operated as a batch recirculation system under multiple current steps, in which the applied current is adjusted during the electrolysis to be close to the limiting value. An experimental validation with the anodic oxidation of 3,4,5-trihydroxybenzoic acid is also provided. The results have shown that multiple current steps electrolysis and continuous current control allowed obtaining high oxidation rate and current efficiency.

  15. Hydroxyl radical production in plasma electrolysis with KOH electrolyte solution

    Energy Technology Data Exchange (ETDEWEB)

    Saksono, Nelson; Febiyanti, Irine Ayu, E-mail: irine.ayu41@ui.ac.id; Utami, Nissa; Ibrahim [Department of Chemical Engineering, Universitas Indonesia, Depok 16424, Indonesia Phone: +62217863516, Fax: +62217863515 (Indonesia)

    2015-12-29

    Plasma electrolysis is an effective technology for producing hydroxyl radical (•OH). This method can be used for waste degradation process. This study was conducted to obtain the influence of applied voltage, electrolyte concentration, and anode depth in the plasma electrolysis system for producing hydroxyl radical. The materials of anode and cathode, respectively, were made from tungsten and stainless steel. KOH solution was used as the solution. Determination of hydroxyl radical production was done by measuring H{sub 2}O{sub 2} amount formed in plasma system using an iodometric titration method, while the electrical energy consumed was obtained by measuring the electrical current throughout the process. The highest hydroxyl radical production was 3.51 mmol reached with 237 kJ energy consumption in the power supply voltage 600 V, 0.02 M KOH, and 0.5 cm depth of anode.

  16. A comparative evaluation of different types of microbial electrolysis desalination cells for malic acid production.

    Science.gov (United States)

    Liu, Guangli; Zhou, Ying; Luo, Haiping; Cheng, Xing; Zhang, Renduo; Teng, Wenkai

    2015-12-01

    The aim of this study was to investigate different microbial electrolysis desalination cells for malic acid production. The systems included microbial electrolysis desalination and chemical-production cell (MEDCC), microbial electrolysis desalination cell (MEDC) with bipolar membrane and anion exchange membrane (BP-A MEDC), MEDC with bipolar membrane and cation exchange membrane (BP-C MEDC), and modified microbial desalination cell (M-MDC). The microbial electrolysis desalination cells performed differently in terms of malic acid production and energy consumption. The MEDCC performed best with the highest malic acid production rate (18.4 ± 0.6 mmol/Lh) and the lowest energy consumption (0.35 ± 0.14 kWh/kg). The best performance of MEDCC was attributable to the neutral pH condition in the anode chamber, the lowest internal resistance, and the highest Geobacter percentage of the anode biofilm population among all the reactors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Efficiency of tritium measurement in the environmental water by electrolysis enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Koganezawa, T.; Iida, T. [Nagoya Univ., Graduate School of Engineering, Nagoya, Aichi (Japan); Sakuma, Y.; Yamanishi, H. [National Inst. for Fusion Science, Toki, Gifu (Japan); Ogata, Y. [Nagoya Univ., School of Health Sciences, Nagoya, Aichi (Japan); Tsuji, N. [Japan Air-conditioning Service Co. and Ltd., Nagoya, Aichi (Japan); Kakiuchi, M. [Gakushuin Univ., Faculty of Science, Tokyo (Japan); Satake, H. [Toyama Univ., Faculty of Science, Toyama (Japan)

    2002-06-01

    Now tritium concentration in the environmental water is 0.5-2 Bq{center_dot}L{sup -1} in Japan. Tritium concentration cannot be measured accurately by liquid scintillation method, because the minimum detectable limits of liquid scintillation method is 0.5 Bq{center_dot}L{sup -1}. Therefore, one needs to enrich tritium concentration in the environmental water. Although the most popular method for tritium enrichment is electrolysis, the electrolysis takes much time and labor for distilling sample water at before and after the electrolysis. The purpose of this study is to investigate the possibility of more convenient method for tritium measurement. The method substitutes filtration for distillation at before electrolysis and omits distillation at after electrolysis. The method enables by using the electrolysis with solid polymer electrode. We performed two kinds of experiment to confirm the possibility of the method. First, impurities eluted from electrolysis installation with ultra pure water as sample was measured. Some impurities were eluted into the sample, but they brought noneffective quenching. Secondly, we applied new method to the environmental waters. Substituting for distillation, two filtration, 0.1 {mu}m filtration and reverse osmosis method, were investigated. Impurities in the samples by the filtrations were somewhat higher than that by the distillation, they brought noneffective quenching. We, however, observed distemper of the electrolysis happened by electrolysing filtered sample. Distillation is substituted filtration at before enrichment and omitted at after enrichment, leaving the influence of quenching out of consideration. (author)

  18. Efficiency of tritium measurement in the environmental water by electrolysis enrichment

    International Nuclear Information System (INIS)

    Koganezawa, T.; Iida, T.; Sakuma, Y.; Yamanishi, H.; Ogata, Y.; Tsuji, N.; Kakiuchi, M.; Satake, H.

    2002-01-01

    Now tritium concentration in the environmental water is 0.5-2 Bq·L -1 in Japan. Tritium concentration cannot be measured accurately by liquid scintillation method, because the minimum detectable limits of liquid scintillation method is 0.5 Bq·L -1 . Therefore, one needs to enrich tritium concentration in the environmental water. Although the most popular method for tritium enrichment is electrolysis, the electrolysis takes much time and labor for distilling sample water at before and after the electrolysis. The purpose of this study is to investigate the possibility of more convenient method for tritium measurement. The method substitutes filtration for distillation at before electrolysis and omits distillation at after electrolysis. The method enables by using the electrolysis with solid polymer electrode. We performed two kinds of experiment to confirm the possibility of the method. First, impurities eluted from electrolysis installation with ultra pure water as sample was measured. Some impurities were eluted into the sample, but they brought noneffective quenching. Secondly, we applied new method to the environmental waters. Substituting for distillation, two filtration, 0.1 μm filtration and reverse osmosis method, were investigated. Impurities in the samples by the filtrations were somewhat higher than that by the distillation, they brought noneffective quenching. We, however, observed distemper of the electrolysis happened by electrolysing filtered sample. Distillation is substituted filtration at before enrichment and omitted at after enrichment, leaving the influence of quenching out of consideration. (author)

  19. Microstructure characterisation of solid oxide electrolysis cells operated at high current density

    DEFF Research Database (Denmark)

    Bowen, Jacob R.; Bentzen, Janet Jonna; Chen, Ming

    degradation of cell components in relation to the loss of electrochemical performance specific to the mode of operation. Thus descriptive microstructure characterization methods are required in combination with electrochemical characterization methods to decipher degradation mechanisms. In the present work......High temperature solid oxide cells can be operated either as fuel cells or electrolysis cells for efficient power generation or production of hydrogen from steam or synthesis gas (H2 + CO) from steam and CO2 respectively. When operated under harsh conditions, they often exhibit microstructural...... quantified using the mean linear intercept method as a function of current density and correlated to increases in serial resistance. The above structural changes are then compared in terms of electrode degradation observed during the co-electrolysis of steam and CO2 at current densities up to -1.5 A cm-2...

  20. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter

    KAUST Repository

    Logan, Bruce E.

    2008-12-01

    The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (>0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few years ago, rapid developments have led to hydrogen yields approaching 100%, energy yields based on electrical energy input many times greater than that possible by water electrolysis, and increased gas production rates. MECs used to make hydrogen gas are similar in design to microbial fuel cells (MFCs) that produce electricity, but there are important differences in architecture and analytical methods used to evaluate performance. We review here the materials, architectures, performance, and energy efficiencies of these MEC systems that show promise as a method for renewable and sustainable energy production, and wastewater treatment. © 2008 American Chemical Society.

  1. Electrolysis with diamond anodes: Eventually, there are refractory species!

    Science.gov (United States)

    Mena, Ismael F; Cotillas, Salvador; Díaz, Elena; Sáez, Cristina; Rodríguez, Juan J; Cañizares, P; Mohedano, Ángel F; Rodrigo, Manuel A

    2018-03-01

    In this work, synthetic wastewater polluted with ionic liquid 1-butyl-3-methylimidazolium (Bmim) bis(trifluoromethanesulfonyl)imide (NTf 2 ) undergoes four electrolytic treatments with diamond anodes (bare electrolysis, electrolysis enhanced with peroxosulfate promoters, irradiated with UV light and with US) and results obtained were compared with those obtained with the application of Catalytic Wet Peroxide Oxidation (CWPO). Despite its complex heterocyclic structure, Bmim + cation is successfully depleted with the five technologies tested, being transformed into intermediates that eventually can be mineralized. Photoelectrolysis attained the lowest concentration of intermediates, while CWPO is the technology less efficient in their degradation. However, the most surprising result is that concentration of NTf 2 - anion does not change during the five advanced oxidation processes tested, pointing out its strong refractory character, being the first species that exhibits this character in wastewater undergoing electrolysis with diamond. This means that the hydroxyl and sulfate radicals mediated oxidation and the direct electrolysis are inefficient for breaking the C-S, C-F and S-N bounds of the NTf 2 - anion, which is a very interesting mechanistic information to understand the complex processes undergone in electrolysis with diamond. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A hydrogen production experiment by the thermo-chemical and electrolytic hybrid hydrogen production in lower temperature range. System viability and preliminary thermal efficiency estimation

    International Nuclear Information System (INIS)

    Takai, Toshihide; Nakagiri, Toshio; Inagaki, Yoshiyuki

    2008-10-01

    A new experimental apparatus by the thermo-chemical and electrolytic Hybrid-Hydrogen production in Lower Temperature range (HHLT) was developed and hydrogen production experiment was performed to confirm the system operability. Hydrogen production efficiency was estimated and technical problems were clarified through the experimental results. Stable operation of the SO 3 electrolysis cell and the sulfur dioxide solution electrolysis cell were confirmed during experimental operation and any damage which would be affected solid operation was not detected under post operation inspection. To improve hydrogen production efficiency, it was found that the reduction of sulfuric acid circulation and the decrease in the cell voltage were key issues. (author)

  3. Lunar Metal Oxide Electrolysis with Oxygen and Photovoltaic Array Production Applications

    Science.gov (United States)

    Curreri, P. A.; Ethridge, E.; Hudson, S.; Sen, S.

    2006-01-01

    This paper presents the results of a Marshall Space Flight Center funded effort to conduct an experimental demonstration of the processing of simulated lunar resources by the molten oxide electrolysis (MOE) process to produce oxygen and metal from lunar resources to support human exploration of space. Oxygen extracted from lunar materials can be used for life support and propellant, and silicon and metallic elements produced can be used for in situ fabrication of thin-film solar cells for power production. The Moon is rich in mineral resources, but it is almost devoid of chemical reducing agents, therefore, molten oxide electrolysis, MOE, is chosen for extraction, since the electron is the most practical reducing agent. MOE was also chosen for following reasons. First, electrolytic processing offers uncommon versatility in its insensitivity to feedstock composition. Secondly, oxide melts boast the twin key attributes of highest solubilizing capacity for regolith and lowest volatility of any candidate electrolytes. The former is critical in ensuring high productivity since cell current is limited by reactant solubility, while the latter simplifies cell design by obviating the need for a gas-tight reactor to contain evaporation losses as would be the case with a gas or liquid phase fluoride reagent operating at such high temperatures. In the experiments reported here, melts containing iron oxide were electrolyzed in a low temperature supporting oxide electrolyte (developed by D. Sadoway, MIT). The production of oxygen and reduced iron were observed. Electrolysis was also performed on the supporting electrolyte with JSC-1 Lunar Simulant. The cell current for the supporting electrolyte alone is negligible while the current for the electrolyte with JSC-1 shows significant current and a peak at about -0.6 V indicating reductive reaction in the simulant.

  4. Solid polymer electrolyte water electrolysis preprototype subsystem. [oxygen production for life support systems on space stations

    Science.gov (United States)

    1979-01-01

    Hardware and controls developed for an electrolysis demonstration unit for use with the life sciences payload program and in NASA's regenerative life support evaluation program are described. Components discussed include: the electrolysis module; power conditioner; phase separator-pump and hydrogen differential regulator; pressure regulation of O2, He, and N2; air-cooled heat exchanger; water accumulator; fluid flow sight gage assembly; catalytic O2/H2 sensor; gas flow sensors; low voltage power supply; 100 Amp DC contactor assembly; and the water purifier design.

  5. Test Plan for Long-Term Operation of a Ten-Cell High Temperature Electrolysis Stack

    International Nuclear Information System (INIS)

    James E. O'Brien; Carl M. Stoots; J. Stephen Herring

    2008-01-01

    This document defines a test plan for a long-term (2500 Hour) test of a ten-cell high-temperature electrolysis stack to be performed at INL during FY09 under the Nuclear Hydrogen Initiative. This test was originally planned for FY08, but was removed from our work scope as a result of the severe budget cuts in the FY08 NHI Program. The purpose of this test is to evaluate stack performance degradation over a relatively long time period and to attempt to identify some of the degradation mechanisms via post-test examination. This test will be performed using a planar ten-cell Ceramatec stack, with each cell having dimensions of 10 cm x 10 cm. The specific makeup of the stack will be based on the results of a series of shorter duration ten-cell stack tests being performed during FY08, funded by NGNP. This series of tests was aimed at evaluating stack performance with different interconnect materials and coatings and with or without brazed edge rails. The best performing stack from the FY08 series, in which five different interconnect/coating/edge rail combinations were tested, will be selected for the FY09 long-term test described herein

  6. Achievement report for fiscal 1983 on Sunshine Program-entrusted research and development. Research on hydrogen production technology using electrolysis (Research on electrolysis of water using alkali type solid polymer electrolyte); 1983 nendo denki bunkaiho ni yoru suiso seizo gijutsu no kenkyu seika hokokusho. Arukarigata kotai kobunshi denkaishitsu suidenkai no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-03-01

    The report covers the outcome of the research conducted for the establishment of basic techniques for the electrolysis of water using the alkali type solid polymer electrolyte. This fiscal year, following the previous fiscal year, anode materials fit for the electrolysis of water by the AZEC method are investigated, and a medium-size cell, high-temperature cell, and test unit are built. As the result, it becomes clear that the Raney Nickel electrode is relatively active as anode as well as cathode and that it is excellent in durability. The Raney Nickel electrode, with its activity further improved by modification using rhodium and rhenium, is durable, and exhibits the lowest overvoltage. As for the medium-size cell, a cell structure excellent in outgassing while maintaining electrode flatness is sought for, and it is found that it is capable of electrolytic performance similar to that of a small-size cell. As for the high-temperature cell, studies are conducted about the impact of temperature and pressure on the bath voltage. The pressure control system experimentally built in this research is found to be excellent in transient response too. (NEDO)

  7. The advanced EctoSys electrolysis as an integral part of a ballast water treatment system.

    Science.gov (United States)

    Echardt, J; Kornmueller, A

    2009-01-01

    A full-scale 500 m(3)/h ballast water treatment system was tested according to the landbased type approval procedure of the International Maritime Organization (IMO). The system consists of disc filters followed by the advanced EctoSys electrolysis as an integral part for disinfection. The test water quality exceeded by far the minimum requirements for type approval testing. Due to the properties of the special electrodes used together with the striking disinfection effect, the disinfectants assumed to be produced inline by the EctoSys cell in river water were hydroxyl radicals, while in brackish water additionally chlorine and consequently the more stable bromine were formed. In river water, no residual oxidants could be detected in accordance with the assumed production of not responding, highly-reactive and short-living hydroxyl radicals. Accordingly, disinfection byproduct (DBP) formation was very low and close to the limit of quantification in river water. While in brackish water, initial residual oxidant concentrations were maximum 2 mg/L as chlorine and mostly brominated DBP (especially bromoform and bromate) were found. Overall considering this worst case test approach, the DBP concentrations of the treated effluents were below or in the range of the WHO Drinking Water Guideline values and therefore evaluated as acceptable for discharge to the environment. The stringent discharge standard by IMO concerning viable organisms was fully met in river and brackish water, proving the disinfection efficiency of the EctoSys electrolysis against smaller plankton and bacteria.

  8. Durable solid oxide electrolysis cells and stacks

    Energy Technology Data Exchange (ETDEWEB)

    Ming Chen

    2010-08-15

    The purpose of this project was to make a substantial contribution to development of a cost competitive electrolysis technology based on solid oxide cells. The strategy was to address what had been identified as the key issues in previous research projects. Accordingly five lines of work were carried out in the here reported project: 1) Cell and stack element testing and post test characterization to identify major degradation mechanisms under electrolysis operation. 2) Development of interconnects and coatings to allow stable electrolysis operation at approx850 deg. C or above. 3) Development of seals with reduced Si emission. 4) Development of durable SOEC cathodes. 5) Modeling. Good progress has been made on several of the planned activities. The outcome and most important achievements of the current project are listed for the five lines of the work. (LN)

  9. Space Station propulsion - Advanced development testing of the water electrolysis concept at MSFC

    Science.gov (United States)

    Jones, Lee W.; Bagdigian, Deborah R.

    1989-01-01

    The successful demonstration at Marshall Space Flight Center (MSFC) that the water electrolysis concept is sufficiently mature to warrant adopting it as the baseline propulsion design for Space Station Freedom is described. In particular, the test results demonstrated that oxygen/hydrogen thruster, using gaseous propellants, can deliver more than two million lbf-seconds of total impulse at mixture ratios of 3:1 to 8:1 without significant degradation. The results alao demonstrated succcessful end-to-end operation of an integrated water electrolysis propulsion system.

  10. Hydrogen by water electrolysis

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Hydrogen production by water electrolysis (aqueous solution of potassium hydroxide) is shortly presented with theoretical aspects (thermodynamics and kinetics), and components of the electrolytic cell (structural materials, cathodes, anodes, diaphragms), and examples of industrial processes. (A.B.). 4 figs

  11. Model-supported characterization of a PEM water electrolysis cell for the effect of compression

    DEFF Research Database (Denmark)

    Frensch, Steffen Henrik; Olesen, Anders Christian; Simon Araya, Samuel

    2018-01-01

    This paper investigates the influence of the cell compression of a PEM water electrolysis cell. A small single cell is therefore electrochemically analyzed by means of polarization behavior and impedance spectroscopy throughout a range of currents (0.01 A cm−2 to 2.0 A cm−2) at two temperatures (60...

  12. Status Report on the High-Temperature Steam Electrolysis Plant Model Developed in the Modelica Framework (FY17)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Suk [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-08-29

    This report has been prepared as part of an effort to design and build a modeling and simulation (M&S) framework to assess the economic viability of a nuclear-renewable hybrid energy system (N-R HES). In order to facilitate dynamic M&S of such an integrated system, research groups in multiple national laboratories have been developing various subsystems as dynamic physics-based components using the Modelica programming language. In fiscal year 2015 (FY15), Idaho National Laboratory (INL) performed a dynamic analysis of two region-specific N-R HES configurations, including the gas-to-liquid (natural gas to Fischer-Tropsch synthetic fuel) and brackish water reverse osmosis desalination plants as industrial processes. In FY16, INL developed two additional subsystems in the Modelica framework: (1) a high-temperature steam electrolysis (HTSE) plant as a high priority industrial plant to be integrated with a light water reactor (LWR) within an N-R HES and (2) a gas turbine power plant as a secondary energy supply. In FY17, five new components (i.e., a feedwater pump, a multi-stage compression system, a sweep-gas turbine, flow control valves, and pressure control valves) have been incorporated into the HTSE system proposed in FY16, aiming to better realistically characterize all key components of concern. Special attention has been given to the controller settings based on process models (i.e., direct synthesis method), aiming to improve process dynamics and controllability. A dynamic performance analysis of the improved LWR/HTSE integration case was carried out to evaluate the technical feasibility (load-following capability) and safety of such a system operating under highly variable conditions requiring flexible output. The analysis (evaluated in terms of the step response) clearly shows that the FY17 model resulted in superior output responses with much smaller settling times and less oscillatory behavior in response to disturbances in the electric load than those

  13. Production of Oxygen from Lunar Regolith by Molten Oxide Electrolysis

    Science.gov (United States)

    Curreri, Peter A.

    2009-01-01

    This paper describes the use of the molten oxide electrolysis (MOE) process for the extraction of oxygen for life support and propellant, and silicon and metallic elements for use in fabrication on the Moon. The Moon is rich in mineral resources, but it is almost devoid of chemical reducing agents, therefore, molten oxide electrolysis is ideal for extraction, since the electron is the only practical reducing agent. MOE has several advantages over other extraction methods. First, electrolytic processing offers uncommon versatility in its insensitivity to feedstock composition. Secondly, oxide melts boast the twin key attributes of highest solubilizing capacity for regolith and lowest volatility of any candidate electrolytes. The former is critical in ensuring high productivity since cell current is limited by reactant solubility, while the latter simplifies cell design by obviating the need for a gas-tight reactor to contain evaporation losses as would be the case with a gas or liquid phase fluoride reagent operating at such high temperatures. Alternatively, MOE requires no import of consumable reagents (e.g. fluorine and carbon) as other processes do, and does not rely on interfacing multiple processes to obtain refined products. Electrolytic processing has the advantage of selectivity of reaction in the presence of a multi-component feed. Products from lunar regolith can be extracted in sequence according to the stabilities of their oxides as expressed by the values of the free energy of oxide formation (e.g. chromium, manganese, Fe, Si, Ti, Al, magnesium, and calcium). Previous work has demonstrated the viability of producing Fe and oxygen from oxide mixtures similar in composition to lunar regolith by molten oxide electrolysis (electrowinning), also called magma electrolysis having shown electrolytic extraction of Si from regolith simulant. This paper describes recent advances in demonstrating the MOE process by a joint project with participation by NASA KSC and

  14. Titanium metal obtention by fused salts electrolysis

    International Nuclear Information System (INIS)

    Perillo, P.M.; Ares, Osvaldo; Botbol, Jose.

    1989-01-01

    Potassium fluorotitanate dissolved in fused sodium chloride or potassium chloride may be electrolyzed under an inert gas atmosphere. Solid electrolysis products are formed on the cathode which contains titanium metal, sodium chloride, lower fluorotitanates and small quantities of alkali metal fluorotitanate. The extraction of titanium from the electrolysis products may be carried out by aqueous leaching (removal of chloride salts of alkali metals and a certain amount of fluorotitanates). Titanium metal obtained is relatively pure. (Author)

  15. Advanced alkaline water electrolysis

    International Nuclear Information System (INIS)

    Marini, Stefania; Salvi, Paolo; Nelli, Paolo; Pesenti, Rachele; Villa, Marco; Berrettoni, Mario; Zangari, Giovanni; Kiros, Yohannes

    2012-01-01

    A short review on the fundamental and technological issues relevant to water electrolysis in alkaline and proton exchange membrane (PEM) devices is given. Due to price and limited availability of the platinum group metal (PGM) catalysts they currently employ, PEM electrolyzers have scant possibilities of being employed in large-scale hydrogen production. The importance and recent advancements in the development of catalysts without PGMs are poised to benefit more the field of alkaline electrolysis rather than that of PEM devices. This paper presents our original data which demonstrate that an advanced alkaline electrolyzer with performances rivaling those of PEM electrolyzers can be made without PGM and with catalysts of high stability and durability. Studies on the advantages/limitations of electrolyzers with different architectures do show how a judicious application of pressure differentials in a recirculating electrolyte scheme helps reduce mass transport limitations, increasing efficiency and power density.

  16. HyPEP FY-07 Report: System Integration Model Development

    Energy Technology Data Exchange (ETDEWEB)

    C. H. Oh; E. S. Kim; S. R. Sherman; R. Vilim

    2007-04-01

    The integrated system of a Very High Temperature Gas-Cooled Reactor (VHTR) and a High Temperature Steam Electrolysis (HTSE) process is one of systems being investigated by the U.S. Department of Energy and Idaho National Laboratory. This system will produce hydrogen by utilizing a highly efficient VHTR with an outlet temperature of 900 °C and supplying necessary energy and electricity to the HTSE process for electrolysis of high temperature steam. This report includes a description of five configurations including an indirect parallel cycle, an indirect serial cycle, a direct serial cycle, a steam combined cycle, and a reheat cycle. HYSYS simulations were performed for each of these configurations coupled to a HTSE process. Final results are presented along with parametric studies and process optimization.

  17. Electromagnetic radiation during electrolysis of heavy water

    International Nuclear Information System (INIS)

    Koval'chuk, E.P.; Yanchuk, O.M.; Reshetnyak, O.V.

    1994-01-01

    The radiation in the visible and ultraviolet spectral regions during electrolysis of heavy water on nickel and palladium cathodes was determined for the first time. A sharp jump of the intensity photon flow was observed at a current density of higher than 125 mA/cm 2 . A hypothesis about the relation of the electrochemiluminescence phenomenon during electrolysis of heavy water with the formation of fresh surfaces in consequence of the hydrogenous corrosion of the cathode material is formulated. ((orig.))

  18. Thermal dynamic analysis of sulfur removal from coal by electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.; Gao, J.; Meng, F. [Qinghua University, Beijing (China). Dept. of Thermal Engineering

    2002-06-01

    The electrolytic reactions about sulfur removal from coal were studied by using chemical thermal dynamic analysis. According to the thermodynamical data, the Gibbs free energy value of the electrolytic reactions of pyritic and organic sulfur removal from coal is higher than zero. So, these electrolytic reactions are not spontaneous chemical reactions. In order to carry out desulfurisation by electrolysis, a certain voltage is necessary and important. Because theoretic decomposition voltage of pyrite and some parts of organic sulfur model compound is not very high, electrolysis reactions are easily to be carried out by using electrolysis technology. Mn ion and Fe ion are added into electrolysis solutions to accelerate the desulfurisation reaction. The electrolytic decomposition of coal is discussed. Because the theoretical decomposition voltage of some organic model compound is not high, the coal decomposition might happen. 17 refs., 4 tabs.

  19. Microscale Electrolysis Using Coin-Type Lithium Batteries and Filter

    Science.gov (United States)

    Kamata, Masahiro; Yajima, Seiko

    2013-01-01

    An educational experiment illustrates the electrolysis of water and copper chloride to middle school science students. The electrolysis cell is composed of filter paper soaked with Na[subscript 2]SO[subscript 4] or CuCl[subscript 2] aqueous solution sandwiched, along with a sheet of platinum foil, between two coin-type lithium batteries. When the…

  20. Water electrolysis from the sources of aeolian and photovoltaic energies; Eletrolise da agua a partir de fontes de energia eolica e fotovoltaica

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ennio Peres da [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Lab. de Hidrogenio

    2006-07-01

    This paper presents an overview on the water electrolysis from aeolic and photovoltaic energies sources, considering the following aspects: hydrogen technology; water electrolysis; water dissociators; 3000 A unipolar dissociators; 4000 A unipolar dissociators; bipolar dissociators; generation systems connected to the network; generation systems disconnected from the network; costs of the hydrogen.

  1. Electrical impedance tomography of electrolysis.

    Directory of Open Access Journals (Sweden)

    Arie Meir

    Full Text Available The primary goal of this study is to explore the hypothesis that changes in pH during electrolysis can be detected with Electrical Impedance Tomography (EIT. The study has relevance to real time control of minimally invasive surgery with electrolytic ablation. To investigate the hypothesis, we compare EIT reconstructed images to optical images acquired using pH-sensitive dyes embedded in a physiological saline agar gel phantom treated with electrolysis. We further demonstrate the biological relevance of our work using a bacterial E.Coli model, grown on the phantom. The results demonstrate the ability of EIT to image pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E.coli model. The results are promising, and invite further experimental explorations.

  2. Development status of a preprototype water electrolysis subsystem

    Science.gov (United States)

    Martin, R. B.; Erickson, A. C.

    1981-01-01

    A preprototype water electrolysis subsystem was designed and fabricated for NASA's advanced regenerative life support program. A solid polymer is used for the cell electrolyte. The electrolysis module has 12 cells that can generate 5.5 kg/day of oxygen for the metabolic requirements of three crewmembers, for cabin leakage, and for the oxygen and hydrogen required for carbon dioxide collection and reduction processes. The subsystem can be operated at a pressure between 276 and 2760 kN/sq m and in a continuous constant-current, cyclic, or standby mode. A microprocessor is used to aid in operating the subsystem. Sensors and controls provide fault detection and automatic shutdown. The results of development, demonstration, and parametric testing are presented. Modifications to enhance operation in an integrated and manned test are described. Prospective improvements for the electrolysis subsystem are discussed.

  3. Degradation of Remazol Red in batik dye waste water by contact glow discharge electrolysis method using NaOH and NaCl electrolytes

    Science.gov (United States)

    Saksono, Nelson; Putri, Dita Amelia; Suminar, Dian Ratna

    2017-03-01

    Contact Glow Discharge Electrolysis (CGDE) method is one of Plasma Electrolysis technology which has been approved to degrade organic waste water because it is very productive in producing hydroxyl radical. This study aims to degrade Remazol Red by CGDE method and evaluate important parameters that have influent in degradation process of Remazol Red in Batik dye waste water in batch system. The kind of electrolyte (acid and base) and the addition of metal ion such as Fe2+ have affected Remazol Red degradation percentage. Ultraviolet-Visible (UV-Vis) absorption spectra were used to monitor the degradation process. The result of study showed that percentage degradation was 99.97% which obtained by using NaCl 0.02 M with addition Fe2+ 20 ppm, applied voltage 700 volt, anode depth 0.5 cm, initial concentration of Remazol Red 250 ppm and the temperature of solutions was maintained 50-60 ˚C.

  4. Development of an advanced static feed water electrolysis module. [for spacecraft

    Science.gov (United States)

    Schubert, F. H.; Wynveen, R. A.; Jensen, F. C.; Quattrone, P. D.

    1975-01-01

    A Static Feed Water Electrolysis Module (SFWEM) was developed to produce 0.92 kg/day (2.0 lb/day) of oxygen (O2). Specific objectives of the program's scope were to (1) eliminate the need for feed water cavity degassing, (2) eliminate the need for subsystem condenser/separators, (3) increase current density capability while decreasing electrolysis cell power (i.e., cell voltage) requirements, and (4) eliminate subsystem rotating parts and incorporate control and monitor instrumentation. A six-cell, one-man capacity module having an active area of 0.00929 sq m (0.10 sq ft) per cell was designed, fabricated, assembled, and subjected to 111 days (2664 hr) of parametric and endurance testing. The SFWEM was successfully operated over a current density range of 0 to 1076 mA/sq cm (0 to 1000 ASF), pressures of ambient to 2067 kN/sq m (300 psia), and temperatures of ambient to 366 K (200 F). During a 94-day endurance test, the SFWEM successfully demonstrated operation without the need for feed water compartment degassing.

  5. Computer simulation of the NASA water vapor electrolysis reactor

    Science.gov (United States)

    Bloom, A. M.

    1974-01-01

    The water vapor electrolysis (WVE) reactor is a spacecraft waste reclamation system for extended-mission manned spacecraft. The WVE reactor's raw material is water, its product oxygen. A computer simulation of the WVE operational processes provided the data required for an optimal design of the WVE unit. The simulation process was implemented with the aid of a FORTRAN IV routine.

  6. Analysis of Trends and Emerging Technologies in Water Electrolysis Research Based on a Computational Method: A Comparison with Fuel Cell Research

    Directory of Open Access Journals (Sweden)

    Takaya Ogawa

    2018-02-01

    Full Text Available Water electrolysis for hydrogen production has received increasing attention, especially for accumulating renewable energy. Here, we comprehensively reviewed all water electrolysis research areas through computational analysis, using a citation network to objectively detect emerging technologies and provide interdisciplinary data for forecasting trends. The results show that all research areas increase their publication counts per year, and the following two areas are particularly increasing in terms of number of publications: “microbial electrolysis” and “catalysts in an alkaline water electrolyzer (AWE and in a polymer electrolyte membrane water electrolyzer (PEME.”. Other research areas, such as AWE and PEME systems, solid oxide electrolysis, and the whole renewable energy system, have recently received several review papers, although papers that focus on specific technologies and are cited frequently have not been published within the citation network. This indicates that these areas receive attention, but there are no novel technologies that are the center of the citation network. Emerging technologies detected within these research areas are presented in this review. Furthermore, a comparison with fuel cell research is conducted because water electrolysis is the reverse reaction to fuel cells, and similar technologies are employed in both areas. Technologies that are not transferred between fuel cells and water electrolysis are introduced, and future water electrolysis trends are discussed.

  7. Long-term Steam Electrolysis with Electrolyte-Supported Solid Oxide Cells

    International Nuclear Information System (INIS)

    Schefold, Josef; Brisse, Annabelle; Poepke, Hendrik

    2015-01-01

    Steam electrolysis over 11000 h with an electrolyte-supported solid oxide cell is discussed. The cell of 45 cm"2 area consists of a scandia/ceria doped zirconia electrolyte (6Sc1CeSZ), CGO diffusion-barrier/adhesion layers, a lanthanum strontium cobaltite ferrite (LSCF) oxygen electrode, and a nickel steam/hydrogen electrode. After initial 2500 h operation with lower current-density magnitude, the current density was set to j = -0.9 A cm"−"2 and the steam conversion rate to 51%. This led to a cell voltage of 1.185 V at 847 °C cell temperature. Average voltage degradation was 7.3 mV/1000 h ( 100% throughout the test (with an external heat source for evaporation). Impedance spectroscopic measurements revealed a degradation almost entirely due to increasing ohmic resistance. The rate of resistance increase was initially faster (up to 40 mΩ cm"2/1000 h) and stabilised after several 1000 h operation. After 9000 h a small (non-ohmic) electrode degradation became detectable (<2 mV/1000 h), superimposed to ohmic degradation. The small electrode degradation is understood as indication for largely reversible (electrolysis cell/fuel cell) behaviour.

  8. Investigation of the synergistic effects for p-nitrophenol mineralization by a combined process of ozonation and electrolysis using a boron-doped diamond anode

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Cuicui [School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); Yuan, Shi [School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Li, Xiang; Wang, Huijiao; Bakheet, Belal [School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); Komarneni, Sridhar [Department of Ecosystem Science and Management and Material Research Institute, 205 MRL Building, The Pennsylvania State University, University Park, PA 16802 (United States); Wang, Yujue, E-mail: wangyujue@tsinghua.edu.cn [School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China)

    2014-09-15

    Graphical abstract: - Highlights: • Combining electrolysis with ozonation greatly enhances nitrophenol mineralization. • O{sub 3} can rapidly degrade nitrophenol to carboxylic acids in the bulk solution. • Carboxylic acids can be mineralized by ·OH generated from multiple sources in the electrolysis-O{sub 3} process. • Electrolysis and ozonation can compensate for each other's weakness on pollutant degradation. - Abstract: Electrolysis and ozonation are two commonly used technologies for treating wastewaters contaminated with nitrophenol pollutants. However, they are often handicapped by their slow kinetics and low yields of total organic carbon (TOC) mineralization. To improve TOC mineralization efficiency, we combined electrolysis using a boron-doped diamond (BDD) anode with ozonation (electrolysis-O{sub 3}) to treat a p-nitrophenol (PNP) aqueous solution. Up to 91% TOC was removed after 60 min of the electrolysis-O{sub 3} process. In comparison, only 20 and 44% TOC was respectively removed by individual electrolysis and ozonation treatment conducted under similar reaction conditions. The result indicates that when electrolysis and ozonation are applied simultaneously, they have a significant synergy for PNP mineralization. This synergy can be mainly attributed to (i) the rapid degradation of PNP to carboxylic acids (e.g., oxalic acid and acetic acid) by O{sub 3}, which would otherwise take a much longer time by electrolysis alone, and (ii) the effective mineralization of the ozone-refractory carboxylic acids to CO{sub 2} by ·OH generated from multiple sources in the electrolysis-O{sub 3} system. The result suggests that combining electrolysis with ozonation can provide a simple and effective way to mutually compensate the limitations of the two processes for degradation of phenolic pollutants.

  9. Treatment of high salinity organic wastewater by membrane electrolysis

    Science.gov (United States)

    Dongfang, Shen; Jinghuan, Ma; Ying, Liu; Chenguang, Zhao

    2018-03-01

    The effects of different operating conditions on the treatment of electrolytic wastewater were investigated by analyzing the removal rate of ammonia and COD before and after wastewater treatment by cation exchange membrane. Experiment shows that as the running time increases the electrolysis effect first increases after the smooth. The removal rate of ammonia will increase with the increase of current density, and the removal rate of COD will increase first and then decrease with the increase of current density. The increase of the temperature of the electrolytic solution will slowly increase the COD removal rate to saturation, but does not affect the removal of ammonia nitrogen. When the flow rate is less than 60L / h, the change of influent flow rate will not affect the removal of ammonia nitrogen, but the effect on COD is small, which will increase and decrease slightly. After the experiment, the surface of the cation exchange membrane was analyzed by cold field scanning electron microscopy and X-ray energy dispersive spectrometer. The surface contamination and the pollutant were determined. The experimental results showed that the aggregates were mainly chlorinated Sodium, calcium and magnesium inorganic salts, which will change the morphology of the film to reduce porosity, reduce the mass transfer efficiency, affecting the electrolysis effect.

  10. Study on in-situ electrochemical impedance spectroscopy measurement of anodic reaction in SO_2 depolarized electrolysis process

    International Nuclear Information System (INIS)

    Xue Lulu; Zhang Ping; Chen Songzhe; Wang Laijun

    2014-01-01

    SO_2 depolarized electrolysis (SDE) is the pivotal reaction in hybrid sulfur process, one of the most promising approaches for mass hydrogen production without CO_2 emission. The net result of hybrid sulfur process is to split water into hydrogen and oxygen at a relatively low voltage, which will dramatically decrease the energy consumption for the production of hydrogen. The potential loss of SDE process could be separated into four components, i.e. reversible cell potential, anode overpotential, cathode overpotential and ohmic loss. So far, it has been identified that the total cell potential for the SO_2 depolarized electrolyzer is dominantly controlled by sulfuric acid concentration of the anolyte and electrolysis temperature of the electrolysis process. In this work, an in-situ Electrochemical Impedance Spectroscopy (EIS) measurement of the anodic SDE reaction was conducted. Results show that anodic overpotential is mainly resulted from the SO_2 oxidation reaction other than ohmic resistance or mass transfer limitation. This study extends the understanding to SDE process and gives suggestions for the further improvement of the SDE performance. (author)

  11. The micro-electrolysis technique in waste water treatment

    International Nuclear Information System (INIS)

    Jiti Zhou; Weihen Yang; Fenglin Yang; Xuemin Xiang; Yulu Wang

    1997-01-01

    The micro-electrolysis is one of the efficient methods to treat some kinds of waste water. The experiments have shown its high efficiency in sewage treatment and some kinds of industrial waste water. It is suitable for pre-treatment of high concentrated waste water and deep treatment of waste water for reuse purpose. The disadvantage of micro-electrolysis is its high energy consumption in case of high electrolyte concentration. (author) 2 figs., 11 tabs., 2 refs

  12. The micro-electrolysis technique in waste water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Jiti Zhou; Weihen Yang; Fenglin Yang; Xuemin Xiang; Yulu Wang [Dalian Univ. of Technology, Dalian (China)

    1997-12-31

    The micro-electrolysis is one of the efficient methods to treat some kinds of waste water. The experiments have shown its high efficiency in sewage treatment and some kinds of industrial waste water. It is suitable for pre-treatment of high concentrated waste water and deep treatment of waste water for reuse purpose. The disadvantage of micro-electrolysis is its high energy consumption in case of high electrolyte concentration. (author) 2 figs., 11 tabs., 2 refs.

  13. Fabrication and characterization of Cu/YSZ cermet high-temperature electrolysis cathode material prepared by high-energy ball-milling method

    International Nuclear Information System (INIS)

    Lee, Sungkyu; Kang, Kyoung-Hoon; Kim, Jong-Min; Hong, Hyun Seon; Yun, Yongseung; Woo, Sang-Kook

    2008-01-01

    Cu/YSZ composites (40 and 60 vol.% Cu powder with balance YSZ) was successfully fabricated by high-energy ball-milling of Cu and YSZ powders at 400 rpm for 24 h, pressing into pellets (O 13 mm x 2 mm) and subsequent sintering process at 900 deg. C under flowing 5%-H 2 /Ar gas for use as cermet cathode material of high-temperature electrolysis (HTE) of water vapor in a more economical way compared with conventional Ni/YSZ cermet cathode material. The Cu/YSZ composite powders thus synthesized and sintered were characterized using various analytical tools such as XRD, SEM, and laser diffraction and scattering method. Electrical conductivity of sintered Cu/YSZ cermet pellets thus fabricated was measured using 4-probe technique and compared with that of Ni/YSZ cermets. The effect of composites composition on the electrical conductivity was investigated and marked increase in electrical conductivity for copper contents greater than 40 vol.% in the composite was explained by percolation threshold

  14. High Temperature Oxidation of Ferritic Steels for Solid Oxide Electrolysis Stacks

    DEFF Research Database (Denmark)

    Molin, Sebastian; Chen, Ming; Bentzen, Janet Jonna

    2013-01-01

    atmospheres at 800°C. Four commercially available alloys: Crofer 22 APU, Crofer 22 H, AL29-4, E-Brite were characterized in humidified hydrogen. One alloy, Crofer 22 APU was also characterized in pure oxygen both in the as-prepared state and after application of a protective coating. Best corrosion resistance......Oxidation rates of ferritic steels used as interconnector plates in Solid Oxide Electrolysis Stacks are of concern as they may be determining for the life time of the technology. In this study oxidation experiments were carried out for up to 1000 hours in hydrogen-side and oxygen-side simulated...... in humidified hydrogen atmosphere was observed for Crofer 22 APU and Crofer 22 H alloys. Corrosion rates for Crofer 22 APU measured in humidified hydrogen are similar to the corrosion rates measured in air. Both coatings of plasma sprayed LSM and dual layer coatings (Co3O4/LSM-Co3O4) applied by wet spraying...

  15. Enhancing the efficiency of zero valent iron by electrolysis: Performance and reaction mechanism.

    Science.gov (United States)

    Xiong, Zhaokun; Lai, Bo; Yang, Ping

    2018-03-01

    Electrolysis was applied to enhance the efficiency of micron-size zero valent iron (mFe 0 ) and thereby promote p-nitrophenol (PNP) removal. The rate of PNP removal by mFe 0 with electrolysis was determined in cylindrical electrolysis reactor that employed annular aluminum plate cathode as a function of experimental factors, including initial pH, mFe 0 dosage and current density. The rate constants of PNP removal by Ele-mFe 0 were 1.72-144.50-fold greater than those by pristine mFe 0 under various tested conditions. The electrolysis-induced improvement could be primarily ascribed to stimulated mFe 0 corrosion, as evidenced by Fe 2+ release. The application of electrolysis could extend the working pH range of mFe 0 from 3.0 to 6.0 to 3.0-10.0 for PNP removal. Additionally, intermediates analysis and scavengers experiments unraveled the reduction capacity of mFe 0 was accelerated in the presence of electrolysis instead of oxidation. Moreover, the electrolysis effect could also delay passivation of mFe 0 under acidic condition, as evidenced by SEM-EDS, XRD, and XPS analysis after long-term operation. This is mainly due to increased electromigration meaning that iron corrosion products (iron hydroxides and oxides) are not primarily formed in the vicinity of the mFe 0 or at its surface. In the presence of electrolysis, the effect of electric field significantly promoted the efficiency of electromigration, thereby enhanced mFe 0 corrosion and eventually accelerated the PNP removal rates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%

    Science.gov (United States)

    Jia, Jieyang; Seitz, Linsey C.; Benck, Jesse D.; Huo, Yijie; Chen, Yusi; Ng, Jia Wei Desmond; Bilir, Taner; Harris, James S.; Jaramillo, Thomas F.

    2016-01-01

    Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage. PMID:27796309

  17. Hydrogen production through small capacity water electrolysis systems; Production d'hydrogene par electrolyse de l'eau. Application a des systemes de petite capacite

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Ph. [TotalFinaElf, la Defense 6, 92 - Courbevoie (France)

    2002-01-01

    Less than 1 % of the world's hydrogen is produced by electrolysis of water, in large plants mainly in connection with hydropower. For users requiring extremely pure hydrogen, electrolysis can be a convenient mean of obtaining the required hydrogen quality, where cheap electricity is available. This paper aims at presenting the latest technical developments of small capacity electrolyzers, that could fuel hydrogen cells or internal combustion engines. (author)

  18. The Economic Potential of Nuclear-Renewable Hybrid Energy Systems Producing Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stark, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-01

    This report is one in a series of reports that Idaho National Laboratory and the Joint Institute for Strategic Energy Analysis are publishing that address the technical and economic aspects of nuclear-renewable hybrid energy systems (N-R HESs). This report discusses an analysis of the economic potential of a tightly coupled N-R HES that produces electricity and hydrogen. Both low and high temperature electrolysis options are considered in the analysis. Low-temperature electrolysis requires only electricity to convert water to hydrogen. High temperature electrolysis requires less electricity because it uses both electricity and heat to provide the energy necessary to electrolyze water. The study finds that, to be profitable, the examined high-temperature electrosis and low-temperature electrosis N-R HES configurations that produce hydrogen require higher electricity prices, more electricity price volatility, higher natural gas prices, or higher capacity payments than the reference case values of these parameters considered in this analysis.

  19. Basic study of alkaline water electrolysis

    International Nuclear Information System (INIS)

    Manabe, A.; Kashiwase, M.; Hashimoto, T.; Hayashida, T.; Kato, A.; Hirao, K.; Shimomura, I.; Nagashima, I.

    2013-01-01

    In order to realize future hydrogen society, hydrogen production systems must meet the large demand of hydrogen usage. Alkaline water electrolysis (AWE) would be one of the candidate technologies to produce hydrogen on a large scale from renewable energy. We have conducted basic research into AWE, trying to reveal technical issues under zero gap system in new cell technology. The zero gap system contributes lower cell voltage without causing any major operating problems compared with conventional finite gap cell. However, it was observed that Ni base electrodes showed corrosion phenomena in a number of test trials including steady operating conditions and several shut-downs. Activated Raney Ni alloy coating for anode material had an advantage for oxygen overvoltage. It showed a saving of around 100 mV at 40 A/dm 2 (0.4 A/cm 2 ) against Ni bare anodes. In the Chlor–Alkali (C/A) industry, thermal decomposition coating of mixed noble metal on Ni substrate is commonly used for advanced activated cathodes. It showed very low hydrogen over-potential of around 100 mV in AWE. To achieve better cell performance, separator selection is very important. We evaluated several separators including ion exchange membrane (IEM) to understand the basic function in AWE. IEM for C/A electrolysis showed high cell voltage (over 2.2 V) but low O 2 impurity in H 2 gas. Hydrogen purity was over 99.95%. Porous separators made of polypropylene showed 1.76 V at 40 A/dm 2 (0.4 A/cm 2 ), 80 °C. But there was a weakness on the durability for continuous operation. Proper selection of separator is important in an actual plant for effective and safe cell operation. The concept of safety operation is referred to by diffusion coefficient of hydrogen

  20. Anodic behavior of mechanically alloyed Cu–Ni–Fe and Cu–Ni–Fe–O electrodes for aluminum electrolysis in low-temperature KF-AlF3 electrolyte

    International Nuclear Information System (INIS)

    Goupil, G.; Helle, S.; Davis, B.; Guay, D.; Roué, L.

    2013-01-01

    A comparative study on the anodic behavior of Cu 65 Ni 20 Fe 15 and (Cu 65 Ni 20 Fe 15 ) 98.6 O 1.4 materials during the electrolysis of aluminum was conducted. Both materials were prepared in powder form by ball milling and subsequently consolidated to form dense pellets that were used as anodes. The electrochemical characterization was performed at 700 °C in a potassium cryolite-based electrolyte, and the composition-morphology of the oxide scales formed on both anodes were determined by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction measurements. On Cu 65 Ni 20 Fe 15 , a thick (170 μm) and porous oxide scale is formed after 15 min of electrolysis that readily dissolves (or spalls) before a denser oxide layer is formed after a longer electrolysis time (1 and 5 h). In comparison, a thin (2 μm) and dense oxide layer mainly composed of NiFe 2 O 4 is observed on a (Cu 65 Ni 20 Fe 15 ) 98.6 O 1.4 electrode after 15 min of electrolysis. The thickness of this oxide layer increases to 10 and 30 μm after 1 h and 5 h of electrolysis. However, the outward diffusion of Cu to form CuO x at the surface of the electrode is not totally hampered by the presence of NiFe 2 O 4 and a porous Cu-depleted region is formed at the oxide/alloy interface. As a result, electrolyte penetration occurs in the scale, which favors the progressive formation of an iron fluoride layer at the oxide/alloy interface

  1. A Small-Scale and Low-Cost Apparatus for the Electrolysis of Water

    Science.gov (United States)

    Eggeen, Per-Odd; Kvittingen, Lise

    2004-01-01

    The construction of two simple, inexpensive apparatuses that clearly show the electrolysis of water are described. Traditionally the electrolysis of water is conducted in a Hofmann apparatus which is expensive and fragile.

  2. Use of sodium salt electrolysis in the process of continuous ...

    Indian Academy of Sciences (India)

    This paper presents test results concerning the selection of sodium salt for the technology of continuous modification of the EN AC-AlSi12 alloy, which is based on electrolysis of sodium salts, occurring directly in a crucible with liquid alloy. Sodium ions formed as a result of the sodium salt dissociation and the electrolysis are ...

  3. Analysis of cavitation effect for water purifier using electrolysis

    Science.gov (United States)

    Shin, Dong Ho; Ko, Han Seo; Lee, Seung Ho

    2015-11-01

    Water is a limited and vital resource, so it should not be wasted by pollution. A development of new water purification technology is urgent nowadays since the original and biological treatments are not sufficient. The microbubble-aided method was investigated for removal of algal in this study since it overcomes demerits of the existing purification technologies. Thus, the cavitation effect in a venturi-type tube using the electrolysis was analyzed. Ruthenium-coated titanium plates were used as electrodes. Optimum electrode interval and applied power were determined for the electrolysis. Then, the optimized electrodes were installed in the venturi-type tube for generating cavitation. The cavitation effect could be enhanced without any byproduct by the bubbly flow induced by the electrolysis. The optimum mass flow rate and current were determined for the cavitation with the electrolysis. Finally, the visualization techniques were used to count the cell number of algal and microbubbles for the confirmation of the performance. As a result, the energy saving and high efficient water purifier was fabricated in this study. This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korean government (MEST) (No. 2013R1A2A2A01068653).

  4. Electrolysis apparatus and method

    International Nuclear Information System (INIS)

    1975-01-01

    A procedure in which electrolysis is combined with radiolysis to improve the reaction yield is proposed for the production of hydrogen and oxygen from water. An apparatus for this procedure is disclosed. High-energy electric pulses are applied between the anode and kathode of an electrolytical cell in such a way that short-wave electromagnetic radiation is generated at the same time

  5. Removal of pigments from molasses wastewater by combining micro-electrolysis with biological treatment method.

    Science.gov (United States)

    Chen, Ben; Tian, Xiaofei; Yu, Lian; Wu, Zhenqiang

    2016-12-01

    Pigments in molasses wastewater (MWW) effluent, such as melanoidins, were considered as kinds of the most recalcitrant and hazardous colorant contaminants to the environment. In this study, de-coloring the MWW by a synergistic combination of micro-electrolysis with bio-treatment was performed. Aiming to a high de-colorization yield, levels of nutrition source supplies, MWW dilution ratio, and micro-electrolysis reaction time were optimized accordingly. For a diluted (50 %, v/v) MWW, an maximum overall de-colorization yield (97.1 ± 0.5 %, for absorbance at 475 nm) was achieved through the bio-electrolysis treatment. In electrolysis bio-treatment, the positive effect of micro-electrolysis was also revealed by a promoted growth of fungal biomass as well as activities of ligninolytic enzymes. Activities of lignin peroxidase, manganese peroxidase, and laccase were promoted by 111.2, 103.9, and 7.7 %, respectively. This study also implied that the bio-treatment and the micro-electrolysis had different efficiencies on removal of pigments with distinct polarities.

  6. Basic study of cold fusion. 1. The development of excess heat measurement system in electrolysis

    International Nuclear Information System (INIS)

    Asaoka, Yoshiyuki; Fujita, Tomonari

    1994-01-01

    We have an opportunity ripe to investigate the cold fusion phenomena. In order to declare the subjects to be examined, the precision calorimetry system was developed to try to reproduce the phenomena. The electrolysis of heavy water with palladium cathode was conducted based on the thought that it is important to confirm the cold fusion phenomena. For precision excess power measurement, the closed cell with recombiner and flow-calorimetry were adopted. The obtained accuracy for the excess power measurement of the system was ±0.2 W at up to 9 W of applied power. This is enough for the excess power reported as the cold fusion phenomena. For farther investigation, measurement of loading ratio of deuterium in the palladium cathode, maintenance of high deuterium loading and analysis of the palladium cathode are to be conducted. (author)

  7. The initiation of excess power and possible products of nuclear interactions during the electrolysis of heavy water

    International Nuclear Information System (INIS)

    Scott, C.D.; Mrochek, J.E.; Scott, T.C.; Michaels, G.E.; Newman, E.; Petek, M.

    1990-01-01

    The electrolysis of heavy water is being investigated with an insulated flow calorimetric system. The electrolyte was 0.1 to 1.0 N LiOD in D 2 O and cylindrical palladium cathodes surrounded by wire-wound platinum anodes have been used at cathode current densities of 100 to 800 mA/cm 2 . The most recent test has been made with a ''closed system'' without off-gal in which the electrolysis gases were internally recombined. Fast neutrons and gamma rays were measured continuously during the tests. It was shown that certain system perturbations could initiate and extend generation of excess power. In one test, there was an apparent increase in the neutron count rate that was also coincident with system perturbations. 4 refs., 6 figs

  8. Lunar oxygen and metal for use in near-earth space - Magma electrolysis

    Science.gov (United States)

    Colson, Russell O.; Haskin, Larry A.

    1990-01-01

    The unique conditions on the moon, such as vacuum, absence of many reagents common on the earth, and presence of very nontraditional 'ores', suggest that a unique and nontraditional process for extracting materials from the ores may prove the most practical. An investigation has begun into unfluxed silicate electrolysis as a method for extracting oxygen, Fe, and Si from lunar regolith. The advantages of the process include simplicity of concept, absence of need to supply reagents from the earth, and low power and mass requirements for the processing plant. Disadvantages include the need for uninterrupted high temperature and the highly corrosive nature of the high-temperature silicate melts, which has made identifying suitable electrode and container materials difficult.

  9. Electrolysis-assisted mitigation of reverse solute flux in a three-chamber forward osmosis system.

    Science.gov (United States)

    Zou, Shiqiang; He, Zhen

    2017-05-15

    Forward osmosis (FO) has been widely studied for desalination or water recovery from wastewater, and one of its key challenges for practical applications is reverse solute flux (RSF). RSF can cause loss of draw solutes, salinity build-up and undesired contamination at the feed side. In this study, in-situ electrolysis was employed to mitigate RSF in a three-chamber FO system ("e-FO") with Na 2 SO 4 as a draw solute and deionized (DI) water as a feed. Operation parameters including applied voltage, membrane orientation and initial draw concentrations were systematically investigated to optimize the e-FO performance and reduce RSF. Applying a voltage of 1.5 V achieved a RSF of 6.78 ± 0.55 mmol m -2  h -1 and a specific RSF of 0.138 ± 0.011 g L -1 in the FO mode and with 1 M Na 2 SO 4 as the draw, rendering ∼57% reduction of solute leakage compared to the control without the applied voltage. The reduced RSF should be attributed to constrained ion migration induced by the coactions of electric dragging force (≥1.5 V) and high solute rejection of the FO membrane. Reducing the intensity of the solution recirculation from 60 to 10 mL min -1 significantly reduced specific energy consumption of the e-FO system from 0.693 ± 0.127 to 0.022 ± 0.004 kWh m -3 extracted water or from 1.103 ± 0.059 to 0.044 ± 0.002 kWh kg -1 reduced reversed solute. These results have demonstrated that the electrolysis-assisted RSF mitigation could be an energy-efficient method for controlling RSF towards sustainable FO applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Enhanced performance of solid oxide electrolysis cells by integration with a partial oxidation reactor: Energy and exergy analyses

    International Nuclear Information System (INIS)

    Visitdumrongkul, Nuttawut; Tippawan, Phanicha; Authayanun, Suthida; Assabumrungrat, Suttichai; Arpornwichanop, Amornchai

    2016-01-01

    Highlights: • Process design of solid oxide electrolyzer integrated with a partial oxidation reactor is studied. • Effect of key operating parameters of partial oxidation reactor on the electrolyzer performance is presented. • Exergy analysis of the electrolyzer process is performed. • Partial oxidation reactor can enhance the solid oxide electrolyzer performance. • Partial oxidation reactor in the process is the highest exergy destruction unit. - Abstract: Hydrogen production without carbon dioxide emission has received a large amount of attention recently. A solid oxide electrolysis cell (SOEC) can produce pure hydrogen and oxygen via a steam electrolysis reaction that does not emit greenhouse gases. Due to the high operating temperature of SOEC, an external heat source is required for operation, which also helps to improve SOEC performance and reduce operating electricity. The non-catalytic partial oxidation reaction (POX), which is a highly exothermic reaction, can be used as an external heat source and can be integrated with SOEC. Therefore, the aim of this work is to study the effect of operating parameters of non-catalytic POX (i.e., the oxygen to carbon ratio, operating temperature and pressure) on SOEC performance, including exergy analysis of the process. The study indicates that non-catalytic partial oxidation can enhance the hydrogen production rate and efficiency of the system. In terms of exergy analysis, the non-catalytic partial oxidation reactor is demonstrated to be the highest exergy destruction unit due to irreversible chemical reactions taking place, whereas SOEC is a low exergy destruction unit. This result indicates that the partial oxidation reactor should be improved and optimally designed to obtain a high energy and exergy system efficiency.

  11. Critical Causes of Degradation in Integrated Laboratory Scale Cells during High Temperature Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    M.S. Sohal; J.E. O' Brien; C.M. Stoots; J. J. Hartvigsen; D. Larsen; S. Elangovan; J.S. Herring; J.D. Carter; V.I. Sharma; B. Yildiz

    2009-05-01

    An ongoing project at Idaho National Laboratory involves generating hydrogen from steam using solid oxide electrolysis cells (SOEC). This report describes background information about SOECs, the Integrated Laboratory Scale (ILS) testing of solid-oxide electrolysis stacks, ILS performance degradation, and post-test examination of SOECs by various researchers. The ILS test was a 720- cell, three-module test comprised of 12 stacks of 60 cells each. A peak H2 production rate of 5.7 Nm3/hr was achieved. Initially, the module area-specific resistance ranged from 1.25 Ocm2 to just over 2 Ocm2. Total H2 production rate decreased from 5.7 Nm3/hr to a steady state value of 0.7 Nm3/hr. The decrease was primarily due to cell degradation. Post test examination by Ceramatec showed that the hydrogen electrode appeared to be in good condition. The oxygen evolution electrode does show delamination in operation and an apparent foreign layer deposited at the electrolyte interface. Post test examination by Argonne National Laboratory showed that the O2-electrode delaminated from the electrolyte near the edge. One possible reason for this delamination is excessive pressure buildup with high O2 flow in the over-sintered region. According to post test examination at the Massachusetts Institute of Technology, the electrochemical reactions have been recognized as one of the prevalent causes of their degradation. Specifically, two important degradation mechanisms were examined: (1) transport of Crcontaining species from steel interconnects into the oxygen electrode and LSC bond layers in SOECs, and (2) cation segregation and phase separation in the bond layer. INL conducted a workshop October 27, 2008 to discuss possible causes of degradation in a SOEC stack. Generally, it was agreed that the following are major degradation issues relating to SOECs: • Delamination of the O2-electrode and bond layer on the steam/O2-electrode side • Contaminants (Ni, Cr, Si, etc.) on reaction sites

  12. Impacts of vegetation and temperature on the treatment of domestic sewage in constructed wetlands incorporated with Ferric-Carbon micro-electrolysis material.

    Science.gov (United States)

    Zhou, Qingwei; Zhu, Hui; Bañuelos, Gary; Yan, Baixing; Liang, Yinxiu; Yu, Jing; Li, Huai

    2017-10-03

    Ferric-Carbon Micro-Electrolysis (Fe/C-M/E) material had been widely used for the pretreatment of wastewater. Therefore, we hypothesized that Fe/C-M/E material could enhance the treatment of domestic sewage when it was integrated into constructed wetlands (CWs). In this study, CWs integrated with Fe/C-M/E material were developed. Druing the experiment of effect of vegetation on the performance of CWs, percentages of NH 4 + -N, NO 3 - -N, total nitrogen (TN), and Chemical Oxygen Demand (COD) removed in polyculture (W1) were up to 91.8%, 97.0%, 92.3%, and 85.4%, respectively, which were much higher than those in Lythrum salicaria monoculture (W2) and Canna indica monoculture (W3). In the experiment of temperature influences on the removal efficiency of CWs, temperature substantially influenced the performance of CWs. For example, NO 3 - -N removal percentages of W1, W2, and W3 at high temperature (25.5°C and 19.8°C) were relatively stable and greater than 85.4%. At 8.9°C, however, a sharp decline of NO 3 - -N removal percentage was observed in all CWs. Temperature also influenced the Chemical Oxygen Demand (COD) removal and soil microbial activity and biomass. Overall, the polyculture (Lythrum salicaria +Canna indica) showed the best performance during most of the operating time, at an average temperature ≥ 19.8°C, due to the functional complementarity between vegetation. All the CWs consistently achieved high removal efficiency (above 96%) for TP in all experiments, irrespective of vegetation types, phosphorous loadings, and temperatures. In conclusion, polyculture was an attractive solution for the treatment of domestic sewage during most of the operating time (average temperature ≥ 19.8°C). Furthermore, CWs with Fe/C-M/E material were ideally suitable for domestic sewage treatment, especially for TP removal.

  13. A Feasibility Study of Steelmaking by Molten Oxide Electrolysis (TRP9956)

    Energy Technology Data Exchange (ETDEWEB)

    Donald R. Sadoway; Gerbrand Ceder

    2009-12-31

    Molten oxide electrolysis (MOE) is an extreme form of molten salt electrolysis, a technology that has been used to produce tonnage metals for over 100 years - aluminum, magnesium, lithium, sodium and the rare earth metals specifically. The use of carbon-free anodes is the distinguishing factor in MOE compared to other molten salt electrolysis techniques. MOE is totally carbon-free and produces no CO or CO2 - only O2 gas at the anode. This project is directed at assessing the technical feasibility of MOE at the bench scale while determining optimum values of MOE operating parameters. An inert anode will be identified and its ability to sustain oxygen evalution will be demonstrated.

  14. Production of Synthetic Fuels by Co-Electrolysis of Steam and Carbon Dioxide

    DEFF Research Database (Denmark)

    Ebbesen, Sune; Graves, Christopher R.; Mogensen, Mogens Bjerg

    2009-01-01

    reactions, the equilibrium of the water-gas shift reaction is reached, and moreover, CO is produced via the water-gas shift reaction. The degradation observed when performing co-electrolysis in these SOCs occurs mainly at the Ni/YSZ cathode and may be a consequence of impurities in the gas stream, adsorbing......Co-electrolysis of H2O and CO2 was studied in solid oxide cells (SOCs) supported by nickel-/yittria-stabilized zirconia (Ni/YSZ) electrode. Polarization characterization indicates that electrochemical reduction of both CO2 and H2O occurs during co-electrolysis. In parallel with the electrochemical...

  15. Optimizing the space-time-yield and the specific energy consumption of molten salt electrolysis processes for the electrowinning of metals in subgroups 4 and 5 of the periodic table of elements

    International Nuclear Information System (INIS)

    Koeck, W.

    1988-04-01

    Disadvantages of molten salt electrolysis are its low space-time-yield (kg/m 3 h) combined with its high specific energy consumption (kWh/kg). These factors essentially determine how electrolysis is applied on an industrial scale. The electrolysis of tantalum was selected as an example representative for other electrolytic processes; this series of tests allow statements also on the winning of the other elements from subgroups 4 and 5 of the periodic table, and on electrolytic aluminium extraction. Optimal operating conditions for direct current electrolysis were determined in the laboratory by varying the current density and the electrolysis temperature. In order to improve the space-time-yield from an existing electrolytic cell with a given electrolyte composition beyond the optimal range of direct current electrolysis, the process of periodic current reversal is applied. In this process, the polarity is reversed for a short time at constant periodic intervals. If the forward time period and the backward time period are chosen in a suitable way, both the current efficiency and the space-time-yield can be improved without increasing the energy consumption. 59 refs., 48 figs., 8 tabs. (Author)

  16. Synthesis of Ni-YSZ cermet for an electrode of high temperature electrolysis by high energy ball milling

    International Nuclear Information System (INIS)

    Hong, H.S.; Chae, U.S.; Park, K.M.; Choo, S.T.

    2005-01-01

    Ni/YSZ composites for a cathode that can be used in high temperature electrolysis were prepared by ball milling of Ni and YSZ powder. Ball milling was performed in a dry process and in ethanol. The microstructure and electrical conductivity of the composites were examined by XRD, SEM, TEM and a 4-point probe. XRD patterns for both the dry and wet ball-milled powders showed that the composites were composed of crystalline Ni and YSZ particles. The patterns did not change with increases in the milling time up to 48 h. Dry-milling slightly increased the average particle size compared to starting Ni particles, but little change in the particle size was observed with the increase in milling time. On the other hand, the wet-milling reduced the average size and the increasing milling time induced a further decrease in the particle size. After cold-pressing and annealing at 900 C for 2 h, the dry-milled powder exhibited high stability against Ni sintering so that the particle size changed little, but the particle size increased in the wet-milled powder. The electrical conductivity increased after sintering at 900 C. Particles from the dry and wet process became denser and contacted closer after sintering, providing better electron migration paths. (orig.)

  17. Research on hydrogen production system

    International Nuclear Information System (INIS)

    Nakagiri, Toshio

    2002-07-01

    Hydrogen is closely watched for environmental issues in recent years. In this research, hydrogen production systems and production techniques are widely investigated, and selected some hydrogen production process which have high validity for FBR system. Conclusions of the investigation are shown below. (1) Water-electrolysis processes and steam reform processes at low temperatures are already realized in other fields, so they well be easily adopted for FBR system. FBR system has no advantage when compared with other systems, because water-electrolysis processes can be adopted for other electricity generation system. On the other hand, FBR system has an advantage when steam reforming processes at low temperatures will be adopted, because steam reforming processes at 550-600degC can't be adopted for LWR. (2) Thermochemical processes will be able to adopted for FBR when process temperature will be lowered and material problems solved, because their efficiencies are expected high. Radiolysis processes which use ray (for example, gamma rya) emitted in reactor can be generate hydrogen easily, so they will be able to be adopted for FBR if splitting efficiency will be higher. Further investigation and R and D to realize these processes are considered necessary. (author)

  18. Effects of electrolysis time and electric potential on chlorine generation of electrolyzed deep ocean water

    Directory of Open Access Journals (Sweden)

    Guoo-Shyng Wang Hsu

    2017-10-01

    Full Text Available Electrolyzed water is a sustainable disinfectant, which can comply with food safety regulations and is environmentally friendly. A two-factor central composite design was adopted for studying the effects of electrolysis time and electric potential on the chlorine generation efficiency of electrolyzed deep ocean water (DOW. DOW was electrolyzed in a glass electrolyzing cell equipped with platinum–plated titanium anode and cathode. The results showed that chlorine concentration reached maximal level in the batch process. Prolonged electrolysis reduced chlorine concentration in the electrolyte and was detrimental to electrolysis efficiency, especially under high electric potential conditions. Therefore, the optimal choice of electrolysis time depends on the electrolyzable chloride in DOW and cell potential adopted for electrolysis. The higher the electric potential, the faster the chlorine level reaches its maximum, but the lower the electric efficiency will be.

  19. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter

    NARCIS (Netherlands)

    Logan, B.E.; Call, D.; Cheng, S.; Hamelers, H.V.M.; Sleutels, T.H.J.A.; Jeremiasse, A.W.; Rozendal, R.A.

    2008-01-01

    The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (>0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few

  20. Water electrolysis

    Science.gov (United States)

    Schubert, Franz H. (Inventor); Grigger, David J. (Inventor)

    1992-01-01

    This disclosure is directed to an electrolysis cell forming hydrogen and oxygen at space terminals. The anode terminal is porous and able to form oxygen within the cell and permit escape of the gaseous oxygen through the anode and out through a flow line in the presence of backpressure. Hydrogen is liberated in the cell at the opposing solid metal cathode which is permeable to hydrogen but not oxygen so that the migratory hydrogen formed in the cell is able to escape from the cell. The cell is maintained at an elevated pressure so that the oxygen liberated by the cell is delivered at elevated pressure without pumping to raise the pressure of the oxygen.

  1. Economical hydrogen production by electrolysis using nano pulsed DC

    Energy Technology Data Exchange (ETDEWEB)

    Dharmaraj, C.H. [Tangedco, Tirunelveli, ME Environmental Engineering (India); Adshkumar, S. [Department of Civil Engineering, Anna University of Technology Tirunelveli, Tirunelveli - 627007 (India)

    2012-07-01

    Hydrogen is an alternate renewable eco fuel. The environmental friendly hydrogen production method is electrolysis. The cost of electrical energy input is major role while fixing hydrogen cost in the conventional direct current Electrolysis. Using nano pulse DC input makes the input power less and economical hydrogen production can be established. In this investigation, a lab scale electrolytic cell developed and 0.58 mL/sec hydrogen/oxygen output is obtained using conventional and nano pulsed DC. The result shows that the nano pulsed DC gives 96.8 % energy saving.

  2. Effects of electrolysis time and electric potential on chlorine generation of electrolyzed deep ocean water.

    Science.gov (United States)

    Hsu, Guoo-Shyng Wang; Lu, Yi-Fa; Hsu, Shun-Yao

    2017-10-01

    Electrolyzed water is a sustainable disinfectant, which can comply with food safety regulations and is environmentally friendly. A two-factor central composite design was adopted for studying the effects of electrolysis time and electric potential on the chlorine generation efficiency of electrolyzed deep ocean water (DOW). DOW was electrolyzed in a glass electrolyzing cell equipped with platinum-plated titanium anode and cathode. The results showed that chlorine concentration reached maximal level in the batch process. Prolonged electrolysis reduced chlorine concentration in the electrolyte and was detrimental to electrolysis efficiency, especially under high electric potential conditions. Therefore, the optimal choice of electrolysis time depends on the electrolyzable chloride in DOW and cell potential adopted for electrolysis. The higher the electric potential, the faster the chlorine level reaches its maximum, but the lower the electric efficiency will be. Copyright © 2016. Published by Elsevier B.V.

  3. Electrolysis of Water in the Secondary School Science Laboratory with Inexpensive Microfluidics

    Science.gov (United States)

    Davis, T. A.; Athey, S. L.; Vandevender, M. L.; Crihfield, C. L.; Kolanko, C. C. E.; Shao, S.; Ellington, M. C. G.; Dicks, J. K.; Carver, J. S.; Holland, L. A.

    2015-01-01

    This activity allows students to visualize the electrolysis of water in a microfluidic device in under 1 min. Instructional materials are provided to demonstrate how the activity meets West Virginia content standards and objectives. Electrolysis of water is a standard chemistry experiment, but the typical laboratory apparatus (e.g., Hoffman cell)…

  4. NOx generation method from recovered nitric acid by electrolysis

    International Nuclear Information System (INIS)

    Suzuki, Y.; Shimizu, H.; Inoue, M.; Fujiso, M.; Shibuya, M.; Iwamoto, F.; Outou, Y.; Ochi, E.; Tsuyuki, T.

    1998-01-01

    An R and D has been conducted on an electrolytic NO x generation process utilizing recovered nitric acid from a PUREX reprocessing plant. The purpose of the study is to drastically reduce the amount of low-level-liquid waste(LLW). The research program phase-1, constituting mainly of electrochemical reaction mechanism study, material balance evaluation and process design study, finished in 1995. The results were presented in the previous papers). The research program phase-2 has started in 1995. The schedule is as follows: FY 1991-1994: Research program phase-1 Basic study using electrolysis equipment with 100-700 cm 2 electrodes FY 1995-1999: Research program phase-2 Process performance test by larger scale electrolysis equipment with 3.6 m 2 electrodes - pilot plant design (FY 1995) - pilot plant construction (FY 1996) - engineering data acquisition (FY 1997-1999). The process consists of many unit operations such as electrolysis, oxidation, nitric acid concentration, NO x compression and storage, NO x recovery, off-gas treatment and acid supplier. This paper outlines the pilot test plant. (author)

  5. Stainless steel anodes for alkaline water electrolysis and methods of making

    Science.gov (United States)

    Soloveichik, Grigorii Lev

    2014-01-21

    The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.

  6. HYFIRE II: fusion/high-temperature electrolysis conceptual-design study. Annual report

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1983-08-01

    As in the previous HYFIRE design study, the current study focuses on coupling a Tokamak fusion reactor with a high-temperature blanket to a High-Temperature Electrolyzer (HTE) process to produce hydrogen and oxygen. Scaling of the STARFIRE reactor to allow a blanket power to 6000 MW(th) is also assumed. The primary difference between the two studies is the maximum inlet steam temperature to the electrolyzer. This temperature is decreased from approx. 1300 0 to approx. 1150 0 C, which is closer to the maximum projected temperature of the Westinghouse fuel cell design. The process flow conditions change but the basic design philosophy and approaches to process design remain the same as before. Westinghouse assisted in the study in the areas of systems design integration, plasma engineering, balance-of-plant design, and electrolyzer technology

  7. Preliminary study of the electrolysis of aluminum sulfide in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1983-02-01

    A preliminary laboratory-scale study of the electrolysis of aluminum sulfide in molten salts investigated the (1) solubility of Al/sub 2/S/sub 3/ in molten salts, (2) electrochemical behavior of Al/sub 2/S/sub 3/, and (3) electrolysis of Al/sub 2/S/sub 3/ with the determination of current efficiency as a function of current density. The solubility measurements show that MgCl/sub 2/-NaCl-KCl eutectic electrolyte at 1023 K can dissolve up to 3.3 mol % sulfide. The molar ratio of sulfur to aluminum in the eutectic is about one, which suggests that some sulfur remains undissolved, probably in the form of MgS. The experimental data and thermodynamic calculations suggest that Al/sub 2/S/sub 3/ dissolves in the eutectic to form AlS/sup +/ species in solution. Addition of AlCl/sub 3/ to the eutectic enhances the solubility of Al/sub 2/S/sub 3/; the solubility increases with increasing AlCl/sub 3/ concentration. The electrode reaction mechanism for the electrolysis of Al/sub 2/S/sub 3/ was elucidated by using linear sweep voltammetry. The cathodic reduction of aluminum-ion-containing species to aluminum proceeds by a reversible, diffusion-controlled, three-electron reaction. The anodic reaction involves the two-electron discharge of sulfide-ion-containing species, followed by the fast dimerization of sulfur atoms to S/sub 2/. Electrolysis experiments show that Al/sub 2/S/sub 3/ dissolved in molten MgCl/sub 2/-NaCl-KCl eutectic or in eutectic containing AlCl/sub 3/ can be electrolyzed to produce aluminum and sulfur. In the eutectic at 1023 K, the electrolysis can be conducted up to about 300 mA/cm/sup 2/ for the saturation solubility of Al/sub 2/S/sub 3/. Although these preliminary results are promising, additional studies are needed to elucidate many critical operating parameters before the technical potential of the electrolysis can be accurately assessed. 20 figures, 18 tables.

  8. Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes

    NARCIS (Netherlands)

    Rozendal, R.A.; Hamelers, H.V.M.; Molenkamp, R.J.; Buisman, C.J.N.

    2007-01-01

    In this paper hydrogen production through biocatalyzed electrolysis was studied for the first time in a single chamber configuration. Single chamber biocatalyzed electrolysis was tested in two configurations: (i) with a cation exchange membrane (CEM) and (ii) with an anion exchange membrane (AEM).

  9. Selection of combined water electrolysis and resistojet propulsion for Space Station Freedom

    Science.gov (United States)

    Schmidt, George R.

    1988-01-01

    An analytical rationale is presented for the configuration of the NASA Space Station's two-element propulsion system, and attention is given to the cost benefits accruing to this system over the Space Station's service life. The principal system element uses gaseous oxygen and hydrogen obtained through water electrolysis to furnish attitude control, backup attitude control, and contingency maneuvering. The secondary element uses resistojets to augment Space Station reboost through the acceleration of waste gases in the direction opposite the Station's flight path.

  10. Renewable and high efficient syngas production from carbon dioxide and water through solar energy assisted electrolysis in eutectic molten salts

    KAUST Repository

    Wu, Hongjun

    2017-07-13

    Over-reliance on non-renewable fossil fuel leads to steadily increasing concentration of atmospheric CO2, which has been implicated as a critical factor contributing to global warming. The efficient conversion of CO2 into useful product is highly sought after both in academic and industry. Herein, a novel conversion strategy is proposed to one-step transform CO2/H2O into syngas (CO/H2) in molten salt with electrolysis method. All the energy consumption in this system are contributed from sustainable energy sources: concentrated solar light heats molten salt and solar cell supplies electricity for electrolysis. The eutectic Li0.85Na0.61K0.54CO3/nLiOH molten electrolyte is rationally designed with low melting point (<450 °C). The synthesized syngas contains very desirable content of H2 and CO, with tuneable molar ratios (H2/CO) from 0.6 to 7.8, and with an efficient faradaic efficiency of ∼94.5%. The synthesis of syngas from CO2 with renewable energy at a such low electrolytic temperature not only alleviates heat loss, mitigates system corrosion, and heightens operational safety, but also decreases the generation of methane, thus increases the yield of syngas, which is a remarkable technological breakthrough and this work thus represents a stride in sustainable conversion of CO2 to value-added product.

  11. Renewable and high efficient syngas production from carbon dioxide and water through solar energy assisted electrolysis in eutectic molten salts

    Science.gov (United States)

    Wu, Hongjun; Liu, Yue; Ji, Deqiang; Li, Zhida; Yi, Guanlin; Yuan, Dandan; Wang, Baohui; Zhang, Zhonghai; Wang, Peng

    2017-09-01

    Over-reliance on non-renewable fossil fuel leads to steadily increasing concentration of atmospheric CO2, which has been implicated as a critical factor contributing to global warming. The efficient conversion of CO2 into useful product is highly sought after both in academic and industry. Herein, a novel conversion strategy is proposed to one-step transform CO2/H2O into syngas (CO/H2) in molten salt with electrolysis method. All the energy consumption in this system are contributed from sustainable energy sources: concentrated solar light heats molten salt and solar cell supplies electricity for electrolysis. The eutectic Li0.85Na0.61K0.54CO3/nLiOH molten electrolyte is rationally designed with low melting point (<450 °C). The synthesized syngas contains very desirable content of H2 and CO, with tuneable molar ratios (H2/CO) from 0.6 to 7.8, and with an efficient faradaic efficiency of ∼94.5%. The synthesis of syngas from CO2 with renewable energy at a such low electrolytic temperature not only alleviates heat loss, mitigates system corrosion, and heightens operational safety, but also decreases the generation of methane, thus increases the yield of syngas, which is a remarkable technological breakthrough and this work thus represents a stride in sustainable conversion of CO2 to value-added product.

  12. Fabrication and characterization of Cu/YSZ cermet high temperature electrolysis cathode material prepared by high-energy ball-milling method

    International Nuclear Information System (INIS)

    Lee, Sungkyu; Kim, Jong-Min; Hong, Hyun Seon; Woo, Sang-Kook

    2009-01-01

    Cu/YSZ cermet (40 and 60 vol.% Cu powder with balance YSZ) is a more economical cathode material than the conventional Ni/YSZ cermet for high temperature electrolysis (HTE) of water vapor and it was successfully fabricated by high-energy ball-milling of Cu and YSZ powders, pressing into pellets (o 13 mm x 2 mm) and subsequent sintering process at 700 deg. C under flowing 5%-H 2 /Ar gas. The Cu/YSZ composite material thus fabricated was characterized using various analytical tools such as XRD, SEM, and laser diffraction and scattering method. Electrical conductivity of sintered Cu/YSZ cermet pellets thus fabricated was measured by using 4-probe technique for comparison with that of conventional Ni/YSZ cermets. The effect of composite composition on the electrical conductivity was investigated and a marked increase in electrical conductivity for copper contents greater than 40 vol.% in the composite was explained by percolation threshold. Also, Cu/YSZ cermet was selected as a candidate for HTE cathode of self-supporting planar unit cell and its electrochemical performance was investigated, paving the way for preliminary correlation of high-energy ball-milling parameters with observed physical and electrochemical performance of Cu/YSZ cermets

  13. Microbial network for waste activated sludge cascade utilization in an integrated system of microbial electrolysis and anaerobic fermentation

    DEFF Research Database (Denmark)

    Liu, Wenzong; He, Zhangwei; Yang, Chunxue

    2016-01-01

    in an integrated system of microbial electrolysis cell (MEC) and anaerobic digestion (AD) for waste activated sludge (WAS). Microbial communities in integrated system would build a thorough energetic and metabolic interaction network regarding fermentation communities and electrode respiring communities...... to Firmicutes (Acetoanaerobium, Acetobacterium, and Fusibacter) showed synergistic relationship with exoelectrogensin the degradation of complex organic matter or recycling of MEC products (H2). High protein and polysaccharide but low fatty acid content led to the dominance of Proteiniclasticum...... biofilm. The overall performance of WAS cascade utilization was substantially related to the microbial community structures, which in turn depended on the initial pretreatment to enhance WAS fermentation. It is worth noting that species in AD and MEC communities are able to build complex networks...

  14. Nonlinear time-series analysis of current signal in cathodic contact glow discharge electrolysis

    International Nuclear Information System (INIS)

    Allagui, Anis; Abdelkareem, Mohammad Ali; Rojas, Andrea Espinel; Bonny, Talal; Elwakil, Ahmed S.

    2016-01-01

    In the standard two-electrode configuration employed in electrolytic process, when the control dc voltage is brought to a critical value, the system undergoes a transition from conventional electrolysis to contact glow discharge electrolysis (CGDE), which has also been referred to as liquid-submerged micro-plasma, glow discharge plasma electrolysis, electrode effect, electrolytic plasma, etc. The light-emitting process is associated with the development of an irregular and erratic current time-series which has been arbitrarily labelled as “random,” and thus dissuaded further research in this direction. Here, we examine the current time-series signals measured in cathodic CGDE configuration in a concentrated KOH solution at different dc bias voltages greater than the critical voltage. We show that the signals are, in fact, not random according to the NIST SP. 800-22 test suite definition. We also demonstrate that post-processing low-pass filtered sequences requires less time than the native as-measured sequences, suggesting a superposition of low frequency chaotic fluctuations and high frequency behaviors (which may be produced by more than one possible source of entropy). Using an array of nonlinear time-series analyses for dynamical systems, i.e., the computation of largest Lyapunov exponents and correlation dimensions, and re-construction of phase portraits, we found that low-pass filtered datasets undergo a transition from quasi-periodic to chaotic to quasi-hyper-chaotic behavior, and back again to chaos when the voltage controlling-parameter is increased. The high frequency part of the signals is discussed in terms of highly nonlinear turbulent motion developed around the working electrode.

  15. Polymer Electrolyte Membranes for Water Photo-Electrolysis

    Science.gov (United States)

    Aricò, Antonino S.; Girolamo, Mariarita; Siracusano, Stefania; Sebastian, David; Baglio, Vincenzo; Schuster, Michael

    2017-01-01

    Water-fed photo-electrolysis cells equipped with perfluorosulfonic acid (Nafion® 115) and quaternary ammonium-based (Fumatech® FAA3) ion exchange membranes as separator for hydrogen and oxygen evolution reactions were investigated. Protonic or anionic ionomer dispersions were deposited on the electrodes to extend the interface with the electrolyte. The photo-anode consisted of a large band-gap Ti-oxide semiconductor. The effect of membrane characteristics on the photo-electrochemical conversion of solar energy was investigated for photo-voltage-driven electrolysis cells. Photo-electrolysis cells were also studied for operation under electrical bias-assisted mode. The pH of the membrane/ionomer had a paramount effect on the photo-electrolytic conversion. The anionic membrane showed enhanced performance compared to the Nafion®-based cell when just TiO2 anatase was used as photo-anode. This was associated with better oxygen evolution kinetics in alkaline conditions compared to acidic environment. However, oxygen evolution kinetics in acidic conditions were significantly enhanced by using a Ti sub-oxide as surface promoter in order to facilitate the adsorption of OH species as precursors of oxygen evolution. However, the same surface promoter appeared to inhibit oxygen evolution in an alkaline environment probably as a consequence of the strong adsorption of OH species on the surface under such conditions. These results show that a proper combination of photo-anode and polymer electrolyte membrane is essential to maximize photo-electrolytic conversion. PMID:28468242

  16. Advanced Additive Manufacturing Feedstock from Molten Regolith Electrolysis

    Data.gov (United States)

    National Aeronautics and Space Administration — Demonstrate the feasibility of Molten Regolith Electrolysis (MRE) Reactor start by initiating resistive-heating of the regolith past its melting point using...

  17. Cobalt and molybdenum activated electrodes in foam based alkaline electrolysis cells at 150-250 °C and 40 bar

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2014-01-01

    A new type of alkaline electrolysis cells with nickel foam based gas diffusion electrodes and KOH (aq) immobilized in mesoporous SrTiO3 has been developed and tested at temperatures of 150 C, 200 C and 250 C at a pressure of 40 bar. Two cells have been characterized during the 270 h long test...

  18. Transient nanobubbles in short-time electrolysis

    NARCIS (Netherlands)

    Svetovoy, Vitaly; Sanders, Remco G.P.; Elwenspoek, Michael Curt

    2013-01-01

    Water electrolysis in a microsystem is observed and analyzed on a short-time scale of ∼10 μs. The very unusual properties of the process are stressed. An extremely high current density is observed because the process is not limited by the diffusion of electroactive species. The high current is

  19. Electrolysis of a nitrosyl hexafluoro-molybdate in anhydrous hydrogen fluoride

    International Nuclear Information System (INIS)

    Mougin, Jacques

    1972-01-01

    This thesis addresses the field of irradiated fuel reprocessing, and more particularly the study of the formation of molybdenum hexafluoride (MoF_6) by electrolysis of nitrosyl hexafluoro-molybdate (NOMoF_6) in solution in HF. The author presents the conditions of preparation of an electrolysis in anhydrous HF: solvent purification and control, production of a reference electrode, potential-kinetic study of the behaviour of materials selected for the electrode. The author then addresses the actual hydrolysis of the solution of nitrosyl hexafluoro-molybdate [fr

  20. Performance Testing of Molten Regolith Electrolysis with Transfer of Molten Material for the Production of Oxygen and Metals on the Moon

    Science.gov (United States)

    Sibille, Laurent; Sadoway, Donald; Tripathy, Prabhat; Standish, Evan; Sirk, Aislinn; Melendez, Orlando; Stefanescu, Doru

    2010-01-01

    Previously, we have demonstrated the production of oxygen by electrolysis of molten regolith simulants at temperatures near 1600 C. Using an inert anode and suitable cathode, direct electrolysis (no supporting electrolyte) of the molten silicate is carried out, resulting in the production of molten metallic products at the cathode and oxygen gas at the anode. Initial direct measurements of current efficiency have confirmed that the process offer potential advantages of high oxygen production rates in a smaller footprint facility landed on the moon, with a minimum of consumables brought from Earth. We now report the results of a scale-up effort toward the goal of achieving production rates equivalent to 1 metric ton O2/year, a benchmark established for the support of a lunar base. We previously reported on the electrochemical behavior of the molten electrolyte as dependent on anode material, sweep rate and electrolyte composition in batches of 20-200g and at currents of less than 0.5 A. In this paper, we present the results of experiments performed at currents up to 10 Amperes) and in larger volumes of regolith simulant (500 g - 1 kg) for longer durations of electrolysis. The technical development of critical design components is described, including: inert anodes capable of passing continuous currents of several Amperes, container materials selection, direct gas analysis capability to determine the gas components co-evolving with oxygen. To allow a continuous process, a system has been designed and tested to enable the withdrawal of cathodically-reduced molten metals and spent molten oxide electrolyte. The performance of the withdrawal system is presented and critiqued. The design of the electrolytic cell and the configuration of the furnace were supported by modeling the thermal environment of the system in an effort to realize a balance between external heating and internal joule heating. We will discuss the impact these simulations and experimental findings have

  1. Study of deuterium charging in palladium by electrolysis of heavy water

    International Nuclear Information System (INIS)

    De Ninno, A.; Violante, V.

    1992-01-01

    A mathematical model supported by a numerical computer code with distributed parameters was developed in order to describe the evolution of the deuteron concentration profile inside a Pd cathode under pulsed electrolysis. A delocalized gas picture was used when the deuterons exceeded the ratio, x=0.8, in Pd-D compounds. Several boundary conditions were taken into account. A good agreement was found between the system evolution and experimental data

  2. LONG-TERM PERFORMANCE OF SOLID OXIDE STACKS WITH ELECTRODE-SUPPORTED CELLS OPERATING IN THE STEAM ELECTROLYSIS MODE

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; R. C. O' Brien; X. Zhang; G. Tao; B. J. Butler

    2011-11-01

    Performance characterization and durability testing have been completed on two five-cell high-temperature electrolysis stacks constructed with advanced cell and stack technologies. The solid oxide cells incorporate a negative-electrode-supported multi-layer design with nickel-zirconia cermet negative electrodes, thin-film yttria-stabilized zirconia electrolytes, and multi-layer lanthanum ferrite-based positive electrodes. The per-cell active area is 100 cm2. The stack is internally manifolded with compliant mica-glass seals. Treated metallic interconnects with integral flow channels separate the cells. Stack compression is accomplished by means of a custom spring-loaded test fixture. Initial stack performance characterization was determined through a series of DC potential sweeps in both fuel cell and electrolysis modes of operation. Results of these sweeps indicated very good initial performance, with area-specific resistance values less than 0.5 ?.cm2. Long-term durability testing was performed with A test duration of 1000 hours. Overall performance degradation was less than 10% over the 1000-hour period. Final stack performance characterization was again determined by a series of DC potential sweeps at the same flow conditions as the initial sweeps in both electrolysis and fuel cell modes of operation. A final sweep in the fuel cell mode indicated a power density of 0.356 W/cm2, with average per-cell voltage of 0.71 V at a current of 50 A.

  3. CO2 Fixation by Membrane Separated NaCl Electrolysis

    DEFF Research Database (Denmark)

    Park, Hyun Sic; Lee, Ju Sung; Han, Junyoung

    2015-01-01

    for converting CO2 into CaCO3 requires high temperature and high pressure as reaction conditions. This study proposes a method to fixate CaCO3 stably by using relatively less energy than existing methods. After forming NaOH absorbent solution through electrolysis of NaCl in seawater, CaCO3 was precipitated...... crystal product was high-purity calcite. The study shows a successful method for fixating CO2 by reducing carbon dioxide released into the atmosphere while forming high-purity CaCO3.......Atmospheric concentrations of carbon dioxide (CO2), a major cause of global warming, have been rising due to industrial development. Carbon capture and storage (CCS), which is regarded as the most effective way to reduce such atmospheric CO2 concentrations, has several environmental and technical...

  4. Recovery of nitrogen and water from landfill leachate by a microbial electrolysis cell-forward osmosis system.

    Science.gov (United States)

    Qin, Mohan; Molitor, Hannah; Brazil, Brian; Novak, John T; He, Zhen

    2016-01-01

    A microbial electrolysis cell (MEC)-forward osmosis (FO) system was previously reported for recovering ammonium and water from synthetic solutions, and here it has been advanced with treating landfill leachate. In the MEC, 65.7±9.1% of ammonium could be recovered in the presence of cathode aeration. Without aeration, the MEC could remove 54.1±10.9% of ammonium from the leachate, but little ammonia was recovered. With 2M NH4HCO3 as the draw solution, the FO process achieved 51% water recovery from the MEC anode effluent in 3.5-h operation, higher than that from the raw leachate. The recovered ammonia was used as a draw solute in the FO for successful water recovery from the treated leachate. Despite the challenges with treating returning solution from the FO, this MEC-FO system has demonstrated the potential for resource recovery from wastes, and provide a new solution for sustainable leachate management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Inactivation characteristics of ozone and electrolysis process for ballast water treatment using B. subtilis spores as a probe.

    Science.gov (United States)

    Jung, Youmi; Yoon, Yeojoon; Hong, Eunkyung; Kwon, Minhwan; Kang, Joon-Wun

    2013-07-15

    Since ballast water affects the ocean ecosystem, the International Maritime Organization (IMO) sets a standard for ballast water management and might impose much tighter regulations in the future. The aim of this study is to evaluate the inactivation efficiency of ozonation, electrolysis, and an ozonation-electrolysis combined process, using B. subtilis spores. In seawater ozonation, HOBr is the key active substance for inactivation, because of rapid reactivity of ozone with Br(-) in seawater. In seawater electrolysis, it is also HOBr, but not HOCl, because of the rapid reaction of HOCl with Br(-), which has not been recognized carefully, even though many electrolysis technologies have been approved by the IMO. Inactivation pattern was different in ozonation and electrolysis, which has some limitations with the tailing or lag-phase, respectively. However, each deficiency can be overcome with a combined process, which is most effective as a sequential application of ozonation followed by electrolysis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Efficient treatment of aniline containing wastewater in bipolar membrane microbial electrolysis cell-Fenton system.

    Science.gov (United States)

    Li, Xiaohu; Jin, Xiangdan; Zhao, Nannan; Angelidaki, Irini; Zhang, Yifeng

    2017-08-01

    Aniline-containing wastewater can cause significant environmental problems and threaten the humans's life. However, rapid degradation of aniline with cost-efficient methods remains a challenge. In this work, a novel microbial electrolysis cell with bipolar membrane was integrated with Fenton reaction (MEC-Fenton) for efficient treatment of real wastewater containing a high concentration (4460 ± 52 mg L -1 ) of aniline. In this system, H 2 O 2 was in situ electro-synthesized from O 2 reduction on the graphite cathode and was simultaneously used as source of OH for the oxidation of aniline wastewater under an acidic condition maintained by the bipolar membrane. The aniline was effectively degraded following first-order kinetics at a rate constant of 0.0166 h -1 under an applied voltage of 0.5 V. Meanwhile, a total organic carbon (TOC) removal efficiency of 93.1 ± 1.2% was obtained, revealing efficient mineralization of aniline. The applicability of bipolar membrane MEC-Fenton system was successfully demonstrated with actual aniline wastewater. Moreover, energy balance showed that the system could be a promising technology for removal of biorefractory organic pollutants from wastewaters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Modeling and optimization of a novel solar chimney cogeneration power plant combined with solid oxide electrolysis/fuel cell

    International Nuclear Information System (INIS)

    Joneydi Shariatzadeh, O.; Refahi, A.H.; Abolhassani, S.S.; Rahmani, M.

    2015-01-01

    Highlights: • Proposed a solar chimney cogeneration power plant combined with solid oxide fuel cell. • Conducted single-objective economic optimization of cycle by genetic algorithm. • Stored surplus hydrogen in season solarium to supply electricity in winter by SOFC. - Abstract: Using solar chimney in desert areas like El Paso city in Texas, USA, with high intensity solar radiation is efficient and environmental friendly. However, one of the main challenges in terms of using solar chimneys is poor electricity generation at night. In this paper, a new power plant plan is proposed which simultaneously generates heat and electricity using a solar chimney with solid oxide fuel cells and solid oxide electrolysis cells. In one hand, the solar chimney generates electricity by sunlight and supplies a part of demand. Then, additional electricity is generated through the high temperature electrolysis which produces hydrogen that is stored in tanks and converted into electricity by solid oxide fuel cells. After designing and modeling the cycle components, the economic aspect of this power plant is considered numerically by means of genetic algorithm. The results indicate that, 0.28 kg/s hydrogen is produced at the peak of the radiation. With such a hydrogen production rate, this system supplies 79.26% and 37.04% of the demand in summer and winter respectively in a district of El Paso city.

  8. Probing absorption of deuterium into palladium cathodes during D2O electrolysis with an in situ electrochemical microbalance technique

    International Nuclear Information System (INIS)

    Oyama, Noboru; Yamamoto, Nobushige; Hatozaki, Osamu; Ohsaka, Takeo

    1990-01-01

    The in situ observation of the absorption of deuterium (or hydrogen) into the Pd cathode during D 2 O (or H 2 O) electrolysis was made by an electrochemical microbalance technique which is based on the quartz-crystal electrode. The resonant frequency of the Pd-coated quartz-crystal electrode decreased with increasing amount of charge passed during electrolysis, and the frequency change for the D 2 O electrolysis was about twice that for the H 2 O electrolysis. The atom ratios of H/Pd and D/Pd of the H-Pd and D-Pd compounds resulting from the electrolysis were estimated to be 0.59 and 0.57, respectively. (author)

  9. Water electrolysis for hydrogen production in Brazilian perspective

    Energy Technology Data Exchange (ETDEWEB)

    Saliba-Silva, Adonis Marcelo; Carvalho, Fatima M.S.; Bergamaschi, Vanderlei Sergio; Linardi, Marcelo [Instituto de Pesquisas Energeticas e Nucleares (CCCH/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Fuel Cell and Hydrogen Center], Email: saliba@ipen.br

    2009-07-01

    Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation and distributed energy sector of Brazilian economy. Fossil fuels are polluting by carbogenic emissions from their combustion, being so co-responsible for present global warming. However, no large scale, cost-effective, environmentally non-carbogenic hydrogen production process is currently available for commercialization. There are feasible possibilities to use electrolysis as one of the main sources of hydrogen, especially thinking on combination with renewable sources of energy, mainly eolic and solar. In this work some perspectives for Brazilian energy context is presented, where electrolysis combined with renewable power source and fuel cell power generation would be a good basis to improve the distributed energy supply for remote areas, where the electricity grid is not present or is deficient. (author)

  10. 2nd Generation alkaline electrolysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Yde, L. [Aarhus Univ. Business and Social Science - Centre for Energy Technologies (CET), Aarhus (Denmark); Kjartansdottir, C.K. [Technical Univ. of Denmark. DTU Mechanical Engineering, Kgs. Lyngby (Denmark); Allebrod, F. [Technical Univ. of Denmark. DTU Energy Conversion, DTU Risoe Campus, Roskilde (Denmark)] [and others

    2013-03-15

    The overall purpose of this project has been to contribute to this load management by developing a 2{sup nd} generation of alkaline electrolysis system characterized by being compact, reliable, inexpensive and energy efficient. The specific targets for the project have been to: 1) Increase cell efficiency to more than 88% (according to the higher heating value (HHV)) at a current density of 200 mA /cm{sup 2}; 2) Increase operation temperature to more than 100 degree Celsius to make the cooling energy more valuable; 3) Obtain an operation pressure more than 30 bar hereby minimizing the need for further compression of hydrogen for storage; 4) Improve stack architecture decreasing the price of the stack with at least 50%; 5) Develop a modular design making it easy to customize plants in the size from 20 to 200 kW; 6) Demonstrating a 20 kW 2{sup nd} generation stack in H2College at the campus of Arhus University in Herning. The project has included research and development on three different technology tracks of electrodes; an electrochemical plating, an atmospheric plasma spray (APS) and finally a high temperature and pressure (HTP) track with operating temperature around 250 deg. C and pressure around 40 bar. The results show that all three electrode tracks have reached high energy efficiencies. In the electrochemical plating track a stack efficiency of 86.5% at a current density of 177mA/cm{sup 2} and a temperature of 74.4 deg. C has been shown. The APS track showed cell efficiencies of 97%, however, coatings for the anode side still need to be developed. The HTP cell has reached 100 % electric efficiency operating at 1.5 V (the thermoneutral voltage) with a current density of 1. 1 A/cm{sup 2}. This track only tested small cells in an externally heated laboratory set-up, and thus the thermal loss to surroundings cannot be given. The goal set for the 2{sup nd} generation electrolyser system, has been to generate 30 bar pressure in the cell stack. An obstacle to be

  11. Energy efficient thermochemical conversion of very wet biomass to biofuels by integration of steam drying, steam electrolysis and gasification

    DEFF Research Database (Denmark)

    Clausen, Lasse Røngaard

    2017-01-01

    A novel system concept is presented for the thermochemical conversion of very wet biomasses such as sewage sludge and manure. The system integrates steam drying, solid oxide electrolysis cells (SOEC) and gasification for the production of synthetic natural gas (SNG). The system is analyzed...

  12. Treatment of oilfield wastewater by combined process of micro-electrolysis, Fenton oxidation and coagulation.

    Science.gov (United States)

    Zhang, Zhenchao

    2017-12-01

    In this study, a combined process was developed that included micro-electrolysis, Fenton oxidation and coagulation to treat oilfield fracturing wastewater. Micro-electrolysis and Fenton oxidation were applied to reduce chemical oxygen demand (COD) organic load and to enhance organic components gradability, respectively. Orthogonal experiment were employed to investigate the influence factors of micro-electrolysis and Fenton oxidation on COD removal efficiency. For micro-electrolysis, the optimum conditions were: pH, 3; iron-carbon dosage, 50 mg/L; mass ratio of iron-carbon, 2:3; reaction time, 60 min. For Fenton oxidation, a total reaction time of 90 min, a H 2 O 2 dosage of 12 mg/L, with a H 2 O 2 /Fe 2+ mole ratio of 30, pH of 3 were selected to achieve optimum oxidation. The optimum conditions in coagulation process: pH, cationic polyacrylamide dosage, mixing speed and time is 4.3, 2 mg/L, 150 rpm and 30 s, respectively. In the continuous treatment process under optimized conditions, the COD of oily wastewater fell 56.95%, 46.23%, 30.67%, respectively, from last stage and the total COD removal efficiency reached 83.94% (from 4,314 to 693 mg/L). In the overall treatment process under optimized conditions, the COD of oily wastewater was reduced from 4,314 to 637 mg/L, and the COD removal efficiency reached 85.23%. The contribution of each stage is 68.45% (micro-electrolysis), 24.07% (Fenton oxidation), 7.48% (coagulation), respectively. Micro-electrolysis is the uppermost influencing process on COD removal. Compared with the COD removal efficiency of three processes on raw wastewater under optimized conditions: the COD removal efficiency of single micro-electrolysis, single Fenton oxidation, single coagulation is 58.34%, 44.88% and 39.72%, respectively. Experiments proved the effect of combined process is marvelous and the overall water quality of the final effluent could meet the class III national wastewater discharge standard of petrochemical industry of China

  13. Electrolysis byproduct D2O provides a third way to mitigate CO2

    International Nuclear Information System (INIS)

    Schenewerk, William Ernest

    2009-01-01

    Rapid atomic power deployment may be possible without using fast breeder reactors or making undue demands on uranium resource. Using by-product D2O and thorium-U233 in CANDU and RBMK piles may circumvent need for either fast breeder reactors or seawater uranium. Atmospheric CO2 is presently increasing 2.25%/year in proportion to 2.25%/year exponential fossil fuel consumption increase. Roughly 1/3 anthropologic CO2 is removed by various CO2 sinks. CO2 removal is modelled as being proportional to 45-year-earlier CO2 amount above 280 ppm-C Water electrolysis produces roughly 0.1 kg-D20/kWe-y. Material balance assumes each electrolysis stage increases D2O bottoms concentration times 3. Except for first two electrolysis stages, all water from hydrogen consumption is returned to electrolysis. The unique characteristic of this process is the ability to economically burn all deuterium-enriched H2 in vehicles. Condensate from vehicles returns to appropriate electrolysis stage. Fuel cell condensate originally from reformed natural gas may augment second-sage feed. Atomic power expansion is 5%/year, giving 55000 GWe by 2100. World primary energy increases 2.25%/y, exceeding 4000 EJ/y by 2100. CO2 maximum is roughly 600 ppm-C around year 2085. CO2 declines back below 300 ppm-C by 2145 if the 45-year-delay seawater sink remains effective

  14. Analysis of Economic Efficiency of Production of Low-Concentrated Sodium Hypochlorite by Direct Electrolysis of Natural Waters

    Science.gov (United States)

    Fesenko, L. N.; Pchelnikov, I. V.; Fedotov, R. V.

    2017-11-01

    The study presents the economic efficiency of direct electrolysis of natural waters in comparison with the waters artificially prepared by electrolysis of the 3% sodium salt solution. The study used sea water (Black sea water); mineral water (underground water of the Melikhovskaya station, “Ognennaya” hole); brackish water (underground water from the Grushevskaya station of the Aksai district); 3% solution of sodium salt. As a result, the dependences characterizing the direct electrolysis of natural waters with different mineralization, economic, and energy parties are shown. The rational area of the electrolysis for each of the investigated solution is determined. The cost of a kilogram of active chlorine obtained by the direct water electrolysis: Black sea from 17.2 to 18.3 RUB/kg; the Melikhovskaya station “Ognennaya” hole - 14.3 to 15.0 Rubles/kg; 3% solution of NaCl - 30 Rubles./kg; Grushevskogo St. - 63,0-73,0 Rubles/kg.

  15. The development and application of solid polymer electrolysis enrichment device of tritium in water

    International Nuclear Information System (INIS)

    Wen Xuelian; Yang Hailan Wu Bin; Yang Huaiyuan

    2003-01-01

    This paper briefly describes the working principle of solid polymer electrolysis enrichment device of tritium in water, presents experiments and works in development of SPE tritium automatic electrolysis enrichment device by CIRP, with which the water samples had been processed for TRIC2000, and the measurement results are satisfied

  16. Phosphoric acid doped membranes based on Nafion®, PBI and their blends – Membrane preparation, characterization and steam electrolysis testing

    DEFF Research Database (Denmark)

    Aili, David; Hansen, Martin Kalmar; Pan, Chao

    2011-01-01

    Proton exchange membrane steam electrolysis at temperatures above 100 °C has several advantages from thermodynamic, kinetic and engineering points of view. A key material for this technology is the high temperature proton exchange membrane. In this work a novel procedure for preparation of Nafion......® and polybenzimidazole blend membranes was developed. Homogeneous binary membranes covering the whole composition range were prepared and characterized with respect to chemical and physiochemical properties such as water uptake, phosphoric acid doping, oxidative stability, mechanical strength and proton conductivity...

  17. Summary of the Mol electrolysis cell test program in the CRL tritium laboratory

    International Nuclear Information System (INIS)

    Miller, J.M.; Keyes, R.J.

    1996-01-01

    The development of electrolysis technology for highly tritiated water at the Studiecentrum voor Kernenergie/Centre d'Etude de l'Energie Nucleaire (SCK/CEN), Mol, Belgium, focused on A Low Inventory Capillary Electrolyser (ALICE). The key characteristic of ALICE is its low liquid inventory, a key feature for the radio-toxicity of tritiated water. A program to test this electrolytic cell design with highly tritiated water in the Chalk River Tritium Laboratory was initiated in 1988 and extended through to early 1995. The activities conducted at CRL and associated with the experimental program-design, installation, licensing and commissioning activities- are described in this report along with the results of the test program conducted on the experimental system with non-tritiated heavy water. The installation in the CRL Tritium Laboratory consisted of three main sections: the electrolysis section, the tritium storage and supply section, and the recombination section. 16 figs., 2 tabs., 10 refs

  18. A study on optimum conditions for reducing Polonium-210 ion in electrolysis process

    International Nuclear Information System (INIS)

    Yii Mei Wo

    2006-01-01

    Polonium-210 is one of the most important radionuclide to be study while studying radioactive contaminants on marine lives. It usually be self-deposited on a pure silver foil and counted using an Alpha Spectrometry System. However, using pure silver foil involves high cost. Therefore, study had been conducted to find the suitability of using stainless steel disc to deposit polonium-210 using electrolysis process and the optimum conditions for such process. This was carry out by using pure polonium-210 standard solution and the ready disc was counted using Zinc Sulphite Counter. Results show that reduction of polonium ion on stainless steel disc can be done but the efficiency of the process only around 70 percent. Besides this, studies also show that, at 1.1 ampere constant current and cathode to anode distance at 8 mm, the optimum conditions to reduce polonium ion were at pH 2.2-2.3 with the electrolysis time of 5 hours. (Author)

  19. Reversibility of the SOFC for the hydrogen production by high temperature electrolysis; Reversibilite des SOFC pour la production d'hydrogene par electrolyse haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Brisse, A.; Marrony, M.; Perednis, D.; Schefold, J.; Jose-Garcia, M.; Zahid, M. [Institut Europeen de Recherche sur l' Energie (EIFER), Karlsruhe (Germany)

    2007-07-01

    The behaviour of two SOFC cells in electrolysis mode is studied. The performances of these solid oxide cells, reversible at 800 C and for current densities between 0 and -0.42 A/cm{sup 2}, are presented. A weaker polarisation resistance has been measured for the cell containing a mixed conductor as oxygen electrode. For each cell, a limitation by gaseous diffusion has been observed under current. This phenomenon appears for current densities which are higher for the mixed conductor cell as oxygen electrode. (O.M.)

  20. Tritium separation from heavy water by electrolysis with solid polymer electrolyte

    International Nuclear Information System (INIS)

    Ogata, Y.; Ohtani, N.; Kotaka, M.

    2003-01-01

    A tritium separation from heavy water by electrolysis using a solid polymer electrode layer was specified. The cathode was made of stainless steel or nickel. The electrolysis was performed for 1 hour at 5, 10, 20, and 30 deg C. Using a palladium catalyst, generated hydrogen and oxygen gases were recombined, which was collected with a cold trap. The activities of the samples were measured by a liquid scintillation counter. The apparent tritium separation factors of the heavy and light water at 20 deg C were ∼2 and ∼12, respectively. (author)

  1. Design and Modelling of a Microfluidic Electro-Lysis Device with Controlling Plates

    Science.gov (United States)

    Jenkins, A.; Chen, C. P.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.

    2006-04-01

    Many Lab-on-Chip applications require sample pre-treatment systems. Using electric fields to perform cell lysis in bio-MEMS systems has provided a powerful tool which can be integrated into Lab-on-a- Chip platforms. The major design considerations for electro-lysis devices include optimal geometry and placement of micro-electrodes, cell concentration, flow rates, optimal electric field (e.g. pulsed DC vs. AC), etc. To avoid electrolysis of the flowing solution at the exposed electrode surfaces, magnitudes and the applied voltages and duration of the DC pulse, or the AC frequency of the AC, have to be optimized for a given configuration. Using simulation tools for calculation of electric fields has proved very useful, for exploring alternative configurations and operating conditions for achieving electro cell-lysis. To alleviate the problem associated with low electric fields within the microfluidics channel and the high voltage demand on the contact electrode strips, two ''control plates'' are added to the microfluidics configuration. The principle of placing the two controlling plate-electrodes is based on the electric fields generated by a combined insulator/dielectric (glass/water) media. Surface charges are established at the insulator/dielectric interface. This paper discusses the effects of this interface charge on the modification of the electric field of the flowing liquid/cell solution.

  2. Natural gas anodes for aluminium electrolysis in molten fluorides.

    Science.gov (United States)

    Haarberg, Geir Martin; Khalaghi, Babak; Mokkelbost, Tommy

    2016-08-15

    Industrial primary production of aluminium has been developed and improved over more than 100 years. The molten salt electrolysis process is still suffering from low energy efficiency and considerable emissions of greenhouse gases (CO2 and PFC). A new concept has been suggested where methane is supplied through the anode so that the CO2 emissions may be reduced significantly, the PFC emissions may be eliminated and the energy consumption may decrease significantly. Porous carbon anodes made from different graphite grades were studied in controlled laboratory experiments. The anode potential, the anode carbon consumption and the level of HF gas above the electrolyte were measured during electrolysis. In some cases it was found that the methane oxidation was effectively participating in the anode process.

  3. Energy-Efficient and Environmentally Friendly Solid Oxide Membrane Electrolysis Process for Magnesium Oxide Reduction: Experiment and Modeling

    Science.gov (United States)

    Guan, Xiaofei; Pal, Uday B.; Powell, Adam C.

    2014-06-01

    This paper reports a solid oxide membrane (SOM) electrolysis experiment using an LSM(La0.8Sr0.2MnO3-δ)-Inconel inert anode current collector for production of magnesium and oxygen directly from magnesium oxide at 1423 K (1150 °C). The electrochemical performance of the SOM cell was evaluated by means of various electrochemical techniques including electrochemical impedance spectroscopy, potentiodynamic scan, and electrolysis. Electronic transference numbers of the flux were measured to assess the magnesium dissolution in the flux during SOM electrolysis. The effects of magnesium solubility in the flux on the current efficiency and the SOM stability during electrolysis are discussed. An inverse correlation between the electronic transference number of the flux and the current efficiency of the SOM electrolysis was observed. Based on the experimental results, a new equivalent circuit of the SOM electrolysis process is presented. A general electrochemical polarization model of SOM process for magnesium and oxygen gas production is developed, and the maximum allowable applied potential to avoid zirconia dissociation is calculated as well. The modeling results suggest that a high electronic resistance of the flux and a relatively low electronic resistance of SOM are required to achieve membrane stability, high current efficiency, and high production rates of magnesium and oxygen.

  4. Behavior of oxygem bubbles during alkaline water electrolysis

    NARCIS (Netherlands)

    Wedershoven, H.M.S.; Jonge, de R.M.; Sillen, C.W.M.P.; Stralen, van S.J.D.

    1982-01-01

    Growth rate, departure radius and population of oxygen bubbles at the transparent anode during alkaline water electrolysis have been investigated experimentally. The supersaturation of dissolved oxygen in the electrolyte adjacent to the anode surface has been derived from bubble growth rates.

  5. Combined electrolysis catalytic exchange (CECE) process for hydrogen isotope separation

    International Nuclear Information System (INIS)

    Hammerli, M.; Stevens, W.H.; Butler, J.P.

    1978-01-01

    Hydrogen isotopes can be separated efficiently by a process which combines an electrolysis cell with a trickle bed column packed with a hydrophobic platinum catalyst. The column effects isotopic exchange between countercurrent streams of electrolytic hydrogen and liquid water while the electrolysis cell contributes to isotope separation by virtue of the kinetic isotope effect inherent in the hydrogen evolution reaction. The main features of the CECE process for heavy water production are presented as well as a discussion of the inherent positive synergistic effects, and other advantages and disadvantages of the process. Several potential applications of the process in the nuclear power industry are discussed. 3 figures, 2 tables

  6. Ultrasound-Guided Percutaneous Electrolysis and Eccentric Exercises for Subacromial Pain Syndrome: A Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    José L. Arias-Buría

    2015-01-01

    Full Text Available Objective. To compare effects of ultrasound- (US- guided percutaneous electrolysis combined with an eccentric exercise program of the rotator cuff muscles in subacromial pain syndrome. Methods. Thirty-six patients were randomized and assigned into US-guided percutaneous electrolysis (n=17 group or exercise (n=19 group. Patients were asked to perform an eccentric exercise program of the rotator cuff muscles twice every day for 4 weeks. Participants assigned to US-guided percutaneous electrolysis group also received the application of galvanic current through acupuncture needle on each session once a week (total 4 sessions. Shoulder pain (NPRS and disability (DASH were assessed at baseline, after 2 sessions, and 1 week after the last session. Results. The ANOVA revealed significant Group∗Time interactions for shoulder pain and disability (all, P<0.01: individuals receiving US-guided percutaneous electrolysis combined with the eccentric exercises experienced greater improvement than those receiving eccentric exercise alone. Conclusions. US-guided percutaneous electrolysis combined with eccentric exercises resulted in small better outcomes at short term compared to when only eccentric exercises were applied in subacromial pain syndrome. The effect was statistically and clinically significant for shoulder pain but below minimal clinical difference for function. Future studies should investigate the long-term effects and potential placebo effect of this intervention.

  7. Life Time Performance Characterization of Solid Oxide Electrolysis Cells for Hydrogen Production

    DEFF Research Database (Denmark)

    Sun, Xiufu; Chen, Ming; Liu, Yi-Lin

    2015-01-01

    Solid oxide electrolysis cells (SOECs) offer a promising technological solution for efficient energy conversion and production of hydrogen or syngas. The commercialization of the SOEC technology can be promoted if SOECs can be operated at high current density with stable performance over ~5 years...... - 3 years (continuous operation, setting 1.5 V as the upper voltage defining “end of life”). The results provide technological input to future design of electrolysis plants for hydrogen production. © 2015 ECS - The Electrochemical Society...

  8. Towards a stable ion-solvating polymer electrolyte for advanced alkaline water electrolysis

    DEFF Research Database (Denmark)

    Aili, David; Wright, Andrew G.; Kraglund, Mikkel Rykær

    2017-01-01

    Advanced alkaline water electrolysis using ion-solvating polymer membranes as electrolytes represents a new direction in the field of electrochemical hydrogen production. Polybenzimidazole membranes equilibrated in aqueous KOH combine the mechanical robustness and gas-tightness of a polymer...... stability in alkaline environments. The novel electrolytes are extensively characterized with respect to physicochemical and electrochemical properties and the chemical stability is assessed in 0-50 wt% aqueous KOH for more than 6 months at 88 degrees C. In water electrolysis tests using porous 3...

  9. Hydrogen Production by Water Electrolysis Via Photovoltaic Panel

    Directory of Open Access Journals (Sweden)

    Hydrogen Production by Water Electrolysis Via Photovoltaic Panel

    2016-07-01

    Full Text Available Hydrogen fuel is a good alternative to fossil fuels. It can be produced using a clean energy without contaminated emissions. This work is concerned with experimental study on hydrogen production via solar energy. Photovoltaic module is used to convert solar radiation to electrical energy. The electrical energy is used for electrolysis of water into hydrogen and oxygen by using alkaline water electrolyzer with stainless steel electrodes. A MATLAB computer program is developed to solve a four-parameter-model and predict the characteristics of PV module under Baghdad climate conditions. The hydrogen production system is tested at different NaOH mass concentration of (50,100, 200, 300 gram. The maximum hydrogen production rate is 153.3 ml/min, the efficiency of the system is 20.88% and the total amount of hydrogen produced in one day is 220.752 liter.

  10. Efficient uranous nitrate production using membrane electrolysis

    International Nuclear Information System (INIS)

    Zhongwei Yuan; Taihong Yan; Weifang Zheng; Hongying Shuang; Liang Xian; Xiaoyan Bian; Chen Zuo; Chuanbo Li; Zhi Cao

    2013-01-01

    Electrochemical reduction of uranyl nitrate is a green, simple way to make uranous ion. In order to improve the ratio of uranous ion to the total uranium and maintain high current efficiency, an electrolyser with very thin cathodic and anodic compartment, which were separated by a cation exchange membrane, was setup, and its performance was tested. The effects of various parameters on the reduction were also evaluated. The results show that the apparatus is quite positive. It runs well with 120 mA/cm 2 current density (72 cm 2 cathode, constant current batch operation). U(IV) yield can achieve 93.1 % (500 mL feed, total uranium 199 g/L) after 180 min electrolysis. It was also shown that when U(IV) yield was below 80 %, very high current efficiency was maintained, and there was almost a linear relationship between uranous ion yield and electrolysis time; under the range of experimental conditions, the concentration of uranyl nitrate, hydrazine, and nitric acid had little effect on the reduction. (author)

  11. A comparative economic assessment of hydrogen production from coke oven gas, water electrolysis and steam reforming of natural gas

    International Nuclear Information System (INIS)

    Nguyen, Y.V.; Ngo, Y.A.; Tinkler, M.J.; Cowan, N.

    2003-01-01

    This paper presents the comparative economics of producing hydrogen for the hydrogen economy by recovering it from waste gases from the steel industry, by water electrolysis and by conventional steam reforming of natural gas. Steel makers produce coke for their blast furnace operation by baking coal at high temperature in a reduced environment in their coke ovens. These ovens produce a coke oven gas from the volatiles in the coal. The gas, containing up to 60% hydrogen, is commonly used for its heating value with some of it being flared. The feasibility of recovering this hydrogen from the gas will be presented. A comparison of this opportunity with that of hydrogen from water electrolysis using low cost off-peak electricity from nuclear energy will be made. The impact of higher daily average electricity rate in Ontario will be discussed. The benefits of these opportunities compared with those from conventional steam reforming of natural gas will be highlighted. (author)

  12. 'Radiation-induced electrolysis'. A potential root cause of hydrogen explosions in the Fukushima Daiichi accident

    International Nuclear Information System (INIS)

    Saji, Genn

    2014-01-01

    Although water radiolysis, decomposition of water by radiation, is a well-known phenomenon the exact mechanism is not well characterized especially for potential hydrogen generation during severe accidents. The author first reviewed the water radiolysis phenomena in LWRs during normal operation to severe accidents (e.g., TMI- and Chernobyl accidents) and performed a scoping estimation of H_2 generation modeled for the Fukushima Daiichi accident. The estimation incorporates the decay heat curve combined with G-values. When a set of radiological chain reactions are incorporated the resultant reverse reactions were found to reduce the hydrogen generation substantially. In view of the observation that the water radiolysis is not likely induced appreciable effects in H_2 generation during the accident, this author investigated his basic theory named 'radiation-induced electrolysis' in the estimation of amounts of H_2 generation during the active phase of the Fukushima accident. The author's theory was originally developed by including Faraday's Law of Electrolysis into the basic time-dependent material balance equation of radiation-chemical species for his study on accelerated corrosion phenomena which is widely observed in aged plants. With this mechanism as much as 5,300 m"3-STP of accumulated hydrogen gas is estimated to be inside the PCV just prior to the hydrogen explosion which occurred a day after the reactor trip in Unit 1. For Units 2 and 3, the estimated volumes are 5,900 m"3-STP. Within just several hours after the initiation of SBO, as much as a few thousand cubic meters in STP of hydrogen gas is generated due to a high decay heat. With these large volumes of hydrogen gas the hydrogen explosion was a viable possibility upon the 'venting' operation. For the 1F4 Spent Fuel Pool where the entire core loading had been evacuated, SBO was found to have induced a rapid on-set of electrolysis when the pool water temperature reached as high as 50°C with a range of

  13. Chemically durable polymer electrolytes for solid-state alkaline water electrolysis

    Science.gov (United States)

    Park, Eun Joo; Capuano, Christopher B.; Ayers, Katherine E.; Bae, Chulsung

    2018-01-01

    Generation of high purity hydrogen using electrochemical splitting of water is one of the most promising methods for sustainable fuel production. The materials to be used as solid-state electrolytes for alkaline water electrolyzer require high thermochemical stability against hydroxide ion attack in alkaline environment during the operation of electrolysis. In this study, two quaternary ammonium-tethered aromatic polymers were synthesized and investigated for anion exchange membrane (AEM)-based alkaline water electrolyzer. The membranes properties including ion exchange capacity (IEC), water uptake, swelling degree, and anion conductivity were studied. The membranes composed of all C-C bond polymer backbones and flexible side chain terminated by cation head groups exhibited remarkably good chemical stability by maintaining structural integrity in 1 M NaOH solution at 95 °C for 60 days. Initial electrochemical performance and steady-state operation performance were evaluated, and both membranes showed a good stabilization of the cell voltage during the steady-state operation at the constant current density at 200 mA/cm2. Although both membranes in current form require improvement in mechanical stability to afford better durability in electrolysis operation, the next generation AEMs based on this report could lead to potentially viable AEM candidates which can provide high electrolysis performance under alkaline operating condition.

  14. Enhanced dewaterability of textile dyeing sludge using micro-electrolysis pretreatment.

    Science.gov (United States)

    Ning, Xun-An; Wen, Weibin; Zhang, Yaping; Li, Ruijing; Sun, Jian; Wang, Yujie; Yang, Zuoyi; Liu, Jingyong

    2015-09-15

    The effects of micro-electrolysis treatment on textile dyeing sludge dewatering and its mechanisms were investigated in this study. Capillary suction time (CST) and settling velocity (SV) were used to evaluate sludge dewaterability. Extracellular polymeric substances (EPS) concentration and sludge disintegration degree (DDSCOD) were determined to explain the observed changes in sludge dewaterability. The results demonstrated that the micro-electrolysis could significantly improve sludge dewaterability by disrupting the sludge floc structure. The optimal conditions of sludge dewatering were the reaction time of 20 min, initial pH of 2.5, Fe/C mass ratio of 1/1, and the iron powder dosage of 2.50 g/L, which achieved good CST (from 34.1 to 27.8 s) and SV (from 75 to 60%) reduction efficiency. In addition, the scanning electron microscope (SEM) images revealed that the treated sludge floc clusters are broken up and that the dispersion degree is better than that of a raw sludge sample. The optimal EPS concentration and DDSCOD to obtain maximum sludge dewaterability was 43-46 mg/L and 4.2-4.9%, respectively. The destruction of EPS was one of the primary reasons for the improvement of sludge dewaterability during micro-electrolysis treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. GenHyPEM: an EC-supported STREP program on high pressure PEM water electrolysis

    International Nuclear Information System (INIS)

    Millet, P.

    2006-01-01

    GenHyPEM (generateur d'hydrogene PEM) is an international research project related to the electrolytic production of hydrogen from water, using proton exchange membrane (PEM) - based electrochemical generators. The specificity of this project is that all basic research efforts are devoted to the optimization of already existing electrolysers of industrial size, in order to facilitate the introduction of this technology in the industry and to propose technological solutions for the industrial and domestic production of electrolytic hydrogen. GenHyPEM is a three years long research program financially supported by the European Commission, gathering partners from academic institutions and from the industry, in order to reach three main technological objectives aimed at improving the performances of current 1000 Nliter/hour H 2 industrial PEM water electrolysers: (i) Development of alternative low-cost membrane electrode assemblies and stack components with electrochemical performances similar to those of state-of-the-art systems. The objectives are the development of nano-scaled electrocatalytic structures for reducing the amount of noble metals; the synthesis and characterization of non-noble metal catalytic compounds provided by molecular chemistry and bio-mimetic approaches; the preparation of new composite membrane materials for high current density, high pressure and high temperature operation; the development and optimization of low-cost porous titanium sheets acting as current collectors in the electrolysis stack; (ii) Development of an optimized stack structure for high current density (1 A.cm-2) and high pressure (50 bars) operation for direct pressurized storage; (iii) Development of an automated and integrated electrolysis unit allowing gas production from intermittent renewable sources of energy such as photovoltaic-solar and wind. Current status of the project as well as perspectives are described in this paper. This project, coordinated by University of

  16. Analysis and Countermeasures of Wind Power Accommodation by Aluminum Electrolysis Pot-Lines in China

    Science.gov (United States)

    Zhang, Hongliang; Ran, Ling; He, Guixiong; Wang, Zhenyu; Li, Jie

    2017-10-01

    The unit energy consumption and its price have become the main obstacles for the future development of the aluminum electrolysis industry in China. Meanwhile, wind power is widely being abandoned because of its instability. In this study, a novel idea for wind power accommodation is proposed to achieve a win-win situation: the idea is for nearby aluminum electrolysis plants to absorb the wind power. The features of the wind power distribution and aluminum electrolysis industry are first summarized, and the concept of wind power accommodation by the aluminum industry is introduced. Then, based on the characteristics of aluminum reduction cells, the key problems, including the bus-bar status, thermal balance, and magnetohydrodynamics instabilities, are analyzed. In addition, a whole accommodation implementation plan for wind power by aluminum reduction is introduced to explain the theoretical value of accommodation, evaluation of the reduction cells, and the industrial experiment scheme. A numerical simulation of a typical scenario proves that there is large accommodation potential for the aluminum reduction cells. Aluminum electrolysis can accommodate wind power and remain stable under the proper technique and accommodation scheme, which will provide promising benefits for the aluminum plant and the wind energy plant.

  17. Lunar oxygen and metal for use in near-Earth space: Magma electrolysis

    Science.gov (United States)

    Colson, Russell O.; Haskin, Larry A.

    1990-01-01

    Because it is energetically easier to get material from the Moon to Earth orbit than from the Earth itself, the Moon is a potentially valuable source of materials for use in space. The unique conditions on the Moon, such as vacuum, absence of many reagents common on the Earth, and the presence of very nontraditional ores suggest that a unique and nontraditional process for extracting materials from the ores may prove the most practical. With this in mind, an investigation of unfluxed silicate electrolysis as a method for extracting oxygen, iron, and silicon from lunar regolith was initiated and is discussed. The advantages of the process include simplicity of concept, absence of need to supply reagents from Earth, and low power and mass requirements for the processing plant. Disadvantages include the need for uninterrupted high temperature and the highly corrosive nature of the high-temperature silicate melts which has made identifying suitable electrode and container materials difficult.

  18. Enhanced anaerobic degradation of Fischer-Tropsch wastewater by integrated UASB system with Fe-C micro-electrolysis assisted.

    Science.gov (United States)

    Wang, Dexin; Ma, Wencheng; Han, Hongjun; Li, Kun; Xu, Hao; Fang, Fang; Hou, Baolin; Jia, Shengyong

    2016-12-01

    Coupling of the Fe-C micro-electrolysis (IC-ME) into the up-flow anaerobic sludge blanket (UASB) was developed for enhanced Fischer-Tropsch wastewater treatment. The COD removal efficiency and methane production in R 3 with IC-ME assisted both reached up to 80.6 ± 1.7% and 1.38 ± 0.11 L/L·d that higher than those values in R 1 with GAC addition (63.0 ± 3.4% and 0.95 ± 0.09 L/L·d) and R 2 with ZVI addition (74.5 ± 2.8% and 1.21 ± 0.09 L/L·d) under the optimum HRT (5 d). The Fe corrosion as electron donor reduced the ORP values and stimulated the activities of hydrogenotrophic methanogens to lower H 2 partial pressure in R 2 and R 3 . Additionally, Fe 2+ as by-product of iron corrosion, its presence could effectively increase the percentage of protein content in tightly bound extracellular polymeric substances (TB-EPS) to promote better bioflocculation, increasing to 90.5 mg protein/g·VSS (R 2 ) and 106.3 mg protein/g·VSS (R 3 ) while this value in R1 was simply 56.6 mg protein/g·VSS. More importantly, compared with R 1 , the excess accumulation of propionic acid and butyric acid in system was avoided. The macroscopic galvanic cells around Fe-C micro-electrolysis carriers in R 3 , that larger than microscopic galvanic cells in R 2 , further accelerate to transfer the electrons from anodic Fe to cathodic carbon that enhance interspecies hydrogen transfer, making the decomposition of propionic acid and butyric acid more thermodynamically feasible, finally facilitate more methane production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2014-01-01

    and achieve high-yield hydrogen production from wide range of organic matters at relatively mild conditions. This approach greatly reduces the electric energy cost for hydrogen production in contrast to direct water electrolysis. In addition to hydrogen production, MECs may also support several energetically......Microbial electrolysis cells (MECs) are an electricity-mediated microbial bioelectrochemical technology, which is originally developed for high-efficiency biological hydrogen production from waste streams. Compared to traditional biological technologies, MECs can overcome thermodynamic limitations...

  20. Manufacturing of a micro-tungsten carbide electrode using a supersonic-aided electrolysis process

    International Nuclear Information System (INIS)

    Weng, Feng-Tsai; Ho, Chi-Ting

    2008-01-01

    In this study, a novel micromachining technology for fabricating micro parts was described. The original diameter of a tungsten carbide rod was 3 mm, and it was first processed to a rod with a diameter of 50 µm by a precision-grinding process. It could then be machined to the desired diameter by a supersonic-aided electrolysis process. A high-aspect ratio of the micro-tungsten carbide rod was easily obtained by this process. The surface roughness of the sample that was processed by electrolysis with supersonic-aided agitation was compared with that of the sample obtained without agitation. The machined surface of the sample was smooth, and the reason may be that ionized particles in the anode could be removed by supersonic-aided agitation during the electrolysis process. A microelectrode with a tip of approximately 1 µm could be obtained by this process. (technical note)

  1. Feasibility of Using an Electrolysis Cell for Quantification of the Electrolytic Products of Water from Gravimetric Measurement.

    Science.gov (United States)

    Melaku, Samuel; Gebeyehu, Zewdu; Dabke, Rajeev B

    2018-01-01

    A gravimetric method for the quantitative assessment of the products of electrolysis of water is presented. In this approach, the electrolysis cell was directly powered by 9 V batteries. Prior to electrolysis, a known amount of potassium hydrogen phthalate (KHP) was added to the cathode compartment, and an excess amount of KHCO 3 was added to the anode compartment electrolyte. During electrolysis, cathode and anode compartments produced OH - (aq) and H + (aq) ions, respectively. Electrolytically produced OH - (aq) neutralized the KHP, and the completion of this neutralization was detected by a visual indicator color change. Electrolytically produced H + (aq) reacted with HCO 3 - (aq) liberating CO 2 (g) from the anode compartment. Concurrent liberation of H 2 (g) and O 2 (g) at the cathode and anode, respectively, resulted in a decrease in the mass of the cell. Mass of the electrolysis cell was monitored. Liberation of CO 2 (g) resulted in a pronounced effect of a decrease in mass. Experimentally determined decrease in mass (53.7 g/Faraday) agreed with that predicted from Faraday's laws of electrolysis (53.0 g/Faraday). The efficacy of the cell was tested to quantify the acid content in household vinegar samples. Accurate results were obtained for vinegar analysis with a precision better than 5% in most cases. The cell offers the advantages of coulometric method and additionally simplifies the circuitry by eliminating the use of a constant current power source or a coulometer.

  2. Carbon Deposition in Solid Oxide Cells during Co-Electrolysis of H2O and CO2

    DEFF Research Database (Denmark)

    Tao, Youkun; Ebbesen, Sune Dalgaard; Mogensen, Mogens Bjerg

    2014-01-01

    current densities from 1.5 to 2.25 A/cm2 and reactant (H2O + CO2) conversion of up to 67%. Delamination and carbon nano-fibers were observed at the Ni-YSZ|YSZ interface for two cells with a dense microstructure operated at electrolysis current densities of 2.0 and 2.25 A/cm2 and a conversion of 59% and 67...... and the active Ni-YSZ electrode. Carbon nano-fibers were only observed close to the YSZ electrolyte, indicating a very reducing atmosphere and a large over-potential gradient in the active electrode, being highest at the interface to the bulk electrolyte and decreasing toward the Ni-YSZ support.......Carbon formation during co-electrolysis of H2O and CO2 in Ni-YSZ supported Solid Oxide Electrolysis Cells (SOECs) may occur, especially at high current density and high conversion. In order to evaluate the carbon formation limits, five galvanostatic tests were performed in this work at electrolysis...

  3. The Detoxification and Degradation of Benzothiazole from the Wastewater in Microbial Electrolysis Cells

    Directory of Open Access Journals (Sweden)

    Xianshu Liu

    2016-12-01

    Full Text Available In this study, the high-production-volume chemical benzothiazole (BTH from synthetic water was fully degraded into less toxic intermediates of simple organic acids using an up-flow internal circulation microbial electrolysis reactor (UICMER under the hydraulic retention time (HRT of 24 h. The bioelectrochemical system was operated at 25 ± 2 °C and continuous-flow mode. The BTH loading rate varied during experiments from 20 g·m−3·day−1 to 110 g·m−3·day−1. BTH and soluble COD (Chemical Oxygen Demand removal efficiency reached 80% to 90% under all BTH loading rates. Bioluminescence based Shewanella oneidensis strain MR-1 ecotoxicity testing demonstrated that toxicity was largely decreased compared to the BTH wastewater influent and effluent of two control experiments. The results indicated that MEC (Microbial Electrolysis Cell was useful and reliable for improving BTH wastewater treatment efficiency, enabling the microbiological reactor to more easily respond to the requirements of higher loading rate, which is meaningful for economic and efficient operation in future scale-up.

  4. US work on technical and economic aspects of electrolytic, thermochemical, and hybrid processes for hydrogen production at temperatures below 550 deg. C

    International Nuclear Information System (INIS)

    Petri, M.C.; Yyldyz, B.; Klickman, A.E.

    2006-01-01

    Hydrogen demand is increasing, but there are few options for affordable hydrogen production free of greenhouse gas emissions. Nuclear power is one of the most promising options. Most research is focused on high-temperature electrolytic and thermochemical processes for nuclear-generated hydrogen, but it will be many years before very high temperature reactors become commercially available. For light water reactors or supercritical reactors, low-temperature water electrolysis is a currently available technology for hydrogen production. Higher efficiencies may be gained through thermo-electrochemical hydrogen production cycles, but there are only a limited number that have heat requirements consistent with the lower temperatures of light-water reactor technology. Indeed, active research is ongoing for only three such cycles in the USA. Reductions in electricity and system costs would be needed (or the imposition of a carbon tax) for low-temperature water electrolysis to compete with today's costs for steam methane reformation. The interactions between hydrogen and electricity markets and hydrogen and electricity producers are complex and will evolve as the markets evolve. (author)

  5. The use of electrolysis for accurate delta O-17 and delta O-18 isotope measurements in water

    NARCIS (Netherlands)

    Meijer, HAJ; Li, WJ

    1998-01-01

    We present a new system to measure the relative isotopic abundances of both rare isotopes of oxygen in water. Using electrolysis with CuSO4 as electrolyte, water is transformed into oxygen gas. This gas is subsequently analyzed with a standard Isotope Ratio Mass Spectrometer. We investigated the

  6. Contact glow discharge electrolysis: its origin, plasma diagnostics and non-faradaic chemical effects

    International Nuclear Information System (INIS)

    Sen Gupta, Susanta K

    2015-01-01

    Contact glow discharge electrolysis (CGDE) also termed plasma electrolysis is a novel electrolysis where a stable sheath of light emitting plasma develops around an electrode immersed well inside a relatively high-conductivity liquid electrolyte during normal electrolysis (NE) at several hundred volts. The phenomenon may develop in dc-, pulsed dc-, ac- as well as RF-driven electrolyses. The chemical effects of CGDE are remarkably non-faradaic in respect to the nature of the products as well as their yields. The article traces comprehensively the progress made in studies of CGDE in aqueous and non-aqueous solutions since 1844 and reviews the developments in the understanding of its origin, light emission, plasma state and non-faradaic effects leading to the elucidation of detailed mechanism of the origin of CGDE on the basis of the onset of hydrodynamic instabilities in local vaporization of the solvent near the working electrode during NE, and that of highly non-faradaic effects of CGDE based on a model of two reaction zones located within the electrode plasma and at the plasma–liquid interface producing solvent derived radicals at high local concentrations. Keeping in view the recent surge of interest in varied applications of CGDE, the article is appended with highlights of these applications across synthetic chemistry, waste water treatment, electrosurgical devices, nanoparticle fabrications, surface engineering and micro-machining. (topical review)

  7. Development of durable and efficient electrodes for large-scale alkaline water electrolysis

    DEFF Research Database (Denmark)

    Kjartansdóttir, Cecilia Kristin; Nielsen, Lars Pleth; Møller, Per

    2013-01-01

    A new type of electrodes for alkaline water electrolysis is produced by physical vapour depositing (PVD) of aluminium onto a nickel substrate. The PVD Al/Ni is heat-treated to facilitate alloy formation followed by a selective aluminium alkaline leaching. The obtained porous Ni surface is uniform...... and characterized by a unique interlayer adhesion, which is critical for industrial application. IR-compensated polarisation curves prepared in a half-cell setup with 1 M KOH electrolyte at room temperature reveals that at least 400 mV less potential is needed to decompose water into hydrogen and oxygen...... produced bipolar electrolyser stack. The developed electrodes showed stable behaviour under intermittent operation for over 9000 h indicating no serious deactivation in the density of active sites....

  8. Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater.

    Science.gov (United States)

    Cusick, Roland D; Bryan, Bill; Parker, Denny S; Merrill, Matthew D; Mehanna, Maha; Kiely, Patrick D; Liu, Guangli; Logan, Bruce E

    2011-03-01

    A pilot-scale (1,000 L) continuous flow microbial electrolysis cell was constructed and tested for current generation and COD removal with winery wastewater. The reactor contained 144 electrode pairs in 24 modules. Enrichment of an exoelectrogenic biofilm required ~60 days, which is longer than typically needed for laboratory reactors. Current generation was enhanced by ensuring adequate organic volatile fatty acid content (VFA/SCOD ≥ 0.5) and by raising the wastewater temperature (31 ± 1°C). Once enriched, SCOD removal (62 ± 20%) was consistent at a hydraulic retention time of 1 day (applied voltage of 0.9 V). Current generation reached a maximum of 7.4 A/m(3) by the planned end of the test (after 100 days). Gas production reached a maximum of 0.19 ± 0.04 L/L/day, although most of the product gas was converted to methane (86 ± 6%). In order to increase hydrogen recovery in future tests, better methods will be needed to isolate hydrogen gas produced at the cathode. These results show that inoculation and enrichment procedures are critical to the initial success of larger-scale systems. Acetate amendments, warmer temperatures, and pH control during startup were found to be critical for proper enrichment of exoelectrogenic biofilms and improved reactor performance.

  9. Conceptual study of on orbit production of cryogenic propellants by water electrolysis

    Science.gov (United States)

    Moran, Matthew E.

    1991-01-01

    The feasibility is assessed of producing cryogenic propellants on orbit by water electrolysis in support of NASA's proposed Space Exploration Initiative (SEI) missions. Using this method, water launched into low earth orbit (LEO) would be split into gaseous hydrogen and oxygen by electrolysis in an orbiting propellant processor spacecraft. The resulting gases would then be liquified and stored in cryogenic tanks. Supplying liquid hydrogen and oxygen fuel to space vehicles by this technique has some possible advantages over conventional methods. The potential benefits are derived from the characteristics of water as a payload, and include reduced ground handling and launch risk, denser packaging, and reduced tankage and piping requirements. A conceptual design of a water processor was generated based on related previous studies, and contemporary or near term technologies required. Extensive development efforts would be required to adapt the various subsystems needed for the propellant processor for use in space. Based on the cumulative results, propellant production by on orbit water electrolysis for support of SEI missions is not recommended.

  10. Technetium electrodeposition from aqueous formate solutions: electrolysis kinetics and material balance study

    International Nuclear Information System (INIS)

    Maslennikov, A.; Peretroukhine, V.

    1998-01-01

    The kinetics of the Tc electrodeposition and the material balance of potentiostatic electrolysis of formate buffer solutions (pH = 1.79-8.5) containing 5*10 -4 - 1*10 -2 M Tc(VII) at graphite cathode has been studied. The deposition of Tc from the solution was found to become possible at E x *y H 2 O (x ≤ 2, 1.5 cath. ) towards more negative values and the augmentation of the electrolyte surface/volume ratio (S/V) were found to increase the yield of the electrolysis and the rate of the electrodeposition process. A maximum technetium recovery of 92-95% has been observed in the electrolysis of neutral HCOONa solutions (pH = 6.0-7.5, μ = 1.0) containing up to 5*10 -1 M Tc(VII) at potentials of the graphite cathode E 2 . A starting Tc concentration in the solution of [Tc(VII)] > 5 *10 -1 M and the presence of more than 0.05 M NO 3 - in the electrolyte were found to suppress the recovery of technetium from the solution. (orig.)

  11. Water containing deuterium electrolysis to obtain gaseous hydrogen isotope in a high state of purity

    International Nuclear Information System (INIS)

    Bellanger, Gilbert

    1992-01-01

    In this paper, the basic concept is to prepare hydrogen in a high state of purity by electrolysing water using a palladium cathode. During electrolysis, hydrogen is at first adsorbed at the palladium surface, and next it diffuses through it till opposite face of its entry where it is desorbed; thus permitting to regain it in a very pure state for storage. The method can be used from water containing deuterium. To improve hydrogen adsorption, surface effect of palladium must be studied. It was found that heat treatment of palladium improved the hydrogen permeation flux. The diffusivity of hydrogen is controlled by Fick and Sieverts equations in which temperature has a significant influence on permeation rates. Anyway, hydrogen desorption does not cause any difficulty. In a second part, we have studied the isotopic separation factor using water containing deuterium. We remarked in fact that it depends on current density, overpotential, diffusivity of hydrogen and deuterium and isotopic composition of electrolyte as expected. In the last part, we realized an original electrolysis model in a glove-box in which are taken into account the results given before and also the technology components employed in processes involving the use of tritium. (author) [fr

  12. Electrochemical disinfection of coliform and Escherichia coli for drinking water treatment by electrolysis method using carbon as an electrode

    Science.gov (United States)

    Riyanto; Agustiningsih, W. A.

    2018-04-01

    Disinfection of coliform and E. Coli in water has been performed by electrolysis using carbon electrodes. Carbon electrodes were used as an anode and cathode with a purity of 98.31% based on SEM-EDS analysis. This study was conducted using electrolysis powered by electric field using carbon electrode as the anode and cathode. Electrolysis method was carried out using variations of time (30, 60, 90, 120 minutes at a voltage of 5 V) and voltage (5, 10, 15, 20 V for 30 minutes) to determine the effect of the disinfection of the bacteria. The results showed the number of coliform and E. coli in water before and after electrolysis was 190 and 22 MPN/100 mL, respectively. The standards quality of drinking water No. 492/Menkes/Per/IV/2010 requires the zero content of coliform and E. Coli. Electrolysis with the variation of time and potential can reduce the number of coliforms and E. Coli but was not in accordance with the standards. The effect of hydrogen peroxide (H2O2) to the electrochemical disinfection was determined using UV-Vis spectrophotometer. The levels of H2O2 formed increased as soon after the duration of electrolysis voltage but was not a significant influence to the mortality of coliform and E.coli.

  13. Tritium separation from light and heavy water by bipolar electrolysis

    International Nuclear Information System (INIS)

    Ramey, D.W.; Petek, M.; Taylor, R.D.; Kobisk, E.H.; Ramey, J.; Sampson, C.A.

    1979-10-01

    Use of bipolar electrolysis with countercurrent electrolyte flow to separate hydrogen isotopes was investigated for the removal of tritium from light water effluents or from heavy water moderator. Deuterium-tritium and protium-tritium separation factors occurring on a Pd-25% Ag bipolar electrode were measured to be 2.05 to 2.16 and 11.6 to 12.4 respectively, at current densities between 0.21 and 0.50 A cm -2 , and at 35 to 90 0 C. Current densities up to 0.3 A cm -2 have been achieved in continuous operation, at 80 to 90 0 C, without significant gas formation on the bipolar electrodes. From the measured overvoltage at the bipolar electrodes and the electrolyte conductivity the power consumption per stage was calculated to be 3.0 kwh/kg H 2 O at 0.2 A cm -2 and 5.0 kwh/kg H 2 O at 0.5 A cm -2 current density, compared to 6.4 and 8.0 kwh/kg H 2 O for normal electrolysis. A mathematical model derived for hydrogen isotope separation by bipolar electrolysis, i.e., for a square cascade, accurately describes the results for protium-tritium separation in two laboratory scale, multistage experiments with countercurrent electrolyte flow; the measured tiritum concentration gradient through the cascade agreed with the calculated values

  14. Electrodes for the hydrogen through water electrolysis using BMI.BF{sub 4} as electrolyte; Eletrodos para a producao de hidrogenio via eletrolise da agua utilizando BMI.BF{sub 4} como eletrolito

    Energy Technology Data Exchange (ETDEWEB)

    Botton, Janine Padilha; Martini, Emilse M.A.; Souza, Michele Oberson de; Souza, Roberto Fernando de [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. de Quimica. Lab. de Eletroquimica e Catalise]. E-mail: janine@iq.ufrgs.br; Loget, Gabriel [Universite de Rennes 1, Rennes (France). Lab. de Eletroquimica Molecular e Macromolecular. UMR CNRS 6510

    2008-07-01

    The hydrogen production by water electrolysis was tested with different electrocatalysts (nickel, iron alloys containing nickel, chromium and manganese, and molybdenum) in the ionic liquid electrolyte, 1-butyl-3-methylimidazolium tetrafluoroborate (BMI.BF{sub 4}), 10 vol.% in water. The hydrogen evolution reaction (HER) worked at room temperature with a platinum quasi-reference electrode (PtQRE) applying a -1.7 V potential. The experimental conditions used were determined in previous work and such parameters of operation were confirmed with the electrocatalysts employed in this work. A Hoffman cell apparatus was used to perform the water electrolysis. The current density values, j, obtained were between 3.0 mA cm{sup -2} and 77.5 mA cm{sup -2}. The system efficiency was very high for all electrocatalysts tested, between 97.0% and 99.2%. The molybdenum (Mo) electrode was better than others showing the highest current density value in HER. This behavior has been explained by the lower value of activation energy for the electrolysis reaction when Mo is employed comparing with Pt electrode. The energy activation of the HER using platinum (Pt) as electrocatalyst in an aqueous solution of BMI.BF{sub 4} 10 vol.% was 23.40 kJ mol{sup -1}, whereas with electrode of Mo in the same conditions , was 9.22 kJ mol{sup -1}. In an alkaline aqueous electrolyte (usual medium for such reaction), Mo is less efficient than Pt explaining the lack of published citation using pure Mo as cathode for the HER. The excellent results obtained with a Mo electrode employing ionic liquid as electrolyte show that the hydrogen production can be carried out with cheap electrode material at room temperature, which makes this method economically attractive. (author)

  15. Computational model for a high temperature electrolyzer coupled to a HTTR for efficient nuclear hydrogen production

    International Nuclear Information System (INIS)

    Gonzalez, Daniel; Rojas, Leorlen; Rosales, Jesus; Castro, Landy; Gamez, Abel; Brayner, Carlos; Garcia, Lazaro; Garcia, Carlos; Torre, Raciel de la; Sanchez, Danny

    2015-01-01

    High temperature electrolysis process coupled to a very high temperature reactor (VHTR) is one of the most promising methods for hydrogen production using a nuclear reactor as the primary heat source. However there are not references in the scientific publications of a test facility that allow to evaluate the efficiency of the process and other physical parameters that has to be taken into consideration for its accurate application in the hydrogen economy as a massive production method. For this lack of experimental facilities, mathematical models are one of the most used tools to study this process and theirs flowsheets, in which the electrolyzer is the most important component because of its complexity and importance in the process. A computational fluid dynamic (CFD) model for the evaluation and optimization of the electrolyzer of a high temperature electrolysis hydrogen production process flowsheet was developed using ANSYS FLUENT®. Electrolyzer's operational and design parameters will be optimized in order to obtain the maximum hydrogen production and the higher efficiency in the module. This optimized model of the electrolyzer will be incorporated to a chemical process simulation (CPS) code to study the overall high temperature flowsheet coupled to a high temperature accelerator driven system (ADS) that offers advantages in the transmutation of the spent fuel. (author)

  16. Computational model for a high temperature electrolyzer coupled to a HTTR for efficient nuclear hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Daniel; Rojas, Leorlen; Rosales, Jesus; Castro, Landy; Gamez, Abel; Brayner, Carlos, E-mail: danielgonro@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Garcia, Lazaro; Garcia, Carlos; Torre, Raciel de la, E-mail: lgarcia@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Sanchez, Danny [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil)

    2015-07-01

    High temperature electrolysis process coupled to a very high temperature reactor (VHTR) is one of the most promising methods for hydrogen production using a nuclear reactor as the primary heat source. However there are not references in the scientific publications of a test facility that allow to evaluate the efficiency of the process and other physical parameters that has to be taken into consideration for its accurate application in the hydrogen economy as a massive production method. For this lack of experimental facilities, mathematical models are one of the most used tools to study this process and theirs flowsheets, in which the electrolyzer is the most important component because of its complexity and importance in the process. A computational fluid dynamic (CFD) model for the evaluation and optimization of the electrolyzer of a high temperature electrolysis hydrogen production process flowsheet was developed using ANSYS FLUENT®. Electrolyzer's operational and design parameters will be optimized in order to obtain the maximum hydrogen production and the higher efficiency in the module. This optimized model of the electrolyzer will be incorporated to a chemical process simulation (CPS) code to study the overall high temperature flowsheet coupled to a high temperature accelerator driven system (ADS) that offers advantages in the transmutation of the spent fuel. (author)

  17. Principle and perspectives of hydrogen production through biocatalyzed electrolysis

    NARCIS (Netherlands)

    Rozendal, R.A.; Hamelers, H.V.M.; Euverink, G.J.W.; Metz, S.J.; Buisman, C.J.N.

    2006-01-01

    Biocatalyzed electrolysis is a novel biological hydrogen production process with the potential to efficiently convert a wide range of dissolved organic materials in wastewaters. Even substrates formerly regarded to be unsuitable for hydrogen production due to the endothermic nature of the involved

  18. An investigation of energy balances in palladium cathode electrolysis experiments

    Science.gov (United States)

    Longhurst, G. R.; Dolan, T. J.; Henriksen, G. L.

    1990-09-01

    A series of experiments was performed at the Idaho National Engineering Laboratory (INEL) to investigate mechanisms that may contribute to energy flows in electrolysis cells like those of Fleischmann and Pons. Ordinary water (H2O), heavy water (D2O), and a mixture of the two were used in the INEL experiments. Cathodes used include a 51-μm Pd foil and 1-mm diameter extruded wire Pd rods in straight and coiled configurations. Energy balances in these experiments revealed no significant net gain or net loss of energy. Cell overpotential curves were fit well with a Tafel equation, with parameters dependent on electrode configuration, electrolyte composition, and temperature. Water evaporation and interactions of hydrogen isotopes with the Pd cathode were evaluated and found not to be significant to energy balances. No ionizing radiation, tritium production, or other evidence of fusion reactions was observed in the INEL experiments.

  19. Study of a chromia-forming alloy behavior as interconnect material for High Temperature Vapor Electrolysis

    International Nuclear Information System (INIS)

    Guillou, S.

    2011-01-01

    In High Temperature Vapor Electrolysis (HTVE) system, the materials chosen for the inter-connectors should have a good corrosion behaviour in air and in H 2 -H 2 O mixtures at 800 C, and keep a high electronic conductivity over long durations as well. In this context, the first goal of this study was to evaluate a commercial ferritic alloy (the K41X alloy) as interconnect for HTVE application. Oxidation tests in furnace and in microbalance have therefore been carried out in order to determine oxidation kinetics. Meanwhile, the Area Specific Resistance (ASR) was evaluated by Contact Resistance measurements performed at 800 C. The second objective was to improve our comprehension of chromia-forming alloys oxidation mechanism, in particular in H 2 /H 2 O mixtures. For that purpose, some specific tests have been conducted: tracer experiments, coupled with the characterization of the oxide scale by PEC (Photo-Electro-Chemistry). This approach has also been applied to the study of a LaCrO 3 perovskite oxide coating on the K41X alloy. This phase is indeed of high interest for HTVE applications due to its high conductivity properties. This latter study leads to further understanding on the role of lanthanum as reactive element, which effect is still under discussion in literature.In both media at 800 C, the scale is composed of a Cr 2 O 3 /(Mn,Cr) 3 O 4 duplex scale, covered in the case of H 2 -H 2 O mixture by a thin scale made of Mn 2 TiO 4 spinel. In air, the growth mechanism is found to be cationic, in agreement with literature. The LaCrO 3 coating does not modify the direction of scale growth but lowers the growth kinetics during the first hundreds hours. Moreover, with the coating, the scale adherence is favored and the conductivity appears to be slightly higher. In the H 2 -H 2 O mixture, the growth mechanism is found to be anionic. The LaCrO 3 coating diminishes the oxidation kinetics. Although the scale thickness is about the same in both media, the ASR parameter

  20. Electrolysis-driven bioremediation of crude oil-contaminated marine sediments.

    Science.gov (United States)

    Bellagamba, Marco; Cruz Viggi, Carolina; Ademollo, Nicoletta; Rossetti, Simona; Aulenta, Federico

    2017-09-25

    Bioremediation is an effective technology to tackle crude oil spill disasters, which takes advantage of the capacity of naturally occurring microorganisms to degrade petroleum hydrocarbons under a range of environmental conditions. The enzymatic process of breaking down oil is usually more rapid in the presence of oxygen. However, in contaminated sediments, oxygen levels are typically too low to sustain the rapid and complete biodegradation of buried hydrocarbons. Here, we explored the possibility to electrochemically manipulate the redox potential of a crude oil-contaminated marine sediment in order to establish, in situ, conditions that are conducive to contaminants biodegradation by autochthonous microbial communities. The proposed approach is based on the exploitation of low-voltage (2V) seawater electrolysis to drive oxygen generation (while minimizing chlorine evolution) on Dimensionally Stable Anodes (DSA) placed within the contaminated sediment. Results, based on a laboratory scale setup with chronically polluted sediments spiked with crude oil, showed an increased redox potential and a decreased pH in the vicinity of the anode of 'electrified' treatments, consistent with the occurrence of oxygen generation. Accordingly, hydrocarbons biodegradation was substantially accelerated (up to 3-times) compared to 'non-electrified' controls, while sulfate reduction was severely inhibited. Intermittent application of electrolysis proved to be an effective strategy to minimize the energy requirements of the process, without adversely affecting degradation performance. Taken as a whole, this study suggests that electrolysis-driven bioremediation could be a sustainable technology for the management of contaminated sediments. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Hydrogen from renewable energy - Photovoltaic/water electrolysis as an exemplary approach

    Science.gov (United States)

    Sprafka, R. J.; Tison, R. R.; Escher, W. J. D.

    1984-01-01

    A feasibility study has been conducted for a NASA Kennedy Space Center liquid hydrogen/liquid oxygen production facility using solar cell arrays as the power source for electrolysis. The 100 MW output of the facility would be split into 67.6 and 32 MW portions for electrolysis and liquefaction, respectively. The solar cell array would cover 1.65 sq miles, and would be made up of 249 modular 400-kW arrays. Hydrogen and oxygen are generated at either dispersed or centralized water electrolyzers. The yearly hydrogen output is projected to be 5.76 million lbs, with 8 times that much oxygen; these fuel volumes can support approximately 18 Space Shuttle launches/year.

  2. Cadmium (II) removal mechanisms in microbial electrolysis cells

    Energy Technology Data Exchange (ETDEWEB)

    Colantonio, Natalie; Kim, Younggy, E-mail: younggy@mcmaster.ca

    2016-07-05

    Highlights: • Rapid removal of Cd(II) was achieved in 24 h using microbial electrolysis cells. • Cathodic reduction (electrodeposition) of Cd(II) cannot explain the rapid removal. • H{sub 2} evolution in microbial electrolysis cells increases local pH near the cathode. • High local pH induces Cd(OH){sub 2} and CdCO{sub 3} precipitation only with electric current. • Neutral pH caused by low current and depleted substrate dissolves the precipitated Cd. - Abstract: Cadmium is a toxic heavy metal, causing serious environmental and human health problems. Conventional methods for removing cadmium from wastewater are expensive and inefficient for low concentrations. Microbial electrolysis cells (MECs) can simultaneously treat wastewater, produce hydrogen gas, and remove heavy metals with low energy requirements. Lab-scale MECs were operated to remove cadmium under various electric conditions: applied voltages of 0.4, 0.6, 0.8, and 1.0 V; and a fixed cathode potential of −1.0 V vs. Ag/AgCl. Regardless of the electric condition, rapid removal of cadmium was demonstrated (50–67% in 24 h); however, cadmium concentration in solution increased after the electric current dropped with depleted organic substrate under applied voltage conditions. For the fixed cathode potential, the electric current was maintained even after substrate depletion and thus cadmium concentration did not increase. These results can be explained by three different removal mechanisms: cathodic reduction; Cd(OH){sub 2} precipitation; and CdCO{sub 3} precipitation. When the current decreased with depleted substrates, local pH at the cathode was no longer high due to slowed hydrogen evolution reaction (2H{sup +} + 2e{sup −} → H{sub 2}); thus, the precipitated Cd(OH){sub 2} and CdCO{sub 3} started dissolving. To prevent their dissolution, sufficient organic substrates should be provided when MECs are used for cadmium removal.

  3. Treating soil-washing fluids polluted with oxyfluorfen by sono-electrolysis with diamond anodes.

    Science.gov (United States)

    Vieira Dos Santos, E; Sáez, C; Cañizares, P; Martínez-Huitle, C A; Rodrigo, M A

    2017-01-01

    This works is focused on the treatment by sono-electrolysis of the liquid effluents produced during the Surfactant-Aided Soil-Washing (SASW) of soils spiked with herbicide oxyfluorfen. Results show that this combined technology is very efficient and attains the complete mineralization of the waste, regardless of the surfactant/soil radio applied in the SASW process (which is the main parameter of the soil remediation process and leads to very different wastes). Both the surfactant and the herbicide are completely degraded, even when single electrolysis is used; and only two intermediates are detected by HPLC in very low concentrations. Conversely, the efficiency of single sonolysis approach, for the oxidation of pollutant, is very low and just small changes in the herbicides and surfactant concentrations are observed during the tests carried out. Sono-electrolysis with diamond electrodes achieved higher degradation rates than those obtained by single sonolysis and/or single electrolysis with diamond anodes. A key role of sulfate is developed, when it is released after the electrochemical degradation of surfactant. The efficient catalytic effect observed which can be explained by the anodic formation of persulfate and the later, a sono-activation is attained to produce highly efficient sulfate radicals. The effect of irradiating US is more importantly observed in the pesticide than in the surfactant, in agreement with the well-known behavior of these radicals which are known to oxidize more efficiently aromatic compounds than aliphatic species. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Studies of water electrolysis in polymeric membrane cells; Estudos de eletrolise aquosa em celulas de membrana polimerica

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira-Silva, M.A.; Linardi, M.; Saliba-Silva, A.M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Celulas a Combustivel e Hidrogenio

    2010-07-01

    Hydrogen represents great opportunity to be a substitute for fossil fuels in the future. Water as a renewable source of hydrogen is of great interest, since it is abundant and can decompose, producing only pure H{sub 2} and O{sub 2}. This decomposition of water can be accomplished by processes such as electrolysis, thermal decomposition and thermochemical cycles. The membrane electrolysis has been proposed as a viable process for hydrogen production using thermal and electrical energy derived from nuclear energy or any renewable source like solar energy. In this work, within the context of optimization of the electrolysis process, it is intended to develop a mathematical model that can simulate and assist in parameterization of the electrolysis performed by polymer membrane electrolytic cell. The experimental process to produce hydrogen via the cell membrane, aims to optimize the amount of gas produced using renewable energy with non-carbogenic causing no harm by producing gases deleterious to the environment. (author)

  5. Seven harmonic susceptibility in oxygen and hydrogen loading of sintered YBCO by μs pulsed electrolysis in an aqueous solution at room temperature

    International Nuclear Information System (INIS)

    Tripodi, P.; Di Gioacchino, D.; Celani, F.

    1996-09-01

    The complex AC susceptibility of high T c superconducting materials has been described in terms of the first seven harmonic component of Fourier series. Has been measured the χ' n and χ n (n=1,7) of sintered YBa 2 Cu 3 O 7-x (YBCO) bulk oxygen and hydrogen loaded samples versus amplitude and frequency of AC magnetic field at fixed temperature. The sample have been loaded by μs current pulses electrolysis in an aqueous solution (0.3N LiOH+H 2 O) at room temperature. In addition to the simplicity of the experimental setup, this procedure allows to obtain extremely high equivalent hydrogen/oxygen gas pressure on the surface of the electrodes. The YBCO electrode is polarized by short pulse width (0.5-10 μs) and high power (120 W) peaks with a variable repetition rate (0.1-10000 Hz). The pulses are obtained by an home.made pulse generator. The difference in the behavior of the susceptibilities harmonic component between the deficiency and oxygen or hydrogen loaded samples give us the possibility to connect the susceptibilities with variations of the flux pinning in respect to normal losses in the superconducting materials. The loading can be a good probe to have information on the mechanism of the processes that sustain the critical current density Jc in this situation these affects appear strongly dependent on the loading conditions. By comparison of this measurements has been observed drastic change in behavior of susceptibility

  6. The role of electrolysers in energy system

    DEFF Research Database (Denmark)

    Ridjan, Iva; Hansen, Kenneth; Sorknæs, Peter

    Short and long-term role of electrolysis for grid balancing is investigated in this report, followed by an analysis on the feasibility of implementing electrolysis in the energy system and their potential for gas market balancing. Firstly, a literature review is conducted to determine the state......-of-the-art knowledge on using electrolysis for grid balancing. Secondly, based on Danish energy system models for 2020 and 2035, which can simulate the operation of electrolysis, the role of both alkaline and SOEC electrolysers is analysed in terms of electricity system balancing. Thirdly, different electrolyser...

  7. Water electrolysis plants for hydrogen and oxygen production. Shipped to Tsuruga Power Station Unit No.1, and Tokai No.2 power station, the Japan Atomic Power Co

    International Nuclear Information System (INIS)

    Ueno, Syuichi; Sato, Takao; Ishikawa, Nobuhide

    1997-01-01

    Ebara's water electrolysis plants have been shipped to Tsuruga Power Station Unit No.1, (H 2 generation rate: 11 Nm 3 /h), and Tokai No.2 Power Station (H 2 generation rate: 36 Nm 3 /h), Japan Atomic Power Co. An outcome of a business agreement between Nissho Iwai Corporation and Norsk Hydro Electrolysers (Norway), this was the first time that such water electrolysis plants were equipped in Japanese boiling water reactor power stations. Each plant included an electrolyser (for generating hydrogen and oxygen), an electric power supply, a gas compression system, a dehumidifier system, an instrumentation and control system, and an auxiliary system. The plant has been operating almost continuously, with excellent feedback, since March 1997. (author)

  8. Effects of low voltage electrolysis and freezing on coliform content of contaminated water

    International Nuclear Information System (INIS)

    Qazi, J.I.; Saleem, F.

    2003-01-01

    A sewage sample was mixed with drinking water and subjected to low voltage (15V) electrolysis in the presence of 1% NaCl. The prepared sample was also kept in freezer with and without the presence of sodium chloride for 4-hours. Among these treatments the electrolysis proved to kill the coliforms, while the freezing reduced the bacterial content. Antibiotics sensitivity patterns revealed that certain of the coliform strains survived the freezing and thawing shocks. Nature of such surviving bacteria and need to study chemical parameters of electrolyzed water are discussed. (author)

  9. Advances in the electrolysis of tritiated water

    International Nuclear Information System (INIS)

    Pierini, G.; Spelta, B.; Maffei, S.; Modica, G.; Perez, G.; Possagno, E.

    1988-01-01

    The exhaust plasma processing plant, proposed a few years ago as an alternative to the Tritium Systems Test Assembly plant in operation at Los Alamos National Laboratory, required further research in such areas as low liquid inventory electrolytic cell and the types of separator or membrane resistant to beta radiation. Moreover, it was suggested that the value of the separation factors among H/sub 2/, D/sub 2/, and T/sub 2/ should be checked during electrolysis at high D/sub 2/O concentration in a alkaline medium by using different materials for the cathode. The results of experimental work carried out in these directions have shown the feasibility of the process, although some improvements can still be made in the optimization of the separators and in the design of the cell. The research carried out at the Joint Research Centre, Ispra, Italy, with support from other institutes, is described

  10. SISGR-Fundamental Experimental and Theoretical Studies on a Novel Family of Oxide Catalyst Supports for Water Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Kumta, Prashant [University of Pittsburgh

    2014-10-03

    Identification and development of non-noble metal based electro-catalysts or electro-catalysts with significant reduction of expensive noble metal contents (E.g. IrO2, Pt) with comparable electrochemical performance as the standard noble metal/metal oxide for proton exchange membrane (PEM) based water electrolysis would constitute a major breakthrough in the generation of hydrogen by water electrolysis. Accomplishing such a system would not only result reduction of the overall capital costs of PEM based water electrolyzers, but also help attain the targeted hydrogen production cost [< $ 3.0 / gallon gasoline equivalent (gge)] comparable to conventional liquid fuels. In line with these goals, it was demonstrated that fluorine doped IrO2 thin films and nanostructured high surface area powders display remarkably higher electrochemical activity, and comparable durability as pure IrO2 electro-catalyst for the oxygen evolution reaction (OER) in PEM based water electrolysis. Furthermore, corrosion resistant SnO2 and NbO2 support has been doped with F and coupled with IrO2 or RuO2 for use as an OER electro-catalyst. A solid solution of SnO2:F or NbO2:F with only 20 - 30 mol.% IrO2 or RuO2 yielding a rutile structure in the form of thin films and bulk nanoparticles displays similar electrochemical activity and stability as pure IrO2/RuO2. This would lead to more than 70 mol.% reduction in the noble metal oxide content. Novel nanostructured ternary (Ir,Sn,Nb)O2 thin films of different compositions FUNDAMENTAL STUDY OF NANOSTRUCTURED ELECTRO-CATALYSTS WITH REDUCED NOBLE METAL CONTENT FOR PEM BASED WATER ELECTROLYSIS 4 have also been studied. It has been shown that (Ir0.40Sn0.30Nb0.30)O2 shows similar electrochemical activity and enhanced chemical robustness as compared to pure IrO2. F doping of the ternary (Ir,Sn,Nb)O2 catalyst helps in further decreasing the noble metal oxide content of the catalyst. As a result, these reduced noble metal oxide catalyst systems would

  11. Power to fuel using electrolysis and CO2 capture

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Graves, Christopher R.; Chatzichristodoulou, Christodoulos

    2014-01-01

    % of the cost of H2 produced by electrolysis originates from electricity cost. How much more depends on the actual electricity price and depends further on efficiency, investment cost and lifetime of electrolyzer. Investment costs are inversely proportional the current density at a given cell voltage...

  12. Numerical modeling of hypolimnetic oxygenation by electrolysis of water

    Directory of Open Access Journals (Sweden)

    Jaćimović Nenad M.

    2017-01-01

    Full Text Available The paper presents a novel method for hypolimnetic oxygenation by electrolysis of water. The performance of the method is investigated by the laboratory and the field experiment. The laboratory experiment is conducted in a 90 L vessel, while the field experiment is conducted at the lake Biwa in Japan. In order to provide a better insight into involved processes, a numerical model for simulation of bubble flow is developed with consideration of gas compressibility and oxygen dissolution. The model simultaneously solves 3-D volume averaged two-fluid governing equations. Developed model is firstly verified by simulation of bubble flow experiments, reported in the literature, where good qualitative agreement between measured and simulated results is observed. In the second part, the model is applied for simulation of conducted water electrolysis experiments. The model reproduced the observed oxygen concentration dynamics reasonably well. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 37009

  13. Al/sub 2/S/sub 3/ preparation and use in electrolysis process for aluminum production

    Science.gov (United States)

    Hsu, C.C.; Loutfy, R.O.; Yao, N.P.

    A continuous process for producing aluminum sulfide and for electrolyzing the aluminum sulfide to form metallic aluminum in which the aluminum sulfide is produced from aluminum oxide and COS or CS/sub 2/ in the presence of a chloride melt which also serves as the electrolysis bath. Circulation between the reactor and electrolysis cell is carried out to maintain the desired concentration of aluminum sulfide in the bath.

  14. A novel bio-electrochemical system with sand/activated carbon separator, Al anode and bio-anode integrated micro-electrolysis/electro-flocculation cost effectively treated high load wastewater with energy recovery.

    Science.gov (United States)

    Gao, Changfei; Liu, Lifen; Yang, Fenglin

    2018-02-01

    A novel bio-electrochemical system (BES) was developed by integrating micro-electrolysis/electro-flocculation from attaching a sacrificing Al anode to the bio-anode, it effectively treated high load wastewater with energy recovery (maximum power density of 365.1 mW/m 3 and a maximum cell voltage of 0.97 V), and achieving high removals of COD (>99.4%), NH 4 + -N (>98.7%) and TP (>98.6%). The anode chamber contains microbes, activated carbon (AC)/graphite granules and Al anode. It was separated from the cathode chamber containing bifunctional catalytic and filtration membrane cathode (loaded with Fe/Mn/C/F/O catalyst) by a multi-medium chamber (MMC) filled with manganese sand and activated carbon granules, which replaced expensive PEM and reduced cost. An air contact oxidation bed for aeration was still adopted before liquid entering the cathode chamber. micro-electrolysis/electro-flocculation helps in achieving high removal efficiencies and contributes to membrane fouling migration. The increase of activated carbon in the separator MMC increased power generation and reduced system electric resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Characterization of Time-Dependent Behavior of Ramming Paste Used in an Aluminum Electrolysis Cell

    Science.gov (United States)

    Orangi, Sakineh; Picard, Donald; Alamdari, Houshang; Ziegler, Donald; Fafard, Mario

    2015-12-01

    A new methodology was proposed for the characterization of time-dependent behavior of materials in order to develop a constitutive model. The material used for the characterization was ramming paste, a porous material used in an aluminum electrolysis cell, which is baked in place under varying loads induced by the thermal expansion of other components of the cell. In order to develop a constitutive model representing the paste mechanical behavior, it was necessary to get some insight into its behavior using samples which had been baked at different temperatures ranging from 200 to 1000 °C. Creep stages, effect of testing temperature on the creep, creep-recovery, as well as nonlinear creep were observed for designing a constitutive law. Uniaxial creep-recovery tests were carried out at two temperatures on the baked paste: ambient and higher. Results showed that the shape of creep curves was similar to a typical creep; recovery happened and the creep was shown to be nonlinear. Those experimental observations and the identification of nonlinear parameters of developed constitutive model demonstrated that the baked paste experiences nonlinear viscoelastic-viscoplastic behavior at different temperatures.

  16. Development of a non-cryogenic nitrogen/oxygen supply system. [for spacecraft environments

    Science.gov (United States)

    1977-01-01

    Modular components were refined or replaced to improve the performance of the electrolysis module in a system which generates both oxygen and hydrogen from hydrazine hydrate. Significant mechanical and electrical performance improvements were achieved in the cathode. Improvements were also made in the phase separation area but at considerable cost in time and money and to the detriment of other investigative areas. Only the pump/bubble separator failed in a manner necessitating redesign. Its failure was, however, due to its being operated above the temperature range for which it was designed. The basic electrolysis cell design was not changed.

  17. Soft-sensing model of temperature for aluminum reduction cell on improved twin support vector regression

    Science.gov (United States)

    Li, Tao

    2018-06-01

    The complexity of aluminum electrolysis process leads the temperature for aluminum reduction cells hard to measure directly. However, temperature is the control center of aluminum production. To solve this problem, combining some aluminum plant's practice data, this paper presents a Soft-sensing model of temperature for aluminum electrolysis process on Improved Twin Support Vector Regression (ITSVR). ITSVR eliminates the slow learning speed of Support Vector Regression (SVR) and the over-fit risk of Twin Support Vector Regression (TSVR) by introducing a regularization term into the objective function of TSVR, which ensures the structural risk minimization principle and lower computational complexity. Finally, the model with some other parameters as auxiliary variable, predicts the temperature by ITSVR. The simulation result shows Soft-sensing model based on ITSVR has short time-consuming and better generalization.

  18. Determination of the Electronics Charge--Electrolysis of Water Method.

    Science.gov (United States)

    Venkatachar, Arun C.

    1985-01-01

    Presents an alternative method for measuring the electronic charge using data from the electrolysis of acidified distilled water. The process (carried out in a commercially available electrolytic cell) has the advantage of short completion time so that students can determine electron charge and mass in one laboratory period. (DH)

  19. Effect of the type of ion exchange membrane on performance, ion transport, and pH in biocatalyzed electrolysis of wastewater

    NARCIS (Netherlands)

    Rozendal, R.A.; Sleutels, T.H.J.A.; Hamelers, H.V.M.; Buisman, C.J.N.

    2008-01-01

    Previous studies have shown that the application of cation exchange membranes (CEMs) in bioelectrochemical systems running on wastewater can cause operational problems. In this paper the effect of alternative types of ion exchange membrane is studied in biocatalyzed electrolysis cells. Four types of

  20. Degradation of Anionic Dye Eosin by Glow Discharge Electrolysis Plasma

    International Nuclear Information System (INIS)

    Gao Jinzhang; Ma Dongping; Guo Xiao; Wang Aixiang; Fu Yan; Wu Jianlin; Yang Wu

    2008-01-01

    This paper describes a novel method for the degradation of eosin by using glow discharge electrolysis (GDE). The effects of various parameters on the removal efficiency were studied. It was found that the eosin degradation could be raised considerably by increasing the applied voltage and the initial concentration, or by decreasing pH of the aqueous solution. Fe 2+ ion had an evident accelerating effect on the eosin degradation. The degradation process of eosin obeyed a pseudo-first-order reaction. The relationship between the degradation rate constant k and the reaction temperature T could be expressed by Arrhenius equation with which the apparent activation energy Ea of 14.110 kJ. mol -1 and the pre-exponential factor ko of 2.065x10 -1 min -1 were obtained, too. The determination of hydroxyl radical was carried out by using N,N-dimethyl-p-nitrosoaniline (RNO) as a scavenger. The results showed that the hydroxyl radical plays an important role in the degradation process.

  1. Degradation of Anionic Dye Eosin by Glow Discharge Electrolysis Plasma

    Science.gov (United States)

    Gao, Jinzhang; Ma, Dongping; Guo, Xiao; Wang, Aixiang; Fu, Yan; Wu, Jianlin; Yang, Wu

    2008-08-01

    This paper describes a novel method for the degradation of eosin by using glow discharge electrolysis (GDE). The effects of various parameters on the removal efficiency were studied. It was found that the eosin degradation could be raised considerably by increasing the applied voltage and the initial concentration, or by decreasing pH of the aqueous solution. Fe2+ ion had an evident accelerating effect on the eosin degradation. The degradation process of eosin obeyed a pseudo-first-order reaction. The relationship between the degradation rate constant k and the reaction temperature T could be expressed by Arrhenius equation with which the apparent activation energy Ea of 14.110 kJ. mol-1 and the pre-exponential factor ko of 2.065×10-1 min-1 were obtained, too. The determination of hydroxyl radical was carried out by using N,N-dimethyl-p-nitrosoaniline (RNO) as a scavenger. The results showed that the hydroxyl radical plays an important role in the degradation process.

  2. Tunable microbubble generator using electrolysis and ultrasound

    OpenAIRE

    Younes Achaoui; Khaled Metwally; Damien Fouan; Zoubida Hammadi; Roger Morin; Eric Debieu; Cédric Payan; Serge Mensah

    2017-01-01

    This letter reports on a method for producing on demand calibrated bubbles in a non-chemically controlled solution using localized micro-electrolysis and ultrasound. Implementing a feedback loop in the process leads to a point source of stable mono-dispersed microbubbles. This approach overcomes the inertial constraints encountered in microfluidics with the possibility to produce from a single to an array of calibrated bubbles. Moreover, this method avoids the use of additional surfactant tha...

  3. Water electrolysis with a conducting carbon cloth: subthreshold hydrogen generation and superthreshold carbon quantum dot formation.

    Science.gov (United States)

    Biswal, Mandakini; Deshpande, Aparna; Kelkar, Sarika; Ogale, Satishchandra

    2014-03-01

    A conducting carbon cloth, which has an interesting turbostratic microstructure and functional groups that are distinctly different from other ordered forms of carbon, such as graphite, graphene, and carbon nanotubes, was synthesized by a simple one-step pyrolysis of cellulose fabric. This turbostratic disorder and surface chemical functionalities had interesting consequences for water splitting and hydrogen generation when such a cloth was used as an electrode in the alkaline electrolysis process. Importantly, this work also gives a new twist to carbon-assisted electrolysis. During electrolysis, the active sites in the carbon cloth allow slow oxidation of its surface to transform the surface groups from COH to COOH and so forth at a voltage as low as 0.2 V in a two-electrode system, along with platinum as the cathode, instead of 1.23 V (plus overpotential), which is required for platinum, steel, or even graphite anodes. The quantity of subthreshold hydrogen evolved was 24 mL cm(-2)  h(-1) at 1 V. Interestingly, at a superthreshold potential (>1.23 V+overpotential), another remarkable phenomenon was found. At such voltages, along with the high rate and quantity of hydrogen evolution, rapid exfoliation of the tiny nanoscale (5-7 nm) units of carbon quantum dots (CQDs) are found in copious amounts due to an enhanced oxidation rate. These CQDs show bright-blue fluorescence under UV light. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Microbial Challenge Testing of Single Liquid Cathode Feed Water Electrolysis Cells for the International Space Station (ISS) Oxygen Generator Assembly (OGA)

    Science.gov (United States)

    Roy, Robert J.; Wilson, Mark E.; Diderich, Greg S.; Steele, John W.

    2011-01-01

    The International Space Station (ISS) Oxygen Generator Assembly (OGA) operational performance may be adversely impacted by microbiological growth and biofilm formation over the electrolysis cell membranes. Biofilms could hinder the transport of water from the bulk fluid stream to the membranes and increase the cell concentration overpotential resulting in higher cell voltages and a shorter cell life. A microbial challenge test was performed on duplicate single liquid-cathode feed water electrolysis cells to evaluate operational performance with increasing levels of a mixture of five bacteria isolated from ISS and Space Shuttle potable water systems. Baseline performance of the single water electrolysis cells was determined for approximately one month with deionized water. Monthly performance was also determined following each inoculation of the feed tank with 100, 1000, 10,000 and 100,000 cells/ml of the mixed suspension of test bacteria. Water samples from the feed tank and recirculating water loops for each cell were periodically analyzed for enumeration and speciation of bacteria and total organic carbon. While initially a concern, this test program has demonstrated that the performance of the electrolysis cell is not adversely impacted by feed water containing the five species of bacteria tested at a concentration measured as high as 1,000,000 colony forming units (CFU)/ml. This paper presents the methodologies used in the conduct of this test program along with the performance test results at each level of bacteria concentration.

  5. Direct Electrolysis of Molten Lunar Regolith for the Production of Oxygen and Metals on the Moon

    Science.gov (United States)

    Sirk, Aislinn H. C.; Sadoway, Donald R.; Sibille, Laurent

    2010-01-01

    When considering the construction of a lunar base, the high cost ($ 100,000 a kilogram) of transporting materials to the surface of the moon is a significant barrier. Therefore in-situ resource utilization will be a key component of any lunar mission. Oxygen gas is a key resource, abundant on earth and absent on the moon. If oxygen could be produced on the moon, this provides a dual benefit. Not only does it no longer need to be transported to the surface for breathing purposes; it can also be used as a fuel oxidizer to support transportation of crew and other materials more cheaply between the surface of the moon, and lower earth orbit (approximately $20,000/kg). To this end a stable, robust (lightly manned) system is required to produce oxygen from lunar resources. Herein, we investigate the feasibility of producing oxygen, which makes up almost half of the weight of the moon by direct electrolysis of the molten lunar regolith thus achieving the generation of usable oxygen gas while producing primarily iron and silicon at the cathode from the tightly bound oxides. The silicate mixture (with compositions and mechanical properties corresponding to that of lunar regolith) is melted at temperatures near 1600 C. With an inert anode and suitable cathode, direct electrolysis (no supporting electrolyte) of the molten silicate is carried out, resulting in production of molten metallic products at the cathode and oxygen gas at the anode. The effect of anode material, sweep rate, and electrolyte composition on the electrochemical behavior was investigated and implications for scale-up are considered. The activity and stability of the candidate anode materials as well as the effect of the electrolyte composition were determined. Additionally, ex-situ capture and analysis of the anode gas to calculate the current efficiency under different voltages, currents and melt chemistries was carried out.

  6. Y-doped BaZrO3 as a chemically stable electrolyte for proton-conducting solid oxide electrolysis cells (SOECs)

    KAUST Repository

    Bi, Lei

    2015-01-01

    A proton-conducting solid oxide electrolysis cell using an Y-doped BaZrO3 electrolyte film, which has been demonstrated to be chemically stable, was successfully fabricated for the first time and showed a promising electrolysis performance.

  7. Elimination of heavy metals from leachates by membrane electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, R. [Technische Universitaet Dresden, Institut fuer Siedlungs- und Industriewasserwirtschaft, Mommsenstrasse 13, 01062 Dresden (Germany); Seidel, H. [UFZ-Umweltforschungszentrum Leipzig-Halle GmbH, Department Bioremediation, Permoserstrasse 15, D-04318 Leipzig (Germany); Rahner, D. [Technische Universitaet Dresden, Institut fuer Physikalische Chemie und Eektrochemie, Mommsenstrasse 13, D-01062 Dresden (Germany); Morgenstern, P. [UFZ-Umweltforschungszentrum Leipzig-Halle GmbH, Department Analytik, Permoserstrasse 15, D-04318 Leipzig (Germany); Loeser, C. [Technische Universitaet Dresden, Institut fuer Lebensmittel- und Bioverfahrenstechnik, Bergstrasse 120, D-01062 Dresden (Germany)

    2004-10-01

    The elimination of heavy metals from bioleaching process waters (leachates) by electrolysis was studied in the anode and cathode region of a membrane electrolysis cell at current densities of 5-20 mA/cm{sup 2} using various electrode materials. The leaching waters containing a wide range of dissolved heavy metals, were high in sulfate, and had pH values of approx. 3. In preliminary tests using a rotating disc electrode the current density-potential curve (CPK) was recorded at a rotation velocity of 0, 1000 and 2000 rpm and a scan rate of 10 mV/s in order to collect information on the influence of transport processes on the electrochemical processes taking place at the electrodes. The electrochemical deposition-dissolution processes at the cathode are strongly dependent on the hydrodynamics. Detailed examination of the anodic oxidation of dissolved Mn(II) indicated that the manganese dioxide which formed adhered well to the electrode surface but in the cathodic return run it was again reduced. Electrode pairs of high-grade steel, lead and coal as well as material combinations were used to investigate heavy metal elimination in a membrane electrolysis cell. Using high-grade steel, lead and carbon electrode pairs, the reduction and deposition of Cu, Zn, Cr, Ni and some Cd in metallic or hydroxide form were observed in an order of 10-40 % in the cathode chamber. The dominant process in the anode chamber was the precipitation of manganese dioxide owing to the oxidation of dissolved Mn(II). Large amounts of heavy metals were co-precipitated by adsorption onto the insoluble MnO{sub 2}. High-grade steel and to some extent lead anodes were dissolved and hence were proven unsuitable as an anode material. These findings were largely confirmed by experiments using combination electrodes of coal and platinized titanium as an anode material and steel as a cathode material.The results indicate that electrochemical metal separation in the membrane electrolysis cell can represent a

  8. Modelling of gas diffusion limitations in Ni/YSZ electrode material in CO2 and co-electrolysis

    DEFF Research Database (Denmark)

    Duhn, Jakob Dragsbæk; Jensen, Anker Degn; Wedel, Stig

    2016-01-01

    Carbon formation during CO2 and co-electrolysis (combined electrolysis of H2O and CO2)has been observed in recent studies, under operating conditions where carbon formation,based on the bulk gas composition, should be thermodynamically unfavorable. The carboncan principally be formed by the Boudo...

  9. On-Board Hydrogen Gas Production System For Stirling Engines

    Science.gov (United States)

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  10. Porous poly(perfluorosulfonic acid) membranes for alkaline water electrolysis

    DEFF Research Database (Denmark)

    Aili, David; Hansen, Martin Kalmar; Andreasen, Jens Wenzel

    2015-01-01

    Poly(perfluorosulfonic acid) (PFSA) is one of a few polymer types that combine excellent alkali resistance with extreme hydrophilicity. It is therefore of interest as a base material in separators for alkaline water electrolyzers. In the pristine form it, however, shows high cation selectivity. T...... for the unmodified membrane. The technological feasibility was demonstrated by testing the membranes in an alkaline water electrolysis cell with encouraging performance.......Poly(perfluorosulfonic acid) (PFSA) is one of a few polymer types that combine excellent alkali resistance with extreme hydrophilicity. It is therefore of interest as a base material in separators for alkaline water electrolyzers. In the pristine form it, however, shows high cation selectivity...... and washed out and the obtained porous materials allowed for swelling to reach water contents up to λ=85 [H2O] [−SO3K]−1. After equilibration in 22 wt% aqueous KOH, ion conductivity of 0.2 S cm−1 was recorded for this membrane type at room temperature, which is significantly higher than 0.01 S cm−1...

  11. Economic Analysis of Improved Alkaline Water Electrolysis

    International Nuclear Information System (INIS)

    Kuckshinrichs, Wilhelm; Ketelaer, Thomas; Koj, Jan Christian

    2017-01-01

    Alkaline water electrolysis (AWE) is a mature hydrogen production technology and there exists a range of economic assessments for available technologies. For advanced AWEs, which may be based on novel polymer-based membrane concepts, it is of prime importance that development comes along with new configurations and technical and economic key process parameters for AWE that might be of interest for further economic assessments. This paper presents an advanced AWE technology referring to three different sites in Europe (Germany, Austria, and Spain). The focus is on financial metrics, the projection of key performance parameters of advanced AWEs, and further financial and tax parameters. For financial analysis from an investor’s (business) perspective, a comprehensive assessment of a technology not only comprises cost analysis but also further financial analysis quantifying attractiveness and supply/market flexibility. Therefore, based on cash flow (CF) analysis, a comprehensible set of metrics may comprise levelised cost of energy or, respectively, levelized cost of hydrogen (LCH) for cost assessment, net present value (NPV) for attractiveness analysis, and variable cost (VC) for analysis of market flexibility. The German AWE site turns out to perform best in all three financial metrics (LCH, NPV, and VC). Though there are slight differences in investment cost and operation and maintenance cost projections for the three sites, the major cost impact is due to the electricity cost. Although investment cost is slightly lower and labor cost is significantly lower in Spain, the difference can not outweigh the higher electricity cost compared to Germany. Given the assumption that the electrolysis operators are customers directly and actively participating in power markets, and based on the regulatory framework in the three countries, in this special case electricity cost in Germany is lowest. However, as electricity cost is profoundly influenced by political decisions as

  12. Economic Analysis of Improved Alkaline Water Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Kuckshinrichs, Wilhelm, E-mail: w.kuckshinrichs@fz-juelich.de; Ketelaer, Thomas; Koj, Jan Christian [Forschungszentrum Juelich, Institute for Energy and Climate Research – Systems Analysis and Technology Evaluation (IEK-STE), Juelich (Germany)

    2017-02-20

    Alkaline water electrolysis (AWE) is a mature hydrogen production technology and there exists a range of economic assessments for available technologies. For advanced AWEs, which may be based on novel polymer-based membrane concepts, it is of prime importance that development comes along with new configurations and technical and economic key process parameters for AWE that might be of interest for further economic assessments. This paper presents an advanced AWE technology referring to three different sites in Europe (Germany, Austria, and Spain). The focus is on financial metrics, the projection of key performance parameters of advanced AWEs, and further financial and tax parameters. For financial analysis from an investor’s (business) perspective, a comprehensive assessment of a technology not only comprises cost analysis but also further financial analysis quantifying attractiveness and supply/market flexibility. Therefore, based on cash flow (CF) analysis, a comprehensible set of metrics may comprise levelised cost of energy or, respectively, levelized cost of hydrogen (LCH) for cost assessment, net present value (NPV) for attractiveness analysis, and variable cost (VC) for analysis of market flexibility. The German AWE site turns out to perform best in all three financial metrics (LCH, NPV, and VC). Though there are slight differences in investment cost and operation and maintenance cost projections for the three sites, the major cost impact is due to the electricity cost. Although investment cost is slightly lower and labor cost is significantly lower in Spain, the difference can not outweigh the higher electricity cost compared to Germany. Given the assumption that the electrolysis operators are customers directly and actively participating in power markets, and based on the regulatory framework in the three countries, in this special case electricity cost in Germany is lowest. However, as electricity cost is profoundly influenced by political decisions as

  13. Fused salt electrolysis

    International Nuclear Information System (INIS)

    Ares, Osvaldo; Botbol, Jose.

    1989-01-01

    Working conditions for zirconium preparation by fused salt electrolysis were studied. For such purpose, a cell was built for operation under argon atmosphere. A graphite crucible served as anode, with steel cathodes. Proper design allowed cathode rechange under the inert atmosphere. Cathodic deposits of zirconium powder occluded salts from the bath. After washing with both water and hydrochloric acid, the metallic powder was consolidated by fusion. Optimum operating conditions were found to arise from an electrolyte of 12% potassium hexafluorzirconate -88% sodium chloride, at 820 deg C and 5 A/cm 2 cathodic current density. Deposits contained 35% of metal and current efficiency reached 66%. The powder contained up to 600 ppm of chlorine and 1.700 ppm of fluorine; after fusion, those amounts decreased to 2 ppm and 3 ppm respectively, with low proportion of metallic impurities. Though oxygen proportion was 4.500 ppm, it should be lowered by improving working conditions, as well as working on an ampler scale. (Author)

  14. Optimization studies of bio-hydrogen production in a coupled microbial electrolysis-dye sensitized solar cell system.

    Science.gov (United States)

    Ajayi, Folusho Francis; Kim, Kyoung-Yeol; Chae, Kyu-Jung; Choi, Mi-Jin; Chang, In Seop; Kim, In S

    2010-03-01

    Bio-hydrogen production in light-assisted microbial electrolysis cell (MEC) with a dye sensitized solar cell (DSSC) was optimized by connecting multiple MECs to a single dye (N719) sensitized solar cell (V(OC) approx. 0.7 V). Hydrogen production occurred simultaneously in all the connected MECs when the solar cell was irradiated with light. The amount of hydrogen produced in each MEC depends on the activity of the microbial catalyst on their anode. Substrate (acetate) to hydrogen conversion efficiencies ranging from 42% to 65% were obtained from the reactors during the experiment. A moderate light intensity of 430 W m(-2) was sufficient for hydrogen production in the coupled MEC-DSSC. A higher light intensity of 915 W m(-2), as well as an increase in substrate concentration, did not show any improvement in the current density due to limitation caused by the rate of microbial oxidation on the anode. A significant reduction in the surface area of the connected DSSC only showed a slight effect on current density in the coupled MEC-DSSC system when irradiated with light.

  15. Observation of neutron bursts in saturation of titanium with deuterium by means of D2O electrolysis

    International Nuclear Information System (INIS)

    Artyukhov, V.I.; Bystritskij, V.M.; Gilev, A.I.

    1991-01-01

    The paper describes a correlation experiment on investigation of low-temperature nuclear dd-fusion during saturation of titanium with deuterium through electrolysis of heavy water D 2 O. The experiments with cathodes of chemically pure titanium and of titanium coated with a 0.4μm nickel layer (mass of titanium 26 g) were carried out. Emission of neutrons in the form of separate bursts was observed in the experiments with the nickel-coated cathode. The neutron emission density in the burst was found to be I n =(3.6±0.9)x10 4 s -1 . 17 refs.; 6 figs

  16. Current as an indicator of ammonia concentration during wastewater treatment in an integrated microbial electrolysis cell - Nitrification system

    DEFF Research Database (Denmark)

    Zhao, Nannan; Angelidaki, Irini; Zhang, Yifeng

    2018-01-01

    with synthetic ammonia-rich wastewater. A good linear relationship (R2 = 0.9419) was observed between current (0.5130–3.906 mA) and ammonia levels (0–62.1 mg NH4+-N/L). Such linear relationship was always obtained regardless of the tested external power supply or wastewater pH. The external electrochemical cell......A key challenge for ammonia monitoring during nitrogen removal process is the extra cost and toxic reagent consuming. Herein the feasibility of current generated by an integrated microbial electrolysis cell (MEC) - nitrification reactor as an indicator of initial ammonia levels (NH3/NH4......+) in wastewater was explored. In this loop system, ammonia was first oxidized to nitrate in the nitrification reactor, and then the effluent was introduced into the cathode of MEC where nitrate was reduced as electron acceptor. The correlation between current and ammonia concentration was first investigated...

  17. Foam Based Gas Diffusion Electrodes for Reversible Alkaline Electrolysis Cells

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2014-01-01

    Alkaline electrolysis cells operated at 250 °C and 40 bar have shown to be able to convert electrical energy into hydrogen at very high efficiencies and power densities. Foam based gas diffusion electrodes and an immobilized electrolyte allow for reversible operation as electrolysis cell or fuel...... cell. In the present work we demonstrate the application of hydrophobic, porous, and electro-catalytically active gas diffusion electrodes. PTFE particles and silver nanowires as electro-catalysts were used in the gas diffusion electrodes. Impedance spectroscopy and cyclic voltammetry were performed...... to determine the cell characteristics. The thickness of the electrolyte matrix was only 200 µm, thereby achieving a serial resistance and area specific resistance of 60 mΩ cm2 and 150 mΩ cm2, respectively, at 200 °C and 20 bar. A new production method was developed to increase the cell size from lab scale (1...

  18. Production of aluminum metal by electrolysis of aluminum sulfide

    Science.gov (United States)

    Minh, Nguyen Q.; Loutfy, Raouf O.; Yao, Neng-Ping

    1984-01-01

    Production of metallic aluminum by the electrolysis of Al.sub.2 S.sub.3 at 700.degree.-800.degree. C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  19. Economics of liquid hydrogen from water electrolysis

    Science.gov (United States)

    Lin, F. N.; Moore, W. I.; Walker, S. W.

    1985-01-01

    An economical model for preliminary analysis of LH2 cost from water electrolysis is presented. The model is based on data from vendors and open literature, and is suitable for computer analysis of different scenarios for 'directional' purposes. Cost data associated with a production rate of 10,886 kg/day are presented. With minimum modification, the model can also be used to predict LH2 cost from any electrolyzer once the electrolyzer's cost data are available.

  20. Performance of supported catalysts for water electrolysis

    OpenAIRE

    Gurrik, Stian

    2012-01-01

    The most active catalyst for oxygen evolution in PEM water electrolysis is ruthenium oxide. Its major drawback as a commercial catalyst is its poor stability. In a mixed oxide with iridium, ruthenium becomes more stable. However, it would be favorable to find a less expensive substitute to iridium. In this work, the dissolution potential and lifetime of mixed oxides containing ruthenium and tantalum are investigated. In order to effectively determine what effects tantalum and particle size ha...

  1. SYSTEM ANALYSIS OF NUCLEAR-ASSISTED SYNGAS PRODUCTION FROM COAL

    International Nuclear Information System (INIS)

    E. A. Harvego; M. G. McKellar; J. E. O'Brien

    2008-01-01

    A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via high-temperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. Results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 66.1% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency

  2. System Analysis of Nuclear-Assisted Syngas Production from Coal

    International Nuclear Information System (INIS)

    Harvego, E.A.; McKellar, M.G.; O'Brien, J.E.

    2009-01-01

    A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via high temperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. Results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 64.4% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency.

  3. Seven harmonic susceptibility in oxygen and hydrogen loading of sintered YBCO by {mu}s pulsed electrolysis in an aqueous solution at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Tripodi, P.; Di Gioacchino, D.; Celani, F. [Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati

    1996-09-01

    The complex AC susceptibility of high T{sub c} superconducting materials has been described in terms of the first seven harmonic component of Fourier series. Has been measured the {chi}{sub n} (n=1,7) of sintered YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) bulk oxygen and hydrogen loaded samples versus amplitude and frequency of AC magnetic field at fixed temperature. The sample have been loaded by {mu}s current pulses electrolysis in an aqueous solution (0.3N LiOH+H{sub 2}O) at room temperature. In addition to the simplicity of the experimental setup, this procedure allows to obtain extremely high equivalent hydrogen/oxygen gas pressure on the surface of the electrodes. The YBCO electrode is polarized by short pulse width (0.5-10 {mu}s) and high power (120 W) peaks with a variable repetition rate (0.1-10000 Hz). The pulses are obtained by an home.made pulse generator. The difference in the behavior of the susceptibilities harmonic component between the deficiency and oxygen or hydrogen loaded samples give us the possibility to connect the susceptibilities with variations of the flux pinning in respect to normal losses in the superconducting materials. The loading can be a good probe to have information on the mechanism of the processes that sustain the critical current density Jc in this situation these affects appear strongly dependent on the loading conditions. By comparison of this measurements has been observed drastic change in behavior of susceptibility.

  4. Electrolysis of plutonium in neutral and basic solutions

    International Nuclear Information System (INIS)

    1978-01-01

    Experiments were conducted on electrolysis of Pu in waste streams. Removal of Pu by this process is maximum at pH 11. Runs on an actual waste stream showed that: Pu can be electrolyzed from neutral or basic solutions down to 10 -10 g/l. Am can also be removed. The removal efficiency is pH dependent. The deposits can be removed by acid leaching

  5. Alternate applications of fusion power: development of a high-temperature blanket for synthetic-fuel production

    International Nuclear Information System (INIS)

    Howard, P.A.; Mattas, R.F.; Krajcinovic, D.; DePaz, J.; Gohar, Y.

    1981-11-01

    This study has shown that utilization of the unique features of a fusion reactor can result in a novel and potentially economical method of decomposing steam into hydrogen and oxygen. Most of the power of fusion reactors is in the form of energetic neutrons. If this power could be used to produce high temperature uncontaminated steam, a large fraction of the energy needed to decomposee the steam could be supplied as thermal energy by the fusion reaction. Proposed high temperature electrolysis processes require steam temperature in excess of 1000 0 C for high efficiency. The design put forth in this study details a system that can accomplish that end

  6. Use of sodium salt electrolysis in the process of continuous ...

    Indian Academy of Sciences (India)

    Use of sodium salt electrolysis in the process of continuous modification of eutectic EN ... the plastic groundmass of the solid solution α (Al), have an effect on their ..... Onyia C, Okorie B, Neife S and Obayi C 2013 World J. Eng. Technol. 1 9. 35.

  7. The labor protection and safety measures at the electrolysis department

    International Nuclear Information System (INIS)

    Galushkin, N.V.

    1995-01-01

    This chapter of monograph is devoted to labor protection and safety measures at the electrolysis department. Thus, the characteristics of dangerous and harmful production factors as well as the danger of thermal burns and thermal exposure were considered. Safety requirements on labor safety were studied.

  8. Complete degradation of Orange G by electrolysis in sub-critical water.

    Science.gov (United States)

    Yuksel, Asli; Sasaki, Mitsuru; Goto, Motonobu

    2011-06-15

    Complete degradation of azo dye Orange G was studied using a 500 mL continuous flow reactor made of SUS 316 stainless steel. In this system, a titanium reactor wall acted as a cathode and a titanium plate-type electrode was used as an anode in a subcritical reaction medium. This hydrothermal electrolysis process provides an environmentally friendly route that does not use any organic solvents or catalysts to remove organic pollutants from wastewater. Reactions were carried out from 30 to 90 min residence times at a pressure of 7 MPa, and at different temperatures of 180-250°C by applying various direct currents ranging from 0.5 to 1A. Removal of dye from the product solution and conversion of TOC increased with increasing current value. Moreover, the effect of salt addition on degradation of Orange G and TOC conversion was investigated, because in real textile wastewater, many salts are also included together with dye. Addition of Na(2)CO(3) resulted in a massive degradation of the dye itself and complete mineralization of TOC, while NaCl and Na(2)SO(4) obstructed the removal of Orange G. Greater than 99% of Orange G was successfully removed from the product solution with a 98% TOC conversion. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Electrical current generation in microbial electrolysis cells by hyperthermophilic archaea Ferroglobus placidus and Geoglobus ahangari

    KAUST Repository

    Yilmazel, Yasemin D.

    2017-10-02

    Few microorganisms have been examined for current generation under thermophilic (40–65 °C) or hyperthermophilic temperatures (≥ 80 °C) in microbial electrochemical systems. Two iron-reducing archaea from the family Archaeoglobaceae, Ferroglobus placidus and Geoglobus ahangari, showed electro-active behavior leading to current generation at hyperthermophilic temperatures in single-chamber microbial electrolysis cells (MECs). A current density (j) of 0.68 ± 0.11 A/m2 was attained in F. placidus MECs at 85 °C, and 0.57 ± 0.10 A/m2 in G. ahangari MECs at 80 °C, with an applied voltage of 0.7 V. Cyclic voltammetry (CV) showed that both strains produced a sigmoidal catalytic wave, with a mid-point potential of − 0.39 V (vs. Ag/AgCl) for F. placidus and − 0.37 V for G. ahangari. The comparison of CVs using spent medium and turnover CVs, coupled with the detection of peaks at the same potentials in both turnover and non-turnover conditions, suggested that mediators were not used for electron transfer and that both archaea produced current through direct contact with the electrode. These two archaeal species, and other hyperthermophilic exoelectrogens, have the potential to broaden the applications of microbial electrochemical technologies for producing biofuels and other bioelectrochemical products under extreme environmental conditions.

  10. Electrical current generation in microbial electrolysis cells by hyperthermophilic archaea Ferroglobus placidus and Geoglobus ahangari

    KAUST Repository

    Yilmazel, Yasemin D.; Zhu, Xiuping; Kim, Kyoung-Yeol; Holmes, Dawn E.; Logan, Bruce E.

    2017-01-01

    Few microorganisms have been examined for current generation under thermophilic (40–65 °C) or hyperthermophilic temperatures (≥ 80 °C) in microbial electrochemical systems. Two iron-reducing archaea from the family Archaeoglobaceae, Ferroglobus placidus and Geoglobus ahangari, showed electro-active behavior leading to current generation at hyperthermophilic temperatures in single-chamber microbial electrolysis cells (MECs). A current density (j) of 0.68 ± 0.11 A/m2 was attained in F. placidus MECs at 85 °C, and 0.57 ± 0.10 A/m2 in G. ahangari MECs at 80 °C, with an applied voltage of 0.7 V. Cyclic voltammetry (CV) showed that both strains produced a sigmoidal catalytic wave, with a mid-point potential of − 0.39 V (vs. Ag/AgCl) for F. placidus and − 0.37 V for G. ahangari. The comparison of CVs using spent medium and turnover CVs, coupled with the detection of peaks at the same potentials in both turnover and non-turnover conditions, suggested that mediators were not used for electron transfer and that both archaea produced current through direct contact with the electrode. These two archaeal species, and other hyperthermophilic exoelectrogens, have the potential to broaden the applications of microbial electrochemical technologies for producing biofuels and other bioelectrochemical products under extreme environmental conditions.

  11. Systemic True False

    African Journals Online (AJOL)

    Preferred Customer

    ):. (a). (b). (c). (d). Answer: True systemics are (b & c); False Systemics (a & d). For more examples, see (10 and 11). Na2O2. NaCl. Na. HCl heat /excess. (O). 300°C electrolysis. (molten). NaOH. NaCl. Na. HCl. H2O electrolysis. (solution). NaCl.

  12. Manufacturing of a LaNiO3 composite electrode for oxygen evolution in commercial alkaline water electrolysis

    DEFF Research Database (Denmark)

    Egelund, Sune; Caspersen, Michael; Nikiforov, Aleksey Valerievich

    2016-01-01

    results were compared to a non-catalysed Watts nickel reference sample and the electrochemical measurements confirmed that the coating decreased the OER overpotential by 70 mV. XRD furthermore revealed that a LaNiO3 + Ni composite structure was obtained. Conventional alkaline water electrolysis...... was carried out at a temperature of 120 °C and a current densities of 0.2 and 0.8 A cm-2. Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Diffraction (XRD) were used for characterization of the morphology....

  13. Window of cold nuclear fusion and biased-pulse electrolysis experiment

    International Nuclear Information System (INIS)

    Takahashi, Akito; Jida, Toshiyuki; Maekawa, Fujio; Sugimoto, Hisashi; Yoshida, Shigeo

    1989-01-01

    Based on the electron screening effect and the excitation of deuteron harmonic oscillators in palladium lattice, theoretical aspects are given to explain the cold fusion phenomena and the possibility of nuclear heating. A narrow window is proposed to meet ≅ 10 watts per cubic centimeter for the nuclear heating, by the hypothetical excitation-screening model. A relatively wide window is feasible to meet a few fusion events per second per cc under the non-stationary conditions of deuteron-charging and discharging. For stationary lattice conditions, the probability of cold fusion is not feasible at all. To confirm the cold fusion phenomena, a heavy water electrolysis experiment was carried out using biased-pulse-electrolytic currents, expecting the enhancement of cold fusion events under charging and discharging of deuterons. For the neutron detection, a cross-checking system between a recoil-proton scintillation detector and a 3 He thermal neutron detector was employed to see coincident time-patterns of neutron emission from an electrolysis cell. To check the energy of emitted neutrons, pulse height spectrum of the recoil-proton detector was monitored. Up to the D-charging time of 300 hr, neutron yields of 1-2 n/s/cc were obtained for time-intervals of 60-200 hr. From the recoil-proton spectra, it was confirmed that 2.45 MeV neutrons by the D(d, n) 3 He fusion branch were emitted. The observed time-patterns of neutron emission suggest the existence of cold fusion under the charging and discharging conditions. (orig.)

  14. Single exponential decay waveform; a synergistic combination of electroporation and electrolysis (E2 for tissue ablation

    Directory of Open Access Journals (Sweden)

    Nina Klein

    2017-04-01

    Full Text Available Background Electrolytic ablation and electroporation based ablation are minimally invasive, non-thermal surgical technologies that employ electrical currents and electric fields to ablate undesirable cells in a volume of tissue. In this study, we explore the attributes of a new tissue ablation technology that simultaneously delivers a synergistic combination of electroporation and electrolysis (E2. Method A new device that delivers a controlled dose of electroporation field and electrolysis currents in the form of a single exponential decay waveform (EDW was applied to the pig liver, and the effect of various parameters on the extent of tissue ablation was examined with histology. Results Histological analysis shows that E2 delivered as EDW can produce tissue ablation in volumes of clinical significance, using electrical and temporal parameters which, if used in electroporation or electrolysis separately, cannot ablate the tissue. Discussion The E2 combination has advantages over the three basic technologies of non-thermal ablation: electrolytic ablation, electrochemical ablation (reversible electroporation with injection of drugs and irreversible electroporation. E2 ablates clinically relevant volumes of tissue in a shorter period of time than electrolysis and electroporation, without the need to inject drugs as in reversible electroporation or use paralyzing anesthesia as in irreversible electroporation.

  15. Microbial electrolysis desalination and chemical-production cell for CO2 sequestration

    KAUST Repository

    Zhu, Xiuping; Logan, Bruce E.

    2014-01-01

    Mineral carbonation can be used for CO2 sequestration, but the reaction rate is slow. In order to accelerate mineral carbonation, acid generated in a microbial electrolysis desalination and chemical-production cell (MEDCC) was examined to dissolve

  16. Proton-conductive nano zeolite-PVA composite film as a new water-absorbing electrolyte for water electrolysis

    Directory of Open Access Journals (Sweden)

    M. Nishihara

    2018-03-01

    Full Text Available In this study, organic-inorganic composite electrolyte membranes are developed for a novel water-absorbing porous electrolyte water electrolysis cell. As the materials of the composite electrolyte membrane, 80 wt% of a proton-conducting nano zeolite (H-MFI as an electrolyte and 20 wt% of poly(vinyl alcohol (PVA as a cross-linkable matrix are used. The nano zeolite is prepared by a milling process. The nano zeolite-PVA composite membrane precursors are prepared by spraying onto a substrate, followed by cross-linking. The resulting nano zeolite-cross-linked PVA composite films are then evaluated for their properties such as proton conductivity as electrolyte membranes for the water-absorbing porous electrolyte water electrolysis cell. It is confirmed that conventional materials such as zeolites and PVA can be used for the water electrolysis as an electrolyte.

  17. Assessment of MHR-based hydrogen energy systems

    International Nuclear Information System (INIS)

    Richards, Matthew; Shenoy, Arkal; Schultz, Kenneth; Brown, Lloyd; Besenbruch, Gottfried; Handa, Norihiko; Das, Jadu

    2004-01-01

    Process heat from a high-temperature nuclear reactor can be used to drive a set of chemical reactions, with the net result of splitting water into hydrogen and oxygen. For example, process heat at temperatures in the range 850degC to 950degC can drive the sulfur-iodine (SI) thermochemical process to produce hydrogen with high efficiency. The SI process produces highly pure hydrogen and oxygen, with formation, decomposition, regeneration, and recycle of the intermediate chemical reagents and low-temperature heat as the only waste product. Electricity can also be used directly to split water, using conventional, low-temperature electrolysis (LTE). Hydrogen can also be produced with hybrid processes that use both process heat and electricity to generate hydrogen. An example of a hybrid process is high-temperature electrolysis (HTE), in which process heat is used to generate steam, which is then supplied to an electrolyzer to generate hydrogen. This process is of interest because the efficiency of electrolysis increases with temperature. Because of its high-temperature capability, advanced of development relative to other high-temperature reactor concepts, and passive-safety features, the Modular Helium Reactor (MHR) is well suited for producing hydrogen using nuclear energy. In this paper we investigate concepts for coupling the MHR to the SI process, LTE, and HTE. These concepts are referred to as the H2-MHR. (author)

  18. Electro oxidation of Phenol on a Ti/RuO{sub 2} anode: effect of some electrolysis parameters

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Iranildes D. dos; Dutra, Achilles J.B. [Universidade Federal do Rio de Janeiro (PEMM/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Engenharia Metalurgica e de Materiais; Afonso, Julio C., E-mail: julio@iq.ufrj.b [Universidade Federal do Rio de Janeiro (IQ/UFRJ), RJ (Brazil). Inst. de Quimica. Dept. de Quimica Analitica

    2011-07-01

    The influences of electrolysis time, anodic area, current density and supporting electrolyte on phenol and its byproducts degradation on a Ti/RuO{sub 2} anode were investigated. It was observed that phenol and its byproducts were rapidly broken down in the presence of chloride ions. Gas chromatography/mass spectrometry (GC/MS) data have shown that the presence of chloride ions lead to chlorophenols formation, due to reactions with Cl{sub 2} and/or OCl{sup -} generated during electrolysis. However, these intermediate products were also degraded later by the oxidizing agents. The standards established by the CONAMA (Brazilian National Council for the Environment) for phenols and chlorophenols in effluents were achieved after 360 min of electrolysis with a current density of 10 mA cm-2. Cyclic voltammograms obtained with the anodes before and after 436 h of electrolysis under severe salinity conditions (2 mol L-1) and current density (800 mA cm-2) showed that Ti/RuO{sub 2} did not lose its electrocatalytic properties. This fact indicates that Ti/RuO{sub 2} can be used for the treatment of effluents containing phenols in a chloride environment. (author)

  19. Bioelectrohydrogenesis and inhibition of methanogenic activity in microbial electrolysis cells - A review.

    Science.gov (United States)

    Karthikeyan, Rengasamy; Cheng, Ka Yu; Selvam, Ammaiyappan; Bose, Arpita; Wong, Jonathan W C

    2017-11-01

    Microbial electrolysis cells (MECs) are a promising technology for biological hydrogen production. Compared to abiotic water electrolysis, a much lower electrical voltage (~0.2V) is required for hydrogen production in MECs. It is also an attractive waste treatment technology as a variety of biodegradable substances can be used as the process feedstock. Underpinning this technology is a recently discovered bioelectrochemical pathway known as "bioelectrohydrogenesis". However, little is known about the mechanism of this pathway, and numerous hurdles are yet to be addressed to maximize hydrogen yield and purity. Here, we review various aspects including reactor configurations, microorganisms, substrates, electrode materials, and inhibitors of methanogenesis in order to improve hydrogen generation in MECs. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Anion-selective materials with 1,4-diazabicyclo[2.2.2]octane functional groups for advanced alkaline water electrolysis

    Czech Academy of Sciences Publication Activity Database

    Hnát, J.; Plevová, M.; Žitka, Jan; Paidar, M.; Bouzek, K.

    2017-01-01

    Roč. 248, 10 September (2017), s. 547-555 ISSN 0013-4686 R&D Projects: GA ČR(CZ) GA16-20728S Institutional support: RVO:61389013 Keywords : water electrolysis * alkaline environment * anion-selective membrane Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 4.798, year: 2016

  1. Phosphate recovery as struvite within a single chamber microbial electrolysis cell

    KAUST Repository

    Cusick, Roland D.; Logan, Bruce E.

    2012-01-01

    An energy efficient method of concurrent hydrogen gas and struvite (MgNH 4PO 4·6H 2O) production was investigated based on bioelectrochemically driven struvite crystallization at the cathode of a single chamber microbial electrolysis struvite

  2. Electrochemical extraction of oxygen using PEM electrolysis technology

    Directory of Open Access Journals (Sweden)

    BOULBABA ELADEB

    2012-11-01

    Full Text Available Electrochemical extraction of oxygen from air can be carried out by chemical reduction of oxygen at the cathode and simultaneous oxygen evolution by water anode oxidation. The present investigation deals with the use of an electrolysis cell of PEM technology for this purpose. A dedicated 25 cm2 cell provided with a commercial water electrolysis MEA and titanium grooved plates has been designed for continuous operation at pressures close to the ambient level. The MEA consisted of a Nafion 117 membrane sandwiched between a Pt/C cathode and a non-supported Pt-Ir anode. Oxygen partial consumption in long-term runs was evaluated by analysis of the outlet air by gas chromatography, depending on the cell voltage - or the current density - and the excess in air oxygen fed to the cathode. Runs over more 50 hours indicated the relative stability of the components used for current densities ranging from 0.1 to 0.2 A cm-2 with high efficiency of oxygen reduction. Higher current density could be envisaged with more efficient MEA’s, exhibiting lower overpotentials for oxygen evolution to avoid too significant degradation of the anode material and the membrane. Interpretation of the data has been carried out by calculation of the cathode current efficiency.

  3. The influence of iridium chemical oxidation state on the performance and durability of oxygen evolution catalysts in PEM electrolysis

    Science.gov (United States)

    Siracusano, S.; Baglio, V.; Grigoriev, S. A.; Merlo, L.; Fateev, V. N.; Aricò, A. S.

    2017-10-01

    Nanosized Ir-black (3 nm) and Ir-oxide (5 nm) oxygen evolution electrocatalysts showing high performance in polymer electrolyte membrane (PEM) water electrolysis based on Aquivion® short-side chain ionomer membrane are investigated to understand the role of the Ir oxidation state on the electrocatalytic activity and stability. Despite the smaller mean crystallite size, the Ir-black electrocatalyst shows significantly lower initial performance than the Ir-oxide. During operation at high current density, the Ir-black shows a decrease of cell potential with time whereas the Ir-oxide catalyst shows increasing cell potential resulting in a degradation rate of about 10 μV/h, approaching 1000 h. The unusual behaviour of the Ir-black results from the oxidation of metallic Ir to IrOx. The Ir-oxide catalyst shows instead a hydrated structure on the surface and a negative shift of about 0.5 eV for the Ir 4f binding energy after 1000 h electrolysis operation. This corresponds to the formation of a sub-stoichiometric Ir-oxide on the surface. These results indicate that a hydrated IrO2 with high oxidation state on the surface is favourable in decreasing the oxygen evolution overpotential. Modifications of the Ir chemical oxidation state during operation can affect significantly the catalytic activity and durability of the electrolysis system.

  4. Carbon Deposition during CO2 Electrolysis in Ni-Based Solid-Oxide-Cell Electrodes

    DEFF Research Database (Denmark)

    Skafte, Theis Løye; Graves, Christopher R.; Blennow, P.

    2015-01-01

    the onset of carbon deposition. The outlet gas composition at each current step was estimated based on the inlet gas composition and the reactant conversion using Faraday's law. The increase in voltage was observed at lower outlet pCO/pCO2 ratios than that corresponding to the expected thermodynamic......The carbon formation threshold in an operating cell was investigated during electrolysis of an idealized reactant atmosphere of CO and CO2. The electrolysis current was gradually increased in steps until the cell voltage spontaneously increased, thereby indicating cell degradation and possibly...

  5. A novel bioactive haemodialysis system using dissolved dihydrogen (H2) produced by water electrolysis: a clinical trial.

    Science.gov (United States)

    Nakayama, Masaaki; Nakano, Hirofumi; Hamada, Hiromi; Itami, Noritomo; Nakazawa, Ryoichi; Ito, Sadayoshi

    2010-09-01

    Chronic inflammation in haemodialysis (HD) patients indicates a poor prognosis. However, therapeutic approaches are limited. Hydrogen gas (H(2)) ameliorates oxidative and inflammatory injuries to organs in animal models. We developed an HD system using a dialysis solution with high levels of dissolved H(2) and examined the clinical effects. Dialysis solution with H(2) (average of 48 ppb) was produced by mixing dialysate concentrates and reverse osmosis water containing dissolved H(2) generated by a water electrolysis technique. Subjects comprised 21 stable patients on standard HD who were switched to the test HD for 6 months at three sessions a week. During the study period, no adverse clinical signs or symptoms were observed. A significant decrease in systolic blood pressure (SBP) before and after dialysis was observed during the study, and a significant number of patients achieved SBP <140 mmHg after HD (baseline, 21%; 6 months, 62%; P < 0.05). Changes in dialysis parameters were minimal, while significant decreases in levels of plasma monocyte chemoattractant protein 1 (P < 0.01) and myeloperoxidase (P < 0.05) were identified. Adding H(2) to haemodialysis solutions ameliorated inflammatory reactions and improved BP control. This system could offer a novel therapeutic option for control of uraemia.

  6. Co-electrolysis of CO2 and H2O in solid oxide cells: Performance and durability

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Ebbesen, Sune; Mogensen, Mogens Bjerg

    2011-01-01

    This study examines the initial performance and durability of a solid oxide cell applied for co-electrolysis of CO2 and H2O. Such a cell, when powered by renewable/nuclear energy, could be used to recycle CO2 into sustainable hydrocarbon fuels. Polarization curves and electrochemical impedance...... systematically varied test conditions enabled clear visual identification of five electrode processes that contribute to the cell resistance. The processes could be assigned to each electrode and to gas concentration effects by examining their dependence on gas composition changes and temperature. This study...

  7. Heavy water production by alkaline water electrolysis

    International Nuclear Information System (INIS)

    Kamath, Sachin; Sandeep, K.C.; Bhanja, Kalyan; Mohan, Sadhana; Sugilal, G.

    2014-01-01

    Several heavy water isotope production processes are reported in literature. Water electrolysis in combination with catalytic exchange CECE process is considered as a futuristic process to increase the throughput and reduce the cryogenic distillation load but the application is limited due to the high cost of electricity. Any improvement in the efficiency of electrolyzers would make this process more attractive. The efficiency of alkaline water electrolysis is governed by various phenomena such as activation polarization, ohmic polarization and concentration polarization in the cell. A systematic study on the effect of these factors can lead to methods for improving the efficiency of the electrolyzer. A bipolar and compact type arrangement of the alkaline water electrolyzer leads to increased efficiency and reduced inventory in comparison to uni-polar tank type electrolyzers. The bipolar type arrangement is formed when a number of single cells are stacked together. Although a few experimental studies have been reported in the open literature, CFD simulation of a bipolar compact alkaline water electrolyzer with porous electrodes is not readily available.The principal aim of this study is to simulate the characteristics of a single cell compact electrolyzer unit. The simulation can be used to predict the Voltage-Current Density (V-I) characteristics, which is a measure of the efficiency of the process.The model equations were solved using COMSOL multi-physics software. The simulated V-I characteristic is compared with the experimental data

  8. Conjugated oligoelectrolyte represses hydrogen oxidation by Geobacter sulfurreducens in microbial electrolysis cells

    KAUST Repository

    Liu, Jia; Hou, Huijie; Chen, Xiaofen; Bazan, Guillermo C.; Kashima, Hiroyuki; Logan, Bruce

    2015-01-01

    © 2015 Elsevier B.V. A conjugated oligoelectrolyte (COE), which spontaneously aligns within cell membranes, was shown to completely inhibit H2 uptake by Geobacter sulfurreducens in microbial electrolysis cells. Coulombic efficiencies that were 490

  9. Ultrasound-Guided Application of Percutaneous Electrolysis as an Adjunct to Exercise and Manual Therapy for Subacromial Pain Syndrome: a Randomized Clinical Trial.

    Science.gov (United States)

    de-Miguel-Valtierra, Lorena; Salom-Moreno, Jaime; Fernández-de-Las-Peñas, César; Cleland, Joshua A; Arias-Buría, José L

    2018-05-16

    This randomized clinical trial compared the effects of adding US-guided percutaneous electrolysis into a program consisting of manual therapy and exercise on pain, related-disability, function and pressure sensitivity in subacromial pain syndrome. Fifty patients with subacromial pain syndrome were randomized into manual therapy and exercise or percutaneous electrolysis group. All patients received the same manual therapy and exercise program, one session per week for 5 consecutive weeks. Patients assigned to the electrolysis group also received the application of percutaneous electrolysis at each session. The primary outcome was Disabilities of the Arm, Shoulder and Hand (DASH). Secondary outcomes included pain, function (Shoulder Pain and Disability Index-SPADI) pressure pain thresholds (PPTs) and Global Rating of Change (GROC). They were assessed at baseline, post-treatment, and 3, and 6 months after treatment. Both groups showed similar improvements in the primary outcome (DASH) at all follow-ups (P=0.051). Subjects receiving manual therapy, exercise, and percutaneous electrolysis showed significantly greater changes in shoulder pain (P0.91) for shoulder pain and function at 3 and 6 months in favour of the percutaneous electrolysis group. No between-groups differences in PPT were found. The current clinical trial found that the inclusion of US-guided percutaneous electrolysis in combination with manual therapy and exercise resulted in no significant differences for related-disability (DASH) than the application of manual therapy and exercise alone in patients with subacromial pain syndrome. Nevertheless, differences were reported for some secondary outcomes such as shoulder pain and function (SPADI). Whether or not these effects are reliable should be addressed in future studies Perspective This study found that the inclusion of US-guided percutaneous electrolysis into a manual therapy and exercise program resulted in no significant differences for disability

  10. A study on the separation of Neodymium and zirconium from impure uranium by fused-salt electrolysis

    International Nuclear Information System (INIS)

    Lee, Won Joon; Lee, Seong Ho; Lee, Jae Heon; Lee, Eung Cho

    1997-01-01

    A study on the electrorefining of an impure uranium containing zirconium and neodymium at 500 deg C by KCl-LiCl fused salt electrolysis was performed. The reduction potentials of uranium and neodymium were 0.12V and 0.64V (vs. Ag/AgCl electrode), respectively. When a 1wt% Nd of uranium was added as an impurity, 0.001wt% Nd was deposited onto the cathode below 0.5V after electrolysis. When a 10.5wt% Zr of uranium was added to liquid cadmium anode as an impurity, zirconium was evaporated as ZrCl 4 at 500 deg C during electrolysis, and consequently uranium was deposited onto the cathode as a purity of 99.98wt% U. The morphology of purified uranium was appeared as dendritic structure. The activity coefficient of metallic neodymium for the displacement reaction of UCl 3 + Nd (cd) = NdCl 3 + U ( -c d) was calculated to be 3.67 x 10 -10 at 500 deg C. (author)

  11. Wind power generation plant installed on cargo ship and marine resources recovery by seawater electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Murahara, M. [Tokyo Inst. of Technology, Tokyo (Japan)]|[Tokai Univ., Hiratsuka, Kanagawa (Japan); Seki, K. [Mingdao Univ., Taiwan (China)]|[Tokai Univ., Hiratsuka, Kanagawa (Japan). Research Inst. of Science and Technology

    2008-07-01

    Transmission loss from offshore wind turbine arrays is directly proportional to the length of the cable that brings power onshore. In order to minimize transmission loss, wind-generated electricity needs to be stored temporarily in a different form. Seawater, rock salt, and water of saline lakes can be desalinated and then electrolyzed to produce hydrogen. This paper presented a new method of offshore sodium production in Japan by seawater electrolysis. In this technique, sodium is manufactured on site by molten-salt electrolysis as a solid fuel. Sodium is electrolytically collected from the seawater or rock salt by the wind power generation. The sodium is then transported to a hydrogen power plant on land and then is added water to generate hydrogen for operating a hydrogen combustion turbine. The sodium hydroxide by-product is then supplied to the soda industry as a raw material. In seawater electrolysis, not only sodium but also fresh water, magnesium, calcium, potassium, sodium hydroxide, chlorine, oxygen, hydrogen, hydrochloric acid, and sulfuric acid are isolated and recovered as by-products. 5 refs., 6 figs.

  12. Large-scale hydrogen production using nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ryland, D.; Stolberg, L.; Kettner, A.; Gnanapragasam, N.; Suppiah, S. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    For many years, Atomic Energy of Canada Limited (AECL) has been studying the feasibility of using nuclear reactors, such as the Supercritical Water-cooled Reactor, as an energy source for large scale hydrogen production processes such as High Temperature Steam Electrolysis and the Copper-Chlorine thermochemical cycle. Recent progress includes the augmentation of AECL's experimental capabilities by the construction of experimental systems to test high temperature steam electrolysis button cells at ambient pressure and temperatures up to 850{sup o}C and CuCl/HCl electrolysis cells at pressures up to 7 bar and temperatures up to 100{sup o}C. In parallel, detailed models of solid oxide electrolysis cells and the CuCl/HCl electrolysis cell are being refined and validated using experimental data. Process models are also under development to assess options for economic integration of these hydrogen production processes with nuclear reactors. Options for large-scale energy storage, including hydrogen storage, are also under study. (author)

  13. Heterogeneous anion conducting membranes based on linear and crosslinked KOH doped polybenzimidazole for alkaline water electrolysis

    DEFF Research Database (Denmark)

    Aili, David; Hansen, Martin Kalmar; Renzaho, Richard Fulgence

    2013-01-01

    Polybenzimidazole is a highly hygroscopic polymer that can be doped with aqueous KOH to give a material with high ion conductivity in the 10−2Scm−1 range, which in combination with its low gas permeability makes it an interesting electrolyte material for alkaline water electrolysis. In this study...... on their linear counterpart. The technical feasibility of the membranes was evaluated by the preliminary water electrolysis tests showing performance comparable to that of commercially available cell separators with great potential of further improvement....

  14. Electrode materials for hydrobromic acid electrolysis in Texas Instruments' solar chemical converter

    Energy Technology Data Exchange (ETDEWEB)

    Luttmer, J.D.; Konrad, D.; Trachtenberg, I.

    1985-05-01

    Texas Instruments has developed a solar chemical converter (SCC) which converts solar energy into chemical energy via the electrolysis of hydrobromic acid. Various materials were evaluated as anodes and cathodes for the electrolysis of the acid. Emphasis was placed on obtaining low overvoltage electrodes with good long-term stability. Sputtered platinum-iridium thin films were identified as the best choice as the cathode material, and sputtered iridium and iridium oxide thin films were identified as the best choice as anode materials. Electrochemical measurements indicate that low overvoltage losses are encountered on these materials at operating current densitities in the SCC. Accelerated corrosion tests of the materials predict acceptable electrode stability for 20 years in an environment representative of onthe-roof service.

  15. A basic study on fluoride-based molten salt electrolysis technology

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Il Soon [Seoul National University, Seoul (Korea); Kim, Kwang Bum [Yonsei University, Seoul (Korea); Park, Byung Gi [Seoul National University, Seoul (Korea)

    2001-04-01

    The objective of this project is to study on the physicochemical properties of fluoride molten salt, to develop numerical model for simulation of molten salt electrolysis, and to establish experimental technique of fluoride molten salt. Physicochemical data of fluoride molten salt are investigated and summarized. The numerical model, designated as REFIN is developed with diffusion-layer theory and electrochemical reaction kinetics. REFIN is benchmarked with published experimental data. REFIN has a capability to simulate multicomponent electrochemical system at transient conditions. Experimental device is developed to measure electrochemical properties of structural material for fluoride molten salt. Ni electrode is measured with cyclic voltammogram in the conditions of 600 .deg. C LiF-BeF{sub 2} and 700 .deg. C LiF-BeF{sub 2}. 74 refs., 23 figs., 57 tabs. (Author)

  16. Potential of Reversible Solid Oxide Cells as Electricity Storage System

    Directory of Open Access Journals (Sweden)

    Paolo Di Giorgio

    2016-08-01

    Full Text Available Electrical energy storage (EES systems allow shifting the time of electric power generation from that of consumption, and they are expected to play a major role in future electric grids where the share of intermittent renewable energy systems (RES, and especially solar and wind power plants, is planned to increase. No commercially available technology complies with all the required specifications for an efficient and reliable EES system. Reversible solid oxide cells (ReSOC working in both fuel cell and electrolysis modes could be a cost effective and highly efficient EES, but are not yet ready for the market. In fact, using the system in fuel cell mode produces high temperature heat that can be recovered during electrolysis, when a heat source is necessary. Before ReSOCs can be used as EES systems, many problems have to be solved. This paper presents a new ReSOC concept, where the thermal energy produced during fuel cell mode is stored as sensible or latent heat, respectively, in a high density and high specific heat material and in a phase change material (PCM and used during electrolysis operation. The study of two different storage concepts is performed using a lumped parameters ReSOC stack model coupled with a suitable balance of plant. The optimal roundtrip efficiency calculated for both of the configurations studied is not far from 70% and results from a trade-off between the stack roundtrip efficiency and the energy consumed by the auxiliary power systems.

  17. Treatment of simulated wastewater containing n-phenyl-n-isopropyl-p-phenylenediamine using electrolysis system with Ti/TiRuO2 electrodes

    Directory of Open Access Journals (Sweden)

    Thelma Helena Inazaki

    2004-11-01

    Full Text Available This study investigated the effects of the electrolytic treatment in the simulated wastewater with aromatic amine n-phenyl-n-isopropyl-p-phenylenediamine (Flexzone 3P® using Ti/TiRuO2 electrodes under 0.025 A/cm² (DC for different electrolysis durations (5; 15; 30; 45 and 60 min. Conductivity, pH, UV-visible spectra, gas chromatograms, toxicity and biodegradation tests were carried out. During the electrolytic treatment the pH decreased and conductivity increased slightly. After 60 min of electrolysis, the concentration of Flexzone 3P decreased by 65.1%. UV-vis spectra and chromatograms of simulated wastewater showed changes in the molecular structure of the aromatic amine. After 5 and 15 min of electrolysis, the simulated wastewater containing the Flexzone 3P showed detoxification by Saccharomyces cerevisiae toxicity test. The electrolysis of 5 min improved the biodegradation of the simulated wastewater containing Flexzone 3P.O presente trabalho apresenta os resultados dos tratamentos eletrolíticos (05; 15; 30; 45 e 60 min no efluente simulado com o composto Flexzone 3P, utilizando-se eletrodos de Ti/TiRuO2, sob 0,025 A cm-2. Após as eletrólises, foram feitas análises de pH, condutividade, espectrofotometria no UV-vis, análise por cromatografia gasosa, ensaios de toxicidade utilizando Saccharomyces cerevisiae e ensaio de respirometria de Bartha. O pH dos efluentes foi diminuindo à medida que aumentou- se o tempo de eletrólise, ao contrário da condutividade, a qual apresentou pequeno aumento. Verificou-se que após 60 min de tratamento foi obtida diminuição da concentração do composto Flexzone 3P em 65,1%. Analisando-se os espectros de UV-vis e cromatogramas do efluente após realização do tratamento eletrolítico, concluiu-se que ocorreram oxidações e transformações de funções orgânicas do composto, durante os tratamentos. Após a realização do tratamento eletrolítico, o efluente simulado apresentou diminuição da

  18. 31. Introduction with adjacent production of foundry and rolling department of electrolysis shop

    International Nuclear Information System (INIS)

    Ivanov, A.V.

    1993-01-01

    The introduction with adjacent production of foundry and rolling department of electrolysis shop was conducted. The foundry machine was described. The chemical properties of aluminium for ferrous alloy production were defined.

  19. Clinical estimation of sup(99m)Tc-labeled compounds produced by electrolysis

    International Nuclear Information System (INIS)

    Watanabe, Katsuji; Kawahira, Kenjiro; Kamoi, Itsuma; Morita, Kazunori

    1974-01-01

    Scintigrams were made using sup(99m)Tc-Sn-colloid, sup(99m)Tc-pyrophosphate, sup(99m)Tc-EDTA and sup(99m)Tc-albumin prepared by electrolysis, and a clinical evaluation was attempted. No side effects were recognized in 228 cases, therefore the object of this study could be attained. Future study was thought to be necessary because the pictures were somewhat indistinct. However, each sup(99m)Tc-labeled compound could be prepared very easily and was extremely convenient for daily use. sup(99m)Tc- is a nuclide which has many advantages for use with scintigrams. More useful sup(99m)Tc-labeled compounds will be explored in the future and is expected that electrolysis has many possibilities for use in the preparation of sup(99m)Tc-labeled compounds. (Tsunoda, M.)

  20. Life Time Performance Characterization of Solid Oxide Electrolysis Cells for Hydrogen Production

    DEFF Research Database (Denmark)

    Sun, Xiufu; Chen, Ming; Liu, Yi-Lin

    2015-01-01

    . In this work, long-term durability of Ni/yttria stabilized zirconia (YSZ) supported planar SOECs were investigated at 800 oC for electrolysis of steam. The cells, which represent the state-of-the-art SOEC technology at Technical University of Denmark (DTU), have a Ni/YSZ support and active fuel electrode......, OCV) to -1.25 A/cm2. Detailed electrochemical and post-mortem characterizations were further conducted in order to clarify the cell or electrode degradation mechanisms. The cells show stable performance, with a steady-state degradation rate of up to 2 %/1000 h for electrolysis tests with current......Globally the amount of electricity generated from renewable energy sources such as wind or solar energy is increasing. To integrate high amount of fluctuating renewable energy into the existing energy grid, efficient and cost competitive conversion of electricity into other kinds of energy carriers...

  1. On process model representation and AlF{sub 3} dynamics of aluminium electrolysis cells

    Energy Technology Data Exchange (ETDEWEB)

    Drengstig, Tormod

    1997-12-31

    This thesis develops a formal graphical based process representation scheme for modelling complex, non-standard unit processes. The scheme is based on topological and phenomenological decompositions. The topological decomposition is the modularization of processes into modules representing volumes and boundaries, whereas the phenomenological decomposition focuses on physical phenomena and characteristics inside these topological modules. This defines legal and illegal connections between components at all levels and facilitates a full implementation of the methodology into a computer aided modelling tool that can interpret graphical symbols and guide modelers towards a consistent mathematical model of the process. The thesis also presents new results on the excess AlF{sub 3} and bath temperature dynamics of an aluminium electrolysis cell. A dynamic model of such a cell is developed and validated against known behaviour and real process data. There are dynamics that the model does not capture and this is further discussed. It is hypothesized that long-term prediction of bath temperature and excess AlF{sub 3} is impossible with a current efficiency model considering only bath composition and temperature. A control strategy for excess AlF{sub 3} and bath temperature is proposed based on an almost constant AlF{sub 3} input close to average consumption and energy manipulations to compensate for the disturbances. 96 refs., 135 figs., 22 tabs.

  2. Electrolysis: Information and Opportunities for Electric Power Utilities

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, B.; Levene, J.; Harrison, K.; Sen, P.K.; Novachek, F.

    2006-09-01

    Recent advancements in hydrogen technologies and renewable energy applications show promise for economical near- to mid-term conversion to a hydrogen-based economy. As the use of hydrogen for the electric utility and transportation sectors of the U.S. economy unfolds, electric power utilities need to understand the potential benefits and impacts. This report provides a historical perspective of hydrogen, discusses the process of electrolysis for hydrogen production (especially from solar and wind technologies), and describes the opportunities for electric power utilities.

  3. ANALYSIS OF A POSSIBLE REDUCTION IN ENERGY CONSUMPTION IN WATER ELECTROLYSIS REACTION

    Directory of Open Access Journals (Sweden)

    Aurel George POPESCU

    2013-05-01

    Full Text Available It was experimentally observed that the electrolysis reaction continues a short period of time - time torelax c - after the cell power supply is interrupted. This paper presents an analysis of transient phenomenaoccurring and pr opose technical solutions

  4. Clean hydrogen generation through the electrocatalytic oxidation of ethanol in a Proton Exchange Membrane Electrolysis Cell (PEMEC): Effect of the nature and structure of the catalytic anode

    Science.gov (United States)

    Lamy, Claude; Jaubert, Thomas; Baranton, Stève; Coutanceau, Christophe

    2014-01-01

    The electrocatalytic oxidation of ethanol was investigated in a Proton Exchange Membrane Electrolysis Cell (PEMEC) working at low temperature (20°C) on several Pt-based catalysts (Pt/C, PtSn/C, PtSnRu/C) in order to produce very clean hydrogen by electrolysis of a biomass compound. The electrocatalytic activity was determined by cyclic voltammetry and the rate of hydrogen evolution was measured for each catalyst at different current densities. The cell voltages UEtOH were recorded as a function of time for each current density. At 100 mA cm-2, i.e. 0.5 A with the 5 cm2 surface area PEMEC used, the cell voltage did not exceed 0.9 V for an evolution rate of about 220 cm3 of hydrogen per hour and the electrical energy consumed was less than 2.3 kWh (Nm3)-1, i.e. less than one half of the energy needed for water electrolysis (4.7 kWh (Nm3)-1 at UH2O = 2 V). This result is valid for the decomposition of any organic compound, particularly those originated from biomass resource, provided that their electro-oxidation rate is sufficient (>100 mA cm-2) at a relatively low cell voltage (Ucell < 1 V) which necessitates the development of efficient electrocatalysts for the electrochemical decomposition of this compound.

  5. Static feed water electrolysis subsystem development

    Science.gov (United States)

    Schubert, Franz H. (Inventor); Grigger, David J. (Inventor)

    1991-01-01

    This disclosure is directed to an electrolysis cell forming hydrogen and oxygen at spaced terminals. The anode terminal is porous and able to form oxygen within the cell and permit escape of the gaseous oxygen through the anode and out through a flow line in the presence of backpressure. Hydrogen is liberated in the cell at the opposing solid metal cathode which is permeable to hydrogen but not oxygen so that the migratory hydrogen formed in the cell is able to escape from the cell. The cell is maintained at an elevated pressure so that oxygen liberated by the cell is delivered at elevated pressure without pumping to raise the pressure of the oxygen.

  6. Feasibility study of NaOH regeneration in acid gas removal unit using membrane electrolysis

    Science.gov (United States)

    Taufany, Fadlilatul; Pratama, Alvian; Romzuddin, Muhammad

    2017-05-01

    The world's energy demand is increasing with the development of human civilization. Due to limited energy resource, after 2020 fossil fuels thus is predicted will be replaced by renewable resources. Taking an example, one of the potential renewable energy to be considered is biogas, as its high content of methane, which can be produced via the fermentation process of the organic compounds under controlled anaerobic environment by utilizing the methanogen bacteria. However, prior the further use, this biogas must be purified from its impurities contents, i.e. acid gas of CO2 and H2S, up to 4% and 16 ppmv, respectively, in the acid gas removal unit. This such of purification efforts, will significantly increase the higher heating value of biogas, approximately from 600 to 900 Btu/Scf. During the purification process in this acid gas removal unit, NaOH solution is used as a liquid absorbent to reduce those acid gases content, in which the by-product of alkali salt (brine) was produced as waste. Here we report the feasibility study of the NaOH regeneration process in acid gas removal unit via membrane electrolysis technology, in which both the technical and economic aspects are taken account. To be precise in procedure, the anode semi-cell was filled with the brine solution, while the cathode semi-cell was filled with demineralized water, and those electrodes were separated by the cation exchange membrane. Furthermore, the applied potential was varied ranging from 5, 10, 15 and to 20 V, while the concentration of KCl electrolyte solutions were varied ranging from 0.01, 0.05, 0.1, and to 0.03 M. This study was conducted under controlled temperatures of 30 and 50 °C. Here we found that the % sodium recovery was increased along with the applied potential, temperature, and the decrease in KCl electrolyte concentration. We found that the best results, by means of the highest % sodium recovery, i.e. 97.26 %, was achieved under the experimental condition of temperature at 30

  7. Tunable microbubble generator using electrolysis and ultrasound

    Science.gov (United States)

    Achaoui, Younes; Metwally, Khaled; Fouan, Damien; Hammadi, Zoubida; Morin, Roger; Debieu, Eric; Payan, Cédric; Mensah, Serge

    2017-01-01

    This letter reports on a method for producing on demand calibrated bubbles in a non-chemically controlled solution using localized micro-electrolysis and ultrasound. Implementing a feedback loop in the process leads to a point source of stable mono-dispersed microbubbles. This approach overcomes the inertial constraints encountered in microfluidics with the possibility to produce from a single to an array of calibrated bubbles. Moreover, this method avoids the use of additional surfactant that may modify the composition of the host fluid. It impacts across a broad range of scientific domains from bioengineering, sensing to environment.

  8. Tunable microbubble generator using electrolysis and ultrasound

    Directory of Open Access Journals (Sweden)

    Younes Achaoui

    2017-01-01

    Full Text Available This letter reports on a method for producing on demand calibrated bubbles in a non-chemically controlled solution using localized micro-electrolysis and ultrasound. Implementing a feedback loop in the process leads to a point source of stable mono-dispersed microbubbles. This approach overcomes the inertial constraints encountered in microfluidics with the possibility to produce from a single to an array of calibrated bubbles. Moreover, this method avoids the use of additional surfactant that may modify the composition of the host fluid. It impacts across a broad range of scientific domains from bioengineering, sensing to environment.

  9. Optimization of synthesis of the nickel-cobalt oxide based anode electrocatalyst and of the related membrane-electrode assembly for alkaline water electrolysis

    Science.gov (United States)

    Chanda, Debabrata; Hnát, Jaromir; Bystron, Tomas; Paidar, Martin; Bouzek, Karel

    2017-04-01

    In this work, the Ni-Co spinel oxides are synthesized via different methods and using different calcination temperatures. Properties of the prepared materials are compared. The best route is selected and used to prepare a Ni1+xCo2-xO4 (-1 ≤ x ≤ 1) series of materials in order to investigate their catalytic activity towards the oxygen evolution reaction (OER). The results show that hydroxide preparation yields NiCo2O4 oxide with the highest activity. 325 °C is identified as the optimum calcination temperature. Subsequently, the catalysts are tested in an electrolysis cell. To prepare an anode catalyst layer based on NiCo2O4 catalyst on top of a nickel foam substrate for membrane electrode assembly (MEA) construction, following polymer binders are used: anion-selective quaternized polyphenylene oxide (qPPO), inert polytetrafluoroethylene (PTFE®), and cation-selective Nafion®. qPPO ionomer containing MEA exhibited highest OER activity. The current density obtained using a MEA containing qPPO binder attains a value of 135 mA cm-2 at a cell voltage of 1.85 V. After 7 h chronopotentiometric experiment at a constant current density of 225 mA cm-2, the MEA employing PTFE® binder shows higher stability than the other binders in alkaline water electrolysis at 50 °C. Under similar conditions, stability of the PTFE®-binding MEA is examined for 135 h.

  10. Carbon Deposition during CO2 Electrolysis in Ni-Based Solid-Oxide-Cell Electrodes

    DEFF Research Database (Denmark)

    Skafte, Theis Løye; Graves, Christopher R.; Blennow, P.

    2015-01-01

    . Electrochemical impedance spectroscopy in both H2/H2O and CO/CO2 revealed an increase in resistance of the fuel electrode after each CO2 electrolysis current-voltage curve, indicating possible carbon deposition. The difference in partial oxygen pressure between inlet and outlet was analyzed to verify carbon...... in detail. In an attempt to mitigate the degradation due to carbon deposition, the Ni-YSZ electrode was infiltrated with a gadolinium doped ceria (CGO) solution. Initial results indicate that the coking tolerance was not enhanced, but it is still unclear whether infiltrated cells degrade less. However......, infiltrated cells display a significant performance enhancement before coking, especially under electrolysis current. The investigation thus indicated carbon formation in the Ni containing fuel electrode before the thermodynamically calculated threshold for average measurements of the cell was reached...

  11. Flow maldistribution in the anode of a polymer electrolyte membrane electrolysis cell employing interdigitated channels

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Kær, Søren Knudsen

    2014-01-01

    of liquid water towards the catalytic layer of the electrode. As opposed to the more common serpentine and parallel channels, interdigitated channels force liquid water through the porous gas diffusion layer (GDL) of the electrode. This improves the supply of water, however it increases pressure losses......-circular cell design on the distribution of water in the anode. In the electrolysis of water using PEMEC the anode is fed by demineralized water. Throughout the anode, oxygen is produced and a two-phase flow develops. Interdigitated channels assist in avoiding that gaseous oxygen obstructs the transport......: water stoichiometry, temperature, GDL permeability and thickness. In conclusion, it is found that the interdigitated flow field results in an uneven distribution across the cell and that the extent depends strongly on the permeability and weaker on the remaining parameters....

  12. Applications of laser-induced breakdown spectroscopy in the aluminum electrolysis industry

    Science.gov (United States)

    Sun, Lanxiang; Yu, Haibin; Cong, Zhibo; Lu, Hui; Cao, Bin; Zeng, Peng; Dong, Wei; Li, Yang

    2018-04-01

    The industrial aluminum reduction cell is an electrochemistry reactor that operates under high temperatures and corrosive conditions. Monitoring the molten aluminum and electrolyte components is very important for controlling the chemical reaction process. Due to the lack of fast methods to monitor the components, controlling aluminum reduction cells is difficult. In this work, laser-induced breakdown spectroscopy (LIBS) was applied to aluminum electrolysis. A new method for calculating the molecular ratio, which is an important control parameter that represents the acidity of the electrolyte, was proposed. Experiments were first performed on solid electrolyte samples to test the performance of the proposed method. Using this method, the average relative standard deviation (RSD) of the molecular ratio measurement was 0.39%, and the average root mean square error (RMSE) was 0.0236. These results prove that LIBS can accurately measure the molecular ratio. Then, in situ measurements of the molten aluminum and electrolyte were performed in industrial aluminum induction cells using the developed LIBS equipment. The spectra of the molten electrolyte were successfully obtained and were consistent with the spectra of the solid electrolyte.

  13. Hydrogen Through Water Electrolysis and Biomass Gasification for Application in Fuel Cells

    Directory of Open Access Journals (Sweden)

    Y. Kirosa

    2017-03-01

    Full Text Available Hydrogen is considered to be one of the most promising green energy carrier in the energy storage and conversion scenario. Although it is abundant on Earth in the form of compounds, its occurrence in free form is extremely low. Thus, it has to be produced by reforming processes, steam reforming (SR, partial oxidation (POX and auto-thermal reforming (ATR mainly from fossil fuels for high throughput with high energy requirements, pyrolysis of biomass and electrolysis. Electrolysis is brought about by passing electric current though two electrodes to evolve water into its constituent parts, viz. hydrogen and oxygen, respectively. Hydrogen produced by non-noble metal catalysts for both anode and cathode is therefore cost-effective and can be integrated into fuel cells for direct chemical energy conversion into electrical energy electricity, thus meeting the sustainable and renewable use with low carbon footprint.

  14. FY 1985 report on research and development project commissioned by the Sunshine Project. Research and development of electrolysis of water by combined thermochemical, photochemical and electrochemical cycles; 1985 nendo netsu kagaku, hikari kagaku, denki kagaku konsei cycle ni yoru mizu bunkai no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-03-01

    Reported herein are the FY 1985 research results on the combined water electrolysis cycles by effective utilization of sunlight. The tests for determining activity coefficient of an iron/iodine system is continued from the previous year, and the results are used to find the optimum conditions under which the photochemical and electrolysis reactions are effected simultaneously in a light-irradiated electrolysis tank. It is found that a photochemical reaction efficiency of approximately 0.3% is obtained at 5 W/cm{sup 2} as light intensity and 25 degrees C. For electrolysis of water by the multi-stage hybrid cycles, it is necessary for the reaction in each stage to proceed to almost the same extent so that it gives a just enough quantity of product for the subsequent stage. The data obtained are analyzed comprehensively, while taking the system matching conditions into consideration. The system for simultaneously measure two or more parameters, developed in the previous year, is equipped with a high-level language compiler of high effective speed, to simultaneously measure these parameters at shorter intervals. (NEDO)

  15. Development and Verification of Tritium Analyses Code for a Very High Temperature Reactor

    International Nuclear Information System (INIS)

    Oh, Chang H.; Kim, Eung S.

    2009-01-01

    A tritium permeation analyses code (TPAC) has been developed by Idaho National Laboratory for the purpose of analyzing tritium distributions in the VHTR systems including integrated hydrogen production systems. A MATLAB SIMULINK software package was used for development of the code. The TPAC is based on the mass balance equations of tritium-containing species and a various form of hydrogen (i.e., HT, H2, HTO, HTSO4, and TI) coupled with a variety of tritium source, sink, and permeation models. In the TPAC, ternary fission and neutron reactions with 6Li, 7Li 10B, 3He were taken into considerations as tritium sources. Purification and leakage models were implemented as main tritium sinks. Permeation of HT and H2 through pipes, vessels, and heat exchangers were importantly considered as main tritium transport paths. In addition, electrolyzer and isotope exchange models were developed for analyzing hydrogen production systems including both high-temperature electrolysis and sulfur-iodine process. The TPAC has unlimited flexibility for the system configurations, and provides easy drag-and-drops for making models by adopting a graphical user interface. Verification of the code has been performed by comparisons with the analytical solutions and the experimental data based on the Peach Bottom reactor design. The preliminary results calculated with a former tritium analyses code, THYTAN which was developed in Japan and adopted by Japan Atomic Energy Agency were also compared with the TPAC solutions. This report contains descriptions of the basic tritium pathways, theory, simple user guide, verifications, sensitivity studies, sample cases, and code tutorials. Tritium behaviors in a very high temperature reactor/high temperature steam electrolysis system have been analyzed by the TPAC based on the reference indirect parallel configuration proposed by Oh et al. (2007). This analysis showed that only 0.4% of tritium released from the core is transferred to the product hydrogen

  16. Electrochemical Studies of Corrosion in Liquid Electrolytes for Energy Conversion Applications at Elevated Temperatures

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey Valerievich; Petrushina, Irina; Bjerrum, Niels J.

    2016-01-01

    -temperature (200–400°C) water electrolysis. Pt, Ta, Nb, Ti, Inconel®625, and Ni demonstrated high corrosion resistance. Au and the rest of the tested materials were not corrosion resistant. It means that Ni, Ti and Inconel®625 may be used as relatively cheap construction materials for the intermediate......-temperature water electrolyzer....

  17. A cost-effective nanoporous ultrathin film electrode based on nanoporous gold/IrO2 composite for proton exchange membrane water electrolysis

    Science.gov (United States)

    Zeng, Yachao; Guo, Xiaoqian; Shao, Zhigang; Yu, Hongmei; Song, Wei; Wang, Zhiqiang; Zhang, Hongjie; Yi, Baolian

    2017-02-01

    A cost-effective nanoporous ultrathin film (NPUF) electrode based on nanoporous gold (NPG)/IrO2 composite has been constructed for proton exchange membrane (PEM) water electrolysis. The electrode was fabricated by integrating IrO2 nanoparticles into NPG through a facile dealloying and thermal decomposition method. The NPUF electrode is featured in its 3D interconnected nanoporosity and ultrathin thickness. The nanoporous ultrathin architecture is binder-free and beneficial for improving electrochemical active surface area, enhancing mass transport and facilitating releasing of oxygen produced during water electrolysis. Serving as anode, a single cell performance of 1.728 V (@ 2 A cm-2) has been achieved by NPUF electrode with a loading of IrO2 and Au at 86.43 and 100.0 μg cm-2 respectively, the electrolysis voltage is 58 mV lower than that of conventional electrode with an Ir loading an order of magnitude higher. The electrolysis voltage kept relatively constant up to 300 h (@250 mA cm-2) during the course of durability test, manifesting that NPUF electrode is promising for gas evolution.

  18. Tritium isotope separation from light and heavy water by bipolar electrolysis

    International Nuclear Information System (INIS)

    Petek, M.; Ramey, D.W.; Taylor, R.D.; Kobisk, E.H.

    1980-01-01

    A process for separating tritium from light and heavy water is described. Hydrogen is transferred at and through bipolar electrodes at rates H > D > T. In a cell containing several bipolar electrodes placed in series between two terminal electrodes, a flow of hydrogen is established from the terminal anode compartment toward the terminal cathode. An electrolyte feed containing tritium is continuously added to the system and is subsequently transported countercurrent to the hydrogen mass transfer. A cascaded system is established, in which effluent streams enriched and depleted in tritium can be withdrawn. The voltage drop is smaller at any bipolar electrode as compared to the voltage for normal electrolysis. Cell design is compact because isotope separation occurs at bipolar electrodes without evolution of gas. Isotope separation was demonstrated in laboratory cells where a steady-state tritium concentration gradient was attained. This gradient was in agreement with concentrations calculated from a derived mathematical model

  19. Bipolar performance of the electroplated iron-nickel deposits for water electrolysis

    International Nuclear Information System (INIS)

    Hu, C.-C.; Wu, Y.-R.

    2003-01-01

    The activities of oxygen and hydrogen evolution on Fe-Ni deposits with controllable compositions were systematically compared in the alkaline media. The redox behavior of Fe-Ni deposits prior to oxygen evolution could be generally related to their electrochemical activity for the oxygen evolution reaction meanwhile the activity of hydrogen evolution was found to be generally proportional to the mean roughness factor of deposits. Fe 24 Ni 76 , Fe 76 Ni 24 and Fe 90 Ni 10 deposits simultaneously exhibiting good activities of oxygen and hydrogen evolution were employed as electrode materials for water electrolysis in a bipolar hydrogen-oxygen electrolyzer in the stability test, examined at 50 and 200 mA cm -2 in 5 M KOH for 2 weeks. The morphological, compositional and crystalline information of these three materials before and after the bipolar studies were measured by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy and X-ray diffraction (XRD) analysis, respectively. These studies demonstrated the potential applicability of these three deposits in the bipolar electrolyzer for water electrolysis

  20. Alkaline membrane water electrolysis with non-noble catalysts

    DEFF Research Database (Denmark)

    Kraglund, Mikkel Rykær

    at 1.7 V and 2800 mA cm-2 at 2.0 V. Electrochemical impedance spectroscopy data showed a 6-fold reduction in ohmic cell resistance compared to conventional materials. Albeit good performance, ex-situ characterization and durability tests showed that polymer backbone and membrane stability remained......As renewable energy sources reach higher grid penetration, large scale energy storage solutions are becoming increasingly important. Hydrogen produced with renewable energy by water electrolysis is currently the only option to solve this challenge on a global scale, and green hydrogen is essential...

  1. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide

    Science.gov (United States)

    Chen, Long; Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2016-01-01

    Low-cost alkaline water electrolysis has been considered a sustainable approach to producing hydrogen using renewable energy inputs, but preventing hydrogen/oxygen mixing and efficiently using the instable renewable energy are challenging. Here, using nickel hydroxide as a redox mediator, we decouple the hydrogen and oxygen production in alkaline water electrolysis, which overcomes the gas-mixing issue and may increase the use of renewable energy. In this architecture, the hydrogen production occurs at the cathode by water reduction, and the anodic Ni(OH)2 is simultaneously oxidized into NiOOH. The subsequent oxygen production involves a cathodic NiOOH reduction (NiOOH→Ni(OH)2) and an anodic OH− oxidization. Alternatively, the NiOOH formed during hydrogen production can be coupled with a zinc anode to form a NiOOH-Zn battery, and its discharge product (that is, Ni(OH)2) can be used to produce hydrogen again. This architecture brings a potential solution to facilitate renewables-to-hydrogen conversion. PMID:27199009

  2. High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells

    KAUST Repository

    Selembo, Priscilla A.; Perez, Joe M.; Lloyd, Wallis A.; Logan, Bruce E.

    2009-01-01

    The use of glycerol for hydrogen gas production was examined via electrohydrogenesis using microbial electrolysis cells (MECs). A hydrogen yield of 3.9 mol-H2/mol was obtained using glycerol, which is higher than that possible by fermentation

  3. Nickel-based electrodeposits as potential cathode catalysts for hydrogen production by microbial electrolysis

    Science.gov (United States)

    Mitov, M.; Chorbadzhiyska, E.; Nalbandian, L.; Hubenova, Y.

    2017-07-01

    The development of cost-effective cathodes, operating at neutral pH and ambient temperatures, is a crucial challenge for the practical application of microbial electrolysis cell (MEC) technology. In this study, NiW and NiMo co-deposits produced by electroplating on Ni-foam are explored as cathodes in MEC. The fabricated electrodes exhibit higher corrosion stability and enhanced electrocatalytic activity towards hydrogen evolution reaction in neutral electrolyte compared to the bare Ni-foam. NiW/Ni-foam electrodes possess six times higher intrinsic catalytic activity, estimated from data obtained by linear voltammetry and chronoamperometry. The newly developed electrodes are applied as cathodes in single-chamber membrane-free MEC reactors, inoculated with wastewater and activated sludge from a municipal wastewater treatment plant. Cathodic hydrogen recovery of 79% and 89% by using NiW and NiMo cathodes, respectively, is achieved at applied voltage of 0.6 V. The obtained results reveal potential for practical application of used catalysts in MEC.

  4. Development of a simplified treatment for measuring tritium concentration in the environmental water. Removal of dissolved ions by reverse osmosis membrane for electrolysis enrichment

    International Nuclear Information System (INIS)

    Koganezawa, Takayuki; Iida, Takao; Ogata, Yoshimune; Tsuji, Naruhito; Kakiuchi, Masahisa; Satake, Hiroshi; Yamanishi, Hirokuni; Sakuma, Yoichi

    2004-01-01

    An apparatus for tritium enrichment by electrolysis using solid polymer electrolyte was recently developed. The apparatus has the advantage that is to be electrolyzed without adding electrolyte to the sample water. The new treatment both being replaced the distillation process with filtration before electrolysis and being omitted the distillation process after electrolysis, was proposed. Impurities eluted by the electrolysis of ultra pure water with the device introduced no influence on tritium measurement. As alternative treatment to distillation before enrichment, micro filtration and reverse osmosis was carried out. When the sample water treated by micro filtration was electrolyzed, ions adhered both to the electrodes and the solid polymer electrolyte of the device since micro filtration cannot remove ions in the sample water. Therefore, the sample water treated by micro filtration caused some troubles in the electrolysis device. On the other hand, the sample water treated by reverse osmosis did not cause any troubles because it could remove ions. Applying the new treatment to measure some environmental waters, such as river water, resulted in an effective measurement without any influence to liquid scintillation counting. The results proved that a period of the pretreatment process of the water sample could be decreased from about 2 days to about 1.5 hours by applying the proposed treatment. A simplified treatment on the procedure of electrolysis enrichment was established for tritium measurements in the environmental water samples via liquid scintillation counting. (author)

  5. Joule-Heated Molten Regolith Electrolysis Reactor Concepts for Oxygen and Metals Production on the Moon and Mars

    Science.gov (United States)

    Sibille, Laurent; Dominguez, Jesus A.

    2012-01-01

    The technology of direct electrolysis of molten lunar regolith to produce oxygen and molten metal alloys has progressed greatly in the last few years. The development of long-lasting inert anodes and cathode designs as well as techniques for the removal of molten products from the reactor has been demonstrated. The containment of chemically aggressive oxide and metal melts is very difficult at the operating temperatures ca. 1600 C. Containing the molten oxides in a regolith shell can solve this technical issue and can be achieved by designing a Joule-heated (sometimes called 'self-heating') reactor in which the electrolytic currents generate enough Joule heat to create a molten bath. Solutions obtained by multiphysics modeling allow the identification of the critical dimensions of concept reactors.

  6. Hydrogen Generation in Microbial Reverse-Electrodialysis Electrolysis Cells Using a Heat-Regenerated Salt Solution

    KAUST Repository

    Nam, Joo-Youn; Cusick, Roland D.; Kim, Younggy; Logan, Bruce E.

    2012-01-01

    Hydrogen gas can be electrochemically produced in microbial reverse-electrodialysis electrolysis cells (MRECs) using current derived from organic matter and salinity-gradient energy such as river water and seawater solutions. Here, it is shown

  7. Enhanced configuration of a water detritiation system; impact on ITER Isotope Separation System based cryogenic distillation

    Energy Technology Data Exchange (ETDEWEB)

    Cristescu, Ion, E-mail: ion.cristescu@kit.edu

    2016-11-01

    Highlights: • An enhanced configuration of ITER WDS has been developed. • The proposed configuration allows minimization of hazards due to the reduction of tritium inventory. • The load on the tritium recovery system (ITER ISS) is minimized with benefits on mitigation of the explosion hazards. - Abstract: Tritiated water is generated in the ITER systems by various sources and may contain deuterium and tritium at various concentrations. The reference process for the ITER Water Detritiation System is based on Combined Electrolysis Catalytic Exchange (CECE) configuration. During long time operation of the CECE process, the accumulation of deuterium in the electrolysis unit and consequently along the Liquid Phase Catalytic Exchange (LPCE) column is unavoidable with consequences on the overall detritiation factor of the system. Beside the deuterium issue in the process, the large amount of the tritiated water with tritium activity up to 500 Ci/kg in the electrolysis cells is a concern from the safety aspect of the plant. The enhanced configuration of a system for processing tritiated water allows mitigation of the effects due to deuterium accumulation and also reduction of tritium inventory within the electrolysis system. In addition the benefits concerning to the interface between the water detritiation system and tritium recovery based cryogenic distillation are also presented.

  8. Application of mercury cathode electrolysis to fission-product separation

    International Nuclear Information System (INIS)

    Besson, A.; Prigent, Y.; Van-Kote, F.

    1969-01-01

    A method involving controlled potential mercury cathode electrolysis has been developed to separate fission products. It allows the radiochemical determination of Ag, Cd, Pd, Rh, Ru, Sn, Te, Sb and Mo from solutions of fission products highly concentrated in mineral salts. The general procedure consists in three main steps: electrolytic amalgam generation, destruction of amalgams and ultimate purification of elements by other means. Electrolytic operations last about five hours. Chemical yields lie between 10 per cent and 70 per cent. (authors) [fr

  9. Ballast Water Treatment, U.S. Great Lakes Bulk Carrier Engineering and Cost Study. Volume 2: Analysis of On-Board Treatment Methods, Alternative Ballast Water Management Practices, and Implementation Costs

    Science.gov (United States)

    2013-11-01

    on discharge 3 CleanBallast Ballast Water Management System RWO Marine Water Technology 55 μm automatic back-flushing disc filter, electrolysis ...did not independently validate manufacturers’ claims. BWT technologies which apply electric current to ballast water ( electrolysis ) are affected by low...salinity prior to electrolysis , and the feed water must be preheated when the ballast water temperatures drop below 15 ºC. 1. Power Consumption

  10. The electrolysis of water: An actuation principle for MEMS with a big opportunity

    NARCIS (Netherlands)

    Rusu, C.R.; Neagu, Cristina; Jansen, Henricus V.; Gardeniers, Johannes G.E.; Elwenspoek, Michael Curt

    In this paper the theory of water electrolysis in a closed electrochemical cell, that contains two electrodes, an electrolyte and a pressure sensor is described. From the leakage and electrochemical experiments done with this macrocell it is possible to obtain information about the applicability of

  11. Modeling and experimental performance of an intermediate temperature reversible solid oxide cell for high-efficiency, distributed-scale electrical energy storage

    Science.gov (United States)

    Wendel, Christopher H.; Gao, Zhan; Barnett, Scott A.; Braun, Robert J.

    2015-06-01

    Electrical energy storage is expected to be a critical component of the future world energy system, performing load-leveling operations to enable increased penetration of renewable and distributed generation. Reversible solid oxide cells, operating sequentially between power-producing fuel cell mode and fuel-producing electrolysis mode, have the capability to provide highly efficient, scalable electricity storage. However, challenges ranging from cell performance and durability to system integration must be addressed before widespread adoption. One central challenge of the system design is establishing effective thermal management in the two distinct operating modes. This work leverages an operating strategy to use carbonaceous reactant species and operate at intermediate stack temperature (650 °C) to promote exothermic fuel-synthesis reactions that thermally self-sustain the electrolysis process. We present performance of a doped lanthanum-gallate (LSGM) electrolyte solid oxide cell that shows high efficiency in both operating modes at 650 °C. A physically based electrochemical model is calibrated to represent the cell performance and used to simulate roundtrip operation for conditions unique to these reversible systems. Design decisions related to system operation are evaluated using the cell model including current density, fuel and oxidant reactant compositions, and flow configuration. The analysis reveals tradeoffs between electrical efficiency, thermal management, energy density, and durability.

  12. The importance of OH − transport through anion exchange membrane in microbial electrolysis cells

    KAUST Repository

    Ye, Yaoli; Logan, Bruce

    2018-01-01

    In two-chamber microbial electrolysis cells (MECs) with anion exchange membranes (AEMs), a phosphate buffer solution (PBS) is typically used to avoid increases in catholyte pH as Nernst equation calculations indicate that high pHs adversely impact

  13. Comparison of ultrasound-assisted and traditional caustic leaching of spent cathode carbon (SCC) from aluminum electrolysis.

    Science.gov (United States)

    Xiao, Jin; Yuan, Jie; Tian, Zhongliang; Yang, Kai; Yao, Zhen; Yu, Bailie; Zhang, Liuyun

    2018-01-01

    The spent cathode carbon (SCC) from aluminum electrolysis was subjected to caustic leaching to investigate the different effects of ultrasound-assisted and traditional methods on element fluorine (F) leaching rate and leaching residue carbon content. Sodium hydroxide (NaOH) dissolved in deionized water was used as the reaction system. Through single-factor experiments and a comparison of two leaching techniques, the optimum F leaching rate and residue carbon content for ultrasound-assisted leaching process were obtained at a temperature of 70°C, residue time of 40min, initial mass ratio of alkali to SCC (initial alkali-to-material ratio) of 0.6, liquid-to-solid ratio of 10mL/g, and ultrasonic power of 400W, respectively. Under the optimal conditions, the leaching residue carbon content was 94.72%, 2.19% larger than the carbon content of traditional leaching residue. Leaching wastewater was treated with calcium chloride (CaCl 2 ) and bleaching powder and the treated wastewater was recycled caustic solution. All in all, benefiting from advantage of the ultrasonication effects, ultrasound-assisted caustic leaching on spent cathode carbon had 55.6% shorter residue time than the traditional process with a higher impurity removal rate. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Modeling Degradation in Solid Oxide Electrolysis Cells

    Energy Technology Data Exchange (ETDEWEB)

    Manohar S. Sohal; Anil V. Virkar; Sergey N. Rashkeev; Michael V. Glazoff

    2010-09-01

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells (SOECs). To accomplish this, technical and degradation issues associated with the SOECs will need to be addressed. This report covers various approaches being pursued to model degradation issues in SOECs. An electrochemical model for degradation of SOECs is presented. The model is based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic no equilibrium. It is shown that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential, , within the electrolyte. The within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just near the oxygen electrode/electrolyte interface, leading to oxygen electrode delamination. These predictions are in accordance with the reported literature on the subject. Development of high pressures may be avoided by introducing some electronic conduction in the electrolyte. By combining equilibrium thermodynamics, no equilibrium (diffusion) modeling, and first-principles, atomic scale calculations were performed to understand the degradation mechanisms and provide practical recommendations on how to inhibit and/or completely mitigate them.

  15. Efficient STEP (solar thermal electrochemical photo) production of hydrogen - an economic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Licht, Stuart [Department of Chemistry, George Washington University, Ashburn, VA 20147 (United States); Solar Institute, George Washington University, Washington, DC 20052 (United States); Chitayat, Olivia; Bergmann, Harry; Dick, Andrew; Ayub, Hina [Solar Institute, George Washington University, Washington, DC 20052 (United States); Ghosh, Susanta [Department of Chemistry, George Washington University, Ashburn, VA 20147 (United States); Department of Chemistry, Visva-Bharati, Santiniketan (India)

    2010-10-15

    A consideration of the economic viability of hydrogen fuel production is important in the STEP (Solar Thermal Electrochemical Photo) production of hydrogen fuel. STEP is an innovative way to decrease costs and increase the efficiency of hydrogen fuel production, which is a synergistic process that can use concentrating photovoltaics (CPV) and solar thermal energy to drive a high temperature, low voltage, electrolysis (water-splitting), resulting in H{sub 2} at decreased energy and higher solar efficiency. This study provides evidence that the STEP system is an economically viable solution for the production of hydrogen. STEP occurs at both higher electrolysis and solar conversion efficiencies than conventional room temperature photovoltaic (PV) generation of hydrogen. This paper probes the economic viability of this process, by comparing four different systems: (1) 10% or (2) 14% flat plate PV driven aqueous alkaline electrolysis H{sub 2} production, (3) 25% CPV driven molten electrolysis H{sub 2} production, and (4) 35% CPV driven solid oxide electrolysis H{sub 2} production. The molten and solid oxide electrolysers are high temperature systems that can make use of light, normally discarded, for heating. This significantly increases system efficiency. Using levelized cost analysis, this study shows significant cost reduction using the STEP system. The total price per kg of hydrogen is shown to decrease from 5.74 to 4.96 to 3.01 to 2.61 with the four alternative systems. The advanced STEP plant requires less than one seventh of the land area of the 10% flat cell plant. To generate the 216 million kg H{sub 2}/year required by 1 million fuel cell vehicles, the 35% CPV driven solid oxide electrolysis requires a plant only 9.6 mi{sup 2} in area. While PV and electrolysis components dominate the cost of conventional PV generated hydrogen, they do not dominate the cost of the STEP-generated hydrogen. The lower cost of STEP hydrogen is driven by residual distribution and

  16. Root cause study on hydrogen generation and explosion through radiation-induced electrolysis in the Fukushima Daiichi accident

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Genn, E-mail: sajig@bd5.so-net.ne.jp

    2016-10-15

    Highlights: • Reviewed how LWRs have coped with “water radiolysis”, during normal operation to severe accidents. • Concluded “water radiolysis” is not likely a route course of the hydrogen explosions at Fukushima. • Performed modeling studies based on “radiation-induced electrolysis” on Unit 1–Unit 4. • Generation of several tens of thousands cubic meters hydrogen gas is predicted before the hydrogen explosions. • Upon SBO, early safe disposal of hydrogen from RPVs is indispensable in BWRs. - Abstract: Since the scientific cause for a series of hydrogen explosions during the Fukushima accident has not been established, the author investigated his basic theory named “radiation-induced electrolysis (RIE)” by applying the estimation of the amounts of H{sub 2} generation during the active phase of the Fukushima accident. The author's theory was originally developed by including Faraday's law of electrolysis into the basic time-dependent material balance equation of radiation-chemical species for his study on accelerated corrosion phenomena which is widely observed in aged plants. As such this theory applies to the early phase of the accident before the loss of water levels in the reactor cores, although the simulations were performed from the time of seismic reactor trip to the hydrogen explosions in this paper. Through this mechanism as much as 29,400 m{sup 3}-STP of hydrogen gas is estimated to be accumulated inside the PCV just prior to the hydrogen explosion which occurred one day after the reactor trip in 1F1. With this large volume of hydrogen gas the explosion was a viable possibility upon the “venting” operation. In view of this observation, hydrogen generation from the spent fuel pools was also investigated. For the investigation of the 1F4 SFP, the pool water temperature and flow velocity due to natural circulation were changed widely to identify conditions of large hydrogen generation. During the trial calculations

  17. Nitrate removal and microbial analysis by combined micro-electrolysis and autotrophic denitrification.

    Science.gov (United States)

    Xing, Wei; Li, Desheng; Li, Jinlong; Hu, Qianyi; Deng, Shihai

    2016-07-01

    A process combining micro-electrolysis and autotrophic denitrification (CEAD) with iron-carbon micro-electrolysis carriers was developed for nitrate removal. The process was performed using organic-free influent with a NO3(-)-N concentration of 40.0±3.0mg/L and provided an average nitrate removal efficiency of 95% in stable stages. The total nitrogen removal efficiency reached 75%, with 21% of NO3(-)-N converted into NH4(+)-N. The corresponding hydraulic retention time was 8-10h, and the optimal pH ranged from 8.5 to 9.5. Microbial analysis with high-throughput sequencing revealed that dominant microorganisms in the reactor belonged to the classes of β-, γ-, and α-Proteobacteria. The abundance of the genera Thermomonas significantly increased during the operation, comprising 21.4% and 24.1% in sludge attached to the carriers in the middle and at the bottom of the reactor, respectively. The developed CEAD achieved efficient nitrate removal from water without organics, which is suitable for practical application. Copyright © 2016. Published by Elsevier Ltd.

  18. Corrosion behaviour of construction materials for high temperature water electrolysers

    Energy Technology Data Exchange (ETDEWEB)

    Nikiforov, A.; Petruchina, I.; Christensen, E.; Bjerrum, N.J.; Tomas-Garcya, A.L. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Chemistry, Materials Science Group

    2010-07-01

    This presentation reported on a study in which the feasibility of using different corrosion resistant stainless steels as a possible metallic bipolar plate and construction material was evaluated in terms of corrosion resistance under conditions corresponding to the conditions in high temperature proton exchange membrane (PEM) water electrolysers (HTPEMWE). PEM water electrolysis technology has been touted as an effective alternative to more conventional alkaline water electrolysis. Although the energy efficiency of this technology can be increased considerably at temperatures above 100 degrees C, this increases the demands to all the used materials with respect to corrosion stability and thermal stability. In this study, Ni-based alloys as well as titanium and tantalum samples were exposed to anodic polarization in 85 per cent phosphoric acid electrolyte solution. Tests were performed at 80 and 120 degrees C to determine the dependence of corrosion speed and working temperature. Platinum and gold plates were also tested for a comparative evaluation. Steady-state voltammetry was used along with scanning electron microscopy and energy-dispersive X-ray spectroscopy. Titanium showed the poorest corrosion resistance, while Ni-based alloys showed the highest corrosion resistance, with Inconel R 625 being the most promising alloy for the bipolar plate of an HTPEMWE. 3 refs., 1 tab., 2 figs.

  19. Factors in electrode fabrication for performance enhancement of anion exchange membrane water electrolysis

    Science.gov (United States)

    Cho, Min Kyung; Park, Hee-Young; Choe, Seunghoe; Yoo, Sung Jong; Kim, Jin Young; Kim, Hyoung-Juhn; Henkensmeier, Dirk; Lee, So Young; Sung, Yung-Eun; Park, Hyun S.; Jang, Jong Hyun

    2017-04-01

    To improve the cell performance for alkaline anion exchange membrane water electrolysis (AEMWE), the effects of the amount of polytetrafluoroethylene (PTFE) non-ionomeric binder in the anode and the hot-pressing conditions during the fabrication of the membrane electrode assemblies (MEAs) on cell performances are studied. The electrochemical impedance data indicates that hot-pressing at 50 °C for 1 min during MEA construction can reduce the polarization resistance of AEMWE by ∼12%, and increase the initial water electrolysis current density at 1.8 V (from 195 to 243 mA cm-2). The electrochemical polarization and impedance results also suggest that the AEMWE performance is significantly affected by the content of PTFE binder in the anode electrode, and the optimal content is found to be 9 wt% between 5 and 20 wt%. The AEMWE device fabricated with the optimized parameters exhibits good water splitting performance (299 mA cm-2 at 1.8 V) without noticeable degradation in voltage cycling operations.

  20. Conversion of laser energy to chemical energy by the photoassisted electrolysis of water

    Science.gov (United States)

    Wrighton, M. S.

    1976-01-01

    Ultraviolet irradiation of the n-type semiconductor TiO2 crystal electrode of an aqueous electrochemical cell evolves O2 at the TiO2 electrode and H2 at the Pt electrode. The gases are typically evolved in a 2:1 (H2:O2) volume ratio. The photoassisted reaction seems to require applied voltages, but values as low as 0.25 V do allow the photoassisted electrolysis to proceed. Prolonged irradiation in either acid or base evolves the gaseous products in amounts which clearly demonstrate that the reaction is catalytic with respect to the TiO2. The wavelength response of the TiO2 and the correlation of product yield and current are reported. The results support the claim that TiO2 is a true photoassistance agent for the electrolysis of water. Minimum optical storage efficiencies of the order of 1 percent can be achieved by the production of H2.

  1. Generation of Hydrogen, Lignin and Sodium Hydroxide from Pulping Black Liquor by Electrolysis

    Directory of Open Access Journals (Sweden)

    Guangzai Nong

    2015-12-01

    Full Text Available Black liquor is generated in Kraft pulping of wood or non-wood raw material in pulp mills, and regarded as a renewable resource. The objective of this paper was to develop an effective means to remove the water pollutants by recovery of both lignin and sodium hydroxide from black liquor, based on electrolysis. The treatment of a 1000 mL of black liquor (122 g/L solid contents consumed 345.6 kJ of electric energy, and led to the generation of 30.7 g of sodium hydroxide, 0.82 g of hydrogen gas and 52.1 g of biomass solids. Therefore, the recovery ratios of elemental sodium and biomass solids are 80.4% and 76%, respectively. Treating black liquor by electrolysis is an environmentally friendly technology that can, in particular, be an alternative process in addressing the environmental issues of pulping waste liquor to the small-scale mills without black liquor recovery.

  2. Conjugated oligoelectrolyte represses hydrogen oxidation by Geobacter sulfurreducens in microbial electrolysis cells

    KAUST Repository

    Liu, Jia

    2015-12-01

    © 2015 Elsevier B.V. A conjugated oligoelectrolyte (COE), which spontaneously aligns within cell membranes, was shown to completely inhibit H2 uptake by Geobacter sulfurreducens in microbial electrolysis cells. Coulombic efficiencies that were 490±95%, due to H2 recycling between the cathode and microorganisms on the anode, were reduced to 86±2% with COE addition. The use of the COE resulted in a 67-fold increase in H2 gas recovery, and a 4.4-fold increase in acetate removal. Current generation, H2 recovery and COD removals by Geobacter metallireducens, which cannot use H2, were unaffected by COE addition. These results show that this COE is an effective H2 uptake inhibitor, and that it can enable improved and sustained H2 gas recovery in this bioelectrochemical system.

  3. Carbon deposition and sulfur poisoning during CO2 electrolysis in nickel-based solid oxide cell electrodes

    Science.gov (United States)

    Skafte, Theis Løye; Blennow, Peter; Hjelm, Johan; Graves, Christopher

    2018-01-01

    Reduction of CO2 to CO and O2 in the solid oxide electrolysis cell (SOEC) has the potential to play a crucial role in closing the CO2 loop. Carbon deposition in nickel-based cells is however fatal and must be considered during CO2 electrolysis. Here, the effect of operating parameters is investigated systematically using simple current-potential experiments. Due to variations of local conditions, it is shown that higher current density and lower fuel electrode porosity will cause local carbon formation at the electrochemical reaction sites despite operating with a CO outlet concentration outside the thermodynamic carbon formation region. Attempts at mitigating the issue by coating the composite nickel/yttria-stabilized zirconia electrode with carbon-inhibiting nanoparticles and by sulfur passivation proved unsuccessful. Increasing the fuel electrode porosity is shown to mitigate the problem, but only to a certain extent. This work shows that a typical SOEC stack converting CO2 to CO and O2 is limited to as little as 15-45% conversion due to risk of carbon formation. Furthermore, cells operated in CO2-electrolysis mode are poisoned by reactant gases containing ppb-levels of sulfur, in contrast to ppm-levels for operation in fuel cell mode.

  4. Comparison of two modified coal ash ferric-carbon micro-electrolysis ceramic media for pretreatment of tetracycline wastewater.

    Science.gov (United States)

    Yang, Kunlun; Jin, Yang; Yue, Qinyan; Zhao, Pin; Gao, Yuan; Wu, Suqing; Gao, Baoyu

    2017-05-01

    Application of modified sintering ferric-carbon ceramics (SFC) and sintering-free ferric-carbon ceramics (SFFC) based on coal ash and scrap iron for pretreatment of tetracycline (TET) wastewater was investigated in this article. Physical property, morphological character, toxic metal leaching content, and crystal component were studied to explore the application possibility of novel ceramics in micro-electrolysis reactors. The influences of operating conditions including influent pH, hydraulic retention time (HRT), and air-water ratio (A/W) on the removal of tetracycline were studied. The results showed that SFC and SFFC were suitable for application in micro-electrolysis reactors. The optimum conditions of SFC reactor were pH of 3, HRT of 7 h, and A/W of 10. For SFFC reactor, the optimum conditions were pH of 2, HRT of 7 h, and A/W of 15. In general, the TET removal efficiency of SFC reactor was better than that of SFFC reactor. However, the harden resistance of SFFC was better than that of SFC. Furthermore, the biodegradability of TET wastewater was improved greatly after micro-electrolysis pretreatment for both SFC and SFFC reactors.

  5. Optimization of catholyte concentration and anolyte pHs in two chamber microbial electrolysis cells

    KAUST Repository

    Nam, Joo-Youn; Logan, Bruce E.

    2012-01-01

    The hydrogen production rate in a microbial electrolysis cell (MEC) using a non-buffered saline catholyte (NaCl) can be optimized through proper control of the initial anolyte pH and catholyte NaCl concentration. The highest hydrogen yield of 3

  6. Influence of the oxygen electrode and inter-diffusion barrier on the degradation of solid oxide electrolysis cells

    DEFF Research Database (Denmark)

    Hjalmarsson, Per; Sun, Xiufu; Liu, Yi-Lin

    2013-01-01

    -diffusion barrier sandwiched between the YSZ electrolyte and an LSCF:CGO oxygen electrode. Impedance Spectroscopy was used during the tests to diagnose the change in electrochemical response of the different components of the SOECs. The results showed a significantly lower degradation rate for the cell with an LSCF......Two Solid Oxide Electrolysis Cells (SOECs) with different oxygen electrodes have been tested in galvanostatic tests carried out at −1.5 Acm−2 and 800 °C converting 60% of a 50:50% mixture of H2O and CO2 (co-electrolysis). One of the cells had an LSM:YSZ oxygen electrode. The other had an CGO inter...

  7. PEM steam electrolysis at 130 °C using a phosphoric acid doped short side chain PFSA membrane

    DEFF Research Database (Denmark)

    Hansen, Martin Kalmar; Aili, David; Christensen, Erik

    2012-01-01

    Steam electrolysis test with a phosphoric acid doped Aquivion™ membrane was successfully conducted and current densities up to 775 mA cm-2 at 1.8 V was reached at 130 ºC and ambient pressure. A new composite membrane system using a perfluorosulfonic acid membrane (Aquivion™) as matrix and phospho...... implied that a new and highly corrosion resistant construction material was needed. Tantalum coated stainless steel felt was tested and found suitable as the anode gas diffusion layer. Copyright © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved....

  8. A quantitative method to evaluate microbial electrolysis cell effectiveness for energy recovery and wastewater treatment

    KAUST Repository

    Ivanov, Ivan; Ren, Lijiao; Siegert, Michael; Logan, Bruce E.

    2013-01-01

    Microbial electrolysis cells (MECs) are potential candidates for sustainable wastewater treatment as they allow for recovery of the energy input by producing valuable chemicals such as hydrogen gas. Evaluating the effectiveness of MEC treatment

  9. Nanoporous materials for reducing the over potential of creating hydrogen by water electrolysis

    Science.gov (United States)

    Anderson, Marc A.; Leonard, Kevin C.

    2016-06-14

    Disclosed is an electrolyzer including an electrode including a nanoporous oxide-coated conducting material. Also disclosed is a method of producing a gas through electrolysis by contacting an aqueous solution with an electrode connected to an electrical power source, wherein the electrode includes a nanoporous oxide-coated conducting material.

  10. High-temperature nuclear reactor power plant cycle for hydrogen and electricity production – numerical analysis

    Directory of Open Access Journals (Sweden)

    Dudek Michał

    2016-01-01

    Full Text Available High temperature gas-cooled nuclear reactor (called HTR or HTGR for both electricity generation and hydrogen production is analysed. The HTR reactor because of the relatively high temperature of coolant could be combined with a steam or gas turbine, as well as with the system for heat delivery for high-temperature hydrogen production. However, the current development of HTR’s allows us to consider achievable working temperature up to 750°C. Due to this fact, industrial-scale hydrogen production using copper-chlorine (Cu-Cl thermochemical cycle is considered and compared with high-temperature electrolysis. Presented calculations show and confirm the potential of HTR’s as a future solution for hydrogen production without CO2 emission. Furthermore, integration of a hightemperature nuclear reactor with a combined cycle for electricity and hydrogen production may reach very high efficiency and could possibly lead to a significant decrease of hydrogen production costs.

  11. Fast electrochemical deposition of Ni(OH)2 precursor involving water electrolysis for fabrication of NiO thin films

    Science.gov (United States)

    Koyama, Miki; Ichimura, Masaya

    2018-05-01

    Ni(OH)2 precursor films were deposited by galvanostatic electrochemical deposition (ECD), and NiO thin films were fabricated by annealing in air. The effects of the deposition current densities were studied in a range that included current densities high enough to electrolyze water and generate hydrogen bubbles. The films fabricated by ECD involving water electrolysis had higher transparency and smoother surface morphology than those deposited with lower current densities. In addition, the annealed NiO films clearly had preferred (111) orientation when the deposition was accompanied by water electrolysis. p-type conduction was confirmed for the annealed films.

  12. The impact of anode acclimation strategy on microbial electrolysis cell treating hydrogen fermentation effluent

    DEFF Research Database (Denmark)

    Li, Xiaohu; Zhang, Ruizhe; Qian, Yawei

    2017-01-01

    The impact of different anode acclimation methods for enhancing hydrogen production in microbial electrolysis cell (MEC) was investigated in this study. The anodes were first acclimated in microbial fuel cells using acetate, butyrate and corn stalk fermentation effluent (CSFE) as substrate before...

  13. Microbial fuel cells and microbial electrolysis cells for the production of bioelectricity and biomaterials.

    Science.gov (United States)

    Zhou, Minghua; Yang, Jie; Wang, Hongyu; Jin, Tao; Xu, Dake; Gu, Tingyue

    2013-01-01

    Today's global energy crisis requires a multifaceted solution. Bioenergy is an important part of the solution. The microbial fuel cell (MFC) technology stands out as an attractive potential technology in bioenergy. MFCs can convert energy stored in organic matter directly into bioelectricity. MFCs can also be operated in the electrolysis mode as microbial electrolysis cells to produce bioproducts such as hydrogen and ethanol. Various wastewaters containing low-grade organic carbons that are otherwise unutilized can be used as feed streams for MFCs. Despite major advances in the past decade, further improvements in MFC power output and cost reduction are needed for MFCs to be practical. This paper analysed MFC operating principles using bioenergetics and bioelectrochemistry. Several major issues were explored to improve the MFC performance. An emphasis was placed on the use of catalytic materials for MFC electrodes. Recent advances in the production of various biomaterials using MFCs were also investigated.

  14. Novel electrical energy storage system based on reversible solid oxide cells: System design and operating conditions

    Science.gov (United States)

    Wendel, C. H.; Kazempoor, P.; Braun, R. J.

    2015-02-01

    Electrical energy storage (EES) is an important component of the future electric grid. Given that no other widely available technology meets all the EES requirements, reversible (or regenerative) solid oxide cells (ReSOCs) working in both fuel cell (power producing) and electrolysis (fuel producing) modes are envisioned as a technology capable of providing highly efficient and cost-effective EES. However, there are still many challenges and questions from cell materials development to system level operation of ReSOCs that should be addressed before widespread application. This paper presents a novel system based on ReSOCs that employ a thermal management strategy of promoting exothermic methanation within the ReSOC cell-stack to provide thermal energy for the endothermic steam/CO2 electrolysis reactions during charging mode (fuel producing). This approach also serves to enhance the energy density of the stored gases. Modeling and parametric analysis of an energy storage concept is performed using a physically based ReSOC stack model coupled with thermodynamic system component models. Results indicate that roundtrip efficiencies greater than 70% can be achieved at intermediate stack temperature (680 °C) and elevated stack pressure (20 bar). The optimal operating condition arises from a tradeoff between stack efficiency and auxiliary power requirements from balance of plant hardware.

  15. Percutaneous treatment of pulmonary tumors by electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsson, L.; Joensson, L.; Stahl, E.

    1983-06-01

    Five lung tumors in four patients were treated with electrolysis. One of the tumors was probably primary, while the others were metastases. Under local anesthesia, two or three platinum electrodes (diameter 3 mm) were introduced through the thoracic wall into the lung tumor using biplane fluoroscopy. The patient was sedated before the procedure and a chest tube was inserted into the pleural cavity. Between anode and cathode a direct current of 80 mA and 10 V was passed during 2-4 h, creating substantial electrolytic destruction mainly through chlorine liberation. Observations at autopsy, surgery, chest X-ray, and CT showed that 60%-80% of the tumor mass was destroyed. No tumor was completely destroyed. The patients stood the procedure well.

  16. Fiscal 1999 hydrogen utilization international clean energy system technology (WE-NET). Phase 2 R and D (Task 8) - development of hydrogen production technology; 1999 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dainiki kenkyu kaihatsu. Task 8. Suiso seizo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    R and D was conducted with the view of establishing hydrogen production technology based on the solid high polymer electrolyte water electrolysis method, which presumably offers higher efficiency and lower cost than conventional methods. This year, as well as implementing development of large-scale cell lamination (electrode area 2,500 cm{sup 2}, 10 cells) by using two hydrogen production methods (electroless plating method and hot press method), work was started for developing cells (electrode area 1,000 cm{sup 2}) for hydrogen stations. In the research on longterm durability improvement, with a 50 cm{sup 2} membrane electrolyte or cell, the evaluation test results were obtained of stable electrolytic performance showing more than 93% energy efficiency after 400 hour operation, under the conditions with electrolysis pressure 0.4MPa and electrolysis temperature 120 degree C. In a test of 1,000 cm{sup 2} prototype cell for hydrogen stations, the evaluation result was obtained for energy efficiency of 92% under the conditions with electrolysis pressure 0.5MPa and electrolysis temperature 120 degree C; thus, this year's target efficiency of over 90% was achieved. Further, enhancement of the quality was contrived for example by improving the electroless plating method and remodeling a roll press machine. (NEDO)

  17. Voltammogram of stainless steel/Fe-Co-Ni electrode on water electrolysis in base condition with dahlia pinnata tuber starch media

    Science.gov (United States)

    Isana S. Y., L.; Yuanita, Dewi; Sulistyani, Al, Heru Pratomo

    2017-08-01

    Hydrogen production in a safe, enviromentally friendly, and inexpensive is an attempt to realize energy needs commercially, one of them is electrolysis. Many attempts which relate with water electrolysis had been conducted to produce hydrogen, for example by using wastewater as water substitution. The research is to study the effect of dahlia pinnata tuber starch to stainless steel/Fe-Co-Ni electrode activity on water electrolysis in base condition. Stainless steel/Fe-Co-Ni electrode activity for breaking the water molecules eventually is better than stainless steel electrode, either there is existance of dahlia pinnata tuber starch or not. The presence of dahlia pinnata tuber starch apparently makes the covering on surface of the electrode so the catalytic activity of the electrode is reduced. Covering is mostly affected by dahlia pinnata tuber starch concentration. Wastewater which contains starch, especially dahlia pinnata tuber starch, obviously is not good enough because hydrogen production rate becomes obstructed.

  18. Corrosion behaviour of construction materials for high temperature steam electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Christensen, Erik

    2011-01-01

    temperature proton exchange membrane (PEM) steam electrolysers. Steady-state voltammetry was used in combination with scanning electron microscopy and energy-dispersive X-ray spectroscopy to evaluate the stability of the mentioned materials. It was found that stainless steels were the least resistant...... to corrosion under strong anodic polarisation. Among alloys, Ni-based showed the highest corrosion resistance in the simulated PEM electrolyser medium. In particular, Inconel 625 was the most promising among the tested corrosion-resistant alloys for the anodic compartment in high temperature steam electrolysis...

  19. Fiscal 1975 Sunshine Project research report. General research on hydrogen energy subsystems and their peripheral technologies (Research on peripheral technologies around hydrogen); 1975 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Suiso no shuhen gijutsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-03-01

    This report summarizes the fiscal 1975 research result on peripheral and seed technologies for hydrogen energy systems. Chapter 1 'Evaluation method for thermochemical techniques' reports critical study on qualitative evaluation method, estimation method for thermal efficiencies, and trial cost calculation example. Chapter 2 'Current state and problems of water electrolysis and hybrid technique composed of electrolysis and thermochemical technique' reports general survey on current water electrolysis and new technologies under development to clarify possible electrolytic voltage drop, from the practical viewpoint. Chapter 3 'Use of a high- temperature gas cooling reactor for hydrogen production' reports survey on the current and future reactors, and characteristics of such nuclear reactors, from the viewpoint that study on thermochemical technique is dependent on use of a high-temperature gas cooling reactor. Chapter 4 'Hydrogen transport and storage technology using organic compounds including oxygen' reports that acetone-isopropanol system is better for hydrogen storage. Chapter 5 'Water electrolysis using photo-semiconducting electrode' reports the additional survey. (NEDO)

  20. A new temperature collection system

    International Nuclear Information System (INIS)

    Kong Wenchuang; Wang Daihua; Zhang Zhijie

    2011-01-01

    According to the characteristics of explosion field temperature testing, a new temperature collection system based on complex programmable logic device (CPLD), single chip microcontroller (SCM) and static ram (SRAM) is proposed. The system adopts the NANMAC E12 type of thermocouple as the temperature sensor, DS600 temperature sensor for cold temperature compensation, with rapid synchronous collection, trigger and working parameters adjustable characteristics. The system used SCM combined with USB communication interface, easy operation and reliable. (authors)

  1. Electrolysis Bubble Noise in Small-Scale Tests of a Seawater MHD thruster

    Science.gov (United States)

    1990-09-01

    SECURITY CLAS&ICATION AUTHORITY I DISTRIBUTION/ AVAILABILIT Y OF REPORT 2b. DECLSIFICATIONJDOWNGRADING SCHEDULE Approved for public release...to those which might occur in an undersea MI-D-powered vesseL The electrolysis of sea water at current densities up to 0.3 A/cn, ’produced broad-band...3 Test Equipm eni ...................................................... 5 Water Table Facility and Flow Channels

  2. Vehicle Integrated Photovoltaics for Compression Ignition Vehicles: An Experimental Investigation of Solar Alkaline Water Electrolysis for Improving Diesel Combustion and a Solar Charging System for Reducing Auxiliary Engine Loads

    Science.gov (United States)

    Negroni, Garry Inocentes

    Vehicle-integrated photovoltaic electricity can be applied towards aspiration of hydrogen-oxygen-steam gas produced through alkaline electrolysis and reductions in auxiliary alternator load for reducing hydrocarbon emissions in low nitrogen oxide indirect-injection compression-ignition engines. Aspiration of 0.516 ± 0.007 liters-per-minute of gas produced through alkaline electrolysis of potassium-hydroxide 2wt.% improves full-load performance; however, part-load performance decreases due to auto-ignition of aspirated gas prior to top-dead center. Alternator load reductions offer improved part-load and full-load performance with practical limitations resulting from accessory electrical loads. In an additive approach, solar electrolysis can electrochemically convert solar photovoltaic electricity into a gas comprised of stoichiometric hydrogen and oxygen gas. Aspiration of this hydrogen-oxygen gas enhances combustion properties decreasing emissions and increased combustion efficiency in light-duty diesel vehicles. The 316L stainless steel (SS) electrolyser plates are arranged with two anodes and three cathodes space with four bipolar plates delineating four stacks in parallel with five cells per stack. The electrolyser was tested using potassium hydroxide 2 wt.% and hydronium 3wt.% at measured voltage and current inputs. The flow rate output from the reservoir cell was measured in parallel with the V and I inputs producing a regression model correlating current input to flow rate. KOH 2 wt.% produced 0.005 LPM/W, while H9O44 3 wt.% produced less at 0.00126 LPM/W. In a subtractive approach, solar energy can be used to charge a larger energy storage device, as is with plug-in electric vehicles, in order to alleviate the engine of the mechanical load placed upon it by the vehicles electrical accessories through the alternator. Solar electrolysis can improve part-load emissions and full-load performance. The average solar-to-battery efficiency based on the OEM rated

  3. Breaking through the hydrogen cost barrier by using electrolysis loads to access ancillary services and demand response programs

    International Nuclear Information System (INIS)

    Wilson, D.; McGillivray, R.

    2009-01-01

    This presentation described the use of hydrogen electrolysis as a load resource for handling grid instability resulting from the increased penetration of intermittent renewable power. In particular, it focused on Hydrogenics, the leading global supplier of industrial scale electrolysis equipment and fuel cells. The presentation included an overview of the current incentive and market value of ancillary services provided by the company and demand responses in a number of grids around the world. There is a link between the amount of ancillary services required by the grid and the penetration level of renewable energy power such as wind and solar. The ability of hydrogen generation from electrolysis to satisfy all the requirements of ancillary services markets was also demonstrated. The economic analysis of hydrogen generation was discussed with particular reference to the cost of hydrogen fully loading all capital, energy and operating costs. The resulting reduction in the cost of hydrogen was compared to the existing markets for hydrogen, including use of hydrogen as a fuel for municipal bus fleets relative to the existing cost of fossil fuel fleets. Current industrial hydrogen merchant and bulk market prices were also compared

  4. Carbon-encapsulated nickel-iron nanoparticles supported on nickel foam as a catalyst electrode for urea electrolysis

    International Nuclear Information System (INIS)

    Wu, Mao-Sung; Jao, Chi-Yu; Chuang, Farn-Yih; Chen, Fang-Yi

    2017-01-01

    Highlights: • Electrochemical process can purify the urea-rich wastewater, producing hydrogen gas. • Carbon-encapsulated nickel iron nanoparticles (CE-NiFe) are prepared by pyrolysis. • An ultra-thin layer of CE-NiFe nanoparticles is attached to the 3D Ni foam. • CE-NiFe nanoparticles escalate both the urea electrolysis and hydrogen evolution. - Abstract: A cyanide-bridged bimetallic coordination polymer, nickel hexacyanoferrate, could be pyrolyzed to form carbon-encapsulated nickel-iron (CE-NiFe) nanoparticles. The formation of nitrogen-doped spherical carbon shell with ordered mesoporous structure prevented the structural damage of catalyst cores and allowed the migration and diffusion of electrolyte into the hollow carbon spheres. An ultra-thin layer of CE-NiFe nanoparticles could be tightly attached to the three-dimensional macroporous nickel foam (NF) by electrophoretic deposition. The CE-NiFe nanoparticles could lower the onset potential and increase the current density in anodic urea electrolysis and cathodic hydrogen production as compared with bare NF. Macroporous NF substrate was very useful for the urea electrolysis and hydrogen production, which allowed for fast transport of electron, electrolyte, and gas products. The superior electrocatalytic ability of CE-NiFe/NF electrode in urea oxidation and water reduction made it favorable for versatile applications such as water treatment, hydrogen generation, and fuel cells.

  5. Two stage bioethanol refining with multi litre stacked microbial fuel cell and microbial electrolysis cell.

    Science.gov (United States)

    Sugnaux, Marc; Happe, Manuel; Cachelin, Christian Pierre; Gloriod, Olivier; Huguenin, Gérald; Blatter, Maxime; Fischer, Fabian

    2016-12-01

    Ethanol, electricity, hydrogen and methane were produced in a two stage bioethanol refinery setup based on a 10L microbial fuel cell (MFC) and a 33L microbial electrolysis cell (MEC). The MFC was a triple stack for ethanol and electricity co-generation. The stack configuration produced more ethanol with faster glucose consumption the higher the stack potential. Under electrolytic conditions ethanol productivity outperformed standard conditions and reached 96.3% of the theoretically best case. At lower external loads currents and working potentials oscillated in a self-synchronized manner over all three MFC units in the stack. In the second refining stage, fermentation waste was converted into methane, using the scale up MEC stack. The bioelectric methanisation reached 91% efficiency at room temperature with an applied voltage of 1.5V using nickel cathodes. The two stage bioethanol refining process employing bioelectrochemical reactors produces more energy vectors than is possible with today's ethanol distilleries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Mixed conduction protonic/electronic ceramic for high temperature electrolysis anode

    International Nuclear Information System (INIS)

    Goupil, Gregory

    2011-01-01

    This thesis validates the concept of mixed electron/proton ceramic conductors to be used as anode materials for intermediate temperature steam electrolyzer. The materials developed are based on cobaltites of alkaline-earth metals and rare earth elements commonly used for their high electronic conductivity in the temperature range of 300-600 C. The stability of each material has been assessed during 350 h in air and moist air. After checking the chemical compatibility with the BaZr 0.9 Y 0.1 O 3 electrolyte material, eight compositions have been selected: BaCoO 3 , LaCoO 3 , Sr 0.5 La 0.5 CoO 3 , Ba 0.5 La 0.5 CoO 3 , GdBaCo 2 O 5 , NdBaCo 2 O 5 , SmBaCo 2 O 5 and PrBaCo 2 O 5 . The thermal evolution of the oxygen stoichiometry of each material was determined by coupling iodo-metric titration and TGA in dry air. TGA in moist air has allowed determining the optimum temperature range for which proton incorporation is possible and maximized. Proton incorporation profiles have been determined on two cobaltites using SIMS and nuclear microanalysis in the ERDA configuration. Deuterium diffusion coefficients have been determined confirming the proton mobility in these materials. Under moist air, NdBaCo 2 O 5 is shown to incorporate rapidly a significant number of protons that spread homogeneously within the material bulk. Anode microstructure optimization has allowed reaching at 450 C and 600 C total resistance values on symmetrical cell highly promising. (author) [fr

  7. Micro-electrolysis of Cr (VI) in the nanoscale zero-valent iron loaded activated carbon.

    Science.gov (United States)

    Wu, Limei; Liao, Libing; Lv, Guocheng; Qin, Faxiang; He, Yujuan; Wang, Xiaoyu

    2013-06-15

    In this paper we prepared a novel material of activated carbon/nanoscale zero-valent iron (C-Fe(0)) composite. The C-Fe(0) was proved to possess large specific surface area and outstanding reducibility that result in the rapid and stable reaction with Cr (VI). The prepared composite has been examined in detail in terms of the influence of solution pH, concentration and reaction time in the Cr (VI) removal experiments. The results showed that the C-Fe(0) formed a micro-electrolysis which dominated the reaction rate. The Micro-electrolysis reaches equilibrium is ten minutes. Its reaction rate is ten times higher than that of traditional adsorption reaction, and the removal rate of Cr reaches up to 99.5%. By analyzing the obtained profiles from the cyclic voltammetry, PXRD and XPS, we demonstrate that the Cr (VI) is reduced to insoluble Cr (III) compound in the reaction. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Hydrogen production by electrolysis of a phosphate solution on a stainless steel cathode

    International Nuclear Information System (INIS)

    De Silva Munoz, L.; Bergel, A.; Basseguy, R.; Feron, D.

    2010-01-01

    The catalytic properties of phosphate species, already shown on the reduction reaction in anaerobic corrosion of steels, are exploited here for hydrogen production. Phosphate species work as a homogeneous catalyst that enhances the cathodic current at mild pH values. A voltammetric study of the hydrogen evolution reaction is performed using phosphate solutions at different concentrations on 316L stainless steel and platinum rotating disk electrodes. Then, hydrogen is produced in an electrolytic cell using a phosphate solution as the catholyte. Results show that 316L stainless steel electrodes have a stable behaviour as cathodes in the electrolysis of phosphate solutions. Phosphate (1 M, pH 4. 0/5. 0) as the catholyte can equal the performance of a KOH 25%w solution with the advantage of working at mild pH values. The use of phosphate and other weak acids as catalysts of the hydrogen evolution reaction could be a promising technology in the development of electrolysis units that work at mild pH values with low-cost electrodes and construction materials. (authors)

  9. Development of solid electrolytes for water electrolysis at higher temperature

    Energy Technology Data Exchange (ETDEWEB)

    Linkous, C.A. [Florida Solar Energy Center, Cocoa, FL (United States)

    1996-10-01

    This report describes efforts in developing new solid polymer electrolytes that will enable operation of proton exchange membrane electrolyzers at higher temperatures than are currently possible. Several ionomers have been prepared from polyetheretherketone (PEEK), polyethersulfone (PES), and polyphenylquinoxaline (PPQ) by employing various sulfonation procedures. By controlling the extent of sulfonation, a range of proton conductivities could be achieved, whose upper limit actually exceeded that of commercially available perfluoralkyl sulfonates. Thermoconductimetric analysis of samples at various degrees of sulfonation showed an inverse relationship between conductivity and maximum operating temperature. This was attributed to the dual effect of adding sulfonate groups to the polymer: more acid groups produce more protons for increased conductivity, but they also increase water uptake, which mechanically weakens the membrane. This situation was exacerbated by the limited acidity of the aromatic sulfonic acids (pK{sub A} {approx} 2-3). The possibility of using partial fluorination to raise the acid dissociation constant is discussed.

  10. Long-Term Degradation Testing of High-Temperature Electrolytic Cells

    Energy Technology Data Exchange (ETDEWEB)

    C.M. Stoots; J.E. O' Brien; J.S. Herring; G.K. Housley; D.G. Milobar; M.S. Sohal

    2009-08-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cell for large-scale hydrogen production from steam over a temperature range of 800 to 900ºC. The INL has been testing various solid oxide cell designs to characterize their electrolytic performance operating in the electrolysis mode for hydrogen production. Some results presented in this report were obtained from cells, with an active area of 16 cm2 per cell. The electrolysis cells are electrode-supported, with ~10 µm thick yttria-stabilized zirconia (YSZ) electrolytes, ~1400 µm thick nickel-YSZ steam-hydrogen electrodes, and manganite (LSM) air-oxygen electrodes. The experiments were performed over a range of steam inlet mole fractions (0.1 to 0.6), gas flow rates, and current densities (0 to 0.6 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. On a molar basis, the steam consumption rate is equal to the hydrogen production rate. Cell performance was evaluated by performing DC potential sweeps at 800, 850, and 900°C. The voltage-current characteristics are presented, along with values of area-specific resistance as a function of current density. Long-term cell performance is also assessed to evaluate cell degradation. Details of the custom single-cell test apparatus developed for these experiments are also presented. NASA, in conjunction with the University of Toledo, has developed a new cell concept with the goals of reduced weight and high power density. This report presents results of the INL's testing of this new solid oxide cell design as an electrolyzer. Gas composition, operating voltage, and other parameters were varied during testing. Results to date show the NASA cell to be a promising design for both high power-to-weight fuel cell and electrolyzer applications.

  11. Long-Term Degradation Testing of High-Temperature Electrolytic Cells

    International Nuclear Information System (INIS)

    Stoots, C.M.; O'Brien, J.E.; Herring, J.S.; Housley, G.K.; Milobar, D.G.; Sohal, M.S.

    2009-01-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cell for large-scale hydrogen production from steam over a temperature range of 800 to 900 C. The INL has been testing various solid oxide cell designs to characterize their electrolytic performance operating in the electrolysis mode for hydrogen production. Some results presented in this report were obtained from cells, with an active area of 16 cm2 per cell. The electrolysis cells are electrode-supported, with ∼10 ∼m thick yttria-stabilized zirconia (YSZ) electrolytes, ∼1400 (micro)m thick nickel-YSZ steam-hydrogen electrodes, and manganite (LSM) air-oxygen electrodes. The experiments were performed over a range of steam inlet mole fractions (0.1 to 0.6), gas flow rates, and current densities (0 to 0.6 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. On a molar basis, the steam consumption rate is equal to the hydrogen production rate. Cell performance was evaluated by performing DC potential sweeps at 800, 850, and 900 C. The voltage-current characteristics are presented, along with values of area-specific resistance as a function of current density. Long-term cell performance is also assessed to evaluate cell degradation. Details of the custom single-cell test apparatus developed for these experiments are also presented. NASA, in conjunction with the University of Toledo, has developed a new cell concept with the goals of reduced weight and high power density. This report presents results of the INL's testing of this new solid oxide cell design as an electrolyzer. Gas composition, operating voltage, and other parameters were varied during testing. Results to date show the NASA cell to be a promising design for both high power-to-weight fuel cell and electrolyzer applications.

  12. Search for neutron emission during the electrolysis of heavy water

    International Nuclear Information System (INIS)

    Coelho, P.R.P.; Saxena, R.N.; Morato, S.P.; Goldman, I.D.; Pinho, A.G. de; Nascimento, I.C.

    1990-03-01

    A liquid scintillator detector NE 213 with pulse shape discrimination technique was used to observe neutrons during the electrolysis of heavy water with a palladium cathode. From the measured fore and background couting rates, a neutron emission rate of (8.2 ± 2.9) x 10 -3 n/(sec.g.) Pd was determined implying (2.9 ± 1.0) x 10 -24 fusions / [(dd pair).sec.] as compared to ≅ 10 -23 fusion/ [(dd pair).sec.] reported by Jones et al. using titanium electrode. (author) [pt

  13. Carbon deposition and sulfur poisoning during CO2 electrolysis in nickel-based solid oxide cell electrodes

    DEFF Research Database (Denmark)

    Skafte, Theis Løye; Blennow, Peter; Hjelm, Johan

    2017-01-01

    is investigated systematically using simple current-potential experiments. Due to variations of local conditions, it is shown that higher current density and lower fuel electrode porosity will cause local carbon formation at the electrochemical reaction sites despite operating with a CO outlet concentration...... outside the thermodynamic carbon formation region. Attempts at mitigating the issue by coating the composite nickel/yttria-stabilized zirconia electrode with carbon-inhibiting nanoparticles and by sulfur passivation proved unsuccessful. Increasing the fuel electrode porosity is shown to mitigate......Reduction of CO2 to CO and O2 in the solid oxide electrolysis cell (SOEC) has the potential to play a crucial role in closing the CO2 loop. Carbon deposition in nickel-based cells is however fatal and must be considered during CO2 electrolysis. Here, the effect of operating parameters...

  14. A membrane-free, continuously feeding, single chamber up-flow biocatalyzed electrolysis reactor for nitrobenzene reduction

    International Nuclear Information System (INIS)

    Wang, Ai-Jie; Cui, Dan; Cheng, Hao-Yi; Guo, Yu-Qi; Kong, Fan-Ying; Ren, Nan-Qi; Wu, Wei-Min

    2012-01-01

    Highlights: ► A novel membrane-free up-flow biocatalyzed electrolysis reactor (UBER) was developed. ► Nitrobenzene as the mode of nitroaromatics was efficiently converted to aniline. ► The impact of phosphate buffer and acetate concentrations and power supplied were investigated. ► The prospects of UBER for the recalcitrant compound removal were discussed. - Abstract: A new bioelectrochemical system (BES), a membrane-free, continuous feeding up-flow biocatalyzed electrolysis reactor (UBER) was developed to reduce oxidative toxic chemicals to less- or non-toxic reduced form in cathode zone with oxidation of electron donor in anode zone. Influent was fed from the bottom of UBER and passed through cathode zone and then anode zone. External power source (0.5 V) was provided between anode and cathode to enhance electrochemical reactions. Granular graphite and carbon brush were used as cathode and anode, respectively. This system was tested for the reduction of nitrobenzene (NB) using acetate as electron donor and carbon source. The influent contained NB (50–200 mg L −1 ) and acetate (1000 mg L −1 ). NB was removed by up to 98% mainly in cathode zone. The anode potential maintained under −480 mV. The maximum NB removal rate was up to 3.5 mol m −3 TV d −1 (TV = total empty volume) and the maximum aniline (AN) formation rate was 3.06 mol m −3 TV d −1 . Additional energy required was less than 0.075 kWh mol −1 NB. The molar ratio of NB removed vs acetate consumed varied from 4.3 ± 0.4 to 2.3 ± 0.1 mol mol −1 . Higher influent phosphate or acetate concentration helped NB removal rate. NB could be efficiently reduced to AN as the power supplied of 0.3 V.

  15. Uranium metal production by molten salt electrolysis

    International Nuclear Information System (INIS)

    Takasawa, Yutaka

    1999-01-01

    Atomic vapor laser isotope separation (AVLIS) is a promising uranium enrichment technology in the next generation. Electrolytic reduction of uranium oxides into uranium metal is proposed for the preparation of uranium metal as a feed material for AVLIS plant. Considering economical performance, continuos process concept and minimizing the amount of radioactive waste, an electrolytic process for producing uranium metal directly from uranium oxides will offer potential advantages over the existing commercial process. Studies of uranium metal by electrolysis in fluoride salts (BaF 2 -LiF-UF 4 (74-11-15 w/o) at 1150-1200degC, using both a laboratory scale apparatus and an engineering scale one, and continuous casting of uranium metal were carried out in order to decide the optimum operating conditions and the design of the industrial electrolytic cells. (author)

  16. Understanding the processes governing performance and durability of solid oxide electrolysis cells

    DEFF Research Database (Denmark)

    Ebbesen, Sune Dalgaard; Sun, Xiufu; Mogensen, Mogens Bjerg

    2015-01-01

    Operation of a Ni–YSZ electrode supported Solid Oxide Cell (SOC) was studied in both fuel cell mode (FC-mode) and electrolysis cell mode (EC-mode) in mixtures of H2O/H2, CO2/CO, H2O/H2O/CO2/CO at 750 °C, 800 °C and 850 °C. Although the SOCs are reversible, the polarisation characterisation shows ...

  17. Recovery of fission products from waste solutions utilizing controlled cathodic potential electrolysis

    International Nuclear Information System (INIS)

    Carlin, W.W.; Darlington, W.B.

    1975-01-01

    Fission products, e.g., palladium, rhodium and technetium, are recovered from aqueous waste solutions thereof, e.g., aged Purex alkaline waste solutions. The metal values from the waste solutions are extracted by ion exchange techniques. The metals adsorbed by the ion exchange resin are eluted and selectively recovered by controlled cathodic potential electrolysis. The metal values deposited on the cathode are recovered and, if desired, further purified

  18. Experiment on electrolysis decontamination of stainless steel pipes

    International Nuclear Information System (INIS)

    Wang Dongwen; Dou Tianjun; Zhao Yujie

    2004-01-01

    A new electrolytic decontamination method used metal balls as conducting anode was investigated. The influences of current density, solution property and diameter of pipes on efficiency of electrolytic decontamination were examined and the efficiency of this method was compared with that of common electrolytic method under the same experimental conditions. Decontamination of samples of stainless steel pipes contaminated by plutonium was performed. Experimental results indicate that decontamination of stainless steel pipes contaminated by plutonium can be achieved at the optimum conditions of greater than 0.2 A·cm -2 current density, 5% sulfuric acid electrolyte and 5 min electrolysis. This method can be used in the decontamination of a wide variety of decommissioned metal materials. (author)

  19. Pulsed voltage electrospray ion source and method for preventing analyte electrolysis

    Science.gov (United States)

    Kertesz, Vilmos [Knoxville, TN; Van Berkel, Gary [Clinton, TN

    2011-12-27

    An electrospray ion source and method of operation includes the application of pulsed voltage to prevent electrolysis of analytes with a low electrochemical potential. The electrospray ion source can include an emitter, a counter electrode, and a power supply. The emitter can include a liquid conduit, a primary working electrode having a liquid contacting surface, and a spray tip, where the liquid conduit and the working electrode are in liquid communication. The counter electrode can be proximate to, but separated from, the spray tip. The power system can supply voltage to the working electrode in the form of a pulse wave, where the pulse wave oscillates between at least an energized voltage and a relaxation voltage. The relaxation duration of the relaxation voltage can range from 1 millisecond to 35 milliseconds. The pulse duration of the energized voltage can be less than 1 millisecond and the frequency of the pulse wave can range from 30 to 800 Hz.

  20. High Temperature and Pressure Alkaline Electrochemical Reactor for Conversion of Power to Chemicals

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos

    2016-01-01

    forces. Raising the operating temperature offers a means to boost performance, as both ionic transport and reaction kinetics are exponentially activated with temperature. Indeed, we have demonstrated alkaline electrolysis cells operating at 200-250 °C and 20-50 bar at very high efficiencies and power...... been established enabling experiments with gaseous or liquids reactants/products at cell sizes of up to 25 cm2. Efforts are currently directed towards the investigation of the intrinsic activity of mixed oxides for the oxygen evolution reaction at elevated temperatures and pressures...