WorldWideScience

Sample records for temperature distribution

  1. Temperature distribution and thermal stress

    Indian Academy of Sciences (India)

    The minimum stress and minimum stress difference are shown in equal double pumping. 4. Conclusion. In the present work, the temperature distribution and thermal stress of the actual double-end-pumped Nd:YVO4 cubic crystal have been discussed. The results show that by considering the input power as a constant, the ...

  2. Temperature Distribution in a Displacement Ventilated Room

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    The vertical temperature gradient is normally given as a linear temperature distribution between a minimum temperature close to the floor and a maximum temperature close to the ceiling. The minimum temperature can either be a constant fraction of a load dependent difference or it can be connected...

  3. Distributed temperature sensor testing in liquid sodium

    Energy Technology Data Exchange (ETDEWEB)

    Gerardi, Craig, E-mail: cgerardi@anl.gov; Bremer, Nathan; Lisowski, Darius; Lomperski, Stephen

    2017-02-15

    Highlights: • Distributed temperature sensors measured high-resolution liquid-sodium temperatures. • DTSs worked well up to 400 °C. • A single DTS simultaneously detected sodium level and temperature. - Abstract: Rayleigh-backscatter-based distributed fiber optic sensors were immersed in sodium to obtain high-resolution liquid-sodium temperature measurements. Distributed temperature sensors (DTSs) functioned well up to 400 °C in a liquid sodium environment. The DTSs measured sodium column temperature and the temperature of a complex geometrical pattern that leveraged the flexibility of fiber optics. A single Ø 360 μm OD sensor registered dozens of temperatures along a length of over one meter at 100 Hz. We also demonstrated the capability to use a single DTS to simultaneously detect thermal interfaces (e.g. sodium level) and measure temperature.

  4. Distributed temperature sensor testing in liquid sodium

    Energy Technology Data Exchange (ETDEWEB)

    Gerardi, Craig; Bremer, Nathan; Lisowski, Darius; Lomperski, Stephen

    2017-02-01

    Rayleigh-backscatter-based distributed fiber optic sensors were immersed in sodium to obtain high-resolution liquid-sodium temperature measurements. Distributed temperature sensors (DTSs) functioned well up to 400°C in a liquid sodium environment. The DTSs measured sodium column temperature and the temperature of a complex geometrical pattern that leveraged the flexibility of fiber optics. A single Ø 360 lm OD sensor registered dozens of temperatures along a length of over one meter at 100 Hz. We also demonstrated the capability to use a single DTS to simultaneously detect thermal interfaces (e.g. sodium level) and measure temperature.

  5. Test of Taylor's Hypothesis with Distributed Temperature

    Science.gov (United States)

    Cheng, Y.; Gentine, P.; Sayde, C.; Tanner, E.; Ochsner, T. E.; Dong, J.

    2016-12-01

    Taylor's hypothesis[Taylor, 1938] assumes that mean wind speed carries the spatial pattern of turbulent motion past a fixed point in a "frozen" way, which has been widely used to relate streamwise wavenumber and angular frequency . Experiments[Fisher, 1964; Tong, 1996] have shown some deviation from Taylor's hypothesis at highly turbulent intensity flows and at high wavenumbers. However, the velocity or scalar measurements have always been fixed at a few spatial points rather than distributed in space. This experiment was designed for the first time to directly compare the time and spatial spectrum of temperature to test Taylor's hypothesis, measuring temperature with high resolution in both time and space by Distributed Temperature Sensing utilizing the attenuation difference of Raman scattering in the optic fiber at the MOISST site Oklahoma. The length of transact is 233 meters along the dominant wind direction. The temperature sampling distance is 0.127m and sampling time frequency is 1 Hz. The heights of the 4 fiber cables parallel to ground are 1m, 1.254m, 1.508m and 1.762m respectively. Also, eddy covariance instrument was set up near the Distributed Temperature Sensing as comparison for temperature data. The temperature spatial spectrum could be obtained with one fixed time point, while the temperature time spectrum could be obtained with one fixed spatial point in the middle of transact. The preliminary results would be presented in the AGU fall meeting. Reference Fisher, M. J., and Davies, P.O.A.L (1964), Correlation measurements in a non-frozen pattern of turbulence, Journal of fluid mechanics, 18(1), 97-116. Taylor, G. I. (1938), The spectrum of turbulence, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 164(919), 476-490. Tong, C. (1996), Taylor's Hypothesis and Two-point Coherence Measurements, Boundary-Layer Meteorology, 81(3), 399-410.

  6. Fiber Optic Distributed Temperature Sensing of Snow

    Science.gov (United States)

    Huwald, H.; Higgins, C. W.; Diebold, M.; Lehning, M.; Tyler, S. W.; Selker, J. S.; Parlange, M. B.

    2009-12-01

    Physical properties of seasonal and perennial snow covers can vary significantly on the order of a few meters with direct impact on snow dynamics, thermodynamics, temporal evolution, and ultimately on local snow water storage representing a challenge for measurement and modeling efforts. Detailed knowledge on small scale variability in snow internal temperature, density, and resulting subsurface heat fluxes is relatively limited, and pertinent snow cover internal data are also difficult to obtain. Uncertainty in the quantification of the components of the surface and snow internal energy budget is a consequence. From an experimental point of view, acquisition of distributed temperature data in the snow pack is non-trivial since accumulation, ablation, metamorphosis, etc., lead to continuous changes in the snow surface level. To provide better observational evidence of small scale variability and the associated snow physical processes we use fiber optic distributed temperature sensing (DTS), a rapidly emerging technology in environmental sensing, which provides high resolution temperature measurements in space (1 meter) and time (a few minutes) with a resolution better than 0.1C over distances of several kilometers. Innovative experimental designs such as 2D transects and high resolution vertical temperature profiles using fiber optic cables were deployed and tested at high altitude sites in the Swiss Alps. The results of the experiments yield both expertise in the application of the novel measurement systems and new insight in snow pack thermodynamics such as 2D conductive heat fluxes. Also, wind pumping processes were investigated with a complimentary experimental system of synchronized high frequency measurements of atmospheric turbulence and barometric pressure fluctuations in the snow.

  7. Progress in distributed fiber optic temperature sensing

    Science.gov (United States)

    Hartog, Arthur H.

    2002-02-01

    The paper reviews the adoption of distributed temperature sensing (DTS) technology based on Raman backscatter. With one company alone having installed more than 400 units, the DTS is becoming accepted practice in several applications, notably in energy cable monitoring, specialised fire detection and oil production monitoring. The paper will provide case studies in these applications. In each case the benefit (whether economic or safety) will be addressed, together with key application engineering issues. The latter range from the selection and installation of the fibre sensor, the specific performance requirements of the opto-electronic equipment and the issues of data management. The paper will also address advanced applications of distributed sensing, notably the problem of monitoring very long ranges, which apply in subsea DC energy cables or in subsea oil wells linked to platforms through very long (e.g. 30km flowlines). These applications are creating the need for a new generation of DTS systems able to achieve measurements at up to 40km with very high temperature resolution, without sacrificing spatial resolution. This challenge is likely to drive the development of new concepts in the field of distributed sensing.

  8. Distribution and temperatures in odontology acupuncture

    Science.gov (United States)

    Rossi, Ricardo; Creus, Mariano; Gallego Lluesma, Eliseo

    2000-03-01

    Acupuncture has been recognized by W.H.O. in 1989. It admits this therapy and accepts more than forty point on the external ear. After making thermograms to Odontology patients treated with acupuncture, we were able to compare the temperature distribution maps and we found that they were quasi repetitive in the same zones on several patients for a specific illness. We made this technique available to different patients that lack good irrigation on face and neck with the aim to establish patterns.

  9. Properties of magnetocaloric materials with a distribution of Curie temperatures

    DEFF Research Database (Denmark)

    Bahl, Christian Robert Haffenden; Bjørk, Rasmus; Smith, Anders

    2012-01-01

    The magnetocaloric properties of inhomogeneous ferromagnets that contain distributions of Curie temperatures are considered as a function of the width of such a distribution. Assuming a normal distribution of the Curie temperature, the average adiabatic temperature change, ΔTad, the isothermal...

  10. The Use Of Multifrequency Induction Heating For Temperature Distribution Control

    Directory of Open Access Journals (Sweden)

    Smalcerz A.

    2015-06-01

    Full Text Available The paper presents possibilities of controlling temperature field distribution in inductively heated charge. The change of its distribution was obtained using the sequential one-, two-, and three-frequency heating. The study was conducted as a multi-variant computer simulation of hard coupled electromagnetic and temperature fields. For the analysis, a professional calculation software package utilizing the finite element method, Flux 3D, was used. The problem of obtaining an appropriate temperature distribution in the heated charge of a complex shape is very important in many practical applications. A typical example is hardening of gear wheels. For such an application, it is necessary to obtain (on the surface and at a desired depth an uniform temperature distribution on the tooth face, top land and bottom land of the gear. The obtained temperature should have proper distribution and value. Such a distribution is very difficult to achieve.

  11. Ultra-High Temperature Distributed Wireless Sensors

    Energy Technology Data Exchange (ETDEWEB)

    May, Russell; Rumpf, Raymond; Coggin, John; Davis, Williams; Yang, Taeyoung; O' Donnell, Alan; Bresnahan, Peter

    2013-03-31

    Research was conducted towards the development of a passive wireless sensor for measurement of temperature in coal gasifiers and coal-fired boiler plants. Approaches investigated included metamaterial sensors based on guided mode resonance filters, and temperature-sensitive antennas that modulate the frequency of incident radio waves as they are re-radiated by the antenna. In the guided mode resonant filter metamaterial approach, temperature is encoded as changes in the sharpness of the filter response, which changes with temperature because the dielectric loss of the guided mode resonance filter is temperature-dependent. In the mechanically modulated antenna approach, the resonant frequency of a vibrating cantilever beam attached to the antenna changes with temperature. The vibration of the beam perturbs the electrical impedance of the antenna, so that incident radio waves are phase modulated at a frequency equal to the resonant frequency of the vibrating beam. Since the beam resonant frequency depends on temperature, a Doppler radar can be used to remotely measure the temperature of the antenna. Laboratory testing of the guided mode resonance filter failed to produce the spectral response predicted by simulations. It was concluded that the spectral response was dominated by spectral reflections of radio waves incident on the filter. Laboratory testing of the mechanically modulated antenna demonstrated that the device frequency shifted incident radio waves, and that the frequency of the re-radiated waves varied linearly with temperature. Radio wave propagation tests in the convection pass of a small research boiler plant identified a spectral window between 10 and 13 GHz for low loss propagation of radio waves in the interior of the boiler.

  12. Grist size distribution and gelatinization temperature of malted ...

    African Journals Online (AJOL)

    The effect of particle size distribution of sorghum malt grist on gelatinization temperature of the sorghum mash was assessed with respect to sorghum variety ICSV400. This was with a view to determining the possible relationship between the grist size distribution and the temperature at which the mash from such grist will ...

  13. 3D Temperature Distribution Model Based on Thermal Infrared Image

    Directory of Open Access Journals (Sweden)

    Tong Jia

    2017-01-01

    Full Text Available This paper aims to study the construction of 3D temperature distribution reconstruction system based on binocular vision technology. Initially, a traditional calibration method cannot be directly used, because the thermal infrared camera is only sensitive to temperature. Therefore, the thermal infrared camera is calibrated separately. Belief propagation algorithm is also investigated and its smooth model is improved in terms of stereo matching to optimize mismatching rate. Finally, the 3D temperature distribution model is built based on the matching of 3D point cloud and 2D thermal infrared information. Experimental results show that the method can accurately construct the 3D temperature distribution model and has strong robustness.

  14. Time dependent temperature distribution in pulsed Ti:sapphire lasers

    Science.gov (United States)

    Buoncristiani, A. Martin; Byvik, Charles E.; Farrukh, Usamah O.

    1988-01-01

    An expression is derived for the time dependent temperature distribution in a finite solid state laser rod for an end-pumped beam of arbitrary shape. The specific case of end pumping by circular (constant) or Gaussian beam is described. The temperature profile for a single pump pulse and for repetitive pulse operation is discussed. The particular case of the temperature distribution in a pulsed titanium:sapphire rod is considered.

  15. Vertical Temperature Distribution in a Room with Displacement Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    in comparison with mixing ventilation. It is necessary to have a design method for the temperature distribution used for instance in connection with the tlow element method and the energy calculations. The temperature distribution is also important in connection with thermal comfort in a room. It is necessary......A displacement ventilation system exploits the use of energy efficiently because it is possible to remove exhaust air from a room with a temperature that is several degrees above the temperature in the occupied zone. This process will allow a higher air inlet temperature at the same load...... to consider the temperature gradient in the occupied zone, as well as the asymmetric radiation from the ceiling, in connection with the design of a displacement ventilation system and the evaluation of thermal comfort. This paper will introduce five temperature distribution models with different levels...

  16. Pirani pressure sensor with distributed temperature measurement

    NARCIS (Netherlands)

    de Jong, B.R.; Bula, W.P.; Zalewski, D.R.; van Baar, J.J.J.; Wiegerink, Remco J.

    2003-01-01

    Surface micro-machined distributed Pirani pressure gauges, with designed heater-to-heat sink distances (gap-heights) of 0.35 μm and 1.10 μm, are successfully fabricated, modeled and characterized. Measurements and model response correspond within 5% of the measured value in a pressure range of 10 to

  17. Physical processes determining the chromospheric temperature distribution

    Science.gov (United States)

    Jordan, S. D.

    1977-01-01

    It is demonstrated that short period acoustic waves appear adequate to heat the low chromosphere in the region just above the temperature minimum, these waves are unlikely to provide sufficient energy to heat the chromosphere above tau-5000 A(normal) less than 10 to the -6th. Calculations also show that the electron density to H density ratio from chromospheric models is too low for the H2 molecule to affect the population of H(-).

  18. Critical Assessment of Temperature Distribution in Submerged Arc Welding Process

    Directory of Open Access Journals (Sweden)

    Vineet Negi

    2013-01-01

    Full Text Available Temperature distribution during any welding process holds the key for understanding and predicting several important welding attributes like heat affected zone, microstructure of the weld, residual stress, and distortion during welding. The accuracy of the analytical approaches for modeling temperature distribution during welding has been constrained by oversimplified assumptions regarding boundary conditions and material properties. In this paper, an attempt has been made to model the temperature distribution during submerged arc welding process using finite element modeling technique implemented in ANSYS v12. In the present analysis, heat source is assumed to be double-ellipsoidal with Gaussian volumetric heat generation. Furthermore, variation of material properties with temperature and both convective and radiant heat loss boundary condition have been considered. The predicted temperature distribution is then validated against the experimental results obtained by thermal imaging of the welded plate, and they are found to be in a good agreement.

  19. Misestimation of temperature when applying Maxwellian distributions to space plasmas described by kappa distributions

    CERN Document Server

    Nicolaou, Georgios

    2016-01-01

    This paper presents the misestimation of temperature when observations from a kappa distributed plasma are analyzed as a Maxwellian. One common method to calculate the space plasma parameters is by fitting the observed distributions using known analytical forms. More often, the distribution function is included in a forward model of the instrument's response, which is used to reproduce the observed energy spectrograms for a given set of plasma parameters. In both cases, the modeled plasma distribution fits the measurements to estimate the plasma parameters. The distribution function is often considered to be Maxwellian even though in many cases the plasma is better described by a kappa distribution. In this work we show that if the plasma is described by a kappa distribution, the derived temperature assuming Maxwell distribution can be significantly off. More specifically, we derive the plasma temperature by fitting a Maxwell distribution to pseudo-data produced by a kappa distribution, and then examine the d...

  20. Sapphire-fiber-based distributed high-temperature sensing system.

    Science.gov (United States)

    Liu, Bo; Yu, Zhihao; Hill, Cary; Cheng, Yujie; Homa, Daniel; Pickrell, Gary; Wang, Anbo

    2016-09-15

    We present, for the first time to our knowledge, a sapphire-fiber-based distributed high-temperature sensing system based on a Raman distributed sensing technique. High peak power laser pulses at 532 nm were coupled into the sapphire fiber to generate the Raman signal. The returned Raman Stokes and anti-Stokes signals were measured in the time domain to determine the temperature distribution along the fiber. The sensor was demonstrated from room temperature up to 1200°C in which the average standard deviation is about 3.7°C and a spatial resolution of about 14 cm was achieved.

  1. Quantification Model for Estimating Temperature Field Distributions of Apple Fruit

    Science.gov (United States)

    Zhang, Min; Yang, Le; Zhao, Huizhong; Zhang, Leijie; Zhong, Zhiyou; Liu, Yanling; Chen, Jianhua

    A quantification model of transient heat conduction was provided to simulate apple fruit temperature distribution in the cooling process. The model was based on the energy variation of apple fruit of different points. It took into account, heat exchange of representative elemental volume, metabolism heat and external heat. The following conclusions could be obtained: first, the quantification model can satisfactorily describe the tendency of apple fruit temperature distribution in the cooling process. Then there was obvious difference between apple fruit temperature and environment temperature. Compared to the change of environment temperature, a long hysteresis phenomenon happened to the temperature of apple fruit body. That is to say, there was a significant temperature change of apple fruit body in a period of time after environment temperature dropping. And then the change of temerature of apple fruit body in the cooling process became slower and slower. This can explain the time delay phenomenon of biology. After that, the temperature differences of every layer increased from centre to surface of apple fruit gradually. That is to say, the minimum temperature differences closed to centre of apple fruit body and the maximum temperature differences closed to the surface of apple fruit body. Finally, the temperature of every part of apple fruit body will tend to consistent and be near to the environment temperature in the cooling process. It was related to the metabolism heat of plant body at any time.

  2. Analysis of temperature distribution in a heat conducting fiber with ...

    African Journals Online (AJOL)

    The temperature distribution in a heat conducting fiber is computed using the Galerkin Finite Element Method in the present study. The weak form of the governing differential equation is obtained and nodal temperatures for linear and quadratic interpolation functions for different mesh densities are calculated for Neumann ...

  3. Influence of absorbed pump profile on the temperature distribution ...

    Indian Academy of Sciences (India)

    2017-01-20

    Jan 20, 2017 ... any complex optics yields good absorption efficiency. [6–8]. As we know, only part of the pump power is converted into output laser energy, while most of the energy is eventually turned into heat consumption. [9–17]. The temperature distribution in the laser rod is determined by the non-uniform distribution ...

  4. Dual – Temperature Electron distribution in a Laboratory Plasma ...

    African Journals Online (AJOL)

    The dual-temperature distribution function is used to investigate theoretically the effect of a perturbation of Maxwell distribution function on density ratios in a laboratory plasma produced solely by collision. By assuming a foreknowledge of collision coefficients and cross-sections and an atomic model which sets at two ...

  5. Temperature distribution effects on micro-CFPCR performance.

    Science.gov (United States)

    Chen, Pin-Chuan; Nikitopoulos, Dimitris E; Soper, Steven A; Murphy, Michael C

    2008-04-01

    Continuous flow polymerase chain reactors (CFPCRs) are BioMEMS devices that offer unique capabilities for the ultra-fast amplification of target DNA fragments using repeated thermal cycling, typically over the following temperature ranges: 90 degrees C-95 degrees C for denaturation, 50 degrees C-70 degrees C for renaturation, and 70 degrees C-75 degrees C for extension. In CFPCR, DNA cocktail is pumped through the constant temperature zones and reaches thermal equilibrium with the channel walls quickly due to its low thermal capacitance. In previous work, a polycarbonate CFPCR was designed with microchannels 150 microm deep, 50 microm wide, and 1.78 m long-including preheating and post-heating zones, fabricated with LIGA, and demonstrated. The high thermal resistance of the polycarbonate led to a high temperature gradient in the micro-device at steady-state and was partly responsible for the low amplification yield. Several steps were taken to ensure that there were three discrete, uniform temperature zones on the polycarbonate CFPCR device including: reducing the thickness of the CFPCR substrate to decrease thermal capacitance, using copper plates as heating elements to ensure a uniform temperature input, and making grooves between temperature zones to increase the resistance to lateral heat conduction between zones. Finite element analyses (FEA) were used to evaluate the macro temperature distribution in the CFPCR device and the micro temperature distribution along a single microchannel. At steady-state, the simulated CFPCR device had three discrete temperature zones, each with a uniform temperature distribution with a variation of +/-0.3 degrees C. An infrared (IR) camera was used to measure the steady-state temperature distribution in the prototype CFPCR and validated the simulation results. The temperature distributions along a microchannel at flow velocities from 0 mm/s to 6 mm/s were used to estimate the resulting temperatures of the DNA reagents in a single

  6. Determination of gas temperature in the plasmatron channel according to the known distribution of electronic temperature

    Directory of Open Access Journals (Sweden)

    Gerasimov Alexander V.

    2013-01-01

    Full Text Available An analytical method to calculate the temperature distribution of heavy particles in the channel of the plasma torch on the known distribution of the electronic temperature has been proposed. The results can be useful for a number of model calculations in determining the most effective conditions of gas blowing through the plasma torch with the purpose of heating the heavy component. This approach allows us to understand full details about the heating of cold gas, inpouring the plasma, and to estimate correctly the distribution of the gas temperature inside the channel.

  7. DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM

    Directory of Open Access Journals (Sweden)

    Davood Domairry Ganji

    2011-01-01

    Full Text Available In this paper, homotopy perturbation method has been used to evaluate the temperature distribution of annular fin with temperature-dependent thermal conductivity and to determine the temperature distribution within the fin. This method is useful and practical for solving the nonlinear heat transfer equation, which is associated with variable thermal conductivity condition. The homotopy perturbation method provides an approximate analytical solution in the form of an infinite power series. The annular fin heat transfer rate with temperature-dependent thermal conductivity has been obtained as a function of thermo-geometric fin parameter and the thermal conductivity parameter describing the variation of the thermal conductivity.

  8. Temperature and flow distribution in planar SOFC stacks

    Directory of Open Access Journals (Sweden)

    Monica Østenstad

    1995-07-01

    Full Text Available Simulation of a planar Solid Oxide Fuel Cell stack requires the solution of the mass balances of the chemical species, the energy balances, the charge balance and the channel flow equations in order to compute the species concentrations, the temperature distributions, the current density and the channel flows. The unit cell geometry can be taken into account by combining detailed modeling of a unit cell with a homogenized model of a whole stack. In this study the effect of the asymmetric temperature distribution on the channel flows in a conventional cross-flow design has been investigated. The bidirectional cross-flow design is introduced, for which we can show more directional temperature and flow distributions.

  9. Temperature Grid Sensor for the Measurement of Spatial Temperature Distributions at Object Surfaces

    OpenAIRE

    Uwe Hampel; Thomas Schäfer; Markus Schubert

    2013-01-01

    This paper presents results of the development and application of a new temperature grid sensor based on the wire-mesh sensor principle. The grid sensor consists of a matrix of 256 Pt1000 platinum chip resistors and an associated electronics that measures the grid resistances with a multiplexing scheme at high speed. The individual sensor elements can be spatially distributed on an object surface and measure transient temperature distributions in real time. The advantage compared with other t...

  10. Fiber optic distributed temperature sensing for the determination of air temperature

    NARCIS (Netherlands)

    De Jong, S.A.P.; Slingerland, J.D.; Van de Giesen, N.C.

    2014-01-01

    This paper describes a method to correct for the effect of solar radiation in atmospheric Distributed Temperature Sensing (DTS) applications. By using two cables with different diameters, one can determine what temperature a zero diameter cable would have. Such virtual cable would not be affected by

  11. Control and modelling of vertical temperature distribution in greenhouse crops

    NARCIS (Netherlands)

    Kempkes, F.L.K.; Bakker, J.C.; Braak, van de N.J.

    1998-01-01

    Based on physical transport processes (radiation, convection and latent heat transfer) a model has been developed to describe the vertical temperature distribution of a greenhouse crop. The radiation exchange factors between heating pipes, crop layers, soil and roof were determined as a function of

  12. A Numerical Simulation of Temperature Distribution and Power Loss ...

    African Journals Online (AJOL)

    A Numerical Simulation of Temperature Distribution and Power Loss of Slider Bearings Lubricated With Fluids Having Constant Viscosity. ... The stream wise pressure gradient, shear stresses and flow rate obtained from post processing of the finite element solution of the Reynolds equation act as inputs when the energy ...

  13. Influence of absorbed pump profile on the temperature distribution ...

    Indian Academy of Sciences (India)

    Influence of absorbed pump profile on the temperature distribution within a diode side-pumped laser rod ... Department of Physics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran; Institute of Optics and Laser, Malek-ashtar University of Technology, Shahin Shahr, Postal Code: 83145/115, Iran; Department of ...

  14. The analytical investigation of temperature distribution in off-central ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 70; Issue 4. The analytical investigation of temperature distribution in off-central diode-pumped lasers. P Ealhi A ... The influence of displacement of the pump source with respect to the crystal center on the thermal behavior of the laser crystal is studied analytically.

  15. The analytical investigation of temperature distribution in off-central ...

    Indian Academy of Sciences (India)

    pumped laser is investigated. The results are then applied to the. Nd : YAG and Nd : YVO4 laser crystals and compared with the conventional diode-pumped lasers. We showed that in this special case, the temperature distribution equation in the.

  16. Effect of body fat and gender on body temperature distribution.

    Science.gov (United States)

    Neves, Eduardo Borba; Salamunes, Ana Carla Chierighini; de Oliveira, Rafael Melo; Stadnik, Adriana Maria Wan

    2017-12-01

    It is well known that body composition can influence peripheral heat loss and skin temperature. That the distribution of body fat is affected by gender is well known; however, there is little information on how body composition and gender influences the measure of skin temperature. This study evaluated skin temperature distribution according to body fat percentage (BF%) and gender. A sample of 94 apparently healthy volunteers (47 women and 47 men) was assessed with Dual-Energy X-Ray Absorptiometry (DXA) and infrared thermography (mean, maximum and minimum temperatures - TMean, TMax and TMin). The sample was divided into groups, according to health risk classification, based on BF%, as proposed by the American College of Sports Medicine: Average (n = 58), Elevated (n = 16) or High (n = 20). Women had lower TMean in most regions of interest (ROI). In both genders, group High had lower temperature values than Average and Elevated in the trunk, upper and lower limbs. In men, palms and posterior hands had a tendency (p temperature along with increased BF%. TMean, TMax and TMin of trunk, upper and lower limbs were negatively correlated with BF% and the fat percentage of each segment (upper limbs, lower limbs and trunk). The highest correlations found in women were between posterior trunk and BF% (rho = -0.564, p skin temperature than men, which was related with higher BF%. Facial temperature seems not to be influenced by body fat. With the future collection of data on the relationship between BF% and skin temperature while taking into account factors such as body morphology, gender, and ethnicity, we conclude that measurement of BF may be reliably estimated with the use of thermal imaging technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Subsurface temperature distribution in a tropical alluvial fan

    Science.gov (United States)

    Chen, Wenfu; Chang, Minhsiang; Chen, Juier; Lu, Wanchung; Huang, Chihc; Wang, Yunshuen

    2017-04-01

    As a groundwater intensive use country, Taiwan's 1/3 water supplies are derived from groundwater. The major aquifers consist of sand and gravel formed in alluvial fans which border the fronts of central mountains. Thanks to high density of monitoring wells which provide a window to see the details of the subsurface temperature distribution and the thermal regime in an alluvial fan system. Our study area, the Choshui Alluvial Fan, is the largest groundwater basin in Taiwan and, located within an area of 2,000 km2, has a population of over 1.5 million. For this work, we investigated temperature-depth profiles using 70 groundwater monitoring wells during 2000 to 2015. Our results show that the distribution of subsurface temperature is influenced by various factors such as groundwater recharge, groundwater flow field, air temperature and land use. The groundwater recharge zone, hills to the upper fan, contains disturbed and smaller geothermal gradients. The lack of clay layers within the upper fan aquifers and fractures that developed in the hills should cause the convection and mixing of cooler recharge water to groundwater, resulting in smaller geothermal gradients. The groundwater temperatures at a depth to 300 m within the upper fan and hill were approximately only 23-24 °C while the current mean ground surface temperature is approximately 26 °C.

  18. Prediction of Skin Temperature Distribution in Cosmetic Laser Surgery

    Science.gov (United States)

    Ting, Kuen; Chen, Kuen-Tasnn; Cheng, Shih-Feng; Lin, Wen-Shiung; Chang, Cheng-Ren

    2008-01-01

    The use of lasers in cosmetic surgery has increased dramatically in the past decade. To achieve minimal damage to tissues, the study of the temperature distribution of skin in laser irradiation is very important. The phenomenon of the thermal wave effect is significant due to the highly focused light energy of lasers in very a short time period. The conventional Pennes equation does not take the thermal wave effect into account, which the thermal relaxation time (τ) is neglected, so it is not sufficient to solve instantaneous heating and cooling problem. The purpose of this study is to solve the thermal wave equation to determine the realistic temperature distribution during laser surgery. The analytic solutions of the thermal wave equation are compared with those of the Pennes equation. Moreover, comparisons are made between the results of the above equations and the results of temperature measurement using an infrared thermal image instrument. The thermal wave equation could likely to predict the skin temperature distribution in cosmetic laser surgery.

  19. Temperature Distribution within a Cold Cap during Nuclear Waste Vitrification.

    Science.gov (United States)

    Dixon, Derek R; Schweiger, Michael J; Riley, Brian J; Pokorny, Richard; Hrma, Pavel

    2015-07-21

    The kinetics of the feed-to-glass conversion affects the waste vitrification rate in an electric glass melter. The primary area of interest in this conversion process is the cold cap, a layer of reacting feed on top of the molten glass. The work presented here provides an experimental determination of the temperature distribution within the cold cap. Because direct measurement of the temperature field within the cold cap is impracticable, an indirect method was developed in which the textural features in a laboratory-made cold cap with a simulated high-level waste feed were mapped as a function of position using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. The temperature distribution within the cold cap was established by correlating microstructures of cold-cap regions with heat-treated feed samples of nearly identical structures at known temperatures. This temperature profile was compared with a mathematically simulated profile generated by a cold-cap model that has been developed to assess the rate of glass production in a melter.

  20. Identification of Curie temperature distributions in magnetic particulate systems

    Science.gov (United States)

    Waters, J.; Berger, A.; Kramer, D.; Fangohr, H.; Hovorka, O.

    2017-09-01

    This paper develops a methodology for extracting the Curie temperature distribution from magnetisation versus temperature measurements which are realizable by standard laboratory magnetometry. The method is integral in nature, robust against various sources of measurement noise, and can be adopted to a wide range of granular magnetic materials and magnetic particle systems. The validity and practicality of the method is demonstrated using large-scale Monte-Carlo simulations of an Ising-like model as a proof of concept, and general conclusions are drawn about its applicability to different classes of systems and experimental conditions.

  1. Airflow and Temperature Distribution in Rooms with Displacement Ventilation

    DEFF Research Database (Denmark)

    Jacobsen, T. V.

    This thesis deals with air flow and temperature distribution in a room ventilated by the displacement principle. The characteristic features of the ventilation system are treated in the whole room but main emphasis is laid on the analysis of the stratified flow region in front of the inlet device....... After a prefatory description of the background and the fundamentals of displacement ventilation the objectives of the current study are specified. The subsequent sections describe the measurements of velocity and temperature profiles carried out in a full scale test room. Based on experimental data...

  2. Temperature Grid Sensor for the Measurement of Spatial Temperature Distributions at Object Surfaces

    Directory of Open Access Journals (Sweden)

    Uwe Hampel

    2013-01-01

    Full Text Available This paper presents results of the development and application of a new temperature grid sensor based on the wire-mesh sensor principle. The grid sensor consists of a matrix of 256 Pt1000 platinum chip resistors and an associated electronics that measures the grid resistances with a multiplexing scheme at high speed. The individual sensor elements can be spatially distributed on an object surface and measure transient temperature distributions in real time. The advantage compared with other temperature field measurement approaches such as infrared cameras is that the object under investigation can be thermally insulated and the radiation properties of the surface do not affect the measurement accuracy. The sensor principle is therefore suited for various industrial monitoring applications. Its applicability for surface temperature monitoring has been demonstrated through heating and mixing experiments in a vessel.

  3. Temperature grid sensor for the measurement of spatial temperature distributions at object surfaces.

    Science.gov (United States)

    Schäfer, Thomas; Schubert, Markus; Hampel, Uwe

    2013-01-25

    This paper presents results of the development and application of a new temperature grid sensor based on the wire-mesh sensor principle. The grid sensor consists of a matrix of 256 Pt1000 platinum chip resistors and an associated electronics that measures the grid resistances with a multiplexing scheme at high speed. The individual sensor elements can be spatially distributed on an object surface and measure transient temperature distributions in real time. The advantage compared with other temperature field measurement approaches such as infrared cameras is that the object under investigation can be thermally insulated and the radiation properties of the surface do not affect the measurement accuracy. The sensor principle is therefore suited for various industrial monitoring applications. Its applicability for surface temperature monitoring has been demonstrated through heating and mixing experiments in a vessel.

  4. Differential Transformation Method for Temperature Distribution in a Radiating Fin

    DEFF Research Database (Denmark)

    Rahimi, M.; Hosseini, M. J.; Barari, Amin

    2011-01-01

    Radiating extended surfaces are widely used to enhance heat transfer between a primary surface and the environment. In this paper, the differential transformation method (DTM) is proposed for solving nonlinear differential equation of temperature distribution in a heat radiating fin. The concept...... of differential transformation is briefly introduced, and then we employed it to derive solutions of two nonlinear equations. The results obtained by DTM are compared with those derived from the analytical solution to verify the accuracy of the proposed method....

  5. Numerical methods for computing the temperature distribution in satellite systems

    OpenAIRE

    Gómez-Valadés Maturano, Francisco José

    2012-01-01

    [ANGLÈS] The present thesis has been done at ASTRIUM company to find new methods to obtain temperature distributions. Current software packages such as ESATAN or ESARAD provide not only excellent thermal analysis solutions, at a high price as they are very time consuming though, but also radiative simulations in orbit scenarios. Since licenses of this product are usually limited for the use of many engineers, it is important to provide new tools to do these calculations. In consequence, a dif...

  6. Fiber Optic Distributed Temperature Sensing in Avalanche Research

    Science.gov (United States)

    Woerndl, Michaela; Tyler, S. W.; Hatch, C. E.; Dozier, J.; Prokop, A.

    2010-05-01

    Being a major driving force for snow metamorphism, thermal properties and temperature gradients in an alpine snow pack influence both, spatial distribution and temporal evolution of its stability throughout a winter season. In avalanche research and forecasting mainly weather station networks and models are employed for temperature-data collection and prediction. Standard temperature measurement devices used in weather stations and for model calibration typically provide point data over time. With fiber-optic Distributed Temperature Sensing (DTS) a laser is pulsed through standard telecommunications optical fibers of up to 30km in length, and uses the cables themselves as a thermometer. DTS allows for continuous observations of temperatures over large spatial scales and with high temporal resolution. Depending on the type of instrument, temperature readings can be provided every 0.25 to 2 meters along the cable and up to six times a minute. Measurement accuracies depend on integration times and can reach +/- 0.1 degrees C or better. Already well established in other environmental applications such as surface water - groundwater hydrology and soil moisture studies, this study assesses applicability and performance of DTS in snow environments and its potential benefits for avalanche research and forecasting. At the CRREL/UCSB research site on Mammoth Mountain, California, 40m fiber-optic cable loops were deployed at different depths in the snow pack to measure temperature and thermal gradient evolution over time and space. Four discrete measurement sessions of 4 to 20 days were conducted during the winter season 2008/2009. Strong horizontal spatial variability of temperatures of up to 3 degrees C within the snow pack over the 40m-sections were resolved. As expected, vertical thermal gradients were influenced by spatial location. Evolution of temperatures and gradients over time could be continuously monitored along the 40m transects during each measurement session

  7. Three-dimensional dense distributed temperature sensing for measuring layered thermohaline systems

    NARCIS (Netherlands)

    Hilgersom, K.P.; van de Giesen, N.C.; de Louw, PGB; Zijlema, M.

    2016-01-01

    Distributed temperature sensing has proven a useful technique for geoscientists to obtain spatially distributed temperature data. When studies require high-resolution temperature data in three spatial dimensions, current practices to enhance the spatial resolution do not suffice. For example,

  8. Thin-film resistance temperature detector array for the measurement of temperature distribution inside a phantom

    Science.gov (United States)

    Sim, Jai Kyoung; Hyun, Jaeyub; Doh, Il; Ahn, Bongyoung; Kim, Yong Tae

    2018-02-01

    A thin-film resistance temperature detector (RTD) array is proposed to measure the temperature distribution inside a phantom. HIFU (high-intensity focused ultrasound) is a non-invasive treatment method using focused ultrasound to heat up a localized region, so it is important to measure the temperature distribution without affecting the ultrasonic field and heat conduction. The present 25 µm thick PI (polyimide) film is transparent not only to an ultrasonic field, because its thickness is much smaller than the wavelength of ultrasound, but also to heat conduction, owing to its negligible thermal mass compared to the phantom. A total of 33 RTDs consisting of Pt resistors and interconnection lines were patterned on a PI substrate using MEMS (microelectromechanical systems) technology, and a polymer phantom was fabricated with the film at the center. The expanded uncertainty of the RTDs was 0.8 K. In the experimental study using a 1 MHz HIFU transducer, the maximum temperature inside the phantom was measured as 70.1 °C just after a HIFU excitation of 6.4 W for 180 s. The time responses of the RTDs at different positions also showed the residual heat transfer inside the phantom after HIFU excitation. HIFU results with the phantom showed that a thin-film RTD array can measure the temperature distribution inside a phantom.

  9. COMPUTER MODEL OF TEMPERATURE DISTRIBUTION IN OPTICALLY PUMPED LASER RODS

    Science.gov (United States)

    Farrukh, U. O.

    1994-01-01

    Managing the thermal energy that accumulates within a solid-state laser material under active pumping is of critical importance in the design of laser systems. Earlier models that calculated the temperature distribution in laser rods were single dimensional and assumed laser rods of infinite length. This program presents a new model which solves the temperature distribution problem for finite dimensional laser rods and calculates both the radial and axial components of temperature distribution in these rods. The modeled rod is either side-pumped or end-pumped by a continuous or a single pulse pump beam. (At the present time, the model cannot handle a multiple pulsed pump source.) The optical axis is assumed to be along the axis of the rod. The program also assumes that it is possible to cool different surfaces of the rod at different rates. The user defines the laser rod material characteristics, determines the types of cooling and pumping to be modeled, and selects the time frame desired via the input file. The program contains several self checking schemes to prevent overwriting memory blocks and to provide simple tracing of information in case of trouble. Output for the program consists of 1) an echo of the input file, 2) diffusion properties, radius and length, and time for each data block, 3) the radial increments from the center of the laser rod to the outer edge of the laser rod, and 4) the axial increments from the front of the laser rod to the other end of the rod. This program was written in Microsoft FORTRAN77 and implemented on a Tandon AT with a 287 math coprocessor. The program can also run on a VAX 750 mini-computer. It has a memory requirement of about 147 KB and was developed in 1989.

  10. Temperature distribution in the Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Castillo B, F.; Bermejo M, F.J.; Domiguez A, B.; Esquer P, C.A.; Navarro O, F.J.

    1981-01-01

    A series of temperature and pressure logs and flow rate measurements was compiled for each of the geothermal wells drilled to different reservoir depths between October 1979 and December 1980. Based on the valuable information obtained, a series of graphs showing the thermal characteristics of the reservoir were prepared. These graphs clearly show the temperature distribution resulting from the movement of fluids from the deep regions toward the higher zones of the reservoir, thus establishing more reliable parameters for locating new wells with better production zones. Updated information based on data from new deep wells drilled in the geothermal field is presented here. This new information does not differ much from earlier estimates and theories. However, the influence of faulting and fracturing on the hydrothermal recharge of the geothermal reservoir is seen more clearly.

  11. A fast high-spatial-resolution Raman distributed temperature sensor

    Science.gov (United States)

    Chen, Y.; Hartog, A. H.; Marsh, R. J.; Hilton, I. M.; Hadley, M. R.; Ross, P. A.

    2014-05-01

    Conventional high-spatial-resolution Raman distributed temperature sensing (DTS) systems are based on photoncounting techniques, which result in slow measurements over short sensing fibers. We describe an alternative approach that uses a high-power, short-pulse-width laser and provides fast measurements over fibers longer than 1 km. We demonstrate measurements with 1-s update times over fiber lengths greater than 1 km with better than 0.4-m spatial resolution. We introduce a figure of merit for DTS and we show a substantial improvement (x 100) over earlier results.

  12. Temperature Distribution in Solar Cells Calculated in Three Dimensional Approach

    Directory of Open Access Journals (Sweden)

    Hamdy K. Elminir

    2000-01-01

    Full Text Available Field-testing is costly, time consuming and depends heavily on prevailing weather conditions. Adequate security and weather protection must also provide at the test site. Delays can also be caused due to bad weather and system failures. To overcome these problems, a Photovoltaic (PV array simulation may be used. For system design purpose, the model must reflect the details of the physical process occurring in the cell, to get a closer insight into device operation as well as optimization of particular device parameters. PV cell temperature ratings have a great effect on the main cell performance. Hence, the need for an exact technique to calculate accurately and efficiently the temperature distribution of a PV cell arises, from which we can adjust safe and proper operation at maximum ratings. The Scope of this work is to describe the development of 3D-thermal models, which are used to update the operation temperature, to get a closer insight into the response behavior and to estimate the overall performance.

  13. Use of Distributed Temperature Sensing Technology to Characterize Fire Behavior

    Directory of Open Access Journals (Sweden)

    Douglas Cram

    2016-10-01

    Full Text Available We evaluated the potential of a fiber optic cable connected to distributed temperature sensing (DTS technology to withstand wildland fire conditions and quantify fire behavior parameters. We used a custom-made ‘fire cable’ consisting of three optical fibers coated with three different materials—acrylate, copper and polyimide. The 150-m cable was deployed in grasslands and burned in three prescribed fires. The DTS system recorded fire cable output every three seconds and integrated temperatures every 50.6 cm. Results indicated the fire cable was physically capable of withstanding repeated rugged use. Fiber coating materials withstood temperatures up to 422 °C. Changes in fiber attenuation following fire were near zero (−0.81 to 0.12 dB/km indicating essentially no change in light gain or loss as a function of distance or fire intensity over the length of the fire cable. Results indicated fire cable and DTS technology have potential to quantify fire environment parameters such as heat duration and rate of spread but additional experimentation and analysis are required to determine efficacy and response times. This study adds understanding of DTS and fire cable technology as a potential new method for characterizing fire behavior parameters at greater temporal and spatial scales.

  14. Distributed Temperature Sensing as a downhole tool in hydrogeology

    Science.gov (United States)

    Bense, V. F.; Read, T.; Bour, O.; Le Borgne, T.; Coleman, T.; Krause, S.; Chalari, A.; Mondanos, M.; Ciocca, F.; Selker, J. S.

    2016-12-01

    Distributed Temperature Sensing (DTS) technology enables downhole temperature monitoring to study hydrogeological processes at unprecedentedly high frequency and spatial resolution. DTS has been widely applied in passive mode in site investigations of groundwater flow, in-well flow, and subsurface thermal property estimation. However, recent years have seen the further development of the use of DTS in an active mode (A-DTS) for which heat sources are deployed. A suite of recent studies using A-DTS downhole in hydrogeological investigations illustrate the wide range of different approaches and creativity in designing methodologies. The purpose of this review is to outline and discuss the various applications and limitations of DTS in downhole investigations for hydrogeological conditions and aquifer geological properties. To this end, we first review examples where passive DTS has been used to study hydrogeology via downhole applications. Secondly, we discuss and categorize current A-DTS borehole methods into three types. These are thermal advection tests, hybrid cable flow logging, and heat pulse tests. We explore the various options with regards to cable installation, heating approach, duration, and spatial extent in order to improve their applicability in a range of settings. These determine the extent to which each method is sensitive to thermal properties, vertical in-well flow, or natural gradient flow. Our review confirms that the application of DTS has significant advantages over discrete point temperature measurements, particularly in deep wells, and highlights the potential for further method developments in conjunction with other emerging hydrogeophysical tools.

  15. Evaluating geothermal and hydrogeologic controls on regional groundwater temperature distribution

    Science.gov (United States)

    Burns, Erick R.; Ingebritsen, Steven E.; Manga, Michael; Williams, Colin F.

    2016-02-01

    A one-dimensional (1-D) analytic solution is developed for heat transport through an aquifer system where the vertical temperature profile in the aquifer is nearly uniform. The general anisotropic form of the viscous heat generation term is developed for use in groundwater flow simulations. The 1-D solution is extended to more complex geometries by solving the equation for piece-wise linear or uniform properties and boundary conditions. A moderately complex example, the Eastern Snake River Plain (ESRP), is analyzed to demonstrate the use of the analytic solution for identifying important physical processes. For example, it is shown that viscous heating is variably important and that heat conduction to the land surface is a primary control on the distribution of aquifer and spring temperatures. Use of published values for all aquifer and thermal properties results in a reasonable match between simulated and measured groundwater temperatures over most of the 300 km length of the ESRP, except for geothermal heat flow into the base of the aquifer within 20 km of the Yellowstone hotspot. Previous basal heat flow measurements (˜110 mW/m2) made beneath the ESRP aquifer were collected at distances of >50 km from the Yellowstone Plateau, but a higher basal heat flow of 150 mW/m2 is required to match groundwater temperatures near the Plateau. The ESRP example demonstrates how the new tool can be used during preliminary analysis of a groundwater system, allowing efficient identification of the important physical processes that must be represented during more-complex 2-D and 3-D simulations of combined groundwater and heat flow.

  16. Evaluating geothermal and hydrogeologic controls on regional groundwater temperature distribution

    Science.gov (United States)

    Burns, Erick R.; Ingebritsen, Steven E.; Manga, Michael; Williams, Colin F.

    2016-01-01

    A one-dimensional (1-D) analytic solution is developed for heat transport through an aquifer system where the vertical temperature profile in the aquifer is nearly uniform. The general anisotropic form of the viscous heat generation term is developed for use in groundwater flow simulations. The 1-D solution is extended to more complex geometries by solving the equation for piece-wise linear or uniform properties and boundary conditions. A moderately complex example, the Eastern Snake River Plain (ESRP), is analyzed to demonstrate the use of the analytic solution for identifying important physical processes. For example, it is shown that viscous heating is variably important and that heat conduction to the land surface is a primary control on the distribution of aquifer and spring temperatures. Use of published values for all aquifer and thermal properties results in a reasonable match between simulated and measured groundwater temperatures over most of the 300 km length of the ESRP, except for geothermal heat flow into the base of the aquifer within 20 km of the Yellowstone hotspot. Previous basal heat flow measurements (∼110 mW/m2) made beneath the ESRP aquifer were collected at distances of >50 km from the Yellowstone Plateau, but a higher basal heat flow of 150 mW/m2 is required to match groundwater temperatures near the Plateau. The ESRP example demonstrates how the new tool can be used during preliminary analysis of a groundwater system, allowing efficient identification of the important physical processes that must be represented during more-complex 2-D and 3-D simulations of combined groundwater and heat flow.

  17. An effect of temperature distribution on terahertz phase dynamics in intrinsic Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Asai, Hidehiro, E-mail: hd-asai@aist.go.jp; Kawabata, Shiro

    2013-11-15

    Highlights: •We calculate the temperature distribution in intrinsic Josephson junctions (IJJs). •We investigate the effect of temperature distribution on THz radiation from IJJs. •The Joule heating in the IJJs makes inhomogeneous temperature distribution. •The inhomogeneous temperature distribution strongly excites THz emission. -- Abstract: In this study, we numerically calculate the temperature distribution and the THz phase dynamics in the mesa-structured intrinsic Josephson junctions (IJJs) using the thermal diffusion equation and the Sine–Gordon equation. We observe that the temperature distribution has a broad peak around the center region of the IJJ mesa. Under a high external current, a “hot spot” where the temperature is locally higher than the superconducting critical temperature appears around this region. The transverse Josephson plasma wave is strongly excited by the inhomogeneous temperature distribution in the mesa. This gives rise to intense THz emission.

  18. Anisotropic Azimuthal Power and Temperature distribution on FuelRod. Impact on Hydride Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Motta, Arthur [Pennsylvania State Univ., State College, PA (United States); Ivanov, Kostadin [Pennsylvania State Univ., State College, PA (United States); Arramova, Maria [Pennsylvania State Univ., State College, PA (United States); Hales, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-29

    The degradation of the zirconium cladding may limit nuclear fuel performance. In the high temperature environment of a reactor, the zirconium in the cladding corrodes, releasing hydrogen in the process. Some of this hydrogen is absorbed by the cladding in a highly inhomogeneous manner. The distribution of the absorbed hydrogen is extremely sensitive to temperature and stress concentration gradients. The absorbed hydrogen tends to concentrate near lower temperatures. This hydrogen absorption and hydride formation can cause cladding failure. This project set out to improve the hydrogen distribution prediction capabilities of the BISON fuel performance code. The project was split into two primary sections, first was the use of a high fidelity multi-physics coupling to accurately predict temperature gradients as a function of r, θ , and z, and the second was to use experimental data to create an analytical hydrogen precipitation model. The Penn State version of thermal hydraulics code COBRA-TF (CTF) was successfully coupled to the DeCART neutronics code. This coupled system was verified by testing and validated by comparison to FRAPCON data. The hydrogen diffusion and precipitation experiments successfully calculated the heat of transport and precipitation rate constant values to be used within the hydrogen model in BISON. These values can only be determined experimentally. These values were successfully implemented in precipitation, diffusion and dissolution kernels that were implemented in the BISON code. The coupled output was fed into BISON models and the hydrogen and hydride distributions behaved as expected. Simulations were conducted in the radial, axial and azimuthal directions to showcase the full capabilities of the hydrogen model.

  19. Radial Distribution Functions of Strongly Coupled Two-Temperature Plasmas

    Science.gov (United States)

    Shaffer, Nathaniel R.; Tiwari, Sanat Kumar; Baalrud, Scott D.

    2017-10-01

    We present tests of three theoretical models for the radial distribution functions (RDFs) in two-temperature strongly coupled plasmas. RDFs are useful in extending plasma thermodynamics and kinetic theory to strong coupling, but they are usually known only for thermal equilibrium or for approximate one-component model plasmas. Accurate two-component modeling is necessary to understand the impact of strong coupling on inter-species transport, e.g., ambipolar diffusion and electron-ion temperature relaxation. We demonstrate that the Seuferling-Vogel-Toeppfer (SVT) extension of the hypernetted chain equations not only gives accurate RDFs (as compared with classical molecular dynamics simulations), but also has a simple connection with the Yukawa OCP model. This connection gives a practical means to recover the structure of the electron background from knowledge of the ion-ion RDF alone. Using the model RDFs in Effective Potential Theory, we report the first predictions of inter-species transport coefficients of strongly coupled plasmas far from equilibrium. This work is supported by NSF Grant No. PHY-1453736, AFSOR Award No. FA9550-16-1-0221, and used XSEDE computational resources.

  20. Study of Temperature Distribution Along an Artificially Polluted Insulator String

    Science.gov (United States)

    Subba, Reddy B.; Nagabhushana, G. R.

    2003-04-01

    Insulator becomes wet partially or completely, and the pollution layer on it becomes conductive, when collecting pollutants for an extended period during dew, light rain, mist, fog or snow melting. Heavy rain is a complicated factor that it may wash away the pollution layer without initiating other stages of breakdown or it may bridge the gaps between sheds to promote flashover. The insulator with a conducting pollution layer being energized, can cause a surface leakage current to flow (also temperature-rise). As the surface conductivity is non-uniform, the conducting pollution layer becomes broken by dry bands (at spots of high current density), interrupting the flow of leakage current. Voltage across insulator gets concentrated across dry bands, and causes high electric stress and breakdown (dry band arcing). If the resistance of the insulator surface is sufficiently low, the dry band arcs can be propagated to bridge the terminals causing flashover. The present paper concerns the evaluation of the temperature distribution along the surface of an energized artificially polluted insulator string.

  1. Few-mode fiber based Raman distributed temperature sensing.

    Science.gov (United States)

    Wang, Meng; Wu, Hao; Tang, Ming; Zhao, Zhiyong; Dang, Yunli; Zhao, Can; Liao, Ruolin; Chen, Wen; Fu, Songnian; Yang, Chen; Tong, Weijun; Shum, Perry Ping; Liu, Deming

    2017-03-06

    We proposed and experimentally demonstrated a few mode fiber (FMF) based Raman distributed temperature sensor (RDTS) to extend the sensing distance with enhanced signal-to-noise ratio (SNR) of backscattered anti-Stokes spontaneous Raman scattering. Operating in the quasi-single mode (QSM) with efficient fundamental mode excitement, the FMF allows much larger input pump power before the onset of stimulated Raman scattering compared with the standard single mode fiber (SSMF) and mitigates the detrimental differential mode group delay (DMGD) existing in the conventional multimode fiber (MMF) based RDTS system. Comprehensive theoretical analysis has been conducted to reveal the benefits of RDTS brought by QSM operated FMFs with the consideration of geometric/optical parameters of different FMFs. The measurement uncertainty of FMF based scheme has also been evaluated. Among fibers being investigated and compared (SSMF, 2-mode and 4-mode FMFs, respectively), although an ideal 4-mode FMF based RDTS has the largest SNR enhancement in principle, real fabrication imperfections and larger splicing loss degrade its performance. While the 2-mode FMF based system outperforms in longer distance measurement, which agrees well with the theoretical calculations considering real experimental parameters. Using the conventional RDTS hardware, a 30-ns single pulse at 1550nm has been injected as the pump; the obtained temperature resolutions at 20km distance are estimated to be about 10°C, 7°C and 6°C for the SSMF, 4-mode and 2-mode FMFs, respectively. About 4°C improvement over SSMF on temperature resolution at the fiber end with 3m spatial resolution within 80s measuring time over 20km 2-mode FMFs have been achieved.

  2. Past Peatland Distribution as an Indicator of Hydroclimate and Temperature

    Science.gov (United States)

    Treat, C. C.; Jones, M.; Lacourse, T.; Payne, R.; Peteet, D. M.; Sannel, B.; Stelling, J.; Talbot, J.; Williams, C. J.; Kleinen, T.; Grosse, G.; Yu, Z.; Finkelstein, S. A.; Broothaerts, N.; Dommain, R.; Kuhry, P.; Lähteenoja, O.; Dalton, A.; Notebaert, B.; Swindles, G. T.; Tarnocai, C.; Verstraeten, G.; Xia, Z.; Brovkin, V.

    2016-12-01

    Peatlands, wetlands with > 30 cm of organic sediment, cover more than 3 x 106 km2 of the earth surface and have been accumulating carbon and sediments throughout the Holocene. The location of peatland formation and accumulation has been dynamic over time, as peat formation in areas like Alaska and the West Siberian Lowlands preceded peat formation in Fennoscandia and Eastern North America due to more favorable climate for peat formation. Using the geographic distribution of peatlands in the past can indicate general climatic conditions, including hydroclimate, given that the underlying geology is well understood. Peatlands form under a variety of climatic conditions and landscape positions but do not persist under arid conditions, instead requiring either humid conditions or cold temperatures. However, peatlands may have existed in the past in areas not currently suitable for peatland formation and persistence, but where peats can be found at depth within the sediment column. Here we map the locations of histic paleosols, relict peat, and buried peats since the Last Glacial Maximum using a compilation of sites from previous studies. We compare these records of past peatland distribution to present-day peatland distribution. We evaluate regional differences in timing of peatland development in these buried peatlands to the development of extant peatlands. Finally, we compare the timing of past peatland extent to the to modeled paleoclimate during the Quaternary. In addition to implications for paleoclimate, these past peatlands are not well accounted for in present-day soil carbon stocks but could be an important component of deep soil carbon pools.

  3. Investigation of the limits of a fibre optic sensor system for measurement of temperature distribution

    DEFF Research Database (Denmark)

    Brehm, Robert; Johnson, Frank

    2006-01-01

    The aim of this project is to develop an innovative temperature sensor system which is able to measure the temperature distribution along a fibre optical cable. This technique for temperature measurement is based on Optical Time Domain Reflectometry (OTDR).......The aim of this project is to develop an innovative temperature sensor system which is able to measure the temperature distribution along a fibre optical cable. This technique for temperature measurement is based on Optical Time Domain Reflectometry (OTDR)....

  4. Modeling temperature dependence of trace element concentrations in groundwater using temperature dependent distribution coefficient

    Science.gov (United States)

    Saito, H.; Saito, T.; Hamamoto, S.; Komatsu, T.

    2015-12-01

    In our previous study, we have observed trace element concentrations in groundwater increased when groundwater temperature was increased with constant thermal loading using a 50-m long vertical heat exchanger installed at Saitama University, Japan. During the field experiment, 38 degree C fluid was circulated in the heat exchanger resulting 2.8 kW thermal loading over 295 days. Groundwater samples were collected regularly from 17-m and 40-m deep aquifers at four observation wells located 1, 2, 5, and 10 m, respectively, from the heat exchange well and were analyzed with ICP-MS. As a result, concentrations of some trace elements such as boron increased with temperature especially at the 17-m deep aquifer that is known as marine sediment. It has been also observed that the increased concentrations have decreased after the thermal loading was terminated indicating that this phenomenon may be reversible. Although the mechanism is not fully understood, changes in the liquid phase concentration should be associated with dissolution and/or desorption from the solid phase. We therefore attempt to model this phenomenon by introducing temperature dependence in equilibrium linear adsorption isotherms. We assumed that distribution coefficients decrease with temperature so that the liquid phase concentration of a given element becomes higher as the temperature increases under the condition that the total mass stays constant. A shape function was developed to model the temperature dependence of the distribution coefficient. By solving the mass balance equation between the liquid phase and the solid phase for a given element, a new term describing changes in the concentration was implemented in a source/sink term of a standard convection dispersion equation (CDE). The CDE was then solved under a constant ground water flow using FlexPDE. By calibrating parameters in the newly developed shape function, the changes in element concentrations observed were quite well predicted. The

  5. Prediction of temperature distribution in sericite mica drying with variable temperature and airflow condition

    Science.gov (United States)

    Noh, A. Mohd; Mat, S.; Roslan, M. H.; Salleh, E.

    2017-06-01

    To develop new drying facilities, it was important to know the impact of every input parameter to the drying process. Using a real prototype to carry out the experiment required high cost and time consuming especially for large scale drying. CFD simulation approached was one of the solution. Previous study of drying simulation only focuses on the fix value of the input parameter. This paper presents the result of CFD simulation to predict the heat distribution in sericite mica drying with variable temperature and airflow condition. Variable temperature and airflow was used because the only heat source for the dryer was from the solar energy therefore it’s only available in the day time. The analysis was carried out for 24 hours of drying time. The simulation result shows that the temperature inside the sericite mica increase 8 to 10°C when the solar energy is available and it is still increasing about 4 to 7°C for 5 hours after the solar energy is absent. The result also shows that during the drying time the temperature of sericite mica that is closer to the heat source was higher compared to the one that is further away with the maximum difference of 3.8°C.

  6. Temperature distribution in the human body under various conditions of induced hyperthermia

    Science.gov (United States)

    Korobko, O. V.; Perelman, T. L.; Fradkin, S. Z.

    1977-01-01

    A mathematical model based on heat balance equations was developed for studying temperature distribution in the human body under deep hyperthermia which is often induced in the treatment of malignant tumors. The model yields results which are in satisfactory agreement with experimental data. The distribution of temperature under various conditions of induced hyperthermia, i.e. as a function of water temperature and supply rate, is examined on the basis of temperature distribution curves in various body zones.

  7. Using distributed temperature sensing to monitor field scale dynamics of ground surface temperature and related substrate heat flux

    NARCIS (Netherlands)

    Bense, V.F.; Read, T.; Verhoef, A.

    2016-01-01

    We present one of the first studies of the use of distributed temperature sensing (DTS) along fibre-optic cables to purposely monitor spatial and temporal variations in ground surface temperature (GST) and soil temperature, and provide an estimate of the heat flux at the base of the canopy layer

  8. Evaluation of Fiber Bragg Grating and Distributed Optical Fiber Temperature Sensors

    Energy Technology Data Exchange (ETDEWEB)

    McCary, Kelly Marie [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-04-01

    Fiber optic temperature sensors were evaluated in the High Temperature Test Lab (HTTL) to determine the accuracy of the measurements at various temperatures. A distributed temperature sensor was evaluated up to 550C and a fiber Bragg grating sensor was evaluated up to 750C. HTTL measurements indicate that there is a drift in fiber Bragg sensor over time of approximately -10C with higher accuracy at temperatures above 300C. The distributed sensor produced some bad data points at and above 500C but produced measurements with less than 2% error at increasing temperatures up to 400C

  9. Load forecasting method considering temperature effect for distribution network

    Directory of Open Access Journals (Sweden)

    Meng Xiao Fang

    2016-01-01

    Full Text Available To improve the accuracy of load forecasting, the temperature factor was introduced into the load forecasting in this paper. This paper analyzed the characteristics of power load variation, and researched the rule of the load with the temperature change. Based on the linear regression analysis, the mathematical model of load forecasting was presented with considering the temperature effect, and the steps of load forecasting were given. Used MATLAB, the temperature regression coefficient was calculated. Using the load forecasting model, the full-day load forecasting and time-sharing load forecasting were carried out. By comparing and analyzing the forecast error, the results showed that the error of time-sharing load forecasting method was small in this paper. The forecasting method is an effective method to improve the accuracy of load forecasting.

  10. Temperature and Friction Accelerated Sampling of Boltzmann-Gibbs Distribution

    OpenAIRE

    Tao, Molei; Owhadi, Houman; Marsden, Jerrold E.

    2010-01-01

    This paper is concerned with tuning friction and temperature in Langevin dynamics for fast sampling from the canonical ensemble. We show that near-optimal acceleration is achieved by choosing friction so that the local quadratic approximation of the Hamiltonian is a critical damped oscillator. The system is also over-heated and cooled down to its final temperature. The performances of different cooling schedules are analyzed as functions of total simulation time.

  11. Study on temperature distribution along wellbore of fracturing horizontal wells in oil reservoir

    Directory of Open Access Journals (Sweden)

    Junjun Cai

    2015-12-01

    Full Text Available The application of distributed temperature sensors (DTS to monitor producing zones of horizontal well through a real-time measurement of a temperature profile is becoming increasingly popular. Those parameters, such as flow rate along wellbore, well completion method, skin factor, are potentially related to the information from DTS. Based on mass-, momentum-, and energy-balance equations, this paper established a coupled model to study on temperature distribution along wellbore of fracturing horizontal wells by considering skin factor in order to predict wellbore temperature distribution and analyze the factors influencing the wellbore temperature profile. The models presented in this paper account for heat convective, fluid expansion, heat conduction, and viscous dissipative heating. Arriving temperature and wellbore temperature curves are plotted by computer iterative calculation. The non-perforated and perforated sections show different temperature distribution along wellbore. Through the study on the sensitivity analysis of skin factor and flow rate, we come to the conclusion that the higher skin factor generates larger temperature increase near the wellbore, besides, temperature along wellbore is related to both skin factors and flow rate. Temperature response type curves show that the larger skin factor we set, the less temperature augmenter from toe to heel could be. In addition, larger flow rate may generate higher wellbore temperature.

  12. Simultaneous measurement of dynamic strain and temperature distribution using high birefringence PANDA fiber Bragg grating

    Science.gov (United States)

    Zhu, Mengshi; Murayama, Hideaki

    2017-04-01

    New approach in simultaneous measurement of dynamic strain and temperature has been done by using a high birefringence PANDA fiber Bragg grating sensor. By this technique, we have succeeded in discriminating dynamic strain and temperature distribution at the sampling rate of 800 Hz and the spatial resolution of 1 mm. The dynamic distribution of strain and temperature were measured with the deviation of 5mm spatially. In addition, we have designed an experimental setup by which we can apply quantitative dynamic strain and temperature distribution to the fiber under testing without bounding it to a specimen.

  13. Experimental study of temperature distribution in rubber material during microwave heating and vulcanization process

    Science.gov (United States)

    Chen, Hai-Long; Li, Tao; Liang, Yun; Sun, Bin; Li, Qing-Ling

    2017-03-01

    Microwave technology has been employed to heat sheet rubber, the optical fiber temperature online monitor and optical fiber temperature sensor have been employed to measure the temperature in sheet rubber. The temperature of sheet rubber increased with increase of heating time during microwave heating process in which the maximum of temperature was vulcanization process in which the maximum of temperature was vulcanization process of sheet rubber, the maximum of rate of temperature rising and the maximum of temperature belong to the central zone of sheet rubber, so the distribution of electric field was uneven in heating chamber, which led to the uneven temperature distribution of sheet rubber. The higher electric field intensity value converges on the central zone of sheet rubber.

  14. Detection and localization of changes in two-dimensional temperature distributions by electrical resistance tomography

    Science.gov (United States)

    Rashetnia, Reza; Hallaji, Milad; Smyl, Danny; Seppänen, Aku; Pour-Ghaz, Mohammad

    2017-11-01

    This paper studies the feasibility of applying electrical resistance tomography (ERT) to detect changes in two-dimensional (2D) temperature distributions with potential applications in sensor development. The proposed sensor consists of a thin layer of porous metal film manufactured by spraying colloidal copper paint to a solid surface. A change of the temperature distribution on the surface changes the 2D distributed electrical conductivity of the metal film. The change of the electrical conductivity is localized and quantified with ERT, and further, to convert the estimated conductivity change of the sensor to temperature change, an experimentally developed model is used. The proposed temperature sensor is evaluated experimentally by applying it to a polymeric substrate, and exposing it to known temperature changes using heat sources of different shapes. The results demonstrate that the proposed sensor is capable of detecting and localizing temperature changes, and provides at least qualitative information on the magnitude of the temperature change.

  15. Temperature distribution on the MEA surface of a PEMFC with serpentine channel flow bed

    Science.gov (United States)

    Wang, Maohai; Guo, Hang; Ma, Chongfang

    Knowledge of the temperature distribution on the membrane electrode assembly (MEA) surface and heat transfer processes inside a proton exchange membrane fuel cell (PEMFC) is helpful to improvement of cell reliability, durability and performance. The temperature fields on the surface of MEA fixed inside a proton exchange membrane fuel cell with a serpentine channel flow bed were measured by infrared imaging technology under non-humidification conditions. The temperature distributions over the MEA surface under whole channel region were achieved. The experimental results show that the downstream temperatures are higher than the upstream. The hot region on the MEA surface is easy to locate from the infrared temperature image. The mean temperature on the MEA surface and the cell temperature both increase with the current density. Higher current density makes the non-uniformity of temperature distribution on the MEA surface worse. The loading time significantly affects the temperature distribution. Compared with the electrical performance of the cell, the MEA's temperatures need much more time to reach stable. The results indicate that isothermal assumption is not appropriate for a modeling of PEMFCs, and monitoring the temperature of external surface of the flow field plate or end plate cannot supply accurate reference to control the temperatures on MEA surface.

  16. Simulation of the temperature distribution within a steel block cooled ...

    African Journals Online (AJOL)

    Thus, the heat equation is solved by finite difference discretization using Fortran 90 as programming language. For matrix calculation, the successive overrelaxation (SOR) is the chosen appropriate method, well suited for this kind of problems. The simulation results are shown as illustrations of instantaneous temperature ...

  17. Effect of nonthermal ion distribution and dust temperature on ...

    Indian Academy of Sciences (India)

    Dust-acoustic solitary waves in unmagnetized dusty plasma whose constituents are iner- tial charged dust grains, Boltzmannian electrons and nonthermal ions have been investigated by taking into account finite dust temperature. The pseudopotential has been used to study solitary solution. The existence of solitary waves ...

  18. Simulation of temperature distribution by finite element analysis on ...

    Indian Academy of Sciences (India)

    Several optical and mechanical components of the beamline are exposed to high intensity synchrotron radiation while in operation. The temperature rise on different components of the beamline on exposure to the synchrotron beam has been simulated by finite element analysis. Design of the cooling mechanism for each of ...

  19. Effect of nonthermal distributed electrons and temperature on phase ...

    Indian Academy of Sciences (India)

    Abstract. Interaction of nonplanar ion-acoustic solitary waves is an important source of infor- mation for studying the nature and characteristics of ion-acoustic solitary waves (IASWs). The head-on collision between two cylindrical/spherical IASWs in un-magnetized plasmas compris- ing of nonthermal distributed electrons ...

  20. Effect of nonthermal distributed electrons and temperature on phase ...

    Indian Academy of Sciences (India)

    Interaction of nonplanar ion-acoustic solitary waves is an important source of information for studying the nature and characteristics of ion-acoustic solitary waves (IASWs). The head-on collision between two cylindrical/spherical IASWs in un-magnetized plasmas comprising of nonthermal distributed electrons and warm ions ...

  1. Distributed Low Temperature Combustion: Fundamental Understanding of Combustion Regime Transitions

    Science.gov (United States)

    2016-09-07

    Classification of the Multiple Fluid States . . . . . . . . . . . . . . . . . 12 2.2.1 Density Segregation Technique . . . . . . . . . . . . . . . . . . 12...47 3 Identification of the multiple fluid states in a sample Mie scattering and OH-PLIF image...Approved for public release: distribution unlimited. 5 21 PDF of the rate of strain and vorticity evaluated along the reactant fluid surface

  2. INTELLIGENT MONITORING SYSTEM WITH HIGH TEMPERATURE DISTRIBUTED FIBEROPTIC SENSOR FOR POWER PLANT COMBUSTION PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Kwang Y. Lee; Stuart S. Yin; Andre Boheman

    2004-12-26

    The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, improvement was made on the performance of in-fiber grating fabricated in single crystal sapphire fibers, test was performed on the grating performance of single crystal sapphire fiber with new fabrication methods, and the fabricated grating was applied to high temperature sensor. Under Task 2, models obtained from 3-D modeling of the Demonstration Boiler were used to study relationships between temperature and NOx, as the multi-dimensionality of such systems are most comparable with real-life boiler systems. Studies show that in boiler systems with no swirl, the distributed temperature sensor may provide information sufficient to predict trends of NOx at the boiler exit. Under Task 3, we investigate a mathematical approach to extrapolation of the temperature distribution within a power plant boiler facility, using a combination of a modified neural network architecture and semigroup theory. The 3D temperature data is furnished by the Penn State Energy Institute using FLUENT. Given a set of empirical data with no analytic

  3. Simulation of the airflow and temperature distribution in heated greenhouses

    Energy Technology Data Exchange (ETDEWEB)

    Bougoul, S.; Zeroual, S.; Azil, A. [Batna Univ., Batna (Algeria). Dept. of Physics; Boulard, T. [Unit of Integrated Research in Horticulture, Sophia Antipolis (France)

    2007-07-01

    The climate inside greenhouses depends on the external conditions such as wind velocity, outside temperature, and external moisture, as well as interior conditions such as heating, humidification, dehumidification, and ventilation. Plant transpiration and condensation on the walls are also factors that affect climate and vegetation. The interaction of various forms of mass and thermal transfer with plants results in a complex process. This paper presented an analysis of the heating process in a reduced scale mono-span greenhouse module using computational fluid dynamics (CFD). The purpose of the study was to validate some experimental data and to investigate how heating tubes influenced airflow and temperature patterns inside the greenhouse. Simulations were conducted in empty greenhouses with and without open sided roof vents. The results obtained were satisfactory by comparison to the experimental ones. In the closed greenhouses, the average temperature and velocity calculated were in good agreement with those measured. Maximum air velocity values inside the greenhouse were observed near the opening section and along the wall and floor, whereas air velocity was lowest in the centre of greenhouse. The presence of plants was also investigated in a particular configuration. 18 refs., 1 tab., 13 figs.

  4. Inverse analysis of non-uniform temperature distributions using multispectral pyrometry

    Science.gov (United States)

    Fu, Tairan; Duan, Minghao; Tian, Jibin; Shi, Congling

    2016-05-01

    Optical diagnostics can be used to obtain sub-pixel temperature information in remote sensing. A multispectral pyrometry method was developed using multiple spectral radiation intensities to deduce the temperature area distribution in the measurement region. The method transforms a spot multispectral pyrometer with a fixed field of view into a pyrometer with enhanced spatial resolution that can give sub-pixel temperature information from a ;one pixel; measurement region. A temperature area fraction function was defined to represent the spatial temperature distribution in the measurement region. The method is illustrated by simulations of a multispectral pyrometer with a spectral range of 8.0-13.0 μm measuring a non-isothermal region with a temperature range of 500-800 K in the spot pyrometer field of view. The inverse algorithm for the sub-pixel temperature distribution (temperature area fractions) in the ;one pixel; verifies this multispectral pyrometry method. The results show that an improved Levenberg-Marquardt algorithm is effective for this ill-posed inverse problem with relative errors in the temperature area fractions of (-3%, 3%) for most of the temperatures. The analysis provides a valuable reference for the use of spot multispectral pyrometers for sub-pixel temperature distributions in remote sensing measurements.

  5. Distributed Low Temperature Combustion: Fundamental Understanding of Combustion Regime Transitions

    Science.gov (United States)

    2016-09-07

    Aerodynamically stabilised dimethyl ether (DME) flames in a backstep burnt opposed jet configuration, featuring fractal generated multi-scale turbulence(Re_t...chemical mechanisms for the considered fuels (e.g. DME) to establish their ability to reproduce laminar flame and auto-ignition properties. The...Imperial College, Exhibition Road, London SW7 2AZ, UK ∗Principal Investigator, email : p.lindstedt@imperial.ac.uk 1 DISTRIBUTION A. Approved for

  6. Temperature fields produced by traveling distributed heat sources

    Energy Technology Data Exchange (ETDEWEB)

    Eagar, T.W.; Tsai, N.S.

    1983-12-01

    The solution of a traveling distributed heat source on a semi-infinite plate provides information about both the size and the shape of arc weld pools. The results indicate that both welding process variables (current, arc length and travel speed) and material parameters (thermal diffusivity) have significant effects on weld shape. The theoretical predictions are compared with experimental results on carbon steels, stainless steel, titanium and aluminum with good agreement. 25 references, 23 figures, 1 table.

  7. Development and Improvement of an Intelligent Cable Monitoring System for Underground Distribution Networks Using Distributed Temperature Sensing

    Directory of Open Access Journals (Sweden)

    Jintae Cho

    2014-02-01

    Full Text Available With power systems switching to smart grids, real-time and on-line monitoring technologies for underground distribution power cables have become a priority. Most distribution components have been developed with self-diagnostic sensors to realize self-healing, one of the smart grid functions in a distribution network. Nonetheless, implementing a real-time and on-line monitoring system for underground distribution cables has been difficult because of high cost and low sensitivity. Nowadays, optical fiber composite power cables (OFCPCs are being considered for communication and power delivery to cope with the increasing communication load in a distribution network. Therefore, the application of distributed temperature sensing (DTS technology on OFCPCs used as underground distribution lines is studied for the real-time and on-line monitoring of the underground distribution power cables. Faults can be reduced and operating ampacity of the underground distribution system can be increased. This paper presents the development and improvement of an intelligent cable monitoring system for the underground distribution power system, using DTS technology and OFCPCs as the underground distribution lines in the field.

  8. Calculation of an axial temperature distribution using the reflection coefficient of an acoustic wave.

    Science.gov (United States)

    Červenka, Milan; Bednařík, Michal

    2015-10-01

    This work verifies the idea that in principle it is possible to reconstruct axial temperature distribution of fluid employing reflection or transmission of acoustic waves. It is assumed that the fluid is dissipationless and its density and speed of sound vary along the wave propagation direction because of the fluid temperature distribution. A numerical algorithm is proposed allowing for calculation of the temperature distribution on the basis of known frequency characteristics of reflection coefficient modulus. Functionality of the algorithm is illustrated on a few examples, its properties are discussed.

  9. Optical fiber distributed sensing for high temperature superconductor magnets

    Science.gov (United States)

    Scurti, Federico; Schwartz, Justin

    2017-04-01

    Over the last two decades, high temperature superconductors (HTS) have achieved performance and technical maturity that make them an enabling technology or an attractive solution for a number of applications like electric motors and generators, particle accelerators and fusion magnets. One of the remaining challenges that hinders a wide use of HTS and needs to be solved is quench detection, since conventional voltage based quench detection puts HTS magnets at risk. In this work we have developed and experimentally investigated the application of Rayleigh-backscattering interrogated optical fibers (RIOF) to the detection of normal zones in superconducting magnets. Different ways to integrate optical fibers into magnets are explored and the earlier detection of RIOF compared to voltage is demonstrated.

  10. Intelligent Monitoring System With High Temperature Distributed Fiberoptic Sensor For Power Plant Combustion Processes

    Energy Technology Data Exchange (ETDEWEB)

    Kwang Y. Lee; Stuart S. Yin; Andre Boheman

    2005-12-26

    The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, we set up a dedicated high power, ultrafast laser system for fabricating in-fiber gratings in harsh environment optical fibers, successfully fabricated gratings in single crystal sapphire fibers by the high power laser system, and developed highly sensitive long period gratings (lpg) by electric arc. Under Task 2, relevant mathematical modeling studies of NOx formation in practical combustors. Studies show that in boiler systems with no swirl, the distributed temperature sensor may provide information sufficient to predict trends of NOx at the boiler exit. Under Task 3, we investigate a mathematical approach to extrapolation of the temperature distribution within a power plant boiler facility, using a combination of a modified neural network architecture and semigroup theory. The 3D temperature data is furnished by the Penn State Energy Institute using FLUENT. Given a set of empirical data with no analytic expression, we first develop an analytic description and then extend that model along a single axis. Extrapolation

  11. Importance of light, temperature, zooplankton, and fish in predicting the nighttime vertical distribution of Mysis diluviana

    Science.gov (United States)

    Murphy, Marilyn K.; ,; Boscarino, Brent T.; Rudstam, Lars G.; Eillenberger, June L.

    2009-01-01

    The opossum shrimp Mysis diluviana (formerly M. relicta) performs large amplitude diel vertical migrations in Lake Ontario and its nighttime distribution is influenced by temperature, light and the distribution of its predators and prey. At one location in southeastern Lake Ontario, we measured the vertical distribution of mysids, mysid predators (i.e. planktivorous fishes) and mysid prey (i.e. zooplankton), in addition to light and temperature, on 8 occasions from May to September, 2004 and 2005. We use these data to test 3 different predictive models of mysid habitat selection, based on: (1) laboratoryderived responses of mysids to different light and temperature gradients in the absence of predator or prey cues; (2) growth rate of mysids, as estimated with a mysid bioenergetics model, given known prey densities and temperatures at different depths in the water column; (3) ratio of growth rates (g) and mortality risk (μ) associated with the distribution of predatory fishes. The model based on light and temperature preferences was a better predictor of mysid vertical distribution than the models based on growth rate and g:μon all 8 occasions. Although mysid temperature and light preferences probably evolved as mechanisms to reduce predation while increasing foraging intake, the response to temperature and light alone predicts mysid vertical distribution across seasons in Lake Ontario.

  12. Evaluating Changes in Distributions of Summer Stream Temperature following Forest Harvest

    Science.gov (United States)

    Johnson, S. L.; Reiter, M.; Jones, J.

    2016-12-01

    Stream temperature heat budgets are influenced by numerous processes; changes in incoming radiation have been shown to be a major driver of increased stream temperatures. Maximum daily temperature is a commonly used metric for evaluating stream temperature responses to land use. However, single metrics are not able to fully represent the magnitude and duration of temperatures experienced by instream biota. Analyses that make use of all the data: a) more accurately characterize shifts in summer stream temperature regimes, b) quantify potential exposure to critical and non-critical temperatures, and c) help researchers and managers to better understand stream temperature responses to manipulation of streamside and watershed vegetation. Here we examine the distributions of summer stream temperatures before and after forest harvest in the Trask River Watershed Study, in northwestern Oregon. We studied 15 small streams for 10 years; half of the sites had their catchments clearcut harvested in 2012. Four sites had no buffers, with some leave trees, and three sites had 25 ft buffers on both sides. Temperatures were measured during at 30min intervals. Even though these streams are generally cold, we observed high spatial and temporal variation among sites and years, with some sites having normally distributed temperatures, while others showed skewed distributions and long tails. Forest cover, aspect or elevation were not good predictors of temperature distributions pre-harvest. Preliminary analyses using travel time of the stream water suggest that sites with hyporheic flows had narrower distributions of temperatures. After harvest, sites without buffers showed the greatest shift in distributions of temperatures and widest temperature ranges, while sites with narrow buffers showed little change. We are exploring the implications of shifts in temperature distributions before and after harvest against the known thermal tolerances for the dominant resident species (Ascaphus

  13. Heat-conduction error of temperature sensors in a fluid flow with nonuniform and unsteady temperature distribution.

    Science.gov (United States)

    Khine, Soe Minn; Houra, Tomoya; Tagawa, Masato

    2013-04-01

    In temperature measurement of non-isothermal fluid flows by a contact-type temperature sensor, heat conduction along the sensor body can cause significant measurement error which is called "heat-conduction error." The conventional formula for estimating the heat-conduction error was derived under the condition that the fluid temperature to be measured is uniform. Thus, if we apply the conventional formula to a thermal field with temperature gradient, the heat-conduction error will be underestimated. In the present study, we have newly introduced a universal physical model of a temperature-measurement system to estimate accurately the heat-conduction error even if a temperature gradient exists in non-isothermal fluid flows. Accordingly, we have been able to successfully derive a widely applicable estimation and/or evaluation formula of the heat-conduction error. Then, we have verified experimentally the effectiveness of the proposed formula using the two non-isothermal fields-a wake flow formed behind a heated cylinder and a candle flame-whose fluid-dynamical characteristics should be quite different. As a result, it is confirmed that the proposed formula can represent accurately the experimental behaviors of the heat-conduction error which cannot be explained appropriately by the existing formula. In addition, we have analyzed theoretically the effects of the heat-conduction error on the fluctuating temperature measurement of a non-isothermal unsteady fluid flow to derive the frequency response of the temperature sensor to be used. The analysis result shows that the heat-conduction error in temperature-fluctuation measurement appears only in a low-frequency range. Therefore, if the power-spectrum distribution of temperature fluctuations to be measured is sufficiently away from the low-frequency range, the heat-conduction error has virtually no effect on the temperature-fluctuation measurements even by the temperature sensor accompanying the heat-conduction error in

  14. A plant distribution shift: temperature, drought or past disturbance?

    Directory of Open Access Journals (Sweden)

    Dylan W Schwilk

    Full Text Available Simple models of plant response to warming climates predict vegetation moving to cooler and/or wetter locations: in mountainous regions shifting upslope. However, species-specific responses to climate change are likely to be much more complex. We re-examined a recently reported vegetation shift in the Santa Rosa Mountains, California, to better understand the mechanisms behind the reported shift of a plant distribution upslope. We focused on five elevational zones near the center of the gradient that captured many of the reported shifts and which are dominated by fire-prone chaparral. Using growth rings, we determined that a major assumption of the previous work was wrong: past fire histories differed among elevations. To examine the potential effect that this difference might have on the reported upward shift, we focused on one species, Ceanothus greggii: a shrub that only recruits post-fire from a soil stored seedbank. For five elevations used in the prior study, we calculated time series of past per-capita mortality rates by counting growth rings on live and dead individuals. We tested three alternative hypotheses explaining the past patterns of mortality: 1 mortality increased over time consistent with climate warming, 2 mortality was correlated with drought indices, and 3 mortality peaked 40-50 years post fire at each site, consistent with self-thinning. We found that the sites were different ages since the last fire, and that the reported increase in the mean elevation of C. greggii was due to higher recent mortality at the lower elevations, which were younger sites. The time-series pattern of mortality was best explained by the self-thinning hypothesis and poorly explained by gradual warming or drought. At least for this species, the reported distribution shift appears to be an artifact of disturbance history and is not evidence of a climate warming effect.

  15. High temperature measurements in irradiated environment using Raman fiber optics distributed temperature sensing

    Science.gov (United States)

    Lecomte, Pierre; Blairon, Sylvain; Boldo, Didier; Taillade, Frédéric; Caussanel, Matthieu; Beauvois, Gwendal; Duval, Hervé; Grieu, Stéphane; Laffont, Guillaume; Lainé, Frédéric; Carrel, Frédéric

    2016-04-01

    Optical fiber temperature sensors using Raman effect are a promising technology for temperature mapping of nuclear power plant pipes. These pipes are exposed to high temperature (350 °C) and gamma radiations, which is a harsh environment for standard telecom fibers. Therefore metal coated fibers are to be used to perform measurement over 300 °C. Temperature variations can affect the attenuation of the metallic coated fiber before irradiation. The latter induces an extra attenuation, due to light absorption along the fiber by radiation-induced defects. The recombination of these defects can be strongly accelerated by the high temperature value. As backscattered Raman signal is weak it is important to test optical fibers under irradiation to observe how it gets attenuated. Different experiments are described in this conference paper: two in situ irradiation campaigns with different dose rates at, both ambient and high temperature. We observe that the tested off-the-shelf metallic coated fibers have a high attenuation under irradiation. We also noticed the fact that thermal annealing plays a massive role in the +300 °C temperature range.

  16. In vivo experiments of laser thermotherapy on liver tissue with FBG temperature distribution sensor

    Science.gov (United States)

    Chen, Na; Chen, Shaofeng; Zhu, Hongfei; Liu, Shupeng; Chen, Zhenyi; Pang, Fufei; Wang, Tingyun

    2012-06-01

    In this paper, we report an in vivo experimental study of liver tissue during Laser Induced Interstitial Thermotherapy (LITT). Single FBG was used in the experiments to measure the temperature distribution profile of the bio tissue in real time. Ideally, the goal of LITT is to kill pathological tissue thoroughly and minimize its damage to surrounding healthy tissue, especially vital organs. The extent of treated tissue damage in the therapy is mainly dependent on the irradiation time and the laser power density at the tissue surface. Therefore, monitoring the dynamic change of the exact temperature distribution of the tissue is a key point for the safety of this treatment. In our experiments, FBG was embedded in the laser irradiated bio tissues and used as fully distributed temperature sensor. During the therapy, its reflection spectra were recorded and transmitted to PC in real time. The temperature profile along the FBG axial was reconstructed from its reflection spectrum by the spectra inversion program running on the PC. We studied the dependence of the temperature distribution and the laser output power experimentally and compared the results of in vivo and in vitro under similar laser irradiating conditions. Experimental results demonstrate the effectiveness of this method. Due to influence of body temperature, the in vivo measured temperature is higher than the in vitro one with an almost constant temperature difference value, but the slope and trend of the measured temperature curves in vivo and in vitro are almost identical.

  17. Simultaneous distributed measurements of temperature and strain using spontaneous Raman and Brillouin scattering

    Science.gov (United States)

    Alahbabi, M. N.; Cho, Y. T.; Newson, Trevor P.

    2004-06-01

    We report on a novel method for simultaneous distributed measurement of the temperature and strain in an optical fiber based on spatially resolving the anti-Stokes signals of both the spontaneous Raman and Brillouin backscattered signals.

  18. Analysis of optical pulse coding in spontaneous Brillouin-based distributed temperature sensors

    National Research Council Canada - National Science Library

    Marcelo A. Soto; Gabriele Bolognini; Fabrizio Di Pasquale

    2008-01-01

    A theoretical and experimental analysis of optical pulse coding techniques applied to distributed optical fiber temperature sensors based on spontaneous Brillouin scattering using the Landau-Placzek ratio (LPR...

  19. Simulation of Temperature Field Distribution for Cutting the Temperated Glass by Ultraviolet Laser

    Science.gov (United States)

    Yang, B. J.; He, Y. C.; Dai, F.; Lin, X. C.

    2017-03-01

    The finite element software ANSYS was adopted to simulate the temperature field distribution for laser cutting tempered glass, and the influence of different process parameters, including laser power, glass thickness and cutting speed, on temperature field distribution was studied in detail. The results show that the laser power has a greater influence on temperature field distribution than other paremeters, and when the laser power gets to 60W, the highest temperature reaches 749°C, which is higher than the glass softening temperature. It reflects the material near the laser spot is melted and the molten slag is removed by the high-energy water beam quickly. Finally, through the water guided laser cutting tempered glass experiment the FEM theoretical analysis was verified.

  20. Investigating the effect of surface water - groundwater interactions on stream temperature using Distributed temperature sensing and instream temperature model

    DEFF Research Database (Denmark)

    Karthikeyan, Matheswaran; Blemmer, Morten; Mortensen, Julie Flor

    2011-01-01

    Surface water–groundwater interactions at the stream interface influences, and at times controls the stream temperature, a critical water property driving biogeochemical processes. This study investigates the effects of these interactions on temperature of Stream Elverdamsåen in Denmark using the...

  1. Nanoscopic voltage distribution of operating cascade laser devices in cryogenic temperature.

    Science.gov (United States)

    Dhar, R S; Ban, D

    2016-06-01

    A nanoscopic exploratory measurement technique to measure voltage distribution across an operating semiconductor device in cryogenic temperature has been developed and established. The cross-section surface of the terahertz (THz) quantum cascade laser (QCL) has been measured that resolves the voltage distribution at nanometer scales. The electric field dissemination across the active region of the device has been attained under the device's lasing conditions at cryogenic temperature of 77 K. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  2. An analysis of the temperature distribution in finite solid-state laser rods

    Energy Technology Data Exchange (ETDEWEB)

    Farrukh, U.O. (Hampton Univ., Hampton, VA 23668 (US)); Buoncristiani, A.M.; Byvik, C.E. (NASA Langley Research Center, Hampton, VA 23665 (US))

    1988-11-01

    An expression for the time-dependent temperature distribution in a finite solid-state laser rod, for an arbitrary distribution of pump energy, has been derived. The specific case of end pumping by circular (constant) or Gaussian beams is included. This formulation was employed to predict the time evolution of temperature in Ti:sapphire laser rods and in Nd:YAG rods of specific dimensions.

  3. An analysis of the temperature distribution in finite solid-state laser rods

    Science.gov (United States)

    Farrukh, Usamah O.; Buoncristiani, A. Martin; Byvik, Charles E.

    1988-01-01

    An expression for the time-dependent temperature distribution in a finite solid-state laser rod, for an arbitrary distribution of pump energy, has been derived. The specific case of end pumping by circular (constant) or Gaussian beams is included. This formulation was used to predict the time evolution of temperature in Ti:sapphire laser rods and in Nd:YAG rods of specific dimensions.

  4. Intelligent Monitoring System with High Temperature Distributed Fiberoptic Sensor for Power Plant Combustion Processes

    Energy Technology Data Exchange (ETDEWEB)

    Kwang Y. Lee; Stuart S. Yin; Andre Boehman

    2006-09-26

    The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, we have set up a dedicated high power, ultrafast laser system for fabricating in-fiber gratings in harsh environment optical fibers, successfully fabricated gratings in single crystal sapphire fibers by the high power laser system, and developed highly sensitive long period gratings (lpg) by electric arc. Under Task 2, relevant mathematical modeling studies of NOx formation in practical combustors have been completed. Studies show that in boiler systems with no swirl, the distributed temperature sensor may provide information sufficient to predict trends of NOx at the boiler exit. Under Task 3, we have investigated a mathematical approach to extrapolation of the temperature distribution within a power plant boiler facility, using a combination of a modified neural network architecture and semigroup theory. Given a set of empirical data with no analytic expression, we first developed an analytic description and then extended that model along a single axis.

  5. Brillouin suppression in a fiber optical parametric amplifier by combining temperature distribution and phase modulation

    DEFF Research Database (Denmark)

    Lorenzen, Michael Rodas; Noordegraaf, Danny; Nielsen, Carsten Vandel

    2008-01-01

    We demonstrate an increased gain in optical parametric amplier through suppression of stimulated Brillouin scattering by applying a temperature distribution along the fiber resulting in a reduction of the required phase modulation.......We demonstrate an increased gain in optical parametric amplier through suppression of stimulated Brillouin scattering by applying a temperature distribution along the fiber resulting in a reduction of the required phase modulation....

  6. Asymmetric power device rating selection for even temperature distribution in NPC inverter

    DEFF Research Database (Denmark)

    Choi, Uimin; Blaabjerg, Frede

    2017-01-01

    A major drawback of the NPC inverter is an unequal power loss distribution among the power devices which leads to unequal temperature stress among them. Therefore, certain power devices experience higher temperature stress, which is the main cause of power device module failure and thus both the ...

  7. Coherent detection of spontaneous Brillouin scattering for distributed temperature sensing using a Brillouin laser

    Science.gov (United States)

    Lecoeuche, V.; Webb, David J.; Pannell, Christopher N.; Jackson, David A.

    1998-08-01

    Distributed temperature sensors based on Brillouin scattering are attractive because they offer very large sensing length. The intensity of spontaneous Brillouin scattering is directly proportional to the temperature of the fiber, and permits a measurement independent of the strain applied to it. We report on a novel system to detect this signal, incorporating a mode-locked Brillouin fiber ring laser.

  8. Double-ended calibration of fiber-optic Raman spectra distributed temperature sensing data

    NARCIS (Netherlands)

    Van de Giesen, N.C.; Steele-Dunn, S.C.; Jansen, J.; Hoes, O.A.C.; Hausner, M.B.; Tyler, S.; Selker, J.

    2012-01-01

    Over the past five years, Distributed Temperature Sensing (DTS) along fiber optic cables using Raman backscattering has become an important tool in the environmental sciences. Many environmental applications of DTS demand very accurate temperature measurements, with typical RMSE < 0.1 K. The aim of

  9. Acquisition of 3D temperature distributions in fluid flow using proton resonance frequency thermometry.

    Science.gov (United States)

    Buchenberg, Waltraud B; Wassermann, Florian; Grundmann, Sven; Jung, Bernd; Simpson, Robin

    2016-07-01

    Proton resonance frequency thermometry is well established for monitoring small temperature changes in tissue. Application of the technique to the measurement of complex temperature distributions within fluid flow is of great interest to the engineering community and could also have medical applications. This work presents an experimental approach to reliably measure three-dimensional (3D) temperature fields in fluid flow using proton resonance frequency thermometry. A velocity-compensated three-dimensional gradient echo sequence was used. A flexible pumping system was attached to an MR compatible double pipe heat exchanger. The temperature of two separate flow circuits could be adjusted to produce various three-dimensional spatial temperature distributions within the fluid flow. Validation was performed using MR compatible temperature probes in a uniformly heated flow. A comparative study was conducted with thermocouples in the presence of a spatially varying temperature distribution. In uniformly heated flow, temperature changes were accurately measured to within 0.5 K using proton resonance frequency thermometry, while spatially varying temperature changes measured with MR showed good qualitative agreement with pointwise measurements using thermocouples. Proton resonance frequency thermometry can be used in a variety of complex flow situations to address medical as well as engineering questions. This work makes it possible to gain new insights into fundamental heat transfer phenomena. Magn Reson Med 76:145-155, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  10. Dependence of the depth distribution of implanted silver ions on the temperature of irradiated glass

    CERN Document Server

    Stepanov, A L

    2001-01-01

    The peculiarities of the glass ion implantation by the silver ions in dependence on the substrate temperature within the interval of 20-100 deg C are studied. Modeling the profiles of the implanted ions distribution in depth with an account of the thermostimulated increase in the admixture diffusion mobility is carried out. It is shown, that increase in the substrate temperature leads to the diffusion wash-out of the introduced admixture ions distribution. The analysis of the modeling results indicates the necessity of strict control of the substrate temperature by the dielectrics implantation for obtaining the conditions for the metal nanoparticles synthesis

  11. Development of ex vivo model for determining temperature distribution in tumor tissue during photothermal therapy

    Science.gov (United States)

    Liu, Shaojie; Doughty, Austin; Mesiya, Sana; Pettitt, Alex; Zhou, Feifan; Chen, Wei R.

    2017-02-01

    Temperature distribution in tissue is a crucial factor in determining the outcome of photothermal therapy in cancer treatment. In order to investigate the temperature distribution in tumor tissue during laser irradiation, we developed a novel ex vivo device to simulate the photothermal therapy on tumors. A 35°C, a thermostatic incubator was used to provide a simulation environment for body temperature of live animals. Different biological tissues (chicken breast and bovine liver) were buried inside a tissue-simulating gel and considered as tumor tissues. An 805-nm laser was used to irradiate the target tissue. A fiber with an interstitial cylindrical diffuser (10 mm) was directly inserted in the center of the tissue, and the needle probes of a thermocouple were inserted into the tissue paralleling the laser fiber at different distances to measure the temperature distribution. All of the procedures were performed in the incubator. Based on the results of this study, the temperature distribution in bovine liver is similar to that of tumor tissue under photothermal therapy with the same doses. Therefore, the developed model using bovine liver for determining temperature distribution can be used during interstitial photothermal therapy.

  12. The three dimensional laser induced temperature distribution in photo-thermal displacement spectroscopy

    CERN Document Server

    Soltanolkotabi, M

    2002-01-01

    In this paper we present a detailed theoretical treatment of 3-D temperature distribution induced by laser beam in photothermal displacement spectroscopy. We assume that a solid sample, which is deposited on a substrate and is in contact with a fluid, is irradiated by an intensity modulated cw laser source. By using a technique based on Green's function and integral transformations we find the explicit expression for temperature distribution function. This function which depends on the properties of the laser beam and optical and thermal properties of the sample, the substrate and the fluid, exhibits the characteristics of a damped thermal wave. Numerical analysis of the temperature distribution for a certain sample (GaAs) reveals that the behavior of thermal wave is not so sensitive with respect to the variation of the modulation frequency. On the other hand, we find that the temperature of the sample surface decreases with increasing modulation frequency because of the thermal inter tia of the sample. Furth...

  13. Simulation of Temperature Distribution In a Rectangular Cavity using Finite Element Method

    CERN Document Server

    Naa, Christian

    2013-01-01

    This paper presents the study and implementation of finite element method to find the temperature distribution in a rectangular cavity which contains a fluid substance. The fluid motion is driven by a sudden temperature difference applied to two opposite side walls of the cavity. The remaining walls were considered adiabatic. Fluid properties were assumed incompressible. The problem has been approached by two-dimensional transient conduction which applied on the heated sidewall and one-dimensional steady state convection-diffusion equation which applied inside the cavity. The parameters which investigated are time and velocity. These parameters were computed together with boundary conditions which result in temperature distribution in the cavity. The implementation of finite element method was resulted in algebraic equation which is in vector and matrix form. Therefore, MATLAB programs used to solve this algebraic equation. The final temperature distribution results were presented in contour map within the re...

  14. Stream temperature medelling and fibre optic distributed temperature sensing to quantify groundwater discharge in the Ngongotaha Stream, New Zealand

    Science.gov (United States)

    Moridnejad, Maryam; Cameron, Stewart; Shamseldin, Asaad; Ward, Nick Dudley; Verhagen, Floris

    2015-04-01

    To characterize stream/groundwater interaction, fibre optic distributed temperature sensing (FODTS) was deployed over a 1 km reach in the Ngongotaha Stream, Rotorua, New Zealand in January 2013. The cable was deployed at the streambed near the left and right banks as the groundwater fed springs discharge laterally at both banks. Temperature profiles measured by FODTS were used to identify the location of springs using a constant temperature method (20 min averaged temperature data) (Lowry et al., 2007; Matheswaran et al., 2014; Selker et al., 2006a) and a standard deviation of diurnal temperature method (Lowry et al., 2007; Matheswaran et al., 2014). Both methods identified 13 individual springs at the right and left banks in an approximately 115 m reach. The left and right bank temperature profiles showed that full mixing of the spring and stream water does not occur between most of the springs due to their close spacing. Groundwater discharge quantification based on FODTS data is typically made using a simple steady state thermal mixing model (Briggs et al., 2012a; Selker et al.,2006a; Westhoff et al., 2007). This formula is not applicable in streams like the Ngongotaha where springs are closely spaced and groundwater and surface water are not well mixed between springs. To address this issue, a new approach was developed in this study in which a one dimensional heat transport model was fitted to the FODTS measurements, where the main calibration parameters of interest were the unknown spring discharges. Datasets of measured temperatures at the left and right bank were transformed to a new single dataset using a weighted average where the weights reflect the degree of mixing downstream of a spring. Model calibration helped to find the optimum value of the weights in the springs section. For a spring on the left bank the weighted average was skewed towards the left bank data, and vice-versa for a right bank spring. Upstream of the spring section, a non

  15. Mathematical model of temperature field distribution in thin plates during polishing with a free abrasive

    Directory of Open Access Journals (Sweden)

    Avilov Alex

    2017-01-01

    Full Text Available The purpose of this paper is to estimate the dynamic characteristics of the heating process of thin plates during polishing with a free abrasive. A mathematical model of the temperature field distribution in space and time according to the plate thickness is based on Lagrange equation of the second kind in the thermodynamics of irreversible processes (variation principle Bio. The research results of thermo elasticity of thin plates (membranes will allow to correct the modes of polishing with a free abrasive to receive the exact reflecting surfaces of satellites reflector, to increase temperature stability and the ability of radio signal reflection, satellite precision guidance. Calculations of temperature fields in thin plates of different thicknesses (membranes is held in the Excel, a graphical characteristics of temperature fields in thin plates (membranes show non-linearity of temperature distribution according to the thickness of thin plates (membranes.

  16. Methods for Prediction of Temperature Distribution in Flashover Caused by Backdraft Fire

    Directory of Open Access Journals (Sweden)

    Guowei Zhang

    2014-01-01

    Full Text Available Accurately predicting temperature distribution in flashover fire is a key issue for evacuation and fire-fighting. Now many good flashover fire experiments have be conducted, but most of these experiments are proceeded in enclosure with fixed openings; researches on fire development and temperature distribution in flashover caused by backdraft fire did not receive enough attention. In order to study flashover phenomenon caused by backdraft fire, a full-scale fire experiment was conducted in one abandoned office building. Process of fire development and temperature distribution in room and corridor were separately recorded during the experiment. The experiment shows that fire development in enclosure is closely affected by the room ventilation. Unlike existing temperature curves which have only one temperature peak, temperature in flashover caused by backdraft may have more than one peak value and that there is a linear relationship between maximum peak temperature and distance away from fire compartment. Based on BFD curve and experimental data, mathematical models are proposed to predict temperature curve in flashover fire caused by backdraft at last. These conclusions and experiment data obtained in this paper could provide valuable reference to fire simulation, hazard assessment, and fire protection design.

  17. Impact of Air Temperature Distributed Calculation in Glacier Mass Balance Modeling

    Science.gov (United States)

    Dalla Fontana, G.; Carturan, L.; Cazorzi, F.

    2014-12-01

    Distributed models of snow and ice mass balance enable a better understanding of processes involved in glacier hydrology and the prediction of glacier runoff under possible future climatic scenarios. The so-called 'Enhanced Temperature-Index' (ETI) melt models are a good compromise between model simplicity, parsimony of input data, and the capability to account for dominant processes in snow and ice mass balance. Accurate spatial calculation of temperature input data is crucial, given the key role of air temperature in modeling ablation and accumulation processes, further emphasized in ETI models. Compared to ambient conditions, lower temperatures (the so-called glacier cooling effect), and temperature variability (the so-called glacier damping effect) generally occur over glaciers, complicating the extrapolation from off-glacier weather stations. A comprehensive dataset of mass balance measurements and high-altitude meteorological observations was collected on La Mare and Careser glaciers (Ortles-Cevedale, Italian Alps) in 2010 and 2011. This dataset was used to analyze the air temperature distribution and wind regime over the glaciers, and to evaluate the impact of different calculation methods proposed in the literature for calculating on-glacier temperatures from off-glacier data. A general-purpose ETI model (EISModel - Energy Index Snow-and-ice Model) was used for simulating snow and ice accumulation and melt processes. Results indicate that i) none of the existing methods fully accounts for the actual temperature distribution over glaciers, ii) even small deviations in air temperature calculations strongly impact the simulations, and iii) there is an important positive feedback related to glacier shrinking and disintegration. Among the tested methods, the more physically-based procedure of Greuell and Bohm (1998) provided the best overall results. Therefore, it was implemented in EISModel for distributed air temperature calculations over glaciers.

  18. Heat flow and subsurface temperature distributions in central and western New York. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, D.S.; Fromm, K.A.

    1982-08-01

    Existing data in western and central New York indicates the possibility of a low-temperature, direct-use geothermal resource. This report evaluates the heat flow and provides a representation of temperatures at depth in this area. This has been done by: (1) analyzing known temperature distributions, (2) measuring the thermal conductivity of sedimentary rock units. Based on this information, areas of higher-than-normal heat flow and temperatures in possible geothermal source reservoirs are described to aid in targeting areas for the exploitation of geothermal energy in New York.

  19. Spatial distribution of temperature in the low-temperature geothermal Euganean field (NE Italy): a simulated annealing approach

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, Paolo; Trevisani, Sebastiano [Dipartimento di Geologia, Paleontologia e Geofisica, Universita degli Studi di Padova, via Giotto 1, 35127 Padova (Italy)

    2005-10-01

    The spatial distribution of groundwater temperatures in the low-temperature (60-86{sup o}C) geothermal Euganean field of northeastern Italy has been studied using a geostatistical approach. The data set consists of 186 temperatures measured in a fractured limestone reservoir, over an area of 8km{sup 2}. Investigation of the spatial continuity by means of variographic analysis revealed the presence of anisotropies that are apparently related to the particular geologic structure of the area. After inference of variogram models, a simulated annealing procedure was used to perform conditional simulations of temperature in the domain being studied. These simulations honor the data values and reproduce the spatial continuity inferred from the data. Post-processing of the simulations permits an assessment of temperature uncertainties. Maps of estimated temperatures, interquartile range, and of the probability of exceeding a prescribed 80{sup o}C threshold were also computed. The methodology described could prove useful when siting new wells in a geothermal area. (author)

  20. [The temperature and temperature gradients distribution in the rabbit body thermophysical model with evaporation of moisture from its surface].

    Science.gov (United States)

    Rumiantsev, G V

    2004-04-01

    On created in laboratory heat-physical model of a rabbit body reflecting basic heat-physical parameters of the body such as: weight, size of a relative surface, heat absorption and heat conduction, heat capacity etc., a change of radial distribution of temperature and size was found across a superficial layer of evaporation of water from its surface, that simulates sweating, with various ratio of environmental temperature and capacity of electrical heater simulating heat production in animal. The experiments have shown that with evaporation of moisture from a surface of model in all investigated cases, there is an increase of superficial layer of body of a temperature gradient and simultaneous decrease of temperature of a model inside and on the surface. It seems that, with evaporation of a moisture from a surface of a body, the size of a temperature gradient in a thin superficial layer dependent in our experiments on capacity for heat production and environmental temperature, is increased and can be used in a live organism for definition of change in general heat content of the body with the purpose of maintenance of its thermal balance with environment.

  1. Reconstruction method for inversion problems in an acoustic tomography based temperature distribution measurement

    Science.gov (United States)

    Liu, Sha; Liu, Shi; Tong, Guowei

    2017-11-01

    In industrial areas, temperature distribution information provides a powerful data support for improving system efficiency, reducing pollutant emission, ensuring safety operation, etc. As a noninvasive measurement technology, acoustic tomography (AT) has been widely used to measure temperature distribution where the efficiency of the reconstruction algorithm is crucial for the reliability of the measurement results. Different from traditional reconstruction techniques, in this paper a two-phase reconstruction method is proposed to ameliorate the reconstruction accuracy (RA). In the first phase, the measurement domain is discretized by a coarse square grid to reduce the number of unknown variables to mitigate the ill-posed nature of the AT inverse problem. By taking into consideration the inaccuracy of the measured time-of-flight data, a new cost function is constructed to improve the robustness of the estimation, and a grey wolf optimizer is used to solve the proposed cost function to obtain the temperature distribution on the coarse grid. In the second phase, the Adaboost.RT based BP neural network algorithm is developed for predicting the temperature distribution on the refined grid in accordance with the temperature distribution data estimated in the first phase. Numerical simulations and experiment measurement results validate the superiority of the proposed reconstruction algorithm in improving the robustness and RA.

  2. Temperature distribution of multipass TIG welded AISI 304L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Esme, Ugur; Guven, Onur [Mersin Univ., Tarsus (Turkey); Bayramoglu, Melih; Serin, Hasan [Cukurova Univ., Adana (Turkey); Aydin, Hakan [Uludag Unaiv., Bursa (Turkey); Kazancoglu, Yigit [Izmir Univ. of Economics (Turkey). Dept. of Business Administration

    2011-07-01

    Tungsten inert gas welding (TIG) is one of the most important material-joining processes widely used in industry. AISI type 304L stainless steel plates with 8 and 10 mm thicknesses are widely used in the fabrication of pressure vessels and other components. These plates are mostly joined together by multipass welding methods. The temperature distribution that occurs during multipass welding affects the material microstructure, hardness, mechanical properties, and the residual stresses that will be present in the welded material. Very limited experimental data regarding temperature distribution during multipass welding of plates is available in the literature. Experimental work was carried out to find out the temperature distribution during multipass welding of the AISI 304L stainless steel plates. The temperature distribution curves obtained during the experiments are presented. The average maximum temperature rise during each pass of welding is calculated and plotted against the distance from the weld pad centre line. From these plots, the maximum temperature rise expected in the base plate region during any pass of welding operation can be estimated. (orig.)

  3. Numerical and Experimental Investigation of Temperature Effect on Thickness Distribution in Warm Hydroforming of Aluminum Tubes

    Science.gov (United States)

    Hashemi, Seyed Jalal; Moslemi Naeini, Hassan; Liaghat, Gholamhosein; Azizi Tafti, Roohollah; Rahmani, Farzad

    2013-01-01

    Reduction of weight and increase of corrosion resistance are among the advantageous applications of aluminum alloys in automotive industry. Producing complicated components with several parts as a uniform part not only increases their strength but also decreases the production sequences and costs. However, achieving this purpose requires sufficient formability of the material. Tube hydroforming is an alternative process to produce complex products. In this process, the higher the material formability the more uniform will be the thickness distribution. In this research, tube hydroforming of aluminum alloy (AA1050) at various temperatures has been investigated numerically to study temperature effect on thickness distribution of final product. Also a warm hydroforming set-up has been designed and manufactured to evaluate numerical results. According to numerical and experimental results in the case of free bulging, unlike the constrained bulging, increase of the process temperature causes more uniform thickness distribution and therefore increases the material formability.

  4. Identifying (subsurface) anthropogenic heat sources that influence temperature in the drinking water distribution system

    Science.gov (United States)

    Agudelo-Vera, Claudia M.; Blokker, Mirjam; de Kater, Henk; Lafort, Rob

    2017-09-01

    The water temperature in the drinking water distribution system and at customers' taps approaches the surrounding soil temperature at a depth of 1 m. Water temperature is an important determinant of water quality. In the Netherlands drinking water is distributed without additional residual disinfectant and the temperature of drinking water at customers' taps is not allowed to exceed 25 °C. In recent decades, the urban (sub)surface has been getting more occupied by various types of infrastructures, and some of these can be heat sources. Only recently have the anthropogenic sources and their influence on the underground been studied on coarse spatial scales. Little is known about the urban shallow underground heat profile on small spatial scales, of the order of 10 m × 10 m. Routine water quality samples at the tap in urban areas have shown up locations - so-called hotspots - in the city, with relatively high soil temperatures - up to 7 °C warmer - compared to the soil temperatures in the surrounding rural areas. Yet the sources and the locations of these hotspots have not been identified. It is expected that with climate change during a warm summer the soil temperature in the hotspots can be above 25 °C. The objective of this paper is to find a method to identify heat sources and urban characteristics that locally influence the soil temperature. The proposed method combines mapping of urban anthropogenic heat sources, retrospective modelling of the soil temperature, analysis of water temperature measurements at the tap, and extensive soil temperature measurements. This approach provided insight into the typical range of the variation of the urban soil temperature, and it is a first step to identifying areas with potential underground heat stress towards thermal underground management in cities.

  5. Influence of patient mispositioning on SAR distribution and simulated temperature in regional deep hyperthermia

    Science.gov (United States)

    Aklan, Bassim; Gierse, Pia; Hartmann, Josefin; Ott, Oliver J.; Fietkau, Rainer; Bert, Christoph

    2017-06-01

    Patient positioning plays an important role in regional deep hyperthermia to obtain a successful hyperthermia treatment. In this study, the influence of possible patient mispositioning was systematically assessed on specific absorption rate (SAR) and temperature distribution. With a finite difference time domain approach, the SAR and temperature distributions were predicted for six patients at 312 positions. Patient displacements and rotations as well as the combination of both were considered inside the Sigma-Eye applicator. Position sensitivity is assessed for hyperthermia treatment planning -guided steering, which relies on model-based optimization of the SAR and temperature distribution. The evaluation of the patient mispositioning was done with and without optimization. The evaluation without optimization was made by creating a treatment plan for the patient reference position in the center of the applicator and applied for all other positions, while the evaluation with optimization was based on creating an individual plan for each position. The parameter T90 was used for the temperature evaluation, which was defined as the temperature that covers 90% of the gross tumor volume (GTV). Furthermore, the hotspot tumor quotient (HTQ) was used as a goal function to assess the quality of the SAR and temperature distribution. The T90 was shown considerably dependent on the position within the applicator. Without optimization, the T90 was clearly decreased below 40 °C by patient shifts and the combination of shifts and rotations. However, the application of optimization for each positon led to an increase of T90 in the GTV. Position inaccuracies of less than 1 cm in the X-and Y-directions and 2 cm in the Z-direction, resulted in an increase of HTQ of less than 5%, which does not significantly affect the SAR and temperature distribution. Current positioning precision is sufficient in the X (right-left)-direction, but position accuracy is required in the Y-and Z-directions.

  6. Analytical study of temperature distribution in a rectangular porous fin considering both insulated and convective tip

    Science.gov (United States)

    Deshamukhya, Tuhin; Bhanja, Dipankar; Nath, Sujit; Maji, Ambarish; Choubey, Gautam

    2017-07-01

    The following study is concerned with determination of temperature distribution of porous fins under convective and insulated tip conditions. The authors have made an effort to study the effect of various important parameters involved in the transfer of heat through porous fins as well as the temperature distribution along the fin length subjected to both convective as well as insulated ends. The non-linear equation obtained has been solved by Adomian Decomposition method and validated with a numerical scheme called Finite Difference method by using a central difference scheme and Gauss Siedel Iterative method.

  7. Distributed fiber temperature and strain sensor using coherent radio-frequency detection of spontaneous Brillouin scattering

    Science.gov (United States)

    Geng, Jihong; Staines, Sean; Blake, Mike; Jiang, Shibin

    2007-08-01

    A novel technique that enables coherent detection of spontaneous Brillouin scattering in the radio-frequency (<500 MHz) region with excellent long-term stability has been demonstrated for distributed measurements of temperature and strain in long fiber. An actively stabilized single-frequency Brillouin fiber laser with extremely low phase noise and intensity noise is used as a well-defined, frequency-shifted local oscillator for the heterodyne detection, yielding measurements of spontaneous Brillouin scattering with high frequency stability. Based on this approach, a highly stable real-time fiber sensor for distributed measurements of both temperature and strain over long fiber has been developed utilizing advanced digital signal processing techniques.

  8. Low temperature treatment affects concentration and distribution of chrysanthemum stunt viroid in Argyranthemum

    Directory of Open Access Journals (Sweden)

    Zhibo eZhang

    2016-03-01

    Full Text Available Chrysanthemum stunt viroid (CSVd can infect Argyranthemum and cause serious economic loss. Low temperature treatment combined with meristem culture has been applied to eradicate viroids from their hosts, but without success in eliminating CSVd from diseased Argyranthemum. The objectives of this work were to investigate 1 the effect of low temperature treatment combined with meristem culture on elimination of CSVd, 2 the effect of low temperature treatment on CSVd distribution pattern in shoot apical meristem (SAM, and 3 CSVd distribution in flowers and stems of two infected Argyranthemum cultivars. After treatment with low temperature combined with meristem tip culture, two CSVd-free plants were found in ‘Border Dark Red’, but none in ‘Yellow Empire’. With the help of in situ hybridization, we found that CSVd distribution patterns in the SAM showed no changes in diseased ‘Yellow Empire’ following 5oC treatment, compared with non-treated plants. However, the CSVd-free area in SAM was enlarged in diseased ‘Border Dark Red’ following prolonged 5oC treatment. Localization of CSVd in the flowers and stems of infected ‘Border Dark Red’ and ‘Yellow Empire’ indicated that seeds could not transmit CSVd in these two cultivars, and CSVd existed in phloem. Results obtained in the study contributed to better understanding of the distribution of CSVd in systemically infected plants and the combination of low temperature treatment and meristem tip culture for production of viroid-free plants.

  9. Thermophysical Property Estimation by Transient Experiments: The Effect of a Biased Initial Temperature Distribution

    Directory of Open Access Journals (Sweden)

    Federico Scarpa

    2015-01-01

    Full Text Available The identification of thermophysical properties of materials in dynamic experiments can be conveniently performed by the inverse solution of the associated heat conduction problem (IHCP. The inverse technique demands the knowledge of the initial temperature distribution within the material. As only a limited number of temperature sensors (or no sensor at all are arranged inside the test specimen, the knowledge of the initial temperature distribution is affected by some uncertainty. This uncertainty, together with other possible sources of bias in the experimental procedure, will propagate in the estimation process and the accuracy of the reconstructed thermophysical property values could deteriorate. In this work the effect on the estimated thermophysical properties due to errors in the initial temperature distribution is investigated along with a practical method to quantify this effect. Furthermore, a technique for compensating this kind of bias is proposed. The method consists in including the initial temperature distribution among the unknown functions to be estimated. In this way the effect of the initial bias is removed and the accuracy of the identified thermophysical property values is highly improved.

  10. Evaluation of temperature distribution sensing method for fast reactor using optical fiber

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Atsushi; Nakazawa, Masaharu [Tokyo Univ. (Japan); Ichige, Satoshi [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1999-12-01

    Optical fiber sensors (OFSs) have many advantages like flexible configuration, intrinsic immunity for electromagnetic fields, and so on. For these reasons, it is very useful to apply OFSs to fast reactor plants for remote inspection and surveillance. However, under irradiation, because of radiation-induced transmission loss of optical fibers, OFSs have radiation-induced errors. Therefore, to apply OFSs to nuclear facilities, we have to estimate and correct the errors. In this report, Raman Distributed Temperature Sensor (RDTS; one of the OFSs) has been installed at the primary coolant loop of the experimental fast reactor JOYO of JNC (Japan Nuclear Cycle Development Institute). Two correction techniques (correction technique with two thermocouples and correction technique with loop arrangement) for radiation-induced errors have been developed and demonstrated. Because of the radiation-induced loss, measured temperature distributions had radiation-induced errors. However, during the continuous measurements with the total dose of more than 8 x 10{sup 3}[C/kg](3 x 10{sup 7}[R]), the radiation induced errors showed a saturation tendency. In case of the temperature distributions with fluorine doped fiber, with one of the correction techniques, the temperature errors reduced to 1{approx}2degC and the feasibility of the loss correction techniques was demonstrated. For these results, it can be said that RDTS can be applied as a temperature distribution monitor in harsh radiation environments like fast reactor plants. (author)

  11. Simultaneous independent distributed strain and temperature measurements over 15 km using spontaneous Brillouin scattering

    Science.gov (United States)

    Kee, Huai H.; Lees, Gareth P.; Newson, Trevor P.

    2000-08-01

    Long range simultaneous distributed strain and temperature sensors have many applications for measurements in the power and oil industries and also for structural monitoring. We present an efficient technique to measure both the intensity and frequency shift at every point along the sensitive fiber with a low loss filtering device utilizing two in-fiber Mach-Zehnder interferometers. From these two measurements, it is possible to compute accurately the strain and temperature profile.

  12. Temperature distribution and plant responses of birch (Betula pendula Roth.) at constant growth

    Energy Technology Data Exchange (ETDEWEB)

    Hedlund, Henrik [Swedish Univ. of Agricultural Sciences, Alnarp (Sweden). Dept. of Agricultural Biosystems and Technology

    1999-06-01

    This thesis is about plant growth and development as influenced by temperature. An attempt to aggregate theories and methods in literature has been made. Experiments were performed on birch (Betula pendula Roth.) to study the requirements for determination of plant temperature and its distribution within the plant. Experiments have also included studies of the relationships between growth responses and temperature. Plant heat capacity has been measured in a separate study. Methods were used where the growth capacity and the plant state quantities were maintained constant. Leaf temperature was measured by remote sensing. The leaf and root temperature distributions were found to be constant during the whole experimental period. The distributions were in a range of 2-3 deg C for the leaves and in a range of 0.5-1.0 deg C for the roots. Leaves were increasingly colder relative the air, and roots were increasingly warmer relative the leaves with increasing air temperature. The growth capacity increased with an increase in plant mean temperature up to an optimum. The optimum growth capacity, at a photon flux density of 350 {mu}mol m{sup -2} s{sup -1}, was 0.37{+-}0.01 g g{sup -1} d{sup -1} for a mean leaf temperature of 22.6{+-}0.6 deg C and a mean root temperature of 29.3{+-}0.3 deg C. The connection between growth response and plant temperature has been determined with a higher precision than has been found in literature. Since the difference between leaf and air temperature can be significant and varying, choosing air temperature as the connection between temperature and plant responses will conceal the dynamical behaviour of the plant under changing environmental conditions. In a determination of plant responses one ought to consider the significant difference between root and leaf temperatures, since both factors will affect the plant responses. The heat capacity of plants was linearly correlated to the specific water content of the plant material in a range of 0

  13. Temperature distribution of a simplified rotor due to a uniform heat source

    Science.gov (United States)

    Welzenbach, Sarah; Fischer, Tim; Meier, Felix; Werner, Ewald; kyzy, Sonun Ulan; Munz, Oliver

    2017-11-01

    In gas turbines, high combustion efficiency as well as operational safety are required. Thus, labyrinth seal systems with honeycomb liners are commonly used. In the case of rubbing events in the seal system, the components can be damaged due to cyclic thermal and mechanical loads. Temperature differences occurring at labyrinth seal fins during rubbing events can be determined by considering a single heat source acting periodically on the surface of a rotating cylinder. Existing literature analysing the temperature distribution on rotating cylindrical bodies due to a stationary heat source is reviewed. The temperature distribution on the circumference of a simplified labyrinth seal fin is calculated using an available and easy to implement analytical approach. A finite element model of the simplified labyrinth seal fin is created and the numerical results are compared to the analytical results. The temperature distributions calculated by the analytical and the numerical approaches coincide for low sliding velocities, while there are discrepancies of the calculated maximum temperatures for higher sliding velocities. The use of the analytical approach allows the conservative estimation of the maximum temperatures arising in labyrinth seal fins during rubbing events. At the same time, high calculation costs can be avoided.

  14. Optical fiber sensors-based temperature distribution measurement in ex vivo radiofrequency ablation with submillimeter resolution

    Science.gov (United States)

    Macchi, Edoardo Gino; Tosi, Daniele; Braschi, Giovanni; Gallati, Mario; Cigada, Alfredo; Busca, Giorgio; Lewis, Elfed

    2014-11-01

    Radiofrequency thermal ablation (RFTA) induces a high-temperature field in a biological tissue having steep spatial (up to 6°C/mm) and temporal (up to 1°C/s) gradients. Applied in cancer care, RFTA produces a localized heating, cytotoxic for tumor cells, and is able to treat tumors with sizes up to 3 to 5 cm in diameter. The online measurement of temperature distribution at the RFTA point of care has been previously carried out with miniature thermocouples and optical fiber sensors, which exhibit problems of size, alteration of RFTA pattern, hysteresis, and sensor density worse than 1 sensor/cm. In this work, we apply a distributed temperature sensor (DTS) with a submillimeter spatial resolution for the monitoring of RFTA in porcine liver tissue. The DTS demodulates the chaotic Rayleigh backscattering pattern with an interferometric setup to obtain the real-time temperature distribution. A measurement chamber has been set up with the fiber crossing the tissue along different diameters. Several experiments have been carried out measuring the space-time evolution of temperature during RFTA. The present work showcases the temperature monitoring in RFTA with an unprecedented spatial resolution and is exportable to in vivo measurement; the acquired data can be particularly useful for the validation of RFTA computational models.

  15. A novel fiber optic distributed temperature and strain sensor for building applications

    Science.gov (United States)

    Tregubov, A. V.; Svetukhin, V. V.; Novikov, S. G.; Berintsev, A. V.; Prikhodko, V. V.

    A novel fiber optic distributed sensor for temperature and strain measurements in building constructions has been developed and studied which is a composite optical element in the form of a reinforced single-mode optical fiber placed directly in the body of a fiberglass armature. The sensor has a reasonably high sensitivity to changes in external temperature and strain and a good spatial resolution. Besides, it is characterized by a high mechanical strength as compared to conventional fiber sensor elements. The experimental results obtained on a prototype show the value of the temperature sensitivity of 0.1 MHz/deg and the sensitivity to strain of 2.7 MHz/mm.

  16. Study on two-dimensional tomography algorithm for gas temperature distribution based on TDLAS

    Science.gov (United States)

    Lv, Jinwei; Zhou, Tao; Yao, Hongbao

    2013-09-01

    In the combustion flow field, the concentrations of temperature and water vapor are very important in determining combustion efficiency. The traditional contact measurement will induce shock so as to disturb the flow field, and most of the probe can't be used in the high temperature air. So the existing contact measurement method can't meet the measurement requirements of the combustion field, but the tunable laser absorption spectrum technology (TDLAS) can realize non-contact nondestructive measurement of the combustion flow field. Various parameters such as temperature, gas composition and concentration, flow velocity, can be measured at the same time. And there is no temperature limit. It is very good at measuring combustion field parameters in the high temperature and high speed environment. TDLAS can calculate the gas temperature in real-time by scanning both absorption signal of gas absorption lines, but this is one-dimensional path integral measurement, can't reflect the real information of the combustion field. So it can't be used to measure objects with distinct temperature gradient. In order to overcome this deficiency, tunable laser absorption spectrum technology combined with computer tomography technology (called TDLAT) is used to realize the measurement of the two dimensional temperature distribution in the burning flow field. In this paper, the measurement principle and algorithm of the two dimensional temperature field distribution are put forward. In TDLAT system, the measured area is divided into many grids. TDLAS is used to get the laser path integral spectrophotometry along the grid line. In succession, deeply grid information is gotten by non-negative constrained least squares. Thus, assuming that temperature measurement plane within is in smooth transition, interpolation algorithm is used to recreate the high spatial resolution of the two dimensional temperature field distribution. According to the measuring principle and measuring objects

  17. Temperature effects on gametophyte life-history traits and geographic distribution of two cryptic kelp species.

    Science.gov (United States)

    Oppliger, L Valeria; Correa, Juan A; Engelen, Aschwin H; Tellier, Florence; Vieira, Vasco; Faugeron, Sylvain; Valero, Myriam; Gomez, Gonzalo; Destombe, Christophe

    2012-01-01

    A major determinant of the geographic distribution of a species is expected to be its physiological response to changing abiotic variables over its range. The range of a species often corresponds to the geographic extent of temperature regimes the organism can physiologically tolerate. Many species have very distinct life history stages that may exhibit different responses to environmental factors. In this study we emphasized the critical role of the haploid microscopic stage (gametophyte) of the life cycle to explain the difference of edge distribution of two related kelp species. Lessonia nigrescens was recently identified as two cryptic species occurring in parapatry along the Chilean coast: one located north and the other south of a biogeographic boundary at latitude 29-30°S. Six life history traits from microscopic stages were identified and estimated under five treatments of temperature in eight locations distributed along the Chilean coast in order to (1) estimate the role of temperature in the present distribution of the two cryptic L. nigrescens species, (2) compare marginal populations to central populations of the two cryptic species. In addition, we created a periodic matrix model to estimate the population growth rate (λ) at the five temperature treatments. Differential tolerance to temperature was demonstrated between the two species, with the gametophytes of the Northern species being more tolerant to higher temperatures than gametophytes from the south. Second, the two species exhibited different life history strategies with a shorter haploid phase in the Northern species contrasted with considerable vegetative growth in the Southern species haploid stage. These results provide strong ecological evidence for the differentiation process of the two cryptic species and show local adaptation of the life cycle at the range limits of the distribution. Ecological and evolutionary implications of these findings are discussed.

  18. Temperature effects on gametophyte life-history traits and geographic distribution of two cryptic kelp species.

    Directory of Open Access Journals (Sweden)

    L Valeria Oppliger

    Full Text Available A major determinant of the geographic distribution of a species is expected to be its physiological response to changing abiotic variables over its range. The range of a species often corresponds to the geographic extent of temperature regimes the organism can physiologically tolerate. Many species have very distinct life history stages that may exhibit different responses to environmental factors. In this study we emphasized the critical role of the haploid microscopic stage (gametophyte of the life cycle to explain the difference of edge distribution of two related kelp species. Lessonia nigrescens was recently identified as two cryptic species occurring in parapatry along the Chilean coast: one located north and the other south of a biogeographic boundary at latitude 29-30°S. Six life history traits from microscopic stages were identified and estimated under five treatments of temperature in eight locations distributed along the Chilean coast in order to (1 estimate the role of temperature in the present distribution of the two cryptic L. nigrescens species, (2 compare marginal populations to central populations of the two cryptic species. In addition, we created a periodic matrix model to estimate the population growth rate (λ at the five temperature treatments. Differential tolerance to temperature was demonstrated between the two species, with the gametophytes of the Northern species being more tolerant to higher temperatures than gametophytes from the south. Second, the two species exhibited different life history strategies with a shorter haploid phase in the Northern species contrasted with considerable vegetative growth in the Southern species haploid stage. These results provide strong ecological evidence for the differentiation process of the two cryptic species and show local adaptation of the life cycle at the range limits of the distribution. Ecological and evolutionary implications of these findings are discussed.

  19. The correlation study of temperature distribution with the immunology response under laser radiation

    Science.gov (United States)

    Chen, Yichao; Nordquist, Robert E.; Naylor, Mark F.; Wu, Feng; Liu, Hong; Tesiram, Yasvir A.; Abbott, Andrew; Towner, Rheal A.; Chen, Wei R.

    2008-02-01

    The 3-D, in vivo temperature distributions within tumor-bearing rats were measured using Magnetic Resonance Imaging (MRI) technique. The in vivo thermal distributions of rats were measured using MRI chemical shift of water proton density. DMBA-4 tumor bearing rats are treated using laser photothermal therapy combined with immunoadjuvant under the observation of MRI. The thermal images and the immunological responses were studied and their relationships were investigated. The study of thermal distribution and correlation with the immunological response under laser treatment provided rich information with potential guidance for thermal-immunological therapy.

  20. Thermocouple and infrared sensor-based measurement of temperature distribution in metal cutting.

    Science.gov (United States)

    Kus, Abdil; Isik, Yahya; Cakir, M Cemal; Coşkun, Salih; Özdemir, Kadir

    2015-01-12

    In metal cutting, the magnitude of the temperature at the tool-chip interface is a function of the cutting parameters. This temperature directly affects production; therefore, increased research on the role of cutting temperatures can lead to improved machining operations. In this study, tool temperature was estimated by simultaneous temperature measurement employing both a K-type thermocouple and an infrared radiation (IR) pyrometer to measure the tool-chip interface temperature. Due to the complexity of the machining processes, the integration of different measuring techniques was necessary in order to obtain consistent temperature data. The thermal analysis results were compared via the ANSYS finite element method. Experiments were carried out in dry machining using workpiece material of AISI 4140 alloy steel that was heat treated by an induction process to a hardness of 50 HRC. A PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. The results showed that with increasing cutting speed, feed rate and depth of cut, the tool temperature increased; the cutting speed was found to be the most effective parameter in assessing the temperature rise. The heat distribution of the cutting tool, tool-chip interface and workpiece provided effective and useful data for the optimization of selected cutting parameters during orthogonal machining.

  1. Thermocouple and Infrared Sensor-Based Measurement of Temperature Distribution in Metal Cutting

    Directory of Open Access Journals (Sweden)

    Abdil Kus

    2015-01-01

    Full Text Available In metal cutting, the magnitude of the temperature at the tool-chip interface is a function of the cutting parameters. This temperature directly affects production; therefore, increased research on the role of cutting temperatures can lead to improved machining operations. In this study, tool temperature was estimated by simultaneous temperature measurement employing both a K-type thermocouple and an infrared radiation (IR pyrometer to measure the tool-chip interface temperature. Due to the complexity of the machining processes, the integration of different measuring techniques was necessary in order to obtain consistent temperature data. The thermal analysis results were compared via the ANSYS finite element method. Experiments were carried out in dry machining using workpiece material of AISI 4140 alloy steel that was heat treated by an induction process to a hardness of 50 HRC. A PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. The results showed that with increasing cutting speed, feed rate and depth of cut, the tool temperature increased; the cutting speed was found to be the most effective parameter in assessing the temperature rise. The heat distribution of the cutting tool, tool-chip interface and workpiece provided effective and useful data for the optimization of selected cutting parameters during orthogonal machining.

  2. Thermocouple and Infrared Sensor-Based Measurement of Temperature Distribution in Metal Cutting

    Science.gov (United States)

    Kus, Abdil; Isik, Yahya; Cakir, M. Cemal; Coşkun, Salih; Özdemir, Kadir

    2015-01-01

    In metal cutting, the magnitude of the temperature at the tool-chip interface is a function of the cutting parameters. This temperature directly affects production; therefore, increased research on the role of cutting temperatures can lead to improved machining operations. In this study, tool temperature was estimated by simultaneous temperature measurement employing both a K-type thermocouple and an infrared radiation (IR) pyrometer to measure the tool-chip interface temperature. Due to the complexity of the machining processes, the integration of different measuring techniques was necessary in order to obtain consistent temperature data. The thermal analysis results were compared via the ANSYS finite element method. Experiments were carried out in dry machining using workpiece material of AISI 4140 alloy steel that was heat treated by an induction process to a hardness of 50 HRC. A PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. The results showed that with increasing cutting speed, feed rate and depth of cut, the tool temperature increased; the cutting speed was found to be the most effective parameter in assessing the temperature rise. The heat distribution of the cutting tool, tool-chip interface and workpiece provided effective and useful data for the optimization of selected cutting parameters during orthogonal machining. PMID:25587976

  3. Numerical investigation of temperature distribution in a confined heterogeneous geothermal reservoir due to injection-production

    NARCIS (Netherlands)

    Ganguly, Sayantan; Tan, Lippong; Date, Abhijit; Mohan Kumar, M.S.

    The present study deals with the modeling of transient temperature distribution in a heterogeneous geothermal reservoir in response to the injection-production process. The heterogeneous geothermal aquifer considered here is a confined aquifer with homogeneous layers of finite length and overlain

  4. Measuring heat balance residual at lake surface using distributed temperature sensing

    NARCIS (Netherlands)

    Van Emmerik, T.H.M.; Rimmer, A.; Lechinsky, Y.; Wenker, K.J.R.; Nussboim, S.; Van de Giesen, N.C.

    2013-01-01

    This research presents a new method to verify the measurements of surface fluxes and the heat balance at a lake surface, by means of Distributed Temperature Sensing (DTS) measurements from 0.5 m above to 1.5 m below the surface. Using a polyvinyl chloride hyperboloid construction, a floating

  5. Fractional calculus approach to study temperature distribution within a spinning satellite

    Directory of Open Access Journals (Sweden)

    Jyotindra C. Prajapati

    2016-09-01

    Full Text Available This paper deals with the temperature distribution within spinning satellites and problem is formulated in terms of fractional differential equation. Applying fractional calculus approach, solution of this equation is obtained in terms of Wright generalized hypergeometric function, a generalization of exponential function.

  6. Calibrating single-ended fiber-optic raman spectra distributed temperature sensing data

    NARCIS (Netherlands)

    Hausner, M.B.; Suarez, F.; Glander, K.E.; Van de Giesen, N.C.; Selker, J.S.; Tyler, S.W.

    2011-01-01

    Hydrologic research is a very demanding application of fiber-optic distributed temperature sensing (DTS) in terms of precision, accuracy and calibration. The physics behind the most frequently used DTS instruments are considered as they apply to four calibration methods for single-ended DTS

  7. Practical considerations for enhanced-resolution coil-wrapped distributed temperature sensing

    NARCIS (Netherlands)

    Hilgersom, K.P.; van Emmerik, T.H.M.; Solcerova, A.; Berghuijs, W.R.; Selker, JS; van de Giesen, N.C.

    2016-01-01

    Fibre optic distributed temperature sensing (DTS) is widely applied in Earth sciences. Many applications require a spatial resolution higher than that provided by the DTS instrument. Measurements at these higher resolutions can be achieved with a fibre optic cable helically wrapped on a cylinder.

  8. Temperature does not dictate the wintering distributions of European dabbling duck species

    DEFF Research Database (Denmark)

    Dalby, Lars; Fox, Anthony David; Petersen, Ib Krag

    2013-01-01

    To predict future changes in wintering dabbling duck (Anas sp.) distributions in response to climate change, it is necessary to understand their response to temperature at a continental scale. Food accessibility, competition and thermoregulatory costs are likely to play a major role in determinin...

  9. Bull trout distributions related to temperature regimes in four central Idaho streams

    Science.gov (United States)

    Susan B. Adams; Theodore C. Bjornn

    1997-01-01

    bull trout Salvelinus confluentus distributions and water temperature regimes were studied in four streams in the Weiser River basin, Idaho, in 1992 and 1993. bull trout occurred at elevations ranging from 1,472 m to 2,182 m and at densities up to 9.5 fish per 100 m2. Bull trout were sympatric with rainbow trout

  10. The simulation of skin temperature distributions by means of a relaxation method (applied to IR thermography)

    NARCIS (Netherlands)

    Vermey, G.F.

    1975-01-01

    To solve the differential equation for the heat in a two-layer, rectangular piece of skin tissue, a relaxation method, based on a finite difference technique, is used. The temperature distributions on the skin surface are calculated. The results are used to derive a criterion for the resolution for

  11. The Numerical Investigation of Temperature and Velocity Distribution in the High-Bay Depot

    Directory of Open Access Journals (Sweden)

    Xuehong Wu

    2014-07-01

    Full Text Available High-bay depot plays an important role in the storage industry. Due to large and high space of high-bay depot, it is difficult to make temperature distribution uniform, which will influence the storage time of raw materials. In this paper, the aim is to find the reasonable air supply and energy-saving method; a supply-air method of high-bay depot is investigated as an example. The results show the radius and spacing of the supply-air inlet have great influence on temperature distribution. The temperature nonuniformity coefficient of summer is smaller than that of winter. The investigated results can provide a theoretical reference for the high-bay depot design and economic operation.

  12. Raman distributed temperature measurement at CERN high energy accelerator mixed field radiation test facility (CHARM)

    Science.gov (United States)

    Toccafondo, Iacopo; Nannipieri, Tiziano; Signorini, Alessandro; Guillermain, Elisa; Kuhnhenn, Jochen; Brugger, Markus; Di Pasquale, Fabrizio

    2015-09-01

    In this paper we present a validation of distributed Raman temperature sensing (RDTS) at the CERN high energy accelerator mixed field radiation test facility (CHARM), newly developed in order to qualify electronics for the challenging radiation environment of accelerators and connected high energy physics experiments. By investigating the effect of wavelength dependent radiation induced absorption (RIA) on the Raman Stokes and anti-Stokes light components in radiation tolerant Ge-doped multi-mode (MM) graded-index optical fibers, we demonstrate that Raman DTS used in loop configuration is robust to harsh environments in which the fiber is exposed to a mixed radiation field. The temperature profiles measured on commercial Ge-doped optical fibers is fully reliable and therefore, can be used to correct the RIA temperature dependence in distributed radiation sensing systems based on P-doped optical fibers.

  13. Spatial temperature distribution in human hairy and glabrous skin after infrared CO2 laser radiation.

    Science.gov (United States)

    Frahm, Ken S; Andersen, Ole K; Arendt-Nielsen, Lars; Mørch, Carsten D

    2010-11-08

    CO2 lasers have been used for several decades as an experimental non-touching pain stimulator. The laser energy is absorbed by the water content in the most superficial layers of the skin. The deeper located nociceptors are activated by passive conduction of heat from superficial to deeper skin layers. In the current study, a 2D axial finite element model was developed and validated to describe the spatial temperature distribution in the skin after infrared CO2 laser stimulation. The geometry of the model was based on high resolution ultrasound scans. The simulations were compared to the subjective pain intensity ratings from 16 subjects and to the surface skin temperature distributions measured by an infrared camera. The stimulations were sensed significantly slower and less intense in glabrous skin than they were in hairy skin (MANOVA, p 0.90, p CO2 laser stimulation intensity, temperature levels and nociceptor activation.

  14. Prediction of vertical distribution and ambient development temperature of Baltic cod, Gadus morhua L., eggs

    DEFF Research Database (Denmark)

    Wieland, Kai; Jarre, Astrid

    1997-01-01

    An artificial neural network (ANN) model was established to predict the vertical distribution of Baltic cod eggs. Data from vertical distribution sampling in the Bornholm Basin over the period 1986-1995 were used to train and test the network, while data sets from sampling in 1996 were used...... for validation. The model explained 82% of the variance between observed and predicted relative frequencies of occurrence of the eggs in relation to salinity, temperature and oxygen concentration; The ANN fitted all observations satisfactorily except for one sampling date, where an exceptional hydrographic...... situation was observed. Mean ambient temperatures, calculated from the predicted vertical distributions of the eggs and used for the computation of egg developmental times, were overestimated by 0.05 degrees C on average. This corresponds to an error in prediction of egg developmental time of less than 1%...

  15. Distributed strain and temperature sensing in plastic optical fiber using Rayleigh scatter

    Science.gov (United States)

    Kreger, Stephen T.; Sang, Alex K.; Gifford, Dawn K.; Froggatt, Mark E.

    2009-05-01

    In recent years we have demonstrated the ability to analyze Rayleigh scatter in single- and multi-mode fused silica fibers to deduce strain and temperature shifts, yielding sensitivity and resolution similar to that obtained using Fiber Bragg Gratings. This technique employs scanning laser interferometry to obtain high spatial resolution Rayleigh scatter spectral information. One of the promising aspects of using Rayleigh scatter for distributed sensing is that the technique should work for any fiber that exhibits discernable Rayleigh scatter. We now demonstrate that distributed sensing with mm-range spatial resolution in off-the-shelf plastic multi-mode optical fiber is feasible. We report temperature and strain sensitivity, and comment on measurement range and hysteresis level. Distributed Rayleigh scatter sensing in plastic optical fiber may offer a valuable alternative to sensing in fused silica fibers because of plastic's low cost and differing mechanical and chemical properties.

  16. Temperature Distributions in LMR Fuel Pin Bundles as Modeled by COBRA-IV-I

    Science.gov (United States)

    Wright, Steven A.; Stout, Sherry

    2005-02-01

    Most pin type reactor designs for space power or terrestrial applications group the fuel pins into a number of relatively large fuel pin bundles or subassemblies. Fuel bundles for terrestrial liquid metal fast breeders reactors typically use 217 - 271 pins per sub-assembly, while some SP100 designs use up to 331 pins in a central subassembly that was surrounded by partial assemblies. Because thermal creep is exponentially related to temperature, small changes in fuel pin cladding temperature can make large differences in the lifetime in a high temperature liquid metal reactor (LMR). This paper uses the COBRA-IV-I computer code to determine the temperature distribution within LMR fuel bundles. COBRA-IV-I uses the sub-channel analysis approach to determine the enthalpy (or temperature) and flow distribution in rod bundles for both steady-state and transient conditions. The COBRA code runs in only a few seconds and has been benchmarked and tested extensively over a wide range of flow conditions. In this report the flow and temperature distributions for two types of lithium cooled space reactor core designs were calculated. One design uses a very tight fuel pin packing that has a pitch to diameter ratio of 1.05 (small wire wrap with a diameter of 392 μm) as proposed in SP100. The other design uses a larger pitch to diameter ratio of 1.09 with a larger more conventional sized wire wrap diameter of 1 mm. The results of the COBRA pin bundle calculations show that the larger pitch-to-diameter fuel bundle designs are more tolerant to local flow blockages, and in addition they are less sensitive to mal-flow distributions that occur near the edges of the subassembly.

  17. Thermal Imaging of Body Surface Temperature Distribution in Women with Anorexia Nervosa.

    Science.gov (United States)

    Chudecka, Monika; Lubkowska, Anna

    2016-01-01

    The drastic reduction in body weight observed in anorexia nervosa (AN) leads to various endocrine changes and consequently to disturbance in thermoregulation mechanisms and body temperature. Thermography allows for a noninvasive diagnosis of the distribution of skin surface temperatures, which is especially important for difficult patients such as women with AN, who are often very sensitive and difficult to treat. The main aim of this study was to measure the mean temperatures (Tmean ) of selected body areas in young women diagnosed with AN and identify those areas where the temperature differences were particularly significant between healthy women and them. Additionally, we determined the relationships between body mass index, body composition (especially subcutaneous and VFM) and the value of mean surface temperature (Tmean ) in AN woman. In the subjects with AN, Tmean of the abdomen, lower back and thighs were significantly higher than in the reference group, while Tmean of the hands were significantly lower. Among other things, analysis showed a significant negative correlation between Tmean of the abdomen, lower back and thighs, and the mass of subcutaneous and visceral fat. The lower Tmean of the hand was directly proportional to the reduced anthropomorphic parameters. The direct evaluation of body surface temperature distribution could provide clinical implications for the treatment of anorexic patients, including the potential use of thermotherapy in stimulating the circulatory system, especially in hypothermia, bradycardia and hypotension. Copyright © 2015 John Wiley & Sons, Ltd and Eating Disorders Association.

  18. Simulation of Temperature Distribution in TIG Spot Welds of(Al-Mg) Alloy Using Finite Element Method

    OpenAIRE

    Ahlam Abid Ameer Alkhafajy; Abdul Hussain G. Al-Maliky; Muna K Abbas

    2008-01-01

    This research concern to analyse and simulate the temperature distribution in the spot welding joints using tungsten arc welding shielded with inert gas (TIG Spot) for the aluminum-magnesium alloy type (5052-O). The effect of and the quantity of the heat input that enter the weld zone has been investigated welding current, welding time and arc length on temperature distribution. The finite element method (by utilizing programme ANSYS 5.4) is presented the temperature distribution in a circula...

  19. Absorbed Energy Distribution of Ductile Ni-resist Alloyed Iron Under Instrumented Impact Load at Low Temperatures

    National Research Council Canada - National Science Library

    Ke, Jiang; Yingdong, Qu; Junhua, You; Rongde, Li

    2016-01-01

    In this study, in order to investigate the absorbed energy distribution on the low-temperature impact fracture process of ductile Ni-resist alloyed iron, the low-temperature impact tests of ductile Ni...

  20. Heat flow and subsurface temperature distributions in central and western New York. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, D.S.; Fromm, K.

    1984-01-01

    Initiation of a geothermal energy program in western and central New York requires knowledge of subsurface temperatures for targeting areas of potential resources. The temperature distribution in possible geothermal reservoirs, calculated from heat flow measurements and modeling techniques, shows that a large area of New York can be considered for exploitation of geothermal resources. Though the temperatures at currently accessible depths show the availability of only a low-temperature (less than 100/sup 0/C), direct-use resource, this can be considered as an alternative for the future energy needs of New York State. From analysis of bottom-hole-temperature data and direct heat flow measurements, estimates of temperatures in the Cambrian Sandstones provide the basis of the economic evaluation of the reservoir. This reservoir contains the extractable fluids needed for targeting a potential geothermal well site in the low-temperature geothermal target zone. In the northern section of the Appalachian basin, reservoir temperatures in the Cambrian are below 50/sup 0/C but may be over 80/sup 0/C in the deeper parts of the basin in southern New York State. Using a minimum of 50/sup 0/C as a useful reservoir temperature, temperatures in excess of this value are encountered in the Theresa Formation at depths in excess of 1300 meters. Considering a maximum depth for economical drilling to be 2500 meters with present technology, the 2500 meters to the Theresa (sea level datum) forms the lower limit of the geothermal resource. Temperatures in the range of 70/sup 0/C to 80/sup 0/C are predicted for the southern portion of New York State.

  1. Effect of Temperature on the Size Distribution, Shell Properties, and Stability of Definity®.

    Science.gov (United States)

    Shekhar, Himanshu; Smith, Nathaniel J; Raymond, Jason L; Holland, Christy K

    2018-02-01

    Physical characterization of an ultrasound contrast agent (UCA) aids in its safe and effective use in diagnostic and therapeutic applications. The goal of this study was to investigate the impact of temperature on the size distribution, shell properties, and stability of Definity®, a U.S. Food and Drug Administration-approved UCA used for left ventricular opacification. A Coulter counter was modified to enable particle size measurements at physiologic temperatures. The broadband acoustic attenuation spectrum and size distribution of Definity® were measured at room temperature (25 °C) and physiologic temperature (37 °C) and were used to estimate the viscoelastic shell properties of the agent at both temperatures. Attenuation and size distribution was measured over time to assess the effect of temperature on the temporal stability of Definity®. The attenuation coefficient of Definity® at 37 °C was as much as 5 dB higher than the attenuation coefficient measured at 25 °C. However, the size distributions of Definity® at 25 °C and 37 °C were similar. The estimated shell stiffness and viscosity decreased from 1.76 ± 0.18 N/m and 0.21 × 10-6 ± 0.07 × 10-6 kg/s at 25 °C to 1.01 ± 0.07 N/m and 0.04 × 10-6 ± 0.04 × 10-6 kg/s at 37 °C, respectively. Size-dependent differences in dissolution rates were observed within the UCA population at both 25 °C and 37 °C. Additionally, cooling the diluted UCA suspension from 37 °C to 25 °C accelerated the dissolution rate. These results indicate that although temperature affects the shell properties of Definity® and can influence the stability of Definity®, the size distribution of this agent is not affected by a temperature increase from 25 °C to 37 °C. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  2. Dynamic temperature monitoring and control with fully distributed fiber Bragg grating sensor

    Science.gov (United States)

    Ding, Yuetong; Chen, Na; Chen, Zhenyi; Pang, Fufei; Zeng, Xianglong; Wang, Tingyun

    2010-11-01

    In this paper, fiber Bragg grating (FBG) is used as a fully distributed sensor to monitor tissue dynamic temperature changes during laser-induced interstitial thermotherapy (LITT). This work is mainly realized by the correlative single particle (CSP) algorithm, which is a rapid algorithm for spectrum reconstruction. Experimental LITT treatment was set up by using 532nm laser applicator on a piece of fresh liver tissue. In the experiments, the dynamic temperature profile was successfully demodulated with a refreshing speed of 11 seconds. With the aid of dynamic feedback, the thermotherapy boundary temperature was well controlled around 35°C during the treatment by adjusting the laser output power in real-time. Therefore, with this method, it is promising to precisely control the tissue temperature in vivo and improve the safety of the LITT remarkably.

  3. Fiber optic distributed temperature sensing for the determination of the nocturnal atmospheric boundary layer height

    Directory of Open Access Journals (Sweden)

    C. A. Keller

    2011-02-01

    Full Text Available A new method for measuring air temperature profiles in the atmospheric boundary layer at high spatial and temporal resolution is presented. The measurements are based on Raman scattering distributed temperature sensing (DTS with a fiber optic cable attached to a tethered balloon. These data were used to estimate the height of the stable nocturnal boundary layer. The experiment was successfully deployed during a two-day campaign in September 2009, providing evidence that DTS is well suited for this atmospheric application. Observed stable temperature profiles exhibit an exponential shape confirming similarity concepts of the temperature inversion close to the surface. The atmospheric mixing height (MH was estimated to vary between 5 m and 50 m as a result of the nocturnal boundary layer evolution. This value is in good agreement with the MH derived from concurrent Radon-222 (222Rn measurements and in previous studies.

  4. Effect of supply air temperature on air distribution in a room with radiant heating and mechanical ventilation

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Zhao, Jianing; Fang, Lei

    2017-01-01

    The present study focused on the effect of supply air temperature on air distribution in a room with floor heating (FH) or ceiling heating (CH) and mixing ventilation (MV) or displacement ventilation (DV). The vertical distribution of air temperature and velocity in the occupied zone and the hori......The present study focused on the effect of supply air temperature on air distribution in a room with floor heating (FH) or ceiling heating (CH) and mixing ventilation (MV) or displacement ventilation (DV). The vertical distribution of air temperature and velocity in the occupied zone...... are relevant to the design and control of the hybrid systems with radiant heating systems and mechanical ventilation systems....

  5. A climatic chamber experiment to test the short term effect of increasing temperature on branched GDGT distribution in Sphagnum peat

    OpenAIRE

    Huguet, Arnaud; Francez, Andre-Jean; Jusselme, My Dung; Fosse, Céline; Derenne, Sylvie

    2014-01-01

    International audience; Branched glycerol dialkyl glycerol tetraethers (br GDGTs) are membrane lipids produced by unknown Bacteria and are being increasingly used as temperature proxies. Nevertheless, the direct effect of temperature on br GDGT distributions has been rarely evaluated. In this study, the impact of increasing temperature on br GDGT distributions and the speed of adaptation of br GDGT source microorganisms to temperature change were investigated by analysing br GDGTs in Sphagnum...

  6. A comparison of conventional and radio frequency tempering of beef meats: Effects on product temperature distribution.

    Science.gov (United States)

    Farag, K W; Lyng, J G; Morgan, D J; Cronin, D A

    2008-10-01

    This study aimed to develop radio frequency (RF) pilot-scale protocols for tempering beef meat blends (4kg blocks) to achieve average temperatures between -2 and -5°C. Post-tempering temperature distribution in these blocks was compared to products tempered by conventional methods. The optimum RF power-time combination for tempering lean and 50:50 lean:fat mixtures to the target range was 500W for 11min which produced respective means of -3.6°C (s.d. 1.1) and -3.4°C (s.d. 1.5). In contrast, 400W for 11min was optimum for fat (mean -4.9°C, s.d. 2.1). This study shows the principal advantages of RF over conventional tempering as an approximate 30 fold tempering time reduction and a greater uniformity of end point temperature distribution under the conditions employed. Furthermore, power consumption was reduced approximately ninefold with RF compared to conventional tempering. More uniform temperature distribution was achieved in samples that were comminuted to a greater extent.

  7. Fiber Optic Distributed Sensors for High-resolution Temperature Field Mapping.

    Science.gov (United States)

    Lomperski, Stephen; Gerardi, Craig; Lisowski, Darius

    2016-11-07

    The reliability of computational fluid dynamics (CFD) codes is checked by comparing simulations with experimental data. A typical data set consists chiefly of velocity and temperature readings, both ideally having high spatial and temporal resolution to facilitate rigorous code validation. While high resolution velocity data is readily obtained through optical measurement techniques such as particle image velocimetry, it has proven difficult to obtain temperature data with similar resolution. Traditional sensors such as thermocouples cannot fill this role, but the recent development of distributed sensing based on Rayleigh scattering and swept-wave interferometry offers resolution suitable for CFD code validation work. Thousands of temperature measurements can be generated along a single thin optical fiber at hundreds of Hertz. Sensors function over large temperature ranges and within opaque fluids where optical techniques are unsuitable. But this type of sensor is sensitive to strain and humidity as well as temperature and so accuracy is affected by handling, vibration, and shifts in relative humidity. Such behavior is quite unlike traditional sensors and so unconventional installation and operating procedures are necessary to ensure accurate measurements. This paper demonstrates implementation of a Rayleigh scattering-type distributed temperature sensor in a thermal mixing experiment involving two air jets at 25 and 45 °C. We present criteria to guide selection of optical fiber for the sensor and describe installation setup for a jet mixing experiment. We illustrate sensor baselining, which links readings to an absolute temperature standard, and discuss practical issues such as errors due to flow-induced vibration. This material can aid those interested in temperature measurements having high data density and bandwidth for fluid dynamics experiments and similar applications. We highlight pitfalls specific to these sensors for consideration in experiment design

  8. Nanosensors as Reservoir Engineering Tools to Map Insitu Temperature Distributions in Geothermal Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Morgan Ames

    2011-06-15

    The feasibility of using nanosensors to measure temperature distribution and predict thermal breakthrough in geothermal reservoirs is addressed in this report. Four candidate sensors were identified: melting tin-bismuth alloy nanoparticles, silica nanoparticles with covalently-attached dye, hollow silica nanoparticles with encapsulated dye and impermeable melting shells, and dye-polymer composite time-temperature indicators. Four main challenges associated with the successful implementation of temperature nanosensors were identified: nanoparticle mobility in porous and fractured media, the collection and detection of nanoparticles at the production well, engineering temperature sensing mechanisms that are both detectable and irreversible, and inferring the spatial geolocation of temperature measurements in order to map temperature distribution. Initial experiments were carried out to investigate each of these challenges. It was demonstrated in a slim-tube injection experiment that it is possible to transport silica nanoparticles over large distances through porous media. The feasibility of magnetic collection of nanoparticles from produced fluid was evaluated experimentally, and it was estimated that 3% of the injected nanoparticles were recovered in a prototype magnetic collection device. An analysis technique was tailored to nanosensors with a dye-release mechanism to estimate temperature measurement geolocation by analyzing the return curve of the released dye. This technique was used in a hypothetical example problem, and good estimates of geolocation were achieved. Tin-bismuth alloy nanoparticles were synthesized using a sonochemical method, and a bench heating experiment was performed using these nanoparticles. Particle growth due to melting was observed, indicating that tin-bismuth nanoparticles have potential as temperature nanosensors

  9. Mechanical Properties Distribution within Polypropylene Injection Molded Samples: Effect of Mold Temperature under Uneven Thermal Conditions

    Directory of Open Access Journals (Sweden)

    Sara Liparoti

    2017-11-01

    Full Text Available The quality of the polymer parts produced by injection molding is strongly affected by the processing conditions. Uncontrolled deviations from the proper process parameters could significantly affect both internal structure and final material properties. In this work, to mimic an uneven temperature field, a strong asymmetric heating is applied during the production of injection-molded polypropylene samples. The morphology of the samples is characterized by optical and atomic force microscopy (AFM, whereas the distribution of mechanical modulus at different scales is obtained by Indentation and HarmoniX AFM tests. Results clearly show that the temperature differences between the two mold surfaces significantly affect the morphology distributions of the molded parts. This is due to both the uneven temperature field evolutions and to the asymmetric flow field. The final mechanical property distributions are determined by competition between the local molecular stretch and the local structuring achieved during solidification. The cooling rate changes affect internal structures in terms of relaxation/reorganization levels and give rise to an asymmetric distribution of mechanical properties.

  10. Use of thermography to monitor sole haemorrhages and temperature distribution over the claws of dairy cattle.

    Science.gov (United States)

    Wilhelm, K; Wilhelm, J; Fürll, M

    2015-02-07

    Subclinical laminitis, an early pathological event in the development of many claw diseases, is an important factor in the welfare and economics of high-producing dairy cows. However, the aetiology and pathogenesis of this complex claw disease are not well understood. The present study investigated to what extent thermographic examination of claws is able to give information about corium inflammation, and whether the technique may be used as a diagnostic tool for early detection of subclinical laminitis. Moreover, the temperature distribution over the individual main claws was investigated to obtain further knowledge about pressure distribution on the claws. For this purpose the claws of 123 cows were evaluated in the first week after calving as well as after the second month of lactation for presence of sole haemorrhages (a sign of subclinical laminitis). Furthermore, the ground contact area was analysed by thermography. Sole haemorrhages were significantly increased by the second month of lactation. Thermography showed clear differences between the claws of the front limbs and hindlimbs, as well as between lateral and medial claws. Although the distribution of sole haemorrhages was consistent with the pattern of the temperature distribution over the main claws, no clear correlation was found between the claw temperature after calving and the visible laminitis-like changes (sole haemorrhages) eight weeks later. British Veterinary Association.

  11. Spatially Resolved Temperature and Water Vapor Concentration Distributions in Supersonic Combustion Facilities by TDLAT

    Science.gov (United States)

    Busa, K. M.; McDaniel J. C.; Diskin, G. S.; DePiro, M. J.; Capriotti, D. P.; Gaffney, R. L.

    2012-01-01

    Detailed knowledge of the internal structure of high-enthalpy flows can provide valuable insight to the performance of scramjet combustors. Tunable Diode Laser Absorption Spectroscopy (TDLAS) is often employed to measure temperature and species concentration. However, TDLAS is a path-integrated line-of-sight (LOS) measurement, and thus does not produce spatially resolved distributions. Tunable Diode Laser Absorption Tomography (TDLAT) is a non-intrusive measurement technique for determining two-dimensional spatially resolved distributions of temperature and species concentration in high enthalpy flows. TDLAT combines TDLAS with tomographic image reconstruction. More than 2500 separate line-of-sight TDLAS measurements are analyzed in order to produce highly resolved temperature and species concentration distributions. Measurements have been collected at the University of Virginia's Supersonic Combustion Facility (UVaSCF) as well as at the NASA Langley Direct-Connect Supersonic Combustion Test Facility (DCSCTF). Due to the UVaSCF s unique electrical heating and ability for vitiate addition, measurements collected at the UVaSCF are presented as a calibration of the technique. Measurements collected at the DCSCTF required significant modifications to system hardware and software designs due to its larger measurement area and shorter test duration. Tomographic temperature and water vapor concentration distributions are presented from experimentation on the UVaSCF operating at a high temperature non-reacting case for water vitiation level of 12%. Initial LOS measurements from the NASA Langley DCSCTF operating at an equivalence ratio of 0.5 are also presented. Results show the capability of TDLAT to adapt to several experimental setups and test parameters.

  12. Temperature distributions in trapezoidal built in storage solar water heaters with/without phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Tarhan, Sefa; Yardim, M. Hakan [Department of Farm Machinery, Faculty of Agriculture, Gaziosmanpasa University, Tasliciftlik Yerleskesi, 60240 Tokat (Turkey); Sari, Ahmet [Department of Chemistry, Faculty of Arts and Sciences, Gaziosmanpasa University, Tasliciftlik Yerleskesi, 60240 Tokat (Turkey)

    2006-09-15

    Built in storage solar water heaters (BSSWHs) have been recognized for their more compact constructions and faster solar gain than conventional solar water heaters, however, their water temperatures quickly go down during the cooling period. A trapezoidal BSSWH without PCM storage unit was used as the control heater (reference) to investigate the effect of two differently configured PCM storage units on the temperature distributions in water tanks. In the first design, myristic acid was filled into the PCM storage tank, which also served as an absorbing plate. In the second design, lauric acid was filled into the PCM storage tank, which also served as a baffle plate. The water temperature changes were followed by five thermocouples placed evenly and longitudinally into each of the three BSSWHs. The effects of the PCMs on the water temperature distributions depended on the configuration of the PCM storage unit and the longitudinal position in the water tanks. The use of lauric acid lowered the values of the peak temperatures by 15% compared to the control heater at the upper portion of the water tanks because of the low melting temperature of lauric acid, but it did not have any consistent effect on the retention of the water temperatures during the cooling period. The ability of the myristic acid storage unit to retain the water temperatures got more remarkable, especially at the middle portion of the water tank. The myristic acid storage increased the dip temperatures by approximately 8.8% compared to the control heater. In conclusion, lauric acid storage can be used to stabilize the water temperature during the day time, while the myristic acid storage unit can be used as a thermal barrier against heat loss during the night time because of its relatively high melting temperature and low heat conduction coefficient in its solid phase. The experimental results have also indicated that the thermal characteristics of the PCM and the configuration of the PCM storage

  13. Culture temperature modulates monoclonal antibody charge variation distribution in Chinese hamster ovary cell cultures.

    Science.gov (United States)

    Zhang, Xintao; Sun, Ya-Ting; Tang, Hongping; Fan, Li; Hu, Dongdong; Liu, Jintao; Liu, Xuping; Tan, Wen-Song

    2015-11-01

    To investigate the effect of lowering culture temperature on monoclonal antibody charge variation distribution in Chinese hamster ovary cell cultures. In both batch and fed-batch cultures, lowering the culture temperature decreased the antibody acidic variant levels. The acidic variant levels (defined as variants eluting earlier than the main peak of an antibody during HPLC) at 32 °C were about 10 % lower than those at 37 °C at the end of both batch and fed-batch cultures. Additionally, lowering the culture temperature increased the lysine variant level, which further increased basic variant level. The lysine variant levels at 32 °C were about 8 % (batch culture) and 3 % (fed-batch culture) higher than those at 37 °C at the end of cultures. Real-time PCR results suggests that the decrease in carboxypeptidase B transcription level might be partially responsible for the increased lysine variant level at sub-physiological temperatures. Culture temperature exhibits noticeable impact on antibody charge variation distribution, especially the acidic variants and lysine variants.

  14. Distribution of Heat Stabilizers in Plasticized PVC-Based Biomedical Devices: Temperature and Time Effects

    Directory of Open Access Journals (Sweden)

    Lidia Maria Bodecchi

    2011-01-01

    Full Text Available Thermoplastic polymers can be viewed as a dynamic framework in which additives allocation is strongly dependent on the system' chemistry. Considering the complexity of the distribution phenomena that may occur in plastics obtained by blending polymeric resins with different additives, this work constitutes an attempt to the description of the behavior of PVC heat stabilizers (calcium and zinc carboxylates, as regard temperature and time. Thanks to the Fourier Transform Infrared Spectroscopy, it is possible to observe a first decreasing trend of the additives related IR-bands as a function of the increasing temperature and the higher the temperature the faster the decrease of the heat stabilizers intensities bands is, with respect to time. Additives distribution in not sterilized, sterilized, aged not sterilized and aged sterilized materials have been investigated to determine their behavior with respect to temperature, from 30 to 120°C, and time. A simulated supplementary aging process equivalent to 9 months aging was carried out on aged not sterilized and aged sterilized materials to gain more data on the transport/reaction phenomena these additives in the plastic material. Experimental evidences allow hypothesizing that reaction and redistribution phenomena probably concur to determine the additives allocation in PVC as a function of temperature and time.

  15. Numerical simulation of high intensity focused ultrasound temperature distribution for transcranial brain therapy

    Science.gov (United States)

    Zhang, Qian; Wang, Yizhe; Zhou, Wenzheng; Zhang, Ji; Jian, Xiqi

    2017-03-01

    To provide a reference for the HIFU clinical therapeutic planning, the temperature distribution and lesion volume are analyzed by the numerical simulation. The adopted numerical simulation is based on a transcranial ultrasound therapy model, including an 8 annular-element curved phased array transducer. The acoustic pressure and temperature elevation are calculated by using the approximation of Westervelt Formula and the Pennes Heat Transfer Equation. In addition, the Time Reversal theory and eliminating hot spot technique are combined to optimize the temperature distribution. With different input powers and exposure times, the lesion volume is evaluated based on temperature threshold theory. The lesion region could be restored at the expected location by the time reversal theory. Although the lesion volume reduces after eliminating the peak temperature in the skull and more input power and exposure time is required, the injury of normal tissue around skull could be reduced during the HIFU therapy. The prediction of thermal deposition in the skull and the lesion region could provide a reference for clinical therapeutic dose.

  16. Late Quaternary glacier sensitivity to temperature and precipitation distribution in the Southern Alps of New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Ann V. Rowan; Simon H. Brocklehurst; David M. Schultz; Mitchell A. Plummer; Leif S. Anderson; Neil F. Glasser

    2014-05-01

    Glaciers respond to climate variations and leave geomorphic evidence that represents an important terrestrial paleoclimate record. However, the accuracy of paleoclimate reconstructions from glacial geology is limited by the challenge of representing mountain meteorology in numerical models. Precipitation is usually treated in a simple manner and yet represents difficult-to-characterize variables such as amount, distribution, and phase. Furthermore, precipitation distributions during a glacial probably differed from present-day interglacial patterns. We applied two models to investigate glacier sensitivity to temperature and precipitation in the eastern Southern Alps of New Zealand. A 2-D model was used to quantify variations in the length of the reconstructed glaciers resulting from plausible precipitation distributions compared to variations in length resulting from change in mean annual air temperature and precipitation amount. A 1-D model was used to quantify variations in length resulting from interannual climate variability. Assuming that present-day interglacial values represent precipitation distributions during the last glacial, a range of plausible present-day precipitation distributions resulted in uncertainty in the Last Glacial Maximum length of the Pukaki Glacier of 17.1?km (24%) and the Rakaia Glacier of 9.3?km (25%), corresponding to a 0.5°C difference in temperature. Smaller changes in glacier length resulted from a 50% decrease in precipitation amount from present-day values (-14% and -18%) and from a 50% increase in precipitation amount (5% and 9%). Our results demonstrate that precipitation distribution can produce considerable variation in simulated glacier extents and that reconstructions of paleoglaciers should include this uncertainty.

  17. Procedure for improving temperature distribution via rods and columns -- B Pile

    Energy Technology Data Exchange (ETDEWEB)

    Menegus, R.L.

    1945-10-05

    Since the development of relationships between rod changes and temperature shifts, the temperature distribution of the B Pile has been improved as much as possible by shifting the rods. Certain unbalances have been found which can only be removed by improvement of the poison pattern. At present the maximum imperfection in the B Pile is 5% diagonal quadrupole unbalance. An estimate of the poison pattern needed to correct these imperfections is given herein. This poison pattern has been calculated as an example of application of the principles and is not intended as a recommendation.

  18. The Effect of Baffles on the Temperature Distribution and Heat-transfer Coefficients of Finned Cylinders

    Science.gov (United States)

    Schey, Oscar W; Rollin, Vern G

    1936-01-01

    This report presents the results of an investigation to determine the effect of baffles on the temperature distribution and the heat-transfer coefficient of finned cylinders. The tests were conducted in a 30-inch wind tunnel on electrically heated cylinders with fins of 0.25 and 0.31 inch pitch. The results of these tests showed that the use of integral baffles gave a reduction of 31.9 percent in the rear wall temperatures and an increase of 54.2 percent in the heat transfer coefficient as compared with a cylinder without baffles.

  19. Temperature distribution in Risø Flexhouse Room 3 with different heating control principles

    DEFF Research Database (Denmark)

    Simone, Angela; Rode, Carsten

    2009-01-01

    in winter and spring 2009 to study the distribution of local temperatures in the room – particularly with the purpose to compare with the temperature measured and logged by the heating control sensor which was already installed in the room. The measured data shall be used together with mathematical models......This report presents the measurements of local thermal conditions in one room (“Room 3”) of the so-called “Flexouse” located at Risø DTU. The house is part of Risø DTU’s SYSLAB facility used to study the interaction of different facilities that supply and use energy. The facility has been used...

  20. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System.

    Science.gov (United States)

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W; Dong, Fengzhong

    2016-06-06

    We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges.

  1. Distributed temperature sensing (DTS) to characterize the performance of producing oil wells

    Science.gov (United States)

    Williams, Glynn R.; Brown, George; Hawthorne, William; Hartog, Arthur H.; Waite, Peter C.

    2000-12-01

    This paper describes how distributed temperature sensing (DTS) based on Raman Scattering is being used as an in-situ logging technique in oil and gas wells. Traditional methods of gathering production data to characterize oil and gas well performance have relied on the introduction of electric logging tools into the well. This can be an expensive process in highly deviated or horizontal wells and usually results in the well being shut-in with the loss or deferment of hydrocarbon production. More recently permanently placed pressure sensors based on CMOS technology have been used, but these systems do not easily deliver distributed measurements and reliability has been found to be poor.

  2. The three-dimensional distributions of tangential velocity and total- temperature in vortex tubes

    DEFF Research Database (Denmark)

    Linderstrøm-Lang, C.U.

    1971-01-01

    physical requirements and which at the same time lead to realistic tangential velocity gradients. The total-temperature distribution in both the axial and radial directions is calculated from such secondary flow functions and corresponding tangential velocity results on the basis of an approximate......The axial and radial gradients of the tangential velocity distribution are calculated from prescribed secondary flow functions on the basis of a zero-order approximation to the momentum equations developed by Lewellen. It is shown that secondary flow functions may be devised which meet pertinent...

  3. Local Temperature Distribution on the Spacecraft Surface under Uneven Solar Radiation

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2015-01-01

    Full Text Available Solar radiation is the main factor to determine the thermal state of a spacecraft (SC when it moves to the sunlit portion of the Earth orbit and moves away from the Earth. The extent of the solar radiation impact on the SC temperature state depends, primarily, on the interaction of this radiation with the surface portions of the SA body and the design elements that are placed outside the main body. To ensure the required SC temperature surfaces are used various coating and screen-vacuum thermal insulation, as well as multilayer optical solar reflectors with a thickness being in the range from tenths of a millimeter to 15 − 20 mm.When designing the SC, to predict their temperature state at various stages of operation are used mathematical models of various levels of complexity, including models related to the solution of inverse problems for determining the conditions of the thermal effects on the SC and thermal properties of structural thermal protection materials. In most famous works, which analyse the SC temperature and condition, a mathematical model is based on the heat balance equation composed for the SC discrete circuits and containing discrete temperature values of individual functional units, structural elements and parts of the surface.This work is aimed at defining the continuous local temperature distribution over the surface of a thin-walled shell of the SC with uneven solar radiation, including cases of moving boundaries between areas with different intensity of exposure. Application of an equilibrium temperature concept of the Sun-irradiated SC surface area allowed formulating and solving the nonlinear problems on calculation of the temperature state of the shell, which is perfectly thermally isolated on the inside surface and is non-evenly irradiated on the outside surface. The paper presents the calculated dependences for finding the temperature distribution of the shell in the vicinity of jump values of the equilibrium

  4. High-Resolution Dynamical Downscaling Ensemble Projections of Future Extreme Temperature Distributions for the United States

    Science.gov (United States)

    Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.; Kotamarthi, V. Rao

    2017-12-01

    The aim of this study is to examine projections of extreme temperatures over the continental United States (CONUS) for the 21st century using an ensemble of high spatial resolution dynamically downscaled model simulations with different boundary conditions. The downscaling uses the Weather Research and Forecast model at a spatial resolution of 12 km along with outputs from three different Coupled Model Intercomparison Project Phase 5 global climate models that provide boundary conditions under two different future greenhouse gas (GHG) concentration trajectories. The results from two decadal-length time slices (2045-2054 and 2085-2094) are compared with a historical decade (1995-2004). Probability density functions of daily maximum/minimum temperatures are analyzed over seven climatologically cohesive regions of the CONUS. The impacts of different boundary conditions as well as future GHG concentrations on extreme events such as heat waves and days with temperature higher than 95°F are also investigated. The results show that the intensity of extreme warm temperature in future summer is significantly increased, while the frequency of extreme cold temperature in future winter decreases. The distribution of summer daily maximum temperature experiences a significant warm-side shift and increased variability, while the distribution of winter daily minimum temperature is projected to have a less significant warm-side shift with decreased variability. Using "business-as-usual" scenario, 5-day heat waves are projected to occur at least 5-10 times per year in most CONUS and ≥95°F days will increase by 1-2 months by the end of the century.

  5. A study of temperature's spatial distribution in Neuquen River valley through satellite imaging

    Directory of Open Access Journals (Sweden)

    Marisa Gloria Cogliati

    2010-01-01

    Full Text Available This paper looks into the spatial distribution of brightness and surface temperature through the use of LAND SAT7 ETM+ and NO AA-AVHRR satellite imagery in the cultivated valley of the Neuquén river. Studying the spatial distribution of temperatures in an area with a somewhat complex terrain requires the use of a great density of meteorological measurements. It is often impossible to obtain the right density of the argometeorological network due to the high installation and maintenance costs. Remote sensors provide a large flow of information in various resolutions, at considerably lower costs. Determining the valley's warm and cold zones would allow for more efficient irrigation and frost-protection methods, and it would provide tools to improve the area's productive planning.

  6. Spatial temperature distribution in human hairy and glabrous skin after infrared CO2 laser radiation

    DEFF Research Database (Denmark)

    Frahm, Ken Steffen; Andersen, Ole K.; Arendt-Nielsen, Lars

    2010-01-01

    Background: CO(2) lasers have been used for several decades as an experimental non-touching pain stimulator. The laser energy is absorbed by the water content in the most superficial layers of the skin. The deeper located nociceptors are activated by passive conduction of heat from superficial...... to deeper skin layers. Methods: In the current study, a 2D axial finite element model was developed and validated to describe the spatial temperature distribution in the skin after infrared CO(2) laser stimulation. The geometry of the model was based on high resolution ultrasound scans. The simulations were...... dimensional heat distribution models, the current two dimensional model provides new possibilities for detailed studies regarding CO(2) laser stimulation intensity, temperature levels and nociceptor activation....

  7. Winter temperatures decrease swimming performance and limit distributions of tropical damselfishes

    OpenAIRE

    Jacob L Johansen; Steffensen, John Fleng; Jones, Geoffrey P.

    2015-01-01

    Coral reefs within 10? of the equator generally experience ?3?C seasonal variation in water temperature. Ectotherms that have evolved in these conditions are therefore expected to exhibit narrow thermal optima and be very sensitive to the greater thermal variability (>6?C) experienced at higher latitudes (?10?N/S). The impact of increased thermal variability on the fitness and distribution of thermally sensitive reef ectotherms is currently unknown. Here, we examine site-attached planktivorou...

  8. Identifying PV module mismatch faults by a thermography-based temperature distribution analysis

    OpenAIRE

    Hu, Yihua; Cao, Wenping; Ma, Jien; Finney, Stephen J.; Li, David

    2014-01-01

    Photovoltaic (PV) solar power generation is proven to be effective and sustainable but is currently hampered by relatively high costs and low conversion efficiency. This paper addresses both issues by presenting a low-cost and efficient temperature distribution analysis for identifying PV module mismatch faults by thermography. Mismatch faults reduce the power output and cause potential damage to PV cells. This paper first defines three fault categories in terms of fault levels, which lead to...

  9. Mechanisms and distribution of ion channels in retinal ganglion cells: using temperature as an independent variable.

    Science.gov (United States)

    Fohlmeister, Jürgen F; Cohen, Ethan D; Newman, Eric A

    2010-03-01

    Trains of action potentials of rat and cat retinal ganglion cells (RGCs) were recorded intracellularly across a temperature range of 7-37 degrees C. Phase plots of the experimental impulse trains were precision fit using multicompartment simulations of anatomically reconstructed rat and cat RGCs. Action potential excitation was simulated with a "Five-channel model" [Na, K(delayed rectifier), Ca, K(A), and K(Ca-activated) channels] and the nonspace-clamped condition of the whole cell recording was exploited to determine the channels' distribution on the dendrites, soma, and proximal axon. At each temperature, optimal phase-plot fits for RGCs occurred with the same unique channel distribution. The "waveform" of the electrotonic current was found to be temperature dependent, which reflected the shape changes in the experimental action potentials and confirmed the channel distributions. The distributions are cell-type specific and adequate for soma and dendritic excitation with a safety margin. The highest Na-channel density was found on an axonal segment some 50-130 microm distal to the soma, as determined from the temperature-dependent "initial segment-somadendritic (IS-SD) break." The voltage dependence of the gating rate constants remains invariant between 7 and 23 degrees C and between 30 and 37 degrees C, but undergoes a transition between 23 and 30 degrees C. Both gating-kinetic and ion-permeability Q10s remain virtually constant between 23 and 37 degrees C (kinetic Q10s = 1.9-1.95; permeability Q10s = 1.49-1.64). The Q10s systematically increase for T channels were consistently "sleepy" (non-Arrhenius) for T <8 degrees C, with a loss of spiking for T <7 degrees C.

  10. Physiological constraints on the global distribution of Trichodesmium – effect of temperature on diazotrophy

    Directory of Open Access Journals (Sweden)

    E. Breitbarth

    2007-01-01

    Full Text Available The cyanobacterium Trichodesmium is an important link in the global nitrogen cycle due to its significant input of atmospheric nitrogen to the ocean. Attempts to incorporate Trichodesmium in ocean biogeochemical circulation models have, so far, relied on the observed correlation between temperature and Trichodesmium abundance. This correlation may result in part from a direct effect of temperature on Trichodesmium growth rates through the control of cellular biochemical processes, or indirectly through temperature influence on mixed layer depth, light and nutrient regimes. Here we present results indicating that the observed correlation of Trichodesmium with temperature in the field reflects primarily the direct physiological effects of temperature on diazotrophic growth of Trichodesmium. Trichodesmium IMS-101 (an isolate of Trichodesmium could acclimate and grow at temperatures ranging from 20 to 34°C. Maximum growth rates (μmax=0.25 day–1 and maximum nitrogen fixation rates (0.13 mmol N mol POC−1 h–1 were measured within 24 to 30°C. Combining this empirical relationship with global warming scenarios derived from state-of-the-art climate models sets a physiological constraint on the future distribution of Trichodesmium that could significantly affect the future nitrogen input into oligotrophic waters by this diazotroph.

  11. Effect of surface condition to temperature distribution in living tissue during cryopreservation

    Science.gov (United States)

    Nozawa, M.; Hatakeyama, S.; Sugimoto, Y.; Sasaki, H.

    2017-12-01

    The temperature distribution of the simulated living tissue is measured for the improvement of the cooling rate during cryopreservation when the surface condition of the test sample is changed by covering the stainless steel mesh. Agar is used as a simulated living tissue and is filled inside the test sample. The variation of the transient temperature with mesh by the directly immersion in the liquid nitrogen is measured. The temperatures on the sample surface and the inside of the sample are measured by use of type T thermocouples. It is confirmed that on the sample surface there is the slightly temperature increase than that in the saturated liquid nitrogen at the atmospheric pressure. It is found by the comparison of the degree of superheat with or without the mesh that the surface temperature of the test sample with the mesh is lower than that without the mesh. On the other hand, the time series variations of the temperature located in the center of the sample does not change with or without the mesh. It is considered that the center of the sample used is too deep from the surface to respond to the boiling state on the sample surface.

  12. Finite element model to study temperature distribution in skin and deep tissues of human limbs.

    Science.gov (United States)

    Agrawal, Mamta; Pardasani, K R

    2016-12-01

    The temperature of body tissues is viewed as an indicator of tissue response in clinical applications since ancient times. The tissue temperature depends on various physical and physiological parameters like blood flow, metabolic heat generation, thermal conductivity of tissues, shape and size of organs etc. In this paper a finite element model has been proposed to study temperature distribution in skin and deep tissues of human limbs. The geometry of human limb is taken as elliptical tapered shape. It is assumed that outer surface of the limb is exposed to the environment. The appropriate boundary conditions have been framed based on physical conditions of the problem. The model has been developed for a three dimensional steady state case. Hexahedral circular sectoral elements are used to discretize the region. The results have been computed to obtain temperature profiles and study the relation of tissue temperature with the parameters like atmospheric temperature, rate of evaporation, thickness of tissues layers and shape of the limb. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Horizontal temperature distribution in a plus-energy house: cooling season measurements

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Olesen, Bjarne W.

    2015-01-01

    The present study is concerned with the air and operative temperatures at different locations in a detached, one-story, single family, plus-energy house. The house was located in Denmark and it has been used as a full-scale experimental facility with heated dummies to simulate occupants living...... of indoor environment in this single space could be challenging. The measurement of horizontal temperature distribution could address these issues and provide a means of improvement, if necessary. The measurements showed that a uniform thermal indoor environment was achieved inside the house. The average...... would follow the temperature changes in the occupied zone closely and, thus, would provide a good indication of the thermal indoor environment to the control system....

  14. Temperature distribution in side- and end-pumped laser crystal rods - Temporal and spatial variations

    Science.gov (United States)

    Farrukh, Usamah O.; Brockman, Philip

    1993-01-01

    Knowledge of the temperature distribution of laser rods end pumped by laser diodes or other laser systems is relevant when thermal stress and crystal damage are expected. The temperature of a multipulsed or continuously pumped laser rod is given as a double-series expression and as a function of time. The mathematical model considers all surface cooling rates, the spatial and temporal variations of the pump beam, and the specific heat and thermal conductivity of the rod material. This eigenfunction expansion representation was employed to predict the spatial and time-dependent quasi-steady-state temperature in Ti:sapphire, Nd:YAG, and Cr:LiSAF laser rods of specific dimensions.

  15. Temperature distribution in side- and end-pumped laser crystal rods: temporal and spatial variations.

    Science.gov (United States)

    Farrukh, U O; Brockman, P

    1993-04-20

    Knowledge of the temperature distribution of laser rods end pumped by laser diodes or other laser systems is relevant when thermal stress and crystal damage are expected. The temperature of a multipulsed or continuously pumped laser rod is given as a double-series expression and as a function of time. The mathematical model considers all surface cooling rates, the spatial and temporal variations of the pump beam, and the specific heat and thermal conductivity of the rod material. This eigenfunction expansion representation was employed to predict the spatial and time-dependent quasi-steady-state temperature in Ti:sapphire, Nd:YAG, and Cr:LiSAF laser rods of specific dimensions.

  16. Temperature effect of irradiated target surface on distribution of nanoparticles formed by implantation

    CERN Document Server

    Stepanov, A L; Popok, V N

    2001-01-01

    The composition layers, containing the metal nanoparticles, synthesized thorough implantation of the Ag sup + ions with the energy of 60 keV and the dose of 3 x 10 sup 1 sup 6 ion/cm sup 2 into the sodium-calcium silicate glass by the ion current of 3 mu A/cm sup 2 and the sublayer temperature of 35 deg C are studied. The obtained implantation results are analyzed in dependence on the temperature effects, developing for the glass samples of various thickness. The data on the silver distribution, the metal nanoparticles formation and growth by depth are obtained from the optical reflection spectra. It is demonstrated that minor changes in the surface temperature of the irradiated glass sublayer lead to noticeable diversities in the regularities of the nanoparticles formation in the sample volume

  17. Industrial Qualification Process for Optical Fibers Distributed Strain and Temperature Sensing in Nuclear Waste Repositories

    Directory of Open Access Journals (Sweden)

    S. Delepine-Lesoille

    2012-01-01

    Full Text Available Temperature and strain monitoring will be implemented in the envisioned French geological repository for high- and intermediate-level long-lived nuclear wastes. Raman and Brillouin scatterings in optical fibers are efficient industrial methods to provide distributed temperature and strain measurements. Gamma radiation and hydrogen release from nuclear wastes can however affect the measurements. An industrial qualification process is successfully proposed and implemented. Induced measurement uncertainties and their physical origins are quantified. The optical fiber composition influence is assessed. Based on radiation-hard fibers and carbon-primary coatings, we showed that the proposed system can provide accurate temperature and strain measurements up to 0.5 MGy and 100% hydrogen concentration in the atmosphere, over 200 m distance range. The selected system was successfully implemented in the Andra underground laboratory, in one-to-one scale mockup of future cells, into concrete liners. We demonstrated the efficiency of simultaneous Raman and Brillouin scattering measurements to provide both strain and temperature distributed measurements. We showed that 1.3 μm working wavelength is in favor of hazardous environment monitoring.

  18. Seasonal variations in groundwater upwelling zones in a Danish lowland stream analyzed using Distributed Temperature Sensing (DTS)

    DEFF Research Database (Denmark)

    Matheswaran, Karthikeyan; Blemmer, Morten; Rosbjerg, Dan

    2014-01-01

    The distribution of groundwater inflows in a stream reach plays a major role in controlling the stream temperature, a vital component shaping the riverine ecosystem. In this study, the Distributed Temperature Sensing (DTS) system was installed in a small Danish lowland stream, Elverdamsåen, to as...

  19. Temperature and precipitation shape the distribution of harmful cyanobacteria in subtropical lotic and lentic ecosystems.

    Science.gov (United States)

    Haakonsson, Signe; Rodríguez-Gallego, Lorena; Somma, Andrea; Bonilla, Sylvia

    2017-12-31

    Cyanobacterial blooms are expected to become more frequent in freshwaters globally due to eutrophication and climate change effects. However, our knowledge about cyanobacterial biogeography in the subtropics, particularly in lotic ecosystems, is still very limited and the relationship of blooms to temperature and precipitation remains unclear. We took advantage of a comprehensive database of field data compiled over several years (1997 to 2015) to compare cyanobacteria biomass and distribution between lentic and lotic subtropical freshwaters (36 ecosystems, 30°-35°S) and to investigate the role of water temperature and precipitation as significant predictors in eutrophic ecosystems. A filamentous Nostocales, Dolichospermum (Anabaena), was the most widely distributed and frequent genus in the region of the study, followed by the colonial Microcystis, supporting observations of a global latitudinal pattern. Similar total cyanobacteria biovolumes (TCB) were found in lentic and lotic ecosystems, but the proportion of Dolichospermum was higher in lotic ecosystems. Using generalized linear models (GLMs), we found that temperature and rainfall explained 27% of the variation in TCB in lotic ecosystems, while temperature explained 19 and 28% of Dolichospermum and Microcystis biovolume, respectively. In lentic ecosystems, accumulated rainfall explained 34% of the variation of Microcystis biovolume while temperature explained 64%. Our results imply that the increase in extreme meteorological events and temperature predicted by climate models will promote increasingly severe cyanobacterial blooms in eutrophic subtropical freshwaters. Our analysis provides new information about the occurrence of bloom-forming cyanobacteria for southeastern South America and thus fills an important knowledge gap for subtropical freshwaters. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Spatial distribution of air temperature in Toruń (Central Poland) and its causes

    Science.gov (United States)

    Przybylak, Rajmund; Uscka-Kowalkowska, Joanna; Araźny, Andrzej; Kejna, Marek; Kunz, Mieczysław; Maszewski, Rafał

    2017-01-01

    In this article, the results of an investigation into the air temperature pattern and development (including the urban heat island (UHI)) in Toruń (central Poland) are presented. For the analysis, daily mean temperature (Ti) as well as daily maximum (Tmax) and minimum (Tmin) temperatures for 2012 gathered for 20 sites, evenly distributed in the area of city, have been taken as source data. Additionally, in order to provide more extensive characteristics of the diversity of the air temperature in the study area, the diurnal temperature range (DTR) and the number of the so-called characteristic days were calculated as well. The impact of weather conditions (cloudiness and wind speed), atmospheric circulation, urban morphological parameters and land cover on the UHI in the study area was investigated. In Toruń, according to the present study, the average UHI intensity in 2012 was equal to 1.0 °C. The rise of cloudiness and wind speed led to a decrease of the magnitude of the UHI. Generally, in most cases, anticyclonic situations favour increased thermal contrast between rural and city areas, particularly in summer. Warm western circulation types significantly reduced temperature differences in the western side of the city and enlarged them in the eastern side of the city. Eastern cold types also have a similar influence on air temperature differences. Positive and statistically significant correlations have been found between the percentage of built-up areas (sealing factor) and air temperature. Conversely, sky view factor (SVF) reveals negative correlations which are statistically significant only for Tmin.

  1. Numerical analysis of temperature distribution due to basement radiogenic heat production, St. Lawrence Lowlands, eastern Canada

    Science.gov (United States)

    Liu, Hejuan; Giroux, Bernard; Harris, Lyal B.; Mansour, John

    2017-04-01

    Although eastern Canada is considered as having a low potential for high-temperature geothermal resources, the possibility for additional localized radioactive heat sources in Mesoproterozoic Grenvillian basement to parts of the Palaeozoic St. Lawrence Lowlands in Quebec, Canada, suggests that this potential should be reassessed. However, such a task remains hard to achieve due to scarcity of heat flow data and ambiguity about the nature of the basement. To get an appraisal, the impact of radiogenic heat production for different Grenville Province crystalline basement units on temperature distribution at depth was simulated using the Underworld Geothermal numerical modelling code. The region south of Trois-Rivières was selected as representative for the St. Lawrence Lowlands. An existing 3D geological model based on well log data, seismic profiles and surface geology was used to build a catalogue of plausible thermal models. Statistical analyses of radiogenic element (U, Th, K) concentrations from neighbouring outcropping Grenville domains indicate that the radiogenic heat production of rocks in the modelled region is in the range of 0.34-3.24 μW/m3, with variations in the range of 0.94-5.83 μW/m3 for the Portneuf-Mauricie (PM) Domain, 0.02-4.13 μW/m3 for the Shawinigan Domain (Morin Terrane), and 0.34-1.96 μW/m3 for the Parc des Laurentides (PDL) Domain. Various scenarios considering basement characteristics similar to the PM domain, Morin Terrane and PDL Domain were modelled. The results show that the temperature difference between the scenarios can be as much as 12 °C at a depth of 5 km. The results also show that the temperature distribution is strongly affected by both the concentration of radiogenic elements and the thermal conductivity of the basement rocks. The thermal conductivity in the basement affects the trend of temperature change between two different geological units, and the spatial extent of thermal anomalies. The validity of the results was

  2. Effects of ventilation-heating control strategies for early weaning pig barns on energy consumption and 3-D temperature distributions

    Energy Technology Data Exchange (ETDEWEB)

    Choiniere, Y. [Les Consultants Yves Choiniere, St-Cesaire, PQ (Canada); Laberge, B. [Thevco Electronique Inc., St-Hubert, PQ (Canada)

    1995-07-01

    A ventilation control chamber was built for a modern livestock barn at Alfred College to measure temperature distribution, humidity, and propane and electricity consumption. Performance of the control systems on ambient temperature distribution and energy consumption was analyzed. Tests were conducted with and without recirculation ducts. Results showed that the use of recirculation ducts reduced the floor to ceiling temperature gradients. Propane consumption was reduced by 20 per cent with the use of the recirculation duct. 3 tabs., 11 figs.

  3. Power-law Temperature Distribution SED Modeling To Reveal Properties of High-z Starburst Galaxies

    Science.gov (United States)

    Su, Ting; Staguhn, J.; Dwek, E.; Kovacs, A.

    2014-01-01

    Sub-millimeter galaxies (SMGs), selected as the most luminous sources in submm/mm surveys in recent decades, are a group of highly dust-obscured massive galaxies at high redshifts energized by starbursts. SMG surveys enable us to study the nature of those sources in detail. Previous samples of SMGs are typically distributed at z ˜ 0.5-3. In order to explore the evolutionary properties of SMGs up to an earlier epoch, we present a sample of 12 sources at average z ˜ 4. Five of our sources are from the GISMO 2mm Deep Field survey-the very first 2mm deep field survey, which favors higher redshift sources with its superior sensitivity and relatively longer wavelength. The other seven are extremely high redshift SMGs (z > 4) including six from Michalowski et al. 2010b and one at z=5.3 from Dwek et al. 2011. Since rest frame far-infrared continuum dust emission is the best tracer of star-formation activities to date, we employ a power-law temperature distribution SED model to analyze the data. This model which fits for dust grains embedded in a radiation field, allows for different dust compositions, size distribution, and emission region geometry. Our fit results represent the data very accurately even in the Wien part of the SED. Our analysis shows that the SED is not optically thin around the SED peak, as is often assumed. In my talk I will present source fitting results of dust mass, dust temperature, index of temperature power-law distribution, and emission region size. Furthermore, I will analyze the evolutionary trends of SMGs properties with redshift and discuss astrophysical implications for those results.

  4. Heat transfer and temperature distribution in a catalyst oven of 250mm diameter

    Energy Technology Data Exchange (ETDEWEB)

    Kling, G.

    1942-01-29

    The catalyst oven tested was a tube, which was surrounded by a steam-heated jacket, had air passing upward through it, and was filled with cylindrical pills of catalysts. Measurement of heat flow, temperature, and pressure drop was taken at various places in the tube and at various flow rates of air. Higher flow rates of air produced a quicker reaching of a steady-state temperature distribution in the catalyst tube, but even then there was strong temperature gradient from the heated walls of the tube down to the middle of the tube. The report gave formulas for calculating the heat-conductivity coefficient for the catalyst from temperatures at various positions, specific heat of the air, amount of air, and dimensions of catalyst space. Also it gave a formula for calculating the Reynolds number from the specific gravity of the air, velocity of the air in an empty tube, viscosity of the air, and the dimensions of the catalyst pills. Among other graphs with the report was a graph plotting the heat-conductivity coefficient against the Reynolds number. The report also contained some discussion about how the functions would change if different gases were used, if temperature conditions were changed, or if the gas were heated before entry into the tube. The report also gave formulas for calculating pressure drops, heat transfer coefficients, Nusselt numbers, and Peclet numbers. 1 figure, 1 table, 8 graphs.

  5. Development and application of a species sensitivity distribution for temperature-induced mortality in the aquatic environment

    NARCIS (Netherlands)

    Vries, de P.; Tamis, J.E.; Murk, A.J.; Smit, M.G.D.

    2008-01-01

    Current European legislation has static water quality objectives for temperature effects, based on the most sensitive species. In the present study a species sensitivity distribution (SSD) for elevated temperatures is developed on the basis of temperature sensitivity data (mortality) of 50 aquatic

  6. Uniform distribution of skin-temperature increase after different regional-anesthesia techniques of the lower extremity

    NARCIS (Netherlands)

    Werdehausen, Robert; Braun, Sebastian; Hermanns, Henning; Freynhagen, Rainer; Lipfert, Peter; Stevens, Markus F.

    2007-01-01

    BACKGROUND AND OBJECTIVES: Skin-temperature increase is a reliable but late indicator of success during regional-anesthesia techniques. The goal of this study is to determine the distribution of skin-temperature changes during different regional techniques. Does skin temperature increase in the

  7. Fibre Optics Distributed Temperature Sensing for EcoHydrological Characterization of a Complex Terrain

    Science.gov (United States)

    Ciocca, Francesco; Krause, Stefan; Chalari, Athena; Mondanos, Michael

    2015-04-01

    Being able to properly monitor the heat and water dynamics in the soil vadose zone is crucial to the ecohydrological characterization of any field site. Point sensors may provide accurate measurements of temperature and soil moisture but offering a spatial footprint limited to few centimeters, dramatically reducing the amount of information that can be obtained, in particular about the spatial variability and directions of the soil heat and water fluxes. Fibre Optics Distributed Temperature Sensing (FO-DTS) demonstrated to be a very promising, cost effective and non invasive technique for heat and moisture distributed monitoring from small (centimeters) to large (kilometers) spatial scales. A permanent installation aiming at monitoring the long time and large space-scale soil moisture and temperature variations in the shallow soil is going to be realized in two areas presenting different vegetation (trees and low grass, respectively) and inclined transects in a forest close to the Birmingham area. FO cable is going to be buried at different depths by mean of a plow and both active (monitor cooling rates of a heated cable) and passive (e.g. Fourier or Dynamic Harmonic Regression analysis to diurnal and seasonal temperature trends) FO-DTS techniques will be used to constantly monitor and quantify the soil water and heat traces. The ability of FO-DTS to provide reliable information about moisture and heat dynamics in this complex environment affected by the variability of many natural factors (e.g. precipitation, presence or absence of deep vegetation, diurnal/seasonal atmospheric forcing, orography) will be exploited. A detailed description of this complex and unique installation will be provided, along with a presentation of the preliminary results of the FO-DTS measurements. Particular emphasis to the comparison between both the initial state and the differences in diurnal moisture and temperature regimes between the two areas (due to the difference in vegetation

  8. Kinetics of low-temperature transitions and a reaction rate theory from non-equilibrium distributions

    Science.gov (United States)

    Aquilanti, Vincenzo; Coutinho, Nayara Dantas; Carvalho-Silva, Valter Henrique

    2017-03-01

    This article surveys the empirical information which originated both by laboratory experiments and by computational simulations, and expands previous understanding of the rates of chemical processes in the low-temperature range, where deviations from linearity of Arrhenius plots were revealed. The phenomenological two-parameter Arrhenius equation requires improvement for applications where interpolation or extrapolations are demanded in various areas of modern science. Based on Tolman's theorem, the dependence of the reciprocal of the apparent activation energy as a function of reciprocal absolute temperature permits the introduction of a deviation parameter d covering uniformly a variety of rate processes, from those where quantum mechanical tunnelling is significant and d 0, corresponding to the Pareto-Tsallis statistical weights: these generalize the Boltzmann-Gibbs weight, which is recovered for d = 0. It is shown here how the weights arise, relaxing the thermodynamic equilibrium limit, either for a binomial distribution if d > 0 or for a negative binomial distribution if d < 0, formally corresponding to Fermion-like or Boson-like statistics, respectively. The current status of the phenomenology is illustrated emphasizing case studies; specifically (i) the super-Arrhenius kinetics, where transport phenomena accelerate processes as the temperature increases; (ii) the sub-Arrhenius kinetics, where quantum mechanical tunnelling propitiates low-temperature reactivity; (iii) the anti-Arrhenius kinetics, where processes with no energetic obstacles are rate-limited by molecular reorientation requirements. Particular attention is given for case (i) to the treatment of diffusion and viscosity, for case (ii) to formulation of a transition rate theory for chemical kinetics including quantum mechanical tunnelling, and for case (iii) to the stereodirectional specificity of the dynamics of reactions strongly hindered by the increase of temperature. This article is part of

  9. An Active-Distributed Temperature Sensing method to quantify groundwater - surface water exchanges

    Science.gov (United States)

    Simon, Nataline; Bour, Olivier; Lavenant, Nicolas; Faucheux, Mickaël; Fovet, Ophélie; Longuevergne, Laurent

    2017-04-01

    Understanding and quantifying groundwater and surface water interactions are key elements for the management of water quality and quantity, but also for the preservation of groundwater dependent ecosystems and riparian habitat. We developed a methodology to quantify groundwater and surface water interactions, by setting up an active heat tracer experiment using fiber-optic distributed temperature sensing (FO-DTS). The experimental setup consists in heating an armoured fiber-optic cable that has been previously deployed along the streambed within the sediments. Then, the increase in temperature along the heated cable is a function of the thermal properties of the sediments and of the fluid flow velocity within the sediments. The cable is heated electrically through the steel armouring of the cable while the elevations in temperature are continuously monitored. We tested this methodology on the Kerbernez catchment, located in south-western Brittany (France) and which is part of the AgrHys hydrological observatory. We deploy the cable in a first-order stream within this small agricultural catchment (0.12 km2). Temperature was monitored along 60 meters of stream with a spatial and temporal resolution respectively equal to 29 cm and 30 s. To interpret the data, we used an analytical solution developed for geothermal energy that considers advection and conduction of temperature in porous media. To validate the use of the analytical solution and to define the limits of the method, a 2D numerical model has been developed. This model simulates heat transport and conduction with steady state fluid flow using the Conjugate Heat Transfer module of COMSOL Multiphysics ®. During heating and cooling, the measured temperature was particularly variable along the section with temperature increases that range between 16 to 36°C. This variability can directly be associated with local variations of water fluxes by applying the appropriate analytical solution. Henceforth, it is

  10. Variable content and distribution of arabinogalactan proteins in banana (Musa spp.) under low temperature stress.

    Science.gov (United States)

    Yan, Yonglian; Takáč, Tomáš; Li, Xiaoquan; Chen, Houbin; Wang, Yingying; Xu, Enfeng; Xie, Ling; Su, Zhaohua; Šamaj, Jozef; Xu, Chunxiang

    2015-01-01

    Information on the spatial distribution of arabinogalactan proteins (AGPs) in plant organs and tissues during plant reactions to low temperature (LT) is limited. In this study, the extracellular distribution of AGPs in banana leaves and roots, and their changes under LT stress were investigated in two genotypes differing in chilling tolerance, by immuno-techniques using 17 monoclonal antibodies against different AGP epitopes. Changes in total classical AGPs in banana leaves were also tested. The results showed that AGP epitopes recognized by JIM4, JIM14, JIM16, and CCRC-M32 antibodies were primarily distributed in leaf veins, while those recognized by JIM8, JIM13, JIM15, and PN16.4B4 antibodies exhibited predominant sclerenchymal localization. Epitopes recognized by LM2, LM14, and MAC207 antibodies were distributed in both epidermal and mesophyll cells. Both genotypes accumulated classical AGPs in leaves under LT treatment, and the chilling tolerant genotype contained higher classical AGPs at each temperature treatment. The abundance of JIM4 and JIM16 epitopes in the chilling-sensitive genotype decreased slightly after LT treatment, and this trend was opposite for the tolerant one. LT induced accumulation of LM2- and LM14-immunoreactive AGPs in the tolerant genotype compared to the sensitive one, especially in phloem and mesophyll cells. These epitopes thus might play important roles in banana LT tolerance. Different AGP components also showed differential distribution patterns in banana roots. In general, banana roots started to accumulate AGPs under LT treatment earlier than leaves. The levels of AGPs recognized by MAC207 and JIM13 antibodies in the control roots of the tolerant genotype were higher than in the chilling sensitive one. Furthermore, the chilling tolerant genotype showed high immuno-reactivity against JIM13 antibody. These results indicate that several AGPs are likely involved in banana tolerance to chilling injury.

  11. Variable content and distribution of arabinogalactan proteins in banana (Musa spp. under low temperature stress

    Directory of Open Access Journals (Sweden)

    Yonglian eYan

    2015-05-01

    Full Text Available Information on the spatial distribution of arabinogalactan proteins (AGPs in plant organs and tissues during plant reactions to low temperature (LT stresses is limited. In this study, the extracellular distribution of AGPs in banana leaves and roots, and their changes under LT stresses were investigated in two genotypes differing in chilling tolerance, by immuno-techniques using 17 monoclonal antibodies against different AGP epitopes. Changes in total classical AGPs in banana leaves were also tested. The results showed that AGP epitopes recognized by JIM4, JIM14, JIM16 and CCRC-M32 antibodies were primarily distributed in leaf veins, while those recognized by JIM8, JIM13, JIM15 and PN16.4B4 antibodies exhibited predominant sclerenchymal localization. Epitopes recognized by LM2, LM14 and MAC207 antibodies were distributed in both epidermal and mesophyll cells. Both genotypes accumulated classical AGPs in leaves under LT treatment, and the chilling tolerant genotype contained higher classical AGPs at each temperature treatment. In addition, the abundance of JIM4 and JIM16 epitopes in the chilling-sensitive genotype decreased slightly after LT treatment, and this trend was opposite for the tolerant one. LT induced accumulation of LM2- and LM14-immunoreactive AGPs in the tolerant genotype compared to the sensitive one, especially in phloem and mesophyll cells. These epitopes thus might play important roles in banana LT tolerance. Different AGP components also showed differential distribution patterns in banana roots. In general, banana roots started to accumulate AGPs under LT treatment earlier than leaves. The levels of AGPs recognized by MAC207 and JIM13 antibodies in the control roots of the tolerant genotype were higher than in the chilling sensitive one. Furthermore, the chilling tolerant genotype showed high immuno-reactivity against JIM13 antibody. These results indicate that several AGPs are likely involved in banana tolerance to chilling

  12. Distributed Temperature Sensing - a Useful Tool for Investigation of Surface Water - Groundwater Interaction

    Science.gov (United States)

    Vogt, T.; Hahn-Woernle, L.; Sunarjo, B.; Thum, T.; Schneider, P.; Schirmer, M.; Cirpka, O. A.

    2009-04-01

    In recent years, the transition zone between surface water bodies and groundwater, known as the hyporheic zone, has been identified as crucial for the ecological status of the open-water body and the quality of groundwater. The hyporheic exchange processes vary both in time and space. For the assessment of water quality of both water bodies reliable models and measurements of the exchange rates and their variability are needed. A wide range of methods and technologies exist to estimate water fluxes between surface water and groundwater. Due to recent developments in sensor techniques and data logging work on heat as a tracer in hydrological systems advances, especially with focus on surface water - groundwater interactions. Here, we evaluate the use of Distributed Temperature Sensing (DTS) for the qualitative and quantitative investigation of groundwater discharge into and groundwater recharge from a river. DTS is based on the temperature dependence of Raman scattering. Light from a laser pulse is scattered along an optical fiber of up to several km length, which is the sensor of the DTS system. By sampling the the back-scattered light with high temporal resolution, the temperature along the fiber can be measured with high accuracy (0.1 K) and high spatial resolution (1 m). We used DTS at a test side at River Thur in North-East Switzerland. Here, the river is loosing and the aquifer is drained by two side-channels, enabling us to test DTS for both, groundwater recharge from the river and groundwater discharge into the side-channels. For estimation of seepage rates, we measured highly resolved vertical temperature profiles in the river bed. For this application, we wrapped an optical fiber around a piezometer tube and measured the temperature distribution along the fiber. Due to the wrapping, we obtained a vertical resolution of approximately 5 mm. We analyzed the temperature time series by means of Dynamic Harmonic Regression as presented by Keery et al. (2007

  13. Fiber optic distributed temperature sensor mapping of a jet-mixing flow field

    Energy Technology Data Exchange (ETDEWEB)

    Lomperski, S.; Gerardi, C. [Argonne National Laboratory, Argonne, IL (United States); Pointer, W.D. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN (United States)

    2015-03-01

    This paper introduces the use of a Rayleigh backscatter-based distributed fiber optic sensor to map the temperature field in air flow for a thermal fatigue application. The experiment involves a pair of air jets at 22 and 70 C discharging from 136 mm hexagonal channels into a 1 x 1 x 1.7 m tank at atmospheric pressure. A 40 m-long, φ155 μm fiber optic sensor was wound back and forth across the tank midplane to form 16 horizontal measurement sections with a vertical spacing of 51 mm. This configuration generated a 2D temperature map with 2800 data points over a 0.76 x 1.7 m plane. Fiber optic sensor readings were combined with PIV and infrared measurements to relate flow field characteristics to the thermal signature of the tank lid. The paper includes sensor stability data and notes issues encountered using the distributed temperature sensor in a flow field. Sensors are sensitive to strain and humidity, and so accuracy relies upon strict control of both. (orig.)

  14. Using Distributed Temperature Sensing for evaporation measurements: background, verification, and future applications.

    Science.gov (United States)

    Schilperoort, Bart; Coenders-Gerrits, Miriam; van Iersel, Tara; Jiménez Rodríguez, Cesar; Luxemburg, Willem; Cisneros Vaca, Cesar; Ucer, Murat

    2017-04-01

    Distributed temperature sensing (DTS) is a relatively new method for measuring latent and sensible heat fluxes. The method has been successfully tested before on multiple sites (Euser, 2014). It uses a glass fibre optic cable of which the temperature can be measured every 12.5cm. By placing the cable vertically along a structure, the air temperature profile can be measured. If the cable is wrapped with cloth and kept wet (akin to a psychrometer), a vertical wet-bulb temperature gradient over height can be calculated. From these dry and wet-bulb temperatures over the height the Bowen ratio is determined and together with the energy balance the latent and sensible heat can be determined. To verify the measurements of the DTS based Bowen ratio method (BR-DTS) we assessed in detail; the accuracy of the air temperature and wet-bulb temperature measurements, the influence of solar radiation and wind on these temperatures, and a comparison to standard methods of evaporation measurement. We tested the performance of the BR-DTS on a 45m high tower in a tall mixed forest in the centre of the Netherlands in August. The average tree height is 30m, hence we measure temperature gradients above, in, and underneath the canopy. We found that solar radiation has a significant effect on the temperature measurements due to heating of the cable coating and leads to deviations up to 2° C. By using cables with different coating thickness we could theoretically correct for this effect, but this introduces too much uncertainty for calculating the temperature gradient. By installing screens the effect of direct sunlight on the cable is sufficiently reduced, and the correlation of the cable temperature with reference air temperature sensors is very high (R2=0.988 to 0.998). Wind speed seems to have a minimal effect on the measured wet-bulb temperature, both below and above the canopy. The latent heat fluxes of the BR-DTS were compared to an eddy covariance system using data from 10 days

  15. A Study of Land Surface Temperature Retrieval and Thermal Environment Distribution Based on Landsat-8 in Jinan City

    Science.gov (United States)

    Dong, Fang; Chen, Jian; Yang, Fan

    2018-01-01

    Based on the medium resolution Landsat 8 OLI/TIRS, the temperature distribution in four seasons of urban area in Jinan City was obtained by using atmospheric correction method for the retrieval of land surface temperature. Quantitative analysis of the spatio-temporal distribution characteristics, development trend of urban thermal environment, the seasonal variation and the relationship between surface temperature and normalized difference vegetation index (NDVI) was studied. The results show that the distribution of high temperature areas is concentrated in Jinan, and there is a tendency to expand from east to west, revealing a negative correlation between land surface temperature distribution and NDVI. So as to provide theoretical references and scientific basis of improving the ecological environment of Jinan City, strengthening scientific planning and making overall plan addressing climate change.

  16. Body surface temperature distribution in relation to body composition in obese women.

    Science.gov (United States)

    Chudecka, Monika; Lubkowska, Anna; Kempińska-Podhorodecka, Agnieszka

    2014-07-01

    Adipose tissue levels and human obesity are known to be associated with increased heat production. At the same time, subcutaneous adipose tissue provides an insulating layer that impedes heat loss. The energy implications of obesity and body thermoregulatory mechanisms remain relatively poorly understood. This study attempted to examine the potential relationship between body composition (subcutaneous and visceral fat) determined by bioimpedance as well as BMI (body mass index), and skin surface temperature distribution recorded at rest. One specific aim of this study was to draw a thermal map of body areas in obese women and compare this with women of normal body mass, and thus to identify body regions within which heat transfer is particularly impeded. As high fat content is a good insulator, it could reduce the body's ability to respond effectively to changes in environmental temperature, which would be problematic for thermal homeostasis. Our results showed that core temperature did not differ between obese and normal body mass participants, while skin temperature of most body surfaces was lower in obese subjects. The results of regression analysis showed that the mean body surface temperature (Tmean) decreased with increasing percentage of body fat (PBF) of the abdominal area. The opposite relationship was observed for the front area of the hand (simultaneous increase in Tmean and PBF). We also found a negative correlation between BMI and Tmean of the thigh areas, both the front and the back. From this it could be concluded that the mean body surface temperature is dependent on body fat. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots

    Science.gov (United States)

    Reich, Peter B.; Lou, Yunjian; Bradford, John B.; Poorter, Hendrik; Perry, Charles H.; Oleksyn, Jacek

    2014-01-01

    Whether the fraction of total forest biomass distributed in roots, stems, or leaves varies systematically across geographic gradients remains unknown despite its importance for understanding forest ecology and modeling global carbon cycles. It has been hypothesized that plants should maintain proportionally more biomass in the organ that acquires the most limiting resource. Accordingly, we hypothesize greater biomass distribution in roots and less in stems and foliage in increasingly arid climates and in colder environments at high latitudes. Such a strategy would increase uptake of soil water in dry conditions and of soil nutrients in cold soils, where they are at low supply and are less mobile. We use a large global biomass dataset (>6,200 forests from 61 countries, across a 40 °C gradient in mean annual temperature) to address these questions. Climate metrics involving temperature were better predictors of biomass partitioning than those involving moisture availability, because, surprisingly, fractional distribution of biomass to roots or foliage was unrelated to aridity. In contrast, in increasingly cold climates, the proportion of total forest biomass in roots was greater and in foliage was smaller for both angiosperm and gymnosperm forests. These findings support hypotheses about adaptive strategies of forest trees to temperature and provide biogeographically explicit relationships to improve ecosystem and earth system models. They also will allow, for the first time to our knowledge, representations of root carbon pools that consider biogeographic differences, which are useful for quantifying whole-ecosystem carbon stocks and cycles and for assessing the impact of climate change on forest carbon dynamics.

  18. Calibrating Single-Ended Fiber-Optic Raman Spectra Distributed Temperature Sensing Data

    Directory of Open Access Journals (Sweden)

    Nick van de Giesen

    2011-11-01

    Full Text Available Hydrologic research is a very demanding application of fiber-optic distributed temperature sensing (DTS in terms of precision, accuracy and calibration. The physics behind the most frequently used DTS instruments are considered as they apply to four calibration methods for single-ended DTS installations. The new methods presented are more accurate than the instrument-calibrated data, achieving accuracies on the order of tenths of a degree root mean square error (RMSE and mean bias. Effects of localized non-uniformities that violate the assumptions of single-ended calibration data are explored and quantified. Experimental design considerations such as selection of integration times or selection of the length of the reference sections are discussed, and the impacts of these considerations on calibrated temperatures are explored in two case studies.

  19. Distributed Wireless Monitoring System for Ullage and Temperature in Wine Barrels

    Science.gov (United States)

    Zhang, Wenqi; Skouroumounis, George K.; Monro, Tanya M.; Taylor, Dennis K.

    2015-01-01

    This paper presents a multipurpose and low cost sensor for the simultaneous monitoring of temperature and ullage of wine in barrels in two of the most important stages of winemaking, that being fermentation and maturation. The distributed sensor subsystem is imbedded within the bung of the barrel and runs on battery for a period of at least 12 months and costs around $27 AUD for all parts. In addition, software was designed which allows for the remote transmission and easy visual interpretation of the data for the winemaker. Early warning signals can be sent when the temperature or ullage deviates from a winemakers expectations so remedial action can be taken, such as when topping is required or the movement of the barrels to a cooler cellar location. Such knowledge of a wine’s properties or storage conditions allows for a more precise control of the final wine quality. PMID:26266410

  20. Distributed Wireless Monitoring System for Ullage and Temperature in Wine Barrels.

    Science.gov (United States)

    Zhang, Wenqi; Skouroumounis, George K; Monro, Tanya M; Taylor, Dennis

    2015-08-10

    This paper presents a multipurpose and low cost sensor for the simultaneous monitoring of temperature and ullage of wine in barrels in two of the most important stages of winemaking, that being fermentation and maturation. The distributed sensor subsystem is imbedded within the bung of the barrel and runs on battery for a period of at least 12 months and costs around $27 AUD for all parts. In addition, software was designed which allows for the remote transmission and easy visual interpretation of the data for the winemaker. Early warning signals can be sent when the temperature or ullage deviates from a winemakers expectations so remedial action can be taken, such as when topping is required or the movement of the barrels to a cooler cellar location. Such knowledge of a wine's properties or storage conditions allows for a more precise control of the final wine quality.

  1. Measurement of distributed strain and temperature based on higher order and higher mode Bragg conditions

    Science.gov (United States)

    Sirkis, James S. (Inventor); Sivanesan, Ponniah (Inventor); Venkat, Venki S. (Inventor)

    2001-01-01

    A Bragg grating sensor for measuring distributed strain and temperature at the same time comprises an optical fiber having a single mode operating wavelength region and below a cutoff wavelength of the fiber having a multimode operating wavelength region. A saturated, higher order Bragg grating having first and second order Bragg conditions is fabricated in the optical fiber. The first order of Bragg resonance wavelength of the Bragg grating is within the single mode operating wavelength region of the optical fiber and the second order of Bragg resonance wavelength is below the cutoff wavelength of the fiber within the multimode operating wavelength region. The reflectivities of the saturated Bragg grating at the first and second order Bragg conditions are less than two orders of magnitude of one another. In use, the first and second order Bragg conditions are simultaneously created in the sensor at the respective wavelengths and a signal from the sensor is demodulated with respect to each of the wavelengths corresponding to the first and second order Bragg conditions. Two Bragg conditions have different responsivities to strain and temperature, thus allowing two equations for axial strain and temperature to be found in terms of the measure shifts in the primary and second order Bragg wavelengths. This system of equations can be solved for strain and temperature.

  2. Computation of tabs and wing generator modification on temperature distribution and flow of free jet

    Science.gov (United States)

    Piya, I.; Palasai, W.; Nuntadusit, C.

    2017-09-01

    The mixing process is important improve the performance of jet-engineering equipment. The purpose research, aim to study temperature distribution might be simulate mixing layer of jet flow with surrounding fluid.In this study measure the temperature at the position the jet exit. Z=1D, 2D, 4D and 6D. Calculate the temperature coefficient and a computational fluid dynamic (CFD) using ANSYS, Fluent (V.15.0) was selected to this computation. The investigation model was jets discharging from pipe nozzle installing wing generator having an inner diameter d=28.15 mm and wall fitted to the outlet of the jet. Promoters were attached at the nozzle exit. 4 types of turbulence promoters were triangular tab with tip angle of 45° and 90° and vortex generators with attack angle of 45° and 60°. In addition, the conventional pipe nozzle was studied to comparing as base results and modifications. Installing at 2 and 4 positions give the measuring temperature. The Reynolds number of test fluid was constant at Re=29,500. Increase the strength of jet mixing was found the case of vortex generator installed with 4 positions, attack angle of 60° gives the strongest mixing in jet when comparing with the other cases.

  3. MATERIAL DEPENDENCE OF TEMPERATURE DISTRIBUTION IN MULTI-LAYER MULTI-METAL COOKWARE

    Directory of Open Access Journals (Sweden)

    MOHAMMADREZA SEDIGH

    2017-09-01

    Full Text Available Laminated structure is becoming more popular in cookware markets; however, there seems to be a lack of enough scientific studies to evaluate its pros and cons, and to show that how it functions. A numerical model using a finite element method with temperature-dependent material properties has been performed to investigate material and layer dependence of temperature distribution in multi-layer multi-metal plate exposed to irregular heating. Behavior of two parameters including mean temperature value and uniformity on the inner surface of plate under variations of thermal properties and geometrical conditions have been studied. The results indicate that conductive metals used as first layer in bi-layer plates have better thermal performance than those used in the second layer. In addition, since cookware manufacturers increasingly prefer to use all-clad aluminium plate, recently, this structure is analysed in the present study as well. The results show all-clad copper and aluminum plate possesses lower temperature gradient compared with single layer aluminum and all-clad aluminum core plates.

  4. Optimization of electric field distribution by free carrier injection in silicon detectors operated at low temperatures

    CERN Document Server

    Eremin, V V; Verbitskaya, E

    2002-01-01

    This study presents the results on the modeling of the electric field distribution, which is controlled by injection and trapping of non- equilibrium carriers, in Si detectors irradiated by high neutron fluences. Analytical calculation of the electric field distribution in detectors irradiated by neutron fluences of H-10**1**4 to 5-10**1**5 cm**-**2 has been performed, which shows possibility of full depletion voltage reduction at low operational temperatures with hole injection. All calculations are focused on the improvement of charge collection efficiency and prediction for detector behavior in LHC experiments. Comparison of the results of calculations to the experimental data published earlier shows a good qualitative agreement. 10 Refs.

  5. Drying of brick as a function of heat flows and analysis of moisture and temperature distributions

    DEFF Research Database (Denmark)

    Svendsen, Sv Aa Højgaard; Rudbeck, Claus Christian; Bunch-Nielsen, Tommy

    1997-01-01

    In order to investigate the driving mechanisms for frost damages in brickwork, laboratory tests has been performed on a test brick wall. These test include monitoring of temperature and moisture distribution in the wall as function of the influence of driving rain, wind speed and solar radiation........ After the initial tests the surface of the wall was treated with mortar and a new series of test was performed. The wall with and without treatment performed almost equal during the influence of driving rain, and during the later drying phase, the difference was equally small....

  6. Definition of the strain-stress distribution of porous glass in the retarded cooling temperature range

    Directory of Open Access Journals (Sweden)

    Grushko Irina

    2017-01-01

    Full Text Available The estimation of the strain-stress distribution (SSD of porous glass (foamed slag glass, FSG is assessed by annealing temperature curves according to the given values of the thermomechanical and thermophysical properties of porous glass, which are in correlation with the properties data of the host glass and its structure. When calculating cooling processes (cooling rate of porous glass products, the A.N. Dauvalter's formula, which takes into account only the stresses arising from the safe product cooling, but does not take into account those that remained there to the cooling start point, is usually used. The cooling rate in the interval of the annealing zone itself should be sufficiently low so that residual stresses, arising after they pass it, have small values. Since methods, that make it possible to determine the residual stresses that appear in the porous glass after passing through the initial annealing zone, are currently poorly developed, numerical simulation methods should be used to determine the porous glass SSD under the influence of thermal loads. Numerical study of the strain-stress distribution of porous glass allowing for thermal loads in the annealing temperature range was carried out in the Ansys Workbench software package.

  7. Sea surface temperature data from a world wide distribution from 01 January 1971 to 31 December 2000 (NODC Accession 0000712)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea surface temperature data were collected in a world wide distribution from January 1, 1971 to December 31, 2000. Data were submitted by Japan Meteorological...

  8. Temperature distribution in the upper layers of the northern and eastern Arabian Sea during Indo-Soviet monsoon experiment

    Digital Repository Service at National Institute of Oceanography (India)

    RameshBabu, V.; Rao, L.V.G.; Varkey, M.J.; Udayavarma, P.

    -Soviet Monsoon Experiment (ISMEX). Using the bathythermograph data collected in those cruises, vertical distribution of temperature in the upper 275 metres was studied. Along the zonal section, east of 67 degrees E meridian, the depth of thermocline was found...

  9. The role of temperature on the spatiotemporal distribution of West Nile virus in the United States

    Science.gov (United States)

    Horton, D. E.; Kilpatrick, A. M.; Ruybal, J.; Diffenbaugh, N. S.

    2012-12-01

    Determining the relationship between climatological factors and vector-borne pathogens remains a critical challenge. The recent arrival of the West Nile virus (WNV) to the Americas, coupled with an extensive climatological and disease observation network, offers the potential to improve our mechanistic understanding of climate's influence on vector-borne disease transmission. Since its introduction to the Americas in the summer of 1999, the West Nile Virus (WNV) has rapidly spread from coastal New York State, across the North American continent, and into Central and South America. To date, 13,385 cases of WNV-induced human neuroinvasive disease have been reported to the U.S. Centers for Disease Control, with approximately 1,267 fatalities attributed to viral infection (as of 31 July 2012). Of those infected, severe symptoms develop in only ~1 in 150 people, suggesting that the total U.S. population infected with WNV is on the order of 2 million. The transmission of WNV is predominantly vector-borne, with three mosquitoes of the Culex genus, pipiens, tarsalis, and quinquefasciatus, largely responsible for the spread of the pathogen between avian and human hosts and across the contiguous United States. In this contribution, we synthesize laboratory and local-scale field studies of the Culex vectors with observed and modeled climatological data in an attempt to determine the mechanistic influence of temperature on the spatiotemporal distribution of WNV incidence across the United States. Our preliminary results suggest that many of the physiological factors that determine the transmission intensity of WNV, including mosquito biting rate, vector competence, infection transition rate, and mosquito mortality rate, demonstrate direct temperature dependencies. Based on these results, we utilize bias-corrected outputs from late-20th and mid-21st century CMIP5 simulations to examine the influence of temperature on the distribution of WNV relative to other factors and to

  10. Autonomous distributed temperature sensing for long-term heated applications in remote areas

    Directory of Open Access Journals (Sweden)

    A.-M. Kurth

    2013-02-01

    Full Text Available Distributed temperature sensing (DTS is a fiber-optical method enabling simultaneous temperature measurements over long distances. Electrical resistance heating of the metallic components of the fiber-optic cable provides information on the thermal characteristics of the cable's environment, providing valuable insight into processes occurring in the surrounding medium, such as groundwater–surface water interactions, dam stability or soil moisture. Until now, heated applications required direct handling of the DTS instrument by a researcher, rendering long-term investigations in remote areas impractical due to the often difficult and time-consuming access to the field site. Remote control and automation of the DTS instrument and heating processes, however, resolve the issue with difficult access. The data can also be remotely accessed and stored on a central database. The power supply can be grid independent, although significant infrastructure investment is required here due to high power consumption during heated applications. Solar energy must be sufficient even in worst case scenarios, e.g. during long periods of intense cloud cover, to prevent system failure due to energy shortage. In combination with storage batteries and a low heating frequency, e.g. once per day or once per week (depending on the season and the solar radiation on site, issues of high power consumption may be resolved. Safety regulations dictate adequate shielding and ground-fault protection, to safeguard animals and humans from electricity and laser sources. In this paper the autonomous DTS system is presented to allow research with heated applications of DTS in remote areas for long-term investigations of temperature distributions in the environment.

  11. Influence of snow cover distribution on soil temperature and nutrient dynamics in alpine pedoenvironments

    Directory of Open Access Journals (Sweden)

    Ermanno Zanini

    Full Text Available In Alpine sites snow is present on the ground from six to eight months per year in relation to elevation and exposure. Water is therefore immobilized into the solid state for the greater part of the winter season and released to the ground in a short period during spring snowmelt. In these areas, snow distribution exercises a fundamental role in influencing soil temperature and nutrient dynamics, in particular of nitrogen, with great consequences on plant nutrition. The dormant vegetation period, the low temperatures and the persistent snow cover suggest that soil biological activity is only concentrated during summer. As a matter of fact, soils covered with a consistent snow cover are isolated from the air temperature and can not freeze during winter. A snowpack of sufficient thickness, accumulated early in winter, insulates the ground from the surrounding atmosphere maintaining soil temperature closed to 0 °C during the whole winter season. The elevation of the snow line and the shorter permanence of snow on the ground, as a result of global warming (IPCC, 1996, 2001, might reduce the insulation effect of the snowpack, exposing soils of the mountain belt to lower temperatures and to a greater frequency of freeze/thaw cycles, which might alter organic matter dynamics and soil nutrient availability. Such thermal stresses may determine the lysis of microbial cells and the consequent increase of nitrogen and carbon mineralization by the survived microorganisms. Moreover, the freeze/thaw cycles can determine the exposure of exchange surfaces not available before, with release of organic matter of non-microbial origin, which may become available to surviving microorganisms for respiration. The reduced or absent microbial immobilization may cause the accumulation of remarkable amounts of inorganic nitrogen in soil, potentially leachable during spring snowmelt, when plants have not still started the growing season. Changes of snow distribution in

  12. Influence of snow cover distribution on soil temperature and nutrient dynamics in alpine pedoenvironments

    Directory of Open Access Journals (Sweden)

    Michele Freppaz

    2011-02-01

    Full Text Available In Alpine sites snow is present on the ground from six to eight months per year in relation to elevation and exposure. Water is therefore immobilized into the solid state for the greater part of the winter season and released to the ground in a short period during spring snowmelt. In these areas, snow distribution exercises a fundamental role in influencing soil temperature and nutrient dynamics, in particular of nitrogen, with great consequences on plant nutrition. The dormant vegetation period, the low temperatures and the persistent snow cover suggest that soil biological activity is only concentrated during summer. As a matter of fact, soils covered with a consistent snow cover are isolated from the air temperature and can not freeze during winter. A snowpack of sufficient thickness, accumulated early in winter, insulates the ground from the surrounding atmosphere maintaining soil temperature closed to 0 °C during the whole winter season. The elevation of the snow line and the shorter permanence of snow on the ground, as a result of global warming (IPCC, 1996, 2001, might reduce the insulation effect of the snowpack, exposing soils of the mountain belt to lower temperatures and to a greater frequency of freeze/thaw cycles, which might alter organic matter dynamics and soil nutrient availability. Such thermal stresses may determine the lysis of microbial cells and the consequent increase of nitrogen and carbon mineralization by the survived microorganisms. Moreover, the freeze/thaw cycles can determine the exposure of exchange surfaces not available before, with release of organic matter of non-microbial origin, which may become available to surviving microorganisms for respiration. The reduced or absent microbial immobilization may cause the accumulation of remarkable amounts of inorganic nitrogen in soil, potentially leachable during spring snowmelt, when plants have not still started the growing season. Changes of snow distribution in

  13. Temperature distribution analysis of July 2001 Mt. Etna eruption observed by the airborne hyperspectral sensor MIVIS

    Directory of Open Access Journals (Sweden)

    M. F. Buongiorno

    2003-06-01

    Full Text Available On 17th and 18th July 2001, several fractures opened on Mt. Etna southern flank generating different lava flows spreading both in Valle del Bove and towards Nicolosi. On 29th July the image spectrometer MIVIS was flown over Mt. Etna to acquire high-resolution images of the eruption. The MIVIS airborne campaign was planned simultaneously with TERRA, EO-1 and Landsat 7 satellite acquisitions, in order to compare hyperspectral and multispectral data referred to active lavas. This work focuses on the thermal mapping of lava flows, taking advantage of MIVIS sensor high technical performances. The MIVIS high spatial resolution allows a detailed analysis of the lava flow topographic distribution. Its 12 bit dynamic range consents an estimate of the temperature even for the «hottest» pixels. The main target of this work is the evaluation of the energy flux by means of remote-sensing techniques. Surface temperature analysis was performed on distinct lava flows using the dualband technique. These quantities were compared with the integrated temperatures retrieved using the MIVIS thermal infrared bands. The influence of topography was also considered in the flux calculation using a Digital Elevation Model (DEM of Mt. Etna.

  14. Magnetic x-ray microscopy at low temperatures – Visualization of flux distributions in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, Claudia, E-mail: stahl@is.mpg.de; Ruoß, Stephen; Weigand, Markus; Bechtel, Michael; Schütz, Gisela [Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569 Stuttgart (Germany); Albrecht, Joachim [Research Institute for Innovative Surfaces, FINO, Aalen University, Beethovenstraße 1, 73430 Aalen (Germany)

    2016-01-28

    X-ray Magnetic Circular Dichroism (XMCD) microscopy at liquid nitrogen temperature has been performed on bilayers of high-T{sub c} superconducting YBCO (YBa{sub 2}Cu{sub 3}O{sub 7-δ}) and soft-magnetic Co{sub 40}Fe{sub 40}B{sub 20}. This should allow us to map the magnetic flux density distribution in the current-carrying state of the superconductor with high spatial resolution. For that purpose the UHV scanning X-ray microscope MAXYMUS has been upgraded by a MMR Micro Miniature Joule-Thompson cryostat capable of temperatures between 75 K and 580 K. Resulting XMCD images of the magnetic flux density in the superconductor with a field of view ranging from millimeters to micrometers are presented. The microscope’s unique combination of total electron yield (TEY) measurements together with low temperatures offers novel possibilities concerning the current transport in superconductors on small length scales.

  15. A study of dust color temperature and dust mass distributions of four far infrared loops

    Science.gov (United States)

    Jha, A. K.; Aryal, B.; Weinberger, R.

    2017-10-01

    We present dust color temperature, dust mass and inclination angle of four far infrared loops namely G007+18, G143+07, G214-01 and G323-02 which are found to be located within 1° from pulsars PSR J1720-1633, PSR J0406+6138, PSR J0652-0142 and PSR J1535-5848, respectively. These low latitude loops (lformed because high pressure events occurred in the past (e.g., supernova explosion). The dust color temperature of the core region is found to lie in the range 19.4±1.2-25.3±1.7K, whereas the range increased to 33±2-47±3K for the outer region. The dust color and dust mass distribution maps show that the low temperature region has greater density as expected. The core region of one loop is found to be edge-on (i>70°) whereas the larger structure is nearly face-on (i<70°).

  16. Extracting kinetic freeze-out temperature and radial flow velocity from an improved Tsallis distribution

    Energy Technology Data Exchange (ETDEWEB)

    Lao, Hai-Ling; Liu, Fu-Hu [Shanxi University, Institute of Theoretical Physics, Shanxi (China); Lacey, Roy A. [Stony Brook University, Departments of Chemistry and Physics, Stony Brook, NY (United States)

    2017-03-15

    We analyze the transverse-momentum (p{sub T}) spectra of identified particles (π{sup ±}, K{sup ±}, p, and anti p) produced in gold-gold (Au-Au) and lead-lead (Pb-Pb) collisions over a √(s{sub NN}) (center-of-mass energy per nucleon pair) range from 14.5 GeV (one of the Relativistic Heavy Ion Collider (RHIC) energies) to 2.76 TeV (one of the Large Hadron Collider (LHC) energies). For the spectra with a narrow p{sub T} range, an improved Tsallis distribution which is in fact the Tsallis distribution with radial flow is used. For the spectra with a wide p{sub T} range, a superposition of the improved Tsallis distribution and an inverse power law is used. Both the extracted kinetic freeze-out temperature (T{sub 0}) and radial flow velocity (β{sub T}) increase with the increase of √(s{sub NN}), which indicates a higher excitation and larger expansion of the interesting system at the LHC. Both the values of T{sub 0} and β{sub T} in central collisions are slightly larger than those in peripheral collisions, and they are independent of isospin and slightly dependent on mass. (orig.)

  17. Temperature Distribution Simulation of a Polymer Bearing Basing on the Real Tribological Tests

    Directory of Open Access Journals (Sweden)

    Artur Król

    2015-09-01

    Full Text Available Polymer bearings are widely used due to dry-lubrication mechanism, low weight, corrosion resistance and free maintenance. They are applied in different tribological pairs, i.e. household appliances, mechatronics systems, medical devices, food machines and many more. However their use is limited by high coefficient of thermal expansion and softening at elevated temperature, especially when working outside recommended pv factors. The modification of bearing design to achieve better characteristics at more demanding conditions, requires full understanding of mechanical and thermal phenomena of bearing work. The first step was to observe a thermal behavior of polymer bearing under real test conditions (50, 100, 150 rpm and 350 and 700N until constant values were achieved, i.e. temperature and moment of friction. Subsequently collected data were used in a design of temperature distribution model. Thermal simulations of the polymer bearing were done using commercial software package ANSYS Fluent, which is based on finite volume method. All calculations were performed for 3D geometrical model that included polymer bearing, its housing, shaft and some volume of the surrounding air. The heat generation caused by friction forces was implemented by volumetric heat source. All three main heat transfer mechanism (conduction, convection and radiation were included in heat transfer calculations and the air flow around the bearing and adjacent parts was directly solved. The unknown parameters of the numerical model were adjusted by comparison of the results from computer calculations with the measured temperature rise. In the presented work the calculations were limited to steady state conditions only, but the model may be also used in transient analysis.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7342

  18. Evolution of microstructure and grain boundary character distribution of a tin bronze annealed at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Weijiu [College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China); Chongqing Municipal Key Laboratory of Institutions of Higher Education for Mould Technology, Chongqing University of Technology, Chongqing 400054 (China); Chai, Linjiang, E-mail: chailinjiang@cqut.edu.cn [College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China); Chongqing Municipal Key Laboratory of Institutions of Higher Education for Mould Technology, Chongqing University of Technology, Chongqing 400054 (China); Li, Zhijun; Yang, Xusheng [College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China); Guo, Ning; Song, Bo [Faculty of Materials and Energy, Southwest University, Chongqing 400715 (China)

    2016-04-15

    Specimens cut from a rolled tin bronze sheet were annealed at 400–800 °C for 1 h and evolution of their microstructures was then characterized in details by electron channeling contrast imaging and electron backscatter diffraction techniques. Particularly, statistics on special boundaries (SBs) with Σ ≤ 29 and network connectivity of random high angle boundaries (HABs) in the annealed specimens were examined to probe optimization potentials of grain boundary character distribution (GBCD) for this material. Results show that the deformed microstructure in the as-received material begins to be recrystallized when the annealing temperature increase to 500 °C and average grain sizes surge with further increasing temperatures. As a result of the recrystallization, a large number of annealing twins (with Σ3 misorientation) are produced, leading to remarkably increased fractions of SBs (f{sub SBs}). Thanks to preexisting dense low angle boundaries, the majority of SBs in the 500 °C specimen with only partial recrystallization are Σ3{sub ic} (incoherent) boundaries, which effectively disrupt connectivity of random HABs network. Although the f{sub SBs} can be further increased (up to 72.5%) in specimens with full recrystallization (at higher temperatures), the Σ3{sub ic} boundaries would be replaced to some extent by Σ3{sub c} (coherent) boundaries which do not contribute directly to optimizing the GBCD. This work should be able to provide clear suggestions on applying the concept of grain boundary engineering to tin bronze alloys. - Highlights: • The rolled tin bronze begins to be recrystallized as temperature increases to 500 °C. • A lot of SBs are produced after recrystallization and the highest f{sub SBs} is 72.5%. • Partially recrystallized specimen has the optimum GBCD due to more Σ3{sub ic} boundaries. • The Σ3{sub ic} boundaries are replaced by Σ3{sub c} boundaries after full recrystallization.

  19. Smoothing effect of the thermal interface material on the temperature distribution in a stepwise varying width microchannel cooling device

    Science.gov (United States)

    Riera, Sara; Barrau, Jérôme; Rosell, Joan I.; Fréchette, Luc G.; Omri, Mohamed; Vilarrubí, Montse; Laguna, Gerard

    2017-09-01

    The impact of the thermal interface material (TIM) layer on the performance of a stepwise varying width microchannel cooling device is analysed. A numerical model shows that the TIM layer, besides its well known negative impact on the temperature, also generates a smoothing effect on the temperature distribution. In this study, an analytical model is used to define a nondimensional parameter, called Smoothing Resistance ratio, as the quotient between the origin of the temperature non uniformities and the TIM thermal resistance that flatten the temperature distribution. The relationship between the temperature uniformity of the cooled device, expressed through the temperature standard deviation, and the Smoothing Resistance ratio is shown to be linear. These results lead to the definition of a new design procedure for this kind of cooling device, which aims to reduce the Smoothing Resistance ratio. Two solutions are identified and their drawbacks are analysed.

  20. TEMPERATURE DISTRIBUTION IN MULTILAYER METAL-CERAMIC COATINGS UNDER NONSTATIONARY THERMAL EFFECTS

    Directory of Open Access Journals (Sweden)

    Vasiliy M. Samoilenko

    2017-01-01

    Full Text Available Progress in the aircraft engine construction is determined by the increase of operation parameters of gas turbine engines, which is inevitably accompanied by an increase of operating temperatures and load for the vital elements of the turbine hot ducts. Furthermore, the requirements for reliability of the engine in general are also increasing. Achievement of these requirements is determined by the performance of the materials turbine blades are made of and is made possible by the application of high-heat Nickel alloys in combination with combined heat-shielding coatings.This article dwells on the problem of assessing the impact of non-stationary thermal effects on the temperature distribution in a multilayer heatproof coating. With the aim of assessing the working capacity of heatproof coatings we propose a method of calculating the temperature field for the blade profile and the coatingdepth, based on the solution of the basic one-dimensional differential equation of heat conduction.This method allows us to assess the performance of heatproof coating and also gives us an opportunity to choose a combination of heatproof coating layers for the specific operating conditions of a gas turbine engine’s blades.In addition, using the proposed method it is possible to evaluate the effect of non-stationary heat flux on the structure of high-temperature alloy of the engine’s turbine blades and, therefore, to evaluate the capacity with the given coating. At temperatures of 1150–1200 °C and higher in heat-resistant Nickel alloys there starts a coagulation process of the main reinforcing coherent particle phase on the basis of the intermetallic compound, long plates with wavy shapes are formed instead of the cuboids, a formation of topologically close-packed phases which are needle-like compositions happens. These processes lead to a significant deterioration of the strength characteristics of heat-resistant alloys. Making calculations according to

  1. Significance of coherent Rayleigh noise in fibre-optic distributed temperature sensing based on spontaneous Brillouin scattering

    Science.gov (United States)

    DeSouza, K.

    2006-05-01

    The temperature resolution of a fibre-optic distributed temperature sensor based on taking the ratio of the temperature sensitive backscattered spontaneous Brillouin signal to the corresponding Rayleigh signal depends on the optical signal-to-noise of the receiver system and the amplitude fluctuations in the Rayleigh signal. The amplitude fluctuations or coherent Rayleigh noise have been investigated experimentally as a function of detection bandwidth, source bandwidth and spatial resolution and showed good agreement with theory.

  2. Statistical Analysis and Prediction on Tensile Strength of 316L-SS Joints at High Temperature Based on Weibull Distribution

    Science.gov (United States)

    An, Z. L.; Chen, T.; Cheng, D. L.; Chen, T. H.; Y Wang, Z.

    2017-12-01

    In this work, the prediction on average tensile strength of 316L stainless steel is statistically analyzed by Weibull distribution method. Direct diffusion bonding of 316L-SS was performed at high temperature of 550°C and 8 tension tests were carried out. The results obtained vary between 87.8MPa and 160.8MPa. The probability distribution of material failure is obtained by using the Weibull distribution.

  3. Numerical Simulation and Experimental Study on Temperature Distribution of Self-Lubricating Packing Rings in Reciprocating Compressors

    Directory of Open Access Journals (Sweden)

    Jia Xiaohan

    2016-01-01

    Full Text Available The nonuniform abrasion failure and high-temperature thermal failure of packing rings have a significant influence on compressor reliability, particularly that of oil-free compressors. In this study, a test rig was constructed to measure the dynamic temperature of packing rings under different operational conditions in an oil-free reciprocating compressor. The dynamic axial and radial temperature distributions of the packing rings were obtained using an innovative internal temperature testing device that kept the thermocouples and packing box relatively static during compressor operation. A three-dimensional heat transfer model was also developed to analyze the temperature distribution of the packing boxes, piston rod, and cylinder during such operation. Good agreement was observed between the simulation results and experimental data, which showed an average relative error of less than 2.35%. The results indicate that the pressure ratio exerts a significant effect on the axial temperature distribution and determines which packing ring reaches the maximum temperature. They also show the average temperature to rise with an increase in the rotational speed and to fall with an improvement in the external cooling conditions. Finally, the material of the packing rings was found to affect the temperature gradient from their inner to outer surface.

  4. Validation Studies of Temperature Distribution and Mould Filling Process for Composite Skeleton Castings

    Directory of Open Access Journals (Sweden)

    M. Cholewa

    2007-07-01

    Full Text Available In this work authors showed selected results of simulation and experimental studies on temperature distribution during solidification of composite skeleton casting and mould filling process (Fig. 4, 5, 6. The basic subject of the computer simulation was the analysis of ability of metal to fill the channels creating the skeleton shape and prepared in form of a core. Analysis of filling for each consecutive levels of the skeleton casting was conducted for simulation results and real casting. The skeleton casting was manufactured according to proposed technology (Fig. 5. Number of fully filled nodes in simulation was higher than obtained in experimental studies. It was observed in the experiment, that metal during pouring did not flow through the whole channel section, what enabled possibilities of reducing the channel section and pointed out the necessity of local pressure increase.

  5. Numerical Simulation on Smoke Spread and Temperature Distribution in a Corn Starch Explosion

    Science.gov (United States)

    Lin, CherngShing; Hsu, JuiPei

    2018-01-01

    It is discovered from dust explosion accidents in recent years that deep causes of the accidents lies in insufficient cognition of dust explosion danger, and no understanding on danger and information of the dust explosion. In the study, Fire Dynamics Simulator (FDS) evaluation tool is used aiming at Taiwan Formosa Fun Coast explosion accidents. The calculator is used for rebuilding the explosion situation. The factors affecting casualties under explosion are studied. The injured personnel participating in the party are evaluated according to smoke diffusion and temperature distribution for numerical simulation results. Some problems noted in the fire disaster after actual explosion are proposed, rational site analysis is given, thereby reducing dust explosion risk grade.

  6. Numerical Simulation of Temperature Field and Residual Stress Distribution for Laser Cladding Remanufacturing

    Directory of Open Access Journals (Sweden)

    Liang Hua

    2014-05-01

    Full Text Available A three-dimensional finite element model was employed to simulate the cladding process of Ni-Cr-B-Si coatings on 16MnR steel under different parameters of laser power, scanning speed, and spot diameter. The temperature and residual stress distribution, the depth of the heat affected zone (HAZ, and the optimized parameters for laser cladding remanufacturing technology were obtained. The orthogonal experiment and intuitive analysis on the depth of the HAZ were performed to study the influence of different cladding parameters. A new criterion based on the ratio of the maximum tensile residual stress and fracture strength of the substrate was proposed for optimization of the remanufacturing parameters. The result showed well agreement with that of the HAZ analysis.

  7. Analysis of domestic refrigerator temperatures and home storage time distributions for shelf-life studies and food safety risk assessment.

    Science.gov (United States)

    Roccato, Anna; Uyttendaele, Mieke; Membré, Jeanne-Marie

    2017-06-01

    In the framework of food safety, when mimicking the consumer phase, the storage time and temperature used are mainly considered as single point estimates instead of probability distributions. This singlepoint approach does not take into account the variability within a population and could lead to an overestimation of the parameters. Therefore, the aim of this study was to analyse data on domestic refrigerator temperatures and storage times of chilled food in European countries in order to draw general rules which could be used either in shelf-life testing or risk assessment. In relation to domestic refrigerator temperatures, 15 studies provided pertinent data. Twelve studies presented normal distributions, according to the authors or from the data fitted into distributions. Analysis of temperature distributions revealed that the countries were separated into two groups: northern European countries and southern European countries. The overall variability of European domestic refrigerators is described by a normal distribution: N (7.0, 2.7)°C for southern countries, and, N (6.1, 2.8)°C for the northern countries. Concerning storage times, seven papers were pertinent. Analysis indicated that the storage time was likely to end in the first days or weeks (depending on the product use-by-date) after purchase. Data fitting showed the exponential distribution was the most appropriate distribution to describe the time that food spent at consumer's place. The storage time was described by an exponential distribution corresponding to the use-by date period divided by 4. In conclusion, knowing that collecting data is time and money consuming, in the absence of data, and at least for the European market and for refrigerated products, building a domestic refrigerator temperature distribution using a Normal law and a time-to-consumption distribution using an Exponential law would be appropriate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Exploiting remote sensing land surface temperature in distributed hydrological modelling: the example of the Continuum model

    Directory of Open Access Journals (Sweden)

    F. Silvestro

    2013-01-01

    Full Text Available Full process description and distributed hydrological models are very useful tools in hydrology as they can be applied in different contexts and for a wide range of aims such as flood and drought forecasting, water management, and prediction of impact on the hydrologic cycle due to natural and human-induced changes. Since they must mimic a variety of physical processes, they can be very complex and with a high degree of parameterization. This complexity can be increased by necessity of augmenting the number of observable state variables in order to improve model validation or to allow data assimilation.

    In this work a model, aiming at balancing the need to reproduce the physical processes with the practical goal of avoiding over-parameterization, is presented. The model is designed to be implemented in different contexts with a special focus on data-scarce environments, e.g. with no streamflow data.

    All the main hydrological phenomena are modelled in a distributed way. Mass and energy balance are solved explicitly. Land surface temperature (LST, which is particularly suited to being extensively observed and assimilated, is an explicit state variable.

    A performance evaluation, based on both traditional and satellite derived data, is presented with a specific reference to the application in an Italian catchment. The model has been firstly calibrated and validated following a standard approach based on streamflow data. The capability of the model in reproducing both the streamflow measurements and the land surface temperature from satellites has been investigated.

    The model has been then calibrated using satellite data and geomorphologic characteristics of the basin in order to test its application on a basin where standard hydrologic observations (e.g. streamflow data are not available. The results have been compared with those obtained by the standard calibration strategy based on streamflow data.

  9. [New type distributed optical fiber temperature sensor (DTS) based on Raman scattering and its' application].

    Science.gov (United States)

    Wang, Jian-Feng; Liu, Hong-Lin; Zhang, Shu-Qin; Yu, Xiang-Dong; Sun, Zhong-Zhou; Jin, Shang-Zhong; Zhang, Zai-Xuan

    2013-04-01

    Basic principles, development trends and applications status of distributed optical fiber Raman temperature sensor (DTS) are introduced. Performance parameters of DTS system include the sensing optical fiber length, temperature measurement uncertainty, spatial resolution and measurement time. These parameters have a certain correlation and it is difficult to improve them at the same time by single technology. So a variety of key techniques such as Raman amplification, pulse coding technique, Raman related dual-wavelength self-correction technique and embedding optical switching technique are researched to improve the performance of the DTS system. A 1 467 nm continuous laser is used as pump laser and the light source of DTS system (1 550 nm pulse laser) is amplified. When the length of sensing optical fiber is 50 km the Raman gain is about 17 dB. Raman gain can partially compensate the transmission loss of optical fiber, so that the sensing length can reach 50 km. In DTS system using pulse coding technique, pulse laser is coded by 211 bits loop encoder and correlation calculation is used to demodulate temperature. The encoded laser signal is related, whereas the noise is not relevant. So that signal-to-noise ratio (SNR) of DTS system can be improved significantly. The experiments are carried out in DTS system with single mode optical fiber and multimode optical fiber respectively. Temperature measurement uncertainty can all reach 1 degrees C. In DTS system using Raman related dual-wavelength self-correction technique, the wavelength difference of the two light sources must be one Raman frequency shift in optical fiber. For example, wavelength of the main laser is 1 550 nm and wavelength of the second laser must be 1 450 nm. Spatial resolution of DTS system is improved to 2 m by using dual-wavelength self-correction technique. Optical switch is embedded in DTS system, so that the temperature measurement channel multiply extended and the total length of the sensing

  10. Heat Transfer on a Flat Plate with Uniform and Step Temperature Distributions

    Science.gov (United States)

    Bahrami, Parviz A.

    2005-01-01

    Heat transfer associated with turbulent flow on a step-heated or cooled section of a flat plate at zero angle of attack with an insulated starting section was computationally modeled using the GASP Navier-Stokes code. The algebraic eddy viscosity model of Baldwin-Lomax and the turbulent two-equation models, the K- model and the Shear Stress Turbulent model (SST), were employed. The variations from uniformity of the imposed experimental temperature profile were incorporated in the computations. The computations yielded satisfactory agreement with the experimental results for all three models. The Baldwin- Lomax model showed the closest agreement in heat transfer, whereas the SST model was higher and the K-omega model was yet higher than the experiments. In addition to the step temperature distribution case, computations were also carried out for a uniformly heated or cooled plate. The SST model showed the closest agreement with the Von Karman analogy, whereas the K-omega model was higher and the Baldwin-Lomax was lower.

  11. Distributed optical fibre temperature measurements in a low dose rate radiation environment based on Rayleigh backscattering

    Science.gov (United States)

    Faustov, A.; Gussarov, A.; Wuilpart, M.; Fotiadi, A. A.; Liokumovich, L. B.; Kotov, O. I.; Zolotovskiy, I. O.; Tomashuk, A. L.; Deschoutheete, T.; Mégret, P.

    2012-04-01

    On-line monitoring of environmental conditions in nuclear facilities is becoming a more and more important problem. Standard electronic sensors are not the ideal solution due to radiation sensitivity and difficulties in installation of multiple sensors. In contrast, radiation-hard optical fibres can sustain very high radiation doses and also naturally offer multi-point or distributed monitoring of external perturbations. Multiple local electro-mechanical sensors can be replaced by just one measuring fibre. At present, there are over four hundred operational nuclear power plants (NPPs) in the world 1. Operating experience has shown that ineffective control of the ageing degradation of major NPP components can threaten plant safety and also plant life. Among those elements, cables are vital components of I&C systems in NPPs. To ensure their safe operation and predict remaining life, environmental monitoring is necessary. In particular, temperature and radiation dose are considered to be the two most important parameters. The aim of this paper is to assess experimentally the feasibility of optical fibre temperature measurements in a low doserate radiation environment, using a commercially available reflectometer based on Rayleigh backscattering. Four different fibres were installed in the Sub-Pile Room of the BR2 Material testing nuclear reactor in Mol, Belgium. This place is man-accessible during the reactor shut-down, allowing easy fibre installation. When the reactor operates, the dose-rates in the room are in a range 0.005-5 Gy/h with temperatures of 40-60 °C, depending on the location. Such a surrounding is not much different to some "hot" environments in NPPs, where I&C cables are located.

  12. What Limits the Distribution of Liriomyza huidobrensis and Its Congener Liriomyza sativae in Their Native Niche: When Temperature and Competition Affect Species' Distribution Range in Guatemala.

    Science.gov (United States)

    Rodríguez-Castañeda, G; MacVean, C; Cardona, C; Hof, A R

    2017-07-01

    Factors limiting distribution range for most species are generally unknown regardless of whether they are native or invasive. We studied factors that could enable or restrict the distribution of two cosmopolitan invasive leafminer fly species, Liriomyza huidobrensis (Blanchard) and Liriomyza sativae (Blanchard) in their native niche. In order to test which ecological and environmental factors affect leafminer distribution we conducted thermal tolerance assays, sampled along elevation gradients and modeled species distribution. Findings from the field and rearing chambers showed a physiological restriction due to high temperatures for L. huidobrensis at 28-29 °C, above which adult emergence is compromised. We also found that maximum temperatures below 22 °C, typical of tropical highlands, favored L. huidobrensis. L. sativae was found across a wider temperature range (i.e., from 21 to 36 °C) in Guatemala. Our finding of a physiological threshold in temperature for L. huidobrensis may enable us to predict its invasive risk when combined with the environmental conditions at horticultural ports of entry and the global agricultural landscape. Further, it strengthens our predictions on shifts in distribution of the leafminer fly under future climate. We also found a temperature mediated competitive exclusion interaction between the two herbivore species, where L. sativae occurred at temperatures < 22 °C only in the absence of L. huidobrensis. We show that parasitoids had a negative effect on the leafminer flies, which varied with host plant. Finally, we show the importance of taking a multiaspect approach when investigating what limits distribution and invasiveness of a species. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  13. Analysis on nondestructive temperature distribution of tire tread part in a running using infrared thermal vision camera

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Yeol; Yang, Dong Jo; Ma, Sang Dong [Mechanical Engineeering Division, Chosun University, Kwangju (Korea, Republic of); Park, Byoung Gu; Lee, Ju Wan [Kumho Industrial Tire Bussiness Unit, Seoul (Korea, Republic of)

    2001-11-15

    The experimental method which investigates validity of numerical simulation for wheeling tires has not developed until now. Separation of belt caused by sudden temperature increase is the most serious problem with wheeling tires. Actually, separation of belt is closely related with the life cycle and design of tires. It is important to investigate the temperature history of tires because sudden temperature increase on belt accelerates the thermal fatigue and then causes the destruction of bending area in the radial direction. Therefore, in the present study, finite element method (FEM) was used to obtain the accurate temperature distribution of tire. Its results were compared with experimental data acquired by infrared thermal camera.

  14. Generalisation of Levine's prediction for the distribution of freezing temperatures of droplets: a general singular model for ice nucleation

    Science.gov (United States)

    Sear, R. P.

    2013-07-01

    Models without an explicit time dependence, called singular models, are widely used for fitting the distribution of temperatures at which water droplets freeze. In 1950 Levine developed the original singular model. His key assumption was that each droplet contained many nucleation sites, and that freezing occurred due to the nucleation site with the highest freezing temperature. The fact that freezing occurs due to the maximum value out of a large number of nucleation temperatures, means that we can apply the results of what is called extreme-value statistics. This is the statistics of the extreme, i.e. maximum or minimum, value of a large number of random variables. Here we use the results of extreme-value statistics to show that we can generalise Levine's model to produce the most general singular model possible. We show that when a singular model is a good approximation, the distribution of freezing temperatures should always be given by what is called the generalised extreme-value distribution. In addition, we also show that the distribution of freezing temperatures for droplets of one size, can be used to make predictions for the scaling of the median nucleation temperature with droplet size, and vice versa.

  15. Sympatric spawning but allopatric distribution of Anguilla japonica and Anguilla marmorata: temperature- and oceanic current-dependent sieving.

    Directory of Open Access Journals (Sweden)

    Yu-San Han

    Full Text Available Anguilla japonica and Anguilla marmorata share overlapping spawning sites, similar drifting routes, and comparable larval durations. However, they exhibit allopatric geographical distributions in East Asia. To clarify this ecological discrepancy, glass eels from estuaries in Taiwan, the Philippines, Indonesia, and China were collected monthly, and the survival rate of A. marmorata under varying water salinities and temperatures was examined. The composition ratio of these 2 eel species showed a significant latitude cline, matching the 24 °C sea surface temperature isotherm in winter. Both species had opposing temperature preferences for recruitment. A. marmorata prefer high water temperatures and die at low water temperatures. In contrast, A. japonica can endure low water temperatures, but their recruitment is inhibited by high water temperatures. Thus, A. japonica glass eels, which mainly spawn in summer, are preferably recruited to Taiwan, China, Korea, and Japan by the Kuroshio and its branch waters in winter. Meanwhile, A. marmorata glass eels, which spawn throughout the year, are mostly screened out in East Asia in areas with low-temperature coastal waters in winter. During summer, the strong northward currents from the South China Sea and Changjiang River discharge markedly block the Kuroshio invasion and thus restrict the approach of A. marmorata glass eels to the coasts of China and Korea. The differences in the preferences of the recruitment temperature for glass eels combined with the availability of oceanic currents shape the real geographic distribution of Anguilla japonica and Anguilla marmorata, making them "temperate" and "tropical" eels, respectively.

  16. About the Influence of the initial Atmosphere on the Earth's Temperature Distribution during it's Accumulation

    Science.gov (United States)

    Khachay, Y.; Anfilogov, V.; Antipin, A.

    2012-04-01

    We suggested a new model for accumulation of planets of the Earth's group [1], which is based on the contemporary results of geochemical analyses, which allow to obtain the concentrations of short living radioactive isotopes of 26Al in the matter of the pre planet cloud [2]. With use of that data new estimations of temperature distribution into the growing planetary pre planetary bodies into the Earth's nebular zone had been obtained. For the further Earth's temperature evolution, as it had been showed by the results of numerical modeling, the main role belongs to the temperature distribution in the forming Earth's core and the existence of a dense and transparent atmosphere. The shadow influence of the initial atmosphere had been researched in the paper [3]. We shall give the main consideration to these problems in that paper. It had been shown in [1], that on the earliest accumulation stage the heat release by the decay of 26Al it is sufficient for forming a central melted area and solid relatively thin mainly silicate upper envelope in the pre planetary body, with dimensions, larger than (50-100) km. The impact velocities on that stage are yet not large, therefore by the bodies impact with these or near dimensions liquid and mainly iron their parts merge, but the masses of the pre planetary bodies are not sufficient to gravitational keeping of silicate parts of the cold solid envelope. On that stage they remain into the nebular zone of the proto planet and the mechanism of matter differentiation for the future core and mantle reservoirs realizes. The process takes place yet in small bodies and is in time to finish during less than 10 million years. The next forming of the core and mantle structure continues according to all known estimations about 100 million years. Because of the merging of inner liquid parts of impacting bodies occur due to inelastic impact, the main part of potential energy transforms into heat. That continues up to that time when the iron

  17. Applicability of Temperature Distribution for Estimation of Medium Constants Using Temperature Rise due to Absorption of Ultrasound

    Science.gov (United States)

    Yamaya, Chiaki; Inoue, Hiroshi

    2008-05-01

    The analysis of temperature rise due to the absorption of ultrasound is important for the clarification of the effect of ultrasound waves and the estimation of medium constants. The thermal behavior of ultrasound is used not only for thermotherapy but also in measurement techniques. The estimation of a medium constant becomes possible by analyzing the temperature rise because the temperature change of the medium is particular to each medium. The purpose of this research is to establish a method of estimating medium constants and to develop a numerical simulation method that can be applied to the estimation of medium constants. We elucidated the requirements under which the simulation result corresponds to the experimental result. Good agreement between the experimental and simulation results is shown in this paper, and the validity of this method is described.

  18. Immunolocalization and distribution of functional temperature-sensitive TRP channels in salivary glands.

    Science.gov (United States)

    Sobhan, Ubaidus; Sato, Masaki; Shinomiya, Takashi; Okubo, Migiwa; Tsumura, Maki; Muramatsu, Takashi; Kawaguchi, Mitsuru; Tazaki, Masakazu; Shibukawa, Yoshiyuki

    2013-11-01

    Transient receptor potential (TRP) cation channels are unique cellular sensors involved in multiple cellular functions. Their role in salivary secretion remains to be elucidated. The expression and localization of temperature-sensitive TRP channels in salivary (submandibular, sublingual and parotid) glands were analyzed by immunohistochemistry and quantitative real-time reverse transcription plus the polymerase chain reaction (RT-PCR). The effects of various TRP channel agonists on carbachol (CCh)-induced salivary secretion in the submandibular gland and on the intracellular Ca(2+) concentration ([Ca(2+)]i) in a submandibular epithelial cell line were also investigated. Immunohistochemistry revealed the expression of TRP-melastatin subfamily member 8 (TRPM8) and TRP-ankyrin subfamily member 1 (TRPA1) in myoepithelial, acinar and ductal cells in the sublingual, submandibular and parotid glands. In addition, TRP-vanilloid subfamily member 1 (TRPV1), TRPV3 and TRPV4 were also expressed in myoepithelial, acinar and ductal cells in all three types of gland. Quantitative real-time RT-PCR results demonstrated the mRNA expression of TRPV1, TRPV3, TRPV4, TRPM8 and TRPA1 in acinar and ductal cells in these salivary glands. Perfusion of the entire submandibular gland with the TRPV1 agonist capsaicin (1 μM) via the submandibular artery significantly increased CCh-induced salivation, whereas perfusion with TRPM8 and TRPA1 agonists (0.5 μM WS12 and 100 μM allyl isothiocyanate) decreased it. Application of agonists for each of the thermosensitive TRP channels increased [Ca(2+)]i in a submandibular epithelial cell line. These results indicate that temperature-sensitive TRP channels are localized and distributed in acinar, ductal and myoepithelial cells in salivary glands and that they play a functional role in the regulation and/or modulation of salivary secretion.

  19. Effect of Machine Smoking Intensity and Filter Ventilation Level on Gas-Phase Temperature Distribution Inside a Burning Cigarette

    Directory of Open Access Journals (Sweden)

    Li Bin

    2015-01-01

    Full Text Available Accurate measurements of cigarette coal temperature are essential to understand the thermophysical and thermo-chemical processes in a burning cigarette. The last system-atic studies of cigarette burning temperature measurements were conducted in the mid-1970s. Contemporary cigarettes have evolved in design features and multiple standard machine-smoking regimes have also become available, hence there is a need to re-examine cigarette combustion. In this work, we performed systematic measurements on gas-phase temperature of burning cigarettes using an improved fine thermocouple technique. The effects of machine-smoking parameters (puff volume and puff duration and filter ventilation levels were studied with high spatial and time resolutions during single puffs. The experimental results were presented in a number of differ-ent ways to highlight the dynamic and complex thermal processes inside a burning coal. A mathematical distribution equation was used to fit the experimental temperature data. Extracting and plotting the distribution parameters against puffing time revealed complex temperature profiles under different coal volume as a function of puffing intensities or filter ventilation levels. By dividing the coal volume prior to puffing into three temperature ranges (low-temperature from 200 to 400 °C, medium-temperature from 400 to 600 °C, and high-temperature volume above 600 °C by following their development at different smoking regimes, useful mechanistic details were obtained. Finally, direct visualisation of the gas-phase temperature through detailed temperature and temperature gradient contour maps provided further insights into the complex thermo-physics of the burning coal. [Beitr. Tabakforsch. Int. 26 (2014 191-203

  20. Winter temperatures decrease swimming performance and limit distributions of tropical damselfishes.

    Science.gov (United States)

    Johansen, Jacob L; Steffensen, John F; Jones, Geoffrey P

    2015-01-01

    Coral reefs within 10° of the equator generally experience ≤3°C seasonal variation in water temperature. Ectotherms that have evolved in these conditions are therefore expected to exhibit narrow thermal optima and be very sensitive to the greater thermal variability (>6°C) experienced at higher latitudes (≥10°N/S). The impact of increased thermal variability on the fitness and distribution of thermally sensitive reef ectotherms is currently unknown. Here, we examine site-attached planktivorous coral reef damselfishes that rely on their physiological capacity to swim and forage in the water column year round. We focus on 10 species spanning four evolutionarily distinct genera from a region of the Great Barrier Reef that experiences ≥6°C difference between seasons. Four ecologically important indicators showed reduced performance during the winter low (23°C) compared with the summer peak (29°C), with effect sizes varying among species and genera, as follows: (i) the energy available for activity (aerobic scope) was reduced by 35-45% in five species and three genera; (ii) the energetically most efficient swimming speed was reduced by 17% across all species; and (iii) the maximal critical swimming speed and (iv) the gait transition speed (the swimming mode predominantly used for foraging) were reduced by 16-42% in six species spanning all four genera. Comparisons with field surveys within and across latitudes showed that species-specific distributions were strongly correlated with these performance indicators. Species occupy habitats where they can swim faster than prevailing habitat currents year round, and >95% of individuals were observed only in habitats where the gait transition speed can be maintained at or above habitat currents. Thermal fluctuation at higher latitudes appears to reduce performance as well as the possible distribution of species and genera within and among coral reef habitats. Ultimately, thermal variability across latitudes may

  1. Large reptiles and cold temperatures: Do extreme cold spells set distributional limits for tropical reptiles in Florida?

    Science.gov (United States)

    Mazzotti, Frank J.; Cherkiss, Michael S.; Parry, Mark; Beauchamp, Jeff; Rochford, Mike; Smith, Brian J.; Hart, Kristen M.; Brandt, Laura A.

    2016-01-01

    Distributional limits of many tropical species in Florida are ultimately determined by tolerance to low temperature. An unprecedented cold spell during 2–11 January 2010, in South Florida provided an opportunity to compare the responses of tropical American crocodiles with warm-temperate American alligators and to compare the responses of nonnative Burmese pythons with native warm-temperate snakes exposed to prolonged cold temperatures. After the January 2010 cold spell, a record number of American crocodiles (n = 151) and Burmese pythons (n = 36) were found dead. In contrast, no American alligators and no native snakes were found dead. American alligators and American crocodiles behaved differently during the cold spell. American alligators stopped basking and retreated to warmer water. American crocodiles apparently continued to bask during extreme cold temperatures resulting in lethal body temperatures. The mortality of Burmese pythons compared to the absence of mortality for native snakes suggests that the current population of Burmese pythons in the Everglades is less tolerant of cold temperatures than native snakes. Burmese pythons introduced from other parts of their native range may be more tolerant of cold temperatures. We documented the direct effects of cold temperatures on crocodiles and pythons; however, evidence of long-term effects of cold temperature on their populations within their established ranges remains lacking. Mortality of crocodiles and pythons outside of their current established range may be more important in setting distributional limits.

  2. Cryogenic temperature monitoring in superconducting power transmission line at CERN with hybrid multi-point and distributed fiber optic sensors

    Science.gov (United States)

    Chiuchiolo, A.; Palmieri, L.; Consales, M.; Giordano, M.; Bajas, H.; Galtarossa, A.; Bajko, M.; Cusano, A.

    2015-09-01

    Distributed and multi-point fiber-optic based measurements of cryogenic temperature down to 30 K are presented. Measurements have been performed along the cryostat of a superconducting power transmission line, which is currently being tested at CERN over a length of about 20 m. Multi-point measurements were based on two kinds of FBG with different coatings (epoxy and PMMA). In addition, distributed measurements exploited optical frequency-domain reflectometry to analyze the Rayleigh scattering along two concatenated fibers with different coatings (acrylate and polyimmide). Results confirm the viability of these approaches to monitor cryogenic temperatures along a superconducting transmission line.

  3. Influence of the Pyrolysis Temperature on Sewage Sludge Product Distribution, Bio-Oil, and Char Properties

    DEFF Research Database (Denmark)

    Trinh, Ngoc Trung; Jensen, Peter Arendt; Dam-Johansen, Kim

    2013-01-01

    centrifugel reactor (PCR) at 475, 525, 575, and 625 °C. Maxima of both organic oil yield of 41 wt % on a dry ash free feedstock basis (daf) and a sludge oil energy recovery of 50% were obtained at 575 °C. The water-insoluble fraction, molecular-weight distribution, higher heating value (HHV), and thermal......Fast pyrolysis may be used for sewage sludge treatment with the advantages of a significant reduction of solid waste volume and production of a bio-oil that can be used as fuel. A study of the influence of the reaction temperature on sewage sludge pyrolysis has been carried out using a pyrolysis...... of 392 g/mol, and metal concentrations lower than 0.14 wt % on a dry basis (db). Less optimal oil properties with respect to industrial applications were observed for oil samples obtained at 475 and 625 °C. Char properties of the 575 °C sample were an ash content of 81 wt % and a HHV of 6.1 MJ/kg db...

  4. Cryogenic-temperature profiling of high-power superconducting lines using local and distributed optical-fiber sensors

    OpenAIRE

    Chiuchiolo, Antonella; Palmieri, Luca; Consales, Marco; Giordano, Michele; Borriello, Anna; Bajas, Hugues; Galtarossa, Andrea; Bajko, Marta; Cusano, Andrea

    2015-01-01

    This contribution presents distributed and multi-point fiber-optic monitoring of cryogenic temperatures along a superconducting power transmission line down to 30 K and over 20 m distance. Multi-point measurements were conducted using fiber Bragg gratings sensors coated with two different functional overlays (epoxy and PMMA) demonstrating cryogenic operation in the range 300 – 4.2 K. Distributed measurements exploited optical frequency-domain reflectometry to analyze the Rayleigh scattering a...

  5. Modelling the Effects of Temperature and Cloud Cover Change on Mountain Permafrost Distribution, Northwest Canada

    Science.gov (United States)

    Bonnaventure, P. P.; Lewkowicz, A. G.

    2008-12-01

    Spatial models of permafrost probability for three study areas in northwest Canada between 59°N and 61°N were perturbed to investigate climate change impacts. The models are empirical-statistical in nature, based on basal temperature of snow (BTS) measurements in winter, and summer ground-truthing of the presence or absence of frozen ground. Predictions of BTS values are made using independent variables of elevation and potential incoming solar radiation (PISR), both derived from a 30 m DEM. These are then transformed into the probability of the presence or absence of permafrost through logistic regression. Under present climate conditions, permafrost percentages in the study areas are 44% for Haines Summit, British Columbia, 38% for Wolf Creek, Yukon, and 69% for part of the Ruby Range, Yukon (Bonnaventure and Lewkowicz, 2008; Lewkowicz and Bonaventure, 2008). Scenarios of air temperature change from -2K (approximating Neoglacial conditions) to +5K (possible within the next century according to the IPCC) were examined for the three sites. Manipulations were carried out by lowering or raising the terrain within the DEM assuming a mean environmental lapse rate of 6.5K/km. Under a -2K scenario, permafrost extent increased by 22-43% in the three study areas. Under a +5K warming, permafrost essentially disappeared in Haines Summit and Wolf Creek, while in the Ruby Range less than 12% of the area remained perennially frozen. It should be emphasized that these model predictions are for equilibrium conditions which might not be attained for several decades or longer in areas of cold permafrost. Cloud cover changes of -10% to +10% were examined through adjusting the partitioning of direct beam and diffuse radiation in the PISR input field. Changes to permafrost extent were small, ranging from -2% to -4% for greater cloudiness with changes of the opposite magnitude for less cloud. The results show that air temperature change has a much greater potential to affect mountain

  6. A Review of Hybrid Fiber-Optic Distributed Simultaneous Vibration and Temperature Sensing Technology and Its Geophysical Applications

    Directory of Open Access Journals (Sweden)

    Khalid Miah

    2017-11-01

    Full Text Available Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS and distributed temperature sensing (DTS systems have been developed for various applications with varied spatial resolution, and spectral and sensing range. Rayleigh scattering-based phase optical time domain reflectometry (OTDR for vibration and Raman/Brillouin scattering-based OTDR for temperature and strain measurements have been developed over the past two decades. The key challenge has been to find a methodology that would enable the physical parameters to be determined at any point along the sensing fiber with high sensitivity and spatial resolution, yet within acceptable frequency range for dynamic vibration, and temperature detection. There are many applications, especially in geophysical and mining engineering where simultaneous measurements of vibration and temperature are essential. In this article, recent developments of different hybrid systems for simultaneous vibration, temperature and strain measurements are analyzed based on their operation principles and performance. Then, challenges and limitations of the systems are highlighted for geophysical applications.

  7. Microbial Distributions Across pH, Temperature, and Temporal Conditions in Hot Springs of Tengchong, Yunnan Providence, China

    Science.gov (United States)

    Briggs, B. R.; Brodie, E. L.; Tom, L. M.; Dong, H.; Jiang, H.; Huang, Q.; Wang, S.; Hou, W.; Wu, G.; Peacock, J. P.; Huang, L.; Zhi, X.; Li, W.; Dodsworth, J. A.; Hedlund, B. P.; Zhang, C.

    2012-12-01

    Terrestrial geothermal springs contain a rich microbial diversity that has gained attention because of their potential analogue to early Earth habitats and biotechnological applications. Despite this attention, the distribution of thermophiles and the mechanisms that underlie those distributions have not been fully elucidated. The objective of this study was to identify microorganisms in hot springs in Tengchong, China, and to compare microbial composition across temperature, pH, and temporal gradients. The PhyloChip microarray detected 79 bacterial and 20 archaeal phyla. Canonical correspondence analysis was used to link the detected taxa to their distributions across temperature and pH conditions. The distributions of phyla (e.g. Aquificae, Crenarchaeota) identified by this analysis were consistent with previous culture-dependent and independent methods and provides new knowledge on the distributions of phyla that do not contain cultured representatives (e.g. candidate phyla OP11, GoM161, etc.). For example, low pH (85o C). Furthermore, temporal changes in the community composition were detected, with the rainy season containing higher diversity but lower relative abundance of archaea. These results expand our understanding of the distributions of hot spring microorganisms seasonally, and across environmental gradients such as temperature and pH.

  8. The effect of initial diameter on rainbow positions and temperature distributions of burning single-component n-Alkane droplets

    Science.gov (United States)

    Li, Haipeng; Rosebrock, Christopher D.; Wriedt, Thomas; Mädler, Lutz

    2017-07-01

    The effect of initial diameter on rainbow positions of burning single-component n-Alkane droplets has been investigated experimentally for the first time. The droplet diameters are determined with interferometric laser imaging for droplet sizing, and the temperature distributions inside burning droplets are assessed by rainbow refractometry together with a droplet combustion model developed in our previous work. Temperature gradients inside burning droplets influence rainbow positions, which first make the experimental scattering angles of the rainbow maxima increase and then decrease. The variations of initial diameter lead to variations of both experimental rainbow maxima and simulated temperature of n-Alkane burning droplets.

  9. Thermo-economic optimization of secondary distribution network of low temperature district heating network under local conditions of South Korea

    DEFF Research Database (Denmark)

    Park, Byung Sik; Imran, Muhammad; Hoon, Im-Yong

    2017-01-01

    A secondary distribution network of a low temperature district heating system is designed and optimized for a residential apartment complex under the local conditions of South Korea in the TRNSYS simulation environment. The residential apartment complex is a typical example of Korean residential...... °C, area of heat exchanger is increased by 68.2%, pumping power is also increased by 9.8% and heat loss is reduced by 15.6%. These results correspond to a temperature difference of 20 °C, the standard temperature difference in South Korea residential heating system. Economic assessment...

  10. Computer program MCAP-TOSS calculates steady-state fluid dynamics of coolant in parallel channels and temperature distribution in surrounding heat-generating solid

    Science.gov (United States)

    Lee, A. Y.

    1967-01-01

    Computer program calculates the steady state fluid distribution, temperature rise, and pressure drop of a coolant, the material temperature distribution of a heat generating solid, and the heat flux distributions at the fluid-solid interfaces. It performs the necessary iterations automatically within the computer, in one machine run.

  11. Effects of temperature on stress corrosion cracking behavior of stainless steel and outer oxide distribution in cracks due to exposure to high-temperature water containing hydrogen peroxide

    Science.gov (United States)

    Nakano, Junichi; Sato, Tomonori; Kato, Chiaki; Yamamoto, Masahiro; Tsukada, Takashi; Kaji, Yoshiyuki

    2014-01-01

    Cracking growth tests were conducted in high-temperature water containing hydrogen peroxide (H2O2) at 561-423 K to evaluate the effects of H2O2 on stress corrosion cracking (SCC) of stainless steel (SS) at temperature lower than the boiling water reactor (BWR) operating temperature. Small compact tension (CT) specimens were prepared from thermally sensitized type 304 SS. Despite the observation of only a small portion intergranular SCC (IGSCC) near the side groove of the CT specimen at 561 K in high-temperature water containing 100 ppb H2O2, the IGSCC area expanded to the central region of the CT specimens at 423 and 453 K. Effects of H2O2 on SCC appeared intensely at temperature lower than the BWR operating temperature because of a reduction in the thermal decomposition of H2O2. To estimate the environment in the cracks, outer oxide distribution on the fracture surface and the fatigue pre-crack were examined by laser Raman spectroscopy and thermal equilibrium calculation was performed.

  12. A new procedure for the determination of distillation temperature distribution of high-boiling petroleum products and fractions.

    Science.gov (United States)

    Boczkaj, Grzegorz; Przyjazny, Andrzej; Kamiński, Marian

    2011-03-01

    The distribution of distillation temperatures of liquid and semi-fluid products, including petroleum fractions and products, is an important process and practical parameter. It provides information on properties of crude oil and content of particular fractions, classified on the basis of their boiling points, as well as the optimum conditions of atmospheric or vacuum distillation. At present, the distribution of distillation temperatures is often investigated by simulated distillation (SIMDIS) using capillary gas chromatography (CGC) with a short capillary column with polydimethylsiloxane as the stationary phase. This paper presents the results of investigations on the possibility of replacing currently used CGC columns for SIMDIS with a deactivated fused silica capillary tube without any stationary phase. The SIMDIS technique making use of such an empty fused silica column allows a considerable lowering of elution temperature of the analytes, which results in a decrease of the final oven temperature while ensuring a complete separation of the mixture. This eliminates the possibility of decomposition of less thermally stable mixture components and bleeding of the stationary phase which would result in an increase of the detector signal. It also improves the stability of the baseline, which is especially important in the determination of the end point of elution, which is the basis for finding the final temperature of distillation. This is the key parameter for the safety process of hydrocracking, where an excessively high final temperature of distillation of a batch can result in serious damage to an expensive catalyst bed. This paper compares the distribution of distillation temperatures of the fraction from vacuum distillation of petroleum obtained using SIMDIS with that obtained by the proposed procedure. A good agreement between the two procedures was observed. In addition, typical values of elution temperatures of n-paraffin standards obtained by the two

  13. Can satellite land surface temperature data be used similarly to ground discharge measurements for distributed hydrological model calibration?

    NARCIS (Netherlands)

    Corbari, C.; Mancini, M.; Li, J.; Su, Zhongbo

    2015-01-01

    This study proposes a new methodology for the calibration of distributed hydrological models at basin scale by constraining an internal model variable using satellite data of land surface temperature. The model algorithm solves the system of energy and mass balances in terms of a representative

  14. An investigation on the temperature distribution in thinwalled cylinders during welding up of wear-proof layers

    NARCIS (Netherlands)

    Boshuisen, D.C.; van Wijngaarden, L.

    1975-01-01

    This paper describes an attempt to find the space and timewise temperature-distribution in a thinwalled cylinder during building up by welding several layers on top of each other. From the exact one-dimensional solution (thin ring) we found an approximate solution for the cylinder. The approximation

  15. Sensitivity of Effective Thermal Conductivity Models on Temperature Distribution of Heterogeneous media of Fully Ceramic Micro-encapsulated Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyuk; Kim, S. J.; Hwang, D. H.; Lee, W. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    A TRISO fuel particle consists of a spherical fuel kernel with four coating layers such as buffer, Inner PyC, SiC, Outer PyC. A FCM fuel pellet contains randomly distributed 36 in a SiC matrix. Such heterogeneous and complicated structure adds difficulty in calculating the realistic temperature distributions in the FCM fuel. General practice is to use a homogenized model using an effective thermal conductivity model. For these difficulties, a realistic temperature profile on a heterogeneous media is generally calculated on a homogenization model. In this study, we investigate the influence of effective thermal conductivity models on the temperature distribution in a heterogeneous media on FCM fuel pellet. Feasibility of Single Domain Homogenization(SDH) model has been estimated for a heterogeneous media like FCM fuel. From the study, it is found that the effective thermal conductivity is a crucial parameter in analyzing the temperature distributions in SDH approach. Sensitivity of the effective thermal conductivity models indicates that the Maxwell model or an optimized conductivity models are adequate in modeling the heterogeneous FCM fuel.

  16. Distribution of typical freshwater bacterial groups is associated with pH, temperature and lake water retention time

    NARCIS (Netherlands)

    Lindström, E.S.; Kamst-van Agterveld, M.P.; Zwart, G.

    2005-01-01

    The distribution of 15 typical freshwater bacterial groups in 15 diverse lakes in northern Europe was investigated using reverse line blot hybridization. Statistical evaluation of the data in relation to the characteristics of the lakes showed that pH, temperature, and the theoretical hydrological

  17. A measurement plan of gas concentration and temperature distribution reconstruction based on the tunable diode laser absorption tomography

    Science.gov (United States)

    Liu, Zhao-ran; Jin, Xing; Wang, Guang-yu; Song, Jun-ling

    2014-11-01

    Based on the tunable diode laser absorption tomography, gas concentration and temperature two-dimensional distribution reconstruction is realized using algebraic iterative reconstruction technique (ART). A measurement plan is proposed based on the beam splitting lens, and the corresponding beam arrangement is put forward. The beam splitting lenses are used in the plan to making one laser beam cross the measurement area repeatedly. Thus can raise the utilization ratio of laser beam and simplify the structure of measurement platform. A model for H2O vapor concentration and temperature distribution is assumed, and numerical simulation is utilized using two absorption transitions. The feasibility of the measurement plan is proved by the simulation experiment. The influences of initial beam angle, the number of beams and grids on the reconstructed results are analyzed numerically. A concept of phantom description method using in simulation experiments is proposed in order to getting closer to the real experiments. The phantom description method is used in the numerical simulation to evaluating concentration and temperature field reconstruction. Through this method, expected data is sampled from initial data, and reconstructed result is obtained by interpolation. The influence of random errors in projections on distribution reconstruction is also analyzed. The measurement plan can reconstruct the gas concentration and temperature distribution with a simplified measurement platform using beam splitting lenses. The feasibility of the phantom description method is also proved by the simulation experiment.

  18. A PC Simulation of Heat Transfer and Temperature Distribution in a Circulating Wellbore.

    Science.gov (United States)

    1987-11-19

    the wellbore using the equations of Ramey ............ 85 Fig. 32 - Temperature during drilling interval versus depth for construction of bottomhole ...pressure loss calculations .................... 90 Fig. 36 - Calculated versus logged bottomhole temperature . . . 94 Fig. B-1 - Diagram for the...even more important. This is because we are experiencing ever increasing bottomhole temperatures . To design a good cement job, we must have the most

  19. Neutronic analysis stochastic distribution of fuel particles in Very High Temperature Gas-Cooled Reactors

    Science.gov (United States)

    Ji, Wei

    The Very High Temperature Gas-Cooled Reactor (VHTR) is a promising candidate for Generation IV designs due to its inherent safety, efficiency, and its proliferation-resistant and waste minimizing fuel cycle. A number of these advantages stem from its unique fuel design, consisting of a stochastic mixture of tiny (0.78mm diameter) microspheres with multiple coatings. However, the microsphere fuel regions represent point absorbers for resonance energy neutrons, resulting in the "double heterogeneity" for particle fuel. Special care must be taken to analyze this fuel in order to predict the spatial and spectral dependence of the neutron population in a steady-state reactor configuration. The challenges are considerable and resist brute force computation: there are over 1010 microspheres in a typical reactor configuration, with no hope of identifying individual microspheres in this stochastic mixture. Moreover, when individual microspheres "deplete" (e.g., burn the fissile isotope U-235 or transmute the fertile isotope U-238 (eventually) to Pu-239), the stochastic time-dependent nature of the depletion compounds the difficulty posed by the stochastic spatial mixture of the fuel, resulting in a prohibitive computational challenge. The goal of this research is to develop a methodology to analyze particle fuel randomly distributed in the reactor, accounting for the kernel absorptions as well as the stochastic depletion of the fuel mixture. This Ph.D. dissertation will address these challenges by developing a methodology for analyzing particle fuel that will be accurate enough to properly model stochastic particle fuel in both static and time-dependent configurations and yet be efficient enough to be used for routine analyses. This effort includes creation of a new physical model, development of a simulation algorithm, and application to real reactor configurations.

  20. Temperature Distribution and Thermal Performance of an Aquifer Thermal Energy Storage System

    Science.gov (United States)

    Ganguly, Sayantan

    2017-04-01

    Energy conservation and storage has become very crucial to make use of excess energy during times of future demand. Excess thermal energy can be captured and stored in aquifers and this technique is termed as Aquifer Thermal Energy Storage (ATES). Storing seasonal thermal energy in water by injecting it into subsurface and extracting in time of demand is the principle of an ATES system. Using ATES systems leads to energy savings, reduces the dependency on fossil fuels and thus leads to reduction in greenhouse gas emission. This study numerically models an ATES system to store seasonal thermal energy and evaluates the performance of it. A 3D thermo-hydrogeological numerical model for a confined ATES system is presented in this study. The model includes heat transport processes of advection, conduction and heat loss to confining rock media. The model also takes into account regional groundwater flow in the aquifer, geothermal gradient and anisotropy in the aquifer. Results show that thermal injection into the aquifer results in the generation of a thermal-front which grows in size with time. Premature thermal-breakthrough causes thermal interference in the system when the thermal-front reaches the production well and consequences in the fall of system performance and hence should be avoided. This study models the transient temperature distribution in the aquifer for different flow and geological conditions. This may be effectively used in designing an efficient ATES project by ensuring safety from thermal-breakthrough while catering to the energy demand. Based on the model results a safe well spacing is proposed. The thermal energy discharged by the system is determined and strategy to avoid the premature thermal-breakthrough in critical cases is discussed. The present numerical model is applied to simulate an experimental field study which is found to approximate the field results quite well.

  1. Conditional probability distribution (CPD) method in temperature based death time estimation: Error propagation analysis.

    Science.gov (United States)

    Hubig, Michael; Muggenthaler, Holger; Mall, Gita

    2014-05-01

    Bayesian estimation applied to temperature based death time estimation was recently introduced as conditional probability distribution or CPD-method by Biermann and Potente. The CPD-method is useful, if there is external information that sets the boundaries of the true death time interval (victim last seen alive and found dead). CPD allows computation of probabilities for small time intervals of interest (e.g. no-alibi intervals of suspects) within the large true death time interval. In the light of the importance of the CPD for conviction or acquittal of suspects the present study identifies a potential error source. Deviations in death time estimates will cause errors in the CPD-computed probabilities. We derive formulae to quantify the CPD error as a function of input error. Moreover we observed the paradox, that in cases, in which the small no-alibi time interval is located at the boundary of the true death time interval, adjacent to the erroneous death time estimate, CPD-computed probabilities for that small no-alibi interval will increase with increasing input deviation, else the CPD-computed probabilities will decrease. We therefore advise not to use CPD if there is an indication of an error or a contra-empirical deviation in the death time estimates, that is especially, if the death time estimates fall out of the true death time interval, even if the 95%-confidence intervals of the estimate still overlap the true death time interval. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Station for spatially distributed measurements of soil moisture and ambient temperature

    Science.gov (United States)

    Jankovec, Jakub; Šanda, Martin; Haase, Tomáš; Sněhota, Michal; Wild, Jan

    2013-04-01

    control (e.g. optimized irrigation) by the end of 2013. User selected regimes of scanning in the field standalone model is 1,5 or 15 minutes for soil moisture and 1, 5, 10 or 15 minutes for the temperature (in their practical combinations) with a battery and datastorage lifetime ranging 1 - 10 years. Basic station diagnostics is recorded daily, comprehensive check is performed monthly. The TMS2 undergoes calibration on sets of soils. Disturbed and packed cylindrical soil samples (approx. 20 liter) were subject to forced bottom air ventilation to distribute the moisture evenly along vertical axis during drying the sample with increased intensity. Database of soil-specific calibration curves is being built for various soil samples. TMS2 station has been calibrated for soil materials: sandy loam, quartz sand and peat. Calibration on selected undisturbed 7 liter samples, previously CT scanned for correct sensor placement, is in the progress. Temperature and salinity influence on the soil moisture results in drift of 0.05%/°C and 7%/(in full range of 0 to 10 miliSiemens/cm) and additional 2%/(in the range of 10 to 20 miliSiemens/cm) as found in 100% moisture solution. Extended testing of TMS1 generation, predecessor of current design, is successfully performed in variety of field locations (central Europe, central Africa, Himalaya region). Results of long-term measurement at hundreds of localities are successfully used for i) evaluation of species-specific environmental requirements (for different species of plants, bryophytes and fungi) and ii) extrapolation of microclimatic conditions over large areas of rugged sandstone relief with assistance of accurate, LiDAR based, digital terrain model. TMS1 units are e.g. also applied for continuous measurement of temperature and moisture of coarse woody debris, which serves as an important substrate for establishment and growth of seedlings and is thus crucial for natural regeneration of many forest ecosystems. The research is

  3. Temperature Distribution and Thermal Deformation of the Crystallization Roller Based on the Direct Thermal-Structural Coupling Method

    Science.gov (United States)

    Pan, Liping; He, Zhu; Li, Baokuan; Zhou, Kun; Sun, Ke

    2017-03-01

    The temperature distribution and the thermal deformation of the crystallization roller have a significant effect on the forming process of the thin steel strip. Finite element analysis has been used to simulate the temperature distribution and the thermal deformation in a crystallization roller through the direct thermal-structural coupling analysis method. Various parameters, such as different rotational velocities, diverse locations of cooling water pipes, and typical velocities of cooling water have been systematically investigated. It is found that the temperature and the equivalent stress of the outer surface reach the steady state after 30 s of rotations, and they are influenced remarkably by the factors of rotational velocity and cooling water pipe depth. Meanwhile, the radial displacement approaches the steady state after 300 s of revolutions and is significantly affected by the cooling water velocity.

  4. Upward ant distribution shift corresponds with minimum, not maximum, temperature tolerance

    Science.gov (United States)

    Robert J. Warren; Lacy. Chick

    2013-01-01

    Rapid climate change may prompt species distribution shifts upward and poleward, but species movement in itself is not sufficient to establish climate causation. Other dynamics, such as disturbance history, may prompt species distribution shifts resembling those expected from rapid climate change. Links between species distributions, regional climate trends and...

  5. Land surface temperature representativeness in a heterogeneous area through a distributed energy-water balance model and remote sensing data

    Directory of Open Access Journals (Sweden)

    C. Corbari

    2010-10-01

    Full Text Available Land surface temperature is the link between soil-vegetation-atmosphere fluxes and soil water content through the energy water balance. This paper analyses the representativeness of land surface temperature (LST for a distributed hydrological water balance model (FEST-EWB using LST from AHS (airborne hyperspectral scanner, with a spatial resolution between 2–4 m, LST from MODIS, with a spatial resolution of 1000 m, and thermal infrared radiometric ground measurements that are compared with the representative equilibrium temperature that closes the energy balance equation in the distributed hydrological model.

    Diurnal and nocturnal images are analyzed due to the non stable behaviour of the thermodynamic temperature and to the non linear effects induced by spatial heterogeneity.

    Spatial autocorrelation and scale of fluctuation of land surface temperature from FEST-EWB and AHS are analysed at different aggregation areas to better understand the scale of representativeness of land surface temperature in a hydrological process.

    The study site is the agricultural area of Barrax (Spain that is a heterogeneous area with a patchwork of irrigated and non irrigated vegetated fields and bare soil. The used data set was collected during a field campaign from 10 to 15 July 2005 in the framework of the SEN2FLEX project.

  6. An Approach for the Visualization of Temperature Distribution in Tissues According to Changes in Ultrasonic Backscattered Energy

    Directory of Open Access Journals (Sweden)

    Jingjing Xia

    2013-01-01

    Full Text Available Previous studies developed ultrasound temperature-imaging methods based on changes in backscattered energy (CBE to monitor variations in temperature during hyperthermia. In conventional CBE imaging, tracking and compensation of the echo shift due to temperature increase need to be done. Moreover, the CBE image does not enable visualization of the temperature distribution in tissues during nonuniform heating, which limits its clinical application in guidance of tissue ablation treatment. In this study, we investigated a CBE imaging method based on the sliding window technique and the polynomial approximation of the integrated CBE (ICBEpa image to overcome the difficulties of conventional CBE imaging. We conducted experiments with tissue samples of pork tenderloin ablated by microwave irradiation to validate the feasibility of the proposed method. During ablation, the raw backscattered signals were acquired using an ultrasound scanner for B-mode and ICBEpa imaging. The experimental results showed that the proposed ICBEpa image can visualize the temperature distribution in a tissue with a very good contrast. Moreover, tracking and compensation of the echo shift were not necessary when using the ICBEpa image to visualize the temperature profile. The experimental findings suggested that the ICBEpa image, a new CBE imaging method, has a great potential in CBE-based imaging of hyperthermia and other thermal therapies.

  7. Enhanced Simultaneous Distributed Strain and Temperature Fiber Sensor Employing Spontaneous Brillouin Scattering and Optical Pulse Coding

    OpenAIRE

    Soto, M A; Bolognini, G.; Di Pasquale, F.

    2009-01-01

    In this work, we propose the use of optical pulse coding techniques for simultaneous strain and temperature sensing based on spontaneous Brillouin scattering. Optical pulse coding provides a significant receiver signal-to-noise ratio enhancement, allowing for accurate Brillouin intensity and frequency shift measurements at low peak power levels. Due to the cross-sensitivity of these two parameters on both temperature and strain, optical pulse coding improves the temperature and strain resolut...

  8. Effects of high power ultrasonic vibration on temperature distribution of workpiece in dry creep feed up grinding.

    Science.gov (United States)

    Paknejad, Masih; Abdullah, Amir; Azarhoushang, Bahman

    2017-11-01

    Temperature history and distribution of steel workpiece (X20Cr13) was measured by a high tech infrared camera under ultrasonic assisted dry creep feed up grinding. For this purpose, a special experimental setup was designed and fabricated to vibrate only workpiece along two directions by a high power ultrasonic transducer. In this study, ultrasonic effects with respect to grinding parameters including depth of cut (a e ), feed speed (v w ), and cutting speed (v s ) has been investigated. The results indicate that the ultrasonic vibration has considerable effect on reduction of temperature, depth of thermal damage of workpiece and width of temperature contours. Maximum temperature reduction of 25.91% was reported at condition of v s =15m/s, v w =500mm/min, a e =0.4mm in the presence of ultrasonic vibration. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Radiolysis of NaCl at high and low temperatures: development of size distribution of bubbles and colloids

    Energy Technology Data Exchange (ETDEWEB)

    Turkin, A A [National Science Centre Kharkov Institute of Physics and Technology, 61108 Kharkov (Ukraine); Sugonyako, A V [Solid State Physics Laboratory, University of Groningen, 4 Nijenborgh 9747 AG Groningen, The (Netherlands); Vainshtein, D I [Solid State Physics Laboratory, University of Groningen, 4 Nijenborgh 9747 AG Groningen, The (Netherlands); Hartog, H W den [Solid State Physics Laboratory, University of Groningen, 4 Nijenborgh 9747 AG Groningen, The (Netherlands)

    2006-06-21

    New experimental results are presented on low temperature irradiation (18 deg, C) of rock-salt samples which had been exposed to initial doses up to 320 GRad at 100 deg, C. Differential scanning calorimetry (DSC) shows that the latent heat of melting (LHM) of sodium colloids decreases during subsequent low-temperature irradiation, whereas the stored energy (SE) increases slowly, indicating that the process of radiolysis continues. The decrease of the LHM is due to dissolution of large colloids, because the intensities of the melting peaks decrease during the second stage irradiation at low temperature. The model is formulated to describe the nucleation kinetics and the evolution of the size distribution of chlorine precipitates and sodium colloids in NaCl under high dose irradiation. It is shown that the mechanism of dissolution of large Na colloids during low temperature irradiation can be related to melting of sodium colloids.

  10. Simulation of temperature distribution for large sized ceramic substrates in vertical type sintering furnace; Tategata denkiro shosei deno ogata seramikkusu kiban no ondo bunpu shumyureshon

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, M.; Ami, N.; Hirasawa, S. [Hitachi, Ltd., Tokyo (Japan)

    2000-01-01

    The temperature distribution in large sized ceramic substrates at 1600 degree C sintered by vertical type furnace was simulated by using a model of heat conduction and radiation heat transfer. The temperature distribution at the center of each ceramic substrate is larger than that in each ceramic substrate at steady state in the case of 3 substrates were fired. The temperature distribution becomes narrow by using a high thermal conductivity material setter or inserting heat insulating material between the bottom setter and the furnace floor. The temperature distribution in each ceramic substrate is closely related to the distance between the surface of the ceramic substrate and the bottom of the upper setter. (author)

  11. Comparison of simulated and experimental results of temperature distribution in a closed two-phase thermosyphon cooling system

    Science.gov (United States)

    Shaanika, E.; Yamaguchi, K.; Miki, M.; Ida, T.; Izumi, M.; Murase, Y.; Oryu, T.; Yanamoto, T.

    2017-12-01

    Superconducting generators offer numerous advantages over conventional generators of the same rating. They are lighter, smaller and more efficient. Amongst a host of methods for cooling HTS machinery, thermosyphon-based cooling systems have been employed due to their high heat transfer rate and near-isothermal operating characteristics associated with them. To use them optimally, it is essential to study thermal characteristics of these cryogenic thermosyphons. To this end, a stand-alone neon thermosyphon cooling system with a topology resembling an HTS rotating machine was studied. Heat load tests were conducted on the neon thermosyphon cooling system by applying a series of heat loads to the evaporator at different filling ratios. The temperature at selected points of evaporator, adiabatic tube and condenser as well as total heat leak were measured. A further study involving a computer thermal model was conducted to gain further insight into the estimated temperature distribution of thermosyphon components and heat leak of the cooling system. The model employed boundary conditions from data of heat load tests. This work presents a comparison between estimated (by model) and experimental (measured) temperature distribution in a two-phase cryogenic thermosyphon cooling system. The simulation results of temperature distribution and heat leak compared generally well with experimental data.

  12. The Effect of Beam Intensity on Temperature Distribution in ADS Windowless Lead-Bismuth Eutectic Spallation Target

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2014-01-01

    Full Text Available The spallation target is the component coupling the accelerator and the reactor and is regarded as the “heart” of the accelerator driven system (ADS. Heavy liquid metal lead-bismuth eutectic (LBE is served as core coolant and spallation material to carry away heat deposition of spallation reaction and produce high flux neutron. So it is very important to study the heat transfer process in the target. In this paper, the steady-state flow pattern has been numerically obtained and taken as the input for the nuclear physics calculation, and then the distribution of the extreme large power density of the heat load is imported back to the computational fluid dynamics as the source term in the energy equation. Through the coupling, the transient and steady-state temperature distribution in the windowless spallation target is obtained and analyzed based on the flow process and heat transfer. Comparison of the temperature distribution with the different beam intensity shows that its shape is the same as broken wing of the butterfly. Nevertheless, the maximum temperature as well as the temperature gradient is different. The results play an important role and can be applied to the further design and optimization of the ADS windowless spallation target.

  13. Influence of the temperature dependent spectral power distribution of light-emitting Diodes on the illuminance responsivity of a photometer

    Science.gov (United States)

    Ying, Shang-Ping; Chou, P. T.; Fu, Han-Kuei

    2013-10-01

    Accurate optical measurements of LEDs are crucial because of the increasing popularity of LEDs. However, a photometer with a V(λ) filter spectrum curve may yield large errors when it is used for photometric measurements of colored LEDs. The junction-dependent light output and spectral distribution of LEDs also introduce measurement errors of the measured photometric characteristics. For the accurate measurements of LEDs, the c(St,Ss) factors were used to estimate the possible deviation in the photometric measurement of colored LEDs with various junction temperatures using commercial and industrial grade photometer heads. The spectral measurements of LEDs with specified junction temperature were conducted using a miniature fiber-optic spectrometer, and the relative spectral power distributions of LEDs were used to calculate the spectral mismatch correction c(St,Ss) factors of the photometer heads. Therefore, the c(St,Ss) factors of colored LEDs were calculated according to the temperature dependent spectral power distributions with various junction temperatures, and these factors were used to estimate the possible deviation in the photometric measurement of colored LEDs. The estimation of the possible deviation in the photometric measurement shows that photometers with excellent relative spectral responsitivities must be used for accurate measurement; otherwise, careful calibration must be conducted when using a photometer with inferior relative spectral responsitivity of the photopic filter.

  14. Effects of Straight and Serpentine Flow Field Designs on Temperature Distribution in Proton Exchange Membrane (PEM Fuel Cell

    Directory of Open Access Journals (Sweden)

    Zaman Izzuddin

    2016-01-01

    Full Text Available Proton exchange membrane fuel cells or sometimes called as polymer electrolyte membrane (PEM fuel cells is a device for energy transformation in a changing process from one form of energy to another form of energy. It became as an alternative especially for future use in stationary and vehicular applications. PEM fuel cells provide high efficiency and power density with null emission, low operating temperature, quickly start and long life. One of the aspects that are crucial in optimizing the PEM fuel cells performance is a flow field geometry. In this paper, a simulation case of PEM fuel cells was simulated to determine effects of a straight and serpentine flow field on temperature distribution in PEM fuel cells. ANSYS Fluent software was used to simulate 3-dimensional models of single PEM fuel cells in order to determine the effects of changes in the geometry flow field on temperature distributions. Results showed that the serpentine flow field design produces a better temperature distribution along the membrane. The simulation result shows a good agreement with the experiment, thus boost a higher confidence in the results to determine the effectiveness of the flow field design in PEM fuel cells.

  15. Alkenone and alkenoate distributions within the euphotic zone of the eastern North Atlantic: correlation with production temperature

    Science.gov (United States)

    Conte, Maureen H.; Eglinton, Geoffrey

    1993-10-01

    This paper reports the concentrations and within-class distributions of long-chain alkenones and alkyl alkenoates in the surface waters (0-50 m) of the eastern North Atlantic, and correlates their abundance and distribution with those of source organisms and with water temperature and other environmental variables. We collected these samples of >0.8 μm particulate material from the euphotic zone along the JGOFS 20°W longitude transect, from 61°N to 24°N, during seven cruises of the UK-JGOFS Biogeochemical Ocean Flux Study (BOFS) in 1989-1991; the biogeographical range of our 53 samples extends from the cold (25°C) oligotrophic subtropical waters off Africa. Surface water concentrations of total alkenone and alkenoates ranged from 16°C) waters below 47°N, the relative proportions of alkenoates and alkenones synthesized remained constant with increasing temperature while the unsaturation ratios of the C 37 and C 38 methyl alkenones ( U37k and U38Mek, respectively) increased linearly. The fitted regressions of U37k and U38Mek versus temperature for waters >16°C were both highly significant ( r2 > 0.96) and had identical slopes (0.057) that were 50% higher than the slope (0.034) of the temperature calibration of U37k reported by PRAHL and WAKEHAM ( Nature, 330, 367-369, 1987) over the same temperature range. These observations suggest either a physiological adjustment in biochemical response to growth temperature above a 16-17°C threshold and/or variation between different E. huxleyi strains and/or related species inhabiting the cold and warm water regions of the eastern North Atlantic. Using our North Atlantic data set, we have produced multivariate temperature calibrations incorporating all major features of the alkenone and alkenoate data set. Predicted temperatures using multivariate calibrations are largely unbiased, with a standard error of approximately ±1°C over the entire data range. In contrast, simpler calibration models cannot adequately

  16. Innovative use of Distributed Temperature Sensing and Meteorological Data to Understand Thermoregulation of Free-Ranging Howling Monkeys

    Science.gov (United States)

    Suarez, F. I.; Vinyard, C. J.; Williams, S. H.; Hausner, M. B.; Tyler, S. W.; Glander, K.

    2011-12-01

    Temperature fluctuations are a major driver of change in natural habitats and influence the lifestyle of all organisms because temperature impacts molecular, physiological, and behavioral processes. However, there is a lack of understanding on how temperature affects metabolism, behavior, and ecology at the organismal level. Even though physiological responses to temperature fluctuations have been well documented in laboratory conditions, it has been challenging to collect the required environmental data to study thermoregulation of free-ranging mammals such as mantled howling monkeys (Alouatta palliata). Fortunately, recent advances in fiber-optic distributed temperature sensing (DTS) now permit the observation of temperature fields in the environment at scales ranging from millimeters to kilometers. This has opened an exciting opportunity for temperature monitoring at scales that were previously not feasible. This study addresses the main limitations of previous studies of primate behavior by integrating real-time environmental data with the behavior and physiological response of free-ranging primates. In this work, we present preliminary DTS data collected in a natural habitat of howling monkeys. Fiber-optic cables were hung between the ground and an elevation of approximately 15 m within the forest canopy, providing continuous profiles of temperature without any disturbance due to the animals and habitat. These measurements were integrated with conventional meteorological data and with the ambient temperature at the location of the animal, as well as with measurements of primate's subcutaneous and core body temperatures. These data will be utilized to determine how environmental conditions relate to primate behavioral and physiological responses in time and space. The methodologies used in this study provide tools to test theories of physiological thermoregulation of other free-ranging animals.

  17. Oxidation of benzoic acid by heat-activated persulfate: Effect of temperature on transformation pathway and product distribution.

    Science.gov (United States)

    Zrinyi, Nick; Pham, Anh Le-Tuan

    2017-09-01

    Heat activates persulfate (S2O82-) into sulfate radical (SO4-), a powerful oxidant capable of transforming a wide variety of contaminants. Previous studies have shown that an increase in temperature accelerates the rates of persulfate activation and contaminant transformation. However, few studies have considered the effect of temperature on contaminant transformation pathway. The objective of this study was to determine how temperature (T = 22-70 °C) influences the activation of persulfate, the transformation of benzoic acid (i.e., a model compound), and the distribution of benzoic acid oxidation products. The time-concentration profiles of the products suggest that benzoic acid was transformed via decarboxylation and hydroxylation mechanisms, with the former becoming increasingly important at elevated temperatures. The pathway through which the products were further oxidized was also influenced by the temperature of persulfate activation. Our findings suggest that the role of temperature in the persulfate-based treatment systems is not limited only to controlling the rates of sulfate and hydroxyl radical generation. The ability of sulfate radical to initiate decarboxylation reactions and, more broadly, fragmentation reactions, as well as the effect of temperature on these transformation pathways could be important to the transformation of a number of organic contaminants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Distributed Temperature Measurement in a Self-Burning Coal Waste Pile through a GIS Open Source Desktop Application

    Directory of Open Access Journals (Sweden)

    Lia Duarte

    2017-03-01

    Full Text Available Geographical Information Systems (GIS are often used to assess and monitor the environmental impacts caused by mining activities. The aim of this work was to develop a new application to produce dynamic maps for monitoring the temperature variations in a self-burning coal waste pile, under a GIS open source environment—GIS-ECOAL (freely available. The performance of the application was evaluated with distributed temperature measurements gathered in the S. Pedro da Cova (Portugal coal waste pile. In order to obtain the temperature data, an optical fiber cable was disposed over the affected area of the pile, with 42 location stakes acting as precisely-located control points for the temperature measurement. A monthly data set from July (15 min of interval was fed into the application and a video composed by several layouts with temperature measurements was created allowing for recognizing two main areas with higher temperatures. The field observations also allow the identification of these zones; however, the identification of an area with higher temperatures in the top of the studied area was only possible through the visualization of the images created by this application. The generated videos make possible the dynamic and continuous visualization of the combustion process in the monitored area.

  19. TEMPERATURE RESPONSES AND DISTRIBUTION OF AUSTRALIAN SPECIES OF CLADOPHORA (CLADOPHORALES, CHLOROPHYTA)

    NARCIS (Netherlands)

    CAMBRIDGE, ML; BREEMAN, AM; VANDENHOEK, C

    Temperature ranges for survival, growth and sporulation of isolates of 11 Cladophora species from Australia, as well as one isolate from Japan, were tested in constant temperature conditions from 0 to 35-degrees-C at 5-degrees-C intervals over 3 months. These ranges were compared with those

  20. Effect of temperature and rainfall on the distribution of the South ...

    African Journals Online (AJOL)

    A multiple regression analysis based on quantified spatial abundance (the number of sixteenth degree squares recorded with shelduck in a degree square), mean annual rainfall, mean annual temperature and mean temperature of the coldest (July) and hottest (January) months indicated a significant (P < 0,001) negative ...

  1. Spatial distribution of temperature trends and extremes over Maharashtra and Karnataka States of India

    Science.gov (United States)

    Dhorde, Amit G.; Korade, Mahendra S.; Dhorde, Anargha A.

    2017-10-01

    Earth surface temperatures are changing worldwide together with the changes in the extreme temperatures. The present study investigates trends and variations of monthly maximum and minimum temperatures and their effects on seasonal fluctuations at different climatological stations of Maharashtra and Karnataka states of India. Trend analysis was performed on annual and seasonal mean maximum temperature (TMAX) and mean minimum temperature (TMIN) for the period 1969 to 2006. During the last 38 years, an increase in annual TMAX and TMIN has occurred. At most of the locations, the increase in TMAX was faster than the TMIN, resulting in an increase in diurnal temperature range. At the same time, annual mean temperature (TM) showed a significant increase over the study area. Percentiles were used to identify extreme temperature indices. An increase in occurrence of warm extremes was observed at southern locations, and cold extremes increased over the central and northeastern part of the study area. Occurrences of cold wave conditions have decreased rapidly compared to heat wave conditions.

  2. Computation and measurement of air temperature distribution of an industrial melt blowing die

    Directory of Open Access Journals (Sweden)

    Wu Li-Li

    2014-01-01

    Full Text Available The air flow field of the dual slot die on an HDF-6D melt blowing non-woven equipment is computed numerically. A temperature measurement system is built to measure air temperatures. The computation results tally with the measured results proving the correctness of the computation. The results have great valuable significance in the actual melt blowing production.

  3. Vertical and horizontal distribution of wind speed and air temperature in a dense vegetation canopy

    NARCIS (Netherlands)

    Jacobs, A.F.G.; van Boxel, J.H.; El-Kilani, R.M.M.

    1995-01-01

    Wind speed and temperature were measured within a corn row canopy to investigate horizontal and vertical variability of the mean wind speed and temperature. It appears that the mean wind speed can vary between 20% and 30% from its horizontal mean value. In the narrow row crop, the horizontal mean

  4. 5 LASER SPOT HEAT TRANSFER ACCOMPANIED BY PARABOLIC TEMPERATURE DISTRIBUTION INSIDE THE ROD

    Directory of Open Access Journals (Sweden)

    Doroshenko Ekaterina Sergeevna

    2013-01-01

    Full Text Available The co-authors have solved the problem of an unsteady temperature field inside a structural beam, if one of its ends is exposed to heating. The problem was solved using a traditional Fourier method. The solution derived by the co-authors was verified by the comparison of the final temperature field and the input data. MathCAD-14 software was employed to make calculations and to generate figures. Application of analytical methods, like Fourier series formalism, in combination with computing aids makes it possible to study both qualitative and quantitative constituents of the process of heat redistribution inside structural units in case of exposure to contingency actions. There will be no uniform temperature reduction in the course of intensive cooling of rod ends after the thermal exposure. If the value of the temperature conductivity coefficient is equal to .01, in 12 hours the residual heating may reach 20 % of the initial heating temperature.

  5. The effects of sidewall constraint on temperature distribution of fire-induced thermal flow under an arc-ceiling

    Science.gov (United States)

    Zhou, Tiannian; Rong, Jianzhong; Wang, Jian

    2017-10-01

    A numerical study with varying transverse fire locations based on a semicircle tunnel model was carried out and it was used to further compare with the rectangular model in the published literature, aimed to investigate the influence of cross-sectional structure on temperature distribution under the ceiling. Results demonstrate that the reduction in temperature along the tunnel centerline under the flat ceiling is greater than that under the arc-ceiling. In addition, the influence of constraint effect of sidewall under the arc-ceiling is more significant than the flat ceiling because the flame would attach the ceiling when the fire is near the sidewall.

  6. Direct asymmetry measurement of temperature and density spatial distributions in inertial confinement fusion plasmas from pinhole space-resolved spectra

    CERN Document Server

    Nagayama, T; Florido, R; Mayes, D; Tommasini, R; Koch, J A; Delettrez, J A; Regan, S P; Smalyuk, V A

    2014-01-01

    Two-dimensional space-resolved temperature and density images of an inertial confinement fusion (ICF) implosion core have been diagnosed for the first time. Argon-doped, direct-drive ICF experiments were performed at the Omega Laser Facility and a collection of two-dimensional space-resolved spectra were obtained from an array of gated, spectrally resolved pinhole images recorded by a multi-monochromatic x-ray imager. Detailed spectral analysis revealed asymmetries of the core not just in shape and size but in the temperature and density spatial distributions, thus characterizing the core with an unprecedented level of detail.

  7. [Spatiotemporal distribution of air temperature and precipitation in rice growth period in Fujian Province of East China and the effects of this distribution on rice planting pattern].

    Science.gov (United States)

    Jiang, Min; Jin, Zhi-Qing; Yang, Hui; Shi, Chun-Lin; Zhu, Chao-Zhi; Lin, Wen-Xiong

    2012-12-01

    In order to investigate the effects of climate change on the rice production and rice planting pattern in Fujian Province, an analysis was made on the spatiotemporal distribution of air temperature and precipitation in rice growth period in the Province, and the possible changes of the local rice planting pattern in the future, based on the A2, B2, and A1 B scenarios of IPCC Special Report on Emission Scenario (SRES). In the future, the rice growth period's air temperature in the Province tended to be increased, and the increment would be increased with time, with the maximum for single cropping rice and being 0.3-2.4 degrees C and 1.5-3.4 degrees C in 2011-2030 and 2031 -2050, respectively. For early rice and late rice, the increment of their growth period's air temperature would be 0.2-0.9 degrees C and 0.7-1.7 degrees C in 2011-2030 and 0.3-2.1 degrees C and 0.5-3.6 degrees C in 2031-2050, respectively, but the annual fluctuation of the mean daily temperature would be most obvious for late rice. The rice growth period's precipitation in most parts of the Province also tended to be increased, and the increment for early rice, single cropping rice, and late rice would be 10%-40%, 10%-30%, and 10%-20%, respectively. The annual fluctuation of the precipitation would be most obvious for the early rice in southeastern Fujian. The elevated air temperature in the future could induce the increase of > or = 10 degrees C accumulated temperature, and lengthen the rice growth season, making it possible to replace early and medium-maturity varieties with late-maturity varieties, and to adopt double-rice planting pattern instead of single-rice planting pattern.

  8. Local Synthesis of Carbon Nanotubes in Silicon Microsystems: The Effect of Temperature Distribution on Growth Structure

    Science.gov (United States)

    Ta, Bao Q.; Haugen, Tormod B.; Hoivik, Nils; Halvorsen, Einar; Aasmundtveit, Knut E.

    2013-01-01

    Local synthesis and direct integration of carbon nanotubes (CNTs) into microsystems is a promising method for producing CNT-based devices in a single step, low-cost, and wafer-level, CMOS/MEMS-compatible process. In this report, the structure of the locally grown CNTs are studied by transmission imaging in scanning electron microscopy—S(T)EM. The characterization is performed directly on the microsystem, without any post-synthesis processing required. The results show an effect of temperature on the structure of CNTs: high temperature favors thin and regular structures, whereas low temperature favors “bamboo-like" structures. PMID:28811428

  9. Local Synthesis of Carbon Nanotubes in Silicon Microsystems: The Effect of Temperature Distribution on Growth Structure

    Directory of Open Access Journals (Sweden)

    Knut E. Aasmundtveit

    2013-07-01

    Full Text Available Local synthesis and direct integration of carbon nanotubes (CNTs into microsystems is a promising method for producing CNT-based devices in a single step, low-cost, and wafer-level, CMOS/MEMS-compatible process. In this report, the structure of the locally grown CNTs are studied by transmission imaging in scanning electron microscopy—S(TEM. The characterization is performed directly on the microsystem, without any post-synthesis processing required. The results show an effect of temperature on the structure of CNTs: high temperature favors thin and regular structures, whereas low temperature favors “bamboo-like” structures.

  10. Cryogenic-temperature profiling of high-power superconducting lines using local and distributed optical-fiber sensors

    CERN Document Server

    Chiuchiolo, Antonella; Consales, Marco; Giordano, Michele; Borriello, Anna; Bajas, Hugues; Galtarossa, Andrea; Bajko, Marta; Cusano, Andrea

    2015-01-01

    This contribution presents distributed and multi-point fiber-optic monitoring of cryogenic temperatures along a superconducting power transmission line down to 30 K and over 20 m distance. Multi-point measurements were conducted using fiber Bragg gratings sensors coated with two different functional overlays (epoxy and PMMA) demonstrating cryogenic operation in the range 300 – 4.2 K. Distributed measurements exploited optical frequency-domain reflectometry to analyze the Rayleigh scattering along two concatenated fibers with different coatings (acrylate and polyimide). The integrated system has been placed along the 20 m long cryostat of a superconducting power transmission line, which is currently being tested at the European Organization for Nuclear Research (CERN). Cool-down events from 300 K to 30 K have been successfully measured in space and time, confirming the viability of these approaches to the monitoring of cryogenic temperatures along a superconducting transmission line.

  11. The effect of body fat percentage and body fat distribution on skin surface temperature with infrared thermography.

    Science.gov (United States)

    Salamunes, Ana Carla Chierighini; Stadnik, Adriana Maria Wan; Neves, Eduardo Borba

    2017-05-01

    This study aimed to search for relations between body fat percentage and skin temperature and to describe possible effects on skin temperature as a result of fat percentage in each anatomical site. Women (26.11±4.41 years old) (n =123) were tested for: body circumferences; skin temperatures (thermal camera); fat percentage and lean mass from trunk, upper and lower limbs; and body fat percentage (Dual-Energy X-Ray Absorptiometry). Values of minimum (TMi), maximum (TMa), and mean temperatures (TMe) were acquired in 30 regions of interest. Pearson's correlation was estimated for body circumferences and skin temperature variables with body fat percentage. Participants were divided into groups of high and low fat percentage of each body segment, of which TMe values were compared with Student's t-test. Linear regression models for predicting body fat percentage were tested. Body fat percentage was positively correlated with body circumferences and palm temperatures, while it was negatively correlated with most temperatures, such as TMa and TMe of posterior thighs (r =-0.495 and -0.432), TMe of posterior lower limbs (r =-0.488), TMa of anterior thighs (r =-0.406) and TMi and TMe of posterior arms (r =-0.447 and -0.430). Higher fat percentages in the specific anatomical sites tended to decrease TMe, especially in posterior thighs, shanks and arms. Skin temperatures and body circumferences predicted body fat percentage with 58.3% accuracy (R =0.764 and R(2) =0.583). This study clarifies that skin temperature distribution is influenced by the fat percentage of each body segment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Numerical simulation of transient moisture and temperature distribution in polycarbonate and aluminum electronic enclosures

    DEFF Research Database (Denmark)

    Shojaee Nasirabadi, Parizad; Jabbaribehnam, Mirmasoud; Hattel, Jesper Henri

    2016-01-01

    The challenge of developing a reliable electronic product requires huge amounts of resources and knowledge. Temperature and thermal features directly affect the life of electronic products. Furthermore, moisture can be damaging for electronic components. Nowadays, computational fluid dynamics (CF...

  13. Spatial modeling of permafrost distribution using rock glacier inventories, topographic attributes and temperature data in the semiarid Andes, Chile

    Science.gov (United States)

    Azocar Sandoval, G.; Brenning, A.; Bodin, X.

    2012-12-01

    Statistical-empirical models have been widely used to estimate the spatial distribution of permafrost in the European Alps and North America using topographic, climatic data and geomorphic indicators of permafrost (i.e. rock glaciers). At present, little knowledge about mountain permafrost distribution is available for the Andes. As a first approximation of permafrost distribution, a logistic regression model was fitted to predict rock glacier activity status. The model is based on explanatory variables elevation and potential incoming solar radiation (PISR) derived from an ASTER G-DEM v. 2 digital elevations model and air temperature data in the Chilean Andes between 29 and 34°S. Rock glacier activity status (intact versus fossil) was obtained from several recent rock glacier inventories and is based on the interpretation of aerial photographs or satellite imagery with a resolution higher than 5 m. Constant lapse rates of temperature are obtained for several weather stations in the study region. These are used to estimate the change in temperature with elevation based on the digital elevation model. The model's predictive performance was evaluated using the area under the ROC curve. As a preliminary result using a probability threshold of 0.5, mountain permafrost may be present in up to 21% (1510 km2) of the Huasco watershed (29°S) located in the northern part of the study area. Considering a threshold > 0.75, about 12% (709 km2) of this watershed may be underlain by mountain permafrost. As next steps toward a permafrost distribution model, sources of bias related to the thermal offset and displacement of rock glaciers will be eliminated, and downscaling as well as spatial interpolation approaches will be evaluated in order to replace elevation as a proxy variable with estimates of mean annual air temperature.

  14. Oxygen isotope exchange in rocks and minerals from the Cerro Prieto geothermal system: Indicators of temperature distribution and fluid flow

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.E.; Elders, W.A.

    1981-01-01

    Oxygen isotopic compositions have been measured in drill cuttings and core samples from more than 40 wells ranging in depth to more than 3.5 km in the Cerro Prieto geothermal field. Profiles of isotopic ratios versus sampling depths provide information on the three-dimensional distribution of temperature and fluid flow. These parameters also indicate variations in the history of hydrothermal processes in different areas of the geothermal field.

  15. ANALYSIS OF MARANGONI CONVECTION OF NON-NEWTONIAN POWER LAW FLUIDS WITH LINEAR TEMPERATURE DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2011-01-01

    Full Text Available The problem of steady, laminar, thermal Marangoni convection flow of non-Newtonian power law fluid along a horizontal surface with variable surface temperature is studied. The partial differential equations are transformed into ordinary differential equations by using a suitable similarity transformation and analytical approximate solutions are obtained by an efficient transformation, asymptotic expansion and Padé approximants technique. The effects of power law index and Marangoni number on velocity and temperature profiles are examined and discussed.

  16. STUDY ON TEMPERATURE DISTRIBUTION DUE TO FREEZING AND THAWING AT THE FENGMAN CONCRETE GRAVITY DAM

    Directory of Open Access Journals (Sweden)

    He Yu

    2011-01-01

    Full Text Available Freezing and thawing damage is one of the major problems of the Fengman concrete dam. Based on the temperature records of the dam, appropriate heat transfer boundary conditions in the dam body are suggested. A three-dimensional finite element model is used to determine annual variation of temperature field of the dam as a case study. The deterioration problem of concrete dam owing to freezing and thawing effect is investigated.

  17. Prediction of Flow and Temperature Distributions in a High Flux Research Reactor Using the Porous Media Approach

    Directory of Open Access Journals (Sweden)

    Shanfang Huang

    2017-01-01

    Full Text Available High thermal neutron fluxes are needed in some research reactors and for irradiation tests of materials. A High Flux Research Reactor (HFRR with an inverse flux trap-converter target structure is being developed by the Reactor Engineering Analysis Lab (REAL at Tsinghua University. This paper studies the safety of the HFRR core by full core flow and temperature calculations using the porous media approach. The thermal nonequilibrium model is used in the porous media energy equation to calculate coolant and fuel assembly temperatures separately. The calculation results show that the coolant temperature keeps increasing along the flow direction, while the fuel temperature increases first and decreases afterwards. As long as the inlet coolant mass flow rate is greater than 450 kg/s, the peak cladding temperatures in the fuel assemblies are lower than the local saturation temperatures and no boiling exists. The flow distribution in the core is homogeneous with a small flow rate variation less than 5% for different assemblies. A large recirculation zone is observed in the outlet region. Moreover, the porous media model is compared with the exact model and found to be much more efficient than a detailed simulation of all the core components.

  18. Within-Crop Air Temperature and Humidity Outcomes on Spatio-Temporal Distribution of the Key Rose Pest Frankliniella occidentalis.

    Directory of Open Access Journals (Sweden)

    Hicham Fatnassi

    Full Text Available Frankliniella occidentalis (Pergande is a key pest of various crops worldwide. In this study, we analyse the dependence of the infestation of this pest on spatially distributed micro climatic factors in a rose greenhouse. Despite the importance of this subject, the few existing studies have been realized in laboratory rather than in greenhouse conditions. However, recent progress on greenhouse microclimate characterisation has highlighted the strong indoor climate heterogeneity that may influence the within-crop pest distribution. In this study, both microclimate (air temperature and humidity and thrips distribution were simultaneously mapped in a rose greenhouse. The measurements were sensed in a horizontal plane situated at mid-height of the rose crop inside the greenhouse. Simultaneously, thrips population dynamics were assessed after an artificial and homogeneous infestation of the rose crop. The spatio-temporal distribution of climate and thrips within the greenhouse were compared, and links between thrips infestation and climatic conditions were investigated. A statistical model was used to define the favourable climate conditions for thrips adults and larvae. Our results showed that (i the air temperature and air humidity were very heterogeneously distributed within the crop, (ii pest populations aggregated in the most favourable climatic areas and (iii the highest population density of thrips adults and larvae were recorded at 27°C and 22°C for temperature and 63% and 86% for humidity, respectively. These findings confirm, in real rose cropping conditions, previous laboratory studies on the F. occidentalis climatic optimum and provide a solid scientific support for climatic-based control methods against this pest.

  19. Within-Crop Air Temperature and Humidity Outcomes on Spatio-Temporal Distribution of the Key Rose Pest Frankliniella occidentalis.

    Science.gov (United States)

    Fatnassi, Hicham; Pizzol, Jeannine; Senoussi, Rachid; Biondi, Antonio; Desneux, Nicolas; Poncet, Christine; Boulard, Thierry

    2015-01-01

    Frankliniella occidentalis (Pergande) is a key pest of various crops worldwide. In this study, we analyse the dependence of the infestation of this pest on spatially distributed micro climatic factors in a rose greenhouse. Despite the importance of this subject, the few existing studies have been realized in laboratory rather than in greenhouse conditions. However, recent progress on greenhouse microclimate characterisation has highlighted the strong indoor climate heterogeneity that may influence the within-crop pest distribution. In this study, both microclimate (air temperature and humidity) and thrips distribution were simultaneously mapped in a rose greenhouse. The measurements were sensed in a horizontal plane situated at mid-height of the rose crop inside the greenhouse. Simultaneously, thrips population dynamics were assessed after an artificial and homogeneous infestation of the rose crop. The spatio-temporal distribution of climate and thrips within the greenhouse were compared, and links between thrips infestation and climatic conditions were investigated. A statistical model was used to define the favourable climate conditions for thrips adults and larvae. Our results showed that (i) the air temperature and air humidity were very heterogeneously distributed within the crop, (ii) pest populations aggregated in the most favourable climatic areas and (iii) the highest population density of thrips adults and larvae were recorded at 27°C and 22°C for temperature and 63% and 86% for humidity, respectively. These findings confirm, in real rose cropping conditions, previous laboratory studies on the F. occidentalis climatic optimum and provide a solid scientific support for climatic-based control methods against this pest.

  20. Micro-macro model for prediction of local temperature distribution in heterogeneous and two-phase media

    Directory of Open Access Journals (Sweden)

    Furmański Piotr

    2014-09-01

    Full Text Available Heat flow in heterogeneous media with complex microstructure follows tortuous path and therefore determination of temperature distribution in them is a challenging task. Two-scales, micro-macro model of heat conduction with phase change in such media was considered in the paper. A relation between temperature distribution on the microscopic level, i.e., on the level of details of microstructure, and the temperature distribution on the macroscopic level, i.e., on the level where the properties were homogenized and treated as effective, was derived. The expansion applied to this relation allowed to obtain its more simplified, approximate form corresponding to separation of micro- and macro-scales. Then the validity of this model was checked by performing calculations for 2D microstructure of a composite made of two constituents. The range of application of the proposed micro-macro model was considered in transient states of heat conduction both for the case when the phase change in the material is present and when it is absent. Variation of the effective thermal conductivity with time was considered and a criterion was found for which application of the considered model is justified.

  1. Multicenter study on the asymmetry of skin temperature in complex regional pain syndrome: An examination of temperature distribution and symptom duration.

    Science.gov (United States)

    Cho, Chan Woo; Nahm, Francis Sahngun; Choi, Eunjoo; Lee, Pyung-Bok; Jang, In-Ki; Lee, Chul Joong; Kim, Yong Chul; Lee, Sang Chul

    2016-12-01

    According to the International Association for the Study of Pain (IASP) and American Medical Association (AMA), the diagnostic criteria for complex regional pain syndrome (CRPS) require the presence of skin temperature asymmetry. In CRPS, it is generally accepted that the temperature of skin of affected limbs changes from warm to cold; however, in our clinical practice, we have experienced many cases with different thermographic characteristics. Therefore, we conducted a retrospective multicenter study that examined the distribution of skin temperature in patients with CRPS and skin temperature asymmetry versus symptom duration.Patients diagnosed with type 1 or 2 CRPS were recruited. After confirming CRPS according to the IASP diagnostic criteria, infrared thermographic images were evaluated for skin temperature differences (ΔT) between the affected and unaffected limbs.A total of 296 patients with CRPS were included in this study. The median duration of symptoms was 6 months and the mean ± standard deviation of ΔT was -0.72 ± 1.65°C. A skin temperature difference between bilateral limbs (|ΔT|) of 1°C or less was seen in 131 patients (44.3%); thus, these 131 patients did not meet the IASP criteria for CRPS. Further, cool skin temperature was not observed in 88 patients (29.7%), meaning that these patients did not meet the AMA criteria for CRPS. There was no correlation between the symptom duration and ΔT (Spearman's rho = -0.075, P = 0.196) and there was no significant difference in the average ΔT among the 4 symptom duration groups (0-3 months, 4-6 months, 7-12 months, >12 months, P = 0.08).In conclusion, a considerable proportion of the patients that participated in this study did not meet the thermal criteria set forth by the IASP and AMA. Further, there was no correlation between symptom duration and skin temperature difference.

  2. Numerical simulation of the laser welding process for the prediction of temperature distribution on welded aluminium aircraft components

    Science.gov (United States)

    Tsirkas, S. A.

    2018-03-01

    The present investigation is focused to the modelling of the temperature field in aluminium aircraft components welded by a CO2 laser. A three-dimensional finite element model has been developed to simulate the laser welding process and predict the temperature distribution in T-joint laser welded plates with fillet material. The simulation of the laser beam welding process was performed using a nonlinear heat transfer analysis, based on a keyhole formation model analysis. The model employs the technique of element ;birth and death; in order to simulate the weld fillet. Various phenomena associated with welding like temperature dependent material properties and heat losses through convection and radiation were accounted for in the model. The materials considered were 6056-T78 and 6013-T4 aluminium alloys, commonly used for aircraft components. The temperature distribution during laser welding process has been calculated numerically and validated by experimental measurements on different locations of the welded structure. The numerical results are in good agreement with the experimental measurements.

  3. Theoretical and Experimental Evaluation of the Temperature Distribution in a Dry Type Air Core Smoothing Reactor of HVDC Station

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2017-05-01

    Full Text Available The outdoor ultra-high voltage (UHV dry-type air-core smoothing reactors (DASR of High Voltage Direct Current systems are equipped with a rain cover and an acoustic enclosure. To study the convective heat transfer between the DASR and the surrounding air, this paper presents a coupled model of the temperature and fluid field based on the structural features and cooling manner. The resistive losses of encapsulations calculated by finite element method (FEM were used as heat sources in the thermal analysis. The steady fluid and thermal field of the 3-D reactor model were solved by the finite volume method (FVM, and the temperature distribution characteristics of the reactor were obtained. Subsequently, the axial and radial temperature distributions of encapsulation were investigated separately. Finally, an optical fiber temperature measurement scheme was used for an UHV DASR under natural convection conditions. Comparative analysis showed that the simulation results are in good agreement with the experimental data, which verifies the rationality and accuracy of the numerical calculation. These results can serve as a reference for the optimal design and maintenance of UHV DASRs.

  4. [Microwave In-situ Regeneration of Cu-Mn-Ce/ZSM Catalyst Adsorbed Toluene and Distribution of Bed Temperature].

    Science.gov (United States)

    Hu, Xue-jiao; Bo, Long-li; Liang, Xin-xin; Meng, Hai-long

    2015-08-01

    Microwave in-situ regeneration of Cu-Mn-Ce/ZSM catalyst adsorbed toluene, distribution of fixed bed temperature, adsorption breakthrough curves of the catalyst after several regenerations and characterizations of the catalyst by BET and SEM were investigated in this study. The research indicated that regeneration effect of the catalyst adsorbed was excellent under conditions of microwave power 117 W, air flow 0.5 m3 x h(-1) and catalyst dosage of 800 g. Toluene desorbed was oxidized onto the surface of the catalyst, and the adsorption capacity of the catalyst was recovered simultaneously. Under microwave irradiation, bed temperature decreased slowly from inside to outside in horizontal level, and increased gradually from down to up in vertical level so that the highest temperature reached 250-350 degrees C at the upper sites of the bed. Sintering and agglomeration occurred on the surface of the catalyst in the course of regeneration so that the special surface area and micropore volume of the catalyst were reduced and breakthrough time was shortened, which was verified by six adsorption breakthrough curves and related characteristics of the catalyst. However, the structure of the catalyst was steady after two regenerations, and adsorption breakthrough time was kept at 70 min. The result showed that the changes of surface morphology and pore structure were positively correlated with the distribution of bed temperature.

  5. Data set: 31 years of spatially distributed air temperature, humidity, precipitation amount and precipitation phase from a mountain catchment in the rain-snow transition zone

    Science.gov (United States)

    Thirty one years of spatially distributed air temperature, relative humidity, dew point temperature, precipitation amount, and precipitation phase data are presented for the Reynolds Creek Experimental Watershed. The data are spatially distributed over a 10m Lidar-derived digital elevation model at ...

  6. Global Distribution and Variability of Surface Skin and Surface Air Temperatures as Depicted in the AIRS Version-6 Data Set

    Science.gov (United States)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2014-01-01

    In this presentation, we will briefly describe the significant improvements made in the AIRS Version-6 retrieval algorithm, especially as to how they affect retrieved surface skin and surface air temperatures. The global distribution of seasonal 1:30 AM and 1:30 PM local time 12 year climatologies of Ts,a will be presented for the first time. We will also present the spatial distribution of short term 12 year anomaly trends of Ts,a at 1:30 AM and 1:30 PM, as well as the spatial distribution of temporal correlations of Ts,a with the El Nino Index. It will be shown that there are significant differences between the behavior of 1:30 AM and 1:30 PM Ts,a anomalies in some arid land areas.

  7. INTER-SEASONAL DYNAMICS OF VEGETATION COVER AND SURFACE TEMPERATURE DISTRIBUTION: A CASE STUDY OF ONDO STATE, NIGERIA

    Directory of Open Access Journals (Sweden)

    H. A. Ibitolu

    2016-06-01

    Full Text Available This study employs Landsat ETM+ satellite imagery to access the inter-seasonal variations of Surface Temperature and Vegetation cover in Ondo State in 2013. Also, air temperature data for year 2013 acquired from 3 synoptic meteorological stations across the state were analyzed. The Single-channel Algorithm was used to extract the surface temperature maps from the digital number embedded within the individual pixel. To understand the spatio-temporal distribution of LST and vegetation across the various landuse types, 200 sample points were randomly chosen, so that each land-use covers 40 points. Imagery for the raining season where unavailable because of the intense cloud cover. Result showed that the lowest air temperature of 20.9°C was in January, while the highest air temperature of 34°C occurred in January and March. There was a significant shift in the vegetation greenness over Ondo State, as average NDVI tend to increase from a weak positive value (0.189 to a moderate value (0.419. The LULC map revealed that vegetation cover occupied the largest area (65% followed by Built-up (26%, Swampy land (4%, Rock outcrop (3% and water bodies (2%. The surface temperature maps revealed that January has the lowest temperature of 10°C experienced in the coastal riverine areas of Ilaje and Igbokoda, while the highest temperature of 39°C observed in September is experienced on the rocky grounds. The study also showed the existence of pockets of Urban Heat Islands (UHI that are well scattered all over the state. This finding proves the capability and reliability of Satellite remote sensing for environmental studies.

  8. Temporal Variability in Vertical Groundwater Fluxes and the Effect of Solar Radiation on Streambed Temperatures Based on Vertical High Resolution Distributed Temperature Sensing

    Science.gov (United States)

    Sebok, E.; Karan, S.; Engesgaard, P. K.; Duque, C.

    2013-12-01

    Due to its large spatial and temporal variability, groundwater discharge to streams is difficult to quantify. Methods using vertical streambed temperature profiles to estimate vertical fluxes are often of coarse vertical spatial resolution and neglect to account for the natural heterogeneity in thermal conductivity of streambed sediments. Here we report on a field investigation in a stream, where air, stream water and streambed sediment temperatures were measured by Distributed Temperature Sensing (DTS) with high spatial resolution to; (i) detect spatial and temporal variability in groundwater discharge based on vertical streambed temperature profiles, (ii) study the thermal regime of streambed sediments exposed to different solar radiation influence, (iii) describe the effect of solar radiation on the measured streambed temperatures. The study was carried out at a field site located along Holtum stream, in Western Denmark. The 3 m wide stream has a sandy streambed with a cobbled armour layer, a mean discharge of 200 l/s and a mean depth of 0.3 m. Streambed temperatures were measured with a high-resolution DTS system (HR-DTS). By helically wrapping the fiber optic cable around two PVC pipes of 0.05 m and 0.075 m outer diameter over 1.5 m length, temperature measurements were recorded with 5.7 mm and 3.8 mm vertical spacing, respectively. The HR-DTS systems were installed 0.7 m deep in the streambed sediments, crossing both the sediment-water and the water-air interface, thus yielding high resolution water and air temperature data as well. One of the HR-DTS systems was installed in the open stream channel with only topographical shading, while the other HR-DTS system was placed 7 m upstream, under the canopy of a tree, thus representing the shaded conditions with reduced influence of solar radiation. Temperature measurements were taken with 30 min intervals between 16 April and 25 June 2013. The thermal conductivity of streambed sediments was calibrated in a 1D flow

  9. Using high-resolution fiber-optic distributed temperature sensing to measure spatially resolved speed and temperature of airflows in a shallow gully

    Science.gov (United States)

    Thomas, Christoph; Sayde, Chadi; Selker, John

    2015-04-01

    We present a novel observational technique that was applied to study transient shallow cold-air drainages and pools in undulating terrain in weak-wind conditions. Wind speed and air temperature at thousands of closely co-located locations were measured simultaneously at high spatial (0.25m) and temporal (5s) resolution using paired passive and actively heated optical fibers with a distributed temperature sensing system (DTS). The fibers were deployed in a transect across a shallow gully with a total length of 230 m at three levels (0.5, 1, and 2m above ground level) during the Shallow Cold Pool (SCP) Experiment in Northern Colorado, USA in October and November 2012. While we previously demonstrated that air temperature and the thermal structure of the near-surface turbulence can be observed with the DTS technique (Thomas et al., 2012, Zeeman et al., 2014), the novelty here consists of additionally measuring wind speed on horizontal scales of several hundreds of meters with fine resolution. Analogous to a hot-wire anemometer, the approach is based on the principal of velocity-dependent heat transfer from a heated surface. We present the theoretical basis for the DTS wind and temperature measurements and validate it against point observations from sonic anemometers and thermo-hygrometers. A space-time analysis of the near-surface gully flow and temperature field is presented based upon the observations subject to an orthogonal multi-resolution decomposition for selected cases. The temporal variability of near-surface air temperature was largest half-way up the slope caused be shifts of the very sharp thermal boundary between the density driven cold-air drainage flow in the gully bottom and the lower density air on the slopes, which was significantly warmed by enhanced downward mixing of sensible heat in the lee of the gully shoulder. Stationary horizontal temperature gradients at this thermal boundary amounted to 6 to 8 K m-1 and persisted for several hours unless

  10. Seepage Reconnaissance in an Embankment Dam using Distributed Temperature Sensing (DTS): Monitoring and Modelling of Seasonal Effects

    Science.gov (United States)

    Yun, T.; Ringeri, A.; Butler, K. E.; MacQuarrie, K. T. B.

    2016-12-01

    It is important to ensure that any anomalous seepage giving rise to internal erosion within embankment dams be identified and remediated at an early stage. In some cases, increased seepage may locally alter seasonal temperature distributions within dams and their foundations. It may then be detectable by in-situ temperature monitoring, provided that measurements can be made with sufficiently high spatial resolution such as those available from fibre optic distributed temperature sensing (DTS) systems. In this study, spatiotemporal variations in temperature are being monitored and modeled at the interface between the compacted till core of an embankment dam and an adjoining concrete diversion sluiceway structure at the Mactaquac Generating Station, located on the Saint John River near Fredericton, NB, Canada. The measurements are acquired using a fibre optic DTS system installed in a 50 m long borehole drilled into the concrete structure and offset 0.5 m from the till-concrete interface. The DTS system has been functioning since late December 2013. Following two active heating experiments during the summers of 2014 and 2015, the system is now devoted to passive monitoring. Comparisons of daily average temperature profiles show that the amplitude of annual temperature variation measured in the borehole varies from more than 35 °C at surface to less than 1 °C near the dam foundation. The noise level of the DTS measurements, as defined by scatter of the daily mean, is on the order of 0.05 - 0.1 °C. The temperature profiles generally vary smoothly with depth, but short wavelength seasonal anomalies are evident at two depths, particularly during the winter. Interpretation of the profiles is complicated by the heterogeneity of the environment including the nearby concrete-earth dam, concrete-reservoir, and concrete-air interfaces, a water table at 15 m depth, and possible fractures within the concrete. Three-dimensional transient finite element modeling is therefore

  11. Performance evaluation of a conformal thermal monitoring sheet sensor array for measurement of surface temperature distributions during superficial hyperthermia treatments.

    Science.gov (United States)

    Arunachalam, K; Maccarini, P; Juang, T; Gaeta, C; Stauffer, P R

    2008-06-01

    This paper presents a novel conformal thermal monitoring sheet (TMS) sensor array with differential thermal sensitivity for measuring temperature distributions over large surface areas. Performance of the sensor array is evaluated in terms of thermal accuracy, mechanical stability and conformity to contoured surfaces, probe self-heating under irradiation from microwave and ultrasound hyperthermia sources, and electromagnetic field perturbation. A prototype with 4 x 4 array of fiber-optic sensors embedded between two flexible and thermally conducting polyimide films was developed as an alternative to the standard 1-2 mm diameter plastic catheter-based probes used in clinical hyperthermia. Computed tomography images and bending tests were performed to evaluate the conformability and mechanical stability respectively. Irradiation and thermal barrier tests were conducted and thermal response of the prototype was compared with round cross-sectional clinical probes. Bending and conformity tests demonstrated higher flexibility, dimensional stability and close conformity to human torso. Minimal perturbation of microwave fields and low probe self-heating was observed when irradiated with 915 MHz microwave and 3.4 MHz ultrasound sources. The transient and steady state thermal responses of the TMS array were superior compared to the clinical probes. A conformal TMS sensor array with improved thermal sensitivity and dimensional stability was investigated for real-time skin temperature monitoring. This fixed-geometry, body-conforming array of thermal sensors allows fast and accurate characterization of two-dimensional temperature distributions over large surface areas. The prototype TMS demonstrates significant advantages over clinical probes for characterizing skin temperature distributions during hyperthermia treatments of superficial tissue disease.

  12. The influence of inhomogeneous temperature distribution on the amplification of sound waves in non-equilibrium gas media

    Science.gov (United States)

    Suleimenov, I.; Aushev, V.; Adamov, T.; Vasiliev, I.

    Modern investigations show that the effect of acoustic and acoustic-gravity waves amplification strongly influence on the temperature balance in atmosphere. These waves may be amplified due to the transformation of energy of chemically active (or ionized) components into the energy of wave motion, i.e. the nature of the effect is the same as the amplification of sound in other non-equilibrium gas media (for example, in gas discharge plasma). Recently Jiyao Xu (1999) reported that the theory of such waves might be developed in the same way as the theory of acoustic-gravity waves. It is shown that the influence of inhomogeneous altitude distribution of temperature should be taken into account for the correct interpretation of temperature balance in the atmosphere. In other words, the self-agreed problem have to be solved: transformation of chemical energy into energy of wave motion change the vertical profile of the atmosphere temperature, but the profile of the temperature itself determine the amplification coefficient of the wave. The results of analytical solution of the problem are reported. We show that the sign of temperature gradient strongly influence on the behavior of amplified acoustic and acoustic-gravity waves. The regime of amplification is stable when the second derivative of the temperature is negative (temperature has minimum at some point). In other words the stable channel of amplification of the waves may exist, for example, in the tube when the temperature of the walls is higher than the temperature of the gas at the axe. The different instabilities appear in the opposite case when the temperature in the reference point has a maximum. In particular, it means that the amplification of acoustic waves in gas discharge tubes cannot be stable. Moreover, our results show that self-generation of acoustic-gravity in middle atmosphere due to photochemical reactions cannot be stable process too. This conclusion is in accordance with known experimental

  13. Venus upper atmosphere winds traced by temperature and night ariglow distributions: VTGCM comparisons with PVO and VEX data

    Science.gov (United States)

    Bougher, Stephen; Brecht, Amanda; Parkinson, Chris; Rafkin, Scot; Foster, Ben

    New Venus upper atmosphere measurements from Venus Express (VEX), when examined in the light of previous Pioneer Venus Orbiter (PVO) and ground-based measurements, suggest that the dynamics of the Venus middle and upper atmospheres ( 80-200 km) is highly variable [e.g. Bertaux et al., 2007; Bougher et al., 1997; 2006; Gerard et al., 2008; Lellouch et al., 1997; Schubert et al., 2007]. A superposition of variable retrograde superrotating zonal (RSZ) winds and more stable subsolar-to-antisolar (SS-AS) winds is known to dominate the global dynamics of this region. Presently, key night airglow distributions (NO ultraviolet and O2 near-IR) and lower thermosphere temperature distributions are being used as excellent tracers of these changing global wind patterns. The National Center for Atmospheric Research (NCAR) thermospheric general circulation model for Venus (VTGCM) has been upgraded to better simulate these night airglow and temperature distributions. The objectives of this modeling effort are to: (1) reproduce the observed mean structure of these features, thereby unfolding the average wind patterns, and (2) identify and quantify the importance of the processes that drive daily variations in the global circulation (i.e. planetary scale waves and tidal modes). The VTGCM is a three dimensional model that calculates temperatures, 3-component neutral winds, and the concentration of specific neutral and ion species. This model can also compute the O2 and NO night airglow intensity (horizontal) and volume emission rate (vertical) distributions for comparison to available PVO and VEX datasets. The most important change is the VTGCM bottom boundary, which has been lowered to 70 km near cloud tops. This upgrade insures that all possible dynamical influences that contribute to maintaining these airglow layers, and their variations, can be captured within the VTGCM domain. Model simulations for both VEX and PVO observing periods will be presented, illustrating the new VTGCM

  14. Features of the estimation of temperature distribution on the bead formed by the laser aided metal powder deposition

    Science.gov (United States)

    Zavalov, Yuri N.; Dubrov, Alexander V.; Mirzade, Fikret Kh.; Dubrov, Vladimir D.

    2017-06-01

    The estimation of temperature variations in five regions of layer track is fulfilled in two different cases of layer track formation: laser aided metal powder deposition and selective laser melting with a pre-deposited layer of metal powder. The peculiarities of the multichannel pyrometer have been described, and the advantages of the application of spectralratio pyrometer in diagnostics in the additive laser technologies have been demonstrated. A set of measurements of the temperature distribution in the region of exposure to laser radiation during a bead formation in technology of laser aided metal powder deposition with powder injection has been performed at the specific energy input of J=90 MJ/kg. The dependences of the temperature on scanning velocity, laser power and powder thickness have been derived in the technology of selective laser melting. It has been shown that the maximum temperature of the track surface is little changed in the wide range of variation of the calculated parameter of specific energy input J=4…20 MJ/kg, the bead width is here increased as J grows. The increase of J above a certain value J0 leads to a rise in the temperature at the bead axis. For the experimental conditions with the track width around 1 mm, the character value is estimated as J0 = 24 MJ/kg. It has been shown that J0 depends inversely on the track width.

  15. Temporal and spatial temperature distribution in the glabrous skin of rats induced by short-pulse CO2 laser

    Science.gov (United States)

    Lu, Pen-Li; Hsu, Shu-Shen; Tsai, Meng-Li; Jaw, Fu-Shan; Wang, An-Bang; Yen, Chen-Tung

    2012-11-01

    Pain is a natural alarm that aids the body in avoiding potential danger and can also present as an important indicator in clinics. Infrared laser-evoked potentials can be used as an objective index to evaluate nociception. In animal studies, a short-pulse laser is crucial because it completes the stimulation before escape behavior. The objective of the present study was to obtain the temporal and spatial temperature distributions in the skin caused by the irradiation of a short-pulse laser. A fast speed infrared camera was used to measure the surface temperature caused by a CO2 laser of different durations (25 and 35 ms) and power. The measured results were subsequently implemented with a three-layer finite element model to predict the subsurface temperature. We found that stratum corneum was crucial in the modeling of fast temperature response, and escape behaviors correlated with predictions of temperature at subsurface. Results indicated that the onset latency and duration of activated nociceptors must be carefully considered when interpreting physiological responses evoked by infrared irradiation.

  16. Distribution of Xylella fastidiosa in Sycamore associated with low temperature and host resistance

    Science.gov (United States)

    T.S.M. Henneberger; K.L. Stevenson; C.J. Chang

    2004-01-01

    Experiments were conducted in the field and laboratory to determine effects of low temperatures 4% on Xylella fastidiosa populations in American sycamore. Roots and shoots from naturally infected trees at two locations were collected monthly. Sap extracted from the samples was tested by enzyme-linked immunosorbent assay for presence of X...

  17. On the Temperature Distribution in an Air-Ventilated Snow Layer,

    Science.gov (United States)

    1982-03-01

    Yosida (1950), de Quervain (1963) and Yen (1963). If the steep temperature gradient is sustained for a long duration, the continued transport of water...Carslaw, H.S. and J.C. Jaeger (1959) Conduction of heat in solids. 2nd Ed., Oxford: Oxford University Press. de Quervain , M.R. (1963) On the

  18. Is the distribution of nitrogen-fixing cyanobacteria in the oceans related to temperature?

    NARCIS (Netherlands)

    Stal, L.J.

    2009-01-01

    Approximately 50% of the global natural fixation of nitrogen occurs in the oceans supporting a considerable part of the new primary production. Virtually all nitrogen fixation in the ocean occurs in the tropics and subtropics where the surface water temperature is 25°C or higher. It is attributed

  19. CFD analyses of the rod bowing effect on the subchannel outlet temperature distribution

    Energy Technology Data Exchange (ETDEWEB)

    Ekstroem, Karoliina; Toppila, Timo [Fortum Power and Heat, Fortum (Finland)

    2017-09-15

    In the Loviisa 1 and 2 nuclear power plants the subcooling margin of the hottest subchannel of the fuel assembly is monitored. The temperature of the coolant in the hottest subchannel is limited to the constant saturation temperature. Bending of the fuel rods occurs during normal operation due to the differences in the heat profiles of the rods. The coolant temperature will rise more in the subchannel with smaller flow area due to the bending and this has to be taken into account in the safety margin of subchannel enthalpy rise. Computational Fluid Dynamics (CFD) simulations are used to estimate how much the estimated maximum bow of a rod affects the temperature rise of the subchannel. The quantitative uncertainty of the predicted enthalpy rise in fuel bundle subchannel is estimated based on the uncertainty of modelling of mixing between subchannels. The measured turbulence quantities from LDA measurements of cold test assembly made in 1990s in Fortum are compared with CFD results to give uncertainty estimation for turbulence, which is further used for uncertainty estimation of mixing and simulated subchannel enthalpy rise.

  20. Workpiece temperature distribution for deep penetration welding with high energy focused beams

    Science.gov (United States)

    Peretz, R.

    1986-01-01

    A solution for the two-dimensional temperature field in a workpiece at welding by laser or electron beams, which takes into consideration the solid-to-liquid phase change of the material, is presented. This leads to more precise process parameter correlations.

  1. Nd : YAG surgical laser effects in canine prostate tissue: temperature and damage distribution

    NARCIS (Netherlands)

    van Nimwegen, S. A.; L'Eplattenier, H. F.; Rem, A. I.; van der Lugt, J. J.; Kirpensteijn, J.

    2009-01-01

    An in vitro model was used to predict short-term, laser-induced, thermal damage in canine prostate tissue. Canine prostate tissue samples were equipped with thermocouple probes to measure tissue temperature at 3, 6, 9 and 12 mm depths. The tissue surface was irradiated with a Nd:YAG laser in contact

  2. Application of infrared thermography for temperature distributions in fluid-saturated porous media

    DEFF Research Database (Denmark)

    Imran, Muhammad; Nick, Hamid; Schotting, Ruud J.

    2016-01-01

    rates and temperatures are studied experimentally. Additionally, it offers numerical simulations of the experiments utilizing a finite element-based model. A two-dimensional density and viscosity-dependent flow and transport model accounting for thermal dispersion is utilized to simulate...

  3. Distributed Piezoelectric Sensor System for Damage Identification in Structures Subjected to Temperature Changes.

    Science.gov (United States)

    Vitola, Jaime; Pozo, Francesc; Tibaduiza, Diego A; Anaya, Maribel

    2017-05-31

    Structural health monitoring (SHM) is a very important area in a wide spectrum of fields and engineering applications. With an SHM system, it is possible to reduce the number of non-necessary inspection tasks, the associated risk and the maintenance cost in a wide range of structures during their lifetime. One of the problems in the detection and classification of damage are the constant changes in the operational and environmental conditions. Small changes of these conditions can be considered by the SHM system as damage even though the structure is healthy. Several applications for monitoring of structures have been developed and reported in the literature, and some of them include temperature compensation techniques. In real applications, however, digital processing technologies have proven their value by: (i) offering a very interesting way to acquire information from the structures under test; (ii) applying methodologies to provide a robust analysis; and (iii) performing a damage identification with a practical useful accuracy. This work shows the implementation of an SHM system based on the use of piezoelectric (PZT) sensors for inspecting a structure subjected to temperature changes. The methodology includes the use of multivariate analysis, sensor data fusion and machine learning approaches. The methodology is tested and evaluated with aluminum and composite structures that are subjected to temperature variations. Results show that damage can be detected and classified in all of the cases in spite of the temperature changes.

  4. Effect of temperature and soil-rock characteristics on permafrost distribution and hydrology

    Science.gov (United States)

    Selroos, Jan-Olof; Destouni, Georgia; Cheng, Hua

    2013-04-01

    In the present study, we perform numerical modelling to address the effects of soil and rock characteristics, in terms of hydraulic and thermal properties, on permafrost development and groundwater flow subject to annual variations in climate forcing. We utilize a two-dimensional model domain describing a typical Scandinavian soil-rock setting with specified, temporally varying, surface temperature and groundwater recharge. Specifically, the temperature follows a sine curve with an annual average of -1 degrees Celsius, while the recharge is zero during freezing temperatures and has a constant value, relevant for typical mean annual recharge, during positive temperatures. The groundwater flow model DarcyTools (Svensson, 2010; Vidstrand et al., 2013) is used. DarcyTools simulates coupled saturated/unsaturated flow and heat transport; permafrost development is modelled in a simplified manner by assigning low permeability values in regions with negative temperatures. This is achieved by adopting a permeability reduction factor which depends on an ice-content function and material properties; the ice content function in turn depends on modelled temperature and a freezing parameter that depends on in-situ conditions. Different combinations of rock and soil characteristics are investigated. Results show that differences in thermal properties between different soil/rock units have the largest influence on permafrost development and hence also on groundwater flow in permafrost regions. Specifically, if prevalent soil/rock units have similar thermal properties, while having different hydraulic properties, there is limited effect on permafrost development compared to the case where also thermal properties vary between units. The results mechanistically show that, for a given temperature, permafrost will develop more readily and to greater extent in a peat soil than in a mineral soil due to the fact that peat has thermal properties different from mineral soils and rock. The

  5. Finite element method for temperature distribution in synthetic diamond cutters during orthogonal rock cutting

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, V.

    1986-01-01

    The introduction of synthetic polycrystalline diamond compact (PDC) cutters for use as cutters on oil well drill bits by General Electric in 1973 was a significant advancement in drilling technology. To realize the full potential of this type of cutter a theoretical model of cutting heat transfer and wear for these cutters had to be developed. A cutting model developed in a previous study is used as the first step in developing a heat transfer model. The finite element method is used to solve the problem of simultaneous heat transfer in the rock chip and the tool. The model is verified by comparison with the single cutter experiments of Lee and Hibbs. The model suggested that a correlation existed in the experimental results of Lee and Hibbs between the velocity at which the wear of PDC drastically increased and the temperature at which the hardness decreased drastically. A significant conclusion from the results is that the heat flows from the tool into the chip and thus the chip actually helps in the cooling of the tool. Studies of the effect of film coefficient on the temperature of the tool suggest that there is an optimum cooling beyond which the decrease in temperature for an increase in cooling is insignificantly small. The maximum temperature is on the wear flat closer to the edge away from the cutting tip. The maximum temperature increased when the length of the wear flat increased. The largest contribution to the heat generation in the model is from the heat generation due to sliding friction on the wear flat.

  6. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures?

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Schouten, S.; Hopmans, E.C.; Schefuß, E.

    2002-01-01

    It has recently been shown that membrane lipids of marine crenarchaeota, a ubiquitous and abundant component of plankton, occur in relatively high concentrations in recent and ancient sediments. In this study we investigated the environmental controls on the relative distribution of these lipids in

  7. Experimental and theoretical investigations on temperature distribution at the joint interface for copper joints using ultrasonic welding

    Directory of Open Access Journals (Sweden)

    Elangovan Sooriya

    2014-01-01

    Full Text Available Ultrasonic welding is a solid-state joining process that produces joints by the application of high frequency vibratory energy in the work pieces held together under pressure without melting. Copper and its alloys are extensively used in electrical and electronic industry because of its excellent electrical and thermal properties. This paper mainly focused on temperature distribution and the influence of process parameters at the joint interface while joining copper sheets using ultrasonic welding process. Experiments are carried out using Cu sheets (0.2 mm and 0.3 mm thickness and the interface temperature is measured using Data Acquisition (DAQ System (thermocouple and thermal imager. Numerical and finite element based model for temperature distribution at the interface are developed and solved the same using Finite Difference Method (FDM and Finite Element Analysis (FEA. The results obtained from FDM and FEA model shows similar trend with experimental results and are found to be in good agreement.

  8. Herschel-ATLAS: Dust Temperature and Redshift Distribution of SPIRE and PACS Detected Sources Using Submillimetre Colours

    Science.gov (United States)

    Amblard, A.; Cooray, Asantha; Serra, P.; Temi, P.; Barton, E.; Negrello, M.; Auld, R.; Baes, M.; Baldry, I. K.; Bamford, S.; hide

    2010-01-01

    We present colour-colour diagrams of detected sources in the Herschel-ATLAS Science Demonstration Field from 100 to 500/microns using both PACS and SPIRE. We fit isothermal modified-blackbody spectral energy distribution (SED) models in order to extract the dust temperature of sources with counterparts in GAMA or SDSS with either a spectroscopic or a photometric redshift. For a subsample of 331 sources detected in at least three FIR bands with significance greater than 30 sigma, we find an average dust temperature of (28 plus or minus 8)K. For sources with no known redshifts, we populate the colour-colour diagram with a large number of SEDs generated with a broad range of dust temperatures and emissivity parameters and compare to colours of observed sources to establish the redshift distribution of those samples. For another subsample of 1686 sources with fluxes above 35 mJy at 350 microns and detected at 250 and 500 microns with a significance greater than 3sigma, we find an average redshift of 2.2 plus or minus 0.6.

  9. Using passive fiber-optic distributed temperature sensing to estimate soil water content at a discontinuous permafrost site

    Science.gov (United States)

    Wagner, A. M.; Lindsey, N.; Ajo Franklin, J. B.; Gelvin, A.; Saari, S.; Ekblaw, I.; Ulrich, C.; Dou, S.; James, S. R.; Martin, E. R.; Freifeld, B. M.; Bjella, K.; Daley, T. M.

    2016-12-01

    We present preliminary results from an experimental study targeting the use of passive fiber-optic distributed temperature sensing (DTS) in a variety of geometries to estimate moisture content evolution in a dynamic permafrost system. A 4 km continuous 2D array of multi-component fiber optic cable (6 SM/6 MM) was buried at the Fairbanks Permafrost Experiment Station to investigate the possibility of using fiber optic distributed sensing as an early detection system for permafrost thaw. A heating experiment using 120 60 Watt heaters was conducted in a 140 m2 area to artificially thaw the topmost section of permafrost. The soils at the site are primarily silt but some disturbed areas include backfilled gravel to depths of approximately 1.0 m. Where permafrost exists, the depth to permafrost ranges from 1.5 to approximately 5 m. The experiment was also used to spatially estimate soil water content distribution throughout the fiber optic array. The horizontal fiber optic cable was buried at depths between 10 and 20 cm. Soil temperatures were monitored with a DTS system at 25 cm increments along the length of the fiber. At five locations, soil water content time-domain reflectometer (TDR) probes were also installed at two depths, in line with the fiber optic cable and 15 to 25 cm below the cable. The moisture content along the fiber optic array was estimated using diurnal effects from the dual depth temperature measurements. In addition to the horizontally installed fiber optic cable, vertical lines of fiber optic cable were also installed inside and outside the heater plot to a depth of 10 m in small diameter (2 cm) boreholes. These arrays were installed in conjunction with thermistor strings and are used to monitor the thawing process and to cross correlate with soil temperatures at the depth of the TDR probes. Results will be presented from the initiation of the artificial thawing through subsequent freeze-up. A comparison of the DTS measured temperatures and

  10. Temperature drives the continental-scale distribution of key microbes in topsoil communities.

    Science.gov (United States)

    Garcia-Pichel, Ferran; Loza, Virginia; Marusenko, Yevgeniy; Mateo, Pilar; Potrafka, Ruth M

    2013-06-28

    Global warming will likely force terrestrial plant and animal species to migrate toward cooler areas or sustain range losses; whether this is also true for microorganisms remains unknown. Through continental-scale compositional surveys of soil crust microbial communities across arid North America, we observed a latitudinal replacement in dominance between two key topsoil cyanobacteria that was driven largely by temperature. The responses to temperature of enrichment cultures and cultivated strains support this contention, with one cyanobacterium (Microcoleus vaginatus) being more psychrotolerant and less thermotolerant than the other (M. steenstrupii). In view of our data and regional climate predictions, the latter cyanobacterium may replace the former in much of the studied area within the next few decades, with unknown ecological consequences for soil fertility and erodibility.

  11. Dust ion acoustic freak waves in a plasma with two temperature electrons featuring Tsallis distribution

    Science.gov (United States)

    Chahal, Balwinder Singh; Singh, Manpreet; Shalini; Saini, N. S.

    2018-02-01

    We present an investigation for the nonlinear dust ion acoustic wave modulation in a plasma composed of charged dust grains, two temperature (cold and hot) nonextensive electrons and ions. For this purpose, the multiscale reductive perturbation technique is used to obtain a nonlinear Schrödinger equation. The critical wave number, which indicates where the modulational instability sets in, has been determined precisely for various regimes. The influence of plasma background nonextensivity on the growth rate of modulational instability is discussed. The modulated wavepackets in the form of either bright or dark type envelope solitons may exist. Formation of rogue waves from bright envelope solitons is also discussed. The investigation indicates that the structural characteristics of these envelope excitations (width, amplitude) are significantly affected by nonextensivity, dust concentration, cold electron-ion density ratio and temperature ratio.

  12. Impact of temperature-velocity distribution on fusion neutron peak shape

    Science.gov (United States)

    Munro, D. H.; Field, J. E.; Hatarik, R.; Peterson, J. L.; Hartouni, E. P.; Spears, B. K.; Kilkenny, J. D.

    2017-05-01

    Doppler broadening of the 14 MeV DT and 2.45 MeV DD fusion neutron lines has long been our best measure of temperature in a burning plasma. At the National Ignition Facility (NIF), yields are high enough and our neutron spectrometers accurate enough that we see finer details of the peak shape. For example, we can measure the shift of the peak due to the bulk motion of the plasma, and we see indications of non-thermal broadening, skew, and kurtosis of the peak caused by the variations of temperature and fluid velocity during burn. We can also distinguish spectral differences among several lines of sight. This paper will review the theory of fusion neutron line shape, show examples of non-Gaussian line shapes and directional variations in NIF data, and describe detailed spectral shapes we see in radiation-hydrodynamics simulations of implosions.

  13. Influence of Brick Walls on the Temperature Distribution in Steel Columns in Fire

    Directory of Open Access Journals (Sweden)

    António J. P. Moura Correia

    2009-01-01

    Full Text Available This paper reports on a study of steel columns embedded in walls in fire. Several fire resistance tests were carried out at the Laboratory of Testing Materials and Structures of the University of Coimbra, in Portugal. The temperatures registered in several points of the experimental models are compared with those obtained in numerical simulations carried out with the SUPERTEMPCALC finite element program. 

  14. Comparison of various liquid-phase systems with respect to heat requirements and temperature distribution

    Energy Technology Data Exchange (ETDEWEB)

    von Hartmann, G.

    1942-05-22

    The differences that should be kept in mind between the conditions prevailing in 10-liter experimental apparatus for coal hydrogenation and those in the full-scale production units are detailed so that no mistakes would be made in running the production units according to information gained in experiments. One of the major differences was that the proportion of heat brought into the system which was lost by radiation away from the system varied greatly depending on the relative size of the system; thus in the smaller experimental system, the heat brought in by the reactants plus the heat generated in the exothermic reaction was not sufficient to cover radiation losses and keep the temperature up to keep the reaction going, so the oven itself had to be heated from outside; whereas in the full-scale apparatus the oven could not be heated from outside, so all necessary heat had to be brought in with the reactants or generated in the oven (however, in fact usually cool gas had to be added to the full-scale oven to keep the temperature down to the proper level). In order to try to approximate more closely other actual production situations in the experiment, several adjustments were made in experimental procedure. Some of these involved using a lower temperature in the reaction oven than did full-scale operation and using relatively smaller amounts of gas per volume of coal paste to compensate for the better mixing of reactants in the experimental apparatus. 2 graphs.

  15. Temperature distribution in the Infrared Dark Cloud G351.77-00.51

    Science.gov (United States)

    Leurini, Silvia; Jones, Paul; Cunningham, Maria; Wyrowski, Friedrich; Pillai, Thushara; Schuller, Frederic; Testi, Leonardo; Stanke, Thomas

    2012-04-01

    In the past decade, significant progress has been made toward understanding the more evolved stages of massive star formation, from hot molecular cores to hyper-compact HII regions. However, little is known about an even earlier quiescent phase where a (supposedly) massive core is yet to collapse. Infrared Dark Clouds (IRDCs) are ideal candidates to study the early phases of the formation of massive stars and clusters as they consist of dense molecular gas and dust with temperatures of 10 to 20 K. The IRDC G351.77-00.51 is an elongated filament for which our previous observations reveal large line widths and faint outflows all across the filament, even towards IR quiet regions. ATCA observations of ammonia during 2011 reveal a string of clumps with a wide range of temperatures and physical conditions, supporting the idea that star formation with a variety of early stages is occurring along the filament. However, the ATCA observations show evidence for missing flux, so we are requesting 20 hours to map the filament with the Parkes telescope in ammonia, to provide zero spacing data, allowing us to make accurate temperature determinations along the filament.

  16. Determination of the electron energy distribution function of a low temperature plasma from optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dodt, Dirk Hilar

    2009-01-05

    The experimental determination of the electron energy distribution of a low pressure glow discharge in neon from emission spectroscopic data has been demonstrated. The spectral data were obtained with a simple overview spectrometer and analyzed using a strict probabilistic, Bayesian data analysis. It is this Integrated Data Analysis (IDA) approach, which allows the significant extraction of non-thermal properties of the electron energy distribution function (EEDF). The results bear potential as a non-invasive alternative to probe measurements. This allows the investigation of spatially inhomogeneous plasmas (gradient length smaller than typical probe sheath dimensions) and plasmas with reactive constituents. The diagnostic of reactive plasmas is an important practical application, needed e.g. for the monitoring and control of process plasmas. Moreover, the experimental validation of probe theories for magnetized plasmas as a long-standing topic in plasma diagnostics could be addressed by the spectroscopic method. (orig.)

  17. Hyperspectral Imaging of a Turbine Engine Exhaust Plume to Determine Radiance, Temperature, and Concentration Spatial Distributions

    Science.gov (United States)

    2009-03-01

    CONCENTRATION SPATIAL DISTRIBUTIONS Spencer J. Bowen, BS Captain, USAF Approved: Michael A. Marciniak , PhD (Chainnan) Date Glen P. Perram, PhD...the order of 1015 and 1017 molecules/cm3, respectively. v Acknowledgments I would like to thank my advisor, Dr. Michael Marciniak , for the...advice of my colleagues in room 210 B , I would probably have lost my mind. Thank you Neil, Mitch, Katie, and Brooke for keeping me sane and full of

  18. Distributed Optical Fiber Radiation and Temperature Sensing at High Energy Accelerators and Experiments

    CERN Document Server

    AUTHOR|(CDS)2090137; Brugger, Markus

    The aim of this Thesis is to investigate the feasibility of a distributed optical fiber radiation sensing system to be used at high energy physics accelerators and experiments where complex mixed-field environments are present. In particular, after having characterized the response of a selection of radiation sensitive optical fibers to ionizing radiation coming from a 60Co source, the results of distributed optical fiber radiation measurements in a mixed-field environment are presented along with the method to actually estimate the dose variation. This study demonstrates that distributed optical fiber dosimetry in the above mentioned mixed-field radiation environment is feasible, allowing to detect dose variations of about 10-15 Gy with a 1 m spatial resolution. The proof of principle has fully succeeded and we can now tackle the challenge of an industrial installation taking into account that some optimizations need to be done both on the control unit of the system as well as on the choice of the sensing f...

  19. The contribution of Distributed Temperature Sensing (DTS) in streams to assess spatial runoff processes in a moraine dominated agricultural catchment

    DEFF Research Database (Denmark)

    Boegh, Eva; Blemmer, Morten; Holmes, Esbern

    -plant-atmosphere model (Daisy) was used to calculate the water balance of a moraine dominated agricultural catchment (42 km2) in Denmark, and a Distributed Temperature Sensing (DTS) system was installed in the stream Elverdam to assess the spatial variations in lateral inflows to the stream. The Daisy model was set up......Evaluating impacts of site-specific changes in land use and land cover on catchment processes is significantly complicated by spatial heterogeneity and the long and variable time lags between precipitation and the responses of streams and groundwater. In this study, a 1-D soil...... using a high spatial resolution (10-30 m) land use map which includes agricultural crops, forest, wetlands and inhabited areas, and spatial variations in soil types, geology and tile drainage were represented. The DTS system measured diurnal variations in water temperature each meter along a stream...

  20. Effect of Magnetic Flux Density and Applied Current on Temperature, Velocity and Entropy Generation Distributions in MHD Pumps

    Directory of Open Access Journals (Sweden)

    M. Kiyasatfar

    2011-01-01

    Full Text Available In the present study, simulation of steady state, incompressible and fully developed laminar flow has been conducted in a magneto hydrodynamic (MHD pump. The governing equations are solved numerically by finite-difference method. The effect of the magnetic flux density and current on the flow and temperature distributions in a MHD pump is investigated. The obtained results showed that controlling the flow and the temperature is possible through the controlling of the applied current and the magnetic flux. Furthermore, the effects of the magnetic flux density and current on entropy generation in MHD pump are considered. Our presented numerical results are in good agreement with the experimental data showed in literature.

  1. Myocardial temperature distribution under cw Nd:YAG laser irradiation in in vitro and in vivo situations: theory and experiment

    Science.gov (United States)

    Splinter, Robert; Littmann, Laszlo; Tuntelder, Jan R.; Svenson, Robert H.; Chuang, Chi Hui; Tatsis, George P.; Semenov, Serguei Y.; Nanney, Glenn A.

    1995-01-01

    Tissue samples ranging from 2 to 16 mm in thickness were irradiated at 1064 nm with energies ranging from 40 to 2400 J. Coagulation lesions of in vitro and in vivo experiments were subjected to temperature profiling and submitted for histology. Irreversible damage was calculated with the damage integral formalism, following the bioheat equation solved with Monte Carlo computer light-distribution simula-tions. Numerical temperature rise and coagulation depth compared well with the in vitro results. The in vivo data required a change in the optical properties based on integrating sphere measurements for high irradiance to make the experimental and numerical data converge. The computer model has successfully solved several light-tissue interaction situations in which scattering dominates over absorption.

  2. Numerical simulation of a fractional model of temperature distribution and heat flux in the semi infinite solid

    Directory of Open Access Journals (Sweden)

    Anupama Choudhary

    2016-03-01

    Full Text Available In this paper, a fractional model for the computation of temperature and heat flux distribution in a semi-infinite solid is discussed which is subjected to spatially decomposing, time-dependent laser source. The apt dimensionless parameters are identified and the reduced temperature and heat flux as a function of these parameters are presented in a numerical form. Some special cases of practical interest are also discussed. The solution is derived by the application of the Laplace transform, the Fourier sine transform and their derivatives. Also, we developed an alternative solution of it by using the Sumudu transform, the Fourier transform and their derivatives. These results are received in compact and graceful forms in terms of the generalized Mittag-Leffler function, which are suitable for numerical computation.

  3. Self-Evaluation of PANDA-FBG Based Sensing System for Dynamic Distributed Strain and Temperature Measurement.

    Science.gov (United States)

    Zhu, Mengshi; Murayama, Hideaki; Wada, Daichi

    2017-10-12

    A novel method is introduced in this work for effectively evaluating the performance of the PANDA type polarization-maintaining fiber Bragg grating (PANDA-FBG) distributed dynamic strain and temperature sensing system. Conventionally, the errors during the measurement are unknown or evaluated by using other sensors such as strain gauge and thermocouples. This will make the sensing system complicated and decrease the efficiency since more than one kind of sensor is applied for the same measurand. In this study, we used the approximately constant ratio of primary errors in strain and temperature measurement and realized the self-evaluation of the sensing system, which can significantly enhance the applicability, as well as the reliability in strategy making.

  4. Self-Evaluation of PANDA-FBG Based Sensing System for Dynamic Distributed Strain and Temperature Measurement

    Directory of Open Access Journals (Sweden)

    Mengshi Zhu

    2017-10-01

    Full Text Available A novel method is introduced in this work for effectively evaluating the performance of the PANDA type polarization-maintaining fiber Bragg grating (PANDA-FBG distributed dynamic strain and temperature sensing system. Conventionally, the errors during the measurement are unknown or evaluated by using other sensors such as strain gauge and thermocouples. This will make the sensing system complicated and decrease the efficiency since more than one kind of sensor is applied for the same measurand. In this study, we used the approximately constant ratio of primary errors in strain and temperature measurement and realized the self-evaluation of the sensing system, which can significantly enhance the applicability, as well as the reliability in strategy making.

  5. The association between diurnal temperature range and childhood hand, foot, and mouth disease: a distributed lag non-linear analysis.

    Science.gov (United States)

    Yin, Fei; Ma, Yue; Zhao, Xing; Lv, Qiang; Liu, Yaqiong; Zhang, Tao; Li, Xiaosong

    2017-11-01

    In recent years, hand, foot, and mouth disease (HFMD) has been increasingly recognized as a critical challenge to disease control and prevention in China. Previous studies have found that meteorological factors such as mean temperature and relative humidity were associated with HFMD. However, little is known about whether the diurnal temperature range (DTR) has any impact on HFMD. This study aimed to quantify the impact of DTR on childhood HFMD in 18 cities in Sichuan Province. A distributed lag non-linear model was adopted to explore the temporal lagged association of daily temperature with age-, gender- and pathogen-specific HFMD. A total of 290 123 HFMD cases aged 0-14 years were reported in the 18 cities in Sichuan Province. The DTR-HFMD relationships were non-linear in all subgroups. Children aged 6-14 years and male children were more vulnerable to the temperature changes. Large DTR had the higher risk estimates of HFMD incidence in cases of EV71 infection, while small DTR had the higher risk estimates of HFMD incidence in cases of CV-A16 infection. Our study suggested that DTR played an important role in the transmission of HFMD with non-linear and delayed effects.

  6. Performance evaluation of two types of heated cables for distributed temperature sensing-based measurement of soil moisture content

    Directory of Open Access Journals (Sweden)

    Dingfeng Cao

    2016-04-01

    Full Text Available Distributed temperature sensing (DTS using heated cables has been recently developed for distributed monitoring of in-situ soil moisture content. In this method, the thermal and electrical properties of heated cables have a significant influence on the measurement accuracy of soil moisture content. In this paper, the performances of two heated cables, i.e. the carbon-fiber heated cable (CFHC and the metal-net heated cable (MNHC, are studied in the laboratory. Their structures, uniformity in the axial direction, measurement accuracy and suitability are evaluated. The test results indicate that the MNHC has a better uniformity in the axial direction than CFHC. Both CFHC and MNHC have high measurement accuracy. The CFHC is more suitable for short-distance measurement (≤500 m, while the MNHC can be used for long-distance measurement (>500 m.

  7. Abundance and temperature distributions in the hot intra-cluster gas of Abell 4059

    Science.gov (United States)

    Mernier, F.; de Plaa, J.; Lovisari, L.; Pinto, C.; Zhang, Y.-Y.; Kaastra, J. S.; Werner, N.; Simionescu, A.

    2015-03-01

    Using the EPIC and RGS data from a deep (200 ks) XMM-Newton observation, we investigate the temperature structure (kT and σT) and the abundances of nine elements (O, Ne, Mg, Si, S, Ar, Ca, Fe, and Ni) of the intra-cluster medium (ICM) in the nearby (z = 0.046) cool-core galaxy cluster Abell 4059. Next to a deep analysis of the cluster core, a careful modelling of the EPIC background allows us to build radial profiles up to 12' (~650 kpc) from the core. Probably because of projection effects, the temperature ICM is not found to be in single phase, even in the outer parts of the cluster. The abundances of Ne, Si, S, Ar, Ca, and Fe, but also O are peaked towards the core. The elements Fe and O are still significantly detected in the outermost annuli, which suggests that the enrichment by both type Ia and core-collapse SNe started in the early stages of the cluster formation. However, the particularly high Ca/Fe ratio that we find in the core is not well reproduced by the standard SNe yield models. Finally, 2D maps of temperature and Fe abundance are presented and confirm the existence of a denser, colder, and Fe-rich ridge south-west of the core, previously observed by Chandra. The origin of this asymmetry in the hot gas of the cluster core is still unclear, but it might be explained by a past intense ram-pressure stripping event near the central cD galaxy. Appendices are available in electronic form at http://www.aanda.org

  8. Buried Treasure: Using Distributed Ground Temperature Sensors to Test Remote Sensing of Fractional Snow Cover

    Science.gov (United States)

    Raleigh, M. S.; Rittger, K. E.; Lundquist, J. D.

    2012-12-01

    Despite being the dominant source of streamflow in many mountainous regions around the world, seasonal snow cover is poorly sampled by most ground-based observational networks. Satellite remote sensing supplements spatiotemporal knowledge of snow conditions in these rugged locations where ground observations are sparse or absent. However, the low density of ground-based observations also detracts from the value of remote sensing, as few ground-based datasets exist with sufficient spatial density to test remotely sensed snow cover across heterogeneous mountain terrain. Datasets with high spatial density are needed to test remote sensing because snow processes exhibit considerable spatial variability due to topographic and vegetation effects. Where ground-based observation stations exist, they are typically located in flat clearings, which are not likely to represent conditions in neighboring sloped and forested terrain. Forests cover as much as 40% to 50% of the seasonal snow zone in North America, and thus the accuracy of remote sensing in a major portion of the snow zone has been ill-quantified. Continued testing with ground-based observations adds value and confidence to remotely sensed snow cover, but dense ground observations are needed. Here we demonstrate that daily fractional snow covered area (fSCA) data can be derived in a study area with a network of buried temperature sensors. 37 to 90 self-logging temperature sensors were buried shallowly (MODSCAG) algorithm and find that the selected vegetation correction approach impacts MODSCAG accuracy. We also show the limitations of using single snow pillows for validation of remote sensing, as these point measurement typically did not represent the areal timing of snow disappearance observed by the ground temperature sensors at the study sites. Future satellite validation studies may benefit from this dataset or from application of this measurement technique.

  9. Predicting cement distribution in geothermal sandstone reservoirs based on estimates of precipitation temperatures

    Science.gov (United States)

    Olivarius, Mette; Weibel, Rikke; Whitehouse, Martin; Kristensen, Lars; Hjuler, Morten L.; Mathiesen, Anders; Boyce, Adrian J.; Nielsen, Lars H.

    2016-04-01

    Exploitation of geothermal sandstone reservoirs is challenged by pore-cementing minerals since they reduce the fluid flow through the sandstones. Geothermal exploration aims at finding sandstone bodies located at depths that are adequate for sufficiently warm water to be extracted, but without being too cemented for warm water production. The amount of cement is highly variable in the Danish geothermal reservoirs which mainly comprise the Bunter Sandstone, Skagerrak and Gassum formations. The present study involves bulk and in situ stable isotope analyses of calcite, dolomite, ankerite, siderite and quartz in order to estimate at what depth they were formed and enable prediction of where they can be found. The δ18O values measured in the carbonate minerals and quartz overgrowths are related to depth since they are a result of the temperatures of the pore fluid. Thus the values indicate the precipitation temperatures and they fit the relative diagenetic timing identified by petrographical observations. The sandstones deposited during arid climatic conditions contain calcite and dolomite cement that formed during early diagenesis. These carbonate minerals precipitated as a response to different processes, and precipitation of macro-quartz took over at deeper burial. Siderite was the first carbonate mineral that formed in the sandstones that were deposited in a humid climate. Calcite began precipitating at increased burial depth and ankerite formed during deep burial and replaced some of the other phases. Ankerite and quartz formed in the same temperature interval so constrains on the isotopic composition of the pore fluid can be achieved. Differences in δ13C values exist between the sandstones that were deposited in arid versus humid environments, which suggest that different kinds of processes were active. The estimated precipitation temperatures of the different cement types are used to predict which of them are present in geothermal sandstone reservoirs in

  10. The Impacts of Maximum Temperature and Climate Change to Current and Future Pollen Distribution in Skopje, Republic of Macedonia

    Directory of Open Access Journals (Sweden)

    Vladimir Kendrovski

    2012-02-01

    Full Text Available BACKGROUND. The goal of the present paper was to assess the impact of current and future burden of the ambient temperature to pollen distributions in Skopje. METHODS. In the study we have evaluated a correlation between the concentration of pollen grains in the atmosphere of Skopje and maximum temperature, during the vegetation period of 1996, 2003, 2007 and 2009 as a current burden in context of climate change. For our analysis we have selected 9 representative of each phytoallergen group (trees, grasses, weeds. The concentration of pollen grains has been monitored by a Lanzoni volumetric pollen trap. The correlation between the concentration of pollen grains in the atmosphere and selected meteorological variable from weekly monitoring has been studied with the help of linear regression and correlation coefficients. RESULTS. The prevalence of the sensibilization of standard pollen allergens in Skopje during the some period shows increasing from 16,9% in 1996 to 19,8% in 2009. We detect differences in onset of flowering, maximum and end of the length of seasons for pollen. The pollen distributions and risk increases in 3 main periods: early spring, spring and summer which are the main cause of allergies during these seasons. The largest increase of air temperature due to climate change in Skopje is expected in the summer season. CONCLUSION. The impacts of climate change by increasing of the temperature in the next decades very likely will include impacts on pollen production and differences in current pollen season. [TAF Prev Med Bull 2012; 11(1.000: 35-40

  11. Magnetic resonance guided high-intensity focused ultrasound mediated hyperthermia improves the intratumoral distribution of temperature-sensitive liposomal doxorubicin.

    Science.gov (United States)

    de Smet, Mariska; Hijnen, Nicole M; Langereis, Sander; Elevelt, Aaldert; Heijman, Edwin; Dubois, Ludwig; Lambin, Philippe; Grüll, Holger

    2013-06-01

    The aim of this study was to investigate the intratumoral distribution of a temperature-sensitive liposomal carrier and its encapsulated compounds, doxorubicin, and a magnetic resonance (MR) imaging contrast agent after high-intensity focused ultrasound (HIFU)-mediated hyperthermia-induced local drug release. (111)In-labeled temperature-sensitive liposomes encapsulating doxorubicin and [Gd(HPDO3A) (H(2)O)] were injected intravenously in the tail vein of rats (n = 12) bearing a subcutaneous rhabdomyosarcoma tumor on the hind leg. Immediately after the injection, local tumor hyperthermia (2 × 15 minutes) was applied using a clinical 3 T MR-HIFU system. Release of [Gd(HPDO3A)(H(2)O)] was studied in vivo by measuring the longitudinal relaxation rate R(1) with MR imaging. The presence of the liposomal carriers and the intratumoral distribution of doxorubicin were imaged ex vivo with autoradiography and fluorescence microscopy, respectively, for 2 different time points after injection (90 minutes and 48 hours). In hyperthermia-treated tumors, radiolabeled liposomes were distributed more homogeneously across the tumor than in the control tumors (coefficient of variation(hyp, 90 min) = 0.7 ± 0.2; coefficient of variation(cntrl, 90 min) = 1.1 ± 0.2). At 48 hours after injection, the liposomal accumulation in the tumor was enhanced in the hyperthermia group in comparison with the controls. A change in R(1) was observed in the HIFU-treated tumors, suggesting release of the contrast agent. Fluorescence images showed perivascular doxorubicin in control tumors, whereas in the HIFU-treated tumors, the delivered drug was spread over a much larger area and also taken up by tumor cells at a larger distance from blood vessels. Treatment with HIFU hyperthermia not only improved the immediate drug delivery, bioavailability, and intratumoral distribution but also enhanced liposomal accumulation over time. The sum of these effects may have a significant contribution to the therapeutic

  12. Is the distribution of nitrogen-fixing cyanobacteria in the oceans related to temperature?

    Science.gov (United States)

    Stal, Lucas J

    2009-07-01

    Approximately 50% of the global natural fixation of nitrogen occurs in the oceans supporting a considerable part of the new primary production. Virtually all nitrogen fixation in the ocean occurs in the tropics and subtropics where the surface water temperature is 25°C or higher. It is attributed almost exclusively to cyanobacteria. This is remarkable firstly because diazotrophic cyanobacteria are found in other environments irrespective of temperature and secondly because primary production in temperate and cold oceans is generally limited by nitrogen. Cyanobacteria are oxygenic phototrophic organisms that evolved a variety of strategies protecting nitrogenase from oxygen inactivation. Free-living diazotrophic cyanobacteria in the ocean are of the non-heterocystous type, namely the filamentous Trichodesmium and the unicellular groups A-C. I will argue that warm water is a prerequisite for these diazotrophic organisms because of the low-oxygen solubility and high rates of respiration allowing the organism to maintain anoxic conditions in the nitrogen-fixing cell. Heterocystous cyanobacteria are abundant in freshwater and brackish environments in all climatic zones. The heterocyst cell envelope is a tuneable gas diffusion barrier that optimizes the influx of both oxygen and nitrogen, while maintaining anoxic conditions inside the cell. It is not known why heterocystous cyanobacteria are absent from the temperate and cold oceans and seas.

  13. Temperature distribution study during the friction stir welding process of Al2024-T3 aluminum alloy

    Science.gov (United States)

    Yau, Y. H.; Hussain, A.; Lalwani, R. K.; Chan, H. K.; Hakimi, N.

    2013-08-01

    Heat flux characteristics are critical to good quality welding obtained in the important engineering alloy Al2024-T3 by the friction stir welding (FSW) process. In the present study, thermocouples in three different configurations were affixed on the welding samples to measure the temperatures: in the first configuration, four thermocouples were placed at equivalent positions along one side of the welding direction; the second configuration involved two equivalent thermocouple locations on either side of the welding path; while the third configuration had all the thermocouples on one side of the layout but with unequal gaps from the welding line. A three-dimensional, non-linear ANSYS computational model, based on an approach applied to Al2024-T3 for the first time, was used to simulate the welding temperature profiles obtained experimentally. The experimental thermal profiles on the whole were found to be in agreement with those calculated by the ANSYS model. The broad agreement between the two kinds of profiles validates the basis for derivation of the simulation model and provides an approach for the FSW simulation in Al2024-T3 and is potentially more useful than models derived previously.

  14. Distributed fibre optic temperature measurement system for the safety monitoring of the next generation of large nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Fernandez, Alberto; Brichard, Benoit [SCK-CEN, Belgian Nuclear Research Center (Belgium); Hartog, Arthur H.; Hughes, Paul [SENSA, a Schlumberger Company (United Kingdom)

    2006-07-01

    The use of optical fibre distributed sensors for temperature sensing is a powerful way of monitoring, quasi simultaneously, thousands of points avoiding the requirement of optimum positioning of discrete temperature sensors. Their range of applications is rapidly expanding in the industry, and nowadays this fibre optic sensing technology is mature for industrial applications such as fire detection inside buildings and tunnels, process vessel monitoring, leak detection in cryogenic storage vessels (liquid natural gas (LNG), ammonia, ethylene) or oil wells and the measurement of energy cable thermal distribution for the power supply industry. These applications rely on the well known immunity of fibre optic sensors to electromagnetic interference and the ability of fibre sensors to be operated in hazardous environments. The nuclear industry shows a growing interest for the possibilities offered for temperature sensing applications. Fibre optic sensing technology could be considered as an alternative to classical measurements techniques in a wide range of applications. The potential of distributed temperature measurements for the monitoring of large nuclear infrastructures such as reactor containment buildings, nuclear waste repositories and reactor primary circuitry have already been shown. However, a major problem in the application of optical fibres in nuclear environments is the presence of ionizing radiation fields that induce an increase of the optical fibre attenuation. This radiation-induced degradation of the measurement signal could be critical since most commercially available distributed temperature sensors derive the temperature profile from the measurement of the Raman backscattered light intensity along the fibre, using optical time domain reflectometry techniques. The Raman signal comprises two elements: the Stokes and anti-Stokes lines. The longer wavelength Stokes line is only weakly temperature sensitive but the intensity of the backscattered light

  15. Regional deep hyperthermia: impact of observer variability in CT-based manual tissue-segmentation on a simulated temperature distribution.

    Science.gov (United States)

    Aklan, Bassim; Hartmann, Josefin; Zink, Diana; Siavooshhaghighi, Hadi; Merten, Ricarda; Putz, Florian; Ott, Oliver; Fietkau, Rainer; Bert, Christoph

    2017-03-22

    The aim of this study was to systematically investigate the influence of inter- and intra-observer segmentation variation of tumor and organs at risk on the simulated temperature coverage of the target. CT scans of six patients with tumors in the pelvic region acquired for radiotherapy treatment planning were used for the hyperthermia treatment planning. To study the effect of inter-observer variation, three observers manually segmented in the CT images of each patient the following structures: fat, muscle, bone and bladder. The gross tumor volumes (GTV) were contoured by three radiation oncology residents and used as hyperthermia target volume. For the intra-observer variation, one of the observers of each group contoured the structures of each patient three times with a time span of one week between the segmentations. Moreover, the impact of segmentation variations in organs at risk (OARs) between the three inter-observers was investigated on simulated temperature distributions using only one GTV. The spatial overlap between individual segmentations was assessed by the Dice similarity coefficient (DSC) and the mean surface distance (MSD). Additionally, the temperatures T90/T10 delivered to 90%/10% of the GTV, respectively were assessed for each combination observer combination. The results of the segmentation similarity evaluation showed that the DSC of inter-observer variation of fat, muscle, bladder, bone and target was 0.68±0.12, 0.88±0.05, 0.73±0.14, 0.91±0.04 and 0.64±0.11, respectively. Similar results were found for the intra-observer variation. The MSD gave results like DSC for both observer variations. A statistically significant difference (p<0.05) was found for T90 and T10 in the predicted target temperature due to the observer variability. The conclusion is that intra- and inter-observer variations have a significant impact on the temperature coverage of the target. Furthermore, the organs at risk, such as bone and bladder, may essentially

  16. Distribution of lacustrine Crenarchaeota in Lake Superior: implications for the application of the TEX86 temperature proxy

    Science.gov (United States)

    Woltering, M. L.; Werne, J. P.; Hicks, R.; Kish, J.; Oster, R.; Schouten, S.; Sinninghe Damsté, J. S.

    2009-12-01

    The TEX86 is a proxy that can be applied on continental lake sediments to reconstruct past water temperatures. It is based on the lipids derived from aquatic Crenarchaeota, and although first applied in marine systems has already been successfully used in sediments from some of the continental lake drilling projects in Lake Malawi and Tanganyika. Recent studies have shown that the application of this proxy in lacustrine systems appears to be limited to mainly large to intermediate size lakes that are only marginally terrestrially influenced. Here TEX86 values from surface sediments appear to correlate strongly with both annual mean as mean winter surface water temperatures. Besides this observed empirical relationship between TEX86 values and lake surface temperatures, very little is known about the distribution and ecology of the organisms that produce the lipids that make up the TEX86 in lacustrine systems. Here we will present the results of our multiyear water column and sediment trap study in Lake Superior where we investigated where vertically and at what time of year the lipids are produced that make up the TEX86 proxy, which end up in the sediment record. We have combined both biogeochemical and molecular techniques to both water filter samples as sediment trap material, combined thermistor observations in the water column to create vertical profiles of Crenarchaeotal and lipid abundance to investigate the spatial distribution of the lacustrine Crenarchaeota in order to determine if or what kind of temperature is actually represented by the TEX86 proxy in Lake Superior. Our results show that the TEX86 measured in particulate organic matter does a good job reconstructing the actual thermal structure of the water column. However, the lipids that make up the TEX86 in Lake Superior are produced throughout the lake during isothermal conditions, but mainly below the thermocline when the lake is stratified suggesting that in Lake Superior the TEX86 largely

  17. A hybrid downscaling procedure for estimating the vertical distribution of ambient temperature in local scale

    Science.gov (United States)

    Yiannikopoulou, I.; Philippopoulos, K.; Deligiorgi, D.

    2012-04-01

    The vertical thermal structure of the atmosphere is defined by a combination of dynamic and radiation transfer processes and plays an important role in describing the meteorological conditions at local scales. The scope of this work is to develop and quantify the predictive ability of a hybrid dynamic-statistical downscaling procedure to estimate the vertical profile of ambient temperature at finer spatial scales. The study focuses on the warm period of the year (June - August) and the method is applied to an urban coastal site (Hellinikon), located in eastern Mediterranean. The two-step methodology initially involves the dynamic downscaling of coarse resolution climate data via the RegCM4.0 regional climate model and subsequently the statistical downscaling of the modeled outputs by developing and training site-specific artificial neural networks (ANN). The 2.5ox2.5o gridded NCEP-DOE Reanalysis 2 dataset is used as initial and boundary conditions for the dynamic downscaling element of the methodology, which enhances the regional representivity of the dataset to 20km and provides modeled fields in 18 vertical levels. The regional climate modeling results are compared versus the upper-air Hellinikon radiosonde observations and the mean absolute error (MAE) is calculated between the four grid point values nearest to the station and the ambient temperature at the standard and significant pressure levels. The statistical downscaling element of the methodology consists of an ensemble of ANN models, one for each pressure level, which are trained separately and employ the regional scale RegCM4.0 output. The ANN models are theoretically capable of estimating any measurable input-output function to any desired degree of accuracy. In this study they are used as non-linear function approximators for identifying the relationship between a number of predictor variables and the ambient temperature at the various vertical levels. An insight of the statistically derived input

  18. Numerical Simulation of Temperature Distribution and Material Flow During Friction Stir Welding 2017A Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Mimouni Oussama

    2016-01-01

    Full Text Available This study describes the use of fluid dynamic code, FLUENT to model the flow of metal in the AA2017A case around the welding tool pin (FSW. A standard threaded tool profile is used for the analysis of phenomena during welding such as heat generation and flow of the material are included. The main objective is to gain a better understanding of the flow of material around a tool. The model showed a large number of phenomena similar to those of the real process. The model has also generated a sufficient amount of heat, which leads to a good estimate of the junction temperature. These results were obtained using a viscosity which is near the solidus softening.

  19. Transient analytical solution of temperature distribution and fracture limits in pulsed solid-state laser rod

    Directory of Open Access Journals (Sweden)

    Shibib Khalid S.

    2017-01-01

    Full Text Available The exact analytical solution of axis-symmetry transient temperature and Tresca failure stress in pulsed mode solid-state laser rod is derived using integral transform method. The result obtained from this work is compared with previously published data and good agreement is found. The effect of increasing period is studied, and it is found that at constant pulse width as the period is increased, the allowable pumping power is increased too. Furthermore, the effect of changing pulse width with a constant period is studied, and it is found that as the pulse width is increased, the allowable pumping power is decreased. The effect of duty cycle is studied also and it is found that as duty cycle is increased the allowable pumping power is decreased. This work permits proper selection of pulse width, period and duty cycle to avoid laser rod fracture while obtaining maximum output laser power in the designing of laser system.

  20. Variation in the distribution of wintering anchovy Engraulis japonicus and its relationship with water temperature in the central and southern Yellow Sea

    Science.gov (United States)

    Niu, Mingxiang; Wang, Jun

    2017-09-01

    In the present study, we investigated a shift in the spatial distribution of wintering anchovy ( Engraulis japonicus) and its relationship with water temperature, using data collected by bottom trawl surveys and remote sensing in the central and southern Yellow Sea, during 2000-2015. Our results indicate that the latitudinal distribution of wintering anchovy varied between years, but there was no consistent pattern in the direction of change (north or south). Wintering anchovy did not move northward with increasing water temperature. However, the latitudinal distribution of wintering anchovy correlated well with 10°C and 11°C isotherms. The results of both a one-step and a two-step generalized additive model indicated that water temperature was associated with both presence and biomass of wintering anchovy. This paper is the first to systematically examine the relationship between anchovy distribution and water temperature using a variety of techniques. All the findings confirm the impact of water temperature on wintering anchovy distribution, which has important implications for the continued management of the anchovy resource and the enhancement of marine fishery resources in the Yellow Sea, especially as the climate changes. However water temperature only partly explains the species distribution of anchovy, and stock characteristics also affect fishery distribution. Therefore, other factors should be considered in future research.

  1. Ion and neutral temperature distributions in the E-region observed by the EISCAT Tromsø and Svalbard radars

    Directory of Open Access Journals (Sweden)

    S. Maeda

    Full Text Available Simultaneous Common Program Two experiments by the EISCAT UHF radar at Tromsø and the EISCAT Svalbard radar at Longyearbyen from 00:00 to 15:00 UT on 22 September 1998 and 9 March 1999 have been utilized to investigate distributions of the ion and neutral temperatures in the E-region between 105 and 115 km. During the experiments, soft particle precipitations in the dayside cusp were observed over the Svalbard radar site by the Defense Meteorological Satellite Program (DMSP F11 satellite. It is found that the dayside electric field in the regions of the low-latitude boundary of the polar cap and the cusp was greater and more variable than that in the auroral region. The ion temperature, parallel to the geomagnetic field at Longyearbyen, was higher than that at Tromsø during the daytime from 06:00 to 12:00 UT. The steady-state ion energy equation has been applied to derive neutral temperature under the assumption of no significant heat transport and viscous heating. The estimated neutral temperature at Longyearbyen was also higher than that at Tromsø. The ion and neutral energy budget was discussed in terms of the ion frictional heating and the Joule heating. The results indicate two possibilities: either the neutral temperature was high in the low latitude boundary of the polar cap and the cusp, or the heat transport by the polar cap neutral winds toward the dayside sector was significant.

    Key words. Ionosphere (auroral ionosphere; ionosphere–atmosphere interactions; polar ionosphere

  2. Spectroscopic measurement of ion temperature and ion velocity distributions in the flux-coil generated FRC.

    Science.gov (United States)

    Gupta, D; Bolte, N; Gota, H; Hayashi, R; Kiyashko, V; Marsili, P; Morehouse, M; Primavera, S; Roche, T; Wessel, F

    2010-10-01

    One aim of the flux-coil generated field reversed configuration at Tri Alpha Energy (TAE) is to establish the plasma where the ion rotational energy is greater than the ion thermal energy. To verify this, an optical diagnostic was developed to simultaneously measure the Doppler velocity-shift and line-broadening using a 0.75 m, 1800 groves/mm, spectrometer. The output spectrum is magnified and imaged onto a 16-channel photomultiplier tube (PMT) array. The individual PMT outputs are coupled to high-gain, high-frequency, transimpedance amplifiers, providing fast-time response. The Doppler spectroscopy measurements, along with a survey spectrometer and photodiode-light detector, form a suite of diagnostics that provide insights into the time evolution of the plasma-ion distribution and current when accelerated by an azimuthal-electric field.

  3. Spectroscopic measurement of ion temperature and ion velocity distributions in the flux-coil generated FRC

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, D.; Gota, H.; Hayashi, R.; Kiyashko, V.; Morehouse, M.; Primavera, S. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Bolte, N. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Marsili, P. [Department of Physics, University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Roche, T. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Wessel, F. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)

    2010-10-15

    One aim of the flux-coil generated field reversed configuration at Tri Alpha Energy (TAE) is to establish the plasma where the ion rotational energy is greater than the ion thermal energy. To verify this, an optical diagnostic was developed to simultaneously measure the Doppler velocity-shift and line-broadening using a 0.75 m, 1800 groves/mm, spectrometer. The output spectrum is magnified and imaged onto a 16-channel photomultiplier tube (PMT) array. The individual PMT outputs are coupled to high-gain, high-frequency, transimpedance amplifiers, providing fast-time response. The Doppler spectroscopy measurements, along with a survey spectrometer and photodiode-light detector, form a suite of diagnostics that provide insights into the time evolution of the plasma-ion distribution and current when accelerated by an azimuthal-electric field.

  4. Sparse Reconstruction for Temperature Distribution Using DTS Fiber Optic Sensors with Applications in Electrical Generator Stator Monitoring

    Directory of Open Access Journals (Sweden)

    João Paulo Bazzo

    2016-09-01

    Full Text Available This paper presents an image reconstruction method to monitor the temperature distribution of electric generator stators. The main objective is to identify insulation failures that may arise as hotspots in the structure. The method is based on temperature readings of fiber optic distributed sensors (DTS and a sparse reconstruction algorithm. Thermal images of the structure are formed by appropriately combining atoms of a dictionary of hotspots, which was constructed by finite element simulation with a multi-physical model. Due to difficulties for reproducing insulation faults in real stator structure, experimental tests were performed using a prototype similar to the real structure. The results demonstrate the ability of the proposed method to reconstruct images of hotspots with dimensions down to 15 cm, representing a resolution gain of up to six times when compared to the DTS spatial resolution. In addition, satisfactory results were also obtained to detect hotspots with only 5 cm. The application of the proposed algorithm for thermal imaging of generator stators can contribute to the identification of insulation faults in early stages, thereby avoiding catastrophic damage to the structure.

  5. Sparse Reconstruction for Temperature Distribution Using DTS Fiber Optic Sensors with Applications in Electrical Generator Stator Monitoring.

    Science.gov (United States)

    Bazzo, João Paulo; Pipa, Daniel Rodrigues; da Silva, Erlon Vagner; Martelli, Cicero; Cardozo da Silva, Jean Carlos

    2016-09-07

    This paper presents an image reconstruction method to monitor the temperature distribution of electric generator stators. The main objective is to identify insulation failures that may arise as hotspots in the structure. The method is based on temperature readings of fiber optic distributed sensors (DTS) and a sparse reconstruction algorithm. Thermal images of the structure are formed by appropriately combining atoms of a dictionary of hotspots, which was constructed by finite element simulation with a multi-physical model. Due to difficulties for reproducing insulation faults in real stator structure, experimental tests were performed using a prototype similar to the real structure. The results demonstrate the ability of the proposed method to reconstruct images of hotspots with dimensions down to 15 cm, representing a resolution gain of up to six times when compared to the DTS spatial resolution. In addition, satisfactory results were also obtained to detect hotspots with only 5 cm. The application of the proposed algorithm for thermal imaging of generator stators can contribute to the identification of insulation faults in early stages, thereby avoiding catastrophic damage to the structure.

  6. Sparse Reconstruction for Temperature Distribution Using DTS Fiber Optic Sensors with Applications in Electrical Generator Stator Monitoring

    Science.gov (United States)

    Bazzo, João Paulo; Pipa, Daniel Rodrigues; da Silva, Erlon Vagner; Martelli, Cicero; Cardozo da Silva, Jean Carlos

    2016-01-01

    This paper presents an image reconstruction method to monitor the temperature distribution of electric generator stators. The main objective is to identify insulation failures that may arise as hotspots in the structure. The method is based on temperature readings of fiber optic distributed sensors (DTS) and a sparse reconstruction algorithm. Thermal images of the structure are formed by appropriately combining atoms of a dictionary of hotspots, which was constructed by finite element simulation with a multi-physical model. Due to difficulties for reproducing insulation faults in real stator structure, experimental tests were performed using a prototype similar to the real structure. The results demonstrate the ability of the proposed method to reconstruct images of hotspots with dimensions down to 15 cm, representing a resolution gain of up to six times when compared to the DTS spatial resolution. In addition, satisfactory results were also obtained to detect hotspots with only 5 cm. The application of the proposed algorithm for thermal imaging of generator stators can contribute to the identification of insulation faults in early stages, thereby avoiding catastrophic damage to the structure. PMID:27618040

  7. Peculiar features of boron distribution in high temperature fracture area of rapidly quenched heat-resistant nickel alloy

    Energy Technology Data Exchange (ETDEWEB)

    Shulga, A. V., E-mail: avshulga@mephi.ru [National Research Nuclear University MEPhI (Russian Federation)

    2016-12-15

    This article comprises the results of comprehensive study of the structure and distribution in the high temperature fracture area of rapidly quenched heat-resistant superalloy of grade EP741NP after tensile tests. The structure and boron distribution in the fracture area are studied in detail by means of direct track autoradiography in combination with metallography of macro- and microstructure. A rather extensive region of microcracks generation and intensive boron redistribution is detected in the high temperature fracture area of rapidly quenched nickel superalloy of grade EP741NP. A significant decrease in boron content in the fracture area and formation of elliptically arranged boride precipitates are revealed. The mechanism of intense boron migration and stability violation of the structural and phase state in the fracture area of rapidly quenched heat-resistant nickel superalloy of grade EP741NP is proposed on the basis of accounting for deformation occurring in the fracture area and analysis of the stressed state near a crack.

  8. The distribution, diversity and function of predominant Thermoproteales in high-temperature environments of Yellowstone National Park.

    Science.gov (United States)

    Jay, Zackary J; Beam, Jacob P; Kozubal, Mark A; Jennings, Ryan deM; Rusch, Douglas B; Inskeep, William P

    2016-12-01

    High-temperature environments (> 70°C) contain diverse and abundant members of the crenarchaeal order Thermoproteales. However, a comprehensive study of the distribution and function of diverse members of this group across different habitat types has not been conducted. Consequently, the goals of this study were to determine the distribution of different Thermoproteales genera across geochemically distinct geothermal habitats of Yellowstone National Park, and to identify key functional attributes of major genera that correlate with environmental parameters. Curated sequence assemblies belonging to five genera were characterized in replicate samples of 11 high-temperature communities ranging in pH from 3 to 9. Thermocladium, Vulcanisaeta and Caldivirga spp. were the primary Thermoproteales populations present in low pH (pH  6) sulfur sediments and/or filamentous 'streamer' communities. Metabolic reconstruction and comparative genomics among assemblies show that these populations are primarily chemoorganotrophs that utilize different electron acceptors depending on geochemical conditions. The presence of potential CO2 fixation pathways in some Thermoproteales populations appears to be linked with NiFe hydrogenases, which combined with high levels of H2 in many sulfidic systems, may provide the energy required to fix inorganic C. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Electron energy distribution function, effective electron temperature, and dust charge in the temporal afterglow of a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Denysenko, I. B.; Azarenkov, N. A. [School of Physics and Technology, V. N. Karazin Kharkiv National University, Svobody sq. 4, 61022 Kharkiv (Ukraine); Kersten, H. [Institut für Experimentelle und Angewandte Physik, Leibnizstr. 19, Kiel D-24098 (Germany)

    2016-05-15

    Analytical expressions describing the variation of electron energy distribution function (EEDF) in an afterglow of a plasma are obtained. Especially, the case when the electron energy loss is mainly due to momentum-transfer electron-neutral collisions is considered. The study is carried out for different EEDFs in the steady state, including Maxwellian and Druyvesteyn distributions. The analytical results are not only obtained for the case when the rate for momentum-transfer electron-neutral collisions is independent on electron energy but also for the case when the collisions are a power function of electron energy. Using analytical expressions for the EEDF, the effective electron temperature and charge of the dust particles, which are assumed to be present in plasma, are calculated for different afterglow durations. An analytical expression for the rate describing collection of electrons by dust particles for the case when the rate for momentum-transfer electron-neutral collisions is independent on electron energy is also derived. The EEDF profile and, as a result, the effective electron temperature and dust charge are sufficiently different in the cases when the rate for momentum-transfer electron-neutral collisions is independent on electron energy and when the rate is a power function of electron energy.

  10. Calibration of soil moisture flow simulation models aided by the active heated fiber optic distributed temperature sensing AHFO

    Science.gov (United States)

    Rodriguez-Sinobas, Leonor; Zubelzu, Sergio; Sobrino, Fernando Fernando; Sánchez, Raúl

    2017-04-01

    Most of the studies dealing with the development of water flow simulation models in soils, are calibrated using experimental data measured by soil probe sensors or tensiometers which locate at specific points in the study area. However since the beginning of the XXI century, the use of Distributed Fiber Optic Temperature Measurement for estimating temperature variation along a cable of fiber optic has been assessed in multiple environmental applications. Recently, its application combined with an active heating pulses technique (AHFO) has been reported as a sensor to estimate soil moisture. This method applies a known amount of heat to the soil and monitors the temperature evolution, which mainly depends on the soil moisture content. Thus, it allows estimations of soil water content every 12.5 cm along the fiber optic cable, as long as 1500 m , with 2 % accuracy , every second. This study presents the calibration of a soil water flow model (developed in Hydrus 2D) with the AHFO technique. The model predicts the distribution of soil water content of a green area irrigated by sprinkler irrigation. Several irrigation events have been evaluated in a green area located at the ETSI Agronómica, Agroalimentaria y Biosistemas in Madrid where an installation of 147 m of fiber optic cable at 15 cm depth is deployed. The Distribute Temperature Sensing unit was a SILIXA ULTIMA SR (Silixa Ltd, UK) and has spatial and temporal resolution of 0.29 m. Data logged in the DTS unit before, during and after the irrigation event were used to calibrate the estimations in the Hydrus 2D model during the infiltration and redistribution of soil water content within the irrigation interval. References: Karandish, F., & Šimůnek, J. (2016). A field-modeling study for assessing temporal variations of soil-water-crop interactions under water-saving irrigation strategies. Agricultural Water Management, 178, 291-303. Li, Y., Šimůnek, J., Jing, L., Zhang, Z., & Ni, L. (2014). Evaluation of

  11. Suzaku Observation of A1689: Anisotropic Temperature and Entropy Distributions Associated with the Large-scale Structure

    Science.gov (United States)

    Kawaharada, Madoka; Okabe, Nobuhiro; Umetsu, Keiichi; Takizawa, Motokazu; Matsushita, Kyoko; Fukazawa, Yasushi; Hamana, Takashi; Miyazaki, Satoshi; Nakazawa, Kazuhiro; Ohashi, Takaya

    2010-05-01

    We present results of new, deep Suzaku X-ray observations (160 ks) of the intracluster medium (ICM) in A1689 out to its virial radius, combined with complementary data sets of the projected galaxy distribution obtained from the SDSS catalog and the projected mass distribution from our recent comprehensive weak and strong lensing analysis of Subaru/Suprime-Cam and Hubble Space Telescope/Advanced Camera for Surveys observations. Faint X-ray emission from the ICM around the virial radius (r vir ~ 15farcm6) is detected at 4.0σ significance, thanks to the low and stable particle background of Suzaku. The Suzaku observations reveal anisotropic gas temperature and entropy distributions in cluster outskirts of r 500 connected to an overdense filamentary structure of galaxies outside the cluster. The gas temperature and entropy profiles in the NE direction are in good agreement, out to the virial radius, with that expected from a recent XMM-Newton statistical study and with an accretion shock heating model of the ICM, respectively. On the contrary, the other outskirt regions in contact with low-density void environments have low gas temperatures (~1.7 keV) and entropies, deviating from hydrostatic equilibrium. These anisotropic ICM features associated with large-scale structure environments suggest that the thermalization of the ICM occurs faster along overdense filamentary structures than along low-density void regions. We find that the ICM density distribution is fairly isotropic, with a three-dimensional density slope of -2.29 ± 0.18 in the radial range of r 2500 lensing analysis shows that the hydrostatic mass is lower than the spherical-lensing one (~60%-90%), but comparable to a triaxial halo mass within errors, at intermediate radii of 0.6r 2500 lensing mass, and ~30%-40% around the virial radius. Although these constitute lower limits when one considers the possible halo triaxiality, these small relative contributions of thermal pressure would require additional

  12. Temperature profile data from MBT casts from NAUKA and other platforms in a World-wide distribution from 12 January 1968 to 17 June 1990 (NODC Accession 0000230)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using MBT casts in a World-wide distribution from the SKIF, MARLIN, NAUKA, and other platforms from 12 January 1968 to 17...

  13. Temperature profile data from XBT casts in a world wide distribution from 1996-06-01 to 1997-08-10 (NODC Accession 9700224)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected from XBT casts from several research vessels in a world wide distribution. Data were collected from June 1, 1996 to August...

  14. Temperature profile data from MBT casts from AELITA and other platforms in a World wide distribution from 30 January 1970 to 26 July 1990 (NODC Accession 0000227)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using MBT casts in a world wide distribution from AELITA, ESTAFETA OKTYABRYA, MARLIN, ORHEVI, POLYAKOV, and ZVEZDA AZOVA from...

  15. Temperature profile data from MBT casts from NAUKA and other platforms in a World-wide distribution from 18 June 1970 to 05 May 1989 (NODC Accession 0000229)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using MBT casts in a World-wide distribution from the NAUKA, AELITA, LESNOYE, and other platforms from 18 June 1970 to 05 May...

  16. Temperature profile data from MBT casts in a world-wide distribution from 23 December 1964 to 19 December 1991 (NODC Accession 0000216)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using MBT casts from multiple platforms in a world-wide distribution from December 23, 1964 to December 19, 1991. Additonal...

  17. Temperature profiles from XBT casts from a World-Wide distribution from MULTIPLE PLATFORMS from 1979-06-03 to 1988-05-27 (NODC Accession 8800182)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from a World-Wide distribution. Data were collected from MULTIPLE PLATFORMS from 03 June 1979 to 27 May 1988. Data...

  18. Temperature profile data from XBT casts in a world wide distribution from multiple platforms from 04 September 2002 to 18 November 2002 (NODC Accession 0000831)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using CTD casts from LYKES COMMANDER and other platforms in a world wide distribution from 04 September 2002 to 18 November...

  19. Temperature profile data from XBT casts from a World-Wide Distribution 31 March 1985 to 24 November 1990 (NODC Accession 9700191)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical data were collected from XBT casts from from a World-Wide Distribution from 31 March 1985 to 24 November 1990. Physical parameters include temperature...

  20. Temperature profile and oxygen data collected from multiple ships using CTD casts in a world wide distribution from 04 September 1979 to 15 April 1998 (NODC Accession 0002716)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and oxygen data were collected using CTD casts in a world wide distribution from multiple platforms from 04 September 1979 to 15 April 1998. Data...

  1. Temperature profile data from XBT casts in a world wide distribution from multiple platforms from 20 February 2003 to 24 April 200 (NODC Accession 0001019)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using CTD casts from LYKES RAIDER and other platforms in a world wide distribution from 20 February 2003 to 24 April 2003....

  2. Temperature profile data from XBT casts in a world wide distribution from multiple platforms from 01 March 2002 to 29 March 2003 (NODC Accession 0000976)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using CTD casts from LYKES COMMANDER and other platforms in a world wide distribution from 01 March 2002 to 29 March 2003....

  3. Temperature profile data collected using XBT casts from multiple platforms in a world wide distribution from 01 March 2002 to 26 August 2002 (NODC Accession 0000777)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT casts from MELBOURNE STAR and other platforms in a world wide distribution. Data were collected from 01 March 2002...

  4. Temperature and other data from XBT and MBT casts in a world-wide distribution from 06 March 1958 to 01 April 1958 (NODC Accession 0000336)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and other data were collected using XBT and MBT casts in a world-wide distribution from March 6, 1958 to April 1, 1958. Data were submitted by Duetsches...

  5. Temperature profile data from XBT casts in a world wide distribution from multiple platforms from 02 April 2003 to 21 May 2003 (NODC Accession 0001042)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT casts from SEA-LAND DEFENDER and other platforms in a world wide distribution from 02 April 2003 to 21 May 2003....

  6. Chemical, temperature, and other data from bottle casts in a world-wide distribution from 04 October 1961 to 24 August 1990 (NODC Accession 0000231)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, temperature, and other data were collected using bottle casts in a world-wide distribution from multiple ships from October 4, 1961 to August 24, 1990....

  7. Temperature profile data collected using XBT casts from multiple platforms in a world wide distribution from 07 November 2001 to 24 July 2002 (NODC Accession 0000762)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT casts from OLEANDER, TAI HE, SEA-LAND ENTERPRISE, and other platforms in a world wide distribution. Data were...

  8. Temperature profiles from MBT casts from a World-Wide distribution from the ALASKA and other platforms from 02 February 1943 to 10 October 1964 (NODC Accession 9200027)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected from MBT casts from a a World-Wide distribution. Data were collected from the ALASKA and other platforms from 02 February...

  9. Regional deep hyperthermia: impact of observer variability in CT-based manual tissue segmentation on simulated temperature distribution

    Science.gov (United States)

    Aklan, Bassim; Hartmann, Josefin; Zink, Diana; Siavooshhaghighi, Hadi; Merten, Ricarda; Putz, Florian; Ott, Oliver; Fietkau, Rainer; Bert, Christoph

    2017-06-01

    The aim of this study was to systematically investigate the influence of the inter- and intra-observer segmentation variation of tumors and organs at risk on the simulated temperature coverage of the target. CT scans of six patients with tumors in the pelvic region acquired for radiotherapy treatment planning were used for hyperthermia treatment planning. To study the effect of inter-observer variation, three observers manually segmented in the CT images of each patient the following structures: fat, muscle, bone and the bladder. The gross tumor volumes (GTV) were contoured by three radiation oncology residents and used as the hyperthermia target volumes. For intra-observer variation, one of the observers of each group contoured the structures of each patient three times with a time span of one week between the segmentations. Moreover, the impact of segmentation variations in organs at risk (OARs) between the three inter-observers was investigated on simulated temperature distributions using only one GTV. The spatial overlap between individual segmentations was assessed by the Dice similarity coefficient (DSC) and the mean surface distance (MSD). Additionally, the temperatures T90/T10 delivered to 90%/10% of the GTV, respectively, were assessed for each observer combination. The results of the segmentation similarity evaluation showed that the DSC of the inter-observer variation of fat, muscle, the bladder, bone and the target was 0.68  ±  0.12, 0.88  ±  0.05, 0.73  ±  0.14, 0.91  ±  0.04 and 0.64  ±  0.11, respectively. Similar results were found for the intra-observer variation. The MSD results were similar to the DSCs for both observer variations. A statistically significant difference (p  distribution.

  10. Influence of temperature, pressure, and fluid salinity on the distribution of chlorine into serpentine minerals

    Science.gov (United States)

    Huang, Ruifang; Sun, Weidong; Zhan, Wenhuan; Ding, Xing; Zhu, Jihao; Liu, Jiqiang

    2017-09-01

    Serpentinization produces serpentine minerals that have abundant water and fluid-mobile elements (e.g., Ba, Cs, and Cl). The dehydration of serpentine minerals produces chlorine-rich fluids that may be linked with the genesis of arc magmas. However, the factors that control the distribution of chlorine into serpentine minerals remain poorly constrained. We performed serpentinization experiments at 80-500 °C and pressures from vapor saturated pressures to 20 kbar on peridotite, orthopyroxene, and olivine with salinity greatly decreased chlorine concentrations of olivine-derived serpentine produced at 400 °C and 3.0 kbar, which was associated with a decrease in silica mobility during serpentinization. By contrast, influence of fluid salinity at 311 °C and 3.0 kbar is minor. Moreover, chlorine distribution into serpentine can be influenced by primary minerals of serpentine. Serpentine formed in olivine-only experiments at 311 °C and 3.0 kbar had 0.08 ± 0.03 wt% Cl, which is significantly lower than chlorine concentrations of serpentine minerals (0.49 ± 0.36 wt%) produced in orthopyroxene-only experiments. By contrast, for experiments at 311 °C and 3.0 kbar, olivine- and orthopyroxene-derived serpentine had comparable amounts of chlorine. In particular, olivine-derived serpentine had 0.16 ± 0.09 wt% Cl that was slightly higher than chlorine concentrations of serpentine formed in olivine-only experiments, whereas orthopyroxene-derived serpentine had significantly lower chlorine concentrations than that formed in orthopyroxene-only experiments. The contrast may be associated with releases of aluminum and silica from pyroxene minerals, which possibly results in a decrease in chlorine concentrations of serpentine. The concentrations of chlorine in serpentine formed in experiments at 311 °C and 3.0 kbar were slightly lower than those in serpentine produced at 300 °C and 8.0 kbar, which may be associated with influence of pressure on the mobility of iron and silica

  11. Increasing parameter certainty and data utility through multi-objective calibration of a spatially distributed temperature and solute model

    Directory of Open Access Journals (Sweden)

    C. Bandaragoda

    2011-05-01

    Full Text Available To support the goal of distributed hydrologic and instream model predictions based on physical processes, we explore multi-dimensional parameterization determined by a broad set of observations. We present a systematic approach to using various data types at spatially distributed locations to decrease parameter bounds sampled within calibration algorithms that ultimately provide information regarding the extent of individual processes represented within the model structure. Through the use of a simulation matrix, parameter sets are first locally optimized by fitting the respective data at one or two locations and then the best results are selected to resolve which parameter sets perform best at all locations, or globally. This approach is illustrated using the Two-Zone Temperature and Solute (TZTS model for a case study in the Virgin River, Utah, USA, where temperature and solute tracer data were collected at multiple locations and zones within the river that represent the fate and transport of both heat and solute through the study reach. The result was a narrowed parameter space and increased parameter certainty which, based on our results, would not have been as successful if only single objective algorithms were used. We also found that the global optimum is best defined by multiple spatially distributed local optima, which supports the hypothesis that there is a discrete and narrowly bounded parameter range that represents the processes controlling the dominant hydrologic responses. Further, we illustrate that the optimization process itself can be used to determine which observed responses and locations are most useful for estimating the parameters that result in a global fit to guide future data collection efforts.

  12. Numerical Study on Flow, Temperature, and Concentration Distribution Features of Combined Gas and Bottom-Electromagnetic Stirring in a Ladle

    Directory of Open Access Journals (Sweden)

    Yang Li

    2018-01-01

    Full Text Available A novel method of combined argon gas stirring and bottom-rotating electromagnetic stirring in a ladle refining process is presented in this report. A three-dimensional numerical model was adopted to investigate its effect on improving flow field, eliminating temperature stratification, and homogenizing concentration distribution. The results show that the electromagnetic force has a tendency to spiral by spinning clockwise on the horizontal section and straight up along the vertical section, respectively. When the electromagnetic force is applied to the gas-liquid two phase flow, the gas-liquid plume is shifted and the gas-liquid two phase region is extended. The rotated flow driven by the electromagnetic force promotes the scatter of bubbles. The temperature stratification tends to be alleviated due to the effect of heat compensation and the improved flow. The temperature stratification tends to disappear when the current reaches 1200 A. The improved flow field has a positive influence on decreasing concentration stratification and shortening the mixing time when the combined method is imposed. However, the alloy depositing site needs to be optimized according to the whole circulatory flow and the region of bubbles to escape.

  13. Thermal analysis model for the temperature distribution of the CANDU spent fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hae Yun; Kwon, Jong Soo; Park, Seong Hoon; Kim, Seong Rea; Lee, Gi Won [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-01-01

    The purpose of this technical is to introduce the methodology and experimental process for the experimental research work with the mock-up test performed to verify and validate the MAXROT code which is a thermal analysis method for Wolsong (CANDU) spent fuel dry storage canister. The experiment was conducted simulating the heat transfer characteristics of combinations of equilateral triangular and square pitch arrays of heater rods, similar to a CANDU spent fuel bundle. After assembly of the heater rod bundle into the containment vessel, the experimental apparatus was operated under the same operating and boundary conditions as an interim dry storage condition at the nuclear power plant site. The reduced data from this experiment has been utilized to verity a model developed to predict the maximum fuel rod surface temperature in a fuel bundle. These test procedures and the experiment can be utilized to establish the fine thermal analysis method applicable to dry storage system for the spent fuel. 12 figs., 5 tabs., 36 refs. (Author) .new.

  14. Influences of composition of starting powders and sintering temperature on the pore size distribution of porous corundum-mullite ceramics

    Directory of Open Access Journals (Sweden)

    Shujing Li

    2005-01-01

    Full Text Available Porous corundum-mullite ceramics were prepared by an in-situ decomposition pore-forming technique. Starting powders were mixtures of milled Al(OH3 and microsilica and were formed into oblong samples with a length of 100mm and a square cross-section with edge size of 20mm. The samples were heated at 1300°C, 1400°C, 1500°C or 1600°C for 3h in air atmosphere, respectively. Apparent porosity was detected by Archimedes’ Principle with water as a medium. Pore size distribution and the volume percentage of micropores were measured by mercury intrusion porosimetry. The results show that the pore morphology parameters in the samples depend on four factors: particle size distribution of starting powders, decomposition of Al(OH3, the expansion caused by mullite and sintering. The optimum mode which has a higher apparent porosity up to 42.3%, well-distributed pores and more microsize pores up to 16.3% is sample No.3 and the most apposite sintering temperature of this sample is 1500°C.

  15. Focal Laser Ablation of Prostate Cancer: Numerical Simulation of Temperature and Damage Distribution

    Directory of Open Access Journals (Sweden)

    Nevoux Pierre

    2011-06-01

    Full Text Available Abstract Background The use of minimally invasive ablative techniques in the management of patients with low grade and localized prostate tumours could represent a treatment option between active surveillance and radical therapy. Focal laser ablation (FLA could be one of these treatment modalities. Dosimetry planning and conformation of the treated area to the tumor remain major issues, especially when, several fibers are required. An effective method to perform pre-treatment planning of this therapy is computer simulation. In this study we present an in vivo validation of a mathematical model. Methods The simulation model is based on finite elements method (FEM to solve the bio-heat and the thermal damage equations. Laser irradiation was performed with a 980 nm laser diode system (5 W, 75 s. Light was transmitted using a cylindrical diffusing fiber inserted inside a preclinical animal prostate cancer model induced in Copenhagen rats. Non-enhanced T2-weighted and dynamic gadolinium-enhanced T1-weighted MR imaging examinations were performed at baseline and 48 hours after the procedure. The model was validated by comparing the simulated necrosis volume to the results obtained in vivo on (MRI and by histological analysis. 3 iso-damage temperatures were considered 43° C, 45° C and 50° C. Results The mean volume of the tissue necrosis, estimated from the histological analyses was 0.974 ± 0.059 cc and 0.98 ± 0.052 cc on the 48 h MR images. For the simulation model, volumes were: 1.38 cc when T = 43° C, 1.1 cc for T = 45°C and 0.99 cc when T = 50 C°. Conclusions In this study, a clear correlation was established between simulation and in vivo experiments of FLA for prostate cancer. Simulation is a promising planning technique for this therapy. It needs further more evaluation to allow to FLA to become a widely applied surgical method.

  16. Mustiscaling Analysis applied to field Water Content through Distributed Fiber Optic Temperature sensing measurements

    Science.gov (United States)

    Benitez Buelga, Javier; Rodriguez-Sinobas, Leonor; Sanchez, Raul; Gil, Maria; Tarquis, Ana M.

    2014-05-01

    Soils can be seen as the result of spatial variation operating over several scales. This observation points to 'variability' as a key soil attribute that should be studied. Soil variability has often been considered to be composed of 'functional' (explained) variations plus random fluctuations or noise. However, the distinction between these two components is scale dependent because increasing the scale of observation almost always reveals structure in the noise. Geostatistical methods and, more recently, multifractal/wavelet techniques have been used to characterize scaling and heterogeneity of soil properties among others coming from complexity science. Multifractal formalism, first proposed by Mandelbrot (1982), is suitable for variables with self-similar distribution on a spatial domain (Kravchenko et al., 2002). Multifractal analysis can provide insight into spatial variability of crop or soil parameters (Vereecken et al., 2007). This technique has been used to characterize the scaling property of a variable measured along a transect as a mass distribution of a statistical measure on a spatial domain of the studied field (Zeleke and Si, 2004). To do this, it divides the transect into a number of self-similar segments. It identifies the differences among the subsets by using a wide range of statistical moments. Wavelets were developed in the 1980s for signal processing, and later introduced to soil science by Lark and Webster (1999). The wavelet transform decomposes a series; whether this be a time series (Whitcher, 1998; Percival and Walden, 2000), or as in our case a series of measurements made along a transect; into components (wavelet coefficients) which describe local variation in the series at different scale (or frequency) intervals, giving up only some resolution in space (Lark et al., 2003, 2004). Wavelet coefficients can be used to estimate scale specific components of variation and correlation. This allows us to see which scales contribute most to

  17. Review of the Safety Concern Related to CANDU Moderator Temperature Distribution and Status of KAERI Moderator Circulation Test (MCT) Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Bo W.; Kim, Hyoung T. [Severe Accident and PHWR Safety Research Division, Daejeon (Korea, Republic of); Kim, Tongbeum [University of the Witwatersrand, Johannesburg (South Africa); Im, Sunghyuk [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    Following a large break LOCA and before Emergency Coolant Injection (ECI) initiation, pressure tubes (PT) significantly heat up as a result of the initial power pulse and degraded coolant flow. Consequently, some pressure tubes balloon and come into contact with the calandria tubes (CT). Following the PT/CT contact, the pressure tubes cool as they transfer some of the absorbed heat to the moderator via conduction at contact locations. As long as sustained calandria tube dryout does not occur, the calandria tube surface temperature remains below the creep threshold temperature and no further deformation is expected. Consequently, a sufficient condition to ensure fuel channel integrity following a large LOCA, is the avoidance of sustained calandria tubes dryout. If the moderator available subcooling at the onset of a large LOCA is greater than the subcooling requirements, a sustained calandria tube dryout is avoided. The subcooling requirements are determined from a set of experiments known as fuel channel contact experiments. The difference between available subcooling and required subcooling is called subcooling margins. The moderator flow circulation patterns are complicated slow flows that significantly vary from buoyancy dominated to inertia dominated patterns. Accurate predictions of flow patterns are essential for accurate calculation of moderator temperature distributions and the related moderator subcooling. Following a large break LOCA and before Emergency Coolant Injection (ECI) initiation, pressure tubes (PT) significantly heat up as a result of the initial power pulse and degraded coolant flow. Consequently, some pressure tubes balloon and come into contact with the calandria tubes (CT). Following the PT/CT contact, the pressure tubes cool as they transfer some of the absorbed heat to the moderator via conduction at contact locations. As long as sustained calandria tube dryout does not occur, the calandria tube surface temperature remains below the creep

  18. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions

    Science.gov (United States)

    Kim, Jung-Hyun; van der Meer, Jaap; Schouten, Stefan; Helmke, Peer; Willmott, Veronica; Sangiorgi, Francesca; Koç, Nalân; Hopmans, Ellen C.; Damsté, Jaap S. Sinninghe

    2010-08-01

    Several studies have shown that there is a strong relationship between the distribution of crenarchaeotal isoprenoid glycerol dibiphytanyl glycerol tetraethers (GDGTs) and sea surface temperature (SST). Based on this, a ratio of certain GDGTs, called TEX 86 (TetraEther indeX of tetraethers consisting of 86 carbon atoms), was developed as a SST proxy. In this study, we determined the distribution of crenarchaeotal isoprenoid GDGTs in 116 core-top sediments mostly from (sub)polar oceans and combined these data with previously published core-top data. Using this extended global core-top dataset ( n = 426), we re-assessed the relationship of crenarchaeal isoprenoid GDGTs with SST. We excluded data from the Red Sea from the global core-top dataset to define new indices and calibration models, as the Red Sea with its elevated salinity appeared to behave differently compared to other parts of the oceans. We tested our new indices and calibration models on three different paleo datasets, representing different temperature ranges. Our results indicate that the crenarchaeol regio-isomer plays a more important role for temperature adaptation in (sub)tropical oceans than in (sub)polar oceans, suggesting that there may be differences in membrane adaptation of the resident crenarchaeotal communities at different temperatures. We, therefore, suggest to apply two different calibration models. For the whole calibration temperature range (-3 to 30 °C), a modified version of TEX 86 with a logarithmic function which does not include the crenarchaeol regio-isomer, called TEX86L, is shown to correlate best with SST: SST=67.5×TEX86L+46.9 ( r2 = 0.86, n=396, p <0.0001). Application of TEX86L on sediments from the subpolar Southern Ocean results in realistic absolute SST estimates and a similar SST trend compared to a diatom SST record from the same core. TEX86H, which is defined as the logarithmic function of TEX 86, yields the best correlation with SST, when the data from the (sub

  19. Irrigation scheduling of green areas based on soil moisture estimation by the active heated fiber optic distributed temperature sensing AHFO

    Science.gov (United States)

    Zubelzu, Sergio; Rodriguez-Sinobas, Leonor; Sobrino, Fernando; Sánchez, Raúl

    2017-04-01

    Irrigation programing determines when and how much water apply to fulfill the plant water requirements depending of its phenology stage and location, and soil water content. Thus, the amount of water, the irrigation time and the irrigation frequency are variables that must be estimated. Likewise, irrigation programing has been based in approaches such as: the determination of plant evapotranspiration and the maintenance of soil water status between a given interval or soil matrix potential. Most of these approaches are based on the measurements of soil water sensors (or tensiometers) located at specific points within the study area which lack of the spatial information of the monitor variable. The information provided in such as few points might not be adequate to characterize the soil water distribution in irrigation systems with poor water application uniformity and thus, it would lead to wrong decisions in irrigation scheduling. Nevertheless, it can be overcome if the active heating pulses distributed fiber optic temperature measurement (AHFO) is used. This estimates the temperature variation along a cable of fiber optic and then, it is correlated with the soil water content. This method applies a known amount of heat to the soil and monitors the temperature evolution, which mainly depends on the soil moisture content. Thus, it allows estimations of soil water content every 12.5 cm along the fiber optic cable, as long as 1500 m (with 2 % accuracy) , every second. This study presents the results obtained in a green area located at the ETSI Agronómica, Agroalimentaria y Biosistesmas in Madrid. The area is irrigated by an sprinkler irrigation system which applies water with low uniformity. Also, it has deployed and installation of 147 m of fiber optic cable at 15 cm depth. The Distribute Temperature Sensing unit was a SILIXA ULTIMA SR (Silixa Ltd, UK) with spatial and temporal resolution of 0.29 m and 1 s, respectively. In this study, heat pulses of 7 W/m for 2

  20. Free Transverse Vibration of Orthotropic Thin Trapezoidal Plate of Parabolically Varying Thickness Subjected to Linear Temperature Distribution

    Directory of Open Access Journals (Sweden)

    Arun Kumar Gupta

    2014-01-01

    Full Text Available The present paper deals with the free transverse vibration of orthotropic thin trapezoidal plate of parabolically varying thickness in x-direction subjected to linear temperature distribution in x-direction through a numerical method. The deflection function is defined by the product of the equations of the prescribed continuous piecewise boundary shape. Rayleigh-Ritz method is used to evaluate the fundamental frequencies. The equations of motion, governing the free transverse vibrations of orthotropic thin trapezoidal plates, are derived with boundary condition CSCS. Frequency corresponding to the first two modes of vibration is calculated for the orthotropic thin trapezoidal plate having CSCS edges for different values of thermal gradient, taper constant, and aspect ratio. The proposed method is applied to solve orthotropic thin trapezoidal plate of variable thickness with C-S-C-S boundary conditions. Results are shown by figures for different values of thermal gradient, taper constant, and aspect ratio for the first two modes of vibrations.

  1. The influence of the engine speed on the temperature distribution in the piston of the turbocharged diesel engine

    Directory of Open Access Journals (Sweden)

    Aleksander HORNIK

    2011-01-01

    Full Text Available This article presented the numeric computations of non-stationary heat flow in the form of distribution of temperature fields on characteristic surfaces of the piston for two different rotational speeds for the same engine load during 60 seconds during in which the engine worked. The object of research was a turbocharged Diesel engine with a direct fuel injection to the combustion chamber and the engine cubic capacity that is 2390 [cm3] and power rating, which is 85 [kW]. The numeric computations were carried out by the use of the finite element method (FEM with the help of COSMOS/M software and the use of the two – zone combustion model.

  2. Research and development program in fiber optic sensors and distributed sensing for high temperature harsh environment energy applications (Conference Presentation)

    Science.gov (United States)

    Romanosky, Robert R.

    2017-05-01

    he National Energy Technology Laboratory (NETL) under the Department of Energy (DOE) Fossil Energy (FE) Program is leading the effort to not only develop near zero emission power generation systems, but to increaser the efficiency and availability of current power systems. The overarching goal of the program is to provide clean affordable power using domestic resources. Highly efficient, low emission power systems can have extreme conditions of high temperatures up to 1600 oC, high pressures up to 600 psi, high particulate loadings, and corrosive atmospheres that require monitoring. Sensing in these harsh environments can provide key information that directly impacts process control and system reliability. The lack of suitable measurement technology serves as a driver for the innovations in harsh environment sensor development. Advancements in sensing using optical fibers are key efforts within NETL's sensor development program as these approaches offer the potential to survive and provide critical information about these processes. An overview of the sensor development supported by the National Energy Technology Laboratory (NETL) will be given, including research in the areas of sensor materials, designs, and measurement types. New approaches to intelligent sensing, sensor placement and process control using networked sensors will be discussed as will novel approaches to fiber device design concurrent with materials development research and development in modified and coated silica and sapphire fiber based sensors. The use of these sensors for both single point and distributed measurements of temperature, pressure, strain, and a select suite of gases will be addressed. Additional areas of research includes novel control architecture and communication frameworks, device integration for distributed sensing, and imaging and other novel approaches to monitoring and controlling advanced processes. The close coupling of the sensor program with process modeling and

  3. Monitoring thermal processes in low-permeability fractured media using fibre-optics distributed temperature sensing (FO-DTS)

    Science.gov (United States)

    Brixel, Bernard; Klepikova, Maria; Jalali, Mohammadreza; Loew, Simon; Amann, Florian

    2017-04-01

    Fibre-optics distributed temperature sensing (FO-DTS) systems constitute arguably one of the main significant advances in the development of modern monitoring techniques in field hydrogeology, both for shallow (e.g. quantification of surface water-groundwater interactions) and deeper applications (borehole temperature monitoring). Deployment of FO-DTS monitoring systems in boreholes has notably allowed further promoting the use of temperature as a tracer to improve the characterization of heterogeneous media, with a strong focus on permeable environments such as shallow unconsolidated aquifers and/or highly-fractured rocks, generally found close to ground surface. However, applying this technology to low-permeability media, as in the case of intact rock mass intersected by isolated, discrete fractures still remains a challenge, perhaps explaining the limited number of field results reported in the scientific literature to date. Yet, understanding the transport, storage and exchange of heat in deep, low-permeability crystalline rocks is critical to many scientific and engineering research topics and applications, including for example deep geothermal energy (DGE). In the present contribution, we describe the use and application of FO-DTS monitoring to a broad range of processes, varying from the propagation and persistence of thermal anomalies (both natural and induced) to the monitoring of the curing of epoxy resin and cement grouts along the annular space of boreholes designed for monitoring discrete, packed-off zones. All data provided herein has been collected as part of a multi-disciplinary research program on hydraulic stimulation and deep geothermal energy carried out at the Grimsel Test Site (GTS), an underground rock laboratory located in the Aar massif, in the Swiss Alps. Through these examples, we illustrate the importance of understanding the spatial and temporal variations of local thermal regimes when planning to monitoring boreholes temperatures

  4. Determination of the temperature distribution in a minichannel using ANSYS CFX and a procedure based on the Trefftz functions

    Science.gov (United States)

    Maciejewska, Beata; Błasiak, Sławomir; Piasecka, Magdalena

    This work discusses the mathematical model for laminar-flow heat transfer in a minichannel. The boundary conditions in the form of temperature distributions on the outer sides of the channel walls were determined from experimental data. The data were collected from the experimental stand the essential part of which is a vertical minichannel 1.7 mm deep, 16 mm wide and 180 mm long, asymmetrically heated by a Haynes-230 alloy plate. Infrared thermography allowed determining temperature changes on the outer side of the minichannel walls. The problem was analysed numerically through either ANSYS CFX software or special calculation procedures based on the Finite Element Method and Trefftz functions in the thermal boundary layer. The Trefftz functions were used to construct the basis functions. Solutions to the governing differential equations were approximated with a linear combination of Trefftz-type basis functions. Unknown coefficients of the linear combination were calculated by minimising the functional. The results of the comparative analysis were represented in a graphical form and discussed.

  5. Temperature-stable pumping realization through the optimization the pump-laser spectral distribution in optical amplifiers

    Science.gov (United States)

    Zhao, Tianzhuo; Fan, Zhongwei; Xiao, Hong; Bai, Zhenao; Ge, Wenqi; Zhang, Hongbo

    2017-11-01

    A new approach to stabilizing the temperature of laser diode arrays for pumping is proposed and experimentally demonstrated. Experimental results show that when the pump center wavelengths of the two optical amplifiers are set to 804.0 nm and 810.5 nm, stable pumping laser operation over a temperature range exceeding 15 °C can be achieved. The concept of the effective, rather than actual, absorption spectrum is introduced for the first time, in order to better analyze the laser diode pump spectral characteristics of the Nd:YAG material of the optical amplifier. The effective absorption spectrum for a typical LD spectrum shape is evaluated, and experiments demonstrate that the fluctuation of the center wavelength of the pump affects the pumping energy distribution. A proof-of-concept 1064 nm laser system is especially developed, demonstrating the generation of 3.36J laser pulses of pulsewidth 4.58 ns and beam quality 2.12 times of diffraction limit, at a frequency of 100 Hz.

  6. Determination of the temperature distribution in a minichannel using ANSYS CFX and a procedure based on the Trefftz functions

    Directory of Open Access Journals (Sweden)

    Maciejewska Beata

    2017-01-01

    Full Text Available This work discusses the mathematical model for laminar-flow heat transfer in a minichannel. The boundary conditions in the form of temperature distributions on the outer sides of the channel walls were determined from experimental data. The data were collected from the experimental stand the essential part of which is a vertical minichannel 1.7 mm deep, 16 mm wide and 180 mm long, asymmetrically heated by a Haynes-230 alloy plate. Infrared thermography allowed determining temperature changes on the outer side of the minichannel walls. The problem was analysed numerically through either ANSYS CFX software or special calculation procedures based on the Finite Element Method and Trefftz functions in the thermal boundary layer. The Trefftz functions were used to construct the basis functions. Solutions to the governing differential equations were approximated with a linear combination of Trefftz-type basis functions. Unknown coefficients of the linear combination were calculated by minimising the functional. The results of the comparative analysis were represented in a graphical form and discussed.

  7. Projecting the impacts of rising seawater temperatures on the distribution of seaweeds around Japan under multiple climate change scenarios.

    Science.gov (United States)

    Takao, Shintaro; Kumagai, Naoki H; Yamano, Hiroya; Fujii, Masahiko; Yamanaka, Yasuhiro

    2015-01-01

    Seaweed beds play a key role in providing essential habitats and energy to coastal areas, with enhancements in productivity and biodiversity and benefits to human societies. However, the spatial extent of seaweed beds around Japan has decreased due to coastal reclamation, water quality changes, rising water temperatures, and heavy grazing by herbivores. Using monthly mean sea surface temperature (SST) data from 1960 to 2099 and SST-based indices, we quantitatively evaluated the effects of warming seawater on the spatial extent of suitable versus unsuitable habitats for temperate seaweed Ecklonia cava, which is predominantly found in southern Japanese waters. SST data were generated using the most recent multiple climate projection models and emission scenarios (the Representative Concentration Pathways or RCPs) used in the Coupled Model Intercomparison Project phase 5 (CMIP5). In addition, grazing by Siganus fuscescens, an herbivorous fish, was evaluated under the four RCP simulations. Our results suggest that continued warming may drive a poleward shift in the distribution of E. cava, with large differences depending on the climate scenario. For the lowest emission scenario (RCP2.6), most existing E. cava populations would not be impacted by seawater warming directly but would be adversely affected by intensified year-round grazing. For the highest emission scenario (RCP8.5), previously suitable habitats throughout coastal Japan would become untenable for E. cava by the 2090s, due to both high-temperature stress and intensified grazing. Our projections highlight the importance of not only mitigating regional warming due to climate change, but also protecting E. cava from herbivores to conserve suitable habitats on the Japanese coast.

  8. Distribution and prevalence of the Australian non-pathogenic rabbit calicivirus is correlated with rainfall and temperature.

    Directory of Open Access Journals (Sweden)

    June Liu

    Full Text Available BACKGROUND: Australia relies heavily on rabbit haemorrhagic disease virus (RHDV for the biological control of introduced European wild rabbits Oryctolagus cuniculus, which are significant economic and environmental pests. An endemic non-pathogenic rabbit calicivirus termed RCV-A1 also occurs in wild rabbits in Australian and provides partial protection against lethal RHDV infection, thus interfering with effective rabbit control. Despite its obvious importance for rabbit population management, little is known about the epidemiology of this benign rabbit calicivirus. METHODS: We determined the continent-wide distribution and prevalence of RCV-A1 by analysing 1,805 serum samples from wild rabbit populations at 78 sites across Australia for the presence of antibodies to RCV-A1 using a serological test that specifically detects RCV-A1 antibodies and does not cross-react with co-occurring RHDV antibodies. We also investigated possible correlation between climate variables and prevalence of RCV-A1 by using generalised linear mixed effect models. RESULTS: Antibodies to RCV-A1 were predominantly detected in rabbit populations in cool, high rainfall areas of the south-east and south-west of the continent. There was strong support for modelling RCV-A1 prevalence as a function of average annual rainfall and minimum temperature. The best ranked model explained 26% of the model structural deviance. According to this model, distribution and prevalence of RCV-A1 is positively correlated with periods of above average rainfall and negatively correlated with periods of drought. IMPLICATIONS: Our statistical model of RCV-A1 prevalence will greatly increase our understanding of RCV-A1 epidemiology and its interaction with RHDV in Australia. By defining the environmental conditions associated with the prevalence of RCV-A1, it also contributes towards understanding the distribution of similar viruses in New Zealand and Europe.

  9. Integrating distributed temperature sensing and geological characterization to quantify spatiotemporal variability in subsurface heat transport within the Critical Zone

    Science.gov (United States)

    Lin, Y. F. F.; Stumpf, A.; Luo, Y.; Kumar, P.

    2015-12-01

    This study is designed to investigate how the ambient ground temperature fluctuates with diurnal and seasonal changes under various hydrogeological system variations as part of the Intensively Managed Landscapes-Critical Zone Observatory. A fiber-optic distributed temperature sensing (FO-DTS) system is used to measure thermal profiles in two adjacent boreholes situated in a complex glaciated landscape. The test site is located in east-central Illinois on a terminal moraine of the Laurentide Ice Sheet. The moraine crosses a buried preglacial bedrock valley that is 50 m deep. The valley fill contains alternating deposits of clayey glacial till and gravelly sand that have varying physical and hydrological properties. In the 100-m-deep borehole, a fiber-optic cable was installed without casing, sealed against the sidewall with grout. This borehole was drilled to the top of bedrock and penetrated a sequence of glacial sediments containing at least two aquifer units. Thick, Early Pleistocene glacial sand and gravel that penetrated near the bedrock forms an aquifer that is part of a regional groundwater system, the Mahomet Aquifer System. The aquifer system is primarily recharged by slow infiltration of surface waters and has been designated by the USEPA as a "Sole Source" of drinking water. At the same location, a second 40-m-deep borehole was drilled through Middle-Late Pleistocene till and fluvioglacial sediment, and a groundwater monitoring well was installed. Fiber-optic cable was attached along the outside of the casing, and the well was screened in a shallower, localized aquifer. At a broad scale, thermal variations in the subsurface appear to be correlated with sediment type. The basal sand and gravel aquifer exhibits a unique thermal profile deviating from patterns at shallower depths. Temperature measurements with 1-m and 0.1°C resolutions have being collected at various temporal scales, ranging from 30-minute to 2-week intervals, since June 2015. The initial

  10. Effect of Pilot Injection Timings on the Combustion Temperature Distribution in a Single-Cylinder CI Engine Fueled with DME and ULSD

    Directory of Open Access Journals (Sweden)

    Jeon Joonho

    2016-01-01

    Full Text Available Many studies of DiMethyl Ether (DME as an alternative fuel in Compression-Ignition (CI engines have been performed. Although diverse DME engine research has been conducted, the investigation of combustion behavior and temperature distribution in the combustion engine has not progressed due to the fact that there is no sooting flame in DME combustion. In order to investigate the combustion characteristics in this study, the KIVA-3 V code was implemented to research various pilot injection strategies on a single-cylinder CI engines with DME and Ultra-Low-Sulfur Diesel (ULSD fuels. The combustion distribution results obtained from the numerical investigation were validated when compared with the measurement of flame temperature behaviors in the experimental approach. This study showed that long intervals between two injection timings enhanced pilot combustion by increasing the ambient pressure and temperature before the start of the main combustion. Different atomization properties between DME and ULSD fuels contributed to the formation of a fuel-air mixture at the nozzle tip and piston lip regions, separately, which strongly affected the temperature distribution of the two fuels. In addition, the pilot injection timing played a vital role in regard to ignition delay and peak combustion temperatures. Exhaust emissions, such as NOx and soot, are related to the local equivalence ratio and temperature in the combustion chamber, also illustrated by the contrary result on a Φ (equivalence ratio – T (temperature map.

  11. Extended-bandwidth frequency sweeps of a distributed feedback laser using combined injection current and temperature modulation

    Science.gov (United States)

    Hefferman, Gerald; Chen, Zhen; Wei, Tao

    2017-07-01

    This article details the generation of an extended-bandwidth frequency sweep using a single, communication grade distributed feedback (DFB) laser. The frequency sweep is generated using a two-step technique. In the first step, injection current modulation is employed as a means of varying the output frequency of a DFB laser over a bandwidth of 99.26 GHz. A digital optical phase lock loop is used to lock the frequency sweep speed during current modulation, resulting in a linear frequency chirp. In the second step, the temperature of the DFB laser is modulated, resulting in a shifted starting laser output frequency. A laser frequency chirp is again generated beginning at this shifted starting frequency, resulting in a frequency-shifted spectrum relative to the first recorded data. This process is then repeated across a range of starting temperatures, resulting in a series of partially overlapping, frequency-shifted spectra. These spectra are then aligned using cross-correlation and combined using averaging to form a single, broadband spectrum with a total bandwidth of 510.9 GHz. In order to investigate the utility of this technique, experimental testing was performed in which the approach was used as the swept-frequency source of a coherent optical frequency domain reflectometry system. This system was used to interrogate an optical fiber containing a 20 point, 1-mm pitch length fiber Bragg grating, corresponding to a period of 100 GHz. Using this technique, both the periodicity of the grating in the frequency domain and the individual reflector elements of the structure in the time domain were resolved, demonstrating the technique's potential as a method of extending the sweeping bandwidth of semiconductor lasers for frequency-based sensing applications.

  12. Performance of a Distributed Simultaneous Strain and Temperature Sensor Based on a Fabry-Perot Laser Diode and a Dual-Stage FBG Optical Demultiplexer

    Directory of Open Access Journals (Sweden)

    Shinwon Kang

    2013-11-01

    Full Text Available A simultaneous strain and temperature measurement method using a Fabry-Perot laser diode (FP-LD and a dual-stage fiber Bragg grating (FBG optical demultiplexer was applied to a distributed sensor system based on Brillouin optical time domain reflectometry (BOTDR. By using a Kalman filter, we improved the performance of the FP-LD based OTDR, and decreased the noise using the dual-stage FBG optical demultiplexer. Applying the two developed components to the BOTDR system and using a temperature compensating algorithm, we successfully demonstrated the simultaneous measurement of strain and temperature distributions under various experimental conditions. The observed errors in the temperature and strain measured using the developed sensing system were 0.6 °C and 50 με, and the spatial resolution was 1 m, respectively.

  13. Experimental Study of the Temperature Distribution and Microstructure of Plunge Stage in Friction Stir Welding Process by the Tool with Triangle Pin

    Directory of Open Access Journals (Sweden)

    Bisadi Hossain

    2014-12-01

    Full Text Available Considering the developing role of the friction stir welding in manufacturing industry, a complete study on the process is necessary. Studies on each stage of the process in particular, provide a better understanding of friction stir welding, and specially friction stir spot welding. In this study, plunge stage has been studied by experimental methods for investigating the temperature distribution around the tool during the plunge stage and microstructure changes of the workpiece. Experiments were performed on aluminium 7050 plates with coincident measurement of temperature. In the study, the tool which has a triangle pin is used. The results of this study are used as initial conditions for theoretical analysis of welding process. The results show that the temperature distribution around the tool is quite asymmetric. The asymmetric distribution of temperature is due to nonuniform load distribution underneath the tool and tilt angle of it. The temperatures of the points behind the tool are higher compared with points located forward the tool. Microstructural studies showed that four regions with different microstructures are formed around the tool during the process. These areas were separated based on differences in grain size and elongations. Grains near the tool are elongated in a particular direction that show the material flow direction.

  14. Algorithm for Evaluation of Temperature 3D-Distribution of a Vapor Cell in a Diode End-pumped Alkali Laser System

    Science.gov (United States)

    Han, J. H.; Wang, Y.; Cai, H.; An, G. F.; Rong, K. P.; Yu, H.; Wang, S. Y.; Wang, H. Y.; Zhang, W.; Xue, L. P.; Zhou, J.

    2017-06-01

    We develop a new 3D-model to evaluate the light characteristics and the thermal features of a cesium-vapor laser end-pumped by a laser diode. The theoretical model is based on the principles of both heat transfer and laser kinetics. The 3-dimensional population density distribution and temperature distribution are both systematically obtained and analyzed. The methodology is thought to be useful for realization of a high-powered diode-pumped alkali laser (DPAL) in the future.

  15. Fluid transfer and vein thickness distribution in high and low temperature hydrothermal systems at shallow crustal level in southern Tuscany (Italy

    Directory of Open Access Journals (Sweden)

    Francesco Mazzarini

    2014-06-01

    Full Text Available Geometric analysis of vein systems hosted in upper crustal rocks and developed in high and low temperature hydrothermal systems is presented. The high temperature hydrothermal system consists of tourmaline-rich veins hosted within the contact aureole of the upper Miocene Porto Azzurro pluton in the eastern Elba Island. The low temperature hydrothermal system consists of calcite-rich veins hosted within the Oligocene sandstones of the Tuscan Nappe, exposed along the coast in southern Tuscany. Vein thickness distribution is here used as proxy for inferring some hydraulic properties (transmissivity of the fluid circulation at the time of veins’ formation. We derive estimations of average thickness of veins by using the observed distributions. In the case of power law thickness distributions, the lower the scaling exponent of the distribution the higher the overall transmissivity. Indeed, power law distributions characterised by high scaling exponents have transmissivity three order of magnitude lower than negative exponential thickness distribution. Simple observations of vein thickness may thus provides some clues on the transmissivity in hydrothermal systems.

  16. A method for increasing the homogeneity of the temperature distribution during magnetic fluid hyperthermia with a Fe-Cr-Nb-B alloy in the presence of blood vessels

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yundong [College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116 (China); Flesch, Rodolfo C.C. [Departamento de Automação e Sistemas, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Jin, Tao, E-mail: jintly@fzu.edu.cn [College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350116 (China)

    2017-06-15

    Highlights: • The effects of blood vessels on temperature field distribution are investigated. • The critical thermal energy of hyperthermia is computed by the Finite Element Analysis. • A treatment method is proposed by using the MNPs with low Curie temperature. • The cooling effects due to the blood flow can be controlled. - Abstract: Magnetic hyperthermia ablates tumor cells by absorbing the thermal energy from magnetic nanoparticles (MNPs) under an external alternating magnetic field. The blood vessels (BVs) within tumor region can generally reduce treatment effectiveness due to the cooling effect of blood flow. This paper aims to investigate the cooling effect of BVs on the temperature field of malignant tumor regions using a complex geometric model and numerical simulation. For deriving the model, the Navier-Stokes equation for blood flow is combined with Pennes bio-heat transfer equation for human tissue. The effects on treatment temperature caused by two different BV distributions inside a mammary tumor are analyzed through numerical simulation under different conditions of flow rate considering a Fe-Cr-Nb-B alloy, which has low Curie temperature ranging from 42 °C to 45 °C. Numerical results show that the multi-vessel system has more obvious cooling effects than the single vessel one on the temperature field distribution for hyperthermia. Besides, simulation results show that the temperature field within tumor area can also be influenced by the velocity and diameter of BVs. To minimize the cooling effect, this article proposes a treatment method based on the increase of the thermal energy provided to MNPs associated with the adoption of low Curie temperature particles recently reported in literature. Results demonstrate that this approach noticeably improves the uniformity of the temperature field, and shortens the treatment time in a Fe-Cr-Nb-B system, thus reducing the side effects to the patient.

  17. Characterizing the relationship between temperature and mortality in tropical and subtropical cities: a distributed lag non-linear model analysis in Hue, Viet Nam, 2009–2013

    Directory of Open Access Journals (Sweden)

    Tran Ngoc Dang

    2016-01-01

    Full Text Available Background: The relationship between temperature and mortality has been found to be U-, V-, or J-shaped in developed temperate countries; however, in developing tropical/subtropical cities, it remains unclear. Objectives: Our goal was to investigate the relationship between temperature and mortality in Hue, a subtropical city in Viet Nam. Design: We collected daily mortality data from the Vietnamese A6 mortality reporting system for 6,214 deceased persons between 2009 and 2013. A distributed lag non-linear model was used to examine the temperature effects on all-cause and cause-specific mortality by assuming negative binomial distribution for count data. We developed an objective-oriented model selection with four steps following the Akaike information criterion (AIC rule (i.e. a smaller AIC value indicates a better model. Results: High temperature-related mortality was more strongly associated with short lags, whereas low temperature-related mortality was more strongly associated with long lags. The low temperatures increased risk in all-category mortality compared to high temperatures. We observed elevated temperature-mortality risk in vulnerable groups: elderly people (high temperature effect, relative risk [RR]=1.42, 95% confidence interval [CI]=1.11–1.83; low temperature effect, RR=2.0, 95% CI=1.13–3.52, females (low temperature effect, RR=2.19, 95% CI=1.14–4.21, people with respiratory disease (high temperature effect, RR=2.45, 95% CI=0.91–6.63, and those with cardiovascular disease (high temperature effect, RR=1.6, 95% CI=1.15–2.22; low temperature effect, RR=1.99, 95% CI=0.92–4.28. Conclusions: In Hue, the temperature significantly increased the risk of mortality, especially in vulnerable groups (i.e. elderly, female, people with respiratory and cardiovascular diseases. These findings may provide a foundation for developing adequate policies to address the effects of temperature on health in Hue City.

  18. ANXIETY LEVEL ANALYSIS OF NURSING STUDENT WHO TOOK OBJECTIVE STRUCTURED CLINICAL EXAMINATION (OSCE USING FACE TEMPERATURE DISTRIBUTION BASED ON THERMAL IMAGING

    Directory of Open Access Journals (Sweden)

    Ni Made Dian Sulistiowati

    2017-08-01

    Full Text Available Background and Purpose:  The condition that a person experiences stress can affect the function of various organ systems of the body, especially the cardiovascular system. Manifestations of prolonged stress can turn into anxiety. This study aims to determine differences in temperature distribution in the face of students who experience anxiety facing the OSCE. Method: This research method using pre-experimental design where samples are experiencing anxiety seen temperature distribution in the face area by using thermal imaging. The sample was selected using total sampling technique in which as many as 81 students were undergoing tests OSCE is used as a sample in this study. The instrument used to measure the level of anxiety is the GAD 7, consists of seven items given questions prior to the measurement of temperature using thermal imaging. Results: The results obtained are subjected to mild anxiety as much as 49 respondents where the frontal head temperature measurement that 23 people was febrile, 22 people was normal and 4 people was hypothermia. While the results of the temporal head measurement that 27 people was febrile, 20 people was normal, and 2 people was hypothermia. Conclusion   and   recommendation:  There is a difference in temperature at each level of anxiety as measured by the temperature of the temporal and frontal. Therefore, it needs to be investigated further there a change in temperature by measuring themal imaging, after the addition of interventions for coping with anxiety.

  19. Waning habitats due to climate change: the effects of changes in streamflow and temperature at the rear edge of the distribution of a cold-water fish

    Science.gov (United States)

    María Santiago, José; Muñoz-Mas, Rafael; Solana-Gutiérrez, Joaquín; García de Jalón, Diego; Alonso, Carlos; Martínez-Capel, Francisco; Pórtoles, Javier; Monjo, Robert; Ribalaygua, Jaime

    2017-08-01

    Climate changes affect aquatic ecosystems by altering temperatures and precipitation patterns, and the rear edges of the distributions of cold-water species are especially sensitive to these effects. The main goal of this study was to predict in detail how changes in air temperature and precipitation will affect streamflow, the thermal habitat of a cold-water fish (the brown trout, Salmo trutta), and the synergistic relationships among these variables at the rear edge of the natural distribution of brown trout. Thirty-one sites in 14 mountain rivers and streams were studied in central Spain. Models of streamflow were built for several of these sites using M5 model trees, and a non-linear regression method was used to estimate stream temperatures. Nine global climate models simulations for Representative Concentration Pathways RCP4.5 and RCP8.5 scenarios were downscaled to the local level. Significant reductions in streamflow were predicted to occur in all of the basins (max. -49 %) by the year 2099, and seasonal differences were noted between the basins. The stream temperature models showed relationships between the model parameters, geology and hydrologic responses. Temperature was sensitive to streamflow in one set of streams, and summer reductions in streamflow contributed to additional stream temperature increases (max. 3.6 °C), although the sites that are most dependent on deep aquifers will likely resist warming to a greater degree. The predicted increases in water temperatures were as high as 4.0 °C. Temperature and streamflow changes will cause a shift in the rear edge of the distribution of this species. However, geology will affect the extent of this shift. Approaches like the one used herein have proven to be useful in planning the prevention and mitigation of the negative effects of climate change by differentiating areas based on the risk level and viability of fish populations.

  20. Application of Distributed Temperature Sensing for coupled mapping of sedimentation processes and spatio-temporal variability of groundwater discharge in soft-bedded streams

    DEFF Research Database (Denmark)

    Sebok, Eva; Duque, C; Engesgaard, Peter

    2015-01-01

    The delineation of groundwater discharge areas based on Distributed Temperature Sensing (DTS) data of the streambed can be difficult in soft-bedded streams where sedimentation and scouring processes constantly change the position of the fibre optic cable relative to the streambed. Deposition-indu...

  1. The evolution of the englacial temperature distribution in the superimposed ice zone of a polar ice cap during a summer season

    NARCIS (Netherlands)

    Greuell, W.; Oerlemans, J.

    1989-01-01

    The aim of the present investigation was to provide more insight into the processes affecting the evolution of the englacial temperature distribution at a non-temperate location on a glacier. Measurements were made in the top 10 m of the ice at the summit of Laika Ice Cap (Canadian Arctic)

  2. A floor cover to improve temperature distribution and quality preservation in maritime refrigerated container transport of grapes

    NARCIS (Netherlands)

    Lukasse, Leo; Mensink, Manon; Wissink, Edo

    2017-01-01

    Like many other fruits, table grapes depend on accurate temperature management during transport in maritime refrigerated containers. Ideally the temperature inside the container is equal to set point in every location in the container. Unfortunately door-end temperatures are always higher due to

  3. Characterizing fractured rock aquifers using heated Distributed Fiber-Optic Temperature Sensing to determine borehole vertical flow

    Science.gov (United States)

    Read, T. O.; Bour, O.; Selker, J. S.; Le Borgne, T.; Bense, V.; Hochreutener, R.; Lavenant, N.

    2013-12-01

    In highly heterogeneous media, fracture network connectivity and hydraulic properties can be estimated using methods such as packer- or cross-borehole pumping-tests. Typically, measurements of hydraulic head or vertical flow in such tests are made either at a single location over time, or at a series of depths by installing a number of packers or raising or lowering a probe. We show how this often encountered monitoring problem, with current solutions sacrificing either one of temporal or spatial information, can be addressed using Distributed Temperature Sensing (DTS). Here, we electrically heat the conductive cladding materials of cables deployed in boreholes to determine the vertical flow profile. We present results from heated fiber optic cables deployed in three boreholes in a fractured rock aquifer at the much studied experimental site near Ploemeur, France, allowing detailed comparisons with alternative methods (e.g. Le Borgne et al., 2007). When submerged in water and electrically heated, the cable very rapidly reaches a steady state temperature (less than 60 seconds). The steady state temperature of the heated cable, measured using the DTS method, is then a function of the velocity of the fluid in the borehole. We find that such cables are sensitive to a wide range of fluid velocities, and thus suitable for measuring both ambient and pumped flow profiles at the Ploemeur site. The cables are then used to monitor the flow profiles during all possible configurations of: ambient flow, cross-borehole- (pumping one borehole, and observing in another), and dipole-tests (pumping one borehole, re-injection in another). Such flow data acquired using DTS may then be used for tomographic flow inversions, for instance using the approach developed by Klepikova et al., (submitted). Using the heated fiber optic method, we are able to observe the flow response during such tests in high spatial detail, and are also able to capture temporal flow dynamics occurring at the

  4. Temperature-compensated distributed hydrostatic pressure sensor with a thin-diameter polarization-maintaining photonic crystal fiber based on Brillouin dynamic gratings.

    Science.gov (United States)

    Teng, Lei; Zhang, Hongying; Dong, Yongkang; Zhou, Dengwang; Jiang, Taofei; Gao, Wei; Lu, Zhiwei; Chen, Liang; Bao, Xiaoyi

    2016-09-15

    A temperature-compensated distributed hydrostatic pressure sensor based on Brillouin dynamic gratings (BDGs) is proposed and demonstrated experimentally for the first time, to the best of our knowledge. The principle is to measure the hydrostatic pressure induced birefringence changes through exciting and probing the BDGs in a thin-diameter pure silica polarization-maintaining photonic crystal fiber. The temperature cross-talk to the hydrostatic pressure sensing can be compensated through measuring the temperature-induced Brillouin frequency shift (BFS) changes using Brillouin optical time-domain analysis. A distributed measurement of hydrostatic pressure is demonstrated experimentally using a 4-m sensing fiber, which has a high sensitivity, with a maximum measurement error less than 0.03 MPa at a 20-cm spatial resolution.

  5. Simulation of Escherichia coli O157:H7 behavior in fresh-cut lettuce under dynamic temperature conditions during distribution from processing to retail.

    Science.gov (United States)

    McKellar, Robin C; LeBlanc, Denyse I; Lu, Jianbo; Delaquis, Pascal

    2012-03-01

    The temperature of packaged lettuce was recorded throughout a retail supply chain in Canada during the various stages of storage and shipping from the processor to retail. Temperatures were monitored in 27 cases of lettuce destined for three stores in three replicate trials conducted during the winter. A dynamic model that predicts the effect of temperature on the growth or die-off of Escherichia coli O157:H7 in packaged fresh-cut lettuce was applied to simulate the behavior of E. coli O157:H7 in the system. Simulations were carried out using distributions to account for variation in the temperature parameter and the die-off coefficient of the dynamic growth/death model. The results indicate that there was a predicted overall mean decline in cell numbers of 0.983 log cfu g⁻¹ and that the extent of cell death was proportional to the total time spent in the cold chain. Slight growth was predicted in a few instances when the dynamic temperature was above the permissive temperature of 5°C. These results suggest that generally there would be little or no growth of E. coli O157:H7 in product maintained at the proper temperature in the chain. Moreover, the predicted decline in cell numbers at refrigeration temperatures suggests that storage at 5°C or below prior to consumption would reduce populations of the pathogen in fresh-cut lettuce.

  6. A model of canopy photosynthesis incorporating protein distribution through the canopy and its acclimation to light, temperature and CO2

    Science.gov (United States)

    Johnson, Ian R.; Thornley, John H. M.; Frantz, Jonathan M.; Bugbee, Bruce

    2010-01-01

    Background and Aims The distribution of photosynthetic enzymes, or nitrogen, through the canopy affects canopy photosynthesis, as well as plant quality and nitrogen demand. Most canopy photosynthesis models assume an exponential distribution of nitrogen, or protein, through the canopy, although this is rarely consistent with experimental observation. Previous optimization schemes to derive the nitrogen distribution through the canopy generally focus on the distribution of a fixed amount of total nitrogen, which fails to account for the variation in both the actual quantity of nitrogen in response to environmental conditions and the interaction of photosynthesis and respiration at similar levels of complexity. Model A model of canopy photosynthesis is presented for C3 and C4 canopies that considers a balanced approach between photosynthesis and respiration as well as plant carbon partitioning. Protein distribution is related to irradiance in the canopy by a flexible equation for which the exponential distribution is a special case. The model is designed to be simple to parameterize for crop, pasture and ecosystem studies. The amount and distribution of protein that maximizes canopy net photosynthesis is calculated. Key Results The optimum protein distribution is not exponential, but is quite linear near the top of the canopy, which is consistent with experimental observations. The overall concentration within the canopy is dependent on environmental conditions, including the distribution of direct and diffuse components of irradiance. Conclusions The widely used exponential distribution of nitrogen or protein through the canopy is generally inappropriate. The model derives the optimum distribution with characteristics that are consistent with observation, so overcoming limitations of using the exponential distribution. Although canopies may not always operate at an optimum, optimization analysis provides valuable insight into plant acclimation to environmental

  7. New High-Speed Combination of Spectroscopic And Brightness Pyrometry For Studying Particles Temperature Distribution In Plasma Jets

    Directory of Open Access Journals (Sweden)

    Igor P. Gulyaev

    2014-03-01

    Full Text Available Up-to-date methods and devices for temperature of dispersed phase control in high-temperature flows are considered. Possibilities of building pyrometric systems using available modern equipment are discussed. The new pyrometric method based on registration of a wide spectral range of radiation is proposed and implemented. Results of particles temperature measurements during plasma treatment of zirconia powders are presented.

  8. A Novel Method for In-Situ Monitoring of Local Voltage, Temperature and Humidity Distributions in Fuel Cells Using Flexible Multi-Functional Micro Sensors

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chang

    2011-01-01

    Full Text Available In this investigation, micro voltage, temperature and humidity sensors were fabricated and integrated for the first time on a stainless steel foil using micro-electro-mechanical systems (MEMS. These flexible multi-functional micro sensors have the advantages of high temperature resistance, flexibility, smallness, high sensitivity and precision of location. They were embedded in a proton exchange membrane fuel cell (PEMFC and used to simultaneously measure variations in the inner voltage, temperature and humidity. The accuracy and reproducibility of the calibrated results obtained using the proposed micro sensors is excellent. The experimental results indicate that, at high current density and 100%RH or 75%RH, the relative humidity midstream and downstream saturates due to severe flooding. The performance of the PEM fuel cell can be stabilized using home-made flexible multi-functional micro sensors by the in-situ monitoring of local voltage, temperature and humidity distributions within it.

  9. A Novel Method for In-Situ Monitoring of Local Voltage, Temperature and Humidity Distributions in Fuel Cells Using Flexible Multi-Functional Micro Sensors

    Science.gov (United States)

    Lee, Chi-Yuan; Fan, Wei-Yuan; Chang, Chih-Ping

    2011-01-01

    In this investigation, micro voltage, temperature and humidity sensors were fabricated and integrated for the first time on a stainless steel foil using micro-electro-mechanical systems (MEMS). These flexible multi-functional micro sensors have the advantages of high temperature resistance, flexibility, smallness, high sensitivity and precision of location. They were embedded in a proton exchange membrane fuel cell (PEMFC) and used to simultaneously measure variations in the inner voltage, temperature and humidity. The accuracy and reproducibility of the calibrated results obtained using the proposed micro sensors is excellent. The experimental results indicate that, at high current density and 100%RH or 75%RH, the relative humidity midstream and downstream saturates due to severe flooding. The performance of the PEM fuel cell can be stabilized using home-made flexible multi-functional micro sensors by the in-situ monitoring of local voltage, temperature and humidity distributions within it. PMID:22319361

  10. Non-isothermal scavenging of highly soluble gaseous pollutants by rain in the atmosphere with non-uniform vertical concentration and temperature distributions

    Science.gov (United States)

    Elperin, Tov; Fominykh, Andrew; Krasovitov, Boris

    2014-08-01

    We suggest a non-isothermal one-dimensional model of precipitation scavenging of highly soluble gaseous pollutants in inhomogeneous atmosphere. When gradients of soluble trace gases' concentrations and temperature in the atmosphere are small, scavenging of gaseous pollutants is governed by two linear wave equations that describe propagation of a scavenging and temperature waves in one direction. If wash-down front velocity is much larger than the velocity of the temperature front, scavenging is determined by propagating scavenging front in the atmosphere with inhomogeneous temperature distribution. We solved the derived equation by the method of characteristics and determined scavenging coefficient and the rates of precipitation scavenging for wet removal of sulfur dioxide using measured initial distributions of trace gases and temperature in the atmosphere. It is shown that in the case of exponential initial distribution of soluble trace gases and linear temperature distribution in the atmosphere, scavenging coefficient in the region between the ground and the position of a scavenging front is proportional to rainfall rate, solubility parameter in the under-cloud region, adjacent to a bottom of a cloud and to the growth constant in the formula for the initial profile of a soluble trace gas in the atmosphere. The derived formula yields the same value of scavenging coefficient for sulfur dioxide scavenging by rain as field estimates presented by McMahon and Denison (Atmos Environ 13:571-585, 1979). It is demonstrated that in the case when the altitude variation of temperature in the atmosphere is determined by the environmental lapse rate, scavenging coefficient increases with height in the region between the scavenging front and the ground. In the case when altitude temperature variation in the atmosphere is determined by temperature inversion, scavenging coefficient decreases with height in a region between the scavenging front and the ground. Theoretical

  11. Dust temperature and mid-to-total infrared color distributions for star-forming galaxies at 0 < z < 4

    Science.gov (United States)

    Schreiber, C.; Elbaz, D.; Pannella, M.; Ciesla, L.; Wang, T.; Franco, M.

    2018-01-01

    We present a new, publicly available library of dust spectral energy distributions (SEDs). These SEDs are characterized by only three parameters: the dust mass (Mdust), the dust temperature (Tdust), and the mid-to-total infrared color (IR8 ≡ LIR/L8). The latter measures the relative contribution of polycyclic aromatic hydrocarbon (PAH) molecules to the total infrared luminosity. We used this library to model star-forming galaxies at 0.5 first order, the dust SED of a galaxy was observed to be independent of stellar mass, but evolving with redshift. We found trends of increasing Tdust and IR8 with redshift and distance from the SFR-M∗ main sequence, and quantified for the first time their intrinsic scatter. Half of the observed variations of these parameters was captured by the above empirical relations, and after subtracting the measurement errors we found residual scatters of ΔTdust/Tdust = 12% and Δlog IR8 = 0.18 dex. We observed second order variations with stellar mass: massive galaxies (M∗ > 1011M⊙) at z ≤ 1 have slightly lower temperatures indicative of a reduced star formation efficiency, while low mass galaxies (M∗ catalogs to predict the accuracy of infrared luminosities and dust masses determined using a single broadband measurement. Using a single James Webb Space Telescope (JWST) MIRI band, we found that LIR is typically uncertain by 0.15 dex, with a maximum of 0.25 dex when probing the rest-frame 8 μm, and this is not significantly impacted by typical redshift uncertainties. On the other hand, we found that ALMA bands 8 to 7 and 6 to 3 measured the dust mass at better than 0.2 and 0.15 dex, respectively, and independently of redshift, while bands 9 to 6 only measured LIR at better than 0.2 dex at z > 1, 3.2, 3.8, and 5.7, respectively. Starburst galaxies had their LIR significantly underestimated when measured by a single JWST or ALMA band, while their dust mass from a single ALMA band were moderately overestimated. This dust library and

  12. Experimental investigation and simulation of temperature distributions in a 16Ah-LiMnNiCoO2 battery during rapid discharge rates

    Science.gov (United States)

    Panchal, S.; Dincer, I.; Agelin-Chaab, M.; Fraser, R.; Fowler, M.

    2017-03-01

    It is very important to have quantitative data regarding the temperature distributions of lithium-ion batteries at different discharge rates in order to design thermal management systems and also for battery thermal modellers. In this paper, the surface temperature distributions on a superior lithium polymer battery (SLPB) with lithium manganese nickel cobalt oxide (LiMnNiCoO2) cathode material (16 Ah capacity) at C/8, C/4, C/2, 1C, 2C, and 3C discharge rates are presented. Additionally, a battery thermal model is developed for this battery using a neural network approach with the Bayesian Regularization method and the simulated results are compared with experimental results in terms of temperature and voltage profiles at C/8, C/4, C/2, 1C, 2C, and 3C discharge rates. Thermal images, which were also captured during experiments with an IR camera at various discharge rates, and are reported in the paper. The results of this study show that the increased discharge rates between C/8 and 3C results in increased surface temperature distributions on the principal surface of the battery and decreased discharge capacity.

  13. Temperature-dependent development, cold tolerance, and potential distribution of Cricotopus lebetis (Diptera: Chironomidae), a tip miner of Hydrilla verticillata (Hydrocharitaceae).

    Science.gov (United States)

    Stratman, Karen N; Overholt, William A; Cuda, James P; Mukherjee, A; Diaz, R; Netherland, Michael D; Wilson, Patrick C

    2014-10-15

    A chironomid midge, Cricotopus lebetis (Sublette) (Diptera: Chironomidae), was discovered attacking the apical meristems of Hydrilla verticillata (L.f. Royle) in Crystal River, Citrus Co., Florida in 1992. The larvae mine the stems of H. verticillata and cause basal branching and stunting of the plant. Temperature-dependent development, cold tolerance, and the potential distribution of the midge were investigated. The results of the temperature-dependent development study showed that optimal temperatures for larval development were between 20 and 30°C, and these data were used to construct a map of the potential number of generations per year of C. lebetis in Florida. Data from the cold tolerance study, in conjunction with historical weather data, were used to generate a predicted distribution of C. lebetis in the United States. A distribution was also predicted using an ecological niche modeling approach by characterizing the climate at locations where C. lebetis is known to occur and then finding other locations with similar climate. The distributions predicted using the two modeling approaches were not significantly different and suggested that much of the southeastern United States was climatically suitable for C. lebetis. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  14. Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H2O mole fraction.

    Science.gov (United States)

    Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen

    2016-01-01

    To monitor two-dimensional (2D) distributions of temperature and H2O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors' knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H2O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm(-1) (1343.3 nm) and 7185.6 cm(-1) (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H2O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H2O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.

  15. Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H2O mole fraction

    Science.gov (United States)

    Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen

    2016-01-01

    To monitor two-dimensional (2D) distributions of temperature and H2O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors' knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H2O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm-1 (1343.3 nm) and 7185.6 cm-1 (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H2O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H2O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.

  16. Coherent detection of spontaneous Brillouin scattering combined with Raman amplification for long range distributed temperature and strain measurements

    Science.gov (United States)

    Alahbabi, M. N.; Cho, Y. T.; Newson, T. P.

    2005-05-01

    Brillouin intensity and frequency measurements achieved temperature and strain to be unambiguously resolved with resolutions of 3.5°C and 85 μɛ at 50km. Frequency only measurements, achieved temperature or strain resolution of 1.7°C and 35 μɛ at 100km.

  17. A nodal model to predict vertical temperature distribution in a room with floor heating and displacement ventilation

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Olesen, Bjarne W.; Fang, Lei

    2013-01-01

    be calculated by solving energy balance equations for each node, using boundary parameters as inputs. The predictions agree quite well with experimentally measured data for floor surface temperatures between 25 and 28 °C, supply air temperatures between 14 and 18 °C and air change rates from 3.1 to 4...

  18. Optimization of Temperature Distributions in Critical Cross-sections of Load-bearing Structures of Measurement Optical Systems of Autonomous Objects

    Directory of Open Access Journals (Sweden)

    Livshits Michael Yu.

    2017-01-01

    Full Text Available Problem of the automatic thermogradient stabilization of the constructive elements sizes is discussed. The actual problem is the determination of the control algorithm controlled heat sources, providing them with the minimum possible number of minimal deviation from the desired temperature in a given cross-section design. The proposed procedure for solving optimal control of temperature distribution in the numerical design of its implementation, allows obtaining results that are suitable for approximate implementation in on-Board computers, Autonomous systems and significantly reduce thermal deformation component of the measurement error.

  19. Probability Distribution Estimated From the Minimum, Maximum, and Most Likely Values: Applied to Turbine Inlet Temperature Uncertainty

    Science.gov (United States)

    Holland, Frederic A., Jr.

    2004-01-01

    Modern engineering design practices are tending more toward the treatment of design parameters as random variables as opposed to fixed, or deterministic, values. The probabilistic design approach attempts to account for the uncertainty in design parameters by representing them as a distribution of values rather than as a single value. The motivations for this effort include preventing excessive overdesign as well as assessing and assuring reliability, both of which are important for aerospace applications. However, the determination of the probability distribution is a fundamental problem in reliability analysis. A random variable is often defined by the parameters of the theoretical distribution function that gives the best fit to experimental data. In many cases the distribution must be assumed from very limited information or data. Often the types of information that are available or reasonably estimated are the minimum, maximum, and most likely values of the design parameter. For these situations the beta distribution model is very convenient because the parameters that define the distribution can be easily determined from these three pieces of information. Widely used in the field of operations research, the beta model is very flexible and is also useful for estimating the mean and standard deviation of a random variable given only the aforementioned three values. However, an assumption is required to determine the four parameters of the beta distribution from only these three pieces of information (some of the more common distributions, like the normal, lognormal, gamma, and Weibull distributions, have two or three parameters). The conventional method assumes that the standard deviation is a certain fraction of the range. The beta parameters are then determined by solving a set of equations simultaneously. A new method developed in-house at the NASA Glenn Research Center assumes a value for one of the beta shape parameters based on an analogy with the normal

  20. Electron velocity distribution function in a plasma with temperature gradient and in the presence of suprathermal electrons: application to incoherent-scatter plasma lines

    Directory of Open Access Journals (Sweden)

    P. Guio

    1998-10-01

    Full Text Available The plasma dispersion function and the reduced velocity distribution function are calculated numerically for any arbitrary velocity distribution function with cylindrical symmetry along the magnetic field. The electron velocity distribution is separated into two distributions representing the distribution of the ambient electrons and the suprathermal electrons. The velocity distribution function of the ambient electrons is modelled by a near-Maxwellian distribution function in presence of a temperature gradient and a potential electric field. The velocity distribution function of the suprathermal electrons is derived from a numerical model of the angular energy flux spectrum obtained by solving the transport equation of electrons. The numerical method used to calculate the plasma dispersion function and the reduced velocity distribution is described. The numerical code is used with simulated data to evaluate the Doppler frequency asymmetry between the up- and downshifted plasma lines of the incoherent-scatter plasma lines at different wave vectors. It is shown that the observed Doppler asymmetry is more dependent on deviation from the Maxwellian through the thermal part for high-frequency radars, while for low-frequency radars the Doppler asymmetry depends more on the presence of a suprathermal population. It is also seen that the full evaluation of the plasma dispersion function gives larger Doppler asymmetry than the heat flow approximation for Langmuir waves with phase velocity about three to six times the mean thermal velocity. For such waves the moment expansion of the dispersion function is not fully valid and the full calculation of the dispersion function is needed.Key words. Non-Maxwellian electron velocity distribution · Incoherent scatter plasma lines · EISCAT · Dielectric response function

  1. Electron velocity distribution function in a plasma with temperature gradient and in the presence of suprathermal electrons: application to incoherent-scatter plasma lines

    Directory of Open Access Journals (Sweden)

    P. Guio

    Full Text Available The plasma dispersion function and the reduced velocity distribution function are calculated numerically for any arbitrary velocity distribution function with cylindrical symmetry along the magnetic field. The electron velocity distribution is separated into two distributions representing the distribution of the ambient electrons and the suprathermal electrons. The velocity distribution function of the ambient electrons is modelled by a near-Maxwellian distribution function in presence of a temperature gradient and a potential electric field. The velocity distribution function of the suprathermal electrons is derived from a numerical model of the angular energy flux spectrum obtained by solving the transport equation of electrons. The numerical method used to calculate the plasma dispersion function and the reduced velocity distribution is described. The numerical code is used with simulated data to evaluate the Doppler frequency asymmetry between the up- and downshifted plasma lines of the incoherent-scatter plasma lines at different wave vectors. It is shown that the observed Doppler asymmetry is more dependent on deviation from the Maxwellian through the thermal part for high-frequency radars, while for low-frequency radars the Doppler asymmetry depends more on the presence of a suprathermal population. It is also seen that the full evaluation of the plasma dispersion function gives larger Doppler asymmetry than the heat flow approximation for Langmuir waves with phase velocity about three to six times the mean thermal velocity. For such waves the moment expansion of the dispersion function is not fully valid and the full calculation of the dispersion function is needed.

    Key words. Non-Maxwellian electron velocity distribution · Incoherent scatter plasma lines · EISCAT · Dielectric response function

  2. Optical quasi-distributed simultaneous vibration and temperature sensing in stator bars of a 370-MVA electric generator

    Science.gov (United States)

    Dreyer, Uilian José; Vagner da Silva, Erlon; Martelli, Cicero; Cardozo da Silva, Jean Carlos

    2017-08-01

    In this paper, we propose a new multiparametric optical fiber transducer applied to an electric generator of 370 MVA. The optical transducer has three multiplexed FBGs in the same optical fiber as the sensing element. The FBG sensors can simultaneously measure both the temperature and vibration independently of the other multiplexed FBGs. The installation in the power plant was performed using six transducers and it was obtained 23 hours of simultaneous vibration and temperature measurement. All the FBGs used to monitor generator vibration were able to monitor the frequency of mechanical and electromagnetic vibrations, which were measured at 2 Hz and 120 Hz, respectively. During the measurement, the machine was turned off due to a failure and all the FBGs sensed temperature changes, as well as frequency vibration changes. The largest temperature difference measured between the FBGs during the test is approximately 2°C.

  3. Botany Facility: Test report on breadboard tests for the determination of the heat transfer at the glass disk and of the temperature distribution in the fluorescent tube

    Science.gov (United States)

    Fischer, W.

    1986-11-01

    Botany Facility tests were performed in an environmental laboratory in order to determine the heat transfer at the glass disk of the breadboard model and the temperature distribution in the fluorescent tube under different environmental conditions. The test objects, test facility, instrumentation, environmental conditions, and test procedures are described. The tests were successful since all data needed were obtained with the required accuracy. The extent of the data was substantially increased during the tests, allowing safe predictions.

  4. A mathematical model of the global processes of plastic degradation in the World Ocean with account for the surface temperature distribution

    Science.gov (United States)

    Bartsev, S. I.; Gitelson, J. I.

    2016-02-01

    The suggested model of plastic garbage degradation allows us to obtain an estimate of the stationary density of their distribution over the surface of the World Ocean with account for the temperature dependence on the degradation rate. The model also allows us to estimate the characteristic time periods of degradation of plastic garbage and the dynamics of the mean density variation as the mean rate of plastic garbage entry into the ocean varies

  5. Simplified Equation to Evaluate the Stress Intensity Factor of an Arbitrarily Located Circumferential Crack in a Cylinder under Radial Temperature Distribution

    OpenAIRE

    飯井, 俊行; 渡邊, 勝彦

    1998-01-01

    A simplified equation to directly calculate the stress intensity factor of an arbitrarily located circumferential crack in a cylinder under radial temperature distribution was theoretically derived, based on the theory of cylindrical shell and compliance. The effects of the cylinder length and the crack position on the stress intensity factor can be evaluated by the equation. From the numerical illustration, it was shown that the stress intensity factor of a short cylinder is smaller than tha...

  6. Distribution of deep sea shrimp (Pandalus borealis Krøyer) in relation to temperature in the Barents Sea

    OpenAIRE

    Nedreaas, Kjell Harald; Øynes, Per

    1987-01-01

    In the years 1980 to 1985 stratided raildom bottom trawl surveys were carried out on the shrimp fields in the Svalbard and Barents Sea regions. The objeetives of the cruises were to study the structure of the shrimp stock and to estimate the abundance of shrimp. On each trawl station the bottom temperature was measured. Only the results from the surveys in the Barents Sea have throroughly been analysed with regard to temperature. In the investigated area the deep sea shrimp ...

  7. Some numerical simulation results of the dynamic temperature distribution in dc plasma torch «Thermoplasma 50-01»

    Science.gov (United States)

    Saifutdinov, A.; Fadeev, S.; Fayrushin, I.

    2017-11-01

    A DC plasma torch “Thermoplasma 50-01” has been modeled and simulated by developing a 2D axisymmetric model of laminar flow and heat transfer coupled to electromagnetic fields. As a result of the numerical solution, the dynamics of the formation of the temperature field and the velocity field in the plasma torch channel and at its exit is presented. The numerical results of the gas temperature and axial velocity result to be quite satisfactory.

  8. Influences of summer water temperatures on the movement, distribution, and resources use of fluvial Westslope Cutthroat Trout in the South Fork Clearwater River basin

    Science.gov (United States)

    Dobos, Marika E.; Corsi, Matthew P.; Schill, Daniel J.; DuPont, Joseph M.; Quist, Michael C.

    2016-01-01

    Although many Westslope Cutthroat Trout Oncorhynchus clarkii lewisi populations in Idaho are robust and stable, population densities in some systems remain below management objectives. In many of those systems, such as in the South Fork Clearwater River (SFCR) system, environmental conditions (e.g., summer temperatures) are hypothesized to limit populations of Westslope Cutthroat Trout. Radiotelemetry and snorkeling methods were used to describe seasonal movement patterns, distribution, and habitat use of Westslope Cutthroat Trout in the SFCR during the summers of 2013 and 2014. Sixty-six radio transmitters were surgically implanted into Westslope Cutthroat Trout (170–405 mm TL) from May 30–June 25, 2013, and June 20–July 6, 2014. Sedentary and mobile summer movement patterns by Westslope Cutthroat Trout were observed in the SFCR. Westslope Cutthroat Trout were generally absent from the lower SFCR. In the upper region of the SFCR, fish generally moved from the main-stem SFCR into tributaries as water temperatures increased during the summer. Fish remained in the middle region of the SFCR where water temperatures were cooler than in the upper or lower regions of the SFCR. A spatially explicit water temperature model indicated that the upper and lower regions of the SFCR exceeded thermal tolerance levels of Westslope Cutthroat Trout throughout the summer. During snorkeling, 23 Westslope Cutthroat Trout were observed in 13 sites along the SFCR and at low density (mean ± SD, 0.0003 ± 0.0001 fish/m2). The distribution of fish observed during snorkeling was consistent with the distribution of radio-tagged fish in the SFCR during the summer. Anthropogenic activities (i.e., grazing, mining, road construction, and timber harvest) in the SFCR basin likely altered the natural flow dynamics and temperature regime and thereby limited stream habitat in the SFCR system for Westslope Cutthroat Trout.

  9. Warm dark matter via ultra-violet freeze-in: reheating temperature and non-thermal distribution for fermionic Higgs portal dark matter

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, John [Dept. of Physics, University of Lancaster,Lancaster LA1 4YB (United Kingdom)

    2016-08-17

    Warm dark matter (WDM) of order keV mass may be able to resolve the disagreement between structure formation in cold dark matter simulations and observations. The detailed properties of WDM will depend upon its energy distribution, in particular how it deviates from the thermal distribution usually assumed in WDM simulations. Here we focus on WDM production via the Ultra-Violet (UV) freeze-in mechanism, for the case of fermionic Higgs portal dark matter ψ produced via the portal interaction ψ-barψH{sup †}H/Λ. We introduce a new method to simplify the computation of the non-thermal energy distribution of dark matter from freeze-in. We show that the non-thermal energy distribution from UV freeze-in is hotter than the corresponding thermal distribution and has the form of a Bose-Einstein distribution with a non-thermal normalization. The resulting range of dark matter fermion mass consistent with observations is 5–7 keV. The reheating temperature must satisfy T{sub R}≳120 GeV in order to account for the observed dark matter density when m{sub ψ}≈5 keV, where the lower bound on T{sub R} corresponds to the limit where the fermion mass is entirely due to electroweak symmetry breaking via the portal interaction. The corresponding bound on the interaction scale is Λ≳6.0×10{sup 9} GeV.

  10. High-power temperature-stable GaInNAs distributed Bragg reflector laser emitting at 1180  nm.

    Science.gov (United States)

    Korpijärvi, Ville-Markus; Viheriälä, Jukka; Koskinen, Mervi; Aho, Antti T; Guina, Mircea

    2016-02-15

    We report a single-mode 1180 nm distributed Bragg reflector (DBR) laser diode with a high output power of 340 mW. For the fabrication, we employed novel nanoimprint lithography that ensures cost-effective, large-area, conformal patterning and does not require regrowth. The output characteristics exhibited outstanding temperature insensitivity with a power drop of only 30% for an increase of the mount temperature from 20°C to 80°C. The high temperature stability was achieved by using GaInNAs/GaAs quantum wells (QWs), which exhibit improved carrier confinement compared to standard InGaAs/GaAs QWs. The corresponding characteristic temperatures were T0=110  K and T1=160  K. Moreover, we used a large detuning between the peak wavelength of the material gain at room temperature and the lasing wavelength determined by the DBR. In addition to good temperature characteristics, GaInNAs/GaAs QWs exhibit relatively low lattice strain with direct impact on improving the lifetime of laser diodes at this challenging wavelength range. The single-mode laser emission could be tuned by changing the mount temperature (0.1 nm/°C) or the drive current (0.5 pm/mA). The laser showed no degradation in a room-temperature lifetime test at 900 mA drive current. These compact and efficient 1180 nm laser diodes are instrumental for the development of compact frequency-doubled yellow-orange lasers, which have important applications in medicine and spectroscopy.

  11. Relative Distribution of Water Clusters at Temperature (300-3000K) and Pressure (1-500MPa)

    CERN Document Server

    Ri, Yong-U; Sin, Kye-Ryong

    2016-01-01

    At 300-3000K and 1-500MPa, variations of relative contents for small water clusters (H2O)n (n=1~6) were calculated by using statistical mechanical methods. First, 9 kinds of small water clusters were selected and their structures were optimized by using ab initio method. In the wide range of temperature (300-3000K) and pressure (1-500MPa), their equilibrium constants of reactions for formation of 9 kinds of water clusters were determined by using molecular partition function. Next, changes of contents (molar fractions) as function of temperature and pressure were estimated. The obtained results for small water clusters can be used to interpret temperature-pressure dependency of the average number for the hydrogen bonds in water clusters and redistribution of the water clusters at the ultrasonic cavitation reactions.

  12. Analysis of the dynamics of venous blood flow in the context of lower limb temperature distribution and tissue composition in the elderly

    Directory of Open Access Journals (Sweden)

    Skomudek A

    2017-08-01

    Full Text Available Aleksandra Skomudek,1,2 Iwona Gilowska,1,3 Ryszard Jasiński,4 Krystyna Rożek-Piechura4 1Department of Physical Education and Physiotherapy, Opole University of Technology, Opolskie, 2Department of Clinical Physiotherapy, 3Department of Biochemistry and Physiology, 4Department of Physiotherapy and Occupational Therapy in Conservative and Interventional Medicine, University of Physical Education in Wroclaw, Wroclaw, Poland Objective: The elderly are particularly vulnerable to degenerative diseases, such as circulatory and respiratory system and vascular system diseases. The objective of this study was therefore to evaluate the distribution of temperature and the dynamics of venous blood flow in the lower limbs (LLs and to assess the interdependence of these parameters in terms of the somatic components in males and females participating in activities at the University of the Third Age. Materials and methods: The study included 60 females (mean age 67.4 years and 40 males (mean age 67.5 years. A body composition assessment was performed using the bioimpedance technique – Tanita BC-418MA. The following parameters were examined: fat%, fat mass, fat-free mass, and total body water. The minimal, maximal, and mean temperature values and their distributions were examined using infrared thermographic camera VarioCAM Head. Measurements of the venous refilling time and the work of the LL venous pump were examined using a Rheo Dopplex II PPG. Results: In males, the mean value of the right LL temperature was 30.58 and the mean value of the left LL was 30.28; the P-value was 0.805769. In females, the mean value of the right LL temperature was 29.58 and the mean value of the left limb was 29.52; the P-value was 0.864773. In males, the right limb blood flow was 34.17 and the left limb blood flow was 34.67; the P-value was 0.359137. In females, the right limb blood flow was 26.89 and the left limb blood flow was 26.09; the P-value was 0.796348. Conclusion

  13. Long-range distributed temperature and strain optical fibre sensor based on the coherent detection of spontaneous Brillouin scattering with in-line Raman amplification

    Science.gov (United States)

    Alahbabi, Mohamed N.; Tat Cho, Yuh; Newson, Trevor P.

    2006-05-01

    We report an extended range distributed temperature and strain optical fibre sensor based on the coherent detection of spontaneous Brillouin scattering combined with Raman amplification. The Raman amplification was achieved within the sensing fibre using either co- or counter-propagating Raman pump configuration with respect to the probe pulse and experiments were conducted to investigate the optimum pump and probe power combination. Using Brillouin frequency shift measurements with co-propagating Raman pump configuration, a temperature resolution of 1.7 °C with a 20 m spatial resolution at 100 km was achieved. With the counter-propagating pump configuration, a temperature resolution of 5 °C with a 50 m spatial resolution at 150 km was achieved. Measuring both the power and frequency of the Brillouin signal, a simultaneous temperature and strain measurement was performed over 50 km using co-propagating Raman pump. Temperature and strain resolutions of 3.5 °C and 85 μɛ with 5 m spatial resolution were achieved.

  14. Self-Tuning Fully-Connected PID Neural Network System for Distributed Temperature Sensing and Control of Instrument with Multi-Modules.

    Science.gov (United States)

    Zhang, Zhen; Ma, Cheng; Zhu, Rong

    2016-10-14

    High integration of multi-functional instruments raises a critical issue in temperature control that is challenging due to its spatial-temporal complexity. This paper presents a multi-input multi-output (MIMO) self-tuning temperature sensing and control system for efficiently modulating the temperature environment within a multi-module instrument. The smart system ensures that the internal temperature of the instrument converges to a target without the need of a system model, thus making the control robust. The system consists of a fully-connected proportional-integral-derivative (PID) neural network (FCPIDNN) and an on-line self-tuning module. The experimental results show that the presented system can effectively control the internal temperature under various mission scenarios, in particular, it is able to self-reconfigure upon actuator failure. The system provides a new scheme for a complex and time-variant MIMO control system which can be widely applied for the distributed measurement and control of the environment in instruments, integration electronics, and house constructions.

  15. Calculating fluoride concentrations data using ambient temperatures in drinking water distribution networks in select provinces of Iran.

    Science.gov (United States)

    Zazouli, Mohammad Ali; Sadeghnezhad, Reza; Kalankesh, Laleh R

    2017-12-01

    Fluoride concentrations in drinking water were analyzed relative to air temperature data collected in different provinces of Iran. Determining suitable concentrations of fluoride in drinking water is crucial for communities because of the health effects of fluoride on humans. This study analyzed fluoride concentrations in drinking water from selected Iranian provinces. The data were derived mainly from a detailed literature review. The annual mean maximum temperatures (AMMTs) were collected from a popular website that maintains records of daily ambient temperature measurements for the last five years (2012-2016). Using regional ambient temperatures, the optimal value of fluoride in drinking water for each province was calculated by the Galgan and Vermillion formula. These optimal fluoride concentrations in drinking water for different Iranian regions were calculated to be 0.64-1.04 mg F/L. Most of the selected provinces were found to have acceptable concentrations of fluoride, except for Alborz, Khuzestan, and Hormozgan, which reported concentrations of 0.66, 0.66, and 0.64 mg/L, respectively.

  16. Effect of increasing temperatures on the distribution of spruce beetle in Engelmann spruce forests of the Interior West, USA

    Science.gov (United States)

    R. Justin DeRose; Barbara J. Bentz; James N. Long; John D. Shaw

    2013-01-01

    The spruce beetle (Dendoctronus rufipennis) is a pervasive bark beetle indigenous to spruce (Picea spp.) forests of North America. In the last two decades outbreaks of spruce beetle have increased in severity and extent. Increasing temperatures have been implicated as they directly control beetle populations, potentially inciting endemic populations to build to...

  17. Evaluating the Effects of Temperature on Mortality in Manila City (Philippines from 2006–2010 Using a Distributed Lag Nonlinear Model

    Directory of Open Access Journals (Sweden)

    Xerxes T. Seposo

    2015-06-01

    Full Text Available The effect of temperature on the risk of mortality has been described in numerous studies of category-specific (e.g., cause-, sex-, age-, and season-specific mortality in temperate and subtropical countries, with consistent findings of U-, V-, and J-shaped exposure-response functions. In this study, we analyzed the relationship between temperature and mortality in Manila City (Philippines, during 2006–2010 to identify the potential susceptible populations. We collected daily all-cause and cause-specific death counts from the Philippine Statistics Authority-National Statistics Office and the meteorological variables were collected from the Philippine Atmospheric Geophysical and Astronomical Services Administration. Temperature-mortality relationships were modeled using Poisson regression combined with distributed lag nonlinear models, and were used to perform cause-, sex-, age-, and season-specific analyses. The minimum mortality temperature was 30 °C, and increased risks of mortality were observed per 1 °C increase among elderly persons (RR: 1.53, 95% CI: 1.31–1.80, women (RR: 1.47, 95% CI: 1.27–1.69, and for respiratory causes of death (RR: 1.52, 95% CI: 1.23–1.88. Seasonal effect modification was found to greatly affect the risks in the lower temperature range. Thus, the temperature-mortality relationship in Manila City exhibited an increased risk of mortality among elderly persons, women, and for respiratory-causes, with inherent effect modification in the season-specific analysis. The findings of this study may facilitate the development of public health policies to reduce the effects of air temperature on mortality, especially for these high-risk groups.

  18. What Can We Learn from a Detailed Study of the Temperature Dependence of σ, the Width of the Pair Distribution Function?

    Science.gov (United States)

    Bridges, F.; Downward, L.; Jiang, Y.; O'Brien, T.

    2007-02-01

    In many systems there is a significant coupling between the local structure and other properties of the system such as magnetism, electrical and thermal transport, metal/insulator transitions etc. In such materials, a detailed temperature-dependent study of the width of the Pair Distribution Function (PDF), σ, can separate different contributions and provide a connection between the observed macroscopic observations and the underlying atomic interactions that produce them. The usual model for simple systems is that the T-dependence of σ2 is described by an Einstein or Correlated Debye model, with one characteristic temperature for the system; in such models σ2(T) increases smoothly with T and has a slowly increasing slope. However that is not always the case: in structures with large unit cells containing several types of atoms, some atoms in the crystal can have a low Einstein temperature while others have a very high correlated Debye temperature as observed in a number of thermoelectric systems (skutterudites and clathrates). In others systems such as the negative thermal expansion material ZrW2O8, the same atom cam be involved in both low and high temperature Einstein modes. Vibrations of atoms (or molecular unit) described by a low Einstein temperature often control/determine the lattice properties. In other systems there are deviations from the T-dependence expected for either the Einstein or correlated Debye models — such as a small increase in σ2 at low temperatures for the Ru-Ru pair in PrRu4Sb12 which has a metal/insulator transition near 60K, or a very sharp step in σ2(T) observed in the bilayer colossal magnetoresistance system La2-2xSr1+2xMn2O7 at the ferromagnetic transition. We discuss broadening of the PDF in more complex systems, show some simulations and then present several recent examples.

  19. Evaluating the Effects of Temperature on Mortality in Manila City (Philippines) from 2006-2010 Using a Distributed Lag Nonlinear Model.

    Science.gov (United States)

    Seposo, Xerxes T; Dang, Tran Ngoc; Honda, Yasushi

    2015-06-16

    The effect of temperature on the risk of mortality has been described in numerous studies of category-specific (e.g., cause-, sex-, age-, and season-specific) mortality in temperate and subtropical countries, with consistent findings of U-, V-, and J-shaped exposure-response functions. In this study, we analyzed the relationship between temperature and mortality in Manila City (Philippines), during 2006-2010 to identify the potential susceptible populations. We collected daily all-cause and cause-specific death counts from the Philippine Statistics Authority-National Statistics Office and the meteorological variables were collected from the Philippine Atmospheric Geophysical and Astronomical Services Administration. Temperature-mortality relationships were modeled using Poisson regression combined with distributed lag nonlinear models, and were used to perform cause-, sex-, age-, and season-specific analyses. The minimum mortality temperature was 30 °C, and increased risks of mortality were observed per 1 °C increase among elderly persons (RR: 1.53, 95% CI: 1.31-1.80), women (RR: 1.47, 95% CI: 1.27-1.69), and for respiratory causes of death (RR: 1.52, 95% CI: 1.23-1.88). Seasonal effect modification was found to greatly affect the risks in the lower temperature range. Thus, the temperature-mortality relationship in Manila City exhibited an increased risk of mortality among elderly persons, women, and for respiratory-causes, with inherent effect modification in the season-specific analysis. The findings of this study may facilitate the development of public health policies to reduce the effects of air temperature on mortality, especially for these high-risk groups.

  20. Thermal infrared imaging of the variability of canopy-air temperature difference distribution for heavy metal stress levels discrimination in rice

    Science.gov (United States)

    Zhang, Biyao; Liu, Xiangnan; Liu, Meiling; Wang, Dongmin

    2017-04-01

    This paper addresses the assessment and interpretation of the canopy-air temperature difference (Tc-Ta) distribution as an indicator for discriminating between heavy metal stress levels. Tc-Ta distribution is simulated by coupling the energy balance equation with modified leaf angle distribution. Statistical indices including average value (AVG), standard deviation (SD), median, and span of Tc-Ta in the field of view of a digital thermal imager are calculated to describe Tc-Ta distribution quantitatively and, consequently, became the stress indicators. In the application, two grains of rice growing sites under "mild" and "severe" stress level were selected as study areas. A total of 96 thermal images obtained from the field measurements in the three growth stages were used for a separate application of a theoretical variation of Tc-Ta distribution. The results demonstrated that the statistical indices calculated from both simulated and measured data exhibited an upward trend as the stress level becomes serious because heavy metal stress would only raise a portion of the leaves in the canopy. Meteorological factors could barely affect the sensitivity of the statistical indices with the exception of the wind speed. Among the statistical indices, AVG and SD were demonstrated to be better indicators for stress levels discrimination.

  1. Performance optimization of apodized FBG-based temperature sensors in single and quasi-distributed DWDM systems with new and different apodization profiles

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Nazmi A. [Research Center, Smart Village, College of Engineering, Arab Academy for Science, Technology, and Maritime Transport, Cairo (Egypt); Ali, Taha A., E-mail: Taha25@gmail.com; Aly, Moustafa H. [Department of Electronics and Communications Engineering, College of Engineering, Arab Academy for Science, Technology, and Maritime Transport, Cairo (Egypt)

    2013-12-15

    In this work, different FBG temperature sensors are designed and evaluated with various apodization profiles. Evaluation is done under a wide range of controlling design parameters like sensor length and refractive index modulation amplitude, targeting a remarkable temperature sensing performance. New judgment techniques are introduced such as apodization window roll-off rate, asymptotic sidelobe (SL) decay level, number of SLs, and average SL level (SLav). Evaluation techniques like reflectivity, Full width at Half Maximum (FWHM), and Sidelobe Suppression Ratio (SLSR) are also used. A “New” apodization function is proposed, which achieves better performance like asymptotic decay of 18.4 dB/nm, high SLSR of 60 dB, high channel isolation of 57.9 dB, and narrow FWHM less than 0.15 nm. For a single accurate temperature sensor measurement in extensive noisy environment, optimum results are obtained by the Nuttall apodization profile and the new apodization function, which have remarkable SLSR. For a quasi-distributed FBG temperature sensor the Barthann and the new apodization profiles obtain optimum results. Barthann achieves a high asymptotic decay of 40 dB/nm, a narrow FWHM (less than 25 GHZ), a very low SLav of −45.3 dB, high isolation of 44.6 dB, and a high SLSR of 35 dB. The new apodization function achieves narrow FWHM of 0.177 nm, very low SL of −60.1, very low SLav of −63.6 dB, and very high SLSR of −57.7 dB. A study is performed on including an unapodized sensor among apodized sensors in a quasi-distributed sensing system. Finally, an isolation examination is performed on all the discussed apodizations and a linear relation between temperature and the Bragg wavelength shift is observed experimentally and matched with the simulated results.

  2. Performance optimization of apodized FBG-based temperature sensors in single and quasi-distributed DWDM systems with new and different apodization profiles

    Directory of Open Access Journals (Sweden)

    Nazmi A. Mohammed

    2013-12-01

    Full Text Available In this work, different FBG temperature sensors are designed and evaluated with various apodization profiles. Evaluation is done under a wide range of controlling design parameters like sensor length and refractive index modulation amplitude, targeting a remarkable temperature sensing performance. New judgment techniques are introduced such as apodization window roll-off rate, asymptotic sidelobe (SL decay level, number of SLs, and average SL level (SLav. Evaluation techniques like reflectivity, Full width at Half Maximum (FWHM, and Sidelobe Suppression Ratio (SLSR are also used. A “New” apodization function is proposed, which achieves better performance like asymptotic decay of 18.4 dB/nm, high SLSR of 60 dB, high channel isolation of 57.9 dB, and narrow FWHM less than 0.15 nm. For a single accurate temperature sensor measurement in extensive noisy environment, optimum results are obtained by the Nuttall apodization profile and the new apodization function, which have remarkable SLSR. For a quasi-distributed FBG temperature sensor the Barthann and the new apodization profiles obtain optimum results. Barthann achieves a high asymptotic decay of 40 dB/nm, a narrow FWHM (less than 25 GHZ, a very low SLav of −45.3 dB, high isolation of 44.6 dB, and a high SLSR of 35 dB. The new apodization function achieves narrow FWHM of 0.177 nm, very low SL of −60.1, very low SLav of −63.6 dB, and very high SLSR of −57.7 dB. A study is performed on including an unapodized sensor among apodized sensors in a quasi-distributed sensing system. Finally, an isolation examination is performed on all the discussed apodizations and a linear relation between temperature and the Bragg wavelength shift is observed experimentally and matched with the simulated results.

  3. Spatially variable stage-driven groundwater-surface water interaction inferred from time-frequency analysis of distributed temperature sensing data

    Science.gov (United States)

    Mwakanyamale, Kisa; Slater, Lee; Day-Lewis, Frederick; Elwaseif, Mehrez; Johnson, Carole

    2012-03-01

    Characterization of groundwater-surface water exchange is essential for improving understanding of contaminant transport between aquifers and rivers. Fiber-optic distributed temperature sensing (FODTS) provides rich spatiotemporal datasets for quantitative and qualitative analysis of groundwater-surface water exchange. We demonstrate how time-frequency analysis of FODTS and synchronous river stage time series from the Columbia River adjacent to the Hanford 300-Area, Richland, Washington, provides spatial information on the strength of stage-driven exchange of uranium contaminated groundwater in response to subsurface heterogeneity. Although used in previous studies, the stage-temperature correlation coefficient proved an unreliable indicator of the stage-driven forcing on groundwater discharge in the presence of other factors influencing river water temperature. In contrast, S-transform analysis of the stage and FODTS data definitively identifies the spatial distribution of discharge zones and provided information on the dominant forcing periods (≥2 d) of the complex dam operations driving stage fluctuations and hence groundwater-surface water exchange at the 300-Area.

  4. Radiological considerations on multi-MW targets Part II After-heat and temperature distribution in packed tantalum spheres

    CERN Document Server

    Magistris, M

    2005-01-01

    CERN is designing a Superconducting Proton Linac (SPL) to provide a 2.2GeV, 4MW proton beam to feed facilities like, for example, a future Neutrino Factory or a Neutrino SuperBeam. One of the most promising target candidates is a stationary consisting of a Ti container filled with small Ta pellets. The power deposited as heat by the radioactive nuclides (the so-called after-heat) can considerably increase the target temperature after ceasing operation, if no active cooling is provided. An estimate of the induced radioactivity and after-heat was performed with the FLUKA Monte Carlo code. To estimate the highest temperature reached inside the target, the effective thermal conductivity of packed spheres was evaluated using the basic cell method. A method for estimating the contribution to heat transmission from radiation is also discussed1).

  5. Dependence of Ozone Generation on Gas Temperature Distribution in AC Atmospheric Pressure Dielectric Barrier Discharge in Oxygen

    Science.gov (United States)

    Takahashi, Go; Akashi, Haruaki

    AC atmospheric pressure multi-filament dielectric barrier discharge in oxygen has been simulated using two dimensional fluid model. In the discharge, three kinds of streamers have been obtained. They are primary streamers, small scale streamers and secondary streamers. The primary streamers are main streamers in the discharge and the small scale streamers are formed after the ceasing of the primary streamers. And the secondary streamers are formed on the trace of the primary streamers. In these streamers, the primary and the small scale streamers are very effective to generate O(3P) oxygen atoms which are precursor of ozone. And the ozone is generated mainly in the vicinity of the dielectrics. In high gas temperature region, ozone generation decreases in general. However, increase of the O(3P) oxygen atom density in high gas temperature region compensates decrease of ozone generation rate coefficient. As a result, amount of ozone generation has not changed. But if the effect of gas temperature was neglected, amount of ozone generation increases 10%.

  6. Interactive effects of temperature, food and skeletal mineralogy mediate biological responses to ocean acidification in a widely distributed bryozoan.

    Science.gov (United States)

    Swezey, Daniel S; Bean, Jessica R; Ninokawa, Aaron T; Hill, Tessa M; Gaylord, Brian; Sanford, Eric

    2017-04-26

    Marine invertebrates with skeletons made of high-magnesium calcite may be especially susceptible to ocean acidification (OA) due to the elevated solubility of this form of calcium carbonate. However, skeletal composition can vary plastically within some species, and it is largely unknown how concurrent changes in multiple oceanographic parameters will interact to affect skeletal mineralogy, growth and vulnerability to future OA. We explored these interactive effects by culturing genetic clones of the bryozoan Jellyella tuberculata (formerly Membranipora tuberculata) under factorial combinations of dissolved carbon dioxide (CO2), temperature and food concentrations. High CO2 and cold temperature induced degeneration of zooids in colonies. However, colonies still maintained high growth efficiencies under these adverse conditions, indicating a compensatory trade-off whereby colonies degenerate more zooids under stress, redirecting energy to the growth and maintenance of new zooids. Low-food concentration and elevated temperatures also had interactive effects on skeletal mineralogy, resulting in skeletal calcite with higher concentrations of magnesium, which readily dissolved under high CO2 For taxa that weakly regulate skeletal magnesium concentration, skeletal dissolution may be a more widespread phenomenon than is currently documented and is a growing concern as oceans continue to warm and acidify. © 2017 The Author(s).

  7. The spatial distribution of temperature and oxygen deficiency in spark-plasma sintered superconducting Bi-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Govea-Alcaide, E.; Pérez-Fernández, J.E. [Departamento de Ciencias Básicas, Facultad de Ciencias Técnicas, Universidad de Granma, Apdo. 21, P.O. Box 85100, Bayamo (Cuba); Machado, I.F. [Departamento de Engenharia Mecatrônica e Sistemas Mecânicos, Escola Politécnica, Universidade de São Paulo, 05508-900 São Paulo, SP (Brazil); Jardim, R.F., E-mail: rjardim@if.usp.br [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, SP (Brazil)

    2014-12-15

    Pre-reacted powders of (Bi–Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+δ} (Bi-2223) were consolidated by using the spark plasma sintering (SPS) technique under vacuum and at different consolidate temperatures T{sub D}. X-ray diffraction patterns revealed that the dominant phase in all SPS samples is the Bi-2223 phase, but traces of the Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 10+x} (Bi-2212) phase were identified. We have found that the transport properties of SPS samples depend on their oxygen content because the SPS process is performed under vacuum. Simulations by using the finite element method (FEM) were performed for determining the actual temperature in which powders are consolidated. From these results we have inferred that SPS samples are oxygen deficient and such a deficiency is more marked near the grain boundaries, suggesting the occurrence of grains with core–shell morphology. We also argued that the width of the shell depends on the consolidation temperature, a feature corroborated by the FEM simulations.

  8. SAR and temperature distribution in the rat head model exposed to electromagnetic field radiation by 900 MHz dipole antenna.

    Science.gov (United States)

    Yang, Lei; Hao, Dongmei; Wu, Shuicai; Zhong, Rugang; Zeng, Yanjun

    2013-06-01

    Rats are often used in the electromagnetic field (EMF) exposure experiments. In the study for the effect of 900 MHz EMF exposure on learning and memory in SD rats, the specific absorption rate (SAR) and the temperature rise in the rat head are numerically evaluated. The digital anatomical model of a SD rat is reconstructed with the MRI images. Numerical method as finite difference time domain has been applied to assess the SAR and the temperature rise during the exposure. Measurements and simulations are conducted to characterize the net radiated power of the dipole to provide a precise dosimetric result. The whole-body average SAR and the localized SAR averaging over 1, 0.5 and 0.05 g mass for different organs/tissues are given. It reveals that during the given exposure experiment setup, no significant temperature rise occurs. The reconstructed anatomical rat model could be used in the EMF simulation and the dosimetric result provides useful information for the biological effect studies.

  9. Distribution of deep sea shrimp (Pandalus borealis Krøyer) in relation to temperature in the Barents Sea

    OpenAIRE

    Nedreaas, Kjell Harald; Øynes, Per

    1987-01-01

    The effect of oceanographic condition on distribution and population dynamics of commercial fish stocks in the Barents Sea. Proceedings of the third Soviet-Norwegian Symposium. Murmansk, 26-28 May 1986. In the years 1980 to 1985 stratided raildom bottom trawl surveys were carried out on the shrimp fields in the Svalbard and Barents Sea regions. The objeetives of the cruises were to study the structure of the shrimp stock and to estimate the abundance of shrimp. On each trawl stati...

  10. Comment on "Effect of carbide distribution on the fracture toughness in the transition temperature region of an SA 508 steel"

    OpenAIRE

    Tanguy, Benoit; Besson, Jacques; Pineau, André

    2003-01-01

    International audience; Critical cleavage stress values and carbide sizes obtained in a recent work by Lee et al. [Acta Mater. 50 (2002) 4755] are recalculated using 2D and 3D finite element simulations and new constitutive law, instead of small scale yielding assumption and likely improper choice for the behavior of SA 508 steel. A new model based on the weakest link concept with the determined carbide size distribution (CSD) is succesfully applied to predict KJc measurements obtained on SA ...

  11. Energy efficiency in arenas : the effect of the distribution circuit on the surface ice temperature; L'efficacite energetique dans les arenas : effet du circuit de distribution sur la temperature de surface de la glace

    Energy Technology Data Exchange (ETDEWEB)

    Bellache, O.; Cummins, R.; Lavallee, H. [Systeme Energie TST, Laval, PQ (Canada)

    2009-03-15

    The ice in most arenas is cooled by brine chillers which consume large amounts of energy. The pump alone that circulates the brine in the piping system underneath the cement consumes as much as 15 per cent of the energy required to cool the ice. This article described a new brine system for skating rinks that has been used in 20 arenas in Montreal. The brine specifications in the arenas were first updated. Then, the commonly used two-pass brine distribution systems with evaporators connected in parallel were replaced with a four-pass brine distribution system with evaporators connected in series. Brine flow was reduced by half and pump horsepower was also significantly reduced while maintaining sufficient fluid velocity in the heat exchangers. Money was also saved because less salt was needed to top up the system. The new design for the brine system is recommended for replacing corroded headers, because payback can be immediate. The new system maintains optimal ice conditions. While the ice quality remains the same, the money saved is substantial, notably 8,500 per rink per year. 3 refs., 9 figs.

  12. Investigating patterns and controls of groundwater up-welling in a lowland river by combining Fibre-optic Distributed Temperature Sensing with observations of vertical hydraulic gradients

    Directory of Open Access Journals (Sweden)

    S. Krause

    2012-06-01

    Full Text Available This paper investigates the patterns and controls of aquifer–river exchange in a fast-flowing lowland river by the conjunctive use of streambed temperature anomalies identified with Fibre-optic Distributed Temperature Sensing (FO-DTS and observations of vertical hydraulic gradients (VHG.

    FO-DTS temperature traces along this lowland river reach reveal discrete patterns with "cold spots" indicating groundwater up-welling. In contrast to previous studies using FO-DTS for investigation of groundwater–surface water exchange, the fibre-optic cable in this study was buried in the streambed sediments, ensuring clear signals despite fast flow and high discharges. During the observed summer baseflow period, streambed temperatures in groundwater up-welling locations were found to be up to 1.5 °C lower than ambient streambed temperatures. Due to the high river flows, the cold spots were sharp and distinctly localized without measurable impact on down-stream surface water temperature.

    VHG patterns along the stream reach were highly variable in space, revealing strong differences even at small scales. VHG patterns alone are indicators of both, structural heterogeneity of the stream bed as well as of the spatial heterogeneity of the groundwater–surface water exchange fluxes and are thus not conclusive in their interpretation. However, in combination with the high spatial resolution FO-DTS data we were able to separate these two influences and clearly identify locations of enhanced exchange, while also obtaining information on the complex small-scale streambed transmissivity patterns responsible for the very discrete exchange patterns. The validation of the combined VHG and FO-DTS approach provides an effective strategy for analysing drivers and controls of groundwater–surface water exchange, with implications for the quantification of biogeochemical cycling and contaminant transport at aquifer–river interfaces.

  13. Development of a new hybrid gel phantom using carrageenan and gellan gum for visualizing three-dimensional temperature distribution during hyperthermia and radiofrequency ablation.

    Science.gov (United States)

    Kuroda, Masahiro; Kato, Hirokazu; Hanamoto, Katsumi; Shimamura, Kaoru; Uchida, Tetsuya; Wang, Yadi; Akaki, Shiro; Asaumi, Jun-Ichi; Himei, Kengo; Takemoto, Mitsuhiro; Kanazawa, Susumu; Shibuya, Koichi; Kawasaki, Shoji; Hiraki, Yoshio

    2005-07-01

    We developed a new hybrid gel phantom using carrageenan and gellan gum for the purpose of visualizing three-dimensional temperature distribution. The phantom, which contains carrageenan, gellan gum, non-ionic surface active agent, potassium chloride, n-butanol, sodium azide, and water, shows good transparency at room temperature, and has the advantage that the heated region becomes white and opaque due to segregation of the surface active agent. Carrageenan and gellan gum were added to improve the transparency and fragility of the hybrid gel. Potassium chloride was used to adjust the electrical conductivity of the gel to a range of 5-130 MHz, so that it would be equivalent to that of muscle tissue for each frequency used by electromagnetic heating devices. N-butanol was used to adjust the clouding temperature to a range between 45 and 55 degrees C. In the present study we clarified the important properties of the new phantom, and developed formulae for easy determination of the amounts of ingredients necessary for the desired clouding temperature and electric conductivity. The characteristics of this phantom are: a) a solid form to avoid convection by heat conduction; b) sufficient strength without fragility to form a torso without the use of a reinforcing agent; c) high transparency at room temperature and visualization of the heating area as a white turbidity; d) time-lapse and accurate visualization of the changing temperature area without thermal hysteresis; e) electrical properties similar to those of human tissues; f) ease of production; and g) low cost and good safety. This phantom might assist oncologists in their routine checking and study of the performance of electromagnetic heating devices for hyperthermia and radiofrequency ablation.

  14. Life on the edge: O2 binding in Atlantic cod red blood cells near their southern distribution limit is not sensitive to temperature or haemoglobin genotype.

    Science.gov (United States)

    Barlow, Samantha L; Metcalfe, Julian; Righton, David A; Berenbrink, Michael

    2017-02-01

    Atlantic cod are a commercially important species believed to be threatened by warming seas near their southern, equatorward upper thermal edge of distribution. Limitations to circulatory O2 transport, in particular cardiac output, and the geographic distribution of functionally different haemoglobin (Hb) genotypes have separately been suggested to play a role in setting thermal tolerance in this species. The present study assessed the thermal sensitivity of O2 binding in Atlantic cod red blood cells with different Hb genotypes near their upper thermal distribution limit and modelled its consequences for the arterio-venous O2 saturation difference, Sa-vO2 , another major determinant of circulatory O2 supply rate. The results showed statistically indistinguishable red blood cell O2 binding between the three HbI genotypes in wild-caught Atlantic cod from the Irish Sea (53° N). Red blood cells had an unusually low O2 affinity, with reduced or even reversed thermal sensitivity between pH 7.4 and 7.9, and 5.0 and 20.0°C. This was paired with strongly pH-dependent affinity and cooperativity of red blood cell O2 binding (Bohr and Root effects). Modelling of Sa-vO2  at physiological pH, temperature and O2 partial pressures revealed a substantial capacity for increases in Sa-vO2  to meet rising tissue O2 demands at 5.0 and 12.5°C, but not at 20°C. Furthermore, there was no evidence for an increase of maximal Sa-vO2  with temperature. It is suggested that Atlantic cod at such high temperatures may solely depend on increases in cardiac output and blood O2 capacity, or thermal acclimatisation of metabolic rate, for matching circulatory O2 supply to tissue demand. © 2017. Published by The Company of Biologists Ltd.

  15. Distribution of Polycystine Radiolarians in Bottom Surface Sediments and Its Relation to Summer Sea Temperature in the High-Latitude North Atlantic

    Directory of Open Access Journals (Sweden)

    Alexander Matul

    2017-10-01

    Full Text Available An objective of the study is to get new biogeographic information on the modern polycystine radiolarians from the high-latitude North Atlantic. The quantitative radiolarian dataset was compiled from publications and own micropaleontological counts from samples of the bottom surface sediments of the North Atlantic north of 40°N and Nordic Seas. Standard statistical treatment of micropaleontological data by factor analysis reveals five radiolarian assemblages which have their highest load at the specific temperature range in agreement with the oceanographic setting. An occurrence of radiolarian assemblages reflects extension and interaction of the warm North Atlantic and cold Polar/Arctic waters. Radiolarian distribution exhibits good correlation with the climatically averaged summer sea temperature on depth level of 200 m.

  16. Distribution of the Respiratory Pathways in the Isolated Mitochondria from Etiolated Leaves of Winter Wheat and Rye after the Action of Low Temperature

    Directory of Open Access Journals (Sweden)

    Olga A. Borovik

    2016-11-01

    Full Text Available The effect of low temperature (2 °С, 7 days on the content of soluble carbohydrates in the leaves and oxidative activity of isolated mitochondria from the etiolated plants of winter wheat (Triticum aestivum L. and winter rye (Secale cereale L. has been studied. This paper describes the effect of low temperature on the distribution of the respiratory pathways in the isolated mitochondria from etiolated leaves of winter wheat and rye that are different by resistance to cold. With using the different oxidation substrates (malate, malate + rotenone, succinate, NADH and NADPH, we identified changes in the oxidative activity of winter wheat and rye mitochondria. In this work, the dependence of the functioning of cyanide-insensitive oxidase and rotenone-insensitive NAD(PH dehydrogenases in the isolated mitochondria of winter cereals from content of the soluble carbohydrates is discussed.

  17. Using Fiber Optic Distributed Temperature Sensing (DTS) to Assess Groundwater-Lake Exchange in an Acid Mine Lake in Eastern Germany

    Science.gov (United States)

    Hausner, M. B.; Fleckenstein, J.; Neumann, C.; Tyler, S. W.

    2008-12-01

    Groundwater flows through contaminated mine sites are a major concern in many parts of the world. In this study, a variety of instrumentation was used to locate and quantify groundwater inflows into an acid lake on an abandoned mine site in Brandenburg, Germany. While previously-installed piezometers and seepage meters had identified several points of groundwater influx into the lake, such techniques are spatially limited to the point of installation. To address this limitation, a fiber-optic distributed temperature sensor (DTS) was deployed across the lake bottom and in vertical profilers to confirm and expand the previously generated data sets. Fiber-optic DTS, a relatively new technology, provides the opportunity to measure temperature on very high spatial and temporal scales using Raman spectra scattering of pulsed light within a glass fiber. A 1000 meter cable was deployed spatially along the sediment-water interface to identify spatially scattered areas of groundwater inflow, while two high-resolution probes (which return temperature readings every 2.4 vertical cm) were installed vertically near existing seepage meters. Preliminary analysis of the vertical deployments showed substantial groundwater upwelling, confirming the results of previous seepage meter measurements which showed significant vertical flux into the lake. Ongoing analysis of the lateral deployment is expected to identify areas in which there are anomalies in the diurnal temperature cycle at the lake bottom; such anomalies may indicate groundwater influx into the lake. These areas will be used to locate future seepage meter and piezometer installations.

  18. Theoretical Analysis of Unit Friction Force Working on the Metal Contact Surface with the Roll Change during Feedstock with Non-Uniform Temperature Distribution Rolling Process

    Directory of Open Access Journals (Sweden)

    Sygut P.

    2016-06-01

    Full Text Available The paper presents the results of theoretical studies influence of non-uniform temperature distribution along the feedstock length to the unit friction force working on the metal contact surface with the roll change during the round bars 70 mm in diameter continuous rolling process. This value is one of the major factors affecting the grooves wear during the rolling process. The studies were carried out based on the actual engineering data for 160 × 160 mm square cross-section feedstock of steel S355J0. Numerical modelling of the rolling process was performed using Forge2008®, a finite-element based computer program.

  19. Multidimensional modeling of the effect of fuel injection pressure on temperature distribution in cylinder of a turbocharged DI diesel engine

    Directory of Open Access Journals (Sweden)

    Sajjad Emami

    2013-06-01

    Full Text Available In this study, maintaining a constant fuel rate, injection pressure of 275 bar to 1000 bar (275×102 kPa to 1000×102 kPa, has been changed. Effect of injection pressure, the pressure inside the cylinder on the free energy, power, engine indicators, particularly indicators of fuel consumption, pollutants and their effects on parameters affecting the output of the engine combustion chamber have been studied in droplet diameter. Finally, the effects of fuel mixture equivalence, Cantor temperature, soot and NOx due to the increase of injection pressure, engine efficiency and emissions have been examined.

  20. The effect of film thickness on Curie temperature distribution and magnetization reversal mechanism for granular L10 FePt films

    Science.gov (United States)

    Papusoi, C.; Jain, S.; Admana, R.; Ozdol, B.; Ophus, C.; Desai, M.; Acharya, R.

    2017-07-01

    Structural and magnetic properties of granular L10 FePt films are investigated as a function of film thickness in the range 3-11 nm. Scanning transmission electron microscopy observations indicate an increasing contribution of in-plane variants to the L10 FePt crystalline structure with increasing film thickness, which may explain the noticed degradation of the perpendicular anisotropy. The temperature dependence of coercivity suggests a progressive deviation of the magnetization reversal mechanism from coherent rotations with increasing film thickness above ~6 nm, corresponding to a domain-wall width. The anisotropy field distribution (, {σ{{H\\text{K}}}} ) is estimated using Monte Carlo (MC) simulations of AC transverse susceptibility (ACTS). The average anisotropy field displays a similar temperature dependence to (M S)1.1, where M S is the film saturation magnetization, consistent with the theoretical predictions for L10 FePt. The Curie temperature distribution (, {σ{{T\\text{C}}}} ) is evaluated using two methods: fast (ns) thermal erasure (ThEr) of remanent magnetization and MC modeling of the temperature dependence of AC susceptibility (ACS). The {σ{{T\\text{C}}}} values evaluated by the two methods are in agreement, indicating an increase of {σ{{T\\text{C}}}} in the range 2-6% with decreasing film thickness. The observed increase of in the range 620-680 K with increasing film thickness is explained using the finite-size scaling law with the critical exponent set to the theoretical value for L10 FePt. A general procedure to extract and {σ{{T\\text{C}}}} using MC modeling of ACS, essentially independent of the magnetization reversal mechanism, is proposed. MC simulations of ACS confirm the deviation of the magnetization reversal mechanism from coherent rotations with increasing film thickness above ~6 nm.