WorldWideScience

Sample records for temperature direct propulsion

  1. A high temperature reactor for ship propulsion

    International Nuclear Information System (INIS)

    Lobet, P.; Seigel, R.; Thompson, A.C.; Beadnell, R.M.; Beeley, P.A.

    2002-01-01

    The initial thermal hydraulic and physics design of a high temperature gas cooled reactor for ship propulsion is described. The choice of thermodynamic cycle and thermal power is made to suit the marine application. Several configurations of a Helium cooled, Graphite moderated reactor are then analysed using the WIMS and MONK codes from AEA Technology. Two geometries of fuel elements formed using micro spheres in prismatic blocks, and various arrangements of control rods and poison rods are examined. Reactivity calculations through life are made and a pattern of rod insertion to flatten the flux is proposed and analysed. Thermal hydraulic calculations are made to find maximum fuel temperature under high power with optimized flow distribution. Maximum temperature after loss of flow and temperatures in the reactor vessel are also computed. The temperatures are significantly below the known limits for the type of fuel proposed. It is concluded that the reactor can provide the required power and lifetime between refueling within likely space and weight constraints. (author)

  2. DEEP IN Directed Energy Propulsion for Interstellar Exploration

    Data.gov (United States)

    National Aeronautics and Space Administration — We will examine a system that will allow us to take a significant step towards interstellar exploration using directed energy propulsion combined with wafer scale...

  3. High Temperature Radiators for Electric Propulsion Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The VASIMR propulsion system uses a high temperature Loop Heat Pipe (LHP) radiator to reject heat from the helicon section. The current baseline radiator uses...

  4. High Temperature Radiators for Electric Propulsion Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The VASIMR propulsion system uses a high temperature Loop Heat Pipe (LHP) radiator to reject heat from the helicon section. The current baseline radiator uses...

  5. Direct Energy Conversion for Nuclear Propulsion at Low Specific Mass

    Science.gov (United States)

    Scott, John H.

    2014-01-01

    The project will continue the FY13 JSC IR&D (October-2012 to September-2013) effort in Travelling Wave Direct Energy Conversion (TWDEC) in order to demonstrate its potential as the core of a high potential, game-changing, in-space propulsion technology. The TWDEC concept converts particle beam energy into radio frequency (RF) alternating current electrical power, such as can be used to heat the propellant in a plasma thruster. In a more advanced concept (explored in the Phase 1 NIAC project), the TWDEC could also be utilized to condition the particle beam such that it may transfer directed kinetic energy to a target propellant plasma for the purpose of increasing thrust and optimizing the specific impulse. The overall scope of the FY13 first-year effort was to build on both the 2012 Phase 1 NIAC research and the analysis and test results produced by Japanese researchers over the past twenty years to assess the potential for spacecraft propulsion applications. The primary objective of the FY13 effort was to create particle-in-cell computer simulations of a TWDEC. Other objectives included construction of a breadboard TWDEC test article, preliminary test calibration of the simulations, and construction of first order power system models to feed into mission architecture analyses with COPERNICUS tools. Due to funding cuts resulting from the FY13 sequestration, only the computer simulations and assembly of the breadboard test article were completed. The simulations, however, are of unprecedented flexibility and precision and were presented at the 2013 AIAA Joint Propulsion Conference. Also, the assembled test article will provide an ion current density two orders of magnitude above that available in previous Japanese experiments, thus enabling the first direct measurements of power generation from a TWDEC for FY14. The proposed FY14 effort will use the test article for experimental validation of the computer simulations and thus complete to a greater fidelity the

  6. High-temperature turbopump assembly for space nuclear thermal propulsion

    Science.gov (United States)

    Overholt, David M.

    1993-01-01

    The development of a practical, high-performance nuclear rocket by the U.S. Air Force Space Nuclear Thermal Propulsion (SNTP) program places high priority on maximizing specific impulse (ISP) and thrust-to-weight ratio. The operating parameters arising from these goals drive the propellant-pump design. The liquid hydrogen propellant is pressurized and pumped to the reactor inlet by the turbopump assembly (TPA). Rocket propulsion is effected by rapid heating of the propellant from 100 K to thousands of degrees in the particle-bed reactor (PBR). The exhausted propellant is then expanded through a high-temperature nozzle. One approach to achieve high performance is to use an uncooled carbon-carbon nozzle and duct turbine inlet. The high-temperature capability is obtained by using carbon-carbon throughout the TPA hot section. Carbon-carbon components in development include structural parts, turbine nozzles/stators, and turbine rotors. The technology spinoff is applicable to conventional liquid propulsion engines plus a wide variety of other turbomachinery applications.

  7. Small Reactor Designs Suitable for Direct Nuclear Thermal Propulsion: Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    Bruce G. Schnitzler

    2012-01-01

    Advancement of U.S. scientific, security, and economic interests requires high performance propulsion systems to support missions beyond low Earth orbit. A robust space exploration program will include robotic outer planet and crewed missions to a variety of destinations including the moon, near Earth objects, and eventually Mars. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and the Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. In NASA's recent Mars Design Reference Architecture (DRA) 5.0 study, nuclear thermal propulsion (NTP) was again selected over chemical propulsion as the preferred in-space transportation system option for the human exploration of Mars because of its high thrust and high specific impulse ({approx}900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. The recently announced national space policy2 supports the development and use of space nuclear power systems where such systems safely enable or significantly enhance space exploration or operational capabilities. An extensive nuclear thermal rocket technology development effort was conducted under the Rover/NERVA, GE-710 and ANL nuclear rocket programs (1955-1973). Both graphite and refractory metal alloy fuel types were pursued. The primary and significantly larger Rover/NERVA program focused on graphite type fuels. Research, development, and testing of high temperature graphite fuels was conducted. Reactors and engines employing these fuels were designed, built, and ground tested. The GE-710 and ANL programs focused on an alternative ceramic-metallic 'cermet' fuel type consisting of UO2 (or UN) fuel embedded in a refractory metal matrix such as tungsten. The General Electric program examined closed loop concepts for space or terrestrial

  8. Accelerated Testing of High Temperature Permanent Magnets for Spacecraft Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — High temperature permanent magnet materials play an important role in NASA's space missions in electric propulsion, energy generation and storage and other...

  9. CARS temperature measurements in a hypersonic propulsion test facility

    Science.gov (United States)

    Jarrett, O., Jr.; Smith, M. W.; Antcliff, R. R.; Northam, G. B.; Cutler, A. D.

    1990-01-01

    Static-temperature measurements performed in a reacting vitiated air-hydrogen Mach-2 flow in a duct in Test Cell 2 at NASA LaRC by using a coherent anti-Stokes Raman spectroscopy (CARS) system are discussed. The hypersonic propulsion Test Cell 2 hardware is outlined with emphasis on optical access ports and safety features in the design of the Test Cell. Such design considerations as vibration, noise, contamination from flow field or atmospheric-borne dust, unwanted laser- and electrically-induced combustion, and movement of the sampling volume in the flow are presented. The CARS system is described, and focus is placed on the principle and components of system-to-monochromator signal coupling. Contour plots of scramjet combustor static temperature in a reacting-flow region are presented for three stations, and it is noted that the measurements reveal such features in the flow as maximum temperature near the model wall in the region of the injector footprint.

  10. Nuclear Propulsion through Direct Conversion of Fusion Energy

    Data.gov (United States)

    National Aeronautics and Space Administration — The future of manned space exploration and development of space depends critically on the creation of a vastly more efficient propulsion architecture for in-space...

  11. Future Directions for Fusion Propulsion Research at NASA

    Science.gov (United States)

    Adams, Robert B.; Cassibry, Jason T.

    2005-01-01

    Fusion propulsion is inevitable if the human race remains dedicated to exploration of the solar system. There are fundamental reasons why fusion surpasses more traditional approaches to routine crewed missions to Mars, crewed missions to the outer planets, and deep space high speed robotic missions, assuming that reduced trip times, increased payloads, and higher available power are desired. A recent series of informal discussions were held among members from government, academia, and industry concerning fusion propulsion. We compiled a sufficient set of arguments for utilizing fusion in space. .If the U.S. is to lead the effort and produce a working system in a reasonable amount of time, NASA must take the initiative, relying on, but not waiting for, DOE guidance. Arguments for fusion propulsion are presented, along with fusion enabled mission examples, fusion technology trade space, and a proposed outline for future efforts.

  12. Hybrid Direct Drive PPU for Deep Space CubeSat Propulsion System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to develop an innovative, hybrid direct-drive (HDD) Power Processing Unit (PPU) for CubeSat electric propulsion (EP) systems. The technological...

  13. The Fusion Driven Rocket: Nuclear Propulsion through Direct Conversion of Fusion Energy

    Data.gov (United States)

    National Aeronautics and Space Administration — The Fusion Driven rocket (FDR) represents a revolutionary approach to fusion propulsion where the power source releases its energy directly into the propellant, not...

  14. Extreme Temperature Radiation Tolerant Instrumentation for Nuclear Thermal Propulsion Engines, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to develop and commercialize a high reliability, high temperature smart neutron flux sensor for NASA Nuclear Thermal Propulsion...

  15. The NASA In-Space Propulsion Technology Project's Current Products and Future Directions

    Science.gov (United States)

    Anderson, David J.; Dankanich, John; Munk, Michelle M.; Pencil, Eric; Liou, Larry

    2010-01-01

    Since its inception in 2001, the objective of the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling for future NASA flagship and sample return missions currently under consideration, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that recently completed, or will be completing within the next year, their technology development and are ready for infusion into missions. The paper also describes the ISPT project s future focus on propulsion for sample return missions. The ISPT technologies completing their development are: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) aerocapture technologies which include thermal protection system (TPS) materials and structures, guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and atmospheric and aerothermal effect models. The future technology development areas for ISPT are: 1) Planetary Ascent Vehicles (PAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; 3) propulsion for Earth Return Vehicles (ERV) and transfer stages, and electric propulsion for sample return and low cost missions; 4) advanced propulsion technologies for sample return; and 5) Systems/Mission Analysis focused on sample return propulsion.

  16. Transcranial direct current stimulation enhances propulsion during walking

    NARCIS (Netherlands)

    van Asseldonk, Edwin H.F.; Jensen, W.; Andersen, O.K.; Akay, M

    2014-01-01

    Transcranial direct current stimulation (tDCS) has been shown to improve force generation and control in single leg joints in healthy subjects and stroke survivors. However, it is unknown whether these effects also result in improved force production and coordination during walking. Here we

  17. Janus particle microshuttle: 1D directional self-propulsion modulated by AC electrical field

    Directory of Open Access Journals (Sweden)

    Jiliang Chen

    2014-03-01

    Full Text Available A catalytic Janus particle is capable of gaining energy from the surrounding fuel solution to drive itself to move continuously, which has an important impact in different fields, especially the field of micro-systems. However, the randomness of self-propulsion at the microscale restricts its use in practice. Achieving a directed self-propelled movement would greatly promote the application of the Janus particle. We proved experimentally that an AC electric field was an effective way to suppress Brownian motion and control the direction of self-propelled movement. The self-propulsion and dielectrophoretic response of a 2μm Janus particle were observed and the related basic data were collected. Interdigital electrodes, 20 μm in width, were energized in pulsed style to modulate the self-propulsion, which resulted in a shuttle-style motion in which a single Janus particle moved to and fro inside the strip electrode. The change of direction depends on its unique position: the catalyst side is always pointed outward and the orientation angle relative to the electrode is about 60°. Numerical simulation also proved that this position is reasonable. The present study could be beneficial with regard to self-propulsion and AC electrokinetics of the Janus particle.

  18. Lightweight Damage Tolerant, High-Temperature Radiators for Nuclear Power and Propulsion

    Science.gov (United States)

    Craven, Paul D.; SanSoucie, Michael P.

    2015-01-01

    NASA is increasingly emphasizing exploration to bodies beyond near-Earth orbit. New propulsion systems and new spacecraft are being built for these missions. As the target bodies get further out from Earth, high energy density systems, e.g., nuclear fusion, for propulsion and power will be advantageous. The mass and size of these systems, including supporting systems such as the heat exchange system, including thermal radiators, will need to be as small as possible. Conventional heat exchange systems are a significant portion of the total thermal management mass and size. Nuclear electric propulsion (NEP) is a promising option for high-speed, in-space travel due to the high energy density of nuclear fission power sources and efficient electric thrusters. Heat from the reactor is converted to power for use in propulsion or for system power. The heat not used in the power conversion is then radiated to space as shown in figure 1. Advanced power conversion technologies will require high operating temperatures and would benefit from lightweight radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature, thermal conductivity, and mass. These properties combine to allow significant decreases in the total mass of the radiators and significant increases in the operating temperature of the fins. A Center-funded project at NASA Marshall Space Flight Center has shown that high thermal conductivity, woven carbon fiber fins with no matrix material, can be used to dissipate waste heat from NEP systems and because of high specific power (kW/kg), will require less mass and possibly less total area than standard metal and composite radiator fins for radiating the same amount of heat. This project uses an innovative approach to reduce the mass and size required for the thermal radiators to the point that in-space NEP and power

  19. High temperature latent heat thermal energy storage to augment solar thermal propulsion for microsatellites

    Science.gov (United States)

    Gilpin, Matthew R.

    Solar thermal propulsion (STP) offers an unique combination of thrust and efficiency, providing greater total DeltaV capability than chemical propulsion systems without the order of magnitude increase in total mission duration associated with electric propulsion. Despite an over 50 year development history, no STP spacecraft has flown to-date as both perceived and actual complexity have overshadowed the potential performance benefit in relation to conventional technologies. The trend in solar thermal research over the past two decades has been towards simplification and miniaturization to overcome this complexity barrier in an effort finally mount an in-flight test. A review of micro-propulsion technologies recently conducted by the Air Force Research Laboratory (AFRL) has identified solar thermal propulsion as a promising configuration for microsatellite missions requiring a substantial Delta V and recommended further study. A STP system provides performance which cannot be matched by conventional propulsion technologies in the context of the proposed microsatellite ''inspector" requiring rapid delivery of greater than 1500 m/s DeltaV. With this mission profile as the target, the development of an effective STP architecture goes beyond incremental improvements and enables a new class of microsatellite missions. Here, it is proposed that a bi-modal solar thermal propulsion system on a microsatellite platform can provide a greater than 50% increase in Delta V vs. chemical systems while maintaining delivery times measured in days. The realization of a microsatellite scale bi-modal STP system requires the integration of multiple new technologies, and with the exception of high performance thermal energy storage, the long history of STP development has provided "ready" solutions. For the target bi-modal STP microsatellite, sensible heat thermal energy storage is insufficient and the development of high temperature latent heat thermal energy storage is an enabling

  20. Small Fast Spectrum Reactor Designs Suitable for Direct Nuclear Thermal Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Bruce G. Schnitzler; Stanley K. Borowski

    2012-07-01

    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. The recent NASA Design Reference Architecture (DRA) 5.0 Study re-examined mission, payload, and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal propulsion was again identified as the preferred in-space transportation system. A common nuclear thermal propulsion stage with three 25,000-lbf thrust engines was used for all primary mission maneuvers. Moderately lower thrust engines may also have important roles. In particular, lower thrust engine designs demonstrating the critical technologies that are directly extensible to other thrust levels are attractive from a ground testing perspective. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. Both graphite and refractory metal alloy fuel types were pursued. Reactors and engines employing graphite based fuels were designed, built and ground tested. A number of fast spectrum reactor and engine designs employing refractory metal alloy fuel types were proposed and designed, but none were built. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art graphite based fuel design incorporating lessons learned from the very successful technology development program. The SNRE was a nominal 16,000-lbf thrust engine originally intended for unmanned applications with relatively short engine

  1. Small Fast Spectrum Reactor Designs Suitable for Direct Nuclear Thermal Propulsion

    Science.gov (United States)

    Schnitzler, Bruce G.; Borowski, Stanley K.

    2012-01-01

    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. Past studies, in particular those in support of the Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. The recent NASA Design Reference Architecture (DRA) 5.0 Study re-examined mission, payload, and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal propulsion was again identified as the preferred in-space transportation system. A common nuclear thermal propulsion stage with three 25,000-lbf thrust engines was used for all primary mission maneuvers. Moderately lower thrust engines may also have important roles. In particular, lower thrust engine designs demonstrating the critical technologies that are directly extensible to other thrust levels are attractive from a ground testing perspective. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. Both graphite and refractory metal alloy fuel types were pursued. Reactors and engines employing graphite based fuels were designed, built and ground tested. A number of fast spectrum reactor and engine designs employing refractory metal alloy fuel types were proposed and designed, but none were built. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art graphite based fuel design incorporating lessons learned from the very successful technology development program. The SNRE was a nominal 16,000-lbf thrust engine originally intended for unmanned applications with relatively short engine operations and the engine and stage design were

  2. The propulsive design aspects on the world's first direct drive hybrid airplane

    Science.gov (United States)

    Nanda, Ankit

    The purpose of this thesis is to design a safe technology demonstrator by implementing a direct drive propulsion system for a gas-electric hybrid aircraft. This system was integrated on the Embry-Riddle Eco-Eagle for the Green Flight Challenge 2011. The aim of the system is to allow the pilot to use the electric motor as an independent power source to fly the aircraft once at cruise altitude, while having a gas engine to allow for higher power capability. The system was designed to incorporate the motor and the motor control unit provided by Flight Design and Drivetek AG alongside a Rotax 912ULS engine. The hardware is integrated such that the pilot would be able to fly the aircraft with controls similar to conventional general aviation aircraft. This thesis discusses the method of integration of the hybrid powerplant system into a Stemme S-10 and describes the various components of that system.

  3. Study on the Feasibility of Direct Fusion Energy Conversion for Deep-Space Propulsion

    Science.gov (United States)

    Tarditi, Alfonso G.; Miley, George H.; Scott, John H.

    2012-10-01

    A significant change in the current space mission capabilities can be achieved with a highly efficient integration of a fusion energy source with an advanced space propulsion thruster, both with low specific mass. With aneutronic nuclear fusion as the high-density primary energy source, this study considers first electric energy extraction from the fusion reaction products via direct energy conversion to recirculate power as required for the operation of the fusion core. Then the beam of remaining reaction products is conditioned to achieve the optimal thrust and specific impulse for the mission. The research is specifically focused on two key issues: (i) Efficiency improvement of a Traveling Wave Direct Energy Converter (TWDEC, [1]) by achieving a higher ion beam density and optimization of the electrode coupling and of the neutralizing electron flow. (ii) A fast-particle kinetic energy-to-thrust conversion process based on collective interaction between ion bunches well separated in space [2]. Computer simulation results and a design for a basic physics experiment currently under development are reported. [4pt] [1] H. Momota et al., Fus. Tech., 35, 60(1999)[0pt] [2] A. G. Tarditi et al. Proc. NETS 2012 Conf., Woodlands, TX (2012)

  4. The New NASA-STD-4005 and NASA-HDBK-4006, Essentials for Direct-Drive Solar Electric Propulsion

    Science.gov (United States)

    Ferguson, Dale C.

    2007-01-01

    High voltage solar arrays are necessary for direct-drive solar electric propulsion, which has many advantages, including simplicity and high efficiency. Even when direct-drive is not used, the use of high voltage solar arrays leads to power transmission and conversion efficiencies in electric propulsion Power Management and Distribution. Nevertheless, high voltage solar arrays may lead to temporary power disruptions, through the so-called primary electrostatic discharges, and may permanently damage arrays, through the so-called permanent sustained discharges between array strings. Design guidance is needed to prevent these solar array discharges, and to prevent high power drains through coupling between the electric propulsion devices and the high voltage solar arrays. While most electric propulsion systems may operate outside of Low Earth Orbit, the plasmas produced by their thrusters may interact with the high voltage solar arrays in many ways similarly to Low Earth Orbit plasmas. A brief description of previous experiences with high voltage electric propulsion systems will be given in this paper. There are two new official NASA documents available free through the NASA Standards website to help in designing and testing high voltage solar arrays for electric propulsion. They are NASA-STD-4005, the Low Earth Orbit Spacecraft Charging Design Standard, and NASA-HDBK-4006, the Low Earth Orbit Spacecraft Charging Design Handbook. Taken together, they can both educate the high voltage array designer in the engineering and science of spacecraft charging in the presence of dense plasmas and provide techniques for designing and testing high voltage solar arrays to prevent electrical discharges and power drains.

  5. Propulsion Systems

    Science.gov (United States)

    2011-03-31

    glycerin, liquid metals, and various ionic liquids ( molten salts ). It is possible to operate these devices in a bipolar mode where the ion accelerator... uranium . In solar propulsion, energy from the sun is collected and used to produce thrust. Some designs use solar energy directly to heat a...Start Validation Testing,” paper no. AIAA-2001-3261 presented at the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Salt Lake City, UT, July 8-11

  6. Lightweight High Temperature Non-Eroding Throat Materials for Propulsion Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiation or passively cooled thrust chambers are used for a variety of chemical propulsion functions including apogee insertion, reaction control for launch...

  7. Direct Energy Conversion for Nuclear Propulsion at Low Specific Mass Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Low specific mass (< 3  kg/kW) in-space electric power and propulsion can drastically alter the paradigm for exploration of the Solar System, changing human...

  8. Chemistry and propulsion; Chimie et propulsions

    Energy Technology Data Exchange (ETDEWEB)

    Potier, P. [Maison de la Chimie, 75 - Paris (France); Davenas, A. [societe Nationale des Poudres et des Explosifs - SNPE (France); Berman, M. [Air Force Office of Scientific Research, Arlington, VA (United States)] [and others

    2002-07-01

    During the colloquium on chemistry and propulsion, held in march 2002, ten papers have been presented. The proceedings are brought in this document: ramjet, scram-jet and Pulse Detonation Engine; researches and applications on energetic materials and propulsion; advances in poly-nitrogen chemistry; evolution of space propulsion; environmental and technological stakes of aeronautic propulsion; ramjet engines and pulse detonation engines, automobiles thermal engines for 2015, high temperature fuel cells for the propulsion domain, the hydrogen and the fuel cells in the future transports. (A.L.B.)

  9. Lightweight High Temperature Non-Eroding Throat Materials for Propulsion Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation in this proposed effort is the development of lightweight, non-eroding nozzle materials for use in propulsion systems. Lightweight structures are...

  10. The Effects of Radiation and Thermal Stability of Sm-Co High Temperature Magnets For High Power Ion Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Since high temperature Sm-Co based magnets were developed, a number of new applications have been introduced. NASA?s Xe+ ion propulsion engine used in Deep Space I...

  11. The Direction of Fluid Dynamics for Liquid Propulsion at NASA Marshall Space Flight Center

    Science.gov (United States)

    Griffin, Lisa W.

    2012-01-01

    The Fluid Dynamics Branch's (ER42) at MSFC mission is to support NASA and other customers with discipline expertise to enable successful accomplishment of program/project goals. The branch is responsible for all aspects of the discipline of fluid dynamics, analysis and testing, applied to propulsion or propulsion-induced loads and environments, which includes the propellant delivery system, combustion devices, coupled systems, and launch and separation events. ER42 supports projects from design through development, and into anomaly and failure investigations. ER42 is committed to continually improving the state-of-its-practice to provide accurate, effective, and timely fluid dynamics assessments and in extending the state-of-the-art of the discipline.

  12. Comprehensive Technical Report, General Electric Direct-Air-Cycle Aircraft Nuclear Propulsion Program, Program Summary and References

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, G.; Rothstein, A.J.

    1962-06-28

    This is one of twenty-one volumes sumarizing the Aircraft Nuclear Propulsion Program of the General Electric Company. This volume discusses the background to the General Electric program, and summarizes the various direct-air-cycle nuclear test assemblies and power plants that were developed. Because of the requirements of high performance, low weight, and small size, vast improvements in existing technology were required to meet the flight objectives. The technological progress achieved during the program is also summarized. The last appendix contains a compilation of the abstracts, tables of contents, and reference lists of the other twenty volumes.

  13. High Temperature Latent Heat Thermal Energy Storage to Augment Solar Thermal Propulsion for Microsatellites

    Science.gov (United States)

    2015-08-30

    Propulsion Conference, No. AIAA-1998-3958, American Institute of Aeronautics and Astronautics, 1998. [26] Wyant, F. J., Luke , J. R., and Luchau, D. W...October 1996, pp. 852–858. [43] Borell, G. J. and Campbell , J. S., “ISUS Solar Concentrator Array Development,” 32nd AIAA, ASME, SAE and ASEE Joint

  14. Nuclear Propulsion through Direct Conversion of Fusion Energy: The Fusion Driven Rocket

    Science.gov (United States)

    Slough, John; Pancotti, Anthony; Kirtley, David; Pihl, Christopher; Pfaff, Michael

    2012-01-01

    The future of manned space exploration and development of space depends critically on the creation of a dramatically more proficient propulsion architecture for in-space transportation. A very persuasive reason for investigating the applicability of nuclear power in rockets is the vast energy density gain of nuclear fuel when compared to chemical combustion energy. Current nuclear fusion efforts have focused on the generation of electric grid power and are wholly inappropriate for space transportation as the application of a reactor based fusion-electric system creates a colossal mass and heat rejection problem for space application.

  15. Direction for the Future - Successive Acceleration of Positive and Negative Ions Applied to Space Propulsion

    CERN Document Server

    Aanesland, A.; Popelier, L.; Chabert, P.

    2013-12-16

    Electrical space thrusters show important advantages for applications in outer space compared to chemical thrusters, as they allow a longer mission lifetime with lower weight and propellant consumption. Mature technologies on the market today accelerate positive ions to generate thrust. The ion beam is neutralized by electrons downstream, and this need for an additional neutralization system has some drawbacks related to stability, lifetime and total weight and power consumption. Many new concepts, to get rid of the neutralizer, have been proposed, and the PEGASES ion-ion thruster is one of them. This new thruster concept aims at accelerating both positive and negative ions to generate thrust, such that additional neutralization is redundant. This chapter gives an overview of the concept of electric propulsion and the state of the development of this new ion-ion thruster.

  16. Propulsion Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Propulsion Lab simulates field test conditions in a controlled environment, using standardized or customized test procedures. The Propulsion Lab's 11 cells can...

  17. Propulsion reactors

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    A nuclear reactor equips the recently constructed French aircraft- carrier Charles-De-Gaulle, in a few months the second nuclear submarine (SNLE) of new generation will be operational. In last october the government launched the program Barracuda which consists of 6 submarines (SNA) whose series head will be operational in 2010. The main asset of nuclear propulsion is to allow an almost unlimited autonomy: soft water, air are produced inside the submarine and the maximum time spent underwater is only limited by human capacity to cope with confinement. CEA has 3 missions concerning country defence. First the designing, the fabrication and the maintenance of weapons, secondly the supplying of fissile materials and thirdly the nuclear propulsion. A new generation of propulsion reactors is being studied and a ground installation involving a test reactor equivalent to that on board is being built. This test reactor (RES) will simulate any type of on-board reactors by adjusting temperature, pressure, flowrate and even equipment such as steam generator. This reactor will validate the technological choices for the Barracuda program. (A.C.)

  18. Laser-Directed CVD 3D Printing of Refractory Metal Rocket Propulsion Hardware Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this project, Ultramet will develop a three-dimensional (3D) laser-directed chemical vapor deposition (CVD) additive manufacturing system to build free-form...

  19. Progress Towards the Development of a Traveling Wave Direct Energy Converter for Aneutronic Fusion Propulsion Applications

    Science.gov (United States)

    Tarditi, A. G.; Chap, A.; Wolinsky, J.; Scott, J. H.

    2015-01-01

    A coordinated experimental and theory/simulation effort has been carried out to investigate the physics of the Traveling Wave Direct Energy Converter (TWDEC), a scheme that has been proposed in the past for the direct conversion into electricity of the kinetic energy of an ion beam generated from fusion reactions. This effort has been focused in particular on the TWDEC process in the high density beam regime, thus accounting for the ion beam expansion due to its space charge.

  20. NASA's laser-propulsion project

    Science.gov (United States)

    Jones, L. W.; Keefer, D. R.

    1982-01-01

    Design concepts, study results, and research directions toward development of CW laser heating of remotely flying spacecraft fuels to provide high impulse thrust are presented. The incident laser radiation would be absorbed by hydrogen through a medium of a laser-supported plasma. The laser energy could be furnished from an orbiting solar-powered laser platform and used to drive the engines of an orbital transfer vehicle (OTV) at costs less than with a chemical propulsion system. The OTV propulsion chamber would be reduced in size comparable to the volume addition of the incident laser energy absorber. The temperatures in the hydrogen-fueled system could reach 5000-15,000 K, and studies have been done to examine the feasibility of ion-electron recombination. Kinetic performance, temperature field, and power necessary to sustain a laser thrust augmented system modeling results are discussed, along with near-term 30 kW CO2 laser system tests.

  1. Development of High Temperature Electro-Magnetic Actuators (HTEMA) for Aircraft Propulsion Systems (Preprint)

    Science.gov (United States)

    2013-05-01

    management of key engine actuators (fueldraulic actuation). The high temperature actuator environment places limitations on the thermal sink capacity of...is a continuous, and significant, load on the systems thermal state. • An electrically driven high temperature actuator can reduce the heat load

  2. Analysis and preliminary design of optical sensors for propulsion control. [temperature sensors

    Science.gov (United States)

    James, K. A.; Quick, W. H.; Strahan, V. H.

    1979-01-01

    A fiber-optic sensor concept screening study was performed. Twenty sensor subsystems were identified and evaluated. Two concepts selected for further study were the Fabry-Perot fiber-optic temperature sensor and the pulse-width-modulated phosphorescent temperature sensor. Various designs suitable for a Fabry-Perot temperature sensor to be used as a remote fiber-optic transducer were investigated. As a result, a particular design was selected and constructed. Tests on this device show that spectral peaks are produced from visible white light, and the change in wavelength of the spectral peaks produced by a change in temperature is consistent with theory and is 36 nm/C for the first order peak. A literature search to determine a suitable phosphor for implementing the pulse-width-modulated fiber optic temperature sensor was conducted. This search indicated that such a device could be made to function for temperatures up to approximately 200 C. Materials like ZnCdS and ZnSe activated with copper will be particularly applicable to temperature sensing in the cryogenic to room temperature region. While this sensing concept is probably not applicable to jet engines, the simplicity and potential reliability make the concept highly desirable for other applications.

  3. Direct-reading dial for noise temperature and noise resistance

    DEFF Research Database (Denmark)

    Diamond, J.M.

    1967-01-01

    An attenuator arrangement for a noise generator is described. The scheme permits direct reading of both noise resistance and noise temperature¿the latter with a choice of source resistance.......An attenuator arrangement for a noise generator is described. The scheme permits direct reading of both noise resistance and noise temperature¿the latter with a choice of source resistance....

  4. High Temperature Nanocomposites For Nuclear Thermal Propulsion and In-Space Fabrication by Hyperbaric Pressure Laser Chemical Vapor Deposition

    Science.gov (United States)

    Maxwell, J. L.; Webb, N. D.; Espinoza, M.; Cook, S.; Houts, M.; Kim, T.

    Nuclear Thermal Propulsion (NTP) is an indispensable technology for the manned exploration of the solar system. By using Hyperbaric Pressure Laser Chemical Vapor Deposition (HP-LCVD), the authors propose to design and build a promising next-generation fuel element composed of uranium carbide UC embedded in a latticed matrix of highly refractory Ta4HfC5 for an NTP rocket capable of sustaining temperatures up to 4000 K, enabling an Isp of up to 1250 s. Furthermore, HP-LCVD technology can also be harnessed to enable 3D rapid prototyping of a variety of materials including metals, ceramics and composites, opening up the possibility of in-space fabrication of components, replacement parts, difficult-to-launch solar sails and panels and a variety of other space structures. Additionally, rapid prototyping with HP-LCVD makes a feasible "live off the land" strategy of interplanetary and interstellar exploration ­ the precursors commonly used in the technology are found, often in abundance, on other solar system bodies either as readily harvestable gas (e.g. methane) or as a raw material that could be converted into a suitable precursor (e.g. iron oxide into ferrocene on Mars).

  5. Cryogenic Propulsion

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic propellants can enhance NASA missions. This project will establish that modern cryogenic storage technologies will allow the use of cryogenic propulsion...

  6. Directional transport of droplets on wettability patterns at high temperature

    Science.gov (United States)

    Huang, Shuai; Yin, Shaohui; Chen, Fengjun; Luo, Hu; Tang, Qingchun; Song, Jinlong

    2018-01-01

    Directional transport of liquid has attracted increasing interest owing to its potential of application in lab-on-a-chip, microfluidic devices and thermal management technologies. Although numerous strategies have been developed to achieve directional transport of liquid at low temperature, controlling the directional transport of liquid at high temperature remains to be a challenging issue. In this work, we reported a novel strategy in which different parts of droplet contacted with surface with different wettability patterns, resulting in a discrepant evaporative vapor film to achieve the directional transport of liquid. The experimental results showed that the state of the liquid on wettability patterned surface gradually changed from contact boiling to Leidenfrost state with the increase of substrate temperature Ts, and liquid on superhydrophilic surface was in composite state of contact boiling and Leidenfrost when Ts was higher than 200 °C. Inspired by the different evaporation states of droplet on the wettability boundary, controlling preferential motion of droplets was observed at high temperature. By designing a surface with wettability pattern on which superhydrophobic region and superhydrophilic region are alternately arranged, a controlled directional transport of droplet can be achieved at high temperature.

  7. Intrapulpal temperature during direct fabrication of provisional restorations.

    Science.gov (United States)

    Moulding, M B; Teplitsky, P E

    1990-01-01

    Measurements were made of the heat transferred to the pulp by different types of resins, different volumes of resin, and different types of matrices commonly used in the direct fabrication of extracoronal provisional restorations. A mandibular model was fabricated using extracted teeth that were prepared for extracoronal restorations. Provisional restorations were fabricated for the prepared teeth using conventional direct techniques, and the intrapulpal temperature rise was recorded. The temperature rise ranged from a low of 0.42 degrees C to a high of 7.21 degrees C. Of the three resins tested, the poly(methyl methacrylate) material induced the greatest temperature increase. The vacuum-formed matrix allowed a greater temperature increase than either of the impression material matrices.

  8. Direct dimethyl ether high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Vassiliev, Anton; Jensen, Jens Oluf; Li, Qingfeng

    A high temperature polybenzimidazole (PBI) polymer fuel cell was fed with dimethyl ether (DME) and water vapour mixture on the anode at ambient pressure with air as oxidant. A peak power density of 79 mW/cm2 was achieved at 200°C. A conventional polymer based direct DME fuel cell is liquid fed...... and suffers from low DME solubility in water. When the DME - water mixture is fed as vapour miscibility is no longer a problem. The increased temperature is more beneficial for the kinetics of the direct oxidation of DME than of methanol. The Open Circuit Voltage (OCV) with DME operation was 50 to 100 m...

  9. High Temperature 300°C Directional Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Kamalesh [Baker Hughes Oilfield Operations, Houston, TX (United States); Aaron, Dick [Baker Hughes Oilfield Operations, Houston, TX (United States); Macpherson, John [Baker Hughes Oilfield Operations, Houston, TX (United States)

    2015-07-31

    Many countries around the world, including the USA, have untapped geothermal energy potential. Enhanced Geothermal Systems (EGS) technology is needed to economically utilize this resource. Temperatures in some EGS reservoirs can exceed 300°C. To effectively utilize EGS resources, an array of injector and production wells must be accurately placed in the formation fracture network. This requires a high temperature directional drilling system. Most commercial services for directional drilling systems are rated for 175°C while geothermal wells require operation at much higher temperatures. Two U.S. Department of Energy (DOE) Geothermal Technologies Program (GTP) projects have been initiated to develop a 300°C capable directional drilling system, the first developing a drill bit, directional motor, and drilling fluid, and the second adding navigation and telemetry systems. This report is for the first project, “High Temperature 300°C Directional Drilling System, including drill bit, directional motor and drilling fluid, for enhanced geothermal systems,” award number DE-EE0002782. The drilling system consists of a drill bit, a directional motor, and drilling fluid. The DOE deliverables are three prototype drilling systems. We have developed three drilling motors; we have developed four roller-cone and five Kymera® bits; and finally, we have developed a 300°C stable drilling fluid, along with a lubricant additive for the metal-to-metal motor. Metal-to-metal directional motors require coatings to the rotor and stator for wear and corrosion resistance, and this coating research has been a significant part of the project. The drill bits performed well in the drill bit simulator test, and the complete drilling system has been tested drilling granite at Baker Hughes’ Experimental Test Facility in Oklahoma. The metal-to-metal motor was additionally subjected to a flow loop test in Baker Hughes’ Celle Technology Center in Germany, where it ran for more than 100

  10. Remote sensing of land surface temperature: The directional viewing effect

    International Nuclear Information System (INIS)

    Smith, J.A.; Schmugge, T.J.; Ballard, J.R. Jr.

    1997-01-01

    Land Surface Temperature (LST) is an important parameter in understanding global environmental change because it controls many of the underlying processes in the energy budget at the surface and heat and water transport between the surface and the atmosphere. The measurement of LST at a variety of spatial and temporal scales and extension to global coverage requires remote sensing means to achieve these goals. Land surface temperature and emissivity products are currently being derived from satellite and aircraft remote sensing data using a variety of techniques to correct for atmospheric effects. Implicit in the commonly employed approaches is the assumption of isotropy in directional thermal infrared exitance. The theoretical analyses indicate angular variations in apparent infrared temperature will typically yield land surface temperature errors ranging from 1 to 4 C unless corrective measures are applied

  11. Passive radiative cooling below ambient air temperature under direct sunlight.

    Science.gov (United States)

    Raman, Aaswath P; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui

    2014-11-27

    Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day.

  12. Directional radiometric measurements of row-crop temperatures

    Science.gov (United States)

    Kimes, D. S.; Kirchner, J. A.

    1983-01-01

    The variability of directional sensor response for a cotton row crop in Phoenix, Arizona was measured for various solar zenith angles. The geometric structure of the canopy was described with regard to height, width, spacing, and shape of rows. In addition, radiometric temperature data were collected on four scene components: sunlit and shaded vegetation and sunlit and shaded soil. These data were used to test the predictions and assumptions of a modified version of the row crop model of Jackson et al. (1979), which predicts the thermal infrared response of a sensor as a function of sensor view angle, component temperature, and geometrical structure of the canopy. The field data showed sensor response differentials as great as 16.2 C when going from a zenith view angle of 0 deg to one of 80 deg normal to the row direction. The rms deviation between the predicted and measured sensor response for all measurement periods and view angles was 0.96 C.

  13. Propulsion controlled aircraft computer

    Science.gov (United States)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  14. Directional droplet transport at high temperature mediated by structural topography

    Science.gov (United States)

    Li, Jing; Hou, Youmin; Chaudhury, Manoj; Yao, Shuhuai; Wang, Zuankai

    2015-11-01

    Controlling droplet dynamics on textured surfaces is of significant importance for a broad range of applications. Despite extensive advances, our ability to control droplet dynamics at high temperature remains limited, in part due to the emergence of complex wetting states complicated by the phase change process at the triple-phase interfaces. When the temperature of the surface is above a critical temperature, a continuous vapor layer separates the droplet from the hot surface, greatly reducing the heat transfer between the droplet and hot surface. In this work, we show that two concurrent wetting states (Leidenfrost and contact boiling) can be manifested in a single droplet by simply manipulating the structural topography. As a result, droplet vectors automatically towards the boiling region that is associated with a large heat transfer efficiency between the liquid and solid. Coupled with a dynamic Leidenfrost model, we show experimentally and analytically that the droplet directional motion depends on the interplay between surface structure and its imposed thermal state. Our basic understanding and ability to control the droplet dynamics at high temperature would find many potential applications in high temperature systems such as spray cooling and fuel injection.

  15. Electric propulsion system technology

    Science.gov (United States)

    Brophy, John R.; Garner, Charles E.; Goodfellow, Keith D.; Pivirotto, Thomas J.; Polk, James E.

    1992-01-01

    kilowatts, achievement of thruster efficiency and specific impulse levels required for missions of interest, and demonstration of adequate engine life at these input power, efficiency, and specific impulse levels. To address these issues we have designed, built, and tested a 100 kW class, radiation-cooled applied-field MPD thruster and a unique dual-beam thrust stand that enables separate measurements of the applied- and self-field thrust components. We have also initiated the development of cathode thermal and plasma sheath models that will eventually be used to guide the experimental program. In conjunction with the cathode modeling, a new cathode test facility is being constructed. This facility will support the study of cathode thermal behavior and erosion mechanisms, the diagnosis of the near-cathode plasma and the development and endurance testing of new, high-current cathode designs. To facilitate understanding of electrode surface phenomenon, we have implemented a telephoto technique to obtain photographs of the electrodes during engine operation. In order to reduce the background vacuum tank pressure during steady-state engine operation in order to obtain high fidelity anode thermal data, we have developed and are evaluating a gas-dynamic diffuser. A review of experience with alkali metal propellants for MPD thrusters led to the conclusion that alkali metals, particularly lithium, offer the potential for significant engine performance and lifetime improvements. These propellants are also condensible at room temperature, substantially reducing test facility pumping requirements. The most significant systems-level issue is the potential for spacecraft contamination. Subsequent experimental and theoretical efforts should be directed toward verifying the performance and lifetime gains and characterizing the thruster flow field to assess its impact on spacecraft surfaces. Consequently, we have begun the design and development of a new facility to study engine operation

  16. Electric propulsion system technology

    Science.gov (United States)

    Brophy, John R.; Garner, Charles E.; Goodfellow, Keith D.; Pivirotto, Thomas J.; Polk, James E.

    1992-11-01

    kilowatts, achievement of thruster efficiency and specific impulse levels required for missions of interest, and demonstration of adequate engine life at these input power, efficiency, and specific impulse levels. To address these issues we have designed, built, and tested a 100 kW class, radiation-cooled applied-field MPD thruster and a unique dual-beam thrust stand that enables separate measurements of the applied- and self-field thrust components. We have also initiated the development of cathode thermal and plasma sheath models that will eventually be used to guide the experimental program. In conjunction with the cathode modeling, a new cathode test facility is being constructed. This facility will support the study of cathode thermal behavior and erosion mechanisms, the diagnosis of the near-cathode plasma and the development and endurance testing of new, high-current cathode designs. To facilitate understanding of electrode surface phenomenon, we have implemented a telephoto technique to obtain photographs of the electrodes during engine operation. In order to reduce the background vacuum tank pressure during steady-state engine operation in order to obtain high fidelity anode thermal data, we have developed and are evaluating a gas-dynamic diffuser. A review of experience with alkali metal propellants for MPD thrusters led to the conclusion that alkali metals, particularly lithium, offer the potential for significant engine performance and lifetime improvements. temperature, substantially reducing test facility pumping requirements. &The most significant systems-level issue is the potential for spacecraft contamination. Subsequent experimental and theoretical efforts should be directed toward verifying the performance and lifetime gains and characterizing the thruster flow field to assess its impact on spacecraft surfaces. Consequently, we have begun the design and development of a new facility to study engine

  17. Durability of direct immunofluorescence (DIF) slides stored at room temperature.

    Science.gov (United States)

    Elbendary, Amira; Zhou, Cheng; Truong, Jonathan; Elston, Dirk M

    2015-12-01

    Prior studies suggested that direct immunofluorescence (DIF) slides can be stored at room temperature. We sought to determine the durability of DIF slides stored at room temperature for 5 years. This was a retrospective study of 83 DIF slides archived at room temperature during 2010. The pattern of immunoreactants was compared with those noted in the original report. Loss of reactivity was limited to cases with weak fluorescence at original diagnosis. Loss of IgG was noted in 12.5% of cases, IgA in 12%, C3 in 10%, and IgM in 9.75%. Fibrin showed no loss of reactivity. Preservation of immunofluorescence was not related to site of deposition. Overall, a reliable diagnosis could be made in 75 of 79 archived cases (94.9%). Cases had been archived for periods varying from 4.5 to 5 years. Variations in processing and fluorochromes could affect durability. We have no way of knowing how long slides had been exposed to ultraviolet light at the time of initial examination. DIF showed excellent durability in slides kept at room temperature for 5 years. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  18. Fusion fuel ion temperature diagnostic for directly driven implosions

    Science.gov (United States)

    Chen, J. B.; Zheng, Z. J.; Peng, H. S.; Zhang, B. H.; Ding, Y. K.; Chen, M.; Chen, H. S.; Wen, T. S.

    2001-09-01

    An ultrafast quenched plastic scintillation detector was used to measure the fusion fuel ion temperature at low implosion (DT) neutron yield (5×108-3×109) in the initial experiment performed at the Shenguang II laser facility. The typical temperatures of exploding pusher targets for direct drive were around 4 keV and the uncertainties were ±15-23%. The detection efficiency of the detector to DT neutrons was calibrated at a K-400 accelerator. The time response function of the detection system was calibrated by implosion neutrons from a DT-filled capsule, which can be regarded as a δ function pulsed neutron source due to its much narrower pulse width than that of the measured neutron time-of-flight spectrum.

  19. Is effective force application in handrim wheelchair propulsion also efficient?

    NARCIS (Netherlands)

    Bregman, D.J.J.; van Drongelen, S.V.; Veeger, H.E.J.

    2009-01-01

    Background: Efficiency in manual wheelchair propulsion is low, as is the fraction of the propulsion force that is attributed to the moment of propulsion of the wheelchair. In this study we tested the hypothesis that a tangential propulsion force direction leads to an increase in physiological cost,

  20. Future directions in geobiology and low-temperature geochemistry

    Science.gov (United States)

    Freeman, Katherine H.; Goldhaber, M.B.

    2011-01-01

    Humanity is confronted with an enormous challenge, as succinctly stated by the late Steven Schneider (2001; quoted by Jantzen 2004*): “Humans are forcing the Earth’s environmental systems to change at a rate that is more advanced than their knowledge of the consequences.” Geobiologists and low-temperature geochemists characterize material from the lithosphere, hydrosphere, atmosphere, and biosphere to understand processes operating within and between these components of the Earth system from the atomic to the planetary scale. For this reason, the interwoven disciplines of geobiology and low-temperature geochemistry are central to understanding and ultimately predicting the behavior of these life-sustaining systems. We present here comments and recommendations from the participants of a workshop entitled “Future Directions in Geobiology and Low-Temperature Geochemistry,” hosted by the Carnegie Institution of Washington, Geophysical Laboratory, Washington, DC, on 27–28 August 2010. The goal of the workshop was to suggest ways to leverage the vast intellectual and analytical capabilities of our diverse scientific community to characterize the Earth’s past, present, and future geochemical habitat as we enter the second decade of what E. O. Wilson dubbed “the century of the environment.”

  1. Propulsion materials

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Edward J. [U.S. Dept. of Energy, Washington, D.C. (United States); Sullivan, Rogelio A. [U.S. Dept. of Energy, Washington, D.C. (United States); Gibbs, Jerry L. [U.S. Dept. of Energy, Washington, D.C. (United States)

    2008-01-01

    The Department of Energy’s (DOE’s) Office of Vehicle Technologies (OVT) is pleased to introduce the FY 2007 Annual Progress Report for the Propulsion Materials Research and Development Program. Together with DOE national laboratories and in partnership with private industry and universities across the United States, the program continues to engage in research and development (R&D) that provides enabling materials technology for fuel-efficient and environmentally friendly commercial and passenger vehicles.

  2. Overview of European and other non-US/USSR/Japan launch vehicle and propulsion technology programs

    Science.gov (United States)

    Rice, Eric E.

    1991-01-01

    The following subject areas are covered: majority of propulsion technology development work is directly related to the ESA's Ariane 5 program and heavily involves SEP (Societe Europeenne de Propulsion) in all areas; Hermes; advanced work on magnetic bearings for turbomachinery; electric propulsion using Cs and Xe propellants done by SEP in France, MBB ERNO in West Germany, and by Culham Lab in UK; successfully tested fired H/O composite nozzle exit cone on 3rd stage of Ariane; turbine blades made of composites to allow increase in gas temperature and improvement in efficiency; combined cycle (turboramjet-rocket) engine analysis work done by Hyperspace; and ESA advanced program studies.

  3. Laser-Directed CVD 3D Printing System for Refractory Metal Propulsion Hardware, Phase II, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this work, Ultramet is developing a three-dimensional (3D) laser-directed chemical vapor deposition (CVD) additive manufacturing system to build free-form...

  4. Optimal temperature of operation of the cold side of a closed Brayton Cycle for space nuclear propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Luís F.R.; Ribeiro, Guilherme B., E-mail: luisromano_91@hotmail.com, E-mail: gbribeiro@ieav.cta.br [Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, SP (Brazil). Pós-Graduação Ciências e Tecnologias Espaciais

    2017-07-01

    Generating energy in space is a tough challenge, especially because it has to be used efficiently. The optimization of the system operation has to be though up since the design phase and all the minutiae between conception, production and operation should be carefully evaluated in order to deliver a functioning device that will meet all the mission's goals. This work seeks on further describing the operation of a Closed Brayton Cycle coupled toa nuclear microreactor used to generate energy to power spacecraft's systems, focusing specially on the cold side to evaluate the temperature of operation of the cold heat pipes in order to aid the selection of proper models to numerically describe the heat pipes and radiator s thermal operation. The cycle is designed to operate with a noble gas mixture of Helium-Xenon with a molecular weight of 40g/mole, selected for its transport properties and low turbomachinery charge and it is to exchange hear directly with the cold heat pipe' evaporator through convection at the cold heat exchanger. Properties such as size and mass are relevant to be analyzed due space applications requiring a careful development of the equipment in order to fit inside the launcher as well as lowering launch costs. Merit figures comparing both second law energetic efficiency and net energy availability with the device's radiator size are used in order to represent an energetic production density for the apparatus, which is ought to be launched from earth's surface. (author)

  5. Optimal temperature of operation of the cold side of a closed Brayton Cycle for space nuclear propulsion

    International Nuclear Information System (INIS)

    Romano, Luís F.R.; Ribeiro, Guilherme B.

    2017-01-01

    Generating energy in space is a tough challenge, especially because it has to be used efficiently. The optimization of the system operation has to be though up since the design phase and all the minutiae between conception, production and operation should be carefully evaluated in order to deliver a functioning device that will meet all the mission's goals. This work seeks on further describing the operation of a Closed Brayton Cycle coupled toa nuclear microreactor used to generate energy to power spacecraft's systems, focusing specially on the cold side to evaluate the temperature of operation of the cold heat pipes in order to aid the selection of proper models to numerically describe the heat pipes and radiator s thermal operation. The cycle is designed to operate with a noble gas mixture of Helium-Xenon with a molecular weight of 40g/mole, selected for its transport properties and low turbomachinery charge and it is to exchange hear directly with the cold heat pipe' evaporator through convection at the cold heat exchanger. Properties such as size and mass are relevant to be analyzed due space applications requiring a careful development of the equipment in order to fit inside the launcher as well as lowering launch costs. Merit figures comparing both second law energetic efficiency and net energy availability with the device's radiator size are used in order to represent an energetic production density for the apparatus, which is ought to be launched from earth's surface. (author)

  6. Fat cells directly sense temperature to activate thermogenesis.

    Science.gov (United States)

    Ye, Li; Wu, Jun; Cohen, Paul; Kazak, Lawrence; Khandekar, Melin J; Jedrychowski, Mark P; Zeng, Xing; Gygi, Steven P; Spiegelman, Bruce M

    2013-07-23

    Classic brown fat and inducible beige fat both dissipate chemical energy in the form of heat through the actions of mitochondrial uncoupling protein 1. This nonshivering thermogenesis is crucial for mammals as a defense against cold and obesity/diabetes. Cold is known to act indirectly through the sympathetic nervous systems and β-adrenergic signaling, but here we report that cool temperature (27-33 °C) can directly activate a thermogenic gene program in adipocytes in a cell-autonomous manner. White and beige fat cells respond to cool temperatures, but classic brown fat cells do not. Importantly, this activation in isolated cells is independent of the canonical cAMP/Protein Kinase A/cAMP response element-binding protein pathway downstream of the β-adrenergic receptors. These findings provide an unusual insight into the role of adipose tissues in thermoregulation, as well as an alternative way to target nonshivering thermogenesis for treatment of obesity and metabolic diseases.

  7. Characterization of solar cells for space applications. Volume 11: Electrical characteristics of 2 ohm-cm, 228 micron wraparound solar cells as a function of intensity, temperature, and irradiation. [for solar electric propulsion

    Science.gov (United States)

    Anspaugh, B. E.; Beckert, D. M.; Downing, R. G.; Weiss, R. S.

    1980-01-01

    Parametric characterization data on Spectrolab 2 by 4 cm, 2 ohm/cm, 228 micron thick wraparound cell, a candidate for the Solar Electric Propulsion Mission, are presented. These data consist of the electrical characteristics of the solar cell under a wide range of temperature and illumination intensity combinations of the type encountered in space applications.

  8. Direct transfer of solar radiation to high temperature applications

    Science.gov (United States)

    Rahou, Maryam; Andrews, John; Rosengarten, Gary

    2013-12-01

    This paper reviews the different methods of directly transferring solar radiation from concentrated solar collectors to medium to high temperature thermal absorbers, at temperatures ranging from 100 to 400°. These methods are divided into four main categories associated with the radiation transfer medium: optical fibres, photonic crystal fibres, metal waveguides and light guides. The reviewed methods are novel compared to most rooftop solar concentrators that have a receiver and a thermal storage unit coupled by heat transfer fluids. Bundled optical fibres have the capability of transferring concentrated solar energy across the full wavelength spectrum with the maximum optical efficiency. In this study two different types of optical bundle, including hard polymer cladding silica (HPCS) and polymer clad silica (PCS) fibres are introduced which offer a broad spectrum transmission range from 300 to 1700 nm, low levels of losses through attenuation and the best resistance to heating. These fibres are able to transmit about 94% of the solar radiation over a distance of 10 m. The main parameters that determine the overall efficiency of the system are the concentration ratio, the acceptance angle of the fibres, and the matching of the diameter of the focus spot of the concentrator and the internal diameter of the fibre. In order to maximize the coupling efficiency of the system, higher levels of concentration are required which can be achieved through lenses or other non-imaging concentrators. However, these additional components add to the cost and complexity of the system. To avoid this problem we use tapered bundles of optical fibres that enhance the coupling efficiency by increasing the acceptance angle and consequently the coupling efficiency of the system.

  9. Nuclear gas core propulsion research program

    Science.gov (United States)

    Diaz, Nils J.; Dugan, Edward T.; Anghaie, Samim

    1993-01-01

    Viewgraphs on the nuclear gas core propulsion research program are presented. The objectives of this research are to develop models and experiments, systems, and fuel elements for advanced nuclear thermal propulsion rockets. The fuel elements under investigation are suitable for gas/vapor and multiphase fuel reactors. Topics covered include advanced nuclear propulsion studies, nuclear vapor thermal rocket (NVTR) studies, and ultrahigh temperature nuclear fuels and materials studies.

  10. Rotational propulsion enabled by inertia.

    Science.gov (United States)

    Nadal, François; Pak, On Shun; Zhu, LaiLai; Brandt, Luca; Lauga, Eric

    2014-07-01

    The fluid mechanics of small-scale locomotion has recently attracted considerable attention, due to its importance in cell motility and the design of artificial micro-swimmers for biomedical applications. Most studies on the topic consider the ideal limit of zero Reynolds number. In this paper, we investigate a simple propulsion mechanism --an up-down asymmetric dumbbell rotating about its axis of symmetry-- unable to propel in the absence of inertia in a Newtonian fluid. Inertial forces lead to continuous propulsion for all finite values of the Reynolds number. We study computationally its propulsive characteristics as well as analytically in the small-Reynolds-number limit. We also derive the optimal dumbbell geometry. The direction of propulsion enabled by inertia is opposite to that induced by viscoelasticity.

  11. A Particle-in-Cell Simulation for the Traveling Wave Direct Energy Converter (TWDEC) for Fusion Propulsion

    Science.gov (United States)

    Chap, Andrew; Tarditi, Alfonso G.; Scott, John H.

    2013-01-01

    A Particle-in-cell simulation model has been developed to study the physics of the Traveling Wave Direct Energy Converter (TWDEC) applied to the conversion of charged fusion products into electricity. In this model the availability of a beam of collimated fusion products is assumed; the simulation is focused on the conversion of the beam kinetic energy into alternating current (AC) electric power. The model is electrostatic, as the electro-dynamics of the relatively slow ions can be treated in the quasistatic approximation. A two-dimensional, axisymmetric (radial-axial coordinates) geometry is considered. Ion beam particles are injected on one end and travel along the axis through ring-shaped electrodes with externally applied time-varying voltages, thus modulating the beam by forming a sinusoidal pattern in the beam density. Further downstream, the modulated beam passes through another set of ring electrodes, now electrically oating. The modulated beam induces a time alternating potential di erence between adjacent electrodes. Power can be drawn from the electrodes by connecting a resistive load. As energy is dissipated in the load, a corresponding drop in beam energy is measured. The simulation encapsulates the TWDEC process by reproducing the time-dependent transfer of energy and the particle deceleration due to the electric eld phase time variations.

  12. Remote sensing of row crop structure and component temperatures using directional radiometric temperatures and inversion techniques

    Science.gov (United States)

    Kimes, D. S.

    1983-01-01

    A physically based sensor response model of a row crop was used as the mathematical framework from which several inversion strategies were tested for extracting row structure information and component temperatures using a series of sensor view angles. The technique was evaluated on ground-based radiometric thermal infrared data of a cotton row crop that covered 48 percent of the ground in the vertical projection. The results showed that the accuracies of the predicted row heights and widths, vegetation temperatures, and soil temperatures of the cotton row crop were on the order of 5 cm, 1 deg, and 2 deg C, respectively. The inversion techniques can be applied to directional sensor data from aircraft platforms and even space platforms if the effects of atmospheric absorption and emission can be corrected. In theory, such inversion techniques can be applied to a wide variety of vegetation types and thus can have significant implications for remote sensing research and applications in disciplines that deal with incomplete vegetation canopies.

  13. Propulsion on a superhydrophobic ratchet.

    Science.gov (United States)

    Dupeux, Guillaume; Bourrianne, Philippe; Magdelaine, Quentin; Clanet, Christophe; Quéré, David

    2014-06-13

    Liquids in the Leidenfrost state were shown by Linke to self-propel if placed on ratchets. The vapour flow below the liquid rectified by the asymmetric teeth entrains levitating drops by viscosity. This effect is observed above the Leidenfrost temperature of the substrate, typically 200°C for water. Here we show that coating ratchets with super-hydrophobic microtextures extends quick self-propulsion down to a substrate temperature of 100°C, which exploits the persistence of Leidenfrost state with such coatings. Surprisingly, propulsion is even observed below 100°C, implying that levitation is not necessary to induce the motion. Finally, we model the drop velocity in this novel "cold regime" of self-propulsion.

  14. Nuclear rocket propulsion

    International Nuclear Information System (INIS)

    Clark, J.S.; Miller, T.J.

    1991-01-01

    NASA has initiated planning for a technology development project for nuclear rocket propulsion systems for Space Exploration Initiative (SEI) human and robotic missions to the Moon and to Mars. An Interagency project is underway that includes the Department of Energy National Laboratories for nuclear technology development. This paper summarizes the activities of the project planning team in FY 1990 and FY 1991, discusses the progress to date, and reviews the project plan. Critical technology issues have been identified and include: nuclear fuel temperature, life, and reliability; nuclear system ground test; safety; autonomous system operation and health monitoring; minimum mass and high specific impulse

  15. LASL nuclear rocket propulsion program

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, R.E.

    1956-04-01

    The immediate objective of the LASL nuclear propulsion (Rover) program is the development of a heat exchanger reactor system utilizing uranium-graphite fuel elements and ammonia propellant. This program is regarded as the first step in the development of nuclear propulsion systems for missiles. The major tasks of the program include the investigation of materials at high temperatures, development of fuel elements, investigation of basic reactor characteristics, investigation of engine control problems, detailed engine design and ground testing. The organization and scheduling of the initial development program have been worked out in some detail. Only rather general ideas exist concerning the projection of this work beyond 1958.

  16. Prediction of Full-Scale Propulsion Power using Artificial Neural Networks

    DEFF Research Database (Denmark)

    Pedersen, Benjamin Pjedsted; Larsen, Jan

    2009-01-01

    Full scale measurements of the propulsion power, ship speed, wind speed and direction, sea and air temperature from four different loading conditions, together with hind cast data of wind and sea properties; and noon report data has been used to train an Artificial Neural Network for prediction o...

  17. Decoupling direct and indirect effects of temperature on decomposition

    NARCIS (Netherlands)

    Rubenstein, Madeleine A.; Crowther, Thomas W.; Maynard, Daniel S.; Schilling, Jonathan S.; Bradford, Mark A.

    2017-01-01

    Functional changes to biotic communities arise in response to changes in the physical environment, often with profound implications for biogeochemical processes. Decomposition is regulated both by abiotic conditions (e.g. temperature and moisture) and by the biotic communities that mediate this

  18. A Direct DME High Temperature PEM Fuel Cell

    DEFF Research Database (Denmark)

    Vassiliev, Anton; Jensen, Jens Oluf; Li, Qingfeng

    2012-01-01

    Dimethyl ether (DME) has been identified as an alternative to methanol for use in direct fuel cells. It combines the advantages of hydrogen in terms of pumpless fuel delivery and high energy density like methanol, but without the toxicity of the latter. The performance of a direct dimethyl ether...... fuel cell suffers greatly from the very low DME-water miscibility. To cope with the problem polybenzimidazole (PBI) based membrane electrode assemblies (MEAs) have been made and tested in a vapor fed system. PtRu on carbon has been used as anode catalyst and air at ambient pressure was used as oxidant...

  19. Wind directing correlation and vertical temperature gradient correlation with the wind direction amplitud variation at Angra dos Reis site

    International Nuclear Information System (INIS)

    Nicolli, D.

    1982-08-01

    Two studies are presented: an analysis of air flow characteristics at the Itaorna site, in Angra dos Reis by correlation of wind directions measured simultaneosly on four meteorological masts, and a tentative correlation of vertical temperature gradient with the wind fluctuation standard deviation. It's concluded that the wind directions change vertical and horizontally and the wind direction fluctuation amplitude holds no correlation with the vertical temperature gradient, and therefore it should not be used as an alternative for determination of stability categories. (Author) [pt

  20. Temperature Effects on the Wind Direction Measurement of 2D Solid Thermal Wind Sensors

    Science.gov (United States)

    Chen, Bei; Zhu, Yan-Qing; Yi, Zhenxiang; Qin, Ming; Huang, Qing-An

    2015-01-01

    For a two-dimensional solid silicon thermal wind sensor with symmetrical structure, the wind speed and direction information can be derived from the output voltages in two orthogonal directions, i.e., the north-south and east-west. However, the output voltages in these two directions will vary linearly with the ambient temperature. Therefore, in this paper, a temperature model to study the temperature effect on the wind direction measurement has been developed. A theoretical analysis has been presented first, and then Finite Element Method (FEM) simulations have been performed. It is found that due to symmetrical structure of the thermal wind sensor, the temperature effects on the output signals in the north-south and east-west directions are highly similar. As a result, the wind direction measurement of the thermal wind sensor is approximately independent of the ambient temperature. The experimental results fit the theoretical analysis and simulation results very well. PMID:26633398

  1. Direct Numerical Simulations of Concentration and Temperature Polarization in Direct Contact Membrane Distillation

    Science.gov (United States)

    Lou, Jincheng; Tilton, Nils

    2017-11-01

    Membrane distillation (MD) is a method of desalination with boundary layers that are challenging to simulate. MD is a thermal process in which warm feed and cool distilled water flow on opposite sides of a hydrophobic membrane. The temperature difference causes water to evaporate from the feed, travel through the membrane, and condense in the distillate. Two challenges to MD are temperature and concentration polarization. Temperature polarization represents a reduction in the transmembrane temperature difference due to heat transfer through the membrane. Concentration polarization describes the accumulation of solutes near the membrane. These phenomena reduce filtration and lead to membrane fouling. They are difficult to simulate due to the coupling between the velocity, temperature, and concentration fields on the membrane. Unsteady regimes are particularly challenging because noise at the outlets can pollute the near-membrane flow fields. We present the development of a finite-volume method for the simulation of fluid flow, heat, and mass transport in MD systems. Using the method, we perform a parametric study of the polarization boundary layers, and show that the concentration boundary layer shows self-similar behavior that satisfies power laws for the downstream growth. Funded by the U.S. Bureau of Reclamation.

  2. Direct Utilization of Coal Syngas in High Temperature Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Celik, Ismail B. [West Virginia University, Morgantown, WV (United States)

    2014-10-30

    This EPSCoR project had two primary goals: (i) to build infrastructure and work force at WVU to support long-term research in the area of fuel cells and related sciences; (ii) study effects of various impurities found in coal-syngas on performance of Solid Oxide Fuel Cells (SOFC). As detailed in this report the WVU research team has made significant accomplishments in both of these areas. What follows is a brief summary of these accomplishments: State-of-the-art test facilities and diagnostic tools have been built and put into use. These include cell manufacturing, half-cell and full-cell test benches, XPS, XRD, TEM, Raman, EDAX, SEM, EIS, and ESEM equipment, unique in-situ measurement techniques and test benches (Environmental EM, Transient Mass-Spectrometer-MS, and IR Optical Temperature measurements). In addition, computational capabilities have been developed culminating in a multi-scale multi-physics fuel cell simulation code, DREAM-SOFC, as well as a Beowulf cluster with 64 CPU units. We have trained 16 graduate students, 10 postdoctoral fellows, and recruited 4 new young faculty members who have actively participated in the EPSCoR project. All four of these faculty members have already been promoted to the tenured associate professor level. With the help of these faculty and students, we were able to secure 14 research awards/contracts amounting to a total of circa $5.0 Million external funding in closely related areas of research. Using the facilities mentioned above, the effects of PH3, HCl, Cl2, and H2S on cell performance have been studied in detail, mechanisms have been identified, and also remedies have been proposed and demonstrated in the laboratory. For example, it has been determined that PH3 reacts rapidly with Ni to from secondary compounds which may become softer or even melt at high temperature and then induce Ni migration to the surface of the cell changing the material and micro-structural properties of the cell drastically. It is found that

  3. NASA program planning on nuclear electric propulsion

    Science.gov (United States)

    Bennett, Gary L.; Miller, Thomas J.

    1992-01-01

    As part of the focused technology planning for future NASA space science and exploration missions, NASA has initiated a focused technology program to develop the technologies for nuclear electric propulsion and nuclear thermal propulsion. Beginning in 1990, NASA began a series of interagency planning workshops and meetings to identify key technologies and program priorities for nuclear propulsion. The high-priority, near-term technologies that must be developed to make NEP operational for space exploration include scaling thrusters to higher power, developing high-temperature power processing units, and developing high power, low-mass, long-lived nuclear reactors.

  4. Simulation Propulsion System and Trajectory Optimization

    Science.gov (United States)

    Hendricks, Eric S.; Falck, Robert D.; Gray, Justin S.

    2017-01-01

    A number of new aircraft concepts have recently been proposed which tightly couple the propulsion system design and operation with the overall vehicle design and performance characteristics. These concepts include propulsion technology such as boundary layer ingestion, hybrid electric propulsion systems, distributed propulsion systems and variable cycle engines. Initial studies examining these concepts have typically used a traditional decoupled approach to aircraft design where the aerodynamics and propulsion designs are done a-priori and tabular data is used to provide inexpensive look ups to the trajectory ana-ysis. However the cost of generating the tabular data begins to grow exponentially when newer aircraft concepts require consideration of additional operational parameters such as multiple throttle settings, angle-of-attack effects on the propulsion system, or propulsion throttle setting effects on aerodynamics. This paper proposes a new modeling approach that eliminated the need to generate tabular data, instead allowing an expensive propulsion or aerodynamic analysis to be directly integrated into the trajectory analysis model and the entire design problem optimized in a fully coupled manner. The new method is demonstrated by implementing a canonical optimal control problem, the F-4 minimum time-to-climb trajectory optimization using three relatively new analysis tools: Open M-DAO, PyCycle and Pointer. Pycycle and Pointer both provide analytic derivatives and Open MDAO enables the two tools to be combined into a coupled model that can be run in an efficient parallel manner that helps to cost the increased cost of the more expensive propulsion analysis. Results generated with this model serve as a validation of the tightly coupled design method and guide future studies to examine aircraft concepts with more complex operational dependencies for the aerodynamic and propulsion models.

  5. Propulsion Wheel Motor for an Electric Vehicle

    Science.gov (United States)

    Figuered, Joshua M. (Inventor); Herrera, Eduardo (Inventor); Waligora, Thomas M. (Inventor); Bluethmann, William J. (Inventor); Farrell, Logan Christopher (Inventor); Lee, Chunhao J. (Inventor); Vitale, Robert L. (Inventor); Winn, Ross Briant (Inventor); Eggleston, IV, Raymond Edward (Inventor); Guo, Raymond (Inventor); hide

    2016-01-01

    A wheel assembly for an electric vehicle includes a wheel rim that is concentrically disposed about a central axis. A propulsion-braking module is disposed within an interior region of the wheel rim. The propulsion-braking module rotatably supports the wheel rim for rotation about the central axis. The propulsion-braking module includes a liquid cooled electric motor having a rotor rotatable about the central axis, and a stator disposed radially inside the rotor relative to the central axis. A motor-wheel interface hub is fixedly attached to the wheel rim, and is directly attached to the rotor for rotation with the rotor. The motor-wheel interface hub directly transmits torque from the electric motor to the wheel rim at a 1:1 ratio. The propulsion-braking module includes a drum brake system having an electric motor that rotates a cam device, which actuates the brake shoes.

  6. The Liquid Annular Reactor System (LARS) propulsion

    International Nuclear Information System (INIS)

    Powell, J.; Ludewig, H.; Horn, F.; Lenard, R.

    1990-01-01

    A concept for very high specific impulse (greater than 2000 seconds) direct nuclear propulsion is described. The concept, termed the liquid annular reactor system (LARS), uses liquid nuclear fuel elements to heat hydrogen propellant to very high temperatures (approximately 6000 K). Operating pressure is moderate (approximately 10 atm), with the result that the outlet hydrogen is virtually 100 percent dissociated to monatomic H. The molten fuel is contained in a solid container of its own material, which is rotated to stabilize the liquid layer by centripetal force. LARS reactor designs are described, together with neutronic and thermal-hydraulic analyses. Power levels are on the order of 200 megawatts. Typically, LARS designs use seven rotating fuel elements, are beryllium moderated, and have critical radii of approximately 100 cm (core L/D approximately equal to 1.5)

  7. Directionally Solidified NiAl-Based Alloys Studied for Improved Elevated-Temperature Strength and Room-Temperature Fracture Toughness

    Science.gov (United States)

    Whittenberger, J. Daniel; Raj, Sai V.; Locci, Ivan E.; Salem, Jonathan A.

    2000-01-01

    Efforts are underway to replace superalloys used in the hot sections of gas turbine engines with materials possessing better mechanical and physical properties. Alloys based on the intermetallic NiAl have demonstrated potential; however, they generally suffer from low fracture resistance (toughness) at room temperature and from poor strength at elevated temperatures. Directional solidification of NiAl alloyed with both Cr and Mo has yielded materials with useful toughness and elevated-temperature strength values. The intermetallic alloy NiAl has been proposed as an advanced material to extend the maximum operational temperature of gas turbine engines by several hundred degrees centigrade. This intermetallic alloy displays a lower density (approximately 30-percent less) and a higher thermal conductivity (4 to 8 times greater) than conventional superalloys as well as good high-temperature oxidation resistance. Unfortunately, unalloyed NiAl has poor elevated temperature strength (approximately 50 MPa at 1027 C) and low room-temperature fracture toughness (about 5 MPa). Directionally solidified NiAl eutectic alloys are known to possess a combination of high elevated-temperature strength and good room-temperature fracture toughness. Research has demonstrated that a NiAl matrix containing a uniform distribution of very thin Cr plates alloyed with Mo possessed both increased fracture toughness and elevated-temperature creep strength. Although attractive properties were obtained, these alloys were formed at low growth rates (greater than 19 mm/hr), which are considered to be economically unviable. Hence, an investigation was warranted of the strength and toughness behavior of NiAl-(Cr,Mo) directionally solidified at faster growth rates. If the mechanical properties did not deteriorate with increased growth rates, directional solidification could offer an economical means to produce NiAl-based alloys commercially for gas turbine engines. An investigation at the NASA Glenn

  8. Laser Diagnostics for Spacecraft Propulsion

    Science.gov (United States)

    MacDonald-Tenenbaum, Natalia

    2015-09-01

    Over the past several decades, a variety of laser diagnostic techniques have been developed and applied to diagnose spacecraft propulsion devices. Laser diagnostics are inherently non-intrusive, and provide the opportunity to probe properties such as temperature, concentration or number density of plume species, and plume velocities in the harsh environments of combustion and plasma discharges. This presentation provides an overview of laser diagnostic capabilities for spacecraft propulsion devices such as small monopropellant thrusters, arcjets, ion engines and Hall thrusters. Particular emphasis is placed on recent developments for time-resolved ion velocity measurements in Hall thruster plumes. Results are presented for one such diagnostic method, a time-synchronized CW-laser induced fluorescence (LIF) technique based on a sample hold scheme. This method is capable of correlating measured fluorescence excitation lineshapes with high frequency current fluctuations in the plasma discharge of a Hall thruster and is tolerant of natural drifting in the current oscillation frequency.

  9. Cold Gas Micro Propulsion

    NARCIS (Netherlands)

    Louwerse, M.C.

    2009-01-01

    This thesis describes the development of a micro propulsion system. The trend of miniaturization of satellites requires small sized propulsion systems. For particular missions it is important to maintain an accurate distance between multiple satellites. Satellites drift apart due to differences in

  10. A Review of Laser Ablation Propulsion

    International Nuclear Information System (INIS)

    Phipps, Claude; Bohn, Willy; Lippert, Thomas; Sasoh, Akihiro; Schall, Wolfgang; Sinko, John

    2010-01-01

    Laser Ablation Propulsion is a broad field with a wide range of applications. We review the 30-year history of laser ablation propulsion from the transition from earlier pure photon propulsion concepts of Oberth and Saenger through Kantrowitz's original laser ablation propulsion idea to the development of air-breathing 'Lightcraft' and advanced spacecraft propulsion engines. The polymers POM and GAP have played an important role in experiments and liquid ablation fuels show great promise. Some applications use a laser system which is distant from the propelled object, for example, on another spacecraft, the Earth or a planet. Others use a laser that is part of the spacecraft propulsion system on the spacecraft. Propulsion is produced when an intense laser beam strikes a condensed matter surface and produces a vapor or plasma jet. The advantages of this idea are that exhaust velocity of the propulsion engine covers a broader range than is available from chemistry, that it can be varied to meet the instantaneous demands of the particular mission, and that practical realizations give lower mass and greater simplicity for a payload delivery system. We review the underlying theory, buttressed by extensive experimental data. The primary problem in laser space propulsion theory has been the absence of a way to predict thrust and specific impulse over the transition from the vapor to the plasma regimes. We briefly discuss a method for combining two new vapor regime treatments with plasma regime theory, giving a smooth transition from one regime to the other. We conclude with a section on future directions.

  11. Direct observation of temperature-driven magnetic symmetry transitions by vectorial resolved MOKE magnetometry.

    Science.gov (United States)

    Luis F Cuñado, Jose; Pedrosa, Javier; Ajejas, Fernando; Perna, Paolo; Miranda, Rodolfo; Camarero, Julio

    2017-10-11

    Angle- and temperature-dependent vectorial magnetometry measurements are necessary to disentangle the effective magnetic symmetry in magnetic nanostructures. Here we present a detailed study on an Fe(1 0 0) thin film system with competing collinear biaxial (four-fold symmetry) and uniaxial (two-fold) magnetic anisotropies, carried out with our recently developed full angular/broad temperature range/vectorial-resolved magneto-optical Kerr effect magnetometer, named TRISTAN. The data give direct views on the angular and temperature dependence of the magnetization reversal pathways, from which characteristic axes, remanences, critical fields, domain wall types, and effective magnetic symmetry are obtained. In particular, although the remanence shows four-fold angular symmetry for all investigated temperatures (15 K-400 K), the critical fields show strong temperature and angular dependencies and the reversal mechanism changes for specific angles at a given (angle-dependent) critical temperature, showing signatures of an additional collinear two-fold symmetry. This symmetry-breaking is more relevant as temperature increases to room temperature. It originates from the competition between two anisotropy contributions with different symmetry and temperature evolution. The results highlight the importance of combining temperature and angular studies, and the need to look at different magnetic parameters to unravel the underlying magnetic symmetries and temperature evolutions of the symmetry-breaking effects in magnetic nanostructures.

  12. Modeling directional effects in land surface temperature derived from geostationary satellite data

    DEFF Research Database (Denmark)

    Rasmussen, Mads Olander

    This PhD-thesis investigates the directional effects in land surface temperature (LST) estimates from the SEVIRI sensor onboard the Meteosat Second Generation (MSG) satellites. The directional effects are caused by the land surface structure (i.e. tree size and shape) interacting with the changing...... the illumination geometry changes both over the course of the day and with the seasons. In the present study, the directional effects are assessed at different scales using a modeling approach. The model applied, the Modified Geometry Projection (MGP) model, represents the surface as a composite of four components...... that the magnitude of the directional effects mainly depends on the tree cover, with moderate tree covers (20-40 %) causing the largest directional effects but with significant effects also at much sparser tree cover. The magnitude is also highly dependent on the temperature difference between the surface components...

  13. Correction of temperature-induced spectral variation by continuous piecewise direct standardization

    Science.gov (United States)

    Wulfert; Kok; de Noord OE; Smilde

    2000-04-01

    In process analytical applications it is not always possible to keep the measurement conditions constant. However, fluctuations in external variables such as temperature can have a strong influence on measurement results. For example, nonlinear temperature effects on near-infrared (NIR) spectra may lead to a strongly biased prediction result from multivariate calibration models such as PLS. A new method, called Continuous Piecewise Direct Standardization (CPDS) has been developed for the correction of such external influences. It represents a generalization of the discrete PDS calibration transfer method and is able to adjust for continuous nonlinear influences such as the temperature effects on spectra. It was applied to shortwave NIR spectra of ethanol/water/2-propanol mixtures measured at different temperatures in the range 30-70 degrees C. The method was able to remove, almost completely, the temperature effects on the spectra, and prediction of the mole fractions of the chemical components was close to the results obtained at constant temperature.

  14. Nuclear modules for space electric propulsion

    International Nuclear Information System (INIS)

    Difilippo, F.C.

    1998-01-01

    Analysis of interplanetary cargo and piloted missions requires calculations of the performances and masses of subsystems to be integrated in a final design. In a preliminary and scoping stage the designer needs to evaluate options iteratively by using fast computer simulations. The Oak Ridge National Laboratory (ORNL) has been involved in the development of models and calculational procedures for the analysis (neutronic and thermal hydraulic) of power sources for nuclear electric propulsion. The nuclear modules will be integrated into the whole simulation of the nuclear electric propulsion system. The vehicles use either a Brayton direct-conversion cycle, using the heated helium from a NERVA-type reactor, or a potassium Rankine cycle, with the working fluid heated on the secondary side of a heat exchanger and lithium on the primary side coming from a fast reactor. Given a set of input conditions, the codes calculate composition. dimensions, volumes, and masses of the core, reflector, control system, pressure vessel, neutron and gamma shields, as well as the thermal hydraulic conditions of the coolant, clad and fuel. Input conditions are power, core life, pressure and temperature of the coolant at the inlet of the core, either the temperature of the coolant at the outlet of the core or the coolant mass flow and the fluences and integrated doses at the cargo area. Using state-of-the-art neutron cross sections and transport codes, a database was created for the neutronic performance of both reactor designs. The free parameters of the models are the moderator/fuel mass ratio for the NERVA reactor and the enrichment and the pitch of the lattice for the fast reactor. Reactivity and energy balance equations are simultaneously solved to find the reactor design. Thermalhydraulic conditions are calculated by solving the one-dimensional versions of the equations of conservation of mass, energy, and momentum with compressible flow. 10 refs., 1 tab

  15. Nuclear modules for space electric propulsion

    Science.gov (United States)

    Difilippo, F. C.

    1998-01-01

    Analysis of interplanetary cargo and piloted missions requires calculations of the performances and masses of subsystems to be integrated in a final design. In a preliminary and scoping stage the designer needs to evaluate options iteratively by using fast computer simulations. The Oak Ridge National Laboratory (ORNL) has been involved in the development of models and calculational procedures for the analysis (neutronic and thermal hydraulic) of power sources for nuclear electric propulsion. The nuclear modules will be integrated into the whole simulation of the nuclear electric propulsion system. The vehicles use either a Brayton direct-conversion cycle, using the heated helium from a NERVA-type reactor, or a potassium Rankine cycle, with the working fluid heated on the secondary side of a heat exchanger and lithium on the primary side coming from a fast reactor. Given a set of input conditions, the codes calculate composition. dimensions, volumes, and masses of the core, reflector, control system, pressure vessel, neutron and gamma shields, as well as the thermal hydraulic conditions of the coolant, clad and fuel. Input conditions are power, core life, pressure and temperature of the coolant at the inlet of the core, either the temperature of the coolant at the outlet of the core or the coolant mass flow and the fluences and integrated doses at the cargo area. Using state-of-the-art neutron cross sections and transport codes, a database was created for the neutronic performance of both reactor designs. The free parameters of the models are the moderator/fuel mass ratio for the NERVA reactor and the enrichment and the pitch of the lattice for the fast reactor. Reactivity and energy balance equations are simultaneously solved to find the reactor design. Thermalhydraulic conditions are calculated by solving the one-dimensional versions of the equations of conservation of mass, energy, and momentum with compressible flow.

  16. Distributed Propulsion Vehicles

    Science.gov (United States)

    Kim, Hyun Dae

    2010-01-01

    Since the introduction of large jet-powered transport aircraft, the majority of these vehicles have been designed by placing thrust-generating engines either under the wings or on the fuselage to minimize aerodynamic interactions on the vehicle operation. However, advances in computational and experimental tools along with new technologies in materials, structures, and aircraft controls, etc. are enabling a high degree of integration of the airframe and propulsion system in aircraft design. The National Aeronautics and Space Administration (NASA) has been investigating a number of revolutionary distributed propulsion vehicle concepts to increase aircraft performance. The concept of distributed propulsion is to fully integrate a propulsion system within an airframe such that the aircraft takes full synergistic benefits of coupling of airframe aerodynamics and the propulsion thrust stream by distributing thrust using many propulsors on the airframe. Some of the concepts are based on the use of distributed jet flaps, distributed small multiple engines, gas-driven multi-fans, mechanically driven multifans, cross-flow fans, and electric fans driven by turboelectric generators. This paper describes some early concepts of the distributed propulsion vehicles and the current turboelectric distributed propulsion (TeDP) vehicle concepts being studied under the NASA s Subsonic Fixed Wing (SFW) Project to drastically reduce aircraft-related fuel burn, emissions, and noise by the year 2030 to 2035.

  17. Directional transport of high-temperature Janus droplets mediated by structural topography

    Science.gov (United States)

    Li, Jing; Hou, Youmin; Liu, Yahua; Hao, Chonglei; Li, Minfei; Chaudhury, Manoj K.; Yao, Shuhuai; Wang, Zuankai

    2016-06-01

    Directed motion of liquid droplets is of considerable importance in various water and thermal management technologies. Although various methods to generate such motion have been developed at low temperature, they become rather ineffective at high temperature, where the droplet transits to a Leidenfrost state. In this state, it becomes challenging to control and direct the motion of the highly mobile droplets towards specific locations on the surface without compromising the effective heat transfer. Here we report that the wetting symmetry of a droplet can be broken at high temperature by creating two concurrent thermal states (Leidenfrost and contact-boiling) on a topographically patterned surface, thus engendering a preferential motion of a droplet towards the region with a higher heat transfer coefficient. The fundamental understanding and the ability to control the droplet dynamics at high temperature have promising applications in various systems requiring high thermal efficiency, operational security and fidelity.

  18. Advanced Propulsion Research Interest in Materials for Propulsion

    Science.gov (United States)

    Cole, John

    2003-01-01

    This viewgraph presentation provides an overview of material science and technology in the area of propulsion energetics. The authors note that conventional propulsion systems are near peak performance and further refinements in manufacturing, engineering design and materials will only provide incremental increases in performance. Energetic propulsion technologies could potential solve the problems of energy storage density and energy-to-thrust conversion efficiency. Topics considered include: the limits of thermal propulsion systems, the need for energetic propulsion research, emerging energetic propulsion technologies, materials research needed for advanced propulsion, and potential research opportunities.

  19. STATIC TESTS OF UNCONVENTIONAL PROPULSION UNITS FOR ULTRALIGHT AIRPLANES

    Directory of Open Access Journals (Sweden)

    Martin Helmich

    2014-06-01

    Full Text Available This paper presents static tests of a new unconventional propulsion unit for small aviation airplanes. Our laboratory stand – a fan drive demonstrator – enables us to compare various design options. We performed experiments to verify the propulsion functionality and a measurement procedure to determine the available thrust of the propulsion unit and its dependence on engine speed. The results used for subsequent optimization include the operating parameters of the propulsion unit, and the temperature and velocity fields in parts of the air duct.

  20. Nuclear Cryogenic Propulsion Stage

    Science.gov (United States)

    Houts, Michael G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced NEP.

  1. Direct synthesis of ultrafine tetragonal BaTiO3 nanoparticles at room temperature

    Directory of Open Access Journals (Sweden)

    Hu Yong

    2011-01-01

    Full Text Available Abstract A large quantity of ultrafine tetragonal barium titanate (BaTiO3 nanoparticles is directly synthesized at room temperature. The crystalline form and grain size are checked by both X-ray diffraction and transmission electron microscopy. The results revealed that the perovskite nanoparticles as fine as 7 nm have been synthesized. The phase transition of the as-prepared nanoparticles is investigated by the temperature-dependent Raman spectrum and shows the similar tendency to that of bulk BaTiO3 materials. It is confirmed that the nanoparticles have tetragonal phase at room temperature.

  2. High-Operating-Temperature Direct Ink Writing of Mesoscale Eutectic Architectures.

    Science.gov (United States)

    Boley, J William; Chaudhary, Kundan; Ober, Thomas J; Khorasaninejad, Mohammadreza; Chen, Wei Ting; Hanson, Erik; Kulkarni, Ashish; Oh, Jaewon; Kim, Jinwoo; Aagesen, Larry K; Zhu, Alexander Y; Capasso, Federico; Thornton, Katsuyo; Braun, Paul V; Lewis, Jennifer A

    2017-02-01

    High-operating-temperature direct ink writing (HOT-DIW) of mesoscale architectures that are composed of eutectic silver chloride-potassium chloride. The molten ink undergoes directional solidification upon printing on a cold substrate. The lamellar spacing of the printed features can be varied between approximately 100 nm and 2 µm, enabling the manipulation of light in the visible and infrared range. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Ship propulsion reactors technology

    International Nuclear Information System (INIS)

    Fribourg, Ch.

    2002-01-01

    This paper takes the state of the art on ship propulsion reactors technology. The french research programs with the corresponding technological stakes, the reactors specifications and advantages are detailed. (A.L.B.)

  4. Alternative propulsion for automobiles

    CERN Document Server

    Stan, Cornel

    2017-01-01

    The book presents – based on the most recent research and development results worldwide - the perspectives of new propulsion concepts such as electric cars with batteries and fuel cells, and furthermore plug in hybrids with conventional and alternative fuels. The propulsion concepts are evaluated based on specific power, torque characteristic, acceleration behaviour, specific fuel consumption and pollutant emissions. The alternative fuels are discussed in terms of availability, production, technical complexity of the storage on board, costs, safety and infrastructure. The book presents summarized data about vehicles with electric and hybrid propulsion. The propulsion of future cars will be marked by diversity – from compact electric city cars and range extender vehicles for suburban and rural areas up to hybrid or plug in SUV´s, Pick up´s and luxury class automobiles.

  5. Nuclear Pulse Propulsion

    OpenAIRE

    Atanas, Dilov; Hasan, Osman; Nickolai, Larsen; Tom, Edwards

    2015-01-01

    This project aims to provide the reader with a comprehensive insight into the potential of nuclear fuels to accelerate spacecraft propulsion, shorten journey times and broaden our exploration of space. The current methods of space propulsion offer little in the way of efficiency in terms of cost, time and henceforth investment and research. The dwindling resources of the planet plus the exponential rise of overpopulation will ultimately push us towards exploration of worlds further afield ...

  6. Experimental study on coil of direct action solenoid valve with temperature increasing

    International Nuclear Information System (INIS)

    Wang Lu; Liu Qianfeng; Bo Hanliang

    2012-01-01

    Hydraulic control rod drive technology (HCRDT) is a newly invented patent and Institute of Nuclear and New Energy Technology of Tsinghua University owns HCRDT's independent intellectual property rights. The integrated valve which is made up of three direct action solenoid valves is the key part of this technology, so the performance of the solenoid valve directly affects the function of the integrated valve and the HCRDT. Based on the conditions occurring in the operation of the control rod hydraulic drive system, the coil of the direct action solenoid valve with temperature increasing was studied by the experiment and analyzed by ANSYS code. The result shows that the temperature of the coil for the solenoid valve increases with the current increasing firstly. The temperature of the inner wall of the coil is higher than that of the exterior wall. The temperature of the middle coil is higher than that of the edge of the coil. The design of the direct action solenoid valve can be optimized. (authors)

  7. Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication

    International Nuclear Information System (INIS)

    Ko, Seung Hwan; Nam, Koo Hyun; Chung, Jaewon; Hotz, Nico; Grigoropoulos, Costas P

    2010-01-01

    Inkjet printing of functional materials is a key technology toward ultra-low-cost, large-area electronics. We demonstrate low-temperature 3D micro metal structure fabrication by direct inkjet printing of metal nanoparticles (NPs) as a versatile, direct 3D metal structuring approach representing an alternative to conventional vacuum deposition and photolithographic methods. Metal NP ink was inkjet-printed to exploit the large melting temperature drop of the nanomaterial and the ease of the NP ink formulation. Parametric studies on the basic conditions for stable 3D inkjet printing of NP ink were carried out. Furthermore, diverse 3D metal microstructures, including micro metal pillar arrays, helices, zigzag and micro bridges were demonstrated and electrical characterization was performed. Since the process requires low temperature, it carries substantial potential for fabrication of electronics on a plastic substrate

  8. Direct Observation of Field and Temperature Induced Domain Replication in Dipolar Coupled Perpendicular Anisotropy Films

    Energy Technology Data Exchange (ETDEWEB)

    Hauet, T.; Gunther, C.M.; Pfau, B.; Eisebitt, S.; Fischer, P.; Rick, R. L.; Thiele, J.-U.; Hellwig, O.; Schabes, M.E.

    2007-07-01

    Dipolar interactions in a soft/Pd/hard [CoNi/Pd]{sub 30}/Pd/[Co/Pd]{sub 20} multilayer system, where a thick Pd layer between two ferromagnetic units prevents direct exchange coupling, are directly revealed by combining magnetometry and state-of-the-art layer resolving soft x-ray imaging techniques with sub-100-nm spatial resolution. The domains forming in the soft layer during external magnetic field reversal are found to match the domains previously trapped in the hard layer. The low Curie temperature of the soft layer allows varying its intrinsic parameters via temperature and thus studying the competition with dipolar fields due to the domains in the hard layer. Micromagnetic simulations elucidate the role of [CoNi/Pd] magnetization, exchange, and anisotropy in the duplication process. Finally, thermally driven domain replication in remanence during temperature cycling is demonstrated.

  9. FY2009 Annual Progress Report for Propulsion Materials

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-01-16

    The Propulsion Materials program focuses on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines. Projects within the Propulsion Materials Program address materials concerns that directly impact the critical technical barriers in each of these programs—barriers such as fuel efficiency, thermal management, emissions reduction, and reduced manufacturing costs.

  10. Propulsion at low Reynolds number

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, Ali [Institute for Advanced Studies in Basic Sciences, Zanjan 45195-159 (Iran, Islamic Republic of); Faculty of Science, Zanjan University, Zanjan 313 (Iran, Islamic Republic of); Golestanian, Ramin [Institute for Advanced Studies in Basic Sciences, Zanjan 45195-159 (Iran, Islamic Republic of)

    2005-04-13

    We study the propulsion of two model swimmers at low Reynolds number. Inspired by Purcell's model, we propose a very simple one-dimensional swimmer consisting of three spheres that are connected by two arms whose lengths can change between two values. The proposed swimmer can swim with a special type of motion, which breaks the time-reversal symmetry. We also show that an ellipsoidal membrane with tangential travelling wave on it can also propel itself in the direction preferred by the travelling wave. This system resembles the realistic biological animals like Paramecium.

  11. Propulsion at low Reynolds number

    International Nuclear Information System (INIS)

    Najafi, Ali; Golestanian, Ramin

    2005-01-01

    We study the propulsion of two model swimmers at low Reynolds number. Inspired by Purcell's model, we propose a very simple one-dimensional swimmer consisting of three spheres that are connected by two arms whose lengths can change between two values. The proposed swimmer can swim with a special type of motion, which breaks the time-reversal symmetry. We also show that an ellipsoidal membrane with tangential travelling wave on it can also propel itself in the direction preferred by the travelling wave. This system resembles the realistic biological animals like Paramecium

  12. Effect of water electrolysis temperature of hydrogen production system using direct coupling photovoltaic and water electrolyzer

    Directory of Open Access Journals (Sweden)

    Tetsuhiko Maeda

    2016-01-01

    Full Text Available We propose control methods of a photovoltaic (PV-water electrolyzer (ELY system that generates hydrogen by controlling the number of ELY cells. The advantage of this direct coupling between PV and ELY is that the power loss of DC/DC converter is avoided. In this study, a total of 15 ELY cells are used. In the previous researches, the electrolyzer temperature was constantly controlled with a thermostat. Actually, the electrolyzer temperature is decided by the balance of the electrolysis loss and the heat loss to the outside. Here, the method to control the number of ELY cells was investigated. Maximum Power Point Tracking efficiency of more than 96% was achieved without ELY temperature control. Furthermore we construct a numerical model taking into account of ELY temperature. Using this model, we performed a numerical simulation of 1-year. Experimental data and the simulation results shows the validity of the proposed control method.

  13. Variability in bimanual wheelchair propulsion : consistency of two instrumented wheels during handrim wheelchair propulsion on a motor driven treadmill

    NARCIS (Netherlands)

    Vegter, Riemer J. K.; Lamoth, Claudine J.; de Groot, Sonja; Veeger, Dirkjan H. E. J.; van der Woude, Lucas H. V.

    2013-01-01

    Background: Handrim wheelchair propulsion is a complex bimanual motor task. The bimanually applied forces on the rims determine the speed and direction of locomotion. Measurements of forces and torques on the handrim are important to study status and change of propulsion technique (and consequently

  14. Variability in bimanual wheelchair propulsion: Consistency of two instrumented wheels during handrim wheelchair propulsion on a motor driven treadmill

    NARCIS (Netherlands)

    Vegter, R.J.K.; Lamoth, C.J.C.; de Groot, S.; Veeger, H.E.J.; van der Woude, L.H.V.

    2013-01-01

    Background: Handrim wheelchair propulsion is a complex bimanual motor task. The bimanually applied forces on the rims determine the speed and direction of locomotion. Measurements of forces and torques on the handrim are important to study status and change of propulsion technique (and consequently

  15. Variability in bimanual wheelchair propulsion : Consistency of two instrumented wheels during handrim wheelchair propulsion on a motor driven treadmill

    NARCIS (Netherlands)

    Vegter, R.J.K.; Lamoth, C.J.; De Groot, S.; Veeger, H.E.J.; Van der Woude, L.H.V.

    2013-01-01

    Background Handrim wheelchair propulsion is a complex bimanual motor task. The bimanually applied forces on the rims determine the speed and direction of locomotion. Measurements of forces and torques on the handrim are important to study status and change of propulsion technique (and consequently

  16. Modeling of Temperature Field Evolution During Multilayered Direct Laser Metal Deposition

    Science.gov (United States)

    Zhang, DongYun; Feng, Zhe; Wang, ChengJie; Liu, Zhen; Dong, DongDong; Zhou, Yan; Wu, Rui

    2017-06-01

    It is of great importance to thoroughly explore the evolving temperature fields of direct laser metal deposition (abbreviated as LMD) in vertical thin wall manufacturing. It is helpful to control the temperature gradient, and even to adjust to forming microstructures and accumulation of residual stress. In this paper, a comprehensive three-dimensional transient model is developed for evolving temperature fields. The manufactured material is DS superalloy Rene80. The laser-powder interaction during the powder flowing process is simulated first, and its possible effect on the temperature field of the melting pool is analyzed. Then a 3D numerical simulation for the evolving temperature field is carried out based on considering transport phenomena during LMD such as the change in phase, powder injection and liquid flow. The applied deposition parameters are derived from experimental investigation with optimized vertical wall manufacturing. The simulated results explain why a balance between heat input and dissipation could form inside the vertical thin wall. These reconstruct the instability at an early phase of the building process without any temperature control unit and exhibit the influence of parameters such as laser power, deposition velocity and laser beam deposition pattern. The simulation results of temperature evolution are consistent with experimental investigation.

  17. Direct thermography-a new in vitro method to characterize temperature kinetics of ablation catheters.

    Science.gov (United States)

    Fiek, M; Gindele, F; von Bary, C; Muessig, D; Lucic, A; Hoffmann, E; Reithmann, C; Steinbeck, G

    2013-10-01

    For the treatment of increasingly complex cardiac arrhythmias, new catheter designs as well as alternative energy sources are constantly being developed. However, there is presently no in vitro method available for assessment of the temperature changes induced at various myocardial levels during energy delivery. Therefore, our study was aimed at developing an in vitro model to record and display the temperature kinetics during ablation in the entire muscle cross section. A sapphire glass pane was inserted into one wall of the in vitro experimental set-up. Due to its thermodynamic properties, the temperature distribution in an adjacent cross section of the cardiac muscle can be measured exactly ( 1 °C) through this pane by means of a thermography camera. Computer-supported image processing enables the colour-coded and two-dimensional display of the temperature kinetics during the energy application at any location of the myocardial cross section (± 0.5 mm). This new measuring methodology was validated by direct temperature measurements utilizing several intramyocardial thermo elements. This new method allows a temporal and spatial analysis of the temperature phenomena during ablation without the interference and spatial limitation of intramyocardial temperature probes. New ablation technologies can thus be evaluated, independent of the catheter configuration or source of energy used.

  18. Optimized temperature control system integrated into a micro direct methanol fuel cell for extreme environments

    Science.gov (United States)

    Zhang, Qian; Wang, Xiaohong; Zhu, Yiming; Zhou, Yan'an; Qiu, Xinping; Liu, Litian

    This paper reports a micro direct methanol fuel cell (μDMFC) integrated with a heater and a temperature sensor to realize temperature control. A thermal model for the μDMFC is set up based on heat transfer and emission mechanisms. Several patterns of the heater are designed and simulated to produce a more uniform temperature profile. The μDMFC with optimized temperature control system, which has better temperature distribution, is fabricated by using MEMS technologies, assembled with polydimethylsiloxane (PDMS) material and polymethylmethacrylate (PMMA) holders, and characterized in two methods, one with different currents applied and another with different methanol velocities. A μDMFC integrated with the heater of different pattern and another one with aluminum holders, are assembled and tested also to verify the heating effect and temperature maintaining of packaging material. This work would make it possible for a μDMFC to enhance the performance by adjusting to an optimal temperature and employ in extreme environments, such as severe winter, polar region, outer space, desert and deep sea area.

  19. Hydroxide Self-Feeding High-Temperature Alkaline Direct Formate Fuel Cells.

    Science.gov (United States)

    Li, Yinshi; Sun, Xianda; Feng, Ying

    2017-05-22

    Conventionally, both the thermal degradation of the anion-exchange membrane and the requirement of additional hydroxide for fuel oxidation reaction hinder the development of the high-temperature alkaline direct liquid fuel cells. The present work addresses these two issues by reporting a polybenzimidazole-membrane-based direct formate fuel cell (DFFC). Theoretically, the cell voltage of the high-temperature alkaline DFFC can be as high as 1.45 V at 90 °C. It has been demonstrated that a proof-of-concept alkaline DFFC without adding additional hydroxide yields a peak power density of 20.9 mW cm -2 , an order of magnitude higher than both alkaline direct ethanol fuel cells and alkaline direct methanol fuel cells, mainly because the hydrolysis of formate provides enough OH - ions for formate oxidation reaction. It was also found that this hydroxide self-feeding high-temperature alkaline DFFC shows a stable 100 min constant-current discharge at 90 °C, proving the conceptual feasibility. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Developing Low-Intermediate Temperature Fuel Cells for Direct Conversion of Methane to Methanol Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Torabi, A.; Barton, J.; Willman, C.; Ghezel-Ayagh, H.; Li, N.; Poozhikunnath, A.; Maric, R.; Marina, O. A.

    2016-04-26

    The objective of this project is development of a durable, low-cost, and high performance Low Temperature Solid Oxide Fuel Cell (LT-SOFC) for direct conversion of methane to methanol and other liquids, characterized by: a) operating temperature < 500oC, b) current density of > 100 mA/cm2 in liquid hydrocarbon production mode, c) continuous operation of > 100 h, d) cell area >100 cm2, e) cell cost per rate of product output < 100,000/bpd, f) process intensity of > 0.1 bpd/ft3, g) product yield and carbon efficiency > 50%, and h) volumetric output per cell > 30 L/day.

  1. Measuring Air Temperature in Glazed Ventilated Facades in the Presence of Direct Solar Radiation

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Zanghirella, Fabio; Heiselberg, Per

    2007-01-01

    part of the complete ventilation system. Assessment of necessary cooling/heating loads and of the whole building energy performance will then depend on the accuracy of measured air temperature. The presence of direct solar radiation is an essential element for the façade operation, but it can heavily...... irradiance, in order to achieve an accurate and reliable way to measure the air temperature reducing the error caused by radiation. Experiments include bare thermocouple, naturally and mechanically ventilated shielded thermocouples, mechanically ventilated thermocouple with double shielding, silver coated...

  2. Nanosatellite Propulsion Development Program

    Science.gov (United States)

    Gagosian, J. S.; Rhee, M. S.; Zakrzwski, C. M.

    1999-01-01

    Earth-orbiting nanosatellite constellations are a unique and exciting means toward fulfilling part of the mission of the Goddard Space Flight Center (GSFC). These constellations, which may consist of several hundred 10-kg spacecraft, present unique challenges in the area of propulsion. Many mission concepts require significant delta-v and attitude control capability to reside in the nanosatellites. In response to requirements from mission feasibility studies, such as the Magnetospheric Constellation study, the GSFC has initiated industry and government partnerships to develop enabling propulsion technologies. The largest challenge has been to meet the power constraints of nanosatellites. These power issues, combined with the high thrust required by many of the missions studied, have led the GSFC to concentrate its efforts on chemical propulsion technology. Electric propulsion technologies capable of performing efficiently at very low power are also of interest to the GSFC as potential candidates for nanosatellite formation flying missions. This paper provides the status of specific industrial or government partnerships undertaken by the GSFC to develop nano/micro propulsion components. Three specific technologies are described in detail: 1) Nanosatellite Solid Rocket Motor Prototype 2) Ultra-Low-Power Cold Gas Thruster for Spin-Axis Precession 3) Micro-Machined Solid-Propellant Gas Generators.

  3. A Microwave Thruster for Spacecraft Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Chiravalle, Vincent P [Los Alamos National Laboratory

    2012-07-23

    This presentation describes how a microwave thruster can be used for spacecraft propulsion. A microwave thruster is part of a larger class of electric propulsion devices that have higher specific impulse and lower thrust than conventional chemical rocket engines. Examples of electric propulsion devices are given in this presentation and it is shown how these devices have been used to accomplish two recent space missions. The microwave thruster is then described and it is explained how the thrust and specific impulse of the thruster can be measured. Calculations of the gas temperature and plasma properties in the microwave thruster are discussed. In addition a potential mission for the microwave thruster involving the orbit raising of a space station is explored.

  4. MOVEMENT AND MANEUVER IN DEEP SPACE: A Framework to Leverage Advanced Propulsion

    Science.gov (United States)

    2018-04-01

    risks of pollution . Directed Energy-Driven Technology Just as in-situ resource utilization (ISRU) enables sustainable chemical propulsion in space... Chemical Propulsion – Advanced Cryogenic Evolved Stage (ACES) .......................................... 16 Nuclear-Thermal Propulsion (NTP) and...for energy production and transfer , including materials for manufacturing and maintenance, and to protect licit commerce.  The Joint Force requires

  5. Direct Measurement of Gas Temperatures by Radiation Thermometry near 4.3 μm

    Science.gov (United States)

    Beynon, T. G. R.

    2003-09-01

    An infra-red thermometer can measure gas temperature if its operating waveband is coincident with an absorption band in the target gas. Of particular interest are thermometers operating at wavelengths on the long-wavelength edge of the strong 4.3 μm carbon dioxide absorption band. These are used to monitor gas temperatures in industrial boilers and incinerators and have potential for use in a variety of combustion plants. If the gas path is optically thick (i.e. the thermometer does not "see through" to a back wall) and is of uniform temperature, then the thermometer will read the gas temperature directly. The presence of an optically thick condition depends on the absorption strength, path length, gas concentration, temperature and pressure. So-called band models can be used to analyze the situation. They can estimate the "penetration" of the thermometer into the gas. They can also estimate the thermometer reading if the gas temperature is non-uniform and/or if the optically thick condition is not well met. This paper develops such a model based on data published by NASA and verified by laboratory measurements in a tube furnace. The model is then extended to allow some estimation of the effect of particulates. Calculations presented are for a particular thermometer spectral response, but data is referenced to allow extension to other CO2 band instruments. The model aims to allow straightforward assessment of the applicability of these instruments in industrial situations.

  6. Modeling of the Direct Current Generator Including the Magnetic Saturation and Temperature Effects

    Directory of Open Access Journals (Sweden)

    Alfonso J. Mercado-Samur

    2013-11-01

    Full Text Available In this paper the inclusion of temperature effect on the field resistance on the direct current generator model DC1A, which is valid to stability studies is proposed. First, the linear generator model is presented, after the effect of magnetic saturation and the change in the resistance value due to temperature produced by the field current are included. The comparison of experimental results and model simulations to validate the model is used. A direct current generator model which is a better representation of the generator is obtained. Visual comparison between simulations and experimental results shows the success of the proposed model, because it presents the lowest error of the compared models. The accuracy of the proposed model is observed via Modified Normalized Sum of Squared Errors index equal to 3.8979%.

  7. Nuclear electric propulsion

    International Nuclear Information System (INIS)

    Keaton, P.W.; Tubb, D.J.

    1986-01-01

    The feasibility is investigated of using nuclear electric propulsion (NEP) for slow freighter ships traveling from a 500 km low Earth orbit (LEO) to the Moon's orbit about the Earth, and on to Mars. NEP is also shown to be feasible for transporting people to Mars on long conjunction-class missions lasting about nine months one way, and on short sprint missions lasting four months one way. Generally, it was not attempted to optimize ion exhaust velocities, but rather suitable parameters to demonstrate NEP feasibility were chosen. Various combinations of missions are compared with chemical and nuclear thermal propulsion (NTR) systems. Typically, NEP and NTR can accomplish the same lifting task with similar mass in LEO. When compared to chemical propulsion, NEP was found to accomplish the same missions with 40% less mass in LEO. These findings are sufficiently encouraging as to merit further studies with optimum systems

  8. The effect of cooling techniques on intrapulpal temperature during direct fabrication of provisional restorations.

    Science.gov (United States)

    Moulding, M B; Loney, R W

    1991-01-01

    In vitro measurements were made of the heat transferred to the pulp chamber during the direct fabrication of extracoronal provisional restorations. The temperature was monitored for the following four groups: (1) control--the provisional restoration was left on the tooth with no coolant used; (2) removal--the provisional restoration was removed upon initial resin polymerization; (3) in situ--the provisional restoration was left in place and cooled with an air/water spray; and (4) on/off--the provisional restoration was repeatedly removed and replaced upon initial polymerization while using an air/water spray. The intrapulpal temperature rises were as follows: control 7.08 degrees C, removal 2.39 degrees C, in situ 2.36 degrees C, and on/off 3.12 degrees C. The temperature rise for all cooling techniques was significantly lower than that of the control. No significant differences were found between the three cooling techniques.

  9. Fabrication and Characterization of Capacitive Micromachined Ultrasonic Transducers with Low-Temperature Wafer Direct Bonding

    Directory of Open Access Journals (Sweden)

    Xiaoqing Wang

    2016-12-01

    Full Text Available This paper presents a fabrication method of capacitive micromachined ultrasonic transducers (CMUTs by wafer direct bonding, which utilizes both the wet chemical and O2plasma activation processes to decrease the bonding temperature to 400 °C. Two key surface properties, the contact angle and surface roughness, are studied in relation to the activation processes, respectively. By optimizing the surface activation parameters, a surface roughness of 0.274 nm and a contact angle of 0° are achieved. The infrared images and static deflection of devices are assessed to prove the good bonding effect. CMUTs having silicon membranes with a radius of 60 μm and a thickness of 2 μm are fabricated. Device properties have been characterized by electrical and acoustic measurements to verify their functionality and thus to validate this low-temperature process. A resonant frequency of 2.06 MHz is obtained by the frequency response measurements. The electrical insertion loss and acoustic signal have been evaluated. This study demonstrates that the CMUT devices can be fabricated by low-temperature wafer direct bonding, which makes it possible to integrate them directly on top of integrated circuit (IC substrates.

  10. Low-temperature direct synthesis of mesoporous vanadium nitrides for electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae-Min [Institute of NT-IT Fusion Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499 (Korea, Republic of); Jeong, Gyoung Hwa [Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Banyeon 100, Ulsan 44919 (Korea, Republic of); Kim, Sang-Wook [Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499 (Korea, Republic of); Kim, Chang-Koo, E-mail: changkoo@ajou.ac.kr [Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499 (Korea, Republic of)

    2017-04-01

    Highlights: • Vanadium nitrides were directly synthesized by a one-step chemical precipitation method. • This method was carried out at a low temperature of 70 °C. • Vanadium nitrides had a specific capacitance of 598 F/g. • The equivalent series resistance of the vanadium nitride electrode was 1.42 Ω after 5000 cycles. - Abstract: Mesoporous vanadium nitrides are directly synthesized by a one-step chemical precipitation method at a low temperature (70 °C). Structural and morphological analyses reveal that vanadium nitride consist of long and slender nanowhiskers, and mesopores with diameters of 2–5 nm. Compositional analysis confirms the presence of vanadium in the VN structure, along with oxidized vanadium. The cyclic voltammetry and charge-discharge tests indicate that the obtained material stores charges via a combination of electric double-layer capacitance and pseudocapacitance mechanisms. The vanadium nitride electrode exhibits a specific capacitance of 598 F/g at a current density of 4 A/g. After 5000 charge-discharge cycles, the electrode has an equivalent series resistance of 1.42 Ω and retains 83% of its initial specific capacitance. This direct low-temperature synthesis of mesoporous vanadium nitrides is a simple and promising method to achieve high specific capacitance and low equivalent series resistance for electrochemical capacitor applications.

  11. Airbreathing Propulsion An Introduction

    CERN Document Server

    Bose, Tarit

    2012-01-01

    Airbreathing Propulsion covers the physics of combustion, fluid and thermo-dynamics, and structural mechanics of airbreathing engines, including piston, turboprop, turbojet, turbofan, and ramjet engines. End-of-chapter exercises allow the reader to practice the fundamental concepts behind airbreathing propulsion, and the included PAGIC computer code will help the reader to examine the relationships between the performance parameters of different engines. Large amounts of data on many different piston, turbojet, and turboprop engines have been compiled for this book and are included as an appendix. This textbook is ideal for senior undergraduate and graduate students studying aeronautical engineering, aerospace engineering, and mechanical engineering.

  12. Space transportation propulsion USSR launcher technology, 1990

    Science.gov (United States)

    1991-01-01

    Space transportation propulsion U.S.S.R. launcher technology is discussed. The following subject areas are covered: Energia background (launch vehicle summary, Soviet launcher family) and Energia propulsion characteristics (booster propulsion, core propulsion, and growth capability).

  13. Nuclear thermal propulsion program overview

    Science.gov (United States)

    Bennett, Gary L.

    1991-01-01

    Nuclear thermal propulsion program is described. The following subject areas are covered: lunar and Mars missions; national space policy; international cooperation in space exploration; propulsion technology; nuclear rocket program; and budgeting.

  14. Development of High Efficiency and Low Emission Low Temperature Combustion Diesel Engine with Direct EGR Injection

    Science.gov (United States)

    Ho, R. J.; Kumaran, P.; Yusoff, M. Z.

    2016-03-01

    Focus on energy and environmental sustainability policy has put automotive research & development directed to developing high efficiency and low pollutant power train. Diffused flame controlled diesel combustion has reach its limitation and has driven R&D to explore other modes of combustions. Known effective mode of combustion to reduce emission are Low temperature combustion (LTC) and homogeneous charge combustion ignition by suppressing Nitrogen Oxide(NOx) and Particulate Matter (PM) formation. The key control to meet this requirement are chemical composition and distribution of fuel and gas during a combustion process. Most research to accomplish this goal is done by manipulating injected mass flow rate and varying indirect EGR through intake manifold. This research paper shows viable alternative direct combustion control via co-axial direct EGR injection with fuel injection process. A simulation study with OpenFOAM is conducted by varying EGR injection velocity and direct EGR injector diameter performed with under two conditions with non-combustion and combustion. n-heptane (C7H16) is used as surrogate fuel together with 57 species 290 semi-detailed chemical kinetic model developed by Chalmers University is used for combustion simulation. Simulation result indicates viability of co-axial EGR injection as a method for low temperature combustion control.

  15. NASA Electric Propulsion System Studies

    Science.gov (United States)

    Felder, James L.

    2015-01-01

    An overview of NASA efforts in the area of hybrid electric and turboelectric propulsion in large transport. This overview includes a list of reasons why we are looking at transmitting some or all of the propulsive power for the aircraft electrically, a list of the different types of hybrid-turbo electric propulsion systems, and the results of 4 aircraft studies that examined different types of hybrid-turbo electric propulsion systems.

  16. Accelerated MRI thermometry by direct estimation of temperature from undersampled k-space data.

    Science.gov (United States)

    Gaur, Pooja; Grissom, William A

    2015-05-01

    Acceleration of magnetic resonance (MR) thermometry is desirable for several applications of MR-guided focused ultrasound, such as those requiring greater volume coverage, higher spatial resolution, or higher frame rates. We propose and validate a constrained reconstruction method that estimates focal temperature changes directly from k-space without spatial or temporal regularization. A model comprising fully-sampled baseline images is fit to undersampled k-space data, which removes aliased temperature maps from the solution space. Reconstructed temperature maps are compared to maps reconstructed using parallel imaging (iterative self-consistent parallel imaging reconstruction [SPIRiT]) and conventional hybrid thermometry, and temporally constrained reconstruction thermometry. Temporal step response simulations demonstrate finer temporal resolution and lower error in 4×-undersampled radial k-space reconstructions compared to temporally constrained reconstruction. Simulations show that the k-space method can achieve higher accelerations with multiple receive coils. Phantom heating experiments further demonstrate the algorithm's advantage over reconstructions relying on parallel imaging alone to overcome undersampling artifacts. In vivo model error comparisons show the algorithm achieves low temperature error at higher acceleration factors (up to 32× with a radial trajectory) than compared reconstructions. High acceleration factors can be achieved using the proposed temperature reconstruction algorithm, without sacrificing temporal resolution or accuracy. © 2014 Wiley Periodicals, Inc.

  17. TOWARDS THE ELECTRIC PROPULSION

    Directory of Open Access Journals (Sweden)

    Mihai Victor PRICOP

    2010-03-01

    Full Text Available The paper presents benefits and drawbacks of the electric propulsion for the case of a ten seat commuter aircraft. An efficiency evaluation is made for an electric version of AEROTAXI, considered as a reference. The evaluation is projected to 2020, trying to meet the expected progresses in energy storage systems.

  18. Laser propulsion: a review

    CSIR Research Space (South Africa)

    Michaelis, MM

    2006-07-01

    Full Text Available -of-magnitude reduction in launch costs. American, German and Japanese experimental ‘lightcraft’ are described as well as the Orion programme to de-orbit space debris. Marx’s seminal paper on laser-driven, relativistic space propulsion and the ensuing controversy was also...

  19. Turboprop Propulsion Mechanic.

    Science.gov (United States)

    Chanute AFB Technical Training Center, IL.

    This instructional package consists of a plan of instruction, glossary, and student handouts and exercises for use in training Air Force personnel to become turboprop propulsion mechanics. Addressed in the individual lessons of the course are the following: common hand tools, hardware, measuring devices, and safety wiring; aircraft and engine…

  20. Direct measurement high resolution wide range extreme temperature optical sensor using an all-silicon carbide probe.

    Science.gov (United States)

    Sheikh, Mumtaz; Riza, Nabeel A

    2009-05-01

    We propose and demonstrate a temperature sensing method using an all-silicon carbide probe that combines wavelength-tuned signal processing for coarse measurements and classical Fabry-Perot etalon peak shift for fine measurements. This method gives direct unambiguous temperature measurements with a high temperature resolution over a wide temperature range. Specifically, temperature measurements from room temperature to 1000 degrees C are experimentally demonstrated with an estimated resolution varying from 0.66 degrees C at room temperature to 0.12 degrees C at 1000 degrees C. The proposed sensor has applications in next-generation greener gas turbines for power production.

  1. Wireless Capacitive Pressure Sensor With Directional RF Chip Antenna for High Temperature Environments

    Science.gov (United States)

    Scardelletti, M. C.; Jordan, J. L.; Ponchak, G. E.; Zorman, C. A.

    2015-01-01

    This paper presents the design, fabrication and characterization of a wireless capacitive pressure sensor with directional RF chip antenna that is envisioned for the health monitoring of aircraft engines operating in harsh environments. The sensing system is characterized from room temperature (25 C) to 300 C for a pressure range from 0 to 100 psi. The wireless pressure system consists of a Clapp-type oscillator design with a capacitive MEMS pressure sensor located in the LC-tank circuit of the oscillator. Therefore, as the pressure of the aircraft engine changes, so does the output resonant frequency of the sensing system. A chip antenna is integrated to transmit the system output to a receive antenna 10 m away.The design frequency of the wireless pressure sensor is 127 MHz and a 2 increase in resonant frequency over the temperature range of 25 to 300 C from 0 to 100 psi is observed. The phase noise is less than minus 30 dBcHz at the 1 kHz offset and decreases to less than minus 80 dBcHz at 10 kHz over the entire temperature range. The RF radiation patterns for two cuts of the wireless system have been measured and show that the system is highly directional and the MEMS pressure sensor is extremely linear from 0 to 100 psi.

  2. Effect of reactor temperature on direct growth of carbon nanomaterials on stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Edzatty, A. N., E-mail: nuredzatty@gmail.com; Syazwan, S. M., E-mail: mdsyazwan.sanusi@gmail.com; Norzilah, A. H., E-mail: norzilah@unimap.edu.my; Jamaludin, S. B., E-mail: sbaharin@unimap.edu.my [Centre of Excellence for Frontier Materials Research, School of Materials Engineering, University Malaysia Perlis (Malaysia)

    2016-07-19

    Currently, carbon nanomaterials (CNMs) are widely used for various applications due to their extraordinary electrical, thermal and mechanical properties. In this work, CNMs were directly grown on the stainless steel (SS316) via chemical vapor deposition (CVD). Acetone was used as a carbon source and argon was used as carrier gas, to transport the acetone vapor into the reactor when the reaction occurred. Different reactor temperature such as 700, 750, 800, 850 and 900 °C were used to study their effect on CNMs growth. The growth time and argon flow rate were fixed at 30 minutes and 200 ml/min, respectively. Characterization of the morphology of the SS316 surface after CNMs growth using Scanning Electron Microscopy (SEM) showed that the diameter of grown-CNMs increased with the reactor temperature. Energy Dispersive X-ray (EDX) was used to analyze the chemical composition of the SS316 before and after CNMs growth, where the results showed that reduction of catalyst elements such as iron (Fe) and nickel (Ni) at high temperature (700 – 900 °C). Atomic Force Microscopy (AFM) analysis showed that the nano-sized hills were in the range from 21 to 80 nm. The best reactor temperature to produce CNMs was at 800 °C.

  3. The effect of temperature on the output characteristics of micro direct methanol fuel cell

    Science.gov (United States)

    Yuan, Zhenyu; Yang, Jie

    2015-07-01

    In this paper, the effects of operating temperature on mass transport and micro direct methanol fuel cell (μDMFC) performance are presented. Furthermore, a whole two-dimensional model coupled with mass/momentum transports and temperature characteristic is established. Simulation results show that the temperature has significant effects on methanol concentration/CO2 distributions, crossover current density, and the polarization curve. The metal-based μDMFC with the effective area of 0.64 cm2 is fabricated using micro-stamping technology, and the detailed experimental validation is conducted. The results reveal that when the cell is supplied with a relatively low aqueous methanol flow rate, the peak power density exhibits a trend of initially going up, reaching the peak value of 85.3 mW cm-2 at 60 °C, and then dropping off. At the higher flow rate, however, a proportional relationship between the power density and temperature is obtained. The experimental results are in good agreement with the simulation.

  4. Optical temperature mapping around plasmonic structures using directional anisotropy in fluorescence

    Science.gov (United States)

    Chen, Chen; Du, Zhidong; Pan, Liang

    2017-08-01

    Optically measuring temperature fields around plasmonic structures is of great importance for their thermal management considering the strong energy dissipations along with the extraordinary abilities of light coupling. Among all the available methods, ratiometric studies are particularly desirable since they suppress the influence of trivial factors, such as temporal fluctuations in excitation and spatial non-uniform distributions of fluorescent species, and thus gives reliable temperature dependence. Here we report a new ratiometric thermometry that simultaneously captures the fluorescence images of different numerical apertures (NAs) to resolve the temperature-dependent orientations of emission dipoles. This thermometry measures fluorescent anisotropy based on the directionality of emission. We show that this thermometry can be used to measure temperature near metallic surfaces. We foresee it to trigger interests of a large community who desire simultaneous thermal characterization along with the optical imaging. Moreover, it brings out a general idea to simplify ratiometric setups if inequalities exist on the excitation side, which may reach for a larger number of researchers.

  5. Quasi-direct numerical simulation of a pebble bed configuration, Part-II: Temperature field analysis

    International Nuclear Information System (INIS)

    Shams, A.; Roelofs, F.; Komen, E.M.J.; Baglietto, E.

    2013-01-01

    Highlights: ► Quasi direct numerical simulations (q-DNSs) of a pebble bed configuration have been performed. ► This q-DNS database may serve as a reference for the validation of different turbulence modeling approaches. ► A wide range of qualitative and quantitative data throughout the computational domain has been generated. ► Results for mean, RMS of temperature and respective turbulent heat fluxes are extensively reported in this paper. -- Abstract: Good prediction of the flow and heat transfer phenomena in the pebble bed core of a high temperature reactor (HTR) is a challenge for available turbulence models, which still require to be validated. While experimental data are generally desirable in this validation process, due to the complex geometric configuration and measurement difficulties, a very limited amount of data is currently available. On the other hand, direct numerical simulation (DNS) is considered an accurate simulation technique, which may serve as an alternative for validating turbulence models. In the framework of the present study, quasi-direct numerical simulation (q-DNS) of a single face cubic centered pebble bed is performed, which will serve as a reference for the validation of different turbulence modeling approaches in order to perform calculations for a randomly arranged pebble bed. These simulations were performed at a Reynolds number of 3088, based on pebble diameter, with a porosity level of 0.42. Results related to flow field (mean, RMS and covariance of velocity) have been presented in Part-I, whereas, in the present article, we focus our attention to the analysis of the temperature field. A wide range of qualitative and quantitative data for the thermal field (mean, RMS and turbulent heat flux) has been generated

  6. Regional-scale directional changes in abundance of tree species along a temperature gradient in Japan.

    Science.gov (United States)

    Suzuki, Satoshi N; Ishihara, Masae I; Hidaka, Amane

    2015-09-01

    Climate changes are assumed to shift the ranges of tree species and forest biomes. Such range shifts result from changes in abundances of tree species or functional types. Owing to global warming, the abundance of a tree species or functional type is expected to increase near the colder edge of its range and decrease near the warmer edge. This study examined directional changes in abundance and demographic parameters of forest trees along a temperature gradient, as well as a successional gradient, in Japan. Changes in the relative abundance of each of four functional types (evergreen broad-leaved, deciduous broad-leaved, evergreen temperate conifer, and evergreen boreal conifer) and the demography of each species (recruitment rate, mortality, and population growth rate) were analyzed in 39 permanent forest plots across the Japanese archipelago. Directional changes in the relative abundance of functional types were detected along the temperature gradient. Relative abundance of evergreen broad-leaved trees increased near their colder range boundaries, especially in secondary forests, coinciding with the decrease in deciduous broad-leaved trees. Similarly, relative abundance of deciduous broad-leaved trees increased near their colder range boundaries, coinciding with the decrease in boreal conifers. These functional-type-level changes were mainly due to higher recruitment rates and partly to the lower mortality of individual species at colder sites. This is the first report to show that tree species abundances in temperate forests are changing directionally along a temperature gradient, which might be due to current or past climate changes as well as recovery from past disturbances. © 2015 John Wiley & Sons Ltd.

  7. Research on operating characteristics of direct-return chilled water system controlled by variable temperature difference

    International Nuclear Information System (INIS)

    Liu, Xue-feng; Liu, Jin-ping; Lu, Ji-dong; Liu, Lei; Zou, Wei

    2012-01-01

    Terminal load distribution and pipe network structure are the key factors that affect the energy-saving potential of central air-conditioning chilled water systems, nonlinear thermodynamic performance of an air-conditioning system with large inertia will mainly exert influence on the stability and reliability of energy-saving operation control. Unreasonable variable flow control strategy can neither achieve an ideal energy-saving effect nor meet the air-conditioning comfortableness requirements. With a direct-return chilled water system as study object, this paper built a hydraulic calculation model of pipe network topology, bypass loop hydraulic calculation model, AHU thermodynamic model, and water pump variable frequency operation model. Operating frequency of a water pump for different flow ratio, pump power, temperature difference of pipe network supply and return water, pressure difference of pipe network supply and return water, bypass control valve characteristics, system adjustability coefficient, and pipe network resistance characteristics of a chilled water system are studied under the condition of given supply water temperature, and pipe network’s AHU node thermal and humid load. And energy consumption characteristics of constant temperature difference control and variable temperature difference control are also analyzed with comparison. The results can provide theoretical guidance for the stable and reliable energy-saving operation of a chilled water system. -- Highlights: ► AHU thermodynamic model has been built to solve the heat/humidity balance problem. ► Hydraulic calculation models of direct-return pipe network topology has been built. ► Bypass loop has been considered to the analysis for variable flow operation. ► The universal problems for variable flow operation have been analyzed theoretically. ► Energy-saving operation strategies have been researched.

  8. Evaluation of glass transition temperature and dynamic mechanical properties of autopolymerized hard direct denture reline resins.

    Science.gov (United States)

    Takase, Kazuma; Watanabe, Ikuya; Kurogi, Tadafumi; Murata, Hiroshi

    2015-01-01

    This study assessed methods for evaluation of glass transition temperature (Tg) of autopolymerized hard direct denture reline resins using dynamic mechanical analysis and differential scanning calorimetry in addition to the dynamic mechanical properties. The Tg values of 3 different reline resins were determined using a dynamic viscoelastometer and differential scanning calorimeter, and rheological parameters were also determined. Although all materials exhibited higher storage modulus and loss modulus values, and a lower loss tangent at 37˚C with a higher frequency, the frequency dependence was not large. Tg values obtained by dynamic mechanical analysis were higher than those by differential scanning calorimetry and higher frequency led to higher Tg, while more stable Tg values were also obtained by that method. These results suggest that dynamic mechanical analysis is more advantageous for characterization of autopolymerized hard direct denture reline resins than differential scanning calorimetry.

  9. Direct writing of flexible electronics through room temperature liquid metal ink.

    Science.gov (United States)

    Gao, Yunxia; Li, Haiyan; Liu, Jing

    2012-01-01

    Conventional approaches of making a flexible circuit are generally complex, environment unfriendly, time and energy consuming, and thus expensive. Here, we describe for the first time the method of using high-performance GaIn(10)-based electrical ink, a significantly neglected room temperature liquid metal, as both electrical conductors and interconnects, for directly writing flexible electronics via a rather easy going and cost effective way. The new generation electric ink was made and its wettability with various materials was modified to be easily written on a group of either soft or rigid substrates such as epoxy resin board, glass, plastic, silica gel, paper, cotton, textiles, cloth and fiber etc. Conceptual experiments were performed to demonstrate and evaluate the capability of directly writing the electrical circuits via the invented metal ink. Mechanisms involved were interpreted through a series of fundamental measurements. The electrical resistivity of the fluid like GaIn(10)-based material was measured as 34.5 µΩ·cm at 297 K by four point probe method and increased with addition of the oxygen quantity, which indicates it as an excellent metal ink. The conductive line can be written with features that are approximately 10 µm thick. Several functional devices such as a light emitting diode (LED) array showing designed lighting patterns and electrical fan were made to work by directly writing the liquid metal on the specific flexible substrates. And satisfactory performances were obtained. The present method opens the way to directly and quickly writing flexible electronics which can be as simple as signing a name or drawing a picture on the paper. The unique merit of the GaIn(10)-based liquid metal ink lies in its low melting temperature, well controlled wettability, high electrical conductivity and good biocompability. The new electronics writing strategy and basic principle has generalized purpose and can be extended to more industrial areas, even

  10. Direct writing of flexible electronics through room temperature liquid metal ink.

    Directory of Open Access Journals (Sweden)

    Yunxia Gao

    Full Text Available BACKGROUND: Conventional approaches of making a flexible circuit are generally complex, environment unfriendly, time and energy consuming, and thus expensive. Here, we describe for the first time the method of using high-performance GaIn(10-based electrical ink, a significantly neglected room temperature liquid metal, as both electrical conductors and interconnects, for directly writing flexible electronics via a rather easy going and cost effective way. METHODS: The new generation electric ink was made and its wettability with various materials was modified to be easily written on a group of either soft or rigid substrates such as epoxy resin board, glass, plastic, silica gel, paper, cotton, textiles, cloth and fiber etc. Conceptual experiments were performed to demonstrate and evaluate the capability of directly writing the electrical circuits via the invented metal ink. Mechanisms involved were interpreted through a series of fundamental measurements. RESULTS: The electrical resistivity of the fluid like GaIn(10-based material was measured as 34.5 µΩ·cm at 297 K by four point probe method and increased with addition of the oxygen quantity, which indicates it as an excellent metal ink. The conductive line can be written with features that are approximately 10 µm thick. Several functional devices such as a light emitting diode (LED array showing designed lighting patterns and electrical fan were made to work by directly writing the liquid metal on the specific flexible substrates. And satisfactory performances were obtained. CONCLUSIONS: The present method opens the way to directly and quickly writing flexible electronics which can be as simple as signing a name or drawing a picture on the paper. The unique merit of the GaIn(10-based liquid metal ink lies in its low melting temperature, well controlled wettability, high electrical conductivity and good biocompability. The new electronics writing strategy and basic principle has generalized

  11. Synthesis and characterization of Cu-MFI catalyst for the direct medium temperature range NO decomposition

    Directory of Open Access Journals (Sweden)

    Valkaj Karolina Maduna

    2016-03-01

    Full Text Available In this study the physico-chemical and catalytic properties of copper bearing MFI zeolites (Cu-MFI with different Si/Al and Si/Cu ratios were investigated. Two different methods for incorporation of metal ions into the zeolite framework were used: the ion exchange from the solution of copper acetate and the direct hydrothermal synthesis. Direct synthesis of a zeolite in the presence of copper-phosphate complexes was expected to generate more active copper species necessary for the desired reaction than the conventional ion exchange method. Direct decomposition of NO was used as a model reaction, because this reaction still offers a very attractive approach to NOX removal. The catalytic properties of zeolite samples were studied using techniques, such as XRD, SEM, EPR and nitrogen adsorption/desorption measurements at 77 K. Results of the kinetic investigation revealed that both methods are applicable for the preparation of the catalysts with active sites capable of catalyzing the NO decomposition. It was found out that Cu-MFI zeolites obtained through direct synthesis are promising catalysts for NO decomposition, especially at lower reaction temperatures. The efficiency of the catalysts prepared by both methods is compared and discussed.

  12. Thermal Propulsion Capture System Heat Exchanger Design

    Science.gov (United States)

    Richard, Evan M.

    2016-01-01

    One of the biggest challenges of manned spaceflight beyond low earth orbit and the moon is harmful radiation that astronauts would be exposed to on their long journey to Mars and further destinations. Using nuclear energy has the potential to be a more effective means of propulsion compared to traditional chemical engines (higher specific impulse). An upper stage nuclear engine would allow astronauts to reach their destination faster and more fuel efficiently. Testing these engines poses engineering challenges due to the need to totally capture the engine exhaust. The Thermal Propulsion Capture System is a concept for cost effectively and safely testing Nuclear Thermal Engines. Nominally, hydrogen exhausted from the engine is not radioactive, but is treated as such in case of fuel element failure. The Thermal Propulsion Capture System involves injecting liquid oxygen to convert the hydrogen exhaust into steam. The steam is then cooled and condensed into liquid water to allow for storage. The Thermal Propulsion Capture System concept for ground testing of a nuclear powered engine involves capturing the engine exhaust to be cooled and condensed before being stored. The hydrogen exhaust is injected with liquid oxygen and burned to form steam. That steam must be cooled to saturation temperatures before being condensed into liquid water. A crossflow heat exchanger using water as a working fluid will be designed to accomplish this goal. Design a cross flow heat exchanger for the Thermal Propulsion Capture System testing which: Eliminates the need for water injection cooling, Cools steam from 5800 F to saturation temperature, and Is efficient and minimizes water requirement.

  13. Hydrodynamics of Peristaltic Propulsion

    Science.gov (United States)

    Athanassiadis, Athanasios; Hart, Douglas

    2014-11-01

    A curious class of animals called salps live in marine environments and self-propel by ejecting vortex rings much like jellyfish and squid. However, unlike other jetting creatures that siphon and eject water from one side of their body, salps produce vortex rings by pumping water through siphons on opposite ends of their hollow cylindrical bodies. In the simplest cases, it seems like some species of salp can successfully move by contracting just two siphons connected by an elastic body. When thought of as a chain of timed contractions, salp propulsion is reminiscent of peristaltic pumping applied to marine locomotion. Inspired by salps, we investigate the hydrodynamics of peristaltic propulsion, focusing on the scaling relationships that determine flow rate, thrust production, and energy usage in a model system. We discuss possible actuation methods for a model peristaltic vehicle, considering both the material and geometrical requirements for such a system.

  14. 2D temperature field measurement in a direct-injection engine using LIF technology

    Science.gov (United States)

    Liu, Yongfeng; Tian, Hongsen; Yang, Jianwei; Sun, Jianmin; Zhu, Aihua

    2011-12-01

    A new multi-spectral detection strategy for temperature laser- induced- fluorescence (LIF) 2-D imaging measurements is reported for high pressure flames in high-speed diesel engine. Schematic of the experimental set-up is outlined and the experimental data on the diesel engine is summarized. Experiment injection system is a third generation Bosch high-pressure common rail featuring a maximum pressure of 160MPa. The injector is equipped with a six-hole nozzle, where each hole has a diameter of 0.124 mm. and slightly offset to the center of the cylinder axis to allow a better cooling of the narrow bridge between the exhaust valves. The measurement system includes a blower, which supplied the intake flow rate, and a prototype single-valve direct injection diesel engine head modified to lay down the swirled-type injector. 14-bit digital CCD cameras are employed to achieve a greater level of accuracy in comparison to the results of previous measurements. The temperature field spatial distributions in the cylinder for different crank angle degrees are carried out in a single direct-injection diesel engine.

  15. Why Density Dependent Propulsion?

    Science.gov (United States)

    Robertson, Glen A.

    2011-01-01

    In 2004 Khoury and Weltman produced a density dependent cosmology theory they call the Chameleon, as at its nature, it is hidden within known physics. The Chameleon theory has implications to dark matter/energy with universe acceleration properties, which implies a new force mechanism with ties to the far and local density environment. In this paper, the Chameleon Density Model is discussed in terms of propulsion toward new propellant-less engineering methods.

  16. Development of Anodic Flux and Temperature Controlling System for Micro Direct Methanol Fuel Cell

    Science.gov (United States)

    Li, M. M.; Liu, C.; Liang, J. S.; Wu, C. B.; Xu, Z.

    2006-10-01

    Micro Direct Methanol Fuel Cell (μDMFC) is a kind of newly developed power sources, which effective apparatus for its performance evaluation is still in urgent need at present. In this study, a testing system was established for the purpose of testing the continuous working performance such as micro flux and temperature of μDMFC. In view of the temperature controlling for micro-flux liquid fuel, a heating block with labyrinth-like single pass channel inside for heating up the methanol solution was fabricated. A semiconductorrefrigerating chip was utilized to heat and cool the liquid flow during testing procedures. On the other hand, the two channels of a high accuracy double-channel syringe pump that can suck and pump in turn so as to transport methanol solution continuously was adopted. Based on the requirements of wide-ranged temperature and micro flux controlling, the solenoid valves and the correlative component were used. A hydraulic circuit, which can circulate the fed methanol cold to hot in turn, has also been constructed to test the fatigue life of the μDMFC. The automatic control was actualized by software module written with Visual C++. Experimental results show that the system is perfect in stability and it may provide an important and advanced evaluation apparatus to satisfy the needs for real time performance testing of μDMFC.

  17. High temperature thermal conductivity measurements of UO2 by Direct Electrical Heating. Final report

    International Nuclear Information System (INIS)

    Bassett, B.

    1980-10-01

    High temperature properties of reactor type UO 2 pellets were measured using a Direct Electrical Heating (DEH) Facility. Modifications to the experimental apparatus have been made so that successful and reproducible DEH runs may be carried out while protecting the pellets from oxidation at high temperature. X-ray diffraction measurements on the UO 2 pellets have been made before and after runs to assure that sample oxidation has not occurred. A computer code has been developed that will model the experiment using equations that describe physical properties of the material. This code allows these equations to be checked by comparing the model results to collected data. The thermal conductivity equation for UO 2 proposed by Weilbacher has been used for this analysis. By adjusting the empirical parameters in Weilbacher's equation, experimental data can be matched by the code. From the several runs analyzed, the resulting thermal conductivity equation is lambda = 1/4.79 + 0.0247T/ + 1.06 x 10 -3 exp[-1.62/kT/] - 4410. exp[-3.71/kT/] where lambda is in w/cm K, k is the Boltzman constant, and T is the temperature in Kelvin

  18. Propulsion for CubeSats

    Science.gov (United States)

    Lemmer, Kristina

    2017-05-01

    At present, very few CubeSats have flown in space featuring propulsion systems. Of those that have, the literature is scattered, published in a variety of formats (conference proceedings, contractor websites, technical notes, and journal articles), and often not available for public release. This paper seeks to collect the relevant publically releasable information in one location. To date, only two missions have featured propulsion systems as part of the technology demonstration. The IMPACT mission from the Aerospace Corporation launched several electrospray thrusters from Massachusetts Institute of Technology, and BricSAT-P from the United States Naval Academy had four micro-Cathode Arc Thrusters from George Washington University. Other than these two missions, propulsion on CubeSats has been used only for attitude control and reaction wheel desaturation via cold gas propulsion systems. As the desired capability of CubeSats increases, and more complex missions are planned, propulsion is required to accomplish the science and engineering objectives. This survey includes propulsion systems that have been designed specifically for the CubeSat platform and systems that fit within CubeSat constraints but were developed for other platforms. Throughout the survey, discussion of flight heritage and results of the mission are included where publicly released information and data have been made available. Major categories of propulsion systems that are in this survey are solar sails, cold gas propulsion, electric propulsion, and chemical propulsion systems. Only systems that have been tested in a laboratory or with some flight history are included.

  19. Novel Integration Approach for In situ Monitoring of Temperature in Micro-direct Methanol Fuel Cell

    Science.gov (United States)

    Lee, Chi-Yuan; Huang, Ren-De; Chuang, Chih-Wei

    2007-10-01

    In this work, a porous silicon layer is fabricated as the gas diffusion layer (GDL) of a micro-direct methanol fuel cell (μDMFC) using micro-electro-mechanical-systems (MEMS) technology. Platinum is deposited on surface of the porous silicon layer to improve the electrical conductivity of the μDMFC. Physical vapor deposition (PVD) was utilized to deposit Pt metal and wet etching was adopted to form the conductive layer and micro-thermal sensors. The Pt acted both as a current collector and a micro-thermal sensor. We fabricated a resistance temperature detector (RTD) sensor for integration with the gas diffusion layer on the bipolar plate to measure the temperature inside the μDMFC. GDLs with pores of various sizes (10, 30, and 50 μm) were considered to test the performance of the μDMFC. A silicon wafer (500 μm) was etched using KOH wet etching to yield fuel channels with a depth of 450 μm and a width of 200 μm. Then, a porous silicon layer was formed by deep reactive ion etching (DRIE) to act as the GDL of the μDMFC. The experimental results obtained at various fuel flow rates, pore sizes and other operating conditions demonstrate that the maximum power density of the μDMFC is 1.784 mW/cm2, which was reached at 203 mV with 50-μm-diameter holes. The microsensor temperature was determined to be in the range from 20 to 46 °C and the resistance of the microsensor was in the range from 7.524 to 7.677 kΩ. Experimental results demonstrate that temperature is almost linearly related to resistance and that accuracy and sensitivity are 0.3 °C and 7.82× 10-4/°C, respectively.

  20. Effects of vernal equinox solar eclipse on temperature and wind direction in Switzerland

    Science.gov (United States)

    Eugster, Werner; Emmel, Carmen; Wolf, Sebastian; Buchmann, Nina; McFadden, Joseph P.; Whiteman, Charles David

    2017-12-01

    The vernal equinox total solar eclipse of 20 March 2015 produced a maximum occultation of 65.8-70.1 % over Switzerland during the morning hours (09:22 to 11:48 CET). Skies were generally clear over the Swiss Alps due to a persistent high-pressure band between the UK and Russia associated with a rather weak pressure gradient over the continent. To assess the effects of penumbral shading on near-surface meteorology across Switzerland, air temperature data measured at 10 min intervals at 184 MeteoSwiss weather stations were used. Wind speed and direction data were available from 165 of these stations. Additionally, six Swiss FluxNet eddy covariance flux (ECF) sites provided turbulent measurements at 20 Hz resolution. During maximum occultation, the temperature drop was up to 5.8 K at a mountain site where cold air can pool in a topographic depression. The bootstrapped average of the maximum temperature drops of all 184 MeteoSwiss sites during the solar eclipse was 1.51 ± 0.02 K (mean ± SE). A detailed comparison with literature values since 1834 showed a temperature decrease of 2.6 ± 1.7 K (average of all reports), with extreme values up to 11 K. On fair weather days under weak larger-scale pressure gradients, local thermo-topographic wind systems develop that are driven by small-scale pressure and temperature gradients. At one ECF site, the penumbral shading delayed the morning transition from down-valley to up-valley wind conditions. At another site, it prevented this transition from occurring at all. Data from the 165 MeteoSwiss sites measuring wind direction did not show a consistent pattern of wind direction response to the passing of the penumbral shadow. These results suggest that the local topographic setting had an important influence on the temperature drop and the wind flow patterns during the eclipse. A significant cyclonic effect of the passing penumbral shadow was found in the elevation range ≈ 1700-2700 m a. s. l., but not at lower

  1. Effects of vernal equinox solar eclipse on temperature and wind direction in Switzerland

    Directory of Open Access Journals (Sweden)

    W. Eugster

    2017-12-01

    Full Text Available The vernal equinox total solar eclipse of 20 March 2015 produced a maximum occultation of 65.8–70.1 % over Switzerland during the morning hours (09:22 to 11:48 CET. Skies were generally clear over the Swiss Alps due to a persistent high-pressure band between the UK and Russia associated with a rather weak pressure gradient over the continent. To assess the effects of penumbral shading on near-surface meteorology across Switzerland, air temperature data measured at 10 min intervals at 184 MeteoSwiss weather stations were used. Wind speed and direction data were available from 165 of these stations. Additionally, six Swiss FluxNet eddy covariance flux (ECF sites provided turbulent measurements at 20 Hz resolution. During maximum occultation, the temperature drop was up to 5.8 K at a mountain site where cold air can pool in a topographic depression. The bootstrapped average of the maximum temperature drops of all 184 MeteoSwiss sites during the solar eclipse was 1.51 ± 0.02 K (mean ± SE. A detailed comparison with literature values since 1834 showed a temperature decrease of 2.6 ± 1.7 K (average of all reports, with extreme values up to 11 K. On fair weather days under weak larger-scale pressure gradients, local thermo-topographic wind systems develop that are driven by small-scale pressure and temperature gradients. At one ECF site, the penumbral shading delayed the morning transition from down-valley to up-valley wind conditions. At another site, it prevented this transition from occurring at all. Data from the 165 MeteoSwiss sites measuring wind direction did not show a consistent pattern of wind direction response to the passing of the penumbral shadow. These results suggest that the local topographic setting had an important influence on the temperature drop and the wind flow patterns during the eclipse. A significant cyclonic effect of the passing penumbral shadow was found in the elevation range

  2. FY2016 Propulsion Materials Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-05-01

    The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines and Fuels) teams to develop strategies that overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.

  3. FY2015 Propulsion Materials Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-12-30

    The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines [ACE], Advanced Power Electronics and Electrical Machines [APEEM], and fuels) teams to develop strategies that overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.

  4. NASA Breakthrough Propulsion Physics Program

    Science.gov (United States)

    Millis, Marc G.

    1998-01-01

    In 1996, NASA established the Breakthrough Propulsion Physics program to seek the ultimate breakthroughs in space transportation: propulsion that requires no propellant mass, propulsion that attains the maximum transit speeds physically possible, and breakthrough methods of energy production to power such devices. Topics of interest include experiments and theories regarding the coupling of gravity and electromagnetism, vacuum fluctuation energy, warp drives and worm-holes, and superluminal quantum effects. Because these propulsion goals are presumably far from fruition, a special emphasis is to identify affordable, near-term, and credible research that could make measurable progress toward these propulsion goals. The methods of the program and the results of the 1997 workshop are presented. This Breakthrough Propulsion Physics program, managed by Lewis Research Center, is one part of a comprehensive, long range Advanced Space Transportation Plan managed by Marshall Space Flight Center.

  5. The Nuclear Cryogenic Propulsion Stage

    Science.gov (United States)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP). Nuclear propulsion can be affordable and viable compared to other propulsion systems and must overcome a biased public fear due to hyper-environmentalism and a false perception of radiation and explosion risk.

  6. Thermoelectric characterization of an intermediate temperature solid oxide fuel cell system directly fed by dry biogas

    International Nuclear Information System (INIS)

    De Lorenzo, G.; Corigliano, O.; Lo Faro, M.; Frontera, P.; Antonucci, P.; Zignani, S.C.; Trocino, S.; Mirandola, F.A.; Aricò, A.S.; Fragiacomo, P.

    2016-01-01

    Highlights: • Numerical Model (NM) of SOFC Cogenerative System (SCS) fed by dry biogas is set up. • NM simulates new Ni-Fe/CGO protective layer for direct CH 4 consumption at the anode. • NM simulates the anode carbonation phenomenon and is experimentally validated. • The performance parameters trends of SCS fed by three types of dry biogas are shown. • SEM images after 40 h of operation show that there is no anode carbon deposition. - Abstract: A properly manufactured intermediate temperature Solid Oxide Fuel Cell (SOFC) can be directly fed by dry biogas, considering also the electrochemical partial and total oxidation reactions of methane in the biogas at the anode. In this way the methane in the biogas is electrochemically consumed directly at the fuel cell without the need to mix the biogas with any reforming gas (steam, oxygen or carbon dioxide). In this article, a numerical model of an SOFC system with Ni-Fe/CGO electrocatalyst anode protective layer directly fed by dry biogas, in cogenerative arrangement and with anode exhaust gas recirculation is formulated. The influences of biogas composition, of fuel cell operating current density and of percentage of recirculated anode exhaust gas on the SOFC system performances were evaluated by calculation code. An SOFC test bench was set up to validate the calculation code results experimentally. Furthermore, the numerical model also considers the anode carbonation and evaluates the amount of carbon that can be formed in the anode at chemical equilibrium and quasi-equilibrium conditions associated with the specific anode protective layer used.

  7. Direct Observation of Room-Temperature Polar Ordering in Colloidal GeTe Nanocrystals

    International Nuclear Information System (INIS)

    Polking, Mark J.; Zheng, Haimei; Urban, Jeffrey J.; Milliron, Delia J.; Chan, Emory; Caldwell, Marissa A.; Raoux, Simone; Kisielowski, Christian F.; Ager, Joel W. III; Ramesh, Ramamoorthy; Alivisatos, A.P.

    2009-01-01

    Ferroelectrics and other materials that exhibit spontaneous polar ordering have demonstrated immense promise for applications ranging from non-volatile memories to microelectromechanical systems. However, experimental evidence of polar ordering and effective synthetic strategies for accessing these materials are lacking for low-dimensional nanomaterials. Here, we demonstrate the synthesis of size-controlled nanocrystals of the polar material germanium telluride (GeTe) using colloidal chemistry and provide the first direct evidence of room-temperature polar ordering in nanocrystals less than 5 nm in size using aberration-corrected transmission electron microscopy. Synchrotron x-ray diffraction and Raman studies demonstrate a sizeable polar distortion and a reversible size-dependent polar phase transition in these nanocrystals. The stability of polar ordering in solution-processible nanomaterials suggests an economical avenue to Tbit/in2-density non-volatile memory devices and other applications.

  8. One-step fabrication of crystalline metal nanostructures by direct nanoimprinting below melting temperatures

    Science.gov (United States)

    Liu, Ze

    2017-03-01

    Controlled fabrication of metallic nanostructures plays a central role in much of modern science and technology, because changing the dimensions of a nanocrystal enables tailoring of its mechanical, electronic, optical, catalytic and antibacterial properties. Here we show direct superplastic nanoimprinting (SPNI) of crystalline metals well below their melting temperatures, generating ordered nanowire arrays with aspect ratios up to ~2,000 and imprinting features as small as 8 nm. Surface-enhanced Raman scattering (SERS) spectra reveal strongly enhanced electromagnetic signals from the prepared nanorod arrays with sizes up to ~100 nm, which indicates that our technique can provide an ideal way to fabricate robust SERS substrates. SPNI, as a one-step, controlled and reproducible nanofabrication method, could facilitate the applications of metal nanostructures in bio-sensing, diagnostic imaging, catalysis, food industry and environmental conservation.

  9. Electrolysis Propulsion for Spacecraft Applications

    Science.gov (United States)

    deGroot, Wim A.; Arrington, Lynn A.; McElroy, James F.; Mitlitsky, Fred; Weisberg, Andrew H.; Carter, Preston H., II; Myers, Blake; Reed, Brian D.

    1997-01-01

    Electrolysis propulsion has been recognized over the last several decades as a viable option to meet many satellite and spacecraft propulsion requirements. This technology, however, was never used for in-space missions. In the same time frame, water based fuel cells have flown in a number of missions. These systems have many components similar to electrolysis propulsion systems. Recent advances in component technology include: lightweight tankage, water vapor feed electrolysis, fuel cell technology, and thrust chamber materials for propulsion. Taken together, these developments make propulsion and/or power using electrolysis/fuel cell technology very attractive as separate or integrated systems. A water electrolysis propulsion testbed was constructed and tested in a joint NASA/Hamilton Standard/Lawrence Livermore National Laboratories program to demonstrate these technology developments for propulsion. The results from these testbed experiments using a I-N thruster are presented. A concept to integrate a propulsion system and a fuel cell system into a unitized spacecraft propulsion and power system is outlined.

  10. Reactors for nuclear electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades.

  11. Reactors for nuclear electric propulsion

    International Nuclear Information System (INIS)

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades

  12. Electric Propulsion Research Building (EPRB)

    Data.gov (United States)

    Federal Laboratory Consortium — The Electric Propulsion Research Building (EPRB) capability centers on its suite of vacuum chambers, which are configured to meet the unique requirements related to...

  13. IR thermocycler for centrifugal microfluidic platform with direct on-disk wireless temperature measurement system

    Science.gov (United States)

    Burger, J.; Gross, A.; Mark, D.; Roth, G.; von Stetten, F.; Zengerle, R.

    2011-06-01

    The direct on-disk wireless temperature measurement system [1,2] presented at μTAS 2010 was further improved in its robustness. We apply it to an IR thermocycler as part of a centrifugal microfluidic analyzer for polymerase chain reactions (PCR). This IR thermocycler allows the very efficient direct heating of aqueous liquids in microfluidic cavities by an IR radiation source. The efficiency factor of this IR heating system depends on several parameters. First there is the efficiency of the IR radiator considering the transformation of electrical energy into radiation energy. This radiation energy needs to be focused by a reflector to the center of the cavity. Both, the reflectors shape and the quality of the reflecting layer affect the efficiency. On the way to the center of the cavity the radiation energy will be diminished by absorption in the surrounding air/humidity and especially in the cavity lid of the microfluidic disk. The transmission spectrum of the lid material and its thickness is of significant impact. We chose a COC polymer film with a thickness of 150 μm. At a peak frequency of the IR radiator of ~2 μm approximately 85 % of the incoming radiation energy passes the lid and is absorbed within the first 1.5 mm depth of liquid in the cavity. As we perform the thermocycling for a PCR, after heating to the denaturation temperature of ~ 92 °C we need to cool down rapidly to the primer annealing temperature of ~ 55 °C. Cooling is realized by 3 ventilators venting air of room temperature into the disk chamber. Due to the air flow itself and an additional rotation of the centrifugal microfluidic disk the PCR reagents in the cavities are cooled by forced air convection. Simulation studies based upon analogous electrical models enable to optimize the disk geometry and the optical path. Both the IR heater and the ventilators are controlled by the digital PID controller HAPRO 0135 [3]. The sampling frequency is set to 2 Hz. It could be further increased up

  14. Explosive Evaporating Phenomena of Cryogenic Fluids by Direct Contacting Normal Temperature Fluids

    Directory of Open Access Journals (Sweden)

    T Watanabe

    2016-09-01

    Full Text Available Cryogenic fluids have characteristics such as thermal stratification and flashing by pressure release in storage vessel. The mixture of the extreme low temperature fluid and the normal temperature fluid becomes the cause which causes pressure vessel and piping system crush due to explosive boiling and rapid freezing. In recent years in Japan, the demand of cryogenic fluids like a LH2, LNG is increasing because of the advance of fuel cell device technology, hydrogen of engine, and stream of consciousness for environmental agreement. These fuel liquids are cryogenic fluids. On the other hand, as for fisheries as well, the use of a source of energy that environment load is small has been being a pressing need. And, the need of the ice is high, as before, for keeping freshness of marine products in fisheries. Therefore, we carried out the experiments related to promotion of evaporating cryogenic fluids and generation of ice, in the contact directly of the water and liquid nitrogen. From the results of visualization, phenomena of explosive evaporating and ice forming were observed by using video camera.

  15. Oscillating foil propulsion

    OpenAIRE

    Hauge, Jacob

    2013-01-01

    Unsteady foil theory is discussed and applied on several cases of an oscillating foil. The oscillating foil is meant as a propulsion system for a platform supply vessel.Four case studies of foil oscillation have been performed. A thrust coefficient of 0.1 was achieved at an efficiency of 0.75. A thrust coefficient of minimum 0.184 is necessary to overcome the calm water resistance of the foil.Issues connected to coupled vessel-foil models are discussed.

  16. Nuclear propulsion systems engineering

    International Nuclear Information System (INIS)

    Madsen, W.W.; Neuman, J.E.: Van Haaften, D.H.

    1992-01-01

    The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960's and early 1970's was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of theentire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort, and consider the implications for current nuclear propulsion efforts

  17. Low-temperature direct heterogeneous bonding of polyether ether ketone and platinum.

    Science.gov (United States)

    Fu, Weixin; Shigetou, Akitsu; Shoji, Shuichi; Mizuno, Jun

    2017-10-01

    Direct heterogeneous bonding between polyether ether ketone (PEEK) and Pt was realized at the temperatures lower than 150°C. In order to create sufficient bondability to diverse materials, the surface was modified by vacuum ultraviolet (VUV) irradiation, which formed hydrate bridges. For comparison, direct bonding between surfaces atomically cleaned via Ar fast atom bombardment (FAB) was conducted in a vacuum. The VUV irradiation was found to be effective for creating an ultrathin hydrate bridge layer from the residual water molecules in the chamber. Tight bonds were formed through dehydration of the hydrate bridges by heating at 150°C, which also contributed to enhancing interdiffusion across the interface. The VUV-modified surfaces showed bondability as good as that of the FAB-treated surfaces, and the VUV-modified samples had shear strengths at the same level as those of FAB-treated surfaces. This technology will be of practical use in the packaging of lightweight, flexible biomedical devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. High temperature high velocity direct power extraction using an open-cycle oxy-combustion system

    Energy Technology Data Exchange (ETDEWEB)

    Love, Norman [Univ. of Texas, El Paso, TX (United States)

    2017-09-29

    The implementation of oxy-fuel technology in fossil-fuel power plants may contribute to increased system efficiencies and a reduction of pollutant emissions. One technology that has potential to utilize the temperature of undiluted oxy-combustion flames is open-cycle magnetohydrodynamic (MHD) power generators. These systems can be configured as a topping cycle and provide high enthalpy, electrically conductive flows for direct conversion of electricity. This report presents the design and modeling strategies of a MHD combustor operating at temperatures exceeding 3000 K. Throughout the study, computational fluid dynamics (CFD) models were extensively used as a design and optimization tool. A lab-scale 60 kWth model was designed, manufactured and tested as part of this project. A fully-coupled numerical method was developed in ANSYS FLUENT to characterize the heat transfer in the system. This study revealed that nozzle heat transfer may be predicted through a 40% reduction of the semi-empirical Bartz correlation. Experimental results showed good agreement with the numerical evaluation, with the combustor exhibiting a favorable performance when tested during extended time periods. A transient numerical method was employed to analyze fuel injector geometries for the 60-kW combustor. The ANSYS FLUENT study revealed that counter-swirl inlets achieve a uniform pressure and velocity ratio when the ports of the injector length to diameter ratio (L/D) is 4. An angle of 115 degrees was found to increase distribution efficiency. The findings show that this oxy-combustion concept is capable of providing a high-enthalpy environment for seeding, in order to render the flow to be conductive. Based on previous findings, temperatures in the range of 2800-3000 K may enable magnetohydrodynamic power extraction. The heat loss fraction in this oxy-combustion system, based on CFD and analytical calculations, at optimal operating conditions, was estimated to be less than 10 percent

  19. MSFC nuclear thermal propulsion technology program

    Science.gov (United States)

    Swint, Shane

    1993-01-01

    Viewgraphs on non-nuclear materials assessment, nuclear thermal propulsion (NTP) turbomachinery technologies, and high temperature superconducting magnetic bearing technology are presented. The objective of the materials task is to identify and evaluate candidate materials for use in NTP turbomachinery and propellant feed system applications. The objective of the turbomachinery technology task is to develop and validate advanced turbomachinery technologies at the component and turbopump assembly levels. The objective of the high temperature superconductors (HTS) task is to develop and validate advanced technology for HTS passive magnetic/hydrostatic bearing.

  20. Efficient Conversion of Lignin to Electricity Using a Novel Direct Biomass Fuel Cell Mediated by Polyoxomethalates at Low Temperatures

    Science.gov (United States)

    Xuebing Zhao; Junyong Zhu

    2016-01-01

    A novel polyoxometalates (POMs) mediated direct biomass fuelcelI (DBFC) was used in this study to directly convert lignin to electricity at low temperatures with high power output and Faradaic efficiency. When phosphomolybdic acid H3PMo12O40 (PMo12) was used as the electron and...

  1. Additive Manufacturing of Aerospace Propulsion Components

    Science.gov (United States)

    Misra, Ajay K.; Grady, Joseph E.; Carter, Robert

    2015-01-01

    The presentation will provide an overview of ongoing activities on additive manufacturing of aerospace propulsion components, which included rocket propulsion and gas turbine engines. Future opportunities on additive manufacturing of hybrid electric propulsion components will be discussed.

  2. LOX/hydrocarbon auxiliary propulsion system study

    Science.gov (United States)

    Orton, G. F.; Mark, T. D.; Weber, D. D.

    1982-01-01

    Liquid oxygen (LOX)/hydrocarbon propulsion concepts for a "second generation' orbiter auxiliary propulsion system was evaluated. The most attractive fuel and system design approach identified, and the technology advancements that are needed to provide high confidence for a subsequent system development were determined. The fuel candidates were ethanol, methane, propane, and ammonia. Even though ammonia is not a hydrocarbon, it was included for evaluation because it is clean burning and has a good technology base. The major system design options were pump versus pressure feed, cryogenic versus ambient temperature RCS propellant feed, and the degree of OMS-RCS integration. Ethanol was determined to be the best fuel candidate. It is an earth-storable fuel with a vapor pressure slightly higher than monomethyl hydrazine. A pump-fed OMS was recommended because of its high specific impulse, enabling greater velocity change and greater payload capability than a pressure fed system.

  3. MAP6-F is a temperature sensor that directly binds to and protects microtubules from cold-induced depolymerization.

    Science.gov (United States)

    Delphin, Christian; Bouvier, Denis; Seggio, Maxime; Couriol, Emilie; Saoudi, Yasmina; Denarier, Eric; Bosc, Christophe; Valiron, Odile; Bisbal, Mariano; Arnal, Isabelle; Andrieux, Annie

    2012-10-12

    Microtubules are dynamic structures that present the peculiar characteristic to be ice-cold labile in vitro. In vivo, microtubules are protected from ice-cold induced depolymerization by the widely expressed MAP6/STOP family of proteins. However, the mechanism by which MAP6 stabilizes microtubules at 4 °C has not been identified. Moreover, the microtubule cold sensitivity and therefore the needs for microtubule stabilization in the wide range of temperatures between 4 and 37 °C are unknown. This is of importance as body temperatures of animals can drop during hibernation or torpor covering a large range of temperatures. Here, we show that in the absence of MAP6, microtubules in cells below 20 °C rapidly depolymerize in a temperature-dependent manner whereas they are stabilized in the presence of MAP6. We further show that in cells, MAP6-F binding to and stabilization of microtubules is temperature- dependent and very dynamic, suggesting a direct effect of the temperature on the formation of microtubule/MAP6 complex. We also demonstrate using purified proteins that MAP6-F binds directly to microtubules through its Mc domain. This binding is temperature-dependent and coincides with progressive conformational changes of the Mc domain as revealed by circular dichroism. Thus, MAP6 might serve as a temperature sensor adapting its conformation according to the temperature to maintain the cellular microtubule network in organisms exposed to temperature decrease.

  4. Steady State Thermal Analyses of SCEPTOR X-57 Wingtip Propulsion

    Science.gov (United States)

    Schnulo, Sydney L.; Chin, Jeffrey C.; Smith, Andrew D.; Dubois, Arthur

    2017-01-01

    Electric aircraft concepts enable advanced propulsion airframe integration approaches that promise increased efficiency as well as reduced emissions and noise. NASA's fully electric Maxwell X-57, developed under the SCEPTOR program, features distributed propulsion across a high aspect ratio wing. There are 14 propulsors in all: 12 high lift motor that are only active during take off and climb, and 2 larger motors positioned on the wingtips that operate over the entire mission. The power electronics involved in the wingtip propulsion are temperature sensitive and therefore require thermal management. This work focuses on the high and low fidelity heat transfer analysis methods performed to ensure that the wingtip motor inverters do not reach their temperature limits. It also explores different geometry configurations involved in the X-57 development and any thermal concerns. All analyses presented are performed at steady state under stressful operating conditions, therefore predicting temperatures which are considered the worst-case scenario to remain conservative.

  5. Can Aerosol Direct Radiative Effects Account for Analysis Increments of Temperature in the Tropical Atlantic?

    Science.gov (United States)

    da Silva, Arlindo M.; Alpert, Pinhas

    2016-01-01

    In the late 1990's, prior to the launch of the Terra satellite, atmospheric general circulation models (GCMs) did not include aerosol processes because aerosols were not properly monitored on a global scale and their spatial distributions were not known well enough for their incorporation in operational GCMs. At the time of the first GEOS Reanalysis (Schubert et al. 1993), long time series of analysis increments (the corrections to the atmospheric state by all available meteorological observations) became readily available, enabling detailed analysis of the GEOS-1 errors on a global scale. Such analysis revealed that temperature biases were particularly pronounced in the Tropical Atlantic region, with patterns depicting a remarkable similarity to dust plumes emanating from the African continent as evidenced by TOMS aerosol index maps. Yoram Kaufman was instrumental encouraging us to pursue this issue further, resulting in the study reported in Alpert et al. (1998) where we attempted to assess aerosol forcing by studying the errors of a the GEOS-1 GCM without aerosol physics within a data assimilation system. Based on this analysis, Alpert et al. (1998) put forward that dust aerosols are an important source of inaccuracies in numerical weather-prediction models in the Tropical Atlantic region, although a direct verification of this hypothesis was not possible back then. Nearly 20 years later, numerical prediction models have increased in resolution and complexity of physical parameterizations, including the representation of aerosols and their interactions with the circulation. Moreover, with the advent of NASA's EOS program and subsequent satellites, atmospheric aerosols are now monitored globally on a routine basis, and their assimilation in global models are becoming well established. In this talk we will reexamine the Alpert et al. (1998) hypothesis using the most recent version of the GEOS-5 Data Assimilation System with assimilation of aerosols. We will

  6. Monofilament Vaporization Propulsion (MVP) System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Monofilament Vaporization Propulsion (MVP) is a new propulsion technology targeted at secondary payload applications. It does not compromise on performance while...

  7. Monofilament Vaporization Propulsion (MVP) System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Monofilament Vaporization Propulsion (MVP) is an innovative new propulsion technology targeted at secondary payload applications. The approach with MVP, rather than...

  8. In-Space Propulsion (346620) Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Technologies include, but are not limited to, electric and advanced chemical propulsion, propellantless propulsion such as aerocapture and solar sails, sample return...

  9. Outer Planet Missions with Electric Propulsion Systems—Part I

    Directory of Open Access Journals (Sweden)

    Carlos Renato Huaura Solórzano

    2010-01-01

    Full Text Available For interplanetary missions, efficient electric propulsion systems can be used to increase the mass delivered to the destination. Outer planet exploration has experienced new interest with the launch of the Cassini and New Horizons Missions. At the present, new technologies are studied for better use of electric propulsion systems in missions to the outer planets. This paper presents low-thrust trajectories using the method of the transporting trajectory to Uranus, Neptune, and Pluto. They use nuclear and radio isotopic electric propulsion. These direct transfers have continuous electric propulsion of low power along the entire trajectory. The main goal of the paper is to optimize the transfers, that is, to provide maximum mass to be delivered to the outer planets.

  10. Waves from Propulsion Systems of Fast Ferries

    DEFF Research Database (Denmark)

    Taatø, Søren Haugsted; Aage, Christian; Arnskov, Michael M.

    1998-01-01

    generated by the ship hulls alone. Whereas this assumption may be reasonable for conventional ships with large hulls and limited propulsive power, the situation is different for fast ferries with their smaller hulls and very large installed power. A simple theoretical model and a series of model tests......Waves from fast ferries have become an environmental problem of growing concern to the public. Fast ferries produce not only higher waves than conventional ships but also fundamentally different wave systems when they sail at supercritical speeds. Hitherto, ship waves have been considered as being...... on a monohull fast ferry seem to indicate that a substantial part of the wave-making can be directly attributed to the propulsion system itself. Thus, two wave systems are created with different phases, but with similar frequency contents, which means that they merge into one system behind the ship, very...

  11. Magnetohydrodynamic Augmented Propulsion Experiment

    Science.gov (United States)

    Litchford, Ron J.; Cole, John; Lineberry, John; Chapman, Jim; Schmidt, Harold; Cook, Stephen (Technical Monitor)

    2002-01-01

    A fundamental obstacle to routine space access is the specific energy limitations associated with chemical fuels. In the case of vertical take-off, the high thrust needed for vertical liftoff and acceleration to orbit translates into power levels in the 10 GW range. Furthermore, useful payload mass fractions are possible only if the exhaust particle energy (i.e., exhaust velocity) is much greater than that available with traditional chemical propulsion. The electronic binding energy released by the best chemical reactions (e.g., LOX/LH2 for example, is less than 2 eV per product molecule (approx. 1.8 eV per H2O molecule), which translates into particle velocities less than 5 km/s. Useful payload fractions, however, will require exhaust velocities exceeding 15 km/s (i.e., particle energies greater than 20 eV). As an added challenge, the envisioned hypothetical RLV (reusable launch vehicle) should accomplish these amazing performance feats while providing relatively low acceleration levels to orbit (2-3g maximum). From such fundamental considerations, it is painfully obvious that planned and current RLV solutions based on chemical fuels alone represent only a temporary solution and can only result in minor gains, at best. What is truly needed is a revolutionary approach that will dramatically reduce the amount of fuel and size of the launch vehicle. This implies the need for new compact high-power energy sources as well as advanced accelerator technologies for increasing engine exhaust velocity. Electromagnetic acceleration techniques are of immense interest since they can be used to circumvent the thermal limits associated with conventional propulsion systems. This paper describes the Magnetohydrodynamic Augmented Propulsion Experiment (MAPX) being undertaken at NASA Marshall Space Flight Center (MSFC). In this experiment, a 1-MW arc heater is being used as a feeder for a 1-MW magnetohydrodynamic (MHD) accelerator. The purpose of the experiment is to demonstrate

  12. Design of a low-temperature plasma (LTP) probe with adjustable output temperature and variable beam diameter for the direct detection of organic molecules.

    Science.gov (United States)

    Martínez-Jarquín, Sandra; Winkler, Robert

    2013-03-15

    The direct detection of organic molecules by mass spectrometry requires ionization methods which are compatible with ambient conditions. A relatively new strategy is the use of a free low-temperature plasma beam for ionization. The objective is to design a safe and adjustable plasma beam to enable optimal ionization and desorption parameters for specific molecules. A plasma probe based on a dielectric barrier discharge was designed, where the plasma is guided through an internal second tube. This setup permits different beam diameter settings and the control of the plasma temperature. The ionization and desorption of pure organic compounds, as well as their direct detection from roasted coffee beans, were tested. The presented plasma probe provides improved safety with respect to arcing, ozone generation and electric shock, compared with conventional designs. The functionality of previously reported devices is expanded. A defined plasma diameter can be set by choosing the appropriate insert, while the input voltage controls the plasma temperature. The variation of measurement parameters enables the optimized direct detection of target compounds from roasted coffee beans, such as caffeine, guaiacol and vanillin. The presented low-temperature plasma probe allows the fine-tuning of ionization and desorption parameters, according to the target molecules. Possible applications include: (1) The ambient ionization and desorption of organic compounds with different volatility and (2) The direct analysis of food products such as roasted coffee beans. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Direct experimental observation of mesoscopic fluorous domains in fluorinated room temperature ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Lo Celso, F.; Yoshida, Y.; Castiglione, F.; Ferro, M.; Mele, A.; Jafta, C.J.; Triolo, A.; Russina, O. (Meijo); (Rome); (CNRS-UMR); (ISDM-Italy)

    2017-01-01

    Fluorinated room temperature ionic liquids (FRTILs) represent a class of solvent media that are attracting great attention due to their IL-specific properties as well as features stemming from their fluorous nature. Medium-to-long fluorous tails constitute a well-defined apolar moiety in the otherwise polar environment. Similarly to the case of alkyl tails, such chains are expected to result in the formation of self-assembled fluorous domains. So far, however, no direct experimental observation has been made of the existence of such structural heterogeneities on the nm scale. We report here the first experimental evidence of the existence of mesoscopic spatial segregation of fluorinated domains, on the basis of highly complementary X-ray and neutron scattering data sets (highlighting the importance of the latter probe) and NMR spectroscopy. Data are interpreted using atomistic molecular dynamics simulations, emphasizing the existence of a self-assembly mechanism that delivers segregated fluorous domains, where preferential solubilisation of fluorinated compounds can occur, thus paving the way for several smart applications.

  14. Non-syngas direct steam reforming of methanol to hydrogen and carbon dioxide at low temperature.

    Science.gov (United States)

    Yu, Kai Man Kerry; Tong, Weiyi; West, Adam; Cheung, Kevin; Li, Tong; Smith, George; Guo, Yanglong; Tsang, Shik Chi Edman

    2012-01-01

    A non-syngas direct steam reforming route is investigated for the conversion of methanol to hydrogen and carbon dioxide over a CuZnGaO(x) catalyst at 150-200 °C. This route is in marked contrast with the conventional complex route involving steam reformation to syngas (CO/H2) at high temperature, followed by water gas shift and CO cleanup stages for hydrogen production. Here we report that high quality hydrogen and carbon dioxide can be produced in a single-step reaction over the catalyst, with no detectable CO (below detection limit of 1 ppm). This can be used to supply proton exchange membrane fuel cells for mobile applications without invoking any CO shift and cleanup stages. The working catalyst contains, on average, 3-4 nm copper particles, alongside extremely small size of copper clusters stabilized on a defective ZnGa2O4 spinel oxide surface, providing hydrogen productivity of 393.6 ml g(-1)-cat h(-1) at 150 °C.

  15. Direct synthesis of chromium perovskite oxyhydride with a high magnetic-transition temperature.

    Science.gov (United States)

    Tassel, Cédric; Goto, Yoshihiro; Kuno, Yoshinori; Hester, James; Green, Mark; Kobayashi, Yoji; Kageyama, Hiroshi

    2014-09-22

    We report a novel oxyhydride SrCrO2H directly synthesized by a high-pressure high-temperature method. Powder neutron and synchrotron X-ray diffraction revealed that this compound adopts the ideal cubic perovskite structure (Pm3̄m) with O(2-)/H(-) disorder. Surprisingly, despite the non-bonding nature between Cr 3d t(2g) orbitals and the H 1s orbital, it exhibits G-type spin ordering at T(N)≈380 K, which is higher than that of RCrO3 (R=rare earth) and any chromium oxides. The enhanced T(N) in SrCrO2H with four Cr-O-Cr bonds in comparison with RCr(3+)O3 with six Cr-O-Cr bonds is reasonably explained by the tolerance factor. The present result offers an effective strategy to tune octahedral tilting in perovskites and to improve physical and chemical properties through mixed anion chemistry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Melt-Pool Temperature and Size Measurement During Direct Laser Sintering

    Energy Technology Data Exchange (ETDEWEB)

    List, III, Frederick Alyious [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dinwiddie, Ralph Barton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carver, Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gockel, Joy E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    Additive manufacturing has demonstrated the ability to fabricate complex geometries and components not possible with conventional casting and machining. In many cases, industry has demonstrated the ability to fabricate complex geometries with improved efficiency and performance. However, qualification and certification of processes is challenging, leaving companies to focus on certification of material though design allowable based approaches. This significantly reduces the business case for additive manufacturing. Therefore, real time monitoring of the melt pool can be used to detect the development of flaws, such as porosity or un-sintered powder and aid in the certification process. Characteristics of the melt pool in the Direct Laser Sintering (DLS) process is also of great interest to modelers who are developing simulation models needed to improve and perfect the DLS process. Such models could provide a means to rapidly develop the optimum processing parameters for new alloy powders and optimize processing parameters for specific part geometries. Stratonics’ ThermaViz system will be integrated with the Renishaw DLS system in order to demonstrate its ability to measure melt pool size, shape and temperature. These results will be compared with data from an existing IR camera to determine the best approach for the determination of these critical parameters.

  17. Magnetohydrodynamic underwater vehicular propulsion systems

    International Nuclear Information System (INIS)

    Swallom, D.W.; Sadovnik, I.; Gibbs, J.S.; Gurol, H.; Nguyen, L.

    1990-01-01

    The development of magnetohydrodynamic propulsion systems for underwater vehicles is discussed. According to the authors, it is a high risk endeavor that offers the possibility of a number of significant advantages over conventional propeller propulsion systems. These advantages may include the potential for greater stealth characteristics, increased maneuverability, enhanced survivability, elimination of cavitation limits, and addition of a significant emergency propulsion system. The possibility of increased stealth is by far the most important advantage. A conceptual design study has been completed with numerical results that shows that these advantages may be obtained with a magnetohydrodynamic propulsion system in an annular configuration externally surrounding a generic study submarine that is neutrally buoyant and can operate with the existing submarine propulsion system power plant. The classical submarine mission requirements make the use of these characteristics of the magnetohydrodynamic propulsion system particularly appropriate for submarine missions. The magnetohydrodynamic annular propulsion system for a generic attack class submarine has been designed to take advantage of the magnetohydrodynamic thruster characteristics

  18. Relation between local temperature gradients and the direction of heat flow in quantum driven systems

    Science.gov (United States)

    Caso, Alvaro; Arrachea, Liliana; Lozano, Gustavo S.

    2012-08-01

    We introduce thermometers to define the local temperature of an electronic system driven out-of-equilibrium by local ac fields. We discuss the behavior of the local temperature along the sample, showing that it exhibits spatial fluctuations following an oscillatory pattern. We show explicitly that the local temperature is the correct indicator for heat flow.

  19. Relation between local temperature gradients and the direction of heat flow in quantum driven systems

    Energy Technology Data Exchange (ETDEWEB)

    Caso, Alvaro; Arrachea, Liliana [Departamento de Fisica, FCEyN, Universidad de Buenos Aires, Pabellon 1, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Lozano, Gustavo S., E-mail: lozano@df.uba.ar [Departamento de Fisica, FCEyN, Universidad de Buenos Aires, Pabellon 1, Ciudad Universitaria, 1428 Buenos Aires (Argentina)

    2012-08-15

    We introduce thermometers to define the local temperature of an electronic system driven out-of-equilibrium by local ac fields. We discuss the behavior of the local temperature along the sample, showing that it exhibits spatial fluctuations following an oscillatory pattern. We show explicitly that the local temperature is the correct indicator for heat flow.

  20. Advanced In-Space Propulsion (AISP): Micro Electrospray Propulsion (MEP)

    Data.gov (United States)

    National Aeronautics and Space Administration — Propulsion technology is often critical for space missions. High-value missions could be done with very small spacecraft, even CubeSats, but these nanosatellites...

  1. NASA's Nuclear Thermal Propulsion Project

    Science.gov (United States)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Clement, Steven; Borowski, Stanley K.; hide

    2015-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC- 3 in the development of advanced aviation. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP).

  2. MOTHER MK II: An advanced direct cycle high temperature gas reactor

    International Nuclear Information System (INIS)

    Hart, R.S.; Kendall, J.M.; Marsden, B.J.

    2003-01-01

    The MOTHER (MOdular Thermal HElium Reactor) power plant concepts employ high temperature gas reactors utilizing TRISO fuel, graphite moderator, and helium coolant, in combination with a direct Brayton cycle for electricity generation. The helium coolant from the reactor vessel passes through a Power Conversion Unit (PCU), which includes a turbine-generator, recuperator, precooler, intercooler and turbine-compressors, before being returned to the reactor vessel. The PCU substitutes for the reactor coolant system pumps and steam generators and most of the Balance Of Plant (BOP), including the steam turbines and condensers, employed by conventional nuclear power plants utilizing water cooled reactors. This provides a compact, efficient, and relatively simple plant configuration. The MOTHER MK I conceptual design, completed in the 1987 - 1989 time frame, was developed to economically meet the energy demands for extracting and processing heavy oil from the tar sands of western Canada. However, considerable effort was made to maximize the market potential beyond this application. Consistent with the remote and very high labour rate environment in the tar sands region, simplification of maintenance procedures and facilitation of 'change-out' in lieu of in situ repair was a design focus. MOTHER MK I had a thermal output of 288 MW and produced 120 MW electrical when operated in the electricity only production mode. An annular Prismatic reactor core was utilized, largely to minimize day-to-day operations activities. Key features of the power conversion system included two Power Conversion Units (144 MW th each), the horizontal orientation of all rotating machinery and major heat exchangers axes, high speed rotating machinery (17,030 rpm for the turbine-compressors and 10,200 rpm for the power turbine-generator), gas (helium) bearings for all rotating machinery, and solid state frequency conversion from 170 cps (at full power) to the grid frequency. Recognizing that the on

  3. A direct algorithm for convective adjustment of the vertical temperature profile for an arbitrary critical lapse rate

    Science.gov (United States)

    Akmaev, Rashid A.

    1991-01-01

    An efficient direct algorithm of convective adjustment for an arbitrary critical value of the vertical temperature lapse rate gamma is proposed. The algorithm provides an exact and unique solution of a standard convective adjustment problem for models with temperature specified either on nonuniformly spaced levels or for layers of different thicknesses in pressure, sigma, or other vertical coordinate related to pressure. The algorithm may be recommended for use either directly in atmospheric models not explicitly including a hydrologic cycle with prescribed gamma, or as a part of more complicated parameterizations of moist convection, where gamma may be calculated depending on relative humidity.

  4. Direct measurement of osmotic pressure of glycosaminoglycan solutions by membrane osmometry at room temperature.

    Science.gov (United States)

    Chahine, Nadeen O; Chen, Faye H; Hung, Clark T; Ateshian, Gerard A

    2005-09-01

    Articular cartilage is a hydrated soft tissue composed of negatively charged proteoglycans fixed within a collagen matrix. This charge gradient causes the tissue to imbibe water and swell, creating a net osmotic pressure that enhances the tissue's ability to bear load. In this study we designed and utilized an apparatus for directly measuring the osmotic pressure of chondroitin sulfate, the primary glycosaminoglycan found in articular cartilage, in solution with varying bathing ionic strength (0.015 M, 0.15 M, 0.5 M, 1 M, and 2 M NaCl) at room temperature. The osmotic pressure (pi) was found to increase nonlinearly with increasing chondroitin sulfate concentration and decreasing NaCl ionic bath environment. Above 1 M NaCl, pi changes negligibly with further increases in salt concentration, suggesting that Donnan osmotic pressure is negligible above this threshold, and the resulting pressure is attributed to configurational entropy. Results of the current study were also used to estimate the contribution of osmotic pressure to the stiffness of cartilage based on theoretical and experimental considerations. Our findings indicate that the osmotic pressure resulting from configurational entropy is much smaller in cartilage (based on an earlier study on bovine articular cartilage) than in free solution. The rate of change of osmotic pressure with compressive strain is found to contribute approximately one-third of the compressive modulus (H(A)(eff)) of cartilage (Pi approximately H(A)(eff)/3), with the balance contributed by the intrinsic structural modulus of the solid matrix (i.e., H(A) approximately 2H(A)(eff)/3). A strong dependence of this intrinsic modulus on salt concentration was found; therefore, it appears that proteoglycans contribute structurally to the magnitude of H(A), in a manner independent of osmotic pressure.

  5. New frontiers in space propulsion sciences

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Glen A. [Gravi Atomic Research, Madison, AL 35757 (United States)], E-mail: glen.a.robertson@nasa.gov; Murad, P.A. [Vienna, VA 22182 (United States); Davis, Eric [Institute for Advanced Studies at Austin, Austin, TX 78759 (United States)

    2008-03-15

    Mankind's destiny points toward a quest for the stars. Realistically, it is difficult to achieve this using current space propulsion science and develop the prerequisite technologies, which for the most part requires the use of massive amounts of propellant to be expelled from the system. Therefore, creative approaches are needed to reduce or eliminate the need for a propellant. Many researchers have identified several unusual approaches that represent immature theories based upon highly advanced concepts. These theories and concepts could lead to creating the enabling technologies and forward thinking necessary to eventually result in developing new directions in space propulsion science. In this paper, some of these theoretical and technological concepts are examined - approaches based upon Einstein's General Theory of Relativity, spacetime curvature, superconductivity, and newer ideas where questions are raised regarding conservation theorems and if some of the governing laws of physics, as we know them, could be violated or are even valid. These conceptual ideas vary from traversable wormholes, Krasnikov tubes and Alcubierre's warpdrive to Electromagnetic (EM) field propulsion with possible hybrid systems that incorporate our current limited understanding of zero point fields and quantum mechanics.

  6. Direct writing of Cu-based micro-temperature detectors using femtosecond laser reduction of CuO nanoparticles

    Science.gov (United States)

    Mizoshiri, Mizue; Arakane, Shun; Sakurai, Junpei; Hata, Seiichi

    2016-03-01

    Cu-based micro-temperature detectors were fabricated using femtosecond laser reduction of CuO nanoparticles. Cu-based microstructures were directly created by laser scanning on a CuO nanoparticle solution film. Cu-rich and Cu2O-rich microstructures were selectively formed to electrically connect two Cu thin-film electrodes for use in temperature detectors. Cu-rich and Cu2O-rich micro-temperature detectors were fabricated at scanning speeds of 500 and 1000 µm/s, respectively, at a pulse energy of 1.2 nJ. The temperature coefficient of resistance values of the Cu-rich and Cu2O-rich microstructures were positive and negative, respectively; these temperature behaviors are typical of metal and semiconductor materials, respectively.

  7. Eagleworks Laboratories: Advanced Propulsion Physics Research

    Science.gov (United States)

    White, Harold; March, Paul; Williams, Nehemiah; ONeill, William

    2011-01-01

    NASA/JSC is implementing an advanced propulsion physics laboratory, informally known as "Eagleworks", to pursue propulsion technologies necessary to enable human exploration of the solar system over the next 50 years, and enabling interstellar spaceflight by the end of the century. This work directly supports the "Breakthrough Propulsion" objectives detailed in the NASA OCT TA02 In-space Propulsion Roadmap, and aligns with the #10 Top Technical Challenge identified in the report. Since the work being pursued by this laboratory is applied scientific research in the areas of the quantum vacuum, gravitation, nature of space-time, and other fundamental physical phenomenon, high fidelity testing facilities are needed. The lab will first implement a low-thrust torsion pendulum (research has produced data suggesting very high specific impulse coupled with high specific force. If the physics and engineering models can be explored and understood in the lab to allow scaling to power levels pertinent for human spaceflight, 400kW SEP human missions to Mars may become a possibility, and at power levels of 2MW, 1-year transit to Neptune may also be possible. Additionally, the lab is implementing a warp field interferometer that will be able to measure spacetime disturbances down to 150nm. Recent work published by White [1] [2] [3] suggests that it may be possible to engineer spacetime creating conditions similar to what drives the expansion of the cosmos. Although the expected magnitude of the effect would be tiny, it may be a "Chicago pile" moment for this area of physics.

  8. Dual direction blower system powered by solar energy to reduce car cabin temperature in open parking condition

    Science.gov (United States)

    Hamdan, N. S.; Radzi, M. F. M.; Damanhuri, A. A. M.; Mokhtar, S. N.

    2017-10-01

    El-nino phenomenon that strikes Malaysia with temperature recorded more than 35°C can lead to extreme temperature rise in car cabin up to 80°C. Various problems will arise due to this extreme rising of temperature such as the occupant are vulnerable to heat stroke, emission of benzene gas that can cause cancer due to reaction of high temperature with interior compartments, and damage of compartments in the car. The current solution available to reduce car cabin temperature including tinted of window and portable heat rejection device that are available in the market. As an alternative to reduce car cabin temperature, this project modifies the car’s air conditioning blower motor into dual direction powered by solar energy and identifies its influence to temperature inside the car, parked under scorching sun. By reducing the car cabin temperature up to 10°C which equal to 14% of reduction in the car cabin temperature, this simple proposed system aims to provide comfort to users due to its capability in improving the quality of air and moisture in the car cabin.

  9. Development of Cubesat Propulsion Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of this IRAD will be to develop a propulsion system that can be cheaply and reliably used for NASA GSFC cubesat missions. Reliability will be...

  10. Propulsion Systems Laboratory, Bldg. 125

    Data.gov (United States)

    Federal Laboratory Consortium — The Propulsion Systems Laboratory (PSL) is NASAs only ground test facility capable of providing true altitude and flight speed simulation for testing full scale gas...

  11. Hydrogen/oxygen auxiliary propulsion technology

    Science.gov (United States)

    Reed, Brian D.; Schneider, Steven J.

    1991-01-01

    This paper provides a survey of hydogen/oxygen (H/O) auxiliary propulsion system (APS) concepts and low thrust H/O rocket technology. A review of H/O APS studies performed for the Space Shuttle, Space Tug, Space Station Freedom, and Advanced Manned Launch System programs is given. The survey also includes a review of low thrust H/O rocket technology programs, covering liquid H/O and gaseous H/O thrusters, ranging from 6600 N to 440 mN thrust. Ignition concepts for H/O thrusters and high-temperature, oxidation-resistant chamber materials are also reviewed.

  12. Ultrahigh Specific Impulse Nuclear Thermal Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Anne Charmeau; Brandon Cunningham; Samim Anghaie

    2009-02-09

    Research on nuclear thermal propulsion systems (NTP) have been in forefront of the space nuclear power and propulsion due to their design simplicity and their promise for providing very high thrust at reasonably high specific impulse. During NERVA-ROVER program in late 1950's till early 1970's, the United States developed and ground tested about 18 NTP systems without ever deploying them into space. The NERVA-ROVER program included development and testing of NTP systems with very high thrust (~250,000 lbf) and relatively high specific impulse (~850 s). High thrust to weight ratio in NTP systems is an indicator of high acceleration that could be achieved with these systems. The specific impulse in the lowest mass propellant, hydrogen, is a function of square root of absolute temperature in the NTP thrust chamber. Therefor optimizing design performance of NTP systems would require achieving the highest possible hydrogen temperature at reasonably high thrust to weight ratio. High hydrogen exit temperature produces high specific impulse that is a diret measure of propellant usage efficiency.

  13. Electric propulsion for small satellites

    Science.gov (United States)

    Keidar, Michael; Zhuang, Taisen; Shashurin, Alexey; Teel, George; Chiu, Dereck; Lukas, Joseph; Haque, Samudra; Brieda, Lubos

    2015-01-01

    Propulsion is required for satellite motion in outer space. The displacement of a satellite in space, orbit transfer and its attitude control are the task of space propulsion, which is carried out by rocket engines. Electric propulsion uses electric energy to energize or accelerate the propellant. The electric propulsion, which uses electrical energy to accelerate propellant in the form of plasma, is known as plasma propulsion. Plasma propulsion utilizes the electric energy to first, ionize the propellant and then, deliver energy to the resulting plasma leading to plasma acceleration. Many types of plasma thrusters have been developed over last 50 years. The variety of these devices can be divided into three main categories dependent on the mechanism of acceleration: (i) electrothermal, (ii) electrostatic and (iii) electromagnetic. Recent trends in space exploration associate with the paradigm shift towards small and efficient satellites, or micro- and nano-satellites. A particular example of microthruster considered in this paper is the micro-cathode arc thruster (µCAT). The µCAT is based on vacuum arc discharge. Thrust is produced when the arc discharge erodes some of the cathode at high velocity and is accelerated out the nozzle by a Lorentz force. The thrust amount is controlled by varying the frequency of pulses with demonstrated range to date of 1-50 Hz producing thrust ranging from 1 µN to 0.05 mN.

  14. Correction of temperature-induced spectral variation by continuous piecewise direct standardization

    NARCIS (Netherlands)

    Wulfert, F.; Kok, W. T.; de Noord, O. E.; Smilde, A. K.

    2000-01-01

    In process analytical applications it is not always possible to keep the measurement conditions constant. However, fluctuations in external variables such as temperature can have a strong influence on measurement results. For example, nonlinear temperature effects on near-infrared (NIR) spectra may

  15. Direct screening of tetracyclines in water and bovine milk using room temperature phosphorescence detection

    Energy Technology Data Exchange (ETDEWEB)

    Traviesa-Alvarez, J.M. [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, c/Julian Claveria 8, 33006 Oviedo (Spain); Costa-Fernandez, J.M. [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, c/Julian Claveria 8, 33006 Oviedo (Spain); Pereiro, R. [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, c/Julian Claveria 8, 33006 Oviedo (Spain); Sanz-Medel, A. [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, c/Julian Claveria 8, 33006 Oviedo (Spain)]. E-mail: asm@uniovi.es

    2007-04-18

    A fast and simple flow-through optosensor was designed and characterized for the direct screening of four tetracycline (TCC) antibiotics (tetracycline, oxytetracycline, chlortetracycline and doxycycline) in water and bovine milk samples. The proposed optosensor provides rapid binary yes/no overall responses, being appropriate for the screening of this family of antibiotics above or below a pre-set concentration threshold. The experimental set-up is based on a flow-injection manifold coupled on-line to a phosphorescence detector. Aliquots of the samples are pretreated with Eu(III) to form room temperature phosphorescent metal chelates and injected in the flow manifold. Those chelates are then on-line retained on a conventional flow-cell (packed with polymeric Amberlite XAD-4 particles) which is placed inside the cell holder of the phosphorimeter. After the emission is registered, the antibiotic-metal complexes are eluted from the packed resin with 1 M HCl (for milk samples a second regeneration step, using methanol, should be performed). A sample throughput of about 20 samples per hour was obtained. Optimum experimental conditions include a pH 9, a Eu(III) concentration of 2 x 10{sup -4} M and 8 mM sodium sulphite as chemical deoxygenant. The phosphorescence emitted by the europium-TCC complexes was measured at 394 and 617 nm for excitation and emission wavelengths, respectively. The unreliability region, given by the probability of false positives and false negatives, respectively (set at 5% in both cases) was in the range between 0.2 and 11.6 nM for detection of tetracyclines in water samples (at a cut-off level of 4 nM) and in the range between 165 and 238 nM for detection of tetracyclines in milk (cut-off level fixed at the normative EU level of 200 nM). Finally, the applicability of the proposed screening optosensor was tested for the reliable control of tetracyclines in contaminated and uncontaminated water and milk samples.

  16. Direct screening of tetracyclines in water and bovine milk using room temperature phosphorescence detection.

    Science.gov (United States)

    Traviesa-Alvarez, J M; Costa-Fernández, J M; Pereiro, R; Sanz-Medel, A

    2007-04-18

    A fast and simple flow-through optosensor was designed and characterized for the direct screening of four tetracycline (TCC) antibiotics (tetracycline, oxytetracycline, chlortetracycline and doxycycline) in water and bovine milk samples. The proposed optosensor provides rapid binary yes/no overall responses, being appropriate for the screening of this family of antibiotics above or below a pre-set concentration threshold. The experimental set-up is based on a flow-injection manifold coupled on-line to a phosphorescence detector. Aliquots of the samples are pretreated with Eu(III) to form room temperature phosphorescent metal chelates and injected in the flow manifold. Those chelates are then on-line retained on a conventional flow-cell (packed with polymeric Amberlite XAD-4 particles) which is placed inside the cell holder of the phosphorimeter. After the emission is registered, the antibiotic-metal complexes are eluted from the packed resin with 1M HCl (for milk samples a second regeneration step, using methanol, should be performed). A sample throughput of about 20 samples per hour was obtained. Optimum experimental conditions include a pH 9, a Eu(III) concentration of 2 x 10(-4) M and 8 mM sodium sulphite as chemical deoxygenant. The phosphorescence emitted by the europium-TCC complexes was measured at 394 and 617 nm for excitation and emission wavelengths, respectively. The unreliability region, given by the probability of false positives and false negatives, respectively (set at 5% in both cases) was in the range between 0.2 and 11.6 nM for detection of tetracyclines in water samples (at a cut-off level of 4 nM) and in the range between 165 and 238 nM for detection of tetracyclines in milk (cut-off level fixed at the normative EU level of 200 nM). Finally, the applicability of the proposed screening optosensor was tested for the reliable control of tetracyclines in contaminated and uncontaminated water and milk samples.

  17. Feasibility of using ammonia-water mixture in high temperature concentrated solar power plants with direct vapour generation

    DEFF Research Database (Denmark)

    Modi, Anish; Knudsen, Thomas; Haglind, Fredrik

    2014-01-01

    Concentrated solar power plants have attracted an increasing interest in the past few years – both with respect to the design of various plant components, and extending the operation hours by employing different types of storage systems. One approach to improve the overall plant performance...... temperatures without corroding the equipment by using suitable additives with the mixture. This paper assesses the thermodynamic feasibility of using ammonia-water mixture in high temperature (450 °C) and high pressure (over 100 bar) concentrated solar power plants with direct vapour generation. The following...... is to use direct vapour generation with water/steam as both the heat transfer fluid in the solar receivers and the cycle working fluid. This enables to operate the plant with higher turbine inlet temperatures. Available literature suggests that it is feasible to use ammonia-water mixture at high...

  18. Instrument comprising a cable or tube provided provided with a propulsion device

    NARCIS (Netherlands)

    Breedveld, P.

    2006-01-01

    The invention relates to an instrument (1) comprising a cable or tube (3), at a distal end of which a propulsion device (4) is provided for moving the cable or tube in a hollow space, the propulsion device being shaped like a donut lying in a plane at right angles to the longitudinal direction of

  19. Nonlocal control of electron temperature in short direct current glow discharge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Demidov, V. I. [Department of Optics and Spectroscopy, St. Petersburg State University, St. Petersburg 199034 (Russian Federation); International Laboratory “Nonlocal Plasma in Nanotechnology and Medicine”, ITMO University, Kronverkskiy pr. 49, St. Petersburg 197101 (Russian Federation); Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506 (United States); Kudryavtsev, A. A.; Stepanova, O. M. [Department of Optics and Spectroscopy, St. Petersburg State University, St. Petersburg 199034 (Russian Federation); Kurlyandskaya, I. P. [International Laboratory “Nonlocal Plasma in Nanotechnology and Medicine”, ITMO University, Kronverkskiy pr. 49, St. Petersburg 197101 (Russian Federation); St. Petersburg University of State Fire Service of EMERCOM RF, Murmansk Branch, Murmansk 183040 (Russian Federation)

    2014-09-15

    To demonstrate controlling the electron temperature in nonlocal plasma, experiments have been performed on a short (without positive column) dc glow discharge with a cold cathode by applying different voltages to the conducting discharge wall. The experiments have been performed for low-pressure noble gas discharges. The applied voltage can modify trapping the energetic electrons emitted from the cathode sheath and arising from the atomic and molecular processes in the plasma within the device volume. This phenomenon results in the energetic electrons heating the slow plasma electrons, which consequently modifies the electron temperature. Furthermore, a numerical model of the discharge has demonstrated the electron temperature modification for the above case.

  20. Additive Manufacturing of Low Cost Upper Stage Propulsion Components

    Science.gov (United States)

    Protz, Christopher; Bowman, Randy; Cooper, Ken; Fikes, John; Taminger, Karen; Wright, Belinda

    2014-01-01

    NASA is currently developing Additive Manufacturing (AM) technologies and design tools aimed at reducing the costs and manufacturing time of regeneratively cooled rocket engine components. These Low Cost Upper Stage Propulsion (LCUSP) tasks are funded through NASA's Game Changing Development Program in the Space Technology Mission Directorate. The LCUSP project will develop a copper alloy additive manufacturing design process and develop and optimize the Electron Beam Freeform Fabrication (EBF3) manufacturing process to direct deposit a nickel alloy structural jacket and manifolds onto an SLM manufactured GRCop chamber and Ni-alloy nozzle. In order to develop these processes, the project will characterize both the microstructural and mechanical properties of the SLMproduced GRCop-84, and will explore and document novel design techniques specific to AM combustion devices components. These manufacturing technologies will be used to build a 25K-class regenerative chamber and nozzle (to be used with tested DMLS injectors) that will be tested individually and as a system in hot fire tests to demonstrate the applicability of the technologies. These tasks are expected to bring costs and manufacturing time down as spacecraft propulsion systems typically comprise more than 70% of the total vehicle cost and account for a significant portion of the development schedule. Additionally, high pressure/high temperature combustion chambers and nozzles must be regeneratively cooled to survive their operating environment, causing their design to be time consuming and costly to build. LCUSP presents an opportunity to develop and demonstrate a process that can infuse these technologies into industry, build competition, and drive down costs of future engines.

  1. SOLID SOLUTION CARBIDES ARE THE KEY FUELS FOR FUTURE NUCLEAR THERMAL PROPULSION

    Science.gov (United States)

    Panda, Binayak; Hickman, Robert R.; Shah, Sandeep

    2005-01-01

    Nuclear thermal propulsion uses nuclear energy to directly heat a propellant (such as liquid hydrogen) to generate thrust for space transportation. In the 1960 s, the early Rover/Nuclear Engine for Rocket Propulsion Application (NERVA) program showed very encouraging test results for space nuclear propulsion but, in recent years, fuel research has been dismal. With NASA s renewed interest in long-term space exploration, fuel researchers are now revisiting the RoverMERVA findings, which indicated several problems with such fuels (such as erosion, chemical reaction of the fuel with propellant, fuel cracking, and cladding issues) that must be addressed. It is also well known that the higher the temperature reached by a propellant, the larger the thrust generated from the same weight of propellant. Better use of fuel and propellant requires development of fuels capable of reaching very high temperatures. Carbides have the highest melting points of any known material. Efforts are underway to develop carbide mixtures and solid solutions that contain uranium carbide, in order to achieve very high fuel temperatures. Binary solid solution carbides (U, Zr)C have proven to be very effective in this regard. Ternary carbides such as (U, Zr, X) carbides (where X represents Nb, Ta, W, and Hf) also hold great promise as fuel material, since the carbide mixtures in solid solution generate a very hard and tough compact material. This paper highlights past experience with early fuel materials and bi-carbides, technical problems associated with consolidation of the ingredients, and current techniques being developed to consolidate ternary carbides as fuel materials.

  2. Direct Measurements of Infrared Normal Spectral Emissivity of Solid Materials for High-Temperature Applications

    Science.gov (United States)

    Hatzl, S.; Kirschner, M.; Lippig, V.; Sander, T.; Mundt, Ch.; Pfitzner, M.

    2013-11-01

    A new facility for the measurement of the normal spectral emissivity of solid materials for high-temperature applications in the thermal steady state was developed at the Bundeswehr University of Munich. The measurements are performed under atmospheric conditions. The facility covers the temperature range between and and wavelengths between and . The principle of operation involves the spectral comparison of a test sample with a reference blackbody and the sample surface temperature determination with a numerical spectral ratio calculation. The optical characteristics of the blackbody and the sample surface temperature determination are discussed in detail. Furthermore, measurement results of the quasi-reference material silicon-carbide under steady-state conditions are presented to validate the measurement method.

  3. Microwave Thermal Propulsion

    Science.gov (United States)

    Parkin, Kevin L. G.; Lambot, Thomas

    2017-01-01

    We have conducted research in microwave thermal propulsion as part of the space exploration access technologies (SEAT) research program, a cooperative agreement (NNX09AF52A) between NASA and Carnegie Mellon University. The SEAT program commenced on the 19th of February 2009 and concluded on the 30th of September 2015. The DARPA/NASA Millimeter-wave Thermal Launch System (MTLS) project subsumed the SEAT program from May 2012 to March 2014 and one of us (Parkin) served as its principal investigator and chief engineer. The MTLS project had no final report of its own, so we have included the MTLS work in this report and incorporate its conclusions here. In the six years from 2009 until 2015 there has been significant progress in millimeter-wave thermal rocketry (a subset of microwave thermal rocketry), most of which has been made under the auspices of the SEAT and MTLS programs. This final report is intended for multiple audiences. For researchers, we present techniques that we have developed to simplify and quantify the performance of thermal rockets and their constituent technologies. For program managers, we detail the facilities that we have built and the outcomes of experiments that were conducted using them. We also include incomplete and unfruitful lines of research. For decision-makers, we introduce the millimeter-wave thermal rocket in historical context. Considering the economic significance of space launch, we present a brief but significant cost-benefit analysis, for the first time showing that there is a compelling economic case for replacing conventional rockets with millimeter-wave thermal rockets.

  4. Direct reduction of low grade nickel laterite ore to produce ferronickel using isothermal - temperature gradient

    Science.gov (United States)

    Zulhan, Zulfiadi; Gibranata, Ian

    2017-01-01

    In this study, low grade nickel laterite ore was processed by means of isothermal-temperature gradient method to produce ferronickel nugget. The ore and coal as reductant were ground to obtain the grain size of less than 0.25 mm and 0.425 mm, respectively. Both ground laterite ore and coal were mixed, agglomerated in the form of cylindrical pellet by using press machine and then reduced at temperature of 1000°C to 1400°C in a muffle furnace. The experiments were conducted at three stages each at different temperature profile: the first stage was isothermal at 1000°C; the second stage was temperature gradient at certain heating rate from 1000 to 1400°C; and the third stage was isothermal at 1400°C. The heating rate during temperature gradient stage was varied: 6.67, 8.33 and 10°C/minute. No fluxes were added in these experiments. By addition of 10 wt% of coal into the laterite nikel ore, product of ferronickel nugget was formed with the size varies from 1-2 mm. However, by increasing the coal content, the size of ferronickel nugget was decreased to less than 0.2 mm. The observation of the samples during the heating stage showed that ferronickel nugget grew and separated from the gangue during temperature gradient stage as it achieved the temperature of 1380°C. Furthermore, the experiment results indicated that the recovery of ferronickel can be increased at lower heating rate during temperature gradient stage and longer holding time for final isothermal stage. The highest nickel recovery was obtained at a heating rate of 6.67°C/minute.

  5. Research Opportunities in Space Propulsion

    Science.gov (United States)

    Rodgers, Stephen L.

    2007-01-01

    Rocket propulsion determines the primary characteristics of any space vehicle; how fast and far it can go, its lifetime, and its capabilities. It is the primary factor in safety and reliability and the biggest cost driver. The extremes of heat and pressure produced by propulsion systems push the limits of materials used for manufacturing. Space travel is very unforgiving with little room for errors, and so many things can go wrong with these very complex systems. So we have to plan for failure and that makes it costly. But what is more exciting than the roar of a rocket blasting into space? By its nature the propulsion world is conservative. The stakes are so high at every launch, in terms of payload value or in human life, that to introduce new components to a working, qualified system is extremely difficult and costly. Every launch counts and no risks are tolerated, which leads to the space world's version of Catch-22:"You can't fly till you flown." The last big 'game changer' in propulsion was the use of liquid hydrogen as a fuel. No new breakthrough, low cost access to space system will be developed without new efficient propulsion systems. Because there is no large commercial market driving investment in propulsion, what propulsion research is done is sponsored by government funding agencies. A further difficulty in propulsion technology development is that there are so few new systems flying. There is little opportunity to evolve propulsion technologies and to update existing systems with results coming out of research as there is in, for example, the auto industry. The biggest hurdle to space exploration is getting off the ground. The launch phase will consume most of the energy required for any foreseeable space exploration mission. The fundamental physical energy requirements of escaping earth's gravity make it difficult. It takes 60,000 kJ to put a kilogram into an escape orbit. The vast majority (-97%) of the energy produced by a launch vehicle is used

  6. Current direction, benthic organisms, temperature, and wind direction data from moored current meter casts in the Gulf of Mexico during the Brine Disposal project, 22 September 1977 - 30 November 1978 (NODC Accession 7900110)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, benthic organisms, temperature, and wind direction data were collected using moored current meter casts in the Gulf of Mexico from September 22,...

  7. Fabrication and Testing of Nuclear-Thermal Propulsion Ground Test Hardware, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Efficient nuclear-thermal propulsion requires heating a low molecular weight gas, typically hydrogen, to high temperature and expelling it through a nozzle. The...

  8. Effect of Ambipolar Potential on the Propulsive Performance of the GDM Plasma Thruster, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Gasdynamic Mirror (GDM) thruster is an electric propulsion device, without electrodes, that will magnetically confine a plasma with such density and temperature...

  9. Fabrication and Testing of Nuclear-Thermal Propulsion Ground Test Hardware, Phase II, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Efficient nuclear-thermal propulsion (NTP) requires heating a low molecular weight gas, typically hydrogen, to high temperature and expelling it through a nozzle....

  10. Fabrication and Testing of Nuclear-Thermal Propulsion Ground Test Hardware Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Efficient nuclear-thermal propulsion requires heating a low molecular weight gas, typically hydrogen, to high temperature and expelling it through a nozzle. The...

  11. Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field

    KAUST Repository

    Zhang, Senfu

    2018-03-29

    Magnetic skyrmions are topologically protected nanoscale spin textures exhibiting fascinating physical behaviors. Recent observations of room temperature skyrmions in sputtered multilayer films are an important step towards their use in ultra-low power devices. Such practical applications prefer skyrmions to be stable at zero magnetic fields and room temperature. Here, we report the creation of skyrmion lattices in Pt/Co/Ta multilayers by a scanning local field using magnetic force microscopy tips. We also show that those newly created skyrmion lattices are stable at both room temperature and zero fields. Lorentz transmission electron microscopy measurements reveal that the skyrmions in our films are of Néel-type. To gain a deeper understanding of the mechanism behind the creation of a skyrmion lattice by the scanning of local fields, we perform micromagnetic simulations and find the experimental results to be in agreement with our simulation data. This study opens another avenue for the creation of skyrmion lattices in thin films.

  12. An in-vitro study to compare the temperature rise in the pulp chamber by direct method using three different provisional restorative materials

    Directory of Open Access Journals (Sweden)

    Ankita Piplani

    2016-01-01

    Conclusion: Cool temp showed least temperature rise in the pulp chamber. The order of rise in intrapulpal temperature in tested provisional materials using direct technique would be Cool temp, Integrity, and Protemp-4.

  13. Direct Microscale Measurement of Mouse Oocyte Membrane Permeability to Water and Ethylene Glycol at Subzero Temperatures Using Cryomicroscopy.

    Science.gov (United States)

    Han, X

      BACKGROUND: Investigation of cell osmotic behavior at subzero temperatures is of critical importance to the optimization of cooling procedures for cryopreservation. Based on established thermodynamic models, plasma membrane permeability coefficients for water and cryoprotectant agent (CPA) (L cpa , P p ) and their activation energies (E a Lp , E a Pcpa ) are essential to predict the change of cell volume and composition of intracellular solutions corresponding to different cooling procedures. However, currently available methods to measure L p at subzero temperatures suffer from technical difficulties due to ice formation and there are no generalized methods to measure P cpa at subzero temperatures. The present study aims to investigate cell osmotic behavior at subzero temperatures without ice formation. In the study cells were directly injected into super-cooled CPA solutions mounted on a cryomicroscope, and the corresponding osmotic properties were measured. Using ethylene glycol (EG), the value of PEG for mouse (CD-1) metaphase II oocytes at 0, -5, -10 degree C was determined to be 8.451.20, 7.430.91, 6.401.10, x10-6 cm/min, respectively, and E a PEG was calculated to be 3.9 kCal/mol. Lp in the presence of EG (L p EG ) at 0, -5, -10 , -15 degree C was determined to be 7.0 1.15, 4.90 1.20, 2.44 0.31, 1.200.24, x 10 -2 µm/min/atm, respectively, and E a Lp was calculated to be 15.5 kCal/mol. Comparing these values with those previously measured at superzero temperatures, we concluded that for mouse oocytes, the Arrhenius relationship for L p EG is consistent at superzero and subzero temperatures, but the values of P EG at subzero temperatures are much lower than the extrapolated values from the Arrhenius relationship at superzero temperatures, possibly caused by membrane phase transition at low temperatures.

  14. The Use of Low Temperature Detectors for Direct Measurements of the Mass of the Electron Neutrino

    Directory of Open Access Journals (Sweden)

    A. Nucciotti

    2016-01-01

    Full Text Available Recent years have witnessed many exciting breakthroughs in neutrino physics. The detection of neutrino oscillations has proved that neutrinos are massive particles, but the assessment of their absolute mass scale is still an outstanding challenge in today particle physics and cosmology. Since low temperature detectors were first proposed for neutrino physics experiments in 1984, there has been tremendous technical progress: today this technique offers the high energy resolution and scalability required to perform competitive experiments challenging the lowest electron neutrino masses. This paper reviews the thirty-year effort aimed at realizing calorimetric measurements with sub-eV neutrino mass sensitivity using low temperature detectors.

  15. The Effect of the Rolling Direction, Temperature, and Etching Time on the Photochemical Machining of Monel 400 Microchannels

    Directory of Open Access Journals (Sweden)

    Deepakkumar H. Patil

    2016-01-01

    Full Text Available The present paper describes the effect of the rolling direction on the quality of microchannels manufactured using photochemical machining (PCM of Monel 400. Experiments were carried out to fabricate microchannels along and across the rolling direction to investigate the effect of the grain orientation on microchannel etching. The input parameters considered were channel width and rolling direction, whereas the depth of etch was the response parameters. Different channels of widths of 60, 100, 150, 200, and 250 μm were etched. The effects of the etching time and temperature of the etchant solution on the undercut and depth of the microchannels were studied. For good quality microchannels, the effects of spinning time, spinning speed, exposure time, and photoresist film strength were also taken into consideration. Optimized values of the above were used for the experimentation. The results show that the depth of etch of the microchannel increases more along the rolling direction than across the rolling direction. The channel width and depth are significantly affected by the etching time and temperature. The proposed study reports an improvement in the quality of microchannels produced using PCM.

  16. The theory, direction, and magnitude of ecosystem fire probability as constrained by precipitation and temperature.

    Science.gov (United States)

    Guyette, Richard; Stambaugh, Michael C; Dey, Daniel; Muzika, Rose Marie

    2017-01-01

    The effects of climate on wildland fire confronts society across a range of different ecosystems. Water and temperature affect the combustion dynamics, irrespective of whether those are associated with carbon fueled motors or ecosystems, but through different chemical, physical, and biological processes. We use an ecosystem combustion equation developed with the physical chemistry of atmospheric variables to estimate and simulate fire probability and mean fire interval (MFI). The calibration of ecosystem fire probability with basic combustion chemistry and physics offers a quantitative method to address wildland fire in addition to the well-studied forcing factors such as topography, ignition, and vegetation. We develop a graphic analysis tool for estimating climate forced fire probability with temperature and precipitation based on an empirical assessment of combustion theory and fire prediction in ecosystems. Climate-affected fire probability for any period, past or future, is estimated with given temperature and precipitation. A graphic analyses of wildland fire dynamics driven by climate supports a dialectic in hydrologic processes that affect ecosystem combustion: 1) the water needed by plants to produce carbon bonds (fuel) and 2) the inhibition of successful reactant collisions by water molecules (humidity and fuel moisture). These two postulates enable a classification scheme for ecosystems into three or more climate categories using their position relative to change points defined by precipitation in combustion dynamics equations. Three classifications of combustion dynamics in ecosystems fire probability include: 1) precipitation insensitive, 2) precipitation unstable, and 3) precipitation sensitive. All three classifications interact in different ways with variable levels of temperature.

  17. Body temperature predicts the direction of internal desynchronization in humans isolated from time cues

    NARCIS (Netherlands)

    Daan, Serge; Honma, Sato; Honma, Ken-ichi

    2013-01-01

    This publication presents a new analysis of experiments that were carried out in human subjects in isolation from time cues, under supervision of Jurgen Aschoff and Rutger Wever at the Max Planck Institute for Behavioural Physiology (Erling-Andechs, Germany, 1964-1974). Mean rectal temperatures

  18. The theory, direction, and magnitude of ecosystem fire probability as constrained by precipitation and temperature

    Science.gov (United States)

    Richard Guyette; Michael C. Stambaugh; Daniel Dey; Rose Marie Muzika; Ben Bond-Lamberty

    2017-01-01

    The effects of climate on wildland fire confronts society across a range of different ecosystems. Water and temperature affect the combustion dynamics, irrespective of whether those are associated with carbon fueled motors or ecosystems, but through different chemical, physical, and biological processes. We use an ecosystem combustion equation developed with the...

  19. Granger causality estimate of information flow in temperature fields is consistent with wind direction

    Czech Academy of Sciences Publication Activity Database

    Jajcay, Nikola; Hlinka, Jaroslav; Hartman, David; Paluš, Milan

    2014-01-01

    Roč. 16, - (2014), EGU2014-12768 ISSN 1607-7962. [EGU General Assembly /11./. 27.04.2014-02.05.2014, Vienna] Institutional support: RVO:67985807 Keywords : Granger causality * climate * information flow * surface air temperature * wind Subject RIV: BB - Applied Statistics, Operational Research

  20. Enrichment of denitrifying methanotrophic bacteria for application after direct low-temperature anaerobic sewage treatment

    NARCIS (Netherlands)

    Kampman, C.; Hendrickx, T.L.G.; Luesken, F.; Alen, T.A.; Jetten, M.S.M.; Camp, op den H.J.M.; Zeeman, G.; Buisman, C.J.N.; Temmink, B.G.

    2012-01-01

    Despite many advantages of anaerobic sewage treatment over conventional activated sludge treatment, it has not yet been applied in temperate zones. This is especially because effluent from low-temperature anaerobic treatment contains nitrogen and dissolved methane. The presence of nitrogen and

  1. Breakthrough Propulsion Physics Research Program

    Science.gov (United States)

    Millis, Marc G.

    1996-01-01

    In 1996, a team of government, university and industry researchers proposed a program to seek the ultimate breakthroughs in space transportation: propulsion that requires no propellant mass, propulsion that can approach and, if possible, circumvent light speed, and breakthrough methods of energy production to power such devices. This Breakthrough Propulsion Physics program, managed by Lewis Research Center, is one part of a comprehensive, long range Advanced Space Transportation Plan managed by Marshall Space Flight Center. Because the breakthrough goals are beyond existing science, a main emphasis of this program is to establish metrics and ground rules to produce near-term credible progress toward these incredible possibilities. An introduction to the emerging scientific possibilities from which such solutions can be sought is also presented.

  2. Main Propulsion Test Article (MPTA)

    Science.gov (United States)

    Snoddy, Cynthia

    2010-01-01

    Scope: The Main Propulsion Test Article integrated the main propulsion subsystem with the clustered Space Shuttle Main Engines, the External Tank and associated GSE. The test program consisted of cryogenic tanking tests and short- and long duration static firings including gimbaling and throttling. The test program was conducted on the S1-C test stand (Position B-2) at the National Space Technology Laboratories (NSTL)/Stennis Space Center. 3 tanking tests and 20 hot fire tests conducted between December 21 1 1977 and December 17, 1980 Configuration: The main propulsion test article consisted of the three space shuttle main engines, flightweight external tank, flightweight aft fuselage, interface section and a boilerplate mid/fwd fuselage truss structure.

  3. Magnetic levitation and MHD propulsion

    International Nuclear Information System (INIS)

    Tixador, P.

    1994-01-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried our in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ..) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. (orig.)

  4. Nuclear thermal propulsion workshop overview

    International Nuclear Information System (INIS)

    Clark, J.S.

    1991-01-01

    NASA is planning an Exploration Technology Program as part of the Space Exploration Initiative to return U.S. astronauts to the moon, conduct intensive robotic exploration of the moon and Mars, and to conduct a piloted mission to Mars by 2019. Nuclear Propulsion is one of the key technology thrust for the human mission to Mars. The workshop addresses NTP (Nuclear Thermal Rocket) technologies with purpose to: assess the state-of-the-art of nuclear propulsion concepts; assess the potential benefits of the concepts for the mission to Mars; identify critical, enabling technologies; lay-out (first order) technology development plans including facility requirements; and estimate the cost of developing these technologies to flight-ready status. The output from the workshop will serve as a data base for nuclear propulsion project planning

  5. Direct Evidence for Solid-like Hydrogen in a Nanoporous Carbon Hydrogen Storage Material at Supercritical Temperatures.

    Science.gov (United States)

    Ting, Valeska P; Ramirez-Cuesta, Anibal J; Bimbo, Nuno; Sharpe, Jessica E; Noguera-Diaz, Antonio; Presser, Volker; Rudic, Svemir; Mays, Timothy J

    2015-08-25

    Here we report direct physical evidence that confinement of molecular hydrogen (H2) in an optimized nanoporous carbon results in accumulation of hydrogen with characteristics commensurate with solid H2 at temperatures up to 67 K above the liquid-vapor critical temperature of bulk H2. This extreme densification is attributed to confinement of H2 molecules in the optimally sized micropores, and occurs at pressures as low as 0.02 MPa. The quantities of contained, solid-like H2 increased with pressure and were directly evaluated using in situ inelastic neutron scattering and confirmed by analysis of gas sorption isotherms. The demonstration of the existence of solid-like H2 challenges the existing assumption that supercritical hydrogen confined in nanopores has an upper limit of liquid H2 density. Thus, this insight offers opportunities for the development of more accurate models for the evaluation and design of nanoporous materials for high capacity adsorptive hydrogen storage.

  6. Characterization of Fibre-Direction Dependent Damping of Glass-Fibre Composites at Low Temperatures and Low Frequencies

    DEFF Research Database (Denmark)

    Kliem, Mathias; Høgsberg, Jan Becker; Dannemann, Martin

    2016-01-01

    This paper deals with the characterization of the fibre-direction dependent damping capability of glass fibre reinforced plastics (GFRP) to be used in electrical power transmission pylons. A fibre-direction dependent damping analysis of unidirectional (UD) GFRP samples was carried out using...... a Dynamic Mechanical Analysis (DMA) for five different fibre orientations (0˚ | 30˚ | 45˚ | 60˚ and 90˚) and two different matrix systems (epoxy and a vinyl ester resin). Based on the dynamic characteristics the damping performance of the various composite materials was studied at three temperatures (-10˚C......, 0˚C and 10˚C) and three vibration frequencies (1 Hz, 10 Hz and 30 Hz). It was observed that the loss factor of Glass Fibre Reinforced Vinyl-Ester (GF-VE) was in general slightly higher compared to the Glass Fibre Reinforced Epoxy (GF-EP). The loss factor increased slightly with temperature, while...

  7. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    Science.gov (United States)

    Berry, G.F.; Minkov, V.; Petrick, M.

    1981-11-02

    A magnetohydrodynamic (MHD) power generating system is described in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  8. Hysteresis-free high-temperature precise bimorph actuators produced by direct bonding of lithium niobate wafers

    Energy Technology Data Exchange (ETDEWEB)

    Shur, V. Ya.; Baturin, I. S.; Mingaliev, E. A.; Zorikhin, D. V.; Udalov, A. R.; Greshnyakov, E. D. [Ferroelectric Laboratory, Institute of Natural Sciences, Ural Federal University, 51 Lenin Ave., 620000 Ekaterinburg (Russian Federation)

    2015-02-02

    The current paper presents a piezoelectric bimorph actuator produced by direct bonding of lithium niobate wafers with the mirrored Y and Z axes. Direct bonding technology allowed to fabricate bidomain plate with precise positioning of ideally flat domain boundary. By optimizing the cutting angle (128° Y-cut), the piezoelectric constant became as large as 27.3 pC/N. Investigation of voltage dependence of bending displacement confirmed that bimorph actuator has excellent linearity and hysteresis-free. Decrease of the applied voltage down to mV range showed the perfect linearity up to the sub-nm deflection amplitude. The frequency and temperature dependences of electromechanical transmission coefficient in wide temperature range (from 300 to 900 K) were investigated.

  9. Simplest AB-Thermonuclear Space Propulsion and Electric Generator

    OpenAIRE

    Bolonkin, Alexander

    2007-01-01

    The author applies, develops and researches mini-sized Micro- AB Thermonuclear Reactors for space propulsion and space power systems. These small engines directly convert the high speed charged particles produced in the thermonuclear reactor into vehicle thrust or vehicle electricity with maximum efficiency. The simplest AB-thermonuclear propulsion offered allows spaceships to reach speeds of 20,000 50,000 km/s (1/6 of light speed) for fuel ratio 0.1 and produces a huge amount of useful elect...

  10. A Comparative Evaluation of Temperature Changes in the Pulpal Chamber during Direct Fabrication of Provisional Restorations: An In Vitro Study

    OpenAIRE

    Manak, Eisha; Arora, Aman

    2011-01-01

    To compare the temperature changes in the pulpal chamber during fabrication of provisional restorations by direct method. A total of 108 three-unit FPD provisional restorations were fabricated on a study model and divided into three main groups according to the material used for the fabrication of matrix. Group A—Alginate impression index group, Group B—Polyvinylsiloxane putty impression index group, Group C—Vacuum formed template group. Each group comprising of 36 specimens, was subdivided i...

  11. Impacts of interactive dust and its direct radiative forcing on interannual variations of temperature and precipitation in winter over East Asia: Impacts of Dust on IAVs of Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Sijia [Scripps Institution of Oceanography, University of California, San Diego, La Jolla California USA; Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Russell, Lynn M. [Scripps Institution of Oceanography, University of California, San Diego, La Jolla California USA; Yang, Yang [Scripps Institution of Oceanography, University of California, San Diego, La Jolla California USA; Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Liu, Ying [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Singh, Balwinder [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Ghan, Steven J. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA

    2017-08-24

    We used 150-year pre-industrial simulations of the Community Earth System Model (CESM) to quantify the impacts of interactively-modeled dust emissions on the interannual variations of temperature and precipitation over East Asia during the East Asian Winter Monsoon (EAWM) season. The simulated December-January-February dust column burden and dust optical depth are lower over northern China in the strongest EAWM years than those of the weakest years, with regional mean values lower by 38.3% and 37.2%, respectively. The decrease in dust over the dust source regions (the Taklamakan and Gobi Deserts) and the downwind region (such as the North China Plain) leads to an increase in direct radiative forcing (RF) both at the surface and top of atmosphere by up to 1.5 and 0.75 W m-2, respectively. The effects of EAWM-related variations in surface winds, precipitation and their effects on dust emissions and wet removal contribute about 67% to the total dust-induced variations of direct RF at the surface and partly offset the cooling that occurs with the EAWM strengthening by heating the surface. The variations of surface air temperature induced by the changes in wind and dust emissions increase by 0.4-0.6 K over eastern coastal China, northeastern China, and Japan, which weakens the impact of EAWM on surface air temperature by 3–18% in these regions. The warming results from the combined effects of changes in direct RF and easterly wind anomalies that bring warm air from the ocean to these regions. Moreover, the feedback of the changes in wind on dust emissions weakens the variations of the sea level pressure gradient on the Siberian High while enhancing the Maritime Continent Low. Therefore, cold air is prevented from being transported from Siberia, Kazakhstan, western and central China to the western Pacific Ocean and decreases surface air temperature by 0.6 K and 2 K over central China and the Tibetan Plateau, respectively. Over eastern coastal China, the variations of

  12. Status report on direct heat and low temperature utilization of geothermal energy in New Zealand

    International Nuclear Information System (INIS)

    Lumb, J.T.; Clelland, L.

    1990-01-01

    The Tasman Pulp and Paper Company's mill at Kawerau continues to be the dominant direct user of geothermal energy in New Zealand. Recent plant changes have increased the effectiveness of the company's use of the resource. Other uses are relatively small in scale and include air and water heating for homes, motels and other commercial and industrial premises. Commercial swimming-pool complexes and pools at hotels, motels and private homes are the other major direct users. This paper reports that overall direct use of the resource has shown a slow increase during the last five years except at Rotorua where the enforced closure of bores has led to more than 70% reduction in use

  13. Simulation of Electric Propulsion Thrusters

    Science.gov (United States)

    2011-01-01

    pp. 764-773. [17] Boyd, I.D., “Monte Carlo Simulation of Nonequilibrium Flow in Low Power Hydrogen Arcjets ,” Physics of Fluids, Vol. 9, 1997, pp...Habiger, H., Hammer, F., Kurtz, H., Riehle, M., and Sleziona, C., “High- Power Hydrogen Arcjet Thrusters,” Journal of Propulsion and Power , Vol. 14, 1998...3086-3095. [18] Boyd, I.D., “Extensive Validation of a Monte Carlo Model for Hydrogen Arcjet Flow Fields,” Journal of Propulsion and Power , Vol. 13

  14. Z-Pinch Fusion Propulsion

    Science.gov (United States)

    Miernik, Janie

    2011-01-01

    Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Shorter trips are better for humans in the harmful radiation environment of deep space. Nuclear propulsion and power plants can enable high Ispand payload mass fractions because they require less fuel mass. Fusion energy research has characterized the Z-Pinch dense plasma focus method. (1) Lightning is form of pinched plasma electrical discharge phenomena. (2) Wire array Z-Pinch experiments are commonly studied and nuclear power plant configurations have been proposed. (3) Used in the field of Nuclear Weapons Effects (NWE) testing in the defense industry, nuclear weapon x-rays are simulated through Z-Pinch phenomena.

  15. Antimatter Propulsion Developed by NASA

    Science.gov (United States)

    1999-01-01

    This Quick Time movie shows possible forms of an antimatter propulsion system being developed by NASA. Antimatter annihilation offers the highest possible physical energy density of any known reaction substance. It is about 10 billion times more powerful than that of chemical energy such as hydrogen and oxygen combustion. Antimatter would be the perfect rocket fuel, but the problem is that the basic component of antimatter, antiprotons, doesn't exist in nature and has to manufactured. The process of antimatter development is ongoing and making some strides, but production of this as a propulsion system is far into the future.

  16. Space Shuttle Main Propulsion System

    Science.gov (United States)

    Wood, C. C.

    1976-01-01

    The Space Shuttle Main Propulsion System provides the impulse to transfer the reusable Orbiter of the Space Shuttle Transportation system and its payload from earth to earth orbit. Both cryogenic and solid rocket propulsion systems are utilized. The selected systems are characterized by (1) reusability wherever possible to reduce program cost, (2) design pressures, and other important design parameters, for the liquid propellant engine significantly higher than past programs for increased performance, and (3) advanced materials and manufacturing processes to withstand the extreme environments. The approaches for solution of these varied problems are emphasized.

  17. Temperature-dependent release of volatile organic compounds of eucalypts by direct analysis in real time (DART) mass spectrometry.

    Science.gov (United States)

    Maleknia, Simin D; Vail, Teresa M; Cody, Robert B; Sparkman, David O; Bell, Tina L; Adams, Mark A

    2009-08-01

    A method is described for the rapid identification of biogenic, volatile organic compounds (VOCs) emitted by plants, including the analysis of the temperature dependence of those emissions. Direct analysis in real time (DART) enabled ionization of VOCs from stem and leaf of several eucalyptus species including E. cinerea, E. citriodora, E. nicholii and E. sideroxylon. Plant tissues were placed directly in the gap between the DART ionization source skimmer and the capillary inlet of the time-of-flight (TOF) mass spectrometer. Temperature-dependent emission of VOCs was achieved by adjusting the temperature of the helium gas into the DART ionization source at 50, 100, 200 and 300 degrees C, which enabled direct evaporation of compounds, up to the onset of pyrolysis of plant fibres (i.e. cellulose and lignin). Accurate mass measurements facilitated by TOF mass spectrometry provided elemental compositions for the VOCs. A wide range of compounds was detected from simple organic compounds (i.e. methanol and acetone) to a series of monoterpenes (i.e. pinene, camphene, cymene, eucalyptol) common to many plant species, as well as several less abundant sesquiterpenes and flavonoids (i.e. naringenin, spathulenol, eucalyptin) with antioxidant and antimicrobial properties. The leaf and stem tissues for all four eucalypt species showed similar compounds. The relative abundances of methanol and ethanol were greater in stem wood than in leaf tissue suggesting that DART could be used to investigate the tissue-specific transport and emissions of VOCs. Copyright (c) 2009 John Wiley & Sons, Ltd.

  18. Guide to Flow Measurement for Electric Propulsion Systems

    Science.gov (United States)

    Frieman, Jason D.; Walker, Mitchell L. R.; Snyder, Steve

    2013-01-01

    In electric propulsion (EP) systems, accurate measurement of the propellant mass flow rate of gas or liquid to the thruster and external cathode is a key input in the calculation of thruster efficiency and specific impulse. Although such measurements are often achieved with commercial mass flow controllers and meters integrated into propellant feed systems, the variability in potential propellant options and flow requirements amongst the spectrum of EP power regimes and devices complicates meter selection, integration, and operation. At the direction of the Committee on Standards for Electric Propulsion Testing, a guide was jointly developed by members of the electric propulsion community to establish a unified document that contains the working principles, methods of implementation and analysis, and calibration techniques and recommendations on the use of mass flow meters in laboratory and spacecraft electric propulsion systems. The guide is applicable to EP devices of all types and power levels ranging from microthrusters to high-power ion engines and Hall effect thrusters. The establishment of a community standard on mass flow metering will help ensure the selection of the proper meter for each application. It will also improve the quality of system performance estimates by providing comprehensive information on the physical phenomena and systematic errors that must be accounted for during the analysis of flow measurement data. This paper will outline the standard methods and recommended practices described in the guide titled "Flow Measurement for Electric Propulsion Systems."

  19. The thermogenic actions of natriuretic peptide in brown adipocytes: The direct measurement of the intracellular temperature using a fluorescent thermoprobe.

    Science.gov (United States)

    Kimura, Haruka; Nagoshi, Tomohisa; Yoshii, Akira; Kashiwagi, Yusuke; Tanaka, Yoshiro; Ito, Keiichi; Yoshino, Takuya; Tanaka, Toshikazu D; Yoshimura, Michihiro

    2017-10-11

    In addition to the various effects of natriuretic peptides (NPs) on cardiovascular systems, increasing attention is being paid to the possibility that NPs induce adipose tissue browning and activate thermogenic program. We herein established a direct intracellular temperature measurement system using a fluorescent thermoprobe and investigated the thermogenic effects of A-type NP (ANP) on brown adipocytes. The thermoprobe was successfully introduced into rat brown adipocytes, and the temperature dependent change in fluorescence intensity ratio was measured using a fluorescence microscope. After one-hour incubation with ANP, the degree of the change in fluorescence intensity ratio was significantly higher in ANP-treated (P thermogenic actions of ANP were more prominent when brown adipocytes were incubated at 35 °C than at 37 °C. Moreover, the increase in the intracellular temperature and the expression of UCP1 induced by ANP were cancelled by p38MAPK inhibition. Taken together, this study directly demonstrated the thermogenic actions of ANP in brown adipocytes through the use of a novel method of intracellular temperature measurement.

  20. Hypersonic Vehicle Propulsion System Control Model Development Roadmap and Activities

    Science.gov (United States)

    Stueber, Thomas J.; Le, Dzu K.; Vrnak, Daniel R.

    2009-01-01

    The NASA Fundamental Aeronautics Program Hypersonic project is directed towards fundamental research for two classes of hypersonic vehicles: highly reliable reusable launch systems (HRRLS) and high-mass Mars entry systems (HMMES). The objective of the hypersonic guidance, navigation, and control (GN&C) discipline team is to develop advanced guidance and control algorithms to enable efficient and effective operation of these challenging vehicles. The ongoing work at the NASA Glenn Research Center supports the hypersonic GN&C effort in developing tools to aid the design of advanced control algorithms that specifically address the propulsion system of the HRRLSclass vehicles. These tools are being developed in conjunction with complementary research and development activities in hypersonic propulsion at Glenn and elsewhere. This report is focused on obtaining control-relevant dynamic models of an HRRLS-type hypersonic vehicle propulsion system.

  1. Temperature Profiles in a Micro Processor Cooled by Direct Refrigerant Evaporation

    Directory of Open Access Journals (Sweden)

    Lipnicki Zygmimt

    2016-09-01

    Full Text Available Ail analytical solution to the equation for cooling of a unit, in the interior of which heat is generated, is presented. For that reason, a simplified non-stationary model for determination of the temperature distribution within the unit, temperature of the contact between unit and a liquid layer, and the evaporating layer thickness in the function of time, is elaborated. A theoretical analysis of the external cooling of the unit, by considering the phenomenon of the liquid evaporation with the use of the Fourier and Poisson’s equations, is given. Both, stationary- and non-stationary description of the cooling are shown. The obtained results of simulation seems to be useful in designing the similar cooling systems. A calculation mode for a cooling systems equipped with the compressor heat pump, as an effective cooling method, is also performed.

  2. The theory, direction, and magnitude of ecosystem fire probability as constrained by precipitation and temperature.

    Directory of Open Access Journals (Sweden)

    Richard Guyette

    Full Text Available The effects of climate on wildland fire confronts society across a range of different ecosystems. Water and temperature affect the combustion dynamics, irrespective of whether those are associated with carbon fueled motors or ecosystems, but through different chemical, physical, and biological processes. We use an ecosystem combustion equation developed with the physical chemistry of atmospheric variables to estimate and simulate fire probability and mean fire interval (MFI. The calibration of ecosystem fire probability with basic combustion chemistry and physics offers a quantitative method to address wildland fire in addition to the well-studied forcing factors such as topography, ignition, and vegetation. We develop a graphic analysis tool for estimating climate forced fire probability with temperature and precipitation based on an empirical assessment of combustion theory and fire prediction in ecosystems. Climate-affected fire probability for any period, past or future, is estimated with given temperature and precipitation. A graphic analyses of wildland fire dynamics driven by climate supports a dialectic in hydrologic processes that affect ecosystem combustion: 1 the water needed by plants to produce carbon bonds (fuel and 2 the inhibition of successful reactant collisions by water molecules (humidity and fuel moisture. These two postulates enable a classification scheme for ecosystems into three or more climate categories using their position relative to change points defined by precipitation in combustion dynamics equations. Three classifications of combustion dynamics in ecosystems fire probability include: 1 precipitation insensitive, 2 precipitation unstable, and 3 precipitation sensitive. All three classifications interact in different ways with variable levels of temperature.

  3. Application of transducers to the control of temperatures and of alternating and direct voltages (1962)

    International Nuclear Information System (INIS)

    Raoult, N.

    1960-11-01

    The temperature regulator and the voltage regulators described have been studied with a view to conferring a high degree of safety to the apparatuses in which they are used. They make use almost exclusively of Transducers which are passive elements acting mainly in these apparatuses as amplifiers and which are entirely satisfactory, ensuring that the regulators studied keep their essential qualities i.e accuracy, reliability, stability and sensitivity. (author) [fr

  4. Ammonia Based Solar Thermochemical Energy Storage System for Direct Production of High Temperature Supercritical Steam

    OpenAIRE

    CHEN, CHEN

    2017-01-01

    In the field of solar thermochemical energy storage, ammonia synthesis/dissociation is feasible for practical use in the concentrating solar power industry. In ammonia-based solar thermochemical energy storage systems, the stored energy is released when the hydrogen (H2) and nitrogen (N2) react exothermically to synthesize ammonia (NH3), providing thermal energy to a power block for electricity generation. But ammonia synthesis has not yet been shown to reach temperatures consistent with the ...

  5. The theory, direction, and magnitude of ecosystem fire probability as constrained by precipitation and temperature

    Science.gov (United States)

    Guyette, Richard; Stambaugh, Michael C.; Dey, Daniel

    2017-01-01

    The effects of climate on wildland fire confronts society across a range of different ecosystems. Water and temperature affect the combustion dynamics, irrespective of whether those are associated with carbon fueled motors or ecosystems, but through different chemical, physical, and biological processes. We use an ecosystem combustion equation developed with the physical chemistry of atmospheric variables to estimate and simulate fire probability and mean fire interval (MFI). The calibration of ecosystem fire probability with basic combustion chemistry and physics offers a quantitative method to address wildland fire in addition to the well-studied forcing factors such as topography, ignition, and vegetation. We develop a graphic analysis tool for estimating climate forced fire probability with temperature and precipitation based on an empirical assessment of combustion theory and fire prediction in ecosystems. Climate-affected fire probability for any period, past or future, is estimated with given temperature and precipitation. A graphic analyses of wildland fire dynamics driven by climate supports a dialectic in hydrologic processes that affect ecosystem combustion: 1) the water needed by plants to produce carbon bonds (fuel) and 2) the inhibition of successful reactant collisions by water molecules (humidity and fuel moisture). These two postulates enable a classification scheme for ecosystems into three or more climate categories using their position relative to change points defined by precipitation in combustion dynamics equations. Three classifications of combustion dynamics in ecosystems fire probability include: 1) precipitation insensitive, 2) precipitation unstable, and 3) precipitation sensitive. All three classifications interact in different ways with variable levels of temperature. PMID:28704457

  6. Electrode design for low temperature direct-hydrocarbon solid oxide fuel cells

    Science.gov (United States)

    Chen, Fanglin; Zhao, Fei; Liu, Qiang

    2015-10-06

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  7. Electrode Design for Low Temperature Direct-Hydrocarbon Solid Oxide Fuel Cells

    Science.gov (United States)

    Chen, Fanglin (Inventor); Zhao, Fei (Inventor); Liu, Qiang (Inventor)

    2015-01-01

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  8. Brief review on pulse laser propulsion

    Science.gov (United States)

    Yu, Haichao; Li, Hanyang; Wang, Yan; Cui, Lugui; Liu, Shuangqiang; Yang, Jun

    2018-03-01

    Pulse laser propulsion (PLP) is an advanced propulsion concept can be used across a variety of fields with a wide range of applications. PLP reflects superior payload as well as decreased launch costs in comparison with other conventional methods of producing thrust, such as chemical propulsion or electric propulsion. Numerous researchers have attempted to exploit the potential applications of PLP. This paper first reviews concepts relevant to PLP, including the propulsion modes, breakdown regimes, and propulsion efficiency; the propulsion targets for different materials with the pulse laser are then discussed in detail, including the propulsion of solid and liquid microspheres. PLP applications such as the driven microsatellite, target surface particle removal, and orbital debris removal are also discussed. Although the PLP has been applied to a variety of fields, further research is yet warranted to establish its application in the aerospace field.

  9. Direct dimethyl ether fueling of a high temperature polymer fuel cell

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Vassiliev, Anton; Olsen, M.I.

    2012-01-01

    Direct dimethyl ether (DME) fuel cells suffer from poor DME–water miscibility and so far peak powers of only 20–40 mW cm−2 have been reported. Based on available literature on solubility of dimethyl ether (DME) in water at ambient pressure it was estimated that the maximum concentration of DME at...

  10. Direct investigations of deformation and yield induced structure transitions in polyamide 6 below glass transition temperature with WAXS and SAXS

    DEFF Research Database (Denmark)

    Guo, Huilong; Wang, Jiayi; Zhou, Chengbo

    2015-01-01

    Deformation and yield induced structure transitions of polyamide 6 (PA6) were detected with the combination of the wide- and small-angle X-ray scattering (WAXS and SAXS) at 30 degrees C below glass transition temperature (T-g) of PA6. During deformation, gamma-alpha phase transition was found...... at elastic stage. The concentrated stress in crystals at elastic stage provided adequate energy for the direct gamma-alpha phase transition under T-g. The force to promote the gamma-phase into a phase directly is insufficient at the yield stage and a transient phase as a compromise was formed. The transient...... phase was confirmed by DSC measurements and assisted the gamma-alpha phase transition indirectly. The gamma-phase slips into incomplete fragments at yield point, and the parts along tensile direction are responsible for the formation of transient phase. The gamma-fragments after yield is oriented...

  11. Energy Storage and Generation for Extreme Temperature and Pressure and Directional Measurement While Drilling Applications

    Energy Technology Data Exchange (ETDEWEB)

    Signorelli, Riccardo [FastCAP Systems Corporation, Boston, MA (United States); Cooley, John [FastCAP Systems Corporation, Boston, MA (United States)

    2015-10-14

    FastCAP Systems Corporation has successfully completed all milestones defined by the award DE-EE0005503. Under this program, FastCAP developed three critical subassemblies to TRL3 demonstrating proof of concept of a geothermal MWD power source. This power source includes an energy harvester, electronics and a novel high temperature ultracapacitor (“ultracap”) rechargeable energy storage device suitable for geothermal exploration applications. FastCAP’s ruggedized ultracapacitor (ultracap) technology has been proven and commercialized in oil and gas exploration operating to rated temperatures of 150°C. Characteristics of this technology are that it is rechargeable and relatively high power. This technology was the basis for the advancements in rechargeable energy storage under this project. The ultracap performs reliably at 250°C and beyond and operates over a wide operating temperature range: -5°C to 250°C. The ultracap has significantly higher power density than lithium thionyl chloride batteries, a non-rechargeable incumbent used in oil and gas drilling today. Several hermetically sealed, prototype devices were tested in our laboratories at constant temperatures of 250°C showing no significant degradation over 2000 hours of operation. Other prototypes were tested at Sandia National Lab in the month of April, 2015 for a third party performance validation. These devices showed outstanding performance over 1000 hours of operation at three rated temperatures, 200°C, 225°C and 250°C, with negligible capacitance degradation and minimal equivalent series resistance (ESR) increase. Similarly, FastCAP’s ruggedized electronics have been proven and commercialized in oil and gas exploration operating to rated temperatures of 150°C. This technology was the basis for the advancements in downhole electronics under this project. Principal contributions here focused on design for manufacture innovations that have reduced the prototype build cycle time by a factor

  12. Enrichment of denitrifying methanotrophic bacteria for application after direct low-temperature anaerobic sewage treatment

    International Nuclear Information System (INIS)

    Kampman, Christel; Hendrickx, Tim L.G.; Luesken, Francisca A.; Alen, Theo A. van; Op den Camp, Huub J.M.; Jetten, Mike S.M.; Zeeman, Grietje; Buisman, Cees J.N.; Temmink, Hardy

    2012-01-01

    Highlights: ► A new concept for low-temperature anaerobic sewage treatment is proposed. ► In this concept, denitrification and methane oxidation are performed by Methylomirabilis oxyfera. ► The bacteria were enriched from fresh water sediment using sequencing fed-batch reactors. ► The volumetric consumption rate has to be increased by an order of magnitude for practical application. ► Further research should focus on systems with improved biomass retention. - Abstract: Despite many advantages of anaerobic sewage treatment over conventional activated sludge treatment, it has not yet been applied in temperate zones. This is especially because effluent from low-temperature anaerobic treatment contains nitrogen and dissolved methane. The presence of nitrogen and methane offers the opportunity to develop a reactor in which methane is used as electron donor for denitrification. Such a reactor could be used in a new concept for low-temperature anaerobic sewage treatment, consisting of a UASB-digester system, a reactor for denitrification coupled to anaerobic methane oxidation, and a nitritation reactor. In the present study denitrifying methanotrophic bacteria similar to ‘Candidatus Methylomirabilis oxyfera’ were enriched. Maximum volumetric nitrite consumption rates were 33.5 mg NO 2 − -N/L d (using synthetic medium) and 37.8 mg NO 2 − -N/L d (using medium containing effluent from a sewage treatment plant), which are similar to the maximum rate reported so far. Though the goal was to increase the rates, in both reactors, after reaching these maximum rates, volumetric nitrite consumption rates decreased in time. Results indicate biomass washout may have significantly decelerated enrichment. Therefore, to obtain higher volumetric consumption rates, further research should focus on systems with complete biomass retention.

  13. Enrichment of denitrifying methanotrophic bacteria for application after direct low-temperature anaerobic sewage treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kampman, Christel, E-mail: christel.kampman@wur.nl [Sub-department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen (Netherlands); Hendrickx, Tim L.G. [Sub-department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen (Netherlands); Luesken, Francisca A.; Alen, Theo A. van; Op den Camp, Huub J.M.; Jetten, Mike S.M. [Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Zeeman, Grietje; Buisman, Cees J.N.; Temmink, Hardy [Sub-department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen (Netherlands)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer A new concept for low-temperature anaerobic sewage treatment is proposed. Black-Right-Pointing-Pointer In this concept, denitrification and methane oxidation are performed by Methylomirabilis oxyfera. Black-Right-Pointing-Pointer The bacteria were enriched from fresh water sediment using sequencing fed-batch reactors. Black-Right-Pointing-Pointer The volumetric consumption rate has to be increased by an order of magnitude for practical application. Black-Right-Pointing-Pointer Further research should focus on systems with improved biomass retention. - Abstract: Despite many advantages of anaerobic sewage treatment over conventional activated sludge treatment, it has not yet been applied in temperate zones. This is especially because effluent from low-temperature anaerobic treatment contains nitrogen and dissolved methane. The presence of nitrogen and methane offers the opportunity to develop a reactor in which methane is used as electron donor for denitrification. Such a reactor could be used in a new concept for low-temperature anaerobic sewage treatment, consisting of a UASB-digester system, a reactor for denitrification coupled to anaerobic methane oxidation, and a nitritation reactor. In the present study denitrifying methanotrophic bacteria similar to 'Candidatus Methylomirabilis oxyfera' were enriched. Maximum volumetric nitrite consumption rates were 33.5 mg NO{sub 2}{sup -}-N/L d (using synthetic medium) and 37.8 mg NO{sub 2}{sup -}-N/L d (using medium containing effluent from a sewage treatment plant), which are similar to the maximum rate reported so far. Though the goal was to increase the rates, in both reactors, after reaching these maximum rates, volumetric nitrite consumption rates decreased in time. Results indicate biomass washout may have significantly decelerated enrichment. Therefore, to obtain higher volumetric consumption rates, further research should focus on systems with complete biomass

  14. Double modulation pyrometry: A radiometric method to measure surface temperatures of directly irradiated samples

    Science.gov (United States)

    Potamias, Dimitrios; Alxneit, Ivo; Wokaun, Alexander

    2017-09-01

    The design, implementation, calibration, and assessment of double modulation pyrometry to measure surface temperatures of radiatively heated samples in our 1 kW imaging furnace is presented. The method requires that the intensity of the external radiation can be modulated. This was achieved by a rotating blade mounted parallel to the optical axis of the imaging furnace. Double modulation pyrometry independently measures the external radiation reflected by the sample as well as the sum of thermal and reflected radiation and extracts the thermal emission as the difference of these signals. Thus a two-step calibration is required: First, the relative gains of the measured signals are equalized and then a temperature calibration is performed. For the latter, we transfer the calibration from a calibrated solar blind pyrometer that operates at a different wavelength. We demonstrate that the worst case systematic error associated with this procedure is about 300 K but becomes negligible if a reasonable estimate of the sample's emissivity is used. An analysis of the influence of the uncertainties in the calibration coefficients reveals that one (out of the five) coefficient contributes almost 50% to the final temperature error. On a low emission sample like platinum, the lower detection limit is around 1700 K and the accuracy typically about 20 K. Note that these moderate specifications are specific for the use of double modulation pyrometry at the imaging furnace. It is mainly caused by the difficulty to achieve and maintain good overlap of the hot zone with a diameter of about 3 mm Full Width at Half Height and the measurement spot both of which are of similar size.

  15. Prediction of emissions and exhaust temperature for direct injection diesel engine with emulsified fuel using ANN

    OpenAIRE

    KÖKKÜLÜNK, Görkem; AKDOĞAN, Erhan; AYHAN, Vezir

    2014-01-01

    Exhaust gases have many effects on human beings and the environment. Therefore, they must be kept under control. The International Convention for the Prevention of Pollution from Ships (MARPOL), which is concerned with the prevention of marine pollution, limits the emissions according to the regulations. In Emission Control Area (ECA) regions, which are determined by MARPOL as ECAs, the emission rates should be controlled. Direct injection (DI) diesel engines are commonly used as a prop...

  16. The SMPR for the naval propulsion

    International Nuclear Information System (INIS)

    Gauducheau, B.

    2002-01-01

    The first controlled application of the fissile energy was the american nuclear reactor for the ship propulsion. Since the sixties, the France begun researches to secure the independence of its nuclear propulsion program. The historical aspects, the french program management and the perspectives of the ship nuclear propulsion, are discussed in this paper. (A.L.B.)

  17. Vehicle with inclinable caterpillar propulsion units

    International Nuclear Information System (INIS)

    Clar, G.

    1991-01-01

    This vehicle usable in hostile environment such nuclear industry has four propulsion units with a caterpillar track and two integrated motors: one for advancing the caterpillar track and the other for inclining the propulsion unit when overcoming obstacles. Each propulsion unit is easily replaceable because there are no mechanical parts in the body of the vehicle [fr

  18. Direct high-temperature ohmic heating of metals as liquid pipes.

    Science.gov (United States)

    Grosse, A V; Cahill, J A; Liddell, W L; Murphy, W J; Stokes, C S

    1968-05-03

    When a sufficiently high electric current is passed through a liquid metal, the electromagnetic pressure pinches off the liquid metal and interrupts the flow of current. For the first time the pinch effect has been overcome by use of centrifugal acceleration. By rotation of a pipe of liquid metal, tin or bismuth or their alloys, at sufficiently high speed, it can be heated electrically without intermission of the electric current. One may now heat liquid metallic substances, by resistive (ohmic) heating, to 5000 degrees K and perhaps higher temperatures.

  19. Room temperature wafer direct bonding of smooth Si surfaces recovered by Ne beam surface treatments

    Science.gov (United States)

    Kurashima, Yuichi; Maeda, Atsuhiko; Takagi, Hideki

    2013-06-01

    We examined the applicability of a Ne fast atom beam (FAB) to surface activated bonding of Si wafers at room temperature. With etching depth more than 1.5 nm, the bonding strength comparable to Si bulk strength was attained. Moreover, we found the improvement of the bonding strength by surface smoothing effect of the Ne FAB. Silicon surface roughness decreased from 0.40 to 0.17 nm rms by applying a Ne FAB of 30 nm etching depth. The bonding strength between surfaces recovered by Ne FAB surface smoothing was largely improved and finally became equivalent to Si bulk strength.

  20. The effect of direct heating and cooling of heat regulation centers on body temperature

    Science.gov (United States)

    Barbour, H. G.

    1978-01-01

    Experiments were done on 28 rabbits in which puncture instruments were left in the brain for 1-2 days until the calori-puncture hyperthermia had passed and the body temperature was again normal. The instrument remaining in the brain was then used as a galvanic electrode and a second fever was produced, this time due to the electrical stimulus. It was concluded that heat is a centrally acting antipyretic and that cold is a centrally acting stimulus which produces hyperpyrexia cold-induced fever.

  1. Research Update: Direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air

    International Nuclear Information System (INIS)

    Narayan, Jagdish; Bhaumik, Anagh

    2015-01-01

    We report on fundamental discovery of conversion of amorphous carbon into diamond by irradiating amorphous carbon films with nanosecond lasers at room-temperature in air at atmospheric pressure. We can create diamond in the form of nanodiamond (size range <100 nm) and microdiamond (>100 nm). Nanosecond laser pulses are used to melt amorphous diamondlike carbon and create a highly undercooled state, from which various forms of diamond can be formed upon cooling. The quenching from the super undercooled state results in nucleation of nanodiamond. It is found that microdiamonds grow out of highly undercooled state of carbon, with nanodiamond acting as seed crystals

  2. A Brief Review of the Need for Robust Smart Wireless Sensor Systems for Future Propulsion Systems, Distributed Engine Controls, and Propulsion Health Management

    Science.gov (United States)

    Hunter, Gary W.; Behbahani, Alireza

    2012-01-01

    Smart Sensor Systems with wireless capability operational in high temperature, harsh environments are a significant component in enabling future propulsion systems to meet a range of increasingly demanding requirements. These propulsion systems must incorporate technology that will monitor engine component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This paper discusses the motivation towards the development of high temperature, smart wireless sensor systems that include sensors, electronics, wireless communication, and power. The challenges associated with the use of traditional wired sensor systems will be reviewed and potential advantages of Smart Sensor Systems will be discussed. A brief review of potential applications for wireless smart sensor networks and their potential impact on propulsion system operation, with emphasis on Distributed Engine Control and Propulsion Health Management, will be given. A specific example related to the development of high temperature Smart Sensor Systems based on silicon carbide electronics will be discussed. It is concluded that the development of a range of robust smart wireless sensor systems are a foundation for future development of intelligent propulsion systems with enhanced capabilities.

  3. Room-temperature direct bonding of silicon and quartz glass wafers

    Science.gov (United States)

    Wang, Chenxi; Wang, Yuan; Tian, Yanhong; Wang, Chunqing; Suga, Tadatomo

    2017-05-01

    We demonstrate a facile bonding method for combining Si/Si, Si/quartz, and quartz/quartz wafers at room temperature (˜25 °C) using a one-step O2/CF4/H2O plasma treatment. The bonding strengths were significantly improved by adding a small amount of CF4 into the oxygen plasma, such that reliable and tight bonding was obtained after storage in ambient air for 24 h, even without employing heat. Moreover, by introducing water vapor during O2/CF4 plasma treatment, uniform wafer bonding was spontaneously achieved without applying an external force. The fluorinated surface asperities appear to be softened more easily by the interfacial water stress corrosion, enabling reliable bonding at room temperature. Additionally, adding an optimized amount of water vapor to the O2/CF4 plasma increases sufficiently the amount of hydroxyl groups without eliminating the CF4 effect. The additional water adsorbed on the surface may help to close the gap between the bonded wafers, resulting in better bonding efficiency.

  4. Daytime relapse of the mean radiant temperature based on the six-directional method under unobstructed solar radiation.

    Science.gov (United States)

    Kántor, Noémi; Lin, Tzu-Ping; Matzarakis, Andreas

    2014-09-01

    This study contributes to the knowledge about the capabilities of the popular "six-directional method" describing the radiation fields outdoors. In Taiwan, measurements were carried out with three orthogonally placed net radiometers to determine the mean radiant temperature (T(mrt)). The short- and long-wave radiation flux densities from the six perpendicular directions were recorded in the daylight hours of 12 days. During unobstructed direct irradiation, a specific daytime relapse was found in the temporal course of the T(mrt) values referring to the reference shapes of a standing man and also of a sphere. This relapse can be related to the short-wave fluxes reaching the body from the lateral directions. Through deeper analysis, an instrumental shortcoming of the six-directional technique was discovered. The pyranometer pairs of the same net radiometer have a 10-15-min long "blind spot" when the sun beams are nearly perpendicular to them. The blind-spot period is supposed to be shorter with steeper solar azimuth curve on the daylight period. This means that the locations with lower geographical latitude, and the summertime measurements, are affected less by this instrumental problem. A methodological shortcoming of the six-directional technique was also demonstrated. Namely, the sum of the short-wave flux densities from the lateral directions is sensitive to the orientation of the radiometers, and therefore by deviating from the original directions, the T(mrt) decrease on clear sunny days will occur in different times and will be different in extent.

  5. A Comparative Evaluation of Temperature Changes in the Pulpal Chamber during Direct Fabrication of Provisional Restorations: An In Vitro Study.

    Science.gov (United States)

    Manak, Eisha; Arora, Aman

    2011-09-01

    To compare the temperature changes in the pulpal chamber during fabrication of provisional restorations by direct method. A total of 108 three-unit FPD provisional restorations were fabricated on a study model and divided into three main groups according to the material used for the fabrication of matrix. Group A-Alginate impression index group, Group B-Polyvinylsiloxane putty impression index group, Group C-Vacuum formed template group. Each group comprising of 36 specimens, was subdivided into three subgroups based on the provisional restorative material used: polymethylmethacrylate (subgroup 1), polyethylmethacrylate (subgroup 2), bis-acryl composite resin (subgroup 3). Intrapulpal temperature changes were observed with the help of a thermocouple probe (connected to a digital microprocessor thermometer) inserted into the pulp chamber of an extracted mandibular second molar mounted on a study model, during the fabrication of provisional restorations by direct method. The subgroups mean temperature rise observed in Group A-A1, A2, A3 was 2.6250 ± 0.2491, 1.0500 ± 0.1382, 0.4083 ± 0.1165, respectively. The subgroups mean temperature rise observed in Group B-B1, B2, B3 was 4.6250 ± 0.2454, 3.3750 ± 0.3415, 2.5917 ± 0.2678, respectively. The subgroups mean temperature rise observed in Group C-C1, C2, C3 was 4.7694 ± 1.8361, 3.0611 ± 1.5767, 2.3806 ± 1.5713, respectively. The observations were statistically significant. The intrapulpal temperature rise during fabrication of a provisional restoration depended both on the type of provisional restorative material and the type of matrix used. The clinician should choose carefully the resin and the matrix material while fabricating provisional restorations with direct method.

  6. Low-temperature poly(oxymethylene) direct bonding via self-assembled monolayer

    Science.gov (United States)

    Fu, Weixin; Ma, Bo; Kuwae, Hiroyuki; Shoji, Shuichi; Mizuno, Jun

    2018-02-01

    A direct bonding of poly(oxymethylene) (POM) was feasible at 100 °C by using self-assembled monolayer (SAM) as a surface modification method. (3-aminopropyl)triethoxysilane (APTES) and (3-glycidyloxypropyl)trimethoxysilane (GOPTS) were used in our work. X-ray photoelectron spectroscopy showed that both APTES and GOPTS modified the POM surface successfully. Bonding strength evaluation revealed that surface modification was affected by pretreatment (VUV/O3) process time. In addition, the bonding condition with highest strength had an average strength of 372 kPa. This technology is expected to be used in packaging for micro-/nano-electromechanical systems, such as biomedical devices.

  7. Synthesis of ammonia directly from air and water at ambient temperature and pressure

    Science.gov (United States)

    Lan, Rong; Irvine, John T. S.; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol−1) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N2 separation and H2 production stages. A maximum ammonia production rate of 1.14 × 10−5 mol m−2 s−1 has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future. PMID:23362454

  8. Synthesis of ammonia directly from air and water at ambient temperature and pressure.

    Science.gov (United States)

    Lan, Rong; Irvine, John T S; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol⁻¹) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N₂ separation and H₂ production stages. A maximum ammonia production rate of 1.14 × 10⁻⁵ mol m⁻² s⁻¹ has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future.

  9. Cryogenic-temperature electron microscopy direct imaging of carbon nanotubes and graphene solutions in superacids.

    Science.gov (United States)

    Kleinerman, O; Parra-Vasquez, A Nicholas G; Green, M J; Behabtu, N; Schmidt, J; Kesselman, E; Young, C C; Cohen, Y; Pasquali, M; Talmon, Y

    2015-07-01

    Cryogenic electron microscopy (cryo-EM) is a powerful tool for imaging liquid and semiliquid systems. While cryogenic transmission electron microscopy (cryo-TEM) is a standard technique in many fields, cryogenic scanning electron microscopy (cryo-SEM) is still not that widely used and is far less developed. The vast majority of systems under investigation by cryo-EM involve either water or organic components. In this paper, we introduce the use of novel cryo-TEM and cryo-SEM specimen preparation and imaging methodologies, suitable for highly acidic and very reactive systems. Both preserve the native nanostructure in the system, while not harming the expensive equipment or the user. We present examples of direct imaging of single-walled, multiwalled carbon nanotubes and graphene, dissolved in chlorosulfonic acid and oleum. Moreover, we demonstrate the ability of these new cryo-TEM and cryo-SEM methodologies to follow phase transitions in carbon nanotube (CNT)/superacid systems, starting from dilute solutions up to the concentrated nematic liquid-crystalline CNT phases, used as the 'dope' for all-carbon-fibre spinning. Originally developed for direct imaging of CNTs and graphene dissolution and self-assembly in superacids, these methodologies can be implemented for a variety of highly acidic systems, paving a way for a new field of nonaqueous cryogenic electron microscopy. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  10. Electric Propulsion Induced Secondary Mass Spectroscopy

    Science.gov (United States)

    Amini, Rashied; Landis, Geoffrey

    2012-01-01

    A document highlights a means to complement remote spectroscopy while also providing in situ surface samples without a landed system. Historically, most compositional analysis of small body surfaces has been done remotely by analyzing reflection or nuclear spectra. However, neither provides direct measurement that can unambiguously constrain the global surface composition and most importantly, the nature of trace composition and second-phase impurities. Recently, missions such as Deep Space 1 and Dawn have utilized electric propulsion (EP) accelerated, high-energy collimated beam of Xe+ ions to propel deep space missions to their target bodies. The energies of the Xe+ are sufficient to cause sputtering interactions, which eject material from the top microns of a targeted surface. Using a mass spectrometer, the sputtered material can be determined. The sputtering properties of EP exhaust can be used to determine detailed surface composition of atmosphereless bodies by electric propulsion induced secondary mass spectroscopy (EPI-SMS). EPI-SMS operation has three high-level requirements: EP system, mass spectrometer, and altitude of about 10 km. Approximately 1 keV Xe+ has been studied and proven to generate high sputtering yields in metallic substrates. Using these yields, first-order calculations predict that EPI-SMS will yield high signal-to-noise at altitudes greater than 10 km with both electrostatic and Hall thrusters.

  11. Room-temperature relaxor ferroelectricity and photovoltaic effects in tin titanate directly deposited on a silicon substrate

    Science.gov (United States)

    Agarwal, Radhe; Sharma, Yogesh; Chang, Siliang; Pitike, Krishna C.; Sohn, Changhee; Nakhmanson, Serge M.; Takoudis, Christos G.; Lee, Ho Nyung; Tonelli, Rachel; Gardner, Jonathan; Scott, James F.; Katiyar, Ram S.; Hong, Seungbum

    2018-02-01

    Tin titanate (SnTi O3 ) has been notoriously impossible to prepare as a thin-film ferroelectric, probably because high-temperature annealing converts much of the S n2 + to S n4 + . In the present paper, we show two things: first, perovskite phase SnTi O3 can be prepared by atomic-layer deposition directly onto p -type Si substrates; and second, these films exhibit ferroelectric switching at room temperature, with p -type Si acting as electrodes. X-ray diffraction measurements reveal that the film is single-phase, preferred-orientation ferroelectric perovskite SnTi O3 . Our films showed well-saturated, square, and repeatable hysteresis loops of around 3 μ C /c m2 remnant polarization at room temperature, as detected by out-of-plane polarization versus electric field and field cycling measurements. Furthermore, photovoltaic and photoferroelectricity were found in Pt /SnTi O3/Si /SnTi O3/Pt heterostructures, the properties of which can be tuned through band-gap engineering by strain according to first-principles calculations. This is a lead-free room-temperature ferroelectric oxide of potential device application.

  12. Effect of the temperature and the chlorine pressure, over the aluminium chlorides obtained by direct chlorination of the 6061 alloy

    International Nuclear Information System (INIS)

    Alvarez, Fabiola J.; Bohe, Ana E.; Pasquevich, Daniel M.

    2003-01-01

    The aluminium chloride is synthesized by direct chlorination of aluminium, in agreement with the following reaction: Al(s) + 3/2 Cl 2 AlCl 3 (s,g).The present work focuses on the preparation of aluminium chlorides by two methods: (a) Chlorination of 6061 aluminium alloy with gaseous chlorine in sealed containers, filled with different pressures of gas, from 0.8 to 74 Kpa and in the range of temperature between 200 0 and 500 0 C.(b) Chlorination of the same alloy in chlorine flow between 150 0 and 400 0 C.In the sealed systems, the hexahydrated aluminium trichloride predominated over the anhydrous form. For pressures lower than 14 Kpa and temperatures under 250 0 C, the chloride didn't appear.The residues were rich in aluminium, chlorine and magnesium.In the other systems, the anhydrous chloride was found in the areas of the reactor of temperatures above 100 0 C, for all the thermal treatments. The waste was composed by CrCl 3 and AlCl 3 .6H 2 O.The influence of the chlorine pressures and the heating temperature over the characteristics of the product, was studied.The characterization techniques were x-ray diffraction and energy dispersive spectroscopy, and the evolution of the structure was followed by scanning electron microscopy

  13. temperature

    Directory of Open Access Journals (Sweden)

    G. Polt

    2015-10-01

    Full Text Available In-situ X-ray diffraction was applied to isotactic polypropylene with a high volume fraction of α-phase (α-iPP while it has been compressed at temperatures below and above its glass transition temperature Tg. The diffraction patterns were evaluated by the Multi-reflection X-ray Profile Analysis (MXPA method, revealing microstructural parameters such as the density of dislocations and the size of coherently scattering domains (CSD-size. A significant difference in the development of the dislocation density was found compared to compression at temperatures above Tg, pointing at a different plastic deformation mechanism at these temperatures. Based on the individual evolutions of the dislocation density and CSD-size observed as a function of compressive strain, suggestions for the deformation mechanisms occurring below and above Tg are made.

  14. High temperature synthesis of ceramic composition by directed reaction of molten titanium or zirconium with boron carbide

    International Nuclear Information System (INIS)

    Johnson, W.B.

    1990-01-01

    Alternative methods of producing ceramics and ceramic composites include sintering, hot pressing and more recently hot isostatic pressing (HIP) and self-propagating high temperature synthesis (SHS). Though each of these techniques has its advantages, each suffers from several restrictions as well. Sintering may require long times at high temperatures and for most materials requires sintering aids to get full density. These additives can, and generally do, change (often degrade) the properties of the ceramic. Hot pressing and hot isostatic pressing are convenient methods to quickly prepare samples of some materials to full density, but generally are expensive and may damage some types of reinforcements during densification. This paper focuses on the preparation and processing of composites prepared by the directed reaction of molten titanium or zirconium with boron carbide. Advantages and disadvantages of this approach when compared to traditional methods are discussed, with reference to specific examples. Examples of microstructure are properties of these materials are reported

  15. Revisiting Nuclear Thermal Propulsion for Human Mars Exploration

    Science.gov (United States)

    Percy, Thomas K.; Rodriguez, Mitchell

    2017-01-01

    Nuclear Thermal Propulsion (NTP) has long been considered as a viable in-space transportation alternative for delivering crew and cargo to the Martian system. While technology development work in nuclear propulsion has continued over the year, general interest in NTP propulsion applications has historically been tied directly to the ebb and flow of interest in sending humans to explore Mars. As far back as the 1960’s, plans for NTP-based human Mars exploration have been proposed and periodically revisited having most recently been considered as part of NASA Design Reference Architecture (DRA) 5.0. NASA has been investigating human Mars exploration strategies tied to its current Journey to Mars for the past few years however, NTP has only recently been added into the set of alternatives under consideration for in-space propulsion under the Mars Study Capability (MSC) team, formerly the Evolvable Mars Campaign (EMC) team. The original charter of the EMC was to find viable human Mars exploration approaches that relied heavily on technology investment work already underway, specifically related to the development of large Solar Electric Propulsion (SEP) systems. The EMC team baselined several departures from traditional Mars exploration ground rules to enable these types of architectures. These ground rule changes included lower energy conjunction class trajectories with corresponding longer flight times, aggregation of mission elements in cis-Lunar space rather than Low Earth Orbit (LEO) and, in some cases, the pre-deployment of Earth return propulsion systems to Mars. As the MSC team continues to refine the in-space transportation trades, an NTP-based architecture that takes advantage of some of these ground rule departures is being introduced.

  16. Nickel Alloy Catalysts for the Anode of a High Temperature PEM Direct Propane Fuel Cell

    Directory of Open Access Journals (Sweden)

    Shadi Vafaeyan

    2014-01-01

    Full Text Available High temperature polymer electrode membrane fuel cells that use hydrocarbon as the fuel have many theoretical advantages over those that use hydrogen. For example, nonprecious metal catalysts can replace platinum. In this work, two of the four propane fuel cell reactions, propane dehydrogenation and water dissociation, were examined using nickel alloy catalysts. The adsorption energies of both propane and water decreased as the Fe content of Ni/Fe alloys increased. In contrast, they both increased as the Cu content of Ni/Cu alloys increased. The activation energy for the dehydrogenation of propane (a nonpolar molecule changed very little, even though the adsorption energy changed substantially as a function of alloy composition. In contrast, the activation energy for dissociation of water (a molecule that can be polarized decreased markedly as the energy of adsorption decreased. The different relationship between activation energy and adsorption energy for propane dehydrogenation and water dissociation alloys was attributed to propane being a nonpolar molecule and water being a molecule that can be polarized.

  17. Iridium-Catalyzed Direct C-H Sulfamidation of Aryl Nitrones with Sulfonyl Azides at Room Temperature.

    Science.gov (United States)

    Pi, Chao; Cui, Xiuling; Wu, Yangjie

    2015-08-07

    Ir(III)-catalyzed direct C-H sulfamidation of aryl nitrones has been developed to synthesize various sulfamidated nitrones in moderate to excellent yields with excellent regioselectivity and broad functional group tolerance. This transformation could proceed smoothly at room temperature with low catalyst loading in the absence of external oxidants, acids, or bases. Molecular nitrogen was released as the sole byproduct, thus providing an environmentally benign sulfamidation process. And this protocol could efficiently apply to synthesize the substituted benzisoxazoline via one-step transformation from the product.

  18. Magnetic levitation and MHD propulsion

    Science.gov (United States)

    Tixador, P.

    1994-04-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried out in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ...) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. Depuis quelques années nous assistons à un redémarrage de programmes concernant la lévitation et la propulsion supraconductrices. Différents systèmes supraconducteurs de lévitation et de propulsion seront décrits en examinant plus particulièrement l'aspect électromagnétique. Quelques programmes à travers le monde seront abordés. Les trains à sustentation magnétique pourraient constituer un nouveau mode de transport terrestre à vitesse élevée (500 km/h) pour le 21^e siècle. Les japonais n'ont cessé de s'intéresser à ce système avec bobine supraconductrice. Ils envisagent un stade préindustriel avec la construction d'une ligne de 43 km. En 1991 un programme américain pour une durée de six ans a été lancé pour évaluer les performances des systèmes à lévitation pour le transport aux Etats Unis. La MHD (Magnéto- Hydro-Dynamique) présente des avantages intéressants pour la propulsion navale et un regain d'intérêt apparaît à l'heure actuelle. Le japon se situe là encore à la pointe des d

  19. OTV propulsion tecnology programmatic overview

    Science.gov (United States)

    Cooper, L. P.

    1984-04-01

    An advanced orbit transfer vehicles (OTV) which will be an integral part of the national space transportation system to carry men and cargo between low Earth orbit and geosynchronous orbit will perform planetary transfers and deliver large acceleration limited space structures to high Earth orbits is reviewed. The establishment of an advanced propulsion technology base for an OTV for the mid 1990's is outlined. The program supports technology for three unique engine concepts. Work is conducted to generic technologies which benefit all three concepts and specific technology which benefits only one of the concepts. Concept and technology definitions to identify propulsion innovations, and subcomponent research to explore and validate their potential benefits are included.

  20. Nuclear Thermal Propulsion Development Risks

    Science.gov (United States)

    Kim, Tony

    2015-01-01

    There are clear advantages of development of a Nuclear Thermal Propulsion (NTP) for a crewed mission to Mars. NTP for in-space propulsion enables more ambitious space missions by providing high thrust at high specific impulse ((is) approximately 900 sec) that is 2 times the best theoretical performance possible for chemical rockets. Missions can be optimized for maximum payload capability to take more payload with reduced total mass to orbit; saving cost on reduction of the number of launch vehicles needed. Or missions can be optimized to minimize trip time significantly to reduce the deep space radiation exposure to the crew. NTR propulsion technology is a game changer for space exploration to Mars and beyond. However, 'NUCLEAR' is a word that is feared and vilified by some groups and the hostility towards development of any nuclear systems can meet great opposition by the public as well as from national leaders and people in authority. The public often associates the 'nuclear' word with weapons of mass destruction. The development NTP is at risk due to unwarranted public fears and clear honest communication of nuclear safety will be critical to the success of the development of the NTP technology. Reducing cost to NTP development is critical to its acceptance and funding. In the past, highly inflated cost estimates of a full-scale development nuclear engine due to Category I nuclear security requirements and costly regulatory requirements have put the NTP technology as a low priority. Innovative approaches utilizing low enriched uranium (LEU). Even though NTP can be a small source of radiation to the crew, NTP can facilitate significant reduction of crew exposure to solar and cosmic radiation by reducing trip times by 3-4 months. Current Human Mars Mission (HMM) trajectories with conventional propulsion systems and fuel-efficient transfer orbits exceed astronaut radiation exposure limits. Utilizing extra propellant from one additional SLS launch and available

  1. Bimetallic Nickel/Ruthenium Catalysts Synthesized by Atomic Layer Deposition for Low-Temperature Direct Methanol Solid Oxide Fuel Cells.

    Science.gov (United States)

    Jeong, Heonjae; Kim, Jun Woo; Park, Joonsuk; An, Jihwan; Lee, Tonghun; Prinz, Fritz B; Shim, Joon Hyung

    2016-11-09

    Nickel and ruthenium bimetallic catalysts were heterogeneously synthesized via atomic layer deposition (ALD) for use as the anode of direct methanol solid oxide fuel cells (DMSOFCs) operating in a low-temperature range. The presence of highly dispersed ALD Ru islands over a porous Ni mesh was confirmed, and the Ni/ALD Ru anode microstructure was observed. Fuel cell tests were conducted using Ni-only and Ni/ALD Ru anodes with approximately 350 μm thick gadolinium-doped ceria electrolytes and platinum cathodes. The performance of fuel cells was assessed using pure methanol at operating temperatures of 300-400 °C. Micromorphological changes of the anode after cell operation were investigated, and the content of adsorbed carbon on the anode side of the operated samples was measured. The difference in the maximum power density between samples utilizing Ni/ALD Ru and Pt/ALD Ru, the latter being the best catalyst for direct methanol fuel cells, was observed to be less than 7% at 300 °C and 30% at 350 °C. The improved electrochemical activity of the Ni/ALD Ru anode compared to that of the Ni-only anode, along with the reduction of the number of catalytically active sites due to agglomeration of Ni and carbon formation on the Ni surface as compared to Pt, explains this decent performance.

  2. 'Bimodal' Nuclear Thermal Rocket (BNTR) propulsion for an artificial gravity HOPE mission to Callisto

    International Nuclear Information System (INIS)

    Borowski, Stanley K.; McGuire, Melissa L.; Mason, Lee M.; Gilland, James H.; Packard, Thomas W.

    2003-01-01

    This paper summarizes the results of a year long, multi-center NASA study which examined the viability of nuclear fission propulsion systems for Human Outer Planet Exploration (HOPE). The HOPE mission assumes a crew of six is sent to Callisto. Jupiter's outermost large moon, to establish a surface base and propellant production facility. The Asgard asteroid formation, a region potentially rich in water-ice, is selected as the landing site. High thrust BNTR propulsion is used to transport the crew from the Earth-Moon L1 staging node to Callisto then back to Earth in less than 5 years. Cargo and LH2 'return' propellant for the piloted Callisto transfer vehicle (PCTV) is pre-deployed at the moon (before the crew's departure) using low thrust, high power, nuclear electric propulsion (NEP) cargo and tanker vehicles powered by hydrogen magnetoplasmadynamic (MPD) thrusters. The PCTV is powered by three 25 klbf BNTR engines which also produce 50 kWe of power for crew life support and spacecraft operational needs. To counter the debilitating effects of long duration space flight (∼855 days out and ∼836 days back) under '0-gE' conditions, the PCTV generates an artificial gravity environment of '1-gE' via rotation of the vehicle about its center-of-mass at a rate of ∼4 rpm. After ∼123 days at Callisto, the 'refueled' PCTV leaves orbit for the trip home. Direct capsule re-entry of the crew at mission end is assumed. Dynamic Brayton power conversion and high temperature uranium dioxide (UO2) in tungsten metal ''cermet'' fuel is used in both the BNTR and NEP vehicles to maximize hardware commonality. Technology performance levels and vehicle characteristics are presented, and requirements for PCTV reusability are also discussed

  3. Antimatter propulsion, status and prospects

    Science.gov (United States)

    Howe, Steven D.; Hynes, Michael V.

    1986-01-01

    The use of advanced propulsion techniques must be considered if the currently envisioned launch date of the manned Mars mission were delayed until 2020 or later. Within the next thirty years, technological advances may allow such methods as beaming power to the ship, inertial-confinement fusion, or mass-conversion of antiprotons to become feasible. A propulsion system with an ISP of around 5000 s would allow the currently envisioned mission module to fly to Mars in 3 months and would require about one million pounds to be assembled in Earth orbit. Of the possible methods to achieve this, the antiproton mass-conversion reaction offers the highest potential, the greatest problems, and the most fascination. Increasing the production rates of antiprotons is a high priority task at facilities around the world. The application of antiprotons to propulsion requires the coupling of the energy released in the mass-conversion reaction to thrust-producing mechanisms. Recent proposals entail using the antiprotons to produce inertial confinement fusion or to produce negative muons which can catalyze fusion. By increasing the energy released per antiproton, the effective cost, (dollars/joule) can be reduced. These proposals and other areas of research can be investigated now. These short term results will be important in assessing the long range feasibility of an antiproton powered engine.

  4. Casimir Energy, Extra Dimensions and Exotic Propulsion

    Science.gov (United States)

    Obousy, R.; Saharian, A.

    It is well known that the Casimir effect is an excellent candidate for the stabilization of the extra dimensions. It has also been suggested that the Casimir effect in higher dimensions may be the underlying phenomenon that is responsible for the dark energy which is currently driving the accelerated expansion of the universe. In this paper we suggest that, in principle, it may be possible to directly manipulate the size of an extra dimension locally using Standard Model fields in the next generation of particle accelerators. This adjustment of the size of the higher dimension could serve as a technological mechanism to locally adjust the dark energy density and change the local expansion of spacetime. This idea holds tantalizing possibilities in the context of exotic spacecraft propulsion.

  5. Mini and Micro Propulsion for Medical Swimmers

    Directory of Open Access Journals (Sweden)

    JianFeng

    2014-02-01

    Full Text Available Mini and micro robots, which can swim in an underwater environment, have drawn widespread research interests because of their potential applicability to the medical or biological fields, including delivery and transportation of bio-materials and drugs, bio-sensing, and bio-surgery. This paper reviews the recent ideas and developments of these types of self-propelling devices, ranging from the millimeter scale down to the micro and even the nano scale. Specifically, this review article makes an emphasis on various propulsion principles, including methods of utilizing smart actuators, external magnetic/electric/acoustic fields, bacteria, chemical reactions, etc. In addition, we compare the propelling speed range, directional control schemes, and advantages of the above principles.

  6. Direct numerical simulations of the ignition of a lean biodiesel/air mixture with temperature and composition inhomogeneities at high pressure and intermediate temperature

    KAUST Repository

    Luong, Minhbau

    2014-11-01

    The effects of the stratifications of temperature, T, and equivalence ratio, φ{symbol}, on the ignition characteristics of a lean homogeneous biodiesel/air mixture at high pressure and intermediate temperature are investigated using direct numerical simulations (DNSs). 2-D DNSs are performed at a constant volume with the variance of temperature and equivalence ratio (T′ and φ{symbol}′) together with a 2-D isotropic velocity spectrum superimposed on the initial scalar fields. In addition, three different T s(-) φ{symbol} correlations are investigated: (1) baseline cases with T′ only or φ{symbol}′ only, (2) uncorrelated T s(-) φ{symbol} distribution, and (3) negatively-correlated T s(-) φ{symbol} distribution. It is found that the overall combustion is more advanced and the mean heat release rate is more distributed over time with increasing T′ and/or φ{symbol}′ for the baseline and uncorrelated T s(-) φ{symbol} cases. However, the temporal advancement and distribution of the overall combustion caused by T′ or φ{symbol}′ only are nearly annihilated by the negatively-correlated T s(-) φ{symbol} fields. The chemical explosive mode and Damköhler number analyses verify that for the baseline and uncorrelated T s(-) φ{symbol} cases, the deflagration mode is predominant at the reaction fronts for large T′ and/or φ{symbol}′. On the contrary, the spontaneous ignition mode prevails for cases with small T′ or φ{symbol}′, especially for cases with negative T s(-) φ{symbol} correlations, and hence, simultaneous auto-ignition occurs throughout the entire domain, resulting in an excessive rate of heat release. It is also found that turbulence with large intensity, u′, and a short time scale can effectively smooth out initial thermal and compositional fluctuations such that the overall combustion is induced primarily by spontaneous ignition. Based on the present DNS results, the generalization of the effects of T′, φ{symbol}′, and u

  7. Direct and contactless electrical control of temperature of paper and textile foldable substrates using electrospun metallic-web transparent electrodes

    Science.gov (United States)

    Busuioc, Cristina; Evanghelidis, Alexandru; Galatanu, Andrei; Enculescu, Ionut

    2016-10-01

    Multiple and complex functionalities are a demand nowadays for almost all materials, including common day-to-day materials such as paper, textiles, wood, etc. In the present report, the surface temperature control of different types of materials, including paper and textiles, was demonstrated by Joule heating of metallic-web transparent electrodes both by direct current and by RF induced eddy currents. Polymeric submicronic fiber webs were prepared by electrospinning, and metal sputtering was subsequently performed to transform them into flexible transparent electrodes. These electrodes were thermally attached to different substrates, including paper, textiles and glass. Using thermochromic inks, we demonstrated a high degree of control of the substrates’ surface temperature by means of the Joule effect. Metallic fiber webs appear to be excellently suited for use as transparent electrodes for controlling the surface temperature of common materials, their highly flexible nature being a major advantage when dealing with rough, bendable substrates. This kind of result could not be achieved on bendable substrates with rough surfaces such as paper or textiles while employing classical transparent electrodes i.e. metal oxides. Moreover, contactless heating with induced currents is a premiere for transparent electrodes and opens up a score of new application fields.

  8. Sucrose, glucose, and fructose extraction in aqueous carrot root extracts prepared at different temperatures by means of direct NMR measurements.

    Science.gov (United States)

    Cazor, Anne; Deborde, Catherine; Moing, Annick; Rolin, Dominique; This, Hervé

    2006-06-28

    Solutions obtained by heating carrot roots in water (stocks) are widely used in the food industry, but little information is available regarding the metabolites (intermediates and products of metabolism) found in the stock. The effect of treatment temperature and duration on the sugar composition of stocks was investigated directly by quantitative (1)H NMR spectroscopy, to understand the extraction mechanism when processing at 100 degrees C. Stocks prepared at three different temperatures (50, 75, and 100 degrees C) were investigated for up to 36 h. Three sugars (sucrose, glucose, and fructose) were detected and quantified. The concentrations of these three sugars reached a maximum after 9 h when the temperature of treatment was 50 or 75 degrees C. At 100 degrees C, the sucrose concentration reached a maximum after 3 h, whereas the concentration of glucose and fructose was still increasing at that time. Comparison of the kinetic composition of these carrot stocks with that of model sugar solutions leads to the proposal that the changes in stock composition result from sugar diffusion, sucrose hydrolysis, and hydroxymethylfurfural (HMF) formation.

  9. High temperature thermal conductivity measurements of UO/sub 2/ by Direct Electrical Heating. Final report. [MANTRA-III

    Energy Technology Data Exchange (ETDEWEB)

    Bassett, B

    1980-10-01

    High temperature properties of reactor type UO/sub 2/ pellets were measured using a Direct Electrical Heating (DEH) Facility. Modifications to the experimental apparatus have been made so that successful and reproducible DEH runs may be carried out while protecting the pellets from oxidation at high temperature. X-ray diffraction measurements on the UO/sub 2/ pellets have been made before and after runs to assure that sample oxidation has not occurred. A computer code has been developed that will model the experiment using equations that describe physical properties of the material. This code allows these equations to be checked by comparing the model results to collected data. The thermal conductivity equation for UO/sub 2/ proposed by Weilbacher has been used for this analysis. By adjusting the empirical parameters in Weilbacher's equation, experimental data can be matched by the code. From the several runs analyzed, the resulting thermal conductivity equation is lambda = 1/4.79 + 0.0247T/ + 1.06 x 10/sup -3/ exp(-1.62/kT/) - 4410. exp(-3.71/kT/) where lambda is in w/cm K, k is the Boltzman constant, and T is the temperature in Kelvin.

  10. Direct fabrication of Cu/Cu2O composite micro-temperature sensor using femtosecond laser reduction patterning

    Science.gov (United States)

    Mizoshiri, Mizue; Ito, Yasuaki; Arakane, Shun; Sakurai, Junpei; Hata, Seiichi

    2016-06-01

    Micro-temperature sensors, which composed of a Cu2O-rich sensing part and two Cu-rich electrodes, were directly fabricated by femtosecond laser reduction patterning of CuO nanoparticles. Patterning of the microstructures was performed by laser scanning with pitches of 5, 10, and 15 µm. Cu2O-rich micropatterns were formed at the laser scan speed of 1 mm/s, the pitch of 5 µm, and the pulse energy of 0.54 nJ. Cu-rich micropatterns that had high generation selectivity of Cu against Cu2O were fabricated at the laser scan speed of 15 mm/s, the pitch of 5 µm, and the pulse energy of 0.45 nJ. Electrical resistivities of the Cu2O- and Cu-rich micropatterns were approximately 10 Ω m and 9 µΩ m, respectively. The temperature coefficient of the resistance of the micro-temperature sensor fabricated under these laser irradiation conditions was -5.5 × 10-3/°C. This resistance property with a negative value was consistent with that of semiconductor Cu2O.

  11. Upconverting nanocrystals as luminescent temperature probes for local-heating imaging during direct laser writing 3D nanolithography

    Science.gov (United States)

    Varapnickas, Simonas; Baziulytė-Paulavičienė, Dovilė; Šakirzanovas, Simas; Malinauskas, Mangirdas

    2018-01-01

    Luminescence measurements of upconverting nanocrystals (UCNCs) dispersed in SZ2080 prepolymer being pro- cessed by direct laser writing (DLW) nanopolymerization technique are presented. Er3+ ions doped β-NaYbF4 and Er3+,Yb3+ co-doped β-NaGdF4 core and core-shell UCNCs were prepared by a thermal decomposition method. The ratio of the 2H11/2 -> 4I15/2 and 4S3/2 -> 4I15/2 emission intensities under λ = 975 nm excitation was confirmed to follow Boltzmann-type distribution in the temperature range from 20 °C to 200 °C and enabled a self-referenced optical readout of the sample temperature changes. Variation of thermally-coupled spectral bands fluorescence intensity ratio (FIR) was observed while prepolymer being processed under typical DLW conditions (1030 nm, 300 fs, 200 kHz, NA = 0.8) and Epulse varying from below modification threshold to the optical breakdown. Average fitted temperature changes around polymerized voxel measured ΔT1 < 30 °C within polymerization window and increases up to ΔT2 100 °C in overexposing regime.

  12. Thermal-hydraulics Analysis of a Radioisotope-powered Mars Hopper Propulsion System

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. O' Brien; Andrew C. Klein; William T. Taitano; Justice Gibson; Brian Myers; Steven D. Howe

    2011-02-01

    Thermal-hydraulics analyses results produced using a combined suite of computational design and analysis codes are presented for the preliminary design of a concept Radioisotope Thermal Rocket (RTR) propulsion system. Modeling of the transient heating and steady state temperatures of the system is presented. Simulation results for propellant blow down during impulsive operation are also presented. The results from this study validate the feasibility of a practical thermally capacitive RTR propulsion system.

  13. Direct numerical simulations of the ignition of lean primary reference fuel/air mixtures with temperature inhomogeneities

    KAUST Repository

    Luong, Minhbau

    2013-10-01

    The effects of fuel composition, thermal stratification, and turbulence on the ignition of lean homogeneous primary reference fuel (PRF)/air mixtures under the conditions of constant volume and elevated pressure are investigated by direct numerical simulations (DNSs) with a new 116-species reduced kinetic mechanism. Two-dimensional DNSs were performed in a fixed volume with a two-dimensional isotropic velocity spectrum and temperature fluctuations superimposed on the initial scalar fields with different fuel compositions to elucidate the influence of variations in the initial temperature fluctuation and turbulence intensity on the ignition of three different lean PRF/air mixtures. In general, it was found that the mean heat release rate increases slowly and the overall combustion occurs fast with increasing thermal stratification regardless of the fuel composition under elevated pressure and temperature conditions. In addition, the effect of the fuel composition on the ignition characteristics of PRF/air mixtures was found to vanish with increasing thermal stratification. Chemical explosive mode (CEM), displacement speed, and Damköhler number analyses revealed that the high degree of thermal stratification induces deflagration rather than spontaneous ignition at the reaction fronts, rendering the mean heat release rate more distributed over time subsequent to thermal runaway occurring at the highest temperature regions in the domain. These analyses also revealed that the vanishing of the fuel effect under the high degree of thermal stratification is caused by the nearly identical propagation characteristics of deflagrations of different PRF/air mixtures. It was also found that high intensity and short-timescale turbulence can effectively homogenize mixtures such that the overall ignition is apt to occur by spontaneous ignition. These results suggest that large thermal stratification leads to smooth operation of homogeneous charge compression-ignition (HCCI

  14. Sandwich Core Heat-Pipe Radiator for Power and Propulsion Systems

    Science.gov (United States)

    Gibson, Marc; Sanzi, James; Locci, Ivan

    2013-01-01

    Next-generation heat-pipe radiator technologies are being developed at the NASA Glenn Research Center to provide advancements in heat-rejection systems for space power and propulsion systems. All spacecraft power and propulsion systems require their waste heat to be rejected to space in order to function at their desired design conditions. The thermal efficiency of these heat-rejection systems, balanced with structural requirements, directly affect the total mass of the system. Terrestrially, this technology could be used for thermal control of structural systems. One potential use is radiant heating systems for residential and commercial applications. The thin cross section and efficient heat transportability could easily be applied to flooring and wall structures that could evenly heat large surface areas. Using this heat-pipe technology, the evaporator of the radiators could be heated using any household heat source (electric, gas, etc.), which would vaporize the internal working fluid and carry the heat to the condenser sections (walls and/or floors). The temperature could be easily controlled, providing a comfortable and affordable living environment. Investigating the appropriate materials and working fluids is needed to determine this application's potential success and usage.

  15. Modeling of Atmospheric Turbulence as Disturbances for Control Design and Evaluation of High Speed Propulsion Systems

    Science.gov (United States)

    Kopasakis, George

    2010-01-01

    Atmospheric turbulence models are necessary for the design of both inlet/engine and flight controls, as well as for studying integrated couplings between the propulsion and the vehicle structural dynamics for supersonic vehicles. Models based on the Kolmogorov spectrum have been previously utilized to model atmospheric turbulence. In this paper, a more accurate model is developed in its representative fractional order form, typical of atmospheric disturbances. This is accomplished by first scaling the Kolmogorov spectral to convert them into finite energy von Karman forms. Then a generalized formulation is developed in frequency domain for these scale models that approximates the fractional order with the products of first order transfer functions. Given the parameters describing the conditions of atmospheric disturbances and utilizing the derived formulations, the objective is to directly compute the transfer functions that describe these disturbances for acoustic velocity, temperature, pressure and density. Utilizing these computed transfer functions and choosing the disturbance frequencies of interest, time domain simulations of these representative atmospheric turbulences can be developed. These disturbance representations are then used to first develop considerations for disturbance rejection specifications for the design of the propulsion control system, and then to evaluate the closed-loop performance.

  16. Efficient Conversion of Lignin to Electricity Using a Novel Direct Biomass Fuel Cell Mediated by Polyoxometalates at Low Temperatures.

    Science.gov (United States)

    Zhao, Xuebing; Zhu, J Y

    2016-01-01

    A novel polyoxometalates (POMs) mediated direct biomass fuel cell (DBFC) was used in this study to directly convert lignin to electricity at low temperatures with high power output and Faradaic efficiency. When phosphomolybdic acid H3 PMo12 O40 (PMo12) was used as the electron and proton carrier in the anode solution with a carbon electrode, and O2 was directly used as the final electron acceptor under the catalysis of Pt, the peak power density reached 0.96 mW cm(-2), 560 times higher than that of phenol-fueled microbial fuel cells (MFCs). When the cathode reaction was catalyzed by PMo12, the power density could be greatly enhanced to 5 mW cm(-2). Continuous operation demonstrated that this novel fuel cell was promising as a stable electrochemical power source. Structure analysis of the lignin indicated that the hydroxyl group content was reduced whereas the carbonyl group content increased. Both condensation and depolymerization takes place during the PMo12 oxidation of lignin. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. FY2014 Propulsion Materials R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-05-01

    The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines [ACE], Advanced Power Electronics and Electrical Machines [APEEM], and fuels) teams to develop strategies that overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.

  18. The NASA low thrust propulsion program

    Science.gov (United States)

    Stone, James R.; Bennett, Gary L.

    1989-01-01

    The NASA OAST Propulsion, Power, and Energy Division supports a low-thrust propulsion program aimed at providing high-performance options for a broad range of near-term and far-term missions and vehicles. Low-thrust propulsion has a major impact on the mission performance of essentially all spacecraft and vehicles. On-orbit lifetimes, payloads, and trip time are significantly impacted by low-thrust propulsion performance and integration features for earth-to-orbit (ETO) vehicles, earth-orbit and planetary spacecraft, and large platforms in earth orbit. Major emphases are on low-thrust chemical propulsion, both storables and hydrogen/oxygen; low-power (auxiliary) electric arcjets and resistojets; and high-power (primary) electric propulsion, including ion, magnetoplasmadynamic (MPD), and electrodeless concepts. The major recent accomplishments of the program are presented and their impacts discussed.

  19. Powered Flight The Engineering of Aerospace Propulsion

    CERN Document Server

    Greatrix, David R

    2012-01-01

    Whilst most contemporary books in the aerospace propulsion field are dedicated primarily to gas turbine engines, there is often little or no coverage of other propulsion systems and devices such as propeller and helicopter rotors or detailed attention to rocket engines. By taking a wider viewpoint, Powered Flight - The Engineering of Aerospace Propulsion aims to provide a broader context, allowing observations and comparisons to be made across systems that are overlooked by focusing on a single aspect alone. The physics and history of aerospace propulsion are built on step-by-step, coupled with the development of an appreciation for the mathematics involved in the science and engineering of propulsion. Combining the author’s experience as a researcher, an industry professional and a lecturer in graduate and undergraduate aerospace engineering, Powered Flight - The Engineering of Aerospace Propulsion covers its subject matter both theoretically and with an awareness of the practicalities of the industry. To ...

  20. In-Space Propulsion (ISP) Solar Sail Propulsion Technology Development

    Science.gov (United States)

    Montgomery, Edward E., IV

    2004-01-01

    An overview of the rationale and content for Solar Sail Propulsion (SSP), the on-going project to advance solar technology from technology readiness level 3 to 6 will be provided. A descriptive summary of the major and minor component efforts underway will include identification of the technology providers and a listing of anticipated products Recent important results from major system ground demonstrators will be provided. Finally, a current status of all activities will provided along with the most recent roadmap for the SSP technology development program.

  1. Turboelectric Distributed Propulsion Engine Cycle Analysis for Hybrid-Wing-Body Aircraft

    Science.gov (United States)

    Felder, James L.; Kim, Hyun Dae; Brown, Gerald V.

    2009-01-01

    Meeting NASA's N+3 goals requires a fundamental shift in approach to aircraft and engine design. Material and design improvements allow higher pressure and higher temperature core engines which improve the thermal efficiency. Propulsive efficiency, the other half of the overall efficiency equation, however, is largely determined by the fan pressure ratio (FPR). Lower FPR increases propulsive efficiency, but also dramatically reduces fan shaft speed through the combination of larger diameter fans and reduced fan tip speed limits. The result is that below an FPR of 1.5 the maximum fan shaft speed makes direct drive turbines problematic. However, it is the low pressure ratio fans that allow the improvement in propulsive efficiency which, along with improvements in thermal efficiency in the core, contributes strongly to meeting the N+3 goals for fuel burn reduction. The lower fan exhaust velocities resulting from lower FPRs are also key to meeting the aircraft noise goals. Adding a gear box to the standard turbofan engine allows acceptable turbine speeds to be maintained. However, development of a 50,000+ hp gearbox required by fans in a large twin engine transport aircraft presents an extreme technical challenge, therefore another approach is needed. This paper presents a propulsion system which transmits power from the turbine to the fan electrically rather than mechanically. Recent and anticipated advances in high temperature superconducting generators, motors, and power lines offer the possibility that such devices can be used to transmit turbine power in aircraft without an excessive weight penalty. Moving to such a power transmission system does more than provide better matching between fan and turbine shaft speeds. The relative ease with which electrical power can be distributed throughout the aircraft opens up numerous other possibilities for new aircraft and propulsion configurations and modes of operation. This paper discusses a number of these new

  2. Propulsion of liposomes using bacterial motors

    International Nuclear Information System (INIS)

    Zhang Zhenhai; Li Kejie; Li Zhifei; Yu Wei; Xie Zhihong; Shi Zhiguo

    2013-01-01

    Here we describe the utilization of flagellated bacteria as actuators to propel spherical liposomes by attaching bacteria to the liposome surface. Bacteria were stably attached to liposomes using a cross-linking antibody. The effect of the number of attached bacteria on propulsion speed was experimentally determined. The effects of bacterial propulsion on the bacteria–antibody–liposome complex were stochastic. We demonstrated that liposomal mobility increased when bacteria were attached, and the propulsion speed correlated with the number of bacteria. (paper)

  3. A Conceptual Tree of Laser Propulsion

    International Nuclear Information System (INIS)

    Pakhomov, Andrew V.; Sinko, John E.

    2008-01-01

    An original attempt to develop a conceptual tree for laser propulsion is offered. The tree provides a systematic view for practically all possible laser propulsion concepts and all inter-conceptual links, based on propellant phases and phase transfers. It also helps to see which fields of laser propulsion have been already thoroughly explored, where the next effort must be applied, and which paths should be taken with proper care or avoided entirely

  4. Liquid Bismuth Feed System for Electric Propulsion

    Science.gov (United States)

    Markusic, T. E.; Polzin, K. A.; Stanojev, B. J.

    2006-01-01

    Operation of Hall thrusters with bismuth propellant has been shown to be a promising path toward high-power, high-performance, long-lifetime electric propulsion for spaceflight missions. For example, the VHITAL project aims td accurately, experimentally assess the performance characteristics of 10 kW-class bismuth-fed Hall thrusters - in order to validate earlier results and resuscitate a promising technology that has been relatively dormant for about two decades. A critical element of these tests will be the precise metering of propellant to the thruster, since performance cannot be accurately assessed without an accurate accounting of mass flow rate. Earlier work used a pre/post-test propellant weighing scheme that did not provide any real-time measurement of mass flow rate while the thruster was firing, and makes subsequent performance calculations difficult. The motivation of the present work was to develop a precision liquid bismuth Propellant Management System (PMS) that provides real-time propellant mass flow rate measurement and control, enabling accurate thruster performance measurements. Additionally, our approach emphasizes the development of new liquid metal flow control components and, hence, will establish a basis for the future development of components for application in spaceflight. The design of various critical components in a bismuth PMS are described - reservoir, electromagnetic pump, hotspot flow sensor, and automated control system. Particular emphasis is given to material selection and high-temperature sealing techniques. Open loop calibration test results are reported, which validate the systems capability to deliver bismuth at mass flow rates ranging from 10 to 100 mg/sec with an uncertainty of less than +/- 5%. Results of integrated vaporizer/liquid PMS tests demonstrate all of the necessary elements of a complete bismuth feed system for electric propulsion.

  5. Investigation of Various Novel Air-Breathing Propulsion Systems

    Science.gov (United States)

    Wilhite, Jarred M.

    The current research investigates the operation and performance of various air-breathing propulsion systems, which are capable of utilizing different types of fuel. This study first focuses on a modular RDE configuration, which was mainly studied to determine which conditions yield stable, continuous rotating detonation for an ethylene-air mixture. The performance of this RDE was analyzed by studying various parameters such as mass flow rate, equivalence ratios, wave speed and cell size. For relatively low mass flow rates near stoichiometric conditions, a rotating detonation wave is observed for an ethylene-RDE, but at speeds less than an ideal detonation wave. The current research also involves investigating the newly designed, Twin Oxidizer Injection Capable (TOXIC) RDE. Mixtures of hydrogen and air were utilized for this configuration, resulting in sustained rotating detonation for various mass flow rates and equivalence ratios. A thrust stand was also developed to observe and further measure the performance of the TOXIC RDE. Further analysis was conducted to accurately model and simulate the response of thrust stand during operation of the RDE. Also included in this research are findings and analysis of a propulsion system capable of operating on the Inverse Brayton Cycle. The feasibility of this novel concept was validated in a previous study to be sufficient for small-scale propulsion systems, namely UAV applications. This type of propulsion system consists of a reorganization of traditional gas turbine engine components, which incorporates expansion before compression. This cycle also requires a heat exchanger to reduce the temperature of the flow entering the compressor downstream. While adding a heat exchanger improves the efficiency of the cycle, it also increases the engine weight, resulting in less endurance for the aircraft. Therefore, this study focuses on the selection and development of a new heat exchanger design that is lightweight, and is capable

  6. Low Cost Upper Stage-Class Propulsion (LCUSP)

    Science.gov (United States)

    Vickers, John

    2015-01-01

    NASA is making space exploration more affordable and viable by developing and utilizing innovative manufacturing technologies. Technology development efforts at NASA in propulsion are committed to continuous innovation of design and manufacturing technologies for rocket engines in order to reduce the cost of NASA's journey to Mars. The Low Cost Upper Stage-Class Propulsion (LCUSP) effort will develop and utilize emerging Additive Manufacturing (AM) to significantly reduce the development time and cost for complex rocket propulsion hardware. Benefit of Additive Manufacturing (3-D Printing) Current rocket propulsion manufacturing techniques are costly and have lengthy development times. In order to fabricate rocket engines, numerous complex parts made of different materials are assembled in a way that allow the propellant to collect heat at the right places to drive the turbopump and simultaneously keep the thrust chamber from melting. The heat conditioned fuel and oxidizer come together and burn inside the combustion chamber to provide thrust. The efforts to make multiple parts precisely fit together and not leak after experiencing cryogenic temperatures on one-side and combustion temperatures on the other is quite challenging. Additive manufacturing has the potential to significantly reduce the time and cost of making rocket parts like the copper liner and Nickel-alloy jackets found in rocket combustion chambers where super-cold cryogenic propellants are heated and mixed to the extreme temperatures needed to propel rockets in space. The Selective Laser Melting (SLM) machine fuses 8,255 layers of copper powder to make a section of the chamber in 10 days. Machining an equivalent part and assembling it with welding and brazing techniques could take months to accomplish with potential failures or leaks that could require fixes. The design process is also enhanced since it does not require the 3D model to be converted to 2-D drawings. The design and fabrication process

  7. Theory of one-element pumps for propulsion

    Science.gov (United States)

    Levy, J.

    1974-01-01

    A basic theory for one-element propulsion pumps is developed. A limit to the obtainable efficiency is established and relationships among pump-performance parameters that result in the greatest efficiency are indicated. It is shown that the peripheral velocity of the pump is directly related to ship speed and some relationships between performance parameters and pump geometry are developed. Mathematical models of pump performance are included.

  8. Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion

    OpenAIRE

    González_Espasandín, Oscar; Leo Mena, Teresa de Jesus; Navarro Arevalo, Emilio

    2013-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order t...

  9. Electrospray Propulsion Engineering Toolkit (ESPET), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — To accelerate the development of scaled-up Electrospray Propulsion emitter array systems with practical thrust levels, Spectral Sciences, Inc. (SSI), in...

  10. Aeroelastic Wing Shaping Using Distributed Propulsion

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor); Reynolds, Kevin Wayne (Inventor); Ting, Eric B. (Inventor)

    2017-01-01

    An aircraft has wings configured to twist during flight. Inboard and outboard propulsion devices, such as turbofans or other propulsors, are connected to each wing, and are spaced along the wing span. A flight controller independently controls thrust of the inboard and outboard propulsion devices to significantly change flight dynamics, including changing thrust of outboard propulsion devices to twist the wing, and to differentially apply thrust on each wing to change yaw and other aspects of the aircraft during various stages of a flight mission. One or more generators can be positioned upon the wing to provide power for propulsion devices on the same wing, and on an opposite wing.

  11. Propulsion Design with Freeform Fabrication, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Propulsion Design with Freeform Fabrication (PDFF) will develop and implement a novel design methodology that leverages the rapidly evolving Solid Freeform...

  12. Direct Observation of Room-Temperature Stable Magnetism in LaAlO3/SrTiO3 Heterostructures.

    Science.gov (United States)

    Yang, Ming; Ariando; Zhou, Jun; Asmara, Teguh Citra; Krüger, Peter; Yu, Xiao Jiang; Wang, Xiao; Sanchez-Hanke, Cecilia; Feng, Yuan Ping; Venkatesan, T; Rusydi, Andrivo

    2018-03-21

    Along with an unexpected conducting interface between nonmagnetic insulating perovskites LaAlO 3 and SrTiO 3 (LaAlO 3 /SrTiO 3 ), striking interfacial magnetisms have been observed in LaAlO 3 /SrTiO 3 heterostructures. Interestingly, the strength of the interfacial magnetic moment is found to be dependent on oxygen partial pressures during the growth process. This raises an important, fundamental question on the origin of these remarkable interfacial magnetic orderings. Here, we report a direct evidence of room-temperature stable magnetism in a LaAlO 3 /SrTiO 3 heterostructure prepared at high oxygen partial pressure by using element-specific soft X-ray magnetic circular dichroism at both Ti L 3,2 and O K edges. By combining X-ray absorption spectroscopy at both Ti L 3,2 and O K edges and first-principles calculations, we qualitatively ascribe that this strong magnetic ordering with dominant interfacial Ti 3+ character is due to the coexistence of LaAlO 3 surface oxygen vacancies and interfacial (Ti Al -Al Ti ) antisite defects. On the basis of this new understanding, we revisit the origin of the weak magnetism in LaAlO 3 /SrTiO 3 heterostructures prepared at low oxygen partial pressures. Our calculations show that LaAlO 3 surface oxygen vacancies are responsible for the weak magnetism at the interface. Our result provides direct evidence on the presence of room-temperature stable magnetism and a novel perspective to understand magnetic and electronic reconstructions at such strategic oxide interfaces.

  13. The SMPR for the naval propulsion; Les RPMP pour la propulsion navale

    Energy Technology Data Exchange (ETDEWEB)

    Gauducheau, B. [Technicatome, Centre d' Etudes Nucleaires de Saclay, 91 - Gif sur Yvette (France)

    2002-07-01

    The first controlled application of the fissile energy was the american nuclear reactor for the ship propulsion. Since the sixties, the France begun researches to secure the independence of its nuclear propulsion program. The historical aspects, the french program management and the perspectives of the ship nuclear propulsion, are discussed in this paper. (A.L.B.)

  14. Raman Scattering Proof-of-Concept Investigation to Detect Particle Phase in the Propulsion System Lab (PSL) Icing Duct

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses a proof-of-concept study using Raman Scattering to distinguish both the particle phase and particle temperature in the Propulsion System Lab...

  15. Diverse expansion of electric propulsion

    OpenAIRE

    Kuninaka, Hitoshi; 國中 均

    2007-01-01

    The microwave discharge ion engine mu 10 has long life and high reliability because of electrode-less plasma generation in both the ion generator and the neutralizer. Four mu 10s, each generating a thrust of 8 mN, propelled Hayabusa explorer to asteroid Itokawa. Electric propulsions including DC arcjets, MPD (Magneto Plasma Dynamic) arcjets, Hall thrusters as well as ion engines generate jets much faster than those of chemical rockets and make spacecraft fly by power in deep space so as to re...

  16. Carbon-carbon turbopump concept for Space Nuclear Thermal Propulsion

    Science.gov (United States)

    Overholt, David M.

    1993-06-01

    The U.S. Air Force Space Nuclear Thermal Propulsion (SNTP) program is placing high priority on maximizing specific impulse (ISP) and thrust-to-weight ratio in the development of a practical high-performance nuclear rocket. The turbopump design is driven by these goals. The liquid hydrogen propellant is pressurized and pumped to the reactor inlet by the turbopump assembly (TPA). Rocket propulsion is from rapid heating of the propellant from 180 R to thousands of degrees in the particle bed reactor (PBR). The exhausted propellant is then expanded through a high-temperature nozzle. A high-performance approach is to use an uncooled carbon-carbon nozzle and duct turbine inlet. Carbon-carbon components are used throughout the TPA hot section to obtain the high-temperature capability. Several carbon-carbon components are in development including structural parts, turbine nozzles/stators, and turbine rotors. The technology spinoff is applicable to conventional liquid propulsion engines and many other turbomachinery applications.

  17. Assessment of Space Nuclear Thermal Propulsion Facility and Capability Needs

    Energy Technology Data Exchange (ETDEWEB)

    James Werner

    2014-07-01

    The development of a Nuclear Thermal Propulsion (NTP) system rests heavily upon being able to fabricate and demonstrate the performance of a high temperature nuclear fuel as well as demonstrating an integrated system prior to launch. A number of studies have been performed in the past which identified the facilities needed and the capabilities available to meet the needs and requirements identified at that time. Since that time, many facilities and capabilities within the Department of Energy have been removed or decommissioned. This paper provides a brief overview of the anticipated facility needs and identifies some promising concepts to be considered which could support the development of a nuclear thermal propulsion system. Detailed trade studies will need to be performed to support the decision making process.

  18. Feasibility of MHD submarine propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Doss, E.D. (ed.) (Argonne National Lab., IL (United States)); Sikes, W.C. (ed.) (Newport News Shipbuilding and Dry Dock Co., VA (United States))

    1992-09-01

    This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.

  19. Fluorine-Hydrazine Propulsion Technology update

    Science.gov (United States)

    Bond, D. L.; Appel, M. A.; Kruger, G. W.

    1980-01-01

    The current status of the fluorine hydrazine propulsion system development is discussed. Progress on the components, rocket engine, and system design is presented. A detailed look at a fluorine hydrazine system as a potential propulsion option for the Galileo Project (Jupiter orbiter) is delineated and the results of safety and technical reviews which were accomplished to verify the feasibility of this option are summarized.

  20. 46 CFR 109.555 - Propulsion boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion boilers. 109.555 Section 109.555 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.555 Propulsion boilers. The master or person in charge and the engineer in charge shall...

  1. 46 CFR 130.120 - Propulsion control.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion control. 130.120 Section 130.120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS VESSEL CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Vessel Control § 130.120 Propulsion control. (a) Each vessel must have— (1...

  2. Propulsive force in front crawl swimming

    NARCIS (Netherlands)

    Berger, M.A.M.; de Groot, G.; Hollander, A.P.

    1999-01-01

    To evaluate the propulsive forces in front crawl arm swimming, derived from a three-dimensional kinematic analysis, these values were compared with mean drag forces. The propulsive forces during front crawl swimming using the arms only were calculated using three-dimensional kinematic analysis

  3. NASA Propulsion Engineering Research Center, volume 2

    Science.gov (United States)

    1993-01-01

    On 8-9 Sep. 1993, the Propulsion Engineering Research Center (PERC) at The Pennsylvania State University held its Fifth Annual Symposium. PERC was initiated in 1988 by a grant from the NASA Office of Aeronautics and Space Technology as a part of the University Space Engineering Research Center (USERC) program; the purpose of the USERC program is to replenish and enhance the capabilities of our Nation's engineering community to meet its future space technology needs. The Centers are designed to advance the state-of-the-art in key space-related engineering disciplines and to promote and support engineering education for the next generation of engineers for the national space program and related commercial space endeavors. Research on the following areas was initiated: liquid, solid, and hybrid chemical propulsion, nuclear propulsion, electrical propulsion, and advanced propulsion concepts.

  4. Magnetic propulsion of microspheres at liquid-glass interfaces

    Science.gov (United States)

    Helgesen, Geir

    2018-02-01

    Bio-coated, magnetic microspheres have many applications in biotechnology and medical technology as a tool to separate and extract cells or molecules in a water solution by applying external strong magnetic field gradients. However, magnetic microspheres with or without attached cargo can also be separated in the liquid solution if they are exposed to alternating or rotating, relatively weak magnetic fields. Microspheres that have a higher density than the liquid will approach the bottom surface of the sample cell, and then a combination of viscous and surface frictional forces can propel the magnetic microspheres along the surface in a direction perpendicular to the axis of field rotation. Experiments demonstrating this type of magnetic propulsion are shown, and the forces active in the process are discussed. The motion of particles inside sample cells that were tilted relative to the horizontal direction was studied, and the variation of propulsion velocity as a function of tilt angle was used to find the values of different viscous and mechanical parameters of motion. Propulsion speeds of up to 5 μm/s were observed and were found to be caused by a partly rolling and partly slipping motion of rotating microspheres with a slipping coefficient near 0.6.

  5. p53 mutations in ovarian tumors, detected by temperature-gradient gel electrophoresis, direct sequencing and immunohistochemistry.

    Science.gov (United States)

    Kappes, S; Milde-Langosch, K; Kressin, P; Passlack, B; Dockhorn-Dworniczak, B; Röhlke, P; Löning, T

    1995-02-20

    Samples from 94 ovarian tumors, comprising 24 cystadenomas/adenofibromas, among them 6 benign and 18 borderline tumors, one benign Brenner tumor, 39 carcinomas, 17 sex-cord stromal tumors, 5 germ-cell tumors and 8 metastatic or recurrent neoplasms were screened for p53 aberrations by polymerase chain reaction (PCR), temperature-gradient gel electrophoresis (TGGE), direct sequencing and immunohistochemistry. All sex-cord stromal and germ-cell tumors showed wild-type p53, except for a heterozygous silent germ-line mutation in one androblastoma. Somatic p53 mutations were detected in only one tumor of the cystadenoma/adenofibroma series (4.2%), in contrast to 38.5% of the carcinomas, among them 57.1% of serous papillary carcinomas, and 12.5 to 22.2% of endometrioid and mucinous carcinomas. By direct sequencing, the mutations of 13 cases were qualified as mis-sense mutations (n = 10), or 1 to 2-bp deletions (n = 3). Only 2 cases were immunohistochemically positive in the absence of detectable p53-gene abnormalities. The presence of p53 aberrations was significantly correlated with high grade, but not with stage of disease. For 21 bilateral tumors and/or tumors spread to the peritoneum, samples from both ovaries and/or ascites were analyzed. Among these, 16 cases were identical as to the p53 genotype, 5 cases showed discordant p53 states in ovary and/or in ascites DNA. We conclude that somatic p53 mutations are very frequent in serous papillary carcinomas, particularly in tumors of high grade, bilaterality, and peritoneal spread, less frequent in other carcinoma types and extremely rare in borderline and benign tumors of the ovary.

  6. How to build an antimatter rocket for interstellar missions - systems level considerations in designing advanced propulsion technology vehicles

    Science.gov (United States)

    Frisbee, Robert H.

    2003-01-01

    This paper discusses the general mission requirements and system technologies that would be required to implement an antimatter propulsion system where a magnetic nozzle is used to direct charged particles to produce thrust.

  7. Novel Design Integrating a Microwave Applicator into a Crystallizer for Rapid Temperature Cycling. A Direct Nucleation Control Study.

    Science.gov (United States)

    Kacker, Rohit; Radoiu, Marilena; Kramer, Herman J M

    2017-07-05

    The control of nucleation in crystallization processes is a challenging task due to the often lacking knowledge on the process kinetics. Inflexible (predetermined) control strategies fail to grow the nucleated crystals to the desired quality because of the variability in the process conditions, disturbances, and the stochastic nature of crystal nucleation. Previously, the concept of microwave assisted direct nucleation control (DNC) was demonstrated in a laboratory setup to control the crystal size distribution in a batch crystallization process by manipulating the number of particles in the system. Rapid temperature cycling was used to manipulate the super(under)saturation and hence the number of crystals. The rapid heating response achieved with the microwave heating improved the DNC control efficiency, resulting in halving of the batch time. As an extension, this work presents a novel design in which the microwave applicator is integrated in the crystallizer, hence avoiding the external loop though the microwaves oven. DNC implemented in the 4 L unseeded crystallizer, at various count set points, resulted in strong efficiency enhancement of DNC, when compared to the performance with a slow responding system. The demonstrated crystallizer design is a basis for extending the enhanced process control opportunity to other applications.

  8. SELECTION OF METHOD FOR REGULATION OF TRACTOR PROPULSION ASYNCHRONOUS ELECTRIC MOTOR AND CONSTRUCTION OF MECHANICAL CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    Ch. I. Zhdanovich

    2015-01-01

    Full Text Available Nowadays the work is in progress to develop wheeled and caterpillar tractors with electromechanical transmission. Range of changes in transmission gear ratio while using propulsion electric motor depends on mechanical characteristics of a tractor propulsion electric motor which is equipped with electromechanical transmission. In case when the range is rather high then it is possible to minimize number of gearings in the tractor gearing box or exclude its usage at all. Type of the applied propulsion electric motor and regulation method specify type of mechanical characteristics (characteristics family of the propulsion electric motor.The paper considers a propulsion asynchronous electric motor with frequency control. While using frequency control it is possible to regulate electric motor revolutions by mutual changes in voltage and voltage frequency. There are various laws of mutual changes in voltage and frequency (regulation laws. Selection of a regulation law influences on type of mechanical characteristics of a propulsion electric motor. Application of any law can be admissible only for some specific range of voltage frequency otherwise it is possible to exceed some parameters (for example, admissible voltage in the winding of electric motor stator. It is necessary to ensure the required moment within wide range for a tractor propulsion electric motor. In this case losses in the electric motor must be minimal. Losses in the rotor of the propulsion asynchronous electric motor are directly proportional to its sliding and its best propulsion and mechanical properties of a mobile machine will be ensured in the case when sliding is preserved at a constant value. According to these reasons selection of regulation laws has been carried out for operation of the propulsion asynchronous electric motor with nominal sliding and mechanical characteristics at nominal sliding is conventionally called a nominal characteristics.The paper analyzes the possible

  9. Philosophy for nuclear thermal propulsion

    International Nuclear Information System (INIS)

    Buden, D.; Madsen, W.; Redd, L.

    1993-01-01

    The philosophy used for development of nuclear thermal propulsion will determine the cost, schedule and risk associated with the activities. As important is the impression of the decision makers. If the development cost is higher than the product value, it is doubtful that funding will ever be available. On the other hand, if the development supports the economic welfare of the country with a high rate of return, the probability of funding greatly increases. The philosophy is divided into: realism, design, operations and qualification. ''Realism'' addresses such items as political acceptability, potential customers, robustness-flexibility, public acceptance, decisions as needed, concurrent engineering, and the possible role of the CIS. ''Design'' addresses ''minimum requirement,'' built in safety and reliability redundancy, emphasize on eliminating risk at lowest levels, and the possible inclusion of electric generation. ''Operations'' addresses sately, environment, operations, design margins and degradation modes. ''Qualification'' addresses testing needs and test facilities

  10. Service Life Extension of the Propulsion System of Long-Term Manned Orbital Stations

    Science.gov (United States)

    Kamath, Ulhas; Kuznetsov, Sergei; Spencer, Victor

    2014-01-01

    . There are no representative ground test articles for some of the components. A 'test everything' approach would require manufacturing new test articles. The paper outlines some of the techniques used for selective testing, by way of cherry picking candidate components based on failure mode effects analysis, system level impacts, hazard analysis, etc. The type of testing required for extending the service life depends on the design and criticality of the component, failure modes and failure mechanisms, life cycle margin provided by the original certification, operational and environmental stresses encountered, etc. When specific failure mechanism being considered and the underlying relationship of that mode to the stresses provided in the test can be correlated by supporting analysis, time and effort required for conducting life extension testing can be significantly reduced. Exposure to corrosive propellants over long periods of time, for instance, lead to specific failure mechanisms in several components used in the propulsion system. Using Arrhenius model, which is tied to chemically dependent failure mechanisms such as corrosion or chemical reactions, it is possible to subject carefully selected test articles to accelerated life test. Arrhenius model reflects the proportional relationship between time to failure of a component and the exponential of the inverse of absolute temperature acting on the component. The acceleration factor is used to perform tests at higher stresses that allow direct correlation between the times to failure at a high test temperature to the temperatures to be expected in actual use. As long as the temperatures are such that new failure mechanisms are not introduced, this becomes a very useful method for testing to failure a relatively small sample of items for a much shorter amount of time. In this article, based on the example of the propulsion system of the first ISS module Zarya, theoretical approaches and practical activities of

  11. Propulsion Research at the Propulsion Research Center of the NASA Marshall Space Flight Center

    Science.gov (United States)

    Blevins, John; Rodgers, Stephen

    2003-01-01

    The Propulsion Research Center of the NASA Marshall Space Flight Center is engaged in research activities aimed at providing the bases for fundamental advancement of a range of space propulsion technologies. There are four broad research themes. Advanced chemical propulsion studies focus on the detailed chemistry and transport processes for high-pressure combustion, and on the understanding and control of combustion stability. New high-energy propellant research ranges from theoretical prediction of new propellant properties through experimental characterization propellant performance, material interactions, aging properties, and ignition behavior. Another research area involves advanced nuclear electric propulsion with new robust and lightweight materials and with designs for advanced fuels. Nuclear electric propulsion systems are characterized using simulated nuclear systems, where the non-nuclear power source has the form and power input of a nuclear reactor. This permits detailed testing of nuclear propulsion systems in a non-nuclear environment. In-space propulsion research is focused primarily on high power plasma thruster work. New methods for achieving higher thrust in these devices are being studied theoretically and experimentally. Solar thermal propulsion research is also underway for in-space applications. The fourth of these research areas is advanced energetics. Specific research here includes the containment of ion clouds for extended periods. This is aimed at proving the concept of antimatter trapping and storage for use ultimately in propulsion applications. Another activity in this involves research into lightweight magnetic technology for space propulsion applications.

  12. 3D Modelling of a Vectored Water Jet-Based Multi-Propeller Propulsion System for a Spherical Underwater Robot

    Directory of Open Access Journals (Sweden)

    Xichuan Lin

    2013-01-01

    Full Text Available This paper presents an improved modelling method for a water jet-based multi-propeller propulsion system. In our previous work, the modelling experiments were only carried out in 2D planes, whose experimental results had poor agreement when we wanted to control the propulsive forces in 3D space directly. This research extends the 2D modelling described in the authors' previous work into 3D space. By doing this, the model could include 3D space information, which is more useful than that of 2D space. The effective propulsive forces and moments in 3D space can be obtained directly by synthesizing the propulsive vectors of propellers. For this purpose, a novel experimental mechanism was developed to achieve the proposed 3D modelling. This mechanism was designed with the mass distribution centred for the robot. By installing a six-axis load-cell sensor at the equivalent mass centre, we obtained the direct propulsive effect of the system for the robot. Also, in this paper, the orientation surface and propulsive surfaces are developed to provide the 3D information of the propulsive system. Experiments for each propeller were first carried out to establish the models. Then, further experiments were carried out with all of the propellers working together to validate the models. Finally, we compared the various experimental results with the simulation data. The utility of this modelling method is discussed at length.

  13. Status of Turbulence Modeling for Hypersonic Propulsion Flowpaths

    Science.gov (United States)

    Georgiadis, Nicholas J.; Yoder, Dennis A.; Vyas, Manan A.; Engblom, William A.

    2012-01-01

    This report provides an assessment of current turbulent flow calculation methods for hypersonic propulsion flowpaths, particularly the scramjet engine. Emphasis is placed on Reynolds-averaged Navier-Stokes (RANS) methods, but some discussion of newer meth- ods such as Large Eddy Simulation (LES) is also provided. The report is organized by considering technical issues throughout the scramjet-powered vehicle flowpath including laminar-to-turbulent boundary layer transition, shock wave / turbulent boundary layer interactions, scalar transport modeling (specifically the significance of turbulent Prandtl and Schmidt numbers) and compressible mixing. Unit problems are primarily used to conduct the assessment. In the combustor, results from calculations of a direct connect supersonic combustion experiment are also used to address the effects of turbulence model selection and in particular settings for the turbulent Prandtl and Schmidt numbers. It is concluded that RANS turbulence modeling shortfalls are still a major limitation to the accuracy of hypersonic propulsion simulations, whether considering individual components or an overall system. Newer methods such as LES-based techniques may be promising, but are not yet at a maturity to be used routinely by the hypersonic propulsion community. The need for fundamental experiments to provide data for turbulence model development and validation is discussed.

  14. A novel propulsion method for high- Tc superconducting maglev vehicle

    Science.gov (United States)

    Ma, Guangtong; Wang, Jiasu; Wang, Suyu; Liu, Minxian; Jing, Hua; Lu, Yiyun; Lin, Qunxu

    2008-01-01

    High-Tc superconducting (HTS) maglev is considered as a perfect transportation type because of its unique inherent stability. A direct current (DC) linear motor using the permanent magnet guideway (PMG) as the stator and the on-board coil as the rotor instead of the present inductive or synchronous alternate current (AC) linear motor which has an economic disadvantage due to the necessity to lay primary coil along the guideway is proposed in this paper. In order to modulate the magnetic field under the PMG, an inverse E shape ferromagnetic device (IESFD) core is designed. The possible winding method for the on-board coil is listed, and the analytical result shows that a considerable net ampere force and thus the propulsion force can be generated by this special structure. The influence of the concentrated effect of the IESFD on the maglev performance of HTS bulk is studied by a numerical program, and the results show that the levitation force with the IESFD is 90% of that without. It is also indicated that the load capability and lateral performance of the maglev vehicle combined this propulsion method can be improved thanks to the attractive effect between the IESFD and PMG. The cost of the HTS maglev vehicle will be remarkably reduced and then shorten the distance to practical application with this propulsion method.

  15. Technology Readiness of the NEXT Ion Propulsion System

    Science.gov (United States)

    Benson, Scott W.; Patterson, Michael J.

    2008-01-01

    The NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system has been in advanced technology development under the NASA In-Space Propulsion Technology project. The highest fidelity hardware planned has now been completed by the government/industry team, including: a flight prototype model (PM) thruster, an engineering model (EM) power processing unit, EM propellant management assemblies, a breadboard gimbal, and control unit simulators. Subsystem and system level technology validation testing is in progress. To achieve the objective Technology Readiness Level 6, environmental testing is being conducted to qualification levels in ground facilities simulating the space environment. Additional tests have been conducted to characterize the performance range and life capability of the NEXT thruster. This paper presents the status and results of technology validation testing accomplished to date, the validated subsystem and system capabilities, and the plans for completion of this phase of NEXT development. The next round of competed planetary science mission announcements of opportunity, and directed mission decisions, are anticipated to occur in 2008 and 2009. Progress to date, and the success of on-going technology validation, indicate that the NEXT ion propulsion system will be a primary candidate for mission consideration in these upcoming opportunities.

  16. Electric Propulsion System Modeling for the Proposed Prometheus 1 Mission

    Science.gov (United States)

    Fiehler, Douglas; Dougherty, Ryan; Manzella, David

    2005-01-01

    The proposed Prometheus 1 spacecraft would utilize nuclear electric propulsion to propel the spacecraft to its ultimate destination where it would perform its primary mission. As part of the Prometheus 1 Phase A studies, system models were developed for each of the spacecraft subsystems that were integrated into one overarching system model. The Electric Propulsion System (EPS) model was developed using data from the Prometheus 1 electric propulsion technology development efforts. This EPS model was then used to provide both performance and mass information to the Prometheus 1 system model for total system trades. Development of the EPS model is described, detailing both the performance calculations as well as its evolution over the course of Phase A through three technical baselines. Model outputs are also presented, detailing the performance of the model and its direct relationship to the Prometheus 1 technology development efforts. These EP system model outputs are also analyzed chronologically showing the response of the model development to the four technical baselines during Prometheus 1 Phase A.

  17. Effect of sorbed methanol, current, and temperature on multicomponent transport in nafion-based direct methanol fuel cells.

    Science.gov (United States)

    Rivera, Harry; Lawton, Jamie S; Budil, David E; Smotkin, Eugene S

    2008-07-24

    The CO2 in the cathode exhaust of a liquid feed direct methanol fuel cell (DMFC) has two sources: methanol diffuses through the membrane electrode assembly (MEA) to the cathode where it is catalytically oxidized to CO2; additionally, a portion of the CO2 produced at the anode diffuses through the MEA to the cathode. The potential-dependent CO2 exhaust from the cathode was monitored by online electrochemical mass spectrometry (ECMS) with air and with H2 at the cathode. The precise determination of the crossover rates of methanol and CO2, enabled by the subtractive normalization of the methanol/air to the methanol/H2 ECMS data, shows that methanol decreases the membrane viscosity and thus increases the diffusion coefficients of sorbed membrane components. The crossover of CO2 initially increases linearly with the Faradaic oxidation of methanol, reaches a temperature-dependent maximum, and then decreases. The membrane viscosity progressively increases as methanol is electrochemically depleted from the anode/electrolyte interface. The crossover maximum occurs when the current dependence of the diffusion coefficients and membrane CO2 solubility dominate over the Faradaic production of CO2. The plasticizing effect of methanol is corroborated by measurements of the rotational diffusion of TEMPONE (2,2,6,6-tetramethyl-4-piperidone N-oxide) spin probe by electron spin resonance spectroscopy. A linear inverse relationship between the methanol crossover rate and current density confirms the absence of methanol electro-osmotic drag at concentrations relevant to operating DMFCs. The purely diffusive transport of methanol is explained in terms of current proton solvation and methanol-water incomplete mixing theories.

  18. IEC Thrusters for Space Probe Applications and Propulsion

    Science.gov (United States)

    Miley, George H.; Momota, Hiromu; Wu, Linchun; Reilly, Michael P.; Teofilo, Vince L.; Burton, Rodney; Dell, Richard; Dell, Dick; Hargus, William A.

    2009-03-01

    Earlier conceptual design studies (Bussard, 1990; Miley et al., 1998; Burton et al., 2003) have described Inertial Electrostatic Confinement (IEC) fusion propulsion to provide a high-power density fusion propulsion system capable of aggressive deep space missions. However, this requires large multi-GW thrusters and a long term development program. As a first step towards this goal, a progression of near-term IEC thrusters, stating with a 1-10 kWe electrically-driven IEC jet thruster for satellites are considered here. The initial electrically-powered unit uses a novel multi-jet plasma thruster based on spherical IEC technology with electrical input power from a solar panel. In this spherical configuration, Xe ions are generated and accelerated towards the center of double concentric spherical grids. An electrostatic potential well structure is created in the central region, providing ion trapping. Several enlarged grid opening extract intense quasi-neutral plasma jets. A variable specific impulse in the range of 1000-4000 seconds is achieved by adjusting the grid potential. This design provides high maneuverability for satellite and small space probe operations. The multiple jets, combined with gimbaled auxiliary equipment, provide precision changes in thrust direction. The IEC electrical efficiency can match or exceed efficiencies of conventional Hall Current Thrusters (HCTs) while offering advantages such as reduced grid erosion (long life time), reduced propellant leakage losses (reduced fuel storage), and a very high power-to-weight ratio. The unit is ideally suited for probing missions. The primary propulsive jet enables delicate maneuvering close to an object. Then simply opening a second jet offset 180 degrees from the propulsion one provides a "plasma analytic probe" for interrogation of the object.

  19. IEC Thrusters for Space Probe Applications and Propulsion

    International Nuclear Information System (INIS)

    Miley, George H.; Momota, Hiromu; Wu Linchun; Reilly, Michael P.; Teofilo, Vince L.; Burton, Rodney; Dell, Richard; Dell, Dick; Hargus, William A.

    2009-01-01

    Earlier conceptual design studies (Bussard, 1990; Miley et al., 1998; Burton et al., 2003) have described Inertial Electrostatic Confinement (IEC) fusion propulsion to provide a high-power density fusion propulsion system capable of aggressive deep space missions. However, this requires large multi-GW thrusters and a long term development program. As a first step towards this goal, a progression of near-term IEC thrusters, stating with a 1-10 kWe electrically-driven IEC jet thruster for satellites are considered here. The initial electrically-powered unit uses a novel multi-jet plasma thruster based on spherical IEC technology with electrical input power from a solar panel. In this spherical configuration, Xe ions are generated and accelerated towards the center of double concentric spherical grids. An electrostatic potential well structure is created in the central region, providing ion trapping. Several enlarged grid opening extract intense quasi-neutral plasma jets. A variable specific impulse in the range of 1000-4000 seconds is achieved by adjusting the grid potential. This design provides high maneuverability for satellite and small space probe operations. The multiple jets, combined with gimbaled auxiliary equipment, provide precision changes in thrust direction. The IEC electrical efficiency can match or exceed efficiencies of conventional Hall Current Thrusters (HCTs) while offering advantages such as reduced grid erosion (long life time), reduced propellant leakage losses (reduced fuel storage), and a very high power-to-weight ratio. The unit is ideally suited for probing missions. The primary propulsive jet enables delicate maneuvering close to an object. Then simply opening a second jet offset 180 degrees from the propulsion one provides a 'plasma analytic probe' for interrogation of the object.

  20. METHODOLOGY OF THE HYBRID PROPULSION SYSTEM (DMP & DEP FOR TRIMARAN TYPE FAST PATROL BOAT

    Directory of Open Access Journals (Sweden)

    Aulia Widyandari

    2012-04-01

    Full Text Available There are lot of research done to develop a patrol boat, from the modification of hull model until propulsion system equipment. For example the model ship type AMV (Advanced Marine Vehicle was developed starting from the Catamaran, Trimaran and  Pentamaran model. Everything is aimed at obtaining the ship design that has the speed and stability. In addition to achieving high-speed vessel must be equipped with propulsion (Main Power is great, that means the main engine dimensions, auxiliary equipments and fuel tanks is too large. Many Limitations of space on the ship's engine room trimaran vessel is the main obstacle in designing propulsion system. Beside that Patrol boat should have many missions speed, so propulsion system should be designed at that conditions.   Hybrid propulsion is a combination of Diesel Mechanical Propulsion (DMP with Diesel Electric Propulsion (DEP. DMP system is connected directly to the propeller shaft (or through a reduction-gear. DMP has provide more efficiency rate of 95%. While DEP is only able to provide efficiency by 85% - 89% is slightly lower than DMP, but the DEP offers many advantages such as simplicity and suitability in the rotational speed settings, control systems, engine power production Redundancy, Flexibility in the design of equipments layout in engine rooms, noise, vibration and fuel consumption efficiency which affects the lower pollution.   Design of Hybrid Propulsion system can be satisfied and achieved the Power requirements and optimally at all speed condition of patrol boat. Therefore the author made using modeling Maxsurf-11.12 software and carried out various optimization of the choice of main engine, propeller and system conditions for fast patrol boat cruise. 

  1. High Power Helicon Plasma Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work seeks to develop and optimize an electrode-less plasma propulsion system that is based on a high power helicon (HPH) that is being developed...

  2. Status of Advanced Propulsion Technology in Japan

    Science.gov (United States)

    1982-03-01

    This report describes the efforts of the Japanese transit industry, which includes manufacturers and transit operators, in the area of advanced propulsion systems for urban rail vehicles. It presents different chopper system designs, new ac drive dev...

  3. Authentication for Propulsion Test Streaming Video

    Data.gov (United States)

    National Aeronautics and Space Administration — A streaming video system was developed and implemented at SSC to support various propulsion projects at SSC. These projects included J-2X and AJ-26 rocket engine...

  4. Jet Propulsion Laboratory: Outsider or insider?

    Science.gov (United States)

    1980-01-01

    The working relationship between NASA and the Jet Propulsion Laboratory is examined in a historical context. The problems which developed due to the facility's close university association are addressed.

  5. Nuclear Thermal Propulsion for Advanced Space Exploration

    Science.gov (United States)

    Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  6. Nuclear Cryogenic Propulsion Stage for Mars Exploration

    Science.gov (United States)

    Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  7. Space Nuclear Thermal Propulsion (SNTP) program

    Science.gov (United States)

    Bleeker, Gary A.

    1993-01-01

    An overview of the Space Nuclear Thermal Propulsion program is presented in graphic form. A program organizational chart is presented that shows the government and industry participants. Enabling technologies and test facilities and approaches are also addressed.

  8. Hybrid Electric Propulsion Technologies for Commercial Transports

    Science.gov (United States)

    Bowman, Cheryl; Jansen, Ralph; Jankovsky, Amy

    2016-01-01

    NASA Aeronautics Research Mission Directorate has set strategic research thrusts to address the major drivers of aviation such as growth in demand for high-speed mobility, addressing global climate and capitalizing in the convergence of technological advances. Transitioning aviation to low carbon propulsion is one of the key strategic research thrust and drives the search for alternative and greener propulsion system for advanced aircraft configurations. This work requires multidisciplinary skills coming from multiple entities. The Hybrid Gas-Electric Subproject in the Advanced Air Transportation Project is energizing the transport class landscape by accepting the technical challenge of identifying and validating a transport class aircraft with net benefit from hybrid propulsion. This highly integrated aircraft of the future will only happen if airframe expertise from NASA Langley, modeling and simulation expertise from NASA Ames, propulsion expertise from NASA Glenn, and the flight research capabilities from NASA Armstrong are brought together to leverage the rich capabilities of U.S. Industry and Academia.

  9. High Power Helicon Plasma Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new thruster has been conceived and tested that is based on a high power helicon (HPH) plasma wave. In this new method of propulsion, an antenna generates and...

  10. Cycloidal Propulsion for UAV VTOL Applications

    National Research Council Canada - National Science Library

    Boschma, James

    1998-01-01

    .... This propulsion concept holds significant promise for adaptation to UAV VTOL operations. Thrust levels demonstrated were substantially higher than achievable by the best screw type propellers, and approximately equal to those of high end helicopters...

  11. Breakthrough Propulsion Physics Workshop Preliminary Results

    Science.gov (United States)

    Millis, Marc G.

    1997-01-01

    In August, 1997, a NASA workshop was held to assess the prospects emerging from physics that might lead to creating the ultimate breakthroughs in space transportation: propulsion that requires no propellant mass, attaining the maximum transit speeds physically possible, and breakthrough methods of energy production to power such devices. Because these propulsion goals are presumably far from fruition, a special emphasis was to identify affordable, near-term, and credible research that could make measurable progress toward these propulsion goals. Experiments and theories were discussed regarding the coupling of gravity and electromagnetism, vacuum fluctuation energy, warp drives and wormholes, and superluminal quantum tunneling. Preliminary results of this workshop are presented, along with the status of the Breakthrough Propulsion Physics program that conducted this workshop.

  12. Superconducting Aero Propulsion Motor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Superconducting electric propulsion systems will yield improvements in total ownership costs due to the simplicity of electric drive when compared with gas turbine...

  13. Test report : alternative fuels propulsion durability evaluation

    Science.gov (United States)

    2012-08-28

    This document, prepared by Honeywell Aerospace, Phoenix, AZ (Honeywell), contains the final : test report (public version) for the U.S. Department of Transportation/Federal Aviation : Administration (USDOT/FAA) Alternative Fuels Propulsion Engine Dur...

  14. Propulsion mechanism for stray X radiation grid

    International Nuclear Information System (INIS)

    1975-01-01

    An improvement in the mechanical part of X-ray equipment for tomography is described. A propulsion mechanism for the stray radiation grid in relation to the radiation source is invented which prevents overloading by automatic decoupling and recoupling

  15. Performance and Cost Evaluation of Cryogenic Solid Propulsion Systems

    Science.gov (United States)

    Adirim, Harry; Lo, Roger; Knecht, Thomas; Reinbold, Georg-Friedrich; Poller, Sascha

    2002-01-01

    Under the sponsorship of the German Aerospace Center DLR, Cryogenic Solid Propulsion (CSP) is now in its 6th year of R&D. The development proceeds as a joint international university-, small business-, space industry- and professional research effort (Berlin University of Technology / AI: Aerospace Institute, Berlin / Bauman Moscow State Technical University, Russia / ASTRIUM GmbH, Bremen / Fraunhofer Institute for Chemical Technology, Berghausen). This paper aims at introducing CSP as a novel type of chemical propellant that uses frozen liquids as Oxygen (SOX) or Hydrogen Peroxide (SH2O2) inside of a coherent solid Hydrocarbon (PE, PU or HTPB) matrix in solid rocket motors. Theoretically any conceivable chemical rocket propellant combination (including any environmentally benign ,,green propellant") can be used in solid rocket propellant motors if the definition of solids is not restricted to "solid at ambient temperature". The CSP concept includes all suitable high energy propellant combinations, but is not limited to them. Any liquid or hybrid bipropellant combination is (Isp-wise) superior to any conventional solid propellant formulation. While CSPs do share some of the disadvantages of solid propulsion (e.g. lack of cooling fluid and preset thrust-time function), they definitely share one of their most attractive advantages: the low number of components that is the base for high reliability and low cost of structures. In this respect, CSPs are superior to liquid propellant rocket motors with whom, they share the high Isp performance. High performance, low cost, low pollution CSP technology could bring about a near term improvement for chemical Earth-to-orbit high thrust propulsion. In the long run it could surpass conventional chemical propulsion because it is better suited for applying High Energy Density Matter (HEDM) than any other mode of propulsion. So far, ongoing preliminary analyses have not shown any insuperable problems in areas of concern, such as

  16. Electric Propulsion System Characterization through Experiments

    OpenAIRE

    Hattenberger, Gautier; Drouin, Antoine; Bronz, Murat

    2016-01-01

    International audience; Electrical propulsion system characteristics are very important in UAV design, operation and control. This article presents the characterization of electric propulsion sets through experiments. A motor test bench have been build based on previous experience in order to improve the quality of the measurements. Moreover, the bench fits in a wind tunnel, allowing to perform a complete characterization over the full airspeed range of the considered mini and micro-UAVs. Aft...

  17. Modifications in Wheelchair Propulsion Technique with Speed

    Directory of Open Access Journals (Sweden)

    Ian Miles Russell

    2015-10-01

    Full Text Available Objective: Repetitive loading of the upper limb joints during manual wheelchair propulsion has been identified a factor that contributes to shoulder pain, leading to loss of independence and decreased quality of life. The purpose of this study was to determine how individual manual wheelchair users with paraplegia modify propulsion mechanics to accommodate expected increases in reaction forces generated at the pushrim with self-selected increases in wheelchair propulsion (WCP speed.Methods: Upper extremity kinematics and pushrim reaction forces were measured for 40 experienced manual wheelchair users with paraplegia while propelling on a stationary ergometer at self-selected free and fast propulsion speeds. Upper extremity kinematics and kinetics were compared within-subject between propulsion speeds. Between group and within subject differences were determined (α =0.05.Results: Increased propulsion speed was accompanied by increases in Reaction Force (RF magnitude (22 of 40, >10N and shoulder Net Joint Moment (NJM, 15 of 40, >10Nm and decreases in pushrim contact duration. Within-subject comparison indicated that 27% of participants modified their WCP mechanics with increases in speed by regulating RF orientation relative to the upper extremity segments.Conclusions: Reorientation of the RF relative to the upper extremity segments can be used as an effective strategy for mitigating rotational demands (NJM imposed on the shoulder at increased propulsion speeds. Identification of propulsion strategies that individuals can use to effectively accommodate for increases in RFs is an important step towards preserving musculoskeletal health of the shoulder and improving health-related quality of life.

  18. Visions of the Future: Hybrid Electric Aircraft Propulsion

    Science.gov (United States)

    Bowman, Cheryl L.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is investing continually in improving civil aviation. Hybridization of aircraft propulsion is one aspect of a technology suite which will transform future aircraft. In this context, hybrid propulsion is considered a combination of traditional gas turbine propulsion and electric drive enabled propulsion. This technology suite includes elements of propulsion and airframe integration, parallel hybrid shaft power, turbo-electric generation, electric drive systems, component development, materials development and system integration at multiple levels.

  19. Nonsinusoidal gaits for unsteady propulsion

    Science.gov (United States)

    Van Buren, T.; Floryan, D.; Quinn, D.; Smits, A. J.

    2017-05-01

    The impact of wave-form shape on the wake and propulsive performance of a pitching and heaving two-dimensional foil is explored experimentally. Jacobi elliptic functions are used to define wave-form shapes that are approximately triangular, sinusoidal, or square. The triangular-like and sinusoidal waves produce qualitatively similar wakes, with a typical reverse von Kármán vortex street structure leading to a jetlike wake in the mean. Square-like motions produce very different results, with a vortex pair shed every half cycle, leading to a mean wake with two distinct off-center jets, and a significant change in the thrust production, yielding up to four times more thrust for a given Strouhal number. Performance curves indicate that to swim most efficiently sinusoidal motions are best, whereas the square-like motions lead to higher speeds. A scaling analysis indicates that the peak lateral velocity appears to be the dominant parameter in characterizing the performance of the nonsinusoidal motions.

  20. Breakthrough Propulsion Physics Project: Project Management Methods

    Science.gov (United States)

    Millis, Marc G.

    2004-01-01

    To leap past the limitations of existing propulsion, the NASA Breakthrough Propulsion Physics (BPP) Project seeks further advancements in physics from which new propulsion methods can eventually be derived. Three visionary breakthroughs are sought: (1) propulsion that requires no propellant, (2) propulsion that circumvents existing speed limits, and (3) breakthrough methods of energy production to power such devices. Because these propulsion goals are presumably far from fruition, a special emphasis is to identify credible research that will make measurable progress toward these goals in the near-term. The management techniques to address this challenge are presented, with a special emphasis on the process used to review, prioritize, and select research tasks. This selection process includes these key features: (a) research tasks are constrained to only address the immediate unknowns, curious effects or critical issues, (b) reliability of assertions is more important than the implications of the assertions, which includes the practice where the reviewers judge credibility rather than feasibility, and (c) total scores are obtained by multiplying the criteria scores rather than by adding. Lessons learned and revisions planned are discussed.

  1. Propulsion in cubomedusae: mechanisms and utility.

    Directory of Open Access Journals (Sweden)

    Sean P Colin

    Full Text Available Evolutionary constraints which limit the forces produced during bell contractions of medusae affect the overall medusan morphospace such that jet propulsion is limited to only small medusae. Cubomedusae, which often possess large prolate bells and are thought to swim via jet propulsion, appear to violate the theoretical constraints which determine the medusan morphospace. To examine propulsion by cubomedusae, we quantified size related changes in wake dynamics, bell shape, swimming and turning kinematics of two species of cubomedusae, Chironex fleckeri and Chiropsella bronzie. During growth, these cubomedusae transitioned from using jet propulsion at smaller sizes to a rowing-jetting hybrid mode of propulsion at larger sizes. Simple modifications in the flexibility and kinematics of their velarium appeared to be sufficient to alter their propulsive mode. Turning occurs during both bell contraction and expansion and is achieved by generating asymmetric vortex structures during both stages of the swimming cycle. Swimming characteristics were considered in conjunction with the unique foraging strategy used by cubomedusae.

  2. Advanced-fueled fusion reactors suitable for direct energy conversion. Project note: temperature-gradient enhancement of electrical fields in insulators

    International Nuclear Information System (INIS)

    Blum, A.S.; Mancebo, L.

    1976-01-01

    Direct energy converters for use on controlled fusion reactors utilize electrodes operated at elevated voltages and temperatures. The insulating elements that position these electrodes must support large voltages and under some circumstances large thermal gradients. It is shown that even modest thermal gradients can cause major alterations of the electric-field distribution within the insulating element

  3. A note on the correlation between circular and linear variables with an application to wind direction and air temperature data in a Mediterranean climate

    Science.gov (United States)

    Lototzis, M.; Papadopoulos, G. K.; Droulia, F.; Tseliou, A.; Tsiros, I. X.

    2018-04-01

    There are several cases where a circular variable is associated with a linear one. A typical example is wind direction that is often associated with linear quantities such as air temperature and air humidity. The analysis of a statistical relationship of this kind can be tested by the use of parametric and non-parametric methods, each of which has its own advantages and drawbacks. This work deals with correlation analysis using both the parametric and the non-parametric procedure on a small set of meteorological data of air temperature and wind direction during a summer period in a Mediterranean climate. Correlations were examined between hourly, daily and maximum-prevailing values, under typical and non-typical meteorological conditions. Both tests indicated a strong correlation between mean hourly wind directions and mean hourly air temperature, whereas mean daily wind direction and mean daily air temperature do not seem to be correlated. In some cases, however, the two procedures were found to give quite dissimilar levels of significance on the rejection or not of the null hypothesis of no correlation. The simple statistical analysis presented in this study, appropriately extended in large sets of meteorological data, may be a useful tool for estimating effects of wind on local climate studies.

  4. Plant growth response to direct and indirect temperature effects varies by vegetation type and elevation in a subarctic tundra

    NARCIS (Netherlands)

    De Long, Jonathan R.; Kardol, P.; Sundqvist, Maja K.; Veen, G. F.; Wardle, David A.

    2015-01-01

    There has been growing recent use of elevational gradients as tools for assessing effects of temperature changes on vegetation properties, because these gradients enable temperature effects to be considered over larger spatial and temporal scales than is possible through conventional experiments.

  5. Sensor-less control of the methanol concentration of direct methanol fuel cells at varying ambient temperatures

    International Nuclear Information System (INIS)

    An, Myung-Gi; Mehmood, Asad; Ha, Heung Yong

    2014-01-01

    Highlights: • A new algorithm is proposed for the sensor-less control of methanol concentration. • Two different strategies are used depending on the ambient temperatures. • Energy efficiency of the DMFC system has been improved by using the new algorithm. - Abstract: A new version of an algorithm is used to control the methanol concentration in the feed of DMFC systems without using methanol sensors under varying ambient temperatures. The methanol concentration is controlled indirectly by controlling the temperature of the DMFC stack, which correlates well with the methanol concentration. Depending on the ambient temperature relative to a preset reference temperature, two different strategies are used to control the stack temperature: either reducing the cooling rate of the methanol solution passing through an anode-side heat exchanger; or, lowering the pumping rate of the pure methanol to the depleted feed solution. The feasibility of the algorithm is evaluated using a DMFC system that consists of a 200 W stack and the balance of plant (BOP). The DMFC system includes a sensor-less methanol controller that is operated using a LabView system as the central processing unit. The algorithm is experimentally confirmed to precisely control the methanol concentration and the stack temperature at target values under an environment of varying ambient temperatures

  6. The investigation of soot and temperature distributions in a visualized direct injection diesel engine using laser diagnostics

    Science.gov (United States)

    Han, Yong-taek; Kim, Ki-bum; Lee, Ki-hyung

    2008-11-01

    Based upon the method of temperature calibration using the diffusion flame, the temperature and soot concentrations of the turbulent flame in a visualized diesel engine were qualitatively measured. Two different cylinder heads were used to investigate the effect of swirl ratio within the combustion chamber. From this experiment, we find that the highest flame temperature of the non-swirl head engine is approximately 2400 K and that of the swirl head engine is 2100 K. In addition, as the pressure of fuel injection increases, the in-cylinder temperature increases due to the improved combustion of a diesel engine. This experiment represented the soot quantity in the KL factor and revealed that the KL factor was high when the fuel collided with the cylinder wall. Moreover, the KL factor was also high in the area of the chamber where the temperature dropped rapidly.

  7. Variability in bimanual wheelchair propulsion: consistency of two instrumented wheels during handrim wheelchair propulsion on a motor driven treadmill

    Science.gov (United States)

    2013-01-01

    Background Handrim wheelchair propulsion is a complex bimanual motor task. The bimanually applied forces on the rims determine the speed and direction of locomotion. Measurements of forces and torques on the handrim are important to study status and change of propulsion technique (and consequently mechanical strain) due to processes of learning, training or the wheelchair configuration. The purpose of this study was to compare the simultaneous outcomes of two different measurement-wheels attached to the different sides of the wheelchair, to determine measurement consistency within and between these wheels given the expected inter- and intra-limb variability as a consequence of motor control. Methods Nine able-bodied subjects received a three-week low-intensity handrim wheelchair practice intervention. They then performed three four-minute trials of wheelchair propulsion in an instrumented hand rim wheelchair on a motor-driven treadmill at a fixed belt speed. The two measurement-wheels on each side of the wheelchair measured forces and torques of one of the two upper limbs, which simultaneously perform the push action over time. The resulting data were compared as direct output using cross-correlation on the torque around the wheel-axle. Calculated push characteristics such as power production and speed were compared using an intra-class correlation. Results Measured torque around the wheel axle of the two measurement-wheels had a high average cross-correlation of 0.98 (std=0.01). Unilateral mean power output over a minute was found to have an intra-class correlation of 0.89 between the wheels. Although the difference over the pushes between left and right power output had a high variability, the mean difference between the measurement-wheels was low at 0.03 W (std=1.60). Other push characteristics showed even higher ICC’s (>0.9). Conclusions A good agreement between both measurement-wheels was found at the level of the power output. This indicates a high

  8. Status of Propulsion Technology Development Under the NASA In-Space Propulsion Technology Program

    Science.gov (United States)

    Anderson, David; Kamhawi, Hani; Patterson, Mike; Pencil, Eric; Pinero, Luis; Falck, Robert; Dankanich, John

    2014-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies for NASA's Science Mission Directorate (SMD). These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, Flagship and sample return missions currently under consideration. The ISPT program is currently developing technology in three areas that include Propulsion System Technologies, Entry Vehicle Technologies, and Systems/Mission Analysis. ISPT's propulsion technologies include: 1) the 0.6-7 kW NASA's Evolutionary Xenon Thruster (NEXT) gridded ion propulsion system; 2) a 0.3-3.9kW Halleffect electric propulsion (HEP) system for low cost and sample return missions; 3) the Xenon Flow Control Module (XFCM); 4) ultra-lightweight propellant tank technologies (ULTT); and 5) propulsion technologies for a Mars Ascent Vehicle (MAV). The NEXT Long Duration Test (LDT) recently exceeded 50,000 hours of operation and 900 kg throughput, corresponding to 34.8 MN-s of total impulse delivered. The HEP system is composed of the High Voltage Hall Accelerator (HIVHAC) thruster, a power processing unit (PPU), and the XFCM. NEXT and the HIVHAC are throttle-able electric propulsion systems for planetary science missions. The XFCM and ULTT are two component technologies which being developed with nearer-term flight infusion in mind. Several of the ISPT technologies are related to sample return missions needs: MAV propulsion and electric propulsion. And finally, one focus of the Systems/Mission Analysis area is developing tools that aid the application or operation of these technologies on wide variety of mission concepts. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness.

  9. An in-vitro study to compare the temperature rise in the pulp chamber by direct method using three different provisional restorative materials.

    Science.gov (United States)

    Piplani, Ankita; Suresh Sajjan, M C; Ramaraju, A V; Tanwani, Tushar; Sushma, G; Ganathipathi, G; Jagdish, K; Agrawal, Anil

    2016-01-01

    chamber. The order of rise in intrapulpal temperature in tested provisional materials using direct technique would be Cool temp, Integrity, and Protemp-4.

  10. An in-vitro study to compare the temperature rise in the pulp chamber by direct method using three different provisional restorative materials

    Science.gov (United States)

    Piplani, Ankita; Suresh Sajjan, M. C.; Ramaraju, A. V.; Tanwani, Tushar; Sushma, G.; Ganathipathi, G.; Jagdish, K.; Agrawal, Anil

    2016-01-01

    . Conclusion: Cool temp showed least temperature rise in the pulp chamber. The order of rise in intrapulpal temperature in tested provisional materials using direct technique would be Cool temp, Integrity, and Protemp-4. PMID:27134426

  11. Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion

    Science.gov (United States)

    2014-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored. PMID:24600326

  12. Smart built-in test for nuclear thermal propulsion

    International Nuclear Information System (INIS)

    Lombrozo, P.C.

    1992-03-01

    Smart built-in test (BIT) technologies are envisioned for nuclear thermal propulsion spacecraft components which undergo constant irradiation and are therefore unsafe for manual testing. Smart BIT systems of automated/remote type allow component and system tests to be conducted; failure detections are directly followed by reconfiguration of the components affected. The 'smartness' of the BIT system in question involves the reduction of sensor counts via the use of multifunction sensors, the use of components as integral sensors, and the use of system design techniques which allow the verification of system function beyond component connectivity

  13. Fuel cells: a real option for Unmanned Aerial Vehicles propulsion.

    Science.gov (United States)

    González-Espasandín, Óscar; Leo, Teresa J; Navarro-Arévalo, Emilio

    2014-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored.

  14. Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion

    Directory of Open Access Journals (Sweden)

    Óscar González-Espasandín

    2014-01-01

    Full Text Available The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC and Direct Methanol Fuel Cells (DMFC, their fuels (hydrogen and methanol, and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored.

  15. Propulsion System Materials Program semiannual progress report for April 1995 through September 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    Significant accomplishments in fabricating ceramic components for the DOE, NASA, and DOD advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a 5-year program plan was developed with extensive input from private industry. During the course of the Propulsion System Materials Program, remarkable progress has been made in the development of reliable structural ceramics. However, further work is needed to reduce the cost of ceramics to facilitate their commercial introduction, especially in the highly cost-sensitive automotive market. To this end, the direction of the Propulsion System Materials Program is now shifting toward reducing the cost of ceramics to facilitate commercial introduction of ceramic components for near-term engine applications. In response to extensive input from industry, the plan is to extend the engine types which were previously supported to include near-term (5--10 years) applications in conventional automobile and diesel truck engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. A systematic approach to reducing the cost of components is envisioned. The work elements are as follows: economic cost modeling, ceramic machining, powder synthesis, alternative forming and densification processes, yield improvement, system design studies, standards development, low-expansion ceramics, and testing and data base development.

  16. Future Directions for Space Transportation and Propulsion at NASA

    Science.gov (United States)

    Sackheim, Robert L.

    2005-01-01

    Contents include the following: Oxygen Compatible Materials. Manufacturing Technology Demonstrations. Turbopump Inducer Waterflow Test. Turbine Damping "Whirligig" Test. Single Element Preburner and Main Injector Test. 40K Multi-Element Preburner and MI. Full-Scale Battleship Preburner. Prototype Preburner Test Article. Full-Scale Prototype TCA. Turbopump Hot-Fire Test Article. Prototype Engine. Validated Analytical Models.

  17. Optimum cycle frequencies in hand-rim wheelchair propulsion. Wheelchair propulsion technique

    NARCIS (Netherlands)

    van der Woude, L H; Veeger, DirkJan (H. E. J.); Rozendal, R H; Sargeant, A J

    1989-01-01

    To study the effect of different cycle frequencies on cardio-respiratory responses and propulsion technique in hand-rim wheelchair propulsion, experienced wheelchair sportsmen (WS group; n = 6) and non-wheelchair users (NW group; n = 6) performed wheelchair exercise tests on a motor-driven

  18. The Ion Propulsion System for the Solar Electric Propulsion Technology Demonstration Mission

    Science.gov (United States)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard R.; Parker, J. Morgan

    2015-01-01

    The Asteroid Redirect Robotic Mission is a candidate Solar Electric Propulsion Technology Demonstration Mission whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. The ion propulsion system must be capable of operating over an 8-year time period and processing up to 10,000 kg of xenon propellant. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of an affordable, beyond-low-Earth-orbit, manned-exploration architecture. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. The ion propulsion system being co-developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory for the Asteroid Redirect Vehicle is based on the NASA-developed 12.5 kW Hall Effect Rocket with Magnetic Shielding (HERMeS0 thruster and power processing technologies. This paper presents the conceptual design for the ion propulsion system, the status of the NASA in-house thruster and power processing activity, and an update on flight hardware.

  19. Effect of workload setting on propulsion technique in handrim wheelchair propulsion

    NARCIS (Netherlands)

    van Drongelen, S.V.; Arnet, U.; Veeger, H.E.J.; van der Woude, L.H.V.

    2013-01-01

    Objective: To investigate the influence of workload setting (speed at constant power, method to impose power) on the propulsion technique (i.e. force and timing characteristics) in handrim wheelchair propulsion. Method: Twelve able-bodied men participated in this study. External forces were measured

  20. Effect of workload setting on propulsion technique in handrim wheelchair propulsion

    NARCIS (Netherlands)

    van Drongelen, Stefan; Arnet, Ursina; Veeger, DirkJan (H E. J); van der Woude, Lucas H. V.

    Objective: To investigate the influence of workload setting (speed at constant power, method to impose power) on the propulsion technique (i.e. force and timing characteristics) in handrim wheelchair propulsion. Method: Twelve able-bodied men participated in this study. External forces were measured

  1. Film-Evaporation MEMS Tunable Array for Picosat Propulsion and Thermal Control

    Science.gov (United States)

    Alexeenko, Alina; Cardiff, Eric; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Film-Evaporation MEMS Tunable Array (FEMTA) concept for propulsion and thermal control of picosats exploits microscale surface tension effect in conjunction with temperature- dependent vapor pressure to realize compact, tunable and low-power thermal valving system. The FEMTA is intended to be a self-contained propulsion unit requiring only a low-voltage DC power source to operate. The microfabricated thermal valving and very-high-integration level enables fast high-capacity cooling and high-resolution, low-power micropropulsion for picosats that is superior to existing smallsat micropropulsion and thermal management alternatives.

  2. Feasibility study of a nonequilibrium MHD accelerator concept for hypersonic propulsion ground testing

    International Nuclear Information System (INIS)

    Lee, Ying-Ming; Simmons, G.A.; Nelson, G.L.

    1995-01-01

    A National Aeronautics and Space Administration (NASA) funded research study to evaluate the feasibility of using magnetohydrodynamic (MHD) body force accelerators to produce true air simulation for hypersonic propulsion ground testing is discussed in this paper. Testing over the airbreathing portion of a transatmospheric vehicle (TAV) hypersonic flight regime will require high quality air simulation for actual flight conditions behind a bow shock wave (forebody, pre-inlet region) for flight velocities up to Mach 16 and perhaps beyond. Material limits and chemical dissociation at high temperature limit the simulated flight Mach numbers in conventional facilities to less than Mach 12 for continuous and semi-continuous testing and less than Mach 7 for applications requiring true air chemistry. By adding kinetic energy directly to the flow, MHD accelerators avoid the high temperatures and pressures required in the reservoir region of conventional expansion facilities, allowing MHD to produce true flight conditions in flight regimes impossible with conventional facilities. The present study is intended to resolve some of the critical technical issues related to the operation of MHD at high pressure. Funding has been provided only for the first phase of a three to four year feasibility study that would culminate in the demonstration of MHD acceleration under conditions required to produce true flight conditions behind a bow shock wave to flight Mach numbers of 16 or greater. MHD critical issues and a program plan to resolve these are discussed

  3. Systems Analysis Developed for All-Electric Aircraft Propulsion

    Science.gov (United States)

    Kohout, Lisa L.

    2004-01-01

    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane (PEM) and solid oxide fuel cells (SOFCs), alternative fuels and fuel processing, and fuel storage. A multidisciplinary effort is underway at the NASA Glenn Research Center to develop and evaluate concepts for revolutionary, nontraditional fuel cell power and propulsion systems for aircraft applications. As part of this effort, system studies are being conducted to identify concepts with high payoff potential and associated technology areas for further development. To support this effort, a suite of component models was developed to estimate the mass, volume, and performance for a given system architecture. These models include a hydrogen-air PEM fuel cell; an SOFC; balance-of-plant components (compressor, humidifier, separator, and heat exchangers); compressed gas, cryogenic, and liquid fuel storage tanks; and gas turbine/generator models for hybrid system applications. First-order feasibility studies were completed for an all-electric personal air vehicle utilizing a fuel-cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including a PEM fuel cell with liquid hydrogen storage, a direct methanol PEM fuel cell, and a direct internal reforming SOFC/turbine hybrid system using liquid methane fuel. Each configuration was compared with the baseline case on a mass and range basis.

  4. MW-Class Electric Propulsion System Designs

    Science.gov (United States)

    LaPointe, Michael R.; Oleson, Steven; Pencil, Eric; Mercer, Carolyn; Distefano, Salvador

    2011-01-01

    Electric propulsion systems are well developed and have been in commercial use for several years. Ion and Hall thrusters have propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system, while higher power systems are being considered to support even more demanding future space science and exploration missions. Such missions may include orbit raising and station-keeping for large platforms, robotic and human missions to near earth asteroids, cargo transport for sustained lunar or Mars exploration, and at very high-power, fast piloted missions to Mars and the outer planets. The Advanced In-Space Propulsion Project, High Efficiency Space Power Systems Project, and High Power Electric Propulsion Demonstration Project were established within the NASA Exploration Technology Development and Demonstration Program to develop and advance the fundamental technologies required for these long-range, future exploration missions. Under the auspices of the High Efficiency Space Power Systems Project, and supported by the Advanced In-Space Propulsion and High Power Electric Propulsion Projects, the COMPASS design team at the NASA Glenn Research Center performed multiple parametric design analyses to determine solar and nuclear electric power technology requirements for representative 300-kW class and pulsed and steady-state MW-class electric propulsion systems. This paper describes the results of the MW-class electric power and propulsion design analysis. Starting with the representative MW-class vehicle configurations, and using design reference missions bounded by launch dates, several power system technology improvements were introduced into the parametric COMPASS simulations to determine the potential system level benefits such technologies might provide. Those technologies providing quantitative system level benefits were then assessed for technical feasibility, cost, and time to develop. Key assumptions and primary

  5. Nuclear thermal propulsion engine cost trade studies

    International Nuclear Information System (INIS)

    Paschall, R.K.

    1993-01-01

    The NASA transportation strategy for the Mars Exploration architecture includes the use of nuclear thermal propulsion as the primary propulsion system for Mars transits. It is anticipated that the outgrowth of the NERVA/ROVER programs will be a nuclear thermal propulsion (NTP) system capable of providing the propulsion for missions to Mars. The specific impulse (Isp) for such a system is expected to be in the 870 s range. Trade studies were conducted to investigate whether or not it may be cost effective to invest in a higher performance (Isp>870 s) engine for nuclear thermal propulsion for missions to Mars. The basic cost trades revolved around the amount of mass that must be transported to low-earth orbit prior to each Mars flight and the cost to launch that mass. The mass required depended on the assumptions made for Mars missions scenarios including piloted/cargo flights, number of Mars missions, and transit time to Mars. Cost parameters included launch cost, program schedule for development and operations, and net discount rate. The results were very dependent on the assumptions that were made. Under some assumptions, higher performance engines showed cost savings in the billions of dollars; under other assumptions, the additional cost to develop higher performance engines was not justified

  6. Analysis of UAS hybrid propulsion systems

    Science.gov (United States)

    Rupe, Ryan M.

    Hybrid propulsion technology has been growing over last several years. With the steadily increasing cost of fuel and demand for unmanned aircraft systems to meet an ever expanding variety of responsibilities, research must be conducted into the development of alternative propulsion systems to reduce operating costs and optimize for strategic missions. One of the primary roles of unmanned aircraft systems is to provide aerial surveillance without detection. While electric propulsion systems provide a great option for lower acoustic signatures due to the lack of combustion and exhaust noise, they typically have low flight endurance due to battery limitations. Gas burning propulsion systems are ideal for long range/endurance missions due to the high energy density of hydrocarbon fuel, but can be much easier to detect. Research is conducted into the feasibility of gas/electric hybrid propulsion systems and the tradeoffs involved for reconnaissance mission scenarios. An analysis program is developed to optimize each component of the system and examine their effects on the overall performance of the aircraft. Each subsystem is parameterized and simulated within the program and tradeoffs between payload weight, range, and endurance are tested and evaluated to fulfill mission requirements.

  7. To Mars and beyond, fast! how plasma propulsion will revolutionize space exploration

    CERN Document Server

    Chang Díaz, Franklin

    2017-01-01

    As advanced space propulsion moves slowly from science fiction to achievable reality, the Variable Specific Impulse Magnetoplasma Rocket, or VASIMR, is a leading contender for making 'Mars in a month' a possibility. Developed by Ad Astra Rockets, which was founded by astronaut Franklin Chang-Diaz and backed by NASA, its first commercial tests are imminent. VASIMR heats plasma to extreme temperatures using radio waves. Strong magnetic fields then funnel this plasma out the back of the engine, creating thrust. The continuous propulsion may place long, fast interplanetary journeys within reach in the near future. While scientists dream of the possibilities of using fusion or well-controlled matter-antimatter interactions to propel spacecraft fast and far, that goal is still some way over the horizon. VASIMR provides a more attainable propulsion technology that is based on the matter-antimatter concept. The book describes a landmark technology grounded in plasma physics and offering a practical technological solu...

  8. Direct and indirect toxicity of the fungicide pyraclostrobin to Hyalella azteca and effects on leaf processing under realistic daily temperature regimes

    International Nuclear Information System (INIS)

    Willming, Morgan M.; Maul, Jonathan D.

    2016-01-01

    Fungicides in aquatic environments can impact non-target bacterial and fungal communities and the invertebrate detritivores responsible for the decomposition of allochthonous organic matter. Additionally, in some aquatic systems daily water temperature fluctuations may influence these processes and alter contaminant toxicity, but such temperature fluctuations are rarely examined in conjunction with contaminants. In this study, the shredding amphipod Hyalella azteca was exposed to the fungicide pyraclostrobin in three experiments. Endpoints included mortality, organism growth, and leaf processing. One experiment was conducted at a constant temperature (23 °C), a fluctuating temperature regime (18–25 °C) based on field-collected data from the S. Llano River, Texas, or an adjusted fluctuating temperature regime (20–26 °C) based on possible climate change predictions. Pyraclostrobin significantly reduced leaf shredding and increased H. azteca mortality at concentrations of 40 μg/L or greater at a constant 23 °C and decreased leaf shredding at concentrations of 15 μg/L or greater in the fluctuating temperatures. There was a significant interaction between temperature treatment and pyraclostrobin concentration on H. azteca mortality, body length, and dry mass under direct aqueous exposure conditions. In an indirect exposure scenario in which only leaf material was exposed to pyraclostrobin, H. azteca did not preferentially feed on or avoid treated leaf disks compared to controls. This study describes the influence of realistic temperature variation on fungicide toxicity to shredding invertebrates, which is important for understanding how future alterations in daily temperature regimes due to climate change may influence the assessment of ecological risk of contaminants in aquatic ecosystems. - Highlights: • Pyraclostrobin was directly toxic to Hyalella azteca and reduced leaf processing. • Indirect exposure via leaf material did not change H

  9. Ground Thermal Diffusivity Calculation by Direct Soil Temperature Measurement. Application to very Low Enthalpy Geothermal Energy Systems.

    Science.gov (United States)

    Andújar Márquez, José Manuel; Martínez Bohórquez, Miguel Ángel; Gómez Melgar, Sergio

    2016-02-29

    This paper presents a methodology and instrumentation system for the indirect measurement of the thermal diffusivity of a soil at a given depth from measuring its temperature at that depth. The development has been carried out considering its application to the design and sizing of very low enthalpy geothermal energy (VLEGE) systems, but it can has many other applications, for example in construction, agriculture or biology. The methodology is simple and inexpensive because it can take advantage of the prescriptive geotechnical drilling prior to the construction of a house or building, to take at the same time temperature measurements that will allow get the actual temperature and ground thermal diffusivity to the depth of interest. The methodology and developed system have been tested and used in the design of a VLEGE facility for a chalet with basement at the outskirts of Huelva (a city in the southwest of Spain). Experimental results validate the proposed approach.

  10. Electronegative Gas Thruster - Direct Thrust Measurement

    Data.gov (United States)

    National Aeronautics and Space Administration — This effort is an international collaboration and academic partnership to mature an innovative electric propulsion (EP) thruster concept to TRL 3 through direct...

  11. Advanced Manufacturing of Intermediate Temperature, Direct Methane Oxidation Membrane Electrode Assemblies for Durable Solid Oxide Fuel Cell Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation builds on the successes of the Phase I program by integrating our direct oxidation membrane electrode assembly (MEA) into a monolithic solid...

  12. Analysis and experimental validation of an HTS linear synchronous propulsion prototype with HTS magnetic suspension

    International Nuclear Information System (INIS)

    Jin Jianxun; Zheng Luhai; Guo Youguang; Xu Wei; Zhu Jianguo

    2011-01-01

    An HTS linear synchronous propulsion prototype with an HTSLSM drive is developed. The feasibility of combining an HTSLSM with an HTS magnetic suspension system has been verified. Three different PMGs are studied by ECS method and experiment verification to obtain an optimal one. The prototype has been tested to obtain the performance and thrust characteristics of the HTSLSM. The measurement results benefit the optimal design and control scheme development for an HTSLSM. A high temperature superconducting (HTS) linear propulsion system composed of a single-sided HTS linear synchronous motor (HTSLSM) in its middle and HTS magnetic suspension sub-systems on both sides has been developed. The HTSLSM uses an HTS bulk magnet array on the moving secondary, and the field-trapped characteristics of the HTS bulk using different magnetized methods have been measured and compared to identify their magnetization capability. In order to generate a large levitation force for the system, three different types of permanent magnet guideways (PMGs) have been numerically analyzed and experimentally verified to obtain an optimal PMG. Based on comprehensive experimental prototype tests, the results show that the HTS linear propulsion system can run with stable magnetic suspension having a constant air-gap length, and the thrust characteristics versus the exciting current, working frequency and the air-gap length have also been obtained. This work forms the basis for developing a practical HTS linear propulsion system by using HTS bulks both for propulsion and suspension.

  13. Design of high-torque-density synchronous drives for propulsion of rotary-wing aircraft

    NARCIS (Netherlands)

    Sanabria von Walter, C.D.

    2016-01-01

    This thesis suggests that with air-cooled direct-drive ring-type machines it is very likely to incur into a weight penalty for the application of main propulsion of civilian helicopters. This is however an application not investigated before at the level of detail presented. Therefore, this work

  14. Materials Characterization of Additively Manufactured Components for Rocket Propulsion

    Science.gov (United States)

    Carter, Robert; Draper, Susan; Locci, Ivan; Lerch, Bradley; Ellis, David; Senick, Paul; Meyer, Michael; Free, James; Cooper, Ken; Jones, Zachary

    2015-01-01

    To advance Additive Manufacturing (AM) technologies for production of rocket propulsion components the NASA Glenn Research Center (GRC) is applying state of the art characterization techniques to interrogate microstructure and mechanical properties of AM materials and components at various steps in their processing. The materials being investigated for upper stage rocket engines include titanium, copper, and nickel alloys. Additive manufacturing processes include laser powder bed, electron beam powder bed, and electron beam wire fed processes. Various post build thermal treatments, including Hot Isostatic Pressure (HIP), have been studied to understand their influence on microstructure, mechanical properties, and build density. Micro-computed tomography, electron microscopy, and mechanical testing in relevant temperature environments has been performed to develop relationships between build quality, microstructure, and mechanical performance at temperature. A summary of GRC's Additive Manufacturing roles and experimental findings will be presented.

  15. Material Characterization of Additively Manufactured Components for Rocket Propulsion

    Science.gov (United States)

    Carter, Robert; Draper, Susan; Locci, Ivan; Lerch, Bradley; Ellis, David; Senick, Paul; Meyer, Michael; Free, James; Cooper, Ken; Jones, Zachary

    2015-01-01

    To advance Additive Manufacturing (AM) technologies for production of rocket propulsion components the NASA Glenn Research Center (GRC) is applying state of the art characterization techniques to interrogate microstructure and mechanical properties of AM materials and components at various steps in their processing. The materials being investigated for upper stage rocket engines include titanium, copper, and nickel alloys. Additive manufacturing processes include laser powder bed, electron beam powder bed, and electron beam wire fed processes. Various post build thermal treatments, including Hot Isostatic Pressure (HIP), have been studied to understand their influence on microstructure, mechanical properties, and build density. Micro-computed tomography, electron microscopy, and mechanical testing in relevant temperature environments has been performed to develop relationships between build quality, microstructure, and mechanical performance at temperature. A summary of GRCs Additive Manufacturing roles and experimental findings will be presented.

  16. Dynamic simulator for PEFC propulsion plant

    Energy Technology Data Exchange (ETDEWEB)

    Hiraide, Masataka; Kaneda, Eiichi; Sato, Takao [Mitsui Engineering & Shipbuilding Co., Ltd., Tokyo (Japan)] [and others

    1996-12-31

    This report covers part of a joint study on a PEFC propulsion system for surface ships, summarized in a presentation to this Seminar, entitled {open_quote}Study on a Polymer Electrolyte Fuel Cell (PEFC) Propulsion System for Surface Ships{close_quotes}, and which envisages application to a 1,500 DWT cargo vessel. The work presented here focuses on a simulation study on PEFC propulsion plant performance, and particularly on the system response to changes in load. Using a dynamic simulator composed of system components including fuel cell, various simulations were executed, to examine the performance of the system as a whole and of the individual system components under quick and large load changes such as occasioned by maneuvering operations and by racing when the propeller emerges above water in heavy sea.

  17. NASA Breakthrough Propulsion Physics Workshop Proceedings

    Science.gov (United States)

    Millis, Marc G. (Editor); Williamson, Gary Scott (Editor)

    1999-01-01

    In August 1997, NASA sponsored a 3-day workshop to assess the prospects emerging from physics that may eventually lead to creating propulsion breakthroughs -the kind of breakthroughs that could revolutionize space flight and enable human voyages to other star systems. Experiments and theories were discussed regarding the coupling of gravity and electromagnetism, vacuum fluctuation energy, warp drives and wormholes, and superluminal quantum tunneling. Because the propulsion goals are presumably far from fruition, a special emphasis was to identify affordable, near-term, and credible research tasks that could make measurable progress toward these grand ambitions. This workshop was one of the first steps for the new NASA Breakthrough Propulsion Physics program led by the NASA Lewis Research Center.

  18. ASPECTS RELATED TO THE PROPULSION HYDRAFOIL SHIPS

    Directory of Open Access Journals (Sweden)

    Levent ALI

    2016-12-01

    Full Text Available In this paper, we analyze some aspects related to the propulsion of hydrofoil ships. They are very important for the success of the mission if they are military ships and for cargo security, if they are civilian transport ships, especially when navigating at high speed on their hydrofoil wings in rough sea conditions. This paper presents an original procedure for estimating the propulsion of hydrofoil ships. This procedure has enabled the development of a computer program that can predict both those types of ship propulsion regime imposed at a quasi-stationary speed and the march regime on wings. The calculation software obtained may serve to design any type of hydrofoil ship.

  19. Direct effects of temperature on forest nitrogen cycling revealed through analysis of long-term watershed records

    Science.gov (United States)

    E.N. Jack Brookshire; Stefan Gerber; Jackson R. Webster; James M. Vose; Wayne T. Swank

    2010-01-01

    The microbial conversion of organic nitrogen (N) to plant available forms is a critical determinant of plant growth and carbon sequestration in forests worldwide. In temperate zones, microbial activity is coupled to variations in temperature, yet at the ecosystem level, microbial N mineralization seems to play a minor role in determining patterns of N loss. Rather, N...

  20. Analysis on Sealing Reliability of Bolted Joint Ball Head Component of Satellite Propulsion System

    Science.gov (United States)

    Guo, Tao; Fan, Yougao; Gao, Feng; Gu, Shixin; Wang, Wei

    2018-01-01

    Propulsion system is one of the important subsystems of satellite, and its performance directly affects the service life, attitude control and reliability of the satellite. The Paper analyzes the sealing principle of bolted joint ball head component of satellite propulsion system and discuss from the compatibility of hydrazine anhydrous and bolted joint ball head component, influence of ground environment on the sealing performance of bolted joint ball heads, and material failure caused by environment, showing that the sealing reliability of bolted joint ball head component is good and the influence of above three aspects on sealing of bolted joint ball head component can be ignored.

  1. COMPASS Final Report: Saturn Moons Orbiter Using Radioisotope Electric Propulsion (REP): Flagship Class Mission

    Science.gov (United States)

    Oleson, Steven R.; McGuire, Melissa L.

    2011-01-01

    The COllaborative Modeling and Parametric Assessment of Space Systems (COMPASS) team was approached by the NASA Glenn Research Center (GRC) In-Space Project to perform a design session to develop Radioisotope Electric Propulsion (REP) Spacecraft Conceptual Designs (with cost, risk, and reliability) for missions of three different classes: New Frontier s Class Centaur Orbiter (with Trojan flyby), Flagship, and Discovery. The designs will allow trading of current and future propulsion systems. The results will directly support technology development decisions. The results of the Flagship mission design are reported in this document

  2. Simultaneous measurement of temperature and tensile loading using superstructure FBGs developed by laser direct writing of periodic on-fiber metallic films

    International Nuclear Information System (INIS)

    Alemohammad, Hamidreza; Toyserkani, Ehsan

    2009-01-01

    This paper addresses the development of superstructure fiber Bragg gratings (FBGs) by laser-assisted direct writing of on-fiber metallic films. A novel laser direct write method is characterized to fabricate periodic films of silver nanoparticles on the non-planar surface of as-fabricated FBGs. Silver films with a thickness of 9 µm are fabricated around a Bragg grating optical fiber. The performance of the superstructure FBG is studied by applying temperature and tensile stress on the fiber. An opto-mechanical model is also developed to predict the optical response of the synthesized superstructure FBG under thermal and structural loadings. The results show that the reflectivity of sidebands in the reflection spectrum can be tuned up to 20% and 37% under thermal and structural loadings, respectively. In addition, the developed superstructure FBG is used for simultaneous measurement of force and temperature to eliminate the inherent limitation of regular FBGs in multi-parameter sensing

  3. Performance Criteria of Nuclear Space Propulsion Systems

    Science.gov (United States)

    Shepherd, L. R.

    Future exploration of the solar system on a major scale will require propulsion systems capable of performance far greater than is achievable with the present generation of rocket engines using chemical propellants. Viable missions going deeper into interstellar space will be even more demanding. Propulsion systems based on nuclear energy sources, fission or (eventually) fusion offer the best prospect for meeting the requirements. The most obvious gain coming from the application of nuclear reactions is the possibility, at least in principle, of obtaining specific impulses a thousandfold greater than can be achieved in chemically energised rockets. However, practical considerations preclude the possibility of exploiting the full potential of nuclear energy sources in any engines conceivable in terms of presently known technology. Achievable propulsive power is a particularly limiting factor, since this determines the acceleration that may be obtained. Conventional chemical rocket engines have specific propulsive powers (power per unit engine mass) in the order of gigawatts per tonne. One cannot envisage the possibility of approaching such a level of performance by orders of magnitude in presently conceivable nuclear propulsive systems. The time taken, under power, to reach a given terminal velocity is proportional to the square of the engine's exhaust velocity and the inverse of its specific power. An assessment of various nuclear propulsion concepts suggests that, even with the most optimistic assumptions, it could take many hundreds of years to attain the velocities necessary to reach the nearest stars. Exploration within a range of the order of a thousand AU, however, would appear to offer viable prospects, even with the low levels of specific power of presently conceivable nuclear engines.

  4. Overview of materials technologies for space nuclear power and propulsion

    Science.gov (United States)

    Zinkle, S. J.; Ott, L. J.; Ingersoll, D. T.; Ellis, R. J.; Grossbeck, M. L.

    2002-01-01

    A wide range of different space nuclear systems are currently being evaluated as part of the DOE Special Purpose Fission Technology program. The near-term subset of systems scheduled to be evaluated range from 50 kWe gas-, pumped liquid metal-, or liquid metal heat pipe-cooled reactors for space propulsion to 3 kWe heat pipe or pumped liquid metal systems for Mars surface power applications. The current status of the materials technologies required for the successful development of near-term space nuclear power and propulsion systems is reviewed. Materials examined in this overview include fuels (UN, UO2, UZrH), cladding and structural materials (stainless steel, superalloys, refractory alloys), neutron reflector materials (Be, BeO), and neutron shield materials (B4C,LiH). The materials technologies issues are considerably less demanding for the 3 kWe reactor systems due to lower operating temperatures, lower fuel burnup, and lower radiation damage levels. A few reactor subcomponents in the 3 kWe reactors under evaluation are being used near or above their engineering limits, which may adversely affect the 5 to 10 year lifetime design goal. It appears that most of these issues for the 3 kWe reactor systems can be accommodated by incorporating a few engineering design changes. Design limits (temperature, burnup, stress, radiation levels) for the various materials proposed for space nuclear reactors will be summarized. For example, the temperature and stress limits for Type 316 stainless steel in the 3 kWe Na-cooled heat pipe reactor (Stirling engine) concept will be controlled by thermal creep and CO2 corrosion considerations rather than radiation damage issues. Conversely, the lower operating temperature limit for the LiH shield material will likely be defined by ionizing radiation damage (radiolysis)-induced swelling, even for the relatively low radiation doses associated with the 3 kWe reactor. .

  5. Comparison of temperature rise in pulp chamber during polymerization of materials used for direct fabrication of provisional restorations: An in-vitro study

    OpenAIRE

    Khajuria, Rajat R.; Madan, Ravi; Agarwal, Swatantra; Gupta, Reecha; Vadavadgi, Sunil V.; Sharma, Vikas

    2015-01-01

    Objective: The purpose is to compare temperature rise in the pulp chamber during fabrication of provisional crowns using different materials and on different types of teeth using direct technique. Materials and Methods: An extracted, sound, caries free maxillary central incisor and a mandibular molar were selected for the study and crown preparations of all ceramic and all metal were done on central incisor and mandibular molar, respectively. Materials tested were DPI tooth molding self-curin...

  6. Primary electric propulsion thrust subsystem definition

    Science.gov (United States)

    Masek, T. D.; Ward, J. W.; Kami, S.

    1975-01-01

    A review is presented of the current status of primary propulsion thrust subsystem (TSS) performance, packaging considerations, and certain operational characteristics. Thrust subsystem related work from recent studies by Jet Propulsion Laboratories (JPL), Rockwell and Boeing is discussed. Existing performance for 30-cm thrusters, power processors and TSS is present along with projections for future improvements. Results of analyses to determine (1) magnetic field distributions resulting from an array of thrusters, (2) thruster emitted particle flux distributions from an array of thrusters, and (3) TSS element failure rates are described to indicate the availability of analytical tools for evaluation of TSS designs.

  7. Advanced electrostatic ion thruster for space propulsion

    Science.gov (United States)

    Masek, T. D.; Macpherson, D.; Gelon, W.; Kami, S.; Poeschel, R. L.; Ward, J. W.

    1978-01-01

    The suitability of the baseline 30 cm thruster for future space missions was examined. Preliminary design concepts for several advanced thrusters were developed to assess the potential practical difficulties of a new design. Useful methodologies were produced for assessing both planetary and earth orbit missions. Payload performance as a function of propulsion system technology level and cost sensitivity to propulsion system technology level are among the topics assessed. A 50 cm diameter thruster designed to operate with a beam voltage of about 2400 V is suggested to satisfy most of the requirements of future space missions.

  8. Micro turbine engines for drones propulsion

    Science.gov (United States)

    Dutczak, J.

    2016-09-01

    Development of micro turbine engines began from attempts of application of that propulsion source by group of enthusiasts of aviation model making. Nowadays, the domain of micro turbojet engines is treated on a par with “full size” aviation constructions. The dynamic development of these engines is caused not only by aviation modellers, but also by use of micro turbojet engines by army to propulsion of contemporary drones, i.e. Unmanned Aerial Vehicles (UAV) or Unmanned Aerial Systems (UAS). On the base of selected examples the state of art in the mentioned group of engines has been presented in the article.

  9. Electric rail gun application to space propulsion

    International Nuclear Information System (INIS)

    Barber, J.P.

    1979-01-01

    The paper examines the possibility of using the DC electric gun principles as a space vehicle propulsion system, capable of producing intermediate thrust levels. The application of an electromagnetic launch technique, called the DC electric rail gun, to the space propulsion concept of O'Neill, is examined. It is determined that the DC electric rail gun offers very high projectile accelerations and a very significant potential for reducing the size and mass of a reaction motor for space application. A detailed description of rail gun principles is given and some simple expressions for the accelerating force, gun impedance, power supply requirements, and system performance are discussed

  10. In-Space Propulsion (ISP) Aerocapture Technology

    Science.gov (United States)

    Munk, Michelle M.; James, Bonnie F.; Moon, Steve

    2005-01-01

    A viewgraph presentation is shown to raise awareness of aerocapture technology through in-space propulsion. The topics include: 1) Purpose; 2) In-Space Propulsion Program; 3) Aerocapture Overview; 4) Aerocapture Technology Alternatives; 5) Aerocapture Technology Project Process; 6) Results from 2002 Aerocapture TAG; 7) Bounding Case Requirements; 8) ST9 Flight Demonstration Opportunity; 9) Aerocapture NRA Content: Cycles 1 and 2; 10) Ames Research Center TPS Development; 11) Applied Research Associates TPS Development; 12) LaRC Structures Development; 13) Lockheed Martin Astronautics Aeroshell Development; 14) ELORET/ARC Sensor Development; 15) Ball Aerospace Trailing Ballute Development; 16) Cycle 2 NRA Selections - Aerocapture; and 17) Summary.

  11. Advanced Propulsion Physics Lab: Eagleworks Investigations

    Science.gov (United States)

    Scogin, Tyler

    2014-01-01

    Eagleworks Laboratory is an advanced propulsions physics laboratory with two primary investigations currently underway. The first is a Quantum Vacuum Plasma Thruster (QVPT or Q-thrusters), an advanced electric propulsion technology in the development and demonstration phase. The second investigation is in Warp Field Interferometry (WFI). This is an investigation of Dr. Harold "Sonny" White's theoretical physics models for warp field equations using optical experiments in the Electro Optical laboratory (EOL) at Johnson Space Center. These investigations are pursuing technology necessary to enable human exploration of the solar system and beyond.

  12. Propulsion mechanisms for Leidenfrost solids on ratchets.

    Science.gov (United States)

    Baier, Tobias; Dupeux, Guillaume; Herbert, Stefan; Hardt, Steffen; Quéré, David

    2013-02-01

    We propose a model for the propulsion of Leidenfrost solids on ratchets based on viscous drag due to the flow of evaporating vapor. The model assumes pressure-driven flow described by the Navier-Stokes equations and is mainly studied in lubrication approximation. A scaling expression is derived for the dependence of the propulsive force on geometric parameters of the ratchet surface and properties of the sublimating solid. We show that the model results as well as the scaling law compare favorably with experiments and are able to reproduce the experimentally observed scaling with the size of the solid.

  13. Laser propulsion activity in South Africa

    CSIR Research Space (South Africa)

    Michaelis, MM

    2006-07-01

    Full Text Available projectiles reportedly ‘hit the roof’ some 10 metres high. Unfortunately, no momentum coupling constants were available, nor was there any time to take measurements. As to HF laser propulsion, only a rudimentary single-shot pendulum test was performed... together with a propulsion demonstration with a small plastic target. The reason for report- ing this is that HF LP or DF (deuterium fluoride) LP was the first type envisaged2 but has never been developed even in the laboratory. The South African HF...

  14. A development approach for nuclear thermal propulsion

    International Nuclear Information System (INIS)

    Buden, D.

    1992-01-01

    The cost and time to develop nuclear thermal propulsion systems are very approach dependent. The objectives addressed are the development of an ''acceptable'' nuclear thermal propulsion system that can be used as part of the transportation system for people to explore Mars and the enhancement performance of other missions, within highly constrained budgets and schedules. To accomplish this, it was necessary to identify the cost drivers considering mission parameters, safety of the crew, mission success, facility availability and time and cost to construct new facilities, qualification criteria, status of technologies, management structure, and use of such system engineering techniques as concurrent engineering

  15. Artist's concept of Antimatter propulsion system

    Science.gov (United States)

    1999-01-01

    This is an artist's rendition of an antimatter propulsion system. Matter - antimatter arnihilation offers the highest possible physical energy density of any known reaction substance. It is about 10 billion times more powerful than that of chemical engergy such as hydrogen and oxygen combustion. Antimatter would be the perfect rocket fuel, but the problem is that the basic component of antimatter, antiprotons, doesn't exist in nature and has to manufactured. The process of antimatter development is on-going and making some strides, but production of this as a propulsion system is far into the future.

  16. A Modeling Framework to Investigate the Radial Component of the Pushrim Force in Manual Wheelchair Propulsion

    Directory of Open Access Journals (Sweden)

    Ackermann Marko

    2015-01-01

    Full Text Available The ratio of tangential to total pushrim force, the so-called Fraction Effective Force (FEF, has been used to evaluate wheelchair propulsion efficiency based on the fact that only the tangential component of the force on the pushrim contributes to actual wheelchair propulsion. Experimental studies, however, consistently show low FEF values and recent experimental as well as modelling investigations have conclusively shown that a more tangential pushrim force direction can lead to a decrease and not increase in propulsion efficiency. This study aims at quantifying the contributions of active, inertial and gravitational forces to the normal pushrim component. In order to achieve this goal, an inverse dynamics-based framework is proposed to estimate individual contributions to the pushrim forces using a model of the wheelchair-user system. The results show that the radial pushrim force component arise to a great extent due to purely mechanical effects, including inertial and gravitational forces. These results corroborate previous findings according to which radial pushrim force components are not necessarily a result of inefficient propulsion strategies or hand-rim friction requirements. This study proposes a novel framework to quantify the individual contributions of active, inertial and gravitational forces to pushrim forces during wheelchair propulsion.

  17. Efficiency of a flapping propulsion system based on two side-by-side pitching foils

    Science.gov (United States)

    Huera-Huarte, Francisco

    2017-11-01

    We explore the propulsive performance of two foils flapping side-by-side in a wide variety of configurations, for different foil separations, pitching amplitudes and frequencies and phase differences. Direct force and torque measurements will be shown in each situation, after a thorough parametric study, that led to the identification of highly efficient modes of propulsion. The especially designed experimental rig allowed the computation of efficiencies globally and at each shaft in the system. Planar and volumetric Particle Image Velocimetry (PIV) allowed a detailed description of the wake generated by the system, for each different kinematics investigated. The investigation is part of an ambitious project with the aim of producing a high efficient and highly manoeuvrable flapping propulsion system for underwater vehicles. Funding from Spanish Ministry MINECO through Grant DPI2015-71645-P is gratefully acknowledged.

  18. Magnetic resonant wireless power transfer for propulsion of implantable micro-robot

    Science.gov (United States)

    Kim, D.; Kim, M.; Yoo, J.; Park, H.-H.; Ahn, S.

    2015-05-01

    Recently, various types of mobile micro-robots have been proposed for medical and industrial applications. Especially in medical applications, a motor system for propulsion cannot easily be used in a micro-robot due to their small size. Therefore, micro-robots are usually actuated by controlling the magnitude and direction of an external magnetic field. However, for micro-robots, these methods in general are only applicable for moving and drilling operations, but not for the undertaking of various missions. In this paper, we propose a new micro-robot concept, which uses wireless power transfer to deliver the propulsion force and electric power simultaneously. The mechanism of Lorentz force generation and the coil design methodologies are explained, and validation of the proposed propulsion system for a micro-robot is discussed thorough a simulation and with actual measurements with up-scaled test vehicles.

  19. Advanced Space Propulsion Study - Antiproton and Beamed Power Propulsion

    Science.gov (United States)

    1987-10-01

    interest are: Superieure, Paris and W. Phillips, G. Dugan, Fermilab, "Tevatron I National Bureau of Standards, (Energy Saver and 6 Source)", 896...10 Normale Superieure et College de tc 20 year) goals and objectives of France, 24 rue Lhomond, F-75231, the technology will receive Paris CEDEX 06...Trainor, University atoms/cm9 , and temperature ə mK.) of Washington, Seattle, H. S.L. Gilbert, J.J. Bollinger , Kalinowsky, J. Haas, University of and

  20. Next Generation Non-Vacuum, Maskless, Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics

    Science.gov (United States)

    Yeo, Junyeob; Hong, Sukjoon; Lee, Daehoo; Hotz, Nico; Lee, Ming-Tsang; Grigoropoulos, Costas P.; Ko, Seung Hwan

    2012-01-01

    Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition– and photolithography-based conventional metal patterning processes. The “digital” nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm) and high-performance flexible organic field effect transistor arrays. PMID:22900011

  1. Next generation non-vacuum, maskless, low temperature nanoparticle ink laser digital direct metal patterning for a large area flexible electronics.

    Science.gov (United States)

    Yeo, Junyeob; Hong, Sukjoon; Lee, Daehoo; Hotz, Nico; Lee, Ming-Tsang; Grigoropoulos, Costas P; Ko, Seung Hwan

    2012-01-01

    Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition- and photolithography-based conventional metal patterning processes. The "digital" nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm) and high-performance flexible organic field effect transistor arrays.

  2. Numerical Research on Magnetic Field, Temperature Field and Flow Field During Melting and Directionally Solidifying TiAl Alloys by Electromagnetic Cold Crucible

    Science.gov (United States)

    Chen, Ruirun; Yang, Yaohua; Gong, Xue; Guo, Jingjie; Su, Yanqing; Ding, Hongsheng; Fu, Hengzhi

    2017-12-01

    The electromagnetic cold crucible (EMCC) technique is an effective method to melt and directionally solidify reactive and high-temperature materials without contamination. The temperature field and fluid flow induced by the electromagnetic field are very important for melting and controlling the microstructure. In this article, a 3D EMCC model for calculating the magnetic field in the charges (TiAl alloys) using the T-Ω finite element method was established and verified. Magnetic fields in the charge under different electrical parameters, positions and dimensions of the charge were calculated and analyzed. The calculated results show that the magnetic field concentrates in the skin layer, and the magnetic flux density ( B) increases with increasing of the frequency, charge diameter and current. The maximum B in the charge is affected by the position of the charge in EMCC ( h 1) and the charge height ( h 2), which emerges at the middle of coils ( h c) when the relationship of h c < h 1 + h 2 < h c + δ is satisfied. Lower frequency and smaller charge diameter can improve the uniformity of the magnetic field in the charge. Consequently, the induced uniform electromagnetic stirring weakens the turbulence and improves temperature uniformity in the vicinity of the solid/liquid (S/L) interface, which is beneficial to forming a planar S/L interface during directional solidification. Based on the above conclusions, the TiAlNb alloy was successfully melted with lower power consumption and directionally solidified by the square EMCC.

  3. Next generation non-vacuum, maskless, low temperature nanoparticle ink laser digital direct metal patterning for a large area flexible electronics.

    Directory of Open Access Journals (Sweden)

    Junyeob Yeo

    Full Text Available Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition- and photolithography-based conventional metal patterning processes. The "digital" nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm and high-performance flexible organic field effect transistor arrays.

  4. Direct Synthesis of Fe3C-Functionalized Graphene by High Temperature Autoclave Pyrolysis for Oxygen Reduction

    DEFF Research Database (Denmark)

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei

    2014-01-01

    We present a novel approach to direct fabrication of few-layer graphene sheets with encapsulated Fe3C nanoparticles from pyrolysis of volatile non-graphitic precursors without any substrate. This one-step autoclave approach is facile and potentially scalable for production. Tested as an electroca......We present a novel approach to direct fabrication of few-layer graphene sheets with encapsulated Fe3C nanoparticles from pyrolysis of volatile non-graphitic precursors without any substrate. This one-step autoclave approach is facile and potentially scalable for production. Tested...

  5. Application of PtSn/C catalysts and Nafion SiO2 membranes in direct ethanol fuel cell at high temperatures

    International Nuclear Information System (INIS)

    Dresch, Mauro Andre

    2014-01-01

    This work has as objective to evaluate anodes and electrolytes in direct ethanol fuel cells (DEFC) operating at high temperature (130 deg C). As anode materials, electrocatalysts based on Pt Sn/C were prepared by Modified Polyol Method with various Pt:Sn atomic ratios. Such methodology promotes self organized electrocatalysts production with narrow particle size distribution and high alloying degree. The electrocatalysts were characterized by XRD, and CO stripping. The results showed that these materials presented high alloying degree and Eonset CO oxidation at lower potential as commercial materials. As electrolyte, Nafion-SiO 2 hybrids were synthesized by sol-gel reaction, by the incorporation of oxide directly into the ionic aggregates of various kinds of Nafion membranes. The synthesis parameter, such sol-gel solvent, membrane thickness and silicon precursor concentration were studied in terms of silica incorporation degree and hybrid mechanical stability. Finally, the optimized anodes and electrolytes were evaluated in DEFC operating at 80 - 130 deg C temperature range. The results showed a significant improvement of the DEFC performance (122 mW cm -2 ), resulted from the acceleration of ethanol oxidation reaction rate due to anode material optimization and high temperature operation once the use of hybrids possibilities the increase of temperature without a significant conductivity loses. In this sense, the combination of optimized electrodes and electrolytes are a promising alternative for the development of these devices. (author)

  6. Fabrication and Characterization of 3D-Printed Highly-Porous 3D LiFePO4 Electrodes by Low Temperature Direct Writing Process

    Science.gov (United States)

    Cheng, Xingxing; Li, Bohan; Chen, Zhangwei; Mi, Shengli; Lao, Changshi

    2017-01-01

    LiFePO4 (LFP) is a promising cathode material for lithium-ion batteries. In this study, low temperature direct writing (LTDW)-based 3D printing was used to fabricate three-dimensional (3D) LFP electrodes for the first time. LFP inks were deposited into a low temperature chamber and solidified to maintain the shape and mechanical integrity of the printed features. The printed LFP electrodes were then freeze-dried to remove the solvents so that highly-porous architectures in the electrodes were obtained. LFP inks capable of freezing at low temperature was developed by adding 1,4 dioxane as a freezing agent. The rheological behavior of the prepared LFP inks was measured and appropriate compositions and ratios were selected. A LTDW machine was developed to print the electrodes. The printing parameters were optimized and the printing accuracy was characterized. Results showed that LTDW can effectively maintain the shape and mechanical integrity during the printing process. The microstructure, pore size and distribution of the printed LFP electrodes was characterized. In comparison with conventional room temperature direct ink writing process, improved pore volume and porosity can be obtained using the LTDW process. The electrochemical performance of LTDW-fabricated LFP electrodes and conventional roller-coated electrodes were conducted and compared. Results showed that the porous structure that existed in the printed electrodes can greatly improve the rate performance of LFP electrodes. PMID:28796182

  7. Fabrication and Characterization of 3D-Printed Highly-Porous 3D LiFePO4 Electrodes by Low Temperature Direct Writing Process

    Directory of Open Access Journals (Sweden)

    Changyong Liu

    2017-08-01

    Full Text Available LiFePO4 (LFP is a promising cathode material for lithium-ion batteries. In this study, low temperature direct writing (LTDW-based 3D printing was used to fabricate three-dimensional (3D LFP electrodes for the first time. LFP inks were deposited into a low temperature chamber and solidified to maintain the shape and mechanical integrity of the printed features. The printed LFP electrodes were then freeze-dried to remove the solvents so that highly-porous architectures in the electrodes were obtained. LFP inks capable of freezing at low temperature was developed by adding 1,4 dioxane as a freezing agent. The rheological behavior of the prepared LFP inks was measured and appropriate compositions and ratios were selected. A LTDW machine was developed to print the electrodes. The printing parameters were optimized and the printing accuracy was characterized. Results showed that LTDW can effectively maintain the shape and mechanical integrity during the printing process. The microstructure, pore size and distribution of the printed LFP electrodes was characterized. In comparison with conventional room temperature direct ink writing process, improved pore volume and porosity can be obtained using the LTDW process. The electrochemical performance of LTDW-fabricated LFP electrodes and conventional roller-coated electrodes were conducted and compared. Results showed that the porous structure that existed in the printed electrodes can greatly improve the rate performance of LFP electrodes.

  8. Characterization of Fibre-Direction Dependent Damping of Glass-Fibre Composites at Low Temperatures and Low Frequencies

    DEFF Research Database (Denmark)

    Kliem, Mathias; Høgsberg, Jan Becker; Dannemann, Martin

    2016-01-01

    a Dynamic Mechanical Analysis (DMA) for five different fibre orientations (0˚ | 30˚ | 45˚ | 60˚ and 90˚) and two different matrix systems (epoxy and a vinyl ester resin). Based on the dynamic characteristics the damping performance of the various composite materials was studied at three temperatures (-10˚C......, 0˚C and 10˚C) and three vibration frequencies (1 Hz, 10 Hz and 30 Hz). It was observed that the loss factor of Glass Fibre Reinforced Vinyl-Ester (GF-VE) was in general slightly higher compared to the Glass Fibre Reinforced Epoxy (GF-EP). The loss factor increased slightly with temperature, while...

  9. Hydrogen Wave Heater for Nuclear Thermal Propulsion Component Testing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has identified Nuclear Thermal Propulsion (NTP) as a propulsion concept which could provide the fastest trip times to Mars and as the preferred concept for...

  10. Hybrid Propulsion Technology for Robotic Science Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — C3 Propulsion's Hybrid Propulsion Technology will be applied to a NASA selected Sample Return Mission. Phase I will demonstrate Proof-of-Principle and Phase II will...

  11. Miniature Nontoxic Nitrous Oxide-Propane (MINNOP) Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop the Miniature Nontoxic Nitrous Oxide-Propane (MINNOP) propulsion system, a small bipropellant propulsion system which we offer as an...

  12. Changes in proteins, physical stability and structure in directly heated UHT milk during storage at different temperatures

    NARCIS (Netherlands)

    Malmgren, Bozena; Ardö, Ylva; Langton, Maud; Altskär, Annika; Bremer, Maria G.E.G.; Dejmek, Petr; Paulsson, Marie

    2017-01-01

    Changes occurring in directly heated UHT milk were studied during storage at 5, 22, 30 and 40 °C. Industrially produced UHT milk samples were analysed for changes in enzymatic activity, protein modification, destabilisation of casein micelles and relocation of milk proteins in relation to

  13. Simultaneous Temperature and Velocity Diagnostic for Reacting Flows Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A diagnostic technique is proposed for measuring temperature and velocity simultaneously in a high temperature reacting flow for aiding research in propulsion. The...

  14. Simultaneous Temperature and Velocity Diagnostic for Reacting Flows, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A diagnostic technique is proposed for measuring temperature and velocity simultaneously in a high temperature reacting flow for aiding research in propulsion. The...

  15. Propulsion System Testing for the Iodine Satellite (iSAT) Demonstration Mission

    Science.gov (United States)

    Polzin, Kurt A.; Kamhawi, Hani

    2015-01-01

    vacuum chamber (it is under 10(exp -6) torr at -75 C), making it possible to 'cryopump' the propellant with lower-cost recirculating refrigerant-based systems as opposed to using liquid nitrogen or low temperature gaseous helium cryopanels. An iodine-based system is not without its challenges. The primary challenge is that the entire feed system must be maintained at an elevated temperature to prevent the iodine from depositing (transitioning from the gas phase directly back into the solid phase), which will block the propellant feed lines. Furthermore, deposition will occur unless the temperature in the lines is not greater than the temperature of the propellant reservoir. The flow rate can be controlled by adjusting the heating applied to the reservoir, but as with any thermal control there is a relatively slow response to changes in the heating rate. In the present paper, we describe the propulsion and propellant feed system for the iodine satellite (iSAT) flight demonstration mission. The system is based around the Busek BHT-200 Hall thruster, which has been modified for chemical compatibility with iodine vapor. While the gross propellant flow rate is maintained by the heated propellant reservoir, the flow to the anode and cathode are adjusted using two heated Vacco proportional flow control valves (PFCV), which provide very fast response on the flow rate adjustment. The flight mission design layout will be presented, showing how the system will be packaged into the overall 12-U spacecraft and the techniques being employed to protect the remaining spacecraft hardware from the propulsion system (e.g., plasma impingement, iodine deposition, thermal loads). In addition to the flight system design, results of testing the thruster and cathode with both operating on iodine propellant are presented. The tests are conducted on a thrust stand (see Fig. 1) in a large vacuum chamber containing a beam dump chilled to below -100 C to 'cryopump' the propellant. The thruster

  16. Analytic study of a new conceptual propulsion device for ships

    Directory of Open Access Journals (Sweden)

    Roberto Muscia

    2010-06-01

    Full Text Available In this work the possibility of obtaining a rectilinear motion of bodies partially or totally submerged without using propellers is evaluated. The system propulsion is based on a pair of counter rotating masses that generate the thrust. The fluid-body system has been schematized in order to carry out a very simple model. Using this model an evaluation of the body motion along a longitudinal direction was performed. The motion equations of the system were written and integrated. The external forces applied to the body depend on its velocity in relation to the water. These forces were obtained by fluid dynamic simulations. Regarding the mechanical configuration suggested, the results obtained show that a certain displacement of the body along a fixed direction is obtainable.

  17. Effect of simulated pulpal blood flow rate on the rise in pulp chamber temperature during direct fabrication of exothermic provisional restorations.

    Science.gov (United States)

    Farah, R I

    2017-11-01

    To evaluate ex vivo the effect of several simulated pulpal blood flow rates on the change in pulp chamber temperature during direct fabrication of a provisional restoration using a polymethylmethacrylate (PMMA) resin. Fifteen noncarious human premolars were prepared for complete coverage restorations. A curved needle connected to a peristaltic pump simulated the pulp blood flow. Two K-type thermocouples connected to a digital thermometer were placed in the pulp chamber, and the assembly was placed in an incubator at 37 °C. Three provisional crowns were made for each specimen using no water flow (group 1), a 1-mL min -1 flow rate (group 2) and a 0.5-mL/min -1 flow rate (group 3). The pulp chamber temperature was recorded continuously during polymerization until the temperature increase peaked and started to decrease and reached the baseline temperature (37 °C). The temperature increase was measured for the three water flow conditions. Data were analysed statistically using descriptive statistics, repeated measures one-way analysis of variance (anova) with Greenhouse-Geisser correction and Bonferroni tests. The level of significance was set at P provisional restorations can cause a critical increase in pulp chamber temperature. However, in the presence of simulated pulpal blood flow rates of 1 or 0.5 mL min -1 , the increase in pulp chamber temperature did not exceed the critical threshold (5.6 °C). © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  18. Feasibility of using ammonia-water mixture in high temperature concentrated solar power plants with direct vapour generation

    OpenAIRE

    Modi, Anish; Knudsen, Thomas; Haglind, Fredrik; Clausen, Lasse Røngaard

    2014-01-01

    Concentrated solar power plants have attracted an increasing interest in the past few years – both with respect to the design of various plant components, and extending the operation hours by employing different types of storage systems. One approach to improve the overall plant performance is to use direct vapour generation with water/steam as both the heat transfer fluid in the solar receivers and the cycle working fluid. This enables to operate the plant with higher turbine inlet temperatu...

  19. Radioisotope Electric Propulsion (REP): A Near-Term Approach to Nuclear Propulsion

    Science.gov (United States)

    Schmidt, George R.; Manzella, David H.; Kamhawi, Hani; Kremic, Tibor; Oleson, Steven R.; Dankanich, John W.; Dudzinski, Leonard A.

    2009-01-01

    Studies over the last decade have shown radioisotope-based nuclear electric propulsion to be enhancing and, in some cases, enabling for many potential robotic science missions. Also known as radioisotope electric propulsion (REP), the technology offers the performance advantages of traditional reactor-powered electric propulsion (i.e., high specific impulse propulsion at large distances from the Sun), but with much smaller, affordable spacecraft. Future use of REP requires development of radioisotope power sources with system specific powers well above that of current systems. The US Department of Energy and NASA have developed an advanced Stirling radioisotope generator (ASRG) engineering unit, which was subjected to rigorous flight qualification-level tests in 2008, and began extended lifetime testing later that year. This advancement, along with recent work on small ion thrusters and life extension technology for Hall thrusters, could enable missions using REP sometime during the next decade.

  20. Ship propulsion reactors technology; La technologie des reacteurs de propulsion navale

    Energy Technology Data Exchange (ETDEWEB)

    Fribourg, Ch. [Technicatome, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    2002-07-01

    This paper takes the state of the art on ship propulsion reactors technology. The french research programs with the corresponding technological stakes, the reactors specifications and advantages are detailed. (A.L.B.)

  1. Nuclear Thermal Propulsion (prior to FY15: Nuclear Cryogenic Propulsion Stage)

    Data.gov (United States)

    National Aeronautics and Space Administration — A key goal of the project is to address critical, long-term nuclear thermal propulsion (NTP) technology challenges and issues through development, analysis, and...

  2. Structure and mechanical properties of a eutectic high-temperature Nb-Si alloy grown by directional solidification

    Science.gov (United States)

    Karpov, M. I.; Vnukov, V. I.; Korzhov, V. P.; Stroganova, T. S.; Zheltyakova, I. S.; Prokhorov, D. V.; Gnesin, I. B.; Kiiko, V. M.; Kolobov, Yu. R.; Golosov, E. V.; Nekrasov, A. N.

    2014-04-01

    The structure and the short-term high-temperature strength of Ni-18.7 at % Si (Nb-Nb3Si eutectic) alloys fabricated by vacuum electron-beam zone melting and induction melting in an argon atmosphere are studied. The structure of the samples prepared by vacuum electron-beam zone melting is characterized by the presence of primary Nb5Si3 intermetallic precipitates and the absence of its secondary precipitates. The structure of the samples prepared by induction melting in an argon atmosphere has two characteristic zones, namely, eutectic and eutectoid ones.

  3. On-Orbit Propulsion System Project Overview

    Science.gov (United States)

    Champion, Robert H.; Lyles, Garry M. (Technical Monitor)

    2002-01-01

    This conference presentation reports on the progress on NASA's On-Orbit Propulsion System Project which aims to support the development of second generation reusable launch vehicles (RLV) through advanced research and development and risk reduction activities. Topics covered include: project goals, project accomplishments, risk reduction activities, thruster design and development initiatives, and Aerojet LOX/Ethanol engine development and testing.

  4. Building a Propulsion Experiment Project Management Environment

    Science.gov (United States)

    Keiser, Ken; Tanner, Steve; Hatcher, Danny; Graves, Sara

    2004-01-01

    What do you get when you cross rocket scientists with computer geeks? It is an interactive, distributed computing web of tools and services providing a more productive environment for propulsion research and development. The Rocket Engine Advancement Program 2 (REAP2) project involves researchers at several institutions collaborating on propulsion experiments and modeling. In an effort to facilitate these collaborations among researchers at different locations and with different specializations, researchers at the Information Technology and Systems Center,' University of Alabama in Huntsville, are creating a prototype web-based interactive information system in support of propulsion research. This system, to be based on experience gained in creating similar systems for NASA Earth science field experiment campaigns such as the Convection and Moisture Experiments (CAMEX), will assist in the planning and analysis of model and experiment results across REAP2 participants. The initial version of the Propulsion Experiment Project Management Environment (PExPM) consists of a controlled-access web portal facilitating the drafting and sharing of working documents and publications. Interactive tools for building and searching an annotated bibliography of publications related to REAP2 research topics have been created to help organize and maintain the results of literature searches. Also work is underway, with some initial prototypes in place, for interactive project management tools allowing project managers to schedule experiment activities, track status and report on results. This paper describes current successes, plans, and expected challenges for this project.

  5. An Analysis of Rocket Propulsion Testing Costs

    Science.gov (United States)

    Ramirez, Carmen; Rahman, Shamim

    2010-01-01

    The primary mission at NASA Stennis Space Center (SSC) is rocket propulsion testing. Such testing is commonly characterized as one of two types: production testing for certification and acceptance of engine hardware, and developmental testing for prototype evaluation or research and development (R&D) purposes. For programmatic reasons there is a continuing need to assess and evaluate the test costs for the various types of test campaigns that involve liquid rocket propellant test articles. Presently, in fact, there is a critical need to provide guidance on what represents a best value for testing and provide some key economic insights for decision-makers within NASA and the test customers outside the Agency. Hence, selected rocket propulsion test databases and references have been evaluated and analyzed with the intent to discover correlations of technical information and test costs that could help produce more reliable and accurate cost projections in the future. The process of searching, collecting, and validating propulsion test cost information presented some unique obstacles which then led to a set of recommendations for improvement in order to facilitate future cost information gathering and analysis. In summary, this historical account and evaluation of rocket propulsion test cost information will enhance understanding of the various kinds of project cost information; identify certain trends of interest to the aerospace testing community.

  6. Benefits of Low-Power Electrothermal Propulsion

    Science.gov (United States)

    Oleson, Steven R.; Sankovic, John M.

    1997-01-01

    Mission analyses were completed to show the benefits of low-power electrothermal propulsion systems for three classes'of LEO smallsat missions. Three different electrothermal systems were considered: (1) a 40 W ammonia resistojet system, (2) a 600 W hydrazine arcjet system, and (3) a 300 W ammonia resistojet. The benefits of using two 40 W ammonia resistojet systems were analyzed for three months of drag makeup of a Shuttle-launched 100 kg spacecraft in a 297 km orbit. The two 46 W resistojets decreased the propulsion system wet mass by 50% when compared to state-of-art hydrazine monopropellant thrusters. The 600 W arcjet system was used for a 300 km sun synchronous makeup mission of a 1000 kg satellite and was found to decrease the wet propulsion mass by 30%. Finally, the 300 W arcjet system was used on a 200 kg Earth-orbiting spacecraft for both orbit transfer from 300 to 400 km, two years of drag makeup, and a final orbit rise to 700 km. The arcjet system was determined to halve the propulsion system wet mass required for that scenario as compared to hydrazine monopropellant thrusters.

  7. Fully Scalable Porous Metal Electrospray Propulsion

    Science.gov (United States)

    2012-03-20

    CubeSat nanosatellites . This was done mostly as an exercise on scalability as originally described in the proposal. Graphic summary of the research...Canada This is one of our papers describing systems-level scalability of electrospray propulsion in the pure ionic regime to nanosatellites . A

  8. Reconfigurable Control of a Ship Propulsion Plant

    DEFF Research Database (Denmark)

    Blanke, M.; Izadi-Zamanabadi, Roozbeh

    1998-01-01

    -tolerant control is a fairly new area. Thise paper presents a ship propulsion system as a benchmark that should be useful as a platform for the development of new ideas and a comparison of methods. The benchmark has two main elements. One is the development of efficient FDI algorithms, and the other...

  9. Advanced propulsion system for hybrid vehicles

    Science.gov (United States)

    Norrup, L. V.; Lintz, A. T.

    1980-01-01

    A number of hybrid propulsion systems were evaluated for application in several different vehicle sizes. A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle/propulsion systems concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. A single hybrid propulsion system concept and vehicle (five passenger family sedan)were selected for optimization based on the results of the tradeoff studies. The final propulsion system consists of a 65 kW spark-ignition heat engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead-acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery.

  10. Fusion Propulsion Z-Pinch Engine Concept

    Science.gov (United States)

    Miernik, J.; Statham, G.; Fabisinski, L.; Maples, C. D.; Adams, R.; Polsgrove, T.; Fincher, S.; Cassibry, J.; Cortez, R.; Turner, M.; hide

    2011-01-01

    Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Due to the great distances between the planets of our solar system and the harmful radiation environment of interplanetary space, high specific impulse (Isp) propulsion in vehicles with high payload mass fractions must be developed to provide practical and safe vehicles for human spaceflight missions. The Z-Pinch dense plasma focus method is a Magneto-Inertial Fusion (MIF) approach that may potentially lead to a small, low cost fusion reactor/engine assembly1. Recent advancements in experimental and theoretical understanding of this concept suggest favorable scaling of fusion power output yield 2. The magnetic field resulting from the large current compresses the plasma to fusion conditions, and this process can be pulsed over short timescales (10(exp -6 sec). This type of plasma formation is widely used in the field of Nuclear Weapons Effects testing in the defense industry, as well as in fusion energy research. A Decade Module 2 (DM2), approx.500 KJ pulsed-power is coming to the RSA Aerophysics Lab managed by UAHuntsville in January, 2012. A Z-Pinch propulsion concept was designed for a vehicle based on a previous fusion vehicle study called "Human Outer Planet Exploration" (HOPE), which used Magnetized Target Fusion (MTF) 3 propulsion. The reference mission is the transport of crew and cargo to Mars and back, with a reusable vehicle.

  11. On-Orbit Propulsion OMS/RCS

    Science.gov (United States)

    Hurlbert, Eric A.

    2001-01-01

    This slide presentation reviews the Space Shuttle's On-Orbit Propulsion systems: the Orbital Maneuvering System (OMS) and the Reaction Control System (RCS). The functions of each of the systems is described, and the diagrams of the systems are presented. The OMS/RCS thruster is detailed and a trade study comparison of non-toxic propellants is presented.

  12. Propulsion via flexible flapping in granular media

    Science.gov (United States)

    Peng, Zhiwei; Ding, Yang; Pietrzyk, Kyle; Elfring, Gwynn; Pak, On Shun

    2017-11-01

    Biological locomotion in nature is often achieved by the interaction between a flexible body and its surrounding medium. The interaction of a flexible body with granular media is less understood compared with viscous fluids partially due to its complex rheological properties. In this work, we explore the effect of flexibility on granular propulsion by considering a simple mechanical model in which a rigid rod is connected to a torsional spring that is under a displacement actuation using a granular resistive force theory. Through a combined numerical and asymptotic investigation, we characterize the propulsive dynamics of such a flexible flapper in relation to the actuation amplitude and spring stiffness, and we compare these dynamics with those observed in a viscous fluid. In addition, we demonstrate that the maximum possible propulsive force can be obtained in the steady propulsion limit with a finite spring stiffness and large actuation amplitude. These results may apply to the development of synthetic locomotive systems that exploit flexibility to move through complex terrestrial media. Funding for Z.P. and Y.D. was partially provided by NSFC 394 Grant No. 11672029 and NSAF-NSFC Grant No. U1530401.

  13. Green Mono Propulsion Activities at MSFC

    Science.gov (United States)

    Robinson, Joel W.

    2014-01-01

    In 2012, the National Aeronautics & Space Administration (NASA) Space Technology Mission Directorate (STMD) began the process of building an integrated technology roadmap, including both technology pull and technology push strategies. Technology Area 1 (TA-01) for Launch Propulsion Systems and TA-02 In-Space Propulsion are two of the fourteen TA's that provide recommendations for the overall technology investment strategy and prioritization of NASA's space technology activities. Identified within these documents are future needs of green propellant use. Green ionic liquid monopropellants and propulsion systems are beginning to be demonstrated in space flight environments. Starting in 2010 with the flight of PRISMA, a one Newton thruster system began on-orbit demonstrations operating on ammonium dinitramide based propellant. The NASA Green Propellant Infusion Mission (GPIM) plans to demonstrate both 1 N, and 22 N hydroxyl ammonium nitrate based thrusters in a 2015 flight demonstration. In addition, engineers at MSFC have been evaluating green propellant alternatives for both thrusters and auxiliary power units. This paper summarizes the status of these development/demonstration activities and investigates the potential for evolution of green propellants from small spacecraft and satellites to larger spacecraft systems, human exploration, and launch system auxiliary propulsion applications.

  14. MSFC Propulsion Systems Department Knowledge Management Project

    Science.gov (United States)

    Caraccioli, Paul A.

    2007-01-01

    This slide presentation reviews the Knowledge Management (KM) project of the Propulsion Systems Department at Marshall Space Flight Center. KM is needed to support knowledge capture, preservation and to support an information sharing culture. The presentation includes the strategic plan for the KM initiative, the system requirements, the technology description, the User Interface and custom features, and a search demonstration.

  15. Heavy Plasma NAPALM Propulsion Simulation Code

    NARCIS (Netherlands)

    Lörincz, I.; Rugescu, R.D.; Kohlenberg, J.; Prathaban, M.

    2010-01-01

    The NAPALM project addresses a new and revolutionary space propulsion system, able to deliver a very high specific impulse through a new working fluid and accelerator principle for the electric plasma thruster. The new motor will impressively exceed, by between ten and sixty percent, the vacuum

  16. Wheelchair propulsion technique at different speeds

    NARCIS (Netherlands)

    Veeger, DirkJan (H. E. J.); van der Woude, L H; Rozendal, R H

    1989-01-01

    To study wheelchair propulsion technique at different speeds, five well-trained subjects propelled a wheelchair on a treadmill. Measurements were made at four belt speeds of 0.56-1.39 m/s and against slopes of 2 and 3 degrees. Cardiorespiratory data were collected. Three consecutive strokes were

  17. The Potential for Ambient Plasma Wave Propulsion

    Science.gov (United States)

    Gilland, James H.; Williams, George J.

    2016-01-01

    A truly robust space exploration program will need to make use of in-situ resources as much as possible to make the endeavor affordable. Most space propulsion concepts are saddled with one fundamental burden; the propellant needed to produce momentum. The most advanced propulsion systems currently in use utilize electric and/or magnetic fields to accelerate ionized propellant. However, significant planetary exploration missions in the coming decades, such as the now canceled Jupiter Icy Moons Orbiter, are restricted by propellant mass and propulsion system lifetimes, using even the most optimistic projections of performance. These electric propulsion vehicles are inherently limited in flexibility at their final destination, due to propulsion system wear, propellant requirements, and the relatively low acceleration of the vehicle. A few concepts are able to utilize the environment around them to produce thrust: Solar or magnetic sails and, with certain restrictions, electrodynamic tethers. These concepts focus primarily on using the solar wind or ambient magnetic fields to generate thrust. Technically immature, quasi-propellantless alternatives lack either the sensitivity or the power to provide significant maneuvering. An additional resource to be considered is the ambient plasma and magnetic fields in solar and planetary magnetospheres. These environments, such as those around the Sun or Jupiter, have been shown to host a variety of plasma waves. Plasma wave propulsion takes advantage of an observed astrophysical and terrestrial phenomenon: Alfven waves. These are waves that propagate in the plasma and magnetic fields around and between planets and stars. The generation of Alfven waves in ambient magnetic and plasma fields to generate thrust is proposed as a truly propellantless propulsion system which may enable an entirely new matrix of exploration missions. Alfven waves are well known, transverse electromagnetic waves that propagate in magnetized plasmas at

  18. Direct comparison of two pyrometers and a low-cost thermographic camera for time resolved LWIR temperature measurements

    Science.gov (United States)

    Krankenhagen, Rainer; Altenburg, Simon J.

    2017-05-01

    Contactless temperature sensing is state of the art and essential part of countless applications in the field of process control and automation. This contribution presents the case of a nondestructive thickness measurement method for polymeric coatings on concrete ground. Two pyrometers and a low-cost infrared camera were taken into account. The particular measurement results were compared with those of a more sophisticated infrared camera. It was found that the low-cost infrared camera has a lower noise level than the pyrometers, even for a single pixel. The opportunity to average over a large number of pixels and to establish a bias correction enables a further noise reduction by almost factor of 10. Furthermore, the temporal resolution of the infrared camera was investigated by means of a well-defined thermal oscillation. It could be demonstrated that the averaged time stamps are correct and the requirement of a minimum framerate of 50 Hz is met. Finally, the temperature transient on a polymer coated concrete block during and after a 10 s heating period was recorded with a pyrometer and the infrared camera. This experiment confirmed the suitability of the camera for the intended measurement method.

  19. Distributed Turboelectric Propulsion for Hybrid Wing Body Aircraft

    Science.gov (United States)

    Kim, Hyun Dae; Brown, Gerald V.; Felder, James L.

    2008-01-01

    Meeting future goals for aircraft and air traffic system performance will require new airframes with more highly integrated propulsion. Previous studies have evaluated hybrid wing body (HWB) configurations with various numbers of engines and with increasing degrees of propulsion-airframe integration. A recently published configuration with 12 small engines partially embedded in a HWB aircraft, reviewed herein, serves as the airframe baseline for the new concept aircraft that is the subject of this paper. To achieve high cruise efficiency, a high lift-to-drag ratio HWB was adopted as the baseline airframe along with boundary layer ingestion inlets and distributed thrust nozzles to fill in the wakes generated by the vehicle. The distributed powered-lift propulsion concept for the baseline vehicle used a simple, high-lift-capable internally blown flap or jet flap system with a number of small high bypass ratio turbofan engines in the airframe. In that concept, the engine flow path from the inlet to the nozzle is direct and does not involve complicated internal ducts through the airframe to redistribute the engine flow. In addition, partially embedded engines, distributed along the upper surface of the HWB airframe, provide noise reduction through airframe shielding and promote jet flow mixing with the ambient airflow. To improve performance and to reduce noise and environmental impact even further, a drastic change in the propulsion system is proposed in this paper. The new concept adopts the previous baseline cruise-efficient short take-off and landing (CESTOL) airframe but employs a number of superconducting motors to drive the distributed fans rather than using many small conventional engines. The power to drive these electric fans is generated by two remotely located gas-turbine-driven superconducting generators. This arrangement allows many small partially embedded fans while retaining the superior efficiency of large core engines, which are physically separated

  20. Beamed-Energy Propulsion (BEP) Study

    Science.gov (United States)

    George, Patrick; Beach, Raymond

    2012-01-01

    The scope of this study was to (1) review and analyze the state-of-art in beamed-energy propulsion (BEP) by identifying potential game-changing applications, (2) formulate a roadmap of technology development, and (3) identify key near-term technology demonstrations to rapidly advance elements of BEP technology to Technology Readiness Level (TRL) 6. The two major areas of interest were launching payloads and space propulsion. More generally, the study was requested and structured to address basic mission feasibility. The attraction of beamed-energy propulsion (BEP) is the potential for high specific impulse while removing the power-generation mass. The rapid advancements in high-energy beamed-power systems and optics over the past 20 years warranted a fresh look at the technology. For launching payloads, the study concluded that using BEP to propel vehicles into space is technically feasible if a commitment to develop new technologies and large investments can be made over long periods of time. From a commercial competitive standpoint, if an advantage of beamed energy for Earth-to-orbit (ETO) is to be found, it will rest with smaller, frequently launched payloads. For space propulsion, the study concluded that using beamed energy to propel vehicles from low Earth orbit to geosynchronous Earth orbit (LEO-GEO) and into deep space is definitely feasible and showed distinct advantages and greater potential over current propulsion technologies. However, this conclusion also assumes that upfront infrastructure investments and commitments to critical technologies will be made over long periods of time. The chief issue, similar to that for payloads, is high infrastructure costs.

  1. Design and evaluation of a high temperature/pressure supercritical carbon dioxide direct tubular receiver for concentrating solar power applications

    Science.gov (United States)

    Ortega, Jesus Daniel

    This work focuses on the development of a solar power thermal receiver for a supercritical-carbon dioxide (sCO2), Brayton power-cycle to produce ~1 MWe. Closed-loop sCO2 Brayton cycles are being evaluated in combination with concentrating solar power to provide higher thermal-to-electric conversion efficiencies relative to conventional steam Rankine cycles. High temperatures (923--973 K) and pressures (20--25 MPa) are required in the solar receiver to achieve thermal efficiencies of ~50%, making concentrating solar power (CSP) technologies a competitive alternative to current power generation methods. In this study, the CSP receiver is required to achieve an outlet temperature of 923 K at 25 MPa or 973 K at 20 MPa to meet the operating needs. To obtain compatible receiver tube material, an extensive material review was performed based the ASME Boiler and Pressure Vessel Code, ASME B31.1 and ASME B313.3 codes respectively. Subsequently, a thermal-structural model was developed using a commercial computational fluid (CFD) dynamics and structural mechanics software for designing and analyzing the tubular receiver that could provide the heat input for a ~2 MWth plant. These results were used to perform an analytical cumulative damage creep-fatigue analysis to estimate the work-life of the tubes. In sequence, an optical-thermal-fluid model was developed to evaluate the resulting thermal efficiency of the tubular receiver from the NSTTF heliostat field. The ray-tracing tool SolTrace was used to obtain the heat-flux distribution on the surfaces of the receiver. The K-ω SST turbulence model and P-1 radiation model used in Fluent were coupled with SolTrace to provide the heat flux distribution on the receiver surface. The creep-fatigue analysis displays the damage accumulated due to the cycling and the permanent deformation of the tubes. Nonetheless, they are able to support the required lifetime. The receiver surface temperatures were found to be within the safe

  2. Power And Propulsion Systems For Mobile Robotic Applications

    Science.gov (United States)

    Layuan, Li; Haiming, Zou

    1987-02-01

    Choosing the best power and propulsion systems for mobile robotic land vehicle applications requires consideration of technologies. The electric power requirements for onboard electronic and auxiliary equipment include 110/220 volt 60 Hz ac power as well as low voltage dc power. Weight and power are saved by either direct dc power distribution, or high frequency (20 kHz) ac power distribution. Vehicle control functions are performed electronically but steering, braking and traction power may be distributed electrically, mechanically or by fluid (hydraulic) means. Electric drive is practical, even for small vehicles, provided that advanced electric motors are used. Such electric motors have demonstrated power densities of 3.1 kilowatts per kilogram with devices in the 15 kilowatt range. Electric motors have a lower torque, but higher power density as compared to hydraulic or mechanical transmission systems. Power density being comparable, electric drives were selected to best meet the other requirements for robotic vehicles. Two robotic vehicle propulsion system designs are described to illustrate the implementation of electric drive over a vehicle size range of 250-7500 kilograms.

  3. Water Sensation During Passive Propulsion for Expert and Nonexpert Swimmers.

    Science.gov (United States)

    Kusanagi, Kenta; Sato, Daisuke; Hashimoto, Yasuhiro; Yamada, Norimasa

    2017-06-01

    This study determined whether expert swimmers, compared with nonexperts, have superior movement perception and physical sensations of propulsion in water. Expert (national level competitors, n = 10) and nonexpert (able to swim 50 m in > 3 styles, n = 10) swimmers estimated distance traveled in water with their eyes closed. Both groups indicated their subjective physical sensations in the water. For each of two trials, two-dimensional coordinates were obtained from video recordings using the two-dimensional direct linear transformation method for calculating changes in speed. The mean absolute error of the difference between the actual and estimated distance traveled in the water was significantly lower for expert swimmers (0.90 ± 0.71 meters) compared with nonexpert swimmers (3.85 ± 0.84 m). Expert swimmers described the sensation of propulsion in water in cutaneous terms as the "sense of flow" and sensation of "skin resistance." Therefore, expert swimmers appear to have a superior sense of distance during their movement in the water compared with that of nonexpert swimmers. In addition, expert swimmers may have a better perception of movement in water. We propose that expert swimmers integrate sensations and proprioceptive senses, enabling them to better perceive and estimate distance moved through water.

  4. Propulsion of a microsubmarine using a thermally oscillatory approach

    Science.gov (United States)

    Qiao, Lei; Luo, Cheng

    2013-10-01

    In this paper, motivated by the driving mechanism of a putt-putt toy boat, we explore the feasibility to propel a microsubmarine using a thermally oscillatory approach, which only requires a simple design and does not involve any complicated propulsive systems. We investigate the design, fabrication, actuation and horizontal motions of the corresponding microsubmarines. Based on the understanding gained through preliminary tests on two manually fabricated putt-putt boats, we designed and fabricated the prototype of a microsubmarine. Similar to a putt-putt boat, the prototype also uses a thermally oscillatory process for propulsion. In a cyclic period of this process, due to the expansion and shrinkage of a vapor bubble inside the reservoir of the submarine, liquid is first ejected outside and then sucked into the reservoir. Due to the difference in liquid flow directions between ejection and suction stages, a thrust is produced to propel the submarine. At an applied voltage of 16 V and pulse frequency of 100 Hz, the submarine was found to have the highest speed of 1.8 mm s-1 and longest travel distance of 12.6 mm. The corresponding thrust was estimated to be 67.6 nN.

  5. Cycle Trades for Nuclear Thermal Rocket Propulsion Systems

    Science.gov (United States)

    White, C.; Guidos, M.; Greene, W.

    2003-01-01

    Nuclear fission has been used as a reliable source for utility power in the United States for decades. Even in the 1940's, long before the United States had a viable space program, the theoretical benefits of nuclear power as applied to space travel were being explored. These benefits include long-life operation and high performance, particularly in the form of vehicle power density, enabling longer-lasting space missions. The configurations for nuclear rocket systems and chemical rocket systems are similar except that a nuclear rocket utilizes a fission reactor as its heat source. This thermal energy can be utilized directly to heat propellants that are then accelerated through a nozzle to generate thrust or it can be used as part of an electricity generation system. The former approach is Nuclear Thermal Propulsion (NTP) and the latter is Nuclear Electric Propulsion (NEP), which is then used to power thruster technologies such as ion thrusters. This paper will explore a number of indirect-NTP engine cycle configurations using assumed performance constraints and requirements, discuss the advantages and disadvantages of each cycle configuration, and present preliminary performance and size results. This paper is intended to lay the groundwork for future efforts in the development of a practical NTP system or a combined NTP/NEP hybrid system.

  6. Is Quantized Vorticity in Pure He II at Low Temperature Directly Related to Cavitation and Spinodal Pressure?

    International Nuclear Information System (INIS)

    Skrbek, L.

    2006-01-01

    We argue that the critical velocity for intrinsic nucleation of quantized vortices in isothermal flow of He II at low temperature can be viewed as approaching the spinodal limit in pressure and breakdown of superfluidity as a consequence of the Bernoulli equation. Breaking the liquid by cavitation that changes the topology from simply to multiply connected seems an essential requirement for intrinsic vortex nucleation and serves as an additional criterion of superfluidity, of the form Vc = [2(pext - psp)/ρs]1/2, where pext is the external pressure, psp denotes the spinodal limit, and ρs stands for the superfluid density. This criterion can be viewed as additional to the well-known Landau criterion for breakdown of superfluidity due to emission of quasiparticles

  7. Effect of High Temperature Annealing on Conduction-Type ZnO Films Prepared by Direct-Current Magnetron Sputtering

    International Nuclear Information System (INIS)

    Sun Li-Jie; He Dong-Kai; Xu Xiao-Qiu; Zhong Ze; Wu Xiao-Peng; Lin Bi-Xia; Fu Zhu-Xi

    2010-01-01

    We experimentally find that the ZnO thin films deposited by dc-magnetron sputtering have different conduction types after annealing at high temperature in different ambient. Hall measurements show that ZnO films annealed at 1100°C in N 2 and in O 2 ambient become n-type and p-type, respectively. This is due to the generation of different intrinsic defects by annealing in different ambient. X-ray photoelectron spectroscopy and photolumi-nescence measurements indicate that zinc interstitial becomes a main defects after annealing at 1100°C in N 2 ambient, and these defects play an important role for n-type conductivity of ZnO. While the ZnO films annealed at 1100°C in O 2 ambient, the oxygen antisite contributes ZnO films to p-type. (condensed matter: structure, mechanical and thermal properties)

  8. Effect of process parameters on hardness, temperature profile and solidification of different layers processed by direct metal laser sintering (DMLS)

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Sazzad Hossain; Mian, Ahsan, E-mail: ahsan.mian@wright.edu; Srinivasan, Raghavan [Department of Mechanical and Materials Engineering, Wright State University, Dayton, Ohio 45435 (United States)

    2016-07-12

    In DMLS process objects are fabricated layer by layer from powdered material by melting induced by a controlled laser beam. Metallic powder melts and solidifies to form a single layer. Solidification map during layer formation is an important route to characterize micro-structure and grain morphology of sintered layer. Generally, solidification leads to columnar, equiaxed or mixture of these two types grain morphology depending on solidification rate and thermal gradient. Eutectic or dendritic structure can be formed in fully equiaxed zone. This dendritic growth has a large effect on material properties. Smaller dendrites generally increase ductility of the layer. Thus, materials can be designed by creating desired grain morphology in certain regions using DMLS process. To accomplish this, hardness, temperature distribution, thermal gradient and solidification cooling rate in processed layers will be studied under change of process variables by using finite element analysis, with specific application to Ti-6Al-4V.

  9. Direct evaluation of boson dynamics via finite-temperature time-dependent variation with multiple Davydov states

    Science.gov (United States)

    Fujihashi, Yuta; Wang, Lu; Zhao, Yang

    2017-12-01

    Recent advances in quantum optics allow for exploration of boson dynamics in dissipative many-body systems. However, the traditional descriptions of quantum dissipation using reduced density matrices are unable to capture explicit information of bath dynamics. In this work, efficient evaluation of boson dynamics is demonstrated by combining the multiple Davydov Ansatz with finite-temperature time-dependent variation, going beyond what state-of-the-art density matrix approaches are capable to offer for coupled electron-boson systems. To this end, applications are made to excitation energy transfer in photosynthetic systems, singlet fission in organic thin films, and circuit quantum electrodynamics in superconducting devices. Thanks to the multiple Davydov Ansatz, our analysis of boson dynamics leads to clear revelation of boson modes strongly coupled to electronic states, as well as in-depth description of polaron creation and destruction in the presence of thermal fluctuations.

  10. A macroscopic constitutive model of temperature-induced phase transition of polycrystalline Ni{sub 2}MnGa by directional solidification

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yuping, E-mail: zhuyuping@126.com; Gu, Yunling; Liu, Hongguang

    2015-02-25

    Directional solidification technology has been widely used to improve the properties of polycrystalline Ni{sub 2}MnGa materials. Mechanical training can adjust the internal organizational structures of the materials, reduce the stress of twin boundaries motion, and then result in larger strain at lower outfield levels. In this paper, we test the microscopic structure of Ni{sub 2}MnGa polycrystalline ferromagnetic shape memory alloy produced by directional solidification and compress it along two axes successively for mechanical training. The influences of pre-compressive stresses on the temperature-induced strains are analyzed. The macroscopic mechanical behaviors show anisotropy. According to the generating mechanism of the macroscopic strain, a three-dimensional constitutive model is established. Based on thermodynamic method, the kinetic equations of the martensitic transformation and inverse transformation are presented considering the driving force and energy dissipation. The prediction curves of temperature-induce strains along two different directions are investigated. And the results coincide well with the experiment data. It well explains the macroscopic anisotropy mechanical behaviors and fits for using in engineering.

  11. Oxidation kinetics and mechanisms of four-direction carbon/carbon composites and their components in carbon dioxide at high temperature

    International Nuclear Information System (INIS)

    Qin, Fei; Peng, Li-na; He, Guo-qiang; Li, Jiang

    2013-01-01

    Highlights: •Four-direction C/C composite was fabricated using carbon fibres and coal tar pitches. •Large-sized bulk matrix was prepared using same process as matrix of C/C composites. •A and E a of C/C, bulk matrix and fibres in CO 2 were determined, respectively. •Pressure exponent n was 0.62 in C/C–CO 2 . -- Abstract: Thermogravimetric analysis and scanning electron microscopy were used to study the oxidation kinetics of four-direction carbon/carbon composites and their components (fibres and matrix) in a CO 2 atmosphere at high temperature. The ablation processes were restricted to reaction-limited oxidation. The mass loss rate was estimated for the four-direction carbon/carbon composites and their components within the temperature of range of 600–1400 °C. The pressure exponent for the reaction of carbon/carbon composites and CO 2 was 0.62, and the pre-exponential factor and activation energy for the reactions of CO 2 and the carbon/carbon composites, carbon fibres and matrix were determined, respectively

  12. NASA/MSFC Interest in Advanced Propulsion and Power Technologies

    Science.gov (United States)

    Cole, John W.

    2003-01-01

    This viewgraph representation provides an overview of research being conducted at NASA's Marshall Space Flight Center. Conventional propulsion systems are at near peak performance levels but will not enable the science and exploration deep space missions NASA envisions. Energetic propulsion technologies can make these missions possible but only if the fundamental problems of energy storage density and energy to energy thrust conversion efficiency are solved. Topics covered include: research rationale, limits of thermal propulsion systems, need for propulsion energetics research, emerging energetic propulsion technologies, and potential research opportunities.

  13. Comparison of temperature rise in pulp chamber during polymerization of materials used for direct fabrication of provisional restorations: An in-vitro study.

    Science.gov (United States)

    Khajuria, Rajat R; Madan, Ravi; Agarwal, Swatantra; Gupta, Reecha; Vadavadgi, Sunil V; Sharma, Vikas

    2015-01-01

    The purpose is to compare temperature rise in the pulp chamber during fabrication of provisional crowns using different materials and on different types of teeth using direct technique. An extracted, sound, caries free maxillary central incisor and a mandibular molar were selected for the study and crown preparations of all ceramic and all metal were done on central incisor and mandibular molar, respectively. Materials tested were DPI tooth molding self-curing material and protemp-4. Addition silicone putty was used as a matrix and 80 provisional crowns were fabricated, of which 40 were on central incisor and 40 on mandibular molar. Depending on the type of material used, they were further divided into two subgroups: Each comprising 20 provisional crowns. Temperature readings were recorded using K type of thermocouple with 0.1°C precision digital thermometer. Analysis of variance, Tukey honest significant difference and Kruskall-Wallis H-test. Statistically significant difference exists between two materials tested on the basis of peak temperature achieved and time taken by a particular material to reach peak temperature. Peak temperature achieved was highest for provisional crowns with DPI tooth molding self-curing material on maxillary central incisor (40.39 + 0.46), followed by DPI tooth molding self-curing material on mandibular molar (40.03 + 0.32), protemp-4 on maxillary central incisor (39.46 + 0.26) and least with protemp-4 on mandibular molar (39.09 + 0.33). The time taken to reach peak temperature was almost double in DPI tooth molding self-curing material (5 min) than in protemp-4. Polymethyl methacrylate resin produced higher intra-pulpal rise when compared to newer generation bis-acrylic composite.

  14. Effects of Withdrawal Rate and Temperature Gradient on the Microstructure Evolution in Directionally Solidified NiAl-36Cr-6Mo Hypereutectic Alloy

    Science.gov (United States)

    Shang, Zhao; Shen, Jun; Zhang, Jian-Fei; Wang, Lei; Qin, Ling; Fu, Heng-Zhi

    2014-09-01

    The effects of withdrawal rate and temperature gradient on the microstructure and growth interface morphology in directionally solidified Ni-29Al-36Cr-6Mo(at.%) hypereutectic alloy were investigated. Under the temperature gradient of 250 K/cm, well-aligned eutectic microstructure with lamellar morphology was obtained at the withdrawal rate of 6 μm/s. When the withdrawal rate was 10 μm/s, the microstructure changed to Cr(Mo) dendrites + eutectic lamellae. With the increasing withdrawal rate, the interdendritic eutectic growth interface changed from planar to cellular, the number of primary Cr(Mo) dendrites became greater, and the microstructure was refined. When the temperature gradient increased to 600 K/cm, the coupled eutectic growth zone of NiAl-Cr(Mo) alloy was expanded; a well-aligned eutectic microstructure could be obtained at higher rate of 10 μm/s. Furthermore, the planar/cellular transition rate of the interdendritic eutectic growth interface increased. Even at the same withdrawal rate, the number of primary Cr(Mo) dendrites was less and the microstructure was finer under the temperature gradient of 600 K/cm.

  15. Direct reduction of uranium dioxide and few other metal oxides to corresponding metals by high temperature molten salt electrolysis

    International Nuclear Information System (INIS)

    Mohandas, K.S.

    2017-01-01

    Molten salt based electro-reduction processes, capable of directly converting solid metal oxides to metals with minimum intermediate steps, are being studied worldwide. Production of metals apart, the process assumes importance in nuclear technology in the context of pyrochemical reprocessing of spent oxide fuels, for it serves as an intermediate step to convert spent oxide fuel to a metal alloy, which in turn can be processed by molten salt electro-refining method to gain the actinides present in it. In the context of future metal fuel fast reactor programme, the electrochemical process was studied for conversion of solid UO 2 to U metal in LiCl-1wt.% Li 2 O melt at 650 °C with platinum anode at the Metal Processing Studies Section, PMPD, IGCAR. A brief overview of the work is presented in the paper

  16. Ionization and acoustical instability of a low temperature magnetized plasma in a combined (direct and alternating) electrical field

    International Nuclear Information System (INIS)

    Andropov, V.G.; Sinkevich, O.A.

    1983-01-01

    It is shown that the ionization front which moves through a gas along a magnetic field in a combined electrical field, which lies in the plane of the front, may be unstable, as a result of the development of an ionization instability in the plasma behind the front. The criterion of instability of the ionization front does not greatly differ from the criterion of instability of an infinite plasma. The ionization front in the magnetic field is stable only in an electrical field of circular polarization or in a combined field in which the direct and alternating electrical fields are orthogonal and the Joule heat liberation from them is equal. The generation of sound is possible in a magnetized plasma in an alternating electrical field orthogonal to a magnetic due to the parametric acoustical instability at the frequency of the external electrical field. 8 refs

  17. Direct synthesis of Fe3 C-functionalized graphene by high temperature autoclave pyrolysis for oxygen reduction.

    Science.gov (United States)

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei; Huang, Yunjie; Cleemann, Lars N; Xing, Wei; Bjerrum, Niels J; Li, Qingfeng

    2014-08-01

    We present a novel approach to direct fabrication of few-layer graphene sheets with encapsulated Fe3 C nanoparticles from pyrolysis of volatile non-graphitic precursors without any substrate. This one-step autoclave approach is facile and potentially scalable for production. Tested as an electrocatalyst, the graphene-based composite exhibited excellent catalytic activity towards the oxygen reduction reaction in alkaline solution with an onset potential of ca. 1.05 V (vs. the reversible hydrogen electrode) and a half-wave potential of 0.83 V, which is comparable to the commercial Pt/C catalyst. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Local melting/solidification during peritectic solidification in a steep temperature gradient: analysis of a directionally solidified Al-25at%Ni

    Science.gov (United States)

    Liu, Dongmei; Li, Xinzhong; Su, Yanqing; Rettenmayr, Markus; Guo, Jingjie; Fu, Hengzhi

    2014-09-01

    Melting of primary Al3Ni2 phase and solidification of Al3Ni peritectic phase during directional solidification of an Al-25at%Ni peritectic alloy have been investigated. In a steep temperature gradient of up to 50 K/mm and at a pulling rate of 20 μm/s, an incomplete coverage of peritectic Al3Ni phase on the surface of the primary Al3Ni2 phase has been observed. Below the peritectic temperature in the presence of the incomplete coverage, melting of primary Al3Ni2 on the one side and solidification to the Al3Ni peritectic phase on the other side proceed swiftly via diffusion through the interphase liquid layer. Theoretical calculations based on an incomplete-coverage-related melting/solidification model are in close agreement with the experimental measurements.

  19. Direct Evidence of Confined Water in Room-Temperature Ionic Liquids by Complementary Use of Small-Angle X-ray and Neutron Scattering.

    Science.gov (United States)

    Abe, Hiroshi; Takekiyo, Takahiro; Shigemi, Machiko; Yoshimura, Yukihiro; Tsuge, Shu; Hanasaki, Tomonori; Ohishi, Kazuki; Takata, Shinichi; Suzuki, Jun-Ichi

    2014-04-03

    The direct evidence of confined water ("water pocket") inside hydrophilic room-temperature ionic liquids (RTILs) was obtained by complementary use of small-angle X-ray scattering and small-angle neutron scattering (SAXS and SANS). A large contrast in X-ray and neutron scattering cross-section of deuterons was used to distinguish the water pocket from the RTIL. In addition to nanoheterogeneity of pure RTILs, the water pocket formed in the water-rich region. Both water concentration and temperature dependence of the peaks in SANS profiles confirmed the existence of the hidden water pocket. The size of the water pocket was estimated to be ∼3 nm, and D2O aggregations were well-simulated on the basis of the observed SANS data.

  20. The Effects of Finish Rolling Temperature and Niobium Microalloying on the Microstructure and Properties of a Direct Quenched High-Strength Steel

    Directory of Open Access Journals (Sweden)

    Kaijalainen A.

    2017-06-01

    Full Text Available This paper comprehends the effects of finish rolling temperature (FRT and Nb-microalloying on the microstructural evolution and resultant properties of a low carbon direct quenched steel in the yield strength category of ≥900 MPa. Results indicate that a decrease in FRT close to Ar3 temperature significantly influenced the microstructure following phase transformation, especially at the subsurface (~50-400 μm of the rolled strip. On decreasing the FRT, the subsurface microstructure revealed a fine mixture of ferrite and bainite obviously as a result of strain-induced transformation, whereas the structure at the centreline remained essentially martensitic. Further, Nb-microalloying promoted the formation of ferrite and bainite even at higher FRTs, thus influencing the mechanical properties. The microstructures of the hot-rolled strips were further corroborated with the aid of CCT diagrams.