WorldWideScience

Sample records for temperature diffusion induced

  1. Application of aluminum diffusion coatings to mitigate the KCl-induced high-temperature corrosion

    DEFF Research Database (Denmark)

    Kiamehr, Saeed; Lomholt, T. N.; Dahl, Kristian Vinter

    2017-01-01

    Pack cementation was used to produce Fe1−xAl and Fe2Al5 diffusion coatings on ferritic-martensitic steel P91 and a Ni2Al3 diffusion coating on pure nickel. The performance of diffusion coatings against high-temperature corrosion induced by potassium chloride (KCl) was evaluated by exposing...

  2. Temperature monitoring with FBG sensor during diffuser-assisted laser-induced interstitial thermotherapy (Conference Presentation)

    Science.gov (United States)

    Pham, Ngot T.; Lee, Seul Lee; Lee, Yong Wook; Kang, Hyun Wook

    2017-02-01

    Temperature variations are often monitored by using sensors operating at the site of treatment during Laser-induced Interstitial Thermotherapy (LITT). Currently, temperature measurements during LITT have been performed with thermocouples (TCs). However, TCs could directly absorb laser light and lead to self-heating (resulting in an over-estimation). Fiber Bragg grating (FBG) sensors can instead overcome this limitation of the TCs due to its insensitivity to electromagnetic interference. The aim of the current study was to quantitatively evaluate the FBG temperature sensor with a K-type thermocouple to real-time monitor temperature increase in ex vivo tissue during diffuser-assisted LITT. A 4-W 980-nm laser was employed to deliver optical energy in continuous mode through a 600-µm core-diameter diffusing applicator. A goniometric measurement validated the uniform light distribution in polar and longitudinal directions. The FBG sensor showed a linear relationship (R2 = 0.995) between wavelength shift and temperature change in air and tissue along with a sensitivity of 0.0114 nm/˚C. Regardless of sensor type, the measured temperature increased with irradiation time and applied power but decreased with increasing distance from the diffuser surface. The temperature elevation augmented the degree of thermal coagulation in the tissue during LITT (4.0±0.3-mm at 99˚C after 120-s). The temperature elevation augmented the degree of thermal coagulation in the tissue during LITT s irradiation). The FBG-integrated diffuser was able to monitor the interstitial temperature in tubular tissue (porcine urethra) real-time during laser treatment. However, the thermal coagulation thickness of the porcine urethra was measured to be 1.5 mm that was slightly thicker ( 20%) than that of the bovine liver after 4-W 980-nm laser for 48 s. The FBG temperature sensor can be a feasible tool to real-time monitor the temporal development of the temperature during the diffuser-assisted LITT to

  3. High temperature diffusion induced liquid phase joining of a heat resistant alloy

    International Nuclear Information System (INIS)

    Wikstrom, N.P.; Egbewande, A.T.; Ojo, O.A.

    2008-01-01

    Transient liquid phase bonding (TLP) of a nickel base superalloy, Waspaloy, was performed to study the influence of holding time and temperature on the joint microstructure. Insufficient holding time for complete isothermal solidification of liquated insert caused formation of eutectic-type microconstituent along the joint centerline region in the alloy. In agreement with prediction by conventional TLP diffusion models, an increase in bonding temperature for a constant gap size, resulted in decrease in the time, t f, required to form a eutectic-free joint by complete isothermal solidification. However, a significant deviation from these models was observed in specimens bonded at and above 1175 deg. C. A reduction in isothermal solidification rate with increased temperature was observed in these specimens, such that a eutectic-free joint could not be achieved by holding for a time period that produced complete isothermal solidification at lower temperatures. Boron-rich particles were observed within the eutectic that formed in the joints prepared at the higher temperatures. An overriding effect of decrease in boron solubility relative to increase in its diffusivity with increase in temperature, is a plausible important factor responsible for the reduction in isothermal solidification rate at the higher bonding temperatures

  4. New diffusion mechanism for high temperature diffusion in solids

    International Nuclear Information System (INIS)

    Doan, N.V.; Adda, Y.

    1986-09-01

    A new atomic transport mechanism in solids at high temperatures has been discovered by Molecular Dynamics computer simulation. It can be described as a ring sequence of atomic replacements induced by unstable Frenkel pairs. This transport process takes place without stable defects, the atomic migration occurring indeed by simultaneous creation and migration of unstable defects. Starting from the analysis of this mechanism in different solids at high temperature (CaF 2 , Na, Ar) and in irradiated copper by subthreshold collisions, we discuss the role of this mechanism on various diffusion controlled phenomena and also on the atomic processes of defect creation

  5. Influence of sulfates on chloride diffusion and chloride-induced reinforcement corrosion in limestone cement materials at low temperature

    Czech Academy of Sciences Publication Activity Database

    Sotiriadis, Konstantinos; Rakanta, E.; Mitzithra, M. E.; Batis, G.; Tsivilis, S.

    2017-01-01

    Roč. 29, č. 8 (2017), č. článku 04017060. ISSN 0899-1561 R&D Projects: GA MŠk(CZ) LO1219 Keywords : limestone cement * chloride diffusion * reinforcement corrosion * sulfate attack * low temperature Subject RIV: JN - Civil Engineering OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics Impact factor: 1.644, year: 2016 http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29MT.1943-5533.0001895

  6. Temperature-induced transition of the diffusion mechanism of n-hexane in ultra-thin polystyrene films, resolved by in-situ Spectroscopic Ellipsometry

    NARCIS (Netherlands)

    Ogieglo, Wojciech; Wormeester, Herbert; Wessling, Matthias; Benes, Nieck Edwin

    2013-01-01

    In-situ Spectroscopic Ellipsometry is used to study diffusion of liquid n-hexane in silicon wafer supported 150 nm thick polystyrene films, in the temperature range 16e28 C. In the higher part of this temperature range Case II diffusion is shown to be dominant. In this case the temporal evolution of

  7. Integrated Temperature Sensors based on Heat Diffusion

    NARCIS (Netherlands)

    Van Vroonhoven, C.P.L.

    2015-01-01

    This thesis describes the theory, design and implementation of a new class of integrated temperature sensors, based on heat diffusion. In such sensors, temperature is sensed by measuring the time it takes for heat to diffuse through silicon. An on-chip thermal delay can be determined by geometry and

  8. Multicomponent diffusion in two-temperature magnetohydrodynamics

    International Nuclear Information System (INIS)

    Ramshaw, J.D.; Chang, C.H.

    1996-01-01

    A recent hydrodynamic theory of multicomponent diffusion in multitemperature gas mixtures [J. D. Ramshaw, J. Non-Equilib. Thermodyn. 18, 121 (1993)] is generalized to include the velocity-dependent Lorentz force on charged species in a magnetic field B. This generalization is used to extend a previous treatment of ambipolar diffusion in two-temperature multicomponent plasmas [J. D. Ramshaw and C. H. Chang, Plasma Chem. Plasma Process. 13, 489 (1993)] to situations in which B and the electrical current density are nonzero. General expressions are thereby derived for the species diffusion fluxes, including thermal diffusion, in both single- and two-temperature multicomponent magnetohydrodynamics (MHD). It is shown that the usual zero-field form of the Stefan-Maxwell equations can be preserved in the presence of B by introducing generalized binary diffusion tensors dependent on B. A self-consistent effective binary diffusion approximation is presented that provides explicit approximate expressions for the diffusion fluxes. Simplifications due to the small electron mass are exploited to obtain an ideal MHD description in which the electron diffusion coefficients drop out, resistive effects vanish, and the electric field reduces to a particularly simple form. This description should be well suited for numerical calculations. copyright 1996 The American Physical Society

  9. Helium diffusion in nickel at high temperatures

    International Nuclear Information System (INIS)

    Philipps, V.

    1980-09-01

    Helium has been implanted at certain temperatures between 800 and 1250 0 C into single and polycrystalline Ni-samples with implantation depths between 15 and 90 μm. Simultaneously the helium reemission from the sample is measured by a mass-spectrometer. It has been shown that the time dependence of the observed reemission rate is governed by volume diffusion of the helium. Measuring this time dependence as a function of temperature the helium diffusion constant has been determined. The He-diffusion is interpreted as a interstitial diffusion hindered by thermal vacancies. Depending on the implantation depth more or less of the implanted helium remains in the sample and forms large helium bubbles. (orig./GSCH)

  10. Brazing, high temperature brazing and diffusion welding

    International Nuclear Information System (INIS)

    1989-01-01

    Brazing and high temperature brazing is a major joining technology within the economically important fields of energy technology, aerospace and automotive engineering, that play a leading role for technical development everywhere in the world. Moreover diffusion welding has gained a strong position especially in advanced technologies due to its specific advantages. Topics of the conference are: 1. high-temperature brazing in application; 2. basis of brazing technology; 3. brazing of light metals; 4. nondestructive testing; 5. diffusion welding; 6. brazing of hard metals and other hard materials; and 7. ceramic-metal brazing. 28 of 20 lectures and 20 posters were recorded separately for the database ENERGY. (orig./MM) [de

  11. Temperature jump boundary conditions in radiation diffusion

    International Nuclear Information System (INIS)

    Alonso, C.T.

    1976-12-01

    The radiation diffusion approximation greatly simplifies radiation transport problems. Yet the application of this method has often been unnecessarily restricted to optically thick regions, or has been extended through the use of such ad hoc devices as flux limiters. The purpose of this paper is to review and draw attention to the use of the more physically appropriate temperature jump boundary conditions for extending the range of validity of the diffusion approximation. Pioneering work has shown that temperature jump boundary conditions remove the singularity in flux that occurs in ordinary diffusion at small optical thicknesses. In this review paper Deissler's equations for frequency-dependent jump boundary conditions are presented and specific geometric examples are calculated analytically for steady state radiation transfer. When jump boundary conditions are applied to radiation diffusion, they yield exact solutions which are naturally flux- limited and geometry-corrected. We believe that the presence of temperature jumps on source boundaries is probably responsible in some cases for the past need for imposing ad hoc flux-limiting constraints on pure diffusion solutions. The solution for transfer between plane slabs, which is exact to all orders of optical thickness, also provides a useful tool for studying the accuracy of computer codes

  12. Diffusion and plasticity at high temperature

    Science.gov (United States)

    Philibert, J.

    1991-06-01

    High temperature plastic deformation requires atomic migration whatever the mechanism of deformation. The constitutive equations contain a diffusion coefficient and the deformation rate follows an Arrhenius law. This paper will only discuss the case of viscous creep in order to elucidate the nature of the diffusion processes and the expression of the diffusion coefficient involved in alloys or compounds. La déformation plastique à haute température met en jeu des migrations atomiques, quel que soit le mécanisme de déformation. Les lois de comportement contiennent donc un coefficient de diffusion et la vitesse de déformation obéit à une loi d'Arrhenius. Dans cet article, qui ne conceme qu'un seul type de déformation, lefluage visqueux, on s'efforce de préciser la nature des processus de diffusion et du coefficient de diffusion mis en jeu dans le cas des alliages et des composés.

  13. Gas diffusion and temperature dependence of bubble nucleation during irradiation

    DEFF Research Database (Denmark)

    Foreman, A. J. E.; Singh, Bachu Narain

    1986-01-01

    The continuous production of gases at relatively high rates under fusion irradiation conditions may enhance the nucleation of cavities. This can cause dimensional changes and could induce embrittlement arising from gas accumulation on grain boundaries. Computer calculations have been made...... of the diatomic nucleation of helium bubbles, assuming helium to diffuse substitutionally, with radiation-enhanced diffusion at lower temperatures. The calculated temperature dependence of the bubble density shows excellent agreement with that observed in 600 MeV proton irradiations, including a reduction...... in activation energy below Tm/2. The coalescence of diatomic nuclei due to Brownian motion markedly improves the agreement and also provides a well-defined terminal density. Bubble nucleation by this mechanism is sufficiently fast to inhibit any appreciable initial loss of gas to grain boundaries during...

  14. Diffusion induced by cyclotron resonance heating

    International Nuclear Information System (INIS)

    Riyopoulos, S.; Tajima, T.; Hatori, T.; Pfirsch, D.

    1985-09-01

    The wave induced particle transport during the ion cyclotron resonance heating is studied in collisionless toroidal plasmas. It is shown that the previously neglected non-conservation of the toroidal angular momentum IP/sub phi/ caused by the toroidal wave component E/sub phi/ is necessary to allow particle diffusion and yields the leading diffusive contribution. While the induced ion transport for the rf power in contemporary experiments is of the order of the neoclassical value, that of fast alpha particles is quite large if resonance is present

  15. Temperature Control in a Franz Diffusion Cell Skin Sonoporation Setup

    Science.gov (United States)

    Robertson, Jeremy; Becker, Sid

    2017-11-01

    In vitro experimental studies that investigate ultrasound enhanced transdermal drug delivery employ Franz diffusion cells. Because of absorption, the temperature of the coupling fluid often increases drastically during the ultrasound application. The current methodologies for controlling the coupling fluid temperature require either replacement of the coupling fluid during the experiment or the application of a time consuming duty cycle. This paper introduces a novel method for temperature control that allows for a wide variety of coupling fluid temperatures to be maintained. This method employs a peristaltic pump to circulate the coupling fluid through a thermoelectric cooling device. This temperature control method allowed for an investigation into the role of coupling fluid temperature on the inertial cavitation that impacts the skin aperture (inertial cavitation is thought to be the main cause of ultrasound induced skin permeability increase). Both foil pitting and passive cavitation detection experiments indicated that effective inertial cavitation activity decreases with increasing coupling fluid temperature. This finding suggests that greater skin permeability enhancement can be achieved if a lower coupling fluid temperature is maintained during skin insonation.

  16. Thermal diffusivity of felsic to mafic granulites at elevated temperatures

    Science.gov (United States)

    Ray, Labani; Förster, H.-J.; Schilling, F. R.; Förster, A.

    2006-11-01

    The thermal diffusivity of felsic and intermediate granulites (charnockites, enderbites), mafic granulites, and amphibolite-facies gneisses has been measured up to temperatures of 550 °C using a transient technique. The rock samples are from the Archean and Pan-African terranes of the Southern Indian Granulite Province. Thermal diffusivity at room temperature ( DRT) for different rock types ranges between 1.2 and 2.2 mm 2 s - 1 . For most of the rocks, the effect of radiative heat transfer is observed at temperatures above 450 °C. However, for few enderbites and mafic granulites, radiative heat transfer is negligible up to 550 °C. In the temperature range of conductive heat transfer, i.e., between 20 ° and 450 °C, thermal diffusivity decreases between 35% and 45% with increasing temperature. The temperature dependence of the thermal diffusivity is directly correlated with the thermal diffusivity at room temperature, i.e., the higher the thermal diffusivity at room temperature, DRT, the greater is its temperature dependence. In this temperature range i.e., between 20 and 450 °C, thermal diffusivity can be expressed as D = 0.7 mm 2 s -1 + 144 K ( DRT - 0.7 mm 2 s -1 ) / ( T - 150 K), where T is the absolute temperature in Kelvin. At higher temperatures, an additional radiative contribution is observed according to CT3, where C varies from 10 - 9 to 10 - 10 depending on intrinsic rock properties (opacity, absorption behavior, grain size, grain boundary, etc). An equation is presented that describes the temperature and pressure dependence thermal diffusivity of rocks based only on the room-temperature thermal diffusivity. Room-temperature thermal diffusivity and its temperature dependence are mainly dependent on the major mineralogy of the rock. Because granulites are important components of the middle and lower continental crust, the results of this study provide important constraints in quantifying more accurately the thermal state of the deeper continental

  17. Diffusion

    International Nuclear Information System (INIS)

    Kubaschewski, O.

    1983-01-01

    The diffusion rate values of titanium, its compounds and alloys are summarized and tabulated. The individual chemical diffusion coefficients and self-diffusion coefficients of certain isotopes are given. Experimental methods are listed which were used for the determination of diffusion coefficients. Some values have been taken over from other studies. Also given are graphs showing the temperature dependences of diffusion and changes in the diffusion coefficient with concentration changes

  18. Modelling of monovacancy diffusion in W over wide temperature range

    International Nuclear Information System (INIS)

    Bukonte, L.; Ahlgren, T.; Heinola, K.

    2014-01-01

    The diffusion of monovacancies in tungsten is studied computationally over a wide temperature range from 1300 K until the melting point of the material. Our modelling is based on Molecular Dynamics technique and Density Functional Theory. The monovacancy migration barriers are calculated using nudged elastic band method for nearest and next-nearest neighbour monovacancy jumps. The diffusion pre-exponential factor for monovacancy diffusion is found to be two to three orders of magnitude higher than commonly used in computational studies, resulting in attempt frequency of the order 10 15 Hz. Multiple nearest neighbour jumps of monovacancy are found to play an important role in the contribution to the total diffusion coefficient, especially at temperatures above 2/3 of T m , resulting in an upward curvature of the Arrhenius diagram. The probabilities for different nearest neighbour jumps for monovacancy in W are calculated at different temperatures

  19. Diffusion-induced quadrupole relaxation of 27Al nuclei in dilute Al-Ti, Al-Cr, Al-Mn, and Al-Cu alloys at high temperatures

    International Nuclear Information System (INIS)

    Bottyan, L.; Beke, D.L.; Tompa, K.

    1983-01-01

    The temperature dependence of the laboratory frame spin-lattice relaxation time of 27 Al nuclei is measured in 5N Al and in dilute Al-Ti, Al-Cr, Al-Mn, and Al-Cu alloys at 5.7 and 9.7 MHz resonance frequencies. The relaxation in pure aluminium is found to be purely due to the conduction electrons. An excess T 1 -relaxation contribution is detected in all Al-3d alloys investigated above 670 K. The excess relaxation rate is proportional to the impurity content and the temperature dependence of the excess contribution is of Arrhenius-type with an activation energy of (1.3 +- 0.3) eV for all of the investigated alloys. The relaxation contribution is found to be quadrupolar in origin and is caused by the relative diffusional jumps of solute atoms and Al atoms relatively far from the impurity. (author)

  20. Irradiation spectrum and ionization-induced diffusion effects in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J. [Oak Ridge National Lab., TN (United States)

    1997-08-01

    There are two main components to the irradiation spectrum which need to be considered in radiation effects studies on nonmetals, namely the primary knock-on atom energy spectrum and ionizing radiation. The published low-temperature studies on Al{sub 2}O{sub 3} and MgO suggest that the defect production is nearly independent of the average primary knock-on atom energy, in sharp contrast to the situation for metals. On the other hand, ionizing radiation has been shown to exert a pronounced influence on the microstructural evolution of both semiconductors and insulators under certain conditions. Recent work on the microstructure of ion-irradiated ceramics is summarized, which provides evidence for significant ionization-induced diffusion. Polycrystalline samples of MgO, Al{sub 2}O{sub 3}, and MgAl{sub 2}O{sub 4} were irradiated with various ions ranging from 1 MeV H{sup +} to 4 MeV Zr{sup +} ions at temperatures between 25 and 650{degrees}C. Cross-section transmission electron microscopy was used to investigate the depth-dependent microstructural of the irradiated specimens. Dislocation loop nucleation was effectively suppressed in specimens irradiated with light ions, whereas the growth rate of dislocation loops was enhanced. The sensitivity to irradiation spectrum is attributed to ionization-induced diffusion. The interstitial migration energies in MgAl{sub 2}O{sub 4} and Al{sub 2}O{sub 3} are estimated to be {le}0.4 eV and {le}0.8 eV, respectively for irradiation conditions where ionization-induced diffusion effects are expected to be negligible.

  1. Structure-property relationships in flavour-barrier membranes with reduced high-temperature diffusivity

    International Nuclear Information System (INIS)

    Heitfeld, Kevin A.; Schaefer, Dale W.

    2009-01-01

    Encapsulation is used to decrease the premature release of volatile flavour ingredients while offering protection against environmental damage such as oxidation, light-induced reactions, etc. Hydroxypropyl cellulose (HPC) is investigated here as a 'smart,' temperature responsive membrane for flavour encapsulation and delivery. Gel films were synthesized and characterized by diffusion and small-angle neutron and X-ray scattering techniques. Increasing temperature typically increases the diffusion rate across a membrane; HPC, however, can be tailored to give substantially improved elevated temperature properties. Scattering results indicate processing conditions have a significant impact on membrane morphology (micro phase separation). Under certain synthetic conditions, micro phase separation is mitigated and the membranes show temperature-independent diffusivity between 25 C and 60 C.

  2. High-Temperature Thermal Diffusivity Measurements of Silicate Glasses

    Science.gov (United States)

    Pertermann, M.; Hofmeister, A. M.; Whittington, A. G.; Spera, F. J.; Zayac, J.

    2005-12-01

    Transport of heat in geologically relevant materials is of great interest because of its key role in heat transport, magmatism and volcanic activity on Earth. To better understand the thermal properties of magmatic materials at high temperatures, we measured the thermal diffusivity of four synthetic end-member silicate glasses with the following compositions: albite (NaAlSi3O8), orthoclase (KAlSi3O8), anorthite (CaAl2Si2O8), and diopside (CaMgSi2O6). Thermal diffusivity measurements were conducted with the laser-flash technique and data were acquired from room temperature to a maximum temperature near 1100°C, depending on the glass transition temperature. The presence of sub-mm sized bubbles in one of the orthoclase samples had no discernable effect on measured diffusivities. At room temperature, the three feldspar-type glasses have thermal diffusivity (D) values of 0.58-0.61 mm2/s, whereas the diopside glass has 0.52 mm2/s. With increasing temperature, D decreases by 5-10% (relative) for all samples and becomes virtually constant at intermediate temperatures. At higher temperatures, the anorthite and diopside glasses exhibit significant drops in thermal diffusivity over a 50-100°C interval, correlating with previously published heat capacity changes near the glass transition for these compositions. For anorthite, D (in mm2/s) decreases from 0.48 at 750-860°C to 0.36 at 975-1075°C; for diopside, D changes from 0.42 at 630-750°C to 0.30 at 850-910°C, corresponding to relative drops of 24 and 29%, respectively. Albite and orthoclase glasses do not exhibit this change and also lack significant changes in heat capacity near the glass transition. Instead, D is constant at 400-800°C for albite, and for orthoclase values go through a minimum at 500-600°C before increasing slightly towards 1100°C but it never exceeds the room temperature D. Our data on thermal diffusivity correlate closely with other thermophysical properties. Thus, at least in case of simple

  3. Diffusion phenomena in polycrystalline chromium near the upper homological temperature of intercrystalline diffusion manifestation

    International Nuclear Information System (INIS)

    Kajgorodov, V.N.; Klothman, S.M.; Kurkin, M.I.; Dyakin, V.V.; Zherebthov, D.V.

    1997-01-01

    A study is made into the temperature dependences of density of states in a zone of intercrystalline diffusion of atomic probes 57 Co in polycrystalline chromium as well as in the temperature dependences of isomer shift and line width in Moessbauer spectra near the upper temperature boundary of manifestation of intercrystalline diffusion. In polycrystalline chromium the release of states in the core of the crystallite conjugation region (CCR) takes place only at high temperatures due to the fact that a stationary zone of high point defect concentration in the vicinity of CCR is conserved up to high temperatures. The atomic probe escape from the core of CCR starts at the temperatures at which the equilibrium vacancy concentration in the bulk of crystallite is equal to that in a stationary zone of high defect concentration

  4. Radiation induced diffusion as a method to protect surface

    International Nuclear Information System (INIS)

    Baumvol, I.J.R.

    1980-01-01

    Radiation induced diffusion forms a coating adeherent and without interface on the surface of metalic substrates. This coating improves the behaviour of metal to corrosion and abrasion. The effect of radiation induced diffusion of tin and calcium on pure iron surface is described and analyzed in this work. (author) [pt

  5. Surface modifications by field induced diffusion.

    Directory of Open Access Journals (Sweden)

    Martin Olsen

    Full Text Available By applying a voltage pulse to a scanning tunneling microscope tip the surface under the tip will be modified. We have in this paper taken a closer look at the model of electric field induced surface diffusion of adatoms including the van der Waals force as a contribution in formations of a mound on a surface. The dipole moment of an adatom is the sum of the surface induced dipole moment (which is constant and the dipole moment due to electric field polarisation which depends on the strength and polarity of the electric field. The electric field is analytically modelled by a point charge over an infinite conducting flat surface. From this we calculate the force that cause adatoms to migrate. The calculated force is small for voltage used, typical 1 pN, but due to thermal vibration adatoms are hopping on the surface and even a small net force can be significant in the drift of adatoms. In this way we obtain a novel formula for a polarity dependent threshold voltage for mound formation on the surface for positive tip. Knowing the voltage of the pulse we then can calculate the radius of the formed mound. A threshold electric field for mound formation of about 2 V/nm is calculated. In addition, we found that van der Waals force is of importance for shorter distances and its contribution to the radial force on the adatoms has to be considered for distances smaller than 1.5 nm for commonly used voltages.

  6. Classically exact surface diffusion constants at arbitrary temperature

    International Nuclear Information System (INIS)

    Voter, A.F.; Cohen, J.M.

    1989-01-01

    An expression is presented for computing the classical diffusion constant of a point defect (e.g., an adatom) in an infinite lattice of binding sites at arbitrary temperature. The transition state theory diffusion constant is simply multiplied by a dynamical correction factor that is computed from short-time classical trajectories initiated at the site boundaries. The time scale limitations of direct molecular dynamics are thus avoided in the low- and middle-temperature regimes. The expression results from taking the time derivative of the particle mean-square displacement in the lattice-discretized coordinate system. Applications are presented for surface diffusion on fcc(100) and fcc(111) Lennard-Jones crystal faces

  7. Peak metamorphic temperatures from cation diffusion zoning in garnet

    DEFF Research Database (Denmark)

    Smit, Matthijs Arjen; Scherer, Erik; Mezger, Klaus

    2013-01-01

    ) to develop a tool that uses the diffusion zoning of these cations in garnet to constrain peak temperature conditions for garnet-bearing rocks. The thermometric approach was externally tested by applying it to garnet crystals from various metamorphic terranes worldwide and comparing the results to published...

  8. Carbon diffusion behavior in molybdenum at relatively low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hiraoka, Yutaka, E-mail: hiraoka@dap.ous.ac.j [Department of Applied Physics, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005 (Japan); Imamura, Kyosuke [Graduate School of Science, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005 (Japan); Kadokura, Takanori; Yamamoto, Yoshiharu [Materials Research Department, A.L.M.T. Corp., 2 Iwasekoshi-machi, Toyama 931-8543 (Japan)

    2010-01-07

    Purpose of this study is to investigate the carbon diffusion behavior in pure molybdenum at relatively low temperatures by means of fracture surface observation. Carbon addition was performed at a temperature of 1273-1373 K with the heating time being changed. Fracture surface of the specimen after carbon addition was examined using SEM and the carbon diffusion distance was estimated from the change of fracture mode as a function of the distance from the surface. Results are summarized as follows. First, the carbon diffusion distance increased approximately linearly with the increase of heating time from 1.2 to 10.8 ks. This relationship does not agree with that obtained at much higher temperatures. From Arrhenius plots of the slope of the straight line and the temperature, activation energy was calculated (155 kJ/mol). Secondly, the carbon diffusion distance estimated in this study was generally larger than that simulated using the data of Rudman, particularly at a longer heating time.

  9. Low Temperature Diffusion Transformations in Fe-Ni-Ti Alloys During Deformation and Irradiation

    Science.gov (United States)

    Sagaradze, Victor; Shabashov, Valery; Kataeva, Natalya; Kozlov, Kirill; Arbuzov, Vadim; Danilov, Sergey; Ustyugov, Yury

    2018-03-01

    The deformation-induced dissolution of Ni3Ti intermetallics in the matrix of austenitic alloys of Fe-36Ni-3Ti type was revealed in the course of their cascade-forming neutron irradiation and cold deformation at low temperatures via employment of Mössbauer method. The anomalous deformation-related dissolution of the intermetallics has been explained by the migration of deformation-induced interstitial atoms from the particles into a matrix in the stress field of moving dislocations. When rising the deformation temperature, this process is substituted for by the intermetallics precipitation accelerated by point defects. A calculation of diffusion processes has shown the possibility of the realization of the low-temperature diffusion of interstitial atoms in configurations of the crowdions and dumbbell pairs at 77-173 K. The existence of interstitial atoms in the Fe-36Ni alloy irradiated by electrons or deformed at 77 K was substantiated in the experiments of the electrical resistivity measurements.

  10. The effect of diffusion induced lattice stress on the open-circuit voltage in silicon solar cells

    Science.gov (United States)

    Weizer, V. G.; Godlewski, M. P.

    1984-01-01

    It is demonstrated that diffusion induced stresses in low resistivity silicon solar cells can significantly reduce both the open-circuit voltage and collection efficiency. The degradation mechanism involves stress induced changes in both the minority carrier mobility and the diffusion length. Thermal recovery characteristics indicate that the stresses are relieved at higher temperatures by divacancy flow (silicon self diffusion). The level of residual stress in as-fabricated cells was found to be negligible in the cells tested.

  11. Can slow-diffusing solute atoms reduce vacancy diffusion in advanced high-temperature alloys?

    International Nuclear Information System (INIS)

    Goswami, Kamal Nayan; Mottura, Alessandro

    2014-01-01

    The high-temperature mechanical properties of precipitate-strengthened advanced alloys can be heavily influenced by adjusting chemical composition. The widely-accepted argument within the community is that, under certain temperature and loading conditions, plasticity occurs only in the matrix, and dislocations have to rely on thermally-activated climb mechanisms to overcome the barriers to glide posed by the hard precipitates. This is the case for γ′-strengthened Ni-based superalloys. The presence of dilute amounts of slow-diffusing solute atoms, such as Re and W, in the softer matrix phase is thought to reduce plasticity by retarding the climb of dislocations at the interface with the hard precipitate phase. One hypothesis is that the presence of these solutes must hinder the flow of vacancies, which are essential to the climb process. In this work, density functional theory calculations are used to inform two analytical models to describe the effect of solute atoms on the diffusion of vacancies. Results suggest that slow-diffusing solute atoms are not effective at reducing the diffusion of vacancies in these systems

  12. Diffuse Transcranial Electrical Stimulation (DTES)-induced ...

    African Journals Online (AJOL)

    Higher voltages were needed to induce convulsion in pretreated animals than in normal animals. It is therefore suggestive that DTES-induced hypermotility can be used as an animal model for testing drugs that can be of advantage in the management of non convulsive (petit mal) status epilepticus (SE), and DTES induced ...

  13. A current induced diffusion model of gas sputtering

    International Nuclear Information System (INIS)

    Hotston, E.S.

    1980-01-01

    A model is proposed to explain the experimental results on deuteron trapping in stainless steel targets at low temperatures carried out at Garching and Culham. The model proposes that the ions are trapped in two kinds of sites: Deep sites with high activation energy and shallow sites of low activation energy. Trapped deuterons reach the surface of the target by being expelled from shallow sites by the action of the ion beam and migrate to nearby sites in a random way, thus moving by a bombardment induced diffusion. Ions diffusing to the target surface and being released are said to be sputtered from the target. It has been necessary to assume numerical values for sizes of some of the processes which occur. With a suitable choice of values the model successfully predicts the numbers of deuterons trapped per unit area of the target, the obserbed density profile of the trapped ions and the threshold at which sputtering starts. The model also successfully describes the replacement of the trapped deuterons by protons, when the deuteron beam is replaced by a proton beam. The collision cross-section for beam ions and ions trapped in shallow sites is too large, 4 x 10 -13 cm 2 , for a binary collision and it is tentatively suggested that the ions in the shallow sites may be in small voids in the target which may be connected with blister formation. Comparison of the present model with one being developed to describe the trapping of deuterons in carbon suggests that it may be possible to describe all gas sputtering experiments in terms of diffusion processes. (orig.)

  14. Temperature Activated Diffusion of Radicals through Ion Implanted Polymers

    DEFF Research Database (Denmark)

    Wakelin, Edgar A.; Davies, Michael J.; Bilek, Marcela M. M.

    2015-01-01

    Plasma immersion ion implantation (PIII) is a promising technique for immobilizing biomolecules on the surface of polymers. Radicals generated in a subsurface layer by PIII treatment diffuse throughout the substrate, forming covalent bonds to molecules when they reach the surface. Understanding...... to the surface. The model makes useful predictions for the lifetime over which the surface is sufficiently active to covalently immobilize biomolecules and it can be used to determine radical fluence during biomolecule incubation for a range of storage and incubation temperatures so facilitating selection...

  15. Diffusion MR findings in cyclosporin-A induced encephalopathy

    International Nuclear Information System (INIS)

    Aydin, Kubilay; Minareci, Ozenc; Donmez, Fuldem; Tuzun, Umit; Atamer, Tanju

    2004-01-01

    Cyclosporin encephalopathy is a well-known entity, which is clinically characterized by altered mental status, vision problems, focal neurological deficits and seizures. The exact pathophysiology of the cyclosporin encephalopathy has not yet been defined. We report the diffusion-weighted MR imaging and proton MR spectroscopy findings in a case of cyclosporin encephalopathy. The white-matter lesions with reversible restricted diffusion supported the hypothesis of reversible vasospasm induced by the cyclosporin. (orig.)

  16. Measuring the temperature dependent thermal diffusivity of geomaterials using high-speed differential scanning calorimetry

    Science.gov (United States)

    von Aulock, Felix W.; Wadsworth, Fabian B.; Vasseur, Jeremie; Lavallée, Yan

    2016-04-01

    Heat diffusion in the Earth's crust is critical to fundamental geological processes, such as the cooling of magma, heat dissipation during and following transient heating events (e.g. during frictional heating along faults), and to the timescales of contact metamorphosis. The complex composition and multiphase nature of geomaterials prohibits the accurate modeling of thermal diffusivities and measurements over a range of temperatures are sparse due to the specialized nature of the equipment and lack of instrument availability. We present a novel method to measure the thermal diffusivity of geomaterials such as minerals and rocks with high precision and accuracy using a commercially available differential scanning calorimeter (DSC). A DSC 404 F1 Pegasus® equipped with a Netzsch high-speed furnace was used to apply a step-heating program to corundum single crystal standards of varying thicknesses. The standards were cylindrical discs of 0.25-1 mm thickness with 5.2-6 mm diameter. Heating between each 50 °C temperature interval was conducted at a rate of 100 °C/min over the temperature range 150-1050 °C. Such large heating rates induces temperature disequilibrium in the samples used. However, isothermal segments of 2 minutes were used during which the temperature variably equilibrated with the furnace between the heating segments and thus the directly-measured heat-flow relaxed to a constant value before the next heating step was applied. A finite-difference 2D conductive heat transfer model was used in cylindrical geometry for which the measured furnace temperature was directly applied as the boundary condition on the sample-cylinder surfaces. The model temperature was averaged over the sample volume per unit time and converted to heat-flow using the well constrained thermal properties for corundum single crystals. By adjusting the thermal diffusivity in the model solution and comparing the resultant heat-flow with the measured values, we obtain a model

  17. Lower-Temperature Invert Design For Diffusion Barrier

    International Nuclear Information System (INIS)

    Bruce Stanley

    2001-01-01

    The objective of this analysis is to advance the state of the subsurface facilities design to primarily support the ''Yucca Mountain Science and Engineering Report'' (DOE 2001) and to also support the preparation and revision of System Description Document's Section 2 system descriptions (CRWMS M and O 2001, pp. 9 and 11). The results may also eventually support the License Application (CRWMS M and O 2001, p. 3). The Performance Assessment Department will be the primary user of the information generated and will be used in abstraction modeling for the lower-temperature scenario (CRWMS M and O 200 1, p. 27). This analysis will evaluate the invert relative to the lower- and higher-temperature conditions in accordance with the primary tasks below. Invert design is a major factor in allowing water entering the drift to pass freely and enter the drift floor without surface ponding and in limiting diffusive transport into the host rock. Specific cost effective designs will be conceptualized under the new lower-temperature conditions in this analysis. Interfacing activities and all aspects of Integrated Safety Management and Nuclear Culture principles are included in this work scope by adhering to the respective principles during this design activity and by incorporating safety into the design analysis (CRWMS M and O 2001, p. 8). Primary tasks of this analysis include identifying available design information from existing sources on the invert as a diffusive barrier, developing concepts that reduce the amount steel, and developing other design features that accommodate both lower- and higher-temperature operating modes (CRWMS M and O 2001, p.16)

  18. Computation of shear-induced collective-diffusivity in emulsions

    Science.gov (United States)

    Malipeddi, Abhilash Reddy; Sarkar, Kausik

    2017-11-01

    The shear-induced collective-diffusivity of drops in an emulsion is calculated through simulation. A front-tracking finite difference method is used to integrate the Navier-Stokes equations. When a cloud of drops is subjected to shear flow, after a certain time, the width of the cloud increases with the 1/3 power of time. This scaling of drop-cloud-width with time is characteristic of (sub-)diffusion that arises from irreversible two-drop interactions. The collective diffusivity is calculated from this relationship. A feature of the procedure adopted here is the modest computational requirement, wherein, a few drops ( 70) in shear for short time ( 70 strain) is found to be sufficient to get a good estimate. As far as we know, collective-diffusivity has not been calculated for drops through simulation till now. The computed values match with experimental measurements reported in the literature. The diffusivity in emulsions is calculated for a range of Capillary (Ca) and Reynolds (Re) numbers. It is found to be a unimodal function of Ca , similar to self-diffusivity. A sub-linear increase of the diffusivity with Re is seen for Re < 5 . This work has been limited to a viscosity matched case.

  19. Membrane formation : diffusion induced demixing processes in ternary polymeric systems

    NARCIS (Netherlands)

    Reuvers, Albertus Johannes

    1987-01-01

    In this thesis the mechanism of membrane formation by means of immersion precipitation is studied. Immersion of a concentrated polymer solution film into a nonsolvent bath induces an exchange of solvent and nonsolvent in the film by means of diffusion. This process results in an asymmetric polymer

  20. Instability induced by cross-diffusion in reaction-diffusion systems

    DEFF Research Database (Denmark)

    Tian, Canrong; Lin, Zhigui; Pedersen, Michael

    2010-01-01

    In this paper the instability of the uniform equilibrium of a general strongly coupled reaction–diffusion is discussed. In unbounded domain and bounded domain the sufficient conditions for the instability are obtained respectively. The conclusion is applied to the ecosystem, it is shown that cros...... can induce the instability of an equilibrium which is stable for the kinetic system and for the self-diffusion–reaction system.......In this paper the instability of the uniform equilibrium of a general strongly coupled reaction–diffusion is discussed. In unbounded domain and bounded domain the sufficient conditions for the instability are obtained respectively. The conclusion is applied to the ecosystem, it is shown that cross-diffusion...

  1. Coherent quantum transport in disordered systems: II. Temperature dependence of carrier diffusion coefficients from the time-dependent wavepacket diffusion method

    International Nuclear Information System (INIS)

    Zhong, Xinxin; Zhao, Yi; Cao, Jianshu

    2014-01-01

    The time-dependent wavepacket diffusion method for carrier quantum dynamics (Zhong and Zhao 2013 J. Chem. Phys. 138 014111), a truncated version of the stochastic Schrödinger equation/wavefunction approach that approximately satisfies the detailed balance principle and scales well with the size of the system, is applied to investigate the carrier transport in one-dimensional systems including both the static and dynamic disorders on site energies. The predicted diffusion coefficients with respect to temperature successfully bridge from band-like to hopping-type transport. As demonstrated in paper I (Moix et al 2013 New J. Phys. 15 085010), the static disorder tends to localize the carrier, whereas the dynamic disorder induces carrier dynamics. For the weak dynamic disorder, the diffusion coefficients are temperature-independent (band-like property) at low temperatures, which is consistent with the prediction from the Redfield equation, and a linear dependence of the coefficient on temperature (hopping-type property) only appears at high temperatures. In the intermediate regime of dynamic disorder, the transition from band-like to hopping-type transport can be easily observed at relatively low temperatures as the static disorder increases. When the dynamic disorder becomes strong, the carrier motion can follow the hopping-type mechanism even without static disorder. Furthermore, it is found that the memory time of dynamic disorder is an important factor in controlling the transition from the band-like to hopping-type motions. (paper)

  2. Doping of silicon by laser-induced diffusion

    International Nuclear Information System (INIS)

    Pretorius, R.; Allie, M.S.

    1986-01-01

    This report gives information on the doping of silicon by laser-induced diffusion, modelling and heat-flow calculation, doping from evaporated layers and silicon self-diffusion during pulsed laser irradiation. In order to tailor dopant profiles accurately a knowledge of the heat flow and the melt depths attained as a function of laser energy and material type is crucial. The heat flow calculations described can be used in conjuntion with most diffusion equations in order to predict the redistribution of the deposited dopant which occurs as a result of liquid phase diffusion during the melting period. Doping of Si was carried out by evaporating this films of Sb, In and Bi 10 to 300 A thick, onto the substrates. During pulsed laser irradiation the dopant film and underlying silicon substrate is melted and the dopant incorporated into the crystal lattice during recrystallization. Radioactive 31 Si(T1/2=2,62h) was used as a tracer to measure the self-diffusion of silicon in silicon during pulsed laser (pulsewidth = 30ns, wavelength = 694nm) irradiation

  3. Toward the existence of ultrafast diffusion paths in Cu with a gradient microstructure: Room temperature diffusion of Ni

    Science.gov (United States)

    Wang, Z. B.; Lu, K.; Wilde, G.; Divinski, S.

    2008-09-01

    Room temperature diffusion of Ni63 in Cu with a gradient microstructure prepared by surface mechanical attrition treatment (SMAT) was investigated by applying the radiotracer technique. The results reveal significant penetration of Ni into the nanostructured layer. The relevant diffusivity is higher than that along the conventional high-angle grain boundaries by about six orders of magnitude. This behavior is associated with a higher energy state of internal interfaces produced via plastic deformation. The diffusivity in the top surface layer is somewhat smaller than that in the subsurface layer. This fact is related to nanotwin formation in the former during SMAT.

  4. Non-invasive tissue temperature measurements based on quantitative diffuse optical spectroscopy (DOS) of water

    Energy Technology Data Exchange (ETDEWEB)

    Chung, S H [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Cerussi, A E; Tromberg, B J [Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Road, Irvine 92612, CA (United States); Merritt, S I [Masimo Corporation, 40 Parker, Irvine, CA 92618 (United States); Ruth, J, E-mail: bjtrombe@uci.ed [Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, Room 240, Skirkanich Hall, Philadelphia, PA 19104 (United States)

    2010-07-07

    We describe the development of a non-invasive method for quantitative tissue temperature measurements using Broadband diffuse optical spectroscopy (DOS). Our approach is based on well-characterized opposing shifts in near-infrared (NIR) water absorption spectra that appear with temperature and macromolecular binding state. Unlike conventional reflectance methods, DOS is used to generate scattering-corrected tissue water absorption spectra. This allows us to separate the macromolecular bound water contribution from the thermally induced spectral shift using the temperature isosbestic point at 996 nm. The method was validated in intralipid tissue phantoms by correlating DOS with thermistor measurements (R = 0.96) with a difference of 1.1 {+-} 0.91 {sup 0}C over a range of 28-48 {sup 0}C. Once validated, thermal and hemodynamic (i.e. oxy- and deoxy-hemoglobin concentration) changes were measured simultaneously and continuously in human subjects (forearm) during mild cold stress. DOS-measured arm temperatures were consistent with previously reported invasive deep tissue temperature studies. These results suggest that DOS can be used for non-invasive, co-registered measurements of absolute temperature and hemoglobin parameters in thick tissues, a potentially important approach for optimizing thermal diagnostics and therapeutics.

  5. Temperature dependence of Self-diffusion coefficient (SDC) of liquid ...

    African Journals Online (AJOL)

    PROF HORSFALL

    2018-04-09

    Apr 9, 2018 ... inverse square relationship between the natural logarithm of self-diffusion ... using the Equilibrium Molecular Dynamics (MD) and ..... Density, and Viscosity of Liquid Aluminum and. Iron. J. Phys. Chem. Ref. Data 35 ... Atomic Diffusion in Condensed Matter. Nature. 381: 137. Einstein, A (1905). Annalen der ...

  6. Pump, sodium, inducer, intermediate size (ISIP) (impeller/inducer/diffuser retrofit)

    International Nuclear Information System (INIS)

    Paradise, D.R.

    1978-01-01

    This specification defines the requirements for the Intermediate-Size Inducer Pump (ISIP), which is to be made by replacing the impeller of the FFTF Prototype Pump with a new inducer, impeller, diffuser, seal, and necessary adapter hardware. Subsequent testing requirements of the complete pump assembly are included

  7. Temperature Diffusion Distribution of Electric Wire Deteriorated by Overcurrent

    Science.gov (United States)

    Choi, Chung-Seog; Kim, Hyang-Kon; Kim, Dong-Woo; Lee, Ki-Yeon

    This study presents thermal diffusion distribution of the electric wires when overcurrent is supplied to copper wires. And then, this study intends to provide a basis of knowledge for analyzing the causes of electric accidents through hybrid technology. In the thermal image distribution analysis of the electric wire to which fusing current was supplied, it was found that less heat was accumulated in the thin wires because of easier heat dispersion, while more heat was accumulated in the thicker wires. The 3-dimensional thermal image analysis showed that heat distribution was concentrated at the center of the wire and the inclination of heat distribution was steep in the thicker wires. When 81A was supplied to 1.6mm copper wire for 500 seconds, the surface temperature of wire was maximum 46.68°C and minimum 30.87°C. It revealed the initial characteristics of insulation deterioration that generates white smoke without external deformation. In the analysis with stereoscopic microscope, the surface turned dark brown and rough with the increase of fusing current. Also, it was known that exfoliation occurred when wire melted down with 2 times the fusing current. With the increase of current, we found the number of primary arms of the dendrite structure to be increased and those of the secondary and tertiary arms to be decreased. Also, when the overcurrent reached twice the fusing current, it was found that columnar composition, observed in the cross sectional structure of molten wire, appeared and formed regular directivity. As described above, we could present the burning pattern and change in characteristics of insulation and conductor quantitatively. And we could not only minimize the analysis error by combining the information but also present the scientific basis in the analysis of causes of electric accidents, mediation of disputes on product liability concerning the electric products.

  8. Laser-induced pressure-wave and barocaloric effect during flash diffusivity measurements

    International Nuclear Information System (INIS)

    Wang, Hsin; Porter, Wallace D.; Dinwiddie, Ralph Barton

    2017-01-01

    We report laser-induced pressure-wave and barocaloric effect captured by an infrared detector during thermal diffusivity measurements. Very fast (< 1 ms) and negative transients during laser flash measurements were captured by the infrared detector on thin, high thermal conductivity samples. Standard thermal diffusivity analysis only focuses the longer time scale thermal transient measured from the back surface due to thermal conduction. These negative spikes are filtered out and ignored as noise or anomaly from instrument. This study confirmed that the initial negative signal was indeed a temperature drop induced by the laser pulse. The laser pulse induced instantaneous volume expansion and the associated cooling in the specimen can be explained by the barocaloric effect. The initial cooling (< 100 microsecond) is also known as thermoelastic effect in which a negative temperature change is generated when the material is elastically deformed by volume expansion. A subsequent temperature oscillation in the sample was observed and only lasted about one millisecond. The pressure-wave induced thermal signal was systematically studied and analyzed. In conclusion, the underlying physics of photon-mechanical-thermal energy conversions and the potential of using this signal to study barocaloric effects in solids are discussed.

  9. Diffusion processes in bombardment-induced surface topography

    International Nuclear Information System (INIS)

    Robinson, R.S.

    1984-01-01

    The bombardment of surfaces with moderate energy ions can lead to the development of various micron-sized surface structures. These structures include ridges, ledges, flat planes, pits and cones. The causal phenomena in the production of these features are sputtering, ion reflection, redeposition of sputtered material, and surface diffusion of both impurity and target-atom species. The authors concentrate on the formation of ion bombardment-induced surface topography wherein surface diffusion is a dominant process. The most thoroughly understood aspect of this topography development is the generation of cone-like structures during sputtering. The formation of cones during sputtering has been attributed to three effects. These are: (1) the presence of asperities, defects, or micro-inclusions in the surface layers, (2) the presence of impurities on the surfaces, and (3) particular crystal orientations. (Auth.)

  10. The potential role of diffusion-induced grain-boundary migration in extended life prediction

    International Nuclear Information System (INIS)

    Handwerker, C.A.; Blendell, J.E.; Interrante, C.G.; Ahn, T.M.

    1993-01-01

    The selection of materials that are suitable for various high-level waste-packaging designs must reflect the need to meet requirements for long-term performance in repository environments that change with time. With this in mind, we examine how grain boundaries in materials are induced to migrate as a result of solute diffusion even at low temperatures, how the composition of the matrix material is changed significantly by this diffusion-induced grain boundary migration (DIGM), and how the changing microstructures and compositions during DIGM lead to major changes in materials performance, such as corrosion or embrittlement. Methods are discussed for prediction of the long-term behavior of materials affected by DIGM

  11. Hydrogen diffusion at moderate temperatures in p-type Czochralski silicon

    International Nuclear Information System (INIS)

    Huang, Y.L.; Ma, Y.; Job, R.; Ulyashin, A.G.

    2004-01-01

    In plasma-hydrogenated p-type Czochralski silicon, rapid thermal donor (TD) formation is achieved, resulting from the catalytic support of hydrogen. The n-type counter doping by TD leads to a p-n junction formation. A simple method for the indirect determination of the diffusivity of hydrogen via applying the spreading resistance probe measurements is presented. Hydrogen diffusion in silicon during both plasma hydrogenation and post-hydrogenation annealing is investigated. The impact of the hydrogenation duration, annealing temperature, and resistivity of the silicon wafers on the hydrogen diffusion is discussed. Diffusivities of hydrogen are determined in the temperature range 270-450 deg. C. The activation energy for the hydrogen diffusion is deduced to be 1.23 eV. The diffusion of hydrogen is interpreted within the framework of a trap-limited diffusion mechanism. Oxygen and hydrogen are found to be the main traps

  12. Time-resolved measurements of laser-induced diffusion of CO molecules on stepped Pt(111)-surfaces; Zeitaufgeloeste Untersuchung der laser-induzierten Diffusion von CO-Molekuelen auf gestuften Pt(111)-Oberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Lawrenz, M.

    2007-10-30

    In the present work the dynamics of CO-molecules on a stepped Pt(111)-surface induced by fs-laser pulses at low temperatures was studied by using laser spectroscopy. In the first part of the work, the laser-induced diffusion for the CO/Pt(111)-system could be demonstrated and modelled successfully for step diffusion. At first, the diffusion of CO-molecules from the step sites to the terrace sites on the surface was traced. The experimentally discovered energy transfer time of 500 fs for this process confirms the assumption of an electronically induced process. In the following it was explained how the experimental results were modelled. A friction coefficient which depends on the electron temperature yields a consistent model, whereas for the understanding of the fluence dependence and time-resolved measurements parallel the same set of parameters was used. Furthermore, the analysis was extended to the CO-terrace diffusion. Small coverages of CO were adsorbed to the terraces and the diffusion was detected as the temporal evolution of the occupation of the step sites acting as traps for the diffusing molecules. The additional performed two-pulse correlation measurements also indicate an electronically induced process. At the substrate temperature of 40 K the cross-correlation - where an energy transfer time of 1.8 ps was extracted - suggests also an electronically induced energy transfer mechanism. Diffusion experiments were performed for different substrate temperatures. (orig.)

  13. Molecular diffusion of stable water isotopes in polar firn as a proxy for past temperatures

    Science.gov (United States)

    Holme, Christian; Gkinis, Vasileios; Vinther, Bo M.

    2018-03-01

    Polar precipitation archived in ice caps contains information on past temperature conditions. Such information can be retrieved by measuring the water isotopic signals of δ18O and δD in ice cores. These signals have been attenuated during densification due to molecular diffusion in the firn column, where the magnitude of the diffusion is isotopologue specific and temperature dependent. By utilizing the differential diffusion signal, dual isotope measurements of δ18O and δD enable multiple temperature reconstruction techniques. This study assesses how well six different methods can be used to reconstruct past surface temperatures from the diffusion-based temperature proxies. Two of the methods are based on the single diffusion lengths of δ18O and δD , three of the methods employ the differential diffusion signal, while the last uses the ratio between the single diffusion lengths. All techniques are tested on synthetic data in order to evaluate their accuracy and precision. We perform a benchmark test to thirteen high resolution Holocene data sets from Greenland and Antarctica, which represent a broad range of mean annual surface temperatures and accumulation rates. Based on the benchmark test, we comment on the accuracy and precision of the methods. Both the benchmark test and the synthetic data test demonstrate that the most precise reconstructions are obtained when using the single isotope diffusion lengths, with precisions of approximately 1.0 °C . In the benchmark test, the single isotope diffusion lengths are also found to reconstruct consistent temperatures with a root-mean-square-deviation of 0.7 °C . The techniques employing the differential diffusion signals are more uncertain, where the most precise method has a precision of 1.9 °C . The diffusion length ratio method is the least precise with a precision of 13.7 °C . The absolute temperature estimates from this method are also shown to be highly sensitive to the choice of fractionation factor

  14. Deep-tissue temperature mapping by multi-illumination photoacoustic tomography aided by a diffusion optical model: a numerical study

    Science.gov (United States)

    Zhou, Yuan; Tang, Eric; Luo, Jianwen; Yao, Junjie

    2018-01-01

    Temperature mapping during thermotherapy can help precisely control the heating process, both temporally and spatially, to efficiently kill the tumor cells and prevent the healthy tissues from heating damage. Photoacoustic tomography (PAT) has been used for noninvasive temperature mapping with high sensitivity, based on the linear correlation between the tissue's Grüneisen parameter and temperature. However, limited by the tissue's unknown optical properties and thus the optical fluence at depths beyond the optical diffusion limit, the reported PAT thermometry usually takes a ratiometric measurement at different temperatures and thus cannot provide absolute measurements. Moreover, ratiometric measurement over time at different temperatures has to assume that the tissue's optical properties do not change with temperatures, which is usually not valid due to the temperature-induced hemodynamic changes. We propose an optical-diffusion-model-enhanced PAT temperature mapping that can obtain the absolute temperature distribution in deep tissue, without the need of multiple measurements at different temperatures. Based on the initial acoustic pressure reconstructed from multi-illumination photoacoustic signals, both the local optical fluence and the optical parameters including absorption and scattering coefficients are first estimated by the optical-diffusion model, then the temperature distribution is obtained from the reconstructed Grüneisen parameters. We have developed a mathematic model for the multi-illumination PAT of absolute temperatures, and our two-dimensional numerical simulations have shown the feasibility of this new method. The proposed absolute temperature mapping method may set the technical foundation for better temperature control in deep tissue in thermotherapy.

  15. Simulation study of temperature-dependent diffusion behaviors of Ag/Ag(001) at low substrate temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Danyun; Mo, Yunjie [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 (China); Feng, Xiaofang [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275 (China); He, Yingyou [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 (China); Jiang, Shaoji, E-mail: stsjsj@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275 (China)

    2017-06-01

    Highlights: • The model of combinations of nearest-neighbor atoms of adatom was built to calculate the diffusion barrier of every configuration for Ag/Ag(001). • The complete potential energy curve of a specific diffusion path on the surface was worked out with the help of elementary diffusion behaviors. • The non-monotonic relation between the surface roughness and the substrate temperature (decreasing from 300 K to 100 K) was demonstrated. • A theoretical explanation of diffusion mechanism for the non-monotonic variation of roughness at low substrate temperature was presented. - Abstract: In this study, a model based on the First Principles calculations and Kinetic Monte Carlo simulation were established to study the growth characteristic of Ag thin film at low substrate temperature. On the basis of the interaction between the adatom and nearest-neighbor atoms, some simplifications and assumptions were made to categorize the diffusion behaviors of Ag adatoms on Ag(001). Then the barriers of all possible diffusion behaviors were calculated using the Climbing Image Nudged Elastic Band method (CI-NEB). Based on the Arrhenius formula, the morphology variation, which is attributed to the surface diffusion behaviors during the growth, was simulated with a temperature-dependent KMC model. With this model, a non-monotonic relation between the surface roughness and the substrate temperature (decreasing from 300 K to 100 K) were discovered. The analysis of the temperature dependence on diffusion behaviors presents a theoretical explanation of diffusion mechanism for the non-monotonic variation of roughness at low substrate temperature.

  16. Simulation study of temperature-dependent diffusion behaviors of Ag/Ag(001) at low substrate temperature

    International Nuclear Information System (INIS)

    Cai, Danyun; Mo, Yunjie; Feng, Xiaofang; He, Yingyou; Jiang, Shaoji

    2017-01-01

    Highlights: • The model of combinations of nearest-neighbor atoms of adatom was built to calculate the diffusion barrier of every configuration for Ag/Ag(001). • The complete potential energy curve of a specific diffusion path on the surface was worked out with the help of elementary diffusion behaviors. • The non-monotonic relation between the surface roughness and the substrate temperature (decreasing from 300 K to 100 K) was demonstrated. • A theoretical explanation of diffusion mechanism for the non-monotonic variation of roughness at low substrate temperature was presented. - Abstract: In this study, a model based on the First Principles calculations and Kinetic Monte Carlo simulation were established to study the growth characteristic of Ag thin film at low substrate temperature. On the basis of the interaction between the adatom and nearest-neighbor atoms, some simplifications and assumptions were made to categorize the diffusion behaviors of Ag adatoms on Ag(001). Then the barriers of all possible diffusion behaviors were calculated using the Climbing Image Nudged Elastic Band method (CI-NEB). Based on the Arrhenius formula, the morphology variation, which is attributed to the surface diffusion behaviors during the growth, was simulated with a temperature-dependent KMC model. With this model, a non-monotonic relation between the surface roughness and the substrate temperature (decreasing from 300 K to 100 K) were discovered. The analysis of the temperature dependence on diffusion behaviors presents a theoretical explanation of diffusion mechanism for the non-monotonic variation of roughness at low substrate temperature.

  17. Influence of annealing temperature on the Dy diffusion process in NdFeB magnets

    Science.gov (United States)

    Hu, Sheng-qing; Peng, Kun; Chen, Hong

    2017-03-01

    Sintered NdFeB magnets were coated with a layer of Dy metal using electron beam evaporation method and then annealed at various temperatures to investigate the temperature dependence of Dy diffusion process in NdFeB magnets. A Dy-rich phase was observed along the grain boundaries after the grain boundary diffusion process, the diffusion coefficients of various temperatures were obtained, the diffusion coefficients of Dy along the grain boundaries at 800 °C and 900 °C were determined to be 9.8×10-8 cm2 s-1 and 2.4×10-7 cm2 s-1, respectively. The diffusion length depended on the annealing temperature and the maximum diffusion length of approximately 1.8 mm and 3.0 mm can be obtained after annealing at 800 °C and 900 °C for 8 h. Higher diffusion temperature results in the diffusion not only along the grain boundaries but also into grains and then decrease in magnetic properties. The optimum annealing conditions can be determined as 900 °C for 8 h. The coercivity was improved from 1040 kA/m to 1450 kA/m and its magnetization has no significant reduction after the grain boundary diffusion process at the optimum annealing conditions.

  18. Effect of cavity inclination on a temperature and concentration controlled double diffusive convection at ice plate melting

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, M.; Ishikura, T. [Akita University, Department of Mechanical Engineering, Akita (Japan); Beer, H. [Technische Unversitat Darmstadt, Institut fur Technische Thermodynamik, Darmstadt (Germany)

    2005-03-01

    This paper is concerned with the double diffusive convection due to the melting of an ice plate into a calcium chloride aqueous solution inside a rectangular cavity. It is mainly considered the effect of the cavity inclination {theta} on the melting rate and the mean melting Nusselt- and Sherwood-numbers, experimentally as well as numerically. The ice plate melts spontaneously with decreasing temperature at the melting front even if initially there does not exist a temperature difference between the ice and the liquid. The concentration- and temperature-gradients near the melting front induce double diffusive convection in the liquid, which will affect the melting rate. Experiments reveal that the mean melting mass increases monotonically with increasing cavity inclination. The numerical analysis based on the laminar assumption predicts well the melting mass in the range of {theta}=0-90 , however, under-predicts the melting mass in the range of {theta}=90-180 as compared with the experimental results. (orig.)

  19. Quantum Zeno subspaces induced by temperature

    Energy Technology Data Exchange (ETDEWEB)

    Militello, B.; Scala, M.; Messina, A. [Dipartimento di Fisica dell' Universita di Palermo, Via Archirafi 36, I-90123 Palermo (Italy)

    2011-08-15

    We discuss the partitioning of the Hilbert space of a quantum system induced by the interaction with another system at thermal equilibrium, showing that the higher the temperature the more effective is the formation of Zeno subspaces. We show that our analysis keeps its validity even in the case of interaction with a bosonic reservoir, provided appropriate limitations of the relevant bandwidth.

  20. Temperature mapping, thermal diffusivity and subsoil heat flux at ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    vide an understanding of the gain or loss of heat by the soil from the atmosphere. Many studies made earlier have been related to sim- ilar issues such as prediction of soil tempera- tures; heat storage variations; thermal diffusivity of the soil, etc. (Kelkar et al 1980; Chowdhury et al 1991; Lamba and Khambete 1991; Retnaku ...

  1. Diffusion Concept in Phase Stability of High Temperature Composites

    National Research Council Canada - National Science Library

    Zhao, Ji-Cheng

    2003-01-01

    A high-efficiency "diffusion multiple" approach was employed to determine the phase diagrams of nine ternary systems Nb-Ti-Si, Nb-Cr- Si, Nb-Cr-Ti, Ti-Cr-Si, Nb-Si-Al, Nb-Cr-Al, Nb-Ti-Al, Ti-Si-Al, and Ti-Cr-Al...

  2. Influence of annealing temperature on the Dy diffusion process in NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Sheng-qing, E-mail: joy_hsq@126.com [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Peng, Kun, E-mail: kpeng@hnu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Chen, Hong [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

    2017-03-15

    Sintered NdFeB magnets were coated with a layer of Dy metal using electron beam evaporation method and then annealed at various temperatures to investigate the temperature dependence of Dy diffusion process in NdFeB magnets. A Dy-rich phase was observed along the grain boundaries after the grain boundary diffusion process, the diffusion coefficients of various temperatures were obtained, the diffusion coefficients of Dy along the grain boundaries at 800 °C and 900 °C were determined to be 9.8×10{sup −8} cm{sup 2} s{sup −1} and 2.4×10{sup −7} cm{sup 2} s{sup −1}, respectively. The diffusion length depended on the annealing temperature and the maximum diffusion length of approximately 1.8 mm and 3.0 mm can be obtained after annealing at 800 °C and 900 °C for 8 h. Higher diffusion temperature results in the diffusion not only along the grain boundaries but also into grains and then decrease in magnetic properties. The optimum annealing conditions can be determined as 900 °C for 8 h. The coercivity was improved from 1040 kA/m to 1450 kA/m and its magnetization has no significant reduction after the grain boundary diffusion process at the optimum annealing conditions. - Highlights: • The optimum annealing conditions can be determined as 900 °C for 8 h. • The diffusion coefficient of Dy at 900 °Care determined to be 2.4×10{sup −7} cm{sup 2} s{sup −1}. • A maximum diffusion length of about 3 mm can be obtained.

  3. Cerebral Effects of Targeted Temperature Management Methods Assessed by Diffusion-Weighted Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Grejs, Anders Morten; Gjedsted, Jakob; Pedersen, Michael

    2016-01-01

    The aim of this randomized porcine study was to compare surface targeted temperature management (TTM) to endovascular TTM evaluated by cerebral diffusion-weighted magnetic resonance imaging (MRI): apparent diffusion coefficient (ADC), and by intracerebral/intramuscular microdialysis. It is well k...

  4. Temperature effects on solute diffusion and adsorption in differently compacted kaolin clay

    DEFF Research Database (Denmark)

    Mon, Ei Ei; Hamamoto, Shoichiro; Kawamoto, Ken

    2016-01-01

    Effects of soil temperature on the solute diffusion process in soils are important since subsurface temperature variation affects solute transport such as a fertilizer movement, leaching of salt, and pollutant movement to groundwater aquifers. However, the temperature dependency on the solute dif...

  5. Measurement of the ion temperature in a diffuse theta pinch

    International Nuclear Information System (INIS)

    Kudo, Koichi; Watanabe, Yukio; Ogi, Sukeomi; Sumikawa, Toshio; Akazaki, Masanori

    1979-01-01

    The Doppler broadening of helium ion spectra was observed, and the ion temperature of theta pinch plasma was obtained. The apparatus for the measurement consists of a spectroscope, a photomultiplier and an oscilloscope. The time variation of initial plasma density was obtained. The doppler broadening of the spectra was observed in case of the plasma density of 2 x 10 13 /cm 3 and 3 x 10 12 /cm 3 . The analyses of the spectra gave the ion temperature. The double temperature distribution was seen. The temperature of the low temperature part was 5 to 9 electron-volt, and that of the high temperature part several hundred electron-volt. The high temperature is caused by the thermalization of particles accelerated by the magnetic piston. The decay of high temperature ions is due to the charge exchange with the neutral particles. The time of the highest temperature corresponds to the time at which the luminescent layer reaches to the central axis. (Kato, T.)

  6. Diffusion induced flow on a wedge-shaped obstacle

    International Nuclear Information System (INIS)

    Zagumennyi, Ia V; Dimitrieva, N F

    2016-01-01

    In this paper the problem of evolution of diffusion induced flow on a wedge-shaped obstacle is analyzed numerically. The governing set of fundamental equations is solved using original solvers from the open source OpenFOAM package on supercomputer facilities. Due to breaking of naturally existing diffusion flux of a stratifying agent by the impermeable surface of the wedge a complex multi-level vortex system of compensatory fluid motions is formed around the obstacle. Sharp edges of the obstacle generate extended high-gradient horizontal interfaces which are clearly observed in laboratory experiments by high-resolution Schlieren visualization. Formation of an intensive pressure depression zone in front of the leading vertex of the wedge is responsible for generation of propulsive force resulting in a self-displacement of the obstacle along the neutral buoyancy horizon in a stably stratified environment. The size of the pressure deficiency area near the sharp vertex of a concave wedge is about twice that for a convex one. This demonstrates a more intensive propulsion mechanism in case of the concave wedge and, accordingly, a higher velocity of its self-movement in a continuously stratified medium. (paper)

  7. Proton and temperature-induced competitive segregation of iron on surface and volume sinks of silica

    International Nuclear Information System (INIS)

    Shilobreeva, S.N.; Kashkarov, L.L.; Barabanenkov, M.Yu.; Pustovit, A.N.; Zinenko, V.I.; Agafonov, Yu.A.

    2007-01-01

    Experimental results are delivered on iron redistribution in silica for proton irradiation followed by thermal annealing. Iron ions are initially implanted into silica at room temperature. Proton irradiation is performed at different temperatures. It is demonstrated, in particular, that radiation-induced migration of iron is more efficient at low temperature. Iron surface segregation and capture of iron by sinks in silica subsurface region during thermal annealing are speculated in terms of diffusion-alternative-sinks problem

  8. Proton and temperature-induced competitive segregation of iron on surface and volume sinks of silica

    Energy Technology Data Exchange (ETDEWEB)

    Shilobreeva, S.N. [Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, ul. Kosygina 19, Moscow 117975 (Russian Federation); Kashkarov, L.L. [Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, ul. Kosygina 19, Moscow 117975 (Russian Federation); Barabanenkov, M.Yu. [Institute of Microelectronics Technology and Superpure Materials, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region (Russian Federation)]. E-mail: barab@ipmt-hpm.ac.ru; Pustovit, A.N. [Institute of Microelectronics Technology and Superpure Materials, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region (Russian Federation); Zinenko, V.I. [Institute of Microelectronics Technology and Superpure Materials, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region (Russian Federation); Agafonov, Yu.A. [Institute of Microelectronics Technology and Superpure Materials, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region (Russian Federation)

    2007-03-15

    Experimental results are delivered on iron redistribution in silica for proton irradiation followed by thermal annealing. Iron ions are initially implanted into silica at room temperature. Proton irradiation is performed at different temperatures. It is demonstrated, in particular, that radiation-induced migration of iron is more efficient at low temperature. Iron surface segregation and capture of iron by sinks in silica subsurface region during thermal annealing are speculated in terms of diffusion-alternative-sinks problem.

  9. High temperature diffusion of hafnium in tungsten and a tungsten-hafnium carbide alloy

    International Nuclear Information System (INIS)

    Ozaki, Y.; Zee, R.H.

    1994-01-01

    Refractory metals and ceramics are used extensively in energy systems due to their high temperature properties. This is particularly important in direct conversion systems where thermal to electric conversion efficiency is a direct function of temperature. Tungsten, which has the highest melting temperature among elemental metals, does not possess sufficient creep resistance at temperature above 1,600 K. Different dispersion strengthened tungsten alloys have been developed to extend the usefulness of tungsten to higher temperatures. One of these alloys, tungsten with 0.4 mole percent of finely dispersed HfC particles (W-HfC), has the optimum properties for high temperature applications. Hafnium carbide is used as the strengthening agent due to its high chemical stability and its compatibility with tungsten. The presence of HfC particles retards the rate of grain growth as well as restricting dislocation motion. Both of which are beneficial for creep resistance. The long term behavior of this alloy depends largely on the evolution of its microstructure which is governed by the diffusion of its constituents. Data on the diffusion of carbon in tungsten and tungsten self-diffusion are available, but no direct measurements have been made on the diffusion of hafnium in tungsten. The only diffusion data available are estimated from a coarsening study and these data are highly unreliable. In this study, the diffusion behavior of hafnium in pure tungsten and in a W-HfC alloy was directly measured by means of Secondary Ion Mass Spectroscopy (SIMS). The selection of the W-HfC alloy is due to its importance in high temperature engineering applications, and its higher recrystallization temperature. The presence of HfC particles in tungsten restricts grain growth resulting in better high temperature creep resistance. The higher recrystallization temperature allows measurements to be made over a wider range of temperatures at a relatively constant grain size

  10. Using the thermal diffusion cloud chamber to study the ion-induced nucleation by radon decay

    International Nuclear Information System (INIS)

    Wu, Yefei.

    1991-01-01

    Thermal diffusion cloud chamber is steady-state device and has been extensively used for nucleation research. In order to study the ion-induced nucleation by radon decay, a new chamber was designed with improved both upper and bottom plates, the system of circulating fluid, the gasketting, the temperature measurement and the insulation. An alternative method of using oxygen as carrier gas was examined. Therefore, the heavy carrier gas including nitrogen, oxygen, neon, argon and air can be used to study radon radiolysis-induced nucleation for the water or organic compounds in the TDCC. The effects of the pressure and temperature ranges on the density, supersaturation, temperature and partial pressure profile for the water-oxygen-helium in the TDCC have been examined. Based on the classical theory, the rate profile of ion-induced nucleation by radon decays was calculated and compared with the homogeneous nucleation. From measured indoor concentrations of Volatile Organic Compounds (VOC), thermodynamic theory models were used to assess the possibility that these compounds will form ultrafine particles in indoor air by ion-induced nucleation. The energy, number of molecules and equilibrium radius of clusters have been calculated based on Such and Thomson theories. These two sets of values have been compared. Ion cluster radii corresponding to 1--3 VOC molecules are in range of 3--5 x 10 -8 cm. 43 refs., 18 figs., 5 tabs

  11. Reference mean temperature for evaluation of performance of thermal diffusion column for isotope separation

    International Nuclear Information System (INIS)

    Yamamoto, Ichiro; Kanagawa, Akira

    1987-01-01

    In order to evaluate separative performance of a thermal diffusion column, a simplification is usually made in which the temperature dependence of the relevant properties such as thermal diffusion constant is ignored and some proper mean values evaluated at a specific ''mean'' temperature are used. Adoption of weighted average of temperature distribution is common for the ''mean'' temperature, but there exists no definite way of determining mean temperature. The present paper proposes a new reference mean temperature determined by the equation governing the free convection. It is based on the fact that the multiplication effect of free convection is essential to separation by thermal diffusion column. The reference mean temperature is related to pressure difference between top and bottom of column and is higher than a mass-averaged temperature (due to gravitational force) by a contribution of viscous force. The reference mean temperature was calculated, as a reference, for an Ar isotope separating column with an inner hot radius of 0.2 mm and an outer cold radius of 5 mm. The results confirmed the validity of an approximate formula expressing effects of temperature difference and ratio of inner and outer radii of column explicitly for the temperature. The reference mean temperature calculated from pressure difference given by axisymmetric solution of equations of change was in good agreement with the analytical solution. (author)

  12. AC electric field induced vortex in laminar coflow diffusion flames

    KAUST Repository

    Xiong, Yuan; Cha, Min; Chung, Suk-Ho

    2014-01-01

    Experiments were performed by applying sub-critical high-voltage alternating current (AC) to the nozzle of laminar propane coflow diffusion flames. Light scattering, laser-induced incandescence and laser-induced fluorescence techniques were used to identify the soot zone, and the structures of OH and polycyclic aromatic hydrocarbons (PAHs). Particle image velocimetry was adopted to quantify the velocity field. Under certain AC conditions of applied voltage and frequency, the distribution of PAHs and the flow field near the nozzle exit were drastically altered, leading to the formation of toroidal vortices. Increased residence time and heat recirculation inside the vortex resulted in appreciable formation of PAHs and soot near the nozzle exit. Decreased residence time along the jet axis through flow acceleration by the vortex led to a reduction in the soot volume fraction in the downstream sooting zone. Electromagnetic force generated by AC was proposed as a viable mechanism for the formation of the toroidal vortex. The onset conditions for the vortex formation supported the role of an electromagnetic force acting on charged particles in the flame zone. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  13. AC electric field induced vortex in laminar coflow diffusion flames

    KAUST Repository

    Xiong, Yuan

    2014-09-22

    Experiments were performed by applying sub-critical high-voltage alternating current (AC) to the nozzle of laminar propane coflow diffusion flames. Light scattering, laser-induced incandescence and laser-induced fluorescence techniques were used to identify the soot zone, and the structures of OH and polycyclic aromatic hydrocarbons (PAHs). Particle image velocimetry was adopted to quantify the velocity field. Under certain AC conditions of applied voltage and frequency, the distribution of PAHs and the flow field near the nozzle exit were drastically altered, leading to the formation of toroidal vortices. Increased residence time and heat recirculation inside the vortex resulted in appreciable formation of PAHs and soot near the nozzle exit. Decreased residence time along the jet axis through flow acceleration by the vortex led to a reduction in the soot volume fraction in the downstream sooting zone. Electromagnetic force generated by AC was proposed as a viable mechanism for the formation of the toroidal vortex. The onset conditions for the vortex formation supported the role of an electromagnetic force acting on charged particles in the flame zone. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  14. Dependence of O{sub 2} diffusion dynamics on pressure and temperature in silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Iovino, G., E-mail: giuseppe.iovino@unipa.it; Agnello, S., E-mail: simonpietro.agnello@unipa.it; Gelardi, F. M., E-mail: franco.gelardi@unipa.it [University of Palermo, Department of Physics and Chemistry (Italy)

    2013-10-15

    An experimental study of the molecular O{sub 2} diffusion process in high purity non-porous silica nanoparticles having 50 m{sup 2}/g BET specific surface and 20 nm average radius was carried out in the temperature range from 127 to 177 Degree-Sign C at O{sub 2} pressure in the range from 0.2 to 66 bar. The study was performed by measuring the volume average interstitial O{sub 2} concentration by a Raman and photoluminescence technique using a 1,064 nm excitation laser to detect the singlet to triplet emission at 1,272 nm of the molecular oxygen in silica. A dependence of the diffusion kinetics on the O{sub 2} absolute pressure, in addition to temperature dependence, was found. The kinetics can be fit by the solution of Fick's diffusion equation using an effective diffusion coefficient related to temperature and O{sub 2} external pressure. The fit results have evidenced that the temperature and pressure dependencies can be disentangled and that the pressure effects are more pronounced at lower temperatures. An Arrhenius temperature law is determined for the effective diffusion coefficient and the activation energy and pre-exponential factor are found in the explored experimental range. The reported findings have not been evidenced previously in the studies in bulk silica and could probably be originated by the reduced spatial extension of the considered system.

  15. A critical discussion of the vacancy diffusion model of ion beam induced epitaxial crystallization

    International Nuclear Information System (INIS)

    Heera, V.

    1989-01-01

    A simple vacancy diffusion model of ion beam induced epitaxial crystallization of silicon including divacancy formation is developed. The model reproduces some of the experimental findings, as e.g. the dose rate dependence of the crystallization rate. However, the measured activation energy of the ion beam induced epitaxial crystallization cannot be accounted for by vacancy diffusion alone. (author)

  16. Low temperature isotope effects of hydrogen diffusion in metallic glasses

    International Nuclear Information System (INIS)

    Hofmann, A.; Kronmueller, H.

    1989-01-01

    Snoek-like relaxation peaks of Hydrogen and Deuterium in amorphous Fe 80 B 20 , Fe 40 Ni 40 P 14 B 6 and Fe 91 Zr 9 are detected. At low H, D concentrations the peaks are near 200 K and show small isotope effects of the average activation energies (anti Q H ≅ 0.6 eV, anti Q D - anti Q H ≤ 10 meV). For higher H, D-contents the peaks shift to lower temperatures around to 120 K and show distinct isotope effects in the activation energies (anti Q H ≅ 0.3 eV, anti Q D - anti Q H ≅ 30 meV) and in the amplitude of the low temperature tails of the relaxation peaks. This points to isotope mass dependent deviations from the Arrhenius law due to nonthermal tunneling processes. (orig.)

  17. Temperature effects on diffusion coefficient for 6-gingerol and 6-shogaol in subcritical water extraction

    Science.gov (United States)

    Ilia Anisa, Nor; Azian, Noor; Sharizan, Mohd; Iwai, Yoshio

    2014-04-01

    6-gingerol and 6-shogaol are the main constituents as anti-inflammatory or bioactive compounds from zingiber officinale Roscoe. These bioactive compounds have been proven for inflammatory disease, antioxidatives and anticancer. The effect of temperature on diffusion coefficient for 6-gingerol and 6-shogaol were studied in subcritical water extraction. The diffusion coefficient was determined by Fick's second law. By neglecting external mass transfer and solid particle in spherical form, a linear portion of Ln (1-(Ct/Co)) versus time was plotted in determining the diffusion coefficient. 6-gingerol obtained the higher yield at 130°C with diffusion coefficient of 8.582x10-11 m2/s whilst for 6-shogaol, the higher yield and diffusion coefficient at 170°C and 19.417 × 10-11 m2/s.

  18. Temperature effects on diffusion coefficient for 6-gingerol and 6-shogaol in subcritical water extraction

    International Nuclear Information System (INIS)

    Anisa, Nor Ilia; Azian, Noor; Sharizan, Mohd; Iwai, Yoshio

    2014-01-01

    6-gingerol and 6-shogaol are the main constituents as anti-inflammatory or bioactive compounds from zingiber officinale Roscoe. These bioactive compounds have been proven for inflammatory disease, antioxidatives and anticancer. The effect of temperature on diffusion coefficient for 6-gingerol and 6-shogaol were studied in subcritical water extraction. The diffusion coefficient was determined by Fick's second law. By neglecting external mass transfer and solid particle in spherical form, a linear portion of Ln (1-(Ct/Co)) versus time was plotted in determining the diffusion coefficient. 6-gingerol obtained the higher yield at 130°C with diffusion coefficient of 8.582x10 −11 m 2 /s whilst for 6-shogaol, the higher yield and diffusion coefficient at 170°C and 19.417 × 10 −11 m 2 /s.

  19. Low temperature Zn diffusion for GaSb solar cell structures fabrication

    Science.gov (United States)

    Sulima, Oleg V.; Faleev, Nikolai N.; Kazantsev, Andrej B.; Mintairov, Alexander M.; Namazov, Ali

    1995-01-01

    Low temperature Zn diffusion in GaSb, where the minimum temperature was 450 C, was studied. The pseudo-closed box (PCB) method was used for Zn diffusion into GaAs, AlGaAs, InP, InGaAs and InGaAsP. The PCB method avoids the inconvenience of sealed ampoules and proved to be simple and reproducible. The special design of the boat for Zn diffusion ensured the uniformality of Zn vapor pressure across the wafer surface, and thus the uniformity of the p-GaSb layer depth. The p-GaSb layers were studied using Raman scattering spectroscopy and the x-ray rocking curve method. As for the postdiffusion processing, an anodic oxidation was used for a precise thinning of the diffused GaSb layers. The results show the applicability of the PCB method for the large-scale production of the GaSb structures for solar cells.

  20. Ohmic ion temperature and thermal diffusivity profiles from the JET neutron emission profile monitor

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, B. (ENEA, Frascati (Italy). Centro Ricerche Energia); Marcus, F.B.; Conroy, S.; Jarvis, O.N.; Loughlin, M.J.; Sadler, G.; Belle, P. van (Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking); Adams, J.M.; Watkins, N. (AEA Industrial Technology, Harwell (United Kingdom))

    1993-10-01

    The JET neutron emission profile monitor was used to study ohmically heated deuterium discharges. The radial profile of the neutron emissivity is deduced from the line-integral data. The profiles of ion temperature, T[sub i], and ion thermal diffusivity, [chi][sub i], are derived under steady-state conditions. The ion thermal diffusivity is higher than, and its scaling with plasma current opposite to, that predicted by neoclassical theory. (author).

  1. Ohmic ion temperature and thermal diffusivity profiles from the JET neutron emission profile monitor

    International Nuclear Information System (INIS)

    Esposito, B.

    1993-01-01

    The JET neutron emission profile monitor was used to study ohmically heated deuterium discharges. The radial profile of the neutron emissivity is deduced from the line-integral data. The profiles of ion temperature, T i , and ion thermal diffusivity, χ i , are derived under steady-state conditions. The ion thermal diffusivity is higher than, and its scaling with plasma current opposite to, that predicted by neoclassical theory. (author)

  2. Low-temperature diffusion of hydrogen isotopes in tantalum

    International Nuclear Information System (INIS)

    Peichl, R.; Ziegler, P.; Weidinger, A.

    1987-01-01

    The mobility of hydrogen and deuterium in tantalum is investigated in the temperature range between 4.2 and 30 K. On the time scale of the present experiment (25 μs) we find that hydrogen begins to move above 15 K whereas deuterium remains immobile at least up to 30 K. Since the interpretation of the data depends critically on the exact hydrogen configurations a major part of the paper is devoted to this problem. We suggest that hydrogen can exist in fairly localized or more extended states depending on the local homogeneity of the crystal. (orig.)

  3. Low temperature grain boundary diffusion of chromium in SUS316 and 316L stainless steels

    International Nuclear Information System (INIS)

    Mizouchi, Masaki; Yamazaki, Yoshihiro; Iijima, Yoshiaki; Arioka, Koji

    2004-01-01

    Grain boundary diffusivity of chromium is SUS316 and 316L stainless steels has been determined in the temperature range between 518 and 1173 K. The magnitudes of the grain boundary diffusivities in four kinds of specimens are in the order of the cold-worked SUS316, the solution-treated SUS316L, the solution-treated SUS316 and the sensitized SUS316. The grain boundary diffusivities in these specimens are remarkably higher than those of previous works. The activation energies for the former are 85-91 kJmol -1 , whereas those for the latter are 151-234 kJmol -1 . (author)

  4. Effect of Drying Temperature on the Chemical Properties and Diffusivity of belimbi (averrhoa belimbi)

    Science.gov (United States)

    Shahari, N.; Jamil, N.; Rasmani, K. A.; Nursabrina

    2015-09-01

    In recent years, many dried fruit products have been developed in response to a strong demand by the customer. This type of fruit has a different composition and hence different moisture diffusivity (D). During drying, Fick's Law of diffusion, which describes the movement of liquid water was used to calculate this diffusivity. However diffusivity has strong effects on the material drying characteristics and these must be determined. In this paper, Fick's Law of diffusion with different kinds of boundary conditions was solve using separation of variable (SOV). In order to get the value of D, results obtained using SOV will be compared with the results from the drying of belimbi at temperature of 40°C, 50°C and 60°C. Although the results show that variation in the values of diffusivity for different temperatures is relatively small, but the variation in the total time required for drying is significantly bigger: between 3-7 hours. Its shown that diffusivity is an important measurement and should be considered in the modeling of the drying process. The chemical properties of belimbi slices in terms of vitamin C, total ash and antioxidant activity with different air temperatures and pretreatment were also investigated. Higher drying temperatures gives less drying time, a lower vitamin C and antioxidant activity but a greater total of ash, whilst pre-treatment can increased vitamin C and antioxidant activity. The results show that pre-treatment and the drying temperature are important variables to improve mass and heat transfer, as well as the belimbi chemical properties.

  5. Determination of hydrogen diffusivity and permeability in W near room temperature applying a tritium tracer technique

    International Nuclear Information System (INIS)

    Ikeda, T.; Otsuka, T.; Tanabe, T.

    2011-01-01

    Tungsten is a primary candidate of plasma facing material in ITER and beyond, owing to its good thermal property and low erosion. But hydrogen solubility and diffusivity near ITER operation temperatures (below 500 K) have scarcely studied. Mainly because its low hydrogen solubility and diffusivity at lower temperatures make the detection of hydrogen quite difficult. We have tried to observe hydrogen plasma driven permeation (PDP) through nickel and tungsten near room temperatures applying a tritium tracer technique, which is extremely sensible to detect tritium diluted in hydrogen. The apparent diffusion coefficients for PDP were determined by permeation lag times at first time, and those for nickel and tungsten were similar or a few times larger than those for gas driven permeation (GDP). The permeation rates for PDP in nickel and tungsten were larger than those for GDP normalized to the same gas pressure about 20 and 5 times larger, respectively.

  6. Temperature dependence of diffusion coefficients of trivalent uranium ions in chloride and chloride-fluoride melts

    International Nuclear Information System (INIS)

    Komarov, V.E.; Borodina, N.P.

    1981-01-01

    Diffusion coefficients of U 3+ ions are measured by chronopotentiometric method in chloride 3LiCl-2KCl and in mixed chloride fluoride 3LiCl(LiF)-2KCl melts in the temperature range 633-1235 K. It is shown It is shown that experimental values of diffusion-coefficients are approximated in a direct line in lg D-1/T coordinate in chloride melt in the whole temperature range and in chloride-fluoride melt in the range of 644-1040 K. Experimental values of diffusion coefficients diviate from Arrhenius equation in the direction of large values in chloride-fluoride melt at further increase of temperature up to 1235 K. Possible causes of such a diviation are considered [ru

  7. Thermal conductivity and diffusivity of Permian Basin bedded salt at elevated pressure and temperature

    International Nuclear Information System (INIS)

    Durham, W.B.; Boro, C.O.; Beiriger, J.M.; Montan, D.N.

    1983-10-01

    Measurements of thermal conductivity and diffusivity were made on five core samples of bedded rock salt from the Permian Basin in Texas to determine its suitability as an underground nuclear waste repository. The sample size was 100 mm in diameter by 250 mm in length. Measurements were conducted under confining pressures ranging from 3.8 to 31.0 MPa and temperatures from room temperature to 473 K. Conductivity showed no dependence on confining pressure but evidenced a monotonic, negative temperature dependence. Four of the five samples showed conductivities clustered in a range of 5.6 +- 0.5 W/m.K at room temperature, falling to 3.6 +- 0.3 W/m.K at 473 K. These values are approximately 20% below those for pure halite, reflecting perhaps the 5 to 20%-nonhalite component of the samples. Diffusivity also showed a monotonic, negative temperature dependence, with four of the five samples clustered in a range of 2.7 +- 0.4 x 10 -6 m 2 /s at room temperature, and 1.5 +- 0.3 x 10 -6 m 2 /s at 473 K, all roughly 33% below the values for pure halite. One sample showed an unusually high conductivity (it also had the highest diffusivity), about 20% higher than the others; and one sample showed an unusually low diffusivity (it also had the lowest conductivity), roughly a factor of 2 lower than the others. 27 references, 8 figures, 4 tables

  8. Gas-induced friction and diffusion of rigid rotors

    Science.gov (United States)

    Martinetz, Lukas; Hornberger, Klaus; Stickler, Benjamin A.

    2018-05-01

    We derive the Boltzmann equation for the rotranslational dynamics of an arbitrary convex rigid body in a rarefied gas. It yields as a limiting case the Fokker-Planck equation accounting for friction, diffusion, and nonconservative drift forces and torques. We provide the rotranslational friction and diffusion tensors for specular and diffuse reflection off particles with spherical, cylindrical, and cuboidal shape, and show that the theory describes thermalization, photophoresis, and the inverse Magnus effect in the free molecular regime.

  9. An extended laser flash technique for thermal diffusivity measurement of high-temperature materials

    Science.gov (United States)

    Shen, F.; Khodadadi, J. M.

    1993-01-01

    Knowledge of thermal diffusivity data for high-temperature materials (solids and liquids) is very important in analyzing a number of processes, among them solidification, crystal growth, and welding. However, reliable thermal diffusivity versus temperature data, particularly those for high-temperature liquids, are still far from complete. The main measurement difficulties are due to the presence of convection and the requirement for a container. Fortunately, the availability of levitation techniques has made it possible to solve the containment problem. Based on the feasibility of the levitation technology, a new laser flash technique which is applicable to both levitated liquid and solid samples is being developed. At this point, the analysis for solid samples is near completion and highlights of the technique are presented here. The levitated solid sample which is assumed to be a sphere is subjected to a very short burst of high power radiant energy. The temperature of the irradiated surface area is elevated and a transient heat transfer process takes place within the sample. This containerless process is a two-dimensional unsteady heat conduction problem. Due to the nonlinearity of the radiative plus convective boundary condition, an analytic solution cannot be obtained. Two options are available at this point. Firstly, the radiation boundary condition can be linearized, which then accommodates a closed-form analytic solution. Comparison of the analytic curves for the temperature rise at different points to the experimentally-measured values will then provide the thermal diffusivity values. Secondly, one may set up an inverse conduction problem whereby experimentally obtained surface temperature history is used as the boundary conditions. The thermal diffusivity can then be elevated by minimizing the difference between the real heat flux boundary condition (radiation plus convection) and the measurements. Status of an experimental study directed at measuring the

  10. Estimation of water diffusion coefficient into polycarbonate at different temperatures using numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Nasirabadi, P. Shojaee; Jabbari, M.; Hattel, J. H. [Process Modelling Group, Department of Mechanical Engineering, Technical University of Denmark, Nils Koppels Allé, 2800 Kgs. Lyngby (Denmark)

    2016-06-08

    Nowadays, many electronic systems are exposed to harsh conditions of relative humidity and temperature. Mass transport properties of electronic packaging materials are needed in order to investigate the influence of moisture and temperature on reliability of electronic devices. Polycarbonate (PC) is widely used in the electronics industry. Thus, in this work the water diffusion coefficient into PC is investigated. Furthermore, numerical methods used for estimation of the diffusion coefficient and their assumptions are discussed. 1D and 3D numerical solutions are compared and based on this, it is shown how the estimated value can be different depending on the choice of dimensionality in the model.

  11. The influence of temperature on the diffusion of {sup 125}I{sup -} in Beishan granite

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T.; Sun, M.; Li, C.; Tian, W.; Liu, X.; Wang, L.; Wang, X.; Liu, C. [Beijing National Lab. for Molecular Science, Peking Univ., BJ (China)

    2010-07-01

    China has planned to deal with the high-level radioactive wastes (HLW) in the middle of this century with deep geologic disposal method. The release of heat from HLW may cause the rise of temperatures in the surrounding backfilling materials or even the host rock of a repository. This brings about the concerns that the temperature elevation in the host rock may change the diffusion characteristics of key radionuclides and have some unpredictable effects in the performance assessment. In this paper, the influence of temperature on the diffusion of {sup 125}I{sup -} in Beishan Granite is studied by through diffusion method. The effective diffusion coefficients (D{sub e}) of {sup 125}I{sup -} in the granite from 27 to 50 C are obtained and analyzed as a function of temperature. Our result indicated that the relationship between D{sub e} and temperature can be described by the modified Nernst equation, and the formation factors (F{sub f}) of the granite from 27 to 50 C is constant with an average value of 1.03 x 10{sup -4}. (orig.)

  12. Diffusion processes in bombardment-induced surface topography

    International Nuclear Information System (INIS)

    Robinson, R.S.

    1984-01-01

    A treatment is given of the problem of surface diffusion processes occurring during surface topography development, whenever a surface is simultaneously seeded with impurities and ion bombarded. The development of controllable topography and the importance of surface diffusion parameters, which can be obtained during these studies, are also analyzed. 101 refs.; 7 figs.; 2 tabs

  13. Real-time transmission electron microscope observation of gold nanoclusters diffusing into silicon at room temperature

    International Nuclear Information System (INIS)

    Ishida, Tadashi; Nakajima, Yuuki; Fujita, Hiroyuki; Endo, Junji; Collard, Dominique

    2009-01-01

    Gold diffusion into silicon at room temperature was observed in real time with atomic resolution. Gold nanoclusters were formed on a silicon surface by an electrical discharge between a silicon tip and a gold coated tip inside an ultrahigh-vacuum transmission electron microscope (TEM) specimen chamber. At the moment of the gold nanocluster deposition, the gold nanoclusters had a crystalline structure. The crystalline structure gradually disappeared due to the interdiffusion between silicon and gold as observed after the deposition of gold nanoclusters. The shape of the nanocluster gradually changed due to the gold diffusion into the damaged silicon. The diffusion front between silicon and gold moved toward the silicon side. From the observations of the diffusion front, the gold diffusivity at room temperature was extracted. The extracted activation energy, 0.21 eV, matched the activation energy in bulk diffusion between damaged silicon and gold. This information is useful for optimizing the hybridization between solid-state and biological nanodevices in which gold is used as an adhesive layer between the two devices.

  14. Diffusion-induced grain boundary migration during ion beam mixing of Au/Cu bilayers

    International Nuclear Information System (INIS)

    Alexander, D.E.; Baldo, P.M.; Rehn, L.E.

    1992-09-01

    Experiments were performed to evaluate the effect of 1.5 MeV Kr irradiation on diffusion-induced grain boundary migration (DIGM) in Au/Cu bilayers in the temperature range of 300≤T≤050K. The experimental results were consistent with DIGM occurring in bilayers both during irradiation and during annealing treatments. Rutherford backscattering spectrometry showed a nearly uniform distribution of Cu present through the entire thickness of appropriately prepared polycrystalline Au films irradiated or annealed at temperatures ≥400K. No parallel effect was seen in similarly treated single-crystal films. In each polycrystalline sample studied, irradiation resulted in greater amounts of Cu present uniformly in the Au compared to annealing-only. The magnitudes of measured Cu compositions were substantially greater than that expected solely from grain boundary diffusion. A simple analysis of the process indicated that ion irradiation affects DIGM by increasing the composition of Cu present in alloyed zones and/or by increasing the grain boundary velocity in the Au

  15. Temperature dependent diffusion and epitaxial behavior of oxidized Au/Ni/p-GaN ohmic contact

    International Nuclear Information System (INIS)

    Hu, C.Y.; Qin, Z.X.; Feng, Z.X.; Chen, Z.Z.; Ding, Z.B.; Yang, Z.J.; Yu, T.J.; Hu, X.D.; Yao, S.D.; Zhang, G.Y.

    2006-01-01

    The temperature dependent diffusion and epitaxial behavior of oxidized Au/Ni/p-GaN ohmic contact were studied with Rutherford backscattering spectroscopy/channeling (RBS/C) and synchrotron X-ray diffraction (XRD). It is found that the Au diffuses to the surface of p-GaN to form an epitaxial structure on p-GaN after annealing at 450 deg. C. At the same time, the O diffuses to the metal-semiconductor interface and forms NiO. Both of them are suggested to be responsible for the sharp decrease in the specific contact resistance (ρ c ) at 450 deg. C. At 500 deg. C, the epitaxial structure of Au develops further and the O also diffuses deeper into the interface. As a result, the ρ c reaches the lowest value at this temperature. However, when annealing temperature reaches 600 deg. C, part or all of the interfacial NiO is detached from the p-GaN and diffuses out, which cause the ρ c to increase greatly

  16. Radon diffusion through sandy construction materials: effect of temperature and grain size

    International Nuclear Information System (INIS)

    Narula, A.K.; Goyal, S.K.; Jain, Ravinder; Kant, Krishan; Yadav, Mani Kant; Chauhan, R.P.; Chakarvarti, S.K.

    2013-01-01

    Radon appears mainly by diffusion process from the point of origin, say, under ground soil and building materials used in construction of house following alpha decay of radium. The radon diffusion through different building construction materials can be compared by calculating radon diffusion coefficient for them. In the present work, we studied the effect of temperature and grain size on radon diffusion of coarse sand as construction material. The coarse sand was collected from Yamuna river bed, originated from Himalayas. For this study, a steel pipe of diameter 10 cm and length 30 cm., divided into four sectors of equal size, was filled in different sectors with different grain sized (800, 600 and 425 μm) sand as building construction material. A number LR-115 type-II particle track detectors were placed with inter-detector distance of 10 cm in the sectorial compartments. The bottom end of steel pipe assembly was fixed with a radon chamber containing radon source with upper end sealed with a cap. The whole arrangement was then placed into a sand-clay pipe wrapped around by a controlled heating filament, resulting into temperature variations from 25℃ to 60℃. After 100 days interval, the detectors were retrieved processed, and the α - tracks counted for the calculation of radon concentration. It is observed that the radon diffusion coefficient increases with the increase in temperature and decreases with decrease in grain size of the coarse sand. (author)

  17. Asymptotic diffusion limit of cell temperature discretisation schemes for thermal radiation transport

    International Nuclear Information System (INIS)

    Smedley-Stevenson, Richard P.; McClarren, Ryan G.

    2015-01-01

    This paper attempts to unify the asymptotic diffusion limit analysis of thermal radiation transport schemes, for a linear-discontinuous representation of the material temperature reconstructed from cell centred temperature unknowns, in a process known as ‘source tilting’. The asymptotic limits of both Monte Carlo (continuous in space) and deterministic approaches (based on linear-discontinuous finite elements) for solving the transport equation are investigated in slab geometry. The resulting discrete diffusion equations are found to have nonphysical terms that are proportional to any cell-edge discontinuity in the temperature representation. Based on this analysis it is possible to design accurate schemes for representing the material temperature, for coupling thermal radiation transport codes to a cell centred representation of internal energy favoured by ALE (arbitrary Lagrange–Eulerian) hydrodynamics schemes

  18. Asymptotic diffusion limit of cell temperature discretisation schemes for thermal radiation transport

    Energy Technology Data Exchange (ETDEWEB)

    Smedley-Stevenson, Richard P., E-mail: richard.smedley-stevenson@awe.co.uk [AWE PLC, Aldermaston, Reading, Berkshire, RG7 4PR (United Kingdom); Department of Earth Science and Engineering, Imperial College London, SW7 2AZ (United Kingdom); McClarren, Ryan G., E-mail: rmcclarren@ne.tamu.edu [Department of Nuclear Engineering, Texas A & M University, College Station, TX 77843-3133 (United States)

    2015-04-01

    This paper attempts to unify the asymptotic diffusion limit analysis of thermal radiation transport schemes, for a linear-discontinuous representation of the material temperature reconstructed from cell centred temperature unknowns, in a process known as ‘source tilting’. The asymptotic limits of both Monte Carlo (continuous in space) and deterministic approaches (based on linear-discontinuous finite elements) for solving the transport equation are investigated in slab geometry. The resulting discrete diffusion equations are found to have nonphysical terms that are proportional to any cell-edge discontinuity in the temperature representation. Based on this analysis it is possible to design accurate schemes for representing the material temperature, for coupling thermal radiation transport codes to a cell centred representation of internal energy favoured by ALE (arbitrary Lagrange–Eulerian) hydrodynamics schemes.

  19. Nickel in silicon: Room-temperature in-diffusion and interaction with radiation defects

    Energy Technology Data Exchange (ETDEWEB)

    Yarykin, Nikolai [Institute of Microelectronics Technology, RAS, Chernogolovka (Russian Federation); Weber, Joerg [Technische Universitaet Dresden (Germany)

    2017-07-15

    Nickel is incorporated into silicon wafers during chemomechanical polishing in an alkaline Ni-contaminated slurry at room temperature. The nickel in-diffusion is detected by DLTS depth profiles of a novel Ni{sub 183} level, which is formed due to a reaction between the diffusing nickel and the VO centers introduced before the polishing. The Ni{sub 183} profile extends up to 10 μm after a 2 min polishing. The available data provide a lower estimate for the room-temperature nickel diffusivity D{sub Ni} > 10{sup -9} cm{sup 2} s{sup -1}. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. A cryostatic setup for the low-temperature measurement of thermal diffusivity with the photothermal method

    International Nuclear Information System (INIS)

    Bertolotti, M.; Liakhou, G.; Li Voti, R.; Paoloni, S.; Sibilia, C.; Sparvieri, N.

    1995-01-01

    A cryostatic setup is described to perform photothermal deflection measurements from room temperature to 77 K. The setup uses gaseous nitrogen as a medium where the photodeflection is produced. The ability of the system to work is demonstrated presenting some measurements of thermal diffusivity of high-temperature superconductor samples and of yttrium-iron garnets with variable aluminum content. copyright 1995 American Institute of Physics

  1. Experimental Investigation of Radio-Turbulence Induced Diffusion -- Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Spitz, H. B.; Usman, S.

    2005-07-07

    The outcome of this research project suggests that the transport of radon in water is significantly greater than that predicted solely by molecular diffusion. The original study was related to the long term storage of {sup 226}Ra-bearing sand at the DOE Fernald site and determining whether a barrier of water covering the sand would be effective in reducing the emanation of {sup 222}Rn from the sand. Initial observations before this study found the transport of radon in water to be greater than that predicted solely by molecular diffusion. Fick's law on diffusion was used to model the transport of radon in water including the impact associated with radioactive decay. Initial measurements suggested that the deposition of energy in water associated with the radioactive decay process influences diffusion and enhances transport of radon. A multi-region, one-dimensional, steady-state transport model was used to analyze the movement of radon through a sequential column of air, water and air. An effective diffusion coefficient was determined by varying the thickness of the water column and measuring the time for transport of {sup 222}Rn through of the water barrier. A one-region, one-dimensional transient diffusion equation was developed to investigate the build up of radon at the end of the water column to the time when a steady-state, equilibrium condition was achieved. This build up with time is characteristic of the transport rate of radon in water and established the basis for estimating the effective diffusion coefficient for {sup 222}Rn in water. Several experiments were conducted using different types and physical arrangements of water barriers to examine how radon transport is influenced by the water barrier. Results of our measurements confirm our theoretical analyses which suggest that convective forces other than pure molecular diffusion impact the transport of {sup 222}Rn through the water barrier. An effective diffusion coefficient is defined that

  2. Temperature dependence of copper diffusion in different thickness amorphous tungsten/tungsten nitride layer

    Science.gov (United States)

    Asgary, Somayeh; Hantehzadeh, Mohammad Reza; Ghoranneviss, Mahmood

    2017-11-01

    The amorphous W/WN films with various thickness (10, 30 and 40 nm) and excellent thermal stability were successfully prepared on SiO2/Si substrate with evaporation and reactive evaporation method. The W/WN bilayer has technological importance because of its low resistivity, high melting point, and good diffusion barrier properties between Cu and Si. The thermal stability was evaluated by X-ray diffractometer (XRD) and Scanning Electron Microscope (SEM). In annealing process, the amorphous W/WN barrier crystallized and this phenomenon is supposed to be the start of Cu atoms diffusion through W/WN barrier into Si. With occurrence of the high-resistive Cu3Si phase, the W/WN loses its function as a diffusion barrier. The primary mode of Cu diffusion is the diffusion through grain boundaries that form during heat treatments. The amorphous structure with optimum thickness is the key factor to achieve a superior diffusion barrier characteristic. The results show that the failure temperature increased by increasing the W/WN film thickness from 10 to 30 nm but it did not change by increasing the W/WN film thickness from 30 to 40 nm. It is found that the 10 and 40 nm W/WN films are good diffusion barriers at least up to 800°C while the 30 nm W/WN film shows superior properties as a diffusion barrier, but loses its function as a diffusion barrier at about 900°C (that is 100°C higher than for 10 and 40 nm W/WN films).

  3. Ion irradiation-induced diffusion in bixbyite-fluorite related oxides: Dislocations and phase transformation

    Energy Technology Data Exchange (ETDEWEB)

    Rolly, Gaboriaud, E-mail: Rolly.gaboriaud@univ-poitiers.fr [Institut Pprime, CNRS-University of Poitiers, SP2MI-BP 30179, 86962 Chasseneuil-Futuroscope (France); Fabien, Paumier [Institut Pprime, CNRS-University of Poitiers, SP2MI-BP 30179, 86962 Chasseneuil-Futuroscope (France); Bertrand, Lacroix [CSIC – University of Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla (Spain)

    2014-05-01

    Ion-irradiation induced diffusion and the phase transformation of a bixbyite-fluorite related rare earth oxide thin films are studied. This work is focused on yttrium sesquioxide, Y{sub 2}O{sub 3}, thin films deposited on Si (1 0 0) substrates using the ion beam sputtering technique (IBS). As-deposited samples were annealed ant then irradiated at cryogenic temperature (80 K) with 260 keV Xe{sup 2+} at different fluences. The irradiated thin oxide films are characterized by X-ray diffraction. A cubic to monoclinic phase transformation was observed. Analysis of this phenomenon is done in terms of residual stresses. Stress measurements as a function of irradiation fluences were realised using the XRD-sin{sup 2}ψ method. Stress evolution and kinetic of the phase transformation are compared and leads to the role-played by the nucleation of point and extended defects.

  4. Six years of ground–air temperature tracking at Malence (Slovenia): thermal diffusivity from subsurface temperature data

    Czech Academy of Sciences Publication Activity Database

    Dědeček, Petr; Rajver, D.; Čermák, Vladimír; Šafanda, Jan; Krešl, Milan

    2013-01-01

    Roč. 10, č. 2 (2013), 025012/1-025012/9 ISSN 1742-2132 R&D Projects: GA ČR(CZ) GAP210/11/0183; GA MŠk LM2010008 Institutional support: RVO:67985530 Keywords : ground-air temperature coupling * thermal diffusivity * conductive-convective heat transfer Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.895, year: 2013

  5. Study on radiation-induced defects in germanium monocrystals by the X-ray diffusive scattering method

    International Nuclear Information System (INIS)

    Malinenko, I.A.; Perelygina, E.A.; Chudinova, S.A.; Shivrin, O.N.

    1979-01-01

    The method of X-ray diffusion scattering was used to study the defective structure of germanium monocrystals exposed to 750 keV proton irradiation with 3.8x10 16 -4.6x10 17 cm -2 doses and subjected to the subsequent annealing at temperatures up to 450 deg C. Detected in the crystals were the complex radiation induced structure characterized with oriented vacancy complexes and results from the both effects: irradiation and annealing. Radiation defect sizes in the section (hhO) have been determined. With increasing the annealing temperature the structure reconstruction resulting in the complex dissociation is observed

  6. Interface bonding of SA508-3 steel under deformation and high temperature diffusion

    Science.gov (United States)

    Xu, Bin; Shao, Chunjuan; Sun, Mingyue

    2018-05-01

    There are mainly two parameters affecting high temperature interface bonding: deformation and diffusion. To study these two parameters, interface bonding of SA508-3 bainitic steel at 1100°C are simulated by gleeble3500 thermal simulator. The results show that interface of SA508-3 steel can be bonded under deformation and high temperature. For a specimen pressed at 1100°C without further high temperature diffusion, a reduction ratio of 30% can make the interface begun to bond, but the interface is still part of the grain boundary and small grains exist near the interface. When reduction ratio reaches 50%, the interface can be completely bonded and the microstructure near the interface is the same as that of the base material. When deformation is small, long time diffusion can also help the interface bonding. The results show that when the diffusion time is long enough, the interface under small deformation can also be bonded. For a specimen holding for 24h at 1100°C, only 13% reduction ratio is enough for interface bonding.

  7. Estimation of Water Diffusion Coefficient into Polycarbonate at Different Temperatures Using Numerical Simulation

    DEFF Research Database (Denmark)

    Shojaee Nasirabadi, Parizad; Jabbaribehnam, Mirmasoud; Hattel, Jesper Henri

    2016-01-01

    ) is widely used in the electronics industry. Thus, in this work the water diffusion coefficient into PC is investigated. Furthermore, numerical methods used for estimation of the diffusion coefficient and their assumptions are discussed. 1D and 3D numerical solutions are compared and based on this, itis......Nowadays, many electronic systems are exposed to harsh conditions of relative humidity and temperature. Masstransport properties of electronic packaging materials are needed in order to investigate the influence of moisture andtemperature on reliability of electronic devices. Polycarbonate (PC...... shown how the estimated value can be different depending on the choice of dimensionality in the model....

  8. Estimating Past Temperature Change in Antarctica Based on Ice Core Stable Water Isotope Diffusion

    Science.gov (United States)

    Kahle, E. C.; Markle, B. R.; Holme, C.; Jones, T. R.; Steig, E. J.

    2017-12-01

    The magnitude of the last glacial-interglacial transition is a key target for constraining climate sensitivity on long timescales. Ice core proxy records and general circulation models (GCMs) both provide insight on the magnitude of climate change through the last glacial-interglacial transition, but appear to provide different answers. In particular, the magnitude of the glacial-interglacial temperature change reconstructed from East Antarctic ice-core water-isotope records is greater ( 9 degrees C) than that from most GCM simulations ( 6 degrees C). A possible source of this difference is error in the linear-scaling of water isotopes to temperature. We employ a novel, nonlinear temperature-reconstruction technique using the physics of water-isotope diffusion to infer past temperature. Based on new, ice-core data from the South Pole, this diffusion technique suggests East Antarctic temperature change was smaller than previously thought. We are able to confirm this result using a simple, water-isotope fractionation model to nonlinearly reconstruct temperature change at ice core locations across Antarctica based on combined oxygen and hydrogen isotope ratios. Both methods produce a temperature change of 6 degrees C for South Pole, agreeing with GCM results for East Antarctica. Furthermore, both produce much larger changes in West Antarctica, also in agreement with GCM results and independent borehole thermometry. These results support the fidelity of GCMs in simulating last glacial maximum climate, and contradict the idea, based on previous work, that the climate sensitivity of current GCMs is too low.

  9. Reconstructing bottom water temperatures from measurements of temperature and thermal diffusivity in marine sediments

    Science.gov (United States)

    Miesner, F.; Lechleiter, A.; Müller, C.

    2015-07-01

    Continuous monitoring of oceanic bottom water temperatures is a complicated task, even in relatively easy-to-access basins like the North or Baltic seas. Here, a method to determine annual bottom water temperature variations from inverse modeling of instantaneous measurements of temperatures and sediment thermal properties is presented. This concept is similar to climate reconstructions over several thousand years from deep borehole data. However, in contrast, the presented method aims at reconstructing the recent temperature history of the last year from sediment thermal properties and temperatures from only a few meters depth. For solving the heat equation, a commonly used forward model is introduced and analyzed: knowing the bottom water temperature variations for the preceding years and the thermal properties of the sediments, the forward model determines the sediment temperature field. The bottom water temperature variation is modeled as an annual cosine defined by the mean temperature, the amplitude and a phase shift. As the forward model operator is non-linear but low-dimensional, common inversion schemes such as the Newton algorithm can be utilized. The algorithms are tested for artificial data with different noise levels and for two measured data sets: from the North Sea and from the Davis Strait. Both algorithms used show stable and satisfying results with reconstruction errors in the same magnitude as the initial data error. In particular, the artificial data sets are reproduced with accuracy within the bounds of the artificial noise level. Furthermore, the results for the measured North Sea data show small variances and resemble the bottom water temperature variations recorded from a nearby monitoring site with relative errors smaller than 1 % in all parameters.

  10. Influence of residual stress on diffusion-induced bending in bilayered microcantilever sensors

    International Nuclear Information System (INIS)

    Xuan Fuzhen; Shao Shanshan; Wang Zhengdong; Tu Shantung

    2010-01-01

    The influence of residual stress on diffusion-induced bending in bilayered microcantilever sensors has been analyzed under the framework of thermodynamic theory and Fick's second law. A self-consistent diffusion equation involving the coupling effects of residual stress and diffusion-induced stress is developed. Effects of thickness ratio, modulus ratio, diffusivity ratio and residual stress gradient of film and substrate on the curvature of bilayered cantilever are then discussed with the help of finite difference method. Results reveal that the curvature of bilayered cantilever increases with decreasing the diffusivity ratio and modulus ratio of substrate to film at a given time. Case study of the polysilicon/palladium hydrogen sensor has been finally carried out using the above developed bending theory.

  11. Oxygen diffusion and reactivity at low temperature on bare amorphous olivine-type silicate

    Energy Technology Data Exchange (ETDEWEB)

    Minissale, M., E-mail: marco.minissale@obspm.fr; Congiu, E.; Dulieu, F. [LERMA-LAMAp, Université de Cergy-Pontoise, Observatoire de Paris, ENS, UPMC, UMR 8112 du CNRS, 5 Mail Gay Lussac, 95000 Cergy Pontoise Cedex (France)

    2014-02-21

    The mobility of O atoms at very low temperatures is not generally taken into account, despite O diffusion would add to a series of processes leading to the observed rich molecular diversity in space. We present a study of the mobility and reactivity of O atoms on an amorphous silicate surface. Our results are in the form of reflection absorption infrared spectroscopy and temperature-programmed desorption spectra of O{sub 2} and O{sub 3} produced via two pathways: O + O and O{sub 2} + O, investigated in a submonolayer regime and in the range of temperature between 6.5 and 30 K. All the experiments show that ozone is formed efficiently on silicate at any surface temperature between 6.5 and 30 K. The derived upper limit for the activation barriers of O + O and O{sub 2} + O reactions is ∼150 K/k{sub b}. Ozone formation at low temperatures indicates that fast diffusion of O atoms is at play even at 6.5 K. Through a series of rate equations included in our model, we also address the reaction mechanisms and show that neither the Eley–Rideal nor the hot atom mechanisms alone can explain the experimental values. The rate of diffusion of O atoms, based on modeling results, is much higher than the one generally expected, and the diffusive process proceeds via the Langmuir-Hinshelwood mechanism enhanced by tunnelling. In fact, quantum effects turn out to be a key factor that cannot be neglected in our simulations. Astrophysically, efficient O{sub 3} formation on interstellar dust grains would imply the presence of huge reservoirs of oxygen atoms. Since O{sub 3} is a reservoir of elementary oxygen, and also of OH via its hydrogenation, it could explain the observed concomitance of CO{sub 2} and H{sub 2}O in the ices.

  12. Metallurgical study of low-temperature plasma carbon diffusion treatments for stainless steels

    International Nuclear Information System (INIS)

    Lewis, D.B.; Leyland, A.; Stevenson, P.R.; Cawley, J.; Matthews, A.

    1993-01-01

    We recently reported a novel low-temperature carbon diffusion technique for surface hardening of stainless steels. The treatment was shown to provide benefits in terms of abrasive wear resistance. There is also evidence to suggest that by performing diffusion treatments at low temperatures (i.e. below 400 C), these benefits can be achieved without compromising corrosion resistance. Here a variety of surface analysis and depth profiling techniques have been used to determine the physical and mechanical properties of carbon-rich layers produced on a range of stainless steel substrate materials. X-ray diffraction (XRD) was employed to determine the crystallographic structure, whilst wavelength dispersive X-ray analysis (WDX) and glow discharge optical spectroscopy (GDOS) gave information on the concentration and distribution of the diffused species within the treated layers. A variety of carbide-based structures was detected, including the expected M 23 C 6 and, more surprisingly, M 3 C. Optical and electron microscopy techniques were used to provide information on layer morphology. The surfaces produced by the low-temperature carbon-diffusion process generally exhibit a distinct diffusion layer of between 1 and 20 μm, depending on the material and the treatment conditions. Austenitic stainless steels appear to give the best response to treatment, however other types of stainless steel can be treated, particularly if the microstructure contains above 5% retained austenite. Here we discuss the changes in mechanical and metallurgical properties provided by this technique and its potential value for treatment of both austenitic and other stainless steel substrate materials. (orig.)

  13. The study of diffusion in network-forming liquids under pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hung, P.K. [Department of Computational Physics, Hanoi University of Technology, 1Dai Co Viet, Hanoi (Viet Nam); Kien, P.H., E-mail: phkien80@gmail.com [Department of Physics, Thainguyen University of Education, 20 Luong Ngoc Quyen, Thainguyen (Viet Nam); San, L.T.; Hong, N.V. [Department of Computational Physics, Hanoi University of Technology, 1Dai Co Viet, Hanoi (Viet Nam)

    2016-11-15

    In this paper, the molecular dynamics simulation is applied to investigate the diffusion in silica liquids under different temperature and pressure. We show that the diffusion is controlled by the rate of effective SiO{sub x}→SiO{sub x±1} and OSi{sub y}→OSi{sub y±1} reaction. With increasing the pressure, the rate of reaction increases and the Si–O bond is weaker. Moreover, the reactions are not uniformly distributed in the space, but instead they happen frequently or rarely in separate regions. We also reveal two motion types: free and correlation motion. The correlation motion concerns the moving of a group of atoms which is similar to that of the diffusion of a super-molecule in the liquid. A detailed analysis of the movement of atoms from specified set shows the clustering of them which indicates structure and dynamics heterogeneity. Further, we find that the correlation motion is very important for the diffusion in network-forming liquid. The observed phenomena such as diffusion anomaly, dynamics heterogeneity and dynamical slowdown are originated from the correlation motion of atom.

  14. Influence of the atomic structure of crystal surfaces on the surface diffusion in medium temperature range

    International Nuclear Information System (INIS)

    Cousty, J.P.

    1981-12-01

    In this work, we have studied the influence of atomic structure of crystal surface on surface self-diffusion in the medium temperature range. Two ways are followed. First, we have measured, using a radiotracer method, the self-diffusion coefficient at 820 K (0.6 T melting) on copper surfaces both the structure and the cleanliness of which were stable during the experiment. We have shown that the interaction between mobile surface defects and steps can be studied through measurements of the anisotropy of surface self diffusion. Second, the behavior of an adatom and a surface vacancy is simulated via a molecular dynamics method, on several surfaces of a Lennard Jones crystal. An inventory of possible migration mechanisms of these surface defects has been drawn between 0.35 and 0.45 Tsub(m). The results obtained with both the methods point out the influence of the surface atomic structure in surface self-diffusion in the medium temperature range [fr

  15. Effect of Soret diffusion on lean hydrogen/air flames at normal and elevated pressure and temperature

    KAUST Repository

    Zhou, Zhen; Hernandez Perez, Francisco; Shoshin, Yuriy; van Oijen, Jeroen A.; de Goey, Laurentius P.H.

    2017-01-01

    The influence of Soret diffusion on lean premixed flames propagating in hydrogen/air mixtures is numerically investigated with a detailed chemical and transport models at normal and elevated pressure and temperature. The Soret diffusion influence on the one-dimensional (1D) flame mass burning rate and two-dimensional (2D) flame propagating characteristics is analysed, revealing a strong dependency on flame stretch rate, pressure and temperature. For 1D flames, at normal pressure and temperature, with an increase of Karlovitz number from 0 to 0.4, the mass burning rate is first reduced and then enhanced by Soret diffusion of H2 while it is reduced by Soret diffusion of H. The influence of Soret diffusion of H2 is enhanced by pressure and reduced by temperature. On the contrary, the influence of Soret diffusion of H is reduced by pressure and enhanced by temperature. For 2D flames, at normal pressure and temperature, during the early phase of flame evolution, flames with Soret diffusion display more curved flame cells. Pressure enhances this effect, while temperature reduces it. The influence of Soret diffusion of H2 on the global consumption speed is enhanced at elevated pressure. The influence of Soret diffusion of H on the global consumption speed is enhanced at elevated temperature. The flame evolution is more affected by Soret diffusion in the early phase of propagation than in the long run due to the local enrichment of H2 caused by flame curvature effects. The present study provides new insights into the Soret diffusion effect on the characteristics of lean hydrogen/air flames at conditions that are relevant to practical applications, e.g. gas engines and turbines.

  16. Effect of Soret diffusion on lean hydrogen/air flames at normal and elevated pressure and temperature

    KAUST Repository

    Zhou, Zhen

    2017-04-12

    The influence of Soret diffusion on lean premixed flames propagating in hydrogen/air mixtures is numerically investigated with a detailed chemical and transport models at normal and elevated pressure and temperature. The Soret diffusion influence on the one-dimensional (1D) flame mass burning rate and two-dimensional (2D) flame propagating characteristics is analysed, revealing a strong dependency on flame stretch rate, pressure and temperature. For 1D flames, at normal pressure and temperature, with an increase of Karlovitz number from 0 to 0.4, the mass burning rate is first reduced and then enhanced by Soret diffusion of H2 while it is reduced by Soret diffusion of H. The influence of Soret diffusion of H2 is enhanced by pressure and reduced by temperature. On the contrary, the influence of Soret diffusion of H is reduced by pressure and enhanced by temperature. For 2D flames, at normal pressure and temperature, during the early phase of flame evolution, flames with Soret diffusion display more curved flame cells. Pressure enhances this effect, while temperature reduces it. The influence of Soret diffusion of H2 on the global consumption speed is enhanced at elevated pressure. The influence of Soret diffusion of H on the global consumption speed is enhanced at elevated temperature. The flame evolution is more affected by Soret diffusion in the early phase of propagation than in the long run due to the local enrichment of H2 caused by flame curvature effects. The present study provides new insights into the Soret diffusion effect on the characteristics of lean hydrogen/air flames at conditions that are relevant to practical applications, e.g. gas engines and turbines.

  17. An analytical method for determining the temperature dependent moisture diffusivities of pumpkin seeds during drying process

    Energy Technology Data Exchange (ETDEWEB)

    Can, Ahmet [Department of Mechanical Engineering, University of Trakya, 22030 Edirne (Turkey)

    2007-02-15

    This paper presents an analytical method, which determines the moisture diffusion coefficients for the natural and forced convection hot air drying of pumpkin seeds and their temperature dependence. In order to obtain scientific data, the pumpkin seed drying process was investigated under both natural and forced hot air convection regimes. This paper presents the experimental results in which the drying air was heated by solar energy. (author)

  18. Influence of moisture content and temperature on thermal conductivity and thermal diffusivity of rice flours

    Science.gov (United States)

    The thermal conductivity and thermal diffusivity of four types of rice flours and one type of rice protein were determine at temperatures ranging from 4.8 to 36.8 C, bulk densities 535 to 875.8 kg/m3, and moisture contents 2.6 to 16.7 percent (w.b.), using a KD2 Thermal Properties Analyzer. It was ...

  19. A magnetic gradient induced force in NMR restricted diffusion experiments

    International Nuclear Information System (INIS)

    Ghadirian, Bahman; Stait-Gardner, Tim; Castillo, Reynaldo; Price, William S.

    2014-01-01

    We predict that the phase cancellation of a precessing magnetisation field carried by a diffusing species in a bounded geometry under certain nuclear magnetic resonance pulsed magnetic field gradient sequences results in a small force over typically micrometre length scales. Our calculations reveal that the total magnetisation energy in a pore under the influence of a pulsed gradient will be distance-dependent thus resulting in a force acting on the boundary. It is shown that this effect of the magnetisation of diffusing particles will appear as either an attractive or repulsive force depending on the geometry of the pore and magnetic properties of the material. A detailed analysis is performed for the case of a pulsed gradient spin-echo experiment on parallel planes. It is shown that the force decays exponentially in terms of the spin-spin relaxation. The proof is based on classical electrodynamics. An application of this effect to soft matter is suggested

  20. Thermal conductivity, diffusivity and expansion of Avery Island salt at pressure and temperature

    International Nuclear Information System (INIS)

    Durham, W.B.; Abey, A.E.; Trimmer, D.A.

    1981-01-01

    Preliminary data on the thermal propertes of a course-grained rock salt from Avery Island, Louisiana, indicate that hydrostatic pressure to 50 MPa has little effect on the thermal conductivity, diffusivity and linear expansion at temperatures from 300 to 573 K. The measurements were made in a new apparatus under conditions of true hydrostatic loading. At room temperature and effective confining pressure increasing from 10 to 50 MPa, thermal conductivity and diffusivity are constant at roughly 7 W/mK and 3.6 x 10 -6 m 2 /s, respectively. At 50 MPa and temperature increasing from 300 to 573 K, both conductivity and diffusivity drop by a factor of 2. Thermal linear expansion at 0 MPa matches that at 50 MPa, increasing from roughly 4.2 x 10 -5 /K at 300 K to 5.5 x 10 -5 /K at 573 K. The lack of a pressure effect on all three properties is confirmed by previous work. Simple models of microcracking suggest that among common geological materials the lack of pressure dependence is unique to rock salt

  1. Thermal conductivity, diffusivity and expansion of Avery Island salt at pressure and temperature

    International Nuclear Information System (INIS)

    Durham, W.B.; Abey, A.E.; Trimmer, D.A.

    1980-01-01

    Preliminary data on the thermal properties of a coarse-grained rock salt from Avery Island, Louisiana, indicates that hydrostatic pressure to 50 MPa has little effect on the thermal conductivity, diffusivity and linear expansion at temperatures from 300 to 573 K. The measurements were made in a new apparatus under conditions of true hydrostatic loading. At room temperature and effective confining pressure increasing from 10 to 50 MPa, thermal conductivity and diffusivity are constant at roughly 7W/mK and 3.6 x 10 -6 m 2 /s, respectively. At 50 MPa and temperature increasing from 300 to 573K, both conductivity and diffusivity drop by a factor of 2. Thermal linear expansion at 0 MPa matches that at 50 MPa, increasing from roughly 4.2 x 10 -5 /K at 300 K to 5.5 x 10 -5 at 573 K. The lack of a pressure effect on all three properties is confirmed by previous work. Simple models of microcracking suggest that among common geological materials the lack of pressure dependence is unique to rock salt

  2. Effects of electrode properties and fabricated pressure on Li ion diffusion and diffusion-induced stresses in cylindrical Li-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Tao; Guo, Zhansheng

    2014-01-01

    The effects of electrode properties and fabricated pressure on Li ion diffusion and diffusion-induced stress in a cylindrical Li-ion battery are studied. It is found that hydrostatic pressure or elastic modulus variation in the active layer have little effect on the distribution of Li ions for a higher diffusivity coefficient, but both can facilitate Li ion diffusion for a lower diffusivity coefficient. The elastic modulus variation has a significant effect on the distribution of stress and hydrostatic pressure can reduce the surface stress for the lower diffusivity coefficient. A higher charging rate causes a more transient response in the stress history, but a linear charging history is observed for slow charging rates. A higher charging rate would not inflict extra damage on the electrode for the higher diffusivity coefficient and the stress history becomes highly transient and charging rate dependent for the lower diffusivity coefficient. The effect of fabricated pressure can be neglected. (paper)

  3. Diffusion-weighted magnetic resonance imaging reveals the effects of different cooling temperatures on the diffusion of water molecules and perfusion within human skeletal muscle

    International Nuclear Information System (INIS)

    Yanagisawa, O.; Fukubayashi, T.

    2010-01-01

    Aim: To evaluate the effect of local cooling on the diffusion of water molecules and perfusion within muscle at different cooling temperatures. Materials and methods: Magnetic resonance diffusion-weighted (DW) images of the leg (seven males) were obtained before and after 30 min cooling (0, 10, and 20 o C), and after a 30 min recovery period. Two types of apparent diffusion coefficient (ADC; ADC1, reflecting both water diffusion and perfusion within muscle, and ADC2, approximating the true water diffusion coefficient) of the ankle dorsiflexors were calculated from DW images. T2-weighted images were also obtained to calculate T2 values of the ankle dorsiflexors. The skin temperature was measured before, during, and after cooling. Results: Both ADC values significantly decreased after cooling under all cooling conditions; the rate of decrease depended on the cooling temperature used (ADC1: -36% at 0 o C, -27.8% at 10 o C, and -22.6% at 20 o C; ADC2: -26% at 0 o C, -21.1% at 10 o C, and -14.6% at 20 o C). These significant decreases were maintained during the recovery period. Conversely, the T2 value showed no significant changes. Under all cooling conditions, skin temperature significantly decreased during cooling; the rate of decrease depended on the cooling temperature used (-74.8% at 0 o C, -51.1% at 10 o C, and -26.8% at 20 o C). Decreased skin temperatures were not restored to pre-cooling values during the recovery period under any cooling conditions. Conclusion: Local cooling decreased the water diffusion and perfusion within muscle with decreased skin temperature; the rates of decrease depended on the cooling temperature used. These decreases were maintained for 30 min after cooling.

  4. Diffusion barrier coatings for high temperature corrosion resistance of advanced carbon/carbon composites

    International Nuclear Information System (INIS)

    Singh Raman, K.S.

    2000-01-01

    Carbon possesses an excellent combination of mechanical and thermal properties, viz., excellent creep resistance at temperatures up to 2400 deg C in non-oxidizing environment and a low thermal expansion coefficient. These properties make carbon a potential material for very high temperature applications. However, the use of carbon materials at high temperatures is considerably restricted due to their extremely poor oxidation resistance at temperatures above 400 deg C. The obvious choice for improving high temperature oxidation resistance of such materials is a suitable diffusion barrier coating. This paper presents an overview of recent developments in advanced diffusion- and thermal-barrier coatings for ceramic composites, with particular reference to C/C composites. The paper discusses the development of multiphase and multi-component ceramic coatings, and recent investigations on the oxidation resistance of the coated C/C composites. The paper also discusses the cases of innovative engineering solutions for traditional problems with the ceramic coatings, and the scope of intelligent processing in developing coatings for the C/C composites. Copyright (2000) AD-TECH - International Foundation for the Advancement of Technology Ltd

  5. Molecular dynamics study of dislocation cores in copper: structure and diffusion at high temperatures

    International Nuclear Information System (INIS)

    Huang, Jin

    1989-01-01

    The variation of the core structure of an easy glide dislocation with temperature and its influence on the stacking fault energy (γ) have been investigated for the first time by molecular-dynamics simulation in copper. The calculations have been performed at various temperatures, using an ab-initio pseudo-potential. Our results show that the core of the Shockley partials, into which the perfect edge dislocation dissociates, becomes increasingly extended as temperature increases. However their separation remains constant. The calculated energy values of the infinite extension stacking fault and the ribbon fault between the partials are quite different, but the evolution of the core structure does not affect the temperature dependence of the latter. We have found that a high disorder appears in the core region when temperature increases due to important anharmonicity effects of the atomic vibrations. The core structure remains solid-like for T m (T m : melting point of bulk) in spite of the high disorder. Above T m , the liquid nucleus germinates in the core region, and then propagates into the bulk. In addition we studied the mobility of vacancies and interstitials trapped on the partials. Although fast diffusion is thought to occur exclusively in a pipe surrounding the dislocation core, in the present study a quasi two-dimensional diffusion is observed for both defects not only in the cores but also in the stacking fault ribbon. On the opposite of current assumptions, the activation energy for diffusion is found to be identical for both defects, which may therefore comparably contribute to mass transport along the dislocations. (author) [fr

  6. Circulation induced by diffused aeration in a shallow lake

    African Journals Online (AJOL)

    2017-01-01

    Jan 1, 2017 ... Lastly, a simple returning flow model was proposed to describe the circulation flow patterns ... method to describe the circulation patterns induced by the bub- ... 160 holes of 1 mm, which was designed to promote high mix-.

  7. Investigation of soot formation and temperature field in laminar diffusion flames of LPG-air mixture

    Energy Technology Data Exchange (ETDEWEB)

    Shahad, Haroun A.K.; Mohammed, Yassar K.A. [Babylon Univ., Dept. of Mechanical Engineering, Babylon (Israel)

    2000-11-01

    Soot formation and burnout were studied at atmospheric pressure in co-flowing, axisymmetric buoyant laminar diffusion flames and double flames of liquefied petroleum gases (LPG)-air mixtures. In diffusion flames, two different fuel flow rates were examined. In double flames, three different primary air flow rates were examined. A soot sampling probe and a thermocouple were used to measure the local soot mass concentration and flame temperature, respectively. Flame residence time was predicted using a uniformly accelerated motion model as function of axial distance of the flame. The increase of primary air flow rate was found to suppress the energy transfer from the annular region, at which the soot is produced, to the flame axis. The time required to initiate soot formation at the flame axis becomes longer as the primary air is increased. The trend rate of soot formation was found to be similar along the flame axis in all tested diffusion flames. The increase of primary air by 10% of the stoichiometric air requirement of the fuel results in a 70% reduction in maximum soot concentration. The final exhaust of soot, which is determined by the net effect of soot formation and burnout, is much lower in double flames than that in diffusion flames. (Author)

  8. Radial diffusion of toroidally trapped particles induced by lower hybrid and fast waves

    International Nuclear Information System (INIS)

    Krlin, L.

    1992-10-01

    The interaction of RF field with toroidally trapped particles (bananas) can cause their intrinsic stochastically diffusion both in the configuration and velocity space. In RF heating and/or current drive regimes, RF field can interact with plasma particles and with thermonuclear alpha particles. The aim of this contribution is to give some analytical estimates of induced radial diffusion of alphas and of ions. (author)

  9. Past surface temperatures at the NorthGRIP drill site from the difference in firn diffusion of water isotopes

    DEFF Research Database (Denmark)

    Simonsen, Sebastian Bjerregaard; Johnsen, S. J.; Popp, T. J.

    2011-01-01

    A new ice core paleothermometer is introduced based on the temperature dependent diffusion of the stable water isotopes in the firn. A new parameter called differential diffusion length is defined as the difference between the diffusion length of the two stable water isotopologues 2H1H16O and 1H218......O. A model treatment of the diffusion process of the firn and the ice is presented along with a method of retrieving the diffusion signal from the ice core record of water isotopes using spectral methods. The model shows how the diffusion process is highly dependent on the inter-annual variations...... warmer than observed in other ice core based temperature reconstructions. The mechanisms behind this behaviour are not fully understood. The method shows the need of an expansion of high resolution stable water isotope datasets from ice cores. However, the new ice core paleothermometer presented here...

  10. Effect of diluents on soot precursor formation and temperature in ethylene laminar diffusion flames

    KAUST Repository

    Abhinavam Kailasanathan, Ranjith Kumar

    2013-03-01

    Soot precursor species concentrations and flame temperature were measured in a diluted laminar co-flow jet diffusion flame at pressures up to eight atmospheres while varying diluent type. The objective of this study was to gain a better understanding of soot production and oxidation mechanisms, which could potentially lead to a reduction in soot emissions from practical combustion devices. Gaseous samples were extracted from the centerline of an ethylene-air laminar diffusion flame, which was diluted individually with four diluents (argon, helium, nitrogen, and carbon dioxide) to manipulate flame temperature and transport properties. The diluted fuel and co-flow exit velocities (top-hat profiles) were matched at all pressures to minimize shear-layer effects, and the mass fluxes were fixed over the pressure range to maintain constant Reynolds number. The flame temperature was measured using a fine gauge R-type thermocouple at pressures up to four atmospheres. Centerline concentration profiles of major non-fuel hydrocarbons collected via extractive sampling with a quartz microprobe and quantification using GC/MS+FID are reported within. The measured hydrocarbon species concentrations are vary dramatically with pressure and diluent, with the helium and carbon dioxide diluted flames yielding the largest and smallest concentrations of soot precursors, respectively. In the case of C2H2 and C6H6, two key soot precursors, helium diluted flames had concentrations more than three times higher compared with the carbon dioxide diluted flame. The peak flame temperature vary with diluents tested, as expected, with carbon dioxide diluted flame being the coolest, with a peak temperature of 1760K at 1atm, and the helium diluted flame being the hottest, with a peak temperature of 2140K. At four atmospheres, the helium diluted flame increased to 2240K, but the CO2 flame temperature increased more, decreasing the difference to approximately 250K. © 2012 The Combustion Institute.

  11. Universal linear-temperature resistivity: possible quantum diffusion transport in strongly correlated superconductors.

    Science.gov (United States)

    Hu, Tao; Liu, Yinshang; Xiao, Hong; Mu, Gang; Yang, Yi-Feng

    2017-08-25

    The strongly correlated electron fluids in high temperature cuprate superconductors demonstrate an anomalous linear temperature (T) dependent resistivity behavior, which persists to a wide temperature range without exhibiting saturation. As cooling down, those electron fluids lose the resistivity and condense into the superfluid. However, the origin of the linear-T resistivity behavior and its relationship to the strongly correlated superconductivity remain a mystery. Here we report a universal relation [Formula: see text], which bridges the slope of the linear-T-dependent resistivity (dρ/dT) to the London penetration depth λ L at zero temperature among cuprate superconductor Bi 2 Sr 2 CaCu 2 O 8+δ and heavy fermion superconductors CeCoIn 5 , where μ 0 is vacuum permeability, k B is the Boltzmann constant and ħ is the reduced Planck constant. We extend this scaling relation to different systems and found that it holds for other cuprate, pnictide and heavy fermion superconductors as well, regardless of the significant differences in the strength of electronic correlations, transport directions, and doping levels. Our analysis suggests that the scaling relation in strongly correlated superconductors could be described as a hydrodynamic diffusive transport, with the diffusion coefficient (D) approaching the quantum limit D ~ ħ/m*, where m* is the quasi-particle effective mass.

  12. Laser-induced diffusion decomposition in Fe–V thin-film alloys

    Energy Technology Data Exchange (ETDEWEB)

    Polushkin, N.I., E-mail: nipolushkin@fc.ul.pt [Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Instituto de Ciência e Engenharia de Materiais e Superfícies, 1049-001 Lisboa (Portugal); Duarte, A.C.; Conde, O. [Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Instituto de Ciência e Engenharia de Materiais e Superfícies, 1049-001 Lisboa (Portugal); Alves, E. [Associação Euratom/IST e Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Barradas, N.P. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS (Portugal); García-García, A.; Kakazei, G.N.; Ventura, J.O.; Araujo, J.P. [Departamento de Física, Universidade do Porto e IFIMUP, 4169-007 Porto (Portugal); Oliveira, V. [Instituto de Ciência e Engenharia de Materiais e Superfícies, 1049-001 Lisboa (Portugal); Instituto Superior de Engenharia de Lisboa, 1959-007 Lisboa (Portugal); Vilar, R. [Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Instituto de Ciência e Engenharia de Materiais e Superfícies, 1049-001 Lisboa (Portugal)

    2015-05-01

    Highlights: • Irradiation of an Fe–V alloy by femtosecond laser triggers diffusion decomposition. • The decomposition occurs with strongly enhanced (∼4 orders) atomic diffusivity. • This anomaly is associated with the metallic glassy state achievable under laser quenching. • The ultrafast diffusion decomposition is responsible for laser-induced ferromagnetism. - Abstract: We investigate the origin of ferromagnetism induced in thin-film (∼20 nm) Fe–V alloys by their irradiation with subpicosecond laser pulses. We find with Rutherford backscattering that the magnetic modifications follow a thermally stimulated process of diffusion decomposition, with formation of a-few-nm-thick Fe enriched layer inside the film. Surprisingly, similar transformations in the samples were also found after their long-time (∼10{sup 3} s) thermal annealing. However, the laser action provides much higher diffusion coefficients (∼4 orders of magnitude) than those obtained under standard heat treatments. We get a hint that this ultrafast diffusion decomposition occurs in the metallic glassy state achievable in laser-quenched samples. This vitrification is thought to be a prerequisite for the laser-induced onset of ferromagnetism that we observe.

  13. Enhanced diffusion with abnormal temperature dependence in underdamped space-periodic systems subject to time-periodic driving

    Science.gov (United States)

    Marchenko, I. G.; Marchenko, I. I.; Zhiglo, A. V.

    2018-01-01

    We present a study of the diffusion enhancement of underdamped Brownian particles in a one-dimensional symmetric space-periodic potential due to external symmetric time-periodic driving with zero mean. We show that the diffusivity can be enhanced by many orders of magnitude at an appropriate choice of the driving amplitude and frequency. The diffusivity demonstrates abnormal (decreasing) temperature dependence at the driving amplitudes exceeding a certain value. At any fixed driving frequency Ω normal temperature dependence of the diffusivity is restored at low enough temperatures, T oscillation frequency at the potential minimum, the diffusivity is shown to decrease with Ω according to a power law, with the exponent related to the transient superdiffusion exponent. This behavior is found similar for the cases of sinusoidal in time and piecewise constant periodic ("square") driving.

  14. Diffusive Imaging of Hydraulically Induced and Natural Fracture Systems

    Science.gov (United States)

    Eftekhari, B.; Marder, M. P.; Patzek, T. W.

    2017-12-01

    Hydraulic fracturing of tight shales continues to provide the US with a major source of energy. Efficiency of gas recovery in shales depends upon the geometry of the resulting network of fractures, the details of which are not yet fully understood. The present research explores how much of the underlying geometry can be deduced from the time dependence of the flow of gas out of the reservoir. We consider both ideal and real gas. In the case of real gas, we calculate production rate for parallel planar hydrofractures embedded in an infinite reservoir. Transport is governed by a nonlinear diffusion equation, which we solve exactly with a scaling curve. The scaling curve production rate declines initially as 1 over square root time, then as an exponential, and finally as 1 over square root of time again at late time. We show that for a given hydraulically fractured well, the onsets of transition between different decline regimes provides a direct estimate of a characteristic spacing of the underlying fracture network. We show that the scaling solution accurately fits the production history of more than 15,000 wells in the Barnett Shale. Almost all of the wells either have not yet transitioned into the late time decline or have been refractured while in exponential decline. However, there are 36 wells which show the late time transition. These allow us to calculate the characteristic spacing, which turns out to have a mode at about 10 m, a minimum at 1.6 m and a maximum at 13.3 m. We estimate that over 30 years these wells will produce on average about 45% more gas because of diffusion from the infinite external reservoir than they would if this contribution is neglected. Finally, we compute the rate at which ideal gas diffuses within an infinite region of rock into a specific absorbing fractal fracture network, which we model using geological constraints and percolation theory. Our solution employs a Brownian walk and the first passage kinetic Monte Carlo algorithm

  15. Milestone report: The simulation of radiation driven gas diffusion in UO2 at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Michael William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kuganathan, Navaratnarajah [Imperial College, London (United Kingdom); Burr, Patrick A [Univ. of New South Wales (Australia); Rushton, Michael J. [Imperial College, London (United Kingdom); Grimes, Robin W [Imperial College, London (United Kingdom); Turbull, James Anthony [Independent Consultant (United Kingdom); Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andersson, Anders David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-24

    Below 1000 K it is thought that fission gas diffusion in nuclear fuel during irradiation occurs through atomic mixing due to radiation damage. This is an important process for nuclear reactor performance as it affects fission gas release, particularly from the periphery of the pellet where such temperatures are normal. Here we present a molecular dynamics study of Xe and Kr diffusion due to irradiation. Thermal spikes and cascades have been used to study the electronic stopping and ballistic phases of damage, respectively. Our results predict that O and Kr exhibit the greatest diffusivity and U the least, while Xe lies in between. It is concluded that the ballistic phase does not sufficiently account for the experimentally observed diffusion. Preliminary thermal spike calculations indicate that the electronic stopping phase generates greater fission gas displacement than the ballistic phase, although further calculation must be carried out to confirm this. A good description of the system by the empirical potentials is important over the very wide temperatures induced during thermal spike and damage cascade simulations. This has motivated the development of a parameter set for gas-actinide and gas-oxygen interactions that is complementary for use with a recent many-body potential set. A comprehensive set of density functional theory (DFT) calculations were used to study Xe and Kr incorporation at a number of sites in CeO2, ThO2, UO2 and PuO2. These structures were used to fit a potential, which was used to generate molecular dynamics (MD) configurations incorporating Xe and Kr at 300 K, 1500 K, 3000 K and 5000 K. Subsequent matching to the forces predicted by DFT for these MD configurations was used to refine the potential set. This fitting approach ensured weighted fitting to configurations that are thermodynamically significant over a broad temperature range, while avoiding computationally expensive DFT-MD calculations

  16. Advection and diffusion in random media implications for sea surface temperature anomalies

    CERN Document Server

    Piterbarg, Leonid I

    1997-01-01

    The book presents the foundations of the theory of turbulent transport within the context of stochastic partial differential equations. It serves to establish a firm connection between rigorous and non-rigorous results concerning turbulent diffusion. Mathematically all of the issues addressed in this book are concentrated around a single linear equation: stochastic advection-diffusion (transport) equation. There is no attempt made to derive universal statistics for turbulent flow. Instead emphasis is placed on a statistical description of a passive scalar (tracer) under given velocity statistics. An application concerning transport of sea surface temperature anomalies reconciles the developed theory and a highly practical issue of modern physical oceanography by using the newly designed inversion techniques which take advantage of powerful maximum likelihood and autoregressive estimators. Audience: Graduate students and researchers in mathematics, fluid dynamics, and physical oceanography.

  17. Large diffusion anisotropy and orientation sorting of phosphorene nanoflakes under a temperature gradient.

    Science.gov (United States)

    Cheng, Yuan; Zhang, Gang; Zhang, Yingyan; Chang, Tienchong; Pei, Qing-Xiang; Cai, Yongqing; Zhang, Yong-Wei

    2018-01-25

    We perform molecular dynamics simulations to investigate the motion of phosphorene nanoflakes on a large graphene substrate under a thermal gradient. It is found that the atomic interaction between the graphene substrate and the phosphorene nanoflake generates distinct rates of motion for phosphorene nanoflakes with different orientations. Remarkably, for square phosphorene nanoflakes, the motion of zigzag-oriented nanoflakes is 2-fold faster than those of armchair-oriented and randomly-oriented nanoflakes. This large diffusion anisotropy suggests that sorting of phosphorene nanoflakes into specific orientations can be realized by a temperature gradient. The findings here provide interesting insights into strong molecular diffusion anisotropy and offer a novel route for manipulating two-dimensional materials.

  18. The interaction of thermal radiation on vertical oscillating plate with variable temperature and mass diffusion

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2006-01-01

    Full Text Available Thermal radiation effects on unsteady free convective flow of a viscous incompressible flow past an infinite vertical oscillating plate with variable temperature and mass diffusion has been studied. The fluid considered here is a gray, absorbing-emitting radiation but a non-scattering medium. The plate temperature is raised linearly with respect to time and the concentration level near the plate is also raised linearly with respect to time. An exact solution to the dimensionless governing equations has been obtained by the Laplace transform method, when the plate is oscillating harmonically in its own plane. The effects of velocity, temperature and concentration are studied for different parameters like phase angle, radiation parameter, Schmidt number, thermal Grashof number, mass Grashof number and time are studied. It is observed that the velocity increases with decreasing phase angle ωt. .

  19. Effect of elevated temperature on the composition, structure, and mechanical properties of diffusion chromized steel

    International Nuclear Information System (INIS)

    Osintsev, V.D.

    1986-01-01

    The author studies the effect of operating temperature for equipment in contact sections of sulfuric acid workshops on the structure and mechanical properties of the chromized coatings and core of chromized articles. The ferrite lattice spacing was determined in a DRON-0.5 diffractometer according to the line in copper K /sub alpha/ radiation exposure was carried out after layer-by-layer anodic etching of the coating in an aqueous solution. It was shown that diffusion chromizing may lead to a reduction in strength properties compared with those of unchromized steel. As a base for chromized articles intended for operation at temperatures up to 475 0 C it is desirable to use steels 09G2 or 09G25, or for operation at temperatures up to 540 0 C, steels 12KhM and 12MKh

  20. Self-induced temperature gradients in Brownian dynamics

    Science.gov (United States)

    Devine, Jack; Jack, M. W.

    2017-12-01

    Brownian systems often surmount energy barriers by absorbing and emitting heat to and from their local environment. Usually, the temperature gradients created by this heat exchange are assumed to dissipate instantaneously. Here we relax this assumption to consider the case where Brownian dynamics on a time-independent potential can lead to self-induced temperature gradients. In the same way that externally imposed temperature gradients can cause directed motion, these self-induced gradients affect the dynamics of the Brownian system. The result is a coupling between the local environment and the Brownian subsystem. We explore the resulting dynamics and thermodynamics of these coupled systems and develop a robust method for numerical simulation. In particular, by focusing on one-dimensional situations, we show that self-induced temperature gradients reduce barrier-crossing rates. We also consider a heat engine and a heat pump based on temperature gradients induced by a Brownian system in a nonequilibrium potential.

  1. Effective Tolman temperature induced by trace anomaly

    International Nuclear Information System (INIS)

    Eune, Myungseok; Gim, Yongwan; Kim, Wontae

    2017-01-01

    Despite the finiteness of stress tensor for a scalar field on the four-dimensional Schwarzschild black hole in the Israel-Hartle-Hawking vacuum, the Tolman temperature in thermal equilibrium is certainly divergent on the horizon due to the infinite blue-shift of the Hawking temperature. The origin of this conflict is due to the fact that the conventional Tolman temperature was based on the assumption of a traceless stress tensor, which is, however, incompatible with the presence of the trace anomaly responsible for the Hawking radiation. Here, we present an effective Tolman temperature which is compatible with the presence of the trace anomaly by using the modified Stefan-Boltzmann law. Eventually, the effective Tolman temperature turns out to be finite everywhere outside the horizon, and so an infinite blue-shift of the Hawking temperature at the event horizon does not appear any more. In particular, it is vanishing on the horizon, so that the equivalence principle is exactly recovered at the horizon. (orig.)

  2. Effective Tolman temperature induced by trace anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Eune, Myungseok [Sangmyung University, Department of Civil Engineering, Cheonan (Korea, Republic of); Gim, Yongwan [Sogang University, Department of Physics, Seoul (Korea, Republic of); Sogang University, Research Institute for Basic Science, Seoul (Korea, Republic of); Kim, Wontae [Sogang University, Department of Physics, Seoul (Korea, Republic of)

    2017-04-15

    Despite the finiteness of stress tensor for a scalar field on the four-dimensional Schwarzschild black hole in the Israel-Hartle-Hawking vacuum, the Tolman temperature in thermal equilibrium is certainly divergent on the horizon due to the infinite blue-shift of the Hawking temperature. The origin of this conflict is due to the fact that the conventional Tolman temperature was based on the assumption of a traceless stress tensor, which is, however, incompatible with the presence of the trace anomaly responsible for the Hawking radiation. Here, we present an effective Tolman temperature which is compatible with the presence of the trace anomaly by using the modified Stefan-Boltzmann law. Eventually, the effective Tolman temperature turns out to be finite everywhere outside the horizon, and so an infinite blue-shift of the Hawking temperature at the event horizon does not appear any more. In particular, it is vanishing on the horizon, so that the equivalence principle is exactly recovered at the horizon. (orig.)

  3. Diffusion and agglomeration of helium in stainless steel in the temperature range from RT to 600 deg. C

    International Nuclear Information System (INIS)

    Zhang, C.H.; Chen, K.Q.; Zhu, Z.Y.

    2000-01-01

    Diffusion of helium and formation of helium bubbles in stainless steel in conditions of atomic displacement in the temperature range from RT to 600 deg. C are studied theoretically using standard rate equations. The dissociative mechanism via self-interstitial/He replacement is assumed to control helium diffusion and bubble formation. The numerical analysis shows that the temperature dependence of the effective diffusion coefficient of helium, the number density and the mean radius of bubbles has two distinctly different regimes with the transition occurring around 300 deg. C. The effective diffusion coefficient of helium, the number density and the mean radius of bubbles show weak temperature dependence in the low temperature regime, while they change abruptly with temperature in the high temperature regime. The results are qualitatively in agreement with the results of our experimental study on helium diffusion and bubble formation in helium-implanted 316L stainless steel. However, the discrepancy in the absolute values of number density and mean radius of bubbles between theoretical and experimental studies indicates that helium diffusion and bubble formation may be controlled by some athermal mechanisms in the low temperature regime

  4. Effects of diluents on soot surface temperature and volume fraction in diluted ethylene diffusion flames at pressure

    KAUST Repository

    Kailasanathan, Ranjith Kumar Abhinavam; Zhang, Ji; Fang, Tiegang; Roberts, William L.

    2014-01-01

    Soot surface temperature and volume fraction are measured in ethylene/air coflowing laminar diffusion flames at high pressures, diluted with one of four diluents (argon, helium, nitrogen, and carbon dioxide) using a two-color technique. Both

  5. Room-temperature near-infrared electroluminescence from boron-diffused silicon pn junction diodes

    Directory of Open Access Journals (Sweden)

    Si eLi

    2015-02-01

    Full Text Available Silicon pn junction diodes with different doping concentrations were prepared by boron diffusion into Czochralski (CZ n-type silicon substrate. Their room-temperature near-infrared electroluminescence (EL was measured. In the EL spectra of the heavily boron doped diode, a luminescence peak at ~1.6 m (0.78 eV was observed besides the band-to-band line (~1.1eV under the condition of high current injection, while in that of the lightly boron doped diode only the band-to-band line was observed. The intensity of peak at 0.78 eV increases exponentially with current injection with no observable saturation at room temperature. Furthermore, no dislocations were found in the cross-sectional transmission electron microscopy image, and no dislocation-related luminescence was observed in the low-temperature photoluminescence spectra. We deduce the 0.78 eV emission originates from the irradiative recombination in the strain region of diodes caused by the diffusion of large number of boron atoms into silicon crystal lattice.

  6. Thermal conductivity and diffusivity of climax stock quartz monzonite at high pressure and temperature

    International Nuclear Information System (INIS)

    Durham, W.B.; Abey, A.E.

    1981-11-01

    Measurements of thermal conductivity and thermal diffusivity have been made on two samples of Climax Stock quartz monzonite at pressures between 3 and 50 MPa and temperatures between 300 and 523 0 K. Following those measurements the apparatus was calibrated with respect to the thermal conductivity measurement using a reference standard of fused silica. Corrected thermal conductivity of the rock indicates a value at room temperature of 2.60 +- 0.25 W/mK at 3 MPa increasing linearly to 2.75 +- 0.25 W/mK at 50 MPa. These values are unchanged (+- 0.07 W/mK) by heating under 50-MPa pressure to as high as 473 0 K. The conductivity under 50-MPa confining pressure falls smoothly from 2.75 +- 0.25 W/mK at 313 0 K to 2.15 +- 0.25 W/mK at 473 0 K. Thermal diffusivity at 300 0 K was found to be 1.2 +- 0.4 X 10 -6 m 2 /s and shows approximately the same pressure and temperature dependencies as the thermal conductivity

  7. Thermal conductivity and diffusivity of climax stock quartz monzonite at high pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Durham, W.B.; Abey, A.E.

    1981-11-01

    Measurements of thermal conductivity and thermal diffusivity have been made on two samples of Climax Stock quartz monzonite at pressures between 3 and 50 MPa and temperatures between 300 and 523{sup 0}K. Following those measurements the apparatus was calibrated with respect to the thermal conductivity measurement using a reference standard of fused silica. Corrected thermal conductivity of the rock indicates a value at room temperature of 2.60 +- 0.25 W/mK at 3 MPa increasing linearly to 2.75 +- 0.25 W/mK at 50 MPa. These values are unchanged (+- 0.07 W/mK) by heating under 50-MPa pressure to as high as 473{sup 0}K. The conductivity under 50-MPa confining pressure falls smoothly from 2.75 +- 0.25 W/mK at 313{sup 0}K to 2.15 +- 0.25 W/mK at 473{sup 0}K. Thermal diffusivity at 300{sup 0}K was found to be 1.2 +- 0.4 X 10{sup -6} m{sup 2}/s and shows approximately the same pressure and temperature dependencies as the thermal conductivity.

  8. Introduction of high oxygen concentrations into silicon wafers by high-temperature diffusion

    International Nuclear Information System (INIS)

    Casse, G.; Glaser, M.; Lemeilleur, F.; Ruzin, A.; Wegrzecki, M.

    1999-01-01

    The tolerance of silicon detectors to hadron irradiation can be improved by the introduction of a high concentration of oxygen into the starting material. High-resistivity Floating-Zone (FZ) silicon is required for detectors used in particle physics applications. A significantly high oxygen concentration (>10 17 atoms cm -3 ) cannot readily be achieved during the FZ silicon refinement. The diffusion of oxygen at elevated temperatures from a SiO 2 layer grown on both sides of a silicon wafer is a simple and effective technique to achieve high and uniform concentrations of oxygen throughout the bulk of a 300 μm thick silicon wafer

  9. On the Dynamics of the Self-organized Structures in a Low-Temperature Diffusion Plasma

    International Nuclear Information System (INIS)

    Talasman, S.J.

    1999-01-01

    In this paper we investigate the dynamics of self organized space charge structures a in low-temperature diffusion plasma, in order to see what are the processes responsible for the appearance of such structures. This is performed through the time-resolved axial distributions of the light emitted from the plasma and through a particular cross section of the phase-space. One obtains that excitations, de-excitations and ionizations are implied in both the transient regimes of the formation of these structures, and the oscillating steady states of them. On the other hand it was found that the dynamics of such structures verify the KAM theorem. (author)

  10. Trace elements in migrating high-temperature fluids: Effects of diffusive exchange with the adjoining solid

    Science.gov (United States)

    Kenyon, Patricia M.

    1993-01-01

    Trace element concentrations and isotopic ratios are frequently used to study the behavior of high-temperature fluids in both metamorphic and igneous systems. Many theoretical formulations of the effects of fluid migration on trace elements have assumed instantaneous reequilibration between the migrating fluid and the solid material through which it is passing. This paper investigates the additional effects which arise when equilibration is not instantaneous due to a limited rate of diffusion in the solid, using an analytical steady state solution to a set of partial differential equations describing the exchange of trace elements between the fluid and the solid during the migration of the fluid.

  11. Chemically-induced liquid film migration with low lattice diffusivity relative to the migration rate in Mo-Ni-(W)

    International Nuclear Information System (INIS)

    Lee, K.R.

    1992-01-01

    This paper reports that when a 90Mo-10Ni alloy (by wt) liquid phase sintered at 1400 degrees C is heat-treated at 1400 degrees C after replacing the matrix with a melt of 44Ni-34Mo-22W (by wt), the liquid films between the grains migrate, leaving behind an Mo alloy enriched with W. The ratio of the lattice diffusivity of W in Mo, D, to the initial migration velocity, v. (D/v) is estimated to be between 0.03 and 0.18 angstrom. Hence it appears that there is no lattice diffusion of W ahead of the migrating liquid film, and is such a case the driving force has been suggested to be the chemical free energy. But the observed v is approximately same as that to be expected if the driving force is assumed to be diffusional coherency strain energy. Likewise, a previous study of den Broeder and Nakahara shows that the rate of chemically-induced grain boundary migration in Cu-Ni shows a smooth variation with temperature as D/v decreases from values much larger than the interatomic spacing to values much smaller with decreasing temperature. The coherency strain energy thus appears to be a general driving force for the migration even when the apparent diffusion length indicated by D/v is smaller than the interatomic spacing

  12. Natural equilibria in steady-state neutron diffusion with temperature feedback

    International Nuclear Information System (INIS)

    Pounders, J. M.; Ingram, R.

    2013-01-01

    The critical diffusion equation with feedback is investigated within the context of steady-state multiphysics. It is proposed that for critical configurations there is no need to include the multiplication factor k in the formulation of the diffusion equation. This is notable because exclusion of k from the coupled system of equations precludes the mathematically tenuous notion of a nonlinear eigenvalue problem. On the other hand, it is shown that if the factor k is retained in the diffusion equation, as is currently common practice, then the resulting problem is equivalent to the constrained minimization of a functional representing the critical equilibrium of neutron and temperature distributions. The unconstrained solution corresponding to k = 1 represents the natural equilibrium of a critical system at steady-state. Computational methods for solving the constrained problem (with k) are briefly reviewed from the literature and a method for the unconstrained problem (without k) is outlined. A numerical example is studied to examine the effects of the constraint in the nonlinear system. (authors)

  13. Flexible temperature and flow sensor from laser-induced graphene

    KAUST Repository

    Marengo, Marco; Marinaro, Giovanni; Kosel, Jü rgen

    2017-01-01

    Herein we present a flexible temperature sensor and a flow speed sensor based on laser-induced graphene. The main benefits arise from peculiar electrical, thermal and mechanical performances of the material thus obtained, along with a cheap

  14. Heterogeneity induces spatiotemporal oscillations in reaction-diffusion systems

    Science.gov (United States)

    Krause, Andrew L.; Klika, Václav; Woolley, Thomas E.; Gaffney, Eamonn A.

    2018-05-01

    We report on an instability arising in activator-inhibitor reaction-diffusion (RD) systems with a simple spatial heterogeneity. This instability gives rise to periodic creation, translation, and destruction of spike solutions that are commonly formed due to Turing instabilities. While this behavior is oscillatory in nature, it occurs purely within the Turing space such that no region of the domain would give rise to a Hopf bifurcation for the homogeneous equilibrium. We use the shadow limit of the Gierer-Meinhardt system to show that the speed of spike movement can be predicted from well-known asymptotic theory, but that this theory is unable to explain the emergence of these spatiotemporal oscillations. Instead, we numerically explore this system and show that the oscillatory behavior is caused by the destabilization of a steady spike pattern due to the creation of a new spike arising from endogeneous activator production. We demonstrate that on the edge of this instability, the period of the oscillations goes to infinity, although it does not fit the profile of any well-known bifurcation of a limit cycle. We show that nearby stationary states are either Turing unstable or undergo saddle-node bifurcations near the onset of the oscillatory instability, suggesting that the periodic motion does not emerge from a local equilibrium. We demonstrate the robustness of this spatiotemporal oscillation by exploring small localized heterogeneity and showing that this behavior also occurs in the Schnakenberg RD model. Our results suggest that this phenomenon is ubiquitous in spatially heterogeneous RD systems, but that current tools, such as stability of spike solutions and shadow-limit asymptotics, do not elucidate understanding. This opens several avenues for further mathematical analysis and highlights difficulties in explaining how robust patterning emerges from Turing's mechanism in the presence of even small spatial heterogeneity.

  15. Delay-induced wave instabilities in single-species reaction-diffusion systems

    Science.gov (United States)

    Otto, Andereas; Wang, Jian; Radons, Günter

    2017-11-01

    The Turing (wave) instability is only possible in reaction-diffusion systems with more than one (two) components. Motivated by the fact that a time delay increases the dimension of a system, we investigate the presence of diffusion-driven instabilities in single-species reaction-diffusion systems with delay. The stability of arbitrary one-component systems with a single discrete delay, with distributed delay, or with a variable delay is systematically analyzed. We show that a wave instability can appear from an equilibrium of single-species reaction-diffusion systems with fluctuating or distributed delay, which is not possible in similar systems with constant discrete delay or without delay. More precisely, we show by basic analytic arguments and by numerical simulations that fast asymmetric delay fluctuations or asymmetrically distributed delays can lead to wave instabilities in these systems. Examples, for the resulting traveling waves are shown for a Fisher-KPP equation with distributed delay in the reaction term. In addition, we have studied diffusion-induced instabilities from homogeneous periodic orbits in the same systems with variable delay, where the homogeneous periodic orbits are attracting resonant periodic solutions of the system without diffusion, i.e., periodic orbits of the Hutchinson equation with time-varying delay. If diffusion is introduced, standing waves can emerge whose temporal period is equal to the period of the variable delay.

  16. On common noise-induced synchronization in complex networks with state-dependent noise diffusion processes

    Science.gov (United States)

    Russo, Giovanni; Shorten, Robert

    2018-04-01

    This paper is concerned with the study of common noise-induced synchronization phenomena in complex networks of diffusively coupled nonlinear systems. We consider the case where common noise propagation depends on the network state and, as a result, the noise diffusion process at the nodes depends on the state of the network. For such networks, we present an algebraic sufficient condition for the onset of synchronization, which depends on the network topology, the dynamics at the nodes, the coupling strength and the noise diffusion. Our result explicitly shows that certain noise diffusion processes can drive an unsynchronized network towards synchronization. In order to illustrate the effectiveness of our result, we consider two applications: collective decision processes and synchronization of chaotic systems. We explicitly show that, in the former application, a sufficiently large noise can drive a population towards a common decision, while, in the latter, we show how common noise can synchronize a network of Lorentz chaotic systems.

  17. Laser-induced desorption determinations of surface diffusion on Rh(111)

    International Nuclear Information System (INIS)

    Seebauer, E.G.; Schmidt, L.D.

    1987-01-01

    Surface diffusion of hydrogen, deuterium and CO on Rh(111) has been investigated by laser-induced thermal desorption (LITD) and compared with previous results for these species on Pt(111) and on other metals. For deuterium in the coverage range 0.02 0 - 8 x 10 -2 cm 2 /s, with a diffusion activation energy 3.7 0 rises from 10 -3 to 10 -2 cm 2 /s between θ = 0.01 and 0.40. Values of E/sub diff/ on different surfaces appear to correlate with differences in heats of adsorption in different binding states which form saddle point configurations in surface diffusion. In addition, oxidation reactions on Rh and on several other transition metal surfaces may be limited to CO or H surface diffusion. 30 refs., 3 figs., 1 tab

  18. A method for estimating the diffuse attenuation coefficient (KdPAR)from paired temperature sensors

    Science.gov (United States)

    Read, Jordan S.; Rose, Kevin C.; Winslow, Luke A.; Read, Emily K.

    2015-01-01

    A new method for estimating the diffuse attenuation coefficient for photosynthetically active radiation (KdPAR) from paired temperature sensors was derived. We show that during cases where the attenuation of penetrating shortwave solar radiation is the dominant source of temperature changes, time series measurements of water temperatures at multiple depths (z1 and z2) are related to one another by a linear scaling factor (a). KdPAR can then be estimated by the simple equation KdPAR ln(a)/(z2/z1). A suggested workflow is presented that outlines procedures for calculating KdPAR according to this paired temperature sensor (PTS) method. This method is best suited for conditions when radiative temperature gains are large relative to physical noise. These conditions occur frequently on water bodies with low wind and/or high KdPARs but can be used for other types of lakes during time periods of low wind and/or where spatially redundant measurements of temperatures are available. The optimal vertical placement of temperature sensors according to a priori knowledge of KdPAR is also described. This information can be used to inform the design of future sensor deployments using the PTS method or for campaigns where characterizing sub-daily changes in temperatures is important. The PTS method provides a novel method to characterize light attenuation in aquatic ecosystems without expensive radiometric equipment or the user subjectivity inherent in Secchi depth measurements. This method also can enable the estimation of KdPAR at higher frequencies than many manual monitoring programs allow.

  19. Temperature and concentration calibration of aqueous polyvinylpyrrolidone (PVP solutions for isotropic diffusion MRI phantoms.

    Directory of Open Access Journals (Sweden)

    Friedrich Wagner

    Full Text Available To use the "apparent diffusion coefficient" (Dapp as a quantitative imaging parameter, well-suited test fluids are essential. In this study, the previously proposed aqueous solutions of polyvinylpyrrolidone (PVP were examined and temperature calibrations were obtained. For example, at a temperature of 20°C, Dapp ranged from 1.594 (95% CI: 1.593, 1.595 μm2/ms to 0.3326 (95% CI: 0. 3304, 0.3348 μm2/ms for PVP-concentrations ranging from 10% (w/w to 50% (w/w using K30 polymer lengths. The temperature dependence of Dapp was found to be so strong that a negligence seems not advisable. The temperature dependence is descriptively modelled by an exponential function exp(c2 (T - 20°C and the determined c2 values are reported, which can be used for temperature calibration. For example, we find the value 0.02952 K-1 for 30% (w/w PVP-concentration and K30 polymer length. In general, aqueous PVP solutions were found to be suitable to produce easily applicable and reliable Dapp-phantoms.

  20. Determination of heat conductivity and thermal diffusivity of waste glass melter feed: Extension to high temperatures

    International Nuclear Information System (INIS)

    Rice, Jarrett A.; Pokorny, Richard; Schweiger, Michael J.; Hrma, Pavel R.

    2014-01-01

    The heat conductivity (λ) and the thermal diffusivity (a) of reacting glass batch, or melter feed, control the heat flux into and within the cold cap, a layer of reacting material floating on the pool of molten glass in an all-electric continuous waste glass melter. After previously estimating λ of melter feed at temperatures up to 680 deg C, we focus in this work on the λ(T) function at T > 680 deg C, at which the feed material becomes foamy. We used a customized experimental setup consisting of a large cylindrical crucible with an assembly of thermocouples, which monitored the evolution of the temperature field while the crucible with feed was heated at a constant rate from room temperature up to 1100°C. Approximating measured temperature profiles by polynomial functions, we used the heat transfer equation to estimate the λ(T) approximation function, which we subsequently optimized using the finite-volume method combined with least-squares analysis. The heat conductivity increased as the temperature increased until the feed began to expand into foam, at which point the conductivity dropped. It began to increase again as the foam turned into a bubble-free glass melt. We discuss the implications of this behavior for the mathematical modeling of the cold cap

  1. The Induced Dimension Reduction method applied to convection-diffusion-reaction problems

    NARCIS (Netherlands)

    Astudillo, R.; Van Gijzen, M.B.

    2016-01-01

    Discretization of (linearized) convection-diffusion-reaction problems yields a large and sparse non symmetric linear system of equations, Ax = b. (1) In this work, we compare the computational behavior of the Induced Dimension Reduction method (IDR(s)) [10], with other short-recurrences Krylov

  2. Persistent wind-induced enhancement of diffusive CO2 transport in a mountain forest snowpack

    Science.gov (United States)

    D. R. Bowling; W. J. Massman

    2011-01-01

    Diffusion dominates the transport of trace gases between soil and the atmosphere. Pressure gradients induced by atmospheric flow and wind interacting with topographical features cause a small but persistent bulk flow of air within soil or snow. This forcing, called pressure pumping or wind pumping, leads to a poorly quantified enhancement of gas transport beyond the...

  3. Diffusion-driven growth of nanowires by low-temperature molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Rueda-Fonseca, P.; Orrù, M. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CNRS, Institut NEEL, F-38000 Grenoble (France); CEA, INAC, F-38000 Grenoble (France); Bellet-Amalric, E.; Robin, E. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, INAC, F-38000 Grenoble (France); Den Hertog, M.; Genuist, Y.; André, R.; Tatarenko, S.; Cibert, J., E-mail: joel.cibert@neel.cnrs.fr [Univ. Grenoble Alpes, F-38000 Grenoble (France); CNRS, Institut NEEL, F-38000 Grenoble (France)

    2016-04-28

    With ZnTe as an example, we use two different methods to unravel the characteristics of the growth of nanowires (NWs) by gold-catalyzed molecular beam epitaxy at low temperature. In the first approach, CdTe insertions have been used as markers, and the nanowires have been characterized by scanning transmission electron microscopy, including geometrical phase analysis and energy dispersive electron spectrometry; the second approach uses scanning electron microscopy and the statistics of the relationship between the length of the tapered nanowires and their base diameter. Axial and radial growth are quantified using a diffusion-limited model adapted to the growth conditions; analytical expressions describe well the relationship between the NW length and the total molecular flux (taking into account the orientation of the effusion cells), and the catalyst-nanowire contact area. A long incubation time is observed. This analysis allows us to assess the evolution of the diffusion lengths on the substrate and along the nanowire sidewalls, as a function of temperature and deviation from stoichiometric flux.

  4. Axi-symmetric generalized thermoelastic diffusion problem with two-temperature and initial stress under fractional order heat conduction

    International Nuclear Information System (INIS)

    Deswal, Sunita; Kalkal, Kapil Kumar; Sheoran, Sandeep Singh

    2016-01-01

    A mathematical model of fractional order two-temperature generalized thermoelasticity with diffusion and initial stress is proposed to analyze the transient wave phenomenon in an infinite thermoelastic half-space. The governing equations are derived in cylindrical coordinates for a two dimensional axi-symmetric problem. The analytical solution is procured by employing the Laplace and Hankel transforms for time and space variables respectively. The solutions are investigated in detail for a time dependent heat source. By using numerical inversion method of integral transforms, we obtain the solutions for displacement, stress, temperature and diffusion fields in physical domain. Computations are carried out for copper material and displayed graphically. The effect of fractional order parameter, two-temperature parameter, diffusion, initial stress and time on the different thermoelastic and diffusion fields is analyzed on the basis of analytical and numerical results. Some special cases have also been deduced from the present investigation.

  5. Determination of thermal diffusivity of dental enamel and dentin as a function of temperature, using infrared thermography

    International Nuclear Information System (INIS)

    Pereira, Thiago Martini

    2009-01-01

    In this work it was developed a software that calculates automatically, the thermal diffusivity value as a function of temperature in materials. The infrared thermography technique was used for data acquisition of temperature distribution as a function of time. These data were used to adjust a temperature function obtained from the homogeneous heat equation with specific boundary conditions. For that, an infrared camera (detecting from 8 μm to 9 μm) was calibrated to detect temperature ranging from 185 degree C up to 1300 degree C at an acquisition rate of 300 Hz. It was used, 10 samples of dental enamel and 10 samples of dentin, with 4 mm x 4 mm x 2 mm, which were obtained from bovine lower incisor teeth. These samples were irradiated with an Er:Cr:YSGG pulsed laser (λ = 2,78 μm). The resulting temperature was recorded 2 s prior, 10 s during irradiation and continuing for 2 more seconds after it. After each irradiation, all obtained thermal images were processed in the software, creating a file with the data of thermal diffusivity as a function of temperature. Another file with the thermal diffusivity values was also calculated after each laser pulse. The mean result of thermal diffusivity obtained for dental enamel was 0,0084 ± 0,001 cm2/s for the temperature interval of 220-550 degree C. The mean value for thermal diffusivity obtained for dentin was 0,0015 0,0004 cm2/s in temperatures up to 360 degree C; however, this value increases for higher temperatures. According to these results, it was possible to conclude that the use of infrared thermography, associated with the software developed in this work, is an efficient method to determine the thermal diffusivity values as a function of temperature in different materials. (author)

  6. Pressure-Induced Changes in Inter-Diffusivity and Compressive Stress in Chemically Strengthened Glass

    DEFF Research Database (Denmark)

    Svenson, Mouritz Nolsøe; Thirion, Lynn M.; Youngman, Randall E.

    chamber to compress bulk glass samples isostatically up to 1 GPa at elevated temperature before or after the ion exchange treatment of an industrial sodium-magnesium aluminosilicate glass. Compression of the samples prior to ion exchange leads to a decreased Na+-K+ inter-diffusivity, increased compressive...

  7. Charge-induced secondary atomization in diffusion flames of electrostatic sprays

    Science.gov (United States)

    Gomez, Alessandro; Chen, Gung

    1994-01-01

    The combustion of electrostatic sprays of heptane in laminar counterflow diffusion flames was experimentally studied by measuring droplet size and velocity distributions, as well as the gas-phase temperature. A detailed examination of the evolution of droplet size distribution as droplets approach the flame shows that, if substantial evaporation occurs before droplets interact with the flame, an initially monodisperse size distribution becomes bimodal. A secondary sharp peak in the size histogram develops in correspondence of diameters about one order of magnitude smaller than the mean. No evaporation mechanism can account for the development of such bimodality, that can be explained only in terms of a disintegration of droplets into finer fragments of size much smaller than that of the parent. Other evidence in support of this interpretation is offered by the measurements of droplet size-velocity correlation and velocity component distributions, showing that, as a consequence of the ejection process, the droplets responsible for the secondary peak have velocities uncorrelated with the mean flow. The fission is induced by the electric charge. When a droplet evaporates, in fact, the electric charge density on the droplet surface increases while the droplet shrinks, until the so-called Rayleigh limit is reached at which point the repulsion of electric charges overcomes the surface tension cohesive force, ultimately leading to a disintegraton into finer fragments. We report on the first observation of such fissions in combustion environments. If, on the other hand, insufficient evaporation has occurred before droplets enter the high temperature region, there appears to be no significant evidence of bimodality in their size distribution. In this case, in fact, the concentration of flame chemi-ions or, in the case of positively charged droplets, electrons may be sufficient for them to neutralize the charge on the droplets and to prevent disruption.

  8. Productivity effects of technology diffusion induced by an energy tax

    International Nuclear Information System (INIS)

    Walz, R.

    1999-01-01

    In the political discussion, the economy-wide effects of an energy tax have gained considerable attention. So far, macroeconomic analyses have focused on either (positive or negative) costs triggered by an energy tax, or on the efficiency gains resulting from new energy taxes combined with lower distortionary taxes. By contrast, the innovative effects of climate protection measures have not yet been thoroughly analysed. This paper explores the productivity effects of a 50 per cent energy tax in the German industry sector employing a technology-based, three-step bottom-up approach. In the first step, the extensive IKARUS database is used to identify the technological adjustments arising from an energy tax. In the second step, the technologies are classified into different clusters. In the third step, the productivity effects generated by the technological adjustments are examined. The results imply that an energy tax induces mainly sector-specific and process-integrated technologies rather than add-on and cross-cutting technologies. Further, it is shown that the energy-saving technologies tend to increase productivity. This is particularly the case for process-integrated, sector specific technologies. (author)

  9. Thermal diffusivity measurements of liquid materials at high temperature with the ''laser flash'' method

    International Nuclear Information System (INIS)

    Otter, Claude; Vandevelde, Jean

    1982-01-01

    Two solutions, one analytical and the other numerical are proposed to solve the thermokinetic problem encountered when measuring the thermal diffusivity of liquid materials at very high temperature (T>3123K). The liquid material is contained in a parallel faced vessel. This liquid is traversed by a short thermal pulse from a relaxed laser. The temperature response of the back face of the measurement cell is analysed. The first model proposed which does not take thermal losses into consideration, is a mathematical model derived from the ''two layer model'' (Larson and Koyama, 1968) extended to ''three layers''. In order to take the possibility of thermal losses to the external environment at high temperature into consideration, a Crank-Nicolson (1947) type numerical model utilizing finite differences is employed. These thermokinetic studies were performed in order to interpret temperature response curves obtained from the back face of a tungsten-liquid UO 2 -tungsten thermal wall, the purpose of the measurements made being to determine the thermal properties of liquid uranium oxide [fr

  10. Study by neutron diffusion of magnetic fluctuations in iron in the curie temperature region

    International Nuclear Information System (INIS)

    Ericson-Galula, M.

    1958-12-01

    The critical diffusion of neutrons in iron is due to the magnetisation fluctuations which occur in ferromagnetic substances in the neighbourhood of the Curie temperature. The fluctuations can be described in correlation terms; a correlation function γ R vector (t) is defined, γ R vector (t) = 0 vector (0) S R vector (t)> mean value of the scalar product of a reference spin and a spin situated at a distance (R) from the first and considered at the instant t. In chapter I we recall the generalities on neutron diffusion cross-sections; a brief summary is given of the theory of VAN HOVE, who has shown that the magnetic diffusion cross section of neutrons is the Fourier transformation of the correlation function. In chapter Il we study the spatial dependence of the correlation function, assumed to be independent of time. It can then be characterised by two parameters K 1 and r 1 , by means of which the range and intensity of the correlations can be calculated respectively. After setting out the principle of the measurement of these parameters, we shall describe the experimental apparatus. The experimental values obtained are in good agreement with the calculations, and the agreement is better if it is supposed that the second and not the first neighbours of an iron atom are magnetically active, as proposed by Neel. In chapter III we study the evolution with time of the correlation function; this evolution is characterised by a parameter Λ depending on the temperature, which occurs in the diffusion equation obeyed by the magnetisation fluctuations: δM vector /δt = Λ ∇ 2 M vector . The principle of the measurement of Λ is given, after which the modifications carried out on the experimental apparatus mentioned in chapter II are described. The results obtained are then discussed and compared with the theoretical forecasts of De Gennes, mode by using the Heinsenberg model and a simple band model; our values in good agreement with those calculated in the Heisenberg

  11. The Water-Induced Linear Reduction Gas Diffusivity Model Extended to Three Pore Regions

    DEFF Research Database (Denmark)

    Chamindu, T. K. K. Deepagoda; de Jonge, Lis Wollesen; Kawamoto, Ken

    2015-01-01

    . Characterization of soil functional pore structure is an essential prerequisite to understand key gas transport processes in variably saturated soils in relation to soil ecosystems, climate, and environmental services. In this study, the water-induced linear reduction (WLR) soil gas diffusivity model originally...... gas diffusivity from moist to dry conditions across differently structured porous media, including narrow soil size fractions, perforated plastic blocks, fractured limestone, peaty soils, aggregated volcanic ash soils, and particulate substrates for Earth- or space-based applications. The new Cip...

  12. Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations

    Energy Technology Data Exchange (ETDEWEB)

    Way, J. Douglas [Colorado School of Mines, Golden, CO (United States). Dept. of Chemical and Biological Engineering; Wolden, Colin A. [Colorado School of Mines, Golden, CO (United States)

    2013-09-30

    Colorado School of Mines (CSM) developed high temperature, hydrogen permeable membranes that contain no platinum group metals with the goal of separating hydrogen from gas mixtures representative of gasification of carbon feedstocks such as coal or biomass in order to meet DOE NETL 2015 hydrogen membrane performance targets. We employed a dual synthesis strategy centered on transition metal carbides. In the first approach, novel, high temperature, surface diffusion membranes based on nanoporous Mo2C were fabricated on ceramic supports. These were produced in a two step process that consisted of molybdenum oxide deposition followed by thermal carburization. Our best Mo2C surface diffusion membrane achieved a pure hydrogen flux of 367 SCFH/ft2 at a feed pressure of only 20 psig. The highest H2/N2 selectivity obtained with this approach was 4.9. A transport model using “dusty gas” theory was derived to describe the hydrogen transport in the Mo2C coated, surface diffusion membranes. The second class of membranes developed were dense metal foils of BCC metals such as vanadium coated with thin (< 60 nm) Mo2C catalyst layers. We have fabricated a Mo2C/V composite membrane that in pure gas testing delivered a H2 flux of 238 SCFH/ft2 at 600 °C and 100 psig, with no detectable He permeance. This exceeds the 2010 DOE Target flux. This flux is 2.8 times that of pure Pd at the same membrane thickness and test conditions and over 79% of the 2015 flux target. In mixed gas testing we achieved a permeate purity of ≥99.99%, satisfying the permeate purity milestone, but the hydrogen permeance was low, ~0.2 SCFH/ft2.psi. However, during testing of a Mo2C coated Pd alloy membrane with DOE 1 feed gas mixture a hydrogen permeance of >2 SCFH/ft2.psi was obtained which was stable during the entire test, meeting the permeance associated with

  13. Thermal diffusivity of electrical insulators at high temperatures: Evidence for diffusion of bulk phonon-polaritons at infrared frequencies augmenting phonon heat conduction

    Science.gov (United States)

    Hofmeister, Anne M.; Dong, Jianjun; Branlund, Joy M.

    2014-04-01

    We show that laser-flash analysis measurements of the temperature (T) dependence of thermal diffusivity (D) for diverse non-metallic (e.g., silicates) single-crystals is consistently represented by D(T) = FT-G + HT above 298 K, with G ranging from 0.3 to 2, depending on structure, and H being ˜10-4 K-1 for 51 single-crystals, 3 polycrystals, and two glasses unaffected by disorder or reconstructive phase transitions. Materials exhibiting this behavior include complex silicates with variable amounts of cation disorder, perovskite structured materials, and graphite. The high-temperature term HT becomes important by ˜1300 K, above which temperature its contribution to D(T) exceeds that of the FT-G term. The combination of the FT-G and HT terms produces the nearly temperature independent high-temperature region of D previously interpreted as the minimal phonon mean free path being limited by the finite interatomic spacing. Based on the simplicity of the fit and large number of materials it represents, this finding has repercussions for high-temperature models of heat transport. One explanation is that the two terms describing D(T) are associated with two distinct microscopic mechanisms; here, we explore the possibility that the thermal diffusivity of an electrical insulator could include both a contribution of lattice phonons (the FT-G term) and a contribution of diffusive bulk phonon-polaritons (BPP) at infrared (IR) frequencies (the HT term). The proposed BPP diffusion exists over length scales smaller than the laboratory sample sizes, and transfers mixed light and vibrational energy at a speed significantly smaller than the speed of light. Our diffusive IR-BPP hypothesis is consistent with other experimental observations such as polarization behavior, dependence of D on the number of IR peaks, and H = 0 for Ge and Si, which lack IR fundamentals. A simple quasi-particle thermal diffusion model is presented to begin understanding the contribution from bulk phonon

  14. Diffusion Filters for Variational Data Assimilation of Sea Surface Temperature in an Intermediate Climate Model

    Directory of Open Access Journals (Sweden)

    Xuefeng Zhang

    2015-01-01

    Full Text Available Sequential, adaptive, and gradient diffusion filters are implemented into spatial multiscale three-dimensional variational data assimilation (3DVAR as alternative schemes to model background error covariance matrix for the commonly used correction scale method, recursive filter method, and sequential 3DVAR. The gradient diffusion filter (GDF is verified by a two-dimensional sea surface temperature (SST assimilation experiment. Compared to the existing DF, the new GDF scheme shows a superior performance in the assimilation experiment due to its success in extracting the spatial multiscale information. The GDF can retrieve successfully the longwave information over the whole analysis domain and the shortwave information over data-dense regions. After that, a perfect twin data assimilation experiment framework is designed to study the effect of the GDF on the state estimation based on an intermediate coupled model. In this framework, the assimilation model is subject to “biased” initial fields from the “truth” model. While the GDF reduces the model bias in general, it can enhance the accuracy of the state estimation in the region that the observations are removed, especially in the South Ocean. In addition, the higher forecast skill can be obtained through the better initial state fields produced by the GDF.

  15. Generalized two-temperature model for coupled phonon-magnon diffusion.

    Science.gov (United States)

    Liao, Bolin; Zhou, Jiawei; Chen, Gang

    2014-07-11

    We generalize the two-temperature model [Sanders and Walton, Phys. Rev. B 15, 1489 (1977)] for coupled phonon-magnon diffusion to include the effect of the concurrent magnetization flow, with a particular emphasis on the thermal consequence of the magnon flow driven by a nonuniform magnetic field. Working within the framework of the Boltzmann transport equation, we derive the constitutive equations for coupled phonon-magnon transport driven by gradients of both temperature and external magnetic fields, and the corresponding conservation laws. Our equations reduce to the original Sanders-Walton two-temperature model under a uniform external field, but predict a new magnon cooling effect driven by a nonuniform magnetic field in a homogeneous single-domain ferromagnet. We estimate the magnitude of the cooling effect in an yttrium iron garnet, and show it is within current experimental reach. With properly optimized materials, the predicted cooling effect can potentially supplement the conventional magnetocaloric effect in cryogenic applications in the future.

  16. Induced-Charge Enhancement of the Diffusion Potential in Membranes with Polarizable Nanopores.

    Science.gov (United States)

    Ryzhkov, I I; Lebedev, D V; Solodovnichenko, V S; Shiverskiy, A V; Simunin, M M

    2017-12-01

    When a charged membrane separates two salt solutions of different concentrations, a potential difference appears due to interfacial Donnan equilibrium and the diffusion junction. Here, we report a new mechanism for the generation of a membrane potential in polarizable conductive membranes via an induced surface charge. It results from an electric field generated by the diffusion of ions with different mobilities. For uncharged membranes, this effect strongly enhances the diffusion potential and makes it highly sensitive to the ion mobilities ratio, electrolyte concentration, and pore size. Theoretical predictions on the basis of the space-charge model extended to polarizable nanopores fully agree with experimental measurements in KCl and NaCl aqueous solutions.

  17. Stochastic chaos induced by diffusion processes with identical spectral density but different probability density functions.

    Science.gov (United States)

    Lei, Youming; Zheng, Fan

    2016-12-01

    Stochastic chaos induced by diffusion processes, with identical spectral density but different probability density functions (PDFs), is investigated in selected lightly damped Hamiltonian systems. The threshold amplitude of diffusion processes for the onset of chaos is derived by using the stochastic Melnikov method together with a mean-square criterion. Two quasi-Hamiltonian systems, namely, a damped single pendulum and damped Duffing oscillator perturbed by stochastic excitations, are used as illustrative examples. Four different cases of stochastic processes are taking as the driving excitations. It is shown that in such two systems the spectral density of diffusion processes completely determines the threshold amplitude for chaos, regardless of the shape of their PDFs, Gaussian or otherwise. Furthermore, the mean top Lyapunov exponent is employed to verify analytical results. The results obtained by numerical simulations are in accordance with the analytical results. This demonstrates that the stochastic Melnikov method is effective in predicting the onset of chaos in the quasi-Hamiltonian systems.

  18. Temperature mapping of laser-induced hyperthermia in an ocular phantom using magnetic resonance thermography.

    Science.gov (United States)

    Maswadi, Saher M; Dodd, Stephen J; Gao, Jia-Hong; Glickman, Randolph D

    2004-01-01

    Laser-induced heating in an ocular phantom is measured with magnetic resonance thermography (MRT) using temperature-dependent phase changes in proton resonance frequency. The ocular phantom contains a layer of melanosomes isolated from bovine retinal pigment epithelium. The phantom is heated by the 806-nm output of a continuous wave diode laser with an irradiance of 2.4 to 21.6 W/cm2 in a beam radius of 0.8 or 2.4 mm, depending on the experiment. MRT is performed with a 2 T magnet, and a two-turn, 6-cm-diam, circular radio frequency coil. Two-dimensional temperature gradients are measured within the plane of the melanin layer, as well as normal to it, with a temperature resolution of 1 degrees C or better. The temperature gradients extending within the melanin layer are broader than those orthogonal to the layer, consistent with the higher optical absorption and consequent heating in the melanin. The temperature gradients in the phantom measured by MRT closely approximate the predictions of a classical heat diffusion model. Three-dimensional temperature maps with a spatial resolution of 0.25 mm in all directions are also made. Although the temporal resolution is limited in the prototype system (22.9 s for a single image "slice"), improvements in future implementations are likely. These results indicate that MRT has sufficient spatial and temperature resolution to monitor target tissue temperature during transpupillary thermotherapy in the human eye.

  19. Creep and stress relaxation induced by interface diffusion in metal matrix composites

    Science.gov (United States)

    Li, Yinfeng; Li, Zhonghua

    2013-03-01

    An analytical solution is developed to predict the creep rate induced by interface diffusion in unidirectional fiber-reinforced and particle reinforced composites. The driving force for the interface diffusion is the normal stress acting on the interface, which is obtained from rigorous Eshelby inclusion theory. The closed-form solution is an explicit function of the applied stress, volume fraction and radius of the fiber, as well as the modulus ratio between the fiber and the matrix. It is interesting that the solution is formally similar to that of Coble creep in polycrystalline materials. For the application of the present solution in the realistic composites, the scale effect is taken into account by finite element analysis based on a unit cell. Based on the solution, a closed-form solution is also given as a description of stress relaxation induced by interfacial diffusion under constant strain. In addition, the analytical solution for the interface stress presented in this study gives some insight into the relationship between the interface diffusion and interface slip. This work was supported by the financial support from the Nature Science Foundation of China (No. 10932007), the National Basic Research Program of China (No. 2010CB631003/5), and the Doctoral Program of Higher Education of China (No. 20100073110006).

  20. Mixed Herbal Medicine Induced Diffuse Infiltrative Lung Disease: The HRCT and Histopathologic Findings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Gyu; Shin, Eun A [Sanggye Paik Hospital, Inje University College of Medicine, Seoul (Korea, Republic of); Kim, Joung Sook [Mokdong Hospital, Ewha Womans University College of Medicine, Seoul (Korea, Republic of)

    2010-12-15

    The purpose of this study was to evaluate the high-resolution CT (HRCT) and pathologic findings of mixed herbal medicine-induced diffuse interstitial lung disease. Eight patients (6 women and 2 men, age range: 31 to 81 years, mean age: 51.4 years) who presented with cough or dyspnea after taking mixed herbal medicine were included in this study. All the patients underwent plain chest radiography and HRCT. We obtained pathologic specimens from 7 patients via fluoroscopy guided large bore cutting needle biopsy and transbronchial lung biopsy. All the patients were treated with steroid therapy. The most common HRCT finding was bilateral diffuse ground glass opacity (n=7), followed by peribronchial consolidation (n=5) and inter- or intralobular septal thickening (n=2). For the disease distribution, the lower lung zone was dominantly involved. The pathologic results of 7 patients were nonspecific interstitial pneumonia (n=3), bronchiolitis obliterans organizing pneumonia (n=2), hypersensitivity pneumonitis (n=1) and eosinophilic pneumonia (n=1). Irrespective of the pathologic results, all 8 patients improved clinically and radiologically after steroid treatment. The HRCT findings of mixed herbal medicine-induced diffuse infiltrative lung disease were mainly bilateral diffuse ground glass opacity, peribronchial consolidation and dominant involvement of the lower lung zone. Those pathologic findings were nonspecific and the differential diagnosis could include interstitial pneumonia, bronchiolitis obliterans organizing pneumonia, hypersensitivity pneumonitis and eosinophilic pneumonia

  1. Morphological bubble evolution induced by air diffusion on submerged hydrophobic structures

    Science.gov (United States)

    Lv, Pengyu; Xiang, Yaolei; Xue, Yahui; Lin, Hao; Duan, Huiling

    2017-03-01

    Bubbles trapped in the cavities always play important roles in the underwater applications of structured hydrophobic surfaces. Air exchange between bubbles and surrounding water has a significant influence on the morphological bubble evolution, which in turn frequently affects the functionalities of the surfaces, such as superhydrophobicity and drag reduction. In this paper, air diffusion induced bubble evolution on submerged hydrophobic micropores under reduced pressures is investigated experimentally and theoretically. The morphological behaviors of collective and single bubbles are observed using confocal microscopy. Four representative evolution phases of bubbles are captured in situ. After depressurization, bubbles will not only grow and coalesce but also shrink and split although the applied pressure remains negative. A diffusion-based model is used to analyze the evolution behavior and the results are consistent with the experimental data. A criterion for bubble growth and shrinkage is also derived along with a phase diagram, revealing that the competition of effective gas partial pressures across the two sides of the diffusion layer dominates the bubble evolution process. Strategies for controlling the bubble evolution behavior are also proposed based on the phase diagram. The current work provides a further understanding of the general behavior of bubble evolution induced by air diffusion and can be employed to better designs of functional microstructured hydrophobic surfaces.

  2. Mixed Herbal Medicine Induced Diffuse Infiltrative Lung Disease: The HRCT and Histopathologic Findings

    International Nuclear Information System (INIS)

    Kim, Tae Gyu; Shin, Eun A; Kim, Joung Sook

    2010-01-01

    The purpose of this study was to evaluate the high-resolution CT (HRCT) and pathologic findings of mixed herbal medicine-induced diffuse interstitial lung disease. Eight patients (6 women and 2 men, age range: 31 to 81 years, mean age: 51.4 years) who presented with cough or dyspnea after taking mixed herbal medicine were included in this study. All the patients underwent plain chest radiography and HRCT. We obtained pathologic specimens from 7 patients via fluoroscopy guided large bore cutting needle biopsy and transbronchial lung biopsy. All the patients were treated with steroid therapy. The most common HRCT finding was bilateral diffuse ground glass opacity (n=7), followed by peribronchial consolidation (n=5) and inter- or intralobular septal thickening (n=2). For the disease distribution, the lower lung zone was dominantly involved. The pathologic results of 7 patients were nonspecific interstitial pneumonia (n=3), bronchiolitis obliterans organizing pneumonia (n=2), hypersensitivity pneumonitis (n=1) and eosinophilic pneumonia (n=1). Irrespective of the pathologic results, all 8 patients improved clinically and radiologically after steroid treatment. The HRCT findings of mixed herbal medicine-induced diffuse infiltrative lung disease were mainly bilateral diffuse ground glass opacity, peribronchial consolidation and dominant involvement of the lower lung zone. Those pathologic findings were nonspecific and the differential diagnosis could include interstitial pneumonia, bronchiolitis obliterans organizing pneumonia, hypersensitivity pneumonitis and eosinophilic pneumonia

  3. Probing the diffusion of vacuum ultraviolet ({lambda} = 172 nm) induced oxidants by nanoparticles immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Khatri, Om P.; Hatanaka, Takeshi; Murase, Kuniaki [Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Sugimura, Hiroyuki, E-mail: hiroyuki.sugimura@materials.mbox.media.kyoto-u.ac.jp [Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan)

    2009-09-30

    Vacuum ultraviolet (VUV, {lambda} = 172 nm) patterning of alkyl monolayer on silicon surface has been demonstrated with emphasis on the diffusion of VUV induced oxygen-derived active species, which are accountable for the pattern broadening. The VUV photons photo-dissociates the atmospheric oxygen and water molecules into the oxygen-derived active species (oxidants). These oxidants photo-oxidize the hexadecyl (HD) monolayer in VUV irradiated regions (Khatri et al., Langmuir. 24 (2008) 12077), as well as the little concentration of oxidants diffuses towards the masked areas. In this study, we performed VUV patterning at a vacuum pressure of 10 Pa to track the diffusion pathways for the oxidants with help of gold nanoparticles (AuNPs; {phi} = 10 nm) immobilization. At VUV irradiated sites AuNPs are found as uniformly distributed, but adjacent to the pattern boundary we observed quasi-linear arrays of AuNPs, which are determined by diffusion pathways of the oxidants. The diffusion of oxidants plays vital role in pattern broadening. The site selective anchoring of AuNPs demonstrates the utility of VUV photons for the construction of functional materials with microstructural architecture.

  4. Flexible temperature and flow sensor from laser-induced graphene

    KAUST Repository

    Marengo, Marco

    2017-12-25

    Herein we present a flexible temperature sensor and a flow speed sensor based on laser-induced graphene. The main benefits arise from peculiar electrical, thermal and mechanical performances of the material thus obtained, along with a cheap and simple fabrication process. The temperature sensor is a negative temperature coefficient thermistor with non-linear response typical of semi-metals. The thermistor shows a 4% decrease of the resistance in a temperature range of 20–60 °C. The flow sensor exploits the piezoresistive properties of laser-induced graphene and can be used both in gaseous and liquid media thanks to a protective polydimethylsiloxane coating. Main characteristics are ultra-fast response and versatility in design offered by the laser technology.

  5. Topological terms induced by finite temperature and density fluctuations

    International Nuclear Information System (INIS)

    Niemi, A.J.; Department of Physics, The Ohio State University, Columbus, Ohio 43210)

    1986-01-01

    In (3+1)-dimensional finite-temperature and -density SU(2) gauge theories with left-handed fermions, the three-dimensional Chern-Simons term (topological mass) can be induced by radiative corrections. This result is derived by use of a family's index theorem which also implies that in many other quantum field theories various additional lower-dimensional topological terms can be induced. In the high-temperature limit these terms dominate the partition function, which suggests applications to early-Universe cosmology

  6. Kalman Filtered MR Temperature Imaging for Laser Induced Thermal Therapies

    OpenAIRE

    Fuentes, D.; Yung, J.; Hazle, J. D.; Weinberg, J. S.; Stafford, R. J.

    2011-01-01

    The feasibility of using a stochastic form of Pennes bioheat model within a 3D finite element based Kalman filter (KF) algorithm is critically evaluated for the ability to provide temperature field estimates in the event of magnetic resonance temperature imaging (MRTI) data loss during laser induced thermal therapy (LITT). The ability to recover missing MRTI data was analyzed by systematically removing spatiotemporal information from a clinical MR-guided LITT procedure in human brain and comp...

  7. Migration of liquid film and grain boundary in Mo-Ni induced by W diffusion

    International Nuclear Information System (INIS)

    Kang, H.K.; Hackney, S.; Yoon, D.N.

    1988-01-01

    The liquid films and grain boundaries in liquid phase sintered Mo-Ni alloy are observed to migrate during heat-treatment after adding W to the liquid matrix. Behind the migrating boundaries forms Mo-Ni-W solid solution with the W concentration decreasing with the migration distance because of W depletion in the liquid matrix. The migration rate during the heat-treatment at 1540 0 C after adding W decreases with the decreasing pretreatment sintering temperature. When the sintering temperature is 1420 0 C, the migration rate is almost reduced to O. Under this condition, the coherency strain due to the simultaneous diffusion of W and Ni into the grain surfaces is estimated to be almost O. The results thus show that the coherency strain due to lattice diffusion is the driving force for the liquid film and grain boundary migration

  8. High temperature homogenization improves impact toughness of vitamin E-diffused, irradiated UHMWPE.

    Science.gov (United States)

    Oral, Ebru; O'Brien, Caitlin; Doshi, Brinda; Muratoglu, Orhun K

    2017-06-01

    Diffusion of vitamin E into radiation cross-linked ultrahigh molecular weight polyethylene (UHMWPE) is used to increase stability against oxidation of total joint implant components. The dispersion of vitamin E throughout implant preforms has been optimized by a two-step process of doping and homogenization. Both of these steps are performed below the peak melting point of the cross-linked polymer (homogenization of antioxidant-doped, radiation cross-linked UHMWPE could improve its toughness. We found that homogenization at 300°C for 8 h resulted in an increase in the impact toughness (74 kJ/m 2 compared to 67 kJ/m 2 ), the ultimate tensile strength (50 MPa compared to 43 MPa) and elongation at break (271% compared to 236%). The high temperature treatment did not compromise the wear resistance or the oxidative stability as measured by oxidation induction time. In addition, the desired homogeneity was achieved at a much shorter duration (8 h compared to >240 h) by using high temperature homogenization. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1343-1347, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. Effect of lattice mismatch-induced strains on coupled diffusive and displacive phase transformations

    OpenAIRE

    Bouville, Mathieu; Ahluwalia, Rajeev

    2006-01-01

    Materials which can undergo slow diffusive transformations as well as fast displacive transformations are studied using the phase-field method. The model captures the essential features of the time-temperature-transformation (TTT) diagrams, continuous cooling transformation (CCT) diagrams, and microstructure formation of these alloys. In some materials systems there can exist an intrinsic volume change associated with these transformations. We show that these coherency strains can stabilize m...

  10. Temperature rise and stress induced by microcracks in accelerating structures

    Directory of Open Access Journals (Sweden)

    W. Zhu

    2010-12-01

    Full Text Available The temperature rise and induced stress due to Ohmic heating in the vicinity of microcracks on the walls of high-gradient accelerating structures are considered. The temperature rise and induced stress depend on the orientation of the crack with respect to the rf magnetic field, the shape of the crack, and the power and duration of the rf pulse. Under certain conditions the presence of cracks can double the temperature rise over that of a smooth surface. Stress at the bottom of the cracks can be several times larger than that of the case when there are no cracks. We study these effects both analytically and by computer simulation. It is shown that the stress in cracks is maximal when the crack depth is on the order of the thermal penetration depth.

  11. Increased Risk of Drug-Induced Hyponatremia during High Temperatures

    Directory of Open Access Journals (Sweden)

    Anna K Jönsson

    2017-07-01

    Full Text Available Purpose: To investigate the relationship between outdoor temperature in Sweden and the reporting of drug-induced hyponatremia to the Medical Products Agency (MPA. Methods: All individual adverse drug reactions (ADR reported to MPA from 1 January 2010 to 31 October 2013 of suspected drug-induced hyponatremia and random controls were identified. Reports where the ADR had been assessed as having at least a possible relation to the suspected drug were included. Information on administered drugs, onset date, causality assessment, sodium levels, and the geographical origin of the reports was extracted. A case-crossover design was used to ascertain the association between heat exposure and drug-induced hyponatremia at the individual level, while linear regression was used to study its relationship to sodium concentration in blood. Temperature exposure data were obtained from the nearest observation station to the reported cases. Results: During the study period, 280 reports of hyponatremia were identified. More cases of drug-induced hyponatremia were reported in the warmer season, with a peak in June, while other ADRs showed an opposite annual pattern. The distributed lag non-linear model indicated an increasing odds ratio (OR with increasing temperature in the warm season with a highest odds ratio, with delays of 1–5 days after heat exposure. A cumulative OR for a lag time of 1 to 3 days was estimated at 2.21 at an average daily temperature of 20 °C. The change in sodium per 1 °C increase in temperature was estimated to be −0.37 mmol/L (95% CI: −0.02, −0.72. Conclusions: Warm weather appears to increase the risk of drug-induced hyponatremia

  12. Improvement of calculation method for temperature coefficient of HTTR by neutronics calculation code based on diffusion theory. Analysis for temperature coefficient by SRAC code system

    International Nuclear Information System (INIS)

    Goto, Minoru; Takamatsu, Kuniyoshi

    2007-03-01

    The HTTR temperature coefficients required for the core dynamics calculations had been calculated from the HTTR core calculation results by the diffusion code with which the corrections had been performed using the core calculation results by the Monte-Carlo code MVP. This calculation method for the temperature coefficients was considered to have some issues to be improved. Then, the calculation method was improved to obtain the temperature coefficients in which the corrections by the Monte-Carlo code were not required. Specifically, from the point of view of neutron spectrum calculated by lattice calculations, the lattice model was revised which had been used for the calculations of the temperature coefficients. The HTTR core calculations were performed by the diffusion code with the group constants which were generated by the lattice calculations with the improved lattice model. The core calculations and the lattice calculations were performed by the SRAC code system. The HTTR core dynamics calculation was performed with the temperature coefficient obtained from the core calculation results. In consequence, the core dynamics calculation result showed good agreement with the experimental data and the valid temperature coefficient could be calculated only by the diffusion code without the corrections by Monte-Carlo code. (author)

  13. Investigation of the extraction of short diffusion lengths from simulated electron-beam induced current

    Energy Technology Data Exchange (ETDEWEB)

    Wee, D.; Parish, G.; Nener, B. [Microelectronics Research Group, The University of Western Australia, 35 Stirling Highway, 6009 Crawley (Perth) (Australia)

    2010-10-15

    This paper reports on the investigations via 2-D simulation into the accuracy of diffusion length extraction from scanning electron-beam induced current measurements when the diffusion length, L is very short. L is extracted by using the direct method proposed by Chan et al.[1] and later refined by Kurniawan and Ong[2] to take finite junction depth into account. The 2-D simulations were undertaken using Synopsys {sup registered} Sentaurus TCAD and a realistic electron-hole pair generation volume was created using CASINO v2.42[3], a Monte Carlo Scanning Electron Microscope interaction simulation software, and imported into Sentaurus. The voltage and diameter of the electron beam and diffusion length and surface recombination velocity of the semiconductor materials were varied in the simulations to determine the errors in the diffusion length extracted from the EBIC signals as a function of these parameters. The results of the simulation show that the accuracy of the method proposed in[1] is reasonably accurate and that the beam voltage and spot size do not have significant effects on the accuracy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Investigation of the extraction of short diffusion lengths from simulated electron-beam induced current

    International Nuclear Information System (INIS)

    Wee, D.; Parish, G.; Nener, B.

    2010-01-01

    This paper reports on the investigations via 2-D simulation into the accuracy of diffusion length extraction from scanning electron-beam induced current measurements when the diffusion length, L is very short. L is extracted by using the direct method proposed by Chan et al.[1] and later refined by Kurniawan and Ong[2] to take finite junction depth into account. The 2-D simulations were undertaken using Synopsys registered Sentaurus TCAD and a realistic electron-hole pair generation volume was created using CASINO v2.42[3], a Monte Carlo Scanning Electron Microscope interaction simulation software, and imported into Sentaurus. The voltage and diameter of the electron beam and diffusion length and surface recombination velocity of the semiconductor materials were varied in the simulations to determine the errors in the diffusion length extracted from the EBIC signals as a function of these parameters. The results of the simulation show that the accuracy of the method proposed in[1] is reasonably accurate and that the beam voltage and spot size do not have significant effects on the accuracy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Atomic diffusion induced degradation in bimetallic layer coated cemented tungsten carbide

    International Nuclear Information System (INIS)

    Peng, Zirong; Rohwerder, Michael; Choi, Pyuck-Pa; Gault, Baptiste; Meiners, Thorsten; Friedrichs, Marcel; Kreilkamp, Holger; Klocke, Fritz; Raabe, Dierk

    2017-01-01

    Highlights: • We study the temporal degradation of PtIr/Cr/WC and PtIr/Ni/WC systems. • Short cut diffusion, segregation, oxidation and interdiffusion reactions occurred. • Outward diffusion of Cr (Ni) via PtIr grain boundaries triggered the degradation. • The microstructure of the PtIr layer controlled the systems stability. • We propose an atomic diffusion induced degradation mechanism. - Abstract: We investigated the temporal degradation of glass moulding dies, made of cemented tungsten carbide coated with PtIr on an adhesive Cr or Ni interlayer, by electron microscopy and atom probe tomography. During the exposure treatments at 630 °C under an oxygen partial pressure of 1.12 × 10"−"2"3 bar, Cr (Ni) was found to diffuse outwards via grain boundaries in the PtIr, altering the surface morphology. Upon dissolution of the interlayer, the WC substrate also started degrading. Extensive interdiffusion processes involving PtIr, Cr (Ni) and WC took place, leading to the formation of intermetallic phases and voids, deteriorating the adhesion of the coating.

  16. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    Science.gov (United States)

    Christophorou, L.G.; Hunter, S.R.

    1990-06-26

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.

  17. Theory of laser-induced demagnetization at high temperatures

    KAUST Repository

    Manchon, Aurelien

    2012-02-17

    Laser-induced demagnetization is theoretically studied by explicitly taking into account interactions among electrons, spins, and lattice. Assuming that the demagnetization processes take place during the thermalization of the subsystems, the temperature dynamics is given by the energy transfer between the thermalized interacting baths. These energy transfers are accounted for explicitly through electron-magnon and electron-phonon interactions, which govern the demagnetization time scale. By properly treating the spin system in a self-consistent random phase approximation, we derive magnetization dynamic equations for a broad range of temperature. The dependence of demagnetization on the temperature and pumping laser intensity is calculated in detail. In particular, we show several salient features for understanding magnetization dynamics near the Curie temperature. While the critical slowdown in dynamics occurs, we find that an external magnetic field can restore the fast dynamics. We discuss the implication of the fast dynamics in the application of heat-assisted magnetic recording.

  18. Theory of laser-induced demagnetization at high temperatures

    KAUST Repository

    Manchon, Aurelien; Li, Q.; Xu, L.; Zhang, S.

    2012-01-01

    Laser-induced demagnetization is theoretically studied by explicitly taking into account interactions among electrons, spins, and lattice. Assuming that the demagnetization processes take place during the thermalization of the subsystems, the temperature dynamics is given by the energy transfer between the thermalized interacting baths. These energy transfers are accounted for explicitly through electron-magnon and electron-phonon interactions, which govern the demagnetization time scale. By properly treating the spin system in a self-consistent random phase approximation, we derive magnetization dynamic equations for a broad range of temperature. The dependence of demagnetization on the temperature and pumping laser intensity is calculated in detail. In particular, we show several salient features for understanding magnetization dynamics near the Curie temperature. While the critical slowdown in dynamics occurs, we find that an external magnetic field can restore the fast dynamics. We discuss the implication of the fast dynamics in the application of heat-assisted magnetic recording.

  19. Temperature effects on vaccine induced immunity to viruses in fish

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Rasmussen, Jesper Skou

    a problem in terms of inducing a protective immune response by vaccination in aquaculture, since it is often desirable to vaccinate fish during autumn, winter, or spring. In experimental vaccination trials with rainbow trout (Oncorhynchus mykiss) using a DNA-vaccine encoding the viral glycoprotein of viral...... haemorrhagic septicaemia virus (VHSV), non-specific as well as specific immune mechanisms seemed to be delayed at low temperature. At five weeks post vaccination fish kept at 5C had no detectable response of neutralising antibodies while two thirds of the fish kept at 15C had sero-converted. While protective...... immunity was still established at both temperatures, specificity analysis suggested that protection at the lower temperature was mainly due to non-specific innate antiviral mechanisms, which appeared to last longer at low temperature. This was presumably related to a prolonged persistence of the vaccine...

  20. Kalman filtered MR temperature imaging for laser induced thermal therapies.

    Science.gov (United States)

    Fuentes, D; Yung, J; Hazle, J D; Weinberg, J S; Stafford, R J

    2012-04-01

    The feasibility of using a stochastic form of Pennes bioheat model within a 3-D finite element based Kalman filter (KF) algorithm is critically evaluated for the ability to provide temperature field estimates in the event of magnetic resonance temperature imaging (MRTI) data loss during laser induced thermal therapy (LITT). The ability to recover missing MRTI data was analyzed by systematically removing spatiotemporal information from a clinical MR-guided LITT procedure in human brain and comparing predictions in these regions to the original measurements. Performance was quantitatively evaluated in terms of a dimensionless L(2) (RMS) norm of the temperature error weighted by acquisition uncertainty. During periods of no data corruption, observed error histories demonstrate that the Kalman algorithm does not alter the high quality temperature measurement provided by MR thermal imaging. The KF-MRTI implementation considered is seen to predict the bioheat transfer with RMS error 10 sec.

  1. Fast Rotational Diffusion of Water Molecules in a 2D Hydrogen Bond Network at Cryogenic Temperatures

    Science.gov (United States)

    Prisk, T. R.; Hoffmann, C.; Kolesnikov, A. I.; Mamontov, E.; Podlesnyak, A. A.; Wang, X.; Kent, P. R. C.; Anovitz, L. M.

    2018-05-01

    Individual water molecules or small clusters of water molecules contained within microporous minerals present an extreme case of confinement where the local structure of hydrogen bond networks are dramatically altered from bulk water. In the zinc silicate hemimorphite, the water molecules form a two-dimensional hydrogen bond network with hydroxyl groups in the crystal framework. Here, we present a combined experimental and theoretical study of the structure and dynamics of water molecules within this network. The water molecules undergo a continuous phase transition in their orientational configuration analogous to a two-dimensional Ising model. The incoherent dynamic structure factor reveals two thermally activated relaxation processes, one on a subpicosecond timescale and another on a 10-100 ps timescale, between 70 and 130 K. The slow process is an in-plane reorientation of the water molecule involving the breaking of hydrogen bonds with a framework that, despite the low temperatures involved, is analogous to rotational diffusion of water molecules in the bulk liquid. The fast process is a localized motion of the water molecule with no apparent analogs among known bulk or confined phases of water.

  2. Low-Temperature Electron Beam-Induced Transformations of Cesium Lead Halide Perovskite Nanocrystals

    Science.gov (United States)

    2017-01-01

    Cesium lead halide perovskite (CsPbX3, with X = Br, Cl, I) nanocrystals have been found to undergo severe modifications under the high-energy electron beam irradiation of a transmission electron microscope (80/200 keV). In particular, in our previous work, together with halogen desorption, Pb2+ ions were found to be reduced to Pb0 and then diffused to form lead nanoparticles at temperatures above −40 °C. Here, we present a detailed irradiation study of CsPbBr3 nanocrystals at temperatures below −40 °C, a range in which the diffusion of Pb0 atoms/clusters is drastically suppressed. Under these conditions, the irradiation instead induces the nucleation of randomly oriented CsBr, CsPb, and PbBr2 crystalline domains. In addition to the Br desorption, which accompanies Pb2+ reduction at all the temperatures, Br is also desorbed from the CsBr and PbBr2 domains at low temperatures, leading to a more pronounced Br loss, thus the final products are mainly composed of Cs and Pb. The overall transformation involves the creation of voids, which coalesce upon further exposure, as demonstrated in both nanosheets and nanocuboids. Our results show that although low temperatures hinder the formation of Pb nanoparticles in CsPbBr3 nanocrystals when irradiated, the nanocrystals are nevertheless unstable. Consequently, we suggest that an optimum combination of temperature range, electron energy, and dose rate needs to be carefully chosen for the characterization of halide perovskite nanocrystals to minimize both the Pb nanoparticle formation and the structural decomposition. PMID:28983524

  3. Propilthiouracil-induced diffuse pulmonary hemorrhage: a case report with the clinical and radiologic findings

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Jun; Kim, Joung Sook; Kim, Ji Young; Choi, Soo Jeon [Sanggye Paik Hospital, Inje University College of Medicine, Seoul (Korea, Republic of)

    2007-05-15

    Propylthiouracil (PTU) is a drug that's used to manage hyperthyroidism and it can, on rare occasions, induce antineutrophil cytoplasmic antibody-associated vasculitis that involved multiple organ systems and it can also cause extremely rare isolated or diffuse pulmonary hemorrhage. We report here on a case of a patient who develop diffuse pulmonary hemorrhage after she had been taking PTU for five years. The patient is a 33-year-old woman who presented with hemoptysis. Simple chest radiographs and the chest CT showed bilateral ground-glass opacity, consolidation and pulmonary arterial hypertension. The bronchoalveolar lavage fluid revealed alveolar hemorrhage. The laboratory values showed increased perinuclear-antineutrophil cytoplasmic antibody ({rho} - ANCA) and anti-peroxidase antibody titers.

  4. A reaction-diffusion model of ROS-induced ROS release in a mitochondrial network.

    Directory of Open Access Journals (Sweden)

    Lufang Zhou

    2010-01-01

    Full Text Available Loss of mitochondrial function is a fundamental determinant of cell injury and death. In heart cells under metabolic stress, we have previously described how the abrupt collapse or oscillation of the mitochondrial energy state is synchronized across the mitochondrial network by local interactions dependent upon reactive oxygen species (ROS. Here, we develop a mathematical model of ROS-induced ROS release (RIRR based on reaction-diffusion (RD-RIRR in one- and two-dimensional mitochondrial networks. The nodes of the RD-RIRR network are comprised of models of individual mitochondria that include a mechanism of ROS-dependent oscillation based on the interplay between ROS production, transport, and scavenging; and incorporating the tricarboxylic acid (TCA cycle, oxidative phosphorylation, and Ca(2+ handling. Local mitochondrial interaction is mediated by superoxide (O2.- diffusion and the O2.(--dependent activation of an inner membrane anion channel (IMAC. In a 2D network composed of 500 mitochondria, model simulations reveal DeltaPsi(m depolarization waves similar to those observed when isolated guinea pig cardiomyocytes are subjected to a localized laser-flash or antioxidant depletion. The sensitivity of the propagation rate of the depolarization wave to O(2.- diffusion, production, and scavenging in the reaction-diffusion model is similar to that observed experimentally. In addition, we present novel experimental evidence, obtained in permeabilized cardiomyocytes, confirming that DeltaPsi(m depolarization is mediated specifically by O2.-. The present work demonstrates that the observed emergent macroscopic properties of the mitochondrial network can be reproduced in a reaction-diffusion model of RIRR. Moreover, the findings have uncovered a novel aspect of the synchronization mechanism, which is that clusters of mitochondria that are oscillating can entrain mitochondria that would otherwise display stable dynamics. The work identifies the

  5. Beam-induced temperature changes in HVEM irradiations

    International Nuclear Information System (INIS)

    Garner, F.A.; Thomas, L.E.; Gelles, D.S.

    1975-01-01

    The peak value of the temperature distribution induced by energy loss of 1.0 MeV electrons in traversing a typical HVEM irradiation specimen can be very substantial. The origin and various features of this distribution were analyzed for a variety of specimen geometries. The major parametric dependencies are shown to be relatively independent of specimen geometry, however, and allow the definition of a scaling relationship that can be employed to predict temperature rises in materials that cannot be measured directly. The use of this scaling relationship requires that the experimenter minimize perturbations of the heat flow due to proximity of the central hole in the specimen. An experimental method of determining directly the magnitude and distribution of beam-induced temperature profiles was developed which utilizes the order-disorder transformation in Fe 3 Al and Cu 3 Au. Scaling of experimentally determined temperature changes leads to more realistic estimates of the total temperature rise than are currently available in various literature tabulations. The factors which determine the optimum selection of irradiation parameters for a given experiment are also discussed

  6. Plasma nitriding process by direct current glow discharge at low temperature increasing the thermal diffusivity of AISI 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Prandel, L. V.; Somer, A.; Assmann, A.; Camelotti, F.; Costa, G.; Bonardi, C.; Jurelo, A. R.; Rodrigues, J. B.; Cruz, G. K. [Universidade Estadual de Ponta Grossa, Grupo de Espectroscopia Optica e Fotoacustica de Materiais, Departamento de Fisica, Av. Carlos Cavalcanti, 4748, CEP 84030-900, Ponta Grossa, PR (Brazil)

    2013-02-14

    This work reports for the first time on the use of the open photoacoustic cell technique operating at very low frequencies and at room temperature to experimentally determine the thermal diffusivity parameter of commercial AISI304 stainless steel and AISI304 stainless steel nitrided samples. Complementary measurements of X-ray diffraction and scanning electron microscopy were also performed. The results show that in standard AISI 304 stainless steel samples the thermal diffusivity is (4.0 {+-} 0.3) Multiplication-Sign 10{sup -6} m{sup 2}/s. After the nitriding process, the thermal diffusivity increases to the value (7.1 {+-} 0.5) Multiplication-Sign 10{sup -6} m{sup 2}/s. The results are being associated to the diffusion process of nitrogen into the surface of the sample. Carrying out subsequent thermal treatment at 500 Degree-Sign C, the thermal diffusivity increases up to (12.0 {+-} 2) Multiplication-Sign 10{sup -6} m{sup 2}/s. Now the observed growing in the thermal diffusivity must be related to the change in the phases contained in the nitrided layer.

  7. Temperature distribution induced by electron beam in a closed cavity

    International Nuclear Information System (INIS)

    Molhem, A.G.; Soulayman, S.Sh.

    2004-01-01

    In order to investigate heat transfer phenomena induced by EB in a closed cavity an experimental arrangement, which allows generating and focusing an electron beam in to closed cavity within 1 mm in diameter and measuring temperature all over any perpendicular section to the EB, is used for this purpose. Experimental data show that the radial distribution of current density and temperature is normal with pressure and location dependent parameters. Moreover, there is two distinguishable regions in the EB: one is central while the other surrounds the first one. (orig.)

  8. Ambient-temperature diffusion and gettering of Pt atoms in GaN with surface defect region under 60Co gamma or MeV electron irradiation

    Science.gov (United States)

    Hou, Ruixiang; Li, Lei; Fang, Xin; Xie, Ziang; Li, Shuti; Song, Weidong; Huang, Rong; Zhang, Jicai; Huang, Zengli; Li, Qiangjie; Xu, Wanjing; Fu, Engang; Qin, G. G.

    2018-01-01

    Generally, the diffusion and gettering of impurities in GaN needs high temperature. Calculated with the ambient-temperature extrapolation value of the high temperature diffusivity of Pt atoms in GaN reported in literature, the time required for Pt atoms diffusing 1 nm in GaN at ambient temperature is about 19 years. Therefore, the ambient-temperature diffusion and gettering of Pt atoms in GaN can hardly be observed. In this work, the ambient-temperature diffusion and gettering of Pt atoms in GaN is reported for the first time. It is demonstrated by use of secondary ion mass spectroscopy that in the condition of introducing a defect region on the GaN film surface by plasma, and subsequently, irradiated by 60Co gamma-ray or 3 MeV electrons, the ambient-temperature diffusion and gettering of Pt atoms in GaN can be detected. It is more obvious with larger irradiation dose and higher plasma power. With a similar surface defect region, the ambient-temperature diffusion and gettering of Pt atoms in GaN stimulated by 3 MeV electron irradiation is more marked than that stimulated by gamma irradiation. The physical mechanism of ambient-temperature diffusion and gettering of Pt atoms in a GaN film with a surface defect region stimulated by gamma or MeV electron irradiation is discussed.

  9. Measurement of shear-induced diffusion of red blood cells using dynamic light scattering-optical coherence tomography

    Science.gov (United States)

    Tang, Jianbo; Erdener, Sefik Evren; Li, Baoqiang; Fu, Buyin; Sakadzic, Sava; Carp, Stefan A.; Lee, Jonghwan; Boas, David A.

    2018-02-01

    Dynamic Light Scattering-Optical Coherence Tomography (DLS-OCT) takes the advantages of using DLS to measure particle flow and diffusion within an OCT resolution-constrained 3D volume, enabling the simultaneous measurements of absolute RBC velocity and diffusion coefficient with high spatial resolution. In this work, we applied DLS-OCT to measure both RBC velocity and the shear-induced diffusion coefficient within penetrating venules of the somatosensory cortex of anesthetized mice. Blood flow laminar profile measurements indicate a blunted laminar flow profile, and the degree of blunting decreases with increasing vessel diameter. The measured shear-induced diffusion coefficient was proportional to the flow shear rate with a magnitude of 0.1 to 0.5 × 10-6 mm2 . These results provide important experimental support for the recent theoretical explanation for why DCS is dominantly sensitive to RBC diffusive motion.

  10. Ground Thermal Diffusivity Calculation by Direct Soil Temperature Measurement. Application to very Low Enthalpy Geothermal Energy Systems.

    Science.gov (United States)

    Andújar Márquez, José Manuel; Martínez Bohórquez, Miguel Ángel; Gómez Melgar, Sergio

    2016-02-29

    This paper presents a methodology and instrumentation system for the indirect measurement of the thermal diffusivity of a soil at a given depth from measuring its temperature at that depth. The development has been carried out considering its application to the design and sizing of very low enthalpy geothermal energy (VLEGE) systems, but it can has many other applications, for example in construction, agriculture or biology. The methodology is simple and inexpensive because it can take advantage of the prescriptive geotechnical drilling prior to the construction of a house or building, to take at the same time temperature measurements that will allow get the actual temperature and ground thermal diffusivity to the depth of interest. The methodology and developed system have been tested and used in the design of a VLEGE facility for a chalet with basement at the outskirts of Huelva (a city in the southwest of Spain). Experimental results validate the proposed approach.

  11. Charge imbalance induced by a temperature gradient in superconducting aluminum

    International Nuclear Information System (INIS)

    Mamin, H.J.; Clarke, J.; Van Harlingen, D.J.

    1984-01-01

    The quasiparticle transport current induced in a superconducting aluminum film by a temperature gradient has been measured by means of the spatially decaying charge imbalance generated near the end of the sample where the current is divergent. The magnitude and decay length of the charge imbalance are in good agreement with the predictions of a simple model that takes into account the nonuniformity of the temperature gradient. The inferred value of the thermopower in the superconducting state agrees reasonably well with the value measured in the normal state. Measurements of the decay length of charge imbalance induced by current injection yield a value of the inelastic relaxation time tau/sub E/ of about 2 ns. This value is substantially smaller than that obtained from other measurements for reasons that are not known

  12. Investigation of the solubility and diffusion of Fe atoms in Cu at high temperature using molten salt electrochemistry

    International Nuclear Information System (INIS)

    Wenzl, H.; Sorajic, V.; Bischof, B.

    1977-01-01

    The electrochemical cell CuFesub(n)/KF, LiF, FeF 2 (molten solution)/Fe was used between 800 and 1,000 0 C to produce CuFesub(n) alloys of various copper rich compositions n by electrochemically controlled diffusion. From measurements of cell voltage and current we determined composition, bulk diffusion coefficient D, and atomic solubility limit x 0 of Fe in Cu. The numerical values at the temperature of 950 0 C are D = 0.9 x 10 -9 cm 2 /sec, x 0 = 1.2 at%. (orig.) [de

  13. [Diffuse large B-cell lymphoma complicated with drug-induced vasculitis during administration of pegfilgrastim].

    Science.gov (United States)

    Ito, Yuta; Noda, Kentaro; Aiba, Keisuke; Yano, Shingo; Fujii, Tsunehiro

    A 59-year-old female with diffuse large B-cell lymphoma was treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone (R-CHOP) regimen. In addition, we administered pegfilgrastim for treating chemotherapy-induced febrile neutropenia. She complained of fever and neck and chest pain a few days after pegfilgrastim administration during the third and fourth courses of R-CHOP. Radiological imaging revealed an inflammation of large vessels, which led to the diagnosis of drug-associated vasculitis. We confirmed that vasculitis observed in this case was caused by pegfilgrastim administration because similar symptoms appeared with both injections of pegfilgrastim.

  14. Hopf Bifurcation and Delay-Induced Turing Instability in a Diffusive lac Operon Model

    Science.gov (United States)

    Cao, Xin; Song, Yongli; Zhang, Tonghua

    In this paper, we investigate the dynamics of a lac operon model with delayed feedback and diffusion effect. If the system is without delay or the delay is small, the positive equilibrium is stable so that there are no spatial patterns formed; while the time delay is large enough the equilibrium becomes unstable so that rich spatiotemporal dynamics may occur. We have found that time delay can not only incur temporal oscillations but also induce imbalance in space. With different initial values, the system may have different spatial patterns, for instance, spirals with one head, four heads, nine heads, and even microspirals.

  15. Energy balance constraints on gravity wave induced eddy diffusion in the mesosphere and lower thermosphere

    Science.gov (United States)

    Strobel, D. F.; Apruzese, J. P.; Schoeberl, M. R.

    1985-01-01

    The constraints on turbulence improved by the mesospheric heat budget are reexamined, and the sufficiency of the theoretical evidence to support the hypothesis that the eddy Prandtl number is greater than one in the mesosphere is considered. The mesopause thermal structure is calculated with turbulent diffusion coefficients commonly used in chemical models and deduced from mean zonal wind deceleration. It is shown that extreme mesopause temperatures of less than 100 K are produced by the large net cooling. The results demonstrate the importance of the Prandtl number for mesospheric turbulence.

  16. Temperature-induced viral resistance in Emiliania huxleyi (Prymnesiophyceae).

    Science.gov (United States)

    Kendrick, B Jacob; DiTullio, Giacomo R; Cyronak, Tyler J; Fulton, James M; Van Mooy, Benjamin A S; Bidle, Kay D

    2014-01-01

    Annual Emiliania huxleyi blooms (along with other coccolithophorid species) play important roles in the global carbon and sulfur cycles. E. huxleyi blooms are routinely terminated by large, host-specific dsDNA viruses, (Emiliania huxleyi Viruses; EhVs), making these host-virus interactions a driving force behind their potential impact on global biogeochemical cycles. Given projected increases in sea surface temperature due to climate change, it is imperative to understand the effects of temperature on E. huxleyi's susceptibility to viral infection and its production of climatically active dimethylated sulfur species (DSS). Here we demonstrate that a 3°C increase in temperature induces EhV-resistant phenotypes in three E. huxleyi strains and that successful virus infection impacts DSS pool sizes. We also examined cellular polar lipids, given their documented roles in regulating host-virus interactions in this system, and propose that alterations to membrane-bound surface receptors are responsible for the observed temperature-induced resistance. Our findings have potential implications for global biogeochemical cycles in a warming climate and for deciphering the particular mechanism(s) by which some E. huxleyi strains exhibit viral resistance.

  17. A description of phases with induced hybridisation at finite temperatures

    Science.gov (United States)

    Golosov, D. I.

    2018-05-01

    In an extended Falicov-Kimball model, an excitonic insulator phase can be stabilised at zero temperature. With increasing temperature, the excitonic order parameter (interaction-induced hybridisation on-site, characterised by the absolute value and phase) eventually becomes disordered, which involves fluctuations of both its phase and (at higher T) its absolute value. In order to build an adequate mean field description, it is important to clarify the nature of degrees of freedom associated with the phase and absolute value of the induced hybridisation, and the corresponding phase space volume. We show that a possible description is provided by the SU(4) parametrisation on-site. In principle, this allows to describe both the lower-temperature regime where phase fluctuations destroy the long-range order, and the higher temperature crossover corresponding to a decrease of absolute value of the hybridisation relative to the fluctuations level. This picture is also expected to be relevant in other contexts, including the Kondo lattice model.

  18. Modal analysis of temperature feedback in oscillations induced by xenon

    International Nuclear Information System (INIS)

    Passos, E.M. dos.

    1976-01-01

    The flux oscillations induced by Xenon distribution in homogeneous thermal reactors are studied treating the space dependence through the modal expansion technique and the stability limits against power oscillations and spatial oscillations are determined. The effect of the feedbacks due to Xenon and temperature coefficient on the linear stability of the free system is investigated employing several number of terms in the transient expansion, considering the various sizes of the reactor. The heat transfer model considered includes one term due to cooling proportional to the temperature. A PWR model reactor is utilized for numerical calculations. It is found that a slightly higher temperature feedback coefficient is necessary for stability against power oscillations when larger number of terms in the transient modal expansion is maintained. (author)

  19. Role Played by Shear-Induced Hydrodynamic Diffusion on the Continuous Separation of Blood Cells

    Science.gov (United States)

    Hoyos, Mauricio; Kurowski, Pascal; Moore, Lee; Williams, Stephen; Zborowski, Maciej

    2001-11-01

    The continuous sorting of hematopoietic stem cells, lymphocytes or other blood cells can be performed using a membraneless hydrodynamic technique called split-flow thin channel fractionation, SPLITT. Two streams are introduced to the separator: carrier at one inlet and a suspension containing a mixture of immunomagnetically-labeled cells and unlabeled cells at the other inlet. The SPLITT channel, comprising a thin annulus between two concentric cylinders, is fitted into a permanent quadrupole magnet. The sample is transported along the axis of the separation column, and the labeled cells migrate perpendicular to the bulk flow under the influence of the magnetic field. The aim is to recover - at high purity - all of the magnetized cells in the enriched outlet. However, other cells contaminate the enriched fraction. This may be due to a transversal transport of non-immunomagnetically-labeled cells - termed crossover - by shear-induced hydrodynamic diffusion, SIHD, occurring along the separator. The unwanted cell crossover strongly influences the target cell purity in the enriched fraction. We investigate the possible presence of SIHD on the separation of progenitor cells and particles by studying the cross-stream concentration as a function of different parameters: namely, shear rate, inlet concentration and particle size. With our SIHD model we can solve the convection-diffusion equation by assuming an effective diffusion coefficient, which predicts the observed crossover.

  20. Role of spin diffusion in current-induced domain wall motion for disordered ferromagnets

    KAUST Repository

    Akosa, Collins Ashu; Kim, Won-Seok; Bisig, André ; Klä ui, Mathias; Lee, Kyung-Jin; Manchon, Aurelien

    2015-01-01

    Current-induced spin transfer torque and magnetization dynamics in the presence of spin diffusion in disordered magnetic textures is studied theoretically. We demonstrate using tight-binding calculations that weak, spin-conserving impurity scattering dramatically enhances the nonadiabaticity. To further explore this mechanism, a phenomenological drift-diffusion model for incoherent spin transport is investigated. We show that incoherent spin diffusion indeed produces an additional spatially dependent torque of the form ∼∇2[m×(u⋅∇)m]+ξ∇2[(u⋅∇)m], where m is the local magnetization direction, u is the direction of injected current, and ξ is a parameter characterizing the spin dynamics (precession, dephasing, and spin-flip). This torque, which scales as the inverse square of the domain wall width, only weakly enhances the longitudinal velocity of a transverse domain wall but significantly enhances the transverse velocity of vortex walls. The spatial-dependent spin transfer torque uncovered in this study is expected to have significant impact on the current-driven motion of abrupt two-dimensional textures such as vortices, skyrmions, and merons.

  1. Role of spin diffusion in current-induced domain wall motion for disordered ferromagnets

    KAUST Repository

    Akosa, Collins Ashu

    2015-03-12

    Current-induced spin transfer torque and magnetization dynamics in the presence of spin diffusion in disordered magnetic textures is studied theoretically. We demonstrate using tight-binding calculations that weak, spin-conserving impurity scattering dramatically enhances the nonadiabaticity. To further explore this mechanism, a phenomenological drift-diffusion model for incoherent spin transport is investigated. We show that incoherent spin diffusion indeed produces an additional spatially dependent torque of the form ∼∇2[m×(u⋅∇)m]+ξ∇2[(u⋅∇)m], where m is the local magnetization direction, u is the direction of injected current, and ξ is a parameter characterizing the spin dynamics (precession, dephasing, and spin-flip). This torque, which scales as the inverse square of the domain wall width, only weakly enhances the longitudinal velocity of a transverse domain wall but significantly enhances the transverse velocity of vortex walls. The spatial-dependent spin transfer torque uncovered in this study is expected to have significant impact on the current-driven motion of abrupt two-dimensional textures such as vortices, skyrmions, and merons.

  2. Nanofiltration Membranes with Narrow Pore Size Distribution via Contra-Diffusion-Induced Mussel-Inspired Chemistry.

    Science.gov (United States)

    Du, Yong; Qiu, Wen-Ze; Lv, Yan; Wu, Jian; Xu, Zhi-Kang

    2016-11-02

    Nanofiltration membranes (NFMs) are widely used in saline water desalination, wastewater treatment, and chemical product purification. However, conventional NFMs suffer from broad pore size distribution, which limits their applications for fine separation, especially in complete separation of molecules with slight differences in molecular size. Herein, defect-free composite NFMs with narrow pore size distribution are fabricated using a contra-diffusion method, with dopamine/polyethylenimine solution on the skin side and ammonium persulfate solution on the other side of the ultrafiltration substrate. Persulfate ions can diffuse through the ultrafiltration substrate into the other side and in situ trigger dopamine to form a codeposited coating with polyethylenimine. The codeposition is hindered on those sites completely covered by the polydopamine/polyethylenimine coating, although it is promoted at the defects or highly permeable regions because it is induced by the diffused persulfate ions. Such a "self-completion" process results in NFMs with highly uniform structures and narrow pore size distribution, as determined by their rejection of neutral solutes. These near electrically neutral NFMs show a high rejection of divalent ions with a low rejection of monovalent ions (MgCl 2 rejection = 96%, NaCl rejection = 23%), majorly based on a steric hindrance effect. The as-prepared NFMs can be applied in molecular separation such as isolating cellulose hydrogenation products.

  3. Diffusion characteristics of specific metals at the high temperature hydrogen separation; Diffusionseigenschaften bestimmter Metalle bei der Hochtemperatur-Wasserstoffabtrennung

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Christian

    2010-09-07

    This paper evaluates the metals palladium, nickel, niobium, tantalum, titanium and vanadium according to their ability to separate hydrogen at high temperatures. This evaluation is chiefly based on a thorough consideration of the properties of diffusion for these metals. The various known hydrogen permeabilities of the metals in a temperature range from 300 to 800 C, as well as their physical and mechanical properties will be presented consistent with the current state of technology. The theory of hydrogen diffusion in metals and the mathematical basis for the calculation of diffusion will also be shown. In the empirical section of the paper, permeability measurements are taken in a temperature range of 400 to 825 C. After measurement, the formation of the oxide coating on these membranes is examined using a light-optical microscope. The results of these examinations allow a direct comparison of the different permeabilities of the various metals within the temperature range tested, and also allow for a critical evaluation of the oxide coating formed on the membranes. The final part of the paper shows the efficiency of these metals in the context of in-situ hydrogen separation in a biomass reformer. (orig.)

  4. Use of thermogravimetry and thermodynamic calculations for specifying chromium diffusion occurring in alloys containing chromium carbides during high temperature oxidation

    International Nuclear Information System (INIS)

    Berthod, Patrice; Conrath, Elodie

    2015-01-01

    The chromium diffusion is of great importance for the high temperature oxidation behaviour of the chromium-rich carbides-strengthened superalloys. These ones contain high chromium quantities for allowing them well resisting hot corrosion by constituting and maintaining a continuous external scale of chromia. Knowing how chromium can diffuse in such alloys is thus very useful for predicting the sustainability of their chromia-forming behaviour. Since Cr diffusion occurs through the external part of the alloy already affected by the previous steps of oxidation (decarburized subsurface) it is more judicious to specify this diffusion during the oxidation process itself. This was successfully carried out in this work in the case of a model chromia-forming nickel-based alloy containing chromium carbides, Ni(bal.)–25Cr–0.5C (in wt.%). This was done by specifying, using real-time thermogravimetry, the mass gain kinetic due to oxidation, and by combining it with the post-mortem determination of the Cr concentration profiles in subsurface. The values of D Cr thus obtained for 1000, 1050 and 1100 °C in the alloy subsurface are consistent with the values obtained in earlier works for similar alloy's chemical compositions. - Highlights: • A Ni25Cr0.50C alloy was oxidized at high temperature in a thermo-balance. • The mass gain files were analysed to specify the Cr 2 O 3 volatilization constant K v . • Concentration profiles were acquired to specify the chromium gradient. • The diffusion coefficient of chromium through the subsurface was deduced. • The obtained diffusion coefficient is consistent with values previously obtained.

  5. Measurement of the ion temperature in the tokamak TCA by collective Thomson diffusion in the far infrared

    International Nuclear Information System (INIS)

    Salito, S.A.

    1989-07-01

    This paper covers the analysis of spectra obtained by collective Thomson diffusion and the measurement, by this method, of the ionic temperature in the plasmas of the TCA tokamak. The experimental equipment we have used consists of a D 2 O laser and of a heterodyne detection system analyzing the spectra diffused by the plasma. The diffused spectra were obtained using a geometry determining a diffusion angle Θ s of 90 o . We could choose two different angles β between the wave vector k and the direction of the magnetic field (β=90 o , β=86 o ). We have performed the measurement of the coherent (collective) spectrum in the hydrogen, deuterium and helium plasmas of the TCA tokamak. When the electron density exceeded 4x10 19 m -3 , the diffused spectra were analyzed on the basis of a single laser shot of 1.4 μs duration. The ionic acoustic resonance was observed in the helium plasma for an angle β of 86 o . When β was 90 o , we observed that the experimental spectra were heavily disturbed by the effects of the magnetic field, and their shapes became triangular. A small concentration of light impurities affected the shape of the spectra up to their extremities. By collective diffusion we could measure the typical ionic temperatures of 330 eV for the hydrogen plasmas and of 390 eV for the deuterium and helium plasmas. The precision of this measurement was 10% at an average of 10 shots, and it was 25% for a single measurement of 1.4 μs duration. It is mainly limited by the signal/noise ratio which is in the order of 3 for one measurement during a single laser shot of 1.4 μs. (author) 70 figs., 5 tabs., 106 refs

  6. Fracture resistance of the VNC-2USh steel with different content of diffusion-mobile hydrogen at low temperature

    International Nuclear Information System (INIS)

    Yablonskij, I.S.; Sankho, K.

    1979-01-01

    Presented are the investigation results for the diffusible hydrogen (DH) content effect on cracking resistance and mechanical properties of the VNC-2USh steel in the temperature range from -75-100 deg C. In this range σsub(B), σsub(0.2) and σ are not practically sensitive to the DH content change from 0.27 to 3 cm 3 /100g. At room temperature the increase of DH content in the above concentration range results in 45 % decrease of cracking resistance under static loading. At -75 deg C the cracking resistance does not depend on DH content. Within the temperature range from -40-75 deg C placed is a temperature boundary, separating the regions of predominant effects of hydrogen and low temperature embrittlement on repture strength of the VNC-2 steel at moderated rates of deformation

  7. Shear-induced diffusion of red blood cells measured with dynamic light scattering-optical coherence tomography.

    Science.gov (United States)

    Tang, Jianbo; Erdener, Sefik Evren; Li, Baoqiang; Fu, Buyin; Sakadzic, Sava; Carp, Stefan A; Lee, Jonghwan; Boas, David A

    2018-02-01

    Quantitative measurements of intravascular microscopic dynamics, such as absolute blood flow velocity, shear stress and the diffusion coefficient of red blood cells (RBCs), are fundamental in understanding the blood flow behavior within the microcirculation, and for understanding why diffuse correlation spectroscopy (DCS) measurements of blood flow are dominantly sensitive to the diffusive motion of RBCs. Dynamic light scattering-optical coherence tomography (DLS-OCT) takes the advantages of using DLS to measure particle flow and diffusion within an OCT resolution-constrained three-dimensional volume, enabling the simultaneous measurements of absolute RBC velocity and diffusion coefficient with high spatial resolution. In this work, we applied DLS-OCT to measure both RBC velocity and the shear-induced diffusion coefficient within penetrating venules of the somatosensory cortex of anesthetized mice. Blood flow laminar profile measurements indicate a blunted laminar flow profile and the degree of blunting decreases with increasing vessel diameter. The measured shear-induced diffusion coefficient was proportional to the flow shear rate with a magnitude of ~0.1 to 0.5 × 10 -6  mm 2 . These results provide important experimental support for the recent theoretical explanation for why DCS is dominantly sensitive to RBC diffusive motion. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The diffusion of H and D in Nb and Ta at low temperatures

    International Nuclear Information System (INIS)

    Engelhard, J.

    1978-01-01

    The mobility of hydrogen and deuterium in niobium and tantalum has been studied by quenching to 4.2 K and annealing between 10 K and 100 K. The concentration of quenched hydrogen has been computed from the resistivity increase after quenching. The decrease of the residual resistivity during annealing is interpreted by the trapping of hydrogen and by the formation of precipitations. By the variation of the hydrogen concentration and the impurity content, the annealing stage corresponding to the intrinsic diffusion of the hydrogen has been identified. Diffusion coefficients and activation energies for H and D diffusion in niobium and tantalum were determined. (orig./GSCH)

  9. Room temperature single-crystal diffuse scattering and ab initio lattice dynamics in CaTiSiO5.

    Science.gov (United States)

    Gutmann, M J; Refson, K; Zimmermann, M V; Swainson, I P; Dabkowski, A; Dabkowska, H

    2013-08-07

    Single-crystal diffuse scattering data have been collected at room temperature on synthetic titanite using both neutrons and high-energy x-rays. A simple ball-and-springs model reproduces the observed diffuse scattering well, confirming its origin to be primarily due to thermal motion of the atoms. Ab initio phonons are calculated using density-functional perturbation theory and are shown to reproduce the experimental diffuse scattering. The observed diffuse x-ray and neutron scattering patterns are consistent with a summation of mode frequencies and displacement eigenvectors associated with the entire phonon spectrum, rather than with a simple, short-range static displacement. A band gap is observed between 600 and 700 cm(-1) with only two modes crossing this region, both associated with antiferroelectric Ti-O motion along a. One of these modes (of Bu symmetry), displays a large LO-TO mode-splitting (562-701.4 cm(-1)) and has a dominant component coming from Ti-O bond-stretching and, thus, the mode-splitting is related to the polarizability of the Ti-O bonds along the chain direction. Similar mode-splitting is observed in piezo- and ferroelectric materials. The calculated phonon dispersion model may be of use to others in future to understand the phase transition at higher temperatures, as well as in the interpretation of measured phonon dispersion curves.

  10. The effects of inlet temperature and turbulence characteristics on the flow development inside a gas turbine exhaust diffuser

    Science.gov (United States)

    Bomela, Christian Loangola

    --o turbulence model produced a mean flow velocity profile at the middle of the annular diffuser portion that had the best overall match with the experiment. The RNG k --epsilon, however, better predicted the diffuser performance along the exhaust diffuser length by means of the pressure recovery coefficient. These results were obtained using uniform inflow conditions and steady-state simulations. As such, the last phase of our investigations involved varying the inflow parameters like the turbulence intensity, the inlet flow temperature, and the flow angularity, which constitute important characteristics of the turbine blade wake, to investigate their impact on the diffuser design and performance. These isothermal CFD simulations revealed that by changing the flow temperature from 15 to 427°C, the pressure recovery coefficient significantly increased. However, it has been shown that the increase of temperature had no effects on the size of the reversed flow region and the thickness of the separated casing boundary layer, although the flow appears to be more turbulent. Furthermore, it has been established that an optimum turbulence intensity of about 4% produced comparable diffuser performance as the experiment. We also found that a velocity angle of about 2.5° at the last turbine stage will ensure a better exhaust diffuser performance.

  11. Ab initio molecular dynamics simulation of interstitial diffusion in Ni–Cr alloys and implications for radiation induced segregation

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, L., E-mail: lmbarnard@wisc.edu; Morgan, D., E-mail: ddmorgan@wisc.edu

    2014-06-01

    In this study, ab initio molecular dynamics, implemented via density functional theory, is used to simulate self-interstitial diffusion in pure Ni and in the Ni-18 at.% Cr model alloy. Interstitial tracer diffusivities are measured from simulation results for pure Ni and for both Ni and Cr in the Ni–18Cr alloy. An Arrhenius function fit to these tracer diffusivities is then used in a rate theory model for radiation induced segregation, along with the experimentally measured vacancy diffusivities. It is predicted that interstitial diffusion has a tendency to cause Cr enrichment near grain boundaries, partially counterbalancing the tendency for vacancy diffusion to cause Cr depletion. This results in more mild Cr depletion than would result if only the vacancy diffusion were accounted for, in better agreement with experiment. This physical description of RIS in Ni–Cr alloys, which invokes the effects of both vacancy and interstitial diffusion, is distinct from the conventional description which accounts only for the effect of vacancy diffusion.

  12. Ab initio molecular dynamics simulation of interstitial diffusion in Ni–Cr alloys and implications for radiation induced segregation

    International Nuclear Information System (INIS)

    Barnard, L.; Morgan, D.

    2014-01-01

    In this study, ab initio molecular dynamics, implemented via density functional theory, is used to simulate self-interstitial diffusion in pure Ni and in the Ni-18 at.% Cr model alloy. Interstitial tracer diffusivities are measured from simulation results for pure Ni and for both Ni and Cr in the Ni–18Cr alloy. An Arrhenius function fit to these tracer diffusivities is then used in a rate theory model for radiation induced segregation, along with the experimentally measured vacancy diffusivities. It is predicted that interstitial diffusion has a tendency to cause Cr enrichment near grain boundaries, partially counterbalancing the tendency for vacancy diffusion to cause Cr depletion. This results in more mild Cr depletion than would result if only the vacancy diffusion were accounted for, in better agreement with experiment. This physical description of RIS in Ni–Cr alloys, which invokes the effects of both vacancy and interstitial diffusion, is distinct from the conventional description which accounts only for the effect of vacancy diffusion

  13. Utilization of axisymmetrical models in the description of the fluctuating temperature field and in the calculation of turbulent thermal diffusivity

    International Nuclear Information System (INIS)

    Cintra Filho, J. de S.

    1981-01-01

    The fluctuating temperature field structure is studied for the case of turbulent circular pipe flow. Experimentally determined integral length scales are used in modeling this structure in terms of axisymmetric forms. It is found that the appropriate angle of axisymmetry is larger than the one for modeling the large scale velocity structure. The axisymmetric model is then used to examine the validity and the prediction capability of the Tyldesley and Silver's non-spherical eddy diffusivity theory. (Author) [pt

  14. Investigation into diffusion induced plastic deformation behavior in hollow lithium ion battery electrode revealed by analytical model and atomistic simulation

    International Nuclear Information System (INIS)

    Li, Jia; Fang, Qihong; Wu, Hong; Liu, Youwen; Wen, Pihua

    2015-01-01

    Highlights: • Diffusion induced stress is established. • Yield stress is dependent upon concentration. • Plastic deformation induced stress lowers tensile stress. • Plastic deformation suppresses crack nucleation. • Plastic deformation occurs not only at lithiated phase but also at electrode interior. - Abstract: This paper is theoretically suggested to describe diffusion induced stress in the elastoplastic hollow spherical silicon electrode for plastic deformation using both analytical model and molecular simulation. Based on the plastic deformation and the yield criterion, we develop this model accounting for the lithium-ion diffusion effect in hollow electrode, focusing on the concentration and stress distributions undergoing lithium-ion insertion. The results show that the two ways, applied compressive stress to inner surface or limited inner surface with higher concentration using biological membranes maintaining concentration difference, lead to the compressive stress induced by the lithium-ion diffusion effect. Hollow spherical electrode reduces effectively diffusion induced stress through controlling and tuning electrode parameters to obtain the reasonably low yield strength. According to MD simulations, plastic deformation phenomenon not only occurs at interface layer of lithiated phase, but also penetrates at electrode interior owning to confinement imposed by lithiated phase. These criteria that radial and hoop stresses reduce dramatically when plastic deformation occurs near the end faces of hollow electrode, may help guide development of new materials for lithium-ion batteries with enhanced mechanical durability, by means of reasonable designing yield strength to maintain mechanical stress below fracture strength, thereby increasing battery life.

  15. Simulation of diffusion-induced stress using reconstructed electrodes particle structures generated by micro/nano-CT

    International Nuclear Information System (INIS)

    Lim, Cheolwoong; Yan Bo; Yin Leilei; Zhu Likun

    2012-01-01

    Highlights: ► The microstructure of LIB electrodes was obtained by X-ray micro/nano-CT. ► We studied diffusion-induced stresses based on realistic 3D microstructures. ► Stresses depend on geometric characteristics of electrode particle. ► Stresses in a real particle are much higher than those in a spherical particle. - Abstract: Lithium ion batteries experience diffusion-induced stresses during charge and discharge processes which can cause electrode failure in the form of fracture. Previous diffusion-induced stress models and simulations are mainly based on simple active material particle structures, such as spheres and ellipsoids. However, the simple structure model cannot reveal the stress development in a real complex lithium ion battery electrode. In this paper, we studied the diffusion-induced stresses numerically based on a realistic morphology of reconstructed particles during the lithium ion intercalation process. The morphology of negative and positive active materials of a lithium ion battery was determined using X-ray micro/nano computed tomography technology. Diffusion-induced stresses were simulated at different C rates under galvonostatic conditions and compared with spherical particles. The simulation results show that the intercalation stresses of particles depend on their geometric characteristics. The highest von Mises stress and Tresca stress in a real particle are several times higher than the stresses in a spherical particle with the same volume.

  16. Patterns induced by super cross-diffusion in a predator-prey system with Michaelis-Menten type harvesting.

    Science.gov (United States)

    Liu, Biao; Wu, Ranchao; Chen, Liping

    2018-04-01

    Turing instability and pattern formation in a super cross-diffusion predator-prey system with Michaelis-Menten type predator harvesting are investigated. Stability of equilibrium points is first explored with or without super cross-diffusion. It is found that cross-diffusion could induce instability of equilibria. To further derive the conditions of Turing instability, the linear stability analysis is carried out. From theoretical analysis, note that cross-diffusion is the key mechanism for the formation of spatial patterns. By taking cross-diffusion rate as bifurcation parameter, we derive amplitude equations near the Turing bifurcation point for the excited modes by means of weakly nonlinear theory. Dynamical analysis of the amplitude equations interprets the structural transitions and stability of various forms of Turing patterns. Furthermore, the theoretical results are illustrated via numerical simulations. Copyright © 2018. Published by Elsevier Inc.

  17. Temperature dependent electron transport and rate coefficient studies for e-beam-sustained diffuse gas discharge switching

    International Nuclear Information System (INIS)

    Carter, J.G.; Hunter, S.R.; Christophorou, L.G.

    1987-01-01

    Measurements of the electron drift velocity, w, attachment coefficient, eta/N/sub a/, and ionization coefficient, α/N, have been made in C 2 F 6 /Ar and C 2 F 6 /CH 4 gas mixtures at gas temperatures, T, of 300 and 500 0 K over the concentration range of 0.1 to 100% of the C 2 F 6 . These measurements are useful for modeling the expected behavior of repetitively operated electron-beam sustained diffuse gas discharge opening switches where gas temperatures within the switch are anticipated to rise several hundred degrees during switch operation

  18. The diffusion cross section for atomic hydrogen in helium gas at low temperature and the H-He potential

    International Nuclear Information System (INIS)

    Jochemsen, R.; Berlinsky, A.J.; Hardy, W.N.

    1984-01-01

    A calculation of the diffusion cross section Q sub(D) of hydrogen atoms in helium gas at low temperature is performed and compared with recent experimental results. The comparison allows an improved determination of the H-He potential. Calculations were done for three different potentials: our own empirical potential based on experimental high-energy scattering results and calculated long-range dispersion terms, which gives good results for Q sub(D) and total collision cross sections; a recently determined semi-empirical potential, and an ab initio calculated potential. All three potentials imply a strong temperature dependence of Q sub(D) for T < 1.5 K

  19. Micro-mechanisms of Surface Defects Induced on Aluminum Alloys during Plastic Deformation at Elevated Temperatures

    Science.gov (United States)

    Gali, Olufisayo A.

    Near-surface deformed layers developed on aluminum alloys significantly influence the corrosion and tribological behavior as well as reduce the surface quality of the rolled aluminum. The evolution of the near-surface microstructures induced on magnesium containing aluminum alloys during thermomechanical processing has been investigated with the aim generating an understanding of the influence of individual forming parameters on its evolution and examine the microstructure of the roll coating induced on the mating steel roll through material transfer during rolling. The micro-mechanisms related to the various features of near-surface microstructure developed during tribological conditions of the simulated hot rolling process were identified. Thermomechanical processing experiments were performed with the aid of hot rolling (operating temperature: 550 to 460 °C, 4, 10 and 20 rolling pass schedules) and hot forming (operating temperature: 350 to 545 °C, strain rate: 4 x 10-2 s-1) tribo-simulators. The surface, near-surface features and material transfer induced during the elevated temperature plastic deformation were examined and characterized employing optical interferometry, SEM/EDS, FIB and TEM. Near-surface features characterized on the rolled aluminum alloys included; cracks, fractured intermetallic particles, aluminum nano-particles, oxide decorated grain boundaries, rolled-in oxides, shingles and blisters. These features were related to various individual rolling parameters which included, the work roll roughness, which induced the formation of shingles, rolling marks and were responsible for the redistribution of surface oxide and the enhancements of the depth of the near-surface damage. The enhanced stresses and strains experienced during rolling were related to the formation and propagation of cracks, the nanocrystalline structure of the near-surface layers and aluminum nano-particles. The mechanism of the evolution of the near-surface microstructure were

  20. Diffusion tensor imaging detects ventilation-induced brain injury in preterm lambs.

    Directory of Open Access Journals (Sweden)

    Dhafer M Alahmari

    Full Text Available Injurious mechanical ventilation causes white matter (WM injury in preterm infants through inflammatory and haemodynamic pathways. The relative contribution of each of these pathways is not known. We hypothesised that in vivo magnetic resonance imaging (MRI can detect WM brain injury resulting from mechanical ventilation 24 h after preterm delivery. Further we hypothesised that the combination of inflammatory and haemodynamic pathways, induced by umbilical cord occlusion (UCO increases brain injury at 24 h.Fetuses at 124±2 days gestation were exposed, instrumented and either ventilated for 15 min using a high tidal-volume (VT injurious strategy with the umbilical cord intact (INJ; inflammatory pathway only, or occluded (INJ+UCO; inflammatory and haemodynamic pathway. The ventilation groups were compared to lambs that underwent surgery but were not ventilated (Sham, and lambs that did not undergo surgery (unoperated control; Cont. Fetuses were placed back in utero after the 15 min intervention and ewes recovered. Twenty-four hours later, lambs were delivered, placed on a protective ventilation strategy, and underwent MRI of the brain using structural, diffusion tensor imaging (DTI and magnetic resonance spectroscopy (MRS techniques.Absolute MRS concentrations of creatine and choline were significantly decreased in INJ+UCO compared to Cont lambs (P = 0.03, P = 0.009, respectively; no significant differences were detected between the INJ or Sham groups and the Cont group. Axial diffusivities in the internal capsule and frontal WM were lower in INJ and INJ+UCO compared to Cont lambs (P = 0.05, P = 0.04, respectively. Lambs in the INJ and INJ+UCO groups had lower mean diffusivities in the frontal WM compared to Cont group (P = 0.04. DTI colour mapping revealed lower diffusivity in specific WM regions in the Sham, INJ, and INJ+UCO groups compared to the Cont group, but the differences did not reach significance. INJ+UCO lambs more likely to exhibit

  1. Reduction-induced inward diffusion and crystal growth on the surfaces of iron-bearing silicate glasses

    DEFF Research Database (Denmark)

    Liu, S.J.; Tao, H.Z.; Zhang, Y.F.

    2015-01-01

    We investigate the sodium inward diffusion (i.e., sodium diffusion from surface toward interior) in iron containing alkaline earth silicate glasses under reducing conditions around Tg and the induced surface crystallization. The surface crystallization is caused by formation of a silicate-gel lay......+ ions have stronger bonds to oxygen and lower coordination number (4~5) than Ca2+, Sr2+ and Ba2+ ions. In contrast, a cristobalite layer forms in Ca-, Sr- and Ba-containing glasses....

  2. Instantaneous temperature field measurements using planar laser-induced fluorescence.

    Science.gov (United States)

    Seitzman, J M; Kychakoff, G; Hanson, R K

    1985-09-01

    A single-pulse, laser-induced-fluorescence diagnostic for the measurement of two-dimensional temperature fields in combustion flows is described. The method uses sheet illumination from a tunable laser to excite planar laserinduced fluorescence in a stable tracer molecule, seeded at constant mole fraction into the flow field. The temporal resolution of this technique is determined by the laser pulse length. Experimental results are presented for a rodstabilized, premixed methane-air flame, using the Q(1) (22) line of the nitric oxide A(2) Sigma(+) (v = 0) ? X(2)II((1/2))(v = 0) transition (lambda approximately 225.6 nm).

  3. Electromagnetically induced transparency in high-temperature magnetoactive plasma

    International Nuclear Information System (INIS)

    Kryachko, A.Yu.; Litvak, A.G.; Tokman, M.D.

    2002-01-01

    The classical analog of the presently popular in the quantum electronics effect of the electromagnetically induced transparency (EIT) is studied. The EIT effect is considered for the electron-cyclotron waves in the plasma with the finite temperature. The expression for the effective index of the electromagnetic wave refraction is identified and the dispersion law and this wave absorption under the EIT conditions are studied. It is shown, that accounting for the thermal motion, which radically changes the behavior of the signal wave dispersion curves in the EIT area, as compared with the cold plasma case [ru

  4. Heroin-induced leukoencephalopathy: characterization using MRI, diffusion-weighted imaging, and MR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Offiah, C. [Department of Neuroradiology, St Bartholomew' s and the London Hospitals NHS Trust, London (United Kingdom); Hall, E. [Department of Neuroradiology, St Bartholomew' s and the London Hospitals NHS Trust, London (United Kingdom)], E-mail: curtis.offiah@bartsandthelondon.nhs.uk

    2008-02-15

    Aim: To describe the magnetic resonance imaging (MRI) characteristics of heroin-induced leukoencephalopathy or 'chasing the dragon syndrome' and, in particular, the diffusion-weighted imaging (DWI) and MR spectroscopy (MRS) features. Material and methods: Six patients with a clinical or histopathological diagnosis of heroin-induced leukoencephalopathy were identified and MRI examinations, including DWI and single-voxel MRS, reviewed. Results: Cerebellar white matter was involved in all six cases demonstrating similar symmetrical distribution with sparing of the dentate nuclei. Brain stem signal change was evident in five of the six patients imaged. Supratentorial brain parenchymal involvement, as well as brain stem involvement, correlated anatomically with corticospinal tract distribution. None of the areas of signal abnormality were restricted on DWI. Of those patients subjected to MRS, the areas of parenchymal damage demonstrated reduced N-acetylaspartate, reduced choline, and elevated lactate. Conclusion: Heroin-induced leukoencephalopathy results in characteristic and highly specific signal abnormalities on MRI, which can greatly aid diagnosis. DWI and MRS findings can be explained by known reported neuropathological descriptions in this condition and can be used to support a proposed mechanism for the benefit of current recommended drug treatment regimes.

  5. Portable laser-induced breakdown spectroscopy/diffuse reflectance hybrid spectrometer for analysis of inorganic pigments

    Science.gov (United States)

    Siozos, Panagiotis; Philippidis, Aggelos; Anglos, Demetrios

    2017-11-01

    A novel, portable spectrometer, combining two analytical techniques, laser-induced breakdown spectroscopy (LIBS) and diffuse reflectance spectroscopy, was developed with the aim to provide an enhanced instrumental and methodological approach with regard to the analysis of pigments in objects of cultural heritage. Technical details about the hybrid spectrometer and its operation are presented and examples are given relevant to the analysis of paint materials. Both LIBS and diffuse reflectance spectra in the visible and part of the near infrared, corresponding to several neat mineral pigment samples, were recorded and the complementary information was used to effectively distinguish different types of pigments even if they had similar colour or elemental composition. The spectrometer was also employed in the analysis of different paints on the surface of an ancient pottery sherd demonstrating the capabilities of the proposed hybrid diagnostic approach. Despite its instrumental simplicity and compact size, the spectrometer is capable of supporting analytical campaigns relevant to archaeological, historical or art historical investigations, particularly when quick data acquisition is required in the context of surveys of large numbers of objects and samples.

  6. Determination of thermal diffusivity at low temperature using the two-beam phase-lag photoacoustic method with observation of phase-transitions

    International Nuclear Information System (INIS)

    Jorge, M.P.P.

    1992-01-01

    This study consists of the determination of thermal diffusivity int he temperature range from 77 K to 300 K by the two-beam phase-lag photoacoustic method. Room temperature measurements of NTD (neutron transmutation doping) silicon suggest that the doping process does not affect its thermal properties. For the superconductor Y Ba 2 Cu 3 O 7 - x it has been verified that the sample density affects its thermal diffusivity. The validity of the experimental method on the Li K SO 4 crystal has been examined by using the thermal diffusivity of a Li F crystal and an Y 2 O 3 ceramic, at room temperature. The behavior of the thermal diffusivity as a function of the temperature for the Li K SO 4 crystal shows two anomalies which correspond at phase-transitions of this crystal in the studied temperature range. (author)

  7. Variation in diffusion-induced solidification rate of liquated Ni-Cr-B insert during TLP bonding of Waspaloy superalloy

    International Nuclear Information System (INIS)

    Tokoro, K.; Wikstrom, N.P.; Ojo, O.A.; Chaturvedi, M.C.

    2008-01-01

    A microstructural study was performed on transient liquid phase (TLP) bonded Waspaloy superalloy with a Ni-Cr-B filler. The applicability of a diffusion model based on Fick's second law of diffusion to determine the time required for complete isothermal solidification (t f ) was investigated. Over the temperature range of 1065-1110 deg. C, experimental observations of t f were in reasonable agreement with t f values predicted by the diffusion model. However, a notable deviation was observed in joints prepared between 1175 and 1225 deg. C in that the rate of isothermal solidification was reduced at these temperatures resulting in the formation of a centerline eutectic-type microconstituent, which in contrast, was prevented from forming after holding the brazing assembly for an equivalent bonding time at a lower temperature of 1145 deg. C. Boride particles were observed as part of the eutectic product, which suggested that diffusion of boron out of the liquated insert was also reduced at these higher temperatures. A decrease in solubility of the melting point depressing solute, boron, with increase in temperature is suggested to be an important factor contributing to the reduction in isothermal solidification rate observed at the higher bonding temperatures

  8. INFLUENCE OF THERMOHALINE CONVECTION ON DIFFUSION-INDUCED IRON ACCUMULATION IN A STARS

    International Nuclear Information System (INIS)

    Theado, S.; Vauclair, S.; Alecian, G.; LeBlanc, F.

    2009-01-01

    Atomic diffusion may lead to heavy-element accumulation inside stars in certain specific layers. Iron accumulation in the Z-bump opacity region has been invoked by several authors to quantitatively account for abundance anomalies observed in some stars, or to account for stellar oscillations through the induced κ-mechanism. These authors, however, never took into account the fact that such an accumulation creates an inverse μ-gradient, unstable for thermohaline convection. Here, we present results for A-F stars, where abundance variations are computed with and without this process. We show that iron accumulation is still present when thermohaline convection is taken into account, but much reduced compared to when this physical process is neglected. The consequences of thermohaline convection for A-type stars as well as for other types of stars are presented.

  9. Detection of electroporation-induced membrane permeabilization states in the brain using diffusion-weighted MRI

    DEFF Research Database (Denmark)

    Mahmood, Faisal; Hansen, Rasmus H; Agerholm-Larsen, Birgit

    2015-01-01

    BACKGROUND: Tissue permeabilization by electroporation (EP) is a promising technique to treat certain cancers. Non-invasive methods for verification of induced permeabilization are important, especially in deep-seated cancers. In this study we evaluated diffusion-weighted magnetic resonance imaging...... (NP), transient membrane permeabilization (TMP), and permanent membrane permeabilization (PMP), respectively. DW-MRI was acquired 5 minutes, 2 hours, 24 hours and 48 hours after EP. Histology was performed for validation of the permeabilization states. Tissue content of water, Na+, K+, Ca2...... minutes after EP, compared to NP. Kurtosis was also significantly higher at 24 hours (pstates, supporting the DW-MRI findings. We conclude that DW-MRI is capable of detecting EP...

  10. COMPARISON OF GKS CALCULATED CRITICAL ION TEMPERATURE GRADIENTS AND ITG GROWTH RATES TO DIII-D MEASURED GRADIENTS AND DIFFUSIVITIES

    International Nuclear Information System (INIS)

    BAKER, DR; STAEBLER, GM; PETTY, CC; GREENFIELD, CM; LUCE, TC

    2003-01-01

    OAK-B135 The gyrokinetic equations predict that various drift type waves or modes can be unstable in a tokamak. For some of these modes, such as the ion temperature gradient (ITG) mode and the electron temperature gradient mode, there exists a critical gradient, above which the mode is unstable. Since the existence of unstable modes can cause increased transport, plasmas which are centrally heated tend to increase in temperature gradient until the modes become unstable. Under some conditions the increased transport can fix the gradient at the critical value. here they present a comparison between the measured ion temperature gradients and the critical gradient as calculated by a gyrokinetic linear stability (GKS) code. They also present the maximum linear growth rate as calculated by this code for comparison to experimentally derived transport coefficients. The results show that for low confinement mode (L-mode) discharges, the measured ion temperature gradient is significantly greater than the GKS calculated critical gradient over a large region of the plasma. This is the same region of the plasma where the ion thermal diffusivity is large. For high confinement mode (H-mode) discharges the ion temperature gradient is closer to the critical gradient, but often still greater than the critical gradient over some region. For the best H-mode discharges, the ion temperature is less than or equal to the critical gradient over the whole plasma. In general they find that the position in the plasma where the ion thermal diffusivity starts to increase rapidly is where the maximum linear growth rate is greater than the E x B shearing rate

  11. Water Redistribution, Temperature Change and CO2 Diffusion of Reconstruction Soil Profiles Filled with Gangue in Coal Mining Areas

    Science.gov (United States)

    Wang, S.; Zhan, H.; Chen, X.; Hu, Y.

    2017-12-01

    There were a great many projects of reconstruction soil profile filled with gangue to restore ecological environment and land resources in coal mining areas. A simulation experimental system in laboratory was designed for studying water transport and gas-heat diffusion of the reconstruction soil as to help the process of engineering and soil-ripening technology application. The system could be used for constantly measuring soil content, temperature and soil CO2 concentration by laid sensors and detectors in different depth of soil column. The results showed that soil water infiltration process was slowed down and the water-holding capacity of the upper soil was increased because of good water resistance from coal gangue layer. However, the water content of coal gangue layer, 10% approximately, was significantly lower than that of topsoil for the poor water-holding capacity of gangue. The temperature of coal gangue layer was also greater than that of soil layer and became easily sustainable temperature gradient under the condition with heating in reconstruction soil due to the higher thermal diffusivity from gangue, especially being plenty of temperature difference between gangue and soil layers. The effects of heated from below on topsoil was small, which it was mainly influenced from indoor temperature in the short run. In addition, the temperature changing curve of topsoil is similar with the temperature of laboratory and its biggest fluctuation range was for 2.89°. The effects of aerating CO2 from column bottom on CO2 concentration of topsoil soil was also very small, because gas transport from coal gangue layers to soil ones would easily be cut off as so to gas accumulated below the soil layer. The coal gangue could have a negative impact on microbial living environment to adjacent topsoil layers and declined microorganism activities. The effects of coal gangue on topsoil layer were brought down when the cove soil thickness was at 60 cm. And the influences

  12. Mechanism for microstructural evolution induced by high temperature deformation in Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Cheng, Sirui; Wang, Chunju; Ma, Mingzhen; Shan, Debin; Guo, Bin

    2016-01-01

    In the Zr_4_1_._2Ti_1_3_._8Cu_1_2_._5Ni_1_0Be_2_2_._5 (Vit1) alloy undergoing high temperature deformation, its thermal properties and microstructure are quite different from those in the annealing alloy. In order to research the coupled effect of temperature and plastic strain on microstructural evolution of Zr-based amorphous, uniaxial compression test of Vit1 alloy with good amorphous nature has been performed, and then the structural state and thermal properties of Vit1 alloy after thermal deformation and isothermal annealing in the supercooled liquid region were investigated. It is revealed that the deformed specimens possess higher characteristic temperature and lower enthalpy change of microstructural relaxation. In addition, the smaller inter-atomic distance and higher order degree of atomic arrangement can be observed in those deformed Vit1 alloy. That can be deduced that thermal deformation is in favor of the microstructural evolution from a metastable amorphous state to stable crystallization state, because plastic strain promotes the annihilation of free volume and provide excess driving force of atomic diffusion. However, upon increasing the ambient temperature, the influence of plastic deformation on microstructure gradually decreased owing to the decreasing proportion of the plastic deformation-induced annihilation of free volume during the whole thermal deformation process. - Highlights: • The deformed specimens possess closer microstructure and higher characteristic temperatures. • The order degree of microstructures in deformed specimens is higher than that in annealed specimens. • Thermal deformation accelerates the microstructural evolution of Zr-based BMGs. • The influence of thermal deformation on microstructure decreases with the temperature increasing.

  13. Mechanism for microstructural evolution induced by high temperature deformation in Zr-based bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Sirui [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Chunju [Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150080 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Mingzhen [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Shan, Debin, E-mail: shandebin@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150080 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Guo, Bin [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2016-08-15

    In the Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} (Vit1) alloy undergoing high temperature deformation, its thermal properties and microstructure are quite different from those in the annealing alloy. In order to research the coupled effect of temperature and plastic strain on microstructural evolution of Zr-based amorphous, uniaxial compression test of Vit1 alloy with good amorphous nature has been performed, and then the structural state and thermal properties of Vit1 alloy after thermal deformation and isothermal annealing in the supercooled liquid region were investigated. It is revealed that the deformed specimens possess higher characteristic temperature and lower enthalpy change of microstructural relaxation. In addition, the smaller inter-atomic distance and higher order degree of atomic arrangement can be observed in those deformed Vit1 alloy. That can be deduced that thermal deformation is in favor of the microstructural evolution from a metastable amorphous state to stable crystallization state, because plastic strain promotes the annihilation of free volume and provide excess driving force of atomic diffusion. However, upon increasing the ambient temperature, the influence of plastic deformation on microstructure gradually decreased owing to the decreasing proportion of the plastic deformation-induced annihilation of free volume during the whole thermal deformation process. - Highlights: • The deformed specimens possess closer microstructure and higher characteristic temperatures. • The order degree of microstructures in deformed specimens is higher than that in annealed specimens. • Thermal deformation accelerates the microstructural evolution of Zr-based BMGs. • The influence of thermal deformation on microstructure decreases with the temperature increasing.

  14. Low-temperature hydrogenation of diamond nanoparticles using diffuse coplanar surface barrier discharge at atmospheric pressure

    Czech Academy of Sciences Publication Activity Database

    Kromka, Alexander; Čech, J.; Kozak, Halyna; Artemenko, Anna; Ižák, Tibor; Čermák, Jan; Rezek, Bohuslav; Černák, M.

    2015-01-01

    Roč. 252, č. 11 (2015), s. 2602-2607 ISSN 0370-1972 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : atmospheric plasma * diamond nanoparticles * diffuse coplanar surface barrier discharge * FTIR * XPS Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.522, year: 2015

  15. Single-particle thermal diffusion of charged colloids: Double-layer theory in a temperature gradient

    NARCIS (Netherlands)

    Dhont, J.K.G.; Briels, Willem J.

    2008-01-01

    The double-layer contribution to the single-particle thermal diffusion coefficient of charged, spherical colloids with arbitrary double-layer thickness is calculated and compared to experiments. The calculation is based on an extension of the Debye-Hückel theory for the double-layer structure that

  16. Nonmonotonic temperature dependence of critical current in diffusive d-wave junctions

    NARCIS (Netherlands)

    Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch; Asano, Y.

    2006-01-01

    We study the Josephson effect in D/I/DN/I/D junctions, where I, DN, and D denote an insulator, a diffusive normal metal, and a d-wave superconductor, respectively. The Josephson current is calculated based on the quasiclassical Green's function theory with a general boundary condition for

  17. The Effect of Temperature on Kinetics and Diffusion Coefficients of Metallocene Derivatives in Polyol-Based Deep Eutectic Solvents.

    Directory of Open Access Journals (Sweden)

    Laleh Bahadori

    Full Text Available The temperature dependence of the density, dynamic viscosity and ionic conductivity of several deep eutectic solvents (DESs containing ammonium-based salts and hydrogen bond donvnors (polyol type are investigated. The temperature-dependent electrolyte viscosity as a function of molar conductivity is correlated by means of Walden's rule. The oxidation of ferrocene (Fc/Fc+ and reduction of cobaltocenium (Cc+/Cc at different temperatures are studied by cyclic voltammetry and potential-step chronoamperometry in DESs. For most DESs, chronoamperometric transients are demonstrated to fit an Arrhenius-type relation to give activation energies for the diffusion of redox couples at different temperatures. The temperature dependence of the measured conductivities of DES1 and DES2 are better correlated with the Vogel-Tamman-Fulcher equation. The kinetics of the Fc/Fc+ and Cc+/Cc electrochemical systems have been investigated over a temperature range from 298 to 338 K. The heterogeneous electron transfer rate constant is then calculated at different temperatures by means of a logarithmic analysis. The glycerol-based DES (DES5 appears suitable for further testing in electrochemical energy storage devices.

  18. Kinetic analysis of temperature-induced transformation of zeolite 4A to low-carnegieite

    International Nuclear Information System (INIS)

    Kosanovic, C.; Subotic, B.; Ristic, A.

    2004-01-01

    Kinetics of the isothermal amorphization of zeolite 4A and recrystallization of the formed amorphous phase to low-carnegieite at three different temperatures were investigated by powder X-ray diffraction method. Changes in the fractions f A of zeolite 4A, f a of amorphous aluminosilicate and f C of low-carnegieite during heating of zeolite 4A, show that amorphization and recrystallization take place simultaneously. Kinetic analyzes of single processes (amorphization, recrystallization) as well as solution of the population balance of the entire transformation process (simultaneous transformation of zeolite 4A into amorphous aluminosilicate and its recrystallization into low-carnegieite) have shown that: (A) the transformation of zeolite 4A takes place by a random, diffusion-limited agglomeration of the short-range-ordered aluminosilicate subunits formed by thermally induced breaking of Si-O-Si and Si-O-Al bonds between different building units of zeolite framework; and (B) the crystallization of low-carnegieite occurs by homogeneous nucleation of low-carnegieite inside the matrix of amorphous aluminosilicate and diffusion-controlled, one-dimensional growth of the nuclei, thus forming needle-shaped crystals of low-carnegieite

  19. Temperature-induced plasticity in egg size and resistance of eggs to temperature stress in a soil arthropod.

    NARCIS (Netherlands)

    Liefting, M.; Weerenbeck, M.; van Dooremalen, J.A.; Ellers, J.

    2010-01-01

    Temperature is considered one of the most important mediators of phenotypic plasticity in ectotherms, resulting in predictable changes in egg size. However, the fitness consequences of temperature-induced plasticity in egg size are not well understood and are often assessed at mild temperatures,

  20. Preparation of gas diffusion electrodes for high temperature PEM-type fuel cells

    Czech Academy of Sciences Publication Activity Database

    Mazur, P.; Mališ, J.; Paidar, M.; Schauer, Jan; Bouzek, K.

    2010-01-01

    Roč. 14, 1-3 (2010), s. 101-105 ISSN 1944-3994. [PERMEA 2009. Prague, 07.06.2009-11.06.2009] R&D Projects: GA ČR GA203/08/0465 Institutional research plan: CEZ:AV0Z40500505 Keywords : gas diffusion electrode * polymer electrolyte * ionic liquid Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.752, year: 2010

  1. Oxidation and diffusion process in the ferrous iron-bearing glass fibres near glass temperature

    DEFF Research Database (Denmark)

    Yue, Yuanzheng; Korsgaard, Martin; Kirkegaard, Lise

    2004-01-01

    The Fe2+ oxidation and the network modifier diffusion in the Fe2+-bearing glass fibers are studied using differential scanning calorimetry (DSC), thermogravimetry (TG), and secondary neutral mass spectrometry (SNMS). The results show two couplings: 1) between the Fe2+ oxidation and the network...... of the Fe2+-bearing fibers with an average diameter of 3.5 m by knowing the heat-treatment conditions and vice versa....

  2. Shock-induced synthesis of high temperature superconducting materials

    Science.gov (United States)

    Ginley, D.S.; Graham, R.A.; Morosin, B.; Venturini, E.L.

    1987-06-18

    It has now been determined that the unique features of the high pressure shock method, especially the shock-induced chemical synthesis technique, are fully applicable to high temperature superconducting materials. Extraordinarily high yields are achievable in accordance with this invention, e.g., generally in the range from about 20% to about 99%, often in the range from about 50% to about 90%, lower and higher yields, of course, also being possible. The method of this invention involves the application of a controlled high pressure shock compression pulse which can be produced in any conventional manner, e.g., by detonation of a high explosive material, the impact of a high speed projectile or the effect of intense pulsed radiation sources such as lasers or electron beams. Examples and a discussion are presented.

  3. Radiation-Induced Changes in Normal-Appearing White Matter in Patients With Cerebral Tumors: A Diffusion Tensor Imaging Study

    International Nuclear Information System (INIS)

    Nagesh, Vijaya; Tsien, Christina I.; Chenevert, Thomas L.; Ross, Brian D.; Lawrence, Theodore S.; Junick, Larry; Cao Yue

    2008-01-01

    Purpose: To quantify the radiation-induced changes in normal-appearing white matter before, during, and after radiotherapy (RT) in cerebral tumor patients. Methods and Materials: Twenty-five patients with low-grade glioma, high-grade glioma, or benign tumor treated with RT were studied using diffusion tensor magnetic resonance imaging. The biologically corrected doses ranged from 50 to 81 Gy. The temporal changes were assessed before, during, and to 45 weeks after the start of RT. The mean diffusivity of water ( ), fractional anisotropy of diffusion, diffusivity perpendicular (λ perpendicular ) and parallel (λ parallel ) to white matter fibers were calculated in normal-appearing genu and splenium of the corpus callosum. Results: In the genu and splenium, fractional anisotropy decreased and , λ parallel , λ -perpendicular increased linearly and significantly with time (p -perpendicular had increased ∼30% in the genu and splenium, and λ parallel had increased 5% in the genu and 9% in the splenium, suggesting that demyelination is predominant. The increases in λ perpendicular and λ parallel were dose dependent, starting at 3 weeks and continuing to 32 weeks from the start of RT. The dose-dependent increase in λ perpendicular and λ parallel was not sustained after 32 weeks, indicating the transition from focal to diffuse effects. Conclusion: The acute and subacute changes in normal-appearing white matter fibers indicate radiation-induced demyelination and mild structural degradation of axonal fibers. The structural changes after RT are progressive, with early dose-dependent demyelination and subsequent diffuse dose-independent demyelination and mild axonal degradation. Diffusion tensor magnetic resonance imaging is potentially a biomarker for the assessment of radiation-induced white matter injury

  4. Polyamide–thallium selenide composite materials via temperature and pH controlled adsorption–diffusion method

    Energy Technology Data Exchange (ETDEWEB)

    Ivanauskas, Remigijus; Samardokas, Linas [Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilenu str. 19, Kaunas LT-50254 (Lithuania); Mikolajunas, Marius; Virzonis, Darius [Department of Technology, Kaunas University of Technology, Panevezys Faculty, Daukanto 12, 35212 Panevezys (Lithuania); Baltrusaitis, Jonas, E-mail: job314@lehigh.edu [Department of Chemical and Biomolecular Engineering, Lehigh University, B336 Iacocca Hall, 111 Research Drive, Bethlehem, PA 18015 (United States)

    2014-10-30

    Graphical abstract: Single phase polyamide–thallium selenide hybrid functional materials were synthesized for solar energy conversion. - Highlights: • Thallium selenide–polyamide composite materials surfaces synthesized. • Mixed phase composition confirmed by XRD. • Increased temperature resulted in a denser surface packing. • Urbach energies correlated with AFM showing decreased structural disorder. • Annealing in N{sub 2} at 100 °C yielded a single TlSe phase. - Abstract: Composite materials based on III–VI elements are promising in designing efficient photoelectronic devices, such as thin film organic–inorganic solar cells. In this work, TlSe composite materials were synthesized on a model polymer polyamide using temperature and pH controlled adsorption–diffusion method via (a) selenization followed by (b) the exposure to the group III metal (Tl) salt solution and their surface morphological, chemical and crystalline phase information was determined with particular focus on their corresponding structure–optical property relationship. XRD analysis yielded a complex crystalline phase distribution which correlated well with the optical and surface morphological properties measured. pH 11.3 and 80 °C yielded well defined, low structural disorder composite material surface. After annealing in N{sub 2} at 100 °C, polycrystalline PA-Tl{sub x}Se{sub y} composite materials yielded a single TlSe phase due to the enhanced diffusion and reaction of thallium ions into the polymer. The method described here can be used to synthesize variety of binary III–VI compounds diffused into the polymer at relatively low temperatures and low overall cost, thus providing for a flexible synthesis route for novel composite solar energy harvesting materials.

  5. Polyamide–thallium selenide composite materials via temperature and pH controlled adsorption–diffusion method

    International Nuclear Information System (INIS)

    Ivanauskas, Remigijus; Samardokas, Linas; Mikolajunas, Marius; Virzonis, Darius; Baltrusaitis, Jonas

    2014-01-01

    Graphical abstract: Single phase polyamide–thallium selenide hybrid functional materials were synthesized for solar energy conversion. - Highlights: • Thallium selenide–polyamide composite materials surfaces synthesized. • Mixed phase composition confirmed by XRD. • Increased temperature resulted in a denser surface packing. • Urbach energies correlated with AFM showing decreased structural disorder. • Annealing in N 2 at 100 °C yielded a single TlSe phase. - Abstract: Composite materials based on III–VI elements are promising in designing efficient photoelectronic devices, such as thin film organic–inorganic solar cells. In this work, TlSe composite materials were synthesized on a model polymer polyamide using temperature and pH controlled adsorption–diffusion method via (a) selenization followed by (b) the exposure to the group III metal (Tl) salt solution and their surface morphological, chemical and crystalline phase information was determined with particular focus on their corresponding structure–optical property relationship. XRD analysis yielded a complex crystalline phase distribution which correlated well with the optical and surface morphological properties measured. pH 11.3 and 80 °C yielded well defined, low structural disorder composite material surface. After annealing in N 2 at 100 °C, polycrystalline PA-Tl x Se y composite materials yielded a single TlSe phase due to the enhanced diffusion and reaction of thallium ions into the polymer. The method described here can be used to synthesize variety of binary III–VI compounds diffused into the polymer at relatively low temperatures and low overall cost, thus providing for a flexible synthesis route for novel composite solar energy harvesting materials

  6. Stress-induced core temperature changes in pigeons (Columba livia).

    Science.gov (United States)

    Bittencourt, Myla de Aguiar; Melleu, Fernando Falkenburger; Marino-Neto, José

    2015-02-01

    Changes in body temperature are significant physiological consequences of stressful stimuli in mammals and birds. Pigeons (Columba livia) prosper in (potentially) stressful urban environments and are common subjects in neurobehavioral studies; however, the thermal responses to stress stimuli by pigeons are poorly known. Here, we describe acute changes in the telemetrically recorded celomatic (core) temperature (Tc) in pigeons given a variety of potentially stressful stimuli, including transfer to a novel cage (ExC) leading to visual isolation from conspecifics, the presence of the experimenter (ExpR), gentle handling (H), sham intracelomatic injections (SI), and the induction of the tonic immobility (TI) response. Transfer to the ExC cage provoked short-lived hyperthermia (10-20 min) followed by a long-lasting and substantial decrease in Tc, which returned to baseline levels 2 h after the start of the test. After a 2-hour stay in the ExC, the other potentially stressful stimuli evoked only weak, marginally significant hyperthermic (ExpR, IT) or hypothermic (SI) responses. Stimuli delivered 26 h after transfer to the ExC induced definite and intense increases in Tc (ExpR, H) or hypothermic responses (SI). These Tc changes appear to be unrelated to modifications in general activity (as measured via telemetrically recorded actimetric data). Repeated testing failed to affect the hypothermic responses to the transference to the ExC, even after nine trials and at 1- or 8-day intervals, suggesting that the social (visual) isolation from conspecifics may be a strong and poorly controllable stimulus in this species. The present data indicated that stress-induced changes in Tc may be a consistent and reliable physiological parameter of stress but that they may also show stressor type-, direction- and species-specific attributes. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Development of Be/Glidcop joint obtained by hot isostatic pressing diffusion bonding for high in-service temperature

    Energy Technology Data Exchange (ETDEWEB)

    Saint-Antonin, F.; Bucci, P.; Burlet, H.; Le Marois, G. [CEA Centre d`Etudes de Grenoble, 38 (France); Barberi, D.; Laille, A.

    1998-01-01

    This paper addresses some aspects of the beryllium-Glidcop joining by Hot Isostatic Pressing diffusion Bonding. The quality of a joint is mainly dependent on the interface microstructure. Thus, as Be/copper direct bonding is not recommended, the choice of interlayers is a critical point. The joining process parameters, i.e. temperature, pressure and time, must take into account the in-service requirements, the mechanical and metallurgical properties of each material. The Be/Glidcop joining process developed at CEA/Grenoble is presented here. (author)

  8. Effects of diluents on soot surface temperature and volume fraction in diluted ethylene diffusion flames at pressure

    KAUST Repository

    Kailasanathan, Ranjith Kumar Abhinavam

    2014-05-20

    Soot surface temperature and volume fraction are measured in ethylene/air coflowing laminar diffusion flames at high pressures, diluted with one of four diluents (argon, helium, nitrogen, and carbon dioxide) using a two-color technique. Both temperature and soot measurements presented are line-of-sight averages. The results aid in understanding the kinetic and thermodynamic behavior of the soot formation and oxidation chemistry with changes in diluents, ultimately leading to possible methods of reducing soot emission from practical combustion hardware. The diluted fuel and coflow exit velocities (top-hat profiles) were matched at all pressures to minimize shear effects. In addition to the velocity-matched flow rates, the mass fluxes were held constant for all pressures. Addition of a diluent has a pronounced effect on both the soot surface temperature and volume fraction, with the helium diluted flame yielding the maximum and carbon dioxide diluted flame yielding minimum soot surface temperature and volume fraction. At low pressures, peak soot volume fraction exists at the tip of the flame, and with an increase in pressure, the location shifts lower to the wings of the flame. Due to the very high diffusivity of helium, significantly higher temperature and volume fraction are measured and explained. Carbon dioxide has the most dramatic soot suppression effect. By comparing the soot yield with previously measured soot precursor concentrations in the same flame, it is clear that the lower soot yield is a result of enhanced oxidation rates rather than a reduction in precursor formation. Copyright © 2014 Taylor & Francis Group, LLC.

  9. Longitudinal diffusion tensor magnetic resonance imaging study of radiation-induced white matter damage in a rat model.

    Science.gov (United States)

    Wang, Silun; Wu, Ed X; Qiu, Deqiang; Leung, Lucullus H T; Lau, Ho-Fai; Khong, Pek-Lan

    2009-02-01

    Radiation-induced white matter (WM) damage is a major side effect of whole brain irradiation among childhood cancer survivors. We evaluate longitudinally the diffusion characteristics of the late radiation-induced WM damage in a rat model after 25 and 30 Gy irradiation to the hemibrain at 8 time points from 2 to 48 weeks postradiation. We hypothesize that diffusion tensor magnetic resonance imaging (DTI) indices including fractional anisotropy (FA), trace, axial diffusivity (lambda(//)), and radial diffusivity (lambda( perpendicular)) can accurately detect and monitor the histopathologic changes of radiation-induced WM damage, measured at the EC, and that these changes are dose and time dependent. Results showed a progressive reduction of FA, which was driven by reduction in lambda(//) from 4 to 40 weeks postradiation, and an increase in lambda( perpendicular) with return to baseline in lambda(//) at 48 weeks postradiation. Histologic evaluation of irradiated WM showed reactive astrogliosis from 4 weeks postradiation with reversal at 36 weeks, and demyelination, axonal degeneration, and necrosis at 48 weeks postradiation. Moreover, changes in lambda(//) correlated with reactive astrogliosis (P histopathologic changes of WM damage and our results support the use of DTI as a biomarker to noninvasively monitor radiation-induced WM damage.

  10. Temperature induced effects on the durability of MR fluids

    International Nuclear Information System (INIS)

    Wiehe, A; Maas, J; Kieburg, C

    2013-01-01

    Although commercial MR fluids exist for quite some time now and the feasibility as well as the advantages of the MR technology have been demonstrated for several applications by a variety of MR actuator prototypes, a sustainable market break-through of brake and clutch applications utilizing the shear mode is still missing. Essential impediments are the marginal knowledge about the durability of the MR technology. To overcome this situation, a long-term measurement system was developed for the durability analysis of MR fluid formulations within a technical relevant scale with respect to the volume of MR fluid and the transmitted torque. The focus of the presented series of measurements is given to the analysis of temperature induced effects on the durability. In this context four different failure indicators can be distinguished, namely an apparent negative viscosity, deviations in torque data obtained from different measurements as well as a pressure increase and a drop in the on-state torque. The measurement data of the present durability experiments indicate a significant dependency of the attainable energy intake density on the temperature. The aim of such durability tests is to establish a reliable data base for the industry to estimate the life-time of MR devices.

  11. Gas diffusion electrode setup for catalyst testing in concentrated phosphoric acid at elevated temperatures

    DEFF Research Database (Denmark)

    Wiberg, Gustav Karl Henrik; Fleige, Michael; Arenz, Matthias

    2015-01-01

    temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow...

  12. Effects of temperature gradient induced nanoparticle motion on conduction and convection of fluid

    International Nuclear Information System (INIS)

    Zhou Leping; Peterson, George P.; Yoda, Minani; Wang Buxuan

    2012-01-01

    The role of temperature gradient induced nanoparticle motion on conduction and convection was investigated. Possible mechanisms for variations resulting from variations in the thermophysical properties are theoretically and experimentally discussed. The effect of the nanoparticle motion on conduction is demonstrated through thermal conductivity measurement of deionized water with suspended CuO nanoparticles (50 nm in diameter) and correlated with the contributions of Brownian diffusion, thermophoresis, etc. The tendencies observed is that the magnitude of and the variation in the thermal conductivity increases with increasing volume fraction for a given temperature, which is due primarily to the Brownian diffusion of the nanoparticles. Using dimensional analysis, the thermal conductivity is correlated and both the interfacial thermal resistance and near-field radiation are found to be essentially negligible. A modification term that incorporates the contributions of Brownian motion and thermophoresis is proposed. The effect of nanoscale convection is illustrated through an experimental investigation that utilized fluorescent polystyrene nanoparticle tracers (200 nm in diameter) and multilayer nanoparticle image velocimetry. The results indicate that both the magnitude and the deviation of the fluid motion increased with increasing heat flux in the near-wall region. Meanwhile, the fluid motion tended to decrease with the off-wall distance for a given heating power. A corresponding numerical study of convection of pure deionized water shows that the velocity along the off-wall direction is several orders of magnitude lower than that of deionized water, which indicates that Brownian motion in the near-wall region is crucial for fluid with suspended nanoparticles in convection.

  13. Dual gas-diffusion membrane- and mediatorless dihydrogen/air-breathing biofuel cell operating at room temperature

    Science.gov (United States)

    Xia, Hong-qi; So, Keisei; Kitazumi, Yuki; Shirai, Osamu; Nishikawa, Koji; Higuchi, Yoshiki; Kano, Kenji

    2016-12-01

    A membraneless direct electron transfer (DET)-type dihydrogen (H2)/air-breathing biofuel cell without any mediator was constructed wherein bilirubin oxidase from Myrothecium verrucaria (BOD) and membrane-bound [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F (MBH) were used as biocatalysts for the cathode and the anode, respectively, and Ketjen black-modified water proof carbon paper (KB/WPCC) was used as an electrode material. The KB/WPCC surface was modified with 2-aminobenzoic acid and p-phenylenediamine, respectively, to face the positively charged electron-accepting site of BOD and the negatively charged electron-donating site of MBH to the electrode surface. A gas-diffusion system was employed for the electrodes to realize high-speed substrate supply. As result, great improvement in the current density of O2 reduction with BOD and H2 reduction with MBH were realized at negatively and postively charged surfaces, respectively. Gas diffusion system also suppressed the oxidative inactivation of MBH at high electrode potentials. Finally, based on the improved bioanode and biocathode, a dual gas-diffusion membrane- and mediatorless H2/air-breathing biofuel cell was constructed. The maximum power density reached 6.1 mW cm-2 (at 0.72 V), and the open circuit voltage was 1.12 V using 1 atm of H2 gas as a fuel at room temperature and under passive and quiescent conditions.

  14. Nuclear Tracer Measurements of Low Temperature Water Diffusion in Silicon Dioxide (Si02) Thin Films.

    Science.gov (United States)

    1982-06-01

    network, in w!:.h L ’I mo 1 ecul arlv (1 so lvel water -:Les to form two OH units with thc, additional 0 ion being provided bv * , etwork (46, 45...sci diffusion theor, rovided theI -us tr e medium are correctly perceived and the apropri.-te ounary a , r d ,upion I ed. A full mathematical ...counting statistics. ,mplpe (#632) was maintained at 815 C for 579600 s at a pressure of (l0)- 6 torr; 1. W. Mendenhall and R. L Scheaffer, Mathematical

  15. Low temperature plasma-enhanced atomic layer deposition of thin vanadium nitride layers for copper diffusion barriers

    Energy Technology Data Exchange (ETDEWEB)

    Rampelberg, Geert; Devloo-Casier, Kilian; Deduytsche, Davy; Detavernier, Christophe [Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, B-9000 Ghent (Belgium); Schaekers, Marc [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Blasco, Nicolas [Air Liquide Electronics US, L.P., 46401 Landing Parkway, Fremont, California 94538 (United States)

    2013-03-18

    Thin vanadium nitride (VN) layers were grown by atomic layer deposition using tetrakis(ethylmethylamino)vanadium and NH{sub 3} plasma at deposition temperatures between 70 Degree-Sign C and 150 Degree-Sign C on silicon substrates and polymer foil. X-ray photoelectron spectroscopy revealed a composition close to stoichiometric VN, while x-ray diffraction showed the {delta}-VN crystal structure. The resistivity was as low as 200 {mu}{Omega} cm for the as deposited films and further reduced to 143 {mu}{Omega} cm and 93 {mu}{Omega} cm by annealing in N{sub 2} and H{sub 2}/He/N{sub 2}, respectively. A 5 nm VN layer proved to be effective as a diffusion barrier for copper up to a temperature of 720 Degree-Sign C.

  16. Diffusion-controlled melting in granitic systems at 800-900degC and 100-200 MPa. Temperature and pressure dependence of the minimum diffusivity in granitic melts

    International Nuclear Information System (INIS)

    Yuguchi, Takashi; Yamaguchi, Takashi; Iwamoto, Manji-rou; Eguchi, Hibiki; Isobe, Hiroshi; Nishiyama, Tadao

    2012-01-01

    This paper presents the temperature and pressure dependence of the minimum binary diffusivity in granitic melts. The minimum diffusivities are determined by monitoring the temporal development of the diffusion-controlled melt layer(DCM) in granitic systems (albite (Ab)-quartz (Qtz)-H 2 O and orthoclase (Or)-Qtz-H 2 O) gathered during 31 melting experiments under conditions of 800-900degC and 100-200 MPa for durations of 19-72 h. The DCM is formed between single crystals (Ab or Or crystals) and powdered quartz in all runs and is characterized by a distinct concentration gradient. The maximum thickness of the DCM increases systematically with temperature, pressure, and run duration. Temporal development of the DCM obeys the parabolic growth rate law, using which the diffusivity can be estimated. Plots of concentrations along the diffusion paths in ternary diagrams (Na 2 O-Al 2 O 3 -SiO 2 diagram for the Ab-Qtz-H 2 O system and K 2 O-Al 2 O 3 -SiO 2 diagram for the Or-Qtz-H 2 O system) show linear trends rather than S-shaped trends, indicating that binary nature of diffusion occurs in these systems. Therefore, the diffusive component can be interpreted as an albite component or orthoclase and quartz components (SiO 2 ) rather than an oxide or a cation. (author)

  17. Contribution of the actomyosin motor to the temperature-dependent translational diffusion of water by cytoplasmic streaming in Elodea canadensis cells.

    Science.gov (United States)

    Vorob'ev, V N; Anisimov, A V; Dautova, N R

    2004-12-01

    The extent to which the actomyosin motor responsible for cytoplasmic streaming contributes to the translational diffusion of water in Elodea canadensis cells was studied by a nuclear magnetic resonance (NMR) spin-echo technique. The relative contribution of the actomyosin motor was determined from the corresponding apparent diffusion coefficient by the Einstein-Smolukhovsky relation. It is equal to the difference between the diffusional displacements of the cytoplasmic and the bulk water (deltaX). The NMR data show that the temperature dependence of deltaX is humpshaped, which is characteristic of enzyme reactions. At the same time, the apparent diffusion coefficient of cytoplasmic water increases with an increase in temperature. The most significant contribution of the actomyosin motor to deltaX is observed at temperatures below 20 degrees C. Within the temperature range of 20 to 33 degrees C, deltaX changes only slightly, and a further increase in temperature reduces deltaX to zero.

  18. Linear thermal expansion, thermal diffusivity and melting temperature of Am-MOX and Np-MOX

    International Nuclear Information System (INIS)

    Prieur, D.; Belin, R.C.; Manara, D.; Staicu, D.; Richaud, J.-C.; Vigier, J.-F.; Scheinost, A.C.; Somers, J.; Martin, P.

    2015-01-01

    Highlights: • The thermal properties of Np- and Am-MOX solid solutions were investigated. • Np- and Am-MOX solid solutions exhibit the same linear thermal expansion. • The thermal conductivity of Am-MOX is about 10% higher than that of Np-MOX. • The melting temperatures of Np-MOX and Am-MOX are 3020 ± 30 K and 3005 ± 30 K, respectively. - Abstract: The thermal properties of Np- and Am-MOX solid solution materials were investigated. Their linear thermal expansion, determined using high temperature X-ray diffraction from room temperature to 1973 K showed no significant difference between the Np and the Am doped MOX. The thermal conductivity of the Am-MOX is about 10% higher than that of Np-MOX. The melting temperatures of Np-MOX and Am-MOX, measured using a laser heating self crucible arrangement were 3020 ± 30 K and 3005 ± 30 K, respectively

  19. Effect of temperature on water diffusion during rehydration of sun-dried red pepper ( Capsicum annuum L.)

    Science.gov (United States)

    Demiray, Engin; Tulek, Yahya

    2017-05-01

    Rehydration, which is a complex process aimed at the restoration of raw material properties when dried material comes in contact with water. In the present research, studies were conducted to probe the kinetics of rehydration of sun-dried red peppers. The kinetics associated with rehydrating sun-dried red peppers was studied at three different temperatures (25, 35 and 45 °C). To describe the rehydration kinetics, four different models, Peleg's, Weibull, first order and exponential association, were considered. Between these four models proposed Weibull model gave a better fit for all rehydration conditions applied. The effective moisture diffusivity values of red peppers increased as water rehydration temperature increased. The values of the effective moisture diffusivity of red peppers were in the range 1.37 × 10-9-1.48 × 10-9 m2 s-1. On the other hand, the activation energy for rehydration kinetic was also calculated using Arrhenius equation and found as 3.17 kJ mol-1.

  20. On the diffusion process of irradiation-induced point defects in the stress field of a moving dislocation

    International Nuclear Information System (INIS)

    Steinbach, E.

    1987-01-01

    The cellular model of a dislocation is used for an investigation of the time-dependent diffusion process of irradiation-induced point defects interacting with the stress field of a moving dislocation. An analytic solution is given taking into account the elastic interaction due to the first-order size effect and the stress-induced interaction, the kinematic interaction due to the dislocation motion as well as the presence of secondary neutral sinks. The results for the space and time-dependent point defect concentration, represented in terms of Mathieu-Bessel and Mathieu-Hankel functions, emphasize the influence of the parameters which have been taken into consideration. Proceeding from these solutions, formulae for the diffusion flux reaching unit length of the dislocation, which plays an important role with regard to void swelling and irradiation-induced creep, are derived

  1. Establishment of diffuse type stomach carcinoma orthotopic-implanted model and study on apoptosis induced by X-ray

    International Nuclear Information System (INIS)

    Lu Yi; Qian Haixin

    2003-01-01

    To observe whether ionizing radiation could induce up - regulation of Fas receptor expression and apoptosis in diffuse type stomach carcinoma. To investigate the relationship among ionizing radiation, apoptosis and the expression of Fas in stomach carcinoma. Methods: Firstly, the experimental model of SGC - 7901 cell lines was set up and diffuse type stomach carcinoma orthotopically implanted in nude mice. Then 21 model mice were randomized into three groups equally i.e., the control group ( group A ) and two irradiation groups ( group B and group C, executed at 24 hours and 48 hours after irradiation respectively ). The mice in group B and group C were irradiated with 6 MV X-rays at a dose of 20 Gy. By using the methods of TUNEL and immunohistochemical staining, the changes of apoptosis index and Fas expression in tumor tissues were examined. Results: (1) The spontaneous apoptosis index (AI) of tumor tissues was significantly lower than that of mucosa tissues (P 0.05). (3) The Fas LI of tumor tissues increased after irradiation compared with the control group (P<0.05). (4) The changes of AI and Fas LI in all groups with similar tendency showed positive correlation (P<0.01). Conclusion: The apoptosis of diffuse type stomach carcinoma is seriously restrained. Ionizing radiation can induce apoptosis and up - regulate the expression of Fas in diffuse type stomach carcinoma. The apoptosis induced by irradiation maybe depend on the up - regulating of Fas after irradiation

  2. Reassessment of liquefaction potential and estimation of earthquake- induced settlements at Paducah Gaseous Diffusion Plant, Paducah, Kentucky. Final report

    International Nuclear Information System (INIS)

    Sykora, D.W.; Yule, D.E.

    1996-04-01

    This report documents a reassessment of liquefaction potential and estimation of earthquake-induced settlements for the U.S. Department of Energy (DOE), Paducah Gaseous Diffusion Plant (PGDP), located southwest of Paducah, KY. The U.S. Army Engineer Waterways Experiment Station (WES) was authorized to conduct this study from FY91 to FY94 by the DOE, Oak Ridge Operations (ORO), Oak Ridge, TN, through Inter- Agency Agreement (IAG) No. DE-AI05-91OR21971. The study was conducted under the Gaseous Diffusion Plant Safety Analysis Report (GDP SAR) Program

  3. Does Acupuncture Needling Induce Analgesic Effects Comparable to Diffuse Noxious Inhibitory Controls?

    Directory of Open Access Journals (Sweden)

    Juerg Schliessbach

    2012-01-01

    Full Text Available Diffuse noxious inhibitory control (DNIC is described as one possible mechanism of acupuncture analgesia. This study investigated the analgesic effect of acupuncture without stimulation compared to nonpenetrating sham acupuncture (NPSA and cold-pressor-induced DNIC. Forty-five subjects received each of the three interventions in a randomized order. The analgesic effect was measured using pressure algometry at the second toe before and after each of the interventions. Pressure pain detection threshold (PPDT rose from 299 kPa (SD 112 kPa to 364 kPa (SD 144, 353 kPa (SD 135, and 467 kPa (SD 168 after acupuncture, NPSA, and DNIC test, respectively. There was no statistically significant difference between acupuncture and NPSA at any time, but a significantly higher increase of PPDT in the DNIC test compared to acupuncture and NPSA. PPDT decreased after the DNIC test, whereas it remained stable after acupuncture and NPSA. Acupuncture needling at low pain stimulus intensity showed a small analgesic effect which did not significantly differ from placebo response and was significantly less than a DNIC-like effect of a painful noninvasive stimulus.

  4. A reaction-diffusion model for radiation-induced bystander effects.

    Science.gov (United States)

    Olobatuyi, Oluwole; de Vries, Gerda; Hillen, Thomas

    2017-08-01

    We develop and analyze a reaction-diffusion model to investigate the dynamics of the lifespan of a bystander signal emitted when cells are exposed to radiation. Experimental studies by Mothersill and Seymour 1997, using malignant epithelial cell lines, found that an emitted bystander signal can still cause bystander effects in cells even 60 h after its emission. Several other experiments have also shown that the signal can persist for months and even years. Also, bystander effects have been hypothesized as one of the factors responsible for the phenomenon of low-dose hyper-radiosensitivity and increased radioresistance (HRS/IRR). Here, we confirm this hypothesis with a mathematical model, which we fit to Joiner's data on HRS/IRR in a T98G glioma cell line. Furthermore, we use phase plane analysis to understand the full dynamics of the signal's lifespan. We find that both single and multiple radiation exposure can lead to bystander signals that either persist temporarily or permanently. We also found that, in an heterogeneous environment, the size of the domain exposed to radiation and the number of radiation exposures can determine whether a signal will persist temporarily or permanently. Finally, we use sensitivity analysis to identify those cell parameters that affect the signal's lifespan and the signal-induced cell death the most.

  5. Diffusion induced nuclear reactions in metals: a possible source of heat in the core

    International Nuclear Information System (INIS)

    Hamza, V.M.; Iyer, S.S.S.

    1989-01-01

    It has recently been proposed that diffusion of light nuclei in metals can give rise to unusual electrical charge distributions in their lattice structures, inducing thereby certain nuclear reactions that are otherwise uncommon. In the light of these results we advance the hypothesis that such nuclear reactions take place in the metal rich core of the earth, based on following observations: 1 - The solubility of hydrogen in metals is relatively high compared to that in silicates. 2 - Studies of rare gas samples in intraplate volcanos and diamonds show that 3 He/ He ratio increases with depth in the mantle. 3 - There are indications that He is positively correlated with enrichment of metals in lavas. We propose that hydrogen incorporated into metallic phases at the time of planetary accretion was carried to the core by downward migration of metal rich melts during the early states of proto-earth. Preliminary estimates suggest that cold fusion reactions can give rise to an average rate of heat generation of 8.2x10 12 W and may thus serve as a supplementary source of energy for the geomagnetic dynamo. (author)

  6. Modeling of high temperature- and diffusion-controlled die soldering in aluminum high pressure die casting

    DEFF Research Database (Denmark)

    Domkin, Konstantin; Hattel, Jesper Henri; Thorborg, Jesper

    2009-01-01

    of the die lifetime based on a quantitative analysis of die soldering in the framework of the numerical simulations of the die-casting process. Full 3D simulations of the process, including the filling. solidification, and the die cooling, are carried out using the casting simulation software MAGMAsoft....... The resulting transient temperature fields on the die surface and in the casting are then post-processed to estimate the die soldering. The present work deals only with the metallurgical/chemical kind of soldering which occurs at high temperatures and involves formation and growth of intermetallic layers...

  7. Measurement of grain-boundary diffusion at low temperature by the surface-accumulation method. II. Results for gold-silver system

    International Nuclear Information System (INIS)

    Hwang, J.C.M.; Pan, J.D.; Balluffi, R.W.

    1979-01-01

    Grain-boundary diffusion rates in the gold-silver system were measured at relatively low temperatures by the surface-accumulation method which was analyzed in Paper I. The specimen was a polycrystalline gold film possessing columnar grains on which a silver layer was initially deposited epitaxially on one surface. During subsequent low-temperature annealing lattice diffusion was frozen out, and diffusion then occurred along the grain boundary and free-surface short circuits. The silver, therefore, diffused into the film from the silver layer along the boundaries, eventually reaching the opposite surface where it accumulated and was measured by Auger spectroscopy. The silver layer acted as an effective constant silver source, and grain-boundary diffusivities were calculated from the accumulation data. However, the exact location of the effective constant source in the silver layer could not be determined and this led to an uncertainty in the values of the grain-boundary diffusivities of a factor of 10. Lower- and upper-bound values were therefore described by D/sub b/(lower bound) =7.8 x 10 -6 exp(-0.62eV/kT) and D/sub b/(upper bound) =7.8 x 10 -5 exp(-0.62eV/kT) cm 2 /s in the temperature range 30--269 0 C. An examination of available grain-boundary diffusion data (including the present) suggests a tendency for the observed activation energy to decrease with decreasing temperature, and this was ascribed to a spectrum of activated jumps in the grain boundary and/or a spectrum of grain-boundary types in the specimen employed. The constant source behavior was tentatively ascribed, at least in part, to a grain-boundary ''Kirkendall effect'' resulting from the faster diffusion of silver than gold. The work indicates a need for increased understanding of the details of grain-boundary diffusion in alloys

  8. Study by neutron diffusion of magnetic fluctuations in iron in the curie temperature region; Etude des fluctuations d'aimantation dans le fer au voisinage de la temperature de curie par diffusion des neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Ericson-Galula, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-12-15

    The critical diffusion of neutrons in iron is due to the magnetisation fluctuations which occur in ferromagnetic substances in the neighbourhood of the Curie temperature. The fluctuations can be described in correlation terms; a correlation function {gamma}{sub R{sub vector}} (t) is defined, {gamma}{sub R{sub vector}} (t) = mean value of the scalar product of a reference spin and a spin situated at a distance (R) from the first and considered at the instant t. In chapter I we recall the generalities on neutron diffusion cross-sections; a brief summary is given of the theory of VAN HOVE, who has shown that the magnetic diffusion cross section of neutrons is the Fourier transformation of the correlation function. In chapter Il we study the spatial dependence of the correlation function, assumed to be independent of time. It can then be characterised by two parameters K{sub 1} and r{sub 1}, by means of which the range and intensity of the correlations can be calculated respectively. After setting out the principle of the measurement of these parameters, we shall describe the experimental apparatus. The experimental values obtained are in good agreement with the calculations, and the agreement is better if it is supposed that the second and not the first neighbours of an iron atom are magnetically active, as proposed by Neel. In chapter III we study the evolution with time of the correlation function; this evolution is characterised by a parameter {lambda} depending on the temperature, which occurs in the diffusion equation obeyed by the magnetisation fluctuations: {delta}M{sub vector}/{delta}t = {lambda} {nabla}{sup 2} M{sub vector}. The principle of the measurement of {lambda} is given, after which the modifications carried out on the experimental apparatus mentioned in chapter II are described. The results obtained are then discussed and compared with the theoretical forecasts of De Gennes, mode by using the

  9. Regulation of respiration and the oxygen diffusion barrier in soybean protect symbiotic nitrogen fixation from chilling-induced inhibition and shoots from premature senescence.

    Science.gov (United States)

    van Heerden, Philippus D R; Kiddle, Guy; Pellny, Till K; Mokwala, Phatlane W; Jordaan, Anine; Strauss, Abram J; de Beer, Misha; Schlüter, Urte; Kunert, Karl J; Foyer, Christine H

    2008-09-01

    Symbiotic nitrogen fixation is sensitive to dark chilling (7 degrees C-15 degrees C)-induced inhibition in soybean (Glycine max). To characterize the mechanisms that cause the stress-induced loss of nodule function, we examined nodule structure, carbon-nitrogen interactions, and respiration in two soybean genotypes that differ in chilling sensitivity: PAN809 (PAN), which is chilling sensitive, and Highveld Top (HT), which is more chilling resistant. Nodule numbers were unaffected by dark chilling, as was the abundance of the nitrogenase and leghemoglobin proteins. However, dark chilling decreased nodule respiration rates, nitrogenase activities, and NifH and NifK mRNAs and increased nodule starch, sucrose, and glucose in both genotypes. Ureide and fructose contents decreased only in PAN nodules. While the chilling-induced decreases in nodule respiration persisted in PAN even after return to optimal temperatures, respiration started to recover in HT by the end of the chilling period. The area of the intercellular spaces in the nodule cortex and infected zone was greatly decreased in HT after three nights of chilling, an acclimatory response that was absent from PAN. These data show that HT nodules are able to regulate both respiration and the area of the intercellular spaces during chilling and in this way control the oxygen diffusion barrier, which is a key component of the nodule stress response. We conclude that chilling-induced loss of symbiotic nitrogen fixation in PAN is caused by the inhibition of respiration coupled to the failure to regulate the oxygen diffusion barrier effectively. The resultant limitations on nitrogen availability contribute to the greater chilling-induced inhibition of photosynthesis in PAN than in HT.

  10. Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature, and stomatal diffusion resistance

    NARCIS (Netherlands)

    Gaastra, P.

    1959-01-01

    The effect was estimated of light intensity, leaf temperature, and C0 2 concentration on photosynthetic rate in leaves of crop plants. The potential capacities of photochemical and biochemical processes and of C0 2 transport were compared.

    Resistance to C0 2

  11. Pattern formation induced by cross-diffusion in a predator–prey system

    International Nuclear Information System (INIS)

    Sun Guiquan; Jin Zhen; Liu Quanxing; Li Li

    2008-01-01

    This paper considers the Holling–Tanner model for predator–prey with self and cross-diffusion. From the Turing theory, it is believed that there is no Turing pattern formation for the equal self-diffusion coefficients. However, combined with cross-diffusion, it shows that the system will exhibit spotted pattern by both mathematical analysis and numerical simulations. Furthermore, asynchrony of the predator and the prey in the space. The obtained results show that cross-diffusion plays an important role on the pattern formation of the predator–prey system. (general)

  12. Muon diffusion in noble metals

    International Nuclear Information System (INIS)

    Schillaci, M.E.; Bokema, C.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Olsen, C.E.; Dodds, S.A.; MacLaughlin, D.E.; Richards, P.M.

    1983-01-01

    Diffusion-induced muon depolarization in dilute AgGd and AgEr were measured in the temperature range 200-700 K and have thereby determined the muon diffusion parameters in Ag. The diffusion parameters for μ + in Cu, Ag, and Au are compared with those of hydrogen. For Ag and Au, the μ + parameters are similar to those of hydrogen, whereas for Cu, the μ + parameters are much smaller. Lattice-activated tunneling and over-barrier hopping are investigated with computational models. 15 references, 1 figure, 2 tables

  13. Muon diffusion in noble metals

    International Nuclear Information System (INIS)

    Schillaci, M.E.; Boekema, C.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Olsen, C.E.; Dodds, S.A.; MacLaughlin, D.E.; Richards, P.M.

    1982-01-01

    Diffusion-induced muon depolarization was measured in dilute AgGd and AgEr in the temperature range 200 to 700 0 K and have thereby determined the muon diffusion parameters in Ag. The diffusion parameters for μ + in Cu, Ag, and Au are compared with those of hydrogen. For Ag and Au, the μ + parameters are similar to those of hydrogen, whereas for Cu, the μ + parameters are much smaller. Lattice-activated tunneling and over-barrier hopping are investigated with computational models

  14. Implications of Thermal Diffusity being Inversely Proportional to Temperature Times Thermal Expansivity on Lower Mantle Heat Transport

    Science.gov (United States)

    Hofmeister, A.

    2010-12-01

    Many measurements and models of heat transport in lower mantle candidate phases contain systematic errors: (1) conventional methods of insulators involve thermal losses that are pressure (P) and temperature (T) dependent due to physical contact with metal thermocouples, (2) measurements frequently contain unwanted ballistic radiative transfer which hugely increases with T, (3) spectroscopic measurements of dense samples in diamond anvil cells involve strong refraction by which has not been accounted for in analyzing transmission data, (4) the role of grain boundary scattering in impeding heat and light transfer has largely been overlooked, and (5) essentially harmonic physical properties have been used to predict anharmonic behavior. Improving our understanding of the physics of heat transport requires accurate data, especially as a function of temperature, where anharmonicity is the key factor. My laboratory provides thermal diffusivity (D) at T from laser flash analysis, which lacks the above experimental errors. Measuring a plethora of chemical compositions in diverse dense structures (most recently, perovskites, B1, B2, and glasses) as a function of temperature provides a firm basis for understanding microscopic behavior. Given accurate measurements for all quantities: (1) D is inversely proportional to [T x alpha(T)] from ~0 K to melting, where alpha is thermal expansivity, and (2) the damped harmonic oscillator model matches measured D(T), using only two parameters (average infrared dielectric peak width and compressional velocity), both acquired at temperature. These discoveries pertain to the anharmonic aspects of heat transport. I have previously discussed the easily understood quasi-harmonic pressure dependence of D. Universal behavior makes application to the Earth straightforward: due to the stiffness and slow motions of the plates and interior, and present-day, slow planetary cooling rates, Earth can be approximated as being in quasi

  15. Segregation and diffusion of deffects induced by radiation in binary copper alloys

    International Nuclear Information System (INIS)

    Monteiro, W.A.

    1984-01-01

    Actually considerable theoretical and experimental progress has been made in establishing and in understanding the general feactures of the Radiation Induced Solute Difusion or Segregation such as its temperature, time and displacement rate dependence and the effects of some important materials factors such as the initial solute misfit. During irradiation, the local alloy compositions will change by defect flux driven, non-equilibrium segregation near sinks such as voids, external surfaces and grain boundaries and the compositional change are likely to influence a number of properties and phenomena important to Thermonuclear Reactors, as for example, Ductility, Corrosion, Stress, Corrosion Craking, Sputtering and Blistering. Our work is correlated with the 1 MeV electrons irradiations effects in Copper alloys where the alloying elements are Be, Pt, Sn. These three elements are undersized, similar and oversized relating the Copper atom radius, respectively. How starts and develops the Segregation Induced by Irradiation 'In Situ' with help of the High Voltage Electron Microscopy as technique. (Author) [pt

  16. Methanol induces low temperature resilient methanogens and improves methane generation from domestic wastewater at low to moderate temperatures.

    Science.gov (United States)

    Saha, Shaswati; Badhe, Neha; De Vrieze, Jo; Biswas, Rima; Nandy, Tapas

    2015-01-01

    Low temperature (methanol is a preferred substrate by methanogens in cold habitats. The study hypothesizes that methanol can induce the growth of low-temperature resilient, methanol utilizing, hydrogenotrophs in UASB reactor. The hypothesis was tested in field conditions to evaluate the impact of seasonal temperature variations on methane yield in the presence and absence of methanol. Results show that 0.04% (v/v) methanol increased methane up to 15 times and its effect was more pronounced at lower temperatures. The qPCR analysis showed the presence of Methanobacteriales along with Methanosetaceae in large numbers. This indicates methanol induced the growth of both the hydrogenotrophic and acetoclastic groups through direct and indirect routes, respectively. This study thus demonstrated that methanol can impart resistance in methanogenic biomass to low temperature and can improve performance of UASB reactor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The dose, temperature, and projectile-mass dependence for irradiation-induced amorphization of CuTi

    International Nuclear Information System (INIS)

    Koike, J.; Okamoto, P.R.; Rehn, L.E.; Meshii, M.

    1989-01-01

    CuTi was irradiated with 1-MeV Ne + , Kr + , and Xe + in the temperature range from 150 to 563 K. The volume fraction of the amorphous phase produced during room temperature irradiation with Ne + and Kr + ions was determined as a function of ion dose from measurements of the integrated intensity of the diffuse ring in electron diffraction patterns. The results, analyzed by Gibbons' model, indicate that direct amorphization occurs along a single ion track with Kr + , but the overlapping of three ion tracks is necessary for amorphization with Ne + . The critical temperature for amorphization increases with increasing projectile mass from electron to Ne + to Kr + . However, the critical temperatures for Kr + and Xe + irradiations were found to be identical, and very close to the thermal crystallization temperature of an amorphous zone embedded in the crystalline matrix. Using the present observations, relationships between the amorphization kinetics and the displacement density along the ion track, and between the critical temperature and the stability of the irradiation-induced damage, are discussed

  18. Influence of electron irradiation at elevated temperatures on silicon diffuse structures with p-n-junctions

    International Nuclear Information System (INIS)

    Korshunov, F.P.; Marchenko, I.G.

    2012-01-01

    The behavior of the lifetime of nonequilibrium carriers (τ), reverse current (I R ), and forward voltage drop (U F ) in industrial p + -n-n + -diodes irradiated with electrons (E=6 MeV) at temperatures for the range T irr = 20-400 Celsius degree was investigated. The tests were conducted on the samples manufactured on phosphorous doped single-crystal Si during the CZ growing process of ingot (KAF) and using the nuclear reactions (KOF). The investigation showed that the problem to reach smaller τ values with a minimal increase of U F and I R in fast diodes can be solved by means of selection of a technological irradiation temperature regime. It was determined that the comparable changes of the τ value in the diode base area, the best trade-off of U F and I R in the samples (KAF) is observed at T irr = 300 Celsius degree, and in the KOF samples at T irr = 350 Celsius degree. (authors)

  19. Controlling molecular condensation/diffusion of copper phthalocyanine by local electric field induced with scanning tunneling microscope tip

    Science.gov (United States)

    Nagaoka, Katsumi; Yaginuma, Shin; Nakayama, Tomonobu

    2018-02-01

    We have discovered the condensation/diffusion phenomena of copper phthalocyanine (CuPc) molecules controlled with a pulsed electric field induced by the scanning tunneling microscope tip. This behavior is not explained by the conventional induced dipole model. In order to understand the mechanism, we have measured the electronic structure of the molecule by tunneling spectroscopy and also performed theoretical calculations on molecular orbitals. These data clearly indicate that the molecule is positively charged owing to charge transfer to the substrate, and that hydrogen bonding exists between CuPc molecules, which makes the molecular island stable.

  20. An all optical system for studying temperature induced changes in diamond

    CSIR Research Space (South Africa)

    Masina, B

    2010-01-01

    Full Text Available .csir.co.za An all optical system for studying temperature induced changes in diamond Bathusile Masina and Andrew Forbes 1 September 2010 © CSIR 2010 Slide 2 It is acknowledged that temperature induces damage in the diamond bits due to friction during the drilling...

  1. Unequal diffusivities case of homogeneous–heterogeneous reactions within viscoelastic fluid flow in the presence of induced magnetic-field and nonlinear thermal radiation

    Directory of Open Access Journals (Sweden)

    I.L. Animasaun

    2016-06-01

    Full Text Available This article presents the effects of nonlinear thermal radiation and induced magnetic field on viscoelastic fluid flow toward a stagnation point. It is assumed that there exists a kind of chemical reaction between chemical species A and B. The diffusion coefficients of the two chemical species in the viscoelastic fluid flow are unequal. Since chemical species B is a catalyst at the horizontal surface, hence homogeneous and heterogeneous schemes are of the isothermal cubic autocatalytic reaction and first order reaction respectively. The transformed governing equations are solved numerically using Runge–Kutta integration scheme along with Newton’s method. Good agreement is obtained between present and published numerical results for a limiting case. The influence of some pertinent parameters on skin friction coefficient, local heat transfer rate, together with velocity, induced magnetic field, temperature, and concentration profiles is illustrated graphically and discussed. Based on all of these assumptions, results indicate that the effects of induced magnetic and viscoelastic parameters on velocity, transverse velocity and velocity of induced magnetic field are almost the same but opposite in nature. The strength of heterogeneous reaction parameter is very helpful to reduce the concentration of bulk fluid and increase the concentration of catalyst at the surface.

  2. Determination of the Fe-Cr-Ni and Fe-Cr-Mo Phase Diagrams at Intermediate Temperatures using a Novel Dual-Anneal Diffusion-Multiple Approach

    Science.gov (United States)

    Cao, Siwei

    Phase diagrams at intermediate temperatures are critical both for alloy design and for improving the reliability of thermodynamic databases. There is a significant shortage of experimental data for phase diagrams at the intermediate temperatures which are defined as around half of the homologous melting point (in Kelvin). The goal of this study is to test a novel dual-anneal diffusion multiple (DADM) methodology for efficient determination of intermediate temperature phase diagrams using both the Fe-Cr-Ni and Fe-Cr-Mo systems as the test beds since both are very useful for steel development. Four Fe-Cr-Ni-Mo-Co diffusion multiples were made and annealed at 1200 °C for 500 hrs. One sample was used directly for evaluating the isothermal sections at 1200 ° C. The other samples (and cut slices) were used to perform a subsequent dual annealing at 900 °C (500 hrs), 800 °C (1000 hrs), 700 °C (1000 hrs), and 600 °C (4500 hrs), respectively. The second annealing induced phase precipitation from the supersaturated solid solutions that were created during the first 1200 °C annealing. Scanning electron microscopy (SEM), electron probe microanalysis (EPMA), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM) were used to identify the phases and precipitation locations in order to obtain the compositions to construct the isothermal sections of both ternary systems at four different temperatures. The major results obtained from this study are isothermal sections of the Fe-Cr-Ni and Fe-Cr-Mo systems at 1200 °C, 900 °C, 800 °C, and 700 °C. For the Fe-Cr-Ni system, the results from DADMs agree with the majority of the literature results except for results at both 800 °C and 700 °C where the solubility of Cr in the fcc phase was found to be significantly higher than what was computed from thermodynamic calculations using the TCFE5 database. Overall, it seems that the Fe-Cr-Ni thermodynamic assessment only needs slight improvement to

  3. Temperature Dependence of Faraday Effect-Induced Bias Error in a Fiber Optic Gyroscope.

    Science.gov (United States)

    Li, Xuyou; Liu, Pan; Guang, Xingxing; Xu, Zhenlong; Guan, Lianwu; Li, Guangchun

    2017-09-07

    Improving the performance of interferometric fiber optic gyroscope (IFOG) in harsh environments, such as magnetic field and temperature field variation, is necessary for its practical applications. This paper presents an investigation of Faraday effect-induced bias error of IFOG under varying temperature. Jones matrix method is utilized to formulize the temperature dependence of Faraday effect-induced bias error. Theoretical results show that the Faraday effect-induced bias error changes with the temperature in the non-skeleton polarization maintaining (PM) fiber coil. This phenomenon is caused by the temperature dependence of linear birefringence and Verdet constant of PM fiber. Particularly, Faraday effect-induced bias errors of two polarizations always have opposite signs that can be compensated optically regardless of the changes of the temperature. Two experiments with a 1000 m non-skeleton PM fiber coil are performed, and the experimental results support these theoretical predictions. This study is promising for improving the bias stability of IFOG.

  4. Diffusion bonding

    International Nuclear Information System (INIS)

    Anderson, R.C.

    1976-01-01

    A method is described for joining beryllium to beryllium by diffusion bonding. At least one surface portion of at least two beryllium pieces is coated with nickel. A coated surface portion is positioned in a contiguous relationship with another surface portion and subjected to an environment having an atmosphere at a pressure lower than ambient pressure. A force is applied on the beryllium pieces for causing the contiguous surface portions to abut against each other. The contiguous surface portions are heated to a maximum temperature less than the melting temperature of the beryllium, and the applied force is decreased while increasing the temperature after attaining a temperature substantially above room temperature. A portion of the applied force is maintained at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions

  5. Temperature-induced processes for size-selected metallic nanoparticles on surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bettermann, H., E-mail: hendrik.bettermann@uni-duesseldorf.de; Werner, M.; Getzlaff, M., E-mail: getzlaff@uni-duesseldorf.de

    2017-01-01

    Highlights: • FeNi nanoparticles on W(110) are stable at room temperature and above. • Unrolling carpet mechanism is driving the melting of nanoparticles. • Ostwald ripening is driving the formation of FeNi islands after melting. - Abstract: The melting behavior of Iron-Nickel alloy nanoparticles on W(110) was studied under UHV conditions as a function of heating temperature and heating duration. These particles were found to be stable at 423 K without evaporation or diffusion taking place. Unrolling carpet behavior occurs at higher temperatures. This creates ramified islands around the nanoparticles. Ostwald ripening at higher temperatures or longer heating times is creating compact islands. The melting of these nanoparticles opens the possibility for thin film growth of FeNi alloys. The formation of monolayer high islands is a strong contrast to Fe, Co, and FeCo alloy nanoparticles which are dominated by direct evaporation, single atom surface diffusion and anisotropic spreading.

  6. Diffusion-induced bending of thin sheet couples : theory and experiments in Ti-Zr system

    OpenAIRE

    Daruka, I.; Szabo, I.A.; Beke, D.L.; Cserhati, C.; Kodentsov, A.; Loo, van, F.J.J.

    1996-01-01

    Numerical and analytical calculations of concentration and stress distributions of thin-sheet diffusion couples have been carried out as well as the time dependence of the Kirkendall shift, xk, and the curvature has also been determined. It is shown that the concentration distribution is not sensitive to the boundary conditions (bent and planar, constrained, samples) and is influenced mainly by the feeding back effects of stresses (described by the stress term in the genealized diffusion pote...

  7. Glutathione peroxidase 4 overexpression inhibits ROS-induced cell death in diffuse large B-cell lymphoma.

    Science.gov (United States)

    Kinowaki, Yuko; Kurata, Morito; Ishibashi, Sachiko; Ikeda, Masumi; Tatsuzawa, Anna; Yamamoto, Masahide; Miura, Osamu; Kitagawa, Masanobu; Yamamoto, Kouhei

    2018-02-20

    Regulation of oxidative stress and redox systems has important roles in carcinogenesis and cancer progression, and for this reason has attracted much attention as a new area of cancer therapeutic targets. Glutathione peroxidase 4 (GPX4), an antioxidant enzyme, has biological important functions such as signaling cell death by suppressing peroxidation of membrane phospholipids. However, few studies exist on the expression and clinical relevance of GPX4 in malignant lymphomas such as diffuse large B-cell lymphoma. In this study, we assessed the expression of GPX4 immunohistochemically. GPX4 was expressed in 35.5% (33/93) cases of diffuse large B-cell lymphoma. The GPX4-positive group had poor overall survival (P = 0.0032) and progression-free survival (P = 0.0004) compared with those of the GPX4-negative group. In a combined analysis of GPX4 and 8-hydroxydeoxyguanosine (8-OHdG), an oxidative stress marker, there was a negative correlation between GPX4 and 8-hydroxydeoxyguanosine (P = 0.0009). The GPX4-positive and 8-hydroxydeoxyguanosine-negative groups had a significantly worse prognosis than the other groups in both overall survival (P = 0.0170) and progression-free survival (P = 0.0005). These results suggest that the overexpression of GPX4 is an independent prognostic predictor in diffuse large B-cell lymphoma. Furthermore, in vitro analysis demonstrated that GPX4-overexpressing cells were resistant to reactive oxygen species-induced cell death (P = 0.0360). Conversely, GPX4-knockdown cells were sensitive to reactive oxygen species-induced cell death (P = 0.0111). From these data, we conclude that GPX4 regulates reactive oxygen species-induced cell death. Our results suggest a novel therapeutic strategy using the mechanism of ferroptosis, as well as a novel prognostic predictor of diffuse large B-cell lymphoma.

  8. Structure evolution of multilayer materials of heat-resistant intermetallic compounds under the influence of temperature in the process of diffusion welding under pressure and their mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Korzhov, Valeriy P.; Karpov, Michael I.; Prokhorov, Dmitriy V. [Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka (Russian Federation)

    2013-07-01

    Multilayer materials of high-resistant intermetallic compounds of some transition metals with aluminum and silicon were obtained by diffusion welding of packages, collected from a large number of the respective foils, such as niobium and aluminum. Materials of intermetallics with silicon were obtained by the welding of packages built from metal foils with Si-coating. The change in the structure according to the temperature of the welding was studied, and the high-temperature bending strength was determined. Key words: multilayer composite, high-resistant material, intermetallic compound, diffusion welding, package rolling, layered structure, bending strength.

  9. Disorder-induced transition from grain boundary to bulk dominated ionic diffusion in pyrochlores

    International Nuclear Information System (INIS)

    Perriot, Romain; Dholabhai, Pratik P.; Uberuaga, Blas P.

    2017-01-01

    In this paper, we use molecular dynamics simulations to investigate the role of grain boundaries (GBs) on ionic diffusion in pyrochlores, as a function of the GB type, chemistry of the compound, and level of cation disorder. We observe that the presence of GBs promotes oxygen transport in ordered and low-disordered systems, as the GBs are found to have a higher concentration of mobile carriers with higher mobilities than in the bulk. Thus, in ordered samples, the ionic diffusion is 2D, localized along the grain boundary. When cation disorder is introduced, bulk carriers begin to contribute to the overall diffusion, while the GB contribution is only slightly enhanced. In highly disordered samples, the diffusive behavior at the GBs is bulk-like, and the two contributions (bulk vs. GB) can no longer be distinguished. There is thus a transition from 2D/GB dominated oxygen diffusivity to 3D/bulk dominated diffusivity versus disorder in pyrochlores. Finally, these results provide new insights into the possibility of using internal interfaces to enhance ionic conductivity in nanostructured complex oxides.

  10. Temperature annealing of tracks induced by ion irradiation of graphite

    International Nuclear Information System (INIS)

    Liu, J.; Yao, H.J.; Sun, Y.M.; Duan, J.L.; Hou, M.D.; Mo, D.; Wang, Z.G.; Jin, Y.F.; Abe, H.; Li, Z.C.; Sekimura, N.

    2006-01-01

    Highly oriented pyrolytic graphite (HOPG) samples were irradiated by Xe ions of initial kinetic energy of 3 MeV/u. The irradiations were performed at temperatures of 500 and 800 K. Scanning tunneling microscopy (STM) images show that the tracks occasionally have elongated structures under high-temperature irradiation. The track creation yield at 800 K is by three orders of magnitude smaller compared to that obtained during room-temperature irradiation. STM and Raman spectra show that amorphization occurs in graphite samples irradiated at 500 K to higher fluences, but not at 800 K. The obtained experimental results clearly reveal that the irradiation under high temperature causes track annealing

  11. Formation of rutile fasciculate zone induced by sunlight irradiation at room temperature and its hemocompatibility

    International Nuclear Information System (INIS)

    Zhang, Xuan-Hui; Zheng, Xiang; Cheng, Yuan; Li, Guo-Hua; Chen, Xiao-Ping; Zheng, Jian-Hui

    2013-01-01

    The fasciculate zone of phase pure rutile was fabricated under sunlight irradiation at room temperature, using titanium tetrachloride as a sole precursor. The crystal phase, morphology and microstructure, and optical absorption behavior of the samples were characterized by X-ray Diffraction, High-Resolution Transmission Electron Microscope (HRTEM) and UV–vis Diffuse Reflectance Spectra (DRS), respectively. XRD results show that the crystal phase of the sample is composed of rutile only, and a lattice distortion displays in the crystallite of the sample. HRTEM results show that the morphology of rutile particle is fasciculate zone constituted of nanoparticles with a diameter of 4–7 nm, and these particles grow one by one and step by step. The pattern of the selected area electron diffraction of the sample is Kikuchi type, which can be attributed to the predominant orientation growth of rutile nanoparticles along [001] induced by sunlight irradiation. DRS results show that the absorption threshold of the sample is 415 nm, corresponding to the band gap energy of 2.99 eV, which is lower than the band gap energy of rutile, 3.03 eV. Blood compatibility measurement shows that the sample has no remarkable effect on hemolytic and coagulation activity. The percent hemolysis of red blood cells is less than 5% even treated with a big dosage of the fasciculate rutile and under UV irradiation, and there are no obvious changes of plasma recalcification time after the rutile treatment. Thus, the novel structure of rutile fasciculate has low potential toxicity for blood and is hemocompatibility safe. Highlights: • A novel approach to fabricate the fasciculate zone of phase pure rutile • The fasciculate grows from a particle to nanorod and to fasciculate, step by step. • A preferred orientation growth induced by sunlight irradiation in the fasciculate • The rutile fasciculate is low toxicity for blood and is hemocompatibility safe

  12. Temperature sensitivity of the penicillin-induced autolysis mechanism in nongrowing cultures of Escherichia coli.

    OpenAIRE

    Kusser, W; Ishiguro, E E

    1987-01-01

    The effect of incubation temperature on the ampicillin-induced autolysis of nongrowing Escherichia coli was determined. The autolysis mechanisms in amino acid-deprived relA mutant cells treated with chloramphenicol were temperature sensitive. This temperature-sensitive autolysis was demonstrated in three independent ways: turbidimetric determinations, viable cell counts, and solubilization of radiolabeled peptidoglycan.

  13. Correction for Eddy Current-Induced Echo-Shifting Effect in Partial-Fourier Diffusion Tensor Imaging.

    Science.gov (United States)

    Truong, Trong-Kha; Song, Allen W; Chen, Nan-Kuei

    2015-01-01

    In most diffusion tensor imaging (DTI) studies, images are acquired with either a partial-Fourier or a parallel partial-Fourier echo-planar imaging (EPI) sequence, in order to shorten the echo time and increase the signal-to-noise ratio (SNR). However, eddy currents induced by the diffusion-sensitizing gradients can often lead to a shift of the echo in k-space, resulting in three distinct types of artifacts in partial-Fourier DTI. Here, we present an improved DTI acquisition and reconstruction scheme, capable of generating high-quality and high-SNR DTI data without eddy current-induced artifacts. This new scheme consists of three components, respectively, addressing the three distinct types of artifacts. First, a k-space energy-anchored DTI sequence is designed to recover eddy current-induced signal loss (i.e., Type 1 artifact). Second, a multischeme partial-Fourier reconstruction is used to eliminate artificial signal elevation (i.e., Type 2 artifact) associated with the conventional partial-Fourier reconstruction. Third, a signal intensity correction is applied to remove artificial signal modulations due to eddy current-induced erroneous T2(∗) -weighting (i.e., Type 3 artifact). These systematic improvements will greatly increase the consistency and accuracy of DTI measurements, expanding the utility of DTI in translational applications where quantitative robustness is much needed.

  14. Manufacturing a Long-Period Grating with Periodic Thermal Diffusion Technology on High-NA Fiber and Its Application as a High-Temperature Sensor.

    Science.gov (United States)

    Shen, Xiang; Dai, Bin; Xing, Yingbin; Yang, Luyun; Li, Haiqing; Li, Jinyan; Peng, Jingang

    2018-05-08

    We demonstrated a kind of long-period fiber grating (LPFG), which is manufactured with a thermal diffusion treatment. The LPFG was inscribed on an ultrahigh-numerical-aperture (UHNA) fiber, highly doped with Ge and P, which was able to easily diffuse at high temperatures within a few seconds. We analyzed how the elements diffused at a high temperature over 1300 °C in the UHNA fiber. Then we developed a periodically heated technology with a CO₂ laser, which was able to cause the diffusion of the elements to constitute the modulations of an LPFG. With this technology, there is little damage to the outer structure of the fiber, which is different from the traditional LPFG, as it is periodically tapered. Since the LPFG itself was manufactured under high temperature, it can withstand higher temperatures than traditional LPFGs. Furthermore, the LPFG presents a higher sensitivity to high temperature due to the large amount of Ge doping, which is approximately 100 pm/°C. In addition, the LPFG shows insensitivity to the changing of the environment’s refractive index and strain.

  15. Applications of Bayesian temperature profile reconstruction to automated comparison with heat transport models and uncertainty quantification of current diffusion

    International Nuclear Information System (INIS)

    Irishkin, M.; Imbeaux, F.; Aniel, T.; Artaud, J.F.

    2015-01-01

    Highlights: • We developed a method for automated comparison of experimental data with models. • A unique platform implements Bayesian analysis and integrated modelling tools. • The method is tokamak-generic and is applied to Tore Supra and JET pulses. • Validation of a heat transport model is carried out. • We quantified the uncertainties due to Te profiles in current diffusion simulations. - Abstract: In the context of present and future long pulse tokamak experiments yielding a growing size of measured data per pulse, automating data consistency analysis and comparisons of measurements with models is a critical matter. To address these issues, the present work describes an expert system that carries out in an integrated and fully automated way (i) a reconstruction of plasma profiles from the measurements, using Bayesian analysis (ii) a prediction of the reconstructed quantities, according to some models and (iii) a comparison of the first two steps. The first application shown is devoted to the development of an automated comparison method between the experimental plasma profiles reconstructed using Bayesian methods and time dependent solutions of the transport equations. The method was applied to model validation of a simple heat transport model with three radial shape options. It has been tested on a database of 21 Tore Supra and 14 JET shots. The second application aims at quantifying uncertainties due to the electron temperature profile in current diffusion simulations. A systematic reconstruction of the Ne, Te, Ti profiles was first carried out for all time slices of the pulse. The Bayesian 95% highest probability intervals on the Te profile reconstruction were then used for (i) data consistency check of the flux consumption and (ii) defining a confidence interval for the current profile simulation. The method has been applied to one Tore Supra pulse and one JET pulse.

  16. A temperature-programmed X-ray photoelectron spectroscopy (TPXPS) study of chlorine adsorption and diffusion on Ag(1 1 1)

    Science.gov (United States)

    Piao, H.; Adib, K.; Barteau, Mark A.

    2004-05-01

    Synchrotron-based temperature programmed X-ray photoelectron spectroscopy (TPXPS) has been used to investigate the surface chloridation of Ag(1 1 1) to monolayer coverages. At 100 K both atomic and molecular chlorine species are present on the surface; adsorption at 300 K or annealing the adlayer at 100 K to this temperature generates adsorbed Cl atoms. As the surface is heated from 300 to 600 K, chlorine atoms diffuse below the surface, as demonstrated by attenuation of the Cl2p signals in TPXPS experiments. Quantitative analysis of the extent of attenuation is consistent with chlorine diffusion below the topmost silver layer. For coverages in the monolayer and sub-monolayer regime, chlorine diffusion to and from the bulk appears not to be significant, in contrast to previous results obtained at higher chlorine loadings. Chlorine is removed from the surface at 650-780 K by desorption as AgCl. These results demonstrate that chlorine diffusion beneath the surface does occur at coverages and temperatures relevant to olefin epoxidation processes carried out on silver catalysts with chlorine promoters. The surface sensitivity advantages of synchrotron-based XPS experiments were critical to observing Cl diffusion to the sub-surface at low coverages.

  17. Lung injury induced by secondhand smoke exposure detected with hyperpolarized helium-3 diffusion MR.

    Science.gov (United States)

    Wang, Chengbo; Mugler, John P; de Lange, Eduard E; Patrie, James T; Mata, Jaime F; Altes, Talissa A

    2014-01-01

    To determine whether helium-3 diffusion MR can detect the changes in the lungs of healthy nonsmoking individuals who were regularly exposed to secondhand smoke. Three groups were studied (age: 59 ± 9 years): 23 smokers, 37 exposure-to-secondhand-smoke subjects, and 29 control subjects. We measured helium-3 diffusion values at diffusion times from 0.23 to 1.97 s. One-way analysis of variance revealed that the mean area under the helium-3 diffusion curves (ADC AUC) of the smokers was significantly elevated compared with the controls and to the exposure-to-secondhand-smoke subjects (P exposure-to-secondhand-smoke subjects and that of the controls was found (P = 0.115). However, application of a receiver operator characteristic-derived rule to classify subjects as either a "control" or a "smoker," based on ADC AUC, revealed that 30% (11/37) of the exposure-to-secondhand subjects were classified as "smokers" indicating an elevation of the ADC AUC. Using helium-3 diffusion MR, elevated ADC values were detected in 30% of nonsmoking healthy subjects who had been regularly exposed to secondhand smoke, supporting the concept that, in susceptible individuals, secondhand smoke causes mild lung damage. Copyright © 2013 Wiley Periodicals, Inc.

  18. Structure-Dependent Water-Induced Linear Reduction Model for Predicting Gas Diffusivity and Tortuosity in Repacked and Intact Soil

    DEFF Research Database (Denmark)

    Møldrup, Per; Chamindu, T. K. K. Deepagoda; Hamamoto, S.

    2013-01-01

    The soil-gas diffusion is a primary driver of transport, reactions, emissions, and uptake of vadose zone gases, including oxygen, greenhouse gases, fumigants, and spilled volatile organics. The soil-gas diffusion coefficient, Dp, depends not only on soil moisture content, texture, and compaction...... but also on the local-scale variability of these. Different predictive models have been developed to estimate Dp in intact and repacked soil, but clear guidelines for model choice at a given soil state are lacking. In this study, the water-induced linear reduction (WLR) model for repacked soil is made...... air) in repacked soils containing between 0 and 54% clay. With Cm = 2.1, the SWLR model on average gave excellent predictions for 290 intact soils, performing well across soil depths, textures, and compactions (dry bulk densities). The SWLR model generally outperformed similar, simple Dp/Do models...

  19. Self-diffusion and molecular association of acetylsalicylic acid and methyl salicylate in methanol- d4 in the temperature range 278-318 K

    Science.gov (United States)

    Golubev, V. A.; Kumeev, R. S.; Gurina, D. L.; Nikiforov, M. Yu.

    2017-05-01

    The effect of concentration on the self-diffusion coefficients of acetylsalicylic acid and methyl salicylate in methanol- d4 is investigated in the temperature range of 278-318 K using NMR. It is found that the self-diffusion coefficients increase along with temperature and fall as concentration rises. Within the limit of an infinitely dilute solution, the effective radii of solute molecules, calculated using the Stokes-Einstein equation shrink as the temperature grows. It is shown that the observed reduction of effective radii is associated with an increase in the fraction of solute monomers as the temperature rises. The physicochemical parameters of heteroassociation of acetylsalicylic acid and methyl salicylate with methanol are determined.

  20. Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Weicheng [College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073 (China); National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Hu, Weida, E-mail: wdhu@mail.sitp.ac.cn; Lin, Tie; Yin, Fei; Zhang, Bo; Chen, Xiaoshuang; Lu, Wei [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Cheng, Xiang' ai, E-mail: xiang-ai-cheng@126.com; Wang, Rui [College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073 (China)

    2014-11-10

    In this paper, we report on the disappearance of the photosensitive area extension effect and the unusual temperature dependence of junction transformation for mid-wavelength, n-on-p HgCdTe photovoltaic infrared detector arrays. The n-type region is formed by B{sup +} ion implantation on Hg-vacancy-doped p-type HgCdTe. Junction transformations under different temperatures are visually captured by a laser beam induced current microscope. A physical model of temperature dependence on junction transformation is proposed and demonstrated by using numerical simulations. It is shown that Hg-interstitial diffusion and temperature activated defects jointly lead to the p-n junction transformation dependence on temperature, and the weaker mixed conduction compared with long-wavelength HgCdTe photodiode contributes to the disappearance of the photosensitive area extension effect in mid-wavelength HgCdTe infrared detector arrays.

  1. Temperature-induced structural changes in fluorozirconate glasses and liquids

    International Nuclear Information System (INIS)

    Sen, S.; Youngman, R.E.

    2002-01-01

    The atomic structure and its temperature dependence in fluorozirconate glasses and supercooled liquids have been studied with high-resolution and high-temperature 19 F and 23 Na nuclear-magnetic-resonance (NMR) spectroscopy. The 19 F NMR spectra in these glasses show the presence of multiple F environments. Temperature dependence of the 19 F magic-angle-spinning NMR spectra indicates a progressive change in the average F coordination environment in the glass structure, besides motional narrowing due to substantial mobility of F - ions. The observed change in the average 19 F NMR chemical shift is consistent with progressive breaking of the Zr-F-Zr linkages in the glass structure with increasing temperature. The onset of such a change in F speciation is observed at temperatures well below T g . This result is evidence of changes in the average equilibrium structure in an inorganic glass-forming liquid at T g , albeit on a local scale. The 23 Na NMR spectra indicate that the cations in these glasses become significantly mobile only at temperatures T≥T g , which allows for the onset of global structural relaxation and viscous flow

  2. Modeling of Ni Diffusion Induced Austenite Formation in Ferritic Stainless Steel Interconnects

    DEFF Research Database (Denmark)

    Chen, Ming; Alimadadi, Hossein; Molin, Sebastian

    2017-01-01

    Ferritic stainless steel interconnect plates are widely used in planar solid oxide fuel cell and electrolysis cell stacks. During stack production and operation, nickel from the Ni/yttria stabilized zirconia fuel electrode or from the Ni contact component layer diffuses into the interconnect plate......, causing transformation of the ferritic phase into an austenitic phase in the interface region. This is accompanied with changes in volume, and in mechanical and corrosion properties of the interconnect plates. In this work, kinetic modeling of the inter-diffusion between Ni and FeCr based ferritic...

  3. Isospin diffusion in 58Ni-induced reactions at intermediate energies. I. Experimental results

    International Nuclear Information System (INIS)

    Galichet, E.; Rivet, M. F.; Borderie, B.; Colonna, M.; Bougault, R.; Durand, D.; Lopez, O.; Manduci, L.; Tamain, B.; Vient, E.; Chbihi, A.; Frankland, J. D.; Wieleczko, J. P.; Dayras, R.; Volant, C.; Guinet, D. C. R.; Lautesse, P.; Neindre, N. Le; Parlog, M.; Rosato, E.

    2009-01-01

    Isospin diffusion in semiperipheral collisions is probed as a function of the dissipated energy by studying two systems 58 Ni+ 58 Ni and 58 Ni+ 197 Au, over the incident energy range 52A-74A MeV. A close examination of the multiplicities of light products in the forward part of the phase space clearly shows an influence of the isospin of the target on the neutron richness of these products. A progressive isospin diffusion is observed when collisions become more central, in connection with the interaction time.

  4. Modeling of Ni Diffusion Induced Austenite Formation in Ferritic Stainless Steel Interconnects

    DEFF Research Database (Denmark)

    Chen, Ming; Molin, Sebastian; Zhang, L.

    2015-01-01

    Ferritic stainless steel interconnect plates are widely used in planar solid oxide fuel cell (SOFC) or electrolysis cell (SOEC) stacks. During stack production and operation, nickel from the Ni/YSZ fuel electrode or from the Ni contact component diffuses into the IC plate, causing transformation...... of the ferritic phase into an austenitic phase in the interface region. This is accompanied with changes in volume and in mechanical and corrosion properties of the IC plates. In this work, kinetic modeling of the inter-diffusion between Ni and FeCr based ferritic stainless steel was conducted, using the CALPHAD...

  5. Temperature dependence of ion-beam induced amorphization in α-quartz

    International Nuclear Information System (INIS)

    Dhar, Sankar; Bolse, Wolfgang; Lieb, Klaus-Peter

    1999-01-01

    The temperature dependence of the amorphization in α-quartz by Ne-ion bombardment has been investigated using Rutherford Backscattering Spectrometry in channeling geometry (RBS-C). The experimental results show that the critical temperature T c for inhibiting amorphization in quartz is around 940 K. The damage depth profile χ(z,phi) is independent of the temperature and fluence and can be simulated with a power-law function [χ(z,phi)∝(phiF D (z)) 3 ] of the damage energy distribution F D (z). At low irradiation temperature, the critical dose phi c for amorphization is independent of the temperature but it strongly increases at higher temperatures with an activation energy of 0.28 eV and has been explained by out-diffusion model of Morehead and Crowder

  6. Telemetry pill versus rectal and esophageal temperature during extreme rates of exercise-induced core temperature change

    International Nuclear Information System (INIS)

    Teunissen, L P J; Daanen, H A M; De Haan, A; De Koning, J J

    2012-01-01

    Core temperature measurement with an ingestible telemetry pill has been scarcely investigated during extreme rates of temperature change, induced by short high-intensity exercise in the heat. Therefore, nine participants performed a protocol of rest, (sub)maximal cycling and recovery at 30 °C. The pill temperature (T pill ) was compared with the rectal temperature (T re ) and esophageal temperature (T es ). T pill corresponded well to T re during the entire trial, but deviated considerably from T es during the exercise and recovery periods. During maximal exercise, the average ΔT pill −T re and ΔT pill −T es were 0.13 ± 0.26 and −0.57 ± 0.53 °C, respectively. The response time from the start of exercise, the rate of change during exercise and the peak temperature were similar for T pill and T re. T es responded 5 min earlier, increased more than twice as fast and its peak value was 0.42 ± 0.46 °C higher than T pill . In conclusion, also during considerable temperature changes at a very high rate, T pill is still a representative of T re . The extent of the deviation in the pattern and peak values between T pill and T es (up to >1 °C) strengthens the assumption that T pill is unsuited to evaluate central blood temperature when body temperatures change rapidly. (paper)

  7. RTV Silicone Rubber Degradation Induced by Temperature Cycling

    Directory of Open Access Journals (Sweden)

    Xishan Wen

    2017-07-01

    Full Text Available Room temperature vulcanized (RTV silicone rubber is extensively used in power system due to its hydrophobicity and hydrophobicity transfer ability. Temperature has been proven to markedly affect the performance of silicone rubbers. This research investigated the degradation of RTV silicone rubber under temperature cycling treatment. Hydrophobicity and its transfer ability, hardness, functional groups, microscopic appearance, and thermal stability were analyzed using the static contact angle method, a Shore A durometer, Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM, and thermogravimetry (TG, respectively. Some significant conclusions were drawn. After the temperature was cycled between −25 °C and 70 °C, the hydrophobicity changed modestly, but its transfer ability changed remarkably, which may result from the competition between the formation of more channels for the transfer of low molecular weight (LMW silicone fluid and the reduction of LMW silicone fluid in the bulk. A hardness analysis and FTIR analysis demonstrated that further cross-linking reactions occurred during the treatment. SEM images showed the changes in roughness of the RTV silicone rubber surfaces. TG analysis also demonstrated the degradation of RTV silicone rubber by presenting evidence that the content of organic materials decreased during the temperature cycling treatment.

  8. Effects of temperature and immersion time on diffusion of moisture and minerals during rehydration of osmotically treated pork meat cubes

    Directory of Open Access Journals (Sweden)

    Šuput Danijela Z.

    2015-01-01

    Full Text Available The aim of this work was to study the changes in osmotically treated pork meat during rehydration. Meat samples were osmotically treated in sugar beet molasses solution, at temperature of (23±2°C for 5 hours. After being osmotically treated, meat samples were rehydrated at constant temperature (20- 40°C during different times (15-60 min in distilled water. The effective diffusivity were between 8.35 and 9.11•10-10 (m2•s-1 for moisture, 6.30-6.94 • 10-10 (m2•s-1, for Na, 5.73-7.46 10-10 (m2•s-1, for K, 4.43-6.25 • 10-10 (m2•s-1, for Ca, 5.35-6.25 • 10-10 (m2•s-1, for Mg, 4.67-6.78 10-10 (m2•s-1, for Cu, 4.68-5.33 • 10-10 (m2•s-1, for Fe, 4.21-5.04 • 10-10 (m2•s-1, for Zn and 5.44-7.16 10-10 (m2•s-1, for Mn. Zugarramurdi and Lupin’s model was used to predict the equilibrium condition, which was shown to be appropriate for moisture uptake and solute loss during rehydration. [Projekat Ministarstva nauke Republike Srbije, br. TR-31055: Osmotic dehydration of food - energy and environmental aspects of sustainable production

  9. Circulation induced by diffused aeration in a shallow lake | Toné ...

    African Journals Online (AJOL)

    Field surveys were carried out to investigate the surface jet flows and the resulting circulation patterns generated by diffused aeration in a shallow lake. In conrast to previous studies, the experimental conditions included point-source bubble plumes with very high air flow rates (100–400 L/min) relative to the shallow water ...

  10. Diffusion coefficients for periodically induced multi-step persistent walks on regular lattices

    International Nuclear Information System (INIS)

    Gilbert, Thomas; Sanders, David P

    2012-01-01

    We present a generalization of our formalism for the computation of diffusion coefficients of multi-step persistent random walks on regular lattices to walks which include zero-displacement states. This situation is especially relevant to systems where tracer particles move across potential barriers as a result of the action of a periodic forcing whose period sets the timescale between transitions. (paper)

  11. Diffusion-induced bending of thin sheet couples : theory and experiments in Ti-Zr system

    NARCIS (Netherlands)

    Daruka, I.; Szabo, I.A.; Beke, D.L.; Cserhati, C.; Kodentsov, A.; Loo, van F.J.J.

    1996-01-01

    Numerical and analytical calculations of concentration and stress distributions of thin-sheet diffusion couples have been carried out as well as the time dependence of the Kirkendall shift, xk, and the curvature has also been determined. It is shown that the concentration distribution is not

  12. High-temperature superconductors induced by ion implantation. Final report

    International Nuclear Information System (INIS)

    Greenwald, A.C.; Johnson, E.

    1988-08-01

    High dose oxygen ion implantation (10 to the 17th power ions per sq. cm.) at elevated temperatures (300 C) has been shown to adjust the critical temperature of gamma-Y-Ba-Cu-O and Bi-Ca-Sr-Cu-O materials. These results are in marked contrast to earlier work which showed complete destruction of superconducting properties for similar radiation doses, and marked reduction in superconducting properties at one-tenth this dose in the 1-2-3- compound only. Experiments also showed that the superconducting materials can be patterned into conducting and nonconducting areas without etching by ion implantation, allowing maintenance of planar geometries required for microcircuit fabrication. Experiments on deposition of thin films of high temperature superconductors for use with the ion implantation experiments showed that ion beam sputtering from a single target could achieve the correct stoichiometry. Variations of composition with ion beam energy and angle of sputtered ions were studied

  13. Temperature extremes reduce seagrass growth and induce mortality

    International Nuclear Information System (INIS)

    Collier, C.J.; Waycott, M.

    2014-01-01

    Highlights: • Temperature extremes occur during low tide in shallow seagrass meadows. • The effects of temperature extremes were tested experimentally at 35 °C, 40 °C and 43 °C. • 40 °C was a critical threshold with a large impact on growth and mortality. • At 43 °C there was complete mortality after 2–3 days. • Lower light conditions (e.g. poor water quality) led to a greater negative impact. - Abstract: Extreme heating (up to 43 °C measured from five-year temperature records) occurs in shallow coastal seagrass meadows of the Great Barrier Reef at low tide. We measured effective quantum yield (ϕ PSII ), growth, senescence and mortality in four tropical seagrasses to experimental short-duration (2.5 h) spikes in water temperature to 35 °C, 40 °C and 43 °C, for 6 days followed by one day at ambient temperature. Increasing temperature to 35 °C had positive effects on ϕ PSII (the magnitude varied between days and was highly correlated with PPFD), with no effects on growth or mortality. 40 °C represented a critical threshold as there were strong species differences and there was a large impact on growth and mortality. At 43 °C there was complete mortality after 2–3 days. These findings indicate that increasing duration (more days in a row) of thermal events above 40 °C is likely to affect the ecological function of tropical seagrass meadows

  14. Cyclic steady states in diffusion-induced plasticity with applications to lithium-ion batteries

    Science.gov (United States)

    Peigney, Michaël

    2018-02-01

    Electrode materials in lithium-ion batteries offer an example of medium in which stress and plastic flow are generated by the diffusion of guest atoms. In such a medium, deformation and diffusion are strongly coupled processes. For designing electrodes with improved lifetime and electro-mechanical efficiency, it is crucial to understand how plasticity and diffusion evolve over consecutive charging-recharging cycles. With such questions in mind, this paper provides general results for the large-time behavior of media coupling plasticity with diffusion when submitted to cyclic chemo-mechanical loadings. Under suitable assumptions, we show that the stress, the plastic strain rate, the chemical potential and the flux of guest atoms converge to a cyclic steady state which is largely independent of the initial state. A special emphasis is laid on the special case of elastic shakedown, which corresponds to the situation where the plastic strain stops evolving after a sufficiently large number of cycles. Elastic shakedown is expected to be beneficial for the fatigue behavior and - in the case of lithium-ion batteries - for the electro-chemical efficiency. We provide a characterization of the chemo-mechanical loadings for which elastic shakedown occurs. Building on that characterization, we suggest a general method for designing structures in such fashion that they operate in the elastic shakedown regime, whatever the initial state is. An attractive feature of the proposed method is that incremental analysis of the fully coupled plasticity-diffusion problem is avoided. The results obtained are applied to the model problem of a battery electrode cylinder particle under cyclic charging. Closed-form expressions are obtained for the set of charging rates and charging amplitudes for which elastic shakedown occurs, as well as for the corresponding cyclic steady states of stress, lithium concentration and chemical potential. Some results for a spherical particle are also presented.

  15. Temperature Induced Voltage Offset Drifts in Silicon Carbide Pressure Sensors

    Science.gov (United States)

    Okojie, Robert S.; Lukco, Dorothy; Nguyen, Vu; Savrun, Ender

    2012-01-01

    We report the reduction of transient drifts in the zero pressure offset voltage in silicon carbide (SiC) pressure sensors when operating at 600 C. The previously observed maximum drift of +/- 10 mV of the reference offset voltage at 600 C was reduced to within +/- 5 mV. The offset voltage drifts and bridge resistance changes over time at test temperature are explained in terms of the microstructure and phase changes occurring within the contact metallization, as analyzed by Auger electron spectroscopy and field emission scanning electron microscopy. The results have helped to identify the upper temperature reliable operational limit of this particular metallization scheme to be 605 C.

  16. Topology and temperature dependence of the diffuse X-ray scattering in Na0.5Bi0.5TiO3 ferroelectric single crystals.

    Science.gov (United States)

    Gorfman, Semën; Keeble, Dean S; Bombardi, Alessandro; Thomas, Pam A

    2015-10-01

    The results of high-resolution measurements of the diffuse X-ray scattering produced by a perovskite-based Na 0.5 Bi 0.5 TiO 3 ferroelectric single crystal between 40 and 620 K are reported. The study was designed as an attempt to resolve numerous controversies regarding the average structure of Na 0.5 Bi 0.5 TiO 3 , such as the mechanism of the phase transitions between the tetragonal, P 4 bm , and rhombohedral | monoclinic, R 3 c  |  Cc , space groups and the correlation between structural changes and macroscopic physical properties. The starting point was to search for any transformations of structural disorder in the temperature range of thermal depoling (420-480 K), where the average structure is known to remain unchanged. The intensity distribution around the {032} pseudocubic reflection was collected using a PILATUS 100K detector at the I16 beamline of the Diamond Light Source (UK). The data revealed previously unknown features of the diffuse scattering, including a system of dual asymmetric L-shaped diffuse scattering streaks. The topology, temperature dependence, and relationship between Bragg and diffuse intensities suggest the presence of complex microstructure in the low-temperature R 3 c  |  Cc phase. This microstructure may be formed by the persistence of the higher-temperature P 4 bm phase, built into a lower-temperature R 3 c  |  Cc matrix, accompanied by the related long-range strain fields. Finally, it is shown that a correlation between the temperature dependence of the X-ray scattering features and the temperature regime of thermal depoling is present.

  17. Temperature induced changes in the heterocyst glycolipid composition of N

    NARCIS (Netherlands)

    Bauersachs, T.; Stal, L.J.; Grego, M.; Schwark, L.; Schwark, L.

    2014-01-01

    We investigated the effect of temperature on the heterocyst glycolipid (HG) composition of the diazotrophic heterocystous cyanobacteria Anabaena sp. strain CCY9613 and Nostoc sp. strain CCY9926 grown at 9, 12, 16, 20 and 24 degrees C. Both strains contained an overall similar composition of

  18. Electronically induced nuclear transitions - temperature dependence and Rabi oscillations

    International Nuclear Information System (INIS)

    Niez, J.J.

    2002-01-01

    This paper deals with a nucleus electromagnetically coupled with the bound states of its electronic surroundings. It describes the temperature dependence of its dynamics and the onset of potential Rabi oscillations by means of a Master Equation. The latter is generalized in order to account for possible strong resonances. Throughout the paper the approximation schemes are discussed and tested. (authors)

  19. Heterogeneity of soil surface temperature induced by xerophytic ...

    Indian Academy of Sciences (India)

    The diurnal maximum and diurnal variations of soil surface temperatures under canopy vary strongly with different .... elevation of 1300 m above sea level), located at the southeastern fringe of ... cipitation is the only source of soil water replenish- ment. ...... 2001 Effects of nutrients and shade on tree-grass inter- actions in an ...

  20. microwave oven-induced decalcification at varying temperatures

    African Journals Online (AJOL)

    Uwaifoh

    2012-09-30

    Sep 30, 2012 ... This study was designed to evaluate the effect of decalcifying fluid types on bone tissue architecture and its staining properties following decalcification at varying temperatures. A decalcification methodology using Golding and. Stewards (GS) fluid, and Jenkings fluid (JK), and a modern household ...

  1. Temperature extremes reduce seagrass growth and induce mortality.

    Science.gov (United States)

    Collier, C J; Waycott, M

    2014-06-30

    Extreme heating (up to 43 °C measured from five-year temperature records) occurs in shallow coastal seagrass meadows of the Great Barrier Reef at low tide. We measured effective quantum yield (ϕPSII), growth, senescence and mortality in four tropical seagrasses to experimental short-duration (2.5h) spikes in water temperature to 35 °C, 40 °C and 43 °C, for 6 days followed by one day at ambient temperature. Increasing temperature to 35 °C had positive effects on ϕPSII (the magnitude varied between days and was highly correlated with PPFD), with no effects on growth or mortality. 40 °C represented a critical threshold as there were strong species differences and there was a large impact on growth and mortality. At 43 °C there was complete mortality after 2-3 days. These findings indicate that increasing duration (more days in a row) of thermal events above 40 °C is likely to affect the ecological function of tropical seagrass meadows. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Thermal conditions influence changes in body temperature induced by intragastric administration of capsaicin in mice.

    Science.gov (United States)

    Mori, Noriyuki; Urata, Tomomi; Fukuwatari, Tsutomu

    2016-08-01

    Capsaicin has been reported to have unique thermoregulatory actions. However, changes in core temperature after the administration of capsaicin are a controversial point. Therefore, we investigated the effects of environmental thermal conditions on changes in body temperature caused by capsaicin in mice. We showed that intragastric administration of 10 and 15 mg/kg capsaicin increased tail temperature and decreased colonic temperatures in the core temperature (CT)-constant and CT-decreasing conditions. In the CT-increasing condition, 15 mg/kg capsaicin increased tail temperature and decreased colonic temperature. However, 10 mg/kg capsaicin increased colonic temperature. Furthermore, the amount of increase in tail temperature was greater in the CT-decreasing condition and lower in the CT-increasing condition, compared with that of the CT-constant condition. These findings suggest that the changes in core temperature were affected by the environmental thermal conditions and that preliminary thermoregulation state might be more important than the constancy of temperature to evaluate the effects of heat diffusion and thermogensis.

  3. Temperature dependence of diffuse satellites in Ti–(50 − x)Pd–xFe (14 ⩽ x ⩽ 20 (at.%)) alloys

    International Nuclear Information System (INIS)

    Todai, Mitsuharu; Fukuda, Takashi; Kakeshita, Tomoyuki

    2014-01-01

    Highlights: • Diffuse satellites of Ti–(50 − x)Pd–xFe alloys have been investigated. • Diffuse satellites appear at g B2 + 〈ζζ ¯ 0〉 * below T min . • The peak position of diffuse satellites at T min agree with the length of the nesting vector. • The present result implies that the nesting effect of Fermi surface originates diffuse satellites in Ti–(50 − x)Pd–xFe alloys. - Abstract: Diffuse satellites appearing in electron diffraction pattern of shape memory Ti–(50 − x)Pd–xFe (14, 16, 18, 19 and 20, in at.%) alloys have been investigated. The satellites appear in each alloy below T min , where its electrical resistivity shows a local minimum. The positions of satellites are g B2 + 〈ζ ζ ¯ 0〉 * , where g B2 is a reciprocal lattice vector of the B2-phase. The value of ζ is smaller than 1/5 at T min for all the alloys; it increases with decreasing temperature and decreases with increasing iron content. The value of ζ at T min agrees with the length of the nesting vector previously calculated by the present authors. This result implies that Fermi surface nesting is the origin of diffuse satellites in Ti–(50 − x)Pd–xFe alloys

  4. Measurement of the thermal diffusivity and speed of sound of hydrothermal solutions via the laser-induced grating technique

    International Nuclear Information System (INIS)

    Butenhoff, T.J.

    1994-01-01

    Hydrothermal processing is being developed as a method for organic destruction for the Hanford Site in Washington. Hydrothermal processing refers to the redox reactions of chemical compounds in supercritical or near-supercritical aqueous solutions. In order to design reactors for the hydrothermal treatment of complicated mixtures found in the Hanford wastes, engineers need to know the thermophysical properties of the solutions under hydrothermal conditions. The author used the laser-induced grating technique to measure the thermal diffusivity and speed of sound of hydrothermal solutions. In this non-invasive optical technique, a transient grating is produced in the hydrothermal solution by optical absorption from two crossed time-coincident nanosecond laser pulses. The grating is probed by measuring the diffraction efficiency of a third laser beam. The grating relaxes via thermal diffusion, and the thermal diffusivity can be determined by measuring the decay of the grating diffraction efficiency as a function of the pump-probe delay time. In addition, intense pump pulses produce counterpropagating acoustic waves that appear as large undulations in the transient grating decay spectrum. The speed of sound in the sample is simply the grating fringe spacing divided by the undulation period. The cell is made from a commercial high pressure fitting and is equipped with two diamond windows for optical access. Results are presented for dilute dye/water solutions with T = 400 C and pressures between 20 and 70 MPa

  5. Solutions for the diurnally forced advection-diffusion equation to estimate bulk fluid velocity and diffusivity in streambeds from temperature time series

    Science.gov (United States)

    Charles H. Luce; Daniele Tonina; Frank Gariglio; Ralph Applebee

    2013-01-01

    Work over the last decade has documented methods for estimating fluxes between streams and streambeds from time series of temperature at two depths in the streambed. We present substantial extension to the existing theory and practice of using temperature time series to estimate streambed water fluxes and thermal properties, including (1) a new explicit analytical...

  6. X-ray analysis of temperature induced defect structures in boron implanted silicon

    Science.gov (United States)

    Sztucki, M.; Metzger, T. H.; Kegel, I.; Tilke, A.; Rouvière, J. L.; Lübbert, D.; Arthur, J.; Patel, J. R.

    2002-10-01

    We demonstrate the application of surface sensitive diffuse x-ray scattering under the condition of grazing incidence and exit angles to investigate growth and dissolution of near-surface defects after boron implantation in silicon(001) and annealing. Silicon wafers were implanted with a boron dose of 6×1015 ions/cm2 at 32 keV and went through different annealing treatments. From the diffuse intensity close to the (220) surface Bragg peak we reveal the nature and kinetic behavior of the implantation induced defects. Analyzing the q dependence of the diffuse scattering, we are able to distinguish between point defect clusters and extrinsic stacking faults on {111} planes. Characteristic for stacking faults are diffuse x-ray intensity streaks along directions, which allow for the determination of their growth and dissolution kinetics. For the annealing conditions of our crystals, we conclude that the kinetics of growth can be described by an Ostwald ripening model in which smaller faults shrink at the expense of the larger stacking faults. The growth is found to be limited by the self-diffusion of silicon interstitials. After longer rapid thermal annealing the stacking faults disappear almost completely without shrinking, most likely by transformation into perfect loops via a dislocation reaction. This model is confirmed by complementary cross-sectional transmission electron microscopy.

  7. Characterization and improvement gas diffusion layer of low temperature fuel cell; Caracterizacao e aprimoramento da camada difusora de celulas a combustivel de funcionamento a baixa temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, C.Z.; Dantas, R.; Oliveira, I.S. de; Azevedo, C.M.N.; Pires, M. [Pontificia Univ. Catolica do Rio Grande do Sul (PUC-RS), Porto Alegre, RS (Brazil). Faculdade de Quimica; Canalli, V. [Pontificia Univ. Catolica do Rio Grande do Sul (PUC-RS), Porto Alegre, RS (Brazil). Faculdade de Engenharia

    2006-07-01

    In low temperature fuel cells the main part is the membrane electrode assembly (MEA). The gas diffusion layer is a component of the MEA, being a composite material constituted by carbon powder and polytetrafluoroethylene, used to increases hydrofobicity, fundamental characteristic in water transport into system. In this work methods were adapted with the aim to a better characterization of the diffusion layer by the measuring the following parameter: contact angle and hysteresis; morphology, thickness and porosity. From these characterization results optimized MEAS will be produced to better fuel cell performance. (author)

  8. Apparent diffusion coefficient histogram analysis can evaluate radiation-induced parotid damage and predict late xerostomia degree in nasopharyngeal carcinoma.

    Science.gov (United States)

    Zhou, Nan; Guo, Tingting; Zheng, Huanhuan; Pan, Xia; Chu, Chen; Dou, Xin; Li, Ming; Liu, Song; Zhu, Lijing; Liu, Baorui; Chen, Weibo; He, Jian; Yan, Jing; Zhou, Zhengyang; Yang, Xiaofeng

    2017-09-19

    We investigated apparent diffusion coefficient (ADC) histogram analysis to evaluate radiation-induced parotid damage and predict xerostomia degrees in nasopharyngeal carcinoma (NPC) patients receiving radiotherapy. The imaging of bilateral parotid glands in NPC patients was conducted 2 weeks before radiotherapy (time point 1), one month after radiotherapy (time point 2), and four months after radiotherapy (time point 3). From time point 1 to 2, parotid volume, skewness, and kurtosis decreased ( P histogram parameters increased (all P histogram parameters. Early mean change rates for bilateral parotid SD and ADC max could predict late xerostomia degrees at seven months after radiotherapy (three months after time point 3) with AUC of 0.781 and 0.818 ( P = 0.014, 0.005, respectively). ADC histogram parameters were reproducible (intraclass correlation coefficient, 0.830 - 0.999). ADC histogram analysis could be used to evaluate radiation-induced parotid damage noninvasively, and predict late xerostomia degrees of NPC patients treated with radiotherapy.

  9. Dichotomous-noise-induced pattern formation in a reaction-diffusion system

    Science.gov (United States)

    Das, Debojyoti; Ray, Deb Shankar

    2013-06-01

    We consider a generic reaction-diffusion system in which one of the parameters is subjected to dichotomous noise by controlling the flow of one of the reacting species in a continuous-flow-stirred-tank reactor (CSTR) -membrane reactor. The linear stability analysis in an extended phase space is carried out by invoking Furutzu-Novikov procedure for exponentially correlated multiplicative noise to derive the instability condition in the plane of the noise parameters (correlation time and strength of the noise). We demonstrate that depending on the correlation time an optimal strength of noise governs the self-organization. Our theoretical analysis is corroborated by numerical simulations on pattern formation in a chlorine-dioxide-iodine-malonic acid reaction-diffusion system.

  10. Brain metabolism and diffusion in the rat cerebral cortex during pilocarpine-induced status epilepticus

    Czech Academy of Sciences Publication Activity Database

    Šlais, Karel; Voříšek, Ivan; Zoremba, N.; Homola, Aleš; Dmytrenko, Lesia; Syková, Eva

    2008-01-01

    Roč. 209, č. 1 (2008), s. 145-154 ISSN 0014-4886 R&D Projects: GA MŠk 1M0538; GA MŠk(CZ) LC554 Grant - others:EU(DE) 512146 Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z50390703 Source of funding: R - rámcový projekt EK Keywords : Diffusion * Microdialysis * Pilocarpine Subject RIV: FH - Neurology Impact factor: 3.974, year: 2008

  11. Temperature dependence of ion irradiation induced amorphization of zirconolite

    International Nuclear Information System (INIS)

    Smith, K. L.; Blackford, M. G.; Lumpkin, G. R.; Zaluzec, N. J.

    1999-01-01

    Zirconolite is one of the major host phases for actinides in various wasteforms for immobilizing high level radioactive waste (HLW). Over time, zirconolite's crystalline matrix is damaged by α-particles and energetic recoil nuclei recoil resulting from α-decay events. The cumulative damage caused by these particles results in amorphization. Data from natural zirconolites suggest that radiation damage anneals over geologic time and is dependant on the thermal history of the material. Proposed HLW containment strategies rely on both a suitable wasteform and geologic isolation. Depending on the waste loading, depth of burial, and the repository-specific geothermal gradient, burial could result in a wasteform being exposed to temperatures of between 100--450 C. Consequently, it is important to assess the effect of temperature on radiation damage in synthetic zirconolite. Zirconolite containing wasteforms are likely to be hot pressed at or below 1,473 K (1,200 C) and/or sintered at or below 1,623 K (1,350 C). Zirconolite fabricated at temperatures below 1,523 K (1,250 C) contains many stacking faults. As there have been various attempts to link radiation resistance to structure, the authors decided it was also pertinent to assess the role of stacking faults in radiation resistance. In this study, they simulate α-decay damage in two zirconolite samples by irradiating them with 1.5 MeV Kr + ions using the High Voltage Electron Microscope-Tandem User Facility (HTUF) at Argonne National Laboratory (ANL) and measure the critical dose for amorphization (D c ) at several temperatures between 20 and 773 K. One of the samples has a high degree of crystallographic perfection, the other contains many stacking faults on the unit cell scale. Previous authors proposed a model for estimating the activation energy of self annealing in zirconolite and for predicting the critical dose for amorphization at any temperature. The authors discuss their results and earlier published data in

  12. Realization of highly crystallographic three-dimensional nanosheets by a stress-induced oriented-diffusion method

    Energy Technology Data Exchange (ETDEWEB)

    Gharooni, M.; Hosseini, M.; Mohajerzadeh, S., E-mail: mohajer@ut.ac.ir; Taghinejad, M.; Taghinejad, H. [Thin Film and Nanoelectronics Lab, Nanoelectronics Center of Excellence, School of Electrical and Computer Engineering, University of Tehran, Tehran 143957131 (Iran, Islamic Republic of); Abdi, Y. [Nano-Physics Research Lab, Department of Physics, University of Tehran, Tehran 1439955961 (Iran, Islamic Republic of)

    2014-07-28

    Morphologically controlled nanostructures have been increasingly important because of their strongly shape dependent physical and chemical properties. Formation of nanoscale silicon based structures that employ high levels of strain, intentional, and unintentional twins or grain boundaries can be dramatically different from the commonly conceived bulk processes. We report, realization of highly crystallographic 3D nanosheets with unique morphology and ultra-thin thickness by a stress-induced oriented-diffusion method, based on plasma processing of metal layer deposited on Si substrate and its post deep reactive ion etching. Annealing in plasma ambient creates rod-like metal alloy precursors which induce stress at its interface with Si substrate due to the mismatch of lattice constants. This stress opens facilitated gateways for orientated-diffusion of metal atoms in 〈110〉 directions and leads to formation of NSs (nanosheets) with [111] crystalline essence. Nanosheets are mainly triangular, hexagonal, or pseudo hexagonal in shape and their thicknesses are well controlled from several to tens of nanometers. The structural and morphological evolution of features were investigated in detail using transmission electron microscope, atomic force microscope, scanning electron microscope and possible mechanism is proposed to explain the formation of the thermodynamically unfavorable morphology of nanosheets. Significant photoemission capability of NSs was also demonstrated by photoluminescence spectroscopy.

  13. In Vivo Evaluation of the Visual Pathway in Streptozotocin-Induced Diabetes by Diffusion Tensor MRI and Contrast Enhanced MRI.

    Directory of Open Access Journals (Sweden)

    Swarupa Kancherla

    Full Text Available Visual function has been shown to deteriorate prior to the onset of retinopathy in some diabetic patients and experimental animal models. This suggests the involvement of the brain's visual system in the early stages of diabetes. In this study, we tested this hypothesis by examining the integrity of the visual pathway in a diabetic rat model using in vivo multi-modal magnetic resonance imaging (MRI. Ten-week-old Sprague-Dawley rats were divided into an experimental diabetic group by intraperitoneal injection of 65 mg/kg streptozotocin in 0.01 M citric acid, and a sham control group by intraperitoneal injection of citric acid only. One month later, diffusion tensor MRI (DTI was performed to examine the white matter integrity in the brain, followed by chromium-enhanced MRI of retinal integrity and manganese-enhanced MRI of anterograde manganese transport along the visual pathway. Prior to MRI experiments, the streptozotocin-induced diabetic rats showed significantly smaller weight gain and higher blood glucose level than the control rats. DTI revealed significantly lower fractional anisotropy and higher radial diffusivity in the prechiasmatic optic nerve of the diabetic rats compared to the control rats. No apparent difference was observed in the axial diffusivity of the optic nerve, the chromium enhancement in the retina, or the manganese enhancement in the lateral geniculate nucleus and superior colliculus between groups. Our results suggest that streptozotocin-induced diabetes leads to early injury in the optic nerve when no substantial change in retinal integrity or anterograde transport along the visual pathways was observed in MRI using contrast agent enhancement. DTI may be a useful tool for detecting and monitoring early pathophysiological changes in the visual system of experimental diabetes non-invasively.

  14. Temperature suppression of STM-induced desorption of hydrogen on Si(100) surfaces

    DEFF Research Database (Denmark)

    Thirstrup, C.; Sakurai, M.; Nakayama, T.

    1999-01-01

    The temperature dependence of hydrogen (H) desorption from Si(100) H-terminated surfaces by a scanning tunneling microscope (STM) is reported for negative sample bias. It is found that the STM induced H desorption rate (R) decreases several orders of magnitude when the substrate temperature...

  15. Disorder effect on heat capacity, self-diffusion coefficient, and choosing best potential model for melting temperature, in gold–copper bimetallic nanocluster with 55 atoms

    International Nuclear Information System (INIS)

    Taherkhani, Farid; Akbarzadeh, Hamed; Feyzi, Mostafa; Rafiee, Hamid Reza

    2015-01-01

    Molecular dynamics simulation has been implemented for doping effect on melting temperature, heat capacity, self-diffusion coefficient of gold–copper bimetallic nanostructure with 55 total gold and copper atom numbers and its bulk alloy. Trend of melting temperature for gold–copper bimetallic nanocluster is not same as melting temperature copper–gold bulk alloy. Molecular dynamics simulation of our result regarding bulk melting temperature is consistence with available experimental data. Molecular dynamics simulation shows that melting temperature of gold–copper bimetallic nanocluster increases with copper atom fraction. Semi-empirical potential model and quantum Sutton–Chen potential models do not change melting temperature trend with copper doping of gold–copper bimetallic nanocluster. Self-diffusion coefficient of copper atom is greater than gold atom in gold–copper bimetallic nanocluster. Semi-empirical potential within the tight-binding second moment approximation as new application potential model for melting temperature of gold–copper bulk structure shows better result in comparison with EAM, Sutton–Chen potential, and quantum Sutton–Chen potential models

  16. Disorder effect on heat capacity, self-diffusion coefficient, and choosing best potential model for melting temperature, in gold–copper bimetallic nanocluster with 55 atoms

    Energy Technology Data Exchange (ETDEWEB)

    Taherkhani, Farid, E-mail: faridtaherkhani@gmail.com, E-mail: f.taherkhani@razi.ac.ir [Razi University, Department of Physical Chemistry (Iran, Islamic Republic of); Akbarzadeh, Hamed [Hakim Sabzevari University, Department of Chemistry (Iran, Islamic Republic of); Feyzi, Mostafa; Rafiee, Hamid Reza [Razi University, Department of Physical Chemistry (Iran, Islamic Republic of)

    2015-01-15

    Molecular dynamics simulation has been implemented for doping effect on melting temperature, heat capacity, self-diffusion coefficient of gold–copper bimetallic nanostructure with 55 total gold and copper atom numbers and its bulk alloy. Trend of melting temperature for gold–copper bimetallic nanocluster is not same as melting temperature copper–gold bulk alloy. Molecular dynamics simulation of our result regarding bulk melting temperature is consistence with available experimental data. Molecular dynamics simulation shows that melting temperature of gold–copper bimetallic nanocluster increases with copper atom fraction. Semi-empirical potential model and quantum Sutton–Chen potential models do not change melting temperature trend with copper doping of gold–copper bimetallic nanocluster. Self-diffusion coefficient of copper atom is greater than gold atom in gold–copper bimetallic nanocluster. Semi-empirical potential within the tight-binding second moment approximation as new application potential model for melting temperature of gold–copper bulk structure shows better result in comparison with EAM, Sutton–Chen potential, and quantum Sutton–Chen potential models.

  17. Numerical investigation of double diffusive buoyancy forces induced natural convection in a cavity partially heated and cooled from sidewalls

    Directory of Open Access Journals (Sweden)

    Rasoul Nikbakhti

    2016-03-01

    Full Text Available This paper deals with a numerical investigation of double-diffusive natural convective heat and mass transfer in a cavity filled with Newtonian fluid. The active parts of two vertical walls of the cavity are maintained at fixed but different temperatures and concentrations, while the other two walls, as well as inactive areas of the sidewalls, are considered to be adiabatic and impermeable to mass transfer. The length of the thermally active part equals half of the height. The non-dimensional forms of governing transport equations that describe double-diffusive natural convection for two-dimensional incompressible flow are functions of temperature or energy, concentration, vorticity, and stream-function. The coupled differential equations are discretized via FDM (Finite Difference Method. The Successive-Over-Relaxation (SOR method is used in the solution of the stream function equation. The analysis has been done for an enclosure with different aspect ratios ranging from 0.5 to 11 for three different combinations of partially active sections. The results are presented graphically in terms of streamlines, isotherms and isoconcentrations. In addition, the heat and mass transfer rate in the cavity is measured in terms of the average Nusselt and Sherwood numbers for various parameters including thermal Grashof number, Lewis number, buoyancy ratio and aspect ratio. It is revealed that the placement order of partially thermally active walls and the buoyancy ratio influence significantly the flow pattern and the corresponding heat and mass transfer performance in the cavity.

  18. Temperature-gradient instability induced by conducting end walls

    International Nuclear Information System (INIS)

    Berk, H.L.; Ryutov, D.D.; Tsidulko, Yu.A.

    1990-04-01

    A new rapidly growing electron temperature gradient instability is found for a plasma in contact with a conducting wall. The linear instability analysis is presented and speculations are given for its nonlinear consequences. This instability illustrates that conducting walls can produce effects that are detrimental to plasma confinement. This mode should be of importance in open-ended systems including astrophysical plasmas, mirror machines and at the edge of tokamaks where field lines are open and are connected to limiters or divertors. 16 refs., 2 figs

  19. Modification of the glass surface induced by redox reactions and internal diffusion processes

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Deubener, Joachim; Yue, Yuanzheng

    In this paper we report a novel way to modify the glass surface in favor of some physical performances. The main step is to perform iso-thermal treatments on the selected silicate glasses containing transition metal at temperatures near the glass transition temperature for various durations under...

  20. Temperature induced alternative splicing is affected in sdg8 and sdg26

    OpenAIRE

    Pajoro, A.; Severing, E.I.; Immink, G.H.

    2017-01-01

    Plants developed a plasticity to environmental conditions, such as temperature, that allows their adaptation. A change in ambient temperature leads to changes in the transcriptome in plants, such as the production of different splicing isoforms. Here we study temperature induced alternative splicing events in Arabidopsis thaliana wild-type and two epigenetic mutants, sdg8-2 and sdg26-1 using an RNA-seq approach.

  1. Health Impacts of Climate Change-Induced Subzero Temperature Fires.

    Science.gov (United States)

    Metallinou, Maria-Monika; Log, Torgrim

    2017-07-20

    General fire risk and the special risk related to cold climate cellulosic drying processes are outlined. Four recent subzero temperatures fires are studied with respect to health impacts: a wooden village fire, a single wood structure fire, a wildland urban interface (WUI) fire and a huge wildland fire. The health impacts range from stress related to loss of jobs, psychological effects of lost possessions, exposure to smoke and heat as well as immediate, or delayed, loss of lives. These four fires resulted in 32 fatalities, 385 persons hospitalized for shorter or longer periods, 104 structures lost and 1015 km² of wildland burned north of, and just south of, the Arctic Circle. It is shown that the combination of subzero temperature dry weather, strong winds, changing agricultural activities and declining snowpack may lead to previously anticipated threats to people and the environment. There are reasons to believe that these fires are a result of the ongoing climate changes. Risk impacts are discussed. Rural districts and/or vulnerable populations seem to be most affected. Training methods to identify and better monitor critical fire risk parameters are suggested to mitigate the health impacts of a possibly increasing number of such fires.

  2. Temperature-induced transitions in disordered proteins probed by NMR spectroscopy

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Poulsen, Flemming Martin; Kragelund, Birthe Brandt

    2012-01-01

    Intrinsically disordered proteins are abundant in nature and perform many important physiological functions. Multidimensional NMR spectroscopy has been crucial for the understanding of the conformational properties of disordered proteins and is increasingly used to probe their conformational...... ensembles. Compared to folded proteins, disordered proteins are more malleable and more easily perturbed by environmental factors. Accordingly, the experimental conditions and especially the temperature modify the structural and functional properties of disordered proteins. NMR spectroscopy allows analysis...... of temperature-induced structural changes at residue resolution using secondary chemical shift analysis, paramagnetic relaxation enhancement, and residual dipolar couplings. This chapter discusses practical aspects of NMR studies of temperature-induced structural changes in disordered proteins....

  3. Diffusion in flowing gas

    International Nuclear Information System (INIS)

    Reus, K.W.

    1979-01-01

    This thesis is concerned with the back-diffusion method of calculating the mutual diffusion coefficient of two gases. The applicability of this method for measuring diffusion coefficients at temperatures up to 1300 K is considered. A further aim of the work was to make a contribution to the description of the interatomic potential energy of noble gases at higher energies as a function of the internuclear distance. This was achieved with the measured diffusion coefficients, especially with those for high temperatures. (Auth.)

  4. Diffusion-induced periodic transition between oscillatory modes in amplitude-modulated patterns

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaodong; He, Yuxiu; Wang, Shaorong; Gao, Qingyu, E-mail: gaoqy@cumt.edu.cn [College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008 (China); Epstein, Irving R., E-mail: epstein@brandeis.edu [Department of Chemistry and Volen Center for Complex Systems, MS 015, Brandeis University, Waltham, Massachusetts 02454-9110 (United States); Wang, Qun [School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116 (China)

    2014-06-15

    We study amplitude-modulated waves, e.g., wave packets in one dimension, overtarget spirals and superspirals in two dimensions, under mixed-mode oscillatory conditions in a three-variable reaction-diffusion model. New transition zones, not seen in the homogeneous system, are found, in which periodic transitions occur between local 1{sup N−1} and 1{sup N} oscillations. Amplitude-modulated complex patterns result from periodic transition between (N − 1)-armed and N-armed waves. Spatial recurrence rates provide a useful guide to the stability of these modulated patterns.

  5. New macroscopic theory of anamalous diffusion induced by the dissipative trapped-ion instability

    International Nuclear Information System (INIS)

    Wimmel, H.K.

    1975-03-01

    For an axisymmetric toroidal plasma of the TOKAMAK type a new set of dissipative trapped-fluid equations is established. In addition to E vector x B vector drifts and collisions of the trapped particles, these equations take full account of the effect of Esub(//) (of the trapped ion modes) on free and trapped particles, and of the effect of grad delta 0 (delta 0 = equilibrium fraction of trapped particles). From the new equations the linear-mode properties of the dissipative trapped-ion instability and the anomalous diffusion flux of the trapped particles are derived. (orig.) [de

  6. Reactions and Diffusion During Annealing-Induced H(+) Generation in SOI Buried Oxides

    International Nuclear Information System (INIS)

    Devine, R.A.B.; Fleetwood, D.M.; Vanheusden, K; Warren, W.L.

    1999-01-01

    We report experimental results suggesting that mobile protons are generated at strained Si-O-Si bonds near the Si/SiO 2 interface during annealing in forming gas. Our data further suggest that the presence of the top Si layer plays a crucial role in the mobile H + generation process. Finally, we show that the diffusion of the reactive species (presumably H 2 or H 0 ) towards the H + generation sites occurs laterally along the buried oxide layer, and can be impeded significantly due to the presence of trapping sites in the buried oxide

  7. Reconstruction of CMB temperature anisotropies with primordial CMB induced polarization in galaxy clusters

    Science.gov (United States)

    Liu, Guo-Chin; Ichiki, Kiyotomo; Tashiro, Hiroyuki; Sugiyama, Naoshi

    2016-07-01

    Scattering of cosmic microwave background (CMB) radiation in galaxy clusters induces polarization signals determined by the quadrupole anisotropy in the photon distribution at the location of clusters. This `remote quadrupole' derived from the measurements of the induced polarization in galaxy clusters provides an opportunity to reconstruct local CMB temperature anisotropies. In this Letter, we develop an algorithm of the reconstruction through the estimation of the underlying primordial gravitational potential, which is the origin of the CMB temperature and polarization fluctuations and CMB induced polarization in galaxy clusters. We found a nice reconstruction for the quadrupole and octopole components of the CMB temperature anisotropies with the assistance of the CMB induced polarization signals. The reconstruction can be an important consistency test on the puzzles of CMB anomalies, especially for the low-quadrupole and axis-of-evil problems reported in Wilkinson Microwave Anisotropy Probe and Planck data.

  8. Effect of 7-nitroindazole on body temperature and methamphetamine-induced dopamine toxicity.

    Science.gov (United States)

    Callahan, B T; Ricaurte, G A

    1998-08-24

    The present study was undertaken to examine the role of temperature on the ability of 7-nitroindazole (7-NI) to prevent methamphetamine-induced dopamine (DA) neurotoxicity. Male Swiss-Webster mice received methamphetamine alone or in combination with 7-NI at either room temperature (20+/-1 degrees C) or at 28+/-1 degrees C. At 20+/-1 degrees C, 7-NI produced hypothermic effects and afforded total protection against methamphetamine-induced DA depletions in the striatum. At 28+/-1 degrees C, 7-NI produced minimal effects on body temperature and failed to prevent methamphetamine-induced DA reductions. These findings indicate that the neuroprotection afforded by 7-NI is likely related to its ability to produce hypothermia because agents that produce hypothermia and/or prevent hyperthermia are known to attenuate methamphetamine-induced neurotoxicity.

  9. Temperature dependence of rippled corrugations induced on the Rh(1 1 0) surface via ion sputtering

    International Nuclear Information System (INIS)

    Molle, Alessandro; Buatier de Mongeot, F.; Granone, F.; Buzio, R.; Firpo, G.; Boragno, C.; Valbusa, U.

    2005-01-01

    Metal surfaces can be easily nanopatterned via ion sputtering: mounds or ripples can be created depending on the surface symmetry and temperature. However, in many cases these structures are unstable at room temperature and above, due to the adatom fast diffusion. This fact prevents the use of such systems as substrate or nanostamps for a technological implementation. In this paper we present a spot profile analysis low energy electron diffraction (SPA-LEED) study on the nanopatterning of a Rh(1 1 0) single crystal. Like the other (1 1 0) metal surfaces, previously investigated, also Rh(1 1 0) shows for increasing temperatures a transition between different rippled morphologies. The main advantage of this system is its stability at room temperature. From SPA-LEED data we can measure the structural features (average periodicity and local faceting) of the observed rippled structures

  10. Temperature rise induced by some light emitting diode and quartz-tungsten-halogen curing units.

    Science.gov (United States)

    Asmussen, Erik; Peutzfeldt, Anne

    2005-02-01

    Because of the risk of thermal damage to the pulp, the temperature rise induced by light-curing units should not be too high. LED (light emitting diode) curing units have the main part of their irradiation in the blue range and have been reported to generate less heat than QTH (quartz-tungsten-halogen) curing units. This study had two aims: first, to measure the temperature rise induced by ten LED and three QTH curing units; and, second, to relate the measured temperature rise to the power density of the curing units. The light-induced temperature rise was measured by means of a thermocouple embedded in a small cylinder of resin composite. The power density was measured by using a dental radiometer. For LED units, the temperature rise increased with increasing power density, in a statistically significant manner. Two of the three QTH curing units investigated resulted in a higher temperature rise than LED curing units of the same power density. Previous findings, that LED curing units induce less temperature rise than QTH units, does not hold true in general.

  11. Titanite chronology, thermometry, and speedometry of ultrahigh-temperature (UHT) calc-silicates from south Madagascar: U-Pb dates, Zr temperatures, and lengthscales of trace-element diffusion

    Science.gov (United States)

    Holder, R. M.; Hacker, B. R.

    2017-12-01

    Calc-silicate rocks are often overlooked as sources of pressure-temperature-time data in granulite-UHT metamorphic terranes due to the strong dependence of calc-silicate mineral assemblages on complex fluid compositions and a lack of thermodynamic data on common high-temperature calc-silicate minerals such as scapolite. In the Ediacaran-Cambrian UHT rocks of southern Madagascar, clinopyroxene-scapolite-feldspar-quartz-zircon-titanite calc-silicate rocks are wide-spread. U-Pb dates of 540-520 Ma from unaltered portions of titanite correspond to cooling of the rocks through upper-amphibolite facies and indicate UHT metamorphism occurred before 540 Ma. Zr concentrations in these domains preserve growth temperatures of 900-950 °C, consistent with peak temperatures calculated by pseudosection modeling of nearby osumilite-bearing gneisses. Younger U-Pb dates (510-490 Ma) correspond to fluid-mediated Pb loss from titanite grains, which occurred below their diffusive Pb-closure temperature, along fractures. The extent of fluid alteration is seen clearly in back-scattered electron images and Zr-, Al-, Fe-, Ce-, and Nb-concentration maps. Laser-ablation depth profiling of idioblastic titanite grains shows preserved Pb diffusion profiles at grain rims, but there is no evidence for Zr diffusion, indicating that it was effectively immobile even at UHT.

  12. Leakage Current Induced by Energetic Disorder in Organic Bulk Heterojunction Solar Cells: Comprehending the Ultrahigh Loss of Open-Circuit Voltage at Low Temperatures

    Science.gov (United States)

    Yang, Wenchao; Luo, Yongsong; Guo, Pengfei; Sun, Haibin; Yao, Yao

    2017-04-01

    The open-circuit voltage (Voc ) of organic solar cells generally approaches its maximum obtainable values as the temperature decreases. However, recent experiments have revealed that the Voc may suffer from an ultrahigh loss at low temperatures. In order to verify this explanation and investigate the impacts of energetic disorder on the temperature-dependent behaviors of the Voc in general, we calculate the Voc-T plots with the drift-diffusion method under various device working parameters. With the disorder being incorporated into the device model by considering the disorder-suppressed (temperature-dependent) charge-carrier mobilities, it is found that the ultrahigh Voc losses cannot be reproduced under the Onsager-Braun-type charge generation rate. With the charge generation rate being constant or weakly dependent on temperature, for nonselective contacts, the Voc reduces drastically at low temperatures, while for selective contacts, the Voc increases monotonically with decreasing temperature. With higher carrier mobilities or smaller device thicknesses, the ultrahigh loss occurs at lower temperatures. The mechanism is that, since the disorder-suppressed charge mobilities give rise to both low charge-extraction efficiency and small bimolecular recombination rate, plenty of charge carriers can be extracted from the wrong electrode and can form a large leakage current, which counteracts the majority-carrier current and reduces the Voc at low temperatures. Our results thus highlight the essential role of charge-carrier kinetics, except for the charge-filling effect, on dominating the disorder-induced Voc losses.

  13. Temperature Induced Degradation of Nb Ti/Cu Composite Superconductors

    CERN Document Server

    Scheuerlein, C; Senatore, C; Di Michiel, M; Thilly, L; Gerardin, A; Reluner, B; Oberli, L; Willering, G; Bottura, L

    2009-01-01

    The degradation mechanisms of state-of-the-art Nb-Ti/Cu superconductors are described, based on in-situ synchrotron X-ray diffraction measurements during heat treatment. A quantitative description of the Nb-Ti/Cu degradation in terms of critical current density, Cu stabiliser resistivity and mechanical composite strength is presented. In an applied magnetic field a significant critical current degradation is already observed after a 5-minute 400 °C heat treatment, due to variations of a-Ti precipitate size and distribution within the Nb-Ti alloy filaments. A strong degradation of the strand mechanical properties is observed after several minutes heating above 550 °C, which is also the temperature at which the formation of Cu Ti intermetallic phases is detected. Several minutes heating at 250 °C are sufficient to increase the RRR of the strongly cold work strands inside a Rutherford type cable from about 80 to about 240. Heating for several minutes at 400 °C does not cause a significant conductor degradati...

  14. Fluctuation induced critical behavior at nonzero temperature and chemical potential

    International Nuclear Information System (INIS)

    Splittorff, K.; Lenaghan, J.T.; Wirstam, J.

    2003-01-01

    We discuss phase transitions in relativistic systems as a function of both the chemical potential and temperature. The presence of a chemical potential explicitly breaks Lorentz invariance and may additionally break other internal symmetries. This introduces new subtleties in the determination of the critical properties. We discuss separately three characteristic effects of a nonzero chemical potential. First, we consider only the explicit breaking of Lorentz invariance using a scalar field theory with a global U(1) symmetry. Second, we study the explicit breaking of an internal symmetry in addition to Lorentz invariance using two-color QCD at nonzero baryonic chemical potential. Finally, we consider the spontaneous breaking of a symmetry using three-color QCD at nonzero baryonic and isospin chemical potential. For each case, we derive the appropriate three-dimensional effective theory at criticality and study the effect of the chemical potential on the fixed point structure of the β functions. We find that the order of the phase transition is not affected by the explicit breaking of Lorentz invariance but is sensitive to the breaking of additional symmetries by the chemical potential

  15. High-temperature laser induced spectroscopy in nuclear steam generators

    International Nuclear Information System (INIS)

    Allmon, W.E.; Berthold, J.W.

    1990-01-01

    This patent describes an apparatus for conducting optical spectroscopy in a hostile environment. It comprises: a source of high intensity light; an optical fiber connected to the source of high intensity light for transmitting light therefrom. The optical fiber having an end for discharging light onto a material to be spectroscopically analyzed; a sheath defining a space around at least a part of the optical fiber carrying the end of the optical fiber for shielding the optical fiber from the hostile environment; a window in the sheath for closing the space and for passing light transmitted through the end of the optical fiber out of the sheath; light detector means for detecting and spectroscopically analyzing emitted light from the material; an optical fiber means for transmitting the emitted light from the material to the light detector means; a standardization module for containing a sample having a known composition and being exposed to known temperature and pressure conditions; an additional optical fiber connected to the module for transmitting light to the sample in the module; multiplexer means; and additional optical fiber means for returning light from the module to the detector through the multiplexer means

  16. A coupled model between mechanical deformation and chemical diffusion: An explanation for the preservation of chemical zonation in plagioclase at high temperatures

    Science.gov (United States)

    Zhong, Xin; Vrijmoed, Johannes; Moulas, Evangelos; Tajcmanová, Lucie

    2016-04-01

    Compositional zoning in metamorphic minerals have been generally recognized as an important geological feature to decipher the metamorphic history of rocks. The observed chemical zoning of, e.g. garnet, is commonly interpreted as disequilibrium between the fractionated inner core and the surrounding matrix. However, chemically zoned minerals were also observed in high grade rocks (T>800 degree C) where the duration of metamorphic processes was independently dated to take several Ma. This implies that temperature may not be the only factor that controls diffusion timescales, and grain scale pressure variation was proposed to be a complementary factor that may significantly contribute to the formation and preservation of chemical zoning in high temperature metamorphic minerals [Tajcmanová 2013, 2015]. Here, a coupled model is developed to simulate viscous deformation and chemical diffusion. The numerical approach considers the conservation of mass, momentum, and a constitutive relation developed from equilibrium thermodynamics. A compressible viscoelastic rheology is applied, which associates the volumetric change triggered by deformation and diffusion to a change of pressure. The numerical model is applied to the chemically zoned plagioclase rim described by [Tajcmanová 2014]. The diffusion process operating during the plagioclase rim formation can lead to a development of a pressure gradient. Such a pressure gradient, if maintained during ongoing viscous relaxation, can lead to the preservation of the observed chemical zonation in minerals. An important dimensionless number, the Deborah number, is defined as the ratio between the Maxwell viscoelastic relaxation time and the characteristic diffusion time. It characterizes the relative influence between the maintenance of grain scale pressure variation and chemical diffusion. Two extreme regimes are shown: the mechanically-controlled regime (high Deborah number) and diffusion-controlled regime (low Deborah number

  17. Joining of superalloy Inconel 600 by diffusion induced isothermal solidification of a liquated insert metal

    International Nuclear Information System (INIS)

    Egbewande, A.T.; Chukwukaeme, C.; Ojo, O.A.

    2008-01-01

    The effect of process variables on the microstructure of transient liquid phase bonded IN 600 using a commercial filler alloy was studied. Microstructural examination of bonded specimens showed that isothermal solidification of the liquated insert occurred during holding at the joining temperatures. In cases where the holding time was insufficient for complete isothermal solidification, the residual liquid transformed on cooling into a centerline eutectic product. The width of the eutectic decreased with increased holding time and an increase in initial gap width resulted in thicker eutectic width in specimens bonded at the same temperature and for equivalent holding times. In addition to the centerline eutectic microconstituent, precipitation of boron-rich particles was observed within the base metal region adjacent to the substrate-joint interface. Formation of these particles appeared to have influenced the rate of solidification of the liquated interlayer during bonding. In contrast to the conventional expectation of an increase in the rate of isothermal solidification with an increase in temperature, a decrease in the rate was observed with an increase in temperatures above 1160 deg. C. This could be related to a decrease in solubility of boron in nickel above the Ni-B eutectic temperature

  18. Diffusion tensor imaging and 1H-MRS study on radiation-induced brain injury after nasopharyngeal carcinoma radiotherapy.

    Science.gov (United States)

    Wang, H-Z; Qiu, S-J; Lv, X-F; Wang, Y-Y; Liang, Y; Xiong, W-F; Ouyang, Z-B

    2012-04-01

    To investigate the metabolic characteristics of the temporal lobes following radiation therapy for nasopharyngeal carcinoma using diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy ((1)H-MRS). DTI and (1)H-MRS were performed in 48 patients after radiotherapy for nasopharyngeal carcinoma and in 24 healthy, age-matched controls. All patients and controls had normal findings on conventional MRI. Apparent diffusion coefficient (ADC), fractional anisotropy (FA), three eigenvalues λ1, λ2, λ3, N-acetylaspartic acid (NAA)/choline (Cho), NAA/creatinine (Cr), and Cho/Cr were measured in both temporal lobes. Patients were divided into three groups according to time after completion of radiotherapy: group 1, less than 6 months; group 2, 6-12 months; group 3, more than 12 months. Mean values for each parameter were compared using one-way analysis of variance (ANOVA). Mean FA in group 1 was significantly lower compared to group 3 and the control group (p < 0.05). Group-wise comparisons of apparent diffusion coefficient (ADC) values among all the groups were not significantly different. Eigenvalue λ1 was significantly lower in groups 1 and 3 compared to the control group (p < 0.05). NAA/Cho and NAA/Cr were significantly lower in each group compared to the control group (p < 0.01 for both). The decrease in NAA/Cho was greatest in group 1. There were no significant between-group differences regarding Cho/Cr. A combination of DTI and (1)H-MRS can be used to detect radiation-induced brain injury, in patients treated for nasopharyngeal carcinoma. Copyright © 2011 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  19. Seismically-induced soil amplification at the DOE Paducah Gaseous Diffusion Plant site

    International Nuclear Information System (INIS)

    Sykora, D.W.; Haynes, M.E.

    1991-01-01

    A site-specific earthquake site response (soil amplification) study is being conducted for the Department of Energy (DOE), Paducah Gaseous Diffusion Plant (PGDP). This study is pursuant to an upgraded Final Safety Analysis Report in accordance with requirements specified by DOE. The seismic hazard at PGDP is dominated by the New Madrid Seismic Zone. Site-specific synthetic earthquake records developed by others were applied independently to four soil columns with heights above baserock of about 325 ft. The results for the 1000-year earthquake event indicate that the site period is between 1.0 and 1.5 sec. Incident shear waves are amplified at periods of motion greater than 0.15 sec. The peak free-field horizontal acceleration, occurring at very low periods, is 0.28 g. 13 refs., 13 figs

  20. Seismically-induced soil amplification at the DOE Paducah Gaseous Diffusion Plant Site

    International Nuclear Information System (INIS)

    Sykora, D.W.; Hynes, M.E.; Brock, W.R.; Hunt, R.J.; Shaffer, K.E.

    1991-01-01

    A site-specific earthquake site response (soil amplification) study is being conducted for the Department of Energy (DOE), Paducah Gaseous Diffusion Plant (PGDP). This study is pursuant to an upgraded Final Safety Analysis Report in accordance with requirements specified by DOE. The seismic hazard at PGDP is dominated by the New Madrid Seismic Zone. Site-specific synthetic earthquake records developed by others were applied independently to four soil columns with heights above baserock of about 325 ft. The results for the 1000-year earthquake event indicate that the site period is between 1.0 and 1.5 sec. Incident shear waves are strongly amplified at periods of motion greater than 0.3 sec. The peak free-field horizontal acceleration, occurring at very low periods, is 0.28 g

  1. Functional brain imaging to investigate the higher brain dysfunction induced by diffuse brain injury

    International Nuclear Information System (INIS)

    Nariai, Tadashi; Inaji, Motoki; Ohno, Kikuo; Hiura, Mikio; Ishii, Kenji; Hosoda, Chihiro

    2011-01-01

    Higher brain dysfunction is the major problem of patients who recover from neurotrauma the prevents them from returning to their previous social life. Many such patients do not have focal brain damage detected with morphological imaging. We focused on studying the focal brain dysfunction that can be detected only with functional imaging with positron emission tomography (PET) in relation to the score of various cognition batteries. Patients who complain of higher brain dysfunction without apparent morphological cortical damage were recruited for this study. Thirteen patients with diffuse axonal injury (DAI) or cerebral concussion was included. They underwent a PET study to image glucose metabolism by 18 F-fluorodeoxyglucose (FDG), and central benodiazepine receptor (cBZD-R) (marker of neuronal body) by 11 C-flumazenil, together with cognition measurement by WAIS-R, WMS-R, and WCST etc. PET data were compared with age matched normal controls using statistical parametric mapping (SPM)2. DAI patients had a significant decrease in glucose matabolism and cBZD-R distribution in the cingulated cortex than normal controls. Patients diagnosed with concussion because of shorter consciousness disturbance also had abnormal FDG uptake and cBZD-R distribution. Cognition test scores were variable among patients. Degree of decreased glucose metabolism and cBZD-R distribution in the dominant hemishphere corresponded well to the severity of cognitive disturbance. PET molecular imaging was useful to depict focal cortical dysfunction of neurotrauma patients even when morphological change was not apparent. This method may be promising to clarify the pathophysiology of higher brain dysfunction of patients with diffuse axonal injury or chronic traumatic encephalopathy. (author)

  2. Deafferentation-Induced Plasticity of Visual Callosal Connections: Predicting Critical Periods and Analyzing Cortical Abnormalities Using Diffusion Tensor Imaging

    Directory of Open Access Journals (Sweden)

    Jaime F. Olavarria

    2012-01-01

    Full Text Available Callosal connections form elaborate patterns that bear close association with striate and extrastriate visual areas. Although it is known that retinal input is required for normal callosal development, there is little information regarding the period during which the retina is critically needed and whether this period correlates with the same developmental stage across species. Here we review the timing of this critical period, identified in rodents and ferrets by the effects that timed enucleations have on mature callosal connections, and compare it to other developmental milestones in these species. Subsequently, we compare these events to diffusion tensor imaging (DTI measurements of water diffusion anisotropy within developing cerebral cortex. We observed that the relationship between the timing of the critical period and the DTI-characterized developmental trajectory is strikingly similar in rodents and ferrets, which opens the possibility of using cortical DTI trajectories for predicting the critical period in species, such as humans, in which this period likely occurs prenatally. Last, we discuss the potential of utilizing DTI to distinguish normal from abnormal cerebral cortical development, both within the context of aberrant connectivity induced by early retinal deafferentation, and more generally as a potential tool for detecting abnormalities associated with neurodevelopmental disorders.

  3. Quasi-two-layer morphodynamic model for bedload-dominated problems: bed slope-induced morphological diffusion.

    Science.gov (United States)

    Maldonado, Sergio; Borthwick, Alistair G L

    2018-02-01

    We derive a two-layer depth-averaged model of sediment transport and morphological evolution for application to bedload-dominated problems. The near-bed transport region is represented by the lower (bedload) layer which has an arbitrarily constant, vanishing thickness (of approx. 10 times the sediment particle diameter), and whose average sediment concentration is free to vary. Sediment is allowed to enter the upper layer, and hence the total load may also be simulated, provided that concentrations of suspended sediment remain low. The model conforms with established theories of bedload, and is validated satisfactorily against empirical expressions for sediment transport rates and the morphodynamic experiment of a migrating mining pit by Lee et al. (1993 J. Hydraul. Eng. 119 , 64-80 (doi:10.1061/(ASCE)0733-9429(1993)119:1(64))). Investigation into the effect of a local bed gradient on bedload leads to derivation of an analytical, physically meaningful expression for morphological diffusion induced by a non-zero local bed slope. Incorporation of the proposed morphological diffusion into a conventional morphodynamic model (defined as a coupling between the shallow water equations, Exner equation and an empirical formula for bedload) improves model predictions when applied to the evolution of a mining pit, without the need either to resort to special numerical treatment of the equations or to use additional tuning parameters.

  4. Quasi-two-layer morphodynamic model for bedload-dominated problems: bed slope-induced morphological diffusion

    Science.gov (United States)

    Maldonado, Sergio; Borthwick, Alistair G. L.

    2018-02-01

    We derive a two-layer depth-averaged model of sediment transport and morphological evolution for application to bedload-dominated problems. The near-bed transport region is represented by the lower (bedload) layer which has an arbitrarily constant, vanishing thickness (of approx. 10 times the sediment particle diameter), and whose average sediment concentration is free to vary. Sediment is allowed to enter the upper layer, and hence the total load may also be simulated, provided that concentrations of suspended sediment remain low. The model conforms with established theories of bedload, and is validated satisfactorily against empirical expressions for sediment transport rates and the morphodynamic experiment of a migrating mining pit by Lee et al. (1993 J. Hydraul. Eng. 119, 64-80 (doi:10.1061/(ASCE)0733-9429(1993)119:1(64))). Investigation into the effect of a local bed gradient on bedload leads to derivation of an analytical, physically meaningful expression for morphological diffusion induced by a non-zero local bed slope. Incorporation of the proposed morphological diffusion into a conventional morphodynamic model (defined as a coupling between the shallow water equations, Exner equation and an empirical formula for bedload) improves model predictions when applied to the evolution of a mining pit, without the need either to resort to special numerical treatment of the equations or to use additional tuning parameters.

  5. A possibility of local measurements of ion temperature in a high-temperature plasma by laser induced ionization

    International Nuclear Information System (INIS)

    Kantor, M

    2012-01-01

    A new diagnostic for local measurements of ion temperature and drift velocity in fusion plasmas is proposed in the paper. The diagnostic is based on laser induced ionization of excited hydrogen and deuterium atoms from the levels which ionization energy less than the laser photon energy. A high intensive laser beam ionizes nearly all the excited atoms in the beam region resulting in a quench of spontaneous line emission of the appropriate optical transitions. The measurements of the quenching emission have been used in the past for local measurements of hydrogen atom density in tokamak plasma. The idea of the new diagnostic is spectral resolution of the quenching emission. The measured spectrum relates directly to the velocity distribution of the excited atoms. This distribution is strongly coupled to the distribution of the hydrogen atoms at the ground state. So, the spectral resolution of quenching emission is a way of local measurements of the temperature and drift velocity of hydrogen atoms in plasma. The temperature of hydrogen atoms is well coupled to the local ion temperature as long as the mean free path of the atoms is shorter than the ion gradient length in plasma. In this case the new diagnostic can provide local measurements of ion temperature in plasma. The paper considers technical capabilities of the diagnostic, physical restrictions of its application and interpretation of the measurements.

  6. The induced dimension reduction method applied to convection-diffusion-reaction problems

    NARCIS (Netherlands)

    Astudillo Rengifo, R.A.; van Gijzen, M.B.

    2016-01-01

    Discretization of (linearized) convection-diusion-reaction problems yields
    a large and sparse non symmetric linear system of equations,
    Ax = b: (1)
    In this work, we compare the computational behavior of the Induced Dimension
    Reduction method (IDR(s)) [10], with other

  7. ATP-induced temperature independence of hemoglobin-O2 affinity in heterothermic billfish

    DEFF Research Database (Denmark)

    Weber, Roy E.; Campbell, Kevin L.; Fago, Angela

    2010-01-01

    heterotherms, where it may hamper unloading (e.g. in cold extremities of arctic mammals) or increase the diffusive arterio-venous short-circuiting of O2 (e.g. in counter-current heat exchangers of warm swimming muscles of tuna). We hypothesized analogous blood specializations in heterothermic billfish, whose......The inverse relationship between temperature and hemoglobin-O2 affinity resulting from the exothermic nature of heme oxygenation favors O2 unloading from blood to warm, metabolically active tissues. However, this temperature sensitivity is maladaptive, and commonly countered in regional...... to allosterically modulating hemoglobin-O2 affinity, ATP diminishes its temperature sensitivity, reducing deleterious arterio-venous short-circuiting of oxygen in the cranial billfish heat exchangers. The mechanism underlying this reduction in oxygenation enthalpy differs fundamentally from that in tuna, supporting...

  8. Impact of the structural anisotropy of La{sub 2}NiO{sub 4+δ} on on high temperature surface modifications and diffusion of oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Gauquelin, Nicolas

    2010-11-29

    La{sub 2}NiO{sub 4+δ} was first studied due to its structural similarities with the High Temperature superconductor La{sub 2}NiO{sub 4+δ} and more recently due to its promise as a cathode material in Solid Oxide Fuel Cells as well as an oxygen exchange membrane. It crystallizes in the K{sub 2}NiF{sub 4} layered structure and accommodates highly mobile oxygen at its ground state and is therefore overstoichiometric. During this thesis, pure single crystals of La{sub 2}NiO{sub 4+δ} were successfully grown using the floating-zone method, subsequently characterized using neutron and Laue Backscattering diffraction and oriented pieces of single crystal with [100] and [001] orientation were prepared. The surface morphology behavior after long term exposure to high temperature in different atmospheres was observed using microscopy techniques because stability at high temperature is required for application purposes and it was discovered a structural change to nickel-rich phases at T>1173 K. The sensibility of the oxygen non-stoichiometry to cooling was studied and subsequently a new {sup 18}O-{sup 18}O exchange apparatus allowing quenching of the samples using liquid nitrogen was developed. Oxygen selfdiffusion was studied using SIMS in the range 673-873K in both [100] and [001] crystallographic directions. The effect of the disorientation of the sample surface on the determination of the slowest diffusion coefficient was discovered and revealed the very strong anisotropy (>5 orders of magnitude difference) between the different diffusion paths. Finally using HTXRD and oxygen release experiments, it was shown that oxygen diffusion from interstitial oxygen starts to be relevant at 550-600 K and a change of behavior is observed around 700 K, corresponding to a possible change in the diffusion mechanism from interstitial to interstitialcy.

  9. Impact of the structural anisotropy of La2NiO4+δ on on high temperature surface modifications and diffusion of oxygen

    International Nuclear Information System (INIS)

    Gauquelin, Nicolas

    2010-01-01

    La 2 NiO 4+δ was first studied due to its structural similarities with the High Temperature superconductor La 2 NiO 4+δ and more recently due to its promise as a cathode material in Solid Oxide Fuel Cells as well as an oxygen exchange membrane. It crystallizes in the K 2 NiF 4 layered structure and accommodates highly mobile oxygen at its ground state and is therefore overstoichiometric. During this thesis, pure single crystals of La 2 NiO 4+δ were successfully grown using the floating-zone method, subsequently characterized using neutron and Laue Backscattering diffraction and oriented pieces of single crystal with [100] and [001] orientation were prepared. The surface morphology behavior after long term exposure to high temperature in different atmospheres was observed using microscopy techniques because stability at high temperature is required for application purposes and it was discovered a structural change to nickel-rich phases at T>1173 K. The sensibility of the oxygen non-stoichiometry to cooling was studied and subsequently a new 18 O- 18 O exchange apparatus allowing quenching of the samples using liquid nitrogen was developed. Oxygen selfdiffusion was studied using SIMS in the range 673-873K in both [100] and [001] crystallographic directions. The effect of the disorientation of the sample surface on the determination of the slowest diffusion coefficient was discovered and revealed the very strong anisotropy (>5 orders of magnitude difference) between the different diffusion paths. Finally using HTXRD and oxygen release experiments, it was shown that oxygen diffusion from interstitial oxygen starts to be relevant at 550-600 K and a change of behavior is observed around 700 K, corresponding to a possible change in the diffusion mechanism from interstitial to interstitialcy.

  10. Sequential MR imaging (with diffusion-weighted imaging changes in metronidazole-induced encephalopathy

    Directory of Open Access Journals (Sweden)

    Rupinder Singh

    2017-01-01

    Full Text Available Metronidazole-induced neuro-toxicity, though rare, is known. A characteristic spatial distribution of lesions in cerebellar dentate nuclei and dorsal pons is known. However, temporal progression of lesions on magnetic resonance imaging (MRI has not been described previously. We describe two such cases which presented initially with splenial hyperintesity and showed progression to characterstic lesions. Both cases improved with stoppage of metronidazole.

  11. Diffusion tensor and volumetric magnetic resonance imaging using an MR-compatible hand-induced robotic device suggests training-induced neuroplasticity in patients with chronic stroke.

    Science.gov (United States)

    Lazaridou, Asimina; Astrakas, Loukas; Mintzopoulos, Dionyssios; Khanicheh, Azadeh; Singhal, Aneesh B; Moskowitz, Michael A; Rosen, Bruce; Tzika, Aria A

    2013-11-01

    Stroke is the third leading cause of mortality and a frequent cause of long-term adult impairment. Improved strategies to enhance motor function in individuals with chronic disability from stroke are thus required. Post‑stroke therapy may improve rehabilitation and reduce long-term disability; however, objective methods for evaluating the specific impact of rehabilitation are rare. Brain imaging studies on patients with chronic stroke have shown evidence for reorganization of areas showing functional plasticity after a stroke. In this study, we hypothesized that brain mapping using a novel magnetic resonance (MR)-compatible hand device in conjunction with state‑of‑the‑art magnetic resonance imaging (MRI) can serve as a novel biomarker for brain plasticity induced by rehabilitative motor training in patients with chronic stroke. This hypothesis is based on the premises that robotic devices, by stimulating brain plasticity, can assist in restoring movement compromised by stroke-induced pathological changes in the brain and that these changes can then be monitored by advanced MRI. We serially examined 15 healthy controls and 4 patients with chronic stroke. We employed a combination of diffusion tensor imaging (DTI) and volumetric MRI using a 3-tesla (3T) MRI system using a 12-channel Siemens Tim coil and a novel MR-compatible hand‑induced robotic device. DTI data revealed that the number of fibers and the average tract length significantly increased after 8 weeks of hand training by 110% and 64%, respectively (probotics in the molecular medicine era.

  12. Nuclear relaxation induced by diffusion in confined media; the case of inverted micelles

    International Nuclear Information System (INIS)

    Llor, Antoine

    1983-01-01

    This work emphasizes the specificities of molecular motions in restricted media observed by NMR. The observation of proton nuclear relaxation of small water pools in AOT reversed micelles has led to separation of dipolar contributions using substitution by deuterium. The water-water contributions to relaxation are easily explained by well-known models and show that water rotational movements are, at most, five times slower than in pure water. The other contributions display a strong frequency dependence with spectrometer frequency and, in order to explain them, a specific dipolar relaxation model was developed between two particles whose movements are restricted to the surface of a sphere and in a concentric sphere respectively. This model was generalized to all cases of diffusion movements of particles in a spherical symmetry environment. In the case of AOT micelles, this model can not explain the experimental results. An elementary discussion taking into account the polar heads specificities and their interactions with water lead to a qualitative interpretation of the experimental data. (author) [fr

  13. Behavior of specific heat and self diffusion coefficient of sodium near transition temperature: a molecular dynamics study

    International Nuclear Information System (INIS)

    Ahmed, N.; Khan, G.

    1990-09-01

    In this report the author used of a very useful technique of simulation and applied it to successfully for determining the various properties of sodium, both in liquid and solid phase near transition point. As a first step the determination of specific heat and diffusion coefficient have been carried out. In liquid state the molecular dynamics (MD) values calculated matched the experimental data. But in solid state the diffusion coefficient obtained were not consistent with the one expected for a solid, rather the values obtained suggested that sodium remained in liquid state even below the melting point. (A.B.)

  14. Assessment of oxygen diffusion coefficients by studying high-temperature oxidation behaviour of Zr1Nb fuel cladding in the temperature range of 1100–1300 °C

    Energy Technology Data Exchange (ETDEWEB)

    Négyesi, M., E-mail: negy@seznam.cz [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic); Chmela, T. [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic); Veselský, T. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); Krejčí, J. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); CHEMCOMEX Praha a.s., Elišky Přemyslovny 379, 156 10 Praha – Zbraslav (Czech Republic); Novotný, L.; Přibyl, A. [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic); Bláhová, O. [New Technologies Research Centre, University of West Bohemia, Univerzitní 8, 306 14 Plzeň (Czech Republic); Burda, J. [NRI Rez plc, Husinec-Řež 130, 250 68 Řež (Czech Republic); Siegl, J. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); Vrtílková, V. [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic)

    2015-01-15

    The paper deals with high-temperature steam oxidation behaviour of Zr1Nb fuel cladding. First of all, comprehensive experimental program was conducted to provide sufficient experimental data, such as the thicknesses of evolved phase layers and the overall weight gain kinetics, as well as the oxygen concentration and nanohardness values at phase boundaries. Afterwards, oxygen diffusion coefficients in the oxide, in the α-Zr(O) layer, in the double-phase (α + β)-Zr region, and in the β-phase region have been estimated based on the experimental data employing analytical solution of the multiphase moving boundary problem, assuming the equilibrium conditions being fulfilled at the interface boundaries. Eventually, the determined oxygen diffusion coefficients served as input into the in-house numerical code, which was designed to predict the high-temperature oxidation behaviour of Zr1Nb fuel cladding. Very good agreement has been achieved between the numerical calculations and the experimental data.

  15. Transmission electron microscopy study for investigating high-temperature reliability of Ti10W90-based and Ta-based diffusion barriers up to 600 C

    International Nuclear Information System (INIS)

    Budhiman, Nando; Schuermann, Ulrich; Kienle, Lorenz; Jensen, Bjoern; Chemnitz, Steffen; Wagner, Bernhard

    2016-01-01

    Abstractauthoren Transmission electron microscopy (TEM) analysis, including energy dispersive X-ray (EDX) (elemental mapping, line, and point measurements) and energy filtered TEM (EFTEM) methods, is applied to investigate the high temperature reliability, especially material diffusion, of two types of diffusion barriers: titanium-tungsten-based (Ti 10 W 90 -based) and tantalum-based (Ta-based), with nickel (Ni) layer on top. Both barriers were deposited as a form of stacked layers on sili-con (Si) wafers using the physical vapor deposition (PVD) technique. TEM analysis is performed on both barriers before and after annealing (at 600 C for 24 h inside a vacuum chamber). No diffusion of material into the Si substrate as observed. Additionally, only diffusion between the Ni and adjoining Ti 10 W 90 layers, and between Ni and adjoining Ta layers in the Ti 10 W 90 -based and Ta-based barriers, respectively, are observed due to annealing. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. A special cell morphology of saccharomyces cerevisiae induced by low-temperature plasma

    International Nuclear Information System (INIS)

    Ling Dajun; Cao Jinxiang

    2003-01-01

    A special cell morphology, cavity-like cells, was found in posterities of Saccharomyces cerevisiae treated by low-temperature air plasma with different powers. The feature of the special morphology indicates that the cavity-like cells may be formed by cellular mutation effect induced by the plasma, instead of direct cellular damage by the plasma. The results suggest that the cellular mutation effect of the low-temperature plasma is a complex process

  17. Shock-induced spall in copper: the effects of anisotropy, temperature, loading pulse and defect

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shengnian [Los Alamos National Laboratory; Germann, Timothy C [Los Alamos National Laboratory; An, Qi [Los Alamos National Laboratory; Han, Li - Bo [USTC

    2009-07-28

    Shock-induced spall in Cu is investigated with molecular dynamics simulations. We examine spallation in initially perfect crystals and defective solids with grain boundaries (columnar bicrystals), stacking faults or vacancies, as well as the effect of temperature and loading pulses. Spall in single crystal Cu is anisotropic, and defects and high temperature may reduce the spall strength. Taylor-wave (triangular shock-release wave) loading is explored in comparison with square wave shock loading.

  18. Involvement of prostaglandins and histamine in radiation-induced temperature responses in rats

    International Nuclear Information System (INIS)

    Kandasamy, S.B.; Hunt, W.A.

    1990-01-01

    Exposure of rats to 1-15 Gy of gamma radiation induced hyperthermia, whereas exposure to 20-150 Gy produced hypothermia. Since radiation exposure induced the release of prostaglandins (PGs) and histamine, the role of PGs and histamine in radiation-induced temperature changes was examined. Radiation-induced hyper- and hypothermia were antagonized by pretreatment with indomethacin, a cyclooxygenase inhibitor. Intracerebroventricular administration of PGE2 and PGD2 induced hyper- and hypothermia, respectively. Administration of SC-19220, a specific PGE2 antagonist, attenuated PGE2- and radiation-induced hyperthermia, but it did not antagonize PGD2- or radiation-induced hypothermia. Consistent with an apparent role of histamine in hypothermia, administration of disodium cromoglycate (a mast cell stabilizer), mepyramine (H1-receptor antagonist), or cimetidine (H2-receptor antagonist) attenuated PGD2- and radiation-induced hypothermia. These results suggest that radiation-induced hyperthermia is mediated via PGE2 and that radiation-induced hypothermia is mediated by another PG, possibly PGD2, via histamine

  19. CdS quantum dots in a novel glass with a very low activation energy and its variation of diffusivity with temperature

    Science.gov (United States)

    Nagpal, Swati

    2011-07-01

    CdS quantum dots of different average sizes in the range 2 to 3.8 nm were grown by diffusion-limited growth process in indigenously made silicate glass. The absorption spectra showed a strong quantum confinement effect with a blue shift of the order of 500 meV depending on the average size. Critical radius of quantum dots was found to be 1.8 nm. The size dispersion decreased from 15.2 to 12.5% with a 20% increase in the particle size. The activation energy for diffusion was found to be very low i.e. 193 kJ mol-1 and the diffusion coefficient increased by 60% for 10 K rise in temperature. The PL emission spectra showed the presence of only deep traps around 600 nm with a red shift of 200 nm. No shallow traps or band edge emission was observed. The PL peak position changed from 560 to 640 nm with a 35 K increase in annealing temperature.

  20. Fluctuations in Brain Temperature Induced by Lypopolysaccharides: Central and Peripheral Contributions

    Directory of Open Access Journals (Sweden)

    Jeremy S. Tang

    2010-01-01

    Full Text Available In this study, we examined changes in central (anterior-preoptic hypothalamus and peripheral (temporal muscle and facial skin temperatures in freely moving rats following intravenous administration of bacterial lipopolysaccharides (LPS at low doses (1 and 10 μg/kg at thermoneutral conditions (28˚C. Recordings were made with high temporal resolution (5-s bin and the effects of LPS were compared with those induced by a tail-pinch, a standard arousing somato-sensory stimulus. At each dose, LPS moderately elevated brain, muscle and skin temperatures. In contrast to rapid, monophasic and relatively short hyperthermic responses induced by a tail-pinch, LPS-induced increases in brain and muscle temperatures occurred with ~40 min onset latencies, showed three not clearly defined phases, were slightly larger with the 10 μm/kg dose and maintained for the entire 4-hour post-injection recording duration. Based on dynamics of brain-muscle and skin-muscle temperature differentials, it appears that the hyperthermic response induced by LPS at the lowest dose originates from enhanced peripheral heat production, with no evidence of brain metabolic activation and skin vasoconstriction. While peripheral heat production also appears to determine the first phase of brain and body temperature elevation with LPS at 10 μg/kg, a further prolonged increase in brain-muscle differentials (onset at ~100 min suggests metabolic brain activation as a factor contributing to brain and body hyperthermia. At this dose, skin temperature increase was weaker than in temporal muscle, suggesting vasoconstriction as another contributor to brain/ body hyperthermia. Therefore, although both LPS at low doses and salient sensory stimuli moderately increase brain and body temperatures, these hyperthermic responses have important qualitative differences, reflecting unique underlying mechanisms.

  1. Fluctuations in brain temperature induced by lipopolysaccharides: central and peripheral contributions.

    Science.gov (United States)

    Tang, Jeremy S; Kiyatkin, Eugene A

    2010-01-01

    In this study, we examined changes in central (anterior-preoptic hypothalamus) and peripheral (temporal muscle and facial skin) temperatures in freely moving rats following intravenous administration of bacterial lipopolysaccharides (LPS) at low doses (1 and 10 μg/kg) at thermoneutral conditions (28°C). Recordings were made with high temporal resolution (5-s bin) and the effects of LPS were compared with those induced by a tail-pinch, a standard arousing somato-sensory stimulus. At each dose, LPS moderately elevated brain, muscle, and skin temperatures. In contrast to rapid, monophasic and relatively short hyperthermic responses induced by a tail-pinch, LPS-induced increases in brain and muscle temperatures occurred with ~40 min onset latencies, showed three not clearly defined phases, were slightly larger with the 10 μm/kg dose, and maintained for the entire 4-hour post-injection recording duration. Based on dynamics of brain-muscle and skin-muscle temperature differentials, it appears that the hyperthermic response induced by LPS at the lowest dose originates from enhanced peripheral heat production, with no evidence of brain metabolic activation and skin vasoconstriction. While peripheral heat production also appears to determine the first phase of brain and body temperature elevation with LPS at 10 μg/kg, a further prolonged increase in brain-muscle differentials (onset at ~100 min) suggests metabolic brain activation as a factor contributing to brain and body hyperthermia. At this dose, skin temperature increase was weaker than in temporal muscle, suggesting vasoconstriction as another contributor to brain/body hyperthermia. Therefore, although both LPS at low doses and salient sensory stimuli moderately increase brain and body temperatures, these hyperthermic responses have important qualitative differences, reflecting unique underlying mechanisms.

  2. Polyploidization mechanisms: temperature environment can induce diploid gamete formation in Rosa sp.

    Science.gov (United States)

    Pécrix, Yann; Rallo, Géraldine; Folzer, Hélène; Cigna, Mireille; Gudin, Serge; Le Bris, Manuel

    2011-06-01

    Polyploidy is an important evolutionary phenomenon but the mechanisms by which polyploidy arises still remain underexplored. There may be an environmental component to polyploidization. This study aimed to clarify how temperature may promote diploid gamete formation considered an essential element for sexual polyploidization. First of all, a detailed cytological analysis of microsporogenesis and microgametogenesis was performed to target precisely the key developmental stages which are the most sensitive to temperature. Then, heat-induced modifications in sporad and pollen characteristics were analysed through an exposition of high temperature gradient. Rosa plants are sensitive to high temperatures with a developmental sensitivity window limited to meiosis. Moreover, the range of efficient temperatures is actually narrow. 36 °C at early meiosis led to a decrease in pollen viability, pollen ectexine defects but especially the appearance of numerous diploid pollen grains. They resulted from dyads or triads mainly formed following heat-induced spindle misorientations in telophase II. A high temperature environment has the potential to increase gamete ploidy level. The high frequencies of diplogametes obtained at some extreme temperatures support the hypothesis that polyploidization events could have occurred in adverse conditions and suggest polyploidization facilitating in a global change context.

  3. Modelling the temperature induced degradation kinetics of the short circuit current in organic bulk heterojunction solar cells

    NARCIS (Netherlands)

    Conings, B.S.T.; Bertho, S.; Vandewal, K.; Senes, A.; D'Haen, J.; Manca, J.V.; Janssen, R.A.J.

    2010-01-01

    In organic bulk heterojunction solar cells, the nanoscale morphology of interpenetrating donor-acceptor materials and the resulting photovoltaic parameters alter as a consequence of prolonged operation at temperatures above the glass transition temperature. Thermal annealing induces clustering of

  4. Radiation-induced conductivity and high-temperature Q changes in quartz resonators

    International Nuclear Information System (INIS)

    Koehler, D.R.

    1981-01-01

    While high temperature electrolysis has proven beneficial as a technique to remove interstitial impurities from quartz, reliable indices to measure the efficacy of such a processing step are still under development. The present work is directed toward providing such an index. Two techniques have been investigated - one involves measurement of the radiation induced conductivity in quartz along the optic axis, and the second involves measurement of high temperature Q changes. Both effects originate when impurity charge compensators are released from their traps, in the first case resulting in ionic conduction and in the second case resulting in increased acoustic losses. Radiation induced conductivity measurements have been carried out with a 200 kV, 14 mA x-ray machine producing 5 rads/s. With electric fields of the order of 10 4 V/cm, the noise level in the current measuring system is equivalent to an ionic current generated by quartz impurities in the 1 ppB range. The accuracy of the high temperature ( 300 to 800 0 K) Q -1 measurement technique will be determined. A number of resonators constructed of quartz material of different impurity contents have been tested and both the radiation induced conductivity and the high temperature Q -1 results compared with earlier radiation induced frequency and resonator resistance changes. 10 figures

  5. Electron-induced dry reforming of methane in a temperature-controlled dielectric barrier discharge reactor

    KAUST Repository

    Zhang, Xuming; Cha, Min

    2013-01-01

    and thermo-chemistry in dry reforming of methane. In the tested background temperature range 297-773 K, electron-induced chemistry, as characterized by the physical properties of micro-discharges, was found to govern the conversions of CH4 and CO2, while

  6. Brain Tumor Therapy-Induced Changes in Normal-Appearing Brainstem Measured With Longitudinal Diffusion Tensor Imaging

    International Nuclear Information System (INIS)

    Hua Chiaho; Merchant, Thomas E.; Gajjar, Amar; Broniscer, Alberto; Zhang, Yong; Li Yimei; Glenn, George R.; Kun, Larry E.; Ogg, Robert J.

    2012-01-01

    Purpose: To characterize therapy-induced changes in normal-appearing brainstems of childhood brain tumor patients by serial diffusion tensor imaging (DTI). Methods and Materials: We analyzed 109 DTI studies from 20 brain tumor patients, aged 4 to 23 years, with normal-appearing brainstems included in the treatment fields. Those with medulloblastomas, supratentorial primitive neuroectodermal tumors, and atypical teratoid rhabdoid tumors (n = 10) received postoperative craniospinal irradiation (23.4–39.6 Gy) and a cumulative dose of 55.8 Gy to the primary site, followed by four cycles of high-dose chemotherapy. Patients with high-grade gliomas (n = 10) received erlotinib during and after irradiation (54–59.4 Gy). Parametric maps of fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were computed and spatially registered to three-dimensional radiation dose data. Volumes of interest included corticospinal tracts, medial lemnisci, and the pons. Serving as an age-related benchmark for comparison, 37 DTI studies from 20 healthy volunteers, aged 6 to 25 years, were included in the analysis. Results: The median DTI follow-up time was 3.5 years (range, 1.6–5.0 years). The median mean dose to the pons was 56 Gy (range, 7–59 Gy). Three patterns were seen in longitudinal FA and apparent diffusion coefficient changes: (1) a stable or normal developing time trend, (2) initial deviation from normal with subsequent recovery, and (3) progressive deviation without evidence of complete recovery. The maximal decline in FA often occurred 1.5 to 3.5 years after the start of radiation therapy. A full recovery time trend could be observed within 4 years. Patients with incomplete recovery often had a larger decline in FA within the first year. Radiation dose alone did not predict long-term recovery patterns. Conclusions: Variations existed among individual patients after therapy in longitudinal evolution of brainstem white matter injury and recovery. Early response

  7. Radio frequency-induced temperature elevations in the human head considering small anatomical structures

    International Nuclear Information System (INIS)

    Schmid, G.; Ueberbacher, R.; Samaras, T.

    2007-01-01

    In order to enable a detailed numerical radio frequency (RF) dosimetry and the computations of RF-induced temperature elevations, high-resolution (0.1 mm) numerical models of the human eye, the inner ear organs and the pineal gland were developed and inserted into a commercially available head model. As radiation sources, generic models of handsets at 400, 900 and 1850 MHz operating in close proximity to the head were considered. The results, obtained by finite-difference time domain-based computations, showed a highly heterogeneous specific absorption rate (SAR) distribution and SAR-peaks inside the inner ear structures; however, the corresponding RF-induced temperature elevations were well below 0.1 deg. C, when considering typical output power values of hand-held devices. In case of frontal exposure, with the radiation sources ∼2.5 cm in front of the closed eye, maximum temperature elevations in the eye in the range of ∼0.2-0.6 deg. C were found for typical device output powers. A reduction in tissue perfusion mainly affected the maximum RF-induced temperature elevation of tissues deep inside the head. Similarly, worst-case considerations regarding pulsed irradiation affected temperature elevations in deep tissue significantly more than in superficial tissues. (authors)

  8. Ultrasound- and Temperature-Induced Gelation of Gluconosemicarbazide Gelator in DMSO and Water Mixtures

    Directory of Open Access Journals (Sweden)

    Mothukunta Himabindu

    2017-04-01

    Full Text Available We have developed amphiphilic supramolecular gelators carrying glucose moiety that could gel a mixture of dimethyl sulfoxide (DMSO and water upon heating as well as ultrasound treatment. When the suspension of gluconosemicarbazide was subjected to ultrasound treatment, gelation took place at much lower concentrations compared to thermal treatment, and the gels transformed into a solution state at higher temperatures compared to temperature-induced gels. The morphology was found to be influenced by the nature of the stimulus and presence of salts such as KCl, NaCl, CaCl2 and surfactant (sodium dodecyl sulphate at a concentration of 0.05 M. The gel exhibited impressive tolerance to these additives, revealing the stability and strength of the gels. Fourier transform infrared spectroscopy (FTIR revealed the presence of the intermolecular hydrogen bonding interactions while differential scanning calorimetry (DSC and rheological studies supported better mechanical strength of ultrasound-induced (UI gels over thermally-induced (TI gels.

  9. Plasma membrane temperature gradients and multiple cell permeabilization induced by low peak power density femtosecond lasers

    Directory of Open Access Journals (Sweden)

    Allen L. Garner

    2016-03-01

    Full Text Available Calculations indicate that selectively heating the extracellular media induces membrane temperature gradients that combine with electric fields and a temperature-induced reduction in the electropermeabilization threshold to potentially facilitate exogenous molecular delivery. Experiments by a wide-field, pulsed femtosecond laser with peak power density far below typical single cell optical delivery systems confirmed this hypothesis. Operating this laser in continuous wave mode at the same average power permeabilized many fewer cells, suggesting that bulk heating alone is insufficient and temperature gradients are crucial for permeabilization. This work suggests promising opportunities for a high throughput, low cost, contactless method for laser mediated exogenous molecule delivery without the complex optics of typical single cell optoinjection, for potential integration into microscope imaging and microfluidic systems.

  10. Plastic Strain Induced Damage Evolution and Martensitic Transformation in Ductile Materials at Cryogenic Temperatures

    CERN Document Server

    Garion, C

    2002-01-01

    The Fe-Cr-Ni stainless steels are well known for their ductile behaviour at cryogenic temperatures. This implies development and evolution of plastic strain fields in the stainless steel components subjected to thermo-mechanical loads at low temperatures. The evolution of plastic strain fields is usually associated with two phenomena: ductile damage and strain induced martensitic transformation. Ductile damage is described by the kinetic law of damage evolution. Here, the assumption of isotropic distribution of damage (microcracks and microvoids) in the Representative Volume Element (RVE) is made. Formation of the plastic strain induced martensite (irreversible process) leads to the presence of quasi-rigid inclusions of martensite in the austenitic matrix. The amount of martensite platelets in the RVE depends on the intensity of the plastic strain fields and on the temperature. The evolution of the volume fraction of martensite is governed by a kinetic law based on the accumulated plastic strain. Both of thes...

  11. Esterification of jatropha oil via ultrasonic irradiation with auto-induced temperature-rise effect

    International Nuclear Information System (INIS)

    Andrade-Tacca, Cesar Augusto; Chang, Chia-Chi; Chen, Yi-Hung; Manh, Do-Van; Chang, Ching-Yuan; Ji, Dar-Ren; Tseng, Jyi-Yeong; Shie, Je-Lueng

    2014-01-01

    Auto-induced temperature-rise effects of ultrasonic irradiation (UI) on the esterification performance of jatropha oil (JO) were studied. Comparisons with other methods of mechanical mixing (MM) and hand shaking mixing were made. Major system parameters examined include: esterification time (t E ), settling time (t S ) after esterification and temperature. Properties of acid value (AV), iodine value (IV), kinematic viscosity (KV) and density of JO and ester product were measured. The esterification conversion efficiencies (η) were determined and assessed. Sulfuric acid was used to catalyze the esterification using methyl alcohol. For esterification without temperature control, η at t E  = 10 and 30 min for UI of 56.73 and 83.23% are much higher than those for MM of 36.76 and 42.48%, respectively. At t E  = 10 min, the jatropha oil esters produced via UI and MM respectively possess AV of 15.82 and 23.12 mg KOH/g, IV of 111.49 and 113.22 g I 2 /100 g, KV of 22.41 and 22.51 mm 2 /s and density of 913.8 and 913.58 kg/m 3 , showing that UI is much better than MM in enhancing the reduction of AV. The t E exhibits more vigorous effect on AV for UI than MM. The UI offers auto-induced temperature-rise, improving the mixing and esterification extents. - Highlights: • Esterification of jatropha oil is pronounced under ultrasonic irradiation (UI). • UI can auto-induce temperature rise. • The induced temperature rise assists the mixing of UI in enhancing esterification. • UI offers better esterification than mechanical mixing with external heating. • An 83.23% reduction of FFA in jatropha-ester is achievable via UI in 30 min

  12. Far-from-equilibrium sheared colloidal liquids: Disentangling relaxation, advection, and shear-induced diffusion

    KAUST Repository

    Lin, Neil Y. C.

    2013-12-01

    Using high-speed confocal microscopy, we measure the particle positions in a colloidal suspension under large-amplitude oscillatory shear. Using the particle positions, we quantify the in situ anisotropy of the pair-correlation function, a measure of the Brownian stress. From these data we find two distinct types of responses as the system crosses over from equilibrium to far-from-equilibrium states. The first is a nonlinear amplitude saturation that arises from shear-induced advection, while the second is a linear frequency saturation due to competition between suspension relaxation and shear rate. In spite of their different underlying mechanisms, we show that all the data can be scaled onto a master curve that spans the equilibrium and far-from-equilibrium regimes, linking small-amplitude oscillatory to continuous shear. This observation illustrates a colloidal analog of the Cox-Merz rule and its microscopic underpinning. Brownian dynamics simulations show that interparticle interactions are sufficient for generating both experimentally observed saturations. © 2013 American Physical Society.

  13. Far-from-equilibrium sheared colloidal liquids: Disentangling relaxation, advection, and shear-induced diffusion

    KAUST Repository

    Lin, Neil Y. C.; Goyal, Sushmit; Cheng, Xiang; Zia, Roseanna N.; Escobedo, Fernando A.; Cohen, Itai

    2013-01-01

    Using high-speed confocal microscopy, we measure the particle positions in a colloidal suspension under large-amplitude oscillatory shear. Using the particle positions, we quantify the in situ anisotropy of the pair-correlation function, a measure of the Brownian stress. From these data we find two distinct types of responses as the system crosses over from equilibrium to far-from-equilibrium states. The first is a nonlinear amplitude saturation that arises from shear-induced advection, while the second is a linear frequency saturation due to competition between suspension relaxation and shear rate. In spite of their different underlying mechanisms, we show that all the data can be scaled onto a master curve that spans the equilibrium and far-from-equilibrium regimes, linking small-amplitude oscillatory to continuous shear. This observation illustrates a colloidal analog of the Cox-Merz rule and its microscopic underpinning. Brownian dynamics simulations show that interparticle interactions are sufficient for generating both experimentally observed saturations. © 2013 American Physical Society.

  14. IR laser induced reactions: temperature distributions and detection of primary products

    International Nuclear Information System (INIS)

    Bachmann, F.

    1981-12-01

    The products of laser-driven pyrolysis in the gas phase often differ drastically from those of conventional pyrolysis. In this work some reasons for this behaviour are considered. First, temperature distributions in cylindrical cells, filled with SF 6 at low pressure and heated by cw CO 2 laser radiation, are calculated by a simple model. The influence of convection is not taken into account. Comparison of theoretical prediction and corresponding experiments included the temperature-dependent absorption cross section. In the second part we describe a molecular-beam sampling system for real time monitoring of primary products in laser-driven reactions. With this system initial tests were made in nonreacting SF 6 /rare-gas mixtures. The influence of thermal diffusion was indicated by changes in concentration when the laser was switched on and off. A theoretical treatment is given solving the time-dependent heat-conduction and diffusion equation numerically. As an example for reacting systems, the laser-driven pyrolysis of methanol with SF 6 as an absorber was studied. (orig./HT)

  15. Comparison of inter-diffusion coefficients for Ni/Cu thin films determined from classical heating analysis and linear temperature ramping analysis by means of profile reconstruction and a numerical solution of Fick's law

    International Nuclear Information System (INIS)

    Joubert, H.D.; Terblans, J.J.; Swart, H.C.

    2009-01-01

    Classical inter-diffusion studies assume a constant time of annealing when samples are annealed in a furnace. It is assumed that the sample temperature reaches the annealing temperature immediately after insertion, while the sample temperature immediately drops to room temperature after removal, the annealing time being taken as the time between insertion and removal. Using the above assumption, the diffusion coefficient can be calculated in a number of ways. In reality, the sample temperature does not immediately reach the annealing temperature; instead it rises at a rate governed by several heat transfer mechanisms, depending on the annealing procedure. For short annealing times, the sample temperature may not attain the annealing temperature, while for extended annealing times the sample temperature may reach the annealing temperature only for a fraction of the annealing time. To eliminate the effect of heat transfer mechanisms, a linear temperature ramping regime is proposed. Used in conjunction with a suitable profile reconstructing technique and a numerical solution of Fick's second law, the inter-diffusion parameters obtained from a linear ramping of Ni/Cu thin film samples can be compared to those obtained from calculations performed with the so-called Mixing-Roughness-Information model or any other suitable method used to determine classical diffusion coefficients.

  16. Protein synthesis during the initial phase of the temperature-induced bleaching response in Euglena gracilis

    International Nuclear Information System (INIS)

    Ortiz, W.

    1990-01-01

    Growing cultures of photoheterotrophic Euglena gracilis experience an increase in chlorophyll accumulation during the initial phase of the temperature-induced bleaching response suggesting an increase in the synthesis of plastid components at the bleaching temperature of 33 degree C. A primary goal of this work was to establish whether an increase in the synthesis of plastid proteins accompanies the observed increase in chlorophyll accumulation. In vivo pulse-labeling experiments with [ 35 S]sodium sulfate were carried out with cells grown at room temperature or at 33 degree C. The synthesis of a number of plastid polypeptides of nucleocytoplasmic origin, including some presumably novel polypeptides, increased in cultures treated for 15 hours at 33 degree C. In contrast, while synthesis of thylakoid proteins by the plastid protein synthesis machinery decreased modestly, synthesis of the large subunit of the enzyme ribulosebisphosphate carboxylase was strongly affected at the elevated temperature. Synthesis of novel plastid-encoded polypeptides was not induced at the bleaching temperature. It is concluded that protein synthesis in plastids declines during the initial phase of the temperature response in Euglena despite an overall increase in cellular protein synthesis and an increase in chlorophyll accumulation per cell

  17. Profound and Rapid Reduction in Body Temperature Induced by the Melanocortin Receptor Agonists

    Science.gov (United States)

    Xu, Yuanzhong; Kim, Eun Ran; Fan, Shengjie; Xia, Yan; Xu, Yong; Huang, Cheng; Tong, Qingchun

    2014-01-01

    The melanocortin receptor 4 (MC4R) plays a major role in body weight regulation and its agonist MTII has been widely used to study the role of MC4Rs in energy expenditure promotion and feeding reduction. Unexpectedly, we observed that intraperitoneal (i.p.) administration of MTII induced a rapid reduction in both body temperature and energy expenditure, which was independent of its effect on feeding and followed by a prolonged increase in energy expenditure. The rapid reduction was at least partly mediated by brain neurons since intracerebroventricular (icv) administration of alpha melanocyte-stimulating hormone, an endogenous melanocortin receptor agonist, produced a similar response. In addition, the body temperature-lowering effect of MTII was independent of the presence of MC4Rs, but in a similar fashion to the previously shown effect on body temperature by 5′AMP. Moreover, β-adrenergic receptors (β-ARs) were required for the recovery from low body temperature induced by MTII and further pharmacological studies showed that the MTII’s effect on body temperature may be partially mediated by the vasopressin V1a receptors. Collectively, our results reveal a previously unappreciated role for the melanocortin pathway in rapidly lowering body temperature. PMID:25065745

  18. Profound and rapid reduction in body temperature induced by the melanocortin receptor agonists.

    Science.gov (United States)

    Xu, Yuanzhong; Kim, Eun Ran; Fan, Shengjie; Xia, Yan; Xu, Yong; Huang, Cheng; Tong, Qingchun

    2014-08-22

    The melanocortin receptor 4 (MC4R) plays a major role in body weight regulation and its agonist MTII has been widely used to study the role of MC4Rs in energy expenditure promotion and feeding reduction. Unexpectedly, we observed that intraperitoneal (i.p.) administration of MTII induced a rapid reduction in both body temperature and energy expenditure, which was independent of its effect on feeding and followed by a prolonged increase in energy expenditure. The rapid reduction was at least partly mediated by brain neurons since intracerebroventricular (icv) administration of alpha melanocyte-stimulating hormone, an endogenous melanocortin receptor agonist, produced a similar response. In addition, the body temperature-lowering effect of MTII was independent of the presence of MC4Rs, but in a similar fashion to the previously shown effect on body temperature by 5'AMP. Moreover, β-adrenergic receptors (β-ARs) were required for the recovery from low body temperature induced by MTII and further pharmacological studies showed that the MTII's effect on body temperature may be partially mediated by the vasopressin V1a receptors. Collectively, our results reveal a previously unappreciated role for the melanocortin pathway in rapidly lowering body temperature. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. A computational study of radiation and gravity effect on temperature and soot formation in a methane air co-flow diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    Bhowal, Arup Jyoti, E-mail: arupjyoti.bhowal@heritageit.edu [Department of Mechanical Engineering, Heritage Institute of Technology, Chowbaga Road, Anandapur, Kolkata-700 107, West Bengal (India); Mandal, Bijan Kumar, E-mail: bkm375@yahoo.co.in [Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah – 711103, West Bengal (India)

    2016-07-12

    An effort has been made for a quantitative assessment of the soot formed under steady state in a methane air co flow diffusion flame by a numerical simulation at normal gravity and at lower gravity levels of 0.5 G, 0.1 G and 0.0001 G (microgravity). The peak temperature at microgravity is reduced by about 50 K than that at normal gravity level. There is an augmentation of soot formation at lower gravity levels. Peak value at microgravity multiplies by a factor of ∼7 of that at normal gravity. However, if radiation is not considered, soot formation is found to be much more.

  20. Measurement of the ferric diffusion coefficient in agarose and gelatine gels by utilization of the evolution of a radiation induced edge as reflected in relaxation rate images

    International Nuclear Information System (INIS)

    Pedersen, Torje V.; Olsen, Dag R.; Skretting, Arne

    1997-01-01

    A method has been developed to determine the diffusion coefficients of ferric ions in ferrous sulphate doped gels. A radiation induced edge was created in the gel, and two spin-echo sequences were used to acquire a pair of images of the gel at different points of time. For each of these image pairs, a longitudinal relaxation rate image was derived. From profiles through these images, the standard deviations of the Gaussian functions that characterize diffusion were determined. These data provided the basis for the determination of the ferric diffusion coefficients by two different methods. Simulations indicate that the use of single spin-echo images in this procedure may in some cases lead to a significant underestimation of the diffusion coefficient. The technique was applied to different agarose and gelatine gels that were prepared, irradiated and imaged simultaneously. The results indicate that the diffusion coefficient is lower in a gelatine gel than in an agarose gel. Addition of xylenol orange to a gelatine gel lowers the diffusion coefficient from 1.45 to 0.81 mm 2 h -1 , at the cost of significantly lower R 1 sensitivity. The addition of benzoic acid to the latter gel did not increase the R 1 sensitivity. (author) OK

  1. Hydrogen-induced room-temperature plasticity in TC4 and TC21 alloys

    DEFF Research Database (Denmark)

    Yuan, Baoguo; Jin, Yongyue; Hong, Chuanshi

    2017-01-01

    In order to reveal the effect of hydrogen on the room-temperature plasticity of the titanium alloys TC4 and TC21, compression tests have been carried out at room temperature. Results show that an appropriate amount of hydrogen can improve the room-temperature plasticity of both the TC4 and TC21...... alloys. The ultimate compression strain of the TC4 alloy containing a hydrogen concentration of 0.5 wt.% increases by 39% compared to the untreated material. For the TC21 alloy the ultimate compression strain is increased by 33% at a hydrogen concentration of 0.6 wt.%. The main reason for the improvement...... of hydrogen-induced room-temperature plasticity of the TC4 and TC21 alloys is discussed....

  2. Hysteresis and Power-Law Statistics during temperature induced martensitic transformation

    International Nuclear Information System (INIS)

    Paul, Arya; Sengupta, Surajit; Rao, Madan

    2011-01-01

    We study hysteresis in temperature induced martensitic transformation using a 2D model solid exhibiting a square to rhombic structural transition. We find that upon quenching, the high temperature square phase, martensites are nucleated at sites having large non-affineness and ultimately invades the whole of the high temperature square phase. On heating the martensite, the high temperature square phase is restored. The transformation proceeds through avalanches. The amplitude and the time-duration of these avalanches exhibit power-law statistics both during heating and cooling of the system. The exponents corresponding to heating and cooling are different thereby indicating that the nucleation and dissolution of the product phase follows different transformation mechanism.

  3. Si diffusion in compositional disordering of Si-implanted GaAs/AlGaAs superlattices induced by rapid thermal annealing

    International Nuclear Information System (INIS)

    Uematsu, Masashi; Yanagawa, Fumihiko

    1988-01-01

    The Si diffusion in Si-implanted GaAs/Al 0.5 Ga 0.5 As superlattices intermixed in the disrodering process induced by rapid thermal annealing (RTA), is investigated by means of secondary ion mass spectroscopy (SIMS). The SIMS profiles indicate that no fast Si diffusion occurs during the disordering, and the disordering occurs when the Si concentration exceeds 1 x 10 19 cm -3 , which is about three times larger than the threshold value for the disordering by furnace annealing (FA). The number of Si atoms which are allowed to pass through the heterointerface is considered to be essential for disordering. (author)

  4. Temperature-induced changes in lecithin model membranes detected by novel covalent spin-labelled phospholipids.

    Science.gov (United States)

    Stuhne-Sekalec, L; Stanacev, N Z

    1977-02-01

    Several spin-labelled phospholipids carrying covalently bound 5-doxylstearic acid (2-(3-carboxydecyl)-2-hexyl-4,4-dimethyl-3-oxazolidinoxyl) were intercalated in liposomes of saturated and unsaturated lecithins. Temperature-induced changes of these liposomes, detected by the spin-labelled phospholipids, were found to be in agreement with the previously described transitions of hydrocarbon chains of host lecithins detected by different probes and different techniques, establishing that spin-labelled phosopholipids are sensitive probes for the detection of temperature-induced changes in lecithin model membranes. In addition to the detection of already-known transitions in lecithin liposomes, the coexistence of two distinctly different enviroments was observed above the characteristic transition temperature. This phenomenon was tentatively attributed to the influence of the lecithin polar group on the fluidity of fatty acyl chains near the polar group. Combined with other results from the literature, the coexistence of two environments could be associated with the coexistence of two conformational isomers of lecithin, differing in the orientation of the polar head group with respect to the plane of bilayer. These findings have been discussed in view of the present state of knowledge regarding temperature-induced changes in model membranes.

  5. Heat flux estimate of warm water flow in a low-temperature diffuse flow site, southern East Pacific Rise 17°25‧ S

    Science.gov (United States)

    Goto, Shusaku; Kinoshita, Masataka; Mitsuzawa, Kyohiko

    2003-09-01

    A low-temperature diffuse flow site associated with abundant vent fauna was found by submersible observations on the southern East Pacific Rise at 17°25‧ S in 1997. This site was characterized by thin sediment covered pillow and sheet lavas with collapsed pits up to ˜15 m in diameter. There were three warm water vents (temperature: 6.5 to 10.5 °C) within the site above which the vented fluids rise as plumes. To estimate heat flux of the warm water vents, a temperature logger array was deployed and the vertical temperature distribution in the water column up to 38 m above the seafloor was monitored. A stationary deep seafloor observatory system was also deployed to monitor hydrothermal activity in this site. The temperature logger array measured temperature anomalies, while the plumes from the vents passed through the array. Because the temperature anomalies were measured in only specific current directions, we identified one of the vents as the source. Heat flux from the vent was estimated by applying a plume model in crossflow in a density-stratified environment. The average heat flux from September 13 to October 18, 1997 was 39 MW. This heat flux is as same order as those of high-temperature black smokers, indicating that a large volume flux was discharged from the vent (1.9 m3/s). Previous observations found many similar warm water flow vents along the spreading axis between 17°20‧ S 30‧ S. The total heat flux was estimated to be at least a few hundred mega-watts. This venting style would contribute to form effluent hydrothermal plumes extended above the spreading axis.

  6. Correlations for damage in diffused-junction InP solar cells induced by electron and proton irradiation

    International Nuclear Information System (INIS)

    Yamaguchi, M.; Takamoto, T.; Taylor, S.J.; Walters, R.J.; Summers, G.P.; Flood, D.J.; Ohmori, M.

    1997-01-01

    The damage to diffused-junction n + -p InP solar cells induced by electron and proton irradiations over a wide range of energy from 0.5 to 3 MeV and 0.015 to 20 MeV, respectively, has been examined. The experimental electron and proton damage coefficients have been analyzed in terms of displacement damage dose, which is the product of the particle fluence and the calculated nonionizing energy loss [G. P. Summers, E. A. Burke, R. Shapiro, S. R. Messenger, and R. J. Walters, IEEE Trans. Nucl. Sci. 40, 1300 (1993).] Degradation of InP cells due to irradiation with electrons and protons with energies of more than 0.5 MeV show a single curve as a function of displacement damage dose. Based on the deep-level transient spectroscopy analysis, damage equivalence between electron and proton irradiation is discussed. InP solar cells are confirmed to be substantially more radiation resistant than Si and GaAs-on-Ge cells. copyright 1997 American Institute of Physics

  7. Thermal discharges from Paducah Gaseous Diffusion Plant outfalls: Impacts on stream temperatures and fauna of Little Bayou and Big Bayou Creeks

    Energy Technology Data Exchange (ETDEWEB)

    Roy, W.K.; Ryon, M.G.; Hinzman, R.L. [Oak Ridge National Lab., TN (United States). Computer Science and Mathematics Div.

    1996-03-01

    The development of a biological monitoring plan for the receiving streams of the Paducah Gaseous Diffusion Plant (PGDP) began in the late 1980s, because of an Agreed Order (AO) issued in September 1987 by the Kentucky Division of Water (KDOW). Five years later, in September 1992, more stringent effluent limitations were imposed upon the PGDP operations when the KDOW reissued Kentucky Pollutant Discharge Elimination System permit No. KY 0004049. This action prompted the US Department of Energy (DOE) to request a stay of certain limits contained in the permit. An AO is being negotiated between KDOW, the US Enrichment Corporation (USEC), and DOE that will require that several studies be conducted, including this stream temperature evaluation study, in an effort to establish permit limitations. All issues associated with this AO have been resolved, and the AO is currently being signed by all parties involved. The proposed effluent temperature limit is 89 F (31.7 C) as a mean monthly temperature. In the interim, temperatures are not to exceed 95 F (35 C) as a monthly mean or 100 F (37.8 C) as a daily maximum. This study includes detailed monitoring of instream temperatures, benthic macroinvertebrate communities, fish communities, and a laboratory study of thermal tolerances.

  8. Thermal discharges from Paducah Gaseous Diffusion Plant outfalls: Impacts on stream temperatures and fauna of Little Bayou and Big Bayou Creeks

    International Nuclear Information System (INIS)

    Roy, W.K.; Ryon, M.G.; Hinzman, R.L.

    1996-03-01

    The development of a biological monitoring plan for the receiving streams of the Paducah Gaseous Diffusion Plant (PGDP) began in the late 1980s, because of an Agreed Order (AO) issued in September 1987 by the Kentucky Division of Water (KDOW). Five years later, in September 1992, more stringent effluent limitations were imposed upon the PGDP operations when the KDOW reissued Kentucky Pollutant Discharge Elimination System permit No. KY 0004049. This action prompted the US Department of Energy (DOE) to request a stay of certain limits contained in the permit. An AO is being negotiated between KDOW, the US Enrichment Corporation (USEC), and DOE that will require that several studies be conducted, including this stream temperature evaluation study, in an effort to establish permit limitations. All issues associated with this AO have been resolved, and the AO is currently being signed by all parties involved. The proposed effluent temperature limit is 89 F (31.7 C) as a mean monthly temperature. In the interim, temperatures are not to exceed 95 F (35 C) as a monthly mean or 100 F (37.8 C) as a daily maximum. This study includes detailed monitoring of instream temperatures, benthic macroinvertebrate communities, fish communities, and a laboratory study of thermal tolerances

  9. Thermal Discharges from Paducah Gaseous Diffusion Plant Outfalls: Impacts on Stream Temperatures and Fauna of Little Bayou and Big Bayou Creeks

    International Nuclear Information System (INIS)

    Roy, W.K.

    1999-01-01

    The development of a biological monitoring plan for the receiving streams of the Paducah Gaseous Diffusion Plant (PGDP) began in the late 1980s, because of an Agreed Order (AO) issued in September 1987 by the Kentucky Division of Water (KDOW). Five years later, in September 1992, more stringent effluent limitations were imposed upon the PGDP operations when the KDOW reissued Kentucky Pollutant Discharge Elimination System permit No. KY 0004049. This action prompted the US Department of Energy (DOE) to request a stay of certain limits contained in the permit. An AO is being negotiated between KDOW, the United States Enrichment Corporation (USEC), and DOE that will require that several studies be conducted, including this stream temperature evaluation study, in an effort to establish permit limitations. All issues associated with this AO have been resolved, and the AO is currently being signed by all parties involved. The proposed effluent temperature limit is 89 F (31.7C) as a mean monthly temperature. In the interim, temperatures are not to exceed 95 F (35 C) as a monthly mean or 100 F (37.8 C) as a daily maximum. This study includes detailed monitoring of instream temperatures, benthic macroinvertebrate communities, fish communities, and a laboratory study of thermal tolerances

  10. Thermal Discharges from Paducah Gaseous Diffusion Plant Outfalls: Impacts on Stream Temperatures and Fauna of Little Bayou and Big Bayou Creeks

    Energy Technology Data Exchange (ETDEWEB)

    Roy, W.K.

    1999-01-01

    The development of a biological monitoring plan for the receiving streams of the Paducah Gaseous Diffusion Plant (PGDP) began in the late 1980s, because of an Agreed Order (AO) issued in September 1987 by the Kentucky Division of Water (KDOW). Five years later, in September 1992, more stringent effluent limitations were imposed upon the PGDP operations when the KDOW reissued Kentucky Pollutant Discharge Elimination System permit No. KY 0004049. This action prompted the US Department of Energy (DOE) to request a stay of certain limits contained in the permit. An AO is being negotiated between KDOW, the United States Enrichment Corporation (USEC), and DOE that will require that several studies be conducted, including this stream temperature evaluation study, in an effort to establish permit limitations. All issues associated with this AO have been resolved, and the AO is currently being signed by all parties involved. The proposed effluent temperature limit is 89 F (31.7C) as a mean monthly temperature. In the interim, temperatures are not to exceed 95 F (35 C) as a monthly mean or 100 F (37.8 C) as a daily maximum. This study includes detailed monitoring of instream temperatures, benthic macroinvertebrate communities, fish communities, and a laboratory study of thermal tolerances.

  11. Hydrogen permeability, diffusivity, and solubility of SUS 316L stainless steel in the temperature range 400 to 800 .deg. C for fusion reactor applications

    International Nuclear Information System (INIS)

    Lee, S. K.; Kim, H. S.; Noh, S. J.; Han, J. H.

    2011-01-01

    Tritium permeation is one of the critical issues for the economy and safety of fusion power plants. As an initial step in tritium permeation research for fusion reactor applications, experiments were initiated by using hydrogen as a tritium substitute. An experimental system for hydrogen permeation and related behaviors in solid materials was designed and constructed. A continuous flow method was adopted with a capacity for high temperatures up to ∼1,000 .deg. C under ultra-high vacuums of ∼10 -7 Pa. The hydrogen permeation behavior in SUS 316L stainless steel was investigated in the temperature range from 400 .deg. C to 800 .deg. C. As a result, the permeability, diffusivity and solubility of hydrogen were determined. The results were compared with the previously existing reference data. Changes in the sample's surface morphology after the hydrogen permeation experiment are also addressed.

  12. Heat priming induces trans-generational tolerance to high temperature stress in wheat

    Directory of Open Access Journals (Sweden)

    Xiao eWang

    2016-04-01

    Full Text Available Wheat plants are very sensitive to high temperature stress during grain filling. Effects of heat priming applied to the first generation on tolerance of the successive generation to post-anthesis high temperature stress were investigated. Compared with the progeny of non-heat primed plants (NH, the progeny of heat-primed plants (PH possessed higher grain yield, leaf photosynthesis and activities of antioxidant enzymes and lower cell membrane damage under high temperature stress. In the transcriptome profile, 1430 probes showed obvious difference in expression between PH and NH. These genes were related to signal transduction, transcription, energy, defense, and protein destination and storage, respectively. The gene encoding the lysine-specific histone demethylase 1 (LSD1 which was involved in histone demethylation related to epigenetic modification was up-regulated in the PH compared with NH. The proteome analysis indicated that the proteins involved in photosynthesis, energy production and protein destination and storage were up-regulated in the PH compared with NH. In short, thermos-tolerance was induced through heritable epigenetic alternation and signaling transduction, both processes further triggered prompt modifications of defense related responses in anti-oxidation, transcription, energy production, and protein destination and storage in the progeny of the primed plants under high temperature stress. It was concluded that trans-generation thermo-tolerance was induced by heat priming in the first generation, and this might be an effective measure to cope with severe high-temperature stresses during key growth stages in wheat production.

  13. Temperature regulates splicing efficiency of the cold-inducible RNA-binding protein gene Cirbp

    Science.gov (United States)

    Gotic, Ivana; Omidi, Saeed; Fleury-Olela, Fabienne; Molina, Nacho; Naef, Felix; Schibler, Ueli

    2016-01-01

    In mammals, body temperature fluctuates diurnally around a mean value of 36°C–37°C. Despite the small differences between minimal and maximal values, body temperature rhythms can drive robust cycles in gene expression in cultured cells and, likely, animals. Here we studied the mechanisms responsible for the temperature-dependent expression of cold-inducible RNA-binding protein (CIRBP). In NIH3T3 fibroblasts exposed to simulated mouse body temperature cycles, Cirbp mRNA oscillates about threefold in abundance, as it does in mouse livers. This daily mRNA accumulation cycle is directly controlled by temperature oscillations and does not depend on the cells’ circadian clocks. Here we show that the temperature-dependent accumulation of Cirbp mRNA is controlled primarily by the regulation of splicing efficiency, defined as the fraction of Cirbp pre-mRNA processed into mature mRNA. As revealed by genome-wide “approach to steady-state” kinetics, this post-transcriptional mechanism is widespread in the temperature-dependent control of gene expression. PMID:27633015

  14. A technique for temperature mapping in fluorocarbon plasmas using planar laser-induced fluorescence of CF

    International Nuclear Information System (INIS)

    Steffens, Kristen L.; Sobolewski, Mark A.

    2004-01-01

    Planar laser-induced fluorescence measurements of CF A 2 Σ + -X 2 Π(1,0) were used to determine two-dimensional maps of rotational temperature in CF 4 plasmas. Measured rotational temperatures are expected to be in equilibrium with the gas temperature due to the long chemical lifetime of CF relative to the collision rate. Experiments were performed in the capacitively coupled Gaseous Electronics Conference rf reference cell at pressures from 26.7 Pa (200 mTorr) to 107 Pa (800 mTorr) and powers of 10 to 30 W deposited in the plasma. Temperatures, which ranged from 273±15 K to 480±15 K, were fairly axially symmetric and increased with pressure and power. All plasmas were coolest near the electrodes, which provided a substantial sink for heat in the plasma. Highest temperatures were found at a radial position near the edge of the electrodes. The strong temperature gradients observed in the plasmas can have serious effects on density measurements that probe a single rotational level, as well as on reaction rate constants and interpretation of density gradients. The effects of water-cooling the electrodes and the presence of a silicon wafer on temperature were also measured

  15. Simple statistical channel model for weak temperature-induced turbulence in underwater wireless optical communication systems

    KAUST Repository

    Oubei, Hassan M.

    2017-06-16

    In this Letter, we use laser beam intensity fluctuation measurements to model and describe the statistical properties of weak temperature-induced turbulence in underwater wireless optical communication (UWOC) channels. UWOC channels with temperature gradients are modeled by the generalized gamma distribution (GGD) with an excellent goodness of fit to the measured data under all channel conditions. Meanwhile, thermally uniform channels are perfectly described by the simple gamma distribution which is a special case of GGD. To the best of our knowledge, this is the first model that comprehensively describes both thermally uniform and gradient-based UWOC channels.

  16. Room-Temperature Spin-Orbit Torque Switching Induced by a Topological Insulator

    Science.gov (United States)

    Han, Jiahao; Richardella, A.; Siddiqui, Saima A.; Finley, Joseph; Samarth, N.; Liu, Luqiao

    2017-08-01

    The strongly spin-momentum coupled electronic states in topological insulators (TI) have been extensively pursued to realize efficient magnetic switching. However, previous studies show a large discrepancy of the charge-spin conversion efficiency. Moreover, current-induced magnetic switching with TI can only be observed at cryogenic temperatures. We report spin-orbit torque switching in a TI-ferrimagnet heterostructure with perpendicular magnetic anisotropy at room temperature. The obtained effective spin Hall angle of TI is substantially larger than the previously studied heavy metals. Our results demonstrate robust charge-spin conversion in TI and provide a direct avenue towards applicable TI-based spintronic devices.

  17. Microstructure, optical characterization and light induced degradation in a-Si:H deposited at different temperatures

    International Nuclear Information System (INIS)

    Minani, E.; Sigcau, Z.; Adgebite, O.; Ramukosi, F.L.; Ntsoane, T.P.; Harindintwari, S.; Knoesen, D.; Comrie, C.M.; Britton, D.T.; Haerting, M.

    2006-01-01

    The microstructure and optical properties of a series of hydrogenated amorphous silicon layers deposited on glass substrates at different temperature have been characterized by means of X-ray diffraction techniques and optical spectroscopy. The radial distribution function of the as-deposited samples showed an increase in the bond angle and a decrease in the radial distance indicating a relaxation of the amorphous network with increasing the deposition temperature. Light induced degradation was studied using a simulated daylight spectrum. The changes in hydrogen bonding configuration, associated with the light soaking at different stages of illumination, was monitored via the transmission bands of the vibrational wag and stretch modes of the IR spectrum

  18. Temperature dependence of the triplet diffusion and quenching rates in films of an Ir(ppy)3 -cored dendrimer

    Science.gov (United States)

    Ribierre, J. C.; Ruseckas, A.; Samuel, I. D. W.; Staton, S. V.; Burn, P. L.

    2008-02-01

    We study photoluminescence and triplet-triplet exciton annihilation in a neat film of a fac-tris(2-phenylpyridyl)iridium(III) [Ir(ppy)3] -cored dendrimer and in its blend with a 4,4' -bis( N -carbazolyl)biphenyl host for the temperature range of 77-300K . The nearest neighbor hopping rate of triplet excitons is found to increase by a factor of 2 with temperature between 150 and 300K and is temperature independent at lower temperature. The intermolecular quenching rate follows the Arrhenius law with an activation energy of 7meV , which can be explained by stronger dipole-dipole interactions with the donor molecule in the higher triplet substate. The results indicate that energy disorder has no significant effect on triplet transport and quenching in these materials.

  19. Oxygen-induced high diffusion rate of magnesium dopants in GaN/AlGaN based UV LED heterostructures.

    Science.gov (United States)

    Michałowski, Paweł Piotr; Złotnik, Sebastian; Sitek, Jakub; Rosiński, Krzysztof; Rudziński, Mariusz

    2018-05-23

    Further development of GaN/AlGaN based optoelectronic devices requires optimization of the p-type material growth process. In particular, uncontrolled diffusion of Mg dopants may decrease the performance of a device. Thus it is meaningful to study the behavior of Mg and the origins of its diffusion in detail. In this work we have employed secondary ion mass spectrometry to study the diffusion of magnesium in GaN/AlGaN structures. We show that magnesium has a strong tendency to form Mg-H complexes which immobilize Mg atoms and restrain their diffusion. However, these complexes are not present in samples post-growth annealed in an oxygen atmosphere or Al-rich AlGaN structures which naturally have a high oxygen concentration. In these samples, more Mg atoms are free to diffuse and thus the average diffusion length is considerably larger than for a sample annealed in an inert atmosphere.

  20. Deformation bands in ceria-stabilized tetragonal zirconia/alumina. 2: Stress-induced aging at room temperature

    International Nuclear Information System (INIS)

    Sergo, V.; Clarke, D.R.

    1995-01-01

    A stress-induced aging phenomenon is observed to occur at room temperature in deformation bands introduced into a 8.5 mol% ceria-stabilized tetragonal zirconia/alumina (Ce-TZP/Al 2 O 3 ) composite by flexural loading. The aging occurs with time after unloading and in laboratory air. Over a period of 100 days, the concentration of monoclinic zirconia within a deformation band increases and, in addition, the wedge-shaped deformation band grows with time. Accompanying these two changes are an increase in the tensile stress in the remaining tetragonal zirconia within the deformation band and a consequential increase in the overall compressive stress within the band. The average value of the monoclinic concentration within the deformation band is found to increase parabolically with time, suggesting the mechanism responsible for the observed aging is diffusion limited. Away from the deformation bands, no aging is observed to occur, suggesting aging is stress dependent. Although a water-vapor-mediated mechanism cannot be ruled out, it is proposed that the observed aging is in fact due to a tensile stress assisted chemical reduction of Ce 4+ to Ce 3+ whose rate is controlled by the indiffusion of oxygen vacancies driven by the tensile stress gradient. It is further proposed that the deformation band grows with time the region ahead of the band is under tension a subject to an enhanced rate of reduction

  1. High-temperature resistant, thermally sprayed diffusion barrier coatings on CFC lightweight materials; Hochtemperaturbestaendige, thermisch gespritzte Diffusionsbarriereschichten auf CFC-Leichtbauchargiergestellen

    Energy Technology Data Exchange (ETDEWEB)

    Drehmann, Rico; Rupprecht, Christian; Wielage, Bernhard; Lampke, Thomas [Technische Univ. Chemnitz (Germany). Inst. fuer Werkstoffwissenschaft und Werkstofftechnik (IWW); Gilbert, Maria; Uhlig, Volker; Trimis, Dimosthenis [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Waermetechnik und Thermodynamik (IWTT); Heuer, Volker [ALD Vacuum Technologies GmbH, Hanau (Germany)

    2013-03-15

    In heat treating processes as well as in high temperature brazing processes, charge carriers enable the positioning and transport of work pieces. Recently, charge carriers consisting of graphite or carbon fibre reinforced carbon (CFC) are used. The main disadvantage of charge carriers based on CFC is the undesirable carburization of the overlying components due to diffusion processes. Under this aspect, thermally sprayed coatings are applied on CFC and tested with respect to their suitability as a high-temperature diffusion barrier. The ceramic powders aluminium oxide, aluminium oxide/chromium oxide, aluminium oxide/titanium oxide and zirconium oxide/yttrium oxide are used as a coating material which is processed by means of the powder flame spraying as well as atmospheric plasma spraying. Molybdenum and silicon carbide are used as an adhesive layer. The coating materials aluminium oxide and aluminium oxide/chromium oxide on siliconized CFC presented excellent results. This supplies a large potential of application for thermally sprayed ceramic coatings on carbon-based lightweight materials.

  2. Determination of thermal diffusivity of dental enamel and dentin as a function of temperature, using infrared thermography; Determinacao da difusividade termica do esmalte e dentina em funcao de temperatura, utilizando termografia no infravermelho

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Thiago Martini

    2009-07-01

    In this work it was developed a software that calculates automatically, the thermal diffusivity value as a function of temperature in materials. The infrared thermography technique was used for data acquisition of temperature distribution as a function of time. These data were used to adjust a temperature function obtained from the homogeneous heat equation with specific boundary conditions. For that, an infrared camera (detecting from 8 {mu}m to 9 {mu}m) was calibrated to detect temperature ranging from 185 degree C up to 1300 degree C at an acquisition rate of 300 Hz. It was used, 10 samples of dental enamel and 10 samples of dentin, with 4 mm x 4 mm x 2 mm, which were obtained from bovine lower incisor teeth. These samples were irradiated with an Er:Cr:YSGG pulsed laser ({lambda} = 2,78 {mu}m). The resulting temperature was recorded 2 s prior, 10 s during irradiation and continuing for 2 more seconds after it. After each irradiation, all obtained thermal images were processed in the software, creating a file with the data of thermal diffusivity as a function of temperature. Another file with the thermal diffusivity values was also calculated after each laser pulse. The mean result of thermal diffusivity obtained for dental enamel was 0,0084 {+-} 0,001 cm2/s for the temperature interval of 220-550 degree C. The mean value for thermal diffusivity obtained for dentin was 0,0015 0,0004 cm2/s in temperatures up to 360 degree C; however, this value increases for higher temperatures. According to these results, it was possible to conclude that the use of infrared thermography, associated with the software developed in this work, is an efficient method to determine the thermal diffusivity values as a function of temperature in different materials. (author)

  3. Irradiation-induced creep in fuel compacts for high-temperature reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Veringa, H; Blackstone, R [Stichting Energieonderzoek Centrum Nederland, Petten; Loelgen, R

    1977-01-01

    Restrained shrinkage experiments at neutron fluences up to 3 x 10/sup 21/ n cm/sup -2/ DNE in the temperature range 600 to 1200/sup 0/C were performed on three different dummy coated-particle fuel compacts in the high-flux reactor at Petten. The data were evaluated to obtain the steady-state radiation creep coefficient of the compacts. It was found that, for the materials investigated, the creep coefficient is temperature dependent, but no clear relationship with Young's modulus could be established. Under certain conditions this irradiation-induced plasticity influences the elastic properties, with the concomitant increase of the creep coefficient. This effect coincides with the formation and further opening up of cracks due to stresses caused by irradiation-induced shrinkage of matrix material.

  4. Irradiation-induced creep in fuel compacts for high-temperature reactor applications

    International Nuclear Information System (INIS)

    Veringa, H.; Blackstone, R.; Loelgen, R.

    1977-01-01

    Restrained shrinkage experiments at neutron fluences up to 3 x 10 21 n cm -2 DNE in the temperature range 600 to 1200 0 C were performed on three different dummy coated-particle fuel compacts in the high-flux reactor at Petten. The data were evaluated to obtain the steady-state radiation creep coefficient of the compacts. It was found that, for the materials investigated, the creep coefficient is temperature dependent, but no clear relationship with Young's modulus could be established. Under certain conditions this irradiation-induced plasticity influences the elastic properties, with the concomitant increase of the creep coefficient. This effect coincides with the formation and further opening up of cracks due to stresses caused by irradiation-induced shrinkage of matrix material. (author)

  5. Zinc Vacancy-Induced Room-Temperature Ferromagnetism in Undoped ZnO Thin Films

    Directory of Open Access Journals (Sweden)

    Hongtao Ren

    2012-01-01

    Full Text Available Undoped ZnO thin films are prepared by polymer-assisted deposition (PAD and treated by postannealing at different temperatures in oxygen or forming gases (95%  Ar+5% H2. All the samples exhibit ferromagnetism at room temperature (RT. SQUID and positron annihilation measurements show that post-annealing treatments greatly enhance the magnetizations in undoped ZnO samples, and there is a positive correlation between the magnetization and zinc vacancies in the ZnO thin films. XPS measurements indicate that annealing also induces oxygen vacancies that have no direct relationship with ferromagnetism. Further analysis of the results suggests that the ferromagnetism in undoped ZnO is induced by Zn vacancies.

  6. Anisotropic Constitutive Model of Strain-induced Phenomena in Stainless Steels at Cryogenic Temperatures

    CERN Document Server

    Garion, C

    2004-01-01

    A majority of the thin-walled components subjected to intensive plastic straining at cryogenic temperatures are made of stainless steels. The examples of such components can be found in the interconnections of particle accelerators, containing the superconducting magnets, where the thermal contraction is absorbed by thin-walled, axisymetric shells called bellows expansion joints. The stainless steels show three main phenomena induced by plastic strains at cryogenic temperatures: serrated (discontinuous) yielding, gamma->alpha' phase transformation and anisotropic ductile damage. In the present paper, a coupled constitutive model of gamma->alpha' phase transformation and orthotropic ductile damage is presented. A kinetic law of phase transformation, and a kinetic law of evolution of orthotropic damage are presented. The model is extended to anisotropic plasticity comprising a constant anisotropy (texture effect), which can be classically taken into account by the Hill yield surface, and plastic strain induced ...

  7. Induced Chern-Simons term in lattice QCD at finite temperature

    International Nuclear Information System (INIS)

    Borisenko, O.A.; Petrov, V.K.; Zinovjev, G.M.

    1995-01-01

    The general conditions for the Chern-Simons action to be induced as a non-universal contribution of fermionic determinant are formulated in finite-temperature lattice QCD. The dependence of the corresponding coefficient in the action on non-universal parameters (chemical potentials, vacuum features, etc.) is explored. Special attention is paid to the role of A 0 -condensate if it is available in this theory. ((orig.))

  8. Radiation-induced double-strand breaks in mammalian DNA: influence of temperature and DMSO.

    Science.gov (United States)

    Elmroth, K; Nygren, J; Erkell, L J; Hultborn, R

    2000-11-01

    To investigate the effects of subphysiological irradiation temperature (2 28 degrees C) and the influence of the radical scavenger DMSO on the induction of double-strand breaks (DSB) in chromosomal DNA from a human breast cancer cell line (MCF-7) as well as in intact cells. The rejoining of DSB in cells irradiated at 2 degrees C or 37 degrees C was also investigated. Agarose plugs with [14C]thymidine labelled MCF-7 cells were lysed in EDTA-NLS-proteinase-K buffer. The plugs containing chromosomal DNA were irradiated with X-rays under different temperatures and scavenging conditions. Intact MCF-7 cells were irradiated in Petri dishes and plugs were made. The cells were then lysed in EDTA-NLS-proteinase-K buffer. The induction of DSB was studied by constant field gel electrophoresis and expressed as DSB/100/Mbp, calculated from the fraction of activity released into the gel. The induction of DSB in chromosomal DNA was reduced by a decrease in temperature. This protective effect of low temperature was inhibited when the DNA was irradiated in the presence of DMSO. No difference was found when intact cells were irradiated at different temperatures. However, the rapid phase of rejoining was slower in cells irradiated at 37 degrees C than at 2 degrees C. The induction of DSB in naked DNA was reduced by hypothermic irradiation. The temperature had no influence on the induction of DSB in the presence of a high concentration of DMSO, indicating that the temperature effect is mediated via the indirect effects of ionizing radiation. Results are difficult to interpret in intact cells. Rejoining during irradiation at the higher temperature may counteract an increased induction. The difference in rejoining may be interpreted in terms of qualitative differences between breaks induced at the two temperatures.

  9. Experimental evaluation of the pressure and temperature dependence of ion-induced nucleation.

    Science.gov (United States)

    Munir, Muhammad Miftahul; Suhendi, Asep; Ogi, Takashi; Iskandar, Ferry; Okuyama, Kikuo

    2010-09-28

    An experimental system for the study of ion-induced nucleation in a SO(2)/H(2)O/N(2) gas mixture was developed, employing a soft x-ray at different pressure and temperature levels. The difficulties associated with these experiments included the changes in physical properties of the gas mixture when temperature and pressure were varied. Changes in the relative humidity (RH) as a function of pressure and temperature also had a significant effect on the different behaviors of the mobility distributions of particles. In order to accomplish reliable measurement and minimize uncertainties, an integrated on-line control system was utilized. As the pressure decreased in a range of 500-980 hPa, the peak concentration of both ions and nanometer-sized particles decreased, which suggests that higher pressure tended to enhance the growth of particles nucleated by ion-induced nucleation. Moreover, the modal diameters of the measured particle size distributions showed a systematic shift to larger sizes with increasing pressure. However, in the temperature range of 5-20 °C, temperature increases had no significant effects on the mobility distribution of particles. The effects of residence time, RH (7%-70%), and SO(2) concentration (0.08-6.7 ppm) on ion-induced nucleation were also systematically investigated. The results show that the nucleation and growth were significantly dependent on the residence time, RH, and SO(2) concentration, which is in agreement with both a previous model and previous observations. This research will be inevitable for a better understanding of the role of ions in an atmospheric nucleation mechanism.

  10. Electron-induced dry reforming of methane in a temperature-controlled dielectric barrier discharge reactor

    KAUST Repository

    Zhang, Xuming

    2013-09-23

    Dry reforming of methane has the potential to reduce the greenhouse gases methane and carbon dioxide and to generate hydrogen-rich syngas. In reforming methane, plasma-assisted reforming processes may have advantages over catalytic processes because they are free from coking and their response time for mobile applications is quick. Although plasma-assisted reforming techniques have seen recent developments, systematic studies that clarify the roles that electron-induced chemistry and thermo-chemistry play are needed for a full understanding of the mechanisms of plasma-assisted reformation. Here, we developed a temperature-controlled coaxial dielectric barrier discharge (DBD) apparatus to investigate the relative importance of electron-induced chemistry and thermo-chemistry in dry reforming of methane. In the tested background temperature range 297-773 K, electron-induced chemistry, as characterized by the physical properties of micro-discharges, was found to govern the conversions of CH4 and CO2, while thermo-chemistry influenced the product selectivities because they were found to depend on the background temperature. Comparisons with results from arc-jet reformation indicated that thermo-chemistry is an efficient conversion method. Our findings may improve designs of plasma-assisted reformers by using relatively hotter plasma sources. However, detailed chemical kinetic studies are needed. © 2013 IOP Publishing Ltd.

  11. Electron-induced dry reforming of methane in a temperature-controlled dielectric barrier discharge reactor

    International Nuclear Information System (INIS)

    Zhang, Xuming; Cha, Min Suk

    2013-01-01

    Dry reforming of methane has the potential to reduce the greenhouse gases methane and carbon dioxide and to generate hydrogen-rich syngas. In reforming methane, plasma-assisted reforming processes may have advantages over catalytic processes because they are free from coking and their response time for mobile applications is quick. Although plasma-assisted reforming techniques have seen recent developments, systematic studies that clarify the roles that electron-induced chemistry and thermo-chemistry play are needed for a full understanding of the mechanisms of plasma-assisted reformation. Here, we developed a temperature-controlled coaxial dielectric barrier discharge (DBD) apparatus to investigate the relative importance of electron-induced chemistry and thermo-chemistry in dry reforming of methane. In the tested background temperature range 297–773 K, electron-induced chemistry, as characterized by the physical properties of micro-discharges, was found to govern the conversions of CH 4 and CO 2 , while thermo-chemistry influenced the product selectivities because they were found to depend on the background temperature. Comparisons with results from arc-jet reformation indicated that thermo-chemistry is an efficient conversion method. Our findings may improve designs of plasma-assisted reformers by using relatively hotter plasma sources. However, detailed chemical kinetic studies are needed. (paper)

  12. [Emission spectrum temperature sensitivity of Mg4FGeO6 : mn induced by laser].

    Science.gov (United States)

    Wang, Sheng; Liu, Jing-Ru; Shao, Jun; Hu, Zhi-Yun; Tao, Bo; Huang, Mei-Sheng

    2013-08-01

    In order to develop a new sort of thermally sensitive phosphor coating, the emission spectrum thermally sensitivity of Mg4FGeO6 : Mn induced by laser was studied. The spectrum measurement system with heating function was set up, and the emission spectrum of Mg4FGeO6 : Mn at various temperatures were measured. Absorption spectrum was measured, and the mechanism of formation of the structure of double peak was analyzed with the perturbation theory of crystal lattice. The group of peaks around 630 nm is represented by the transitions 4F"2 to 4A2, whereas the group of peaks around 660 nm is due to the transitions 4F'2 to 4A2. The occupancy of both excited states 4F'2 and 4F"2 is in thermal equilibrium. Thus increasing temperature causes the intensity of the emission in the group around 630 nm to increase at the expense of the emission intensity of the group around 660 nm. The various spectral regions in emission differ with temperature, which could be used to support the intensity-ratio measurement method. The intensity-ratio change curve as a function of temperature was fitted, which shows that the range of temperature measurement is between room temperature and 800 K.

  13. Soldering-induced Cu diffusion and intermetallic compound formation between Ni/Cu under bump metallization and SnPb flip-chip solder bumps

    Science.gov (United States)

    Huang, Chien-Sheng; Jang, Guh-Yaw; Duh, Jenq-Gong

    2004-04-01

    Nickel-based under bump metallization (UBM) has been widely used as a diffusion barrier to prevent the rapid reaction between the Cu conductor and Sn-based solders. In this study, joints with and without solder after heat treatments were employed to evaluate the diffusion behavior of Cu in the 63Sn-37Pb/Ni/Cu/Ti/Si3N4/Si multilayer structure. The atomic flux of Cu diffused through Ni was evaluated from the concentration profiles of Cu in solder joints. During reflow, the atomic flux of Cu was on the order of 1015-1016 atoms/cm2s. However, in the assembly without solder, no Cu was detected on the surface of Ni even after ten cycles of reflow. The diffusion behavior of Cu during heat treatments was studied, and the soldering-process-induced Cu diffusion through Ni metallization was characterized. In addition, the effect of Cu content in the solder near the solder/intermetallic compound (IMC) interface on interfacial reactions between the solder and the Ni/Cu UBM was also discussed. It is evident that the (Cu,Ni)6Sn5 IMC might form as the concentration of Cu in the Sn-Cu-Ni alloy exceeds 0.6 wt.%.

  14. Paper-like N-doped graphene films prepared by hydroxylamine diffusion induced assembly and their ultrahigh-rate capacitive properties

    International Nuclear Information System (INIS)

    Chang, Yunzhen; Han, Gaoyi; Fu, Dongying; Liu, Feifei; Li, Miaoyu; Li, Yanping; Liu, Cuixian

    2014-01-01

    An approach as “hydroxylamine diffusion induced assembly” has been developed to fabricate N-doped graphene paper-like films (NG-P) and composite films containing multiwalled carbon nanotubes (NG-MWCNT-P). The obtained films have been characterized by using X-ray photoelectron spectroscopy, X-ray diffraction spectroscopy and scanning electron microscopy. The results indicate that the N atoms have doped into the graphene sheets and the interplanar distance between the graphene sheets decreases with the increment of the thermally treated temperature. The films of NG-P prepared at 100 °C are flexible and exhibit a maximum tensile stress of about 70.5 MPa and a Young's modulus of about 17.7 GPa, and the films of NG-P thermally treated at 300 °C (NG-P300) have high thermal conductivity of about 3403 W m -1 K −1 . However, the NG-MWCNT-P film exhibits a relatively weaker tensile stress compared with NG-P. The electrochemical measurements show that the NG-P300 possesses excellent ultrahigh-rate capacitive properties, and that the specific capacitance and the impedance phase angle of the capacitor can reach to about 318 μF cm −2 and -77.1° respectively at frequency of 120 Hz. Simple measurements on NG-MWCNT-P show that it has specific capacitance of about 90 F g −1 based on one electrode and the capacitor possesses the high-rate capability

  15. Lateral spin transfer torque induced magnetic switching at room temperature demonstrated by x-ray microscopy

    Science.gov (United States)

    Buhl, M.; Erbe, A.; Grebing, J.; Wintz, S.; Raabe, J.; Fassbender, J.

    2013-10-01

    Changing and detecting the orientation of nanomagnetic structures, which can be used for durable information storage, needs to be developed towards true nanoscale dimensions for keeping up the miniaturization speed of modern nanoelectronic components. Therefore, new concepts for controlling the state of nanomagnets are currently in the focus of research in the field of nanoelectronics. Here, we demonstrate reproducible switching of a purely metallic nanopillar placed on a lead that conducts a spin-polarized current at room temperature. Spin diffusion across the metal-metal (Cu to CoFe) interface between the pillar and the lead causes spin accumulation in the pillar, which may then be used to set the magnetic orientation of the pillar. In our experiments, the detection of the magnetic state of the nanopillar is performed by direct imaging via scanning transmission x-ray microscopy (STXM).

  16. Plastic strain induced damage evolution and martensitic transformation in ductile materials at cryogenic temperatures

    International Nuclear Information System (INIS)

    Garion, C.; Skoczen, B.T.

    2002-01-01

    The Fe-Cr-Ni stainless steels are well known for their ductile behavior at cryogenic temperatures. This implies development and evolution of plastic strain fields in the stainless steel components subjected to thermo-mechanical loads at low temperatures. The evolution of plastic strain fields is usually associated with two phenomena: ductile damage and strain induced martensitic transformation. Ductile damage is described by the kinetic law of damage evolution. Here, the assumption of isotropic distribution of damage (microcracks and microvoids) in the Representative Volume Element (RVE) is made. Formation of the plastic strain induced martensite (irreversible process) leads to the presence of quasi-rigid inclusions of martensite in the austenitic matrix. The amount of martensite platelets in the RVE depends on the intensity of the plastic strain fields and on the temperature. The evolution of the volume fraction of martensite is governed by a kinetic law based on the accumulated plastic strain. Both of these irreversible phenomena, associated with the dissipation of plastic power, are included into the constitutive model of stainless steels at cryogenic temperatures. The model is tested on the thin-walled corrugated shells (known as bellows expansion joints) used in the interconnections of the Large Hadron Collider, the new proton storage ring being constructed at present at CERN

  17. Polysaccharide peptide induces a tumor necrosis factor-α-dependent drop of body temperature in rats.

    Science.gov (United States)

    Jedrzejewski, Tomasz; Piotrowski, Jakub; Wrotek, Sylwia; Kozak, Wieslaw

    2014-08-01

    Polysaccharide peptide (PSP) extracted from the Coriolus versicolor mushroom is frequently suggested as an adjunct to the chemo- or radiotherapy in cancer patients. It improves quality of the patients' life by decreasing pain, fatigue, loss of appetite, nausea, and vomiting. However, the effect of PSP on body temperature has not thus far been studied, although it is well known that treatment with other polysaccharide adjuvants, such as lipopolysaccharides, may induce fever. The aim of the present study, therefore, was to investigate the influence of PSP on temperature regulation in rats. We report that intraperitoneal injection of PSP provoked a dose-dependent decrease of temperature in male Wistar rats equipped with biotelemetry devices to monitor deep body temperature (Tb). The response was rapid (i.e., with latency of 15-20min), transient (lasting up to 5h post-injection), and accompanied by a significant elevation of the blood tumor necrosis factor-α (TNF-α) level. Pretreatment of the rats with anti-TNF-α antibody prevented the PSP-induced drop in Tb. Based on these data, we conclude that rats may develop an anapyrexia-like response to the injection of peptidopolysaccharide rather than fever, and the response was TNF-α-dependent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Temperature-induced transitions between domain structures of ultrathin magnetic films

    International Nuclear Information System (INIS)

    Polyakova, T.; Zablotskii, V.

    2005-01-01

    Full text: Understanding of the influence of temperature on behavior of domain patterns of ultrathin magnetic films is of high significance for the fundamental physics of nanomagnetism as well as for technological applications. A thickness-dependent Curie temperature of ultrathin films may cause many interesting phenomena in the thermal evolution of domain structures (DS): i) nontrivial changes of the anisotropy constants as a function of the film thickness; ii) so-called inverse melting of DSs (processes where a more symmetric domain phase is found at lower temperatures than at higher temperatures - the inverse phase sequence) [1]; iii) temperature-induced transitions between domain structures. The possibility of such transitions is determined by lowering of the potential barriers separating different magnetization states as the film temperature approaches the Curie point. In this case with an increase of temperature, due to a significant decrease of the anisotropy constant, the domain wall energy is low enough and allows the system to reach equilibrium by a change of the domain wall number in the sample. This manifests itself in a transition from a metastable DS to a more stable DS which corresponds to new values of the anisotropy constant and magnetizations saturation. Thus, the temperature-induced transitions are driven by temperature changes of the magnetic parameters of the film. The key parameters controlling the DS geometry and period are the characteristic length, l c =σ/4πM S 2 (the ratio between the domain wall and demagnetization energies), and the quality factor Q =K/2πM S 2 (K is the first anisotropy constant). We show that for films with a pronounced nonmonotonic temperature dependence of l c one can expect a counter thermodynamic behavior: the inverse phase sequence and cooling-induced disordering. On changing temperature the existing domain structure should accommodate itself under new magnitudes of l c and Q. There are the two possible

  19. High pressure and temperature induced structural and elastic properties of lutetium chalcogenides

    Science.gov (United States)

    Shriya, S.; Kinge, R.; Khenata, R.; Varshney, Dinesh

    2018-04-01

    The high-pressure structural phase transition and pressure as well temperature induced elastic properties of rock salt to CsCl structures in semiconducting LuX (X = S, Se, and Te) chalcogenides compound have been performed using effective interionic interaction potential with emphasis on charge transfer interactions and covalent contribution. Estimated values of phase transition pressure and the volume discontinuity in pressure-volume phase diagram indicate the structural phase transition from ZnS to NaCl structure. From the investigations of elastic constants the pressure (temperature) dependent volume collapse/expansion, melting temperature TM, Hardness (HV), and young modulus (E) the LuX lattice infers mechanical stiffening, and thermal softening.

  20. A Mathematical Model for Temperature Induced Loosening due to Radial Expansion of Rectangle Thread Bolted Joints

    Directory of Open Access Journals (Sweden)

    Shiyuan Hou

    2015-01-01

    Full Text Available This paper proposed a mathematical model to investigate the radial expansion induced loosening of rectangle thread bolted joints that were subjected to cyclic temperature variation, which could cause slippage between contact pairs of engaged threads and bolt bearing. Firstly, integral equations were derived for the shear stress components caused by expansion difference, as well as the bearing and thread friction torque components, which depended on the temperature variation. Secondly, the relationship of displacement components was developed based on quasi-static hypotheses. Then, treating the rotation of bolt as plastic elongation, the bolt tension's evolution was obtained by using a one-dimensional bolted joint model. Numerical results showed that the temperature variation decreased the bearing and thread friction torque components, which could lead bolted joint to loosen. Finally, the effects of some associated factors on the progress were discussed.

  1. Temperature-induced itinerant-electron metamagnetism in ErCo3 studied by neutron diffraction

    International Nuclear Information System (INIS)

    Gratz, E.; Markosyan, A.S.; Gaidukova, I.Yu.; Rodimin, V.E.; Paul-Boncour, V.; Hoser, A.; Stuesser, N.

    2002-01-01

    Powder neutron diffraction studies in the temperature range from 2 K to 450 K of the ferrimagnetic ErCo 3 compound (T C =401 K) revealed an increase of the unit-cell volume at 100 K (T m ) when cooling down (ΔV/V∼4 x 10 -3 ). This is referred to as a temperature-induced change in the Co sublattice magnetization from a low-magnetic state (T>T m ) to a high-magnetic state (T m ). From the temperature variation of the sublattice magnetization (ErI (3a sites), ErII (6c), CoI (3b), CoII (6c) and CoIII (18h)) it was found that the Co moments at the 6c and 18h sites change near 100 K, giving rise to the volume anomaly at T m . A qualitative discussion of the mechanism behind this phenomenon is given. (orig.)

  2. Martensitic transition near room temperature and the temperature- and magnetic-field-induced multifunctional properties of Ni49CuMn34In16 alloy

    Science.gov (United States)

    Sharma, V. K.; Chattopadhyay, M. K.; Khandelwal, A.; Roy, S. B.

    2010-11-01

    A near room-temperature martensitic transition is observed in the ferromagnetic austenite state of Ni50Mn34In16 alloy with 2% Cu substitution at the Ni site. Application of magnetic field in the martensite state induces a reverse martensitic transition in this alloy. dc magnetization, magnetoresistance and strain measurements in this alloy reveal that associated with this martensitic transition there exist a large magnetocaloric effect, a large magnetoresitance and a magnetic-field temperature-induced strain. This NiMnIn alloy system thus is an example of an emerging class of magnetic materials whose physical properties can be tuned by suitable chemical substitutions, to achieve magnetic-field and temperature-induced multifunctional properties at and around room temperature

  3. Identification of the temperature- induced larvicidal efficacy of Agave angustifolia against Aedes, Culex and Anopheles larvae

    Directory of Open Access Journals (Sweden)

    Mithilesh eKajla

    2016-01-01

    Full Text Available Synthetic insecticides are generally employed to control the mosquito population. However, their injudicious over usage and non-biodegradability are associated with many adverse effects on the environment and mosquitoes. The application of environment-friendly mosquitocidals might be an alternate to overcome these issues. In this study, we found that organic or aqueous extracts of Agave angustifolia leaves exhibited a strong larvicidal activity (LD50 28.27 µg/ml against Aedes aegypti, Culex quinquefasciatus and Anopheles stephensi larvae within a short exposure of 12h. The larvicidal activity of Agave angustifolia is inherited and independent of the plants vegetative growth. Interestingly, the plant larvicidal activity was observed exclusively during the summer season (April-August, when outside temperature is between 30oC to 50oC and it was significantly reduced during winter season (December-February, when the outside temperature falls to ~4oC or lower. Thus, we hypothesized that the larvicidal components of Agave angustifolia might be induced by the manipulation of environmental temperature and should be resistant to the hot conditions. We found that the larvicidal activity of Agave angustifolia was induced when plants were maintained at 37oC in a semi-natural environment against the controls that were growing outside in cold weather. Pre-incubation of Agave angustifolia extract at 100oC for 1h killed 60% larvae in 12h, which gradually increased to 100% mortality after 24h. In addition, the dry powder formulation of Agave angustifolia, also displayed a strong larvicidal activity after a long shelf life. Together, these findings revealed that Agave angustifolia is an excellent source of temperature induced bioactive metabolites that may assist the preparedness for vector control programs competently.

  4. Laser-induced cracks in ice due to temperature gradient and thermal stress

    Science.gov (United States)

    Yang, Song; Yang, Ying-Ying; Zhang, Jing-Yuan; Zhang, Zhi-Yan; Zhang, Ling; Lin, Xue-Chun

    2018-06-01

    This work presents the experimental and theoretical investigations on the mechanism of laser-induce cracks in ice. The laser-induced thermal gradient would generate significant thermal stress and lead to the cracking without thermal melting in the ice. The crack density induced by a pulsed laser in the ice critically depends on the laser scanning speed and the size of the laser spot on the surface, which determines the laser power density on the surface. A maximum of 16 cracks within an area of 17 cm × 10 cm can be generated when the laser scanning speed is at 10 mm/s and the focal point of the laser is right on the surface of the ice with a laser intensity of ∼4.6 × 107 W/cm2. By comparing the infrared images of the ice generated at various experimental conditions, it was found that a larger temperature gradient would result in more laser-induced cracks, while there is no visible melting of the ice by the laser beam. The data confirm that the laser-induced thermal stress is the main cause of the cracks created in the ice.

  5. Hydrogen content, interfacial exchange and hydrogen diffusion in high-temperature protonic conductors based on strontium and barium cerates

    International Nuclear Information System (INIS)

    Vdovin, G.K.; Kurumchin, Eh.Kh.

    2004-01-01

    The hydrogen content and kinetics of the hydrogen exchange in the barium and strontium doped cerates are studied in the reduction atmosphere through the methods of isotope counterbalancing and isotope exchange. The measurements are carried out at 500-840 Deg C and hydrogen pressure of 2.7-16 gPa. It is established, that the hydrogen interfacial exchange proceeds at high velocities through the dissociative-type mechanisms. The effective activation energy of the hydrogen heteroexchange is determined. The coefficient of the hydrogen diffusion in BaCe 0.95 Nd 0.5 O 3-δ is calculated. The hydrogen content per formula unit constituted (0.48±0.05) in the SrCe 0.95 Y 0.05 O 3-δ and (0.60±0.05) in the BaCe 0.95 Nd 0.5 O 3-δ at 550 and 720 Deg C correspondingly and hydrogen pressure of 6.7 gPa [ru

  6. A modeling approach for heat conduction and radiation diffusion in plasma-photon mixture in temperature nonequilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-09

    We present a simple approach for determining ion, electron, and radiation temperatures of heterogeneous plasma-photon mixtures, in which temperatures depend on both material type and morphology of the mixture. The solution technique is composed of solving ion, electron, and radiation energy equations for both mixed and pure phases of each material in zones containing random mixture and solving pure material energy equations in subdivided zones using interface reconstruction. Application of interface reconstruction is determined by the material configuration in the surrounding zones. In subdivided zones, subzonal inter-material energy exchanges are calculated by heat fluxes across the material interfaces. Inter-material energy exchange in zones with random mixtures is modeled using the length scale and contact surface area models. In those zones, inter-zonal heat flux in each material is determined using the volume fractions.

  7. A modeling approach for heat conduction and radiation diffusion in plasma-photon mixture in temperature nonequilibrium

    International Nuclear Information System (INIS)

    Chang, Chong

    2016-01-01

    We present a simple approach for determining ion, electron, and radiation temperatures of heterogeneous plasma-photon mixtures, in which temperatures depend on both material type and morphology of the mixture. The solution technique is composed of solving ion, electron, and radiation energy equations for both mixed and pure phases of each material in zones containing random mixture and solving pure material energy equations in subdivided zones using interface reconstruction. Application of interface reconstruction is determined by the material configuration in the surrounding zones. In subdivided zones, subzonal inter-material energy exchanges are calculated by heat fluxes across the material interfaces. Inter-material energy exchange in zones with random mixtures is modeled using the length scale and contact surface area models. In those zones, inter-zonal heat flux in each material is determined using the volume fractions.

  8. Effect of dual-dielectric hydrogen-diffusion barrier layers on the performance of low-temperature processed transparent InGaZnO thin-film transistors

    Science.gov (United States)

    Tari, Alireza; Wong, William S.

    2018-02-01

    Dual-dielectric SiOx/SiNx thin-film layers were used as back-channel and gate-dielectric barrier layers for bottom-gate InGaZnO (IGZO) thin-film transistors (TFTs). The concentration profiles of hydrogen, indium, gallium, and zinc oxide were analyzed using secondary-ion mass spectroscopy characterization. By implementing an effective H-diffusion barrier, the hydrogen concentration and the creation of H-induced oxygen deficiency (H-Vo complex) defects during the processing of passivated flexible IGZO TFTs were minimized. A bilayer back-channel passivation layer, consisting of electron-beam deposited SiOx on plasma-enhanced chemical vapor-deposition (PECVD) SiNx films, effectively protected the TFT active region from plasma damage and minimized changes in the chemical composition of the semiconductor layer. A dual-dielectric PECVD SiOx/PECVD SiNx gate-dielectric, using SiOx as a barrier layer, also effectively prevented out-diffusion of hydrogen atoms from the PECVD SiNx-gate dielectric to the IGZO channel layer during the device fabrication.

  9. The Effect of Temperature on the Spectral Emission of Plasma Induced in Water

    Directory of Open Access Journals (Sweden)

    B. Charfi

    2013-01-01

    Full Text Available A numerical modeling investigation of the spectral emission of laser-induced plasma in MgCl2-NaCl aqueous solution has been presented. A model based on equilibrium equations has been developed for the computation of the plasma composition and excited levels population. Physical interpretation is presented to comment on firstly the evolution of atomic species number densities, and secondly on the population of the excited species emitting MgII and NaI resonant lines for temperatures ranging from 3000 K to 20 000 K. It is shown that MgII line reach a maximum of population on the issuing level, at norm temperature of 13800 K. Whereas, NaI line presents two norm temperatures, evaluated at 3300 K and 11700 K. This splitting of the NaI norm temperature is explained by the low-ionization potential and weak concentration of the sodium atom in this aqueous solution. Thus, the proposed model can be useful to predict the optimal plasma temperature for the detection of given chemical element, which is not easy to reveal experimentally.

  10. Experimental investigation of ultraviolet laser induced plasma density and temperature evolution in air

    International Nuclear Information System (INIS)

    Thiyagarajan, Magesh; Scharer, John

    2008-01-01

    We present measurements and analysis of laser induced plasma neutral densities and temperatures in dry air by focusing 200 mJ, 10 MW high power, 193 nm ultraviolet ArF (argon fluoride) laser radiation to a 30 μm radius spot size. We examine these properties that result from multiphoton and collisional cascade processes for pressures ranging from 40 Torr to 5 atm. A laser shadowgraphy diagnostic technique is used to obtain the plasma electron temperature just after the shock front and this is compared with optical emission spectroscopic measurements of nitrogen rotational and vibrational temperatures. Two-color laser interferometry is employed to measure time resolved spatial electron and neutral density decay in initial local thermodynamic equilibrium (LTE) and non-LTE conditions. The radiating species and thermodynamic characteristics of the plasma are analyzed by means of optical emission spectroscopy (OES) supported by SPECAIR, a special OES program for air constituent plasmas. Core plasma rotational and vibrational temperatures are obtained from the emission spectra from the N 2 C-B(2+) transitions by matching the experimental spectrum results with the SPECAIR simulation results and the results are compared with the electron temperature just behind the shock wave. The plasma density decay measurements are compared with a simplified electron density decay model that illustrates the dominant three-and two-body recombination terms with good correlation

  11. Chromatin- and temperature-dependent modulation of radiation-induced double-strand breaks.

    Science.gov (United States)

    Elmroth, K; Nygren, J; Stenerlöw, B; Hultborn, R

    2003-10-01

    To investigate the influence of chromatin organization and scavenging capacity in relation to irradiation temperature on the induction of double-strand breaks (DSB) in structures derived from human diploid fibroblasts. Agarose plugs with different chromatin structures (intact cells+/-wortmannin, permeabilized cells with condensed chromatin, nucleoids and DNA) were prepared and irradiated with X-rays at 2 or 37 degrees C and lysed using two different lysis protocols (new ice-cold lysis or standard lysis at 37 degrees C). Induction of DSB was determined by constant-field gel electrophoresis. The dose-modifying factor (DMF(temp)) for irradiation at 37 compared with 2 degrees C was 0.92 in intact cells (i.e. more DSB induced at 2 degrees C), but gradually increased to 1.5 in permeabilized cells, 2.2 in nucleoids and 2.6 in naked DNA, suggesting a role of chromatin organization for temperature modulation of DNA damage. In addition, DMF(temp) was influenced by the presence of 0.1 M DMSO or 30 mM glutathione, but not by post-irradiation temperature. The protective effect of low temperature was correlated to the indirect effects of ionizing radiation and was not dependent on post-irradiation temperature. Reasons for a dose modifying factor <1 in intact cells are discussed.

  12. Significant modulation of the hepatic proteome induced by exposure to low temperature in Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Kazumichi Nagasawa

    2013-08-01

    The African clawed frog, Xenopus laevis, is an ectothermic vertebrate that can survive at low environmental temperatures. To gain insight into the molecular events induced by low body temperature, liver proteins were evaluated at the standard laboratory rearing temperature (22°C, control and a low environmental temperature (5°C, cold exposure. Using nano-flow liquid chromatography coupled with tandem mass spectrometry, we identified 58 proteins that differed in abundance. A subsequent Gene Ontology analysis revealed that the tyrosine and phenylalanine catabolic processes were modulated by cold exposure, which resulted in decreases in hepatic tyrosine and phenylalanine, respectively. Similarly, levels of pyruvate kinase and enolase, which are involved in glycolysis and glycogen synthesis, were also decreased, whereas levels of glycogen phosphorylase, which participates in glycogenolysis, were increased. Therefore, we measured metabolites in the respective pathways and found that levels of hepatic glycogen and glucose were decreased. Although the liver was under oxidative stress because of iron accumulation caused by hepatic erythrocyte destruction, the hepatic NADPH/NADP ratio was not changed. Thus, glycogen is probably utilized mainly for NADPH supply rather than for energy or glucose production. In conclusion, X. laevis responds to low body temperature by modulating its hepatic proteome, which results in altered carbohydrate metabolism.

  13. Low-temperature plasma-induced antiproliferative effects on multi-cellular tumor spheroids

    International Nuclear Information System (INIS)

    Plewa, Joseph-Marie; Yousfi, Mohammed; Eichwald, Olivier; Merbahi, Nofel; Frongia, Céline; Ducommun, Bernard; Lobjois, Valérie

    2014-01-01

    Biomedical applications of low-temperature plasmas are of growing interest, especially in the field of plasma-induced anti-tumor effects. The present work is aimed at investigating the regionalized antiproliferative effects of low-temperature plasmas on a multicellular tumor spheroid (MCTS), a model that mimics the 3D organization and regionalization of a microtumor region. We report that a low-temperature plasma jet, using helium flow in open air, inhibits HCT116 colon carcinoma MCTS growth in a dose-dependent manner. This growth inhibition is associated with the loss of Ki67, and the regionalized accumulation of DNA damage detected by histone H2AX phosphorylation. This regionalized genotoxic effect leads to massive cell death and loss of the MCTS proliferative region. The use of reactive oxygen species (ROS), scavenger N-acetyl cysteine (NAC) and plasma-conditioned media demonstrate that the ROS generated in the media after exposure to low-temperature plasma play a major role in these observed effects. These findings strengthen the interest in the use of MCTS for the evaluation of antiproliferative strategies, and open new perspectives for studies dedicated to demonstrate the potential of low-temperature plasma in cancer therapy

  14. Low-temperature plasma-induced antiproliferative effects on multi-cellular tumor spheroids

    Science.gov (United States)

    Plewa, Joseph-Marie; Yousfi, Mohammed; Frongia, Céline; Eichwald, Olivier; Ducommun, Bernard; Merbahi, Nofel; Lobjois, Valérie

    2014-04-01

    Biomedical applications of low-temperature plasmas are of growing interest, especially in the field of plasma-induced anti-tumor effects. The present work is aimed at investigating the regionalized antiproliferative effects of low-temperature plasmas on a multicellular tumor spheroid (MCTS), a model that mimics the 3D organization and regionalization of a microtumor region. We report that a low-temperature plasma jet, using helium flow in open air, inhibits HCT116 colon carcinoma MCTS growth in a dose-dependent manner. This growth inhibition is associated with the loss of Ki67, and the regionalized accumulation of DNA damage detected by histone H2AX phosphorylation. This regionalized genotoxic effect leads to massive cell death and loss of the MCTS proliferative region. The use of reactive oxygen species (ROS), scavenger N-acetyl cysteine (NAC) and plasma-conditioned media demonstrate that the ROS generated in the media after exposure to low-temperature plasma play a major role in these observed effects. These findings strengthen the interest in the use of MCTS for the evaluation of antiproliferative strategies, and open new perspectives for studies dedicated to demonstrate the potential of low-temperature plasma in cancer therapy.

  15. Optimizing pentacene thin-film transistor performance: Temperature and surface condition induced layer growth modification.

    Science.gov (United States)

    Lassnig, R; Hollerer, M; Striedinger, B; Fian, A; Stadlober, B; Winkler, A

    2015-11-01

    In this work we present in situ electrical and surface analytical, as well as ex situ atomic force microscopy (AFM) studies on temperature and surface condition induced pentacene layer growth modifications, leading to the selection of optimized deposition conditions and entailing performance improvements. We prepared p ++ -silicon/silicon dioxide bottom-gate, gold bottom-contact transistor samples and evaluated the pentacene layer growth for three different surface conditions (sputtered, sputtered + carbon and unsputtered + carbon) at sample temperatures during deposition of 200 K, 300 K and 350 K. The AFM investigations focused on the gold contacts, the silicon dioxide channel region and the highly critical transition area. Evaluations of coverage dependent saturation mobilities, threshold voltages and corresponding AFM analysis were able to confirm that the first 3-4 full monolayers contribute to the majority of charge transport within the channel region. At high temperatures and on sputtered surfaces uniform layer formation in the contact-channel transition area is limited by dewetting, leading to the formation of trenches and the partial development of double layer islands within the channel region instead of full wetting layers. By combining the advantages of an initial high temperature deposition (well-ordered islands in the channel) and a subsequent low temperature deposition (continuous film formation for low contact resistance) we were able to prepare very thin (8 ML) pentacene transistors of comparably high mobility.

  16. An improved oxygen diffusion model to explain the effect of low-temperature baking on high field losses in niobium superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi

    2006-07-01

    Radio-frequency (RF) superconducting cavities made of high purity niobium are widely used to accelerate charged particle beams in particle accelerators. The major limitation to achieve RF field values approaching the theoretical limit for niobium is represented by ''anomalous'' losses which degrade the quality factor of the cavities starting at peak surface magnetic fields of about 100 mT, in absence of field emission. These high field losses are often referred to as ''Q-drop''. It has been observed that the Q-drop is drastically reduced by baking the cavities at 120 C for about 48 h under ultrahigh vacuum. An improved oxygen diffusion model for the niobium-oxide system is proposed to explain the benefit of the low-temperature baking on the Q-drop in niobium superconducting rf cavities. The model shows that baking at 120 C for 48 h allows oxygen to diffuse away from the surface, and therefore increasing the lower critical field towards the value for pure niobium.

  17. Coercivity of the Nd–Fe–B hot-deformed magnets diffusion-processed with low melting temperature glass forming alloys

    Energy Technology Data Exchange (ETDEWEB)

    Seelam, U.M.R. [Elements Strategy Initiative Center for Magnetic Materials (ESICMM), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Liu, Lihua [Elements Strategy Initiative Center for Magnetic Materials (ESICMM), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan); Akiya, T.; Sepehri-Amin, H.; Ohkubo, T. [Elements Strategy Initiative Center for Magnetic Materials (ESICMM), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Sakuma, N.; Yano, M.; Kato, A. [Advanced Material Engineering Division, Toyota Motor Corporation, Susono 410-1193 (Japan); Hono, K., E-mail: kazuhiro.hono@nims.go.jp [Elements Strategy Initiative Center for Magnetic Materials (ESICMM), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan)

    2016-08-15

    Nd- and Pr-based alloys with bulk glass forming ability and low melting temperatures, Nd{sub 60}Al{sub 10}Ni{sub 10}Cu{sub 20} and Pr{sub 60}Al{sub 10}Ni{sub 10}Cu{sub 20}, were used for grain boundary diffusion process to enhance the coercivity of hot-deformed magnets. The coercivity increment was proportional to the weight gain after the diffusion process. For the sample with 64% weight gain, the coercivity increased up to 2.8 T, which is the highest value for bulk Nd–Fe–B magnets that do not contain heavy rare-earth elements, Dy or Tb. Approximately half of the intergranular regions were amorphous and the remaining regions were crystalline. Magnetic isolation of the Nd{sub 2}Fe{sub 14}B grains by the Nd-rich amorphous/crystalline intergranular phases is attributed to the large coercivity enhancement. The coercivity does not change after the crystallization of the intergranular phase, indicating that the coercivity is not influenced by the strain at the interface with the crystalline intergranular phase. - Highlights: • Bulk-glass forming alloys were infiltrated into hot-deformed Nd–Fe–B magnets. • Very high coercivity of 2.8 T was attained without heavy rare-earth elements. • Approximately half of the inter-granular regions were amorphous. • Crystallization of amorphous intergranular phase does not change coercivity.

  18. Effects of elevated atmospheric CO2 concentration and temperature on the soil profile methane distribution and diffusion in rice-wheat rotation system.

    Science.gov (United States)

    Yang, Bo; Chen, Zhaozhi; Zhang, Man; Zhang, Heng; Zhang, Xuhui; Pan, Genxing; Zou, Jianwen; Xiong, Zhengqin

    2015-06-01

    The aim of this experiment was to determine the impacts of climate change on soil profile concentrations and diffusion effluxes of methane in a rice-wheat annual rotation ecosystem in Southeastern China. We initiated a field experiment with four treatments: ambient conditions (CKs), CO2 concentration elevated to ~500 μmol/mol (FACE), temperature elevated by ca. 2°C (T) and combined elevation of CO2 concentration and temperature (FACE+T). A multilevel sampling probe was designed to collect the soil gas at four different depths, namely, 7 cm, 15 cm, 30 cm and 50 cm. Methane concentrations were higher during the rice season and decreased with depth, while lower during the wheat season and increased with depth. Compared to CK, mean methane concentration was increased by 42%, 57% and 71% under the FACE, FACE+T and T treatments, respectively, at the 7 cm depth during the rice season (pCO2 concentration and temperature could significantly increase soil profile methane concentrations and their effluxes from a rice-wheat field annual rotation ecosystem (p<0.05). Copyright © 2015. Published by Elsevier B.V.

  19. Temperature effects on biohydrogen production in a granular sludge bed induced by activated carbon carriers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kuo-Shing [Department of Safety Health and Environmental Engineering, Chung tai Institute of Health Sciences and Technology, Taichung (China); Lin, Ping-Jei [Department of Chemical Engineering, Feng Chia University, Taichung (China); Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, Tainan (China)

    2006-03-15

    Temperature effects on H{sub 2} production performance of a novel carrier-induced granular sludge bed (CIGSB) reactor were investigated. Using sucrose-based synthetic wastewater as the feed, the CIGSB system was operated at 30-45 {sup 0}C to identify the optimal working temperature. It was found that H{sub 2} production was the most efficient at 40 {sup 0}C, especially when it was operated at a low hydraulic retention time (HRT) of 0.5h. The overall maximal hydrogen production rate and yield were 7.66l/h/l and 3.88mol H{sub 2}/mol sucrose, respectively, both of them occurred at 40 {sup 0}C. The biomass content tended to decrease as the temperature was increased, suggesting that granular sludge formation may be inhibited at high temperatures. However, increasing temperature gave better specific H{sub 2} production rate, signifying that the average cellular activity for H{sub 2} production may be enhanced as the temperature was increased. The H{sub 2} yield and gas phase H{sub 2} content did not vary considerably regardless of changes in temperature and HRT. This reflects that the CIGSB was a relatively stable H{sub 2}-producing system. The major soluble products from hydrogen fermentation were butyric acid and acetic acid, accounting for 46+-3% and 28+-2% of total soluble microbial products (SMP), respectively. Thus, the dominant H{sub 2} producers in the mixed culture belonged to acidogenic bacteria that underwent butyrate-type fermentation. (author)

  20. Electric-field-induced modification in Curie temperature of Co monolayer on Pt(111)

    Science.gov (United States)

    Nakamura, Kohji; Oba, Mikito; Akiyama, Toru; Ito, Tomonori; Weinert, Michael

    2015-03-01

    Magnetism induced by an external electric field (E-field) has received much attention as a potential approach for controlling magnetism at the nano-scale with the promise of ultra-low energy power consumption. Here, the E-field-induced modification of the Curie temperature for a prototypical transition-metal thin layer of a Co monolayer on Pt(111) is investigated by first-principles calculations by using the full-potential linearized augmented plane wave method that treats spin-spiral structures in an E-field. An applied E-field modifies the magnon (spin-spiral formation) energies by a few meV, which leads to a modification of the exchange pair interaction parameters within the classical Heisenberg model. With inclusion of the spin-orbit coupling (SOC), the magnetocrystalline anisotropy and the Dzyaloshinskii-Morita interaction are obtained by the second variation SOC method. An E-field-induced modification of the Curie temperature is demonstrated by Monte Carlo simulations, in which a change in the exchange interaction is found to play a key role.

  1. Simultaneous measurement of thermal conductivity, thermal diffusivity and prediction of effective thermal conductivity of porous consolidated igneous rocks at room temperature

    International Nuclear Information System (INIS)

    Aurangzeb; Ali, Zulqurnain; Gurmani, Samia Faiz; Maqsood, Asghari

    2006-01-01

    Thermal conductivity, thermal diffusivity and heat capacity per unit volume of porous consolidated igneous rocks have been measured, simultaneously by Gustafsson's probe at room temperature and normal pressure using air as saturant. Data are presented for eleven samples of dunite, ranging in porosity from 0.130 to 0.665% by volume, taken from Chillas near Gilgit, Pakistan. The porosity and density parameters have been measured using American Society of Testing and Materials (ASTM) standards at ambient conditions. The mineral composition of samples has been analysed from their thin sections (petrography). An empirical model to predict the thermal conductivity of porous consolidated igneous rocks is also proposed. The thermal conductivities are predicted by some of the existing models along with the proposed one. It is observed that the values of effective thermal conductivity predicted by the proposed model are in agreement with the experimental thermal conductivity data within 6%

  2. Development of laser-induced grating spectroscopy for underwater temperature measurement in shock wave focusing regions

    Science.gov (United States)

    Gojani, Ardian B.; Danehy, Paul M.; Alderfer, David W.; Saito, Tsutomu; Takayama, Kazuyoshi

    2004-02-01

    In Extracorporeal Shock Wave Lithotripsy (ESWL) underwater shock wave focusing generates high pressures at very short duration of time inside human body. However, it is not yet clear how high temperatures are enhanced at the spot where a shock wave is focused. The estimation of such dynamic temperature enhancements is critical for the evaluation of tissue damages upon shock loading. For this purpose in the Interdisciplinary Shock Wave Research Center a technique is developed which employs laser induced thermal acoustics or Laser Induced Grating Spectroscopy. Unlike most of gas-dynamic methods of measuring physical quantities this provides a non-invasive one having spatial and temporal resolutions of the order of magnitude of 1.0 mm 3 and 400 ns, respectively. Preliminary experiments in still water demonstrated that this method detected sound speed and hence temperature in water ranging 283 K to 333 K with errors of 0.5%. These results are used to empirically establish the equation of states of water, gelatin or agar cell which will work as alternatives of human tissues.

  3. Experimental and numerical study of temperature fields and flows in flame during the diffusion combustion of certain liquid fuels

    Science.gov (United States)

    Loboda, E. L.; Matvienko, O. V.; Agafontsev, M. V.; Reyno, V. V.

    2017-11-01

    The paper represents experimental studying the pulsations of temperature fields and the structure of a flow in the flame formed during the combustion of certain fuels. Also, the paper provides the mathematical modeling of a flow in the flame formed during the combustion of diesel fuels, as well as the comparison with experimental data and the estimation of the scale for turbulent vortices in flame. The experimental results are in satisfactory agreement with numerical modeling, which confirms the hypothesis of similarity for the pulsations of hydrodynamic and thermodynamic parameters.

  4. Laser induced fluorescence thermometry (LIF-T) as a non-invasive temperature measurement technique for thermal hydraulic experiments

    Energy Technology Data Exchange (ETDEWEB)

    Strack, J.; Leung, K.; Walker, A., E-mail: strackj@mcmaster.ca [McMaster Univ., Hamilton, ON (Canada)

    2014-07-01

    Laser induced fluorescence (LIF) is an experimental technique whereby a scalar field in a fluid system is measured optically from the fluorescence intensity of a tracer dye following excitation by laser light. For laser induced fluorescence thermometry (LIF-T), a temperature sensitive dye is used. Through the use of a temperature sensitive tracer dye, sheet laser optics, optical filters, and photography, a 2D temperature field can be measured non-invasively. An experiment to test the viability of using LIF-T for macroscopic thermal hydraulic experiments was developed and tested. A reference calibration curve to relate fluorescence measurements to temperature is presented. (author)

  5. Diffusion Tensor Imaging of Normal-Appearing White Matter as Biomarker for Radiation-Induced Late Delayed Cognitive Decline

    International Nuclear Information System (INIS)

    Chapman, Christopher H.; Nagesh, Vijaya; Sundgren, Pia C.; Buchtel, Henry; Chenevert, Thomas L.; Junck, Larry; Lawrence, Theodore S.; Tsien, Christina I.; Cao, Yue

    2012-01-01

    Purpose: To determine whether early assessment of cerebral white matter degradation can predict late delayed cognitive decline after radiotherapy (RT). Methods and Materials: Ten patients undergoing conformal fractionated brain RT participated in a prospective diffusion tensor magnetic resonance imaging study. Magnetic resonance imaging studies were acquired before RT, at 3 and 6 weeks during RT, and 10, 30, and 78 weeks after starting RT. The diffusivity variables in the parahippocampal cingulum bundle and temporal lobe white matter were computed. A quality-of-life survey and neurocognitive function tests were administered before and after RT at the magnetic resonance imaging follow-up visits. Results: In both structures, longitudinal diffusivity (λ ‖ ) decreased and perpendicular diffusivity (λ ⊥ ) increased after RT, with early changes correlating to later changes (p ⊥ at 3 weeks, and patients with >50% of cingula volume receiving >12 Gy had a greater increase in λ ⊥ at 3 and 6 weeks (p ‖ (30 weeks, p ‖ changes predicted for post-RT changes in verbal recall scores (3 and 6 weeks, p < .05). The neurocognitive test scores correlated significantly with the quality-of-life survey results. Conclusions: The correlation between early diffusivity changes in the parahippocampal cingulum and the late decline in verbal recall suggests that diffusion tensor imaging might be useful as a biomarker for predicting late delayed cognitive decline.

  6. Thermally induced atomic diffusion at the interface between release agent coating and mould substrate in a glass moulding press

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Jun; Fukase, Yasushi [Toshiba Machine Co., Ltd, Ooka 2068-3, Numazu-Shi, Shizuoka-Ken, 410-8510 (Japan); Yan Jiwang; Zhou Tianfeng; Kuriyagawa, Tsunemoto, E-mail: yanjw@pm.mech.tohoku.ac.jp [Department of Mechanical Systems and Design, Graduate School of Engineering, Tohoku University, Aoba 6-6-01, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2011-06-01

    In a glass moulding press (GMP) for refractive/diffractive hybrid lenses, to improve the service life of nickel-phosphorus (Ni-P) plated moulds, it is necessary to control the diffusion of constituent elements from the mould into the release agent coating. In this study, diffusion phenomena of constituents of Ni-P plating are investigated for two types of release agent coatings, iridium-platinum (Ir-Pt) and iridium-rhenium (Ir-Re), by cross-sectional observation, compositional analysis and stress measurements. The results show that Ni atoms in the plating layer flow from regions of compressive stress to regions of tensile stress. In the case of the Ir-Pt coated mould, the diffusion of Ni is promoted from the grain boundaries between the Ni and Ni{sub 3}P phases in the plating towards the surface of the Ir-Pt coating. However, in the Ir-Re coated mould, the diffusion of Ni is suppressed because the diffusion coefficient of Ni in the Ir-Re alloy is smaller than that in the Ir-Pt alloy, although the stress state is similar in both cases. By controlling the diffusion of Ni atoms, the use of Ir-Re alloy as a release agent coating for Ni-P plated moulds is expected to lead to a high degree of durability.

  7. Diffusion in molybdenum disilicide

    International Nuclear Information System (INIS)

    Salamon, M.; Mehrer, H.

    2005-01-01

    The diffusion behaviour of the high-temperature material molybdenum disilicide (MoSi 2 ) was completely unknown until recently. In this paper we present studies of Mo self-diffusion and compare our present results with our already published studies of Si and Ge diffusion in MoSi 2 . Self-diffusion of molybdenum in monocrystalline MoSi 2 was studied by the radiotracer technique using the radioisotope 99 Mo. Deposition of the radiotracer and serial sectioning after the diffusion anneals to determine the concentration-depth profiles was performed using a sputtering device. Diffusion of Mo is a very slow process. In the entire temperature region investigated (1437 to 2173 K), the 99 Mo diffusivities in both principal directions of the tetragonal MoSi 2 crystals obey Arrhenius laws, where the diffusion perpendicular to the tetragonal axis is faster by two to three orders of magnitude than parallel to it. The activation enthalpies for diffusion perpendicular and parallel to the tetragonal axis are Q perpendicular to = 468 kJ mol -1 (4.85 eV) and Q parallel = 586 kJ mol -1 (6.07 eV), respectively. Diffusion of Si and its homologous element Ge is fast and is mediated by thermal vacancies of the Si sublattice of MoSi 2 . The diffusion of Mo is by several orders of magnitude slower than the diffusion of Si and Ge. This large difference suggests that Si and Mo diffusion are decoupled and that the diffusion of Mo likely takes place via vacancies on the Mo sublattice. (orig.)

  8. Synthesis and characterization of different morphologies of Ni(OH){sub 2} nanocrystals by a gas–liquid diffusion method at room temperature and supercapacitive properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jiangshan, E-mail: zhaojshtxy@163.com; Shi, Zhuo; Zhang, Qiang, E-mail: zhangqiang6299@bit.edu.cn

    2016-05-25

    In this work, Ni(OH){sub 2} nanocrystals have been synthesized via a gas–liquid diffusion method at room temperature in the absence of any template or organic surfactant. The structure and morphology of as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), BET specific surface area and pore size distribution analyzer. It can be observed that the crystal phase, morphology and specific surface area of as-prepared samples can be controlled by altering the concentration of NiSO{sub 4} solution and reaction time. The electrochemical supercapacitive properties of Ni(OH){sub 2} nanostructures prepared at different concentration of NiSO{sub 4} solution have been investigated by cyclic voltammetry and chronopotentiometry. Chronopotentiometry test results showed that Ni(OH){sub 2} samples prepared with 0.1 M NiSO{sub 4} solution exhibited a highest specific capacitance of 1799 F g{sup −1} at a current density of 4 A g{sup −1} within the potential range of 0–0.5 V and the Ni(OH){sub 2} samples retain 92.8% of the initial capacitance even after 2000 continuous charge–discharge cycles. The higher capacitance and excellent recycle ability indicate that Ni(OH){sub 2} crystals prepared by the gas–liquid diffusion method are suitable for supercapacitor materials. - Highlights: • Different morphologies of Ni(OH){sub 2} nanocrystals were synthesized via a gas–liquid diffusion method at room temperature. • The possible formation mechanism of the Ni(OH){sub 2} nanocrystals was discussed. • The evolution of the different morphologies of Ni(OH){sub 2} nanostructures is due to the increase of precursor concentrations. • The microsphere-like Ni(OH){sub 2} prepared at a concentration of 0.1 M NiSO{sub 4} exhibits the highest specific capacitance of 1799 F g{sup −1}. • The microsphere-like Ni(OH){sub 2} shows 92.8% capacitance retention

  9. Discrimination of thermal diffusivity

    NARCIS (Netherlands)

    Bergmann Tiest, W.M.; Kappers, A.M.L.

    2009-01-01

    Materials such as wood or metal which are at equal temperatures are perceived to be of different ‘coldness’ due to differences in thermal properties, such as the thermal diffusivity. The thermal diffusivity of a material is a parameter that controls the rate with which heat is extracted from the

  10. The effects of strain-induced martensitic transformation and temperature on impact fatigue crack propagation behavior of SUS 304 at low temperature

    International Nuclear Information System (INIS)

    Murakami, Ri-ichi; Akizono, Koichi; Kusukawa, Kazuhiro.

    1988-01-01

    The fatigue crack propagation behavior in fatigue impact at room temperature and 103 K was investigated by means of fracture mechanics, X-ray diffraction analysis and fractography for an austenitic stainless steel, SUS 304. The crack growth rate in fatigue impact decreased with decreasing temperature. The crack growth rate at room temperature was scarcely influenced by the microstructure, while at low temperature it was markedly influenced by the microstructure. The effects of microstructure and temperature on the crack growth rate were closely related to the strain-induced martensitic transformation. The martensitic transformation was influenced by the microstructure, the temperature, the fracture morphology and the stress intensity level and resulted in a decrease in crack growth rate with increasing crack opening level. (author)

  11. Surface induces different crystal structures in a room temperature switchable spin crossover compound.

    Science.gov (United States)

    Gentili, Denis; Liscio, Fabiola; Demitri, Nicola; Schäfer, Bernhard; Borgatti, Francesco; Torelli, Piero; Gobaut, Benoit; Panaccione, Giancarlo; Rossi, Giorgio; Degli Esposti, Alessandra; Gazzano, Massimo; Milita, Silvia; Bergenti, Ilaria; Ruani, Giampiero; Šalitroš, Ivan; Ruben, Mario; Cavallini, Massimiliano

    2016-01-07

    We investigated the influence of surfaces in the formation of different crystal structures of a spin crossover compound, namely [Fe(L)2] (LH: (2-(pyrazol-1-yl)-6-(1H-tetrazol-5-yl)pyridine), which is a neutral compound thermally switchable around room temperature. We observed that the surface induces the formation of two different crystal structures, which exhibit opposite spin transitions, i.e. on heating them up to the transition temperature, one polymorph switches from high spin to low spin and the second polymorph switches irreversibly from low spin to high spin. We attributed this inversion to the presence of water molecules H-bonded to the complex tetrazolyl moieties in the crystals. Thin deposits were investigated by means of polarized optical microscopy, atomic force microscopy, X-ray diffraction, X-ray absorption spectroscopy and micro Raman spectroscopy; moreover the analysis of the Raman spectra and the interpretation of spin inversion were supported by DFT calculations.

  12. The role of inelastic processes in the temperature dependence of hall induced resistance oscillations

    International Nuclear Information System (INIS)

    Kunold, Alejandro; Torres, Manuel

    2013-01-01

    We develop a model of magnetoresistance oscillations induced by the Hall field in order to study the temperature dependence observed in recent experiments in two dimensional electron systems. The model is based on the solution of the von Neumann equation incorporating the exact dynamics of two-dimensional damped electrons in the presence of arbitrarily strong magnetic and dc electric fields, while the effects of randomly distributed neutral and charged impurities are perturbatively added. Both the effects of elastic impurity scattering as well as those related to inelastic processes play an important role. The theoretical predictions correctly reproduce the experimentally observed oscillations amplitude, provided that the quantum inelastic scattering rate obeys a T 2 temperature dependence, consistent with electron–electron interaction effects

  13. Stress-induced phase transformation and room temperature aging in Ti-Nb-Fe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cai, S.; Schaffer, J.E. [Fort Wayne Metals Research Products Corp, 9609 Ardmore Ave., Fort Wayne, IN 46809 (United States); Ren, Y. [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439 (United States)

    2017-01-05

    Room temperature deformation behavior of Ti-17Nb-1Fe and Ti-17Nb-2Fe alloys was studied by synchrotron X-ray diffraction and tensile testing. It was found that, after proper heat treatment, both alloys were able to recover a deformation strain of above 3.5% due to the Stress-induced Martensite (SIM) phase transformation. Higher Fe content increased the beta phase stability and onset stress for SIM transformation. A strong {110}{sub β} texture was produced in Ti-17Nb-2Fe compared to the {210}{sub β} texture that was observed in Ti-17Nb-1Fe. Room temperature aging was observed in both alloys, where the formation of the omega phase increased the yield strength (also SIM onset stress), and decreased the ductility and strain recovery. Other metastable beta Ti alloys may show a similar aging response and this should draw the attention of materials design engineers.

  14. Temperature-induced changes in neuromuscular function: central and peripheral mechanisms.

    Science.gov (United States)

    Goodman, D; Hancock, P A; Runnings, D W; Brown, S L

    1984-10-01

    Three series of experimental tests were conducted on subjects under both elevated and depressed thermal conditions. Tripartite series consisted of whole-body immersion excepting the head, whole-body immersion excepting the head and response limb, and immersion of the discrete-response limb. Measures of physiological and behavioural responses were made at sequential .4 degrees C changes during whole-body immersions and approximately 5 degrees C changes of water temperature during the immersion of a limb only. Results suggested that velocity of nerve conduction decreased with thermal depression. Premotor, motor, simple, and choice reaction times varied differentially as a function of the hot and cold conditions. Implications of these differential effects on neuromuscular function are examined with respect to person-machine performance in artificially induced or naturally occurring extremes of ambient temperature.

  15. Temperature effects on drift of suspended single-domain particles induced by the Magnus force

    Science.gov (United States)

    Denisov, S. I.; Lyutyy, T. V.; Reva, V. V.; Yermolenko, A. S.

    2018-03-01

    We study the temperature dependence of the drift velocity of single-domain ferromagnetic particles induced by the Magnus force in a dilute suspension. A set of stochastic equations describing the translational and rotational dynamics of particles is derived, and the particle drift velocity that depends on components of the average particle magnetization is introduced. The Fokker-Planck equation for the probability density of magnetization orientations is solved analytically in the limit of strong thermal fluctuations for both the planar rotor and general models. Using these solutions, we calculate the drift velocity and show that the out-of-plane fluctuations of magnetization, which are not accounted for in the planar rotor model, play an important role. In the general case of arbitrary fluctuations, we investigate the temperature dependence of the drift velocity by numerically simulating a set of effective stochastic differential equations for the magnetization dynamics.

  16. Cryotherapy-Induced Persistent Vasoconstriction After Cutaneous Cooling: Hysteresis Between Skin Temperature and Blood Perfusion

    Science.gov (United States)

    Khoshnevis, Sepideh; Craik, Natalie K.; Matthew Brothers, R.; Diller, Kenneth R.

    2016-01-01

    The goal of this study was to investigate the persistence of cold-induced vasoconstriction following cessation of active skin-surface cooling. This study demonstrates a hysteresis effect that develops between skin temperature and blood perfusion during the cooling and subsequent rewarming period. An Arctic Ice cryotherapy unit (CTU) was applied to the knee region of six healthy subjects for 60 min of active cooling followed by 120 min of passive rewarming. Multiple laser Doppler flowmetry perfusion probes were used to measure skin blood flow (expressed as cutaneous vascular conductance (CVC)). Skin surface cooling produced a significant reduction in CVC (P cryotherapy. PMID:26632263

  17. A temperature induced ferrocene–ferrocenium interconversion in a ferrocene functionalized μ3-O chromium carboxylate

    International Nuclear Information System (INIS)

    Mereacre, Valeriu; Schlageter, Martin; Powell, Annie K.

    2015-01-01

    The infrared spectra and 57 Fe Mössbauer measurements of a ferrocenecarboxylate functionalized {Cr 3 O} complex in solid state are reported. It was established that conjugation of ferrocene Cp orbitals with the π orbitals of the adjacent carboxylic group stabilizes the trapped mixed-valence state leading to an intriguing coexistence of ferrocene and ferrocenium species giving rise to a new type of compound showing valence tautomerism in the solid state. - Highlights: • A stabilized ferrocene trapped mixed-valence state is reported. • New type of compound showing valence tautomerism in solid state. • A thermally induced electron transfer and a mixed-valence state near room temperature

  18. Sulfation diffusion model for SO{sub 2} capture on the T-T sorbent at moderate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.R.; Yang, L.Z.; You, C.F.; Qi, H.Y. [Tsinghua University, Beijing (China)

    2009-07-15

    A sulfation model was developed for dry flue gas desulfurization (FGD) at moderate temperatures to describe the reaction characteristics of the T-T sorbent clusters and the fine CaO particles that fall off the sorbent grains in a circulating fluidized bed (CFB) reactor. The cluster model describes the calcium conversion and reaction rate for various size sorbent clusters. The sulfation reaction is first order with respect to the SO{sub 2} concentration above 973 K. The calcium conversion and reaction rate for the CaO particles were obtained by extrapolation. In the model for CaO particle, the reaction rate is linearly related to the calcium conversion and the SO{sub 2} concentration in the rapid reaction stage and linearly related only with the calcium conversion after the product layer forms. The sulfation model accurately describes the sulfation of the T-T sorbent flowing through a CFB reactor.

  19. Influence of rearing water temperature on induced gonadal development and spawning behaviour of tropical green mussel, Perna viridis

    Directory of Open Access Journals (Sweden)

    Parathattil Rathan Sreedevi

    2014-09-01

    Conclusion: According to the present study temperature induced spawning method is very simple and cost effective and can accelerate the production of mussel seeds in hatchery units and further stock improvement through genetic manipulation.

  20. Loop Heat Pipe Temperature Oscillation Induced by Gravity Assist and Reservoir Heating

    Science.gov (United States)

    Ku, Jentung; Garrison, Matt; Patel, Deepak; Robinson, Frank; Ottenstein, Laura

    2015-01-01

    The Laser Thermal Control System (LCTS) for the Advanced Topographic Laser Altimeter System (ATLAS) to be installed on NASA's Ice, Cloud, and Land Elevation Satellite (ICESat-2) consists of a constant conductance heat pipe and a loop heat pipe (LHP) with an associated radiator. During the recent thermal vacuum testing of the LTCS where the LHP condenser/radiator was placed in a vertical position above the evaporator and reservoir, it was found that the LHP reservoir control heater power requirement was much higher than the analytical model had predicted. Even with the control heater turned on continuously at its full power, the reservoir could not be maintained at its desired set point temperature. An investigation of the LHP behaviors found that the root cause of the problem was fluid flow and reservoir temperature oscillations, which led to persistent alternate forward and reversed flow along the liquid line and an imbalance between the vapor mass flow rate in the vapor line and liquid mass flow rate in the liquid line. The flow and temperature oscillations were caused by an interaction between gravity and reservoir heating, and were exacerbated by the large thermal mass of the instrument simulator which modulated the net heat load to the evaporator, and the vertical radiator/condenser which induced a variable gravitational pressure head. Furthermore, causes and effects of the contributing factors to flow and temperature oscillations intermingled.