WorldWideScience

Sample records for temperature dependent core

  1. Core Outlet Temperature Study

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A. [Argonne National Laboratory (ANL), Argonne, IL (United States); Hoffman, E. [Argonne National Laboratory (ANL), Argonne, IL (United States); Majumdar, S. [Argonne National Laboratory (ANL), Argonne, IL (United States)

    2008-07-28

    It is a known fact that the power conversion plant efficiency increases with elevation of the heat addition temperature. The higher efficiency means better utilization of the available resources such that higher output in terms of electricity production can be achieved for the same size and power of the reactor core or, alternatively, a lower power core could be used to produce the same electrical output. Since any nuclear power plant, such as the Advanced Burner Reactor, is ultimately built to produce electricity, a higher electrical output is always desirable. However, the benefits of the higher efficiency and electricity production usually come at a price. Both the benefits and the disadvantages of higher reactor outlet temperatures are analyzed in this work.

  2. Temperature dependence of oxygen isotope fractionation in coccolith calcite: A culture and core top calibration of the genus Calcidiscus

    Science.gov (United States)

    Candelier, Yaël; Minoletti, Fabrice; Probert, Ian; Hermoso, Michaël

    2013-01-01

    Reconstructions of seawater temperature based on measurement of oxygen isotopes in carbonates mostly derive from analyses of bulk sediment samples or manually picked foraminifera. The temperature dependence of 18O fractionation in biogenic calcite was first established in the 1950s and the objective of the present study is to re-evaluate this temperature dependence in coccolith calcite with a view to developing a robust proxy for reconstructing "vital effect"-free δ18O values. Coccoliths, the micron-sized calcite scales produced by haptophyte algae that inhabit surface mixed-layer waters, are a dominant component of pelagic sediments. Despite their small size, recent methodological developments allow species-specific separation (and thus isotopic analysis) of coccoliths from bulk sediments. This is especially the case for Calcidiscus spp. coccoliths that are relatively easy to separate out from other sedimentary carbonate grains including other coccolith taxa. Three strains of coccolithophores belonging to the genus Calcidiscus and characterised by distinct cell and coccolith diameters were grown in the laboratory under controlled temperature conditions over a range from 15 to 26 °C. The linear relationship that relates 18O fractionation to the temperature of calcification is here calibrated by the equation: T [°C] = -5.83 × (δ18OCalcidiscus - δ18Omedium) + 4.83 (r = 0.98). The slope of the regression is offset of ˜-1.1‰ from that of equilibrium calcite. This offset corresponds to the physiologically induced isotopic effect or "vital effect". The direction of fractionation towards light isotopic values is coherent with previous reports, but the intensity of fractionation in our dilute batch cultures was significantly closer to equilibrium compared to previously reported offset values. No significant isotopic difference was found between the three Calcidiscus coccolithophores, ruling out a control of the cell geometry on oxygen isotope fractionation within

  3. Physical exercise-induced changes in the core body temperature of mice depend more on ambient temperature than on exercise protocol or intensity

    Science.gov (United States)

    Wanner, Samuel Penna; Costa, Kátia Anunciação; Soares, Anne Danieli Nascimento; Cardoso, Valbert Nascimento; Coimbra, Cândido Celso

    2014-08-01

    The mechanisms underlying physical exercise-induced hyperthermia may be species specific. Therefore, the present study aimed to investigate the effects of exercise intensity and ambient temperature on the core body temperature ( T core) of running mice, which provide an important experimental model for advancing the understanding of thermal physiology. We evaluated the influence of different protocols (constant- or incremental-speed exercises), treadmill speeds and ambient temperatures ( T a) on the magnitude of exercise-induced hyperthermia. To measure T core, a telemetric sensor was implanted in the abdominal cavity of male adult Swiss mice under anesthesia. After recovering from the surgery, the animals were familiarized to running on a treadmill and then subjected to the different running protocols and speeds at two T a: 24 °C or 34 °C. All of the experimental trials resulted in marked increases in T core. As expected, the higher-temperature environment increased the magnitude of running-induced hyperthermia. For example, during incremental exercise at 34 °C, the maximal T core achieved was increased by 1.2 °C relative to the value reached at 24 °C. However, at the same T a, neither treadmill speed nor exercise protocol altered the magnitude of exercise-induced hyperthermia. We conclude that T core of running mice is influenced greatly by T a, but not by the exercise protocols or intensities examined in the present report. These findings suggest that the magnitude of hyperthermia in running mice may be regulated centrally, independently of exercise intensity.

  4. Low-temperature CVD synthesis of patterned core-shell VO2@ZnO nanotetrapods and enhanced temperature-dependent field-emission properties

    Science.gov (United States)

    Yin, Haihong; Yu, Ke; Song, Changqing; Wang, Zhiliang; Zhu, Ziqiang

    2014-09-01

    VO2 nanostructures are attractive materials because of their reversible metal-insulator transition (MIT) and wide applications in devices. When they are used as field emitters, a new type of temperature-controlled field emission device can be fabricated. Vapor transport methods used to synthesize traditional VO2 nanostructures are energy-intensive, low yield, and produce simple morphology (quasi-1D) that exhibits substrate clamping; thus they are not suitable for field emission applications. To overcome these limitations, ZnO nanotetrapods were used as templates, and patterned core-shell VO2@ZnO nanotetrapods were successfully grown on an ITO/glass substrate via a low-temperature CVD synthesis. SEM, TEM, EDX, XPS analyses and X-ray diffraction revealed that the cores and shells of these nanotetrapods were single crystal wurtzite-type ZnO and polycrystalline VO2, respectively. The VO2@ZnO nanotetrapods show strongly MIT-related FE properties, the emission current density at low temperature is significantly enhanced in comparison with pure VO2 nanostructures, and the emission current density increased by about 20 times as the ambient temperature increased from 25 to 105 °C at a fixed field of 5 V μm-1. Although the VO2@ZnO nanotetrapods show a worse FE performance at low temperatures compared with pure ZnO nanotetrapods, the FE performance was substantially improved at high temperatures, which was attributed to the MIT-related band bending near the interface and the abrupt resistance change across the MIT.

  5. Temperature Dependence of Light-Induced Absorbance Changes Associated with Chlorophyll Photooxidation in Manganese-Depleted Core Complexes of Photosystem II.

    Science.gov (United States)

    Zabelin, A A; Shkuropatova, V A; Shkuropatov, A Ya; Shuvalov, V A

    2015-10-01

    Mid-infrared (4500-1150 cm(-1)) absorbance changes induced by continuous illumination of Mn-depleted core complexes of photosystem II (PSII) from spinach in the presence of exogenous electron acceptors (potassium ferricyanide and silicomolybdate) were studied by FTIR difference spectroscopy in the temperature range 100-265 K. The FTIR difference spectrum for photooxidation of the chlorophyll dimer P680 was determined from the set of signals associated with oxidation of secondary electron donors (β-carotene, chlorophyll) and reduction of the primary quinone QA. On the basis of analysis of the temperature dependence of the P680(+)/P680 FTIR spectrum, it was concluded that frequencies of 13(1)-keto-C=O stretching modes of neutral chlorophyll molecules PD1 and PD2, which constitute P680, are similar to each other, being located at ~1700 cm(-1). This together with considerable difference between the stretching mode frequencies of keto groups of PD1(+) and PD2(+) cations (1724 and 1709 cm(-1), respectively) is in agreement with a literature model (Okubo et al. (2007) Biochemistry, 46, 4390-4397) suggesting that the positive charge in the P680(+) dimer is mainly localized on one of the two chlorophyll molecules. A partial delocalization of the charge between the PD1 and PD2 molecules in P680(+) is supported by the presence of a characteristic electronic intervalence band at ~3000 cm(-1). It is shown that a bleaching band at 1680 cm(-1) in the P680(+)/P680 FTIR spectrum does not belong to P680. A possible origin of this band is discussed, taking into account the temperature dependence (100-265 K) of light-induced absorbance changes of PSII core complexes in the visible spectral region from 620 to 720 nm.

  6. Core temperature affects scalp skin temperature during scalp cooling.

    Science.gov (United States)

    Daanen, Hein A M; Peerbooms, Mijke; van den Hurk, Corina J G; van Os, Bernadet; Levels, Koen; Teunissen, Lennart P J; Breed, Wim P M

    2015-08-01

    The efficacy of hair loss prevention by scalp cooling to prevent chemotherapy induced hair loss has been shown to be related to scalp skin temperature. Scalp skin temperature, however, is dependent not only on local cooling but also on the thermal status of the body. This study was conducted to investigate the effect of body temperature on scalp skin temperature. We conducted experiments in which 13 healthy subjects consumed ice slurry to lower body temperature for 15 minutes after the start of scalp cooling and then performed two 12-minute cycle exercise sessions to increase body core temperature. Esophageal temperature (Tes ), rectal temperature (Tre ), mean skin temperature (eight locations, Tskin ), and mean scalp temperature (five locations, Tscalp ) were recorded. During the initial 10 minutes of scalp cooling, Tscalp decreased by >15 °C, whereas Tes decreased by 0.2 °C. After ice slurry ingestion, Tes , Tre , and Tskin were 35.8, 36.5, and 31.3 °C, respectively, and increased after exercise to 36.3, 37.3, and 33.0 °C, respectively. Tscalp was significantly correlated to Tes (r = 0.39, P scalp cooling contributes to the decrease in scalp temperature and may improve the prevention of hair loss. This may be useful if the desired decrease of scalp temperature cannot be obtained by scalp cooling systems. © 2015 The International Society of Dermatology.

  7. Validation of Core Temperature Estimation Algorithm

    Science.gov (United States)

    2016-01-20

    and risk of heat injury. An algorithm for estimating core temperature based on heart rate has been developed by others in order to avoid standard... risk of heat injury. Accepted standards for measuring core temperature include probes in the pulmonary artery, rectum, or esophagus, and an ingestible...temperature estimation from heart rate for first responders wearing different levels of personal protective equipment," Ergonomics , 2015. 8. J.M

  8. Noninvasive Measurement of Core Temperature. Phase 1.

    Science.gov (United States)

    Topical Testing proposes the development of a noninvasive device to monitor core temperature by sampling the maximal temperature of the respiratory...air during expiration. Phase I development used a fast rise-time thermocouple to monitor the temperature of the expired air of an anesthetized animal

  9. Measurements of temperature dependence of 'localized susceptibility'

    CERN Document Server

    Shiozawa, H; Ishii, H; Takayama, Y; Obu, K; Muro, T; Saitoh, Y; Matsuda, T D; Sugawara, H; Sato, H

    2003-01-01

    The magnetic susceptibility of some rare-earth compounds is estimated by measuring magnetic circular dichroism (MCD) of rare-earth 3d-4f absorption spectra. The temperature dependence of the magnetic susceptibility obtained by the MCD measurement is remarkably different from the bulk susceptibility in most samples, which is attributed to the strong site selectivity of the core MCD measurement.

  10. Temperature dependence of surface nanobubbles

    NARCIS (Netherlands)

    Berkelaar, R.P.; Seddon, James Richard Thorley; Zandvliet, Henricus J.W.; Lohse, Detlef

    2012-01-01

    The temperature dependence of nanobubbles was investigated experimentally using atomic force microscopy. By scanning the same area of the surface at temperatures from 51 °C to 25 °C it was possible to track geometrical changes of individual nanobubbles as the temperature was decreased.

  11. Dependence of Core and Extended Flux on Core Dominance ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Based on two extragalactic radio source samples, the core dominance parameter is calculated, and the correlations between the core/extended flux density and core dominance parameter are investigated. When the core dominance parameter is lower than unity, it is linearly correlated with the core flux ...

  12. Dependence of Core and Extended Flux on Core Dominance ...

    Indian Academy of Sciences (India)

    Abstract. Based on two extragalactic radio source samples, the core dominance parameter is calculated, and the correlations between the core/extended flux density and core dominance parameter are investi- gated. When the core dominance parameter is lower than unity, it is linearly correlated with the core flux density, ...

  13. Validation of Core Temperature Estimation Algorithm

    Science.gov (United States)

    2016-01-29

    a constant heart rate until the CT estimate converges, with convergence defined as the time for CT to fall within 0.5% of the final temperature...range of error within which 95% of the estimated errors should fall assuming a normal distribution, which is consistent with the error distribution...and B.C. Ruby , "Core-Temperature Sensor Ingestion Timing and Measurement Variability," Jounral of Athletic Training, vol. 45, no. 6, pp. 594–600

  14. Core temperature affects scalp skin temperature during scalp cooling

    NARCIS (Netherlands)

    Daanen, H.A.M.; Peerbooms, M.; van den Hurk, C.J.G.; van Os, B.; Levels, K.; Teunissen, L.P.J.; Breed, W.P.M.

    2015-01-01

    Background: The efficacy of hair loss prevention by scalp cooling to prevent chemotherapy induced hair loss has been shown to be related to scalp skin temperature. Scalp skin temperature, however, is dependent not only on local cooling but also on the thermal status of the body. Objectives: This

  15. The circadian rhythm of core body temperature (Part I: The use of modern telemetry systems to monitor core body temperature variability

    Directory of Open Access Journals (Sweden)

    Słomko Joanna

    2016-06-01

    Full Text Available The best known daily rhythms in humans include: the sleep-wake rhythm, the circadian core body temperature variability, daily fluctuations in arterial blood pressure and heartbeat frequency, and daily changes in hormone secretion: e.g. melatonin, cortisol, growth hormone, prolactin. The core body temperature in humans has a characteristic sinusoidal course, with the maximum value occurring between 3:00-5:00 pm and the minimum between 3:00-5:00 am. Analysis of literature indicates that the obtained results concerning core body temperature are to a large extent influenced by the type of method applied in the measurement. Depending on test protocols, we may apply various methodologies to measuring core body temperature. One of the newest methods of measuring internal and external body temperature consists in the utilisation of remote temperature sensors transmitting the obtained value via a radio signal. The advantages of this method includes the ability to perform: continuous core temperature measurement, observe dynamic changes in core body temperature occurring in circadian rhythm and the repeatability and credibility of the obtained results, which is presented in numerous scientific reports.

  16. The effect of core configuration on temperature coefficient of reactivity in IRR-1

    Energy Technology Data Exchange (ETDEWEB)

    Bettan, M.; Silverman, I.; Shapira, M.; Nagler, A. [Soreq Nuclear Research Center, Yavne (Israel)

    1997-08-01

    Experiments designed to measure the effect of coolant moderator temperature on core reactivity in an HEU swimming pool type reactor were performed. The moderator temperature coefficient of reactivity ({alpha}{sub {omega}}) was obtained and found to be different in two core loadings. The measured {alpha}{sub {omega}} of one core loading was {minus}13 pcm/{degrees}C at the temperature range of 23-30{degrees}C. This value of {alpha}{sub {omega}} is comparable to the data published by the IAEA. The {alpha}{sub {omega}} measured in the second core loading was found to be {minus}8 pcm/{degrees}C at the same temperature range. Another phenomenon considered in this study is core behavior during reactivity insertion transient. The results were compared to a core simulation using the Dynamic Simulator for Nuclear Power Plants. It was found that in the second core loading factors other than the moderator temperature influence the core reactivity more than expected. These effects proved to be extremely dependent on core configuration and may in certain core loadings render the reactor`s reactivity coefficient undesirable.

  17. Temperature dependence of postmortem MR quantification for soft tissue discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Zech, Wolf-Dieter; Schwendener, Nicole; Jackowski, Christian [University of Bern, From the Institute of Forensic Medicine, Bern (Switzerland); Persson, Anders; Warntjes, Marcel J. [University of Linkoeping, The Center for Medical Image Science and Visualization (CMIV), Linkoeping (Sweden)

    2015-08-15

    To investigate and correct the temperature dependence of postmortem MR quantification used for soft tissue characterization and differentiation in thoraco-abdominal organs. Thirty-five postmortem short axis cardiac 3-T MR examinations were quantified using a quantification sequence. Liver, spleen, left ventricular myocardium, pectoralis muscle and subcutaneous fat were analysed in cardiac short axis images to obtain mean T1, T2 and PD tissue values. The core body temperature was measured using a rectally inserted thermometer. The tissue-specific quantitative values were related to the body core temperature. Equations to correct for temperature differences were generated. In a 3D plot comprising the combined data of T1, T2 and PD, different organs/tissues could be well differentiated from each other. The quantitative values were influenced by the temperature. T1 in particular exhibited strong temperature dependence. The correction of quantitative values to a temperature of 37 C resulted in better tissue discrimination. Postmortem MR quantification is feasible for soft tissue discrimination and characterization of thoraco-abdominal organs. This provides a base for computer-aided diagnosis and detection of tissue lesions. The temperature dependence of the T1 values challenges postmortem MR quantification. Equations to correct for the temperature dependence are provided. (orig.)

  18. Hanford coring bit temperature monitor development testing results report

    Energy Technology Data Exchange (ETDEWEB)

    Rey, D.

    1995-05-01

    Instrumentation which directly monitors the temperature of a coring bit used to retrieve core samples of high level nuclear waste stored in tanks at Hanford was developed at Sandia National Laboratories. Monitoring the temperature of the coring bit is desired to enhance the safety of the coring operations. A unique application of mature technologies was used to accomplish the measurement. This report documents the results of development testing performed at Sandia to assure the instrumentation will withstand the severe environments present in the waste tanks.

  19. Wavelength-Dependence of Inter-Core Crosstalk in Homogeneous Multi-Core Fibers

    DEFF Research Database (Denmark)

    Ye, Feihong; Saitoh, Kunimasa; Takenaga, Katsuhiro

    2016-01-01

    The wavelength dependence of inter-core crosstalk in homogeneous multi-core fibers (MCFs) is investigated, and the corresponding analytical expressions are derived. The derived analytical expressions can be used to determine the crosstalk at any wavelength necessary for designing future MCF wavel...

  20. TEMPERATURE DEPENDENCE OF THE THERMAL ...

    African Journals Online (AJOL)

    Thermal conductivity values, in the temperature range 300 – 1200 K, have been measured in air and at atmospheric pressure for a Kenyan kaolinite refractory with 0% - 50% grog proportions. The experimental thermal conductivity values were then compared with those calculated using the Zumbrunnen et al [1] and the ...

  1. Cross-sectional area of the murine aorta linearly increases with increasing core body temperature.

    Science.gov (United States)

    Crouch, A Colleen; Manders, Adam B; Cao, Amos A; Scheven, Ulrich M; Greve, Joan M

    2017-11-06

    The cardiovascular (CV) system plays a vital role in thermoregulation. To date, the response of core vasculature to increasing core temperature has not been adequately studied in vivo. Our objective was to non-invasively quantify the arterial response in murine models due to increases in body temperature, with a focus on core vessels of the torso and investigate whether responses were dependent on sex or age. Male and female, adult and aged mice were anaesthetised and underwent magnetic resonance imaging (MRI). Data were acquired from the circle of Willis (CoW), heart, infrarenal aorta and peripheral arteries at core temperatures of 35, 36, 37 and 38 °C (±0.2 °C). Vessels in the CoW did not change. Ejection fraction decreased and cardiac output (CO) increased with increasing temperature in adult female mice. Cross-sectional area of the aorta increased significantly and linearly with temperature for all groups, but at a diminished rate for aged animals (p core temperature are biologically important because they may affect conductive and convective heat transfer. Leveraging non-invasive methodology to quantify sex and age dependent vascular responses due to increasing core temperature could be combined with bioheat modelling in order to improve understanding of thermoregulation.

  2. Modelling guidelines for core exit temperature simulations with system codes

    Energy Technology Data Exchange (ETDEWEB)

    Freixa, J., E-mail: jordi.freixa-terradas@upc.edu [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain); Paul Scherrer Institut (PSI), 5232 Villigen (Switzerland); Martínez-Quiroga, V., E-mail: victor.martinez@nortuen.com [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain); Zerkak, O., E-mail: omar.zerkak@psi.ch [Paul Scherrer Institut (PSI), 5232 Villigen (Switzerland); Reventós, F., E-mail: francesc.reventos@upc.edu [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain)

    2015-05-15

    Highlights: • Core exit temperature is used in PWRs as an indication of core heat up. • Modelling guidelines of CET response with system codes. • Modelling of heat transfer processes in the core and UP regions. - Abstract: Core exit temperature (CET) measurements play an important role in the sequence of actions under accidental conditions in pressurized water reactors (PWR). Given the difficulties in placing measurements in the core region, CET readings are used as criterion for the initiation of accident management (AM) procedures because they can indicate a core heat up scenario. However, the CET responses have some limitation in detecting inadequate core cooling and core uncovery simply because the measurement is not placed inside the core. Therefore, it is of main importance in the field of nuclear safety for PWR power plants to assess the capabilities of system codes for simulating the relation between the CET and the peak cladding temperature (PCT). The work presented in this paper intends to address this open question by making use of experimental work at integral test facilities (ITF) where experiments related to the evolution of the CET and the PCT during transient conditions have been carried out. In particular, simulations of two experiments performed at the ROSA/LSTF and PKL facilities are presented. The two experiments are part of a counterpart exercise between the OECD/NEA ROSA-2 and OECD/NEA PKL-2 projects. The simulations are used to derive guidelines in how to correctly reproduce the CET response during a core heat up scenario. Three aspects have been identified to be of main importance: (1) the need for a 3-dimensional representation of the core and Upper Plenum (UP) regions in order to model the heterogeneity of the power zones and axial areas, (2) the detailed representation of the active and passive heat structures, and (3) the use of simulated thermocouples instead of steam temperatures to represent the CET readings.

  3. Systematic Features and Progenitor Dependence of Core-Collapse Supernovae

    Science.gov (United States)

    Nakamura, Ko; Takiwaki, Tomoya; Kuroda, Takami; Kotake, Kei

    We present our latest results of two-dimensional core-collapse supernova simulations for about 400 progenitors. Our self-consistent supernova models reveal the systematic features of core-collapse supernova properties such as neutrino luminosity and energy spectrum, explosion energy, remnant mass, and yield of radioactive 56Ni. We find that these explosion characteristics tend to show a monotonic increase as a function of mass accretion rate onto a shock. The accretion rate depends on the structure of the progenitor core and its envelope, which is well described by the compactness parameter.

  4. Skyrmion core size dependence as a function of the perpendicular anisotropy and radius in magnetic nanodots

    Energy Technology Data Exchange (ETDEWEB)

    Castro, M.A.; Allende, S., E-mail: sebastian.allende@usach.cl

    2016-11-01

    A detailed analytical and numerical analysis of the skyrmion core size dependence as a function of the uniaxial perpendicular anisotropy and radius in magnetic nanodots has been carried out. Results from micromagnetic calculations show a non-monotonic behavior between the skyrmion core size and the uniaxial perpendicular anisotropy. The increment of the radius reduces the skyrmion core size at constant uniaxial perpendicular anisotropy. Thus, these results can be used for the control of the core sizes in magnetic artificial skyrmion crystals or spintronic devices that need to use a skyrmion configuration at room temperature. - Highlights: • We observed a non-monotonic behavior between the core size and the perpendicular anisotropy. • The increment of the radius reduces the skyrmion core size at constant uniaxial perpendicular. • The end-width size has a monotonic behavior with the perpendicular anisotropy. • We study the transition between the vortex and the skyrmion states.

  5. Correlation between temperature-dependent permittivity dispersion ...

    Indian Academy of Sciences (India)

    The results indicate that the poling temperature plays a crucial role in the domains' alignment process, as expected. The temperature-dependent permittivity frequency dispersion and depolarization behaviours may have same origin. The aligned domains' break up into random state/nanodomains at depoling temperature ...

  6. Core Physics of Pebble Bed High Temperature Nuclear Reactors

    NARCIS (Netherlands)

    Auwerda, G.J.

    2014-01-01

    To more accurately predict the temperature distribution inside the reactor core of pebble bed type high temperature reactors, in this thesis we investigated the stochastic properties of randomly stacked beds and the effects of the non-homogeneity of these beds on the neutronics and

  7. The Effects of the Heat and Moisture Exchanger on Humidity, Airway Temperature, and Core Body Temperature

    National Research Council Canada - National Science Library

    Delventhal, Mary

    1999-01-01

    Findings from several studies have demonstrated that the use of a heat and moisture exchanger increases airway humidity, which in turn increases mean airway temperature and prevents decreases in core body temperature...

  8. Core-temperature sensor ingestion timing and measurement variability.

    Science.gov (United States)

    Domitrovich, Joseph W; Cuddy, John S; Ruby, Brent C

    2010-01-01

    Telemetric core-temperature monitoring is becoming more widely used as a noninvasive means of monitoring core temperature during athletic events. To determine the effects of sensor ingestion timing on serial measures of core temperature during continuous exercise. Crossover study. Outdoor dirt track at an average ambient temperature of 4.4°C ± 4.1°C and relative humidity of 74.1% ± 11.0%. Seven healthy, active participants (3 men, 4 women; age  =  27.0 ± 7.5 years, height  =  172.9 ± 6.8 cm, body mass  =  67.5 ± 6.1 kg, percentage body fat  =  12.7% ± 6.9%, peak oxygen uptake [Vo(2peak)]  =  54.4 ± 6.9 mL•kg⁻¹•min⁻¹) completed the study. Participants completed a 45-minute exercise trial at approximately 70% Vo(2peak). They consumed core-temperature sensors at 24 hours (P1) and 40 minutes (P2) before exercise. Core temperature was recorded continuously (1-minute intervals) using a wireless data logger worn by the participants. All data were analyzed using a 2-way repeated-measures analysis of variance (trial × time), Pearson product moment correlation, and Bland-Altman plot. Fifteen comparisons were made between P1 and P2. The main effect of time indicated an increase in core temperature compared with the initial temperature. However, we did not find a main effect for trial or a trial × time interaction, indicating no differences in core temperature between the sensors (P1  =  38.3°C ± 0.2°C, P2  =  38.3°C ± 0.4°C). We found no differences in the temperature recordings between the 2 sensors. These results suggest that assumed sensor location (upper or lower gastrointestinal tract) does not appreciably alter the transmission of reliable and repeatable measures of core temperature during continuous running in the cold.

  9. Core body temperature control by total liquid ventilation using a virtual lung temperature sensor.

    Science.gov (United States)

    Nadeau, Mathieu; Micheau, Philippe; Robert, Raymond; Avoine, Olivier; Tissier, Renaud; Germim, Pamela Samanta; Vandamme, Jonathan; Praud, Jean-Paul; Walti, Herve

    2014-12-01

    In total liquid ventilation (TLV), the lungs are filled with a breathable liquid perfluorocarbon (PFC) while a liquid ventilator ensures proper gas exchange by renewal of a tidal volume of oxygenated and temperature-controlled PFC. Given the rapid changes in core body temperature generated by TLV using the lung has a heat exchanger, it is crucial to have accurate and reliable core body temperature monitoring and control. This study presents the design of a virtual lung temperature sensor to control core temperature. In the first step, the virtual sensor, using expired PFC to estimate lung temperature noninvasively, was validated both in vitro and in vivo. The virtual lung temperature was then used to rapidly and automatically control core temperature. Experimentations were performed using the Inolivent-5.0 liquid ventilator with a feedback controller to modulate inspired PFC temperature thereby controlling lung temperature. The in vivo experimental protocol was conducted on seven newborn lambs instrumented with temperature sensors at the femoral artery, pulmonary artery, oesophagus, right ear drum, and rectum. After stabilization in conventional mechanical ventilation, TLV was initiated with fast hypothermia induction, followed by slow posthypothermic rewarming for 1 h, then by fast rewarming to normothermia and finally a second fast hypothermia induction phase. Results showed that the virtual lung temperature was able to provide an accurate estimation of systemic arterial temperature. Results also demonstrate that TLV can precisely control core body temperature and can be favorably compared to extracorporeal circulation in terms of speed.

  10. Temperature dependence of the MDT gas gain

    CERN Document Server

    Gaudio, G; Treichel, M

    1999-01-01

    This note describes the measurements taken in the Gamma Irradiation Facility (GIF) in the X5 test beam area at CERN to investigate the temperature dependence of the MDT drift gas (Ar/CO2 - 90:10). Spectra were taken with an Americium-241 source during the aging studies. We analysed the effects of temperature changes on the pulse height spectrum.

  11. Investigation Of Temperature Dependent Characteristics Of ...

    African Journals Online (AJOL)

    The structure, magnetization and magnetostriction of Laves phase compound TbCo2 were investigated by temperature dependent high resolution neutron powder diffraction. The compound crystallizes in the cubic Laves phase C15 structure above its Curie temperature, TC and exhibits a rhombohedral distortion (space ...

  12. Escherichia coli survival in waters: Temperature dependence

    Science.gov (United States)

    Knowing the survival rates of water-borne Escherichia coli is important in evaluating microbial contamination and making appropriate management decisions. E. coli survival rates are dependent on temperature, a dependency that is routinely expressed using an analogue of the Q10 mo...

  13. The impact of exercise-induced core body temperature elevations on coagulation responses.

    NARCIS (Netherlands)

    Veltmeijer, M.T.W.; Eijsvogels, T.M.H.; Barteling, W.; Verbeek-Knobbe, K.; Heerde, W.L. van; Hopman, M.T.E.

    2017-01-01

    OBJECTIVES: Exercise induces changes in haemostatic parameters and core body temperature (CBT). We aimed to assess whether exercise-induced elevations in CBT induce pro-thrombotic changes in a dose-dependent manner. DESIGN: Observational study. METHODS: CBT and haemostatic responses were measured in

  14. Estimation of mean body temperature from mean skin and core temperature.

    Science.gov (United States)

    Lenhardt, Rainer; Sessler, Daniel I

    2006-12-01

    Mean body temperature (MBT) is the mass-weighted average temperature of body tissues. Core temperature is easy to measure, but direct measurement of peripheral tissue temperature is painful and risky and requires complex calculations. Alternatively MBT can be estimated from core and mean skin temperatures with a formula proposed by Burton in 1935: MBT = 0.64 x TCore + 0.36 x TSkin. This formula remains widely used, but has not been validated in the perioperative period and seems unlikely to remain accurate in dynamic perioperative conditions such as cardiopulmonary bypass. Therefore, the authors tested the hypothesis that MBT, as estimated with Burton's formula, poorly estimates measured MBT at a temperature range between 18 degrees and 36.5 degrees C. The authors reevaluated four of their previously published studies in which core and mass-weighted mean peripheral tissue temperatures were measured in patients undergoing substantial thermal perturbations. Peripheral compartment temperatures were estimated using fourth-order regression and integration over volume from 18 intramuscular needle thermocouples, 9 skin temperatures, and "deep" hand and foot temperature. MBT was determined from mass-weighted average of core and peripheral tissue temperatures and estimated from core temperature and mean skin temperature (15 area-weighted sites) using Burton's formula. Nine hundred thirteen data pairs from 44 study subjects were included in the analysis. Measured MBT ranged from 18 degrees to 36.5 degrees C. There was a remarkably good relation between measured and estimated MBT: MBTmeasured = 0.94 x MBTestimated + 2.15, r = 0.98. Differences between the estimated and measured values averaged -0.09 degrees +/- 0.42 degrees C. The authors concluded that estimation of MBT from mean skin and core temperatures is generally accurate and precise.

  15. Investigations of Low Temperature Time Dependent Cracking

    Energy Technology Data Exchange (ETDEWEB)

    Van der Sluys, W A; Robitz, E S; Young, B A; Bloom, J

    2002-09-30

    The objective of this project was to investigate metallurgical and mechanical phenomena associated with time dependent cracking of cold bent carbon steel piping at temperatures between 327 C and 360 C. Boiler piping failures have demonstrated that understanding the fundamental metallurgical and mechanical parameters controlling these failures is insufficient to eliminate it from the field. The results of the project consisted of the development of a testing methodology to reproduce low temperature time dependent cracking in laboratory specimens. This methodology was used to evaluate the cracking resistance of candidate heats in order to identify the factors that enhance cracking sensitivity. The resultant data was integrated into current available life prediction tools.

  16. The Effect of Temperature on Faceplate/Core Delamination in Composite/Titanium Sandwich Plates

    Science.gov (United States)

    Liechti, Kenneth M.; Marton, Balazs

    2000-01-01

    A study was made of the delamination behavior of sandwich beams made of titanium core bonded to face-plates that consisted of carbon fiber reinforced polymer composite. Nominally mode I behavior was considered at 23C and 180C, by making use of a specially reinforced double cantilever (DCB) specimens. The toughness of the bond between the faceplate and the core was determined on the basis of a beam on elastic foundation analysis. The specimen compliance, and toughness were all independent of temperature in these relatively short-term experiments. The fracture mechanism showed temperature dependence, due to the hygrothermal sensitivity of the adhesive.

  17. Temperature dependence of optically induced cell deformations

    Science.gov (United States)

    Fritsch, Anatol; Kiessling, Tobias R.; Stange, Roland; Kaes, Josef A.

    2012-02-01

    The mechanical properties of any material change with temperature, hence this must be true for cellular material. In biology many functions are known to undergo modulations with temperature, like myosin motor activity, mechanical properties of actin filament solutions, CO2 uptake of cultured cells or sex determination of several species. As mechanical properties of living cells are considered to play an important role in many cell functions it is surprising that only little is known on how the rheology of single cells is affected by temperature. We report the systematic temperature dependence of single cell deformations in Optical Stretcher (OS) measurements. The temperature is changed on a scale of about 20 minutes up to hours and compared to defined temperature shocks in the range of milliseconds. Thereby, a strong temperature dependence of the mechanics of single suspended cells is revealed. We conclude that the observable differences arise rather from viscosity changes of the cytosol than from structural changes of the cytoskeleton. These findings have implications for the interpretation of many rheological measurements, especially for laser based approaches in biological studies.

  18. Temperature dependences of hydrous species in feldspars

    Science.gov (United States)

    Liu, W. D.; Yang, Y.; Zhu, K. Y.; Xia, Q. K.

    2018-01-01

    Feldspars are abundant in the crust of the Earth. Multiple hydrogen species such as OH, H2O and NH4 + can occur in the structure of feldspars. Hydrogen species play a critical role in influencing some properties of the host feldspars and the crust, including mechanical strength, electrical property of the crust, and evolution of the crustal fluids. Knowledge of hydrous species in feldspars to date has been mostly derived from spectroscopic studies at ambient temperature. However, the speciation and sites of hydrous species at high temperatures may not be quenchable. Here, we investigated the temperature dependences of several typical hydrous components (e.g., type IIa OH, type IIb OH and type I H2O) in feldspars by measuring the in situ FTIR spectra at elevated temperatures up to 800 °C. We found that the hydrous species demonstrated different behaviors at elevated temperatures. With increasing temperature, type IIa OH redistributes on the various sites in the anorthoclase structure. Additionally, O-H vibration frequencies increase for types IIa and IIb OH, and they decrease for type I H2O with increasing temperature. In contrast to type I H2O which drastically dehydrates during the heating process, types IIa and IIb OH show negligible loss; however, the bulk integral absorption coefficients drastically decrease with increasing temperature. These results may have implications in understanding the properties of hydrous species and feldspars at non-ambient temperatures, not only under geologic conditions but also at cold planetary surface conditions.

  19. Temperature Dependent Models of Semiconductor Devices for ...

    African Journals Online (AJOL)

    The paper presents an investigation of the temperature dependent model of a diode and bipolar transistor built-in to the NAP-2 program and comparison of these models with experimentally measured characteristics of the BA 100 diode and BC 109 transistor. The detail of the modelling technique has been discussed and ...

  20. Temperature and angular momentum dependence of the ...

    Indian Academy of Sciences (India)

    Temperature and angular momentum dependence of the quadrupole deformation is studied in the middle of the sd-shell for 28Si and 27Si isotopes using the spherical shell model approach. The shell model calculations have been performed using the standard universal sd-shell (USD) interaction and the canonical ...

  1. Temperature Dependent Wire Delay Estimation in Floorplanning

    DEFF Research Database (Denmark)

    Winther, Andreas Thor; Liu, Wei; Nannarelli, Alberto

    2011-01-01

    Due to large variations in temperature in VLSI circuits and the linear relationship between metal resistance and temperature, the delay through wires of the same length can be different. Traditional thermal aware floorplanning algorithms use wirelength to estimate delay and routability....... In this work, we show that using wirelength as the evaluation metric does not always produce a floorplan with the shortest delay. We propose a temperature dependent wire delay estimation method for thermal aware floorplanning algorithms, which takes into account the thermal effect on wire delay. The experiment...... results show that a shorter delay can be achieved using the proposed method. In addition, we also discuss the congestion and reliability issues as they are closely related to routing and temperature....

  2. Elevations in core and muscle temperature impairs repeated sprint performance

    DEFF Research Database (Denmark)

    Drust, B.; Rasmussen, P.; Mohr, Magni

    2005-01-01

    AIM: The present study investigated the effects of hyperthermia on intermittent exercise and repeated sprint performance. METHODS: Seven men completed 40 min of intermittent cycling comprising of 15 s exercise (306 +/- 22 W) and 15 s rest periods (0 W) followed by 5 x 15 s maximal sprints...... on a cycle ergometer in normal (approximately 20 degrees C, control) and hot (40 degrees C, hyperthermia) environments. RESULTS: Completion of the intermittent protocol in the heat elevated core and muscle temperatures (39.5 +/- 0.2 degrees C; 40.2 +/- 0.4 degrees C), heart rate (178 +/- 11 beats min(-1...... metabolic fatigue agents and we, therefore, suggest that it may relate to the influence of high core temperature on the function of the central nervous system....

  3. Temperature sensitivity of methanogenesis in a thermokarst lake sediment core

    Science.gov (United States)

    Heslop, J. K.; Walter Anthony, K. M.; Grosse, G.; Anthony, P.; Bondurant, A.

    2016-12-01

    Little is known about temperature sensitivity of permafrost organic carbon (OC) mineralization over time scales of years to centuries following thaw. Due to their formation and thaw histories, taliks (thaw bulbs) beneath thermokarst lakes provide a unique natural laboratory from which to examine how permafrost thawed in saturated anaerobic conditions responds to changes in temperature following long periods of time since thaw. We anaerobically incubated samples from a 590 cm thermokarst lake sediment core near Fairbanks, Alaska at four temperatures (0, 3, 10, and 25 ºC) bracketing observed talik temperatures. We show that since initial thaw 400 yr BP CH4 production shifts from being most sensitive to at lower (0-3 ºC; Q10-EC=1.15E7) temperatures to being most sensitive at higher (10-25 ºC; Q10-EC=67) temperatures. Frozen sediments collected from beneath the talik, thawed at the commencement of the incubation, had significant (p ≤ 0.05) increases in CH4 production rates at lower temperatures but did not show significant CH4 production rate increases at higher temperatures (10-25 ºC). We hypothesize the thawing of sediments removed a major barrier to C mineralization, leading to rapid initial permafrost C mineralization and preferential mineralization of the most biolabile OC compounds. In contrast, sediments which had been thawed beneath the lake for longer periods of time did not experience statistically significant increases in CH4 production at lower temperatures (0-10 ºC), but had high temperature sensitivities at higher temperatures (10-25 ºC). We believe these rate increases are due to warmer temperatures in the experimental incubations crossing activation energy thresholds, allowing previously recalcitrant fractions of OC to be utilized, and/or the presence of different microbial communities adapted to thawed sediments. Recently-deposited sediments at shallow depths in the lake core experienced increases in CH4 production across all incubation

  4. Change of MMP dependent on temperature

    DEFF Research Database (Denmark)

    Rudyk, Svetlana Nikolayevna; Søgaard, Erik Gydesen; Akwansa, Eugene

    2008-01-01

       The experiment was conducted with the purpose to investigate how Minimum Miscibility Pressure (MMP) changes at different temperatures. MMP was measured in a high pressure unit. An original oil saturated chalk core plug from the Danish oil field in North Sea was under investigation. The plug...... was divided into three samples. The pure carbon dioxide was injected into a chamber with the sample under pressure gradually increasing from 60 bars to 420 bars. CO2 was injected in a first sample at temperature 50oC , second at 60oC and third at 70oC. The amount of oil extracted was plotted against pressure....... The oil recovery/pressure correlation obtained showed that: -  oil recovery grows rather in steps, - MMP (the point B on the curve), above which the oil recovery increases insignificantly,  is equal for all the temperatures, - but the starting points (A on the graph) from which oil recovery starts growing...

  5. Temperature dependence of phonons in photosynthesis proteins

    Science.gov (United States)

    Xu, Mengyang; Myles, Dean; Blankenship, Robert; Markelz, Andrea

    Protein long range vibrations are essential to biological function. For many proteins, these vibrations steer functional conformational changes. For photoharvesting proteins, the structural vibrations play an additional critical role in energy transfer to the reaction center by both phonon assisted energy transfer and energy dissipation. The characterization of these vibrations to understand how they are optimized to balance photoharvesting and photoprotection is challenging. To date this characterization has mainly relied on fluorescence line narrowing measurements at cryogenic temperatures. However, protein dynamics has a strong temperature dependence, with an apparent turn on in anharmonicity between 180-220 K. If this transition affects intramolecular vibrations, the low temperature measurements will not represent the phonon spectrum at biological temperatures. Here we use the new technique of anisotropic terahertz microscopy (ATM) to measure the intramolecular vibrations of FMO complex. ATM is uniquely capable of isolating protein vibrations from isotropic background. We find resonances both red and blue shift with temperature above the dynamical transition. The results indicate that the characterization of vibrations must be performed at biologically relevant temperatures to properly understand the energy overlap with the excitation energy transfer. This work was supported by NSF:DBI 1556359, BioXFEL seed Grant funding from NSF:DBI 1231306, DOE: DE-SC0016317, and the Bruce Holm University at Buffalo Research Foundation Grant.

  6. A reduced core to skin temperature gradient, not a critical core temperature, affects aerobic capacity in the heat.

    Science.gov (United States)

    Cuddy, John S; Hailes, Walter S; Ruby, Brent C

    2014-07-01

    The purpose of this study was to determine the impact of the core to skin temperature gradient during incremental running to volitional fatigue across varying environmental conditions. A secondary aim was to determine if a "critical" core temperature would dictate volitional fatigue during running in the heat. 60 participants (n=49 male, n=11 female; 24±5 yrs, 177±11 cm, 75±13 kg) completed the study. Participants were uniformly stratified into a specific exercise temperature group (18 °C, 26 °C, 34 °C, or 42 °C) based on a 3-mile run performance. Participants were equipped with core and chest skin temperature sensors and a heart rate monitor, entered an environmental chamber (18 °C, 26 °C, 34 °C, or 42 °C), and rested in the seated position for 10 min before performing a walk/run to volitional exhaustion. Initial treadmill speed was 3.2 km h(-1) with a 0% grade. Every 3 min, starting with speed, speed and grade increased in an alternating pattern (speed increased by 0.805 km h(-1), grade increased by 0.5%). Time to volitional fatigue was longer for the 18 °C and 26 °C group compared to the 42 °C group, (58.1±9.3 and 62.6±6.5 min vs. 51.3±8.3 min, respectively, pskin gradient for the 18 °C and 26 °C groups was larger compared to 42 °C group (halfway: 2.6±0.7 and 2.0±0.6 vs. 1.3±0.5 for the 18 °C, 26 °C and 42 °C groups, respectively; finish: 3.3±0.7 and 3.5±1.1 vs. 2.1±0.9 for the 26 °C, 34 °C, and 42 °C groups, respectively, ptemperature and heart rate response during the exercise trials. The current data demonstrate a 13% and 22% longer run time to exhaustion for the 18 °C and 26 °C group, respectively, compared to the 42 °C group despite no differences in beginning and ending core temperatures or baseline 3-mile run time. This capacity difference appears to result from a magnified core to skin gradient via an environmental temperature advantageous to convective heat loss, and in part from an increased sweat rate. Copyright

  7. Ambient temperature response establishes ELF3 as a required component of the core Arabidopsis circadian clock.

    Science.gov (United States)

    Thines, Bryan; Harmon, Frank G

    2010-02-16

    Circadian clocks synchronize internal processes with environmental cycles to ensure optimal timing of biological events on daily and seasonal time scales. External light and temperature cues set the core molecular oscillator to local conditions. In Arabidopsis, EARLY FLOWERING 3 (ELF3) is thought to act as an evening-specific repressor of light signals to the clock, thus serving a zeitnehmer function. Circadian rhythms were examined in completely dark-grown, or etiolated, null elf3-1 seedlings, with the clock entrained by thermocycles, to evaluate whether the elf3 mutant phenotype was light-dependent. Circadian rhythms were absent from etiolated elf3-1 seedlings after exposure to temperature cycles, and this mutant failed to exhibit classic indicators of entrainment by temperature cues, consistent with global clock dysfunction or strong perturbation of temperature signaling in this background. Warm temperature pulses failed to elicit acute induction of temperature-responsive genes in elf3-1. In fact, warm temperature-responsive genes remained in a constitutively "ON" state because of clock dysfunction and, therefore, were insensitive to temperature signals in the normal time of day-specific manner. These results show ELF3 is broadly required for circadian clock function regardless of light conditions, where ELF3 activity is needed by the core oscillator to allow progression from day to night during either light or temperature entrainment. Furthermore, robust circadian rhythms appear to be a prerequisite for etiolated seedlings to respond correctly to temperature signals.

  8. Skin Temperature Over the Carotid Artery, an Accurate Non-invasive Estimation of Near Core Temperature.

    Science.gov (United States)

    Imani, Farsad; Karimi Rouzbahani, Hamid Reza; Goudarzi, Mehrdad; Tarrahi, Mohammad Javad; Ebrahim Soltani, Alireza

    2016-02-01

    During anesthesia, continuous body temperature monitoring is essential, especially in children. Anesthesia can increase the risk of loss of body temperature by three to four times. Hypothermia in children results in increased morbidity and mortality. Since the measurement points of the core body temperature are not easily accessible, near core sites, like rectum, are used. The purpose of this study was to measure skin temperature over the carotid artery and compare it with the rectum temperature, in order to propose a model for accurate estimation of near core body temperature. Totally, 124 patients within the age range of 2 - 6 years, undergoing elective surgery, were selected. Temperature of rectum and skin over the carotid artery was measured. Then, the patients were randomly divided into two groups (each including 62 subjects), namely modeling (MG) and validation groups (VG). First, in the modeling group, the average temperature of the rectum and skin over the carotid artery were measured separately. The appropriate model was determined, according to the significance of the model's coefficients. The obtained model was used to predict the rectum temperature in the second group (VG group). Correlation of the predicted values with the real values (the measured rectum temperature) in the second group was investigated. Also, the difference in the average values of these two groups was examined in terms of significance. In the modeling group, the average rectum and carotid temperatures were 36.47 ± 0.54°C and 35.45 ± 0.62°C, respectively. The final model was obtained, as follows: Carotid temperature × 0.561 + 16.583 = Rectum temperature. The predicted value was calculated based on the regression model and then compared with the measured rectum value, which showed no significant difference (P = 0.361). The present study was the first research, in which rectum temperature was compared with that of skin over carotid artery, to find a safe location with easier

  9. Temperature dependent terahertz properties of Ammonium Nitrate

    Science.gov (United States)

    Rahman, Abdur; Azad, Abul; Moore, David

    Terahertz spectroscopy has been demonstrated as an ideal nondestructive method for identifying hazardous materials such as explosives. Many common explosives exhibit distinct spectral signatures at terahertz range (0.1-6.0 THz) due to the excitations of their low frequency vibrational modes. Ammonium nitrate (AN), an easily accessible oxidizer often used in improvised explosive, exhibits strong temperature dependence. While the room temperature terahertz absorption spectrum of AN is featureless, it reveals distinct spectral features below 240 K due to the polymorphic phase transition. We employed terahertz time domain spectroscopy to measure the effective dielectric properties of AN embedded in polytetrafluoroethylene (PTFE) binder. The dielectric properties of pure AN were extracted using three different effective medium theories (EMT), simple effective medium approach, Maxwell-Garnett (MG) model, and Bruggeman (BR) model. In order to understand the effect of temperature on the dielectric properties, we varied the sample temperature from 5K to 300K. This study indicates presence of additional vibrational modes at low temperature. These results may greatly enhance the detectability of AN and facilitate more accurate theoretical modeling.

  10. Frequency dependent conductivity of vortex cores in type II superconductors

    Science.gov (United States)

    Hsu, Theodore C.

    1993-08-01

    Recent experiments by Karraï et al. probed vortices in YBa 2Cu 3O 7 at frequencies near the “minigap” between discrete core states, Δ 2/ EF. EF is the Fermi energy and Δ is the bulk energy gap. Here we calculate the conductivity, σ(ω), of vortices using a novel, microscopic description of single vortex dynamics based on the Bogoliubov-deGennes equations and self-consistency through the gap equation. It is applicable to the low temperature, clean, type II limit. An equation of motion for vortex cores valid at non-zero frequencies, including Magnus, drag, and pinning forces, is derived. The cyclotron resonance as well as structure at the minigap appear in σ(ω). The expected dipole transition between localized states is hidden because the vortex is a self-consistent potential. Unless translation invariance is broken, single particle properties are invisible to a long wavelength probe. Upon adding drag and pinning, dissipation near h̵hω≈Δ 2/ EF appears.

  11. Analysis on High Temperature Aging Property of Self-brazing Aluminum Honeycomb Core at Middle Temperature

    Directory of Open Access Journals (Sweden)

    ZHAO Huan

    2016-11-01

    Full Text Available Tension-shear test was carried out on middle temperature self-brazing aluminum honeycomb cores after high temperature aging by micro mechanical test system, and the microstructure and component of the joints were observed and analyzed using scanning electron microscopy and energy dispersive spectroscopy to study the relationship between brazing seam microstructure, component and high temperature aging properties. Results show that the tensile-shear strength of aluminum honeycomb core joints brazed by 1060 aluminum foil and aluminum composite brazing plate after high temperature aging(200℃/12h, 200℃/24h, 200℃/36h is similar to that of as-welded joints, and the weak part of the joint is the base metal which is near the brazing joint. The observation and analysis of the aluminum honeycomb core microstructure and component show that the component of Zn, Sn at brazing seam is not much affected and no compound phase formed after high temperature aging; therefore, the main reason for good high temperature aging performance of self-brazing aluminum honeycomb core is that no obvious change of brazing seam microstructure and component occurs.

  12. Escherichia coli survival in waters: temperature dependence.

    Science.gov (United States)

    Blaustein, R A; Pachepsky, Y; Hill, R L; Shelton, D R; Whelan, G

    2013-02-01

    Knowing the survival rates of water-borne Escherichia coli is important in evaluating microbial contamination and making appropriate management decisions. E. coli survival rates are dependent on temperature, a dependency that is routinely expressed using an analogue of the Q₁₀ model. This suggestion was made 34 years ago based on 20 survival curves taken from published literature, but has not been revisited since then. The objective of this study was to re-evaluate the accuracy of the Q₁₀ equation, utilizing data accumulated since 1978. We assembled a database of 450 E. coli survival datasets from 70 peer-reviewed papers. We then focused on the 170 curves taken from experiments that were performed in the laboratory under dark conditions to exclude the effects of sunlight and other field factors that could cause additional variability in results. All datasets were tabulated dependencies "log concentration vs. time." There were three major patterns of inactivation: about half of the datasets had a section of fast log-linear inactivation followed by a section of slow log-linear inactivation; about a quarter of the datasets had a lag period followed by log-linear inactivation; and the remaining quarter were approximately linear throughout. First-order inactivation rate constants were calculated from the linear sections of all survival curves and the data grouped by water sources, including waters of agricultural origin, pristine water sources, groundwater and wells, lakes and reservoirs, rivers and streams, estuaries and seawater, and wastewater. Dependency of E. coli inactivation rates on temperature varied among the water sources. There was a significant difference in inactivation rate values at the reference temperature between rivers and agricultural waters, wastewaters and agricultural waters, rivers and lakes, and wastewater and lakes. At specific sites, the Q₁₀ equation was more accurate in rivers and coastal waters than in lakes making the value of

  13. Multibeam Interferometer Using a Photonic Crystal Fiber with Two Asymmetric Cores for Torsion, Strain and Temperature Sensing.

    Science.gov (United States)

    Naeem, Khurram; Kwon, Il-Bum; Chung, Youngjoo

    2017-01-11

    We present a fiber-optic multibeam Mach-Zehnder interferometer (m-MZI) for simultaneous multi-parameter measurement. The m-MZI is comprised of a section of photonic crystal fiber integrated with two independent cores of distinct construction and birefringence properties characterized for torsion, strain and temperature sensing. Due to the presence of small core geometry and use of a short fiber length, the sensing device demonstrates inter-modal interference in the small core alongside the dominant inter-core interference between the cores for each of the orthogonal polarizations. The output spectrum of the device is characterized by the three-beam interference model and is polarization-dependent. The two types of interferometers present in the fiber m-MZI exhibit distinct sensitivities to torsion, strain and temperature for different polarizations, and matrix coefficients allowing simultaneous measurement of the three sensing parameters are proposed in experiment.

  14. Multibeam Interferometer Using a Photonic Crystal Fiber with Two Asymmetric Cores for Torsion, Strain and Temperature Sensing

    Directory of Open Access Journals (Sweden)

    Khurram Naeem

    2017-01-01

    Full Text Available We present a fiber-optic multibeam Mach-Zehnder interferometer (m-MZI for simultaneous multi-parameter measurement. The m-MZI is comprised of a section of photonic crystal fiber integrated with two independent cores of distinct construction and birefringence properties characterized for torsion, strain and temperature sensing. Due to the presence of small core geometry and use of a short fiber length, the sensing device demonstrates inter-modal interference in the small core alongside the dominant inter-core interference between the cores for each of the orthogonal polarizations. The output spectrum of the device is characterized by the three-beam interference model and is polarization-dependent. The two types of interferometers present in the fiber m-MZI exhibit distinct sensitivities to torsion, strain and temperature for different polarizations, and matrix coefficients allowing simultaneous measurement of the three sensing parameters are proposed in experiment.

  15. Multibeam Interferometer Using a Photonic Crystal Fiber with Two Asymmetric Cores for Torsion, Strain and Temperature Sensing

    Science.gov (United States)

    Naeem, Khurram; Kwon, Il-Bum; Chung, Youngjoo

    2017-01-01

    We present a fiber-optic multibeam Mach-Zehnder interferometer (m-MZI) for simultaneous multi-parameter measurement. The m-MZI is comprised of a section of photonic crystal fiber integrated with two independent cores of distinct construction and birefringence properties characterized for torsion, strain and temperature sensing. Due to the presence of small core geometry and use of a short fiber length, the sensing device demonstrates inter-modal interference in the small core alongside the dominant inter-core interference between the cores for each of the orthogonal polarizations. The output spectrum of the device is characterized by the three-beam interference model and is polarization-dependent. The two types of interferometers present in the fiber m-MZI exhibit distinct sensitivities to torsion, strain and temperature for different polarizations, and matrix coefficients allowing simultaneous measurement of the three sensing parameters are proposed in experiment. PMID:28085046

  16. Control of skin blood flow, sweating, and heart rate - Role of skin vs. core temperature

    Science.gov (United States)

    Wyss, C. R.; Brengelmann, G. L.; Johnson, J. M.; Rowell, L. B.; Niederberger, M.

    1974-01-01

    A study was conducted to generate quantitative expressions for the influence of core temperature, skin temperature, and the rate of change of skin temperature on sweat rate, skin blood flow, and heart rate. A second goal of the study was to determine whether the use of esophageal temperature rather than the right atrial temperature as a measure of core temperature would lead to different conclusions about the control of measured effector variables.

  17. Placement of temperature probe in bovine vagina for continuous measurement of core-body temperature

    Science.gov (United States)

    Lee, C. N.; Gebremedhin, K. G.; Parkhurst, A.; Hillman, P. E.

    2015-09-01

    There has been increasing interest to measure core-body temperature in cattle using internal probes. This study examined the placement of HOBO water temperature probe with an anchor, referred to as the "sensor pack" (Hillman et al. Appl Eng Agric ASAE 25(2):291-296, 2009) in the vagina of multiparous Holstein cows under grazing conditions. Two types of anchors were used: (a) long "fingers" (4.5-6 cm), and (b) short "fingers" (3.5 cm). The long-finger anchors stayed in one position while the short-finger anchors were not stable in one position (rotate) within the vagina canal and in some cases came out. Vaginal temperatures were recorded every minute and the data collected were then analyzed using exponential mixed model regression for non-linear data. The results showed that the core-body temperatures for the short-finger anchors were lower than the long-finger anchors. This implied that the placement of the temperature sensor within the vagina cavity may affect the data collected.

  18. Placement of temperature probe in bovine vagina for continuous measurement of core-body temperature.

    Science.gov (United States)

    Lee, C N; Gebremedhin, K G; Parkhurst, A; Hillman, P E

    2015-09-01

    There has been increasing interest to measure core-body temperature in cattle using internal probes. This study examined the placement of HOBO water temperature probe with an anchor, referred to as the "sensor pack" (Hillman et al. Appl Eng Agric ASAE 25(2):291-296, 2009) in the vagina of multiparous Holstein cows under grazing conditions. Two types of anchors were used: (a) long "fingers" (4.5-6 cm), and (b) short "fingers" (3.5 cm). The long-finger anchors stayed in one position while the short-finger anchors were not stable in one position (rotate) within the vagina canal and in some cases came out. Vaginal temperatures were recorded every minute and the data collected were then analyzed using exponential mixed model regression for non-linear data. The results showed that the core-body temperatures for the short-finger anchors were lower than the long-finger anchors. This implied that the placement of the temperature sensor within the vagina cavity may affect the data collected.

  19. The validity of temperature-sensitive ingestible capsules for measuring core body temperature in laboratory protocols.

    Science.gov (United States)

    Darwent, David; Zhou, Xuan; van den Heuvel, Cameron; Sargent, Charli; Roach, Greg D

    2011-10-01

    The human core body temperature (CBT) rhythm is tightly coupled to an endogenous circadian pacemaker located in the suprachiasmatic nucleus of the anterior hypothalamus. The standard method for assessing the status of this pacemaker is by continuous sampling of CBT using rectal thermometry. This research sought to validate the use of ingestible, temperature-sensitive capsules to measure CBT as an alternative to rectal thermometry. Participants were 11 young adult males who had volunteered to complete a laboratory protocol that extended across 12 consecutive days. A total of 87 functional capsules were ingested and eliminated by participants during the laboratory internment. Core body temperature samples were collected in 1-min epochs and compared to paired samples collected concurrently via rectal thermistors. Agreement between samples that were collected using ingestible sensors and rectal thermistors was assessed using the gold-standard limits of agreement method. Across all valid paired samples collected during the study (n = 120,126), the mean difference was 0.06°C, whereas the 95% CI (confidence interval) for differences was less than ±0.35°C. Despite the overall acceptable limits of agreement, systematic measurement bias was noted across the initial 5 h of sensor-transit periods and attributed to temperature gradations across the alimentary canal.

  20. Effect of irrigation fluid temperature on core body temperature and inflammatory response during arthroscopic shoulder surgery.

    Science.gov (United States)

    Pan, Xiaoyun; Ye, Luyou; Liu, Zhongtang; Wen, Hong; Hu, Yuezheng; Xu, Xinxian

    2015-08-01

    This study was designed to evaluate the influence of irrigation fluid on the patients' physiological response to arthroscopic shoulder surgery. Patients who were scheduled for arthroscopic shoulder surgery were prospectively included in this study. They were randomly assigned to receive warm arthroscopic irrigation fluid (Group W, n = 33) or room temperature irrigation fluid (Group RT, n = 33) intraoperatively. Core body temperature was measured at regular intervals. The proinflammatory cytokines TNF-α, IL-1, IL-6, and IL-10 were measured in drainage fluid and serum. The changes of core body temperatures in Group RT were similar with those in Group W within 15 min after induction of anesthesia, but the decreases in Group RT were significantly greater after then. The lowest temperature was 35.1 ± 0.4 °C in Group RT and 35.9 ± 0.3 °C in Group W, the difference was statistically different (P irrigation fluid compared with warm irrigation fluid. And local inflammatory response is significantly reduced by using warm irrigation fluid. It seems that warm irrigation fluid is more recommendable for arthroscopic shoulder surgery.

  1. The temperature dependence of the magnetoelastic characteristics ...

    Indian Academy of Sciences (India)

    characteristics of cores for force sensors utilizing. Fe70Ni8Si10B12 amorphous alloy. ROMAN SZEWCZYK1,∗, ADAM BIENKOWSKI2 and JACEK SALACH2. 1Industrial Research Institute for Automation and Measurements, Al. Jerozolimskie 202,. 02-486 Warszawa, Poland. 2Institute of Metrology and Measuring Systems, ...

  2. Inclusion of temperature dependent shell corrections in Landau ...

    Indian Academy of Sciences (India)

    Abstract. Landau theory used for studying hot rotating nuclei usually uses zero temperature Struti- nsky smoothed total energy for the temperature dependent shell corrections. This is replaced in this work by the temperature dependent Strutinsky smoothed free energy. Our results show that this re- placement has only ...

  3. Inclusion of temperature dependent shell corrections in Landau ...

    Indian Academy of Sciences (India)

    Landau theory used for studying hot rotating nuclei usually uses zero temperature Strutinsky smoothed total energy for the temperature dependent shell corrections. This is replaced in this work by the temperature dependent Strutinsky smoothed free energy. Our results show that this replacement has only marginal effect for ...

  4. Temperature dependence of ferromagnetic resonance measurements in nanostructured line arrays

    Directory of Open Access Journals (Sweden)

    Raposo V.

    2014-07-01

    Full Text Available We report the effect of temperature on the ferromagnetic resonance (FMR spectra of nanostructured line arrays. Different temperature dependences are observed for permalloy an nickel based samples. The qualitative features of the temperature dependence of the resonance field and linewidth can be described by the usual expression of slow relaxing linewidth mechanism and Bloch equation.

  5. Temperature dependence of the magnetization of canted spin structures

    DEFF Research Database (Denmark)

    Jacobsen, Henrik; Lefmann, Kim; Brok, Erik

    2012-01-01

    for the temperature dependence of the magnetization of a simple canted spin structure in which relaxation can take place at finite temperatures between spin configurations with different canting angles. We show that the saturation magnetization may either decrease or increase with decreasing temperature, depending...

  6. Modeling temperature dependence of trace element concentrations in groundwater using temperature dependent distribution coefficient

    Science.gov (United States)

    Saito, H.; Saito, T.; Hamamoto, S.; Komatsu, T.

    2015-12-01

    In our previous study, we have observed trace element concentrations in groundwater increased when groundwater temperature was increased with constant thermal loading using a 50-m long vertical heat exchanger installed at Saitama University, Japan. During the field experiment, 38 degree C fluid was circulated in the heat exchanger resulting 2.8 kW thermal loading over 295 days. Groundwater samples were collected regularly from 17-m and 40-m deep aquifers at four observation wells located 1, 2, 5, and 10 m, respectively, from the heat exchange well and were analyzed with ICP-MS. As a result, concentrations of some trace elements such as boron increased with temperature especially at the 17-m deep aquifer that is known as marine sediment. It has been also observed that the increased concentrations have decreased after the thermal loading was terminated indicating that this phenomenon may be reversible. Although the mechanism is not fully understood, changes in the liquid phase concentration should be associated with dissolution and/or desorption from the solid phase. We therefore attempt to model this phenomenon by introducing temperature dependence in equilibrium linear adsorption isotherms. We assumed that distribution coefficients decrease with temperature so that the liquid phase concentration of a given element becomes higher as the temperature increases under the condition that the total mass stays constant. A shape function was developed to model the temperature dependence of the distribution coefficient. By solving the mass balance equation between the liquid phase and the solid phase for a given element, a new term describing changes in the concentration was implemented in a source/sink term of a standard convection dispersion equation (CDE). The CDE was then solved under a constant ground water flow using FlexPDE. By calibrating parameters in the newly developed shape function, the changes in element concentrations observed were quite well predicted. The

  7. Temperature Dependence and Magnetic Properties of Injection Molding Tool Materials Used in Induction Heating

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Nielsen, Kaspar Kirstein; Hattel, Jesper Henri

    2015-01-01

    To analyze the heating phase of an induction heated injection molding tool precisely, the temperature-dependent magnetic properties, B–H curves, and the hysteresis loss are necessary for the molding tool materials. Hence, injection molding tool steels, core materials among other materials have...

  8. Temperature Dependent Molecular Dynamic Simulation of Friction

    OpenAIRE

    Dias, R. A.; Rapini, M.; Costa, B. V.; Coura, P. Z.

    2006-01-01

    In this work we present a molecular dynamics simulation of a FFM experiment. The tip-sample interaction is studied by varying the normal force in the tip and the temperature of the surface. The friction force, cA, at zero load and the friction coefficient, $\\mu$, were obtained. Our results strongly support the idea that the effective contact area, A, decreases with increasing temperature and the friction coefficient presents a clear signature of the premelting process of the surface.

  9. Insulated skin temperature as a measure of core body temperature for individuals wearing CBRN protective clothing.

    Science.gov (United States)

    Richmond, V L; Wilkinson, D M; Blacker, S D; Horner, F E; Carter, J; Havenith, G; Rayson, M P

    2013-11-01

    This study assessed the validity of insulated skin temperature (Tis) to predict rectal temperature (Tre) for use as a non-invasive measurement of thermal strain to reduce the risk of heat illness for emergency service personnel. Volunteers from the Police, Fire and Rescue, and Ambulance Services performed role-related tasks in hot (30 °C) and neutral (18 °C) conditions, wearing service specific personal protective equipment. Insulated skin temperature and micro climate temperature (Tmc) predicted Tre with an adjusted r(2) = 0.87 and standard error of the estimate (SEE) of 0.19 °C. A bootstrap validation of the equation resulted in an adjusted r(2) = 0.85 and SEE = 0.20 °C. Taking into account the 0.20 °C error, the prediction of Tre resulted in a sensitivity and specificity of 100% and 91%, respectively. Insulated skin temperature and Tmc can be used in a model to predict Tre in emergency service personnel wearing CBRN protective clothing with an SEE of 0.2 °C. However, the model is only valid for Tis over 36.5 °C, above which thermal stability is reached between the core and the skin.

  10. The Dependence of ITCZ Structure on Model Resolution and Dynamical Core in Aquaplanet Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Landu, Kiranmayi; Leung, Lai-Yung R.; Hagos, Samson M.; Vinoj, V.; Rauscher, Sara; Ringler, Todd; Taylor, Mark

    2014-03-15

    Aqua-planet simulations using the Community Atmosphere Model version 4 (CAM4) with the Model for Prediction Across Scales Atmosphere (MPAS-A) and Higher Order Method Modeling Environment (HOMME) dynamical cores and zonally symmetric sea surface temperature (SST) structure are studied to understand the dependence of the inter-tropical convergence zone (ITCZ) structure on resolution and dynamical core. While all resolutions in HOMME and the low-resolution MPAS-A simulations give a single equatorial peak in zonal mean precipitation, the high-resolution MPAS-A simulations give a double ITCZ with precipitation peaking around 2° to 3° on either side of the equator. This study reveals that the structure of ITCZ is dependent on the feedbacks among convection and large-scale circulation and surface heat fluxes. We show that, by increasing convective available potential energy (CAPE) off the equator, the simulations with higher wind induced surface heat fluxes result in double ITCZ structure. This in turn leads to stronger convection and positive feedback with the large-scale circulation. We further show that the dominance of anti-symmetric waves in a model is not enough to cause double ITCZ, and the lateral extent of equatorial waves does not play an important role in determining the width of the ITCZ but rather the latter may influence the former.

  11. Temperature-dependent dielectric function of nickel

    Science.gov (United States)

    Zollner, Stefan; Nathan Nunley, T.; Trujillo, Dennis P.; Pineda, Laura G.; Abdallah, Lina S.

    2017-11-01

    Confirming historical results by Ornstein and Koefoed (1938), the authors found an anomaly in the optical constants at 1.96 eV for bulk nickel near the Curie temperature through careful high-precision spectroscopic ellipsometry measurements from 80 to 800 K. The anomaly is only seen in sweeps with increasing temperature if the sample carries a net magnetization. In decreasing temperature sweeps or for unmagnetized samples, the anomaly is absent. The sign of the anomaly in the optical conductivity at 1.96 eV is in contrast to the sign of the anomaly in the electrical DC conductivity. The anomaly is rather large and therefore explained with changes in the on-diagonal Drude-Lorentz portion of the dielectric tensor. No sign of anisotropy (polar magneto-optical Kerr effect) is found in the data.

  12. Inhibitory effect of light of different wavelengths on the fall of core temperature during the nighttime.

    Science.gov (United States)

    Morita, T; Teramoto, Y; Tokura, H

    1995-01-01

    Nocturnal core temperature fall was significantly inhibited by green, blue, and red light exposure with 1,000 lx from 21:00 h to 02:00 h. The core temperature in red became identical from that in control during the following sleep period, but not in green and blue. These findings are discussed in terms of urinary melatonin behavior.

  13. Temperature dependence of fission product release rates

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, J.L.; McGown, M.E.; Reynolds, A.B.

    1984-10-01

    Fission product fractional release rates, K, used in the Albrecht-Wild model and measured at Kernforschungszentrum Karlsruhe and Oak Ridge National Laboratory can be fitted well by a single straight line for each fission product over the entire temperature range of the data when in K is plotted as a function of 1/T. Past applications of the Albrecht-Wild model have used plots of ln K versus T, which required three fits over the temperature range. Thus it is suggested that fractional release rates be represented by the Arrhenius form, K = K /SUB o/ exp(-Q/RT).

  14. Parametric dependencies of JET electron temperature profiles

    Energy Technology Data Exchange (ETDEWEB)

    Schunke, B. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Imre, K.; Riedel, K. [New York Univ., NY (United States)

    1994-07-01

    The JET Ohmic, L-Mode and H-Mode electron temperature profiles obtained from the LIDAR Thomson Scattering Diagnostic are parameterized in terms of the normalized flux parameter and a set of the engineering parameters like plasma current, toroidal field, line averages electron density... It is shown that the electron temperature profiles fit a log-additive model well. It is intended to use the same model to predict the profile shape for D-T discharges in JET and in ITER. 2 refs., 5 figs.

  15. The temperature dependence of the magnetoelastic characteristics ...

    Indian Academy of Sciences (India)

    Special cylindrical backing enables application of the uniform compressive stress to the wound ring sample. A resistive furnace heated the experimental set-up. Results presented in the paper indicate a significant influence of the temperature on the magnetoelastic characteristics of Fe70Ni8Si10B12 amorphous alloy.

  16. Comparison between core temperatures measured telemetrically using the CorTemp® ingestible temperature sensor and rectal temperature in healthy Labrador retrievers.

    Science.gov (United States)

    Osinchuk, Stephanie; Taylor, Susan M; Shmon, Cindy L; Pharr, John; Campbell, John

    2014-10-01

    This study evaluated the CorTemp(®) ingestible telemetric core body temperature sensor in dogs, to establish the relationship between rectal temperature and telemetrically measured core body temperature at rest and during exercise, and to examine the effect of sensor location in the gastrointestinal (GI) tract on measured core temperature. CorTemp(®) sensors were administered orally to fasted Labrador retriever dogs and radiographs were taken to document sensor location. Core and rectal temperatures were monitored throughout the day in 6 resting dogs and during a 10-minute strenuous retrieving exercise in 6 dogs. Time required for the sensor to leave the stomach (120 to 610 min) was variable. Measured core temperature was consistently higher than rectal temperature across all GI locations but temperature differences based on GI location were not significant (P = 0.5218). Resting dogs had a core temperature that was on average 0.4°C above their rectal temperature with 95% limits of agreement (LoA) between 1.2°C and -0.5°C. Core temperature in exercising dogs was on average 0.3°C higher than their concurrent rectal temperature, with LoA of +1.6°C and -1.1°C.

  17. Determination of the core temperature of a Li-ion cell during thermal runaway

    Science.gov (United States)

    Parhizi, M.; Ahmed, M. B.; Jain, A.

    2017-12-01

    Safety and performance of Li-ion cells is severely affected by thermal runaway where exothermic processes within the cell cause uncontrolled temperature rise, eventually leading to catastrophic failure. Most past experimental papers on thermal runaway only report surface temperature measurement, while the core temperature of the cell remains largely unknown. This paper presents an experimentally validated method based on thermal conduction analysis to determine the core temperature of a Li-ion cell during thermal runaway using surface temperature and chemical kinetics data. Experiments conducted on a thermal test cell show that core temperature computed using this method is in good agreement with independent thermocouple-based measurements in a wide range of experimental conditions. The validated method is used to predict core temperature as a function of time for several previously reported thermal runaway tests. In each case, the predicted peak core temperature is found to be several hundreds of degrees Celsius higher than the measured surface temperature. This shows that surface temperature alone is not sufficient for thermally characterizing the cell during thermal runaway. Besides providing key insights into the fundamental nature of thermal runaway, the ability to determine the core temperature shown here may lead to practical tools for characterizing and mitigating thermal runaway.

  18. Giant exchange bias and its angular dependence in Co/CoO core-shell nanowire assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Gandha, Kinjal; Chaudhary, Rakesh P.; Mohapatra, Jeotikanta; Koymen, Ali R.; Liu, J. Ping, E-mail: pliu@uta.edu

    2017-07-12

    The exchange-bias field (H{sub EB}) and its angular dependence are systematically investigated in Co/CoO core-shell nanowire assemblies (∼15 nm in diameter and ∼200 nm in length) consisting of single-crystalline Co core and polycrystalline CoO shell. Giant exchange-bias field (H{sub EB}) up to 2.4 kOe is observed below a blocking temperature (T{sub EB} ∼150 K) in the aligned Co/CoO nanowire assemblies. It is also found that there is an angular dependence between the H{sub EB} and the applied magnetization direction. The H{sub EB} showed a peak at 30° between the applied field and the nanowire aligned direction, which may be attributed to the noncollinear spin orientations at the interface between the ferromagnetic core and the antiferromagnetic shell. This behavior is quantitatively supported by an analytical calculation based on Stoner–Wohlfarth model. This study underlines the importance of the competing magnetic anisotropies at the interface of Co/CoO core-shell nanowires. - Highlights: • Giant exchange bias is observed in oriented Co/CoO core-shell nanowire assemblies. • Study of angular and temperature dependence of the exchange bias effect. • Competing magnetic anisotropies at the interface of Co/CoO core-shell nanowires. • Effect of misaligned spins in FM/AFM interface on angular dependence of exchange bias. • We explain the analytical model that accounts for experimental results.

  19. Urine temperature as an index for the core temperature of industrial workers in hot or cold environments

    Science.gov (United States)

    Kawanami, Shoko; Horie, Seichi; Inoue, Jinro; Yamashita, Makiko

    2012-11-01

    Workers working in hot or cold environments are at risk for heat stroke and hypothermia. In Japan, 1718 people including 47 workers died of heat stroke in 2010 (Ministry of Health Labour and Welfare, Japan 2011). While the American Conference of Governmental Industrial Hygienists (ACGIH) recommendation lists the abnormal core temperature of workers as a criterion for halting work, no method has been established for reliably measuring core temperatures at workplaces. ISO 9886 (Ergonomics-evaluation of thermal strain by physiological measurements. ISO copyright office, Geneva, pp 3-14; 2004) recognizes urine temperature as an index of core temperature only at normal temperature. In this study we ascertained whether or not urine temperature could serve as an index for core temperature at temperatures above and below the ISO range. We measured urine temperature of 31 subjects (29.8 ± 11.9 years) using a thermocouple sensor placed in the toilet bowl at ambient temperature settings of 40, 20, and 5˚C, and compared them with rectal temperature. At all ambient temperature settings, urine temperature correlated closely with rectal temperature exhibiting small mean bias. Urine temperature changed in a synchronized manner with rectal temperature at 40˚C. A Bland and Altman analysis showed that the limits of agreement (mean bias ± 2SD) between rectal and urine temperatures were -0.39 to +0.15˚C at 40˚C (95%CI -0.44 to +0.20˚C) and -0.79 to +0.29˚C at 5˚C (-0.89 to +0.39˚C). Hence, urine temperature as measured by the present method is a practical surrogate index for rectal temperature and represents a highly reliable biological monitoring index for assessing hot and cold stresses of workers at actual workplaces.

  20. Temperature and angular momentum dependence of the ...

    Indian Academy of Sciences (India)

    a metallic superconductor, the linear dimension of the system is quite large and the transition from one phase to the ... This has been demonstrated in small metallic grains in which discontinuity is observed with large ... in the above studies critically depends on the inclusion of the quantal and statistical fluctuations [8,11].

  1. Dependence of the brittle ductile transition on strain-rate-dependent critical homologous temperature

    Science.gov (United States)

    Davis, Paul M.

    2017-05-01

    Earthquakes mainly occur in crust or mantle that is below a critical temperature for the tectonic strain-rate, \\dot{e}_t, such that stress builds up to the breaking point before it can relax due to creep. Then long-range stress correlation gives rise to power law seismicity including large events. The limiting temperature depends on pressure, which is taken into account by finding a critical homologous temperature THc = T/TM above which earthquakes are rarely observed (where T, TM are temperature and average melting temperature of constituent minerals). We find that THc for ocean plates is ∼0.55. For California earthquakes, it is also close to 0.55. The uppermost mantle layer of oceanic plates of thickness ∼50 km is composed of harzburgite and depleted peridotite from which basalt has been removed to form ocean crust. Thus it has a higher melting temperature than the peridotite of the surrounding mantle, or the lower halves of plates. Thicknesses of seismicity in deep subduction zones, determined from 2-D polynomial fits to a relocated catalogue, are ∼50 km, which suggests that the earthquake channel is confined to this layer. We construct models to find homologous temperatures in slabs, and find that seismicity thicknesses are also, on average, confined to TH ≤ 0.55 ± 0.05. The associated rheology is compared with that obtained from flexure models of ocean lithosphere. The brittle-ductile transition occurs where viscosity drops from high values in the cold cores of slabs to values of 1022-1023 Pa s, that is, where creep strain-rates become comparable to tectonic rates. The cut-off for deep earthquakes is not sharp. However they appear unlikely to occur if homologous temperature is high TH > 0.55. Exceptions to the rule are anomalously deep earthquakes such as those beneath the Iceland and the Hawaiian hotspots, and the Newport Inglewood Fault. These are smaller events with short-range stress correlation, and can be explained if strain-rates are two to

  2. Selecting Temperature for Protein Crystallization Screens Using the Temperature Dependence of the Second Virial Coefficient

    Science.gov (United States)

    Liu, Jun; Yin, Da-Chuan; Guo, Yun-Zhu; Wang, Xi-Kai; Xie, Si-Xiao; Lu, Qin-Qin; Liu, Yong-Ming

    2011-01-01

    Protein crystals usually grow at a preferable temperature which is however not known for a new protein. This paper reports a new approach for determination of favorable crystallization temperature, which can be adopted to facilitate the crystallization screening process. By taking advantage of the correlation between the temperature dependence of the second virial coefficient (B22) and the solubility of protein, we measured the temperature dependence of B22 to predict the temperature dependence of the solubility. Using information about solubility versus temperature, a preferred crystallization temperature can be proposed. If B22 is a positive function of the temperature, a lower crystallization temperature is recommended; if B22 shows opposite behavior with respect to the temperature, a higher crystallization temperature is preferred. Otherwise, any temperature in the tested range can be used. PMID:21479212

  3. Temperature-Dependent van der Waals Forces

    Science.gov (United States)

    Parsegian, V. A.; Ninham, B. W.

    1970-01-01

    Biological systems can experience a strong van der Waals interaction involving electromagnetic fluctuations at the low frequency limit. In lipid-water mixtures the free energy of this interaction is proportional to temperature, primarily involves an entropy change, and has qualitative features of a “hydrophobic bond.” Protein-protein attraction in dilute solution is due as much to low frequency proton fluctuation (Kirkwood-Shumaker forces) and permanent dipole forces as to high frequency (infrared and UV) van der Waals intreactions. These conclusions are described in terms of numerical calculations via the Lifshitz theory of van der Waals forces. PMID:5449916

  4. Non-Self-Similar Dead-Core Rate for the Fast Diffusion Equation with Dependent Coefficient

    Directory of Open Access Journals (Sweden)

    Liping Zhu

    2014-01-01

    Full Text Available We consider the dead-core problem for the fast diffusion equation with spatially dependent coefficient and show that the temporal dead-core rate is non-self-similar. The proof is based on the standard compactness arguments with the uniqueness of the self-similar solutions and the precise estimates on the single-point final dead-core profile.

  5. Room temperature nanojoining of Cu-Ag core-shell nanoparticles and nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiaqi; Shin, Seungha, E-mail: sshin@utk.edu [The University of Tennessee, Department of Mechanical, Aerospace and Biomedical Engineering (United States)

    2017-02-15

    Room temperature (T{sub room}, 300 K) nanojoining of Ag has been widely employed in fabrication of microelectronic applications where the shapes and structures of microelectronic components must be maintained. In this research, the joining processes of pure Ag nanoparticles (NPs), Cu-Ag core-shell NPs, and nanowires (NWs) are studied using molecular dynamics simulations at T{sub room}. The evolution of densification, potential energy, and structural deformation during joining process are analyzed to identify joining mechanisms. Depending on geometry, different joining mechanisms including crystallization-amorphization, reorientation, Shockley partial dislocation are determined. A three-stage joining scenario is observed in both joining process of NPs and NWs. Besides, the Cu core does not participate in all joining processes, however, it enhances the mobility of Ag shell atoms, contributing to a higher densification and bonding strength at T{sub room}, compared with pure Ag nanomaterials. The tensile test shows that the nanojoint bears higher rupture strength than the core-shell NW itself. This study deepens understanding in the underlying joining mechanisms and thus nanojoint with desirable thermal, electrical, and mechanical properties could be potentially achieved.

  6. Room temperature nanojoining of Cu-Ag core-shell nanoparticles and nanowires

    Science.gov (United States)

    Wang, Jiaqi; Shin, Seungha

    2017-02-01

    Room temperature ( T room, 300 K) nanojoining of Ag has been widely employed in fabrication of microelectronic applications where the shapes and structures of microelectronic components must be maintained. In this research, the joining processes of pure Ag nanoparticles (NPs), Cu-Ag core-shell NPs, and nanowires (NWs) are studied using molecular dynamics simulations at T room. The evolution of densification, potential energy, and structural deformation during joining process are analyzed to identify joining mechanisms. Depending on geometry, different joining mechanisms including crystallization-amorphization, reorientation, Shockley partial dislocation are determined. A three-stage joining scenario is observed in both joining process of NPs and NWs. Besides, the Cu core does not participate in all joining processes, however, it enhances the mobility of Ag shell atoms, contributing to a higher densification and bonding strength at T room, compared with pure Ag nanomaterials. The tensile test shows that the nanojoint bears higher rupture strength than the core-shell NW itself. This study deepens understanding in the underlying joining mechanisms and thus nanojoint with desirable thermal, electrical, and mechanical properties could be potentially achieved.

  7. A temperature dependent slip factor based thermal model for friction ...

    Indian Academy of Sciences (India)

    This paper proposes a new slip factor based three-dimensional thermal model to predict the temperature distribution during friction stir welding of 304L stainless steel plates. The proposed model employs temperature and radius dependent heat source to study the thermal cycle, temperature distribution, power required, the ...

  8. A temperature dependent slip factor based thermal model for friction ...

    Indian Academy of Sciences (India)

    Abstract. This paper proposes a new slip factor based three-dimensional thermal model to predict the temperature distribution during friction stir welding of 304L stainless steel plates. The proposed model employs temperature and radius dependent heat source to study the thermal cycle, temperature distribution, power ...

  9. Craving and withdrawal as core symptoms of alcohol dependence

    NARCIS (Netherlands)

    de Bruijn, Carla; Korzec, Alex; Koerselman, Frank; van den Brink, Wim

    2004-01-01

    There is ongoing debate regarding the validity of the distinction of alcohol abuse and dependence, the distinction between normality and alcohol abuse, and the absence of craving in the DSM-IV classification of alcohol use disorders. In this study, we examine the discriminant validity of the DSM-IV

  10. Wavelength-dependent Crosstalk in Trench-Assisted Multi-Core Fibers

    DEFF Research Database (Denmark)

    Ye, Feihong; Tu, Jiajing; Saitoh, Kunimasa

    2014-01-01

    Analytical expressions for wavelength-dependent crosstalk in homogeneous trench-assisted multi-core fibers are derived. The calculated results from the expressions agree well with the numerical simulation results based on finite element method....

  11. Depth-Dependent Temporal Response Properties in Core Auditory Cortex

    Science.gov (United States)

    Christianson, G. Björn; Sahani, Maneesh; Linden, Jennifer F.

    2013-01-01

    The computational role of cortical layers within auditory cortex has proven difficult to establish. One hypothesis is that interlaminar cortical processing might be dedicated to analyzing temporal properties of sounds; if so, then there should be systematic depth-dependent changes in cortical sensitivity to the temporal context in which a stimulus occurs. We recorded neural responses simultaneously across cortical depth in primary auditory cortex and anterior auditory field of CBA/Ca mice, and found systematic depth dependencies in responses to second-and-later noise bursts in slow (1–10 bursts/s) trains of noise bursts. At all depths, responses to noise bursts within a train usually decreased with increasing train rate; however, the rolloff with increasing train rate occurred at faster rates in more superficial layers. Moreover, in some recordings from mid-to-superficial layers, responses to noise bursts within a 3–4 bursts/s train were stronger than responses to noise bursts in slower trains. This non-monotonicity with train rate was especially pronounced in more superficial layers of the anterior auditory field, where responses to noise bursts within the context of a slow train were sometimes even stronger than responses to the noise burst at train onset. These findings may reflect depth dependence in suppression and recovery of cortical activity following a stimulus, which we suggest could arise from laminar differences in synaptic depression at feedforward and recurrent synapses. PMID:21900562

  12. Temperature dependent recombination dynamics in InP/ZnS colloidal nanocrystals

    DEFF Research Database (Denmark)

    Shirazi, Roza; Kopylov, Oleksii; Kovács, András

    2012-01-01

    In this letter, we investigate exciton recombination in InP/ZnS core-shell colloidal nanocrystals over a wide temperature range. Over the entire range between room temperature and liquid helium temperature, multi-exponential exciton decay curves are observed and well explained by the presence...... of bright and dark exciton states, as well as defect states. Two different types of defect are present: one located at the core-shell interface and the other on the surface of the nanocrystal. Based on the temperature dependent contributions of all four states to the total photoluminescence signal, we...... estimate that the four states are distributed within a 20 meV energy band in nanocrystals that emit at 1.82 eV....

  13. Postmortem Increase in Body Core Temperature: How Inaccurate We Can Be in Time Since Death Calculations.

    Science.gov (United States)

    Vojtíšek, Tomáš; Kučerová, Štěpánka; Krajsa, Jan; Eren, Bülent; Vysočanová, Petra; Hejna, Petr

    2017-03-01

    Postmortem increase in body core temperature is a well-known phenomenon in forensic practice. Despite this, cases of reliably documented postmortem hyperthermia are rarely reported in the forensic literature, and it is still not clear how frequently postmortem hyperthermia occurs and in which cases we may it predict. In routine forensic practice, the standard course of body cooling is expected, and the prediction of normal body core temperature in the time of death is used for back-calculating the time of death by Henssge method. The unexpected rising in body core temperature may considerably misguide the estimation of time since death in the early postmortem period. We present a rare case of nonviolent death in the hospital with exactly recorded unusual elevation of body core temperature after death, although the body temperature shortly before the death was normal. In the presented case, the "standard" cooling of the body began up to 4 hours after death.

  14. Size-Dependent Specific Surface Area of Nanoporous Film Assembled by Core-Shell Iron Nanoclusters

    Directory of Open Access Journals (Sweden)

    Jiji Antony

    2006-01-01

    Full Text Available Nanoporous films of core-shell iron nanoclusters have improved possibilities for remediation, chemical reactivity rate, and environmentally favorable reaction pathways. Conventional methods often have difficulties to yield stable monodispersed core-shell nanoparticles. We produced core-shell nanoclusters by a cluster source that utilizes combination of Fe target sputtering along with gas aggregations in an inert atmosphere at 7∘C. Sizes of core-shell iron-iron oxide nanoclusters are observed with transmission electron microscopy (TEM. The specific surface areas of the porous films obtained from Brunauer-Emmett-Teller (BET process are size-dependent and compared with the calculated data.

  15. Effects of lights of different color temperature on the nocturnal changes in core temperature and melatonin in humans.

    Science.gov (United States)

    Morita, T; Tokura, H

    1996-09-01

    A variety of types of artificial illumination has recently become available, differing in the quality of illumination and range of color temperature. In our previous studies we found that in subjects with normal color vision the nocturnal fall in core temperature and the increase of urinary melatonin excretion were suppressed by bright blue or green light, but not by bright red or dim lights. The aim of our present study was to examine from the view point of chronobiology whether the lights of different color temperature often used in everyday life may affect core temperature and urinary melatonin secretion differently. Experiments were carried out on five subjects with normal color vision. They were exposed for 5 hr (from 21:00 h to 2:00 h) to two kinds of bright (1000 lx) light of different color temperature (6500 K, 3000 K) with dim (50 lx) light as a control; after exposure they slept in darkness. Our main results were as follows: The light with a high color temperature of 6500 K more strongly suppressed the nocturnal fall of the core temperature and the nocturnal increase of melatonin secretion than the light with a low color temperature of 3000 K. This difference was particularly evident for core temperature during the sleep period following experimental illumination.

  16. Prediction of human core body temperature using non-invasive measurement methods

    Science.gov (United States)

    Niedermann, Reto; Wyss, Eva; Annaheim, Simon; Psikuta, Agnes; Davey, Sarah; Rossi, René Michel

    2014-01-01

    The measurement of core body temperature is an efficient method for monitoring heat stress amongst workers in hot conditions. However, invasive measurement of core body temperature (e.g. rectal, intestinal, oesophageal temperature) is impractical for such applications. Therefore, the aim of this study was to define relevant non-invasive measures to predict core body temperature under various conditions. We conducted two human subject studies with different experimental protocols, different environmental temperatures (10 °C, 30 °C) and different subjects. In both studies the same non-invasive measurement methods (skin temperature, skin heat flux, heart rate) were applied. A principle component analysis was conducted to extract independent factors, which were then used in a linear regression model. We identified six parameters (three skin temperatures, two skin heat fluxes and heart rate), which were included for the calculation of two factors. The predictive value of these factors for core body temperature was evaluated by a multiple regression analysis. The calculated root mean square deviation (rmsd) was in the range from 0.28 °C to 0.34 °C for all environmental conditions. These errors are similar to previous models using non-invasive measures to predict core body temperature. The results from this study illustrate that multiple physiological parameters (e.g. skin temperature and skin heat fluxes) are needed to predict core body temperature. In addition, the physiological measurements chosen in this study and the algorithm defined in this work are potentially applicable as real-time core body temperature monitoring to assess health risk in broad range of working conditions.

  17. Prediction of human core body temperature using non-invasive measurement methods.

    Science.gov (United States)

    Niedermann, Reto; Wyss, Eva; Annaheim, Simon; Psikuta, Agnes; Davey, Sarah; Rossi, René Michel

    2014-01-01

    The measurement of core body temperature is an efficient method for monitoring heat stress amongst workers in hot conditions. However, invasive measurement of core body temperature (e.g. rectal, intestinal, oesophageal temperature) is impractical for such applications. Therefore, the aim of this study was to define relevant non-invasive measures to predict core body temperature under various conditions. We conducted two human subject studies with different experimental protocols, different environmental temperatures (10 °C, 30 °C) and different subjects. In both studies the same non-invasive measurement methods (skin temperature, skin heat flux, heart rate) were applied. A principle component analysis was conducted to extract independent factors, which were then used in a linear regression model. We identified six parameters (three skin temperatures, two skin heat fluxes and heart rate), which were included for the calculation of two factors. The predictive value of these factors for core body temperature was evaluated by a multiple regression analysis. The calculated root mean square deviation (rmsd) was in the range from 0.28 °C to 0.34 °C for all environmental conditions. These errors are similar to previous models using non-invasive measures to predict core body temperature. The results from this study illustrate that multiple physiological parameters (e.g. skin temperature and skin heat fluxes) are needed to predict core body temperature. In addition, the physiological measurements chosen in this study and the algorithm defined in this work are potentially applicable as real-time core body temperature monitoring to assess health risk in broad range of working conditions.

  18. Temperature Dependence in Homogeneous and Heterogeneous Nucleation

    Energy Technology Data Exchange (ETDEWEB)

    McGraw R. L.; Winkler, P. M.; Wagner, P. E.

    2017-08-01

    Heterogeneous nucleation on stable (sub-2 nm) nuclei aids the formation of atmospheric cloud condensation nuclei (CCN) by circumventing or reducing vapor pressure barriers that would otherwise limit condensation and new particle growth. Aerosol and cloud formation depend largely on the interaction between a condensing liquid and the nucleating site. A new paper published this year reports the first direct experimental determination of contact angles as well as contact line curvature and other geometric properties of a spherical cap nucleus at nanometer scale using measurements from the Vienna Size Analyzing Nucleus Counter (SANC) (Winkler et al., 2016). For water nucleating heterogeneously on silver oxide nanoparticles we find contact angles around 15 degrees compared to around 90 degrees for the macroscopically measured equilibrium angle for water on bulk silver. The small microscopic contact angles can be attributed via the generalized Young equation to a negative line tension that becomes increasingly dominant with increasing curvature of the contact line. These results enable a consistent theoretical description of heterogeneous nucleation and provide firm insight to the wetting of nanosized objects.

  19. Core temperature cooling in healthy volunteers after rapid intravenous infusion of cold and room temperature saline solution.

    Science.gov (United States)

    Moore, Tracy M; Callaway, Clifton W; Hostler, David

    2008-02-01

    Studies have suggested that inducing mild hypothermia improves neurologic outcomes after traumatic brain injury, major stroke, traumatic hemorrhage, and cardiac arrest. Although infusion of cold normal saline solution is a simple and inexpensive method for initiating hypothermia, human cold-defense mechanisms potentially make this route stressful or ineffective. We hypothesize that rapid infusion of 30 mL/kg of cold (4 degrees C, 39.2 degrees F) 0.9% saline solution during 30 minutes to healthy subjects (aged 27 [standard deviation (SD) 4] years) will reduce core body temperature to the therapeutic range of 33 degrees C to 35 degrees C (91.4 degrees F to 95 degrees F). Sixteen subjects were randomly assigned to receive either cold (4 degrees C, 39.2 degrees F) or room temperature (23 degrees C, 73.4 degrees F) normal saline solution. Subjects were not informed of their assignment, but blinding was not possible after initiation of the infusion. Core temperature, skin temperature, and vital signs were recorded every 2 minutes. Subjects indicated global discomfort during the infusion on a 100-mm visual analog scale at 5-minute intervals. Core temperature decreased in both the cold saline solution (1.0 degrees C [SD 0.4 degrees C]/1.8 degrees F [0.7 degrees F]) and room temperature saline solution (0.5 degrees C [SD 0.1 degrees C]/0.9 degrees F [0.2 degrees F]) groups, whereas skin temperature was unchanged. Slopes calculated from the core temperature cooling curves indicate that the majority of cooling occurred during the first half of the infusion. Examination of the core temperature cooling curves revealed a 2-phase temporal pattern in 30-minute cooling curves. The early phase, spanning 0 to 14 minutes, demonstrated rapid cooling in both groups, with a larger effect observed in subjects receiving cold saline solution. In this pilot study of healthy volunteers, rapid administration of cold saline solution to awake normothermic volunteers resulted in 1 degrees C (1

  20. Telemetry pill versus rectal and esophageal temperature during extreme rates of exercise-induced core temperature change

    NARCIS (Netherlands)

    Teunissen, L.P.J.; Haan, A. de; Koning, J.J. de; Daanen, H.A.M.

    2012-01-01

    Core temperature measurement with an ingestible telemetry pill has been scarcely investigated during extreme rates of temperature change, induced by short high-intensity exercise in the heat. Therefore, nine participants performed a protocol of rest, (sub)maximal cycling and recovery at 30 °C. The

  1. Temperature dependence of the HNO3 UV absorption cross sections

    Science.gov (United States)

    Burkholder, James B.; Talukdar, Ranajit K.; Ravishankara, A. R.; Solomon, Susan

    1993-01-01

    The temperature dependence of the HNO3 absorption cross sections between 240 and 360 K over the wavelength range 195 to 350 nm has been measured using a diode array spectrometer. Absorption cross sections were determined using both (1) absolute pressure measurements at 298 K and (2) a dual absorption cell arrangement in which the absorption spectrum at various temperatures is measured relative to the room temperature absorption spectrum. The HNO3 absorption spectrum showed a temperature dependence which is weak at short wavelengths but stronger at longer wavelengths which are important for photolysis in the lower stratosphere. The 298 K absorption cross sections were found to be larger than the values currently recommended for atmospheric modeling (DeMore et al., 1992). Our absorption cross section data are critically compared with the previous measurements of both room temperature and temperature-dependent absorption cross sections. Temperature-dependent absorption cross sections of HNO3 are recommended for use in atmospheric modeling. These temperature dependent HNO3 absorption cross sections were used in a two-dimensional dynamical-photochemical model to demonstrate the effects of the revised absorption cross sections on loss rate of HNO3 and the abundance of NO2 in the stratosphere.

  2. Hypothermia and acute alcohol intoxication in Dutch adolescents : The relationship between core and outdoor temperatures

    NARCIS (Netherlands)

    Schreurs, Claire J.; Van Hoof, Joris J.; van der Lely, Nico

    2017-01-01

    Purpose: To investigate hypothermia and its potential association with core and outdoor temperatures in adolescents suffering from acute alcohol intoxication. Methods: Data were derived from the Dutch Pediatric Surveillance System, which monitors alcohol intoxication among all Dutch adolescents.

  3. Poiseuille Flow of Fluid Whose Viscosity is Temperature Dependent ...

    African Journals Online (AJOL)

    We discuss a fluid flowing between two parallel plates. We assume a Poiseuille flow. Furthermore, we assume that the viscosity μ, depends on temperature T. We show that the velocity equation has two solutions. Graph features prominently in the presentation.

  4. Temperature dependent climate projection deficiencies in CMIP5 models

    DEFF Research Database (Denmark)

    Christensen, Jens H.; Boberg, Fredrik

    2012-01-01

    Monthly mean temperatures for 34 GCMs available from the CMIP5 project are compared with observations from CRU for 26 different land regions covering all major land areas in the world for the period 1961-2000 by means of quantile-quantile (q-q) diagrams. A warm period positive temperature dependent...... bias is identified for many of the models within many of the chosen climate regions. However, the exact temperature dependence varies considerably between the models. We analyse the role of this difference as a contributing factor for some models to project stronger regional warming than others...... that in general models with a positive temperature dependent bias tend to have a large projected temperature change, and these tendencies increase with increasing global warming level. We argue that this appears to be linked with the ability of models to capture complex feedbacks accurately. In particular land...

  5. Temperature dependence of photovoltaic cells, modules, and systems

    Energy Technology Data Exchange (ETDEWEB)

    Emery, K.; Burdick, J.; Caiyem, Y. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    Photovoltaic (PV) cells and modules are often rated in terms of a set of standard reporting conditions defined by a temperature, spectral irradiance, and total irradiance. Because PV devices operates over a wide range of temperatures and irradiances, the temperature and irradiance related behavior must be known. This paper surveys the temperature dependence of crystalline and thin-film, state-of-the-art, research-size cells, modules, and systems measured by a variety of methods. The various error sources and measurement methods that contribute to cause differences in the temperature coefficient for a given cell or module measured with various methods are discussed.

  6. Hysteresis and Temperature Dependency of Moisture Sorption – New Measurements

    DEFF Research Database (Denmark)

    Rode, Carsten; Hansen, Kurt Kielsgaard

    2011-01-01

    It is well known that sorption characteristics of building materials exhibit hysteresis in the way the equilibrium curves develop between adsorption and desorption, and that the sorption curves are also somewhat temperature dependent. However, these two facts are most often neglected in models...... measurements of hysteresis and temperature dependency of the moisture sorption characteristics of three different porous building materials: aerated concrete, cement paste and spruce. Scanning curves are measured for all three materials where periods with adsorption and desorption interrupt each other...

  7. Temperature dependence of unitary properties of an ATP-dependent potassium channel in cardiac myocytes.

    OpenAIRE

    McLarnon, J G; Hamman, B.N.; Tibbits, G.F.

    1993-01-01

    The temperature dependence of the properties of unitary currents in cultured rat ventricular myocytes has been studied. Currents flowing through an ATP-dependent K+ channel were recorded from inside-out patches with the bath temperature varied from 10 degrees to 30 degrees C. The channel conductance was 56 pS at room temperature (22 degrees C), and the amplitudes of unitary currents and the channel conductance exhibited a relatively weak (Q10 from 1.4 to 1.6) dependence on temperature. The te...

  8. Temperature-dependent thermal properties of spark plasma sintered alumina

    Directory of Open Access Journals (Sweden)

    Saheb Nouari

    2017-01-01

    Full Text Available In this work, we report temperature-dependent thermal properties of alumina powder and bulk alumina consolidated by spark plasma sintering method. The properties were measured between room temperature and 250ºC using a thermal constants analyzer. Alumina powder had very low thermal properties due to the presence of large pores and absence of bonding between its particles. Fully dense alumina with a relative density of 99.6 % was obtained at a sintering temperature of 1400°C and a holding time of 10 min. Thermal properties were found to mainly dependent on density. Thermal conductivity, thermal diffusivity, and specific heat of the fully dense alumina were 34.44 W/mK, 7.62 mm2s-1, and 1.22 J/gK, respectively, at room temperature. Thermal conductivity and thermal diffusivity decreased while specific heat increased with the increase in temperature from room temperature to 250ºC.

  9. Temperature dependent optical properties of PbS nanocrystals.

    Science.gov (United States)

    Nordin, M N; Li, Juerong; Clowes, S K; Curry, R J

    2012-07-11

    A comprehensive study of the optical properties of PbS nanocrystals (NCs) is reported that includes the temperature dependent absorption, photoluminescence (PL) and PL lifetime in the range of 3-300 K. The absorption and PL are found to display different temperature dependent behaviour though both redshift as temperature is reduced. This results in a temperature dependent Stokes shift which increases from ∼75 meV at 300 K with reducing temperature until saturating at ∼130 meV below ∼150 K prior to a small reduction to 125 meV upon cooling from 25 to 3 K. The PL lifetime is found to be single exponential at 3 K with a lifetime of τ(1) = 6.5 μs. Above 3 K biexponential behaviour is observed with the lifetime for each process displaying a different temperature dependence. The Stokes shift is modelled using a three-level rate equation model incorporating temperature dependent parameter values obtained via fitting phenomenological relationships to the observed absorption and PL behaviour. This results in a predicted energy difference between the two emitting states of ∼6 meV which is close to the excitonic exchange energy splitting predicted theoretically for these systems.

  10. Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance

    Science.gov (United States)

    Alamusi; Li, Yuan; Hu, Ning; Wu, Liangke; Yuan, Weifeng; Peng, Xianghe; Gu, Bin; Chang, Christiana; Liu, Yaolu; Ning, Huiming; Li, Jinhua; Surina; Atobe, Satoshi; Fukunaga, Hisao

    2013-11-01

    A temperature sensor was fabricated from a polymer nanocomposite with multi-walled carbon nanotube (MWCNT) as nanofiller (i.e., MWCNT/epoxy). The electrical resistance and temperature coefficient of resistance (TCR) of the temperature sensor were characterized experimentally. The effects of temperature (within the range 333-373 K) and MWCNT content (within the range 1-5 wt%) were investigated thoroughly. It was found that the resistance increases with increasing temperature and decreasing MWCNT content. However, the resistance change ratio related to the TCR increases with increasing temperature and MWCNT content. The highest value of TCR (0.021 K-1), which was observed in the case of 5 wt% MWCNT, is much higher than those of traditional metals and MWCNT-based temperature sensors. Moreover, the corresponding numerical simulation—conducted to explain the above temperature-dependent piezoresistivity of the nanocomposite temperature sensor—indicated the key role of a temperature-dependent tunneling effect.

  11. Temperature dependence of electromechanical properties of PLZT x ...

    Indian Academy of Sciences (India)

    Administrator

    the temperature dependence of electromechanical proper- ties of PLZT. It has been observed that the compositions of PLZT ceramics with Zr/Ti 57/43 show enhanced piezoelectric response at room temperature and can be used in low power transducer devices (Shukla et al 2004). Keeping the device application in view, ...

  12. Existence of a secondary flow for a temperature dependent viscous ...

    African Journals Online (AJOL)

    We model a viscous fluid flowing between parallel plates. The viscosity depends on temperature. We investigate the properties of the velocity and we show that the temperature and velocity fields have two solutions. The existence of two velocity solutions is new. This means that there exist secondary flows. Journal of the ...

  13. On the effect of temperature dependent thermal conductivity on ...

    African Journals Online (AJOL)

    We consider the effect of temperature dependent thermal conductivity on temperature rise in biologic tissues during microwave heating. The method of asymptotic expansion is used for finding solution. An appropriate matching procedure was used in our method. Our result reveals the possibility of multiple solutions and it ...

  14. Pressure–temperature dependence of thermodynamic properties of ...

    Indian Academy of Sciences (India)

    properties of materials under high pressures and temperatures for microscopic under- standing as well as technological applications. In this paper, we report our theoretical study of both pressure and temperature dependences of the thermal properties of rutile within the Debye and Debye–Grüneisen models with and ...

  15. Temperature dependence of the optical absorption spectra of InP/ZnS quantum dots

    Science.gov (United States)

    Savchenko, S. S.; Vokhmintsev, A. S.; Weinstein, I. A.

    2017-03-01

    The optical-absorption spectra of InP/ZnS (core/shell) quantum dots have been studied in a broad temperature range of T = 6.5-296 K. Using the second-order derivative spectrophotometry technique, the energies of optical transitions at room temperature were found to be E 1 = 2.60 ± 0.02 eV (for the first peak of excitonic absorption in the InP core) and E 2 = 4.70 ± 0.02 eV (for processes in the ZnS shell). The experimental curve of E 1( T) has been approximated for the first time in the framework of a linear model and in terms of the Fan's formula. It is established that the temperature dependence of E 1 is determined by the interaction of excitons and longitudinal acoustic phonons with hω = 15 meV.

  16. Time dependent temperature distribution in pulsed Ti:sapphire lasers

    Science.gov (United States)

    Buoncristiani, A. Martin; Byvik, Charles E.; Farrukh, Usamah O.

    1988-01-01

    An expression is derived for the time dependent temperature distribution in a finite solid state laser rod for an end-pumped beam of arbitrary shape. The specific case of end pumping by circular (constant) or Gaussian beam is described. The temperature profile for a single pump pulse and for repetitive pulse operation is discussed. The particular case of the temperature distribution in a pulsed titanium:sapphire rod is considered.

  17. 3D Printed "Earable" Smart Devices for Real-Time Detection of Core Body Temperature.

    Science.gov (United States)

    Ota, Hiroki; Chao, Minghan; Gao, Yuji; Wu, Eric; Tai, Li-Chia; Chen, Kevin; Matsuoka, Yasutomo; Iwai, Kosuke; Fahad, Hossain M; Gao, Wei; Nyein, Hnin Yin Yin; Lin, Liwei; Javey, Ali

    2017-07-28

    Real-time detection of basic physiological parameters such as blood pressure and heart rate is an important target in wearable smart devices for healthcare. Among these, the core body temperature is one of the most important basic medical indicators of fever, insomnia, fatigue, metabolic functionality, and depression. However, traditional wearable temperature sensors are based upon the measurement of skin temperature, which can vary dramatically from the true core body temperature. Here, we demonstrate a three-dimensional (3D) printed wearable "earable" smart device that is designed to be worn on the ear to track core body temperature from the tympanic membrane (i.e., ear drum) based on an infrared sensor. The device is fully integrated with data processing circuits and a wireless module for standalone functionality. Using this smart earable device, we demonstrate that the core body temperature can be accurately monitored regardless of the environment and activity of the user. In addition, a microphone and actuator are also integrated so that the device can also function as a bone conduction hearing aid. Using 3D printing as the fabrication method enables the device to be customized for the wearer for more personalized healthcare. This smart device provides an important advance in realizing personalized health care by enabling real-time monitoring of one of the most important medical parameters, core body temperature, employed in preliminary medical screening tests.

  18. Planetary gyre, time-dependent eddies, torsional waves, and equatorial jets at the Earth's core surface

    DEFF Research Database (Denmark)

    Gillet, N.; Jault, D.; Finlay, Chris

    2015-01-01

    between the magnetic field and subdecadal nonzonal motions within the fluid outer core. Both the zonal and the more energetic nonzonal interannual motions were particularly intense close to the equator (below 10∘ latitude) between 1995 and 2010. We revise down the amplitude of the decade fluctuations......We report a calculation of time-dependent quasi-geostrophic core flows for 1940–2010. Inverting recursively for an ensemble of solutions, we evaluate the main source of uncertainties, namely, the model errors arising from interactions between unresolved core surface motions and magnetic fields....... Temporal correlations of these uncertainties are accounted for. The covariance matrix for the flow coefficients is also obtained recursively from the dispersion of an ensemble of solutions. Maps of the flow at the core surface show, upon a planetary-scale gyre, time-dependent large-scale eddies...

  19. The temperature dependent amide I band of crystalline acetanilide

    Energy Technology Data Exchange (ETDEWEB)

    Cruzeiro, Leonor [CCMAR, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Physics Department, FCT, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Freedman, Holly [CCMAR, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal)

    2013-10-01

    The temperature dependent anomalous peak in the amide I band of crystalline acetanilide is thought to be due to self-trapped states. On the contrary, according to the present model, the anomalous peak comes from the fraction of ACN molecules strongly hydrogen-bonded to a neighboring ACN molecule, and its intensity decreases because, on average, this fraction decreases as temperature increases. This model provides, for the first time, an integrated and theoretically consistent view of the temperature dependence of the full amide I band and a qualitative explanation of some of the features of nonlinear pump–probe experiments.

  20. Size dependence of inter- and intra-cluster interactions in core-shell iron-iron oxide nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Maninder; McCloy, John S.; Jiang, Weilin; Yao, Qi; Qiang, You

    2012-06-15

    The room temperature magnetic properties of core-shell iron-iron oxide nanoclusters (NCs) synthesized by a cluster deposition system have been investigated, and their dependence on mean cluster size has been discussed. In this study, the surface/boundary spins of clusters were not frozen and were thermally activated during the measurements. The inter-cluster interactions between clusters and intra-cluster interactions between the iron core (ferromagnetic) and iron oxide shell (ferrimagnetic) have been investigated by field dependent isothermal remanent magnetization and dc demagnetization measurements at room temperature. The Henkel plot and delta M plot support the existence of dipolar inter-cluster interactions which become stronger with the growth of cluster size. The derivative of the initial magnetization curve implies that smaller clusters require less field and time than the bigger ones to overcome various energy barriers before aligning along the field direction. Coercive field and magnetization are also correlated with the interaction parameters. To compare the room temperature magnetic results, one system was studied at low temperature, where exchange coupling at the interface between the oxide and metallic phases was observed through bias effect and anisotropy enhancement.

  1. BUCKLING OF A COLUMN WITH TEMPERATURE DEPENDENT MATERIAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Ömer SOYKASAP

    2001-01-01

    Full Text Available Buckling of a column with temperature dependent material properties is investigated. Euler-Bernoulli theory of thin beams is used to derive the element matrices by means of the minimum potential energy principle. Temperature dependency of material properties is taken into account in the formulation. The column is divided into finite elements with the axial degrees of freedom defined at the outer fiber of the column. Column elements have simpler derivations and compact element matrices than those of classical beam-bending element. Some illustrative examples are presented to show the convergence of numerical results obtained by the use of new elements. The results are compared with those of the classical beam-bending element and analytical solution. The new element converges to the analytical results as powerful as the classical beam-bending element. The temperature effects on the buckling loads of the column with temperature dependent material properties are also examined.

  2. Temperature dependent modulation of lobster neuromuscular properties by serotonin.

    Science.gov (United States)

    Hamilton, Jonna L; Edwards, Claire R; Holt, Stephen R; Worden, Mary Kate

    2007-03-01

    In cold-blooded species the efficacy of neuromuscular function depends both on the thermal environmental of the animal's habitat and on the concentrations of modulatory hormones circulating within the animal's body. The goal of this study is to examine how temperature variation within an ecologically relevant range affects neuromuscular function and its modulation by the neurohormone serotonin (5-HT) in Homarus americanus, a lobster species that inhabits a broad thermal range in the wild. The synaptic strength of the excitatory and inhibitory motoneurons innervating the lobster dactyl opener muscle depends on temperature, with the strongest neurally evoked muscle movements being elicited at cold (temperatures. However, whereas neurally evoked contractions can be elicited over the entire temperature range from 2 to >20 degrees C, neurally evoked relaxations of resting muscle tension are effective only at colder temperatures at which the inhibitory junction potentials are hyperpolarizing in polarity. 5-HT has two effects on inhibitory synaptic signals: it potentiates their amplitude and also shifts the temperature at which they reverse polarity by approximately +7 degrees C. Thus 5-HT both potentiates neurally evoked relaxations of the muscle and increases the temperature range over which neurally evoked muscle relaxations can be elicited. Neurally evoked contractions are maximally potentiated by 5-HT at warm (18 degrees C) temperatures; however, 5-HT enhances excitatory junction potentials in a temperature-independent manner. Finally, 5-HT strongly increases resting muscle tension at the coldest extent of the temperature range tested (2 degrees C) but is ineffective at 22 degrees C. These data demonstrate that 5-HT elicits several temperature-dependent physiological changes in the passive and active responses of muscle to neural input. The overall effect of 5-HT is to increase the temperature range over which neurally evoked motor movements can be elicited in this

  3. Temperature-dependent enthalpy of oxygenation in Antarctic fish hemoglobins

    DEFF Research Database (Denmark)

    Fago, A.; Wells, R.M.G.; Weber, Roy E.

    1997-01-01

    The effect of temperature on the oxygen-binding properties of the hemoglobins of three cold-adapted Antarctic fish species, Dissostichus mawsoni, Pagothenia borchgrevinki and Trematomus, sp., has been investigated under different pH values and buffer conditions. A clear non linear van't Hoff plot...... oxygen binding. The degree of the temperature dependence of the heat of oxygenation observed in these hemoglobins seems to reflect the differences in their allosteric effects rather than a specific molecular adaptation to low temperatures. Moreover, this study indicates that the disagreement between...... (logP(50) vs 1/T) of D. mawsoni hemoglobin indicates that the enthalpy of oxygenation (slope of the plot) is temperature dependent and that at high temperatures oxygen-binding becomes less exothermic. Nearly linear relationships were found in the hemoglobins of the other two species. The data were...

  4. Temperature dependent Raman scattering in YCrO3

    Science.gov (United States)

    Mall, A. K.; Mukherjee, S.; Sharma, Y.; Garg, A.; Gupta, R.

    2014-04-01

    High quality polycrystalline YCrO3 samples were synthesized using solid-state-reaction method. The samples were subsequently characterized using X-ray diffraction and magnetometry. Further, temperature dependent Raman spectroscopy over a spectral range from 100 to 800 cm-1 was used to examine the variation of phonons as a function of temperature from 90 to 300 K. In the low temperature ferroelectric phase of YCrO3, the observed phonon spectra showed softening of some Raman modes below the magnetic ordering temperature (TN ˜ 142K), suggesting a coupling between the spin and phonon degrees of freedom.

  5. The impact of exercise-induced core body temperature elevations on coagulation responses.

    Science.gov (United States)

    Veltmeijer, Matthijs T W; Eijsvogels, Thijs M H; Barteling, Wideke; Verbeek-Knobbe, Kitty; van Heerde, Waander L; Hopman, Maria T E

    2017-02-01

    Exercise induces changes in haemostatic parameters and core body temperature (CBT). We aimed to assess whether exercise-induced elevations in CBT induce pro-thrombotic changes in a dose-dependent manner. Observational study. CBT and haemostatic responses were measured in 62 participants of a 15-km road race at baseline and immediately after finishing. As haemostasis assays are routinely performed at 37°C, we corrected the assay temperature for the individual's actual CBT at baseline and finish in a subgroup of n=25. All subjects (44±11 years, 69% male) completed the race at a speed of 12.1±1.8km/h. CBT increased significantly from 37.6±0.4°C to 39.4±0.8°C (ptemperature to the subjects' actual CBT resulted in additional differences and stronger acceleration of thrombin generation parameters. This study demonstrates that exercise induces a prothrombotic state, which might be partially dependent on the magnitude of the exercise-induced CBT rise. Synchronizing the assay temperature to approximate the subject's CBT is essential to obtain more accurate insight in the haemostatic balance during thermoregulatory challenging situations. Finally, this study shows that short-lasting exposure to a CBT of 41.2°C does not result in clinical symptoms of severe coagulation. We therefore hypothesize that prolonged exposure to a high CBT or an individual-specific CBT threshold needs to be exceeded before derailment of the haemostatic balance occurs. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  6. Temperature-dependent innate defense against the common cold virus limits viral replication at warm temperature in mouse airway cells.

    Science.gov (United States)

    Foxman, Ellen F; Storer, James A; Fitzgerald, Megan E; Wasik, Bethany R; Hou, Lin; Zhao, Hongyu; Turner, Paul E; Pyle, Anna Marie; Iwasaki, Akiko

    2015-01-20

    Most isolates of human rhinovirus, the common cold virus, replicate more robustly at the cool temperatures found in the nasal cavity (33-35 °C) than at core body temperature (37 °C). To gain insight into the mechanism of temperature-dependent growth, we compared the transcriptional response of primary mouse airway epithelial cells infected with rhinovirus at 33 °C vs. 37 °C. Mouse airway cells infected with mouse-adapted rhinovirus 1B exhibited a striking enrichment in expression of antiviral defense response genes at 37 °C relative to 33 °C, which correlated with significantly higher expression levels of type I and type III IFN genes and IFN-stimulated genes (ISGs) at 37 °C. Temperature-dependent IFN induction in response to rhinovirus was dependent on the MAVS protein, a key signaling adaptor of the RIG-I-like receptors (RLRs). Stimulation of primary airway cells with the synthetic RLR ligand poly I:C led to greater IFN induction at 37 °C relative to 33 °C at early time points poststimulation and to a sustained increase in the induction of ISGs at 37 °C relative to 33 °C. Recombinant type I IFN also stimulated more robust induction of ISGs at 37 °C than at 33 °C. Genetic deficiency of MAVS or the type I IFN receptor in infected airway cells permitted higher levels of viral replication, particularly at 37 °C, and partially rescued the temperature-dependent growth phenotype. These findings demonstrate that in mouse airway cells, rhinovirus replicates preferentially at nasal cavity temperature due, in part, to a less efficient antiviral defense response of infected cells at cool temperature.

  7. Arrhenius temperature dependence of in vitro tissue plasminogen activator thrombolysis

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, George J [Department of Emergency Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0769 (United States); Dhamija, Ashima [Department of Emergency Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0769 (United States); Bavani, Nazli [Department of Emergency Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0769 (United States); Wagner, Kenneth R [Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0769 (United States); Holland, Christy K [Department of Biomedical Engineering, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0769 (United States)

    2007-06-07

    Stroke is a devastating disease and a leading cause of death and disability. Currently, the only FDA approved therapy for acute ischemic stroke is the intravenous administration of the thrombolytic medication, recombinant tissue plasminogen activator (tPA). However, this treatment has many contraindications and can have dangerous side effects such as intra-cerebral hemorrhage. These treatment limitations have led to much interest in potential adjunctive therapies, such as therapeutic hypothermia (T {<=} 35 deg. C) and ultrasound enhanced thrombolysis. Such interest may lead to combining these therapies with tPA to treat stroke, however little is known about the effects of temperature on the thrombolytic efficacy of tPA. In this work, we measure the temperature dependence of the fractional clot mass loss {delta}m(T) resulting from tPA exposure in an in vitro human clot model. We find that the temperature dependence is well described by an Arrhenius temperature dependence with an effective activation energy E{sub eff} of 42.0 {+-} 0.9 kJ mole{sup -1}. E{sub eff} approximates the activation energy of the plasminogen-to-plasmin reaction of 48.9 kJ mole{sup -1}. A model to explain this temperature dependence is proposed. These results will be useful in predicting the effects of temperature in future lytic therapies.

  8. Patterns in new dimensionless quantities containing melting temperature, and their dependence on pressure

    Directory of Open Access Journals (Sweden)

    U. WALZER

    1980-06-01

    Full Text Available The relationships existing between melting temperature and other
    macroscopic physical quantities are investigated. A new dimensionless
    quantity Q(1 not containing the Grtineisen parameter proves to be suited for serving in future studies as a tool for the determination of the melting temperature in the outer core of the Earth. The pressure dependence of more general dimensionless quantities Q„ is determined analytically and, for the chemical elements, numerically, too. The patterns of various interesting dimensionless quantities are shown in the Periodic Table and compared.

  9. Experimental and Analytic Study on the Core Bypass Flow in a Very High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Richard Schultz

    2012-04-01

    Core bypass flow has been one of key issues in the very high temperature reactor (VHTR) design for securing core thermal margins and achieving target temperatures at the core exit. The bypass flow in a prismatic VHTR core occurs through the control element holes and the radial and axial gaps between the graphite blocks for manufacturing and refueling tolerances. These gaps vary with the core life cycles because of the irradiation swelling/shrinkage characteristic of the graphite blocks such as fuel and reflector blocks, which are main components of a core's structure. Thus, the core bypass flow occurs in a complicated multidimensional way. The accurate prediction of this bypass flow and counter-measures to minimize it are thus of major importance in assuring core thermal margins and securing higher core efficiency. Even with this importance, there has not been much effort in quantifying and accurately modeling the effect of the core bypass flow. The main objectives of this project were to generate experimental data for validating the software to be used to calculate the bypass flow in a prismatic VHTR core, validate thermofluid analysis tools and their model improvements, and identify and assess measures for reducing the bypass flow. To achieve these objectives, tasks were defined to (1) design and construct experiments to generate validation data for software analysis tools, (2) determine the experimental conditions and define the measurement requirements and techniques, (3) generate and analyze the experimental data, (4) validate and improve the thermofluid analysis tools, and (5) identify measures to control the bypass flow and assess its performance in the experiment.

  10. Temperature dependence of the elastocaloric effect in natural rubber

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhongjian, E-mail: zhongjian.xie521@gmail.com; Sebald, Gael; Guyomar, Daniel

    2017-07-12

    The temperature dependence of the elastocaloric (eC) effect in natural rubber (NR) has been studied. This material exhibits a large eC effect over a broad temperature range from 0 °C to 49 °C. The maximum adiabatic temperature change (ΔT) occurred at 10 °C and the behavior could be predicted by the temperature dependence of the strain-induced crystallization (SIC) and the temperature-induced crystallization (TIC). The eC performance of NR was then compared with that of shape memory alloys (SMAs). This study contributes to the SIC research of NR and also broadens the application of elastomers. - Highlights: • A large elastocaloric effect over a broad temperature range was found in natural rubber (NR). • The caloric performance of NR was compared with that of shape memory alloys. • The temperature dependence of the elastocaloric effect in NR can be prediced by the theory of strain-induced crystallization.

  11. Substrate-dependent temperature sensitivity of soil organic matter decomposition

    Science.gov (United States)

    Myachina, Olga; Blagodatskaya, Evgenia

    2015-04-01

    Activity of extracellular enzymes responsible for decomposition of organics is substrate dependent. Quantity of the substrate is the main limiting factor for enzymatic or microbial heterotrophic activity in soils. Different mechanisms of enzymes response to temperature suggested for low and high substrate availability were never proved for real soil conditions. We compared the temperature responses of enzymes-catalyzed reactions in soils. Basing on Michaelis-Menten kinetics we determined the enzymes affinity to substrate (Km) and mineralization potential of heterotrophic microorganisms (Vmax) 1) for three hydrolytic enzymes: β-1,4-glucosidase, N-acetyl- β -D-glucosaminidase and phosphatase by the application of fluorogenically labeled substrates and 2) for mineralization of 14C-labeled glucose by substrate-dependent respiratory response. Here we show that the amount of available substrate is responsible for temperature sensitivity of hydrolysis of polymers in soil, whereas monomers oxidation to CO2 does not depend on substrate amount and is mainly temperature governed. We also found that substrate affinity of enzymes (which is usually decreases with the temperature) differently responded to warming for the process of depolymerisation versus monomers oxidation. We suggest the mechanism to temperature acclimation based on different temperature sensitivity of enzymes kinetics for hydrolysis of polymers and for monomers oxidation.

  12. A framework for elucidating the temperature dependence of fitness.

    Science.gov (United States)

    Amarasekare, Priyanga; Savage, Van

    2012-02-01

    Climate warming is predicted to cause large-scale extinctions, particularly of ectothermic species. A striking difference between tropical and temperate ectotherms is that tropical species experience a mean habitat temperature that is closer to the temperature at which fitness is maximized (T(opt)) and an upper temperature limit for survival (T(max)) that is closer to T(opt) than do temperate species. Thus, even a small increase in environmental temperature could put tropical ectotherms at high risk of extinction, whereas temperate ectotherms have a wider temperature cushion. Although this pattern is widely observed, the mechanisms that produce it are not well understood. Here we develop a mathematical framework to partition the temperature response of fitness into its components (fecundity, mortality, and development) and test model predictions with data for insects. We find that fitness declines at high temperatures because the temperature responses of fecundity and mortality act in opposite ways: fecundity decreases with temperature when temperatures exceed the optimal range, whereas mortality continues to increase. The proximity of T(opt) to T(max) depends on how the temperature response of development mediates the interaction between fecundity and mortality. When development is highly temperature sensitive, mortality exceeds reproduction only after fecundity has started to decline with temperature, which causes fitness to decline rapidly to zero when temperatures exceed T(opt). The model correctly predicts empirically observed fitness-temperature relationships in insects from different latitudes. It also suggests explanations for the widely reported phenological shifts in many ectotherms and the latitudinal differences in fitness responses.

  13. Core Cross-linked Star Polymers for Temperature/pH Controlled Delivery of 5-Fluorouracil

    Directory of Open Access Journals (Sweden)

    Elizabeth Sánchez-Bustos

    2016-01-01

    Full Text Available RAFT polymerization with cross-linking was used to prepare core cross-linked star polymers bearing temperature sensitive arms. The arms consisted of a diblock copolymer containing N-isopropylacrylamide (NIPAAm and 4-methacryloyloxy benzoic acid (4MBA in the temperature sensitive block and poly(hexyl acrylate forming the second hydrophobic block, while ethyleneglycol dimethacrylate was used to form the core. The acid comonomer provides pH sensitivity to the arms and also increases the transition temperature of polyNIPAAm to values in the range of 40 to 46°C. Light scattering and atomic force microscopy studies suggest that loose core star polymers were obtained. The star polymers were loaded with 5-fluorouracil (5-FU, an anticancer agent, in values of up to 30 w/w%. In vitro release experiments were performed at different temperatures and pH values, as well as with heating and cooling temperature cycles. Faster drug release was obtained at 42°C or pH 6, compared to normal physiological conditions (37°C, pH 7.4. The drug carriers prepared acted as nanopumps changing the release kinetics of 5-FU when temperatures cycles were applied, in contrast with release rates at a constant temperature. The prepared core cross-linked star polymers represent advanced drug delivery vehicles optimized for 5-FU with potential application in cancer treatment.

  14. Temperature dependence of alkali-antimonide photocathodes: Evaluation at cryogenic temperatures

    Science.gov (United States)

    Mamun, M. A.; Hernandez-Flores, M. R.; Morales, E.; Hernandez-Garcia, C.; Poelker, M.

    2017-10-01

    CsxKySb photocathodes were manufactured on a niobium substrate and evaluated over a range of temperatures from 300 to 77 K. Vacuum conditions were identified that minimize surface contamination due to gas adsorption when samples were cooled below room temperature. Measurements of the photocathode spectral response provided a means to evaluate the photocathode band gap dependence on the temperature and to predict the photocathode quantum efficiency at 4 K, a typical temperature at which superconducting radio frequency photoguns operate.

  15. On the Temperature Dependence of the UNIQUAC/UNIFAC Models

    DEFF Research Database (Denmark)

    Skjold-Jørgensen, Steen; Rasmussen, Peter; Fredenslund, Aage

    1980-01-01

    Local composition models for the description of the properties of liquid mixtures do not in general give an accurate representation of excess Gibbs energy and excess enthalpy simultaneously. The introduction of temperature dependent interaction parameters leads to considerable improvements...... of the simultaneous correlation. The temperature dependent parameters have, however, little physical meaning and very odd results are frequently obtained when the interaction parameters obtained from excess enthalpy information alone are used for the prediction of vapor-liquid equilibria. The UNIQUAC/UNIFAC models...... are modified in this work by the introduction of a general temperature dependence of the coordination number. The modified UNIQUAC/UNIFAC models are especially suited for the representation of mixtures containing non-associating components. The modified models contain the same number of interaction parameters...

  16. Apparatus for temperature-dependent cathodoluminescence characterization of materials

    Science.gov (United States)

    Bok, Jan; Schauer, Petr

    2014-07-01

    An apparatus for characterization of temperature-dependent cathodoluminescence (CL) of solid-state materials is presented. This device excites a specimen using an electron beam and the CL emission is collected from the specimen side opposite the e-beam irradiation. The design of the temperature-controlled specimen holder that enables cooling down to 100 K and heating up to 500 K is described. The desired specimen temperature is automatically stabilized using a PID controller, which is the proportional-integral-derivative control feedback loop. Moreover, the specimen holder provides in situ e-beam current measurement during the specimen excitation. The apparatus allows the measurement of the CL intensity, the CL spectrum, or the CL intensity decay depending on the specimen temperature, or on a variety of excitation conditions, such as excitation energy, electron current (dose), or excitation duration. The apparatus abilities are demonstrated by an example of the CL measurements of the YAG:Ce single-crystal scintillator.

  17. Honeybee flight metabolic rate: does it depend upon air temperature?

    Science.gov (United States)

    Woods, William A; Heinrich, Bernd; Stevenson, Robert D

    2005-03-01

    Differing conclusions have been reached as to how or whether varying heat production has a thermoregulatory function in flying honeybees Apis mellifera. We investigated the effects of air temperature on flight metabolic rate, water loss, wingbeat frequency, body segment temperatures and behavior of honeybees flying in transparent containment outdoors. For periods of voluntary, uninterrupted, self-sustaining flight, metabolic rate was independent of air temperature between 19 and 37 degrees C. Thorax temperatures (T(th)) were very stable, with a slope of thorax temperature on air temperature of 0.18. Evaporative heat loss increased from 51 mW g(-1) at 25 degrees C to 158 mW g(-1) at 37 degrees C and appeared to account for head and abdomen temperature excess falling sharply over the same air temperature range. As air temperature increased from 19 to 37 degrees C, wingbeat frequency showed a slight but significant increase, and metabolic expenditure per wingbeat showed a corresponding slight but significant decrease. Bees spent an average of 52% of the measurement period in flight, with 19 of 78 bees sustaining uninterrupted voluntary flight for periods of >1 min. The fraction of time spent flying declined as air temperature increased. As the fraction of time spent flying decreased, the slope of metabolic rate on air temperature became more steeply negative, and was significant for bees flying less than 80% of the time. In a separate experiment, there was a significant inverse relationship of metabolic rate and air temperature for bees requiring frequent or constant agitation to remain airborne, but no dependence for bees that flew with little or no agitation; bees were less likely to require agitation during outdoor than indoor measurements. A recent hypothesis explaining differences between studies in the slope of flight metabolic rate on air temperature in terms of differences in metabolic capacity and thorax temperature is supported for honeybees in voluntary

  18. AlN Bandgap Temperature Dependence from its Optical Properties

    Science.gov (United States)

    2008-06-07

    AlN bandgap temperature dependence from its optical properties E. Silveira a,, J.A. Freitas b, S.B. Schujman c, L.J. Schowalter c a Depto. de Fisica ...literature could, in part, be lifted in terms of selection rules for the optical transitions [5]. Further experimental investigations corroborated with...CL, transmission/ absorption and OR measurements at different temperatures. 2. Experimental details The high-quality large bulk AlN single crystals

  19. Core Temperature Monitoring in Obstetric Spinal Anesthesia Using an Ingestible Telemetric Sensor.

    Science.gov (United States)

    du Toit, Leon; van Dyk, Dominique; Hofmeyr, Ross; Lombard, Carl J; Dyer, Robert A

    2018-01-01

    Perioperative hypothermia may affect maternal and neonatal outcomes after obstetric spinal anesthesia. Core temperature is often poorly monitored during spinal anesthesia, due to the lack of an accurate noninvasive core temperature monitor. The aim of this study was to describe core temperature changes and temperature recovery during spinal anesthesia for elective cesarean delivery. We expected that obstetric spinal anesthesia would be associated with a clinically relevant thermoregulatory insult (core temperature decrease >1.0°C). A descriptive study was conducted in 28 women. An ingestible telemetric temperature sensor was used to record core temperature over time (measured every 10 seconds). The primary outcome was the maximum core temperature decrease after spinal anesthetic injection. The secondary outcomes were lowest absolute core temperature, time to lowest temperature, time to recovery of core temperature, hypothermic exposure (degree-hours below 37.0°C), and the time-weighted hypothermic exposure (median number of degrees below 37.0°C per hour). Basic descriptive statistics, median spline smooth, and integration of the area below the 37.0°C line of the temperature-over-time curve were utilized to analyze the data. Intestinal temperature decreased by a mean (standard deviation) of 1.30°C (0.31); 99% confidence interval (CI), 1.14 to 1.46 after spinal anesthetic injection. The median (interquartile range [IQR]) time to temperature nadir was 0.96 (0.73-1.32) hours (95% CI, 0.88-1.22). Fourteen of the 28 participants experienced intestinal temperatures below 36.0°C after spinal injection. Temperature was monitored for a minimum of 8 hours after spinal injection. In 8 of 28 participants, intestinal temperature did not recover to baseline during the monitored period. A median (IQR) of 4.59 (3.38-5.92) hours (95% CI, 3.45-5.90) was required for recovery to baseline intestinal temperature in the remaining 20 patients. Participants experienced a median (IQR

  20. The effects of sodium oxybate on core body and skin temperature regulation in narcolepsy.

    Science.gov (United States)

    van der Heide, Astrid; Donjacour, Claire E H M; Pijl, Hanno; Reijntjes, Robert H A M; Overeem, Sebastiaan; Lammers, Gert J; Van Someren, Eus J W; Fronczek, Rolf

    2015-10-01

    Patients suffering from narcolepsy type 1 show altered skin temperatures, resembling the profile that is related to sleep onset in healthy controls. The aim of the present study is to investigate the effects of sodium oxybate, a widely used drug to treat narcolepsy, on the 24-h profiles of temperature and sleep-wakefulness in patients with narcolepsy and controls. Eight hypocretin-deficient male narcolepsy type 1 patients and eight healthy matched controls underwent temperature measurement of core body and proximal and distal skin twice, and the sleep-wake state for 24 h. After the baseline assessment, 2 × 3 g of sodium oxybate was administered for 5 nights, immediately followed by the second assessment. At baseline, daytime core body temperature and proximal skin temperature were significantly lower in patients with narcolepsy (core: 36.8 ± 0.05 °C versus 37.0 ± 0.05 °C, F = 8.31, P = 0.01; proximal: 33.4 ± 0.26 °C versus 34.3 ± 0.26 °C, F = 5.66, P = 0.03). In patients, sodium oxybate administration increased proximal skin temperature during the day (F = 6.46, P = 0.04) to a level similar as in controls, but did not affect core body temperature, distal temperature or distal-proximal temperature gradient. Sodium oxybate administration normalised the predictive value of distal skin temperature and distal-proximal temperature gradient for the onset of daytime naps (P treatment. A causal relationship is not proven. © 2015 European Sleep Research Society.

  1. Iron mapping using the temperature dependency of the magnetic susceptibility.

    Science.gov (United States)

    Birkl, Christoph; Langkammer, Christian; Krenn, Heinz; Goessler, Walter; Ernst, Christina; Haybaeck, Johannes; Stollberger, Rudolf; Fazekas, Franz; Ropele, Stefan

    2015-03-01

    The assessment of iron content in brain white matter (WM) is of high importance for studying neurodegenerative diseases. While R2 * mapping and quantitative susceptibility mapping is suitable for iron mapping in gray matter, iron mapping in WM still remains an unsolved problem. We propose a new approach for iron mapping, independent of diamagnetic contributions of myelin by assessing the temperature dependency of the paramagnetic susceptibility. We used unfixed human brain slices for relaxometry and calculated R2 ' as a measure for microscopic susceptibility variations at several temperatures (4°C-37°C) at 3 Tesla. The temperature coefficient of R2 ' (TcR2p) was calculated by linear regression and related to the iron concentration found by subsequent superconducting quantum interference device (SQUID) magnetometry and by inductively coupled plasma mass spectrometry. In line with SQUID measurements, R2 ' mapping showed a linear temperature dependency of the bulk susceptibility with the highest slope in gray matter. Even in WM, TcR2p yielded a high linear correlation with the absolute iron concentration. According to Curie's law, only paramagnetic matter exhibits a temperature dependency while the diamagnetism shows no effect. We have demonstrated that the temperature coefficient (TcR2p) can be used as a measure of the paramagnetic susceptibility despite of an unknown diamagnetic background. © 2014 Wiley Periodicals, Inc.

  2. Temperature dependence of the Brewer global UV measurements

    Science.gov (United States)

    Fountoulakis, Ilias; Redondas, Alberto; Lakkala, Kaisa; Berjon, Alberto; Bais, Alkiviadis F.; Doppler, Lionel; Feister, Uwe; Heikkila, Anu; Karppinen, Tomi; Karhu, Juha M.; Koskela, Tapani; Garane, Katerina; Fragkos, Konstantinos; Savastiouk, Volodya

    2017-11-01

    Spectral measurements of global UV irradiance recorded by Brewer spectrophotometers can be significantly affected by instrument-specific optical and mechanical features. Thus, proper corrections are needed in order to reduce the associated uncertainties to within acceptable levels. The present study aims to contribute to the reduction of uncertainties originating from changes in the Brewer internal temperature, which affect the performance of the optical and electronic parts, and subsequently the response of the instrument. Until now, measurements of the irradiance from various types of lamps at different temperatures have been used to characterize the instruments' temperature dependence. The use of 50 W lamps was found to induce errors in the characterization due to changes in the transmissivity of the Teflon diffuser as it warms up by the heat of the lamp. In contrast, the use of 200 or 1000 W lamps is considered more appropriate because they are positioned at longer distances from the diffuser so that warming is negligible. Temperature gradients inside the instrument can cause mechanical stresses which can affect the instrument's optical characteristics. Therefore, during the temperature-dependence characterization procedure warming or cooling must be slow enough to minimize these effects. In this study, results of the temperature characterization of eight different Brewer spectrophotometers operating in Greece, Finland, Germany and Spain are presented. It was found that the instruments' response changes differently in different temperature regions due to different responses of the diffusers' transmittance. The temperature correction factors derived for the Brewer spectrophotometers operating at Thessaloniki, Greece, and Sodankylä, Finland, were evaluated and were found to remove the temperature dependence of the instruments' sensitivity.

  3. DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM

    Directory of Open Access Journals (Sweden)

    Davood Domairry Ganji

    2011-01-01

    Full Text Available In this paper, homotopy perturbation method has been used to evaluate the temperature distribution of annular fin with temperature-dependent thermal conductivity and to determine the temperature distribution within the fin. This method is useful and practical for solving the nonlinear heat transfer equation, which is associated with variable thermal conductivity condition. The homotopy perturbation method provides an approximate analytical solution in the form of an infinite power series. The annular fin heat transfer rate with temperature-dependent thermal conductivity has been obtained as a function of thermo-geometric fin parameter and the thermal conductivity parameter describing the variation of the thermal conductivity.

  4. A Model of Temperature-Dependent Young's Modulus for Ultrahigh Temperature Ceramics

    Directory of Open Access Journals (Sweden)

    Weiguo Li

    2011-01-01

    Full Text Available Based on the different sensitivities of material properties to temperature between ultrahigh temperature ceramics (UHTCs and traditional ceramics, the original empirical formula of temperature-dependent Young's modulus of ceramic materials is unable to describe the temperature dependence of Young's modulus of UHTCs which are used as thermal protection materials. In this paper, a characterization applied to Young's modulus of UHTC materials under high temperature which is revised from the original empirical formula is established. The applicable temperature range of the characterization extends to the higher temperature zone. This study will provide a basis for the characterization for strength and fracture toughness of UHTC materials and provide theoretical bases and technical reserves for the UHTC materials' design and application in the field of spacecraft.

  5. Effect of annealing temperature on the stress and structural properties of Ge core fibre

    Science.gov (United States)

    Zhao, Ziwen; Cheng, Xueli; Xue, Fei; He, Ting; Wang, Tingyun

    2017-09-01

    Effect of annealing temperature on the stress and structural properties of a Ge core fibre via the molten core drawing (MCD) method is investigated using Raman spectroscopy, Scanning electronic microscopy (SEM), and X-ray diffraction. The experimental results showed that the Raman peak position of the Ge fibre shifted from 297.6 cm-1 to 300.5 cm-1, and the FWHM value decreased from 4.53 cm-1 to 4.31 cm-1, when the annealing is carried out at 700 °C, 800 °C, and 900 °C, respectively. For the Ge core annealed at 900 °C, an apparent crystal grain can be seen in the SEM image, and the diffraction peaks of the (3 3 1) plane are generated in the X-ray diffraction spectra. These results show that optimising the annealing temperature allows the release of the residual stress in the Ge core. When the Ge core fibre is annealed at 900 °C, it exhibits the lowest residual stress and the highest crystal quality, and the quality improvement relative to that of the sample annealed at 800 °C is significant. Hence, annealing at around 900 °C can greatly improve the quality of a Ge core fibre. Further performance improvement of the Ge core fibre by annealing techniques can be anticipated.

  6. Similar temperature dependencies of glycolytic enzymes: an evolutionary adaptation to temperature dynamics?

    Directory of Open Access Journals (Sweden)

    Cruz Luisa Ana B

    2012-12-01

    Full Text Available Abstract Background Temperature strongly affects microbial growth, and many microorganisms have to deal with temperature fluctuations in their natural environment. To understand regulation strategies that underlie microbial temperature responses and adaptation, we studied glycolytic pathway kinetics in Saccharomyces cerevisiae during temperature changes. Results Saccharomyces cerevisiae was grown under different temperature regimes and glucose availability conditions. These included glucose-excess batch cultures at different temperatures and glucose-limited chemostat cultures, subjected to fast linear temperature shifts and circadian sinoidal temperature cycles. An observed temperature-independent relation between intracellular levels of glycolytic metabolites and residual glucose concentration for all experimental conditions revealed that it is the substrate availability rather than temperature that determines intracellular metabolite profiles. This observation corresponded with predictions generated in silico with a kinetic model of yeast glycolysis, when the catalytic capacities of all glycolytic enzymes were set to share the same normalized temperature dependency. Conclusions From an evolutionary perspective, such similar temperature dependencies allow cells to adapt more rapidly to temperature changes, because they result in minimal perturbations of intracellular metabolite levels, thus circumventing the need for extensive modification of enzyme levels.

  7. Temperature dependencies of frequency characteristics of HTSC RLC curcuit

    Science.gov (United States)

    Buniatyan, Vahe V.; Aroutiounian, V. M.; Shmavonyan, G. Sh.; Buniatyan, Vaz. V.

    2006-05-01

    Analytical expressions of temperature dependencies of magnitude-frequency and phase-frequency characteristics of a HTSC RLC parallel circuit are obtained, where the resistance and inductance are non-linearly depended on the optical signal modulated by the intensity. It is shown that the magnitude-frequency and phase-frequency characteristics of circuits can be controlled by choosing the parameters of the HTSC thin film and optical "pump".

  8. Ultra-capacitor electrical modeling using temperature dependent parameters

    Energy Technology Data Exchange (ETDEWEB)

    Lajnef, W.; Briat, O.; Azzopardi, S.; Woirgard, E.; Vinassa, J.M. [Bordeaux-1 Univ., Lab. IXL CNRS UMR 5818 - ENSEIRB, 33 - Talence (France)

    2004-07-01

    This paper deals with ultra-capacitor electrical modeling. For a proper characterization and identification, a dedicated test bench is designed. First, the ultra-capacitor electric behavior is presented and an electrical model is proposed. The model parameters are identified using a combination of constant currents and frequency response measurements. Then, the temperature dependence of the ultra-capacitor parameters is investigated. Therefore, constant currents and impedance spectroscopy tests are done at different ambient temperatures. Finally, the electrical model parameters are adjusted according to temperature. (authors)

  9. Exercising in the cold inhibits growth hormone secretion by reducing the rise in core body temperature.

    Science.gov (United States)

    Wheldon, Adam; Savine, Richard L; Sönksen, Peter H; Holt, Richard I G

    2006-04-01

    Ambient temperature alters exercise induced GH secretion. It is unknown whether temperature affects GH secretion at exercise intensities above the anaerobic threshold when other factors may override the relationship seen at lower intensities. Cross-over study of ambient temperature on exercise induced GH in swimmers and rowers. St Thomas Hospital, London. Ten healthy men (age 21.7+/-0.8 yrs). Five swimmers and five rowers. Forty-minute exercise test at 105% of anaerobic threshold at room temperature (RT) and at 4 degrees C. Cutaneous and core body temperature. Serum GH concentration. Cutaneous body temperature increased during exercise at RT but decreased in the cold. Although core temperature rose in both settings, the rise was greater at RT (p=0.021). GH increased at both temperatures but the onset was delayed by the cold. Peak GH tended to be higher at RT (17.4+/-3.6 microg/L vs. 9.5+/-1.5 microg/L, p=0.07). Total GH secretion was greater at RT (353.3+/-99.1 microg min/L) than 4 degrees C (128.3+/-21.0 microg min/L), p=0.038. Change in core temperature correlated with log peak GH (r=0.66, p=0.039) and log incremental GH (r=0.67, p=0.032) when exercising at 4 degrees C. There was no difference between swimmers and rowers. Exercise at 4 degrees C reduces GH secretion during exercise at intensities above the anaerobic threshold. A change in core body temperature may be one mechanism by which exercise induces GH secretion. The difference in GH between swimmers and rowers during their respective events relates to the conditions under which they compete.

  10. Analogy between temperature-dependent and concentration-dependent bacterial killing

    NARCIS (Netherlands)

    Neef, C.; van Gils, Stephanus A.; Ijzerman, W.L.

    2002-01-01

    In this article an analogy between temperature-dependent and concentration-dependent bacterial killing is described. The validation process of autoclaves uses parameters such as reduction rate constant k, decimal reduction time D and resistance coefficient z from an imaginary microorganism to

  11. Barley (Hordeum vulgare) circadian clock genes can respond rapidly to temperature in an EARLY FLOWERING 3-dependent manner.

    Science.gov (United States)

    Ford, Brett; Deng, Weiwei; Clausen, Jenni; Oliver, Sandra; Boden, Scott; Hemming, Megan; Trevaskis, Ben

    2016-10-01

    An increase in global temperatures will impact future crop yields. In the cereal crops wheat and barley, high temperatures accelerate reproductive development, reducing the number of grains per plant and final grain yield. Despite this relationship between temperature and cereal yield, it is not clear what genes and molecular pathways mediate the developmental response to increased temperatures. The plant circadian clock can respond to changes in temperature and is important for photoperiod-dependent flowering, and so is a potential mechanism controlling temperature responses in cereal crops. This study examines the relationship between temperature, the circadian clock, and the expression of flowering-time genes in barley (Hordeum vulgare), a crop model for temperate cereals. Transcript levels of barley core circadian clock genes were assayed over a range of temperatures. Transcript levels of core clock genes CCA1, GI, PRR59, PRR73, PRR95, and LUX are increased at higher temperatures. CCA1 and PRR73 respond rapidly to a decrease in temperature whereas GI and PRR59 respond rapidly to an increase in temperature. The response of GI and the PRR genes to changes in temperature is lost in the elf3 mutant indicating that their response to temperature may be dependent on a functional ELF3 gene. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Composition-dependent photoluminescence properties of CuInS{sub 2}/ZnS core/shell quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Jie [Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping 136000, Jilin (China); College of Information Technology, Jilin Normal University, Siping 136000, Jilin (China); Du, Yuwei; Wei, Qi [College of Information Technology, Jilin Normal University, Siping 136000, Jilin (China); Yuan, Xi; Wang, Jin [Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping 136000, Jilin (China); College of Information Technology, Jilin Normal University, Siping 136000, Jilin (China); Zhao, Jialong [Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping 136000, Jilin (China); Li, Haibo, E-mail: lihaibo@jlnu.edu.cn [Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping 136000, Jilin (China)

    2016-06-15

    CuInS{sub 2}/ZnS (CIS/ZnS) core/shell quantum dots (QDs) with various Cu/In ratios were synthesized using the hot-injection method, and their photoluminescence (PL) properties were investigated by measuring steady-state and time-resolved PL spectroscopy. The emission peak of the CIS/ZnS QDs were tuned from 680 to 580 nm by decreasing the Cu/In precursor ratio from 1/1 to 1/9. As the Cu/In ratio decreases, the PL lifetimes and PL quantum yields (QYs) of CIS/ZnS core/shell QDs increased firstly and then decreased. Two dominant radiative recombination processes were postulated to analyze composition-dependent PL properties, including the recombination from a quantized conduction band to deep defects state and donor-acceptor pair (DAP) recombination. The decrease of PL efficiency resulted from high density defects and traps, which formed at the interface between CIS core and ZnS shell due to the large off-stoichiometry composition. The PL intensity and peak energy for CIS/ZnS core/shell QDs as a function of temperature were also provided. The thermal quenching further confirmed that the PL emission of CIS/ZnS QDs did not come from the recombination of excitons but from the recombination of many kinds of intrinsic defects inside the QDs as emission centers.

  13. Microstructure Evolution of Cu-Cored Sn Solder Joints Under High Temperature and High Current Density

    Science.gov (United States)

    Sa, Xianzhang; Wu, Ping

    2013-08-01

    This work investigated the microstructure evolution of Cu-cored Sn solder joints under high temperature and high current density. The Cu6Sn5 phase formed at both the Cu core/Sn interface and Cu wire/Sn interface right after reflow and grew with increasing annealing time, while the Cu3Sn phase formed and grew at the Cu/Cu6Sn5 interfaces. Intermetallic compound (IMC) growth followed a linear relationship with the square root of annealing time due to a diffusion-controlled mechanism. Under high current density, the thickness of the interfacial IMCs of the Cu core/Sn interface at the cathode side increased and the Cu core/Sn interface at the anode side exhibited an irregular and serrated morphology with prolonged current stressing time. Finite-element simulation was carried out to obtain the distribution of current density in the solder joint. Since Cu has lower resistivity, the electrical current primarily selected the Cu core as its electrical path, resulting in current crowding at the Cu core and the region between the Cu core and Cu wire. Compared with the conventional solder joint, the electromigration (EM) lifetime of the Cu-cored solder joint was much longer.

  14. Ingestible pill for heart rate and core temperature measurement in cattle.

    Science.gov (United States)

    Martinez, Angel; Schoenig, Scott; Andresen, Daniel; Warren, Steve

    2006-01-01

    The livestock industry is an integral part of the United States economy. The continued production of quality beef requires new and improved methods for long term monitoring of animal health. Additional benefits can be realized from this class of technology, such as the ability to identify the presence of disease early and thereby prevent its spread. An important element of health assessment is the ability to monitor vital data such as heart rate and core body temperature. This paper presents preliminary results from the design of an ingestible pill that allows one to acquire heart rate (via a phonocardiograph) and core temperature in cattle. Packaging, circuitry, algorithms, and the wireless link are addressed.

  15. Size-dependent cohesive energy, melting temperature, and Debye temperature of spherical metallic nanoparticles

    Science.gov (United States)

    Qu, Y. D.; Liang, X. L.; Kong, X. Q.; Zhang, W. J.

    2017-06-01

    It is necessary to theoretically evaluate the thermodynamic properties of metallic nanoparticles due to the lack of experimental data. Considering the surface effects and crystal structures, a simple theoretical model is developed to study the size dependence of thermodynamic properties of spherical metallic nanoparticles. Based on the model, we have considered Co and Cu nanoparticles for the study of size dependence of cohesive energy, Au and Cu nanoparticles for size dependence of melting temperature, and Cu, Co and Au nanoparticles for size dependence of Debye temperature, respectively. The results show that the size effects on melting temperature, cohesive energy and Debye temperature of the spherical metallic nanoparticles are predominant in the sizes ranging from about 3 nm to 20 nm. The present theoretical predictions are in agreement with available corresponding experimental and computer simulation results for the spherical metallic nanoparticles. The model could be used to determine the thermodynamic properties of other metallic nanoparticles to some extent.

  16. Temperature dependence of exciton diffusion in conjugated polymers

    NARCIS (Netherlands)

    Mikhnenko, O.V.; Cordella, F.; Sieval, A.B.; Hummelen, J.C.; Blom, P.W.M.; Loi, M.A.

    2008-01-01

    The temperature dependence of the exciton dynamics in a conjugated polymer is studied using time-resolved spectroscopy. Photoluminescence decays were measured in heterostructured samples containing a sharp polymer-fullerene interface, which acts as an exciton quenching wall. Using a ID diffusion

  17. Temperature dependence of electromechanical properties of PLZT x ...

    Indian Academy of Sciences (India)

    The compositions of lead lanthanum zirconate titanate PLZT [Pb(Zr0.57Ti0.43)O3 + at% of La, where = 3, 5, 6, 10 and 12] have been synthesized using mixed oxide route. The temperature dependent electromechanical parameters have been determined using vector impedance spectroscopy (VIS). The charge constant ...

  18. Temperature-dependent gas transport and its correlation with kinetic ...

    Indian Academy of Sciences (India)

    2017-05-20

    May 20, 2017 ... Temperature-dependent gas transport and its correlation with kinetic diameter in polymer nanocomposite membrane. N K ACHARYA. Applied Physics Department, Faculty of Technology and Engineering, The M S University of Baroda,. Vadodara 390 001, India sarnavee@gmail.com. MS received 18 May ...

  19. Temperature dependence studies on the electro-oxidation of ...

    Indian Academy of Sciences (India)

    Cyclic voltammetry; electrochemical impedance spectroscopy; activation energy; fuel cell; alcohol. Abstract. Temperature dependence on the electro-oxidation of methanol, ethanol and 1-propanol in 0.5 M H2SO4 were investigated with Pt and PtRu electrodes. Tafel slope and apparent activation energy were evaluated ...

  20. Electronically induced nuclear transitions - temperature dependence and Rabi oscillations

    CERN Document Server

    Niez, J J

    2002-01-01

    This paper deals with a nucleus electromagnetically coupled with the bound states of its electronic surroundings. It describes the temperature dependence of its dynamics and the onset of potential Rabi oscillations by means of a Master Equation. The latter is generalized in order to account for possible strong resonances. Throughout the paper the approximation schemes are discussed and tested. (authors)

  1. Extraction of temperature dependent interfacial resistance of thermoelectric modules

    DEFF Research Database (Denmark)

    Chen, Min

    2011-01-01

    This article discusses an approach for extracting the temperature dependency of the electrical interfacial resistance associated with thermoelectric devices. The method combines a traditional module-level test rig and a nonlinear numerical model of thermoelectricity to minimize measurement errors...... on the interfacial resistance. The extracted results represent useful data to investigating the characteristics of thermoelectric module resistance and comparing performance of various modules....

  2. Investigation of temperature dependence of development and aging

    Science.gov (United States)

    Sacher, G. A.

    1969-01-01

    Temperature dependence of maturation and metabolic rates in insects, and the failure of vital processes during development were investigated. The paper presented advances the general hypothesis that aging in biological systems is a consequence of the production of entropy concomitant with metabolic activity.

  3. Temperature dependence effect of viscosity on ultrathin lubricant film melting

    Directory of Open Access Journals (Sweden)

    A.V.Khomenko

    2006-01-01

    Full Text Available We study the melting of an ultrathin lubricant film under friction between atomically flat surfaces at temperature dependencies of viscosity described by Vogel-Fulcher relationship and by power expression, which are observed experimentally. It is shown that the critical temperature exists in both cases the exceeding of which leads to the melting of lubricant and, as a result, the sliding mode of friction sets in. The values of characteristic parameters of lubricant are defined, which are needed for friction reduction. In the systems, where the Vogel-Fulcher dependence is fulfilled, it is possible to choose the parameters at which the melting of lubricant takes place even at zero temperature of friction surfaces. The deformational defect of the shear modulus is taken into account in describing the lubricant melting according to the mechanism of the first-order transition.

  4. Effects of Temperature on Time Dependent Rheological Characteristics of Koumiss

    Directory of Open Access Journals (Sweden)

    Serdal Sabancı

    2016-04-01

    Full Text Available The rheological properties of koumiss were investigated at different temperatures (4, 10, and 20°C. Experimental shear stress–shear rate data were fitted to different rheological models. The consistency of koumiss was predicted by using the power-law model since it described the consistency of koumiss best with highest regression coefficient and lowest errors (root mean square error and chi-square. Koumiss exhibited shear thinning behavior (n<1. The flow activation energy for temperature dependency of consistency was 25.532 kJ/mol, and the frequency constant was 2.18×10-7Pa.sn. As the temperature increased the time dependent thixotropic characteristics of koumiss decreased.

  5. Temperature-dependent structure evolution in liquid gallium

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, L. H.; Wang, X. D.; Yu, Q.; Zhang, H.; Zhang, F.; Sun, Y.; Cao, Q. P.; Xie, H. L.; Xiao, T. Q.; Zhang, D. X.; Wang, C. Z.; Ho, K. M.; Ren, Y.; Jiang, J. Z.

    2017-04-01

    Temperature-dependent atomistic structure evolution of liquid gallium (Ga) has been investigated by using in situ high energy X-ray diffraction experiment and ab initio molecular dynamics simulation. Both experimental and theoretical results reveal the existence of a liquid structural change around 1000 K in liquid Ga. Below and above this temperature the liquid exhibits differences in activation energy for selfdiffusion, temperature-dependent heat capacity, coordination numbers, density, viscosity, electric resistivity and thermoelectric power, which are reflected from structural changes of the bond-orientational order parameter Q6, fraction of covalent dimers, averaged string length and local atomic packing. This finding will trigger more studies on the liquid-to-liquid crossover in metallic melts.

  6. A Temperature-Dependent Battery Model for Wireless Sensor Networks.

    Science.gov (United States)

    Rodrigues, Leonardo M; Montez, Carlos; Moraes, Ricardo; Portugal, Paulo; Vasques, Francisco

    2017-02-22

    Energy consumption is a major issue in Wireless Sensor Networks (WSNs), as nodes are powered by chemical batteries with an upper bounded lifetime. Estimating the lifetime of batteries is a difficult task, as it depends on several factors, such as operating temperatures and discharge rates. Analytical battery models can be used for estimating both the battery lifetime and the voltage behavior over time. Still, available models usually do not consider the impact of operating temperatures on the battery behavior. The target of this work is to extend the widely-used Kinetic Battery Model (KiBaM) to include the effect of temperature on the battery behavior. The proposed Temperature-Dependent KiBaM (T-KiBaM) is able to handle operating temperatures, providing better estimates for the battery lifetime and voltage behavior. The performed experimental validation shows that T-KiBaM achieves an average accuracy error smaller than 0.33%, when estimating the lifetime of Ni-MH batteries for different temperature conditions. In addition, T-KiBaM significantly improves the original KiBaM voltage model. The proposed model can be easily adapted to handle other battery technologies, enabling the consideration of different WSN deployments.

  7. A Temperature-Dependent Battery Model for Wireless Sensor Networks

    Science.gov (United States)

    Rodrigues, Leonardo M.; Montez, Carlos; Moraes, Ricardo; Portugal, Paulo; Vasques, Francisco

    2017-01-01

    Energy consumption is a major issue in Wireless Sensor Networks (WSNs), as nodes are powered by chemical batteries with an upper bounded lifetime. Estimating the lifetime of batteries is a difficult task, as it depends on several factors, such as operating temperatures and discharge rates. Analytical battery models can be used for estimating both the battery lifetime and the voltage behavior over time. Still, available models usually do not consider the impact of operating temperatures on the battery behavior. The target of this work is to extend the widely-used Kinetic Battery Model (KiBaM) to include the effect of temperature on the battery behavior. The proposed Temperature-Dependent KiBaM (T-KiBaM) is able to handle operating temperatures, providing better estimates for the battery lifetime and voltage behavior. The performed experimental validation shows that T-KiBaM achieves an average accuracy error smaller than 0.33%, when estimating the lifetime of Ni-MH batteries for different temperature conditions. In addition, T-KiBaM significantly improves the original KiBaM voltage model. The proposed model can be easily adapted to handle other battery technologies, enabling the consideration of different WSN deployments. PMID:28241444

  8. A Burst Mode, Ultrahigh Temperature UF4 Vapor Core Reactor Rankine Cycle Space Power System Concept

    Science.gov (United States)

    Dugan, E. T.; Kahook, S. D.; Diaz, N. J.

    1996-01-01

    Static and dynamic neutronic analyses have been performed on an innovative burst mode (100's of MW output for a few thousand seconds) Ulvahigh Temperature Vapor Core Reactor (UTVR) space nuclear power system. The NVTR employs multiple, neutronically-coupled fissioning cores and operates on a direct, closed Rankine cycle using a disk Magnetohydrodynamic (MHD) generater for energy conversion. The UTVR includes two types of fissioning core regions: (1) the central Ultrahigh Temperature Vapor Core (UTVC) which contains a vapor mixture of highly enriched UF4 fuel and a metal fluoride working fluid and (2) the UF4 boiler column cores located in the BeO moderator/reflector region. The gaseous nature of the fuel the fact that the fuel is circulating, the multiple coupled fissioning cores, and the use of a two phase fissioning fuel lead to unique static and dynamic neutronic characteristics. Static neutronic analysis was conducted using two-dimensional S sub n, transport theory calculations and three-dimensional Monte Carlo transport theory calculations. Circulating-fuel, coupled-core point reactor kinetics equations were used for analyzing the dynamic behavior of the UTVR. In addition to including reactivity feedback phenomena associated with the individual fissioning cores, the effects of core-to-core neutronic and mass flow coupling between the UTVC and the surrounding boiler cores were also included in the dynamic model The dynamic analysis of the UTVR reveals the existence of some very effectlve inherent reactivity feedback effects that are capable of quickly stabilizing this system, within a few seconds, even when large positive reactivity insertions are imposed. If the UTVC vapor fuel density feedback is suppressed, the UTVR is still inherently stable because of the boiler core liquid-fuel volume feedback; in contrast, suppression of the vapor fuel density feedback in 'conventional" gas core cavity reactors causes them to become inherently unstable. Due to the

  9. Temperature dependence of contact resistance at metal/MWNT interface

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Eui; Moon, Kyoung-Seok; Sohn, Yoonchul, E-mail: yoonchul.son@samsung.com [Materials Research Center, Samsung Advanced Institute of Technology, Samsung Electronics, Suwon 443-803 (Korea, Republic of)

    2016-07-11

    Although contact resistance of carbon nanotube (CNT) is one of the most important factors for practical application of electronic devices, a study regarding temperature dependence on contact resistance of CNTs with metal electrodes has not been found. Here, we report an investigation of contact resistance at multiwalled nanotube (MWNT)/Ag interface as a function of temperature, using MWNT/polydimethylsiloxane (PDMS) composite. Electrical resistance of MWNT/PDMS composite revealed negative temperature coefficient (NTC). Excluding the contact resistance with Ag electrode, the NTC effect became less pronounced, showing lower intrinsic resistivity with the activation energy of 0.019 eV. Activation energy of the contact resistance of MWNT/Ag interface was determined to be 0.04 eV, two times larger than that of MWNT-MWNT network. The increase in the thermal fluctuation assisted electron tunneling is attributed to conductivity enhancement at both MWNT/MWNT and MWNT/Ag interfaces with increasing temperature.

  10. Influence of peak oral temperatures on veneer–core interface stress state

    Directory of Open Access Journals (Sweden)

    Massimo Marrelli

    2015-01-01

    Full Text Available Objective: There is a growing interest for the use of Y-TZP zirconia as core material in veneered all-ceramic prostheses. The objective of this study was to evaluate the influence of CET on the stress distribution of a porcelain layered to zirconia core single crowns by finite elements analysis. Material and methods: CET of eight different porcelains was considered during the analysis. Results: Results of this study indicated that the mismatch in CET between the veneering porcelain and the Y-TZP zirconia core has to be minimum (0.5–1 μm/mK so as to decrease the growing of residual stresses which could bring chipping. Conclusions: The stress state due to temperature variation should be carefully taken into consideration while studying the effect of mechanical load on zirconia core crown by FEA. The interfacial stress state can be increased by temperature variation up to 20% with respect to the relative failure parameter (interface strength in this case. This means that stress due to mechanical load combined to temperature variation-induced stress can lead porcelain veneer–zirconia core interfaces to failure.

  11. Skin surface temperature of broiler chickens is correlated to body core temperature and is indicative of their thermoregulatory status.

    Science.gov (United States)

    Giloh, M; Shinder, D; Yahav, S

    2012-01-01

    Extreme thermal conditions may dramatically affect the performance of broilers and other domestic animals, thereby impairing animal welfare and causing economic losses. Although body core temperature is the parameter that best reflects a bird's thermal status, practical and physiological obstacles make it irrelevant as a source of information on the thermal status of commercial flocks. Advances in the technology of infrared thermal imaging have enabled highly accurate, noncontact, and noninvasive measurements of skin surface temperature. Providing that skin surface temperature correlates with body temperature, this technology could enable acquisition of reliable information on the thermal status of animals, thereby improving diagnoses of environmental stress in a flock. This study of broiler chickens found a strong positive correlation between body core temperature and facial surface temperature, as recorded by infrared thermal imaging. The correlation was equally strong at all ages from 8 to 36 d during exposure to acute heat stress with or without proper ventilation and after acclimation to chronic heat exposure. A similar correlation was found by measurements in commercial flocks of broilers. Measurements of blood plasma concentrations of corticosterone, thyroid hormones, and arginine vasotocin confirmed that metabolic activity was low after acclimation to chronic exposure to heat, whereas ventilation was at least as efficient as acclimation in reducing thermal stress but did not impair metabolism. In light of these novel results, commercial benefits of infrared thermal imaging technology are suggested, especially in climate control for commercial poultry flocks. The application of this technique to other domestic animals should be investigated in future experiments.

  12. Depth Dependent Relationships between Temperature and Ocean Heterotrophic Prokaryotic Production

    KAUST Repository

    Lønborg, Christian

    2016-06-07

    Marine prokaryotes play a key role in cycling of organic matter and nutrients in the ocean. Using a unique dataset (>14,500 samples), we applied a space-for-time substitution analysis to assess the temperature dependence of prokaryotic heterotrophic production (PHP) in epi- (0-200 m), meso- (201-1000 m) and bathypelagic waters (1001-4000 m) of the global ocean. Here, we show that the temperature dependence of PHP is fundamentally different between these major oceanic depth layers, with an estimated ecosystem-level activation energy (E) of 36 ± 7 kJ mol for the epipelagic, 72 ± 15 kJ mol for the mesopelagic and 274 ± 65 kJ mol for the bathypelagic realm. We suggest that the increasing temperature dependence with depth is related to the parallel vertical gradient in the proportion of recalcitrant organic compounds. These Ea predict an increased PHP of about 5, 12, and 55% in the epi-, meso-, and bathypelagic ocean, respectively, in response to a water temperature increase by 1°C. Hence, there is indication that a major thus far underestimated feedback mechanism exists between future bathypelagic ocean warming and heterotrophic prokaryotic activity.

  13. Competitive interactions modify the temperature dependence of damselfly growth rates.

    Science.gov (United States)

    Nilsson-Ortman, Viktor; Stoks, Robby; Johansson, Frank

    2014-05-01

    Individual growth rates and survival are major determinants of individual fitness, population size structure, and community dynamics. The relationships between growth rate, survival, and temperature may thus be important for predicting biological responses to climate change. Although it is well known that growth rates and survival are affected by competition and predation in addition to temperature, the combined effect of these factors on growth rates, survival, and size structure has rarely been investigated simultaneously in the same ecological system. To address this question, we conducted experiments on the larvae of two species of damselflies and determined the temperature dependence of growth rate, survival, and cohort size structure under three scenarios of increasing ecological complexity: no competition, intraspecific competition, and interspecific competition. In one species, the relationship between growth rate and temperature became steeper in the presence of competitors, whereas that of survival remained unchanged. In the other species, the relationship between growth rate and temperature was unaffected by competitive interactions, but survival was greatly reduced at high temperatures in the presence of interspecific competitors. The combined effect of competitive interactions and temperature on cohort size structure differed from the effects of these factors in isolation. Together, these findings suggest that it will be challenging to scale up information from single-species laboratory studies to the population and community level.

  14. Temperature Dependence of the Resonant Magnetoelectric Effect in Layered Heterostructures

    Directory of Open Access Journals (Sweden)

    Dmitrii A. Burdin

    2017-10-01

    Full Text Available The dependence of the resonant direct magnetoelectric effect on temperature is studied experimentally in planar composite structures. Samples of rectangular shapes with dimensions of 5 mm × 20 mm employed ferromagnetic layers of either an amorphous (metallic glass alloy or nickel with a thickness of 20–200 μm and piezoelectric layers of single crystalline langatate material or lead zirconate titanate piezoelectric ceramics with a thickness of 500 μm. The temperature of the samples was varied in a range between 120 and 390 K by blowing a gaseous nitrogen stream around them. It is shown that the effective characteristics of the magnetoelectric effect—such as the mechanical resonance frequency fr, the quality factor Q and the magnitude of the magnetoelectric coefficient αE at the resonance frequency—are contingent on temperature. The interrelations between the temperature changes of the characteristics of the magnetoelectric effect and the temperature variations of the following material parameters—Young’s modulus Y, the acoustic quality factor of individual layers, the dielectric constant ε, the piezoelectric modulus d of the piezoelectric layer as well as the piezomagnetic coefficients λ(n of the ferromagnetic layer—are established. The effect of temperature on the characteristics of the nonlinear magnetoelectric effect is observed for the first time. The results can be useful for designing magnetoelectric heterostructures with specified temperature characteristics, in particular, for the development of thermally stabilized magnetoelectric devices.

  15. Core and Refueling Design Studies for the Advanced High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Ilas, Dan [ORNL; Varma, Venugopal Koikal [ORNL; Cisneros, Anselmo T [ORNL; Kelly, Ryan P [ORNL; Gehin, Jess C [ORNL

    2011-09-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a central generating station type [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. This report presents the current status of ongoing design studies of the core, in-vessel structures, and refueling options for the AHTR. The AHTR design remains at the notional level of maturity as important material, structural, neutronic, and hydraulic issues remain to be addressed. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated. An illustration of the current AHTR core, reactor vessel, and nearby structures is shown in Fig. ES1. The AHTR core design concept is based upon 252 hexagonal, plate fuel assemblies configured to form a roughly cylindrical core. The core has a fueled height of 5.5 m with 25 cm of reflector above and below the core. The fuel assembly hexagons are {approx}45 cm across the flats. Each fuel assembly contains 18 plates that are 23.9 cm wide and 2.55 cm thick. The reactor vessel has an exterior diameter of 10.48 m and a height of 17.7 m. A row of replaceable graphite reflector prismatic blocks surrounds the core radially. A more complete reactor configuration description is provided in Section 2 of this report. The AHTR core design space exploration was performed under a set of constraints. Only low enrichment (<20%) uranium fuel was considered. The coated particle fuel and matrix materials were derived from those being developed and demonstrated under the Department of Energy Office of Nuclear Energy (DOE-NE) advanced gas reactor program. The coated particle volumetric packing fraction was restricted to at most 40%. The pressure

  16. The Electron Temperature and Anisotropy in the Solar Wind. Comparison of the Core and Halo Populations

    Science.gov (United States)

    Pierrard, V.; Lazar, M.; Poedts, S.; Štverák, Š.; Maksimovic, M.; Trávníček, P. M.

    2016-08-01

    Estimating the temperature of solar wind particles and their anisotropies is particularly important for understanding the origin of their deviations from thermal equilibrium and the effects this has. In the absence of energetic events, the velocity distribution of electrons reveals a dual structure with a thermal (Maxwellian) core and a suprathermal (kappa) halo. This article presents a detailed observational analysis of these two components, providing estimations of their temperatures and temperature anisotropies, and decoding any potential interdependence that their properties may indicate. The dataset used in this study includes more than 120 000 of the distributions measured by three missions in the ecliptic within an extended range of heliocentric distances from 0.3 to over 4 AU. The core temperature is found to decrease with the radial distance, while the halo temperature slightly increases, clarifying an apparent contradiction in previous observational analyses and providing valuable clues about the temperature of the kappa-distributed populations. For low values of the power-index kappa, these two components manifest a clear tendency to deviate from isotropy in the same direction, which seems to confirm the existence of mechanisms with similar effects on both components, e.g., the solar wind expansion, or the particle heating by the fluctuations. However, the existence of plasma states with anticorrelated anisotropies of the core and halo populations and the increase in their number for high values of the power-index kappa suggest a dynamic interplay of these components, mediated, most probably, by the anisotropy-driven instabilities.

  17. The importance of temperature dependent energy gap in the understanding of high temperature thermoelectric properties

    Science.gov (United States)

    Singh, Saurabh; Pandey, Sudhir K.

    2016-10-01

    In this work, we show the importance of temperature dependent energy band gap, E g (T), in understanding the high temperature thermoelectric (TE) properties of material by considering LaCoO3 (LCO) and ZnV2O4 (ZVO) compounds as a case study. For the fix value of band gap, E g , deviation in the values of α has been observed above 360 K and 400 K for LCO and ZVO compounds, respectively. These deviation can be overcomed by consideration of temperature dependent band gap. The change in used value of E g with respect to temperature is ∼4 times larger than that of In As. This large temperature dependence variation in E g can be attributed to decrement in the effective on-site Coulomb interaction due to lattice expansion. At 600 K, the value of ZT for n and p-doped, LCO is ∼0.35 which suggest that it can be used as a potential material for TE device. This work clearly suggest that one should consider the temperature dependent band gap in predicting the high temperature TE properties of insulating materials.

  18. Shutter-Less Temperature-Dependent Correction for Uncooled Thermal Camera Under Fast Changing FPA Temperature

    Science.gov (United States)

    Lin, D.; Westfeld, P.; Maas, H.-G.

    2017-05-01

    Conventional temperature-dependant correction methods for uncooled cameras are not so valid for images under the condition of fast changing FPA temperature as usual, therefore, a shutter-less temperature-dependant correction method is proposed here to compensate for these errors and stabilize camera's response only related to the object surface temperature. Firstly, sequential images are divided into the following three categories according to the changing speed of FPA temperature: stable (0°C/min), relatively stable (0.5°C/min). Then all of the images are projected into the same level using a second order polynomial relation between FPA temperatures and gray values from stable images. Next, a third order polynomial relation between temporal differences of FPA temperatures and the above corrected images is implemented to eliminate the deviation caused by fast changing FPA temperature. Finally, radiometric calibration is applied to convert image gray values into object temperature values. Experiment results show that our method is more effective for fast changing FPA temperature data than FLIR GEV.

  19. Quantitative Temperature Dependence of Longitudinal Spin Seebeck Effect at High Temperatures

    Directory of Open Access Journals (Sweden)

    Ken-ichi Uchida

    2014-11-01

    Full Text Available We report temperature-dependent measurements of longitudinal spin Seebeck effects (LSSEs in Pt/Y_{3}Fe_{5}O_{12} (YIG/Pt systems in a high temperature range from room temperature to above the Curie temperature of YIG. The experimental results show that the magnitude of the LSSE voltage in the Pt/YIG/Pt systems rapidly decreases with increasing the temperature and disappears above the Curie temperature. The critical exponent of the LSSE voltage in the Pt/YIG/Pt systems at the Curie temperature is estimated to be 3, which is much greater than that for the magnetization curve of YIG. This difference highlights the fact that the mechanism of the LSSE cannot be explained in terms of simple static magnetic properties in YIG.

  20. Increased core body temperature in astronauts during long-duration space missions

    Czech Academy of Sciences Publication Activity Database

    Stahn, A. C.; Werner, A.; Opatz, O.; Maggioni, M. A.; Steinach, M.; von Ahlefeld, V. W.; Moore, A.; Crucian, B. E.; Smith, S. M.; Zwart, S. R.; Schlabs, T.; Mendt, S.; Trippel, T.; Koralewski, E.; Koch, J.; Chouker, A.; Reitz, Guenther; Shang, P.; Rocker, L.; Kirsch, K. A.; Gunga, H-C.

    2017-01-01

    Roč. 7, č. 11 (2017), č. článku 16180. ISSN 2045-2322 Institutional support: RVO:61389005 Keywords : core body temperature * astonauts' CBT * spaceflights Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 4.259, year: 2016

  1. Highly Sensitive Liquid Core Temperature Sensor Based on Multimode Interference Effects

    Directory of Open Access Journals (Sweden)

    Miguel A. Fuentes-Fuentes

    2015-10-01

    Full Text Available A novel fiber optic temperature sensor based on a liquid-core multimode interference device is demonstrated. The advantage of such structure is that the thermo-optic coefficient (TOC of the liquid is at least one order of magnitude larger than that of silica and this, combined with the fact that the TOC of silica and the liquid have opposite signs, provides a liquid-core multimode fiber (MMF highly sensitive to temperature. Since the refractive index of the liquid can be easily modified, this allows us to control the modal properties of the liquid-core MMF at will and the sensor sensitivity can be easily tuned by selecting the refractive index of the liquid in the core of the device. The maximum sensitivity measured in our experiments is 20 nm/°C in the low-temperature regime up to 60 °C. To the best of our knowledge, to date, this is the largest sensitivity reported for fiber-based MMI temperature sensors.

  2. CHANGES IN THE RAT EEG SPECTRA AND CORE TEMPERATURE AFTER EXPOSURE TO DIFFERENT DOSES OF CHLORPYRIFOS.

    Science.gov (United States)

    Our previous study showed that single exposure to 25 mg/kg (p.o.) of organophsphate pesticide chlorpyrifos (CHP) led to significant alterations in all EEG frequency bands within 0.1-50 Hz range, reduction in core temperature (Tc) and motor activity (MA). The alterations in EEG pe...

  3. Endogenous and exogenous components in the circadian variation of core body temperature in humans

    NARCIS (Netherlands)

    Hiddinga, AE; Beersma, DGM; VandenHoofdakker, RH

    Core body temperature is predominantly modulated by endogenous and exogenous components. In the present study we tested whether these two components can be reliably assessed in a protocol which lasts for only 120 h. In this so-called forced desynchrony protocol, 12 healthy male subjects (age 23.7

  4. Core temperature in super-Gaussian pumped air-clad photonic ...

    Indian Academy of Sciences (India)

    In this paper we investigate the core temperature of air-clad photonic crystal fiber (PCF) lasers pumped by a super-Gaussian (SG) source of order four. The results are compared with conventional double-clad fiber (DCF) lasers pumped by the same super-Gaussian and by top-hat pump profiles.

  5. An IR Sensor Based Smart System to Approximate Core Body Temperature.

    Science.gov (United States)

    Ray, Partha Pratim

    2017-08-01

    Herein demonstrated experiment studies two methods, namely convection and body resistance, to approximate human core body temperature. The proposed system is highly energy efficient that consumes only 165 mW power and runs on 5 VDC source. The implemented solution employs an IR thermographic sensor of industry grade along with AT Mega 328 breakout board. Ordinarily, the IR sensor is placed 1.5-30 cm away from human forehead (i.e., non-invasive) and measured the raw data in terms of skin and ambient temperature which is then converted using appropriate approximation formula to find out core body temperature. The raw data is plotted, visualized, and stored instantaneously in a local machine by means of two tools such as Makerplot, and JAVA-JAR. The test is performed when human object is in complete rest and after 10 min of walk. Achieved results are compared with the CoreTemp CM-210 sensor (by Terumo, Japan) which is calculated to be 0.7 °F different from the average value of BCT, obtained by the proposed IR sensor system. Upon a slight modification, the presented model can be connected with a remotely placed Internet of Things cloud service, which may be useful to inform and predict the user's core body temperature through a probabilistic view. It is also comprehended that such system can be useful as wearable device to be worn on at the hat attachable way.

  6. CORE

    DEFF Research Database (Denmark)

    Krigslund, Jeppe; Hansen, Jonas; Hundebøll, Martin

    2013-01-01

    different flows. Instead of maintaining these approaches separate, we propose a protocol (CORE) that brings together these coding mechanisms. Our protocol uses random linear network coding (RLNC) for intra- session coding but allows nodes in the network to setup inter- session coding regions where flows...... intersect. Routes for unicast sessions are agnostic to other sessions and setup beforehand, CORE will then discover and exploit intersecting routes. Our approach allows the inter-session regions to leverage RLNC to compensate for losses or failures in the overhearing or transmitting process. Thus, we...... increase the benefits of XORing by exploiting the underlying RLNC structure of individual flows. This goes beyond providing additional reliability to each individual session and beyond exploiting coding opportunistically. Our numerical results show that CORE outperforms both forwarding and COPE...

  7. New high-pressure and high-temperature metal/silicate partitioning of U and Pb: Implications for the cores of the Earth and Mars

    Energy Technology Data Exchange (ETDEWEB)

    Malavergne, V. [Lunar and Planetary Inst, Houston, TX (United States); Malavergne, V.; Tarrida, M.; Combes, R. [Univ Marne La Vallee, Lab Geomat, F-77454 Marne La Vallee, (France); Bureau, H. [CEA Saclay, LPS, CEA-CNRS, F-91191 Gif Sur Yvette, (France); Jones, J. [NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 (United States); Schwandt, C. [Jacobs Sverdrup, ESCG, Houston, TX (United States)

    2007-07-01

    In order to quantify possible fractionation of U and Pb into a metallic core, we have performed piston cylinder and multi-anvil press experiments at high pressure (up to 20 GPa) and high temperature (up to 2400 degrees C) and obtained the distribution coefficient D(metal-silicate) and the exchange partition coefficient K(metal-silicate) for these elements between metal and silicates (mineral or liquid). D{sup Pb}(metal-silicate) and D{sup U}(metal-silicate) depend strongly on the S content of the metallic phase, and also on the oxygen fugacity, in agreement with an effective valence state of 4 for U in silicates and 2 for Pb in silicates. Kd{sup Pb}( metal-silicate) and Kd{sup U}(metal-silicate) show no discernable pressure and temperature trend. U remains lithophile even at high pressure and high temperature but its lithophile nature decreases at very low oxygen fugacity. From our experimental data, it was possible to calculate the U and Pb contents of the cores of Mars and Earth under core-mantle equilibrium conditions at high pressure and high temperature. From the D(metal-silicate) of the present study, we obtained that: 0.008 ppm {<=} Pb (in the core) {<=} 4.4 ppm, and 0.0003 ppb {<=} U (in the core) {<=} 0.63 ppb, depending on whether the metal is S-free or S-saturated respectively, and if the mantle was molten or solid during the segregation process of the Earth's core around {delta}IW-2. For Mars, based on a core segregation process around {delta}IW-1, we obtained that: 0.005 ppm {<=} Pb (in the core) {<=} 3 ppm, and 0.00002 ppb {<=} U (in the core) < 0.05 ppb, depending on the metallic composition: S-free or S-saturated respectively. Our results suggest that the low concentration of Pb in the terrestrial mantle could not be explained by an early Pb sequestration in the Earth's core even if S is the dominant light element of the core. If we assume a magma ocean scenario, U might produced a maximum value of 1.5% of the total heat budget of the core

  8. Past temperature reconstructions from deep ice cores: relevance for future climate change

    Directory of Open Access Journals (Sweden)

    V. Masson-Delmotte

    2006-01-01

    Full Text Available Ice cores provide unique archives of past climate and environmental changes based only on physical processes. Quantitative temperature reconstructions are essential for the comparison between ice core records and climate models. We give an overview of the methods that have been developed to reconstruct past local temperatures from deep ice cores and highlight several points that are relevant for future climate change. We first analyse the long term fluctuations of temperature as depicted in the long Antarctic record from EPICA Dome C. The long term imprint of obliquity changes in the EPICA Dome C record is highlighted and compared to simulations conducted with the ECBILT-CLIO intermediate complexity climate model. We discuss the comparison between the current interglacial period and the long interglacial corresponding to marine isotopic stage 11, ~400 kyr BP. Previous studies had focused on the role of precession and the thresholds required to induce glacial inceptions. We suggest that, due to the low eccentricity configuration of MIS 11 and the Holocene, the effect of precession on the incoming solar radiation is damped and that changes in obliquity must be taken into account. The EPICA Dome C alignment of terminations I and VI published in 2004 corresponds to a phasing of the obliquity signals. A conjunction of low obliquity and minimum northern hemisphere summer insolation is not found in the next tens of thousand years, supporting the idea of an unusually long interglacial ahead. As a second point relevant for future climate change, we discuss the magnitude and rate of change of past temperatures reconstructed from Greenland (NorthGRIP and Antarctic (Dome C ice cores. Past episodes of temperatures above the present-day values by up to 5°C are recorded at both locations during the penultimate interglacial period. The rate of polar warming simulated by coupled climate models forced by a CO2 increase of 1% per year is compared to ice-core

  9. Gas diffusion and temperature dependence of bubble nucleation during irradiation

    DEFF Research Database (Denmark)

    Foreman, A. J. E.; Singh, Bachu Narain

    1986-01-01

    of the diatomic nucleation of helium bubbles, assuming helium to diffuse substitutionally, with radiation-enhanced diffusion at lower temperatures. The calculated temperature dependence of the bubble density shows excellent agreement with that observed in 600 MeV proton irradiations, including a reduction...... in activation energy below Tm/2. The coalescence of diatomic nuclei due to Brownian motion markedly improves the agreement and also provides a well-defined terminal density. Bubble nucleation by this mechanism is sufficiently fast to inhibit any appreciable initial loss of gas to grain boundaries during...

  10. Temperature and size dependent friction of gold nanoislands on graphene

    Science.gov (United States)

    Dawson, Ben D.; Lodge, Michael S.; Williams, Zachary; Ishigami, Masa

    2013-03-01

    Nanoscale motors and machines require the ability to tune frictional properties at the nanoscale. Yet a fundamental understanding of frictional processes of nanoislands still remains unknown. We have performed a quartz crystal microbalance study to investigate the role of temperature and island size on frictional energy dissipation for gold nanoislands on graphene. Significant frictional dissipation is observed even at room temperature, consistent with activated friction on the graphene surface. We will discuss these results and compare them to previously predicted models for thermally activated and size dependent friction. This work is funded by the Intelligence Community Postdoctoral Research Fellowship program

  11. Temperature dependence of relaxation times and temperature mapping in ultra-low-field MRI.

    Science.gov (United States)

    Vesanen, Panu T; Zevenhoven, Koos C J; Nieminen, Jaakko O; Dabek, Juhani; Parkkonen, Lauri T; Ilmoniemi, Risto J

    2013-10-01

    Ultra-low-field MRI is an emerging technology that allows MRI and NMR measurements in microtesla-range fields. In this work, the possibilities of relaxation-based temperature measurements with ultra-low-field MRI were investigated by measuring T1 and T2 relaxation times of agarose gel at 50 μT-52 mT and at temperatures 5-45°C. Measurements with a 3T scanner were made for comparison. The Bloembergen-Purcell-Pound relaxation theory was combined with a two-state model to explain the field-strength and temperature dependence of the data. The results show that the temperature dependencies of agarose gel T1 and T2 in the microtesla range differ drastically from those at 3T; the effect of temperature on T1 is reversed at approximately 5 mT. The obtained results were used to reconstruct temperature maps from ultra-low-field scans. These time-dependent temperature maps measured from an agarose gel phantom at 50 μT reproduced the temperature gradient with good contrast. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Illuminating light-dependent color shifts in core and veneer layers of dental all-ceramics

    Science.gov (United States)

    Lee, Yong-Keun; Cha, Hyun-Suk; Yu, Bin

    2014-09-01

    The color of an object is perceived differently depending on the ambient light conditions. Since dental all-ceramic restorations are fabricated by building up several layers to reproduce the tooth shade, the optical properties of each layer should be optimized for successful shade reproduction. This study aimed to determine the separate contributions of the color shifts in each of the core and veneer layers of all-ceramics by switching the illuminating lights on the color shifts of layered ceramics. Specimens of seven kinds of core ceramics and the corresponding veneer ceramics for each core were fabricated with a layered thickness of 1.5 mm. A sintering ceramic was used as a reference core material. The Commission Internationale de l'Eclairage (CIE) color coordinates of core, veneer, and layered specimens were measured with a spectroradiometer under the CIE illuminant D65 (daylight), A (incandescent lamp), and F9 (fluorescent lamp) simulating lights. Color shifts of the layered specimens were primarily determined by the CIE a* shifts (D65 to A switch) or by the CIE b* shifts (D65 to F9 switch) of the veneer layer. The color coordinates shifts in the constituent layers differentially influenced those of the layered specimens by the kind of switched lights. Therefore, the optical properties of the constituent layers of all-ceramics should be controlled to reflect these findings.

  13. Investigation on the Core Bypass Flow in a Very High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Yassin

    2013-10-22

    Uncertainties associated with the core bypass flow are some of the key issues that directly influence the coolant mass flow distribution and magnitude, and thus the operational core temperature profiles, in the very high-temperature reactor (VHTR). Designers will attempt to configure the core geometry so the core cooling flow rate magnitude and distribution conform to the design values. The objective of this project is to study the bypass flow both experimentally and computationally. Researchers will develop experimental data using state-of-the-art particle image velocimetry in a small test facility. The team will attempt to obtain full field temperature distribution using racks of thermocouples. The experimental data are intended to benchmark computational fluid dynamics (CFD) codes by providing detailed information. These experimental data are urgently needed for validation of the CFD codes. The following are the project tasks: • Construct a small-scale bench-top experiment to resemble the bypass flow between the graphite blocks, varying parameters to address their impact on bypass flow. Wall roughness of the graphite block walls, spacing between the blocks, and temperature of the blocks are some of the parameters to be tested. • Perform CFD to evaluate pre- and post-test calculations and turbulence models, including sensitivity studies to achieve high accuracy. • Develop the state-of-the art large eddy simulation (LES) using appropriate subgrid modeling. • Develop models to be used in systems thermal hydraulics codes to account and estimate the bypass flows. These computer programs include, among others, RELAP3D, MELCOR, GAMMA, and GAS-NET. Actual core bypass flow rate may vary considerably from the design value. Although the uncertainty of the bypass flow rate is not known, some sources have stated that the bypass flow rates in the Fort St. Vrain reactor were between 8 and 25 percent of the total reactor mass flow rate. If bypass flow rates are on the

  14. Core and body surface temperatures of nesting leatherback turtles (Dermochelys coriacea).

    Science.gov (United States)

    Burns, Thomas J; McCafferty, Dominic J; Kennedy, Malcolm W

    2015-07-01

    Leatherback turtles (Dermochelys coriacea) are the largest species of marine turtle and the fourth most massive extant reptile. In temperate waters they maintain body temperatures higher than surrounding seawater through a combination of insulation, physiological, and behavioural adaptations. Nesting involves physical activity in addition to contact with warm sand and air, potentially presenting thermal challenges in the absence of the cooling effect of water, and data are lacking with which to understand their nesting thermal biology. Using non-contact methods (thermal imaging and infrared thermometry) to avoid any stress-related effects, we investigated core and surface temperature during nesting. The mean±SE core temperature was 31.4±0.05°C (newly emerged eggs) and was not correlated with environmental conditions on the nesting beach. Core temperature of leatherbacks was greater than that of hawksbill turtles (Eretmochelys imbricata) nesting at a nearby colony, 30.0±0.13°C. Body surface temperatures of leatherbacks showed regional variation, the lateral and dorsal regions of the head were warmest while the carapace was the coolest surface. Surface temperature increased during the early nesting phases, then levelled off or decreased during later phases with the rates of change varying between body regions. Body region, behavioural phase of nesting and air temperature were found to be the best predictors of surface temperature. Regional variation in surface temperature were likely due to alterations in blood supply, and temporal changes in local muscular activity of flippers during the different phases of nesting. Heat exchange from the upper surface of the turtle was dominated by radiative heat loss from all body regions and small convective heat gains to the carapace and front flippers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Temperature dependent bacteriophages of a tropical bacterial pathogen

    Directory of Open Access Journals (Sweden)

    Martha Rebecca Jane Clokie

    2014-11-01

    Full Text Available There is an increasing awareness of the multiple ways that bacteriophages (phages influence bacterial evolution, population dynamics, physiology and pathogenicity. By studying a novel group of phages infecting a soil borne pathogen, we revealed a paradigm shifting observation that the phages switch their lifestyle according to temperature. We sampled soil from an endemic area of the serious tropical pathogen Burkholderia pseudomallei, and established that podoviruses infecting the pathogen are frequently present in soil, and many of them are naturally occurring variants of a common virus type. Experiments on one phage in the related model Burkholderia thailandensis demonstrated that temperature defines the outcome of phage-bacteria interactions. At higher temperatures (37°C, the phage predominantly goes through a lytic cycle, but at lower temperatures (25°C, the phage remains temperate. This is the first report of a naturally occurring phage that follows a lytic or temperate lifestyle according to temperature. These observations fundamentally alter the accepted views on the abundance, population biology and virulence of B. pseudomallei. Furthermore, when taken together with previous studies, our findings suggest that the phenomenon of temperature dependency in phages is widespread. Such phages are likely to have a profound effect on bacterial life, and on our ability to culture and correctly enumerate viable bacteria.

  16. Temperature-Dependent Conformations of Model Viscosity Index Improvers

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Uma Shantini; Cosimbescu, Lelia; Martini, Ashlie

    2015-05-01

    Lubricants are comprised of base oils and additives where additives are chemicals that are deliberately added to the oil to enhance properties and inhibit degradation of the base oils. Viscosity index (VI) improvers are an important class of additives that reduce the decline of fluid viscosity with temperature [1], enabling optimum lubricant performance over a wider range of operating temperatures. These additives are typically high molecular weight polymers, such as, but not limited to, polyisobutylenes, olefin copolymer, and polyalkylmethacrylates, that are added in concentrations of 2-5% (w/w). Appropriate polymers, when dissolved in base oil, expand from a coiled to an uncoiled state with increasing temperature [2]. The ability of VI additives to increase their molar volume and improve the temperature-viscosity dependence of lubricants suggests there is a strong relationship between molecular structure and additive functionality [3]. In this work, we aim to quantify the changes in polymer size with temperature for four polyisobutylene (PIB) based molecular structures at the nano-scale using molecular simulation tools. As expected, the results show that the polymers adopt more conformations at higher temperatures, and there is a clear indication that the expandability of a polymer is strongly influenced by molecular structure.

  17. Temperature dependence of the fundamental band gap parameters ...

    Indian Academy of Sciences (India)

    Abstract. Thin films of ternary ZnxCd1 xSe were deposited on GaAs (100) substrate using metal- organic-chemical-vapour-deposition (MOCVD) technique. Temperature dependence of the near- band-edge emission from these Cd-rich ZnxCd1 xSe (for x = 0.025, 0.045) films has been studied using photoluminescence ...

  18. Integrating a human thermoregulatory model with a clothing model to predict core and skin temperatures.

    Science.gov (United States)

    Yang, Jie; Weng, Wenguo; Wang, Faming; Song, Guowen

    2017-05-01

    This paper aims to integrate a human thermoregulatory model with a clothing model to predict core and skin temperatures. The human thermoregulatory model, consisting of an active system and a passive system, was used to determine the thermoregulation and heat exchanges within the body. The clothing model simulated heat and moisture transfer from the human skin to the environment through the microenvironment and fabric. In this clothing model, the air gap between skin and clothing, as well as clothing properties such as thickness, thermal conductivity, density, porosity, and tortuosity were taken into consideration. The simulated core and mean skin temperatures were compared to the published experimental results of subject tests at three levels of ambient temperatures of 20 °C, 30 °C, and 40 °C. Although lower signal-to-noise-ratio was observed, the developed model demonstrated positive performance at predicting core temperatures with a maximum difference between the simulations and measurements of no more than 0.43 °C. Generally, the current model predicted the mean skin temperatures with reasonable accuracy. It could be applied to predict human physiological responses and assess thermal comfort and heat stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Density of biogas digestate depending on temperature and composition.

    Science.gov (United States)

    Gerber, Mandy; Schneider, Nico

    2015-09-01

    Density is one of the most important physical properties of biogas digestate to ensure an optimal dimensioning and a precise design of biogas plant components like stirring devices, pumps and heat exchangers. In this study the density of biogas digestates with different compositions was measured using pycnometers at ambient pressure in a temperature range from 293.15 to 313.15K. The biogas digestates were taken from semi-continuous experiments, in which the marine microalga Nannochloropsis salina, corn silage and a mixture of both were used as feedstocks. The results show an increase of density with increasing total solid content and a decrease with increasing temperature. Three equations to calculate the density of biogas digestate were set up depending on temperature as well as on the total solid content, organic composition and elemental composition, respectively. All correlations show a relative deviation below 1% compared to experimental data. Copyright © 2015. Published by Elsevier Ltd.

  20. The temperature-dependence of elementary reaction rates: beyond Arrhenius.

    Science.gov (United States)

    Smith, Ian W M

    2008-04-01

    The rates of chemical reactions and the dependence of their rate constants on temperature are of central importance in chemistry. Advances in the temperature-range and accuracy of kinetic measurements, principally inspired by the need to provide data for models of combustion, atmospheric, and astrophysical chemistry, show up the inadequacy of the venerable Arrhenius equation--at least, over wide ranges of temperature. This critical review will address the question of how to reach an understanding of the factors that control the rates of 'non-Arrhenius' reactions. It makes use of a number of recent kinetic measurements and shows how developments in advanced forms of transition state theory provide satisfactory explanations of complex kinetic behaviour (72 references).

  1. The effect of temperature and dot size on the spectral properties of colloidal InP/ZnS core-shell quantum dots.

    Science.gov (United States)

    Narayanaswamy, Arun; Feiner, L F; Meijerink, A; van der Zaag, P J

    2009-09-22

    Visual color changes between 300 and 510 K were observed in the photoluminescence (PL) of colloidal InP/ZnS core-shell nanocrystals. A subsequent study of PL spectra in the range 2-510 K and fitting the temperature dependent line shift and line width to theoretical models show that the dominant (dephasing) interaction is due to scattering by acoustic phonons of about 23 meV. Low temperature photoluminescence excitation measurements show that the excitonic band gap depends approximately inversely linearly on the quantum dot size d, which is distinctly weaker than the dependence predicted by current theories.

  2. Metal-Silicate Equilibration at Super-Liquidus Temperatures During Core Formation

    Science.gov (United States)

    Hernlund, J. W.; Ichikawa, H.; Labrosse, S.; Kameyama, M.

    2014-12-01

    Experimental constraints on the partitioning of moderately siderophile elements between metal and silicates during core formation suggest equilibration temperatures significantly greater than the liquidus of the silicate Earth (e.g., Wade and Wood, 2005). However, because equilibration was considered to occur in a ponded metal at the silicate solidus, such high temperature equilibration was rejected as implausible. Instead, lower temperature equilibration with variable oxygen fugacity was proposed as an alternative, although the plausibility of the physical mechanisms invoked in this scenario is also questionable. We have re-visited the model of metal-silicate separation in large molten pockets following energetic accretion events, and find that silicate-metal equlibration is most rapid when the iron rains out of the magma, and the release of gravitational potential energy by this rain heats the mixture by as much as 1000 K above the liquidus. However, the first drops of iron rain to pond at the base of the molten pocket will equilibrate at lower temperatures, and only the final drops will be subject to the highest temperatures. We model rain fall and heating of the magma by viscous dissipation to calculate the effective pressure-temperature conditions for partitioning in this scenario, and find that effective pressure conditions are smaller than the pressure at the base of the molten pocket. The ponded metal itself is gravitationally stratified (both in composition and temperature), and is not expected to convect or mix until it undergoes subsequent downward transport into the Earth's core. We also suggest that such a process operating during the very largest giant impact events (extending into the deep mantle) may have given rise to a buoyant oxygen-enriched metal layer atop the outer core, as suggested by some seismological models of the present-day Earth (e.g., Helffrich and Kaneshima, 2010). References: Helffrich, G. and S. Kaneshima (2010), Outer-core

  3. Core Temperature Measurement During Submaximal Exercise: Esophageal, Rectal, and Intestinal Temperatures

    Science.gov (United States)

    Lee, Stuart M. C.; Williams, W. Jon; Schneider, Suzanne M.

    2000-01-01

    The purpose of this study was to determine if intestinal temperature (Tin) might be in acceptable alternative to esophageal (Tes) and rectal temperature (Trec) to assess thermoregulation during supine exercise. We hypothesized that Tin would have values similar to Tes and a response time similar to Trec, but the rate of temperature change across time would not be different between measurement sites. Seven subjects completed a continuous supine protocol of 20 min of rest, 20 min of cycle exercise at 40% peak oxygen consumption (VO2pk), 20 min of cycle exercise at 65% V02pk, and 20 min of recovery. Tes, Trec, and Tin were recorded each min throughout the test. Temperatures were not different after 20 min of rest, but Trec was less than the Tes and Tin at the end of the 40% and 65% VO2pk stages. After 20 min of recovery, Tes was less than either Trec or Tin, which were not different from each other. Time to threshold for increased temperature from rest was greater for Trec than Tes but not different from Tin. Time to reach peak temperature was greater for Tin and Trec than Tes. Similarly, time to a decrease in temperature after exercise was greater for Trec than Tes, but not different from Tin. The rate of temperature change from threshold to the end of the 40% VO2pk stage was not different between measurement sites. However, the rate of change during recovery was more negative for Tes than Tin and Trec, which were different from each other. Measurement of Tin may he an acceptable alternative to Tes and Trec with an understanding of its limitations.

  4. Temperature dependent mistranslation in a hyperthermophile adapts proteins to lower temperatures

    Science.gov (United States)

    Schwartz, Michael H.; Pan, Tao

    2016-01-01

    All organisms universally encode, synthesize and utilize proteins that function optimally within a subset of growth conditions. While healthy cells are thought to maintain high translational fidelity within their natural habitats, natural environments can easily fluctuate outside the optimal functional range of genetically encoded proteins. The hyperthermophilic archaeon Aeropyrum pernix (A. pernix) can grow throughout temperature variations ranging from 70 to 100°C, although the specific factors facilitating such adaptability are unknown. Here, we show that A. pernix undergoes constitutive leucine to methionine mistranslation at low growth temperatures. Low-temperature mistranslation is facilitated by the misacylation of tRNALeu with methionine by the methionyl-tRNA synthetase (MetRS). At low growth temperatures, the A. pernix MetRS undergoes a temperature dependent shift in tRNA charging fidelity, allowing the enzyme to conditionally charge tRNALeu with methionine. We demonstrate enhanced low-temperature activity for A. pernix citrate synthase that is synthesized during leucine to methionine mistranslation at low-temperature growth compared to its high-fidelity counterpart synthesized at high-temperature. Our results show that conditional leucine to methionine mistranslation can make protein adjustments capable of improving the low-temperature activity of hyperthermophilic proteins, likely by facilitating the increasing flexibility required for greater protein function at lower physiological temperatures. PMID:26657639

  5. Quantifying the Temperature Dependence of Glycine Betaine RNA Duplex Destabilization

    Science.gov (United States)

    Schwinefus, Jeffrey J.; Menssen, Ryan J.; Kohler, James M.; Schmidt, Elliot C.; Thomas, Alexandra L.

    2013-01-01

    Glycine betaine stabilizes folded protein structure due to its unfavorable thermodynamic interactions with amide oxygen and aliphatic carbon surface area exposed during protein unfolding. However, glycine betaine can attenuate nucleic acid secondary structure stability, although its mechanism of destabilization is not currently understood. In this work we quantify glycine betaine interactions with the surface area exposed during thermal denaturation of nine RNA dodecamer duplexes with guanine-cytosine (GC) contents of 17–100%. Hyperchromicity values indicate increasing glycine betaine molality attenuates stacking. Glycine betaine destabilizes higher GC content RNA duplexes to a greater extent than low GC content duplexes due to greater accumulation at the surface area exposed during unfolding. The accumulation is very sensitive to temperature and displays characteristic entropy-enthalpy compensation. Since the entropic contribution to the m-value (used to quantify GB interaction with the RNA solvent accessible surface area exposed during denaturation) is more dependent on temperature than the enthalpic contribution, higher GC content duplexes with their larger transition temperatures are destabilized to a greater extent than low GC content duplexes. The concentration of glycine betaine at the RNA surface area exposed during unfolding relative to bulk was quantified using the solute partitioning model. Temperature correction predicts a glycine betaine concentration at 25 °C to be nearly independent of GC content, indicating that glycine betaine destabilizes all sequences equally at this temperature. PMID:24219229

  6. Complete FDTD analysis of microwave heating processes in frequency-dependent and temperature dependent media

    Energy Technology Data Exchange (ETDEWEB)

    Torres, F.; Jecko, B. [Univ. de Limoges (France). Inst. de Recherche en Communications Optiques et Microondes

    1997-01-01

    It is well known that the temperature rise in a material modifies its physical properties and, particularly, its dielectric permittivity. The dissipated electromagnetic power involved in microwave heating processes depending on {var_epsilon}({omega}), the electrical characteristics of the heated media must vary with the temperature to achieve realistic simulations. In this paper, the authors present a fast and accurate algorithm allowing, through a combined electromagnetic and thermal procedure, to take into account the influence of the temperature on the electrical properties of materials. First, the temperature dependence of the complex permittivity ruled by a Debye relaxation equation is investigated, and a realistic model is proposed and validated. Then, a frequency-dependent finite-differences time-domain ((FD){sup 2}TD) method is used to assess the instantaneous electromagnetic power lost by dielectric hysteresis. Within the same iteration, a time-scaled form of the heat transfer equation allows one to calculate the temperature distribution in the heated medium and then to correct the dielectric properties of the material using the proposed model. These new characteristics will be taken into account by the EM solver at the next iteration. This combined algorithm allows a significant reduction of computation time. An application to a microwave oven is proposed.

  7. The Temperature Condition of the Plate with Temperature-Dependent Thermal Conductivity and Energy Release

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2016-01-01

    Full Text Available The temperature state of a solid body, in addition to the conditions of its heat exchange with the environment, can greatly depend on the heat release (or heat absorption processes within the body volume. Among the possible causes of these processes should be noted such as a power release in the fuel elements of nuclear reactors, exothermic or endothermic chemical reactions in the solid body material, which respectively involve heat release or absorbtion, heat transfer of a part of the electric power in the current-carrying conductors (so-called Joule’s heat or the energy radiation penetrating into the body of a semitransparent material, etc. The volume power release characterizes an intensity of these processes.The extensive list of references to the theory of heat conductivity of solids offers solutions to problems to determine a stationary (steady over time and non-stationary temperature state of the solids (as a rule, of the canonical form, which act as the sources of volume power release. Thus, in general case, a possibility for changing power release according to the body volume and in solving the nonstationary problems also a possible dependence of this value on the time are taken into consideration.However, in real conditions the volume power release often also depends on the local temperature, and such dependence can be nonlinear. For example, with chemical reactions the intensity of heat release or absorption is in proportion to their rate, which, in turn, is sensitive to the temperature value, and a dependence on the temperature is exponential. A further factor that in such cases makes the analysis of the solid temperature state complicated, is dependence on the temperature and the thermal conductivity of this body material, especially when temperature distribution therein  is significantly non-uniform. Taking into account the influence of these factors requires the mathematical modeling methods, which allow us to build an adequate

  8. Dynamic Temperature and Pressure Measurements in the Core of a Propulsion Engine

    Science.gov (United States)

    Schuster, Bill; Gordon, Grant; Hultgren, Lennart S.

    2015-01-01

    Dynamic temperature and pressure measurements were made in the core of a TECH977 propulsion engine as part of a NASA funded investigation into indirect combustion noise. Dynamic temperature measurements were made in the combustor, the inter-turbine duct, and the mixer using ten two-wire thermocouple probes. Internal dynamic pressure measurements were made at the same locations using piezoresistive transducers installed in semi-infinite coils. Measurements were acquired at four steady state operating conditions covering the range of aircraft approach power settings. Fluctuating gas temperature spectra were computed from the thermocouple probe voltage measurements using a compensation procedure that was developed under previous NASA test programs. A database of simultaneously acquired dynamic temperature and dynamic pressure measurements was produced. Spectral and cross-spectral analyses were conducted to explore the characteristics of the temperature and pressure fluctuations inside the engine, with a particular focus on attempting to identify the presence of indirect combustion noise.

  9. Baclofen prevents MDMA-induced rise in core body temperature in rats.

    Science.gov (United States)

    Bexis, Sotiria; Phillis, Benjamin D; Ong, Jennifer; White, Jason M; Irvine, Rodney J

    2004-04-09

    A number of deaths have been attributed to severe hyperthermia resulting from the ingestion of 3,4-methylenedioxymethamphetamine (MDMA). The mechanisms underlying these events are unclear. In an attempt to further advance our understanding of these mechanism the present study investigated the effects of the selective GABA(A) agonist muscimol and the GABA(B) agonist baclofen on MDMA-induced responses in the rat. Baclofen at 1 and 3 mg/kg and muscimol at 0.3 and 1 mg/kg administered alone had no effect on heart rate, core body temperature or spontaneous locomotor activity as measured by radiotelemetry. MDMA at 15 mg/kg produced a significant increase in heart rate, body temperature and locomotor activity (P temperature (P temperature of 40 degrees C (P temperature of 40 degrees C. These data suggest that stimulation of GABA(B) receptors may provide a mechanism for the treatment of MDMA-induced hyperthermia.

  10. Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection

    Science.gov (United States)

    Zhong, Shijie; Zuber, Maria T.; Moresi, Louis; Gurnis, Michael

    2000-05-01

    Layered viscosity, temperature-dependent viscosity, and surface plates have an important effect on the scale and morphology of structure in spherical models of mantle convection. We find that long-wavelength structures can be produced either by a layered viscosity with a weak upper mantle or temperature-dependent viscosity even in the absence of surface plates, corroborating earlier studies. However, combining the layered viscosity structure with a temperature-dependent viscosity results in structure with significantly shorter wavelengths. Our models show that the scale of convection is mainly controlled by the surface plates, supporting the previous two-dimensional studies. Our models with surface plates, layered and temperature-dependent viscosity, and internal heating explain mantle structures inferred from seismic tomography. The models show that hot upwellings initiate at the core-mantle boundary (CMB) with linear structures, and as they depart from CMB, the linear upwellings quickly change into quasi-cylindrical plumes that dynamically interact with the ambient mantle and surface plates while ascending through the mantle. A linear up welling structure is generated again at shallow depths (maintained throughout the mantle. The tendency for linear upwelling and downwelling structures to break into plume-like structures is stronger at higher Rayleigh numbers. Our models also show that downwellings to first-order control surface plate motions and the locations and horizontal motion of upwellings. Upwellings tend to form at stagnation points predicted solely from the buoyancy forces of downwellings. Temperature-dependent viscosity greatly enhances the ascending velocity of developed upwelling plumes, and this may reduce the influence of global mantle flow on the motion of plumes. Our results can explain the anticorrelation between hotspot distribution and fast seismic wave speed anomalies in the lower mantle and may also have significant implications to the

  11. Disturbances in melatonin, cortisol and core body temperature rhythms after major surgery.

    Science.gov (United States)

    Gögenur, Ismail; Ocak, Ubbat; Altunpinar, Omer; Middleton, Benita; Skene, Debra J; Rosenberg, Jacob

    2007-02-01

    It has been suggested that circadian rhythm disturbances are present after major surgery and that this may play a role in the development of postoperative sleep disturbances, fatigue, cognitive dysfunction and cardiovascular morbidity. The objective of this study was to examine the profile of melatonin, cortisol and core body temperature rhythms before and after major surgery. Blood samples (melatonin and cortisol) and core body temperature readings were collected every hour in the 24-h period prior to surgery and the 48 h after surgery from 11 patients undergoing major abdominal surgery. All patients had private rooms. Light exposure was controlled and monitored. Phase markers [50% dim light melatonin onset (DLMO 50%) and offset (DLMOff 50%), cortisol and core body temperature acrophase] for the three circadian rhythm profiles were calculated before and after surgery. The correlation between the melatonin rhythm and time of surgery, duration of surgery and opioid use was examined. A median delay in the onset of melatonin was seen on the first postoperative day [median DLMO 50% 22:46 hours (range: 21:15-01:08 hours) on the preoperative day compared with 23:54 hours (range: 19:09-02:46 hours) on the first postoperative day; P melatonin onset (r = 0.67, P melatonin immediately after surgery, with a subsequent significant increase in maximum melatonin values on the second postoperative night. A median delay of up to 4 h was seen in the timing of the peak of the temperature rhythm on the second postoperative day. Both cortisol secretion and core body temperature were increased after surgery and did not return to preoperative values in the 48 h of the postoperative study period. No significant correlation between opioid dose and the basal or maximum melatonin levels or the time of melatonin onset was found. We found disturbances in three circadian markers after major surgery. The clinical consequences of postoperative circadian disturbances should be investigated

  12. Temperature dependences in electron-stimulated desorption of neutral europium

    CERN Document Server

    Ageev, V N; Madey, T E

    2003-01-01

    The electron-stimulated desorption (ESD) yield for neutral europium (Eu) atoms from Eu layers adsorbed on oxygen-covered tungsten surfaces has been measured as a function of electron energy, europium coverage and degree of oxidation of tungsten, with an emphasis on effects of substrate temperature. The measurements have been carried out using a time-of-flight method and surface ionization detector. We expand on an earlier report, and compare ESD of multivalent Eu with ESD of monovalent alkali atoms, studied previously. The Eu atom ESD is a complicated function of Eu coverage, electron energy and substrate temperature. In the coverage range 0.05-0.35 monolayer (ML), overlapping resonant-like Eu atom yield peaks are observed at electron energies E sub e of 36 and 41 eV that might be associated with Eu or W shallow core level excitations. Additional resonant-like peaks are seen at E sub e of 54 and 84 eV that are associated with W 5p and 5s level excitations. The Eu atom yield peaks at 36 and 41 eV are seen only...

  13. Brain core temperature of patients with mild traumatic brain injury as assessed by DWI-thermometry

    Energy Technology Data Exchange (ETDEWEB)

    Tazoe, Jun; Yamada, Kei; Akazawa, Kentaro [Kyoto Prefectural University of Medicine, Department of Radiology, Graduate School of Medical Science, Kyoto City, Kyoto (Japan); Sakai, Koji [Kyoto University, Department of Human Health Science, Graduate School of Medicine, Kyoto (Japan); Mineura, Katsuyoshi [Kyoto Prefectural University of Medicine, Department of Neurosurgery, Graduate School of Medical Science, Kyoto City, Kyoto (Japan)

    2014-10-15

    The aim of this study was to assess the brain core temperature of patients with mild traumatic brain injury (mTBI) using a noninvasive temperature measurement technique based on the diffusion coefficient of the cerebrospinal fluid. This retrospective study used the data collected from April 2008 to June 2011. The patient group comprised 20 patients with a Glasgow Coma Scale score of 14 or 15 who underwent magnetic resonance imaging within 30 days after head trauma. The normal control group comprised 14 subjects who volunteered for a brain checkup (known in Japan as ''brain dock''). We compared lateral ventricular (LV) temperature between patient and control groups. Follow-up studies were performed for four patients. LV temperature measurements were successfully performed for both patients and controls. Mean (±standard deviation) measured LV temperature was 36.9 ± 1.5 C in patients, 38.7 ± 1.8 C in follow-ups, and 37.9 ± 1.2 C in controls, showing a significant difference between patients and controls (P = 0.017). However, no significant difference was evident between patients and follow-ups (P = 0.595) or between follow-ups and controls (P = 0.465). A reduction in brain core temperature was observed in patients with mTBI, possibly due to a global decrease in metabolism. (orig.)

  14. Temperature-dependent magnetic EXAFS investigation of Gd

    CERN Document Server

    Wende, H; Poulopoulos, P N; Rogalev, A; Goulon, J; Schlagel, D L; Lograsso, T A; Baberschke, K

    2001-01-01

    Magnetic EXAFS (MEXAFS) is the helicity-dependent counterpart of the well-established EXAFS technique. By means of MEXAFS it is possible not only to analyze the local magnetic structure but also to learn about magnetic fluctuations. Here we present the MEXAFS of a Gd single crystal at the L sub 3 sub , sub 2 -edges in the temperature range of 10-250 K. For the first time MEXAFS was probed over a large range in reduced temperature of 0.04<=T/T sub C<=0.85 with T sub C =293 K. We show that the vibrational damping described by means of a Debye temperature of theta sub D =160 K must be taken into account for the spin-dependent MEXAFS before analyzing magnetic fluctuations. For a detailed analysis of the MEXAFS and the EXAFS, the experimental data are compared to ab initio calculations. This enables us to separate the individual single- from the multiple-scattering contributions. The MEXAFS data have been recorded at the ID 12A beamline of the European Synchrotron Radiation Facility (ESRF). To ensure that th...

  15. Temperature-dependent photoluminescence from CdS/Si nanoheterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yue Li; Li, Yong; Ji, Peng Fei; Zhou, Feng Qun; Sun, Xiao Jun; Yuan, Shu Qing; Wan, Ming Li [Pingdingshan University, Department of Physics, Solar New Energy Research Center, Pingdingshan (China); Ling, Hong [North China University of Water Resources and Electric Power, Department of Mathematics and Information Science, Zhengzhou (China)

    2016-12-15

    CdS/Si nanoheterojunctions have been fabricated by growing nanocrystal CdS (nc-CdS) on the silicon nanoporous pillar array (Si-NPA) through using a chemical bath deposition method. The nanoheterojunctions have been constructed by three layers: the upper layer being a nc-CdS thin films, the intermediate layer being the interface region including nc-CdS and nanocrystal silicon (nc-Si), and the bottom layer being nc-Si layer grown on sc-Si substrate. The room temperature and temperature-dependent photoluminescence (PL) have been measured and analyzed to provide some useful information of defect states. Utilizing the Gauss-Newton fitting method, five emission peaks from the temperature-dependent PL spectra can be determined. From the high energy to low energy, these five peaks are ascribed to the some luminescence centers which are formed by the oxygen-related deficiency centers in the silicon oxide layer of Si-NPA, the band gap emission of nc-CdS, the transition from the interstitial cadmium (I{sub Cd}) to the valence band, the recombination from I{sub Cd} to cadmium vacancies (V{sub Cd}), and from sulfur vacancies (V{sub s}) to the valence band, respectively. Understanding of the defect states in the CdS/Si nanoheterojunctions is very meaningful for the performance of devices based on CdS/Si nanoheterojunctions. (orig.)

  16. Nongrafted Skin Area Best Predicts Exercise Core Temperature Responses in Burned Humans.

    Science.gov (United States)

    Ganio, Matthew S; Schlader, Zachary J; Pearson, James; Lucas, Rebekah A I; Gagnon, Daniel; Rivas, Eric; Kowalske, Karen J; Crandall, Craig G

    2015-10-01

    Grafted skin impairs heat dissipation, but it is unknown to what extent this affects body temperature during exercise in the heat. We examined core body temperature responses during exercise in the heat in a group of individuals with a large range of grafts covering their body surface area (BSA; 0%-75%). Forty-three individuals (19 females) were stratified into groups based on BSA grafted: control (0% grafted, n = 9), 17%-40% (n = 19), and >40% (n = 15). Subjects exercised at a fixed rate of metabolic heat production (339 ± 70 W; 4.3 ± 0.8 W·kg) in an environmental chamber set at 40°C, 30% relative humidity for 90 min or until exhaustion (n = 8). Whole-body sweat rate and core temperatures were measured. Whole-body sweat rates were similar between the groups (control: 14.7 ± 3.4 mL·min, 17%-40%: 12.6 ± 4.0 mL·min; and >40%: 11.7 ± 4.4 mL·min; P > 0.05), but the increase in core temperature at the end of exercise in the >40% BSA grafted group (1.6°C ± 0.5°C) was greater than the 17%-40% (1.2°C ± 0.3°C) and control (0.9°C ± 0.2°C) groups (P skin (expressed in square meters) was the strongest independent predictor of the core temperature increase (r = 0.41). When regrouping all subjects, individuals with the lowest BSA of nongrafted skin (temperature (1.6°C ± 0.5°C) than those with more than 1.5 m nongrafted skin (1.0°C ± 0.3°C; P skin have greater increases in core temperature when exercising in the heat and that the magnitude of this increase is best explained by the amount of nongrafted skin available for heat dissipation.

  17. Flavor-dependent neutrino angular distribution in core-collapse supernovae

    DEFF Research Database (Denmark)

    Tamborra, Irene; Huedepohl, Lorenz; Raffelt, Georg

    2017-01-01

    According to recent studies, the collective flavor evolution of neutrinos in core-collapse supernovae depends strongly on the flavor-dependent angular distribution of the local neutrino radiation field, notably on the angular intensity of the electron-lepton number carried by neutrinos. To facili......According to recent studies, the collective flavor evolution of neutrinos in core-collapse supernovae depends strongly on the flavor-dependent angular distribution of the local neutrino radiation field, notably on the angular intensity of the electron-lepton number carried by neutrinos....... To facilitate further investigations of this subject, we study the energy and angle distributions of the neutrino radiation field computed with the Vertex neutrino-transport code for several spherically symmetric (1D) supernova simulations (of progenitor masses 11.2, 15 and 25 M_sun) and explain how to extract...... this information from additional models of the Garching group. Beginning in the decoupling region ("neutrino sphere"), the distributions are more and more forward peaked in the radial direction with an angular spread that is largest for $\

  18. Bias dependence of sub-bandgap light detection for core-shell silicon nanowires.

    Science.gov (United States)

    Zhou, Yuchun; Liu, Yu-hsin; Cheng, James; Lo, Yu-Hwa

    2012-11-14

    We experimentally demonstrate a vertically arrayed silicon nanowire-based device that exhibits voltage dependence of photoresponse to infrared sub-bandgap optical radiation. The device is fabricated using a proximity solid-state phosphorus diffusion method to convert the surface areas of highly boron-doped silicon nanowires into n-type, thus forming a radial core-shell p-n junction structure. Prominent photoresponse from such core-shell Si nanowires is observed under sub-bandgap illumination at 1310 nm. The strong bias dependence of the photoresponse and other device characteristics indicates that the sub-bandgap absorption is attributed to the intrinsic properties of core-shell Si nanowires rather than the surface states. The attractive characteristics are based on three physical mechanisms: the Franz-Keldysh effect, quasi-quantum confinement effect, and the impurity-state assisted photon absorption. The first two effects enhance carrier tunneling probability, rendering a stronger wave function overlap to facilitate sub-bandgap absorption. The last effect relaxes the k-selection rule by involving the localized impurity states, thus removing the limit imposed by the indirect bandgap nature of Si. The presented device uses single-crystal silicon and holds promise of fabricating nanophotonic systems in a fully complementary metal-oxide-semiconductor (CMOS) compatible process. The concept and approach can be applied to silicon and other materials to significantly extend the operable wavelength regime beyond the constraint of energy bandgap.

  19. X-ray observations of complex temperature structure in the cool-core cluster A85

    Energy Technology Data Exchange (ETDEWEB)

    Schenck, David E.; Datta, Abhirup; Burns, Jack O. [Center for Astrophysics and Space Astronomy, Department of Astrophysical and Planetary Science, University of Colorado, Boulder, CO 80309 (United States); Skillman, Sam [Kavli Fellow, Kavli Institute for Particle Astrophysics and Cosmology, SLAC, CA 94025 (United States)

    2014-07-01

    X-ray observations were used to examine the complex temperature structure of A85, a cool-core galaxy cluster. Temperature features can provide evidence of merging events which shock heat the intracluster gas. Temperature maps were made from both Chandra and XMM-Newton observations. The combination of a new, long-exposure XMM observation and an improved temperature map binning technique produced the highest fidelity temperature maps of A85 to date. Hot regions were detected near the subclusters to the south and southwest in both the Chandra and XMM temperature maps. The presence of these structures implies A85 is not relaxed. The hot regions may indicate the presence of shocks. The Mach numbers were estimated to be ∼1.9 at the locations of the hot spots. Observational effects will tend to systematically reduce temperature jumps, so the measured Mach numbers are likely underestimated. Neither temperature map showed evidence for a shock in the vicinity of the presumed radio relic near the southwest subcluster. However, the presence of a weak shock cannot be ruled out. There was tension between the temperatures measured by the two instruments.

  20. Considerations for the measurement of core, skin and mean body temperatures.

    Science.gov (United States)

    Taylor, Nigel A S; Tipton, Michael J; Kenny, Glen P

    2014-12-01

    Despite previous reviews and commentaries, significant misconceptions remain concerning deep-body (core) and skin temperature measurement in humans. Therefore, the authors have assembled the pertinent Laws of Thermodynamics and other first principles that govern physical and physiological heat exchanges. The resulting review is aimed at providing theoretical and empirical justifications for collecting and interpreting these data. The primary emphasis is upon deep-body temperatures, with discussions of intramuscular, subcutaneous, transcutaneous and skin temperatures included. These are all turnover indices resulting from variations in local metabolism, tissue conduction and blood flow. Consequently, inter-site differences and similarities may have no mechanistic relationship unless those sites have similar metabolic rates, are in close proximity and are perfused by the same blood vessels. Therefore, it is proposed that a gold standard deep-body temperature does not exist. Instead, the validity of each measurement must be evaluated relative to one's research objectives, whilst satisfying equilibration and positioning requirements. When using thermometric computations of heat storage, the establishment of steady-state conditions is essential, but for clinically relevant states, targeted temperature monitoring becomes paramount. However, when investigating temperature regulation, the response characteristics of each temperature measurement must match the forcing function applied during experimentation. Thus, during dynamic phases, deep-body temperatures must be measured from sites that track temperature changes in the central blood volume. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Temperature Dependent Variations of Phonon Interactions in Nanocrystalline Cerium Oxide

    Directory of Open Access Journals (Sweden)

    Sugandha Dogra Pandey

    2015-01-01

    Full Text Available The temperature dependent anharmonic behavior of the phonon modes of nanocrystalline CeO2 was investigated in the temperature range of 80–440 K. The anharmonic constants have been derived from the shift in phonon modes fitted to account for the anharmonic contributions as well as the thermal expansion contribution using the high pressure parameters derived from our own high pressure experimental data reported previously. The total anharmonicity has also been estimated from the true anharmonicity as well as quasiharmonic component. In the line-width variation analysis, the cubic anharmonic term was found to dominate the quartic term. Finally, the phonon lifetime also reflected the trend so observed.

  2. Measurement system for temperature dependent noise characterization of magnetoresistive sensors

    Science.gov (United States)

    Nording, F.; Weber, S.; Ludwig, F.; Schilling, M.

    2017-03-01

    Magnetoresistive (MR) sensors and sensor systems are used in a large variety of applications in the field of industrial automation, automotive business, aeronautic industries, and instrumentation. Different MR sensor technologies like anisotropic magnetoresistive, giant magnetoresistive, and tunnel magnetoresistive sensors show strongly varying properties in terms of magnetoresistive effect, response to magnetic fields, achievable element miniaturization, manufacturing effort, and signal-to-noise ratio. Very few data have been reported so far on the comparison of noise performance for different sensor models and technologies, especially including the temperature dependence of their characteristics. In this paper, a stand-alone measurement setup is presented that allows a comprehensive characterization of MR sensors including sensitivity and noise over a wide range of temperatures.

  3. Temperature dependence of topological susceptibility using gradient flow

    CERN Document Server

    Taniguchi, Yusuke; Kanaya, Kazuyuki; Kitazawa, Masakiyo; Suzuki, Hiroshi; Umeda, Takashi; Iwami, Ryo; Wakabayashi, Naoki

    2016-01-01

    We study temperature dependence of the topological susceptibility with the $N_{f}=2+1$ flavors Wilson fermion. We have two major interests in this paper. One is a comparison of gluonic and fermionic definitions of the topological susceptibility. Two definitions are related by the chiral Ward-Takahashi identity but their coincidence is highly non-trivial for the Wilson fermion. By applying the gradient flow both for the gauge and quark fields we find a good agreement of these two measurements. The other is a verification of a prediction of the dilute instanton gas approximation at low temperature region $T_{pc}< T<1.5T_{pc}$, for which we confirm the prediction that the topological susceptibility decays with power $\\chi_{t}\\propto(T/T_{pc})^{-8}$ for three flavors QCD.

  4. Temperature dependence of the dielectric constant of acrylic dielectric elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Junjie; Chen, Hualing; Li, Bo; Chang, Longfei [Xi' an Jiaotong University, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an (China); Xi' an Jiaotong University, School of Mechanical Engineering, Xi' an (China)

    2013-02-15

    The dielectric constant is an essential electrical parameter to the achievable voltage-induced deformation of the dielectric elastomer. This paper primarily focuses on the temperature dependence of the dielectric constant (within the range of 173 K to 373 K) for the most widely used acrylic dielectric elastomer (VHB 4910). First the dielectric constant was investigated experimentally with the broadband dielectric spectrometer (BDS). Results showed that the dielectric constant first increased with temperature up to a peak value and then dropped to a relative small value. Then by analyzing the fitted curves, the Cole-Cole dispersion equation was found better to characterize the rising process before the peak values than the Debye dispersion equation, while the decrease process afterward can be well described by the simple Debye model. Finally, a mathematical model of dielectric constant of VHB 4910 was obtained from the fitted results which can be used to further probe the electromechanical stability of the dielectric elastomers. (orig.)

  5. Temperature dependence of the dielectric constant of acrylic dielectric elastomer

    Science.gov (United States)

    Sheng, Junjie; Chen, Hualing; Li, Bo; Chang, Longfei

    2013-02-01

    The dielectric constant is an essential electrical parameter to the achievable voltage-induced deformation of the dielectric elastomer. This paper primarily focuses on the temperature dependence of the dielectric constant (within the range of 173 K to 373 K) for the most widely used acrylic dielectric elastomer (VHB 4910). First the dielectric constant was investigated experimentally with the broadband dielectric spectrometer (BDS). Results showed that the dielectric constant first increased with temperature up to a peak value and then dropped to a relative small value. Then by analyzing the fitted curves, the Cole-Cole dispersion equation was found better to characterize the rising process before the peak values than the Debye dispersion equation, while the decrease process afterward can be well described by the simple Debye model. Finally, a mathematical model of dielectric constant of VHB 4910 was obtained from the fitted results which can be used to further probe the electromechanical stability of the dielectric elastomers.

  6. Postoperative outcome of body core temperature rhythm and sleep-wake cycle in third ventricle craniopharyngiomas.

    Science.gov (United States)

    Zoli, Matteo; Sambati, Luisa; Milanese, Laura; Foschi, Matteo; Faustini-Fustini, Marco; Marucci, Gianluca; de Biase, Dario; Tallini, Giovanni; Cecere, Annagrazia; Mignani, Francesco; Sturiale, Carmelo; Frank, Giorgio; Pasquini, Ernesto; Cortelli, Pietro; Mazzatenta, Diego; Provini, Federica

    2016-12-01

    OBJECTIVE One of the more serious risks in the treatment of third ventricle craniopharyngiomas is represented by hypothalamic damage. Recently, many papers have reported the expansion of the indications for the endoscopic endonasal approach (EEA) to be used for these tumors as well. The aim of this study was to assess the outcome of sleep-wake cycle and body core temperature (BCT), both depending on hypothalamic control, in patients affected by craniopharyngiomas involving the third ventricle that were surgically treated via an EEA. METHODS All consecutive adult patients with craniopharyngiomas that were treated at one center via an EEA between 2014 and 2016 were prospectively included. Each patient underwent neuroradiological, endocrinological, and ophthalmological evaluation; 24-hour monitoring of the BCT rhythm; and the sleep-wake cycle before surgery and at follow-up of at least 6 months. RESULTS Ten patients were included in the study (male/female ratio 4:6, mean age 48.6 years, SD 15.9 years). Gross-total resection was achieved in 8 cases. Preoperative BCT rhythm was pathological in 6 patients. After surgery, these disturbances resolved in 2 cases, improved in another 3, and remained the same in 1 patient; also, 1 case of de novo onset was observed. Before surgery the sleep-wake cycle was pathological in 8 cases, and it was restored in 4 patients at follow-up. After surgery the number of patients reporting diurnal naps increased from 7 to 9. CONCLUSIONS The outcome of the sleep-wake cycle and BCT analyzed after EEA in this study is promising. Despite the short duration of the authors' experience, they consider these results encouraging; additional series are needed to confirm the preliminary findings.

  7. Temperature-dependent dispersion model of float zone crystalline silicon

    Science.gov (United States)

    Franta, Daniel; Dubroka, Adam; Wang, Chennan; Giglia, Angelo; Vohánka, Jirí; Franta, Pavel; Ohlídal, Ivan

    2017-11-01

    In this paper, we present the temperature dependent dispersion model of float zone crystalline silicon. The theoretical background for valence electronic excitations is introduced in the theoretical part of this paper. This model is based on application of sum rules and parametrization of transition strength functions corresponding to the individual elementary phonon and electronic excitations. The parameters of the model are determined by fitting ellipsometric and spectrophotometric experimental data in the spectral range from far infrared (70 cm-1) to extreme ultraviolet (40 eV). The ellipsometric data were measured in the temperature range 5-700 K. The excitations of the valence electrons to the conduction band are divided into the indirect and direct electronic transitions. The indirect transitions are modeled by truncated Lorentzian terms, whereas the direct transitions are modeled using Gaussian broadened piecewise smooth functions representing 3D and 2D van Hove singularities modified by excitonic effects. Since the experimental data up to high energies (40 eV) are available, we are able to determine the value of the effective number of valence electrons. The Tauc-Lorentz dispersion model is used for modeling high energy electron excitations. Two slightly different values of the effective number of valence electrons are obtained for the Jellison-Modine (4.51) and Campi-Coriasso (4.37) parametrization. Our goal is to obtain the model of dielectric response of crystalline silicon which depends only on photon energy, temperature and small number of material parameters, e.g. the concentration of substituted carbon and interstitial oxygen. The model presented in this paper is accurate enough to replace tabulated values of c-Si optical constants used in the optical characterization of thin films diposited on silicon substrates. The spectral dependencies of the optical constants obtained in our work are compared to results obtained by other authors.

  8. METHOD OF MEASUREMENT OF STRENGTH OF CORE CASTING PAINT AT HIGH TEMPERATURES

    Directory of Open Access Journals (Sweden)

    O. S. Komarov

    2017-01-01

    Full Text Available The method and device for measuring of the strength of the core casting refractory paint at high temperatures were developed. It has been shown that the failure strength sodium aluminates binder after testified that decrease of sodium aluminates binder strength after being in the range of 300–600 °C is lower than that for sodium silicate. There is a correlation between hardness and strength of the paint during heating at 1300 °C.

  9. Post-exercise cold water immersion: effect on core temperature and melatonin responses.

    Science.gov (United States)

    Robey, Elisa; Dawson, Brian; Halson, Shona; Goodman, Carmel; Gregson, Warren; Eastwood, Peter

    2013-02-01

    To study the effect of post-exercise cold water immersion (CWI) on core temperature and melatonin responses, 10 male cyclists completed two evening (~1800 hours) cycling trials followed by a 15-min CWI (14 °C) or warm water immersion (WWI; 34 °C), and were then monitored for 90 min post-immersion. The exercise trial involved 15 min at 75 % peak power, followed by a 15 min time trial. Core (rectal) temperature was not different between the two conditions pre-exercise (~37.4 °C), post-exercise (~39 °C) or immediately post-immersion (~37.7 °C), but was significantly (p exercise levels at 60 and 90 min post-immersion in both conditions. Core temperature was significantly lower after CWI than WWI at 30 min (36.84 ± 0.24 vs. 37.42 ± 0.40 °C, p exercise (~5 pM) to 90 min post-immersion (~8.3 pM), but were not different between conditions. At 30 and 90 min post-immersion heart rate was significantly lower (~5-10 bpm, p exercise in the evening lowers core temperature below baseline for at least 90 min; however, the magnitude of decrease is significantly greater following CWI. The usual evening increase in melatonin is unaffected by exercise or post-exercise water immersion undertaken between ~1800 and ~2000 hours.

  10. Greater chance of high core temperatures with modified pacing strategy during team sport in the heat.

    Science.gov (United States)

    Aughey, Robert J; Goodman, Craig A; McKenna, Michael J

    2014-01-01

    To measure the activity profile, hydration status and core temperature of elite team sport athletes during matches in hot and cool conditions. Thirty-five professional Australian footballers (age 25.9 ± 3.5 yrs; height 188.4 ± 7.8 cm; body mass 90.6 ± 8.8 kg), gave informed consent to participate in this study. Core temperature (T(c)), hydration and running performance were compared in eight hot and eight cool matches classified via a rating of the risk of heat illness from the Wet Bulb Globe Temperature (WBGT). Core temperature was measured via an ingestible sensor before matches and after each quarter and player movement was recorded by 5 Hz GPS and expressed per period of the match (rotation), for distance; high-intensity running (HIR, 4.17-10.00 m s(-1)), sprinting (>4.17 m s(-1)) and maximal accelerations (2.78-10.00 m s(-2)). All data was compared for hot and cool matches and the magnitude of effects was analysed with the effect size (ES) statistic. Core temperature was elevated from rest at all time-points during matches (37.3-39.4 °C), with small additional elevations after the first and third quarters in hot matches (ES: 0.39 ± 0.40 and 0.37 ± 0.42 respectively). In hot matches 12 players had T(c)>40 °C but only one in cool matches. Total distance was reduced in the latter parts of each half (-6.5%, -0.49 ± 0.58; and -6.7%, -0.57 ± 0.59), yet the high intensity tasks of sprinting and accelerating were preserved. Players tolerated core temperatures up to 40.5 °C during hot matches but reduced the volume of running undertaken, thus preserving the ability to undertake high intensity activities. Copyright © 2013. Published by Elsevier Ltd.

  11. Alpha-MSH decreases core and brain temperature during global cerebral ischemia in rats

    DEFF Research Database (Denmark)

    Spulber, S.; Moldovan, Mihai; Oprica, M.

    2005-01-01

    -vessel occlusion forebrain ischemia on core temperature (CT) and brain temperature (BT), respectively. After 10 min cerebral ischemia, BT was lower in alpha-MSH- than in saline-injected animals. After 10 min reperfusion, both CT and BT were lower than the corresponding pre-ischemic levels after injection of alpha......-MSH. alpha-MSH did not influence CT or BT in sham-operated rats. The alpha-MSH-induced hypothermia and its potentiation of reduction in BT during global cerebral ischemia, may contribute to neuroprotective effects of alpha-MSH....

  12. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations.

  13. Denali Ice Core Record of North Pacific Sea Surface Temperatures and the Pacific Decadal Oscillation

    Science.gov (United States)

    Polashenski, D.; Osterberg, E. C.; Winski, D.; Ferris, D. G.; Kreutz, K. J.; Wake, C. P.; Introne, D.

    2015-12-01

    Ice cores collected from high elevation alpine glaciers in the Alaska Range provide a unique opportunity to investigate changes in the regional climate of southern Alaska and the north Pacific over the past millennium. In this study, we seek to investigate changes in sea surface temperature (SST) in the north-central Pacific Ocean using the deuterium excess (d-excess) record from the Mt. Hunter ice cores collected in Denali National Park, Alaska. A collaborative research team from Dartmouth College and the Universities of Maine and New Hampshire collected two parallel ice cores to bedrock (208 m long) in May-June 2013 from the Mt. Hunter summit plateau (63º N, 151º W, 4,000 m above sea level). The cores were melted on a continuous melter system in the Dartmouth ice core lab and then analyzed for concentrations of major ions and trace elements, as well as stable water isotope ratios. The depth-age scale of the cores was determined using annual layer counting of δ18O and the concentrations of Mg, NH4, and Methanesulfonic acid (MSA) obtained by ion chromatography. The depth-age scale was validated using large, well-dated volcanic eruptions and the spike in 137Cs concentrations associated with nuclear weapons testing in 1963. Preliminary analyses indicate that the full record spans the past millennium. Analysis of the isotope data set extending back to 1938 using reanalysis data shows a positive correlation (p<0.05) between d-excess at the core site and the north-central Pacific SST. The north-central Pacific region of positive SST-d-excess correlation occurs at one node of the Pacific Decadal Oscillation (PDO), and thus the Denali cores are sensitive to PDO variability with low (high) d-excess associated with positive (negative) PDO index values. We also note a significant (p<0.05) declining trend in d-excess from 1938-2012, which we hypothesize to represent a rising proportion of Arctic moisture sources influencing Denali as Arctic temperatures and evaporation

  14. Circadian rhythms in bed rest: Monitoring core body temperature via heat-flux approach is superior to skin surface temperature.

    Science.gov (United States)

    Mendt, Stefan; Maggioni, Martina Anna; Nordine, Michael; Steinach, Mathias; Opatz, Oliver; Belavý, Daniel; Felsenberg, Dieter; Koch, Jochim; Shang, Peng; Gunga, Hanns-Christian; Stahn, Alexander

    2017-01-01

    Continuous recordings of core body temperature (CBT) are a well-established approach in describing circadian rhythms. Given the discomfort of invasive CBT measurement techniques, the use of skin temperature recordings has been proposed as a surrogate. More recently, we proposed a heat-flux approach (the so-called Double Sensor) for monitoring CBT. Studies investigating the reliability of the heat-flux approach over a 24-hour period, as well as comparisons with skin temperature recordings, are however lacking. The first aim of the study was therefore to compare rectal, skin, and heat-flux temperature recordings for monitoring circadian rhythm. In addition, to assess the optimal placement of sensor probes, we also investigated the effect of different anatomical measurement sites, i.e. sensor probes positioned at the forehead vs. the sternum. Data were collected as part of the Berlin BedRest study (BBR2-2) under controlled, standardized, and thermoneutral conditions. 24-hours temperature data of seven healthy males were collected after 50 days of -6° head-down tilt bed-rest. Mean Pearson correlation coefficients indicated a high association between rectal and forehead temperature recordings (r > 0.80 for skin and Double Sensor). In contrast, only a poor to moderate relationship was observed for sensors positioned at the sternum (r = -0.02 and r = 0.52 for skin and Double Sensor, respectively). Cross-correlation analyses further confirmed the feasibility of the forehead as a preferred monitoring site. The phase difference between forehead Double Sensor and rectal recordings was not statistically different from zero (p = 0.313), and was significantly smaller than the phase difference between forehead skin and rectal temperatures (p = 0.016). These findings were substantiated by cosinor analyses, revealing significant differences for mesor, amplitude, and acrophase between rectal and forehead skin temperature recordings, but not between forehead Double Sensor and rectal

  15. Measurement of concentration and temperature using a fiber loop ring-down technique with core-offset structure

    Science.gov (United States)

    Wang, Fang; Lu, Heng; Wang, Xu; Liu, Yufang

    2018-03-01

    Fiber-loop ring-down spectroscopy (FLRDS) technique can be used for measurement by indirectly measuring the ring-down time. This is advantageous because it is free from fluctuations of the light source and has a high sensitivity. A novel sensing system for measuring the concentration and temperature based on the FLRDS technique and Mach-Zehnder interferometer (MZI) is proposed in this work. The intra-cavity losses were compensated, which depended on the erbium-doped fiber amplifier. The sensor head was a section of 4 cm single-mode fiber that was spliced into the fiber loop ring cavity in a core-offset way, and its characteristics were tested by experimenting with different solution concentrations and temperatures. The experimental results showed that the detection limit of this system is 0.0014 g/ml, in the range of 0.010-0.400 g/ml. In the temperature sensing experiment, when the temperature varied from 30-200 °C, a sensitivity of 1.83 μs/°C was achieved. This research demonstrated that the MZI-based FLRDS sensing system has a clear response to the solution and temperature; therefore, it provides a reference for the measurement of stress, pressure, curvature, and other physical quantities.

  16. MATERIAL DEPENDENCE OF TEMPERATURE DISTRIBUTION IN MULTI-LAYER MULTI-METAL COOKWARE

    Directory of Open Access Journals (Sweden)

    MOHAMMADREZA SEDIGH

    2017-09-01

    Full Text Available Laminated structure is becoming more popular in cookware markets; however, there seems to be a lack of enough scientific studies to evaluate its pros and cons, and to show that how it functions. A numerical model using a finite element method with temperature-dependent material properties has been performed to investigate material and layer dependence of temperature distribution in multi-layer multi-metal plate exposed to irregular heating. Behavior of two parameters including mean temperature value and uniformity on the inner surface of plate under variations of thermal properties and geometrical conditions have been studied. The results indicate that conductive metals used as first layer in bi-layer plates have better thermal performance than those used in the second layer. In addition, since cookware manufacturers increasingly prefer to use all-clad aluminium plate, recently, this structure is analysed in the present study as well. The results show all-clad copper and aluminum plate possesses lower temperature gradient compared with single layer aluminum and all-clad aluminum core plates.

  17. Effect of drink temperature on core temperature and endurance cycling performance in warm, humid conditions.

    Science.gov (United States)

    Burdon, Catriona; O'Connor, Helen; Gifford, Janelle; Shirreffs, Susan; Chapman, Phillip; Johnson, Nathan

    2010-09-01

    The aims of this study were to determine the effect of cold (4 °C) and thermoneutral (37 °C) beverages on thermoregulation and performance in the heat and to explore sensory factors associated with ingesting a cold stimulus. Seven males (age 32.8 ± 6.1 years, [V(.)]O(2peak) 59.4 ± 6.6 ml x kg(-1) x min(-1)) completed cold, thermoneutral, and thermoneutral + ice trials in randomized order. Participants cycled for 90 min at 65%[V(.)]O(2peak) followed by a 15-min performance test at 28 °C and 70% relative humidity. They ingested 2.3 ml x kg(-1) of a 7.4% carbohydrate-electrolyte solution every 10 min during the 90-min steady-state exercise including 30 ml ice puree every 5 min in the ice trial. Absolute changes in skin temperature (0.22 ± 1.1 °C vs. 1.14 ± 0.9 °C; P = 0.02), mean body temperature (1.2 ± 0.3 vs. 1.6 ± 0.3 °C; P = 0.03), and heat storage were lower across the 90-min exercise bout for the cold compared with the thermoneutral trial. Significant improvements (4.9 ± 2.4%, P cold but no significant differences were detected with ice. Consumption of cold beverages during prolonged exercise in the heat improves body temperature measures and performance. Consumption of ice did not reveal a sensory response, but requires further study. Beverages consumed by athletes exercising in the heat should perhaps be cold for performance and safety reasons.

  18. Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites.

    Science.gov (United States)

    Du, Yunchen; Liu, Wenwen; Qiang, Rong; Wang, Ying; Han, Xijiang; Ma, Jun; Xu, Ping

    2014-08-13

    Core-shell composites, Fe3O4@C, with 500 nm Fe3O4 microspheres as cores have been successfully prepared through in situ polymerization of phenolic resin on the Fe3O4 surface and subsequent high-temperature carbonization. The thickness of carbon shell, from 20 to 70 nm, can be well controlled by modulating the weight ratio of resorcinol and Fe3O4 microspheres. Carbothermic reduction has not been triggered at present conditions, thus the crystalline phase and magnetic property of Fe3O4 micropsheres can be well preserved during the carbonization process. Although carbon shells display amorphous nature, Raman spectra reveal that the presence of Fe3O4 micropsheres can promote their graphitization degree to a certain extent. Coating Fe3O4 microspheres with carbon shells will not only increase the complex permittivity but also improve characteristic impedance, leading to multiple relaxation processes in these composites, thus the microwave absorption properties of these composites are greatly enhanced. Very interestingly, a critical thickness of carbon shells leads to an unusual dielectric behavior of the core-shell structure, which endows these composites with strong reflection loss, especially in the high frequency range. By considering good chemical homogeneity and microwave absorption, we believe the as-fabricated Fe3O4@C composites can be promising candidates as highly effective microwave absorbers.

  19. Off-line mapping of multi-rate dependent task sets to many-core platforms

    DEFF Research Database (Denmark)

    Puffitsch, Wolfgang; Noulard, Eric; Pagetti, Claire

    2015-01-01

    This paper presents an approach to execute safety-critical applications on multi- and many-core processors in a predictable manner. We investigate three concrete platforms: the Intel Single-chip Cloud Computer, the Texas Instruments TMS320C6678 and the Tilera TILEmpower-Gx36. We define an execution...... model to safely execute dependent periodic task sets on these platforms. The four rules of the execution model entail that an off-line mapping of the application to the platform must be computed. The paper details our approach to automatically compute a valid mapping. Furthermore, we evaluate our...

  20. Brittle Creep of Tournemire Shale: Orientation, Temperature and Pressure Dependences

    Science.gov (United States)

    Geng, Zhi; Bonnelye, Audrey; Dick, Pierre; David, Christian; Chen, Mian; Schubnel, Alexandre

    2017-04-01

    Time and temperature dependent rock deformation has both scientific and socio-economic implications for natural hazards, the oil and gas industry and nuclear waste disposal. During the past decades, most studies on brittle creep have focused on igneous rocks and porous sedimentary rocks. To our knowledge, only few studies have been carried out on the brittle creep behavior of shale. Here, we conducted a series of creep experiments on shale specimens coming from the French Institute for Nuclear Safety (IRSN) underground research laboratory located in Tournemire, France. Conventional tri-axial experiments were carried under two different temperatures (26˚ C, 75˚ C) and confining pressures (10 MPa, 80 MPa), for three orientations (σ1 along, perpendicular and 45˚ to bedding). Following the methodology developed by Heap et al. [2008], differential stress was first increased to ˜ 60% of the short term peak strength (10-7/s, Bonnelye et al. 2016), and then in steps of 5 to 10 MPa every 24 hours until brittle failure was achieved. In these long-term experiments (approximately 10 days), stress and strains were recorded continuously, while ultrasonic acoustic velocities were recorded every 1˜15 minutes, enabling us to monitor the evolution of elastic wave speed anisotropy. Temporal evolution of anisotropy was illustrated by inverting acoustic velocities to Thomsen parameters. Finally, samples were investigated post-mortem using scanning electron microscopy. Our results seem to contradict our traditional understanding of loading rate dependent brittle failure. Indeed, the brittle creep failure stress of our Tournemire shale samples was systematically observed ˜50% higher than its short-term peak strength, with larger final axial strain accumulated. At higher temperatures, the creep failure strength of our samples was slightly reduced and deformation was characterized with faster 'steady-state' creep axial strain rates at each steps, and larger final axial strain

  1. Temperature dependence of thermal conductivity of biological tissues.

    Science.gov (United States)

    Bhattacharya, A; Mahajan, R L

    2003-08-01

    In this paper, we present our experimental results on the determination of the thermal conductivity of biological tissues using a transient technique based on the principles of the cylindrical hot-wire method. A novel, 1.45 mm diameter, 50 mm long hot-wire probe was deployed. Initial measurements were made on sponge, gelatin and Styrofoam insulation to test the accuracy of the probe. Subsequent experiments conducted on sheep collagen in the range of 25 degrees C thermal conductivity to be a linear function of temperature. Further, these changes in the thermal conductivity were found to be reversible. However, when the tissue was heated beyond 55 degrees C, irreversible changes in thermal conductivity were observed. Similar experiments were also conducted for determining the thermal conductivity of cow liver. In this case, the irreversible effects were found to set in much later at around 90 degrees C. Below this temperature, in the range of 25 degrees C thermal conductivity, as for sheep collagen, varied linearly with temperature. In the second part of our study, in vivo measurements were taken on the different organs of a living pig. Comparison with reported values for dead tissues shows the thermal conductivities of living organs to be higher, indicating thereby the dominant role played by blood perfusion in enhancing the net heat transfer in living tissues. The degree of enhancement is different in different organs and shows a direct dependence on the blood flow rate.

  2. Temperature dependence of ion irradiation induced amorphization of zirconolite

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K. L.; Blackford, M. G.; Lumpkin, G. R.; Zaluzec, N. J.

    1999-12-22

    Zirconolite is one of the major host phases for actinides in various wasteforms for immobilizing high level radioactive waste (HLW). Over time, zirconolite's crystalline matrix is damaged by {alpha}-particles and energetic recoil nuclei recoil resulting from {alpha}-decay events. The cumulative damage caused by these particles results in amorphization. Data from natural zirconolites suggest that radiation damage anneals over geologic time and is dependant on the thermal history of the material. Proposed HLW containment strategies rely on both a suitable wasteform and geologic isolation. Depending on the waste loading, depth of burial, and the repository-specific geothermal gradient, burial could result in a wasteform being exposed to temperatures of between 100--450 C. Consequently, it is important to assess the effect of temperature on radiation damage in synthetic zirconolite. Zirconolite containing wasteforms are likely to be hot pressed at or below 1,473 K (1,200 C) and/or sintered at or below 1,623 K (1,350 C). Zirconolite fabricated at temperatures below 1,523 K (1,250 C) contains many stacking faults. As there have been various attempts to link radiation resistance to structure, the authors decided it was also pertinent to assess the role of stacking faults in radiation resistance. In this study, they simulate {alpha}-decay damage in two zirconolite samples by irradiating them with 1.5 MeV Kr{sup +} ions using the High Voltage Electron Microscope-Tandem User Facility (HTUF) at Argonne National Laboratory (ANL) and measure the critical dose for amorphization (D{sub c}) at several temperatures between 20 and 773 K. One of the samples has a high degree of crystallographic perfection, the other contains many stacking faults on the unit cell scale. Previous authors proposed a model for estimating the activation energy of self annealing in zirconolite and for predicting the critical dose for amorphization at any temperature. The authors discuss their results

  3. Temperature dependence of Henry's law constant in an extended temperature range.

    Science.gov (United States)

    Görgényi, Miklós; Dewulf, Jo; Van Langenhove, Herman

    2002-08-01

    The Henry's law constants H for chloroform, 1,1-dichloroethane, 1,2-dichloropropane, trichloroethene, chlorobenzene, benzene and toluene were determined by the EPICS-SPME technique (equilibrium partitioning in closed systems--solid phase microextraction) in the temperature range 275-343 K. The curvature observed in the ln H vs. 1/T plot was due to the temperature dependence of the change in enthalpy delta H0 during the transfer of 1 mol solute from the aqueous solution to the gas phase. The nonlinearity of the plot was explained by means of a thermodynamic model which involves the temperature dependence of delta H0 of the compounds and the thermal expansion of water in the three-parameter equation ln (H rho TT) = A2/T + BTB + C2, where rho T is the density of water at temperature T, TB = ln(T/298) + (298-T)/T, A2 = -delta H298(0)/R, delta H298(0) is the delta H0 value at 298 K, B = delta Cp0/R, and C2 is a constant. delta Cp0 is the molar heat capacity change in volatilization from the aqueous solution. A statistical comparison of the two models demonstrates the superiority of the three-parameter equation over the two-parameter one ln H vs. 1/T). The new, three-parameter equation allows a more accurate description of the temperature dependence of H, and of the solubility of volatile organic compounds in water at higher temperatures.

  4. Theoretical and Experimental Studies of Epidermal Heat Flux Sensors for Measurements of Core Body Temperature.

    Science.gov (United States)

    Zhang, Yihui; Webb, Richard Chad; Luo, Hongying; Xue, Yeguang; Kurniawan, Jonas; Cho, Nam Heon; Krishnan, Siddharth; Li, Yuhang; Huang, Yonggang; Rogers, John A

    2016-01-07

    Long-term, continuous measurement of core body temperature is of high interest, due to the widespread use of this parameter as a key biomedical signal for clinical judgment and patient management. Traditional approaches rely on devices or instruments in rigid and planar forms, not readily amenable to intimate or conformable integration with soft, curvilinear, time-dynamic, surfaces of the skin. Here, materials and mechanics designs for differential temperature sensors are presented which can attach softly and reversibly onto the skin surface, and also sustain high levels of deformation (e.g., bending, twisting, and stretching). A theoretical approach, together with a modeling algorithm, yields core body temperature from multiple differential measurements from temperature sensors separated by different effective distances from the skin. The sensitivity, accuracy, and response time are analyzed by finite element analyses (FEA) to provide guidelines for relationships between sensor design and performance. Four sets of experiments on multiple devices with different dimensions and under different convection conditions illustrate the key features of the technology and the analysis approach. Finally, results indicate that thermally insulating materials with cellular structures offer advantages in reducing the response time and increasing the accuracy, while improving the mechanics and breathability. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Ranges of moisture-source temperature estimated from Antarctic ice cores stable isotope records over glacial–interglacial cycles

    Directory of Open Access Journals (Sweden)

    R. Uemura

    2012-06-01

    Full Text Available A single isotope ratio (δD or δ18O of water is widely used as an air-temperature proxy in Antarctic ice core records. These isotope ratios, however, do not solely depend on air-temperature but also on the extent of distillation of heavy isotopes out of atmospheric water vapor from an oceanic moisture source to a precipitation site. The temperature changes at the oceanic moisture source (Δ Tsource and at the precipitation site (Δ Tsite can be retrieved by using deuterium-excess (d data. A new d record from Dome Fuji, Antarctica spanning the past 360 000 yr is presented and compared with records from Vostok and EPICA Dome C ice cores. In previous studies, to retrieve Δ Tsource and Δ Tsite information, different linear regression equations were proposed using theoretical isotope distillation models. A major source of uncertainty lies in the coefficient of regression, βsite which is related to the sensitivity of d to Δ Tsite. We show that different ranges of temperature and selections of isotopic model outputs may increase the value of βsite by more than a factor of two. To explore the impacts of this coefficient on reconstructed temperatures, we apply for the first time the exact same methodology to the isotope records from the three Antarctica ice cores. We show that uncertainties in the βsite coefficient strongly affect (i the glacial–interglacial magnitude of Δ Tsource; (ii the imprint of obliquity in Δ Tsource and in the site-source temperature gradient. By contrast, we highlight the robustness of Δ Tsite reconstruction using water isotopes records.

  6. CO2 sensing at room temperature using carbon nanotubes coated core fiber Bragg grating.

    Science.gov (United States)

    Shivananju, B N; Yamdagni, S; Fazuldeen, R; Sarin Kumar, A K; Hegde, G M; Varma, M M; Asokan, S

    2013-06-01

    The sensing of carbon dioxide (CO2) at room temperature, which has potential applications in environmental monitoring, healthcare, mining, biotechnology, food industry, etc., is a challenge for the scientific community due to the relative inertness of CO2. Here, we propose a novel gas sensor based on clad-etched Fiber Bragg Grating (FBG) with polyallylamine-amino-carbon nanotube coated on the surface of the core for detecting the concentrations of CO2 gas at room temperature, in ppm levels over a wide range (1000 ppm-4000 ppm). The limit of detection observed in polyallylamine-amino-carbon nanotube coated core-FBG has been found to be about 75 ppm. In this approach, when CO2 gas molecules interact with the polyallylamine-amino-carbon nanotube coated FBG, the effective refractive index of the fiber core changes, resulting in a shift in Bragg wavelength. The experimental data show a linear response of Bragg wavelength shift for increase in concentration of CO2 gas. Besides being reproducible and repeatable, the technique is fast, compact, and highly sensitive.

  7. Flavor-dependent neutrino angular distribution in core-collapse supernovae

    DEFF Research Database (Denmark)

    Tamborra, Irene; Huedepohl, Lorenz; Raffelt, Georg

    2017-01-01

    According to recent studies, the collective flavor evolution of neutrinos in core-collapse supernovae depends strongly on the flavor-dependent angular distribution of the local neutrino radiation field, notably on the angular intensity of the electron-lepton number carried by neutrinos....... To facilitate further investigations of this subject, we study the energy and angle distributions of the neutrino radiation field computed with the Vertex neutrino-transport code for several spherically symmetric (1D) supernova simulations (of progenitor masses 11.2, 15 and 25 M_sun) and explain how to extract...... this information from additional models of the Garching group. Beginning in the decoupling region ("neutrino sphere"), the distributions are more and more forward peaked in the radial direction with an angular spread that is largest for $\

  8. Denali Ice Core Record of North Pacific Sea Surface Temperatures and Marine Primary Productivity

    Science.gov (United States)

    Polashenski, D.; Osterberg, E. C.; Kreutz, K. J.; Winski, D.; Wake, C. P.; Ferris, D. G.; Introne, D.; Campbell, S. W.

    2016-12-01

    Chemical analyses of precipitation preserved in glacial ice cores provide a unique opportunity to study changes in atmospheric circulation patterns and ocean surface conditions through time. In this study, we aim to investigate changes in both the physical and biological parameters of the north-central Pacific Ocean and Bering Sea over the twentieth century using the deuterium excess (d-excess) and methanesulfonic acid (MSA) records from the Mt. Hunter ice cores drilled in Denali National Park, Alaska. These parallel, 208 m-long ice cores were drilled to bedrock during the 2013 field season on the Mt. Hunter plateau (63° N, 151° W, 3,900 m above sea level) by a collaborative research team consisting of members from Dartmouth College and the Universities of Maine and New Hampshire. The cores were sampled on a continuous melter system at Dartmouth College and analyzed for the concentrations major ions (Dionex IC) and trace metals (Element2 ICPMS), and for stable water isotope ratios (Picarro). The depth-age scale has been accurately dated to 400 AD using annual layer counting of several chemical species and further validated using known historical volcanic eruptions and the Cesium-137 spike associated with nuclear weapons testing in 1963. We use HYSPLIT back trajectory modeling to identify likely source areas of moisture and aerosol MSA being transported to the core site. Satellite imagery allows for a direct comparison between chlorophyll a concentrations in these source areas and MSA concentrations in the core record. Preliminary analysis of chlorophyll a and MSA concentrations, both derived almost exclusively from marine biota, suggest that the Mt. Hunter ice cores reflect changes in North Pacific and Bering Sea marine primary productivity. Analysis of the water isotope and MSA data in conjunction with climate reanalysis products shows significant correlations (p<0.05) between d-excess and MSA in the ice record and sea surface temperatures in the Bering Sea and

  9. The Temperature Condition of the Plate with Temperature-Dependent Thermal Conductivity and Energy Release

    OpenAIRE

    V. S. Zarubin; A. V. Kotovich; G. N. Kuvyrkin

    2016-01-01

    The temperature state of a solid body, in addition to the conditions of its heat exchange with the environment, can greatly depend on the heat release (or heat absorption) processes within the body volume. Among the possible causes of these processes should be noted such as a power release in the fuel elements of nuclear reactors, exothermic or endothermic chemical reactions in the solid body material, which respectively involve heat release or absorbtion, heat transfer of a part of the elect...

  10. Facet-dependent and au nanocrystal-enhanced electrical and photocatalytic properties of Au-Cu2O core-shell heterostructures.

    Science.gov (United States)

    Kuo, Chun-Hong; Yang, Yu-Chen; Gwo, Shangjr; Huang, Michael H

    2011-02-02

    We report highly facet-dependent electrical properties of Cu(2)O nanocubes and octahedra and significant enhancement of gold nanocrystal cores to the electrical conductivity of Au-Cu(2)O core-shell octahedra. Cu(2)O nanocubes and octahedra and Au-Cu(2)O core-shell cubes and octahedra were synthesized by following our reported facile procedures at room temperature. Two oxide-free tungsten probes attached to a nanomanipulator installed inside a scanning electron microscope made contacts to a single Cu(2)O nanocrystal for the I-V measurements. Pristine Cu(2)O octahedra bounded by {111} facets are 1100 times more conductive than pristine Cu(2)O cubes enclosed by {100} faces, which are barely conductive. Core-shell cubes are only slightly more conductive than pristine cubes. A 10,000-fold increase in conductivity over a cube has been recorded for an octahedron. Remarkably, core-shell octahedra are far more conductive than pristine octahedra. The same facet-dependent electrical behavior can still be observed on a single nanocrystal exposing both {111} and {100} facets. This new fundamental property may be observable in other semiconductor nanocrystals. We also have shown that both core-shell cubes and octahedra outperform pristine cubes and octahedra in the photodegradation of methyl orange. Efficient photoinduced charge separation is attributed to this enhanced photocatalytic activity. Interestingly, facet-selective etching occurred over the {100} corners of some octahedra and core-shell octahedra during photocatalysis. The successful preparation of Au-Cu(2)O core-shell heterostructures with precise shape control has offered opportunities to discover new and exciting physical and chemical properties of nanocrystals.

  11. Simultaneous telemetric monitoring of tail-skin and core body temperature in a rat model of thermoregulatory dysfunction.

    Science.gov (United States)

    Cosmi, Scott; Pawlyk, Aaron C; Alfinito, Peter D; Roman, Janet; Zhou, Tianhui; Deecher, Darlene C

    2009-04-15

    Temperature dysfunction, clinically described as hot flashes/flushes and night sweats, commonly occur in women transitioning through menopause. Research in this field has yet to fully elucidate the biological underpinnings explaining this dysfunction. The need to develop animal models that can be used to study hormone-dependent temperature regulation is essential to advancing this scientific area. Development of telemetric transmitters for monitoring tail-skin (TST) and core body (CBT) temperatures for animal research has increased the accuracy of data by reducing extraneous factors associated with previous methods. However, until recently, TST and CBT could not be simultaneously measured telemetrically within the same animal. In this report, new dual temperature monitoring transmitters were validated by simultaneously evaluating them with the single measurement transmitters using the ovariectomized (OVX) rat thermoregulatory dysfunction model. A major advantage of measuring TST and CBT in the same animal is the ability to relate temporal changes on these two temperature parameters. Comparative experimentation was performed by single administration of clonidine (alpha(2) adrenergic agonist), MDL-100907 (5-HT(2a) antagonist), or a 7-day treatment of 17alpha-ethinyl estradiol (EE). Clonidine caused decreases in TST and CBT, MDL-100907 caused increases in TST while decreasing CBT, and EE caused decreases in TST with minor CBT decreases only at the higher dose. Data from either probe type showed similar results on temperature parameters regardless of transmitter used. These findings support the use of the new dual temperature transmitters and should enhance the quality and interpretation of data being generated in thermoregulation studies.

  12. Temperature dependence of the deformation behavior of 316 stainless steel after low temperature neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pawel-Robertson, J.E.; Rowcliffe, A.F.; Grossbeck, M.L. [Oak Ridge National Lab., TN (United States)] [and others

    1996-10-01

    The effects of low temperature neutron irradiation on the tensile behavior of 316 stainless steel have been investigated. A single heat of solution annealed 316 was irradiated to 7 and 18 dpa at 60, 200, 330, and 400{degrees}C. The tensile properties as a function of dose and as a function of temperature were examined. Large changes in yield strength, deformation mode, strain to necking, and strain hardening capacity were seen in this irradiation experiment. The magnitudes of the changes are dependent on both irradiation temperature and neutron dose. Irradiation can more than triple the yield strength over the unirradiated value and decrease the strain to necking (STN) to less than 0.5% under certain conditions. A maximum increase in yield strength and a minimum in the STN occur after irradiation at 330{degrees}C but the failure mode remains ductile.

  13. Temperature Dependence of the Viscosity of Isotropic Liquids

    Science.gov (United States)

    Jadzyn, J.; Czechowski, G.; Lech, T.

    1999-04-01

    Temperature dependence of the shear viscosity measured for isotropic liquids belonging to the three homologous series: 4-(trans-4'-n-alkylcyclohexyl) isothiocyanatobenzenes (Cn H2n+1 CyHx Ph NCS; nCHBT, n=0-12), n-alkylcyanobiphenyls (CnH2n+1 Ph Ph CN; nCB, n=2-12) and 1,n-alkanediols (HO(CH2)nOH; 1,nAD, n=2-10) were analysed with the use of Arrhenius equation and its two modifications: Vogel--Fulcher and proposed in this paper. The extrapolation of the isothermal viscosity of 1,n-alkanediols (n=2-10) to n=1 leads to an interesting conclusion concerning the expected viscosity of methanediol, HOCH2OH, the compound strongly unstable in a pure state.

  14. Nonlinear temperature dependent failure analysis of finite width composite laminates

    Science.gov (United States)

    Nagarkar, A. P.; Herakovich, C. T.

    1979-01-01

    A quasi-three dimensional, nonlinear elastic finite element stress analysis of finite width composite laminates including curing stresses is presented. Cross-ply, angle-ply, and two quasi-isotropic graphite/epoxy laminates are studied. Curing stresses are calculated using temperature dependent elastic properties that are input as percent retention curves, and stresses due to mechanical loading in the form of an axial strain are calculated using tangent modulii obtained by Ramberg-Osgood parameters. It is shown that curing stresses and stresses due to tensile loading are significant as edge effects in all types of laminate studies. The tensor polynomial failure criterion is used to predict the initiation of failure. The mode of failure is predicted by examining individual stress contributions to the tensor polynomial.

  15. Temperature dependence of the electronic structure of semiconductors and insulators

    Energy Technology Data Exchange (ETDEWEB)

    Poncé, S., E-mail: samuel.pon@gmail.com; Gillet, Y.; Laflamme Janssen, J.; Gonze, X. [European Theoretical Spectroscopy Facility and Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Chemin des étoiles 8, bte L07.03.01, B-1348 Louvain-la-neuve (Belgium); Marini, A. [Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km 29.3, CP 10, 00016 Monterotondo Stazione (Italy); Verstraete, M. [European Theoretical Spectroscopy Facility and Physique des matériaux et nanostructures, Université de Liège, Allée du 6 Août 17, B-4000 Liège (Belgium)

    2015-09-14

    The renormalization of electronic eigenenergies due to electron-phonon coupling (temperature dependence and zero-point motion effect) is sizable in many materials with light atoms. This effect, often neglected in ab initio calculations, can be computed using the perturbation-based Allen-Heine-Cardona theory in the adiabatic or non-adiabatic harmonic approximation. After a short description of the recent progresses in this field and a brief overview of the theory, we focus on the issue of phonon wavevector sampling convergence, until now poorly understood. Indeed, the renormalization is obtained numerically through a slowly converging q-point integration. For non-zero Born effective charges, we show that a divergence appears in the electron-phonon matrix elements at q → Γ, leading to a divergence of the adiabatic renormalization at band extrema. This problem is exacerbated by the slow convergence of Born effective charges with electronic wavevector sampling, which leaves residual Born effective charges in ab initio calculations on materials that are physically devoid of such charges. Here, we propose a solution that improves this convergence. However, for materials where Born effective charges are physically non-zero, the divergence of the renormalization indicates a breakdown of the adiabatic harmonic approximation, which we assess here by switching to the non-adiabatic harmonic approximation. Also, we study the convergence behavior of the renormalization and develop reliable extrapolation schemes to obtain the converged results. Finally, the adiabatic and non-adiabatic theories, with corrections for the slow Born effective charge convergence problem (and the associated divergence) are applied to the study of five semiconductors and insulators: α-AlN, β-AlN, BN, diamond, and silicon. For these five materials, we present the zero-point renormalization, temperature dependence, phonon-induced lifetime broadening, and the renormalized electronic band structure.

  16. Infrared thermal imaging of the inner canthus of the eye as an estimator of body core temperature

    NARCIS (Netherlands)

    Teunissen, L.P.J.; Daanen, H.A.M.

    2011-01-01

    Several studies suggest that the temperature of the inner canthus of the eye (Tca), determined with infrared thermal imaging, is an appropriate method for core temperature estimation in mass screening of fever. However, these studies used the error prone tympanic temperature as a reference.

  17. Analogy between temperature-dependent and concentration-dependent bacterial killing.

    Science.gov (United States)

    Neef, C; van Gils, S A; IJzerman, W L

    2002-11-01

    In this article an analogy between temperature-dependent and concentration-dependent bacterial killing is described. The validation process of autoclaves uses parameters such as reduction rate constant k, decimal reduction time D and resistance coefficient z from an imaginary microorganism to describe the sterilization process. Total lethality of the process is calculated as the integral of the lethality (a function of the temperature) over time. In the case of concentration-dependent killing-i.e. using antibiotic drugs-the k-value is not necessarily a constant; it is the difference between growth and killing of the microorganism. Equations are derived for the decimal reduction time D and resistance coefficient z. Pharmacodynamic models of tobramycin, ciprofloxacin and ceftazidime are used to demonstrate that there is an optimal concentration for all three drugs: C(opt-tobra)=3.20 MICmg/l, C(opt-cipro)=3.45 MICmg/l and C(opt-cefta)=1.35 MICmg/l.

  18. Effects of Cryogenic Temperature on Fracture Toughness of Core-Shell Rubber (CSR) Toughened Epoxy Nanocomposites

    Science.gov (United States)

    Wang, J.; Cannon, S. A.; Magee, D.; Schneider, J. A.

    2008-01-01

    This study investigated the effects of core-shell rubber (CSR) nanoparticles on the mechanical properties and fracture toughness of an epoxy resin at ambient and liquid nitrogen (LN2) temperatures. Varying amounts of Kane Ace MX130 toughening agent were added to a commercially available EPON 862/Epikure W epoxy resin. Elastic modulus was calculated using quasi-static tensile data. Fracture toughness was evaluated by the resulting breaking energy measured in Charpy impact tests conducted on an instrumented drop tower. The size and distribution of the CSR nanoparticles were characterized using Transmission Electron Microscopy (TEM) and Small Angle X-ray Scattering (SAXS). Scanning Electron Microscopy (SEM) was used to study the fracture surface morphology. The addition of the CSR nanoparticles increased the breaking energy with negligible change in elastic modulus and ultimate tensile stress (UTS). At ambient temperature the breaking energy increased with increasing additions of the CSR nanoparticles, while at LN2 temperatures, it reached a maximum at 5 wt% CSR concentration. KEY WORDS: liquid nitrogen (LN2) properties, fracture toughness, core-shell rubber (CSR).

  19. Bond strength between fiber posts and composite resin core: influence of temperature on silane coupling agents.

    Science.gov (United States)

    Novais, Veridiana Resende; Simamotos Júnior, Paulo Cézar; Rontani, Regina Maria Puppin; Correr-Sobrinho, Lourenço; Soares, Carlos José

    2012-01-01

    This study evaluated the effect of air drying temperature and different silane coupling agents on the bond strength between glass fiber posts and composite resin core. The post surface was cleaned with alcohol and treated with different silane coupling agents, being three prehydrolyzed silanes [Silano (Angelus), Prosil (FGM), RelyX Ceramic Primer (3M ESPE)] and one two-component silane [Silane Coupling Agent (Dentsply)]. Two post-silanization air drying temperatures, 23ºC and 60ºC, were applied. A cylindrical plastic matrix was placed around the silanized post and filled with composite resin. Each bonded post provided 7 slices for push-out testing. Each slice was loaded to failure under compression at a cross-head speed of 0.5 mm/min. Data were analyzed by two-way ANOVA and Scott-Knott tests (α=0.05). Dunnett's test was used to compare the mean of the control group with that of each experimental group. Scanning electron microscopy (SEM) was used to evaluate the interface of the fractured slices. For the 23ºC air drying temperature, the use of RelyX Ceramic Primer resulted in significantly lower bond strength than the other silane coupling agents, while the bond strength with Silane Coupling Agent was the highest of all groups. Only with Silane Coupling Agent, the bond strength for the 23ºC air drying temperature was significantly higher than that for 60ºC air drying. In conclusion, the use of warm air drying after silane application produced no increase in the bond strength between the fiber-reinforced composite post and the composite core. The two-component silane produced higher bond strength than all prehydrolyzed silanes when it was used with air drying at room temperature.

  20. Time dependent and temperature dependent properties of the forward voltage characteristic of InGaN high power LEDs

    National Research Council Canada - National Science Library

    P. L. Fulmek; P. Haumer; F. P. Wenzl; W. Nemitz; J. Nicolics

    2017-01-01

    Estimating the junction temperature and its dynamic behavior in dependence of various operating conditions is an important issue, since these properties influence the optical characteristics as well...

  1. Disparate effects of feeding on core body and adipose tissue temperatures in animals selectively bred for Nervous or Calm temperament.

    Science.gov (United States)

    Henry, Belinda A; Blache, Dominique; Rao, Alexandra; Clarke, Iain J; Maloney, Shane K

    2010-09-01

    In addition to homeostatic regulation of body mass, nonhomeostatic factors impact on energy balance. Herein we describe effects of temperament on adipose and core body temperatures in sheep. Animals were genetically selected for Nervous or Calm traits. We characterized the effects of 1) high- and low-energy intake and maintenance feeding, 2) meal anticipation, and 3) adrenocorticotropin challenge on core body and adipose temperatures. Temperature measurements (5 min) were made using a thermistor inserted into the carotid artery (core body) and a probe in the retroperitoneal fat. An imposed feeding window was used to establish postprandial elevations in temperature. Fat tissue was taken from retroperitoneal and subcutaneous regions for real-time PCR analyses. We demonstrate that innate differences in temperament impact on adipose and core body temperatures in response to various dietary and evocative stimuli. In response to homeostatic cues (low-energy intake and maintenance feeding) core body temperature tended to be higher in Calm compared with Nervous animals. In contrast, in response to nonhomeostatic cues, Nervous animals had higher anticipatory thermogenic responses than Calm animals. Expression of uncoupling protein (UCP)-1 and -2 mRNA were higher in retroperitoneal tissue than in subcutaneous tissue, but UCP3 and leptin mRNA levels were similar at both sites; expression of these genes was similar in Nervous and Calm animals. There were no differences in stress responsiveness. We conclude that temperament differentially influences adipose thermogenesis and the regulation of core body temperature in responses to both homeostatic and nonhomeostatic stimuli.

  2. Temperature-Dependent Henry's Law Constants of Atmospheric Amines.

    Science.gov (United States)

    Leng, Chunbo; Kish, J Duncan; Roberts, Jason E; Dwebi, Iman; Chon, Nara; Liu, Yong

    2015-08-20

    There has been growing interest in understanding atmospheric amines in the gas phase and their mass transfer to the aqueous phase because of their potential roles in cloud chemistry, secondary organic aerosol formation, and the fate of atmospheric organics. Temperature-dependent Henry's law constants (KH) of atmospheric amines, a key parameter in atmospheric chemical transport models to account for mass transfer, are mostly unavailable. In this work, we investigated gas-liquid equilibria of five prevalent atmospheric amines, namely 1-propylamine, di-n-propylamine, trimethylamine, allylamine, and 4-methylmorpholine using bubble column technique. We reported effective KH, intrinsic KH, and gas phase diffusion coefficients of these species over a range of temperatures relevant to the lower atmosphere for the first time. The measured KH at 298 K and enthalpy of solution for 1-propylamine, di-n-propylamine, trimethylamine, allylamine, and 4-methylmorpholine are 61.4 ± 4.9 mol L(-1) atm(-1) and -49.0 ± 4.8 kJ mol(-1); 14.5 ± 1.2 mol L(-1) atm(-1) and -72.5 ± 6.8 kJ mol(-1); 8.9 ± 0.7 mol L(-1) atm(-1) and -49.6 ± 4.7 kJ mol(-1); 103.5 ± 10.4 mol L(-1) atm(-1) and -42.7 ± 4.3 kJ mol(-1); and 952.2 ± 114.3 mol L(-1) atm(-1) and -82.7 ± 9.7 kJ mol(-1), respectively. In addition, we evaluated amines' characteristic times to achieve gas-liquid equilibrium for partitioning between gas and aqueous phases. Results show gas-liquid equilibrium can be rapidly established at natural cloud droplets surface, but the characteristic times may be extended substantially at lower temperatures and pHs. Moreover, our findings imply that atmospheric amines are more likely to exist in cloud droplets, and ambient temperature, water content, and pH of aerosols play important roles in their partitioning.

  3. Temperature Measurement Inside Protective Headgear: Comparison With Core Temperatures and Indicators of Physiological Strain During Exercise in a Hot Environment.

    Science.gov (United States)

    Mitchell, Joel B; Goldston, Kelly R; Adams, Amy N; Crisp, Kelli M; Franklin, Brian B; Kreutzer, Andreas; Montalvo, Diego X; Turner, Marcell G; Phillips, Melody D

    2015-01-01

    Non-invasive temperature monitoring with a sensor inside protective headgear may be effective in detecting temperatures that are associated with heat illness. The purpose was to establish the relationship between in-hardhat temperatures (Tih) and core temperature (Tc) as measured by rectal (Tre) and esophageal (Tes) probes. Thirty males (age 24.57 ± 4.32 yrs.) completed two trials: continuous submaximal exercise (CSE) and a series of high intensity 30-s sprints (HIE) with a one-minute rest between each. Exercise in both conditions was in a 36(°)C environment (40% RH) while wearing a standard hardhat with sensors mounted on the forehead that were monitored remotely. Exercise continued until voluntary termination or until Tc reached 39.5(°)C. Temperatures, heart rate, cardiorespiratory, and perceptual responses were monitored throughout. A physiological strain index (PSI) was calculated from Tc and HR. The final temperatures in the CSE condition were 38.77 ± 0.41, 38.90 ± 0.49 and 39.29 ± 0.58(°)C and in the HIE condition, final temperatures were 38.76 ± 0.37, 38.91 ± 0.47, and 39.19 ± 0.57 f (o)C for Tih, Tre, and Tes, respectively. The PSI in CSE was 9.62 ± 062, 9.18 ± 1.11, and 10.04 ± 1.05, and in the HIE condition 9.67 ± 068, 9.29 ± 0.99. and 9.86 ± 1.02 based on Tih, Tre and Tes, respectively. The general agreement between the Tih and other temperature measures along with the consistency as indicated by a low coefficient of variation (approx. 1%) in the recordings of the Tih sensors at the point of termination suggest that this device, or similar devices, may have application as a warning system for impending heat-related problems.

  4. All-fiber reflecting temperature probe based on the simplified hollow-core photonic crystal fiber filled with aqueous quantum dot solution.

    Science.gov (United States)

    Wu, Jian; Yin, Xiaojin; Wang, Wenyuan; Hong, Xueming; Du, Yu; Geng, Youfu; Li, Xuejin

    2016-02-10

    An all-fiber reflecting fluorescent temperature probe is proposed based on the simplified hollow-core photonic crystal fiber (SHC-PCF) filled with an aqueous CdSe/ZnS quantum dot solution. SHC-PCF is an excellent PCF used to fill liquid materials, which has low loss transmission bands in the visible wavelength range and enlarged core sizes. Both end faces of the SHC-PCF were spliced with multimode fiber after filling in order to generate a more stable and robust waveguide structure. The obtained temperature sensitivity dependence of the emission wavelength and the self-referenced intensity are 126.23 pm/°C and -0.007/°C in the temperature range of -10°C-120°C, respectively.

  5. Honeybee flight metabolic rate: does it depend upon air temperature?

    National Research Council Canada - National Science Library

    Woods, William A; Heinrich, Bernd; Stevenson, Robert D

    2005-01-01

    .... We investigated the effects of air temperature on flight metabolic rate, water loss, wingbeat frequency, body segment temperatures and behavior of honeybees flying in transparent containment outdoors...

  6. Gelation behaviour of a bent-core dihydrazide derivative: effect of incubation temperature in chloroform and toluene.

    Science.gov (United States)

    Zhang, Chunxue; Zhang, Tianren; Ji, Nan; Zhang, Yan; Bai, Binglian; Wang, Haitao; Li, Min

    2016-02-07

    In this work, a new kind of gelator, 1,3-bis[(3,4-dioctyloxy phenyl) hydrazide]phenylene (BP8-C), containing two dihydrazide units as the rigid bent-core, has been synthesized and investigated. It was demonstrated that BP8-C is an efficient gelator which can gel various organic solvents, such as ethanol, benzene, toluene, chloroform, etc. Both an opaque gel (O-gel) and a transparent gel (T-gel), which is more stable, were obtained with BP8-C in chloroform at different incubation temperatures. Kinetic data based on fluorescence spectra revealed that the T-gels showed a larger Avrami parameter (n = 1.44 at 20 °C) than that of the O-gels (n = 1.21 for gelation at temperatures below 0 °C). While BP8-C did form the opaque gel in toluene, gelation took longer at lower incubation temperatures and even precipitated out below 0 °C. The kinetic Avrami analysis on sols of BP8-C with different concentrations shows a two-phrase mechanism, i.e. the n values are between 0.88 and 1.74 followed by 1.69 and 3.01 throughout the temperature range of 5 °C and 35 °C for 5.34 mg mL(-1) BP8-C in toluene, indicating that the fibers formed first and then bundled to produce compact networks. We propose that supersaturation governs the formation of gel in chloroform and that the diffusion process denominates gelation in toluene. XRD and FT-IR measurements confirmed that the xerogels prepared at different temperatures in different solvents exhibited a Col(h) structure and that there are three molecules in one columnar slice. Our results indicate that the gelation process, morphology of the gels and thus the final properties of the gels depend strongly on the preparation conditions such as temperature, solvent, concentration, etc.

  7. Temperature dependence of microwave oscillations in magnetic tunnel junctions with a perpendicularly magnetized free layer

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Peng; Feng, Jiafeng, E-mail: hxwei@iphy.ac.cn, E-mail: jiafengfeng@iphy.ac.cn; Wei, Hongxiang, E-mail: hxwei@iphy.ac.cn, E-mail: jiafengfeng@iphy.ac.cn; Han, Xiufeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Fang, Bin; Zhang, Baoshun; Zeng, Zhongming [Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Ruoshui Road 398, Suzhou 215123 (China)

    2015-01-05

    We experimentally study the temperature dependence of the spin-transfer-torque-induced microwave oscillations in MgO-based magnetic tunnel junction nanopillars with a perpendicularly magnetized free layer. We demonstrate that the oscillation frequency increases rapidly with decreasing temperature, which is mainly ascribed to the temperature dependence of both the saturation magnetization and the perpendicular magnetic anisotropy. We also find that a strong temperature dependence of the output power while a nonmonotonic temperature dependence of spectral linewidth are maintained for a constant dc bias in measured temperature range. Possible mechanisms leading to the different dependences of oscillation frequency, output power, and linewidth are discussed.

  8. Temperature-Insensitive Bend Sensor Using Entirely Centered Erbium Doping in the Fiber Core

    Directory of Open Access Journals (Sweden)

    Sulaiman Wadi Harun

    2013-07-01

    Full Text Available A fiber based bend sensor using a uniquely designed Bend-Sensitive Erbium Doped Fiber (BSEDF is proposed and demonstrated. The BSEDF has two core regions, namely an undoped outer region with a diameter of about 9.38 μm encompassing a doped, inner core region with a diameter of 4.00 μm. The doped core region has about 400 ppm of an Er2O3 dopant. Pumping the BSEDF with a conventional 980 nm laser diode gives an Amplified Spontaneous Emission (ASE spectrum spanning from 1,510 nm to over 1,560 nm at the output power level of about −58 dBm. The ASE spectrum has a peak power of −52 dBm at a central wavelength of 1,533 nm when not spooled. Spooling the BSEDF with diameters of 10 cm to 2 cm yields decreasing peak powers from −57.0 dBm to −61.8 dBm, while the central wavelength remains unchanged. The output is highly stable over time, with a low temperature sensitivity of around ~0.005 dBm/°C, thus allowing for the development of a highly stable sensor system based in the change of the peak power alone.

  9. Effect of Temperature and Vibration on Electrical Connectors with Different Number of Contact Cores

    Directory of Open Access Journals (Sweden)

    Song W. L.

    2016-01-01

    Full Text Available In this paper, we presented the results from three related analysis performed by adopting the failure models, which provided an explanation of performance influencing factors caused by different number of contact cores, for the purpose of measuring the temperature change and deformation value, which were the factors causing contact failure. The failures were localized in contact parts of the connectors. Performed investigations included thermal analysis, modal analysis, harmonic response analysis and contact failure analysis. From the results of these simulations, related temperature and vibration analysis nephograms were got respectively. And the correctness of results of thermal analysis was verified by Fourier law. The research results of this paper provide a reference for thermal analysis and vibration analysis of electrical connectors, which is important for ensuring the reliability and safety of electrical connectors.

  10. Multi-dimensional relativistic simulations of core-collapse supernovae with energy-dependent neutrino transport

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Bernhard

    2009-05-07

    In this thesis, we have presented the first multi-dimensional models of core-collapse supernovae that combine a detailed, up-to-date treatment of neutrino transport, the equation of state, and - in particular - general relativistic gravity. Building on the well-tested neutrino transport code VERTEX and the GR hydrodynamics code CoCoNuT, we developed and implemented a relativistic generalization of a ray-by-ray-plus method for energy-dependent neutrino transport. The result of these effort, the VERTEX-CoCoNuT code, also incorporates a number of improved numerical techniques that have not been used in the code components VERTEX and CoCoNuT before. In order to validate the VERTEX-CoCoNuT code, we conducted several test simulations in spherical symmetry, most notably a comparison with the one-dimensional relativistic supernova code AGILE-BOLTZTRAN and the Newtonian PROMETHEUSVERTEX code. (orig.)

  11. Temperature oscillations near natural nuclear reactor cores and the potential for prebiotic oligomer synthesis

    Science.gov (United States)

    Adam, Zachary R.

    2016-06-01

    Geologic settings capable of driving prebiotic oligomer synthesis reactions remain a relatively unexplored aspect of origins of life research. Natural nuclear reactors are an example of Precambrian energy sources that produced unique temperature fluctuations. Heat transfer models indicate that water-moderated, convectively-cooled natural fission reactors in porous host rocks create temperature oscillations that resemble those employed in polymerase chain reaction (PCR) devices to artificially amplify oligonucleotides. This temperature profile is characterized by short-duration pulses up to 70-100 °C, followed by a sustained period of temperatures in the range of 30-70 °C, and finally a period of relaxation to ambient temperatures until the cycle is restarted by a fresh influx of pore water. For a given reactor configuration, temperature maxima and the time required to relax to ambient temperatures depend most strongly on the aggregate effect of host rock permeability in decreasing the thermal expansion and increasing the viscosity and evaporation temperature of the pore fluids. Once formed, fission-fueled reactors can sustain multi-kilowatt-level power production for 105-106 years, ensuring microenvironmental longevity and chemical output. The model outputs indicate that organic synthesis on young planetary bodies with a sizeable reservoir of fissile material can involve more sophisticated energy dissipation pathways than modern terrestrial analog settings alone would suggest.

  12. Temperature oscillations near natural nuclear reactor cores and the potential for prebiotic oligomer synthesis.

    Science.gov (United States)

    Adam, Zachary R

    2016-06-01

    Geologic settings capable of driving prebiotic oligomer synthesis reactions remain a relatively unexplored aspect of origins of life research. Natural nuclear reactors are an example of Precambrian energy sources that produced unique temperature fluctuations. Heat transfer models indicate that water-moderated, convectively-cooled natural fission reactors in porous host rocks create temperature oscillations that resemble those employed in polymerase chain reaction (PCR) devices to artificially amplify oligonucleotides. This temperature profile is characterized by short-duration pulses up to 70-100 °C, followed by a sustained period of temperatures in the range of 30-70 °C, and finally a period of relaxation to ambient temperatures until the cycle is restarted by a fresh influx of pore water. For a given reactor configuration, temperature maxima and the time required to relax to ambient temperatures depend most strongly on the aggregate effect of host rock permeability in decreasing the thermal expansion and increasing the viscosity and evaporation temperature of the pore fluids. Once formed, fission-fueled reactors can sustain multi-kilowatt-level power production for 10(5)-10(6) years, ensuring microenvironmental longevity and chemical output. The model outputs indicate that organic synthesis on young planetary bodies with a sizeable reservoir of fissile material can involve more sophisticated energy dissipation pathways than modern terrestrial analog settings alone would suggest.

  13. Core temperature responses of military working dogs during training activities and exercise walks.

    Science.gov (United States)

    O'Brien, Catherine; Karis, Anthony J; Tharion, William J; Sullivan, Heather M; Hoyt, Reed W

    2017-01-01

    Heat strain is common in military working dogs (MWDs), but can be mitigated by limiting duration of activity to avoid overheating and allowing sufficient time for recovery. To determine work/rest times for MWDs, temperature responses during training must be characterized. This study measured body core temperature of 48 MWDs at Lackland Air Force Base, San Antonio, TX. Twenty-four MWDs in training for patrol and detection activities participated under a range of ambient temperatures in August (27°C-32°C), October (22°C-26°C) and March (approximately 13°C). These MWDs swallowed a telemetric thermometer pill to measure continuous gastrointestinal tract temperature (Tgi). Twenty-four kennel MWDs participated in July (25°C-29°C). In these dogs rectal temperature (Tre) was measured manually during a standard exercise walk. For the MWDs in training, Tgi before the first activity was 38.5±0.5°C (mean±SD) and final Tgi was 39.8±0.6°C after sessions that lasted 13.1±4.9 minutes (5.4 to 26.3 minutes). Peak Tgi, 0.4±0.4°C above final Tgi, occurred 8 to 12 minutes into recovery. Before beginning a second activity 40 to 165 minutes later, Tgi was within 0.5°C of initial values for 80% of dogs. For the kennel MWDs, Tre was 39.0±0.8°C (37.7°C to 40.7°C) at the start and 40.1±0.6°C at the end of the 21.3±2.8 minute walk. The continuous increase in core temperature during activity of both groups of MWDs indicates that limiting exercise duration is important for minimizing risk of overheating in MWDs. The observation of continued increase in Tgi to a peak after exercise ends suggests that for MWDs suspected of overheating temperature should be monitored for at least 15 minutes postexercise to ensure recovery.

  14. High Pressure and Temperature Core Formation as an Alternative to the "Late Veneer" Hypothesis

    Science.gov (United States)

    Righter, Kevin; Pando, K.; Humayun, M.; Danielson, L.

    2011-01-01

    The highly siderophile elements (HSE; Re, Au and the Platinum Group Elements - Pd Pt, Rh, Ru, Ir, Os) are commonly utilized to constrain accretion processes in terrestrial differentiated bodies due to their affinity for FeNi metal [1]. These eight elements exhibit highly siderophile behavior, but nonetheless have highly diverse metal-silicate partition coefficients [2]. Therefore the near chondritic relative concentrations of HSEs in the terrestrial and lunar mantles, as well as some other bodies, are attributed to late accretion rather than core formation [1]. Evaluation of competing theories, such as high pressure metal-silicate partitioning or magma ocean hypotheses has been hindered by a lack of relevant partitioning data for this group of eight elements. In particular, systematic studies isolating the effect of one variable (e.g. temperature or melt compositions) are lacking. Here we undertake new experiments on all eight elements, using Fe metal and FeO-bearing silicate melts at fixed pressure, but variable temperatures. These experiments, as well as some additional planned experiments should allow partition coefficients to be more accurately calculated or estimated at the PT conditions and compositions at which core formation is thought to have occurred.

  15. Porosity Effect in the Core Thermal Hydraulics for Ultra High Temperature Gas-cooled Reactor

    Directory of Open Access Journals (Sweden)

    Motoo Fumizawa

    2008-12-01

    Full Text Available This study presents an experimental method of porosity evaluation and a predictive thermal-hydraulic analysis with packed spheres in a nuclear reactor core. The porosity experiments were carried out in both a fully shaken state with the closest possible packing and in a state of non-vibration. The predictive analysis considering the fixed porosity value was applied as a design condition for an Ultra High Temperature Reactor Experiment (UHTREX. The thermal-hydraulic computer code was developed and identified as PEBTEMP. The highest outlet coolant temperature of 1316 oC was achieved in the case of an UHTREX at Los Alamos Scientific Laboratory, which was a small scale UHTR. In the present study, the fuel was changed to a pebble type, a porous media. In order to compare the present pebble bed reactor and UHTREX, a calculation based on HTGR-GT300 was carried out in similar conditions with UHTREX; in other words, with an inlet coolant temperature of 871oC, system pressure of 3.45 MPa and power density of 1.3 w/cm3. As a result, the fuel temperature in the present pebble bed reactor showed an extremely lower value compared to that of UHTREX.

  16. Measuring core temperature using the proprietary application and thermo-smartphone adapter.

    Science.gov (United States)

    Darocha, Tomasz; Majkowski, Jacek; Sanak, Tomasz; Podsiadło, Paweł; Kosiński, Sylweriusz; Sałapa, Kinga; Mazur, Piotr; Ziętkiewicz, Mirosław; Gałązkowski, Robert; Krzych, Łukasz; Drwiła, Rafał

    2017-12-01

    Fast and accurate measurement of core body temperature is crucial for accidental hypothermia treatment. We have developed a novel light and small adapter to the headset jack of a mobile phone based on Android. It has been applied to measure temperature and set up automatic notifications (e.g. Global Positioning System coordinates to emergency services dispatcher, ECMO coordinator). Its validity was confirmed in comparison with Vital Signs Monitor Spacelabs Healthcare Elance 93300 as a reference method, in a series of 260 measurements in the temperature range of 10-42 °C. Measurement repeatability was verified in a battery of 600 measurements (i.e. 100 readings at three points of 10, 25, 42 °C for both esophageal and tympanic catheters). Inter-method difference of ≤0.5 °C was found for 98.5% for esophageal catheter and 100% for tympanic catheter measurements, with concordance correlation coefficient of 0.99 for both. The readings were almost completely repeatable with water bath measurements (difference of ≤0.5 °C in 10 °C: 100% for both catheters; in 25 °C: 99% for esophageal catheter and 100% tympanic catheter; in 42 °C: 100% for both catheters). This lightweight adapter attached to smartphone and standard disposable probes is a promising tool to be applied on-site for temperature measurement in patients at risk of hypothermia.

  17. Temperature sensing property of hollow-core photonic bandgap fiber filled with CdSe/ZnS quantum dots in an UV curing adhesive

    Science.gov (United States)

    Wang, Helin; Yang, Aijun

    2017-11-01

    A temperature sensor based on the hollow-core photonic bandgap fiber filled with the CdSe/ZnS QDs dissolved in an ultraviolet (UV) curing adhesive is reported. The sensor shows a linear variation of the photoluminescence (PL) peak wavelength for a temperature range from 40 °C to 140 °C, with a correlation factor of 0.99263 and a sensitivity of 0.05744 nm/°C. Although the peak intensity of emission spectrum increased exponentially with the temperature, a linear temperature-dependence result with a correlation factor of 0.99917 and a slope of 2.04 × 10-3 °C-1 can be obtained with a self-reference spectral intensity method. The linear variation characteristics of the peak wavelength and the self-reference intensity of PL spectrum indicates the designed fiber temperature sensor is feasible in the practical application.

  18. The Systematic Bias of Ingestible Core Temperature Sensors Requires a Correction by Linear Regression

    Directory of Open Access Journals (Sweden)

    Andrew P. Hunt

    2017-04-01

    Full Text Available An accurate measure of core body temperature is critical for monitoring individuals, groups and teams undertaking physical activity in situations of high heat stress or prolonged cold exposure. This study examined the range in systematic bias of ingestible temperature sensors compared to a certified and traceable reference thermometer. A total of 119 ingestible temperature sensors were immersed in a circulated water bath at five water temperatures (TEMP A: 35.12 ± 0.60°C, TEMP B: 37.33 ± 0.56°C, TEMP C: 39.48 ± 0.73°C, TEMP D: 41.58 ± 0.97°C, and TEMP E: 43.47 ± 1.07°C along with a certified traceable reference thermometer. Thirteen sensors (10.9% demonstrated a systematic bias > ±0.1°C, of which 4 (3.3% were > ± 0.5°C. Limits of agreement (95% indicated that systematic bias would likely fall in the range of −0.14 to 0.26°C, highlighting that it is possible for temperatures measured between sensors to differ by more than 0.4°C. The proportion of sensors with systematic bias > ±0.1°C (10.9% confirms that ingestible temperature sensors require correction to ensure their accuracy. An individualized linear correction achieved a mean systematic bias of 0.00°C, and limits of agreement (95% to 0.00–0.00°C, with 100% of sensors achieving ±0.1°C accuracy. Alternatively, a generalized linear function (Corrected Temperature (°C = 1.00375 × Sensor Temperature (°C − 0.205549, produced as the average slope and intercept of a sub-set of 51 sensors and excluding sensors with accuracy outside ±0.5°C, reduced the systematic bias to < ±0.1°C in 98.4% of the remaining sensors (n = 64. In conclusion, these data show that using an uncalibrated ingestible temperature sensor may provide inaccurate data that still appears to be statistically, physiologically, and clinically meaningful. Correction of sensor temperature to a reference thermometer by linear function eliminates this systematic bias (individualized functions or ensures

  19. The Systematic Bias of Ingestible Core Temperature Sensors Requires a Correction by Linear Regression.

    Science.gov (United States)

    Hunt, Andrew P; Bach, Aaron J E; Borg, David N; Costello, Joseph T; Stewart, Ian B

    2017-01-01

    An accurate measure of core body temperature is critical for monitoring individuals, groups and teams undertaking physical activity in situations of high heat stress or prolonged cold exposure. This study examined the range in systematic bias of ingestible temperature sensors compared to a certified and traceable reference thermometer. A total of 119 ingestible temperature sensors were immersed in a circulated water bath at five water temperatures (TEMP A: 35.12 ± 0.60°C, TEMP B: 37.33 ± 0.56°C, TEMP C: 39.48 ± 0.73°C, TEMP D: 41.58 ± 0.97°C, and TEMP E: 43.47 ± 1.07°C) along with a certified traceable reference thermometer. Thirteen sensors (10.9%) demonstrated a systematic bias > ±0.1°C, of which 4 (3.3%) were > ± 0.5°C. Limits of agreement (95%) indicated that systematic bias would likely fall in the range of -0.14 to 0.26°C, highlighting that it is possible for temperatures measured between sensors to differ by more than 0.4°C. The proportion of sensors with systematic bias > ±0.1°C (10.9%) confirms that ingestible temperature sensors require correction to ensure their accuracy. An individualized linear correction achieved a mean systematic bias of 0.00°C, and limits of agreement (95%) to 0.00-0.00°C, with 100% of sensors achieving ±0.1°C accuracy. Alternatively, a generalized linear function (Corrected Temperature (°C) = 1.00375 × Sensor Temperature (°C) - 0.205549), produced as the average slope and intercept of a sub-set of 51 sensors and excluding sensors with accuracy outside ±0.5°C, reduced the systematic bias to sensors (n = 64). In conclusion, these data show that using an uncalibrated ingestible temperature sensor may provide inaccurate data that still appears to be statistically, physiologically, and clinically meaningful. Correction of sensor temperature to a reference thermometer by linear function eliminates this systematic bias (individualized functions) or ensures systematic bias is within ±0.1°C in 98% of the sensors

  20. On the temperature dependence of the optical spectral weight in correlated electron systems

    Energy Technology Data Exchange (ETDEWEB)

    Millis, A.J. [AT& T Bell Laboratories, Murray Hill, NJ (United States)

    1994-12-31

    A temperature dependence of the low frequency optical spectral weight has recently been observed in several strongly correlated insulating or nearly insulating systems including FeSi, Ce{sub 3}Bi{sub 4}Pt{sub 3} and V{sub 2}O{sub 3{minus}y}, and Bi{sub 2}Te{sub 3}. This temperature dependence is at first sight surprising because one is accustomed to thinking of optical spectral weigth in terms of the f-sum rule, which in its most general form states that the integral of any of the diagonal components of the optical conductivity {sigma}{sub ii}({omega}) is {pi}ne{sup 2}/2m. This is not very useful in most condensed matter physics contexts because the quantity n is the total number of electrons, including e.g. those in core levels, and because one must extend the integral to energies greater than the binding energy of the 1s shell to exhaust the sum rule. In condensed matter problems one typically focuses on a small number of bands close to the chemical potential. One may then ask what is the restricted sum rule governing optical transitions involving only these bands. Of course, the answer to this question is useful only if optical transitions involving bands retained in the model can be separated from those involving bands not retained.

  1. Mantle dynamics with pressure- and temperature-dependent thermal expansivity and conductivity

    Science.gov (United States)

    Tosi, Nicola; Yuen, David A.; de Koker, Nico; Wentzcovitch, Renata M.

    2013-04-01

    In numerical simulations of mantle convection it is commonly assumed that the coefficients of thermal expansion α and thermal conduction k are either constant or pressure-dependent. Pressure changes are generally computed using parametrizations that rely on extrapolations of low-pressure data for a single upper-mantle phase. Here we collect data for both the pressure and temperature dependence of α from a database of first-principles calculations, and of k from recent experimental studies. We use these data-sets to construct analytical parametrizations of α and k for the major upper- and lower-mantle phases that can be easily incorporated into exisiting convection codes. We then analyze the impact of such parametrizations on Earth's mantle dynamics by employing two-dimensional numerical models of thermal convection. When α is the only variable parameter, both its temperature and pressure dependence enhance hot plumes and tend to inhibit the descent of cold downwellings. Taking into account a variable k leads to a strong increase of the bulk mantle temperature, which reduces the buoyancy available to amplify bottom boundary layer instabilities and causes mantle flow to be driven primarily by the instability of cold plates whose surface velocity also tends to rise. When both parameters are considered together, we observe an increased propensity to local layering which favors slab stagnation in the transition zone and subsequent thickening in the lower mantle. Furthermore, the values of k near the core-mantle boundary ultimately control the effect of this physical property on convection, which stresses the importance of determining the thermal conductivity of the post-perovskite phase.

  2. Anomalous dependence of the heat capacity of supercooled water on pressure and temperature

    Directory of Open Access Journals (Sweden)

    I.A. Stepanov

    2014-01-01

    Full Text Available In some papers, dependences of the isobaric heat capacity of water versus pressure and temperature were obtained. It is shown that these dependences contradict both the dependence of heat capacity on temperature for supercooled water, and an important thermodynamic equation for the dependence of heat capacity on pressure. A possible explanation for this contradiction is proposed.

  3. Effects of caffeine on skin and core temperatures, alertness, and recovery sleep during circadian misalignment.

    Science.gov (United States)

    McHill, Andrew W; Smith, Benjamin J; Wright, Kenneth P

    2014-04-01

    Caffeine promotes wakefulness during night shift work, although it also disturbs subsequent daytime sleep. Increased alertness by caffeine is associated with a higher core body temperature (CBT). A lower CBT and a narrow distal-to-proximal skin temperature gradient (DPG) have been reported to be associated with improved sleep, yet whether caffeine influences the DPG is unknown. We tested the hypothesis that the use caffeine during nighttime total sleep deprivation would reduce the DPG, increase CBT and alertness, and disturb subsequent daytime recovery sleep. We also expected that a greater widening of the DPG prior to sleep would be associated with a greater degree of sleep disturbance. Thirty healthy adults (9 females) aged 21.6 ± 3.5 years participated in a double-blind, 28-h modified constant routine protocol. At 23 h of wakefulness, participants in the treatment condition (n = 10) were given 2.9 mg/kg caffeine, equivalent to ~200 mg (or 2 espressos) for a 70-kg adult, 5 h before a daytime recovery sleep episode. Throughout the protocol, core and skin body temperatures, DPG, sleep architecture, and subjective alertness and mood were measured. Prior to sleep, caffeine significantly widened the DPG and increased CBT, alertness, and clear-headedness (p sleep (p sleep were associated with a longer latency to sleep, and a wider DPG was associated with disturbed recovery sleep (i.e., increased wakefulness after sleep onset, increased stage 1 sleep, decreased sleep efficiency, and decreased slow wave sleep) (p sleep. Furthermore, our findings highlight that sleep disturbances associated with caffeine consumed near the circadian trough of alertness are still present when daytime recovery sleep occurs 5 h or approximately 1 half-life later.

  4. The effect of humidified heated breathing circuit on core body temperature in perioperative hypothermia during thyroid surgery.

    Science.gov (United States)

    Park, Hue Jung; Moon, Ho Sik; Moon, Se Ho; Do Jeong, Hyeon; Jeon, Young Jae; Do Han, Keung; Koh, Hyun Jung

    2017-01-01

    Purpose: During general anesthesia, human body easily reaches a hypothermic state, which is mainly caused by heat redistribution. Most studies suggested that humidified heated breathing circuits (HHBC) have little influence on maintenance of the core temperature during early phase of anesthesia. This study was aimed at examining heat preservation effect with HHBC in case of undergoing surgery with less exposure of surgical fields and short surgical duration. Methods: Patients aged 19 to 70 yr - old, ASA-PS I or II who were scheduled for elective thyroidectomy were assigned and divided to the group using HHBC (G1) and the group using conventional circuit (G2) by random allocation. During operation, core, skin, and room temperatures were measured every 5minutes by specific thermometer. Results: G1 was decreased by a lesser extent than G2 in core temperature, apparently higher at 30 and 60 minutes after induction. Skin and room temperatures showed no differences between the two groups (p>0.05). Consequently, we confirmed HHBC efficiently prevented a decrease in core temperature during early period in small operation which has difficulty in preparing warming devices or environments were not usually considered. Conclusions: This study showed that HHBC influences heat redistribution in early period of operation and can lessen the magnitude of the decrease in core body temperature. Therefore, it can be applied efficiently for other active warming devices in mild hypothermia.

  5. The Impact of Central and Peripheral Cyclooxygenase Enzyme Inhibition on Exercise-Induced Elevations in Core Body Temperature.

    NARCIS (Netherlands)

    Veltmeijer, M.T.W.; Veeneman, D.; Bongers, C.C.W.G.; Netea, M.G.; Meer, J.W.M. van der; Eijsvogels, T.M.H.; Hopman, M.T.E.

    2017-01-01

    PURPOSE: Exercise increases core body temperature (TC) due to metabolic heat production. However, the exercise-induced release of inflammatory cytokines including interleukin-6 (IL-6) may also contribute to the rise in TC by increasing the hypothalamic temperature set point. This study investigated

  6. [Study on the skin-core evolvement of carbon fibers as a function of heat treatment temperature by Raman spectroscopy].

    Science.gov (United States)

    Liu, Fu-jie; Fan, Li-dong; Wang, Hao-jing; Zhu, Zhen-ping

    2008-08-01

    The skin-core evolvement of the carbon fibers was studied as a function of heat-treatment temperature though the analysis of Raman spectroscopy of the carbon fibers surface and core. It was found that the change of the Raman spectra of the carbon fibers core was similar to that on the surface with the increase in heat-treatment temperature. At 1600 degrees C, the Rs and Rc values were almost equal, indicating that the degrees of the graphitization of the carbon fibers surface and core were almost uniform. The Rs and Rc values decreased dramatically with the increase in heat-treatment temperature, and Rs decreased more. At 2800 degrees C, the Rs value came to 0.429, lowered 77.2%, while the Rc value then came to 1.101, lowered 38.7% only. It implied that the graphitization degree of the carbon fibers was enhanced with increasing the heat treatment temperature, and that of carbon fibers surface was enhanced more. The graphite characters of the carbon of the carbon fibers surface were different from that of the carbon fibers core. The former is close to soft carbon, which is easy to graphitize, while the latter is close to hard carbon, which is difficult to graphitize, and it may be resin carbon Skin-core structure gene Rsc (= Rs/Rc) which denoted the skin-core degree of the carbon fibers was first brought forward and adopted. The Rsc value is between 0 and 1. When the Rsc value is equal to 1, the carbon fibers are homogenous. When the Rsc value is close to zero, there are serious skin-core structures in the carbon fibers. The Rsc value reduced linearly with the increase in heat-treatment temperature, indicating that the homogeneous degrees of the carbon fibers decreased and the skin-core degrees of the carbon fibers increased. The crystallite size of the carbon fibers surface and core increased gradually with the increase in heat-treatment temperature, but the surface's increased more quickly, indicating that the carbon of the carbon fibers surface was easier to

  7. Zero-Heat-Flux Thermometry for Non-Invasive Measurement of Core Body Temperature in Pigs.

    Science.gov (United States)

    Guschlbauer, Maria; Maul, Alexandra C; Yan, Xiaowei; Herff, Holger; Annecke, Thorsten; Sterner-Kock, Anja; Böttiger, Bernd W; Schroeder, Daniel C

    2016-01-01

    Hypothermia is a severe, unpleasant side effect during general anesthesia. Thus, temperature surveillance is a prerequisite in general anesthesia settings during experimental surgeries. The gold standard to measure the core body temperature (Tcore) is placement of a Swan-Ganz catheter in the pulmonary artery, which is a highly invasive procedure. Therefore, Tcore is commonly examined in the urine bladder and rectum. However, these procedures are known for their inaccuracy and delayed record of temperatures. Zero-heat-flux (ZHF) thermometry is an alternative, non-invasive method quantifying Tcore in human patients by applying a thermosensoric patch to the lateral forehead. Since the porcine cranial anatomy is different to the human's, the optimal location of the patch remains unclear to date. The aim was to compare three different patch locations of ZHF thermometry in a porcine hypothermia model. Hypothermia (33.0 °C Tcore) was conducted in 11 anesthetized female pigs (26-30 kg). Tcore was measured continuously by an invasive Swan-Ganz catheter in the pulmonary artery (Tpulm). A ZHF thermometry device was mounted on three different defined locations. The smallest average difference between Tpulm and TZHF during stable temperatures was 0.21 ± 0.16 °C at location A, where the patch was placed directly behind the eye. Also during rapidly changing temperatures location A showed the smallest bias with 0.48 ± 0.29 °C. Location A provided the most reliable data for Tcore. Therefore, the ZHF thermometry patch should be placed directly behind the left temporal corner of the eye to provide a non-invasive method for accurate measurement of Tcore in pigs.

  8. Preliminary Core Analysis of High Temperature Engineering Test Reactor Using DeCART Code

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Lee, Hyun Chul; Noh, Jae Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The 2-dimensional core analysis for the High Temperature Engineering Test Reactor (HTTR) has been performed. The HTTR is a graphite-moderated and helium gas cooled reactor with an outlet temperature of 950 .deg. C and thermal output of 30 MW. In this study, the DECART code is used with a 190-group KARMA library. The calculation results are compared with those of the McCARD with the ENDF-B/VII.0 library. From the analysis results, it is known that the DeCART code generally overestimates k{sub inf} with a moderator temperature variation. In addition, it can be seen that the DeCART code predicts less negative MTC than the McCARD code. However, the DeCART code gives a slightly more negative FTC value. From the depletion results, the error of the DeCART decreases over the burnup until 600 FPD. The DeCART code gives very similar trend within the error of 190 pcm, which is very small error when compared with other result.

  9. Re-visiting the tympanic membrane vicinity as core body temperature measurement site.

    Science.gov (United States)

    Yeoh, Wui Keat; Lee, Jason Kai Wei; Lim, Hsueh Yee; Gan, Chee Wee; Liang, Wenyu; Tan, Kok Kiong

    2017-01-01

    Core body temperature (CBT) is an important and commonly used indicator of human health and endurance performance. A rise in baseline CBT can be attributed to an onset of flu, infection or even thermoregulatory failure when it becomes excessive. Sites which have been used for measurement of CBT include the pulmonary artery, the esophagus, the rectum and the tympanic membrane. Among them, the tympanic membrane is an attractive measurement site for CBT due to its unobtrusive nature and ease of measurement facilitated, especially when continuous CBT measurements are needed for monitoring such as during military, occupational and sporting settings. However, to-date, there are still polarizing views on the suitability of tympanic membrane as a CBT site. This paper will revisit a number of key unresolved issues in the literature and also presents, for the first time, a benchmark of the middle ear temperature against temperature measurements from other sites. Results from experiments carried out on human and primate subjects will be presented to draw a fresh set of insights against the backdrop of hypotheses and controversies.

  10. Re-visiting the tympanic membrane vicinity as core body temperature measurement site.

    Directory of Open Access Journals (Sweden)

    Wui Keat Yeoh

    Full Text Available Core body temperature (CBT is an important and commonly used indicator of human health and endurance performance. A rise in baseline CBT can be attributed to an onset of flu, infection or even thermoregulatory failure when it becomes excessive. Sites which have been used for measurement of CBT include the pulmonary artery, the esophagus, the rectum and the tympanic membrane. Among them, the tympanic membrane is an attractive measurement site for CBT due to its unobtrusive nature and ease of measurement facilitated, especially when continuous CBT measurements are needed for monitoring such as during military, occupational and sporting settings. However, to-date, there are still polarizing views on the suitability of tympanic membrane as a CBT site. This paper will revisit a number of key unresolved issues in the literature and also presents, for the first time, a benchmark of the middle ear temperature against temperature measurements from other sites. Results from experiments carried out on human and primate subjects will be presented to draw a fresh set of insights against the backdrop of hypotheses and controversies.

  11. Synthesis of large uniform gold and core-shell gold-silver nanoparticles: Effect of temperature control

    Science.gov (United States)

    Tiunov, I. A.; Gorbachevskyy, M. V.; Kopitsyn, D. S.; Kotelev, M. S.; Ivanov, E. V.; Vinokurov, V. A.; Novikov, A. A.

    2016-01-01

    The temperatures of nucleation and growth for gold and silver nanoparticles are quite close to each other in citrate-based seeded-growth synthesis. Hence, thorough temperature control during the synthesis of gold and gold-silver core-shell nanoparticles is expected to improve the yield of uniform non-aggregated nanoparticles suitable for selective contrasting of surface defects. Gold and gold-silver core-shell nanoparticles of size ranging from 20 to 160 nm were synthesized using various means of temperature control. The synthesized nanoparticles were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS) and UV-Vis spectroscopy. Model nanocracks were milled on pipeline steel specimen by focused ion beam (FIB). It was found that to produce large uniform core-shell nanoparticles, thorough temperature control is required during formation of the gold seeds and the silver shell. Moreover, the synthesized nanoparticles were used for selective contrasting of defects on metal surface.

  12. Fracture strength of the particulate-reinforced ultra-high temperature ceramics based on a temperature dependent fracture toughness model

    Science.gov (United States)

    Wang, Ruzhuan; Li, Weiguo; Ji, Baohua; Fang, Daining

    2017-10-01

    The particulate-reinforced ultra-high temperature ceramics (pUHTCs) have been particularly developed for fabricating the leading edge and nose cap of hypersonic vehicles. They have drawn intensive attention of scientific community for their superior fracture strength at high temperatures. However, there is no proper model for predicting the fracture strength of the ceramic composites and its dependency on temperature. In order to account for the effect of temperature on the fracture strength, we proposed a concept called energy storage capacity, by which we derived a new model for depicting the temperature dependent fracture toughness of the composites. This model gives a quantitative relationship between the fracture toughness and temperature. Based on this temperature dependent fracture toughness model and Griffith criterion, we developed a new fracture strength model for predicting the temperature dependent fracture strength of pUHTCs at different temperatures. The model takes into account the effects of temperature, flaw size and residual stress without any fitting parameters. The predictions of the fracture strength of pUHTCs in argon or air agreed well with the experimental measurements. Additionally, our model offers a mechanism of monitoring the strength of materials at different temperatures by testing the change of flaw size. This study provides a quantitative tool for design, evaluation and monitoring of the fracture properties of pUHTCs at high temperatures.

  13. Engineering water-tolerant core/shell upconversion nanoparticles for optical temperature sensing.

    Science.gov (United States)

    Alkahtani, Masfer H; Gomes, Carmen L; Hemmer, Philip R

    2017-07-01

    Luminescence thermometry is a promising approach using upconversion nanoparticles (UCNPs) with a nanoscale regime in biological tissues. UCNPs are superior to conventional fluorescent markers, benefiting from their autofluorescence suppression and deep imaging in tissues. However, they are still limited by poor water solubility and weak upconversion luminescence intensity, especially at a small particle size. Recently, YVO4:Er(+3),Yb(+3) nanoparticles have shown high efficiency upconversion (UC) luminescence in water at single-particle level and high contrast imaging in biological models. Typically, a 980-nm laser triggers the UC process in the UCNPs, which overlaps with maximum absorption of water molecules that are dominant in biological samples, resulting in biological tissues overheating and possible damaging. Interestingly, neodymium (Nd(+3)) possesses a large absorption cross section at the water low absorption band (808 nm), which can overcome overheating issues. In this Letter, we introduce Nd(+3) as a new near-infrared absorber and UC sensitizer into YVO4:Er(+3),Yb(+3) nanoparticles in a core/shell structure to ensure successive energy transfer between the new UC sensitizer (Nd(+3)) to the upconverting activator (Er(+3)). Finally, we synthesized water-tolerant YVO4:Er(+3),Yb(+3)@Nd(+3) core/shell nanoparticles (average size 20 nm) with strong UC luminescence at a biocompatible excitation wavelength for optical temperature sensing where overheating in water is minimized.

  14. A Wearable Thermometry for Core Body Temperature Measurement and Its Experimental Verification.

    Science.gov (United States)

    Huang, Ming; Tamura, Toshiyo; Tang, Zunyi; Chen, Wenxi; Kanaya, Shigehiko

    2017-05-01

    A wearable thermometry for core body temperature (CBT) measurement has both healthcare and clinical applications. On the basis of the mechanism of bioheat transfer, we earlier designed and improved a wearable thermometry using the dual-heat-flux method for CBT measurement. In this study, this thermometry is examined experimentally. We studied a fast-changing CBT measurement (FCCM, 55 min, 12 subjects) inside a thermostatic chamber and performed long-term monitoring of CBT (LTM, 24 h, six subjects). When compared with a reference, the CoreTemp CM-210 by Terumo, FCCM shows 0.07 °C average difference and a 95% CI of [-0.27, 0.12] °C. LTM shows no significant difference in parameters for the inference of circadian rhythm. The FCCM and LTM both simulated scenarios in which this thermometry could be used for intensive monitoring and daily healthcare, respectively. The results suggest that because of its convenient design, this thermometry may be an ideal choice for conventional CBT measurements.

  15. Manipulations of core temperatures in ischemia-reperfusion lung injury in rabbits.

    Science.gov (United States)

    Chang, Hung; Huang, Kun-Lun; Li, Min-Hui; Hsu, Ching-Wang; Tsai, Shih-Hung; Chu, Shi-Jye

    2008-01-01

    The present study was designed to determine the effect of various core temperatures on acute lung injury induced by ischemia-reperfusion (I/R) in our isolated rabbit lung model. Typical acute lung injury was successfully induced by 30 min of ischemia followed by 90 min of reperfusion observation. The I/R elicited a significant increase in pulmonary arterial pressure, microvascular permeability (measured by using the capillary filtration coefficient, Kfc), Delta Kfc ratio, lung weight gain and the protein concentration of the bronchoalveolar lavage fluid. Mild hypothermia significantly attenuated acute lung injury induced by I/R, all parameters having decreased significantly (p<0.05); conversely, mild hyperthermia did not further exacerbate acute lung injury. These experimental data suggest that mild hypothermia significantly ameliorated acute lung injury induced by ischemia-reperfusion in rabbits.

  16. Temperature-dependent macromolecular X-ray crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Weik, Martin, E-mail: martin.weik@ibs.fr; Colletier, Jacques-Philippe [CEA, IBS, Laboratoire de Biophysique Moléculaire, F-38054 Grenoble (France); CNRS, UMR5075, F-38027 Grenoble (France); Université Joseph Fourier, F-38000 Grenoble (France)

    2010-04-01

    The dynamical behaviour of crystalline macromolecules and their surrounding solvent as a function of cryo-temperature is reviewed. X-ray crystallography provides structural details of biological macromolecules. Whereas routine data are collected close to 100 K in order to mitigate radiation damage, more exotic temperature-controlled experiments in a broader temperature range from 15 K to room temperature can provide both dynamical and structural insights. Here, the dynamical behaviour of crystalline macromolecules and their surrounding solvent as a function of cryo-temperature is reviewed. Experimental strategies of kinetic crystallography are discussed that have allowed the generation and trapping of macromolecular intermediate states by combining reaction initiation in the crystalline state with appropriate temperature profiles. A particular focus is on recruiting X-ray-induced changes for reaction initiation, thus unveiling useful aspects of radiation damage, which otherwise has to be minimized in macromolecular crystallography.

  17. Temperature dependence of the strain response of chemical composition gratings in optical fibers

    Science.gov (United States)

    Li, Guoyu; Guan, Bai-ou

    2008-11-01

    Chemical composition gratings, used as strain sensing elements at high temperature environments, show a temperature dependence of their strain response. Temperature dependence of the strain response of CCGs over a range of temperatures from 24°C to 900°C has been measured. It is found that the wavelength shift of CCGs is linear with applied tensile strain at a constant temperature, and the strain sensitivity is 0.0011nm/μɛ.

  18. Temperature variations in Greenland from 10 to 110 kyr b2k derived from the NGRIP ice core

    Science.gov (United States)

    Kindler, Philippe; Leuenberger, Markus; Landais, Amaelle; Guillevic, Myriam

    2013-04-01

    During the last ice age dramatic temperature variations of up to 16 °C took place in Greenland which are now known as Dansgaard-Oeschger-events (DO-events). They most probably originate from the North Atlantic oceanic and atmospheric circulation system and are characterised by an abrupt warming within decades followed by a gradual cooling over hundreds to thousands of years. We have determined local temperature variations for DO-event 1 to 25 in Greenland based on δ15N measurements from the NorthGRIP ice core, corresponding to the period from 10 to 110 kyr b2k. The record is a composite of measurements from two laboratories, Laboratoire des Sciences du Climat et de l'Environnement, Paris (DO 18 to 25) and the Climate and Environmental Physics Division of the Physics Institute of the University of Bern (DO 1 to 17) with new measurements from the beginning of the Holocene to DO 8. Temperature variations were reconstructed by reproducing the measured 15N/14N ratio of air enclosed in ice bubbles by the firn densification and heat diffusion model from Schwander. The reconstruction show temperature amplitudes for the DO-events ranging from 5 to 16 °C, thereby the corresponding rates of change can exceed 0.5 °C/decade. In order get an agreement between measured δ15N, Δdepth and Δage values with their modelled analogues, a lower accumulation rate than the one associated with the used ss09sea06bm1 time scale had to be assumed. We had to reduce the accumulation rate time dependently by 0 to nearly 40% with a mean reduction over the whole time period of 16%. With these adjustments both the Δdepth and the Δage values agree between model and measurements.

  19. Temperature dependence of a silicon power device switching parameters

    Science.gov (United States)

    Habchi, R.; Salame, C.; Khoury, A.; Mialhe, P.

    2006-04-01

    This study presents measurements of device switching parameters performed on a commercial power metal-oxide-semiconductor field-effect transistor under high-temperature conditions. Measured switching times show that the device response to being turned off becomes faster at high temperatures. The inverse drain-source current rapidly increases above the 300°C limit. I-V curves indicate that the saturation current in the channel increases with temperature.

  20. Theoretical analytical model of vacancy formation energy with simultaneous dependence on surface orientation, temperature, and material size

    Science.gov (United States)

    Zhang, Xuyao; Li, Weiguo; Deng, Yong; Shao, Jiaxing; Kou, Haibo; Ma, Jianzuo; Zhang, Xianhe; Li, Ying

    2018-02-01

    From the perspectives of bond energy theory, the bond–order–length–strength correlation mechanism, and the core–surface configuration for nanomaterials, a physics-based model, free of any adjustable parameters and simultaneously considering the coupling effects of surface orientation, temperature, and size on the vacancy formation energy of metal materials is developed. To confirm our present model, the temperature-dependent vacancy formation energies of six face-centered cubic metals and the size-dependent vacancy formation energies of gold particles are predicted, which are in reasonable agreement with the simulation results. In particular, the model can provide a convenient method to predict the temperature-dependent vacancy formation energy of nanomaterials with different surface orientations, and also can provide a new method to study the structural relaxation. The study shows that the size effect on the vacancy formation energy depends on the stronger bond energy in the surface layers compared with those in the core interior, and the temperature-dependent vacancy formation energy arises from cohesive energy weakening, with the opposite trend to that induced by size reduction.

  1. Effects of IV Acetaminophen on Core Body Temperature and Hemodynamic Responses in Febrile Critically Ill Adults: A Randomized Controlled Trial.

    Science.gov (United States)

    Schell-Chaple, Hildy M; Liu, Kathleen D; Matthay, Michael A; Sessler, Daniel I; Puntillo, Kathleen A

    2017-07-01

    To determine the effects of IV acetaminophen on core body temperature, blood pressure, and heart rate in febrile critically ill patients. Randomized, double-blind, placebo-controlled clinical trial. Three adult ICUs at a large, urban, academic medical center. Forty critically ill adults with fever (core temperature, ≥ 38.3°C). An infusion of acetaminophen 1 g or saline placebo over 15 minutes. Core temperature and vital signs were measured at baseline and at 5-15-minute intervals for 4 hours after infusion of study drug. The primary outcome was time-weighted average core temperature adjusted for baseline temperature. Secondary outcomes included adjusted time-weighted average heart rate, blood pressure, and respiratory rate, along with changes-over-time for each. Baseline patient characteristics were similar in those given acetaminophen and placebo. Patients given acetaminophen had an adjusted time-weighted average temperature that was 0.47°C less than those given placebo (95% CI, -0.76 to -0.18; p = 0.002). The acetaminophen group had significantly lower adjusted time-weighted average systolic blood pressure (-17 mm Hg; 95% CI, -25 to -8; p acetaminophen decreased temperature, blood pressure, and heart rate. IV acetaminophen thus produces modest fever reduction in critical care patients, along with clinically important reductions in blood pressure.

  2. Identification of a functional, CRM-1-dependent nuclear export signal in hepatitis C virus core protein.

    Directory of Open Access Journals (Sweden)

    Andrea Cerutti

    Full Text Available Hepatitis C virus (HCV infection is a major cause of chronic liver disease worldwide. HCV core protein is involved in nucleocapsid formation, but it also interacts with multiple cytoplasmic and nuclear molecules and plays a crucial role in the development of liver disease and hepatocarcinogenesis. The core protein is found mostly in the cytoplasm during HCV infection, but also in the nucleus in patients with hepatocarcinoma and in core-transgenic mice. HCV core contains nuclear localization signals (NLS, but no nuclear export signal (NES has yet been identified.We show here that the aa(109-133 region directs the translocation of core from the nucleus to the cytoplasm by the CRM-1-mediated nuclear export pathway. Mutagenesis of the three hydrophobic residues (L119, I123 and L126 in the identified NES or in the sequence encoding the mature core aa(1-173 significantly enhanced the nuclear localisation of the corresponding proteins in transfected Huh7 cells. Both the NES and the adjacent hydrophobic sequence in domain II of core were required to maintain the core protein or its fragments in the cytoplasmic compartment. Electron microscopy studies of the JFH1 replication model demonstrated that core was translocated into the nucleus a few minutes after the virus entered the cell. The blockade of nucleocytoplasmic export by leptomycin B treatment early in infection led to the detection of core protein in the nucleus by confocal microscopy and coincided with a decrease in virus replication.Our data suggest that the functional NLS and NES direct HCV core protein shuttling between the cytoplasmic and nuclear compartments, with at least some core protein transported to the nucleus. These new properties of HCV core may be essential for virus multiplication and interaction with nuclear molecules, influence cell signaling and the pathogenesis of HCV infection.

  3. Identification of a functional, CRM-1-dependent nuclear export signal in hepatitis C virus core protein.

    Science.gov (United States)

    Cerutti, Andrea; Maillard, Patrick; Minisini, Rosalba; Vidalain, Pierre-Olivier; Roohvand, Farzin; Pecheur, Eve-Isabelle; Pirisi, Mario; Budkowska, Agata

    2011-01-01

    Hepatitis C virus (HCV) infection is a major cause of chronic liver disease worldwide. HCV core protein is involved in nucleocapsid formation, but it also interacts with multiple cytoplasmic and nuclear molecules and plays a crucial role in the development of liver disease and hepatocarcinogenesis. The core protein is found mostly in the cytoplasm during HCV infection, but also in the nucleus in patients with hepatocarcinoma and in core-transgenic mice. HCV core contains nuclear localization signals (NLS), but no nuclear export signal (NES) has yet been identified.We show here that the aa(109-133) region directs the translocation of core from the nucleus to the cytoplasm by the CRM-1-mediated nuclear export pathway. Mutagenesis of the three hydrophobic residues (L119, I123 and L126) in the identified NES or in the sequence encoding the mature core aa(1-173) significantly enhanced the nuclear localisation of the corresponding proteins in transfected Huh7 cells. Both the NES and the adjacent hydrophobic sequence in domain II of core were required to maintain the core protein or its fragments in the cytoplasmic compartment. Electron microscopy studies of the JFH1 replication model demonstrated that core was translocated into the nucleus a few minutes after the virus entered the cell. The blockade of nucleocytoplasmic export by leptomycin B treatment early in infection led to the detection of core protein in the nucleus by confocal microscopy and coincided with a decrease in virus replication.Our data suggest that the functional NLS and NES direct HCV core protein shuttling between the cytoplasmic and nuclear compartments, with at least some core protein transported to the nucleus. These new properties of HCV core may be essential for virus multiplication and interaction with nuclear molecules, influence cell signaling and the pathogenesis of HCV infection.

  4. Investigation on multilayer failure mechanism of RPV with a high temperature gradient from core meltdown scenario

    Energy Technology Data Exchange (ETDEWEB)

    Jianfeng, Mao, E-mail: jianfeng-mao@163.com [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education (China); Xiangqing, Li [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Shiyi, Bao, E-mail: bsy@zjut.edu.cn [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education (China); Lijia, Luo [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Zengliang, Gao [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education (China)

    2016-12-15

    Highlights: • The multilayer failure mechanism is investigated for RPV under CHF. • Failure time and location of RPV are predicted under various SA scenarios. • The structural behaviors are analyzed in depth for creep and plasticity. • The effect of internal pressure and temperature gradient is considered. • The structural integrity of RPV is secured within the required 72 creep hours. - Abstract: The Fukushima accident shows that in-vessel retention (IVR) of molten core debris has not been appropriately assessed, and a certain pressure (up to 8.0 MPa) still exists inside the reactor pressure vessel (RPV). In the traditional concept of IVR, the pressure is supposed to successfully be released, and the temperature distributed among the wall thickness is assumed to be uniform. However, this concept is seriously challenged by reality of Fukushima accident with regard to the existence of both internal pressure and high temperature gradient. Therefore, in order to make the IVR mitigation strategy succeed, the numerical investigation of the lower head behavior and its failure has been performed for several internal pressures under high temperature gradient. According to some requirements in severe accident (SA) management of RPV, it should be ensured that the IVR mitigation takes effect in preventing the failure of the structure within a period of 72 h. Subsequently, the failure time and location have to be predicted under the critical heat flux (CHF) loading condition for lower head, since the CHF is limit thermal boundary before the melt-through of RPV. In illustrating the so called ‘multilayer failure mechanism’, the structural behaviors of RPV are analyzed in terms of the stress, creep strain, deformation, damage on selected paths.

  5. Temperature-dependent rate models of vascular cambium cell mortality

    Science.gov (United States)

    Matthew B. Dickinson; Edward A. Johnson

    2004-01-01

    We use two rate-process models to describe cell mortality at elevated temperatures as a means of understanding vascular cambium cell death during surface fires. In the models, cell death is caused by irreversible damage to cellular molecules that occurs at rates that increase exponentially with temperature. The models differ in whether cells show cumulative effects of...

  6. Thermal Aware Floorplanning Incorporating Temperature Dependent Wire Delay Estimation

    DEFF Research Database (Denmark)

    Winther, AndreasThor; Liu, Wei; Nannarelli, Alberto

    2015-01-01

    Temperature has a negative impact on metal resistance and thus wire delay. In state-of-the-art VLSI circuits, large thermal gradients usually exist due to the uneven distribution of heat sources. The difference in wire temperature can lead to performance mismatch because wires of the same length ...

  7. Temperature dependence of poly(lactic acid) mechanical properties

    DEFF Research Database (Denmark)

    Zhou, Chengbo; Guo, Huilong; Li, Jingqing

    2016-01-01

    The mechanical properties of polymers are not only determined by their structures, but also related to the temperature field in which they are located. The yield behaviors, Young's modulus and structures of injection-molded poly(lactic acid) (PLA) samples after annealing at different temperatures...

  8. PRELIMINARY STUDIES 'ON TEMPERATURE DEPENDENCE 'Q,F ...

    African Journals Online (AJOL)

    ferromagnetic has characteristic temperature/magnetisation curves. At varying temperatures the magnetic susceptibility of a diamagnet is constant. (Fig.1), while it decreases for paramagnetic materials (Fig.2). The paramagnetic materials obey Curie law,. (eqn.1) in which the magnetic susceptibility varies inversely with.

  9. Substrate bias voltage and deposition temperature dependence on ...

    Indian Academy of Sciences (India)

    ... on Si (100) substrate. Deposition at higher substrate temperature causes the film to react with Si forming silicides at the film/Si substrate interface. Ti film undergoes a microstructural transition from hexagonal plate-like to round-shaped grains as the substrate temperature was raised from 300 to 50 °C during film deposition ...

  10. Temperature-dependent phenotypic variation of Campylobacter jejuni lipooligosaccharides

    LENUS (Irish Health Repository)

    Semchenko, Evgeny A

    2010-11-30

    Abstract Background Campylobacter jejuni is a major bacterial cause of food-borne enteritis, and its lipooligosaccharide (LOS) plays an initiating role in the development of the autoimmune neuropathy, Guillain-Barré syndrome, by induction of anti-neural cross-reactive antibodies through ganglioside molecular mimicry. Results Herein we describe the existence and heterogeneity of multiple LOS forms in C. jejuni strains of human and chicken origin grown at 37°C and 42°C, respectively, as determined on sodium dodecyl sulphate-polyacrylamide electrophoresis gels with carbohydrate-specific silver staining and blotting with anti-ganglioside ligands, and confirmed by nuclear magnetic resonance (NMR) spectroscopy. The C. jejuni NCTC 11168 original isolate (11168-O) was compared to its genome-sequenced variant (11168-GS), and both were found to have a lower-Mr LOS form, which was different in size and structure to the previously characterized higher-Mr form bearing GM1 mimicry. The lower-Mr form production was found to be dependent on the growth temperature as the production of this form increased from ~5%, observed at 37°C to ~35% at 42°C. The structure of the lower-Mr form contained a β-D-Gal-(1→3)-β-D-GalNAc disaccharide moiety which is consistent with the termini of the GM1, asialo-GM1, GD1, GT1 and GQ1 gangliosides, however, it did not display GM1 mimicry as assessed in blotting studies but was shown in NMR to resemble asialo-GM1. The production of multiple LOS forms and lack of GM1 mimicry was not a result of phase variation in the genes tested of NCTC 11168 and was also observed in most of the human and chicken isolates of C. jejuni tested. Conclusion The presence of differing amounts of LOS forms at 37 and 42°C, and the variety of forms observed in different strains, indicate that LOS form variation may play a role in an adaptive mechanism or a stress response of the bacterium during the colonization of different hosts.

  11. Temperature-dependent phenotypic variation of Campylobacter jejuni lipooligosaccharides.

    Science.gov (United States)

    Semchenko, Evgeny A; Day, Christopher J; Wilson, Jennifer C; Grice, I Darren; Moran, Anthony P; Korolik, Victoria

    2010-11-30

    Campylobacter jejuni is a major bacterial cause of food-borne enteritis, and its lipooligosaccharide (LOS) plays an initiating role in the development of the autoimmune neuropathy, Guillain-Barré syndrome, by induction of anti-neural cross-reactive antibodies through ganglioside molecular mimicry. Herein we describe the existence and heterogeneity of multiple LOS forms in C. jejuni strains of human and chicken origin grown at 37 °C and 42 °C, respectively, as determined on sodium dodecyl sulphate-polyacrylamide electrophoresis gels with carbohydrate-specific silver staining and blotting with anti-ganglioside ligands, and confirmed by nuclear magnetic resonance (NMR) spectroscopy. The C. jejuni NCTC 11168 original isolate (11168-O) was compared to its genome-sequenced variant (11168-GS), and both were found to have a lower-M(r) LOS form, which was different in size and structure to the previously characterized higher-M(r) form bearing GM₁ mimicry. The lower-M(r) form production was found to be dependent on the growth temperature as the production of this form increased from ~5%, observed at 37 °C to ~35% at 42 °C. The structure of the lower-M(r) form contained a β-D-Gal-(1→3)-β-D-GalNAc disaccharide moiety which is consistent with the termini of the GM₁, asialo-GM₁, GD₁, GT₁ and GQ₁ gangliosides, however, it did not display GM₁ mimicry as assessed in blotting studies but was shown in NMR to resemble asialo-GM₁. The production of multiple LOS forms and lack of GM1 mimicry was not a result of phase variation in the genes tested of NCTC 11168 and was also observed in most of the human and chicken isolates of C. jejuni tested. The presence of differing amounts of LOS forms at 37 and 42 °C, and the variety of forms observed in different strains, indicate that LOS form variation may play a role in an adaptive mechanism or a stress response of the bacterium during the colonization of different hosts.

  12. Temperature-dependent phenotypic variation of Campylobacter jejuni lipooligosaccharides

    Directory of Open Access Journals (Sweden)

    Moran Anthony P

    2010-11-01

    Full Text Available Abstract Background Campylobacter jejuni is a major bacterial cause of food-borne enteritis, and its lipooligosaccharide (LOS plays an initiating role in the development of the autoimmune neuropathy, Guillain-Barré syndrome, by induction of anti-neural cross-reactive antibodies through ganglioside molecular mimicry. Results Herein we describe the existence and heterogeneity of multiple LOS forms in C. jejuni strains of human and chicken origin grown at 37°C and 42°C, respectively, as determined on sodium dodecyl sulphate-polyacrylamide electrophoresis gels with carbohydrate-specific silver staining and blotting with anti-ganglioside ligands, and confirmed by nuclear magnetic resonance (NMR spectroscopy. The C. jejuni NCTC 11168 original isolate (11168-O was compared to its genome-sequenced variant (11168-GS, and both were found to have a lower-Mr LOS form, which was different in size and structure to the previously characterized higher-Mr form bearing GM1 mimicry. The lower-Mr form production was found to be dependent on the growth temperature as the production of this form increased from ~5%, observed at 37°C to ~35% at 42°C. The structure of the lower-Mr form contained a β-D-Gal-(1→3-β-D-GalNAc disaccharide moiety which is consistent with the termini of the GM1, asialo-GM1, GD1, GT1 and GQ1 gangliosides, however, it did not display GM1 mimicry as assessed in blotting studies but was shown in NMR to resemble asialo-GM1. The production of multiple LOS forms and lack of GM1 mimicry was not a result of phase variation in the genes tested of NCTC 11168 and was also observed in most of the human and chicken isolates of C. jejuni tested. Conclusion The presence of differing amounts of LOS forms at 37 and 42°C, and the variety of forms observed in different strains, indicate that LOS form variation may play a role in an adaptive mechanism or a stress response of the bacterium during the colonization of different hosts.

  13. Pressure dependent optical gain in Type-II PbSe/PbS core /shell quantum dots

    Science.gov (United States)

    Saravanamoorthy, S. N.; John Peter, A.; Lee, Chang Woo

    2017-11-01

    Pressure induced nonlinear optical properties of Type-II lead based core/shell quantum dot heterostructure are investigated. The pressure dependent exciton binding energies are obtained with the increase of shell thickness for various inner core radii. The exciton interaction energies in a PbSe/PbS core/shell quantum dot inner core radii are found in the presence of hydrostatic pressure using variational method within the single band effective mass approximation. The threshold current density with the hydrostatic pressure and inner dot radii in a PbSe/PbS dot with the constant shell width is obtained. The pressure dependence on peak optical gain with the current density in a PbSe/PbS core/shell quantum dot with the fixed carrier density is found. The pressure related optical gain with the photon energy in a PbSe/PbS core/shell quantum dot is also obtained. The results show that the threshold current density increases by 20% when the pressure increases from 0 GPa to 4 GPa for 20 Å quantum dot radius whereas 16% of increase in threshold current density is observed for 50 Å quantum dot radius for the same increase of pressure values. The peak of the optical gain is observed to increase nonlinearly with the applied hydrostatic pressure and 12% of optical gain is enhanced for every 2 GPa pressure value. The results will be useful for some potential applications in near infrared light sources.

  14. Temperature Dependence of Dark Current in Quantum Well Infrared Detectors

    National Research Council Canada - National Science Library

    Hickey, Thomas

    2002-01-01

    ...) /cu cm were gathered and analyzed for various temperatures. The device was cooled with a closed cycle refrigerator, and the data were acquired using the Agilent 4155B Semiconductor Parameter Analyzer...

  15. Temperature dependence of the magnetic properties of ferromagnetic amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gaunt, P.

    1979-01-01

    The magnetic hysteresis properties of amorphous alloys have recently been discussed in terms of an exchange-enhanced applied field. This absolute-zero model is here extended to finite temperatures. The modified treatment predicts a remanent magnetization which is unaffected by thermal activation while the coercive force falls (finally to zero) as temperature increases. Comparison with experiment for TbFe/sub 2/ suggests that regions of volume approx. =7500 A/sup 3/ reverse coherently.

  16. Altered core and skin temperature responses to endurance exercise in heart failure patients and healthy controls.

    Science.gov (United States)

    Benda, Nathalie M M; Eijsvogels, Thijs M H; Van Dijk, Arie P J; Bellersen, Louise; Thijssen, Dick H J; Hopman, Maria T E

    2016-01-01

    Exercise training represents a central aspect of rehabilitation of heart failure patients. Previous work on passive heating suggests impaired thermoregulatory responses in heart failure patients. However, no previous study directly examined thermoregulatory responses to an exercise bout, that is, active heating, as typically applied in rehabilitation settings in heart failure. Cross-sectional observational study to compare changes in core body temperature (Tcore) and skin temperature (Tskin) during exercise between heart failure patients and controls. Fourteen heart failure subjects (65 ± 7 years, 13:1 male:female) and 14 healthy controls (61 ± 5 years, 12:2 male:female) were included. Tcore (telemetric temperature pill) and Tskin (skin thermistors) were measured continuously during a 45-min cycle exercise at comparable relative exercise intensity. Tcore increased to a similar extent in both groups (controls 1.1 ± 0.4℃, heart failure patients 0.9 ± 0.3℃, 'time*group': p = 0.15). Tskin decreased during the initial phase of exercise in both groups, followed by an increase in Tskin in controls (1.2 ± 1.0℃), whilst Tskin remained low in HF patients (-0.3 ± 1.4℃) ('time*group': p  0.05). Heart failure patients and controls show comparable exercise-induced increase in Tcore, whilst heart failure patients demonstrate altered Tskin responses to exercise and attenuated elevation in Tskin per increase in Tcore. These impaired thermoregulatory responses to exercise are, at least partly, explained by the lower absolute workload and lower physical fitness level in heart failure patients. © The European Society of Cardiology 2015.

  17. Evidence of a warm early instrumental period found in temperature related water isotope records from high elevation Alpine ice cores

    Science.gov (United States)

    Bohleber, Pascal; Schöner, Wolfgang; Wagenbach, Dietmar

    2015-04-01

    The variability of water isotopes (delta-O18 or delta-D) preserved in Alpine glacier ice may provide mid-latitude temperature proxy records supplementing respective information from other archives. In order to archive long term records (i.e. exceeding 100 years) the limited glacier depth at suitable Alpine drill sites requires a relatively low net accumulation rate. In this respect, the cold glacier saddle Colle Gnifetti (CG) is the unique drilling site in the European Alps offering ice core records substantially exceeding the instrumental period. However, the unique low net accumulation at CG is characterised by strong spatio-temporal variability causing depositional noise that strongly challenges the interpretation of the ice core isotope records in terms of net temperature change. Here we present our findings from comparing stable water isotope records of the CG multi core array to a site-specific temperature time series. The latter is synthesized from high elevation stations of the instrumental HISTALP network considering among others the temperature shift from the accumulation bias towards growing seasons. Within the last century dedicated time series analysis reveals a common signal in the (supra-) decadal components of the instrumental temperature and isotope records. Extending the comparison over the entire 250 years instrumental period, systematic discrepancies are found within the early instrumental period (EIP). The delta-O18 record shows an overall decreasing trend from 1760 to 1890 AD, which is not reflected in the temperature record. However, using high Alpine summer temperature lacking the latest EIP adjustment, the long-term trends between isotope and instrumental data are in better agreement. The overall mean of the isotope based temperature in the EIP indicates substantially warmer levels than the EIP-corrected instrumental temperature. It differs, however, not significantly with respect to the non-EIP-corrected temperature mean. Although the main

  18. Quantitative Analysis of Temperature Dependence of Raman shift of monolayer WS2

    National Research Council Canada - National Science Library

    Huang, Xiaoting; Gao, Yang; Yang, Tianqi; Ren, Wencai; Cheng, Hui-Ming; Lai, Tianshu

    2016-01-01

    We report the temperature-dependent evolution of Raman spectra of monolayer WS2 directly CVD-grown on a gold foil and then transferred onto quartz substrates over a wide temperature range from 84 to 543 K...

  19. Order-picking in deep cold--physiological responses of younger and older females. Part 2: body core temperature and skin surface temperature.

    Science.gov (United States)

    Baldus, Sandra; Kluth, Karsten; Strasser, Helmut

    2012-01-01

    So far, it was unclear to what extent working in deep cold-storage depots has an influence on female order-pickers body core temperature and skin surface temperature considering different age groups. Physiological effects of order-picking in a chill room (+3°C) and cold store (-24°C) were examined on 30 female subjects (Ss), classified in two age groups (20- to 35- year-olds and 40- to 65-year-olds). The body core temperature was taken every 15 min at the tympanum and the skin surface temperature was recorded continuously at seven different positions. Working in the chill room induced a decrease of the body core temperature up to 0.5K in comparison to the value at the outset for both age groups which could be compensated by all Ss during the breaks. Working in the cold store caused a decline up to 1.1K for the younger Ss and 1.3K for the older Ss. A complete warming-up during the breaks was often not possible. Regarding the skin surface temperature, working in the chill room can be considered as unproblematic, whereas significantly lower temperatures at nose, fingers and toes, associated with substantial negative subjective sensations, were recorded while working in the cold store.

  20. Electric-field dependent g-factor anisotropy in Ge-Si core-shell nanowire quantum dots

    NARCIS (Netherlands)

    Brauns, M.; Ridderbos, Joost; Ridderbos, Joost; Li, Ang; Bakkers, Erik P.A.M.; Zwanenburg, Floris Arnoud

    2016-01-01

    We present angle-dependent measurements of the effective g factor g ☆ in a Ge-Si core-shell nanowire quantum dot. g ☆ is found to be maximum when the magnetic field is pointing perpendicularly to both the nanowire and the electric field induced by local gates. Alignment of the magnetic field with

  1. Facet-Dependent Optical Properties Revealed through Investigation of Polyhedral Au-Cu₂O and Bimetallic Core-Shell Nanocrystals.

    Science.gov (United States)

    Huang, Michael H; Rej, Sourav; Chiu, Chun-Ya

    2015-06-01

    The ability to prepare Au-Cu2O core-shell nanocrystals with precise control over particle size and shape has led to the discovery of facet-dependent optical properties in cuprous oxide crystals. The use of Au cores not only allows the successful formation of Au-Cu2O core-shell nanocrystals with tunable sizes, but also enables the observation of facet-dependent optical properties in these crystals through the Au localized surface plasmon resonance (LSPR) absorption band. By tuning the Cu2O shell morphology from rhombic dodecahedral to octahedral and cubic structures, and thus the exposed facets, the Au LSPR band position can be widely tuned. Such facet-dependent optical effects are not observed in bimetallic Au-Ag and Au-Pd core-shell nanocrystals with the same precisely tuned particle sizes and shapes. It is believed that similar facet-dependent optical properties could be observed in other ionic solids and other metal-metal oxide systems. The unusually large degree of plasmonic band tuning covering from the visible to the near-infrared region in this type of nanostructure should be quite useful for a range of plasmonic applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Temperature Dependence of Single-Event Burnout in N-Channel Power MOSFET’s

    Science.gov (United States)

    1994-03-15

    AD-A277 921 P O Temperature Dependence of Single-Event Burnout in N-Channel Power MOSFETs 15 March 1994 Prepared by G. H. JOHNSON, R. D. SCHRIMPF...Makimunm 200 words) The temperature dependence of single-event burnout (SEB) in n-channel power metal-oxide- semiconductor field effect transistors...power MOSFET is tmned off (blocking a large The temperature dependence of single-event burn drain-source bias) [3]. Previous burnout modeling has beow

  3. Temperature Dependent Seed Germination of Dalbergia nigra Allem (Leguminosae

    Directory of Open Access Journals (Sweden)

    Fernanda G. A. Ferraz-Grande

    2001-12-01

    Full Text Available The germination of endangered species Dalbergia nigra was studied and 30.5° C was found as optimum temperature, although the species presented a broad temperature range where germination occurs and light had no effect. The analysis of kinetics of seed germination confirmed the asynchronized germination below and above the optimum temperature. The light insensitive seed and germination also at high temperatures indicated that D. nigra could occur both in understories and gaps where the mean temperature was high.A germinação de sementes de Dalbergia nigra Allem, comumente conhecida como jacarandá-da-Bahia, caviúna, jacarandá, uma espécie em extinção, foi estudada e determinamos a temperatura ótima de 30,5° C. A espécie apresenta uma ampla faixa de temperatura onde a germinação ocorre e a luz branca não influenciou o processo. A análise da cinética da germinação de sementes confirma a germinação não sincronizada acima e abaixo da temperatura ótima de germinação. A semente insensível à luz e a germinação também em altas temperaturas indicam que D. nigra pode ocorrer tanto na sombra da vegetação bem como em clareiras.

  4. Temperature and mineral dust variability recorded in two low-accumulation Alpine ice cores over the last millennium

    Directory of Open Access Journals (Sweden)

    P. Bohleber

    2018-01-01

    Full Text Available Among ice core drilling sites in the European Alps, Colle Gnifetti (CG is the only non-temperate glacier to offer climate records dating back at least 1000 years. This unique long-term archive is the result of an exceptionally low net accumulation driven by wind erosion and rapid annual layer thinning. However, the full exploitation of the CG time series has been hampered by considerable dating uncertainties and the seasonal summer bias in snow preservation. Using a new core drilled in 2013 we extend annual layer counting, for the first time at CG, over the last 1000 years and add additional constraints to the resulting age scale from radiocarbon dating. Based on this improved age scale, and using a multi-core approach with a neighbouring ice core, we explore the time series of stable water isotopes and the mineral dust proxies Ca2+ and insoluble particles. Also in our latest ice core we face the already known limitation to the quantitative use of the stable isotope variability based on a high and potentially non-stationary isotope/temperature sensitivity at CG. Decadal trends in Ca2+ reveal substantial agreement with instrumental temperature and are explored here as a potential site-specific supplement to the isotope-based temperature reconstruction. The observed coupling between temperature and Ca2+ trends likely results from snow preservation effects and the advection of dust-rich air masses coinciding with warm temperatures. We find that if calibrated against instrumental data, the Ca2+-based temperature reconstruction is in robust agreement with the latest proxy-based summer temperature reconstruction, including a Little Ice Age cold period as well as a medieval climate anomaly. Part of the medieval climate period around AD 1100–1200 clearly stands out through an increased occurrence of dust events, potentially resulting from a relative increase in meridional flow and/or dry conditions over the Mediterranean.

  5. On the Temperature Dependence of the Shear Viscosity and Holography

    CERN Document Server

    Cremonini, Sera; Szepietowski, Phillip

    2012-01-01

    We examine the structure of the shear viscosity to entropy density ratio eta/s in holographic theories of gravity coupled to a scalar field, in the presence of higher derivative corrections. Thanks to a non-trivial scalar field profile, eta/s in this setup generically runs as a function of temperature. In particular, its temperature behavior is dictated by the shape of the scalar potential and of the scalar couplings to the higher derivative terms. We consider a number of dilatonic setups, but focus mostly on phenomenological models that are QCD-like. We determine the geometric conditions needed to identify local and global minima for eta/s as a function of temperature, which translate to restrictions on the signs and ranges of the higher derivative couplings. Finally, such restrictions lead to an holographic argument for the existence of a global minimum for eta/s in these models, at or above the deconfinement transition.

  6. Temperature-dependent permittivity of annealed and unannealed gold films

    CERN Document Server

    Shen, Po-Ting; Lin, Cheng-Wei; Liu, Hsiang-Lin; Chang, Chih-Wei; Chu, Shi-Wei

    2016-01-01

    Due to local field enhancement and subwavelength confinements, nano-plasmonics provide numerous novel applications. Simultaneously, as an efficient nanoscale heat generator from inherent absorption, thermo-plasmonics is emerging as an important branch. However, although significant temperature increase is involved in applications, detailed characterization of metal permittivity at different temperatures is lacking. In this work, we extract the permittivity of gold film from 300K to the annealing temperature of 570K. By comparing annealed and unannealed films, more than one-order difference in thermo-derivative of permittivity is revealed, resulting in unexpectedly large variation of plasmonic properties. Our result is valuable not only for characterizing extensively used unannealed nanoparticles, but also for designing future thermo-nano-plasmonic systems.

  7. A Study of the Temperature Dependence of Bienzyme Systems and Enzymatic Chains

    Directory of Open Access Journals (Sweden)

    N. V. Kotov

    2007-01-01

    Full Text Available It is known that most enzyme-facilitated reactions are highly temperature dependent processes. In general, the temperature coefficient, Q10, of a simple reaction reaches 2.0–3.0. Nevertheless, some enzyme-controlled processes have much lower Q10 (about 1.0, which implies that the process is almost temperature independent, even if individual reactions involved in the process are themselves highly temperature dependent. In this work, we investigate a possible mechanism for this apparent temperature compensation: simple mathematical models are used to study how varying types of enzyme reactions are affected by temperature. We show that some bienzyme-controlled processes may be almost temperature independent if the modules involved in the reaction have similar temperature dependencies, even if individually, these modules are strongly temperature dependent. Further, we show that in non-reversible enzyme chains the stationary concentrations of metabolites are dependent only on the relationship between the temperature dependencies of the first and last modules, whilst in reversible reactions, there is a dependence on every module. Our findings suggest a mechanism by which the metabolic processes taking place within living organisms may be regulated, despite strong variation in temperature.

  8. Regional thermal specialisation in a mammal: temperature affects power output of core muscle more than that of peripheral muscle in adult mice (Mus musculus).

    Science.gov (United States)

    James, Rob S; Tallis, Jason; Angilletta, Michael J

    2015-01-01

    In endotherms, such as mammals and birds, internal organs can specialise to function within a narrow thermal range. Consequently, these organs should become more sensitive to changes in body temperature. Yet, organs at the periphery of the body still experience considerable fluctuations in temperature, which could select for lower thermal sensitivity. We hypothesised that the performance of soleus muscle taken from the leg would depend less on temperature than would the performance of diaphragm muscle taken from the body core. Soleus and diaphragm muscles were isolated from mice and subjected to isometric and work-loop studies to analyse mechanical performance at temperatures between 15 and 40 °C. Across this thermal range, soleus muscle took longer to generate isometric force and longer to relax, and tended to produce greater normalised maximal force (stress) than did diaphragm muscle. The time required to produce half of maximal force during isometric tetanus and the time required to relax half of maximal force were both more sensitive to temperature in soleus than they were in diaphragm. However, thermal sensitivities of maximal force during isometric tetani were similar for both muscles. Consistent with our hypothesis, power output (the product of speed and force) was greater in magnitude and more thermally sensitive in diaphragm than it was in soleus. Our findings, when combined with previous observations of muscles from regionally endothermic fish, suggest that endothermy influences the thermal sensitivities of power output in core and peripheral muscles.

  9. Temperature-Dependent Magnetoelectric Effect from First Principles

    NARCIS (Netherlands)

    Mostovoy, Maxim; Scaramucci, Andrea; Spaldin, Nicola A.; Delaney, Kris T.

    2010-01-01

    We show that nonrelativistic exchange interactions and spin fluctuations can give rise to a linear magnetoelectric effect in collinear antiferromagnets at elevated temperatures that can exceed relativistic magnetoelectric responses by more than 1 order of magnitude. We show how symmetry arguments,

  10. Temperature-Dependent Nickel Release from Nickel-Alloys

    DEFF Research Database (Denmark)

    Menne, T.; Solgaard, Per Bent

    1979-01-01

    Ni release from Danish 1 krone coins and metal buttons from jeans was measured at 20.degree. C in distilled water and at 35.degree. C in distilled water and synthetic sweat. The temperature elevation increased the Ni release from the coins and 2 of the 9 metal buttons investigated. The sensitivity...

  11. Temperature dependence studies on the electro-oxidation of ...

    Indian Academy of Sciences (India)

    Administrator

    agreed that the electro-oxidation of methanol was improved by raising the temperature and ruthenium modification. Keywords. Cyclic voltammetry; electrochemical impedance spectroscopy; activation energy; fuel cell; alcohol. 1. Introduction. The use of hydrogen carrier like alcohol as alterna- tive fuels in the direct alcohol ...

  12. Temperature dependent small-angle neutron scattering of CTABr ...

    Indian Academy of Sciences (India)

    Small-angle neutron scattering studies have been carried out to check the structural integrity of citryltrimethylammonium bromide (CTABr) micelles in a magnetic fluid for different magnetic fluid concentrations at two different temperatures 303 and 333 K. It is found that the CTABr micelles grow with increasing magnetic fluid ...

  13. Temperature dependence of transport coefficients of 'simple liquid ...

    African Journals Online (AJOL)

    ... (MD) simulations has been investigated. The study carried out at two densities, r* = 0.60 and r* = 0.95. Result shows erratic variations of the shear viscosity in the two lattices structures. KeyWords: Temperature effect, face centred, simple cubic, transport properties, simple liquid. [Global Jnl Pure & Appl. Sci. Vol.9(3) 2003: ...

  14. Temperature dependent small-angle neutron scattering of CTABr ...

    Indian Academy of Sciences (India)

    K. It is found that the CTABr micelles grow with increasing magnetic fluid concentration and there is a decrease in the micellar size with increase in temperature. Keywords. Magnetic fluids; micellar solutions; small-angle neutron scattering. .... studies [16] where viscosity increases when the magnetic fluid concentration in the.

  15. Second law analysis of a reacting temperature dependent viscous ...

    African Journals Online (AJOL)

    In this paper, entropy generation during the flow of a reacting viscous fluid through an inclined Channel with isothermal walls are investigated. The coupled energy and momentum equations were solved numerically. Previous results in literature (Adesanya et al 2006 [[17]) showed both velocity and temperature have two ...

  16. Temperature-dependent gas transport and its correlation with kinetic ...

    Indian Academy of Sciences (India)

    Activation energies for permeation of polymer nanocomposite membrane have not been reported so far. A tradeoff relation between permeability and selectivity shows that as permeability increases, the selectivity decreases. Attempts have been made to see this trade-off relation at relatively higher temperature. It is found ...

  17. Direct method for calculating temperature-dependent transport properties

    NARCIS (Netherlands)

    Liu, Y.; Yuan, Z.; Wesselink, R.J.H.; Starikov, A.A.; van Schilfgaarde, M.; Kelly, Paul J.

    2015-01-01

    We show how temperature-induced disorder can be combined in a direct way with first-principles scattering theory to study diffusive transport in real materials. Excellent (good) agreement with experiment is found for the resistivity of Cu, Pd, Pt (and Fe) when lattice (and spin) disorder are

  18. Temperature dependent scintillation properties of pure LaCl3

    NARCIS (Netherlands)

    Bizarri, G.; Dorenbos, P.

    2009-01-01

    The scintillation yield, scintillation decay, and x-ray excited emission of pure LaCl3 was studied as a function of temperature between 80 and 600 K. Two broad band emissions centered around 325 nm and 400 nm were identified and correlated to emissions from two localized exciton states named STE1

  19. Temperature dependence of the dielectric properties of rubber wood

    Science.gov (United States)

    Mohammed Firoz Kabir; Wan M. Daud; Kaida B. Khalid; Haji A.A. Sidek

    2001-01-01

    The effect of temperature on the dielectric properties of rubber wood was investigated in three anisotropic directions—longitudinal, radial, and tangential, and at different measurement frequencies. Low frequency measurements were conducted with a dielectric spectrometer, and high frequencies used microwave applied with open-ended coaxial probe sensors. Dielectric...

  20. Temperature Dependence of the Stability of Ion Pair Interactions ...

    Indian Academy of Sciences (India)

    Abstract. An understanding of the determinants of the thermal stability of thermostable proteins is expected to enable design of enzymes that can be employed in industrial biocatalytic processes carried out at high temperatures. A major factor that has been proposed to stabilize thermostable proteins is the high occurrence.

  1. Temperature Dependence of the Stability of Ion Pair Interactions ...

    Indian Academy of Sciences (India)

    An understanding of the determinants of the thermal stability of thermostable proteins is expected to enable design of enzymes that can be employed in industrial biocatalytic processes carried out at high temperatures. A major factor that has been proposed to stabilize thermostable proteins is the high occurrenceof salt ...

  2. The external field dependence of the BCS critical temperature

    DEFF Research Database (Denmark)

    Frank, Rupert L.; Hainzl, Christian; Seiringer, Robert

    2016-01-01

    We consider the Bardeen-Cooper-Schrieffer free energy functional for particles interacting via a two-body potential on a microscopic scale and in the presence of weak external fields varying on a macroscopic scale. We study the influence of the external fields on the critical temperature. We show...

  3. Molecular players involved in temperature-dependent sex determination and sex differentiation in Teleost fish

    Science.gov (United States)

    2014-01-01

    The molecular mechanisms that underlie sex determination and differentiation are conserved and diversified. In fish species, temperature-dependent sex determination and differentiation seem to be ubiquitous and molecular players involved in these mechanisms may be conserved. Although how the ambient temperature transduces signals to the undifferentiated gonads remains to be elucidated, the genes downstream in the sex differentiation pathway are shared between sex-determining mechanisms. In this paper, we review recent advances on the molecular players that participate in the sex determination and differentiation in fish species, by putting emphasis on temperature-dependent sex determination and differentiation, which include temperature-dependent sex determination and genetic sex determination plus temperature effects. Application of temperature-dependent sex differentiation in farmed fish and the consequences of temperature-induced sex reversal are discussed. PMID:24735220

  4. Hepatitis C virus core protein induces hepatic steatosis via Sirt1-dependent pathway.

    Science.gov (United States)

    Zhang, Chuanhai; Wang, Jingjing; Zhang, Hanlin; Liu, Shunai; Lee, Hyuek Jong; Jin, Wanzhu; Cheng, Jun

    2017-09-12

    Hepatic steatosis is a common feature of patients with chronic hepatitis C. Previous reports have shown that the overexpression of hepatitis C virus core-encoding sequences (hepatitis C virus genotypes 3a and 1b) significantly induces intracellular triglyceride accumulation. However, the underlying mechanism has not yet been revealed. To investigate whether Sirt1 is involved in hepatitis C virus-mediated hepatic steatosis, the overexpression of hepatitis C virus core 1b protein and Sirt1 and the knockdown of Sirt1 in HepG2 cells were performed. To confirm the results of the cellular experiment liver-specific Sirt1 KO mice with lentivirus-mediated hepatitis C virus core 1b overexpression were studied. Our results show that hepatitis C virus core 1b protein overexpression led to the accumulation of triglycerides in HepG2 cells. Notably the expression of PPARγ2 was dramatically increased at both the mRNA and protein levels by hepatitis C virus core 1b overexpression. The protein expression of Sirt1 is an upstream regulator of PPARγ2 and was also significantly increased after core 1b overexpression. In addition, the overexpression or knockdown of Sirt1 expression alone was sufficient to modulate p300-mediated PPARγ2 deacetylation. In vivo studies showed that hepatitis C virus core protein 1b-induced hepatic steatosis was attenuated in liver-specific Sirt1 KO mice by downregulation of PPARγ2 expression. Sirt1 mediates hepatitis C virus core protein 1b-induced hepatic steatosis by regulation of PPARγ2 expression. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Temperature dependence of planktonic metabolism in the ocean

    Science.gov (United States)

    Regaudie-De-Gioux, A.; Duarte, C. M.

    2012-03-01

    Standard metabolic theory predicts that both respiration and photosynthesis should increase with increasing temperature, albeit at different rates. However, test of this prediction for ocean planktonic communities is limited, despite the broad consequences of this prediction in the present context of global ocean warming. We compiled a large data set on volumetric planktonic metabolism in the open ocean and tested the relationship between specific metabolic rates and water temperature. The relationships derived are consistent with predictions derived from metabolic theory of ecology, yielding activation energy for planktonic metabolism consistent with predictions from the metabolic theory. These relationships can be used to predict the effect of warming on ocean metabolism and, thus, the role of planktonic communities in the flow of carbon in the global ocean.

  6. Temperature dependence of electron impact ionization coefficient in bulk silicon

    Science.gov (United States)

    Ahmed, Mowfaq Jalil

    2017-09-01

    This work exhibits a modified procedure to compute the electron impact ionization coefficient of silicon for temperatures between 77 and 800K and electric fields ranging from 70 to 400 kV/cm. The ionization coefficients are computed from the electron momentum distribution function through solving the Boltzmann transport equation (BTE). The arrangement is acquired by joining Legendre polynomial extension with BTE. The resulting BTE is solved by differences-differential method using MATLAB®. Six (X) equivalent ellipsoidal and non-parabolic valleys of the conduction band of silicon are taken into account. Concerning the scattering mechanisms, the interval acoustic scattering, non-polar optical scattering and II scattering are taken into consideration. This investigation showed that the ionization coefficients decrease with increasing temperature. The overall results are in good agreement with previous experimental and theoretical reported data predominantly at high electric fields.

  7. Temperature dependent transport characteristics of graphene/n-Si diodes

    NARCIS (Netherlands)

    Parui, S.; Ruiter, R.; Zomer, P. J.; Wojtaszek, M.; van Wees, B. J.; Banerjee, T.

    2014-01-01

    Realizing an optimal Schottky interface of graphene on Si is challenging, as the electrical transport strongly depends on the graphene quality and the fabrication processes. Such interfaces are of increasing research interest for integration in diverse electronic devices as they are thermally and

  8. Temperature and concentration dependences of the activity coefficients of electrolytes

    Science.gov (United States)

    Tikhonov, N. A.; Sidel'nikov, G. B.

    2017-10-01

    A model has been suggested that describes the interaction of hydrated ions in electrolytes and allows the calculation of the main physical effects. The model explains the character of the curves of the activity coefficients. Binary solutions of uni-univalent electrolytes at concentrations from zero to several moles per liter and at temperatures from zero to a few dozens of degrees were studied. The results of simulation were verified by comparing them with many literature data.

  9. Temperature Dependence of Light Transmittance in Polymer Dispersed Liquid Crystals

    OpenAIRE

    Bloisi, F.; Ruocchio, C.; Vicari, L

    1997-01-01

    Polymer Dispersed Liquid Crystals (PDLC) axe composite materials made of a dispersion of liquid crystal droplets in a polymeric matrix. When the liquid crystal is in the nematic phase, droplets appeax as optically anisotropic spheres and the material is opaque white. Sample transmittance is a function of the temperature. If the liquid crystal refractive index in the isotropic phase is equal to the one of the polymer, after the nematic-isotropic transition the material is transparent. We prese...

  10. Characterization and Temperature Dependence of Arctic Micromonas polaris Viruses.

    Science.gov (United States)

    Maat, Douwe S; Biggs, Tristan; Evans, Claire; van Bleijswijk, Judith D L; van der Wel, Nicole N; Dutilh, Bas E; Brussaard, Corina P D

    2017-06-02

    Global climate change-induced warming of the Artic seas is predicted to shift the phytoplankton community towards dominance of smaller-sized species due to global warming. Yet, little is known about their viral mortality agents despite the ecological importance of viruses regulating phytoplankton host dynamics and diversity. Here we report the isolation and basic characterization of four prasinoviruses infectious to the common Arctic picophytoplankter Micromonas. We furthermore assessed how temperature influenced viral infectivity and production. Phylogenetic analysis indicated that the putative double-stranded DNA (dsDNA) Micromonas polaris viruses (MpoVs) are prasinoviruses (Phycodnaviridae) of approximately 120 nm in particle size. One MpoV showed intrinsic differences to the other three viruses, i.e., larger genome size (205 ± 2 vs. 191 ± 3 Kb), broader host range, and longer latent period (39 vs. 18 h). Temperature increase shortened the latent periods (up to 50%), increased the burst size (up to 40%), and affected viral infectivity. However, the variability in response to temperature was high for the different viruses and host strains assessed, likely affecting the Arctic picoeukaryote community structure both in the short term (seasonal cycles) and long term (global warming).

  11. Characterization and Temperature Dependence of Arctic Micromonas polaris Viruses

    Science.gov (United States)

    Maat, Douwe S.; Biggs, Tristan; Evans, Claire; van Bleijswijk, Judith D. L.; van der Wel, Nicole N.; Dutilh, Bas E.; Brussaard, Corina P. D.

    2017-01-01

    Global climate change-induced warming of the Artic seas is predicted to shift the phytoplankton community towards dominance of smaller-sized species due to global warming. Yet, little is known about their viral mortality agents despite the ecological importance of viruses regulating phytoplankton host dynamics and diversity. Here we report the isolation and basic characterization of four prasinoviruses infectious to the common Arctic picophytoplankter Micromonas. We furthermore assessed how temperature influenced viral infectivity and production. Phylogenetic analysis indicated that the putative double-stranded DNA (dsDNA) Micromonas polaris viruses (MpoVs) are prasinoviruses (Phycodnaviridae) of approximately 120 nm in particle size. One MpoV showed intrinsic differences to the other three viruses, i.e., larger genome size (205 ± 2 vs. 191 ± 3 Kb), broader host range, and longer latent period (39 vs. 18 h). Temperature increase shortened the latent periods (up to 50%), increased the burst size (up to 40%), and affected viral infectivity. However, the variability in response to temperature was high for the different viruses and host strains assessed, likely affecting the Arctic picoeukaryote community structure both in the short term (seasonal cycles) and long term (global warming). PMID:28574420

  12. Temperature dependence of Henry's law constants of metolachlor and diazinon.

    Science.gov (United States)

    Feigenbrugel, Valérie; Le Calvé, Stéphane; Mirabel, Philippe

    2004-10-01

    A dynamic system based on the water/air equilibrium at the interface within the length of a microporous tube has been used to determine experimentally the Henry's law constants (HLC) of two pesticides: metolachlor and diazinon. The measurements were conducted over the temperature range 283-301 K. At 293 K, HLCs values are (42.6+/-2.8) x 10(3) (in units of M atm(-1)) for metolachlor and (3.0+/-0.3)x10(3) for diazinon. The obtained data were used to derive the following Arrhenius expressions: HLC=(3.0+/-0.4) x 10(-11) exp((10,200+/-1,000)/T) for metolachlor and (7.2+/-0.5) x 10(-15) exp((11,900+/-700)/T) for diazinon. At a cumulus cloud temperature of 283 K, the fractions of metolachlor and diazinon in the atmospheric aqueous phase are about 57% and 11% respectively. In order to evaluate the impact of a cloud on the atmospheric chemistry of both studied pesticides, we compare also their atmospheric lifetimes under clear sky (tau(gas)), and cloudy conditions (tau(multiphase)). The calculated multiphase lifetimes (in units of hours) are significantly lower than those in gas phase at a cumulus temperature of 283 K (in parentheses): metolachlor, 0.4 (2.9); diazinon, 1.9 (5.0).

  13. Efficiency and temperature dependence of water removal by membrane dryers

    Science.gov (United States)

    Leckrone, K. J.; Hayes, J. M.

    1997-01-01

    The vapor pressure of water in equilibrium with sorption sites within a Nafion membrane is given by log P(WN) = -3580/T + 10.01, where P(WN) is expressed in Torr and T is the membrane temperature, in kelvin. The efficiency of dryers based on selective permeation of water through Nafion can thus be enhanced by cooling the membrane. Residual water in effluents exceeds equilibrium levels if insufficient time is allowed for water to diffuse to the membrane surface as gas passes through the dryer. For tubular configurations, this limitation can be avoided if L > or = Fc(10(3.8)/120 pi D), where L is the length of the tubular membrane, in centimeters, Fc is the gas flow rate, in mL/ min, and D is the diffusion coefficient for water in the carrier gas at the operating temperature of the dryer, in cm2/s. An efficient dryer that at room temperature dries gas to a dew point of -61 degrees C is described; the same dryer maintained at 0 degrees C yields a dew point of -80 degrees C and removes water as effectively as Mg(ClO4)2 or a dry ice/acetone slush. The use of Nafion membranes to construct devices capable of delivering gas streams with low but precisely controlled humidities is discussed.

  14. Variant 22: Spatially-Dependent: Transient Processes in MOX Fueled Core

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovichev, A.M.

    2001-09-28

    This work is a part of Joint U.S./Russian Project with Weapons-Grade Plutonium Disposition in VVER Reactors and presents the results of spatial kinetics calculational benchmarks. The examinations were carried out with the following purposes: to verify one of spatial neutronic kinetics model elaborated in KI, to understand sensibility of the model to neutronics difference of UOX and MOX cores, and to compare in future point and spatial kinetics models (on the base of a set of selected accidents) in view of eventual creation of RELAP option with 3D kinetics. The document contains input data and results of model operation of three emergency dynamic processes in the VVER-1000 core: (1) Central control rod ejection by pressure drop caused by destroying of the moving mechanism cover. (2) Overcooling of the reactor core caused by steam line rupture and non-closure of steam generator stop valve. (3) The boron dilution of coolant in part of the VVER-1000 core caused by penetration of the distillate slug into the core at start up of non-working loop. These accidents have been applied to: (1) Uranium reference core that is the so-called Advanced VVER-1000 core with Zirconium fuel pins claddings and guide tubes. A number of assemblies contained 18 boron BPRs while first year operating. (2) MOX core with about 30% MOX fuel. At a solving it was supposed that MOX-fuel thermophysical characteristics are identical to uranium fuel ones. The calculations were carried out with the help of the program NOSTRA/1/, simulating VVER dynamics that is briefly described in Chapter 1. Chapter 3 contains the description of reference Uranium and MOX cores that are used in calculations. The neutronics calculations of MOX core with about 30% MOX fuel are named ''Variant 2 1''. Chapters 4-6 contain the calculational results of three above mentioned benchmark accidents that compose in a whole the ''Variant 22''.

  15. Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties.

    Science.gov (United States)

    Zhang, Fan; Che, Renchao; Li, Xiaomin; Yao, Chi; Yang, Jianping; Shen, Dengke; Hu, Pan; Li, Wei; Zhao, Dongyuan

    2012-06-13

    Lanthanide-doped upconversion nanoparticles have shown considerable promise in solid-state lasers, three-dimensional flat-panel displays, and solar cells and especially biological labeling and imaging. It has been demonstrated extensively that the epitaxial coating of upconversion (UC) core crystals with a lattice-matched shell can passivate the core and enhance the overall upconversion emission intensity of the materials. However, there are few papers that report a precise link between the shell thickness of core/shell nanoparticles and their optical properties. This is mainly because rare earth fluoride upconversion core/shell structures have only been inferred from indirect measurements to date. Herein, a reproducible method to grow a hexagonal NaGdF(4) shell on NaYF(4):Yb,Er nanocrystals with monolayer control thickness is demonstrated for the first time. On the basis of the cryo-transmission electron microscopy, rigorous electron energy loss spectroscopy, and high-angle annular dark-field investigations on the core/shell structure under a low operation temperature (96 K), direct imaging the NaYF(4):Yb,Er@NaGdF(4) nanocrystal core/shell structure at the subnanometer level was realized for the first time. Furthermore, a strong linear link between the NaGdF(4) shell thickness and the optical response of the hexagonal NaYF(4):Yb,Er@NaGdF(4) core/shell nanocrystals has been established. During the epitaxial growth of the NaGdF(4) shell layer by layer, surface defects of the nanocrystals can be gradually passivated by the homogeneous shell deposition process, which results in the obvious enhancement in overall UC emission intensity and lifetime and is more resistant to quenching by water molecules.

  16. THE DEPENDENCE OF PRESTELLAR CORE MASS DISTRIBUTIONS ON THE STRUCTURE OF THE PARENTAL CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Parravano, Antonio [Centro De Fisica Fundamental, Universidad de Los Andes, Merida (Venezuela, Bolivarian Republic of); Sanchez, Nestor [S. D. Astronomia y Geodesia, Fac. CC. Matematicas, Universidad Complutense de Madrid (Spain); Alfaro, Emilio J. [Instituto de Astrofisica de Andalucia (CSIC), Granada (Spain)

    2012-08-01

    The mass distribution of prestellar cores is obtained for clouds with arbitrary internal mass distributions using a selection criterion based on the thermal and turbulent Jeans mass and applied hierarchically from small to large scales. We have checked this methodology by comparing our results for a log-normal density probability distribution function with the theoretical core mass function (CMF) derived by Hennebelle and Chabrier, namely a power law at large scales and a log-normal cutoff at low scales, but our method can be applied to any mass distributions representing a star-forming cloud. This methodology enables us to connect the parental cloud structure with the mass distribution of the cores and their spatial distribution, providing an efficient tool for investigating the physical properties of the molecular clouds that give rise to the prestellar core distributions observed. Simulated fractional Brownian motion (fBm) clouds with the Hurst exponent close to the value H = 1/3 give the best agreement with the theoretical CMF derived by Hennebelle and Chabrier and Chabrier's system initial mass function. Likewise, the spatial distribution of the cores derived from our methodology shows a surface density of companions compatible with those observed in Trapezium and Ophiucus star-forming regions. This method also allows us to analyze the properties of the mass distribution of cores for different realizations. We found that the variations in the number of cores formed in different realizations of fBm clouds (with the same Hurst exponent) are much larger than the expected root N statistical fluctuations, increasing with H.

  17. Nonmagnetic impurities and roughness effects on the finite temperature magnetic properties of core-shell spherical nanoparticles with antiferromagnetic interface coupling

    Science.gov (United States)

    Vatansever, Erol; Yüksel, Yusuf

    2017-11-01

    Being inspired by a recent study (Dimitriadis et al., 2015), we study the finite temperature magnetic properties of the spherical nanoparticles with antiferromagnetic interface coupling including quenched (i) surface and (ii) interface nonmagnetic impurities (static holes) as well as (iii) roughened interface effects. The particle core is composed of ferromagnetic spins, and it is surrounded by a ferromagnetic shell. By means of Monte Carlo simulation based on an improved Metropolis algorithm, we implement the nanoparticles using classical Heisenberg Hamiltonians. Particular attention has also been devoted to elucidate the effects of the particle size on the thermal and magnetic phase transition features of these systems. For nanoparticles with imperfect surface layers, it is found that bigger particles exhibit lower compensation point which decreases gradually with increasing amount of vacancies, and vanishes at a critical value. In view of nanoparticles with diluted interface, our Monte Carlo simulation results suggest that there exists a region in the disorder spectrum where compensation temperature linearly decreases with decreasing dilution parameter. For nanoparticles with roughened interface, it is observed that the degree of roughness does not play any significant role on the variation of both the compensation point and critical temperature. However, the low temperature saturation magnetizations of the core and shell interface regions sensitively depend on the roughness parameter.

  18. Temperature dependence of electron mobility in N-type organic molecular crystals: Theoretical study

    Science.gov (United States)

    Lin, Lili; Fan, Jianzhong; Jiang, Supu; Wang, Zhongjie; Wang, Chuan-Kui

    2017-11-01

    The temperature dependence of electron mobility in three Fx-TCNQ molecular crystals is studied. The electron mobility calculated based on Marcus charge transfer rate for all three molecules increases, as the temperature becomes high. Nevertheless, the electron mobility calculated based on quantum charge transfer rate shows opposite temperature dependence and indicates bandlike transport mechanism. Similar intrinsic transport properties are obtained for three systems. The different temperature dependence for Fx-TCNQ molecules detected should be induced by different transfer paths or external factors. Our investigation could help one better understand experimental results and provide intuitive view on the transfer mechanism in molecular crystals.

  19. Temperature dependent simulation of diamond depleted Schottky PIN diodes

    Science.gov (United States)

    Hathwar, Raghuraj; Dutta, Maitreya; Koeck, Franz A. M.; Nemanich, Robert J.; Chowdhury, Srabanti; Goodnick, Stephen M.

    2016-06-01

    Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context, we use Silvaco® Atlas, a drift-diffusion based commercial software, to model diamond based power devices. The models used in Atlas were modified to account for both variable range and nearest neighbor hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond. The models were fit to experimentally reported resistivity data over a wide range of doping concentrations and temperatures. We compare to recent data on depleted diamond Schottky PIN diodes demonstrating low turn-on voltages and high reverse breakdown voltages, which could be useful for high power rectifying applications due to the low turn-on voltage enabling high forward current densities. Three dimensional simulations of the depleted Schottky PIN diamond devices were performed and the results are verified with experimental data at different operating temperatures

  20. Temperature dependent simulation of diamond depleted Schottky PIN diodes

    Energy Technology Data Exchange (ETDEWEB)

    Hathwar, Raghuraj; Dutta, Maitreya; Chowdhury, Srabanti; Goodnick, Stephen M. [Department of Electrical Engineering, Arizona State University, Tempe, Arizona 85287-8806 (United States); Koeck, Franz A. M.; Nemanich, Robert J. [Department of Physics, Arizona State University, Tempe, Arizona 85287-8806 (United States)

    2016-06-14

    Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context, we use Silvaco{sup ®} Atlas, a drift-diffusion based commercial software, to model diamond based power devices. The models used in Atlas were modified to account for both variable range and nearest neighbor hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond. The models were fit to experimentally reported resistivity data over a wide range of doping concentrations and temperatures. We compare to recent data on depleted diamond Schottky PIN diodes demonstrating low turn-on voltages and high reverse breakdown voltages, which could be useful for high power rectifying applications due to the low turn-on voltage enabling high forward current densities. Three dimensional simulations of the depleted Schottky PIN diamond devices were performed and the results are verified with experimental data at different operating temperatures.

  1. Temperature-dependent surface nanomechanical properties of a thermoplastic nanocomposite.

    Science.gov (United States)

    Huang, Hui; Dobryden, Illia; Ihrner, Niklas; Johansson, Mats; Ma, Houyi; Pan, Jinshan; Claesson, Per M

    2017-05-15

    In polymer nanocomposites, particle-polymer interactions influence the properties of the matrix polymer next to the particle surface, providing different physicochemical properties than in the bulk matrix. This region is often referred to as the interphase, but detailed characterization of its properties remains a challenge. Here we employ two atomic force microscopy (AFM) force methods, differing by a factor of about 15 in probing rate, to directly measure the surface nanomechanical properties of the transition region between filler particle and matrix over a controlled temperature range. The nanocomposite consists of poly(ethyl methacrylate) (PEMA) and poly(isobutyl methacrylate) (PiBMA) with a high concentration of hydrophobized silica nanoparticles. Both AFM methods demonstrate that the interphase region around a 40-nm-sized particle located on the surface of the nanocomposite could extend to 55-70nm, and the interphase exhibits a gradient distribution in surface nanomechanical properties. However, the slower probing rate provides somewhat lower numerical values for the surface stiffness. The analysis of the local glass transition temperature (Tg) of the interphase and the polymer matrix provides evidence for reduced stiffness of the polymer matrix at high particle concentration, a feature that we attribute to selective adsorption. These findings provide new insight into understanding the microstructure and mechanical properties of nanocomposites, which is of importance for designing nanomaterials. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Integrated optic current transducers incorporating photonic crystal fiber for reduced temperature dependence.

    Science.gov (United States)

    Chu, Woo-Sung; Kim, Sung-Moon; Oh, Min-Cheol

    2015-08-24

    Optical current transducers (OCT) are indispensable for accurate monitoring of large electrical currents in an environment suffering from severe electromagnetic interference. Temperature dependence of OCTs caused by its components, such as wave plates and optical fibers, should be reduced to allow temperature-independent operation. A photonic crystal fiber with a structural optical birefringence was incorporated instead of a PM fiber, and a spun PM fiber was introduced to overcome the temperature-dependent linear birefringence of sensing fiber coil. Moreover, an integrated optic device that provides higher stability than fiber-optics was employed to control the polarization and detect the phase of the sensed optical signal. The proposed OCT exhibited much lower temperature dependence than that from a previous study. The OCT satisfied the 0.5 accuracy class (IIEC 60044-8) and had a temperature dependence less than ± 1% for a temperature range of 25 to 78 °C.

  3. Temperature dependence of direct current conductivity in Ag-ED20 nanocomposite films

    Science.gov (United States)

    Novikov, G. F.; Rabenok, E. V.; Bogdanova, L. M.; Irzhak, V. I.

    2017-10-01

    The effect of silver nanoparticles (NPs) in the concentration range of ≤0.8 wt % have on direct current conductivity σdc of Ag-ED20 nanocomposite is studied by method of broadband dielectric spectroscopy (10-2-105 Hz) method of broadband dielectric spectroscopy. It is found that temperature dependence σdc consists of two sections: above the glass transition temperature ( T g), the dependence corresponds to the empirical Vogel-Fulcher-Tammann law (Vogel temperature T 0 does not depend on the NP concentration); below T g, the dependence is Arrhenius with activation energy E a ≈ 1.2 eV. In the region where T > T g, the σdc value grows along with NP concentration. It is concluded that the observed broken form of the temperature dependence is apparently due to a change in the conduction mechanism after the freezing of ion mobility at temperatures below T g.

  4. Benchmark problems of start-up core physics of High Temperature Engineering Test Reactor (HTTR)

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Kiyonobu; Nojiri, Naoki; Fujimoto, Nozomu; Nakano, Masaaki; Ando, Hiroei; Nagao, Yoshiharu; Nagaya, Yasunobu; Akino, Fujiyosi; Takeuchi, Mituo; Fujisaki, Shingo; Shiozawa, Shusaku [Japan Atomic Energy Research Institute JAERI, Ibaraki-ken (Japan)

    1998-09-01

    The experimental data of the HTTRs start-up core physics are useful to verify design codes of commercial HTGRs due to the similarities in the core size and excess reactivity. Form these viewpoints, it is significant to carry out the bench mark tests of design codes by using data of start-up core physics experiments planned for the HTTR. The evaluations of the first criticality, excess reactivity of annular cores, etc., are proposed for the benchmark problem. It was found from our precalculations that diffusion calculations provide larger excess reactivity and small number of fuel columns for the first criticality than Monte Carlo calculations. 19 refs.

  5. Temperature dependence of single-event burnout in n-channel power MOSFETs

    Science.gov (United States)

    Johnson, Gregory H.; Schrimpf, Ronald D.; Galloway, Kenneth F.; Koga, Rocky

    1992-12-01

    The temperature dependence of single-event burnout (SEB) in n-channel power MOSFETs is investigated experimentally and analytically. Experimental data are presented which indicate that the SEB susceptibility of the power MOSFET decreases with increasing temperature. A previously reported analytical model that describes the SEB mechanism is updated to include temperature variations. This model is shown to agree with the experimental trends.

  6. Temperature and relative humidity dependence of radiochromic film dosimeter response to gamma electron radiation

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Puhl, J.M.; Miller, A.

    1995-01-01

    on some earlier studies, their response functions have been reported to be dependent on the temperature and relative humidity during irradiation. The present study investigates differences in response over practical ranges of temperature, relative humidity, dose, and for different recent batches of films...... humidity) and should be calibrated under environmental conditions (temperature) at which they will be used routinely....

  7. Temperature and Humidity Dependence of a Polymer-Based Gas Sensor

    Science.gov (United States)

    Ryan, M. A.; Buehler, M. G.

    1997-01-01

    This paper quantifies the temperature and humidity dependence of a polymer-based gas sensor. The measurement and analysis of three polymers indicates that resistance changes in the polymer films, due to temperature and humidity, can be positive or negative. The temperature sensitivity ranged from +1600 to -320 ppm/nd the relative sensitivity ranged from +1100 to -260 ppm/%.

  8. Temperature dependence of electronic heat capacity in Holstein model of DNA

    Science.gov (United States)

    Fialko, N.; Sobolev, E.; Lakhno, V.

    2016-04-01

    The dynamics of charge migration was modeled to calculate temperature dependencies of its thermodynamic equilibrium values such as energy and electronic heat capacity in homogeneous adenine fragments. The energy varies from nearly polaron one at T ∼ 0 to midpoint of the conductivity band at high temperatures. The peak on the graph of electronic heat capacity is observed at the polaron decay temperature.

  9. Hartmann flow with temperature-dependent physical properties. [magnetohydrodynamics of liquid metal

    Science.gov (United States)

    Linn, G. T.; Walker, J. S.

    1978-01-01

    Attention is given to the steady, fully developed, one-dimensional flow of a liquid metal in which thermal conductivity, electrical conductivity, and viscosity are functions of temperature. It is found that the properties are decreasing functions of temperature and the first differences between temperature-dependent and constant properties are discussed.

  10. The temperature-dependent expression of the desaturase gene desA in Synechocystis PCC6803.

    Science.gov (United States)

    Los, D; Horvath, I; Vigh, L; Murata, N

    1993-02-22

    We examined the temperature-dependent regulation of the expression of the desA gene, which encodes delta 12 desaturase of Synechocystis PCC6803. The level of desA transcript increased 10-fold within 1 h upon a decrease in temperature from 36 degrees C to 22 degrees C. This suggests that the low-temperature-induced desaturation of membrane lipid fatty acids is regulated at the level of the expression of the desaturase genes. The accumulation of the desA transcript depended on the extent of temperature change over a certain threshold level, but not on the absolute temperature.

  11. Temperature-Dependent Diffusion Coefficients from ab initio Computations: Hydrogen in Nickel

    Energy Technology Data Exchange (ETDEWEB)

    E Wimmer; W Wolf; J Sticht; P Saxe; C Geller; R Najafabadi; G Young

    2006-03-16

    The temperature-dependent mass diffusion coefficient is computed using transition state theory. Ab initio supercell phonon calculations of the entire system provide the attempt frequency, the activation enthalpy, and the activation entropy as a function of temperature. Effects due to thermal lattice expansion are included and found to be significant. Numerical results for the case of hydrogen in nickel demonstrate a strong temperature dependence of the migration enthalpy and entropy. Trapping in local minima along the diffusion path has a pronounced effect especially at low temperatures. The computed diffusion coefficients with and without trapping bracket the available experimental values over the entire temperature range between 0 and 1400 K.

  12. Maternal separation produces, and a second separation enhances, core temperature and passive behavioral responses in guinea pig pups.

    Science.gov (United States)

    Hennessy, Michael B; Deak, Terrence; Schiml-Webb, Patricia A; Carlisle, Cohen W; O'Brien, Erin

    2010-06-16

    During separation in a novel cage, guinea pig pups exhibit passive behavior that appears due to increased proinflammatory activity. To determine if separation also produces a febrile response, the present study used telemetry to provide continuous core temperature measurement of pups exposed to a novel cage for 3h while either alone or with their mother on two consecutive days. Separation from the mother increased core temperature, with the clearest effects occurring early during separation the second day. The increased temperature was not associated with an increase in locomotor activity. Further, passive behavior during isolation exhibited pronounced sensitization from the first to second day of separation. These results show that separation produces an increase in core temperature in our testing situation, and suggest that this increase represents true fever. The findings also provide further support for the hypothesis that maternal separation induces aspects of an acute phase response in guinea pig pups. The potential role of proinflammatory activity in promoting change across days in temperature and behavior is discussed. (c) 2010 Elsevier Inc. All rights reserved.

  13. FDTD analysis of body-core temperature elevation in children and adults for whole-body exposure.

    Science.gov (United States)

    Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu

    2008-09-21

    The temperature elevations in anatomically based human phantoms of an adult and a 3-year-old child were calculated for radio-frequency whole-body exposure. Thermoregulation in children, however, has not yet been clarified. In the present study, we developed a computational thermal model of a child that is reasonable for simulating body-core temperature elevation. Comparison of measured and simulated temperatures revealed thermoregulation in children to be similar to that of adults. Based on this finding, we calculated the body-core temperature elevation in a 3-year-old child and an adult for plane-wave exposure at the basic restriction in the international guidelines. The body-core temperature elevation in the 3-year-old child phantom was 0.03 degrees C at a whole-body-averaged specific absorption rate of 0.08 W kg(-1), which was 35% smaller than in the adult female. This difference is attributed to the child's higher body surface area-to-mass ratio.

  14. An experimental study of postmortem ocular fluid and core temperature analysis in incidentally captured harbour porpoise (Phocoena phocoena

    Directory of Open Access Journals (Sweden)

    C Hood

    2003-07-01

    Full Text Available Determination of elapsed time since death in small cetaceans can be important to our understanding of the nature of their interactions with fishing operations. This pilot study was conducted to determine the potential diagnostic usefulness of ocular fluid (vitreous humour and core body temperature to estimate postmortem intervals in harbour porpoises (Phocoena phocoena. Core temperature and concentrations of various constituents of vitreous humour (glucose, urea, sodium, potassium, chloride, magnesium, calcium, and phosphorus were determined in 24 harbour porpoises incidentally caught in groundfish gillnets in the waters of the Gulf of Maine and the Bay of Fundy. These parameters were compared to published values for rectal temperatures and the serum concentrations of several selected elements in live harbour porpoises. Glucose in vitreous humour decreased in dead animals compared to serum values in live ones; its level was positively correlated with core temperature. Potassium and magnesium in vitreous humour increased following death. These data suggest that most animals analysed had been dead for several hours. For the present, the methodology affords researchers an approach that appears to hold some promise. However, the most practical technique requires testing animals with a known time of death in order to derive a set of curves for ocular fluid values and temperature versus time that are appropriate for a statistical presentation of predictability for the time since death.

  15. FDTD analysis of body-core temperature elevation in children and adults for whole-body exposure

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu [Department of Computer Science and Engineering, Nagoya Institute of Technology (Japan)], E-mail: ahirata@nitech.ac.jp

    2008-09-21

    The temperature elevations in anatomically based human phantoms of an adult and a 3-year-old child were calculated for radio-frequency whole-body exposure. Thermoregulation in children, however, has not yet been clarified. In the present study, we developed a computational thermal model of a child that is reasonable for simulating body-core temperature elevation. Comparison of measured and simulated temperatures revealed thermoregulation in children to be similar to that of adults. Based on this finding, we calculated the body-core temperature elevation in a 3-year-old child and an adult for plane-wave exposure at the basic restriction in the international guidelines. The body-core temperature elevation in the 3-year-old child phantom was 0.03 deg. C at a whole-body-averaged specific absorption rate of 0.08 W kg{sup -1}, which was 35% smaller than in the adult female. This difference is attributed to the child's higher body surface area-to-mass ratio.

  16. Temperature dependence of a refractive index sensor based on a macrobending micro-plastic optical fiber.

    Science.gov (United States)

    Jing, Ning; Teng, Chuanxin; Zhao, Xiaowei; Zheng, Jie

    2015-03-10

    We investigate the temperature dependence of a refractive index (RI) sensor based on a macrobending micro-plastic optical fiber (m-POF) both theoretically and experimentally. The performance of the RI sensor at different temperatures (10°C-70°C) is measured and simulated over an RI range from 1.33 to 1.45. It is found that the temperature dependent bending loss and RI measurement deviation monotonically change with temperature, and the RI deviation has a higher gradient with temperature variation for a higher measured RI. Because of the linear trend of temperature dependence of the sensor, it is feasible to correct for changes in ambient temperature.

  17. Core-shell structure dependent reactivity of Fe@Fe₂O₃ nanowires on aerobic degradation of 4-chlorophenol.

    Science.gov (United States)

    Ai, Zhihui; Gao, Zhiting; Zhang, Lizhi; He, Weiwei; Yin, Jun Jie

    2013-05-21

    In this study, core-shell Fe@Fe₂O₃ nanowires with different iron oxide shell thickness were synthesized through tuning water-aging time after the reduction of ferric ions with sodium borohydride without any stirring. We found that these Fe@Fe₂O₃ nanowires exhibited interesting core-shell structure dependent reactivity on the aerobic degradation of 4-chlorophenol. Characterization results revealed that the core-shell structure dependent aerobic oxidative reactivity of Fe@Fe₂O₃ nanowires was arisen from the combined effects of incrassated iron oxide shell and more surface bound ferrous ions on amorphous iron oxide shell formed during the water-aging process. The incrassated iron oxide shell would gradually block the outward electron transfer from iron core for the subsequent two-electron molecular oxygen activation, but more surface bound ferrous ions on iron oxide shell with prolonging aging time could favor the single-electron molecular oxygen activation, which was confirmed by electron spin resonance spectroscopy with spin trap technique. The mineralization of 4-chlorophenol was monitored by total organic carbon measurement and the oxidative degradation intermediates were analyzed by gas chromatography-mass spectrometry. This study provides new physical insight on the molecular oxygen activation mechanism of nanoscale zerovalent iron and its application on aerobic pollutant removal.

  18. Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice

    DEFF Research Database (Denmark)

    Hannibal, Jens; Hsiung, Hansen M; Fahrenkrug, Jan

    2011-01-01

    Neurons of the brain's biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) generate circadian rhythms of physiology (core body temperature, hormone secretion, locomotor activity, sleep/wake, and heart rate) with distinct temporal phasing when entrained by the light/dark (LD...... these observations with observations made from mice examined by wheel-running activity. The study demonstrates that VPAC2 signaling is necessary for a functional circadian clock driving locomotor activity, core body temperature, and heart rate rhythmicity, since VPAC2-deficient mice lose the rhythms in all three...... parameters when placed under constant conditions (of either light or darkness). Furthermore, although 24-h rhythms for three parameters are retained in VPAC2-deficient mice during the LD cycle, the temperature rhythm displays markedly altered time course and profile, rising earlier and peaking ~4-6 h prior...

  19. Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice

    DEFF Research Database (Denmark)

    Hannibal, Jens; Hsiung, Hansen M; Fahrenkrug, Jan

    2011-01-01

    Neurons of the brain's biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) generate circadian rhythms of physiology (core body temperature, hormone secretion, locomotor activity, sleep/wake, and heart rate) with distinct temporal phasing when entrained by the light/dark (LD...... these observations with observations made from mice examined by wheel-running activity. The study demonstrates that VPAC2 signaling is necessary for a functional circadian clock driving locomotor activity, core body temperature, and heart rate rhythmicity, since VPAC2-deficient mice lose the rhythms in all three...... parameters when placed under constant conditions (of either light or darkness). Furthermore, although 24-h rhythms for three parameters are retained in VPAC2-deficient mice during the LD cycle, the temperature rhythm displays markedly altered time course and profile, rising earlier and peaking ∼4-6 h prior...

  20. Temperature dependence of amino acid side chain IR absorptions in the amide I' region.

    Science.gov (United States)

    Anderson, Benjamin A; Literati, Alex; Ball, Borden; Kubelka, Jan

    2014-05-01

    Amide I' IR spectra are widely used for studies of structural changes in peptides and proteins as a function of temperature. Temperature dependent absorptions of amino acid side-chains that overlap the amide I' may significantly complicate the structural analyses. While the side-chain IR spectra have been investigated previously, thus far their dependence on temperature has not been reported. Here we present the study of the changes in the IR spectra with temperature for side-chain groups of aspartate, glutamate, asparagine, glutamine, arginine, and tyrosine in the amide I' region (in D2O). Band fitting analysis was employed to extract the temperature dependence of the individual spectral parameters, such as peak frequency, integrated intensity, band width, and shape. As expected, the side-chain IR bands exhibit significant changes with temperature. The majority of the spectral parameters, particularly the frequency and intensity, show linear dependence on temperature, but the direction and magnitude vary depending on the particular side-chain group. The exception is arginine, which exhibits a distinctly nonlinear frequency shift with temperature for its asymmetric CN3H5(+) bending signal, although a linear fit can account for this change to within ~1/3 cm(-1). The applicability of the determined spectral parameters for estimations of temperature-dependent side-chain absorptions in peptides and proteins are discussed. Copyright © 2013 Wiley Periodicals, Inc.

  1. Torque and Drag Friction Model: Implemented Friction Factor Dependency of Temperature

    OpenAIRE

    Brekke, Alexander

    2016-01-01

    Master's thesis in Petroleum engineering We investigated the friction factor dependency of temperature. “Friction factor” is a parameter in the calculations of torque and drag. Increased well reach is dependent on accurate torque and drag modeling. We proposed that the friction factor can be dependent on temperature other than linear approximations as studied by Kaarstad et al. [2009]. The results was implemented in the work of Aadnoy [2006] torque and drag 3D model. The local friction fac...

  2. High performance of SDC and GDC core shell type composite electrolytes using methane as a fuel for low temperature SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Irshad, Muneeb; Siraj, Khurram, E-mail: razahussaini786@gmail.com, E-mail: khurram.uet@gmail.com; Javed, Fayyaz; Ahsan, Muhammad; Rafique, Muhammad Shahid [Department of Physics, University of Engineering and Technology, Lahore (Pakistan); Raza, Rizwan, E-mail: razahussaini786@gmail.com, E-mail: khurram.uet@gmail.com [Department of Physics, COMSATS Institute of Information Technology, Lahore (Pakistan); Shakir, Imran [Deanship of scientific research, College of Engineering, PO Box 800, King Saud University, Riyadh 11421 (Saudi Arabia)

    2016-02-15

    Nanocomposites Samarium doped Ceria (SDC), Gadolinium doped Ceria (GDC), core shell SDC amorphous Na{sub 2}CO{sub 3} (SDCC) and GDC amorphous Na{sub 2}CO{sub 3} (GDCC) were synthesized using co-precipitation method and then compared to obtain better solid oxide electrolytes materials for low temperature Solid Oxide Fuel Cell (SOFCs). The comparison is done in terms of structure, crystallanity, thermal stability, conductivity and cell performance. In present work, XRD analysis confirmed proper doping of Sm and Gd in both single phase (SDC, GDC) and dual phase core shell (SDCC, GDCC) electrolyte materials. EDX analysis validated the presence of Sm and Gd in both single and dual phase electrolyte materials; also confirming the presence of amorphous Na{sub 2}CO{sub 3} in SDCC and GDCC. From TGA analysis a steep weight loss is observed in case of SDCC and GDCC when temperature rises above 725 °C while SDC and GDC do not show any loss. The ionic conductivity and cell performance of single phase SDC and GDC nanocomposite were compared with core shell GDC/amorphous Na{sub 2}CO{sub 3} and SDC/ amorphous Na{sub 2}CO{sub 3} nanocomposites using methane fuel. It is observed that dual phase core shell electrolytes materials (SDCC, GDCC) show better performance in low temperature range than their corresponding single phase electrolyte materials (SDC, GDC) with methane fuel.

  3. High performance of SDC and GDC core shell type composite electrolytes using methane as a fuel for low temperature SOFC

    Science.gov (United States)

    Irshad, Muneeb; Siraj, Khurram; Raza, Rizwan; Javed, Fayyaz; Ahsan, Muhammad; Shakir, Imran; Rafique, Muhammad Shahid

    2016-02-01

    Nanocomposites Samarium doped Ceria (SDC), Gadolinium doped Ceria (GDC), core shell SDC amorphous Na2CO3 (SDCC) and GDC amorphous Na2CO3 (GDCC) were synthesized using co-precipitation method and then compared to obtain better solid oxide electrolytes materials for low temperature Solid Oxide Fuel Cell (SOFCs). The comparison is done in terms of structure, crystallanity, thermal stability, conductivity and cell performance. In present work, XRD analysis confirmed proper doping of Sm and Gd in both single phase (SDC, GDC) and dual phase core shell (SDCC, GDCC) electrolyte materials. EDX analysis validated the presence of Sm and Gd in both single and dual phase electrolyte materials; also confirming the presence of amorphous Na2CO3 in SDCC and GDCC. From TGA analysis a steep weight loss is observed in case of SDCC and GDCC when temperature rises above 725 °C while SDC and GDC do not show any loss. The ionic conductivity and cell performance of single phase SDC and GDC nanocomposite were compared with core shell GDC/amorphous Na2CO3 and SDC/ amorphous Na2CO3 nanocomposites using methane fuel. It is observed that dual phase core shell electrolytes materials (SDCC, GDCC) show better performance in low temperature range than their corresponding single phase electrolyte materials (SDC, GDC) with methane fuel.

  4. High performance of SDC and GDC core shell type composite electrolytes using methane as a fuel for low temperature SOFC

    Directory of Open Access Journals (Sweden)

    Muneeb Irshad

    2016-02-01

    Full Text Available Nanocomposites Samarium doped Ceria (SDC, Gadolinium doped Ceria (GDC, core shell SDC amorphous Na2CO3 (SDCC and GDC amorphous Na2CO3 (GDCC were synthesized using co-precipitation method and then compared to obtain better solid oxide electrolytes materials for low temperature Solid Oxide Fuel Cell (SOFCs. The comparison is done in terms of structure, crystallanity, thermal stability, conductivity and cell performance. In present work, XRD analysis confirmed proper doping of Sm and Gd in both single phase (SDC, GDC and dual phase core shell (SDCC, GDCC electrolyte materials. EDX analysis validated the presence of Sm and Gd in both single and dual phase electrolyte materials; also confirming the presence of amorphous Na2CO3 in SDCC and GDCC. From TGA analysis a steep weight loss is observed in case of SDCC and GDCC when temperature rises above 725 °C while SDC and GDC do not show any loss. The ionic conductivity and cell performance of single phase SDC and GDC nanocomposite were compared with core shell GDC/amorphous Na2CO3 and SDC/ amorphous Na2CO3 nanocomposites using methane fuel. It is observed that dual phase core shell electrolytes materials (SDCC, GDCC show better performance in low temperature range than their corresponding single phase electrolyte materials (SDC, GDC with methane fuel.

  5. An active homopolar magnetic bearing with high temperature superconductor (HTS) coils and ferromagnetic cores

    Science.gov (United States)

    Brown, G. V.; Dirusso, E.; Provenza, A. J.

    1995-01-01

    A proof-of-feasibility demonstration showed that high temperature superconductor (HTS) coils can be used in a high-load, active magnetic bearing in liquid nitrogen. A homopolar radial bearing with commercially wound HTS (Bi 2223) bias and control coils produced over 200 lb (890 N) radial load capacity (measured non-rotating) and supported a shaft to 14000 rpm. The goal was to show that HTS coils can operate stably with ferromagnetic cores in a feedback controlled system at a current density similar to that in Cu in liquid nitrogen. Design compromises permitted use of circular coils with rectangular cross section. Conductor improvements will eventually permit coil shape optimization, higher current density and higher bearing load capacity. The bias coil, wound with non-twisted, multifilament HTS conductor, required negligible power to carry its direct current. The control coils were wound with monofilament HTS sheathed in Ag. These dissipated negligible power for direct current (i.e. for steady radial load components). When an alternating current (AC) was added, the AC component dissipated power which increased rapidly with frequency and quadratically with AC amplitude. In fact at frequencies above about 2 hz, the effective resistance of the control coil conductor actually exceeds that of the silver which is in electrical parallel with the oxide superconductor. This is at least qualitatively understandable in the context of a Bean-type model of flux and current penetration into a Type II superconductor. Fortunately the dynamic currents required for bearing stability are of small amplitude. These results show that while twisted multifilament conductor is not needed for stable levitation, twisted multifilaments will be required to reduce control power for sizable dynamic loads, such as those due to unbalance.

  6. Quantitative Proteomic Analysis of Optimal Cutting Temperature (OCT) Embedded Core-Needle Biopsy of Lung Cancer.

    Science.gov (United States)

    Zhao, Xiaozheng; Huffman, Kenneth E; Fujimoto, Junya; Canales, Jamie Rodriguez; Girard, Luc; Nie, Guangjun; Heymach, John V; Wistuba, Igacio I; Minna, John D; Yu, Yonghao

    2017-10-01

    With recent advances in understanding the genomic underpinnings and oncogenic drivers of pathogenesis in different subtypes, it is increasingly clear that proper pretreatment diagnostics are essential for the choice of appropriate treatment options for non-small cell lung cancer (NSCLC). Tumor tissue preservation in optimal cutting temperature (OCT) compound is commonly used in the surgical suite. However, proteins recovered from OCT-embedded specimens pose a challenge for LC-MS/MS experiments, due to the large amounts of polymers present in OCT. Here we present a simple workflow for whole proteome analysis of OCT-embedded NSCLC tissue samples, which involves a simple trichloroacetic acid precipitation step. Comparisons of protein recovery between frozen versus OCT-embedded tissue showed excellent consistency with more than 9200 proteins identified. Using an isobaric labeling strategy, we quantified more than 5400 proteins in tumor versus normal OCT-embedded core needle biopsy samples. Gene ontology analysis indicated that a number of proliferative as well as squamous cell carcinoma (SqCC) marker proteins were overexpressed in the tumor, consistent with the patient's pathology based diagnosis of "poorly differentiated SqCC". Among the most downregulated proteins in the tumor sample, we noted a number of proteins with potential immunomodulatory functions. Finally, interrogation of the aberrantly expressed proteins using a candidate approach and cross-referencing with publicly available databases led to the identification of potential druggable targets in DNA replication and DNA damage repair pathways. We conclude that our approach allows LC-MS/MS proteomic analyses on OCT-embedded lung cancer specimens, opening the way to bring powerful proteomics into the clinic. Graphical Abstract ᅟ.

  7. Quantitative Proteomic Analysis of Optimal Cutting Temperature (OCT) Embedded Core-Needle Biopsy of Lung Cancer

    Science.gov (United States)

    Zhao, Xiaozheng; Huffman, Kenneth E.; Fujimoto, Junya; Canales, Jamie Rodriguez; Girard, Luc; Nie, Guangjun; Heymach, John V.; Wistuba, Igacio I.; Minna, John D.; Yu, Yonghao

    2017-10-01

    With recent advances in understanding the genomic underpinnings and oncogenic drivers of pathogenesis in different subtypes, it is increasingly clear that proper pretreatment diagnostics are essential for the choice of appropriate treatment options for non-small cell lung cancer (NSCLC). Tumor tissue preservation in optimal cutting temperature (OCT) compound is commonly used in the surgical suite. However, proteins recovered from OCT-embedded specimens pose a challenge for LC-MS/MS experiments, due to the large amounts of polymers present in OCT. Here we present a simple workflow for whole proteome analysis of OCT-embedded NSCLC tissue samples, which involves a simple trichloroacetic acid precipitation step. Comparisons of protein recovery between frozen versus OCT-embedded tissue showed excellent consistency with more than 9200 proteins identified. Using an isobaric labeling strategy, we quantified more than 5400 proteins in tumor versus normal OCT-embedded core needle biopsy samples. Gene ontology analysis indicated that a number of proliferative as well as squamous cell carcinoma (SqCC) marker proteins were overexpressed in the tumor, consistent with the patient's pathology based diagnosis of "poorly differentiated SqCC". Among the most downregulated proteins in the tumor sample, we noted a number of proteins with potential immunomodulatory functions. Finally, interrogation of the aberrantly expressed proteins using a candidate approach and cross-referencing with publicly available databases led to the identification of potential druggable targets in DNA replication and DNA damage repair pathways. We conclude that our approach allows LC-MS/MS proteomic analyses on OCT-embedded lung cancer specimens, opening the way to bring powerful proteomics into the clinic. [Figure not available: see fulltext.

  8. Temperature-dependent VNIR spectroscopy of hydrated Na-carbonates

    Science.gov (United States)

    Tosi, Federico; Carli, Cristian; De Angelis, Simone; Beck, Pierre; Brissaud, Olivier; Schmitt, Bernard; Capaccioni, Fabrizio; De Sanctis, Maria Cristina; Piccioni, Giuseppe

    2017-04-01

    The surfaces of the Galilean icy satellites Europa, Ganymede and Callisto, dominated by water ice, also show substantial amounts of non-water-ice compounds. These satellites will be the subject of close exploration by the ESA JUICE mission and the NASA Europa Multiple-Flyby Mission, which will focus on Ganymede and Europa, respectively. Among non-water-ice compounds thought to exist on the surfaces of the Jovian icy satellites, hydrated salt minerals have been proposed to exist as a by-product of endogenic processes. Safe detection of these minerals shall rely on laboratory spectroscopic analysis of these materials carried out under appropriate environmental conditions. Here we report on laboratory measurements, carried out in the framework of a Europlanet Transnational Access (TA) 2020 proposal approved in 2016, on two hydrated sodium carbonates, namely sodium carbonate monohydrate (Na2CO3·1H2O) and sodium carbonate decahydrate (Na2CO3·10H2O). Spectral profiles of these compounds were obtained in the visible and near-infrared (VNIR) spectral domain, taking advantage of the Cold Surfaces spectroscopy facility at the Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), where such compounds can be measured under cryogenic conditions indicative of real planetary surfaces. Carbonates were first sieved so as to separate them in three different grain size ranges: 20-50 μm, 75-100 μm, and 125-150 μm. These grain sizes have been chosen to: (1) be indicative of typical regoliths known or expected to exist on the surface of the icy satellites, and (2) avoid overlapping between ranges, therefore minimizing particles contamination among the dimensional classes. Each grain size was then measured with the Spectro-Gonio-Radiometer facility in the overall 0.5-4.0 μm spectral range, with spectral sampling increasing with increasing wavelength. For each sample, the overall 93-279 K temperature ramp was acquired in 11 steps varying from 10 K to 25 K, imposed by time

  9. Experimental determination of monoethanolamine protonation constant and its temperature dependency

    Directory of Open Access Journals (Sweden)

    Ma’mun Sholeh

    2017-01-01

    Full Text Available Carbon dioxide as one of the major contributors to the global warming problem is produced in large quantities by many important industries and its emission seems to rise from year to year. Aminebased absorption is one of the methods to capture CO2 from its sources. As a reactive system, mass transfer and chemical reaction take place simultaneously. In a vapor-liquid equilibrium model for the CO2-amine-water system, some parameters such as mass transfer coefficients and chemical equilibrium constants need to be known. However, some parameters could be determined experimentally and the rests could be regressed from the model. The protonation constant (pKa, as one of the model parameters, could then be measured experimentally. The purpose of this study is to measure the pKa of monoethanolamine (MEA at a range of temperatures from 303 to 330K by a potentiometric titration method. The experimental data obtained were in a good agreement with the literature data. The pKa data from this work together with those from the literature were then correlated in an empirical correlation to be used for future research.

  10. Monitoring operating temperature and supply voltage in achieving high system dependability

    NARCIS (Netherlands)

    Khan, M.A.; Kerkhoff, Hans G.

    2013-01-01

    System dependability being a set of number of attributes, of which the important reliability, heavily depends on operating temperature and supply voltage. Any change beyond the designed specifications may change the system performance and could result in system reliability and hence dependability

  11. Modeling of Circuits with Strongly Temperature Dependent Thermal Conductivities for Cryogenic CMOS

    OpenAIRE

    Hamlet, J.; Eng, K.; Gurrieri, T.; Levy, J; Carroll, M

    2010-01-01

    When designing and studying circuits operating at cryogenic temperatures understanding local heating within the circuits is critical due to the temperature dependence of transistor and noise behavior. We have investigated local heating effects of a CMOS ring oscillator and current comparator at T=4.2K. In two cases, the temperature near the circuit was measured with an integrated thermometer. A lumped element equivalent electrical circuit SPICE model that accounts for the strongly temperature...

  12. Temperature dependency of mechanical properties for crystalline cellulose added to silicone elastomer

    Science.gov (United States)

    Kameda, Takao; Sugino, Naoto; Takei, Satoshi; Hanabata, Makoto

    2017-08-01

    A chemical cross-linked transparent film was got by a silicon compound to crystalline cellulose. Temperature dependency for the elasticity modulus of a provided film was measured. The shear elastic modulus was obtained the value of 2 x 106 [Pa] at room temperature. The sample decreases in 190 [deg. C] for the elasticity modulus at the room temperature as 60%, but approximately 10% recover when temperature rises up to 200 [deg. C] or more.

  13. Comparison of rectal and tympanic core body temperature measurement in adult Guyanese squirrel monkeys (Saimiri sciureus sciureus).

    Science.gov (United States)

    Long, C T; Pacharinsak, C; Jampachaisri, K; McKeon, G P; Howard, A M; Albertelli, M A; Felt, S A

    2011-04-01

    Measuring core body temperature in a manner that is safe for animals and veterinary personnel is an important part of a physical examination. For nonhuman primates, this can involve increased restraint, additional stress, as well as the use of anesthetics and their deleterious effects on body temperature measurements. The purpose of this study was to compare two non-invasive methods of infrared tympanic thermometry to standard rectal thermometry in adult squirrel monkeys. Tympanic temperatures were collected from 37 squirrel monkeys and compared to rectal temperatures using a human and veterinary infrared tympanic thermometer. Compared with rectal temperature measurements, the human tympanic thermometer readings were not significantly different, while the veterinary tympanic thermometer measurements were significantly higher (Ptemperature. © 2010 John Wiley & Sons A/S.

  14. The effect of temperature dependent tissue parameters on acoustic radiation force induced displacements

    CERN Document Server

    Suomi, Visa; Konofagou, Elisa; Cleveland, Robin

    2016-01-01

    Multiple ultrasound elastography techniques rely on acoustic radiation force (ARF) in monitoring high-intensity focused ultrasound (HIFU) therapy. However, ARF is dependent on tissue attenuation and sound speed, both of which are also known to change with temperature making the therapy monitoring more challenging. Furthermore, the viscoelastic properties of tissue are also temperature dependent, which affects the displacements induced by ARF. The aim of this study is to quantify the temperature dependent changes in the acoustic and viscoelastic properties of liver and investigate their effect on ARF induced displacements by using both experimental methods and simulations. Furthermore, the temperature dependent viscoelastic properties of liver are experimentally measured over a frequency range of 0.1-200 Hz at temperatures reaching 80 C, and both conventional and fractional Zener models are used to fit the data. The fractional Zener model was found to fit better with the experimental viscoelasticity data with ...

  15. Investigation on the effects of temperature dependency of material parameters on a thermoelastic loading problem

    Science.gov (United States)

    Kumar, Anil; Mukhopadhyay, Santwana

    2017-08-01

    The present work is concerned with the investigation of thermoelastic interactions inside a spherical shell with temperature-dependent material parameters. We employ the heat conduction model with a single delay term. The problem is studied by considering three different kinds of time-dependent temperature and stress distributions applied at the inner and outer surfaces of the shell. The problem is formulated by considering that the thermal properties vary as linear function of temperature that yield nonlinear governing equations. The problem is solved by applying Kirchhoff transformation along with integral transform technique. The numerical results of the field variables are shown in the different graphs to study the influence of temperature-dependent thermal parameters in various cases. It has been shown that the temperature-dependent effect is more prominent in case of stress distribution as compared to other fields and also the effect is significant in case of thermal shock applied at the two boundary surfaces of the spherical shell.

  16. Temperature dependence of photoluminescence from ordered GaInP{sub 2} epitaxial layers

    Energy Technology Data Exchange (ETDEWEB)

    Prutskij, T. [Instituto de Ciencias, BUAP, Apartado Postal 207, 72000 Puebla, Pue. (Mexico); Pelosi, C. [IMEM/CNR, Parco Area delle Scienze 37/A, 43010 Parma (Italy)

    2010-01-15

    The temperature behavior of the integrated intensity of photoluminescence (PL) emission from ordered GaInP{sub 2} epitaxial layer was measured at temperatures of 10 - 300 K. Within this temperature range the PL emission is dominated by band-to-band radiative recombination. The PL intensity temperature dependence has two regions: at low temperatures it quenches rapidly as the temperature increases, and above 100 K it reduces slowly. This temperature behavior is compared with that of disordered GaInP{sub 2} layer. The specter of the PL emission of the disordered layer has two peaks, which are identified as due to donor-accepter (D-A) and band-to-band recombination. The PL intensity quenching of these spectral bands is very different: With increasing temperature, the D-A peak intensity remains almost unchanged at low temperatures and then decreases at a higher rate. The intensity of the band-to-band recombination peak decays gradually, having a higher rate at low temperatures than at higher temperatures. Comparing these temperature dependencies of these PL peaks of ordered and disordered alloys and the temperature behavior of their full width at half maximum (FWHM), we conclude that the different morphology of these alloys causes their different temperature behavior. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Effect of voluntary hypocapnic hyperventilation on the relationship between core temperature and heat loss responses in exercising humans.

    Science.gov (United States)

    Fujii, Naoto; Honda, Yasushi; Komura, Ken; Tsuji, Bun; Sugihara, Akira; Watanabe, Kazuhito; Kondo, Narihiko; Nishiyasu, Takeshi

    2014-12-01

    Two thermolytic thermoregulatory responses, cutaneous vasodilation and sweating, begin when core temperature reaches a critical threshold, after which response magnitudes increase linearly with increasing core temperature; thus the slope indicates response sensitivity. We evaluated the influence of hypocapnia induced by voluntary hyperventilation on the core temperature threshold and sensitivity of thermoregulatory responses. Ten healthy males performed 15 min of cycling at 117 W (29.5°C, 50% RH) under three breathing conditions: 1) spontaneous ventilation, 2) voluntary normocapnic hyperventilation, and 3) voluntary hypocapnic hyperventilation. In the hypocapnic hyperventilation trial, end-tidal CO2 pressure was reduced throughout the exercise, whereas it was maintained around the normocapnic level in the other two trials. Cutaneous vascular conductances at the forearm and forehead were evaluated as laser-Doppler signal/mean arterial blood pressure, and the forearm sweat rate was measured using the ventilated capsule method. Esophageal temperature threshold was higher for the increase in cutaneous vascular conductance in the hypocapnic than normocapnic hyperventilation trial at the forearm (36.88 ± 0.36 vs. 36.68 ± 0.34°C, P hyperventilation trial at the forearm (302 ± 177 vs. 420 ± 178% baseline/°C, P hyperventilation trials. These findings indicate that in exercising humans, hypocapnia induced by voluntary hyperventilation does not influence sweating, but it attenuates the cutaneous vasodilatory response by increasing its threshold and reducing its sensitivity. Copyright © 2014 the American Physiological Society.

  18. Estimating changes in mean body temperature for humans during exercise using core and skin temperatures is inaccurate even with a correction factor.

    Science.gov (United States)

    Jay, Ollie; Reardon, Francis D; Webb, Paul; Ducharme, Michel B; Ramsay, Tim; Nettlefold, Lindsay; Kenny, Glen P

    2007-08-01

    Changes in mean body temperature (DeltaT(b)) estimated by the traditional two-compartment model of "core" and "shell" temperatures and an adjusted two-compartment model incorporating a correction factor were compared with values derived by whole body calorimetry. Sixty participants (31 men, 29 women) cycled at 40% of peak O(2) consumption for 60 or 90 min in the Snellen calorimeter at 24 or 30 degrees C. The core compartment was represented by esophageal, rectal (T(re)), and aural canal temperature, and the shell compartment was represented by a 12-point mean skin temperature (T(sk)). Using T(re) and conventional core-to-shell weightings (X) of 0.66, 0.79, and 0.90, mean DeltaT(b) estimation error (with 95% confidence interval limits in parentheses) for the traditional model was -95.2% (-83.0, -107.3) to -76.6% (-72.8, -80.5) after 10 min and -47.2% (-40.9, -53.5) to -22.6% (-14.5, -30.7) after 90 min. Using T(re), X = 0.80, and a correction factor (X(0)) of 0.40, mean DeltaT(b) estimation error for the adjusted model was +9.5% (+16.9, +2.1) to -0.3% (+11.9, -12.5) after 10 min and +15.0% (+27.2, +2.8) to -13.7% (-4.2, -23.3) after 90 min. Quadratic analyses of calorimetry DeltaT(b) data was subsequently used to derive best-fitting values of X for both models and X(0) for the adjusted model for each measure of core temperature. The most accurate model at any time point or condition only accounted for 20% of the variation observed in DeltaT(b) for the traditional model and 56% for the adjusted model. In conclusion, throughout exercise the estimation of DeltaT(b) using any measure of core temperature together with mean skin temperature irrespective of weighting is inaccurate even with a correction factor customized for the specific conditions.

  19. To what extent do water isotope records from low accumulation Alpine ice cores reproduce instrumental temperature series?

    Directory of Open Access Journals (Sweden)

    Pascal Bohleber

    2013-04-01

    Full Text Available Among Alpine ice core drilling sites, the Colle Gnifetti glacier saddle situated in the Monte Rosa summit range is the only one whose net snow accumulation rate is low enough to offer climate records back to some 1000 yr. It is demonstrated that the strong snow erosion at this site particularly hampers the interpretation of stable water isotope records δ18O, δD in terms of atmospheric temperature changes. We evaluate the δ18O records from four Colle Gnifetti cores for their common variability to extract a composite isotope record that may be compared with the instrumental temperature evidence. Time series analyses over the last 120 yr reveal that the common δ18O signal is mainly reflected in the low frequency variability, starting at the decadal scale. Comparing the correspondingly smoothed composite record to the high-elevation temperature time series (specifically adjusted to the seasonality of the net snow accumulation reveals the following findings: On the decadal scale, the isotope variability correlates with the temperature record at around R=0.65 but is interrupted by three, ca. 10-yr long mismatch periods. The multidecadal isotope signal closely reflects the strong overall 20th century temperature increase, thereby showing an up to three-fold higher isotope temperature sensitivity than commonly assumed. Over the entire instrumental period back to 1760, five more such mismatch periods are embedded in the generally coherent pattern of the δ18O and instrumental temperature records (including the strong overestimate of the temperature around 1850 by the isotope temperature proxy. For the early instrumental period (1890–1760 characterized by a comparably weak long-term temperature trend, the isotope signal generally suggests warmer conditions of about 0.4°C compared to instrumental data.

  20. The dependence of surface temperature on IGBTs load and ambient temperature

    Directory of Open Access Journals (Sweden)

    Alexander Čaja

    2015-01-01

    Full Text Available Currently, older power electronics and electrotechnics are improvement and at the same time developing new and more efficient devices. These devices produce in their activities a significant part of the heat which, if not effectively drained, causing damage to these elements. In this case, it is important to develop new and more efficient cooling system. The most widespread of modern methods of cooling is the cooling by heat pipe. This contribution is aimed at cooling the insulated-gate bipolar transistor (IGBT elements by loop heat pipe (LHP. IGBTs are very prone to damage due to high temperatures, and therefore is the important that the surface temperature was below 100°C. It was therefore created a model that examined what impact of surface temperature on the IGBT element and heat removal at different load and constant ambient temperature.

  1. Angle-dependent magnetotransport in GaAs/InAs core/shell nanowires

    Science.gov (United States)

    Haas, Fabian; Wenz, Tobias; Zellekens, Patrick; Demarina, Nataliya; Rieger, Torsten; Lepsa, Mihail; Grützmacher, Detlev; Lüth, Hans; Schäpers, Thomas

    2016-01-01

    We study the impact of the direction of magnetic flux on the electron motion in GaAs/InAs core/shell nanowires. At small tilt angles, when the magnetic field is aligned nearly parallel to the nanowire axis, we observe Aharonov–Bohm type h/e flux periodic magnetoconductance oscillations. These are attributed to transport via angular momentum states, formed by electron waves within the InAs shell. With increasing tilt of the nanowire in the magnetic field, the flux periodic magnetoconductance oscillations disappear. Universal conductance fluctuations are observed for all tilt angles, however with increasing amplitudes for large tilt angles. We record this evolution of the electron propagation from a circling motion around the core to a diffusive transport through scattering loops and give explanations for the observed different transport regimes separated by the magnetic field orientation. PMID:27091000

  2. Temperature-dependent gate-swing hysteresis of pentacene thin film transistors

    Directory of Open Access Journals (Sweden)

    Yow-Jon Lin

    2014-10-01

    Full Text Available The temperature-dependent hysteresis-type transfer characteristics of pentacene-based organic thin film transistors (OTFTs were researched. The temperature-dependent transfer characteristics exhibit hopping conduction behavior. The fitting data for the temperature-dependent off-to-on and on-to-off transfer characteristics of OTFTs demonstrate that the hopping distance (ah and the barrier height for hopping (qϕt control the carrier flow, resulting in the hysteresis-type transfer characteristics of OTFTs. The hopping model gives an explanation of the gate-swing hysteresis and the roles played by qϕt and ah.

  3. Resolution and Dynamical Core Dependence of Atmospheric River Frequency in Global Model Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hagos, Samson M.; Leung, Lai-Yung R.; Yang, Qing; Zhao, Chun; Lu, Jian

    2015-04-01

    This study examines the sensitivity of atmospheric river (AR) frequency simulated by a global model with different grid resolutions and dynamical cores. Analysis is performed on aquaplanet simulations using version 4 of Community Atmosphere Model (CAM4) at 240, 120, 60 and 30 km model resolutions each with the Model for Prediction Across Scales (MPAS) and High-Order Methods Modeling Environment (HOMME) dynamical cores. The frequency of AR events decreases with model resolution and the HOMME dynamical core produces more AR events than MPAS. Comparing the frequencies determined using absolute and percentile thresholds of large-scale conditions used to define an AR, model sensitivity is found to be related to the overall sensitivity of sub-tropical westerlies, atmospheric precipitable water content and profile and to a lesser extent on extra-tropical Rossby wave activity to model resolution and dynamical core. Real world simulations using MPAS at 120 km and 30 km grid resolutions also exhibit a decrease of AR frequency with increasing resolution over southern East Pacific, but there difference is smaller over northern East Pacific. This inter-hemispheric difference is related to the enhancement of convection in over the tropics with increased resolution. This anomalous convection sets off Rossby wave patterns that weaken the subtropical westerlies over southern East Pacific but have relatively little effect on those over northern East Pacific. In comparison to NCEP2 reanalysis, MPAS real world simulations are found to underestimate AR frequencies at both resolutions likely because of their climatologically drier sub-tropics and poleward shifted jets. This study highlights the important links between model climatology of large-scale conditions and extremes.

  4. The Temperature Dependence of the Debye-Waller Factor of Magnesium

    DEFF Research Database (Denmark)

    Sledziewska-Blocka, D.; Lebech, Bente

    1976-01-01

    The temperature dependence of the average Debye-Waller factor for magnesium was measured by means of neutron diffraction spectrometry. The experimental results obtained in the temperature range from 5 to 256 K are compared with theoretical calculations, using the harmonic and quasi-harmonic appro......The temperature dependence of the average Debye-Waller factor for magnesium was measured by means of neutron diffraction spectrometry. The experimental results obtained in the temperature range from 5 to 256 K are compared with theoretical calculations, using the harmonic and quasi...

  5. Tunneling magnetoresistance dependence on the temperature in a ferromagnetic Zener diode

    Energy Technology Data Exchange (ETDEWEB)

    Comesana, E; Aldegunde, M; GarcIa-Loureiro, A, E-mail: enrique.comesana@usc.e [Departamento de Electronica e Computacion, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain)

    2009-11-15

    In the present work we focus on the study of the temperature dependence of the tunnelling current in a ferromagnetic Zener diode. We predict the tunneling magnetoresistance dependence on the temperature. Large doping concentrations lead to magnetic semiconductors with Curie temperature T{sub C} near or over room temperature and this will facilitate the introduction of new devices that make use of the ferromagnetism effects. According to our calculations the tunneling magnetoresistance has the form TMR {proportional_to} (T{sup n}{sub C}-T{sup n}).

  6. Temperature-dependent vibrational spectroscopic study and DFT calculations of the sorbic acid

    Science.gov (United States)

    Saraiva, G. D.; Nogueira, C. E. S.; Freire, P. T. C.; de Sousa, F. F.; da Silva, J. H.; Teixeira, A. M. R.; Mendes Filho, J.

    2015-02-01

    This work reports a temperature-dependent vibrational spectroscopic study of the sorbic acid (C6H8O2), as well as the mode assignment at ambient conditions, based on the density functional theory. Temperature-dependent vibrational properties have been performed in polycrystalline sorbic acid through both Raman and infrared spectroscopy in the 20-300 K and 80-300 K temperature ranges, respectively. These studies present the occurrence of some modifications in the Raman spectra that could be interpreted as a low temperature phase transition undergone by sorbic acid from the monoclinic phase to an unknown phase with conformational change of the molecules in the unit cell.

  7. Temperature dependence of photoluminescence from submonolayer deposited InGaAs/GaAs quantum dots

    DEFF Research Database (Denmark)

    Xu, Zhangcheng; Leosson, K.; Birkedal, Dan

    2002-01-01

    The temperature dependence of photoluminescence (PL) from self-assembled InGaAs quantum dots (QD's) grown by submonolayer deposition mode (non-SK mode), is investigated. It is found that the PL spectra are dominated by the ground-state transitions at low temperatures, but increasingly by the exci......The temperature dependence of photoluminescence (PL) from self-assembled InGaAs quantum dots (QD's) grown by submonolayer deposition mode (non-SK mode), is investigated. It is found that the PL spectra are dominated by the ground-state transitions at low temperatures, but increasingly...

  8. Temperature dependence of magnetically dead layers in ferromagnetic thin-films

    Directory of Open Access Journals (Sweden)

    M. Tokaç

    2017-11-01

    Full Text Available Polarized neutron reflectometry has been used to study interface magnetism and magnetic dead layers in model amorphous CoFeB:Ta alloy thin-film multilayers with Curie temperatures tuned to be below room-temperature. This allows temperature dependent variations in the effective magnetic thickness of the film to be determined at temperatures that are a significant fraction of the Curie temperature, which cannot be achieved in the material systems used for spintronic devices. In addition to variation in the effective magnetic thickness due to compositional grading at the interface with the tantalum capping layer, the key finding is that at the interface between ferromagnetic film and GaAs(001 substrate local interfacial alloying creates an additional magnetic dead-layer. The thickness of this magnetic dead-layer is temperature dependent, which may have significant implications for elevated-temperature operation of hybrid ferromagnetic metal-semiconductor spintronic devices.

  9. Temperature dependence of magnetically dead layers in ferromagnetic thin-films

    Science.gov (United States)

    Tokaç, M.; Kinane, C. J.; Atkinson, D.; Hindmarch, A. T.

    2017-11-01

    Polarized neutron reflectometry has been used to study interface magnetism and magnetic dead layers in model amorphous CoFeB:Ta alloy thin-film multilayers with Curie temperatures tuned to be below room-temperature. This allows temperature dependent variations in the effective magnetic thickness of the film to be determined at temperatures that are a significant fraction of the Curie temperature, which cannot be achieved in the material systems used for spintronic devices. In addition to variation in the effective magnetic thickness due to compositional grading at the interface with the tantalum capping layer, the key finding is that at the interface between ferromagnetic film and GaAs(001) substrate local interfacial alloying creates an additional magnetic dead-layer. The thickness of this magnetic dead-layer is temperature dependent, which may have significant implications for elevated-temperature operation of hybrid ferromagnetic metal-semiconductor spintronic devices.

  10. Optical phase response to temperature in a hollow-core photonic crystal fiber.

    Science.gov (United States)

    Meiselman, Seth; Cranch, Geoffrey A

    2017-10-30

    Analysis of previous measurements of thermal phase sensitivity in hollow core photonic crystal fibers is presented with additional new corroborating measurements, resolving a discrepancy in previously reported results. We extend an existing derivation of thermo-mechanical phase sensitivity in solid- and hollow-core photonic crystal fiber to also include kagome lattice photonic crystal fibers. Measured thermal phase response is shown to agree with theoretical prediction to within a few percent.

  11. Sex reversal triggers the rapid transition from genetic to temperature-dependent sex.

    Science.gov (United States)

    Holleley, Clare E; O'Meally, Denis; Sarre, Stephen D; Marshall Graves, Jennifer A; Ezaz, Tariq; Matsubara, Kazumi; Azad, Bhumika; Zhang, Xiuwen; Georges, Arthur

    2015-07-02

    Sex determination in animals is amazingly plastic. Vertebrates display contrasting strategies ranging from complete genetic control of sex (genotypic sex determination) to environmentally determined sex (for example, temperature-dependent sex determination). Phylogenetic analyses suggest frequent evolutionary transitions between genotypic and temperature-dependent sex determination in environmentally sensitive lineages, including reptiles. These transitions are thought to involve a genotypic system becoming sensitive to temperature, with sex determined by gene-environment interactions. Most mechanistic models of transitions invoke a role for sex reversal. Sex reversal has not yet been demonstrated in nature for any amniote, although it occurs in fish and rarely in amphibians. Here we make the first report of reptile sex reversal in the wild, in the Australian bearded dragon (Pogona vitticeps), and use sex-reversed animals to experimentally induce a rapid transition from genotypic to temperature-dependent sex determination. Controlled mating of normal males to sex-reversed females produces viable and fertile offspring whose phenotypic sex is determined solely by temperature (temperature-dependent sex determination). The W sex chromosome is eliminated from this lineage in the first generation. The instantaneous creation of a lineage of ZZ temperature-sensitive animals reveals a novel, climate-induced pathway for the rapid transition between genetic and temperature-dependent sex determination, and adds to concern about adaptation to rapid global climate change.

  12. Pengaruh Penggunaan Plastic Wrap Terhadap Core Temperature Pasien Pediatrik 1-3 Tahun Yang Menjalani Operasi Palatoplasty

    Directory of Open Access Journals (Sweden)

    Mikhail Averoes

    2013-04-01

    Full Text Available The decrease rate of body temperature can be reduced by passive insulation by covering the body with certain materials which have poor heat conductivity (insulator. Insulator material which is wrapped on the body can prevent the process of convection, conduction and evaporation so that the degree of heat loss was reduced on average 30%. One material that can be used as an insulator is the plastic. This study was conducted to assess the effect of plastic wrap on the core temperature of pediatric aged 1 to 3 years who underwent cleft palate surgery. The study was conducted on 30 pediatric patients, aged 1-3 years, with ASA I physical status who underwent cleft surgery with general anesthesia. Patients were divided into two groups. One group used plastic wrap to be wrapped on the body, and another is the control group. Rectal temperature was recorded during anesthesia. Research data was tested statistically by the Mann-Whitney test. The results of statistical calculation indicated that the average core temperature during anesthesia in plastic wrap group was higher than the control group with a significant result (p <0.001. The average core temperature in the plastic wrap is 36.17° C (0.31° C which is higher than the control group (35.88° C (0.43° C. It can be concluded that the use of plastic wrap causes temperature reduction degree to be lower than the control group. The degree in plastic wrap group is 0.8 °C while the degree in control group is 1.2°C in the control group (p <0.005.

  13. The Effects of Simulated Wildland Firefighting Tasks on Core Temperature and Cognitive Function under Very Hot Conditions

    Directory of Open Access Journals (Sweden)

    F. Michael Williams-Bell

    2017-10-01

    Full Text Available Background: The severity of wildland fires is increasing due to continually hotter and drier summers. Firefighters are required to make life altering decisions on the fireground, which requires analytical thinking, problem solving, and situational awareness. This study aimed to determine the effects of very hot (45°C; HOT conditions on cognitive function following periods of simulated wildfire suppression work when compared to a temperate environment (18°C; CON.Methods: Ten male volunteer firefighters intermittently performed a simulated fireground task for 3 h in both the CON and HOT environments, with cognitive function tests (paired associates learning and spatial span assessed at baseline (cog 1 and during the final 20-min of each hour (cog 2, 3, and 4. Reaction time was also assessed at cog 1 and cog 4. Pre- and post- body mass were recorded, and core and skin temperature were measured continuously throughout the protocol.Results: There were no differences between the CON and HOT trials for any of the cognitive assessments, regardless of complexity. While core temperature reached 38.7°C in the HOT (compared to only 37.5°C in the CON; p < 0.01, core temperature declined during the cognitive assessments in both conditions (at a rate of −0.15 ± 0.20°C·hr−1 and −0.63 ± 0.12°C·hr−1 in the HOT and CON trial respectively. Firefighters also maintained their pre-exercise body mass in both conditions, indicating euhydration.Conclusions: It is likely that this maintenance of euhydration and the relative drop in core temperature experienced between physical work bouts was responsible for the preservation of firefighters' cognitive function in the present study.

  14. Temperature-dependent dynamic mechanical properties of magnetorheological elastomers under magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Benxiang, E-mail: jubenxiang@qq.com [National Instrument Functional Materials Engineering Technology Research Center, Chongqing 400707 (China); Tang, Rui; Zhang, Dengyou; Yang, Bailian [National Instrument Functional Materials Engineering Technology Research Center, Chongqing 400707 (China); Yu, Miao; Liao, Changrong [College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2015-01-15

    Both anisotropic and isotropic magnetorheological elastomer (MRE) samples were fabricated by using as-prepared polyurethane (PU) matrix and carbonyl iron particles. Temperature-dependent dynamic mechanical properties of MRE were investigated and analyzed. Due to the unique structural features of as-prepared matrix, temperature has a greater impact on the properties of as-prepared MRE, especially isotropic MRE. With increasing of temperature and magnetic field, MR effect of isotropic MRE can reach up to as high as 4176.5% at temperature of 80 °C, and the mechanism of the temperature-dependent in presence of magnetic field was discussed. These results indicated that MRE is a kind of temperature-dependent material, and can be cycled between MRE and MR plastomer (MRP) by varying temperature. - Highlights: • Both anisotropic and isotropic MRE were fabricated by using as-prepared matrix. • Temperature-dependent properties of MRE under magnetic field were investigated. • As-prepared MRE can transform MRE to MRP by adjusting temperature.

  15. Very High Temperature Reactor (VHTR) Deep Burn Core and Fuel Analysis -- Complete Design Selection for the Pebble Bed Reactor

    Energy Technology Data Exchange (ETDEWEB)

    B. Boer; A. M. Ougouag

    2010-09-01

    The Deep-Burn (DB) concept focuses on the destruction of transuranic nuclides from used light water reactor fuel. These transuranic nuclides are incorporated into TRISO coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400). Although it has been shown in the previous Fiscal Year (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup, while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239-Pu, 240-Pu and 241-Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a ”standard,” UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. The effort of this task in FY 2010 has focused on the optimization of the core to maximize the pebble discharge

  16. Magnetic properties and interaction mechanisms of iron-based core-shell structures prepared by sputtering at low substrate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Villacorta, F; Prieto, C [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Cantoblanco, 28049-Madrid (Spain)

    2008-02-27

    The magnetic properties of partially oxidized nanocrystalline iron thin films prepared by DC-magnetron sputtering at low substrate temperatures in the 175-300 K range are studied. The preparation method is presented as a simple method for fabricating granular structures. Films prepared at intermediate temperatures exhibit granular magnetic behaviour, in which nanocrystalline grains act as almost decoupled particles, surrounded by an oxide shell, forming exchange bias core-shell systems. The magnetic features of granular systems obtained by this new method are described and the mechanisms of interaction between metallic grains and their oxide shells are explained, as are their effects in the magnetization reversal process.

  17. Temperature-dependent structural and functional features of a hyperthermostable enzyme using elastic neutron scattering

    NARCIS (Netherlands)

    Koutsopoulos, S; van der Oost, J; Norde, W

    2005-01-01

    The dynamic behavior of an endoglucanase from the hyperthermophilic microorganism Pyrococcus furiosus was investigated using elastic neutron scattering. The temperature dependence of the atomic motions was correlated with conformational. and functional characteristics of the enzyme. The onset of

  18. Temperature dependence of magnetic anisotropies in ultrathin Fe film on vicinal Si(111)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong-Sheng; He, Wei; Ye, Jun; Hu, Bo; Tang, Jin; Zhang, Xiang-Qun [State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Cheng, Zhao-Hua, E-mail: zhcheng@aphy.iphy.ac.cn [State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190 (China)

    2017-05-01

    The temperature dependence of magnetic anisotropy of ultrathin Fe film with different thickness epitaxially grown on vicinal Si(111) substrate has been quantitatively investigated using the anisotropic magnetoresistance(AMR) measurements. Due to the effect of the vicinal substrate, the magnetic anisotropy is the superposition of a four-fold, a two-fold and a weakly six-fold contribution. It is found that the temperature dependence of the first-order magnetocrystalline anisotropies coefficient follows power laws of the reduced magnetization m(T)(=M(T)/M(0)) being consistent with the Callen and Callen's theory. However the temperature dependence of uniaxial magnetic anisotropy (UMA) shows novel behavior that decreases roughly as a function of temperature with different power law for samples with different thickness. We also found that the six-fold magnetocrystalline anisotropy is almost invariable over a wide temperature range. Possible mechanisms leading to the different exponents are discussed.

  19. Bandgap- and Radial-Position-Dependent Mn-Doped Zn-Cu-In-S/ZnS Core/Shell Nanocrystals.

    Science.gov (United States)

    Peng, Lucheng; Huang, Keke; Zhang, Zhuolei; Zhang, Ying; Shi, Zhan; Xie, Renguo; Yang, Wensheng

    2016-03-03

    This paper presents a mechanistic study on the doping of Zn-Cu-In-S/ZnS core/shell quantum dots (QDs) with Mn by changing the Zn-Cu-In-S QD bandgap and dopant position inside the samples (Zn-Cu-In-S core and ZnS shell). Results show that for the Mn:Zn-Cu-In-S/ZnS system, a Mn-doped emission can be obtained when the bandgap value of the QDs is larger than the energy of Mn-doped emission. Conversely, a bandgap emission is only observed for the doped system when the bandgap value of QDs is smaller than the energy gap of the Mn-doped emission. In the Zn-Cu-In-S/Mn:ZnS systems, doped QDs show dual emissions, consisting of bandgap and Mn dopant emissions, instead of one emission band when the value of the host bandgap is larger than the energy of the Mn-doped emission. These findings indicate that the emission from Mn-doped Zn-Cu-In-S/ZnS core/shell QDs depends on the bandgap of the QDs and the dopant position inside the core/shell material. The critical bandgap of the host materials is estimated to have the same value as the energy of the Mn d-d transition. Subsequently, the mechanism of photoluminescence properties of the Mn:Zn-Cu-In-S/ZnS and Zn-Cu-In-S/Mn:ZnS core/shell QD systems is proposed. Control experiments are then carried out by preparing Mn-doped Zn(Cu)-In-S QDs with various bandgaps, and the results confirm the reliability of the suggested mechanism. Therefore, the proposed mechanism can aid the design and synthesis of novel host materials in fabricating doped QDs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Temperature dependence and mechanism of the reaction between O(3P) and chlorine dioxide

    Science.gov (United States)

    Colussi, A. J.; Sander, S. P.; Fiedl, R. R.

    1992-01-01

    Second-order rate constants for the decay of O(3P) in excess chlorine dioxide, k(II), were measured as a function of total pressure (20-600 Torr argon) and temperature (248-312 K), using flash photolysis-atomic resonance fluorescence. Results indicate that k(II) is pressure dependent with a value, K(b), that is nonzero at zero pressure, and both the third-order rate constant and k(b) have negative temperature dependences.

  1. Quark mass density- and temperature- dependent model for bulk strange quark matter

    OpenAIRE

    al, Yun Zhang et.

    2002-01-01

    It is shown that the quark mass density-dependent model can not be used to explain the process of the quark deconfinement phase transition because the quark confinement is permanent in this model. A quark mass density- and temperature-dependent model in which the quark confinement is impermanent has been suggested. We argue that the vacuum energy density B is a function of temperature. The dynamical and thermodynamical properties of bulk strange quark matter for quark mass density- and temper...

  2. Qualification of a full plant nodalization for the prediction of the core exit temperature through a scaling methodology

    Energy Technology Data Exchange (ETDEWEB)

    Freixa, J., E-mail: jordi.freixa-terradas@upc.edu; Martínez-Quiroga, V., E-mail: victor.martinez.quiroga@upc.edu; Reventós, F., E-mail: francesc.reventos@upc.edu

    2016-11-15

    Highlights: • Core exit temperature is used in PWRs as an indication of core heat up. • Qualification of full scale nuclear reactors by means of a scaling methodology. • Scaling of RELAP5 calculations to full scale power plants. - Abstract: System codes and their necessary power plant nodalizations are an essential step in thermal hydraulic safety analysis. In order to assess the safety of a particular power plant, in addition to the validation and verification of the code, the nodalization of the system needs to be qualified. Since most existing experimental data come from scaled-down facilities, any qualification process must therefore address scale considerations. The Group of Thermal Hydraulic Studies at Technical University of Catalonia has developed a scaling-up methodology (SCUP) for the qualification of full-scale nodalizations through a systematic procedure based on the extrapolation of post-test simulations of Integral Test Facility experiments. In the present work, the SCUP methodology will be employed to qualify the nodalization of the AscóNPP, a Pressurized Water Reactor (PWR), for the reproduction of an important safety phenomenon which is the effectiveness of the Core Exit Temperature (CET) as an Accident Management (AM) indicator. Given the difficulties in placing measurements in the core region, CET measurements are used as a criterion for the initiation of safety operational procedures during accidental conditions in PWR. However, the CET response has some limitation in detecting inadequate core cooling simply because the measurement is not taken in the position where the cladding exposure occurs. In order to apply the SCUP methodology, the OECD/NEA ROSA-2 Test 3, an SBLOCA in the hot leg, has been selected as a starting point. This experiment was conducted at the Large Scale Test Facility (LSTF), a facility operated by the Japanese Atomic Energy Agency (JAEA) and was focused on the assessment of the effectiveness of AM actions triggered by

  3. Temperature-dependent magnetic properties of individual glass spherules, Apollo 11, 12, and 14 lunar samples.

    Science.gov (United States)

    Thorpe, A. N.; Sullivan, S.; Alexander, C. C.; Senftle, F. E.; Dwornik, E. J.

    1972-01-01

    Magnetic susceptibility of 11 glass spherules from the Apollo 14 lunar fines have been measured from room temperature to 4 K. Data taken at room temperature, 77 K, and 4.2 K, show that the soft saturation magnetization was temperature independent. In the temperature range 300 to 77 K the temperature-dependent component of the magnetic susceptibility obeys the Curie law. Susceptibility measurements on these same specimens and in addition 14 similar spherules from the Apollo 11 and 12 mission show a Curie-Weiss relation at temperatures less than 77 K with a Weiss temperature of 3-7 degrees in contrast to 2-3 degrees found for tektites and synthetic glasses of tektite composition. A proposed model and a theoretical expression closely predict the variation of the susceptibility of the glass spherules with temperature.

  4. Temperature Dependence of Faraday Effect-Induced Bias Error in a Fiber Optic Gyroscope.

    Science.gov (United States)

    Li, Xuyou; Liu, Pan; Guang, Xingxing; Xu, Zhenlong; Guan, Lianwu; Li, Guangchun

    2017-09-07

    Improving the performance of interferometric fiber optic gyroscope (IFOG) in harsh environments, such as magnetic field and temperature field variation, is necessary for its practical applications. This paper presents an investigation of Faraday effect-induced bias error of IFOG under varying temperature. Jones matrix method is utilized to formulize the temperature dependence of Faraday effect-induced bias error. Theoretical results show that the Faraday effect-induced bias error changes with the temperature in the non-skeleton polarization maintaining (PM) fiber coil. This phenomenon is caused by the temperature dependence of linear birefringence and Verdet constant of PM fiber. Particularly, Faraday effect-induced bias errors of two polarizations always have opposite signs that can be compensated optically regardless of the changes of the temperature. Two experiments with a 1000 m non-skeleton PM fiber coil are performed, and the experimental results support these theoretical predictions. This study is promising for improving the bias stability of IFOG.

  5. Temperature dependence of 1H NMR chemical shifts and its influence on estimated metabolite concentrations.

    Science.gov (United States)

    Wermter, Felizitas C; Mitschke, Nico; Bock, Christian; Dreher, Wolfgang

    2017-07-06

    Temperature dependent chemical shifts of important brain metabolites measured by localised 1H MRS were investigated to test how the use of incorrect prior knowledge on chemical shifts impairs the quantification of metabolite concentrations. Phantom measurements on solutions containing 11 metabolites were performed on a 7 T scanner between 1 and 43 °C. The temperature dependence of the chemical shift differences was fitted by a linear model. Spectra were simulated for different temperatures and analysed by the AQSES program (jMRUI 5.2) using model functions with chemical shift values for 37 °C. Large differences in the temperature dependence of the chemical shift differences were determined with a maximum slope of about ±7.5 × 10-4 ppm/K. For 32-40 °C, only minor quantification errors resulted from using incorrect chemical shifts, with the exception of Cr and PCr. For 1-10 °C considerable quantification errors occurred if the temperature dependence of the chemical shifts was neglected. If 1H MRS measurements are not performed at 37 °C, for which the published chemical shift values have been determined, the temperature dependence of chemical shifts should be considered to avoid systematic quantification errors, particularly for measurements on animal models at lower temperatures.

  6. Effect of a pharmacologically induced decrease in core temperature in rats resuscitated from cardiac arrest

    Science.gov (United States)

    Targeted temperature management is recommended to reduce brain damage after resuscitation from cardiac arrest in humans although the optimal target temperature remains controversial. 1 4 The American Heart Association (AHA) and the International Liaison Committee on Resuscitation...

  7. Temperature Dependence of Rheology and Polymer Diffusion in Silica/Polystyrene Nanocomposites

    Science.gov (United States)

    Tung, Wei-Shao; Clarke, Nigel; Composto, Russell; Meth, Jeffrey; Winey, Karen

    2015-03-01

    Time-temperature superposition using the WLF equation is well-established for both the zero shear viscosity and the polymer diffusion coefficient in homopolymer melts. This talk will present the temperature-dependence of polymer dynamics in polymer nanocomposites comprised of polystyrene and phenyl-capped silica nanoparticles (0 - 50 vol%). The WLF equation fits the temperature dependence of the tracer polymer diffusion coefficient and the fitting parameter (B/fo) decreases smoothly with nanoparticle concentration suggesting an increase in the thermal expansion coefficient for the free volume. The WLF equation also fits the temperature dependence of the zero shear viscosity from oscillatory shear experiments, although the fitting parameter (B/fo) increases substantially with nanoparticle concentration. This discrepancy between the diffusion and rheology will be discussed with respect to the reptation model, which predicts that the temperature dependence of polymer diffusion depends predominately on the temperature dependence of local viscosity, and the elastic response in nanocomposites. National Science Foundation DMR-12-10379.

  8. Temperature dependence of the electrical conductivity of amorphous V sub x Si sub 1 minus x

    Energy Technology Data Exchange (ETDEWEB)

    Boghosian, H.H.; Howson, M.A. (Department of Physics, The University of Leeds, Leeds LS2 9JT, United Kingdom (GB))

    1990-04-15

    We present results for the temperature dependence of electrical conductivity for amorphous V{sub {ital x}}Si{sub 1{minus}{ital x}} alloys. The alloys investigated span the composition range from {ital x}=0.5 to 0.1. For the alloys with more than 20 at. % V, the temperature dependence could be successfully fitted with use of the theories of quantum interference effects, and values for the spin-orbit and inelastic scattering rates are extracted from the fits. As the concentration of V is decreased, there is evidence for a metal-insulator transition seen at around 15 to 13 at. % V. The temperature dependence of the conductivity is surprisingly similar for all the alloys on the metallic side of the transition, showing a clear {ital T}{sup 1/2} dependence at the lowest temperatures while the insulating V{sub 0.1}Si{sub 0.9} alloy shows evidence for variable-range-hopping conduction. The V{sub 0.13}Si{sub 0.87} alloy, which is right at the transition, exhibits an unusual temperature dependence. The sample is metallic and seems to follow a {ital T}{sup 1/3} dependence at low temperatures.

  9. Core-ion temperature measurement of the ADITYA tokamak using passive charge exchange neutral particle energy analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Pandya, Santosh P.; Ajay, Kumar; Mishra, Priyanka; Dhingra, Rajani D.; Govindarajan, J. [Institute for Plasma Research, Bhat, Gandhinagar 382 428, Gujarat (India)

    2013-02-15

    Core-ion temperature measurements have been carried out by the energy analysis of passive charge exchange (CX) neutrals escaping out of the ADITYA tokamak plasma (minor radius, a= 25 cm and major radius, R= 75 cm) using a 45 Degree-Sign parallel plate electrostatic energy analyzer. The neutral particle analyzer (NPA) uses a gas cell configuration for re-ionizing the CX-neutrals and channel electron multipliers (CEMs) as detectors. Energy calibration of the NPA has been carried out using ion-source and {Delta}E/E of high-energy channel has been found to be {approx}10%. Low signal to noise ratio (SNR) due to VUV reflections on the CEMs was identified during the operation of the NPA with ADITYA plasma discharges. This problem was rectified by upgrading the system by incorporating the additional components and arrangements to suppress VUV radiations and improve its VUV rejection capabilities. The noise rejection capability of the NPA was experimentally confirmed using a standard UV-source and also during the plasma discharges to get an adequate SNR (>30) at the energy channels. Core-ion temperature T{sub i}(0) during flattop of the plasma current has been measured to be up to 150 eV during ohmically heated plasma discharges which is nearly 40% of the average core-electron temperature (typically T{sub e}(0) {approx} 400 eV). The present paper describes the principle of tokamak ion temperature measurement, NPA's design, development, and calibration along with the modifications carried out for minimizing the interference of plasma radiations in the CX-spectrum. Performance of the NPA during plasma discharges and experimental results on the measurement of ion-temperature have also been reported here.

  10. Assessment of brain core temperature using MR DWI-thermometry in Alzheimer disease patients compared to healthy subjects.

    Science.gov (United States)

    Sparacia, Gianvincenzo; Sakai, Koji; Yamada, Kei; Giordano, Giovanna; Coppola, Rosalia; Midiri, Massimo; Grimaldi, Luigi Maria

    2017-04-01

    To assess the brain core temperature of Alzheimer disease (AD) patients in comparison with healthy volunteers using diffusion-weighted thermometry. Fourteen AD patients (3 men, 11 women; age range 60-81 years, mean age 73.8 ± 6.1 years) and 14 healthy volunteers, age and sex-matched (mean age 70.1 ± 6.9 years; range 62-84 years; 5 men, 9 women) underwent MR examination between February 2014 and March 2016. MR imaging studies were performed with a 1.5-T MR scanner. Brain core temperature (T: °C) was calculated using the following equation from the diffusion coefficient (D) in the lateral ventricular (LV) cerebrospinal fluid: T = 2256.74/ln (4.39221/D) - 273.15 using a standard DWI single-shot echo-planar pulse sequence (b value 1000 s/mm 2 ). Statistical analysis was performed using a nonparametric Wilcoxon rank-sum test to compare the patient and control groups regarding LV temperatures. There was no significant difference (P = 0.1937) in LV temperature between patients (mean 37.9 ± 1.1 °C, range 35.8-39.2 °C) and control group (38.7 ± 1.4 °C, range 36.9-42.7 °C). Brain core temperature in AD patients showed no significant alterations compared to healthy volunteers.

  11. A simple equation for describing the temperature dependent growth of free-floating macrophytes

    NARCIS (Netherlands)

    Heide, van Tj.; Roijackers, R.M.M.; Nes, van E.H.; Peeters, E.T.H.M.

    2006-01-01

    Temperature is one of the most important factors determining growth rates of free-floating macrophytes in the field. To analyse and predict temperature dependent growth rates of these pleustophytes, modelling may play an important role. Several equations have been published for describing

  12. Theory of Temperature Dependence of the Magnetization in Rare-Earth-Transition-Metal Alloys

    DEFF Research Database (Denmark)

    Szpunar, B.; Lindgård, Per-Anker

    1977-01-01

    It is shown that the temperature dependence of the magnetic moments and Curie and ferrimagnetic compensation temperatures for Gdl-xTx (T = Co, Ni, and Fe) and Y1-xCox can be accounted for by a simple model assuming a RKKY interaction between the rare-earth moments and the transition-metal pseudo-...

  13. Indications for a changing electricity demand pattern : The temperature dependence of electricity demand in the Netherlands

    NARCIS (Netherlands)

    Hekkenberg, M.; Benders, R. M. J.; Moll, H. C.; Uiterkamp, A. J. M. Schoot

    This study assesses the electricity demand pattern in the relatively temperate climate of the Netherlands (latitude 52 degrees 30'N). Daily electricity demand and average temperature during the period from 1970 until 2007 are investigated for possible trends in the temperature dependence of

  14. Molecular modeling of temperature dependence of solubility parameters for amorphous polymers

    NARCIS (Netherlands)

    Chen, X.; Yuan, C.; Wong, C.K.Y.; Zhang, G.

    2011-01-01

    A molecular modeling strategy is proposed to describe the temperature (T) dependence of solubility parameter (?) for the amorphous polymers which exhibit glass-rubber transition behavior. The commercial forcefield “COMPASS” is used to support the atomistic simulations of the polymer. The temperature

  15. THE TEMPERATURE DEPENDENCE OF THE EMISSION OF PERCHLORO- ETHYLENE FROM DRY CLEANED FABRICS

    Science.gov (United States)

    A study was conducted to evaluate the emission of perchloroethylene (tetrachloroethylene) from freshly dry cleaned fabrics using small environmental test chambers. The temperature dependence of the release of perchloroethylene was evaluated over a temperature range of 20 to 45°C....

  16. The Dependence of Convective Core Overshooting on Stellar Mass: A Semi-empirical Determination Using the Diffusive Approach with Two Different Element Mixtures

    Science.gov (United States)

    Claret, Antonio; Torres, Guillermo

    2017-11-01

    Convective core overshooting has a strong influence on the evolution of stars of moderate and high mass. Studies of double-lined eclipsing binaries and stellar oscillations have renewed interest in the possible dependence of overshooting on stellar mass, which has been poorly constrained by observations so far. Here, we have used a sample of 29 well-studied double-lined eclipsing binaries in key locations of the H–R diagram to establish the explicit dependence of {f}{ov} on mass, where {f}{ov} is the free parameter in the diffusive approximation to overshooting. Measurements of the masses, radii, and temperatures of the binary components were compared against stellar evolution calculations based on the MESA code to infer semi-empirical values of {f}{ov} for each component. We find a clear mass-dependence such that {f}{ov} rises sharply from zero in the range 1.2{--}2.0 {M}ȯ , and levels off thereafter up to the 4.4 {M}ȯ limit of our sample. Tests with two different element mixtures indicate the trend is the same, and we find it to also be qualitatively similar to the one established in our previous study with the classical step-function implementation of overshooting characterized by the free parameter {α }{ov}. Based on these measurements, we infer an approximate relationship between the two overshooting parameters of {α }{ov}/{f}{ov}=11.36+/- 0.22, with a possible dependence on stellar properties.

  17. Manipulation of core body and skin temperature improves vigilance and maintenance of wakefulness in narcolepsy.

    NARCIS (Netherlands)

    Fronczek, R.; Raymann, R.J.; Romeijn, N.; Overeem, S.; Fischer, M.; Dijk, J.G.M.; Lammers, G.J.; Someren, EJ Van

    2008-01-01

    CONTEXT: Impaired vigilance and sleepiness are two majordaily complaints of patients with narcolepsy. We previously showed their sleepiness to be correlated to an abnormally regulated skin temperature, i.e., increased distal skin temperature compared with proximal skin temperature. OBJECTIVE: Our

  18. Temperature dependence of single-event burnout in n-channel power MOSFET's

    Science.gov (United States)

    Johnson, G. H.; Schrimpf, R. D.; Galloway, K. F.; Koga, R.

    1994-03-01

    The temperature dependence of single-event burnout (SEB) in n-channel power metal-oxide-semiconductor field effect transistors (MOSFET's) is investigated experimentally and analytically. Experimental data are presented which indicate that the SEB susceptibility of the power MOSFET decreases with increasing temperature. A previously reported analytical model that describes the SEB mechanism is updated to include temperature variations. This model is shown to agree with the experimental trends.

  19. Simulation of phase separation with temperature-dependent viscosity using lattice Boltzmann method.

    Science.gov (United States)

    Wang, Heping; Zang, Duyang; Li, Xiaoguang; Geng, Xingguo

    2017-12-27

    This paper presents an exploration of the phase separation behavior and pattern formation in a binary fluid with temperature-dependent viscosity via a coupled lattice Boltzmann method (LBM). By introducing a viscosity-temperature relation into the LBM, the coupling effects of the viscosity-temperature coefficient [Formula: see text] , initial viscosity [Formula: see text] and thermal diffusion coefficient [Formula: see text] , on the phase separation were successfully described. The calculated results indicated that an increase in initial viscosity and viscosity-temperature coefficient, or a decrease in the thermal diffusion coefficient, can lead to the orientation of isotropic growth fronts over a wide range of viscosity. The results showed that droplet-type phase structures and lamellar phase structures with domain orientation parallel or perpendicular to the walls can be obtained in equilibrium by controlling the initial viscosity, thermal diffusivity, and the viscosity-temperature coefficient. Furthermore, the dataset was rearranged for growth kinetics of domain growth and thermal diffusion fronts in a plot by the spherically averaged structure factor and the ratio of separated and continuous phases. The analysis revealed two different temporal regimes: spinodal decomposition and domain growth stages, which further quantified the coupled effects of temperature and viscosity on the evolution of temperature-dependent phase separation. These numerical results provide guidance for setting optimum temperature ranges to obtain expected phase separation structures for systems with temperature-dependent viscosity.

  20. Temperature dependence of fracture toughness in HT9 steel neutron-irradiated up to 145 dpa

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Jong-Hyuk [KAERI; Byun, Thak Sang [ORNL; Maloy, S [Los Alamos National Laboratory (LANL); Toloczko, M [Pacific Northwest National Laboratory (PNNL)

    2014-01-01

    The temperature dependence of fracture toughness in HT9 steel irradiated to high doses was investigated using miniature three-point bend (TPB) fracture specimens. These specimens were from the ACO-3 fuel duct wall of the Fast Flux Test Facility (FFTF), in which irradiation doses were in the range of 3.2 144.8 dpa and irradiation temperatures in the range of 380.4 502.6 oC. A miniature specimen reuse technique has been established for this investigation: the specimens used were the tested halves of miniature Charpy impact specimens (~13 3 4 mm) with diamond-saw cut in the middle. The fatigue precracking for specimens and fracture resistance (J-R) tests were carried out in a MTS servo-hydraulic testing machine with a vacuum furnace following the standard procedure described in the ASTM Standard E 1820-09. For each of five irradiated and one archive conditions, 7 to 9 J-R tests were performed at selected temperatures ranging from 22 C to 600 C. The fracture toughness of the irradiated HT9 steel was strongly dependent on irradiation temperatures rather than irradiation dose. When the irradiation temperature was below about 430 C, the fracture toughness of irradiated HT9 increased with test temperature, reached an upper shelf of 180 200 MPa m at 350 450 C and then decreased with test temperature. When the irradiation temperature 430 C, the fracture toughness was nearly unchanged until about 450 C and decreased with test temperature in higher temperature range. Similar test temperature dependence was observed for the archive material although the highest toughness values are lower after irradiation. Ductile stable crack growth occurred except for a few cases where both the irradiation temperature and test temperature are relatively low.

  1. Validity of inner canthus temperature recorded by infrared thermography as a non-invasive surrogate measure for core temperature at rest, during exercise and recovery.

    Science.gov (United States)

    Fernandes, Alex Andrade; Moreira, Danilo Gomes; Brito, Ciro José; da Silva, Cristiano Diniz; Sillero-Quintana, Manuel; Pimenta, Eduardo Mendonça; Bach, Aaron J E; Garcia, Emerson Silami; Bouzas Marins, João Carlos

    2016-12-01

    Research into obtaining a fast, valid, reliable and non-invasive measure of core temperature is of interest in many disciplinary fields. Occupational and sports medicine research has attempted to determine a non-invasive proxy for core temperature particularly when access to participants is limited and thermal safety is of a concern due to protective encapsulating clothing, hot ambient environments and/or high endogenous heat production during athletic competition. This investigation aimed to determine the validity of inner canthus of the eye temperature (TEC) as an alternate non-invasive measure of intestinal core temperature (TC) during rest, exercise and post-exercise conditions. Twelve physically active males rested for 30min prior to exercise, performed 60min of aerobic exercise at 60% V̇O2max and passively recovered a further 60min post-exercise. TEC and TC were measured at 5min intervals during each condition. Mean differences between TEC and TC were 0.61°C during pre-exercise, -1.78°C during exercise and -1.00°C during post-exercise. The reliability between the methods was low in the pre-exercise (ICC=0.49 [-0.09 to 0.82]), exercise (ICC=-0.14 [-0.65 to 0.44]) and post-exercise (ICC=-0.25 [-0.70 to 0.35]) conditions. In conclusion, poor agreement was observed between the TEC values measured through IRT and TC measured through a gastrointestinal telemetry pill. Therefore, TEC is not a valid substitute measurement to gastrointestinal telemetry pill in sports and exercise science settings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Data for ion and seed dependent fibril assembly of a spidroin core domain

    Directory of Open Access Journals (Sweden)

    Martin Humenik

    2015-09-01

    Full Text Available This data article includes size exclusion chromatography data of soluble eADF4(C16, an engineered spider silk variant based on the core domain sequence of the natural dragline silk protein ADF4 of Araneus diadematus, in combination with light scattering; the protein is monomeric before assembly. The assembled mature fibrils were visualized by transmission electron microscopy (TEM and atomic force microscopy (AFM. Sonicated fibrils were used as seeds to by-pass the nucleation lag phase in eADF4(C16 assembly. We also provide data on the sedimentation kinetics of spider silk in the presence of different NaCl concentrations revealing very slow protein aggregation in comparison to the fast assembly triggered by phosphate ions published previously [1]. Experiments in the Data article represent supporting material for our work published recently [1], which described the assembly mechanism of recombinant eADF4(C16 fibrils.

  3. Temperature dependence of spin-orbit torques in Cu-Au alloys

    KAUST Repository

    Wen, Yan

    2017-03-07

    We investigated current driven spin-orbit torques in Cu40Au60/Ni80Fe20/Ti layered structures with in-plane magnetization. We have demonstrated a reliable and convenient method to separate dampinglike torque and fieldlike torque by using the second harmonic technique. It is found that the dampinglike torque and fieldlike torque depend on temperature very differently. Dampinglike torque increases with temperature, while fieldlike torque decreases with temperature, which are different from results obtained previously in other material systems. We observed a nearly linear dependence between the spin Hall angle and longitudinal resistivity, suggesting that skew scattering may be the dominant mechanism of spin-orbit torques.

  4. Molecular modeling of temperature dependence of solubility parameters for amorphous polymers

    OpenAIRE

    Chen, X.; Yuan, C.; Wong, C.K.Y.; Zhang, G

    2011-01-01

    A molecular modeling strategy is proposed to describe the temperature (T) dependence of solubility parameter (δ) for the amorphous polymers which exhibit glass-rubber transition behavior. The commercial forcefield “COMPASS” is used to support the atomistic simulations of the polymer. The temperature dependence behavior of δ for the polymer is modeled by running molecular dynamics (MD) simulation at temperatures ranging from 250 up to 650 K. Comparing the MD predicted δ value at 298 K and the ...

  5. Temperature Dependent Fracture Model and its Application to Ultra Heavy Thick Steel Plate Used for Shipbuilding

    Science.gov (United States)

    Jang, Yun Chan; Lee, Youngseog; An, Gyu Baek; Park, Joon Sik; Lee, Jong Bong; Kim, Sung Il

    In this study, experimental and numerical studies were performed to examine the effects of thickness of steel plate on the arrest fracture toughness. The ESSO tests were performed with the steel plates having temperature gradient along the crack propagation direction. A temperature dependent crack initiation criterion was proposed as well. A series of three-dimensional FEA was then carried out to simulate the ESSO test while the thickness of the steel plate varies. Results reveal that a temperature dependent brittle criterion proposed in this study can describe the fracture behavior properly.

  6. Equation of states and melting temperatures of diamond cubic and zincblende semiconductors: pressure dependence

    Energy Technology Data Exchange (ETDEWEB)

    Hung, V V; Hanh, P T M [Hanoi National Pedagogic University, Km8 Hanoi-Sontay Highway, Hanoi (Viet Nam); Masuda-Jindo, K [Department of Material Science and Engineering, Tokyo Institute of Technology, Nagasuta, Midori-ku, Yokohama 226-8503 (Japan); Hai, N T [Hanoi University of Technology, 01 Dai Co Viet Road, Hanoi (Viet Nam)], E-mail: kmjindo@issp.u-tokyo.ac.jp

    2008-02-15

    The pressure dependence of the melting temperatures of tetrahedrally coordinated semiconductors are studied using the equation of states derived from the statistical moment method, in comparison with those of the normal metals. Using the general expressions of the limiting temperatures T{sub m}, we calculate the 'melting' temperatures of the semiconductor crystals and normal metals as a function of the hydrostatic pressure. The physical origins for the inverse pressure dependence of T{sub m} observed for tetrahedrally coordinated semiconductors are also discussed.

  7. Temperature dependence of universal conductance fluctuation due to development of weak localization in graphene

    Science.gov (United States)

    Terasawa, D.; Fukuda, A.; Fujimoto, A.; Ohno, Y.; Matsumoto, K.

    2017-11-01

    The temperature effect of quantum interference on resistivity is examined in monolayer graphene, with experimental results showing that the amplitude of the conductance fluctuation increases as temperature decreases. We find that this behavior can be attributed to the decrease in the inelastic scattering (dephasing) rate, which enhances the weak localization (WL) correction to resistivity. Following a previous report that explained the relationship between the universal conductance fluctuation (UCF) and WL regarding the gate voltage dependence (Terasawa et al., 2017) [19], we propose that the temperature dependence of the UCF in monolayer graphene can be interpreted by the WL theory.

  8. Ice cores

    DEFF Research Database (Denmark)

    Svensson, Anders

    2014-01-01

    Ice cores from Antarctica, from Greenland, and from a number of smaller glaciers around the world yield a wealth of information on past climates and environments. Ice cores offer unique records on past temperatures, atmospheric composition (including greenhouse gases), volcanism, solar activity......, dustiness, and biomass burning, among others. In Antarctica, ice cores extend back more than 800,000 years before present (Jouzel et al. 2007), whereas. Greenland ice cores cover the last 130,000 years...

  9. Temperature responsive complex coacervate core micelles with a PEO and PNIPAAm corona

    NARCIS (Netherlands)

    Voets, I.K.; Moll, P.M.; Aqil, A.; Jerome, C.; Detrembleur, C.; Waard, de P.; Keizer, de A.; Cohen Stuart, M.A.

    2008-01-01

    We report on the stability of complex coacervate core micelles, i.e., C3Ms (or PIC, BIC micelles), containing metal coordination polymers. In aqueous solutions these micelles are formed between charged-neutral diblock copolymers and oppositely charged coordination polymers formed from metal ions and

  10. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Francesco Venneri; Chang-Keun Jo; Jae-Man Noh; Yonghee Kim; Claudio Filippone; Jonghwa Chang; Chris Hamilton; Young-Min Kim; Ji-Su Jun; Moon-Sung Cho; Hong-Sik Lim; MIchael A. Pope; Abderrafi M. Ougouag; Vincent Descotes; Brian Boer

    2010-09-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450

  11. Skin temperature over the carotid artery provides an accurate noninvasive estimation of core temperature in infants and young children during general anesthesia.

    Science.gov (United States)

    Jay, Ollie; Molgat-Seon, Yannick; Chou, Shirley; Murto, Kimmo

    2013-12-01

    The accurate measurement of core temperature is an essential aspect of intraoperative management in children. Invasive measurement sites are accurate but carry some health risks and cannot be used in certain patients. An accurate form of noninvasive thermometry is therefore needed. Our aim was to develop, and subsequently validate, separate models for estimating core temperature using different skin temperatures with an individualized correction factor. Forty-eight pediatric patients (0-36 months) undergoing elective surgery were separated into a modeling group (MG, n = 28) and validation group (VG, n = 20). Skin temperature was measured over the carotid artery (Tsk_carotid ), upper abdomen (Tsk_abd ), and axilla (Tsk_axilla ), while nasopharyngeal temperature (Tnaso ) was measured as a reference. In the MG, derived models for estimating Tnaso were: Tsk_carotid  + 0.52; Tsk_abd  + (0.076[body mass] + 0.02); and Tsk_axilla  + (0.081[body mass]-0.66). After adjusting raw Tsk_carotid, Tsk_abd , and Tsk_axilla values in the independent VG using these models, the mean bias (Predicted Tnaso - Actual Tnaso [with 95% confidence intervals]) was +0.03[+0.53, -0.50]°C, -0.05[+1.02, -1.07]°C, and -0.06[+1.21, -1.28°C], respectively. The percentage of values within ±0.5°C of Tnaso was 93.2%, 75.4%, and 66.1% for Tsk_carotid, Tsk_abd , and Tsk_axilla , respectively. Sensitivity and specificity for detecting hypothermia (Tnaso  Skin temperature over the carotid artery, with a simple correction factor of +0.52°C, provides a viable noninvasive estimate of Tnaso in young children during elective surgery with a general anesthetic. © 2013 John Wiley & Sons Ltd.

  12. Using extrathermodynamic relationships to model the temperature dependence of Henry's law constants of 209 PCB congeners.

    Science.gov (United States)

    Bamford, Holly A; Poster, Dianne L; Huie, Robert E; Baker, Joel E

    2002-10-15

    Our previous measurements of the temperature dependencies of Henry's law constants of 26 polychlorinated biphenyls (PCBs) showed a well-defined linear relationship between the enthalpy and the entropy of phase change. Within a homologue group, the Henry's law constants converged to a common value at a specific isoequilibrium temperature. We use this relationship to model the temperature dependencies of the Henry's law constants of the remaining PCB congeners. By using experimentally measured Henry's law constants at 11 degrees C for 61 PCB congeners described in this paper combined with the isoequilibrium temperatures from our previous measurements of Henry's law constants of 26 PCB congeners, we have derived an empirical relationship between the enthalpies and the entropies of phase change for these additional PCB congeners. A systematic variation in the enthalpies and entropies of phase change was found to be partially dependent on the chlorine number and substitution patterns on the biphenyl rings, allowing further estimation of the temperature dependence of Henry's law constants for the remaining 122 PCB congeners. The enthalpies of phase change for all 209 PCB congeners ranged between 10 and 169 kJ mol(-1), where the enthalpies of phase change decreased as the number of ortho chlorine substitutions on the biphenyl rings increased within homologue groups. These data are used to predict the temperature dependence of Henry's law constants for all 209 PCB congeners.

  13. Temperature dependence of the ClONO{sub 2} UV absorption spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Burkholder, J.B.; Talukdar, R.K.; Ravishankara, A.R. [Univ. of Colorado, Boulder, CO (United States)

    1994-04-01

    The temperature dependence of the ClONO{sub 2} absorption spectrum has been measured between 220 and 298 K and between 195 and 430 nm using a diode array spectrometer. The absorption cross sections were determined using both: (1) absolute pressure measurements at 296 K and (2) measurements at various temperatures relative to 296 K using a dual absorption cell arrangement. The temperature dependence of the ClONO{sub 2} absorption spectrum shows very broad structure. The amplitude of the temperature dependence relative to that at 296 K is weak at short wavelengths, < 2% at 215 nm and 220 K, but significant at the wavelengths important in the stratosphere, {approximately} 30% at 325 nm and 220 K. The authors ClONO{sub 2} absorption cross section data are in good general agreement with the previous measurements of Molina and Molina.

  14. Temperature dependence of the ClONO2 UV absorption spectrum

    Science.gov (United States)

    Burkholder, James B.; Talukdar, Ranajit K.; Ravishankara, A. R.

    1994-01-01

    The temperature dependence of the ClONO2 absorption spectrum has been measured between 220 and 298 K and between 195 and 430 nm using a diode array spectrometer. The absorption cross sections were determined using both: (1) absolute pressure measurements at 296 K and (2) measurements at various temperatures relative to 296 K using a dual absorption cell arrangement. The temperature dependence of the ClONO2 absorption spectrum shows very broad structure. The amplitude of the temperature dependence relative to that at 296 K is weak at short wavelengths, less than 2% at 215 nm and 220 K, but significant at the wavelengths important in the stratosphere, about 30% at 325 nm and 220 K. Our ClONO2 absorption cross section data are in good general agreement with the previous measurements of Molina and Molina (1979).

  15. Viscosity analysis of the temperature dependence of the solution conformation of ovalbumin.

    Science.gov (United States)

    Monkos, K

    2000-05-31

    The viscosity of ovalbumin aqueous solutions was studied as a function of temperature and of protein concentration. Viscosity-temperature dependence was discussed on the basis of the modified Arrhenius formula at temperatures ranging from 5 to 55 degrees C. The activation energy of viscous flow for hydrated and unhydrated ovalbumin was calculated. Viscosity-concentration dependence, in turn, was discussed on the basis of Mooney equation. It has been shown that the shape parameter S decreases with increasing temperature, and self-crowding factor K does not depend on temperature. At low concentration limit the numerical values of the intrinsic viscosity and of Huggins coefficient were calculated. A master curve relating the specific viscosity etasp to the reduced concentration c[eta], over the whole range of temperature, was obtained and the three ranges of concentrations: diluted, semi-diluted and concentrated, are discussed. It has been proved that the Mark-Houvink-Kuhn-Sakurada (MHKS) exponent for ovalbumin does not depend on temperature.

  16. Improved Regression Analysis of Temperature-Dependent Strain-Gage Balance Calibration Data

    Science.gov (United States)

    Ulbrich, N.

    2015-01-01

    An improved approach is discussed that may be used to directly include first and second order temperature effects in the load prediction algorithm of a wind tunnel strain-gage balance. The improved approach was designed for the Iterative Method that fits strain-gage outputs as a function of calibration loads and uses a load iteration scheme during the wind tunnel test to predict loads from measured gage outputs. The improved approach assumes that the strain-gage balance is at a constant uniform temperature when it is calibrated and used. First, the method introduces a new independent variable for the regression analysis of the balance calibration data. The new variable is designed as the difference between the uniform temperature of the balance and a global reference temperature. This reference temperature should be the primary calibration temperature of the balance so that, if needed, a tare load iteration can be performed. Then, two temperature{dependent terms are included in the regression models of the gage outputs. They are the temperature difference itself and the square of the temperature difference. Simulated temperature{dependent data obtained from Triumph Aerospace's 2013 calibration of NASA's ARC-30K five component semi{span balance is used to illustrate the application of the improved approach.

  17. Magnetic properties measurement and discussion of an amorphous power transformer core at room and liquid nitrogen temperature

    Science.gov (United States)

    Pronto, A. G.; Maurício, A.; Pina, J. M.

    2014-05-01

    In energy generation, transmission and distribution systems, power transformers are one of the most common and important components. Consequently, the performance of these transformers is crucial to global efficiency of the systems. To optimize transformers efficiency, the selection of an adequate ferromagnetic material is very important. For example, the use of amorphous ferromagnetic materials in transformer cores, replacing crystalline electrical steels, decreases total magnetic losses of the device. Other possible solution to increase energy systems efficiency, is the installation of high temperature superconducting power transformers (HTS transformers), normally cooled by liquid nitrogen at 77 K. In order to contribute to HTS transformer efficiency improvement, a 562.5 VA transformer with an amorphous ferromagnetic core was designed and built. For this core, the most important magnetic properties are measured at room and cryogenic temperature, and then compared with those of a typical crystalline grain-oriented electrical steel. Amorphous material magnetic losses (static and dynamic) at room and 77K are also presented and discussed.

  18. Chemical changes in carbon Nanotube-Nickel/Nickel Oxide Core/Shell nanoparticle heterostructures treated at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, Nitin, E-mail: nchopra@eng.ua.edu [Metallurgical and Materials Engineering, Center for Materials for Information Technology (MINT), Box 870202, University of Alabama, Tuscaloosa, AL 35487 (United States); McWhinney, Hylton G. [Prairie View A and M University, TX 77446 (United States); Shi Wenwu [Metallurgical and Materials Engineering, Center for Materials for Information Technology (MINT), Box 870202, University of Alabama, Tuscaloosa, AL 35487 (United States)

    2011-06-15

    Heterostructures composed of carbon nanotube (CNT) coated with Ni/NiO core/shell nanoparticles (denoted as CNC heterostructures) were synthesized in a wet-chemistry and single-step synthesis route involving direct nucleation of nanoparticles on CNT surface. Two different aspects of CNC heterostructures were studied here. First, it was observed that the nanoparticle coatings were more uniform on the as-produced and non-purified CNTs compared to purified (or acid treated) CNTs. These heterostructures were characterized using electron microscopy, Raman spectroscopy, and energy dispersive spectroscopy. Second, thermal stability of CNC heterostructures was studied by annealing them in N{sub 2}-rich (O{sub 2}-lean) environment between 125 and 750 deg. C for 1 h. A detailed X-ray photoelectron spectroscopy and Raman spectroscopy analysis was performed to evaluate the effects of annealing temperatures on chemical composition, phases, and stability of the heterostructures. It was observed that the CNTs present in the heterostructures completely decomposed and core Ni nanoparticle oxidized significantly between 600 and 750 deg. C. - Research Highlights: {yields} Heterostructures composed of CNTs coated with Ni/NiO core/shell nanoparticles. {yields} Poor nanoparticle coverage on purified CNT surface compared to non-purified CNTs. {yields} CNTs in heterostructures decompose between 600 and 750 deg. C in N{sub 2}-rich atmosphere. {yields} Metallic species in heterostructures were oxidized at higher temperatures.

  19. [Determination of normal temperature properties of refractory die material compatible with slip casting core of sintered titanium powder].

    Science.gov (United States)

    Kuang, X; Liao, Y; Chao, Y; Wang, H

    1999-05-01

    The refractory die is the precondition for developing slip casting core of sintered powder. This study is to determine the normal temperature properties of the refractory die material compatible with slip casting core. to mix the die material at five different ratios (8/1, 7.5/1, 7/1, 6.5/1, and 6/1) and measure their solidification time with self-manufactured Vicker's needle; to prepare five cylindrical specimens (phi 10 x 15 mm) in different drying time for determining their compressive strength, and then to let another five specimens fire at 1000 degrees C four times for measuring the residual compressive strength at room temperature. The setting time was 16.25 minutes (7.5/1), and the lower the powder-liquid ratio, the longer the setting time. The normal compressive strength was 25.32 MPa (drying 24 hours), while the longer the drying time, the higher the compressive strength achieved (P slip casting core of sintered powder.

  20. Temperature dependence of the in situ widths of a rotating condensate in one dimensional optical potential

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Ahmed S., E-mail: ahmedhassan117@yahoo.com; Soliman, Shemi S.M.

    2016-01-08

    In this paper, a conventional method of quantum statistical mechanics is used to study the temperature dependence of the in situ widths of a rotating condensate bosons in 1D optical potential. We trace the experimentally accessible parameters for which the temperature dependence of the in situ widths becomes perceivable. The calculated results showed that the temperature dependence of the in situ widths is completely different from that of a rotating condensate or trapped bosons in the optical lattice separately. The z-width shows distinct behavior from x- and y-widths due to the rotation effect. The obtained results provide useful qualitative theoretical results for future Bose Einstein condensation experiments in such traps. - Highlights: • The temperature dependence of the in situ widths of a rotating condensate boson in 1D optical potential is investigated. • We trace the experimentally accessible parameters for which the in situ widths become perceivable. • The above mentioned parameters exhibit a characteristic rotation rate and optical potential depth dependence. • Characteristic dependence of the effective widths on temperature is investigated. • Our results provide useful qualitatively and quantitative theoretical results for experiments in various traps.

  1. Core/Shell Structure of TiO2-Coated MWCNTs for Thermal Protection for High-Temperature Processing of Metal Matrix Composites

    Directory of Open Access Journals (Sweden)

    Laura Angélica Ardila Rodriguez

    2018-01-01

    Full Text Available The production of metal matrix composites with elevated mechanical properties depends largely on the reinforcing phase properties. Due to the poor oxidation resistance of multiwalled carbon nanotubes (MWCNTs as well as their high reactivity with molten metal, the processing conditions for the production of MWCNT-reinforced metal matrix composites may be an obstacle to their successful use as reinforcement. Coating MWCNTs with a ceramic material that acts as a thermal protection would be an alternative to improve oxidation stability. In this work, MWCNTs previously functionalized were coated with titanium dioxide (TiO2 layers of different thicknesses, producing a core-shell structure. Heat treatments at three different temperatures (500°C, 750°C, and 1000°C were performed on coated nanotubes in order to form a stable metal oxide structure. The MWCNT/TiO2 hybrids produced were evaluated in terms of thermal stability. Thermogravimetric analysis (TGA, X-ray diffraction (XRD, scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, Raman spectroscopy (RS, and X-ray photoelectron spectroscopy (XPS were performed in order to investigate TiO2-coated MWCNT structure and thermal stability under oxidative atmosphere. It was found that the thermal stability of the TiO2-coated MWCNTs was dependent of the TiO2 layer morphology that in turn depends on the heat treatment temperature.

  2. A High Temperature-Tolerant and Radiation-Resistant In-Core Neutron Sensor for Advanced Reactors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Lei [The Ohio State Univ., Columbus, OH (United States); Miller, Don [The Ohio State Univ., Columbus, OH (United States)

    2015-01-23

    The objectives of this project are to develop a small and reliable gallium nitride (GaN) neutron sensor that is capable of withstanding high neutron fluence and high temperature, isolating gamma background, and operating in a wide dynamic range. The first objective will be the understanding of the fundamental materials properties and electronic response of a GaN semiconductor materials and device in an environment of high temperature and intense neutron field. To achieve such goal, an in-situ study of electronic properties of GaN device such as I-V, leakage current, and charge collection efficiency (CCE) in high temperature using an external neutron beam will be designed and implemented. We will also perform in-core irradiation of GaN up to the highest yet fast neutron fluence and an off-line performance evaluation.

  3. Temperature dependences of the contact resistivity in ohmic contacts to n{sup +}-InN

    Energy Technology Data Exchange (ETDEWEB)

    Sachenko, A. V.; Belyaev, A. E. [National Academy of Sciences, Lashkaryov Institute of Semiconductor Physics (Ukraine); Boltovets, N. S. [“Orion” Research Institute (Ukraine); Brunkov, P. N.; Jmerik, V. N.; Ivanov, S. V. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Kapitanchuk, L. M. [National Academy of Sciences of Ukraine, Paton Electric Welding Institute (Ukraine); Konakova, R. V., E-mail: konakova@isp.kiev.ua; Klad’ko, V. P.; Romanets, P. N.; Saja, P. O.; Safryuk, N. V.; Sheremet, V. N. [National Academy of Sciences, Lashkaryov Institute of Semiconductor Physics (Ukraine)

    2015-04-15

    The temperature dependences of the contact resistivity (ρ{sub c}) of ohmic contacts based on the Au-Ti-Pd-InN system are measured at an InN doping level of 2 × 10{sup 18} cm{sup −3} in the temperature range of 4.2–300 K. At temperatures T > 150 K, linearly increasing dependences ρ{sub c}(T) are obtained. The dependences are explained within the mechanism of thermionic current flow through metal shunts associated with dislocations. Good agreement between theoretical and experimental dependences is achieved assuming that the flowing current is limited by the total resistance of the metal shunts, and the density of conductive dislocations is ∼5 × 10{sup 9} cm{sup −2}. Using the X-ray diffraction method, the density of screw and edge dislocations in the structure under study is measured: their total density exceeds 10{sup 10} cm{sup −2}.

  4. Influence of excitation power density on temperature dependencies of NaYF4: Yb, Er nanoparticles luminescence spectra

    Science.gov (United States)

    Ustalkov, Sergey O.; Kozlova, Ekaterina A.; Savenko, Olga A.; Mohammed, Ammar H. M.; Kochubey, Vyacheslav I.; Skaptsov, Alexander A.

    2017-03-01

    Upconversion nanoparticles are good candidates for nanothermometry. The wavelength of the excitation and luminescence lie in optical window. The influence of the excitation power density on the luminescence temperature dependences is studded. Ratio of luminescence intensities linearly depends on temperature.

  5. Temperature-dependent subsurface growth during atomic layer deposition on polypropylene and cellulose fibers.

    Science.gov (United States)

    Jur, Jesse S; Spagnola, Joseph C; Lee, Kyoungmi; Gong, Bo; Peng, Qing; Parsons, Gregory N

    2010-06-01

    Nucleation and subsequent growth of aluminum oxide by atomic layer deposition (ALD) on polypropylene fiber substrates is strongly dependent on processing temperature and polymer backbone structure. Deposition on cellulose cotton, which contains ample hydroxyl sites for ALD nucleation and growth on the polymer backbone, readily produces a uniform and conformal coating. However, similar ALD processing on polypropylene, which contains no readily available active sites for growth initiation, results in a graded and intermixed polymer/inorganic interface layer. The structure of the polymer/inorganic layer depends strongly on the process temperature, where lower temperature (60 degrees C) produced a more abrupt transition. Cross-sectional transmission electron microscopy images of polypropylene fibers coated at higher temperature (90 degrees C) show that non-coalesced particles form in the near-surface region of the polymer, and the particles grow in size and coalesce into a film as the number of ALD cycles increases. Quartz crystal microbalance analysis on polypropylene films confirms enhanced mass uptake at higher processing temperatures, and X-ray photoelectron spectroscopy data also confirm heterogeneous mixing between the aluminum oxide and the polypropylene during deposition at higher temperatures. The strong temperature dependence of film nucleation and subsurface growth is ascribed to a relatively large increase in bulk species diffusivity that occurs upon the temperature-driven free volume expansion of the polypropylene. These results provide helpful insight into mechanisms for controlled organic/inorganic thin film and fiber materials integration.

  6. Elevated temperature dependent transport properties of phosphorus and arsenic doped zinc oxide thin films

    Science.gov (United States)

    Cai, B.; Nakarmi, M. L.; Oder, T. N.; McMaster, M.; Velpukonda, N.; Smith, A.

    2013-12-01

    Elevated temperature dependent Hall effect measurements were performed in a wide temperature range from 80 to 800 K to study transport properties of zinc oxide (ZnO) thin films heavily doped with phosphorus (P) and arsenic (As), and grown on sapphire substrates by RF magnetron sputtering. Double thermal activation processes in both P- and As-doped ZnO thin films with small activation energy of ˜0.04 eV and large activation energy of ˜0.8 eV were observed from variable temperature Hall effect measurements. The samples exhibited n-type conductivities throughout the temperature range. Based on photoluminescence measurements at 11 K and theoretical results, the large activation energy observed in the temperature dependent Hall effect measurement has been assigned to a deep donor level, which could be related to oxygen vacancy (VO) in the doped ZnO thin films.

  7. Temperature Dependence of Sound Velocity in High-Strength Fiber-Reinforced Plastics

    Science.gov (United States)

    Nomura, Ryuji; Yoneyama, Keiichi; Ogasawara, Futoshi; Ueno, Masashi; Okuda, Yuichi; Yamanaka, Atsuhiko

    2003-08-01

    Longitudinal sound velocity in unidirectional hybrid composites or high-strength fiber-reinforced plastics (FRPs) was measured along the fiber axis over a wide temperature range (from 77 K to 420 K). We investigated two kinds of high-strength crystalline polymer fibers, polyethylene (Dyneema) and polybenzobisoxazole (Zylon), which are known to have negative thermal expansion coefficients and high thermal conductivities along the fiber axis. Both FRPs had very high sound velocities of about 9000 m/s at low temperatures and their temperature dependences were very strong. Sound velocity monotonically decreased with increasing temperature. The temperature dependence of sound velocity was much stronger in Dyneema-FRP than in Zylon-FRP.

  8. Temperature dependence of stress in CVD diamond films studied by Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Dychalska Anna

    2015-09-01

    Full Text Available Evolution of residual stress and its components with increasing temperature in chemical vapor deposited (CVD diamond films has a crucial impact on their high temperature applications. In this work we investigated temperature dependence of stress in CVD diamond film deposited on Si(100 substrate in the temperature range of 30 °C to 480 °C by Raman mapping measurement. Raman shift of the characteristic diamond band peaked at 1332 cm-1 was studied to evaluate the residual stress distribution at the diamond surface. A new approach was applied to calculate thermal stress evolution with increasing tempera­ture by using two commonly known equations. Comparison of the residts obtained from the two methods was presented. The intrinsic stress component was calculated from the difference between average values of residual and thermal stress and then its temperature dependence was discussed.

  9. Temperature dependence of the photoluminescence of MnS/ZnS core—shell quantum dots

    Science.gov (United States)

    Fang, Dai-Feng; Ding, Xing; Dai, Ru-Cheng; Zhao, Zhi; Wang, Zhong-Ping; Zhang, Zeng-Ming

    2014-12-01

    The temperature dependence of the photoluminescence (PL) from MnS/ZnS core—shell quantum dots is investigated in a temperature range of 8 K-300 K. The orange emission from the 4T1 → 6A1 transition of Mn2+ ions and the blue emission related to the trapped surface state are observed in the MnS/ZnS core—shell quantum dots. As the temperature increases, the orange emission is shifted toward a shorter wavelength while the blue emission is shifted towards the longer wavelength. Both the orange and blue emissions reduce their intensities with the increase of temperature but the blue emission is quenched faster. The temperature-dependent luminescence intensities of the two emissions are well explained by the thermal quenching theory.

  10. Genetic Disruption of the Core Circadian Clock Impairs Hippocampus-Dependent Memory

    Science.gov (United States)

    Wardlaw, Sarah M.; Phan, Trongha X.; Saraf, Amit; Chen, Xuanmao; Storm, Daniel R.

    2014-01-01

    Perturbing the circadian system by electrolytically lesioning the suprachiasmatic nucleus (SCN) or varying the environmental light:dark schedule impairs memory, suggesting that memory depends on the circadian system. We used a genetic approach to evaluate the role of the molecular clock in memory. Bmal1[superscript -/-] mice, which are arrhythmic…

  11. Temperature Dependent Electrical and Micromechanical Properties of Lanthanum Titanate with Additions of Yttria

    Science.gov (United States)

    Goldsby, Jon C.

    2003-01-01

    Lanthanum titanate (La2Ti2O7) a layered distorted perovskite (1) with space group Pna2(sub 1) has been shown to have potential as a high temperature piezoelectric (2). However this highly refractory oxide compound must be consolidated at relatively high temperatures approximately 1400 C. Commercial La2Ti207 powders were mechanically alloyed with additions of Y2O3 to lower the consolidation temperature by 300 C and to provide post processing mechanical stability. Temperature dependent electrical, elastic and anelastic behavior were selected as nondestructive means of evaluating the effects of yttria on the properties of this ferroceramic material.

  12. Reversing the temperature dependence of the sensitized Er3+ luminescence intensity

    Science.gov (United States)

    Lenz, F.; Hryciw, A.; DeCorby, R.; Meldrum, A.

    2009-08-01

    The temperature-induced quenching of the Er3+ luminescence is a significant problem in silicon-based materials systems ultimately designed for room-temperature applications. Here, we show that amorphous silicon-rich oxide, moderately annealed in order to avoid growth of Si nanocrystals, exhibits a reversed temperature dependence in which the integrated Er3+ luminescence increases in intensity upon heating from 77 up to 300 K. This behavior is attributed to a unique spectrum of interacting defects that efficiently sensitize the Er3+ levels, even in the absence of nanocrystals. The effect could have ramifications in fiber-optic emitters or amplifiers to be operated at noncryogenic temperatures.

  13. Simulation study of temperature-dependent diffusion behaviors of Ag/Ag(001) at low substrate temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Danyun; Mo, Yunjie [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 (China); Feng, Xiaofang [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275 (China); He, Yingyou [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 (China); Jiang, Shaoji, E-mail: stsjsj@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275 (China)

    2017-06-01

    Highlights: • The model of combinations of nearest-neighbor atoms of adatom was built to calculate the diffusion barrier of every configuration for Ag/Ag(001). • The complete potential energy curve of a specific diffusion path on the surface was worked out with the help of elementary diffusion behaviors. • The non-monotonic relation between the surface roughness and the substrate temperature (decreasing from 300 K to 100 K) was demonstrated. • A theoretical explanation of diffusion mechanism for the non-monotonic variation of roughness at low substrate temperature was presented. - Abstract: In this study, a model based on the First Principles calculations and Kinetic Monte Carlo simulation were established to study the growth characteristic of Ag thin film at low substrate temperature. On the basis of the interaction between the adatom and nearest-neighbor atoms, some simplifications and assumptions were made to categorize the diffusion behaviors of Ag adatoms on Ag(001). Then the barriers of all possible diffusion behaviors were calculated using the Climbing Image Nudged Elastic Band method (CI-NEB). Based on the Arrhenius formula, the morphology variation, which is attributed to the surface diffusion behaviors during the growth, was simulated with a temperature-dependent KMC model. With this model, a non-monotonic relation between the surface roughness and the substrate temperature (decreasing from 300 K to 100 K) were discovered. The analysis of the temperature dependence on diffusion behaviors presents a theoretical explanation of diffusion mechanism for the non-monotonic variation of roughness at low substrate temperature.

  14. Room-temperature ferromagnetism in CrSi2(core)/SiO2(shell) semiconducting nanocables

    Science.gov (United States)

    Hou, Te-Chien; Han, You-Hong; Lo, Shen-Chuan; Lee, Cheng-Tse; Ouyang, Hao; Chen, Lih-Juann

    2011-05-01

    Room-temperature ferromagnetism has been observed in high density free-standing CrSi2(core)/SiO2(shell) semiconducting nanocables, which is contrast to diamagnetic properties of both CrSi2 and SiO2 in bulk. The hexagonal CrSi2 C40-type nanowires, sheathed with a thin amorphous SiO2 layer, grow along [0001] direction. The results of first-principles simulations indicate that Cr atoms around the interface are with anomalously high magnetization (about 2 μB/atom), due to distorted/dangling bonds and surrounded oxygen atoms. Evaluations can be very consistent with measurements by further considering the effects of interfacial roughness and more distribution of oxygen around the interface. These results point toward a different way to tune nanomagnetism in core/shell nanowires.

  15. Structural, magnetic characterization (dependencies of coercivity and loss with the frequency) of magnetic cores based in Finemet

    Science.gov (United States)

    Osinalde, M.; Infante, P.; Domínguez, L.; Blanco, J. M.; del Val, J. J.; Chizhik, A.; González, J.

    2017-12-01

    We report changes of coercivity, induced magnetic anisotropy, magneto-optical domain structure and frequency dependencies of coercivity and energy loss (up to 10 MHz) associated with the structural modifications produced by thermal treatments under applied magnetic field (field annealing) in toroidal wound cores of Fe73.5Cu1Nb3Si15.5B7 amorphous alloy. The thermal treatment (535 °C, 1 h) leads to the typical nanocrystalline structure of α-Fe(Si) nanograins (60-65% relative volume, 10-20 nm average grain size embedded in a residual amorphous matrix, while the magnetic field with the possibility to be applied in two directions to the toroidal core axis, that is in transverse (which is equivalent to the transverse direction of the ribbon) or longitudinal (equivalent to the longitudinal direction of the ribbon), develops a macroscopic uniaxial magnetic anisotropy in the transverse (around 245 J/m3) or longitudinal (around 85 J/m3) direction of the ribbon, respectively. It is remarkable the quasi-unhysteretic character of the cores with these two kinds of field annealing as comparing with that of the as-quenched one. Magneto-optical study by Kerr-effect of the ribbons provides useful information on the domain structure of the surface in agreement with the direction and intensity of the induced magnetic anisotropy. This induced uniaxial magnetic anisotropy plays a very important role on the Hc(f) and EL(f) curves, (f: frequency), being drastic the presence and direction of the induced magnetic anisotropy. In addition, these frequency dependencies show a significant change at the frequency around 100 Hz.

  16. Dependence of Localized Electronic Structure on Ligand Configuration in the [2Fe] Hydrogenase Catalytic Core^*

    Science.gov (United States)

    Chang, Christopher H.; Kim, Kwiseon

    2007-03-01

    The [FeFe] hydrogenase enzyme is found in a variety of organisms, including Archaea, Eubacteria, and green algae^1,2, and crystallographically determined atomic position data is available for two examples. The biologically unusual catalytic H-cluster, responsible for proton reduction to H2 in vivo, is conserved in the known structures and includes two bis-thiolato bridged iron ions with extensive cyano- and carbonyl ligation. To address the configurational specificity of the diatomic ligand ligation, density functional theoretical calculations were done on [2Fe] core models of the active center, with varying CO and CN^- ligation patterns. Bonding in each complex has been characterized within the Natural Bond Orbital formalism. The effect of ligand configuration on bonding and charge distribution as well as Kohn-Sham orbital structure will be presented. [1] M. Forestier, P. King, L. Zhang, M. Posewitz, S. Schwarzer, T. Happe, M.L. Ghirardi, and M. Seibert, Eur. J. Biochem. 270, 2750 (2003). [2] Posewitz, M.C., P.W. King, S.L. Smolinski, R.D. Smith, II, A.R. Ginley, M.L. Ghirardi, and M. Seibert, Biochem. Soc. Trans. 33, 102 (2005). ^*This work was supported by the US DOE-SC-BES Hydrogen Fuels Initiative, and done in collaboration with the NREL Chemical and Biosciences Center.

  17. No effects of huddling on core body temperature in rock hyrax ...

    African Journals Online (AJOL)

    Huddling is a behavioural energy conservation mechanism that is widely used by many small endotherms at low ambient temperatures. Huddling has many benefits, including decreasing the metabolic cost of maintaining body temperature (Tb), reducing the amount of heat lost to the environment, and increasing the local ...

  18. Reliability of an infrared forehead skin thermometer for core temperature measurements

    NARCIS (Netherlands)

    Kistemaker, J.A.; Hartog, E.A. den; Daanen, H.A.M.

    2006-01-01

    The SensorTouch thermometer performs an infrared measurement of the skin temperature above the Superficial Temporal Artery (STA). This study evaluates the validity and the accuracy of the SensorTouch thermometer. Two experiments were performed in which the body temperature was measured with a rectal

  19. Temperature dependent electron paramagnetic resonance study on magnetoelectric YCrO3

    Science.gov (United States)

    Mall, Ashish Kumar; Dixit, Ambesh; Garg, Ashish; Gupta, Rajeev

    2017-12-01

    We report temperature dependent electron paramagnetic resonance (EPR) studies on polycrystalline YCrO3 samples at X-band (9.46 GHz) in the temperature range of 120 K–298 K. The EPR spectra exhibit a single broad line across the whole temperature range, attributed to Cr3+ ions. The variation of EPR spectra parameters (line width, integrated intensity, and g-factor) as a function of temperature was analyzed to understand the nature of spin-dynamics in the paramagnetic region of YCrO3. A peak in the g-factor suggests the presence of a new phase within the paramagnetic state at an intermediate point of temperature T IP ~ 230 K, attributed to the onset of short range canted antiferromagnetic correlations in the material much above 140 K, Néel temperature (T N) of YCrO3. The EPR intensity increases with a decrease in temperature up to T N due to the renormalization of the magnetic moments arising from the appearance of canted antiferromagnetic correlations. Further, temperature dependent dielectric measurements also exhibit an anomaly at ~230 K suggesting the presence of magnetodielectric coupling in YCrO3, with a possibility towards a relatively high temperature magnetodielectric system.

  20. Temperature dependence of a microstructured SiC coherent thermal source

    Science.gov (United States)

    Hervé, Armande; Drévillon, Jérémie; Ezzahri, Younès; Joulain, Karl; De Sousa Meneses, Domingos; Hugonin, Jean-Paul

    2016-09-01

    By ruling a grating on a polar material that supports surface phonon-polaritons such as silicon carbide (SiC), it is possible to create directional and monochromatic thermal sources. So far, most of the studies have considered only materials with room temperature properties as the ones tabulated in Palik's handbooks. Recently, measurements have provided experimental data of the SiC dielectric function at different temperatures. Here we study, numerically, the effect of the temperature dependence of the dielectric function on the thermal emission of SiC gratings (1D grating, in a first approach), heated at different temperatures. When materials are heated, the position of the grating emissivity peak shifts towards higher wavelength values. A second consequence of the temperature dependence of optical properties is that room temperature designed gratings are not optimal for higher temperatures. However, by modifying the grating parameters, it is possible to find an emission peak, with a maximum of emissivity near 1, for each temperature. We tried first to catch some patterns in the emissivity variation. Then, we obtained a grating, which leads to an optimum emissivity for all available temperature data for SiC.

  1. Temperature Effects on Retention and Separation of PAHs in Reversed-Phase Liquid Chromatography Using Columns Packed with Fully Porous and Core-Shell Particles

    Directory of Open Access Journals (Sweden)

    Christophe Waterlot

    2016-01-01

    Full Text Available Effects of temperature on the reversed-phase chromatographic behavior of PAHs were investigated on three columns. The first was the recent C18 column (250 mm × 4.6 mm packed with 5 µm core-shell particles while the others were more conventional C18 columns (250 mm × 4.6 mm packed with fully porous particles. Among the 16 PAHs studied, special attention has been paid to two pairs of PAHs, fluorene/acenaphthene and chrysene/benzo[a]anthracene, which often present coeluting problems. Due to the low surface area of the core-shell particles, lowest retention time of each PAH was highlighted and effects of the temperature on the separation of PAHs were negligible in regard to those using columns packed with fully porous particles. For each PAH studied, it was demonstrated that peaks were symmetrical and may be considered as Gaussian peaks when the column packed with core-shell particle was employed. In the best condition, the separation of PAHs was conducted at 16°C under very low pressure values (670–950 psi = 46–65 bars. Depending on PAHs, the limit of detection ranged from 0.88 to 9.16 μg L−1. Analysis of spiked acetonitrile samples with PAHs at 10 and 50 µg L−1 and tap water at 10 µg L−1 gave very good recoveries (94%–109.3% and high precision (1.1%–3.5%.

  2. Temperature and humidity dependence of secondary organic aerosol yield from the ozonolysis of β-pinene

    Directory of Open Access Journals (Sweden)

    C. von Hessberg

    2009-06-01

    Full Text Available The temperature dependence of secondary organic aerosol (SOA formation from ozonolysis of β-pinene was studied in a flow reactor at 263 K–303 K and 1007 hPa under dry and humid conditions (0% and 26%–68% relative humidity, respectively. The observed SOA yields reached maximum values of 0.18–0.39 at high particle mass concentrations (Mo. Under dry conditions, the measurement data showed an overall increase in SOA yield with inverse temperature, but significant oscillatory deviations from the predicted linear increase with inverse temperature (up to 50% at high Mo was observed. Under humid conditions the SOA yield exhibited a linear decrease with inverse temperature. For the atmospherically relevant concentration level of Mo=10 μg m−3 and temperature range 263 K–293 K, the results from humid experiments in this study indicate that the SOA yield of β-pinene ozonolysis may be well represented by an average value of 0.15 with an uncertainty estimate of ±0.05. When fitting the measurement data with a two-product model, both the partitioning coefficients (Kom,i and the stoichiometric yields (αi of the low-volatile and semi-volatile model species were found to vary with temperature. The results indicate that not only the reaction product vapour pressures but also the relative contributions of different gas-phase or multiphase reaction channels are strongly dependent on temperature and the presence of water vapour. In fact, the oscillatory positive temperature dependence observed under dry conditions and the negative temperature dependence observed under humid conditions indicate that the SOA yield is governed much more by the temperature and humidity dependence of the involved chemical reactions than by vapour pressure temperature dependencies. We suggest that the elucidation and modelling of SOA formation need to take into account the

  3. Low temperature grown ZnO@TiO{sub 2} core shell nanorod arrays for dye sensitized solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Gregory Kia Liang [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology, and Research), 3 Research Link, 117602 Singapore (Singapore); Le, Hong Quang, E-mail: lehq@imre.a-star.edu.sg [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology, and Research), 3 Research Link, 117602 Singapore (Singapore); Huang, Tang Jiao; Hui, Benjamin Tan Tiong [Department of Materials Science and Engineering (DMSE), Faculty of Engineering National University of Singapore (NUS) BLK E3A, #04-10, 7 Engineering Drive 1, Singapore 117574 (Singapore)

    2014-06-01

    High aspect ratio ZnO nanorod arrays were synthesized on fluorine-doped tin oxide glasses via a low temperature solution method. By adjusting the growth condition and adding polyethylenimine, ZnO nanorod arrays with tunable length were successfully achieved. The ZnO@TiO{sub 2} core shells structures were realized by a fast growth method of immersion into a (NH{sub 4}){sub 2}·TiF{sub 6} solution. Transmission electron microscopy, X-ray Diffraction and energy dispersive X-ray measurements all confirmed the existence of a titania shell uniformly covering the ZnO nanorod's surface. Results of solar cell testing showed that addition of a TiO{sub 2} shell to the ZnO nanorod significantly increased short circuit current (from 4.2 to 5.2 mA/cm{sup 2}), open circuit voltage (from 0.6 V to 0.8 V) and fill factor (from 42.8% to 73.02%). The overall cell efficiency jumped from 1.1% for bare ZnO nanorod to 3.03% for a ZnO@TiO{sub 2} core shell structured solar cell with a 18–22 nm shell thickness, a nearly threefold increase. - Graphical abstract: The synthesis process of coating TiO{sub 2} shell onto ZnO nanorod core is shown schematically. A thin, uniform, and conformal shell had been grown on the surface of the ZnO core after immersing in the (NH{sub 4}){sub 2}·TiF{sub 6} solution for 5–15 min. - Highlights: • ZnO@TiO{sub 2} core shell nanorod has been grown on FTO substrate using low temperature solution method. • TEM, XRD, EDX results confirmed the existing of titana shell, uniformly covered rod's surface. • TiO{sub 2} shell suppressed recombination, demonstrated significant enhancement in cell's efficiency. • Core shell DSSC's efficiency achieved as high as 3.03%, 3 times higher than that of ZnO nanorods.

  4. A space and time scale-dependent nonlinear geostatistical approach for downscaling daily precipitation and temperature

    KAUST Repository

    Jha, Sanjeev Kumar

    2015-07-21

    A geostatistical framework is proposed to downscale daily precipitation and temperature. The methodology is based on multiple-point geostatistics (MPS), where a multivariate training image is used to represent the spatial relationship between daily precipitation and daily temperature over several years. Here, the training image consists of daily rainfall and temperature outputs from the Weather Research and Forecasting (WRF) model at 50 km and 10 km resolution for a twenty year period ranging from 1985 to 2004. The data are used to predict downscaled climate variables for the year 2005. The result, for each downscaled pixel, is daily time series of precipitation and temperature that are spatially dependent. Comparison of predicted precipitation and temperature against a reference dataset indicates that both the seasonal average climate response together with the temporal variability are well reproduced. The explicit inclusion of time dependence is explored by considering the climate properties of the previous day as an additional variable. Comparison of simulations with and without inclusion of time dependence shows that the temporal dependence only slightly improves the daily prediction because the temporal variability is already well represented in the conditioning data. Overall, the study shows that the multiple-point geostatistics approach is an efficient tool to be used for statistical downscaling to obtain local scale estimates of precipitation and temperature from General Circulation Models. This article is protected by copyright. All rights reserved.

  5. Homogeneous broadening effect on temperature dependence of green upconversion luminescence in erbium doped fibers

    Energy Technology Data Exchange (ETDEWEB)

    Egatz-Gómez, A. [Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Arcos de Jalón 118, Madrid 28037 (Spain); Department of Biomedical Engineering, Texas A and M University, College Station, TX 77843 (United States); Calderón, Oscar G., E-mail: oscargc@fis.ucm.es [Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Arcos de Jalón 118, Madrid 28037 (Spain); Melle, Sonia; Carreño, F.; Antón, M.A. [Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Arcos de Jalón 118, Madrid 28037 (Spain); Gort, Elske M. [Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Arcos de Jalón 118, Madrid 28037 (Spain); Department of Biomedical Engineering, University of Groningen, 9700 RB Groningen (Netherlands)

    2013-07-15

    We study the green upconversion luminescence of Er{sup 3+} ions in an aluminosilicate optical fiber upon near infrared excitation at 787 nm. The dependence of the upconversion luminescence on temperature has been determined. As temperature drops from room to cryogenic temperatures, the upconversion green emission reaches a maximum around 40 K, and then decreases. A nearly quadratic dependence of the upconversion luminescence with excitation power is found, which is consistent with a sequential stepwise two-photon absorption process. These results have been explained with a semiclassical model that considers the inhomogeneous broadening of the optical transitions due to glass imperfections, and the dependence of the homogeneous linewidth broadening on temperature. -- Highlights: ► We study green upconversion luminescence of Er{sup 3+} ions in a fiber excited at 787 nm. ► Upconversion luminescence variation from room to cryogenic temperature is analyzed. ► Upconversion emission consists in a sequential two-photon absorption process. ► A semiclassical model considering inhomogeneous broadening explains the results. ► Homogeneous broadening is responsible for the upconversion temperature dependence.

  6. Temperature dependence of the superconducting proximity effect quantified by scanning tunneling spectroscopy

    Directory of Open Access Journals (Sweden)

    A. Stępniak

    2015-01-01

    Full Text Available Here, we present the first systematic study on the temperature dependence of the extension of the superconducting proximity effect in a 1–2 atomic layer thin metallic film, surrounding a superconducting Pb island. Scanning tunneling microscopy/spectroscopy (STM/STS measurements reveal the spatial variation of the local density of state on the film from 0.38 up to 1.8 K. In this temperature range the superconductivity of the island is almost unaffected and shows a constant gap of a 1.20 ± 0.03 meV. Using a superconducting Nb-tip a constant value of the proximity length of 17 ± 3 nm at 0.38 and 1.8 K is found. In contrast, experiments with a normal conductive W-tip indicate an apparent decrease of the proximity length with increasing temperature. This result is ascribed to the thermal broadening of the occupation of states of the tip, and it does not reflect an intrinsic temperature dependence of the proximity length. Our tunneling spectroscopy experiments shed fresh light on the fundamental issue of the temperature dependence of the proximity effect for atomic monolayers, where the intrinsic temperature dependence of the proximity effect is comparably weak.

  7. Molecular modeling of temperature dependence of solubility parameters for amorphous polymers.

    Science.gov (United States)

    Chen, Xianping; Yuan, Cadmus; Wong, Cell K Y; Zhang, Guoqi

    2012-06-01

    A molecular modeling strategy is proposed to describe the temperature (T) dependence of solubility parameter (δ) for the amorphous polymers which exhibit glass-rubber transition behavior. The commercial forcefield "COMPASS" is used to support the atomistic simulations of the polymer. The temperature dependence behavior of δ for the polymer is modeled by running molecular dynamics (MD) simulation at temperatures ranging from 250 up to 650 K. Comparing the MD predicted δ value at 298 K and the glass transition temperature (T(g)) of the polymer determined from δ-T curve with the experimental value confirm the accuracy of our method. The MD modeled relationship between δ and T agrees well with the previous theoretical works. We also observe the specific volume (v), cohesive energy (U(coh)), cohesive energy density (E(CED)) and δ shows a similar temperature dependence characteristics and a drastic change around the T(g). Meanwhile, the applications of δ and its temperature dependence property are addressed and discussed.

  8. A theoretical analysis for temperature dependences of laser-induced damage threshold

    Science.gov (United States)

    Mikami, K.; Motokoshi, S.; Somekawa, T.; Jitsuno, T.; Fujita, M.; Tanaka, K. A.

    2013-11-01

    The temperature dependence of the laser-induced damage threshold on optical coatings was studied in detail for laser pulses from 123 K to 473 K at different temperature using Nd:YAG laser (wavelength 1064 nm and pulse width 4 ns) and Ti:Sapphire laser (wavelength 800 nm and pulse width 100 fs, 2 ps, and 200 ps). The six kinds of optical monolayer coatings were prepared by electron beam evaporation and the coating materials were SiO2, Al2O3, HfO2, ZrO2, Ta2O5, and MgF2. For pulses longer than a few picoseconds, the laser-induced damage threshold of single-layer coatings increased with decreasing temperature. This temperature dependence was reversed for pulses shorter than a few picoseconds. We describe the physics models to explain the observed scaling. The electron avalanche is essential to explain the differences in the temperature dependence. In other words, the balance between linear process such as electron avalanche etc. and nonlinear process such as multiphoton ionization etc. will be able to decide the tendency of the temperature dependence. The proposed model also gives one of possibility for an extremely high LIDT optics.

  9. Temperature-Dependent Ellipsometry Measurements of Partial Coulomb Energy in Superconducting Cuprates

    Science.gov (United States)

    Levallois, J.; Tran, M. K.; Pouliot, D.; Presura, C. N.; Greene, L. H.; Eckstein, J. N.; Uccelli, J.; Giannini, E.; Gu, G. D.; Leggett, A. J.; van der Marel, D.

    2016-07-01

    We performed an experimental study of the temperature and doping dependence of the energy-loss function of the bilayer and trilayer bismuth cuprates family. The primary aim is to obtain information on the energy stored in the Coulomb interaction between the conduction electrons, on the temperature dependence thereof, and on the change of Coulomb interaction when Cooper pairs are formed. We performed temperature-dependent ellipsometry measurements on several Bi2 Sr2 CaCu2 O8 -x single crystals: underdoped with Tc=60 , 70, and 83 K; optimally doped with Tc=91 K ; overdoped with Tc=84 , 81, 70, and 58 K; as well as optimally doped Bi2 Sr2 Ca2 Cu3 O10 +x with Tc=110 K . Our first observation is that, as the temperature drops through Tc, the loss function in the range up to 2 eV displays a change of temperature dependence as compared to the temperature dependence in the normal state. This effect at—or close to—Tc depends strongly on doping, with a sign change for weak overdoping. The size of the observed change in Coulomb energy, using an extrapolation with reasonable assumptions about its q dependence, is about the same size as the condensation energy that has been measured in these compounds. Our results therefore lend support to the notion that the Coulomb energy is an important factor for stabilizing the superconducting phase. Because of the restriction to small momentum, our observations do not exclude a possible significant contribution to the condensation energy of the Coulomb energy associated with the region of q around (π ,π ).

  10. Temperature-Dependent Ellipsometry Measurements of Partial Coulomb Energy in Superconducting Cuprates

    Directory of Open Access Journals (Sweden)

    J. Levallois

    2016-08-01

    Full Text Available We performed an experimental study of the temperature and doping dependence of the energy-loss function of the bilayer and trilayer bismuth cuprates family. The primary aim is to obtain information on the energy stored in the Coulomb interaction between the conduction electrons, on the temperature dependence thereof, and on the change of Coulomb interaction when Cooper pairs are formed. We performed temperature-dependent ellipsometry measurements on several Bi_{2}Sr_{2}CaCu_{2}O_{8-x} single crystals: underdoped with T_{c}=60, 70, and 83 K; optimally doped with T_{c}=91  K; overdoped with T_{c}=84, 81, 70, and 58 K; as well as optimally doped Bi_{2}Sr_{2}Ca_{2}Cu_{3}O_{10+x} with T_{c}=110  K. Our first observation is that, as the temperature drops through T_{c}, the loss function in the range up to 2 eV displays a change of temperature dependence as compared to the temperature dependence in the normal state. This effect at—or close to—T_{c} depends strongly on doping, with a sign change for weak overdoping. The size of the observed change in Coulomb energy, using an extrapolation with reasonable assumptions about its q dependence, is about the same size as the condensation energy that has been measured in these compounds. Our results therefore lend support to the notion that the Coulomb energy is an important factor for stabilizing the superconducting phase. Because of the restriction to small momentum, our observations do not exclude a possible significant contribution to the condensation energy of the Coulomb energy associated with the region of q around (π,π.

  11. Modeling and Compensating Temperature-Dependent Non-Uniformity Noise in IR Microbolometer Cameras

    Science.gov (United States)

    Wolf, Alejandro; Pezoa, Jorge E.; Figueroa, Miguel

    2016-01-01

    Images rendered by uncooled microbolometer-based infrared (IR) cameras are severely degraded by the spatial non-uniformity (NU) noise. The NU noise imposes a fixed-pattern over the true images, and the intensity of the pattern changes with time due to the temperature instability of such cameras. In this paper, we present a novel model and a compensation algorithm for the spatial NU noise and its temperature-dependent variations. The model separates the NU noise into two components: a constant term, which corresponds to a set of NU parameters determining the spatial structure of the noise, and a dynamic term, which scales linearly with the fluctuations of the temperature surrounding the array of microbolometers. We use a black-body radiator and samples of the temperature surrounding the IR array to offline characterize both the constant and the temperature-dependent NU noise parameters. Next, the temperature-dependent variations are estimated online using both a spatially uniform Hammerstein-Wiener estimator and a pixelwise least mean squares (LMS) estimator. We compensate for the NU noise in IR images from two long-wave IR cameras. Results show an excellent NU correction performance and a root mean square error of less than 0.25 ∘C, when the array’s temperature varies by approximately 15 ∘C. PMID:27447637

  12. Temperature-dependent electronic decay profiles in CZT: probe of bulk and surface properties

    Science.gov (United States)

    Kessick, Royal; Maupin, Hugh; Tepper, Gary C.; Szeles, Csaba

    2003-01-01

    The electronic performance of CZT-based gamma radiation spectrometers is governed by a synergism of bulk and surface properties. Compensation is used to increase the bulk resistivity of Cd1-xZnxTe (x~0.1), but the same electronic states that are introduced to increase the material resistivity can also trap charge and reduce the carrier lifetime. Electrical and mechanical surface defects introduced during or subsequent to crystal harvesting are also known to interfere with device performance. Using a contactless, pulsed laser microwave cavity perturbation technique, electronic decay profiles were studied in high pressure Bridgman CZT as a function of temperature. The electronic decay profile was found to depend very strongly on temperature and was modeled using a function consisting of two exponential terms with temperature-dependent amplitudes and time constants. The model was used to relate the observed temperature dependent decay kinetics in CZT to specific trap energies. It was found that, at low temperatures, the electronic decay process is dominated by a deep trap with an energy of approximately 0.69 +/- 0.1 eV from the band edge. As the temperature is increased, the charge trapping becomes dominated by a second trap with an energy of approximately 0.60 +/- 0.1 eV from the band edge. Surface damage introduces additional charge traps that significantly alter the decay kinetics particularly at low temperatures.

  13. Comparing the temperature dependence of photosynthetic electron transfer in Chloroflexus aurantiacus and Rhodobactor sphaeroides reaction centers.

    Science.gov (United States)

    Guo, Zhi; Lin, Su; Xin, Yueyong; Wang, Haiyu; Blankenship, Robert E; Woodbury, Neal W

    2011-09-29

    The process of electron transfer from the special pair, P, to the primary electron donor, H(A), in quinone-depleted reaction centers (RCs) of Chloroflexus (Cf.) aurantiacus has been investigated over the temperature range from 10 to 295 K using time-resolved pump-probe spectroscopic techniques. The kinetics of the electron transfer reaction, P* → P(+)H(A)(-), was found to be nonexponential, and the degree of nonexponentiality increased strongly as temperature decreased. The temperature-dependent behavior of electron transfer in Cf. aurantiacus RCs was compared with that of the purple bacterium Rhodobacter (Rb.) sphaeroides . Distinct transitions were found in the temperature-dependent kinetics of both Cf. aurantiacus and Rb. sphaeroides RCs, at around 220 and 160 K, respectively. Structural differences between these two RCs, which may be associated with those differences, are discussed. It is suggested that weaker protein-cofactor hydrogen bonding, stronger electrostatic interactions at the protein surface, and larger solvent interactions likely contribute to the higher transition temperature in Cf. aurantiacus RCs temperature-dependent kinetics compared with that of Rb. sphaeroides RCs. The reaction-diffusion model provides an accurate description for the room-temperature electron transfer kinetics in Cf. aurantiacus RCs with no free parameters, using coupling and reorganization energy values previously determined for Rb. sphaeroides , along with an experimental measure of protein conformational diffusion dynamics and an experimental literature value of the free energy gap between P* and P(+)H(A)(-). © 2011 American Chemical Society

  14. Modeling and Compensating Temperature-Dependent Non-Uniformity Noise in IR Microbolometer Cameras

    Directory of Open Access Journals (Sweden)

    Alejandro Wolf

    2016-07-01

    Full Text Available Images rendered by uncooled microbolometer-based infrared (IR cameras are severely degraded by the spatial non-uniformity (NU noise. The NU noise imposes a fixed-pattern over the true images, and the intensity of the pattern changes with time due to the temperature instability of such cameras. In this paper, we present a novel model and a compensation algorithm for the spatial NU noise and its temperature-dependent variations. The model separates the NU noise into two components: a constant term, which corresponds to a set of NU parameters determining the spatial structure of the noise, and a dynamic term, which scales linearly with the fluctuations of the temperature surrounding the array of microbolometers. We use a black-body radiator and samples of the temperature surrounding the IR array to offline characterize both the constant and the temperature-dependent NU noise parameters. Next, the temperature-dependent variations are estimated online using both a spatially uniform Hammerstein-Wiener estimator and a pixelwise least mean squares (LMS estimator. We compensate for the NU noise in IR images from two long-wave IR cameras. Results show an excellent NU correction performance and a root mean square error of less than 0.25 ∘ C, when the array’s temperature varies by approximately 15 ∘ C.

  15. Temperature-dependent photoluminescence and Raman investigation of Cu-incorporated ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Yu, J.L. [Institute of Micro/Nano Devices and Solar Cells, School of Physics and Information Engineering, Fuzhou University, Fuzhou (China); Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu (China); Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Lai, Y.F., E-mail: laiyunfeng@gmail.com [Institute of Micro/Nano Devices and Solar Cells, School of Physics and Information Engineering, Fuzhou University, Fuzhou (China); Cheng, S.Y.; Zheng, Q. [Institute of Micro/Nano Devices and Solar Cells, School of Physics and Information Engineering, Fuzhou University, Fuzhou (China); Chen, Y.H. [Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China)

    2015-05-15

    Temperature-dependent Raman and photoluminescence (PL) investigation of Cu-incorporated ZnO nanorods prepared by hydrothermal method have been investigated. A strong broad violet–blue emission has been observed in the PL spectra of Cu-incorporated ZnO nanorods, which decreases dramatically with increasing temperature. By Gaussian fitting, this peak can be resolved into two peaks centered at around 393 and 405 nm, respectively, under a temperature of 8 K. The origins of these two peaks are discussed. Temperature-dependent energies of neutral donor bound exciton (D{sup 0}X) are analyzed, and the Einstein temperature is deduced to be around 343±44 K, which do not show significant change compared with that without Cu incorporation. An activation energy of about 14±1 meV is determined from the quenching of D{sup 0}X as a function of temperature in the Cu-incorporated ZnO nanorods, which is much smaller than that deduced in the undoped ZnO nanorods (about 22±2 meV). The small activation energy can be attributed to the additional nonradiative centers introduced by Cu incorporation. The high concentration of defects and impurities in the Cu-incorporated ZnO nanorods are also confirmed by the larger value of the line width of the Raman spectra and its temperature-dependent relationship. - Highlights: • A strong violet–blue emission is observed in the PL spectra of ZnO:Cu nanorods. • This emission can be resolved into two peaks by Gaussian fitting. • Activation energy of the nonradiative centers and Einstein temperature is deduced. • The small activation energy indicates the additional nonradiative centers. • The temperature-dependent Raman spectra indicates more defects in the doping sample.

  16. Does N2 fixation amplify the temperature dependence of ecosystem metabolism?

    Science.gov (United States)

    Welter, Jill R; Benstead, Jonathan P; Cross, Wyatt F; Hood, James M; Huryn, Alexander D; Johnson, Philip W; Williamson, Tanner J

    2015-03-01

    Variation in resource supply can cause variation in temperature dependences of metabolic processes (e.g., photosynthesis and respiration). Understanding such divergence is particularly important when using metabolic theory to predict ecosystem responses to climate warming. Few studies, however, have assessed the effect of temperature-resource interactions on metabolic processes, particularly in cases where the supply of limiting resources exhibits temperature dependence. We investigated the responses of biomass accrual, gross primary production (GPP), community respiration (CR), and N2 fixation to warming during biofilm development in a streamside channel experiment. Areal rates of GPP, CR, biomass accrual, and N2 fixation scaled positively with temperature, showing a 32- to 71-fold range across the temperature gradient (approximately 7 degrees-24 degrees C). Areal N2-fixation rates exhibited apparent activation energies (1.5-2.0 eV; 1 eV = approximately 1.6 x 10(-19) J) approximating the activation energy of the nitrogenase reaction. In contrast, mean apparent activation energies for areal rates of GPP (2.1-2.2 eV) and CR (1.6-1.9 eV) were 6.5- and 2.7-fold higher than estimates based on metabolic theory predictions (i.e., 0.32 and 0.65 eV, respectively) and did not significantly differ from the apparent activation energy observed for N2 fixation. Mass-specific activation energies for N2 fixation (1.4-1.6 eV), GPP (0.3-0.5 eV), and CR (no observed temperature relationship) were near or lower than theoretical predictions. We attribute the divergence of areal activation energies from those predicted by metabolic theory to increases in N2 fixation with temperature, leading to amplified temperature dependences of biomass accrual and areal rates of GPP and R. Such interactions between temperature dependences must be incorporated into metabolic models to improve predictions of ecosystem responses to climate change.

  17. Anomalous temperature dependent magneto-conductance in organic light-emitting diodes with multiple emissive states

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chen-xiao; Jia, Wei-yao; Huang, Ke-Xun; Zhang, Qiao-ming; Yang, Xiao-hui; Xiong, Zu-hong, E-mail: zhxiong@swu.edu.cn [School of Physical Science and Technology, MOE Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chongqing 400715 (China)

    2015-07-13

    The temperature dependence of the magneto-conductance (MC) in organic electron donor-acceptor hybrid and layer heterojunction diodes was studied. The MC value increased with temperature in layer heterojunction and in 10 wt. % hybrid devices. An anomalous decrease of the MC with temperature was observed in 25 wt. %–50 wt. % hybrid devices. Further increasing donor concentration to 75 wt. %, the MC again increased with temperature. The endothermic exciplex-exciton energy transfer and the change in electroplex/exciton ratio caused by change in charge transport with temperature may account for these phenomena. Comparative studies of the temperature evolutions of the IV curves and the electroluminescence and photoluminescence spectra back our hypothesis.

  18. The Effect of Paracetamol on Core Body Temperature in Acute Traumatic Brain Injury: A Randomised, Controlled Clinical Trial.

    Science.gov (United States)

    Saxena, Manoj K; Taylor, Colman; Billot, Laurent; Bompoint, Severine; Gowardman, John; Roberts, Jason A; Lipman, Jeffery; Myburgh, John

    2015-01-01

    Strategies to prevent pyrexia in patients with acute neurological injury may reduce secondary neuronal damage. The aim of this study was to determine the safety and efficacy of the routine administration of 6 grams/day of intravenous paracetamol in reducing body temperature following severe traumatic brain injury, compared to placebo. A multicentre, randomised, blind, placebo-controlled clinical trial in adult patients with traumatic brain injury (TBI). Patients were randomised to receive an intravenous infusion of either 1g of paracetamol or 0.9% sodium chloride (saline) every 4 hours for 72 hours. The primary outcome was the mean difference in core temperature during the study intervention period. Forty-one patients were included in this study: 21 were allocated to paracetamol and 20 to saline. The median (interquartile range) number of doses of study drug was 18 (17-18) in the paracetamol group and 18 (16-18) in the saline group (P = 0.85). From randomisation until 4 hours after the last dose of study treatment, there were 2798 temperature measurements (median 73 [67-76] per patient). The mean ± standard deviation temperature was 37.4±0.5°C in the paracetamol group and 37.7±0.4°C in the saline group (absolute difference -0.3°C; 95% confidence interval -0.6 to 0.0; P = 0.09). There were no significant differences in the use of physical cooling, or episodes of hypotension or hepatic abnormalities, between the two groups. The routine administration of 6g/day of intravenous paracetamol did not significantly reduce core body temperature in patients with TBI. Australian New Zealand Clinical Trials Registry ACTRN12609000444280.

  19. The Effect of Paracetamol on Core Body Temperature in Acute Traumatic Brain Injury: A Randomised, Controlled Clinical Trial.

    Directory of Open Access Journals (Sweden)

    Manoj K Saxena

    Full Text Available Strategies to prevent pyrexia in patients with acute neurological injury may reduce secondary neuronal damage. The aim of this study was to determine the safety and efficacy of the routine administration of 6 grams/day of intravenous paracetamol in reducing body temperature following severe traumatic brain injury, compared to placebo.A multicentre, randomised, blind, placebo-controlled clinical trial in adult patients with traumatic brain injury (TBI. Patients were randomised to receive an intravenous infusion of either 1g of paracetamol or 0.9% sodium chloride (saline every 4 hours for 72 hours. The primary outcome was the mean difference in core temperature during the study intervention period.Forty-one patients were included in this study: 21 were allocated to paracetamol and 20 to saline. The median (interquartile range number of doses of study drug was 18 (17-18 in the paracetamol group and 18 (16-18 in the saline group (P = 0.85. From randomisation until 4 hours after the last dose of study treatment, there were 2798 temperature measurements (median 73 [67-76] per patient. The mean ± standard deviation temperature was 37.4±0.5°C in the paracetamol group and 37.7±0.4°C in the saline group (absolute difference -0.3°C; 95% confidence interval -0.6 to 0.0; P = 0.09. There were no significant differences in the use of physical cooling, or episodes of hypotension or hepatic abnormalities, between the two groups.The routine administration of 6g/day of intravenous paracetamol did not significantly reduce core body temperature in patients with TBI.Australian New Zealand Clinical Trials Registry ACTRN12609000444280.

  20. Ultra-low temperature sintering of Cu@Ag core-shell nanoparticle paste by ultrasonic in air for high-temperature power device packaging.

    Science.gov (United States)

    Ji, Hongjun; Zhou, Junbo; Liang, Meng; Lu, Huajun; Li, Mingyu

    2018-03-01

    Sintering of low-cost Cu nanoparticles (NPs) for interconnection of chips to substrate at low temperature and in atmosphere conditions is difficult because they are prone to oxidation, but dramatically required in semiconductor industry. In the present work, we successfully synthesized Cu@Ag NPs paste, and they were successfully applied for joining Cu/Cu@Ag NPs paste/Cu firstly in air by the ultrasonic-assisted sintering (UAS) at a temperature of as low as 160 °C. Their sintered microstructures featuring with dense and crystallized cells are completely different from the traditional thermo-compression sintering (TCS). The optimized shear strength of the joints reached to 54.27 MPa, exhibiting one order of magnitude higher than TCS at the same temperature (180 °C) under the UAS. This ultra-low sintering temperature and high performance of the sintered joints were ascribed to ultrasonic effects. The ultrasonic vibrations have distinct effects on the metallurgical reactions of the joints, resulting in the contact and growth of Cu core and the stripping and connection of Ag shell, which contributes to the high shear strength. Thus, the UAS of Cu@Ag NPs paste has a great potential to be applied for high-temperature power device packaging. Copyright © 2017 Elsevier B.V. All rights reserved.