WorldWideScience

Sample records for temperature dependence study

  1. Study of Cu-Al-Zn alloys hardness temperature dependence

    International Nuclear Information System (INIS)

    Kurmanova, D.T.; Skakov, M.K.; Melikhov, V.D.

    2001-01-01

    In the paper the results of studies for the Cu-Al-Zn ternary alloys hardness temperature dependence are presented. The method of 'hot hardness' has been used during study of the solid state phase transformations and under determination of the hot stability boundaries. Due to the samples brittleness a hardness temperature dependence definition is possible only from 350-400 deg. C. Sensitivity of the 'hot hardness' method is decreasing within high plasticity range, so the measurements have been carried out only up to 700-800 deg. C. It is shown, that the alloys hardness dependence character from temperature is close to exponential one within the certain structure modification existence domain

  2. Modeling the temperature dependence of thermophysical properties: Study on the effect of temperature dependence for RFA.

    Science.gov (United States)

    Watanabe, Hiroki; Kobayashi, Yo; Hashizume, Makoto; Fujie, Masakatsu G

    2009-01-01

    Radio frequency ablation (RFA) has increasingly been used over the past few years and RFA treatment is minimally invasive for patients. However, it is difficult for operators to control the precise formation of coagulation zones due to inadequate imaging modalities. With this in mind, an ablation system using numerical simulation to analyze the temperature distribution of the organ is needed to overcome this deficiency. The objective of our work is to develop a temperature dependent thermophysical liver model. First, an overview is given of the development of the thermophysical liver model. Second, a simulation to evaluate the effect of temperature dependence of the thermophysical properties of the liver is explained. Finally, the result of the simulation, which indicated that the temperature dependence of thermophysical properties accounts for temperature differences influencing the accuracy of RFA treatment is described.

  3. Study of nuclear level density parameter and its temperature dependence

    International Nuclear Information System (INIS)

    Nasrabadi, M. N.; Behkami, A. N.

    2000-01-01

    The nuclear level density ρ is the basic ingredient required for theoretical studies of nuclear reaction and structure. It describes the statistical nuclear properties and is expressed as a function of various constants of motion such as number of particles, excitation energy and angular momentum. In this work the energy and spin dependence of nuclear level density will be presented and discussed. In addition the level density parameter α will be extracted from this level density information, and its temperature and mass dependence will be obtained

  4. Sample holder for studying temperature dependent particle guiding

    International Nuclear Information System (INIS)

    Bereczky, R.J.; Toekesi, K.; Kowarik, G.; Aumayr, F.

    2011-01-01

    Complete text of publication follows. The so called guiding effect is a complex process involving the interplay of a large number of charged particles with a solid. Although many research groups joined this field and carried out various experiments with insulator capillaries many details of the interactions are still unknown. We investigated the temperature dependence of the guiding since it opens new possibilities both for a fundamental understanding of the guiding phenomenon and for applications. For the temperature dependent guiding experiments a completely new heatable sample holder was designed. We developed and built such a heatable sample holder to make accurate and reproducible studies of the temperature dependence of the ion guiding effect possible. The target holder (for an exploded view see Fig. 1) consists of two main parts, the front and the back plates. The two plates of the sample holder, which function as an oven, are made of copper. These parts surround the capillary in order to guarantee a uniform temperature along the whole tube. The temperature of the copper parts is monitored by a K-Type thermocouple. Stainless steel coaxial heaters surrounding the oven are used for heating. The heating power up to a few watts is regulated by a PID controller. Cooling of the capillary is achieved by a copper feed-through connected to a liquid nitrogen bath outside the UHV chamber. This solution allows us to change the temperature of the sample from -30 deg C up to 90 deg C. Our experiments with this newly developed temperature regulated capillary holder show that the glass temperature (i.e. conductivity) can be used to control the guiding properties of the glass capillary and adjust the conditions from guiding at room temperature to simple geometrical transmission at elevated temperatures. This holds the promise to investigate the effect of conductivity on particle transport (build-up and removal of charge patches) through capillaries in more details

  5. Study of the temperature dependence of giant magnetoresistance in metallic granular composite

    International Nuclear Information System (INIS)

    Ju Sheng; Li, Z.-Y.

    2002-01-01

    The temperature dependence of the giant magnetoresistance of metallic granular composite is studied. It is considered that the composite contains both large magnetic grains with surface spin S' and small magnetic impurities. It is found that the decrease of surface spin S' of grain is the main cause of an almost linear decrease of giant magnetoresistance with the increase of temperature in high temperature range. The magnetic impurities, composed of several atoms, lead to an almost linear increase of the giant magnetoresistance with the decrease of temperature in low temperature range. Our calculations are in good agreement with recent experimental data for metallic nanogranular composites

  6. In-situ high temperature irradiation setup for temperature dependent structural studies of materials under swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Kulriya, P.K.; Kumari, Renu; Kumar, Rajesh; Grover, V.; Shukla, R.; Tyagi, A.K.; Avasthi, D.K.

    2015-01-01

    An in-situ high temperature (1000 K) setup is designed and installed in the materials science beam line of superconducting linear accelerator at the Inter-University Accelerator Centre (IUAC) for temperature dependent ion irradiation studies on the materials exposed with swift heavy ion (SHI) irradiation. The Gd 2 Ti 2 O 7 pyrochlore is irradiated using 120 MeV Au ion at 1000 K using the high temperature irradiation facility and characterized by ex-situ X-ray diffraction (XRD). Another set of Gd 2 Ti 2 O 7 samples are irradiated with the same ion beam parameter at 300 K and simultaneously characterized using in-situ XRD available in same beam line. The XRD studies along with the Raman spectroscopic investigations reveal that the structural modification induced by the ion irradiation is strongly dependent on the temperature of the sample. The Gd 2 Ti 2 O 7 is readily amorphized at an ion fluence 6 × 10 12 ions/cm 2 on irradiation at 300 K, whereas it is transformed to a radiation-resistant anion-deficient fluorite structure on high temperature irradiation, that amorphized at ion fluence higher than 1 × 10 13 ions/cm 2 . The temperature dependent ion irradiation studies showed that the ion fluence required to cause amorphization at 1000 K irradiation is significantly higher than that required at room temperature irradiation. In addition to testing the efficiency of the in-situ high temperature irradiation facility, the present study establishes that the radiation stability of the pyrochlore is enhanced at higher temperatures

  7. Temperature dependent anomalous statistics

    International Nuclear Information System (INIS)

    Das, A.; Panda, S.

    1991-07-01

    We show that the anomalous statistics which arises in 2 + 1 dimensional Chern-Simons gauge theories can become temperature dependent in the most natural way. We analyze and show that a statistic's changing phase transition can happen in these theories only as T → ∞. (author). 14 refs

  8. Temperature dependence of stress in CVD diamond films studied by Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Dychalska Anna

    2015-09-01

    Full Text Available Evolution of residual stress and its components with increasing temperature in chemical vapor deposited (CVD diamond films has a crucial impact on their high temperature applications. In this work we investigated temperature dependence of stress in CVD diamond film deposited on Si(100 substrate in the temperature range of 30 °C to 480 °C by Raman mapping measurement. Raman shift of the characteristic diamond band peaked at 1332 cm-1 was studied to evaluate the residual stress distribution at the diamond surface. A new approach was applied to calculate thermal stress evolution with increasing tempera­ture by using two commonly known equations. Comparison of the residts obtained from the two methods was presented. The intrinsic stress component was calculated from the difference between average values of residual and thermal stress and then its temperature dependence was discussed.

  9. Study on temperature dependence of output voltage of electrochemical detector for environmental neutrinos

    International Nuclear Information System (INIS)

    Halim, Md Abdul; Ishibashi, Kenji; Arima, Hidehiko; Terao, Norichika

    2006-01-01

    An electrochemical detector with biological material has been applied for the detection of neutrinos on the basis of a new hypothesis. The detector consisted of two electrodes with raw silk and purified water, and gave an appreciable output voltage. The reproducibility of the experimental results was as good as 99.4% at temperature of 300 K. The temperature dependence of the voltage of the detector was studied at 280, 290, 300 and 310 K. Among them, the detector at 310 K produced the highest output voltage and reached 104 mV in 16 days, whereas that at 280 K generated the lowest voltage and it was as low as 1.2 mV in 16 days. The detectors working at 290 and 300 K produced the voltages 18 and 57 mV in 16 days, respectively. The output voltages of the detector increased with temperature and were in good agreement in spite of the history of temperature. The internal resistance and electromotive force (internal voltage) of the experimental detector were obtained at each temperature by individual analysis and least square fitting method. It was found that the electromotive force was almost constant for these temperatures while the internal resistance showed a large dependence on temperature. The reduction of the output voltage with temperature is dominated by this behavior of internal resistance. (author)

  10. Simulation study of temperature-dependent diffusion behaviors of Ag/Ag(001) at low substrate temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Danyun; Mo, Yunjie [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 (China); Feng, Xiaofang [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275 (China); He, Yingyou [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 (China); Jiang, Shaoji, E-mail: stsjsj@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275 (China)

    2017-06-01

    Highlights: • The model of combinations of nearest-neighbor atoms of adatom was built to calculate the diffusion barrier of every configuration for Ag/Ag(001). • The complete potential energy curve of a specific diffusion path on the surface was worked out with the help of elementary diffusion behaviors. • The non-monotonic relation between the surface roughness and the substrate temperature (decreasing from 300 K to 100 K) was demonstrated. • A theoretical explanation of diffusion mechanism for the non-monotonic variation of roughness at low substrate temperature was presented. - Abstract: In this study, a model based on the First Principles calculations and Kinetic Monte Carlo simulation were established to study the growth characteristic of Ag thin film at low substrate temperature. On the basis of the interaction between the adatom and nearest-neighbor atoms, some simplifications and assumptions were made to categorize the diffusion behaviors of Ag adatoms on Ag(001). Then the barriers of all possible diffusion behaviors were calculated using the Climbing Image Nudged Elastic Band method (CI-NEB). Based on the Arrhenius formula, the morphology variation, which is attributed to the surface diffusion behaviors during the growth, was simulated with a temperature-dependent KMC model. With this model, a non-monotonic relation between the surface roughness and the substrate temperature (decreasing from 300 K to 100 K) were discovered. The analysis of the temperature dependence on diffusion behaviors presents a theoretical explanation of diffusion mechanism for the non-monotonic variation of roughness at low substrate temperature.

  11. Simulation study of temperature-dependent diffusion behaviors of Ag/Ag(001) at low substrate temperature

    International Nuclear Information System (INIS)

    Cai, Danyun; Mo, Yunjie; Feng, Xiaofang; He, Yingyou; Jiang, Shaoji

    2017-01-01

    Highlights: • The model of combinations of nearest-neighbor atoms of adatom was built to calculate the diffusion barrier of every configuration for Ag/Ag(001). • The complete potential energy curve of a specific diffusion path on the surface was worked out with the help of elementary diffusion behaviors. • The non-monotonic relation between the surface roughness and the substrate temperature (decreasing from 300 K to 100 K) was demonstrated. • A theoretical explanation of diffusion mechanism for the non-monotonic variation of roughness at low substrate temperature was presented. - Abstract: In this study, a model based on the First Principles calculations and Kinetic Monte Carlo simulation were established to study the growth characteristic of Ag thin film at low substrate temperature. On the basis of the interaction between the adatom and nearest-neighbor atoms, some simplifications and assumptions were made to categorize the diffusion behaviors of Ag adatoms on Ag(001). Then the barriers of all possible diffusion behaviors were calculated using the Climbing Image Nudged Elastic Band method (CI-NEB). Based on the Arrhenius formula, the morphology variation, which is attributed to the surface diffusion behaviors during the growth, was simulated with a temperature-dependent KMC model. With this model, a non-monotonic relation between the surface roughness and the substrate temperature (decreasing from 300 K to 100 K) were discovered. The analysis of the temperature dependence on diffusion behaviors presents a theoretical explanation of diffusion mechanism for the non-monotonic variation of roughness at low substrate temperature.

  12. Size dependence study of the ordering temperature in the Fast Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez, E. A., E-mail: eavelas@gmail.com [Universidad de San Buenaventura Seccional Medellin, Grupo de Investigacion en Modelamiento y Simulacion Computacional, Facultad de Ingenierias (Colombia); Mazo-Zuluaga, J., E-mail: johanmazo@gmail.com [Universidad de Antioquia, Grupo de Estado Solido, Grupo de Instrumentacion Cientifica y Microelectronica, Instituto de Fisica-FCEN (Colombia); Mejia-Lopez, J., E-mail: jmejia@puc.cl [Universidad de Antioquia, Instituto de Fisica-FCEN (Colombia)

    2013-02-15

    Based on the framework of the Fast Monte Carlo approach, we study the diameter dependence of the ordering temperature in magnetic nanostructures of cylindrical shape. For the purposes of this study, Fe cylindrical-shaped samples of different sizes (20 nm height, 30-100 nm in diameter) have been chosen, and their magnetic properties have been computed as functions of the scaled temperature. Two main set of results are concluded: (a) the ordering temperature of nanostructures follows a linear scaling relationship as a function of the scaling factor x, for all the studied sizes. This finding rules out a scaling relation T Prime {sub c} = x{sup 3{eta}}T{sub c} (where {eta} is a scaling exponent, and T Prime {sub c} and T{sub c} are the scaled and true ordering temperatures) that has been proposed in the literature, and suggests that temperature should scale linearly with the scaling factor x. (b) For the nanostructures, there are three different order-disorder magnetic transition modes depending on the system's size, in very good agreement with previous experimental reports.

  13. Temperature dependent dynamics of DegP-trimer: A molecular dynamics study

    Directory of Open Access Journals (Sweden)

    Nivedita Rai

    2015-01-01

    Full Text Available DegP is a heat shock protein from high temperature requirement protease A family, which reacts to the environmental stress conditions in an ATP independent way. The objective of the present analysis emerged from the temperature dependent functional diversity of DegP between chaperonic and protease activities at temperatures below and above 28 °C, respectively. DegP is a multimeric protein and the minimal functional unit, DegP-trimer, is of great importance in understanding the DegP pathway. The structural aspects of DegP-trimer with respect to temperature variation have been studied using molecular dynamics simulations (for 100 ns and principal component analysis to highlight the temperature dependent dynamics facilitating its functional diversity. The DegP-trimer revealed a pronounced dynamics at both 280 and 320 K, when compared to the dynamics observed at 300 K. The LA loop is identified as the highly flexible region during dynamics and at extreme temperatures, the residues 46–80 of LA loop express a flip towards right (at 280 and left ( at 320 K with respect to the fixed β-sheet connecting the LA loop of protease for which Phe46 acts as one of the key residues. Such dynamics of LA loop facilitates inter-monomeric interaction with the PDZ1 domain of the neighbouring monomer and explains its active participation when DegP exists as trimer. Hence, the LA loop mediated dynamics of DegP-trimer is expected to provide further insight into the temperature dependent dynamics of DegP towards the understanding of its assembly and functional diversity in the presence of substrate.

  14. Study of the temperature dependent nitrogen retention in tungsten surfaces by XPS-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Plank, Ulrike [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany); Fakultaet fuer Physik der Ludwig-Maximilians-Universitaet Muenchen, Schellingstrasse 4, D-80799 Muenchen (Germany); Meisl, Gerd; Hoeschen, Till [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany)

    2016-07-01

    To reduce the power load on the divertor of fusion experiments, nitrogen (N) is puffed into the plasma. As a side effect, nitrogen gets implanted into the tungsten (W) walls of the reactor and forms nitride layers. Their formation and, therefore, the N accumulation in W showed an unexpected temperature dependence in previous experiments. To study the nitrogen retention, we implanted N ions with an energy of 300 eV into W and observed the evolution of the surface composition by X-ray photoelectron spectroscopy (XPS). We find that the N content does not change when the sample is annealed up to 800 K after implantation at lower temperatures. In contrast, the N concentration decreases with increasing implantation temperature. At 800 K implantation temperature, the N saturation level is about 5 times lower compared to 300 K implantation. A possible explanation for this difference is an enhanced diffusion during ion bombardment due to changes in the structure or in the chemical state of the tungsten nitride system. Ongoing tungsten nitride erosion experiments shall help to clarify whether the strong temperature dependence is the result of enhanced diffusion or of phase changes.

  15. Temperature dependence of plastic scintillators

    Science.gov (United States)

    Peralta, L.

    2018-03-01

    Plastic scintillator detectors have been studied as dosimeters, since they provide a cost-effective alternative to conventional ionization chambers. Several articles have reported undesired response dependencies on beam energy and temperature, which provides the motivation to determine appropriate correction factors. In this work, we studied the light yield temperature dependency of four plastic scintillators, BCF-10, BCF-60, BC-404, RP-200A and two clear fibers, BCF-98 and SK-80. Measurements were made using a 50 kVp X-ray beam to produce the scintillation and/or radioluminescence signal. The 0 to 40 °C temperature range was scanned for each scintillator, and temperature coefficients were obtained.

  16. Theoretical study of pressure dependence of transition temperature of In and Pb

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Priyank, E-mail: priyank-kumar2007@yahoo.co.in [Department of Science, Government Polytechnic, Gandhinagar -382024, Gujarat (India); Bhatt, N. K. [Department of Physics, Sardar Patel University, Vallabh Vidyanagar - 388120, Gujarat (India); Vyas, P. R.; Gohel, V. B. [Department of Physics, School of Science, Gujarat University, Ahmedabad - 380009, Gujarat (India)

    2015-08-28

    Recently proposed structured local pseudopotential (PP) by Fiolhais et al. has been successfully used to compute superconducting state parameters (SSP): electron-phonon coupling strength (λ), Coulomb pseudopotential (μ*), critical temperature (T{sub c}), effective interaction strength (N{sub 0}V), isotopic effect parameter (α) and their pressure dependence of non-transition metals In and Pb as a test case. Pressure dependence of the Debye temperature has been computed by Gruneisen model. Present results are in good agreement with experimental and other theoretical results. Present study has been further extended to estimate volume (critical volume) at which λ=μ*, where Tc and N{sub 0}V becomes zero. The presently used model is found to be transferable at the extreme environment without any adjustment of parameters further alongwith its simplicity and predictivity.

  17. Study on the effect of testing machine rigidity on strength and ductility temperature dependences obtained

    International Nuclear Information System (INIS)

    Krashchenko, V.P.; Statsenko, V.E.; Rudnitskij, N.P.

    1984-01-01

    Investigation procedures are described for rigidity of testing machines and mechanical properties of tantalum and nickel in the temperature range 293-1873K. Temperature dependences are presented for strength characteristics of the investigated materials obtained with the use of installations of different rigidity. Dependence analysis is carried out and recommendations are given as to the characteristics application

  18. Infrared cross-sections and integrated band intensities of propylene: Temperature-dependent studies

    KAUST Repository

    Es-sebbar, Et-touhami

    2014-01-01

    Propylene, a by-product of biomass burning, thermal cracking of hydrocarbons and incomplete combustion of fossil fuels, is a ubiquitous molecule found in the environment and atmosphere. Accurate infrared (IR) cross-sections and integrated band intensities of propylene are essential for quantitative measurements and atmospheric modeling. We measured absolute IR cross-sections of propylene using Fourier Transform Infrared (FTIR) Spectroscopy over the wavenumber range of 400-6500cm-1 and at gas temperatures between 296 and 460K. We recorded these spectra at spectral resolutions ranging from 0.08 to 0.5cm-1 and measured the integrated band intensities for a number of vibrational bands in certain spectral regions. We then compared the integrated band intensities measured at room temperature with values derived from the National Institute of Standards and Technology (NIST) and the Pacific Northwest National Laboratory (PNNL) databases. Our results agreed well with the results reported in the two databases with a maximum deviation of about 4%. The peak cross-sections for the primary bands decreased by about 20-54% when the temperature increased from 296 to 460K. Moreover, we determined the integrated band intensities as a function of temperature for certain features in various spectral regions; we found no significant temperature dependence over the range of temperatures considered here. We also studied the effect of temperature on absorption cross-section using a Difference Frequency Generation (DFG) laser system. We compared the DFG results with those obtained from the FTIR study at certain wavenumbers over the 2850-2975cm-1 range and found a reasonable agreement with less than 10% discrepancy. © 2013 Elsevier Ltd.

  19. Manganese oxide phases and morphologies: A study on calcination temperature and atmospheric dependence

    Directory of Open Access Journals (Sweden)

    Matthias Augustin

    2015-01-01

    Full Text Available Manganese oxides are one of the most important groups of materials in energy storage science. In order to fully leverage their application potential, precise control of their properties such as particle size, surface area and Mnx+ oxidation state is required. Here, Mn3O4 and Mn5O8 nanoparticles as well as mesoporous α-Mn2O3 particles were synthesized by calcination of Mn(II glycolate nanoparticles obtained through an economical route based on a polyol synthesis. The preparation of the different manganese oxides via one route facilitates assigning actual structure–property relationships. The oxidation process related to the different MnOx species was observed by in situ X-ray diffraction (XRD measurements showing time- and temperature-dependent phase transformations occurring during oxidation of the Mn(II glycolate precursor to α-Mn2O3 via Mn3O4 and Mn5O8 in O2 atmosphere. Detailed structural and morphological investigations using transmission electron microscopy (TEM and powder XRD revealed the dependence of the lattice constants and particle sizes of the MnOx species on the calcination temperature and the presence of an oxidizing or neutral atmosphere. Furthermore, to demonstrate the application potential of the synthesized MnOx species, we studied their catalytic activity for the oxygen reduction reaction in aprotic media. Linear sweep voltammetry revealed the best performance for the mesoporous α-Mn2O3 species.

  20. Study of temperature-dependent charge conduction in silicon-nanocrystal/SiO{sub 2} multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Mavilla, Narasimha Rao; Chavan, Vinayak [National Centre for Photovoltaic Research and Education (NCPRE), Powai, Mumbai 400 076 (India); Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India); Solanki, Chetan Singh [National Centre for Photovoltaic Research and Education (NCPRE), Powai, Mumbai 400 076 (India); Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India); Vasi, Juzer [National Centre for Photovoltaic Research and Education (NCPRE), Powai, Mumbai 400 076 (India); Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India)

    2016-08-01

    Silicon-nanocrystals (Si-NCs) realized by SiO{sub x} {sub <} {sub 2}/SiO{sub 2} multilayer (ML) approach have shown promise for realizing tightly-controlled dimensions, thus efficiently exploiting the size-dependent quantum effects for device applications. Unfortunately, the confining insulating barriers (SiO{sub 2} sublayers), instrumental for realizing quantum size effects in Si-NC MLs, can also hinder the charge conduction which is crucial for device applications including Si-NC based tandem solar cells and multi-exciton solar cells. Owing to this, a comprehensive study of conduction mechanisms has been carried out using a thorough analysis of temperature-dependent dark I-V measurements of SiO{sub 2} thin film and Si-NC multilayer samples fabricated by Inductively Coupled Plasma CVD (ICPCVD). As the ML samples consisted of interleaved SiO{sub 2} sublayers, current in SiO{sub 2} thin film has initially been studied to understand the conduction properties of bulk ICPCVD SiO{sub 2}. For 21 nm thick SiO{sub 2} film, conduction is observed to be dominated by Fowler–Nordheim (FN) tunneling for higher electric fields (> 8 MV/cm; independent of temperature), while for lower electric fields (5–8 MV/cm) at higher temperatures, the trap-related Generalized Poole–Frenkel (GPF) is dominant. This signified the role of traps in modifying the conduction in bulk ICPCVD SiO{sub 2} films. We then present the conduction in ML samples. For multilayer samples with SiO{sub 2} sublayer thickness of 1.5 nm and 2.5 nm, Direct Tunneling (DT) is observed to be dominant, while for SiO{sub 2} sublayer thickness of 3.5 nm, Space Charge Limited Conduction (SCLC) with exponential trap distribution is found to be the dominant conduction mechanism. This signifies the role of traps in modifying the conduction in Si-NC multilayer samples and SiO{sub 2} sublayer thickness dependence. - Highlights: • Electrical conduction in SiO{sub 2} film & Si-nanocrystal layers (Si-NCs) is reported. • Si

  1. Temperature-dependent dielectric function of germanium in the UV–vis spectral range: A first-principles study

    International Nuclear Information System (INIS)

    Yang, J.Y.; Liu, L.H.; Tan, J.Y.

    2014-01-01

    The study of temperature dependence of thermophysical parameter dielectric function is key to understanding thermal radiative transfer in high-temperature environments. Limited by self-radiation and thermal oxidation, however, it is difficult to directly measure the high-temperature dielectric function of solids with present experimental technologies. In this work, we implement two first-principles methods, the ab initio molecular dynamics (AIMD) and density functional perturbation theory (DFPT), to study the temperature dependence of dielectric function of germanium (Ge) in the UV–vis spectral range in order to provide data of high-temperature dielectric function for radiative transfer study in high-temperature environments. Both the two methods successfully predict the temperature dependence of dielectric function of Ge. Moreover, the good agreement between the calculated results of the AIMD approach and experimental data at 825 K enables us to predict the high-temperature dielectric function of Ge with the AIMD method in the UV–vis spectral range. - Highlights: • The temperature dependence of dielectric function of germanium (Ge) is investigated with two first-principles methods. • The temperature effect on dielectric function of Ge is discussed. • The high-temperature dielectric function of Ge is predicted

  2. Temperature dependence Infrared and Raman studies of III-V/II-VI core-shell nanostructures

    Science.gov (United States)

    Manciu, Felicia S.; McCombe, Bruce D.; Lucey, Derrick

    2005-03-01

    The temperature dependence (8 K InP/ZnS sample. Raman scattering (457.9 nm excitation) features were determined without polarization selection in the backscattering geometry. Interesting T-dependent resonant Raman effect of the surface optical phonon modes has been discovered in InP/ZnSe sample. Reasonable agreement is obtained between the Raman and FIR results, as well as with theoretical calculations.

  3. Temperature dependence of surface nanobubbles

    NARCIS (Netherlands)

    Berkelaar, R.P.; Seddon, James Richard Thorley; Zandvliet, Henricus J.W.; Lohse, Detlef

    2012-01-01

    The temperature dependence of nanobubbles was investigated experimentally using atomic force microscopy. By scanning the same area of the surface at temperatures from 51 °C to 25 °C it was possible to track geometrical changes of individual nanobubbles as the temperature was decreased.

  4. Temperature-dependent vibrational spectroscopy to study order-disorder transitions in charge transfer complexes

    Directory of Open Access Journals (Sweden)

    Rohan Isaac

    2018-02-01

    Full Text Available Charge-transfer (CT complexes are a promising class of materials for the semiconductor industry because of their versatile properties. This class of compounds shows a variety of phase transitions, which are of interest because of their potential impact on the electronic characteristics. Here temperature-dependent vibrational spectroscopy is used to study structural phase transitions in a set of organic CT complexes. Splitting and broadening of infrared-active phonons in the complex formed between pyrene and pyromellitic dianhydride (PMDA confirm the structural transition is of the order-disorder type and complement previous x-ray diffraction (XRD results. We show that this technique is a powerful tool to characterize transitions, and apply it to a range of binary CT complexes composed of polyaromatic hyrdocarbons (anthracene, perylene, phenanthrene, pyrene, and stilbene and PMDA. We extend the understanding of transitions in perylene-PMDA and pyrene-PMDA, and show that there are no order-disorder transitions present in anthracene-PMDA, stilbene-PMDA and phenanthrene-PMDA in the temperature range investigated here.

  5. Temperature-dependent vibrational spectroscopy to study order-disorder transitions in charge transfer complexes

    Science.gov (United States)

    Isaac, Rohan; Goetz, Katelyn P.; Roberts, Drew; Jurchescu, Oana D.; McNeil, L. E.

    2018-02-01

    Charge-transfer (CT) complexes are a promising class of materials for the semiconductor industry because of their versatile properties. This class of compounds shows a variety of phase transitions, which are of interest because of their potential impact on the electronic characteristics. Here temperature-dependent vibrational spectroscopy is used to study structural phase transitions in a set of organic CT complexes. Splitting and broadening of infrared-active phonons in the complex formed between pyrene and pyromellitic dianhydride (PMDA) confirm the structural transition is of the order-disorder type and complement previous x-ray diffraction (XRD) results. We show that this technique is a powerful tool to characterize transitions, and apply it to a range of binary CT complexes composed of polyaromatic hyrdocarbons (anthracene, perylene, phenanthrene, pyrene, and stilbene) and PMDA. We extend the understanding of transitions in perylene-PMDA and pyrene-PMDA, and show that there are no order-disorder transitions present in anthracene-PMDA, stilbene-PMDA and phenanthrene-PMDA in the temperature range investigated here.

  6. Microarray study of temperature-dependent sensitivity and selectivity of metal/oxide sensing interfaces

    Science.gov (United States)

    Tiffany, Jason; Cavicchi, Richard E.; Semancik, Stephen

    2001-02-01

    Conductometric gas microsensors offer the benefits of ppm-level sensitivity, real-time data, simple interfacing to electronics hardware, and low power consumption. The type of device we have been exploring consists of a sensor film deposited on a "microhotplate"- a 100 micron platform with built-in heating (to activate reactions on the sensing surface) and thermometry. We have been using combinatorial studies of 36-element arrays to characterize the relationship between sensor film composition, operating temperature, and response, as measured by the device's sensitivity and selectivity. Gases that have been tested on these arrays include methanol, ethanol, dichloromethane, propane, methane, acetone, benzene, hydrogen, and carbon monoxide, and are of interest in the management of environmental waste sites. These experiments compare tin oxide films modified by catalyst overlayers, and ultrathin metal seed layers. The seed layers are used as part of a chemical vapor deposition process that uses each array element's microheater to activate the deposition of SnO2, and control its microstructure. Low coverage (20 Ê) catalytic metals (Pd, Cu, Cr, In, Au) are deposited on the oxides by masked evaporation or sputtering. This presentation demonstrates the value of an array-based approach for developing film processing methods, measuring performance characteristics, and establishing reproducibility. It also illustrates how temperature-dependent response data for varied metal/oxide compositions can be used to tailor a microsensor array for a given application.

  7. Temperature dependent XAFS studies of local atomic structure of the perovskite-type zirconates

    International Nuclear Information System (INIS)

    Vedrinskii, R. V.; Lemeshko, M. P.; Novakovich, A. A.; Nazarenko, E. S.; Nassif, V.; Proux, O.; Joly, Y.

    2006-01-01

    Temperature dependent preedge and extended x-ray absorption fine structure measurements at the Zr K edge for the perovskite-type zirconates PbZr 0.515 Ti 0.485 O 3 (PZT), PbZrO 3 (PZ), and BaZrO 3 are performed. To carry out a more accurate study of the weak reconstruction of the local atomic structure we employed a combination of two techniques: (i) analysis of the preedge fine structure, and (ii) analysis of the Fourier transform of the difference between χ(k) functions obtained at different temperatures. A detailed investigation of local atomic structure in the cubic phase for all the crystals is also performed. It is shown that neither the displacive nor the order-disorder model can describe correctly the changes of local atomic structure during phase transitions in PZ and PZT. A spherical model describing the local atomic structure of perovskite-type crystals suffering structural phase transitions is proposed

  8. Temperature-dependent photoluminescence study of InP/ZnS quantum dots

    Science.gov (United States)

    Thuy Pham, Thi; Tran, Thi Kim Chi; Liem Nguyen, Quang

    2011-06-01

    This paper reports on the temperature-dependent photoluminescence of InP/ZnS quantum dots under 532 nm excitation, which is above the InP transition energy but well below that of ZnS. The overall photoluminescence spectra show two spectral components. The higher-energy one (named X) is assigned to originate from the excitonic transition; while the low-energy spectral component (named I) is normally interpreted as resulting from lattice imperfections in the crystalline structure of InP/ZnS quantum dots (QDs). Peak positions of both the X and I emissions vary similarly with increasing temperature and the same as the InP bandgap narrowing with temperature. In the temperature range from 15 to 80 K, the ratio of the integrated intensity from the X and the I emissions decreases gradually and then this ratio increases fast at temperatures higher than 80 K. This could result from a population of charge carriers in the lattice imperfection states at a temperature below 80 K to increase the I emission but then with these charge carriers being released to contribute to the X emission.

  9. Temperature dependence of exchange bias in (NiFe/IrMn)n multilayer films studied through static and dynamic techniques

    Science.gov (United States)

    Adams, Daniel J.; Khanal, Shankar; Khan, Mohammad Asif; Maksymov, Artur; Spinu, Leonard

    2018-05-01

    The in-plane temperature dependence of exchange bias was studied through both dc magnetometry and ferromagnetic resonance spectroscopy in a series of [NiFe/IrMn]n multilayer films, where n is the number of layer repetitions. Major hysteresis loops were recorded in the temperature range of 300 K to 2 K to reveal the effect of temperature on the exchange bias in the static regime while temperature-dependent continuous-wave ferromagnetic resonance for frequencies from 3 to 16 GHz was used to determine the exchange bias dynamically. Strong divergence between the values of exchange bias determined using the two different types of measurements as well as a peak in temperature dependence of the resonance linewidth were observed. These results are explained in terms of the slow-relaxer mechanism.

  10. Temperature dependence of Brewster's angle.

    Science.gov (United States)

    Guo, Wei

    2018-01-01

    In this work, a dielectric at a finite temperature is modeled as an ensemble of identical atoms moving randomly around where they are trapped. Light reflection from the dielectric is then discussed in terms of atomic radiation. Specific calculation demonstrates that because of the atoms' thermal motion, Brewster's angle is, in principle, temperature-dependent, and the dependence is weak in the low-temperature limit. What is also found is that the Brewster's angle is nothing but a result of destructive superposition of electromagnetic radiation from the atoms.

  11. Temperature dependence of filament-coupling in Bi-2223 tapes: magneto-optical study

    International Nuclear Information System (INIS)

    Bobyl, A.V.; Shantsev, D.V.; Galperin, Y.M.; Johansen, T.H.; Baziljevich, M.; Gaevski, M.E.

    2000-01-01

    Coupling through random superconducting bridges between filaments in a multifilamentary Ag-sheathed Bi 2 Sr 2 Ca 2 Cu 3 O 10+δ tape has been investigated by magneto-optical imaging at temperatures from 20 K up to T c . Magnetic flux distributions have been measured on the surface of an intact tape in the remanent state on applying a strong perpendicular magnetic field. The flux distributions observed at low temperatures reflect the arrangement of individual filaments. At high temperatures, the distribution becomes more similar to that for a uniform monocore tape, indicating that superconducting connections appear between the filaments. To discuss the relative contributions of the intra- and inter-filament currents, a simple model based on the Bean critical state was proposed and applied to analyse the temperature dependent behaviour. The inter-filament coupling, increasing with temperature, reaches at 77 K a point where the currents flowing in large inter-filament loops are roughly equal to the intra-filament currents. (author)

  12. Temperature dependent dielectric relaxation and ac-conductivity of alkali niobate ceramics studied by impedance spectroscopy

    Science.gov (United States)

    Yadav, Abhinav; Mantry, Snigdha Paramita; Fahad, Mohd.; Sarun, P. M.

    2018-05-01

    Sodium niobate (NaNbO3) ceramics is prepared by conventional solid state reaction method at sintering temperature 1150 °C for 4 h. The structural information of the material has been investigated by X-ray diffraction (XRD) and Field emission scanning electron microscopy (FE-SEM). The XRD analysis of NaNbO3 ceramics shows an orthorhombic structure. The FE-SEM micrograph of NaNbO3 ceramics exhibit grains with grain sizes ranging between 1 μm to 5 μm. The surface coverage and average grain size of NaNbO3 ceramics are found to be 97.6 % and 2.5 μm, respectively. Frequency dependent electrical properties of NaNbO3 is investigated from room temperature to 500 °C in wide frequency range (100 Hz-5 MHz). Dielectric constant, ac-conductivity, impedance, modulus and Nyquist analysis are performed. The observed dielectric constant (1 kHz) at transition temperature (400 °C) are 975. From conductivity analysis, the estimated activation energy of NaNbO3 ceramics is 0.58 eV at 10 kHz. The result of Nyquist plot shows that the electrical behavior of NaNbO3 ceramics is contributed by grain and grain boundary responses. The impedance and modulus spectrum asserts that the negative temperature coefficient of resistance (NTCR) behavior and non-Debye type relaxation in NaNbO3.

  13. Quantum dynamics at finite temperature: Time-dependent quantum Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Christov, Ivan P., E-mail: ivan.christov@phys.uni-sofia.bg

    2016-08-15

    In this work we investigate the ground state and the dissipative quantum dynamics of interacting charged particles in an external potential at finite temperature. The recently devised time-dependent quantum Monte Carlo (TDQMC) method allows a self-consistent treatment of the system of particles together with bath oscillators first for imaginary-time propagation of Schrödinger type of equations where both the system and the bath converge to their finite temperature ground state, and next for real time calculation where the dissipative dynamics is demonstrated. In that context the application of TDQMC appears as promising alternative to the path-integral related techniques where the real time propagation can be a challenge.

  14. Study of the correlation between the temperature dependence of viscosity and excess quantities in glycerol

    International Nuclear Information System (INIS)

    Magazu, Salvatore; Migliardo, Federica

    2008-01-01

    The aim of the present paper is to investigate the behaviour of the kinematic viscosity, mean-square displacement and free volume of glycerol in order to theoretically and experimentally evaluate the fragility degree. Starting from the dependence of viscosity on temperature, the behaviour of the mean-square displacement and free volume of glycerol is analysed in order to point out the linear relationships between the logarithm of viscosity and the excess mean-square displacement and the excess free volume. As a conclusion, two fragility definitions, based on the observed links, are discussed

  15. Nanostructures study of CNT nanofluids transport with temperature-dependent variable viscosity in a muscular tube

    Science.gov (United States)

    Akbar, Noreen Sher; Abid, Syed Ali; Tripathi, Dharmendra; Mir, Nazir Ahmed

    2017-03-01

    The transport of single-wall carbon nanotube (CNT) nanofluids with temperature-dependent variable viscosity is analyzed by peristaltically driven flow. The main flow problem has been modeled using cylindrical coordinates and flow equations are simplified to ordinary differential equations using long wavelength and low Reynolds' number approximation. Analytical solutions have been obtained for axial velocity, pressure gradient and temperature. Results acquired are discussed graphically for better understanding. It is observed that with an increment in the Grashof number the velocity of the governing fluids starts to decrease significantly and the pressure gradient is higher for pure water as compared to single-walled carbon nanotubes due to low density. As the specific heat is very high for pure water as compared to the multi-wall carbon nanotubes, it raises temperature of the muscles, in the case of pure water, as compared to the multi-walled carbon nanotubes. Furthermore, it is noticed that the trapped bolus starts decreasing in size as the buoyancy forces are dominant as compared to viscous forces. This model may be applicable in biomedical engineering and nanotechnology to design the biomedical devices.

  16. Observation on Surface Change of Fragile Glass: Temperature - Time Dependence Studied by X-Ray Reflectivity

    International Nuclear Information System (INIS)

    Kikkawa, Hiroyuki; Kitahara, Amane; Takahashi, Isao

    2004-01-01

    The structural change of a fragile glass surface close to the glass transition temperature Tg is studied by using X-ray reflectivity. Measurements were performed on surfaces of maltitol, which is a typical polyalcohol fragile glass with Tg = 320K. Upon both heating and cooling, we find the following features which are also noticed in silicate glass surfaces: (i) On heating, the surface morphology indicates a variation at temperatures below Tg; (ii) A drastic increase in surface roughness occurs at a temperature about 333K on heating, which is 13K higher than Tg; (iii) During the cooling of the sample, formation of a low-density surface layer (3nm at 293K) is observed. Prior to the crystallization, nm - μm sized domains were grown at the surface, which might not be reported for other glasses

  17. Temperature dependence of creep compliance of highly cross-linked epoxy: A molecular simulation study

    International Nuclear Information System (INIS)

    Khabaz, Fardin; Khare, Ketan S.; Khare, Rajesh

    2014-01-01

    We have used molecular dynamics (MD) simulations to study the effect of temperature on the creep compliance of neat cross-linked epoxy. Experimental studies of mechanical behavior of cross-linked epoxy in literature commonly report creep compliance values, whereas molecular simulations of these systems have primarily focused on the Young’s modulus. In this work, in order to obtain a more direct comparison between experiments and simulations, atomistically detailed models of the cross-linked epoxy are used to study their creep compliance as a function of temperature using MD simulations. The creep tests are performed by applying a constant tensile stress and monitoring the resulting strain in the system. Our results show that simulated values of creep compliance increase with an increase in both time and temperature. We believe that such calculations of the creep compliance, along with the use of time temperature superposition, hold great promise in connecting the molecular insight obtained from molecular simulation at small length- and time-scales with the experimental behavior of such materials. To the best of our knowledge, this work is the first reported effort that investigates the creep compliance behavior of cross-linked epoxy using MD simulations

  18. Study of temperature-dependent charge conduction in silicon-nanocrystal/SiO_2 multilayers

    International Nuclear Information System (INIS)

    Mavilla, Narasimha Rao; Chavan, Vinayak; Solanki, Chetan Singh; Vasi, Juzer

    2016-01-01

    Silicon-nanocrystals (Si-NCs) realized by SiO_x _ 8 MV/cm; independent of temperature), while for lower electric fields (5–8 MV/cm) at higher temperatures, the trap-related Generalized Poole–Frenkel (GPF) is dominant. This signified the role of traps in modifying the conduction in bulk ICPCVD SiO_2 films. We then present the conduction in ML samples. For multilayer samples with SiO_2 sublayer thickness of 1.5 nm and 2.5 nm, Direct Tunneling (DT) is observed to be dominant, while for SiO_2 sublayer thickness of 3.5 nm, Space Charge Limited Conduction (SCLC) with exponential trap distribution is found to be the dominant conduction mechanism. This signifies the role of traps in modifying the conduction in Si-NC multilayer samples and SiO_2 sublayer thickness dependence. - Highlights: • Electrical conduction in SiO_2 film & Si-nanocrystal layers (Si-NCs) is reported. • SiO_2/SiO_x multilayer based Si-NCs were realized by Inductively Coupled plasma CVD. • For SiO_2 film, Fowler–Nordheim tunneling & Generalized Poole–Frenkel are observed. • For Si-NCs with thin SiO_2 sublayers (< 2.5 nm) Direct Tunneling is dominant. • For Si-NCs with 3.5 nm SiO_2 sublayers Space Charge Limited Conduction is dominant.

  19. Theoretical study of temperature dependent acoustic attenuation and non-linearity parameters in alkali metal hydride and deuteride

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rishi Pal [Department of Physics, Banaras Hindu University, Varanasi 221005 (India); Singh, Rajendra Kumar, E-mail: rksingh_17@rediffmail.com [Department of Physics, Banaras Hindu University, Varanasi 221005 (India)

    2010-11-01

    Temperature dependence of acoustic attenuation and non-linearity parameters in lithium hydride and lithium deuteride have been studied for longitudinal and shear modes along various crystallographic directions of propagation in a wide temperature range. Lattice parameter and repulsive parameters have been used as input data and interactions up to next nearest neighbours have been considered to calculate second and third order elastic constants which in turn have been used for evaluating acoustic attenuation and related parameters. The results have been discussed and compared with available data. It is hoped that the present results will serve to stimulate the determination of the acoustic attenuation of these compounds at different temperatures.

  20. Temperature dependence of radiation chemistry of polymers

    International Nuclear Information System (INIS)

    Garrett, R.W.; Hill, D.J.T.; Le, T.T.; Milne, K.A.; O'Donnell, J.H.; Perera, S.M.C.; Pomery, P.J.

    1990-01-01

    Chemical reactions which occur during radiolysis of polymers usually show an increase in rate with increasing temperature that can be described by an Arrhenius relationship. The magnitude of the activation energy can vary widely and is affected by physical, as well as chemical, factors. Different reaction rates may be expected in crystalline and amorphous morphologies, and in glassy and rubbery regions. The temperature dependence of radiolysis reactions can be expected to show discontinuities at the glass and melting transitions, T g and T m . The ceiling temperature, T c , for polymerization/depolymerization will also affect the rate of degradation, especially for depropagation to monomer. The temperature for this effect depends on the molecular structure of the polymer. The temperature dependence of free radical reactions can be studied by cryogenic trapping and ESR spectroscopy during thermal profiling. Increased degradation rates at high dose rates can be due to increased temperatures resulting from energy absorption

  1. Temperature dependence of radiation effects in polyethylene

    International Nuclear Information System (INIS)

    Wu, G; Katsumura, Y.; Kudoh, H.; Morita, Y.; Seguchi, T.

    2000-01-01

    Temperature dependence of crosslinking and gas evolution under γ-irradiation was studied for high-density and low-density polyethylene samples in the 30-360degC range. It was found that crosslinking was the predominant process up to 300degC and the gel point decreased with increasing temperature. At above 300degC, however, the gel fraction at a given dose decreased rapidly with temperature and the action of radiation turned to enhance polyethylene degradation. Yields of H 2 and hydrocarbon gases increased with temperature and the compositions of hydrocarbons were dose dependent. (author)

  2. Temperature dependency in motor skill learning.

    Science.gov (United States)

    Immink, Maarten A; Wright, David L; Barnes, William S

    2012-01-01

    The present study investigated the role of temperature as a contextual condition for motor skill learning. Precision grip task training occurred while forearm cutaneous temperature was either heated (40-45 °C) or cooled (10-15 °C). At test, temperature was either reinstated or changed. Performance was comparable between training conditions while at test, temperature changes decreased accuracy, especially after hot training conditions. After cold training, temperature change deficits were only evident when concurrent force feedback was presented. These findings are the first evidence of localized temperature dependency in motor skill learning in humans. Results are not entirely accounted for by a context-dependent memory explanation and appear to represent an interaction of neuromuscular and sensory processes with the temperature present during training and test.

  3. Study of resistance to deformation dependence on temperature and strain degree during working with different rates for ABM-1 alloy

    International Nuclear Information System (INIS)

    Kharlamov, V.V.; Dvinskij, V.M.; Vashlyaev, Eh.V.; Dyblenko, Z.A.; Khamatov, R.I.; Zverev, K.P.

    1981-01-01

    On the basis of approximation of the experimental curves partial differential equations relating ABM-1 alloy deformation resistance to the deformation parameters are obtained. Using statistical processing of the experimental data the regression equations of the dependence of the deformation resistance on temperature rate and relative reduction of the samples are found. In the 2.1-23.6 1/c deformation rate range hardening and weakening rates of the AMB-1 alloy increases with the increase of the latter. The data obtained permit to calculate the deformation parameters of the studied alloy for different processes of metal plastic working in the studied temperature range [ru

  4. Temperature-dependent loop formation kinetics in flexible peptides studied by time-resolved fluorescence spectroscopy

    Directory of Open Access Journals (Sweden)

    Harekrushna Sahoo

    2006-01-01

    Full Text Available Looping rates in short polypeptides can be determined by intramolecular fluorescence quenching of a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine (Dbo by tryptophan. By this methodology, the looping rates in glycine-serine peptides with the structure Trp-(Gly-Sern-Dbo-NH2 of different lengths (n = 0–10 were determined in dependence on temperature in D2O and the activation parameters were derived. In general, the looping rate increases with decreasing peptide length, but the shortest peptide (n=0 shows exceptional behavior because its looping rate is slower than that for the next longer ones (n=1,2. The activation energies increase from 17.5 kJ mol−1 for the longest peptide (n=10 to 20.5 kJ mol−1 for the shortest one (n=0, while the pre-exponential factors (log⁡(A/s−1 range from 10.20 to 11.38. The data are interpreted in terms of an interplay between internal friction (stiffness of the biopolymer backbone and steric hindrance effects and solvent friction (viscosity-limited diffusion. For the longest peptides, the activation energies resemble more and more the value expected for solvent viscous flow. Internal friction is most important for the shortest peptides, causing a negative curvature and a smaller than ideal slope (ca. –1.1 of the double-logarithmic plots of the looping rates versus the number of peptide chain segments (N. Interestingly, the corresponding plot for the pre-exponential factors (logA versus logN shows the ideal slope (–1.5. While the looping rates can be used to assess the flexibility of peptides in a global way, it is suggested that the activation energies provide a measure of the “thermodynamic” flexibility of a peptide, while the pre-exponential factors reflect the “dynamic” flexibility.

  5. Portable mini-chamber for temperature dependent studies using small angle and wide angle x-ray scattering

    Science.gov (United States)

    Dev, Arun Singh; Kumar, Dileep; Potdar, Satish; Pandit, Pallavi; Roth, Stephan V.; Gupta, Ajay

    2018-04-01

    The present work describes the design and performance of a vacuum compatible portable mini chamber for temperature dependent GISAXS and GIWAXS studies of thin films and multilayer structures. The water cooled body of the chamber allows sample annealing up to 900 K using ultra high vacuum compatible (UHV) pyrolytic boron nitride heater, thus making it possible to study the temperature dependent evolution of structure and morphology of two-dimensional nanostructured materials. Due to its light weight and small size, the chamber is portable and can be accommodated at synchrotron facilities worldwide. A systematic illustration of the versatility of the chamber has been demonstrated at beamline P03, PETRA-III, DESY, Hamburg, Germany. Temperature dependent grazing incidence small angle x-ray scattering (GISAXS) and grazing incidence wide angle x-ray scattering (GIWAXS) measurements were performed on oblique angle deposited Co/Ag multilayer structure, which jointly revealed that the surface diffusion in Co columns in Co/Ag multilayer enhances by increasing temperature from RT to ˜573 K. This results in a morphology change from columnar tilted structure to densely packed morphological isotropic multilayer.

  6. Temperature-dependent spectroscopic evidences of curcumin in aqueous medium: a mechanistic study of its solubility and stability.

    Science.gov (United States)

    Jagannathan, Ramya; Abraham, Priya Mary; Poddar, Pankaj

    2012-12-20

    In curcumin, keto-enol-enolate equilibrium of the heptadiene-dione moiety determines its physiochemical and antioxidant properties. However, its poor solubility in water at neutral pH and room temperature decreases its bioavailability. Potential therapeutic applications have triggered an interest in manipulating the solubility of curcumin in water as its stability and solubility in water remains poorly understood. Here, the mechanism behind its solubility at various temperatures and the influence of interplay of temperature, intramolecular H-bonding, and intermolecular forces is reported, which leads to aggregation-disaggregation at various temperatures. Remarkable change is observed in temperature-dependent electronic transition behavior of curcumin, however, the absorption spectra after cooling and heating cycles remain unchanged, hinting much better thermal stability of curcumin in water than previously thought. This study indicates that it is perhaps the breaking of intramolecular hydrogen bonding which leads to exposure of polar groups and hence responsible for the dissolution of curcumin at higher temperature. The formation of intermolecular aggregates might be responsible behind a better room temperature stability of the molecules after cooling its aqueous suspension from 90 to 25 °C. These curcumin solubility studies have great application in biological research with reference to bioavailability and to understand target oriented mode of action of curcumin.

  7. Temperature dependence study of positronium formation in high density polyethylene by positron annihilation lifetime spectroscopy

    International Nuclear Information System (INIS)

    Nahid, F.; Beling, C.D.; Fung, S.

    2007-01-01

    Positron annihilation lifetime spectroscopy has been used to study the formation of positronium in high density polyethylene as a function of temperature over the range 30 K-350 K. It is observed that the thermal history of the sample, while having no influence on the positronium lifetime, has a strong effect on the formation of positronium. A hysteresis is seen in the positronium formation probability in cooling and heating cycles. This is explained on a two channel formation model, the first channel being through ''blob'' formation and the second through the pick-up of shallow trapped electrons. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Laboratory Studies of Temperature and Relative Humidity Dependence of Aerosol Nucleation during the TANGENT 2017 IOP Study

    Science.gov (United States)

    Ouyang, Q.; Tiszenkel, L.; Stangl, C. M.; Krasnomowitz, J.; Johnston, M. V.; Lee, S.

    2017-12-01

    In this poster, we will present recent measurements of temperature and relative humidity dependence of aerosol nucleation of sulfuric acid under the conditions representative of the ground level to the free troposphere. Aerosol nucleation is critically dependent on temperature, but the current global aerosol models use nucleation algorithms that are independent of temperature and relative humidity due to the lack of experimental data. Thus, these models fail to simulate nucleation in a wide range of altitude and latitude conditions. We are currently conducting the Tandem Aerosol Nucleation and Growth Environment Tube (TANGENT) the intense observation period (IOP) experiments to investigate the aerosol nucleation and growth properties independently, during nucleation and growth. Nucleation takes place from sulfuric acid, water and some base compounds in a fast flow nucleation tube (FT-1). Nucleation precursors are detected with two chemical ionization mass spectrometers (CIMS) and newly nucleated particles are measured with a particle size magnifier (PSM) and a scanning mobility particle sizers (SMPS). Then these particles grow further in the second flow tube (FT-2) in the presence of oxidants of biogenic organic compounds. Chemical compositions of grown particles are further analyzed with a nano-aerosol mass spectrometer (NAMS). Our experimental results will provide a robust algorithm for aerosol nucleation and growth rates as a function of temperature and relative humidity.

  9. Study of the influence of water properties dependency with the temperature in a laminar downward flow between parallel flat plates

    International Nuclear Information System (INIS)

    Delmastro, Dario F.; Chasseur, A.F.; Garcia, Juan C.

    2007-01-01

    In this work we develop a model that contemplates stationary completely developed laminar downward flow between flat parallel plates with uniform and constant heat fluxes. The Boussinesq approach is used in the momentum equation, taking into account the change of the density with the temperature only in the gravitational term. The system is at atmospheric pressure and the dependencies of the density and the thermal conductivity with the temperature are also considered. The velocity and temperature profiles, the friction factor, the heat transfer coefficient and the Nusselt Number are calculated, for different flow rates and heating powers. The results allow to obtain some conclusions that can be of interest in the study of research reactors with forced downward refrigeration and flat plate fuels, although these calculations do not exactly represent the real behavior inside these channels. (author) [es

  10. Liquid-filled ionization chamber temperature dependence

    Energy Technology Data Exchange (ETDEWEB)

    Franco, L. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain)]. E-mail: luciaff@usc.es; Gomez, F. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Iglesias, A. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Pardo, J. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Pazos, A. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Pena, J. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Zapata, M. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain)

    2006-05-10

    Temperature and pressure corrections of the read-out signal of ionization chambers have a crucial importance in order to perform high-precision absolute dose measurements. In the present work the temperature and pressure dependences of a sealed liquid isooctane filled ionization chamber (previously developed by the authors) for radiotherapy applications have been studied. We have analyzed the thermal response of the liquid ionization chamber in a {approx}20 deg. C interval around room temperature. The temperature dependence of the signal can be considered linear, with a slope that depends on the chamber collection electric field. For example, a relative signal slope of 0.27x10{sup -2}K{sup -1} for an operation electric field of 1.67x10{sup 6}Vm{sup -1} has been measured in our detector. On the other hand, ambient pressure dependence has been found negligible, as expected for liquid-filled chambers. The thermal dependence of the liquid ionization chamber signal can be parametrized within the Onsager theory on initial recombination. Considering that changes with temperature of the detector response are due to variations in the free ion yield, a parametrization of this dependence has been obtained. There is a good agreement between the experimental data and the theoretical model from the Onsager framework.

  11. Temperature and Pressure Dependences of the Elastic Properties of Tantalum Single Crystals Under Tensile Loading: A Molecular Dynamics Study

    Science.gov (United States)

    Li, Wei-bing; Li, Kang; Fan, Kan-qi; Zhang, Da-xing; Wang, Wei-dong

    2018-04-01

    Atomistic simulations are capable of providing insights into physical mechanisms responsible for mechanical properties of the transition metal of Tantalum (Ta). By using molecular dynamics (MD) method, temperature and pressure dependences of the elastic properties of Ta single crystals are investigated through tensile loading. First of all, a comparative study between two types of embedded-atom method (EAM) potentials is made in term of the elastic properties of Ta single crystals. The results show that Ravelo-EAM (Physical Review B, 2013, 88: 134101) potential behaves well at different hydrostatic pressures. Then, the MD simulation results based on the Ravelo-EAM potential show that Ta will experience a body-centered-cubic (BCC) to face-centered-cubic (FCC) phase transition before fracture under tensile loading at 1 K temperature, and model size and strain rate have no obvious effects on tensile behaviors of Ta. Next, from the simulation results at the system temperature from 1 to 1500 K, it can be derived that the elastic modulus of E 100 linearly decrease with the increasing temperature, while the yielding stress decrease with conforming a quadratic polynomial formula. Finally, the pressure dependence of the elastic properties is performed from 0 to 140 GPa and the observations show that the elastic modulus increases with the increasing pressure overall.

  12. Muon-spin rotation (. mu. SR) study of the temperature dependence of the London penetration depth in copper oxide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Keller, H.; Kuendig, W.; Savic, I.M.; Simmler, H.; Staeuble-Puempin, B.; Warden, M.; Zech, D.; Zimmermann, P. (Physik-Inst., Univ. Zurich (Germany)); Kaldis, E.; Karpinski, J.; Rusiecki, S. (Lab. fuer Festkoerperphysik, ETH Zurich (Switzerland)); Brewer, J.H.; Riseman, T.M.; Schneider, J.W. (TRIUMF and Dept. of Physics, Univ. of British Columbia, Vancouver (Canada)); Maeno, Y.; Rossel, C. (IBM Research Div., Zurich Research Lab., Rueschlikon (Switzerland))

    1991-12-01

    A {mu}SR study of the temperature dependence of the London penetration depth {lambda} in sintered samples of YBa{sub 2}Cu{sub 3}O{sub x} (with various oxygen contents x), YBa{sub 2}Cu{sub 4}O{sub 8} and Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} is presented. It is found that the temperature behavior of {lambda} of all these cuprate superconductors is consistent with conventional s-wave pairing. However, there are significant differences concerning the exact temperature dependence of {lambda} in these materials. In YBa{sub 2}Cu{sub 3}O{sub x} with high x, the behavior of {lambda}(T) is well described by the two-fluid model (strong coupling), whereas {lambda}(T) in YBa{sub 2}Cu{sub 3}O{sub x} with low x, YBa{sub 2}Cu{sub 4}O{sub 8} and Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} is in better agreement with weak-coupling BCS theory. Possible reasons for the different temperature behavior of {lambda} in these materials are discussed. (orig.).

  13. Electron hopping and temperature dependent oxidation states of iron in ilvaite studied by Moessbauer effect

    International Nuclear Information System (INIS)

    Heilmann, I.U.; Staun Olsen, J.; Olsen, N.B.

    1977-01-01

    The Moessbauer spectrum of ilvaite was measured between 115 K and 898 K, and the energy dispersive X-ray powder pattern was measured between 300 K and 1123 K. Below 500 K the Moessbauer spectrum varies strongly with temperature while the X-ray spectrum remains unchanged. The results are interpreted by electron exchange between nearly identical Fe-sites in ilvaite. (Auth.)

  14. Variable temperature ion trap studies of CH4+ + H2, HD and D2: negative temperature dependence and significant isotope effect

    International Nuclear Information System (INIS)

    Asvany, O.; Savic, I.; Schlemmer, S.; Gerlich, D.

    2004-01-01

    Reactions of methane cations, CH 4 + , with H 2 , HD and D 2 have been studied in a variable temperature 22-pole ion trap from room temperature down to 15 K. The formation of CH 5 + in collisions with H 2 is slow at 300 K, but it becomes faster by at least one order of magnitude when the temperature is lowered to 15 K. This behavior is tentatively explained with a longer complex lifetime at low temperatures. However, since tunneling is most probably not responsible for product formation, other dynamical or statistical restrictions must be responsible for the negative temperature dependence. In collisions of CH 4 + with HD, the CH 5 + product ion (68% at 15 K) prevails over CH 4 D + (32%). Reaction of CH 4 + with D 2 is found to be much slower than with H 2 or HD. The rate coefficient for converting CH 4 + into CH 3 D + by H-D exchange has been determined to be smaller than 10 -12 cm 3 /s, indicating that scrambling in the CH 6 + complex is very unlikely

  15. Variable temperature ion trap studies of CH{sub 4}{sup +} + H{sub 2}, HD and D{sub 2}: negative temperature dependence and significant isotope effect

    Energy Technology Data Exchange (ETDEWEB)

    Asvany, O.; Savic, I.; Schlemmer, S.; Gerlich, D

    2004-03-08

    Reactions of methane cations, CH{sub 4}{sup +}, with H{sub 2}, HD and D{sub 2} have been studied in a variable temperature 22-pole ion trap from room temperature down to 15 K. The formation of CH{sub 5}{sup +} in collisions with H{sub 2} is slow at 300 K, but it becomes faster by at least one order of magnitude when the temperature is lowered to 15 K. This behavior is tentatively explained with a longer complex lifetime at low temperatures. However, since tunneling is most probably not responsible for product formation, other dynamical or statistical restrictions must be responsible for the negative temperature dependence. In collisions of CH{sub 4}{sup +} with HD, the CH{sub 5}{sup +} product ion (68% at 15 K) prevails over CH{sub 4}D{sup +} (32%). Reaction of CH{sub 4}{sup +} with D{sub 2} is found to be much slower than with H{sub 2} or HD. The rate coefficient for converting CH{sub 4}{sup +} into CH{sub 3}D{sup +} by H-D exchange has been determined to be smaller than 10{sup -12} cm{sup 3}/s, indicating that scrambling in the CH{sub 6}{sup +} complex is very unlikely.

  16. Temperature dependent quasiparticle renormalization in nickel metal

    Energy Technology Data Exchange (ETDEWEB)

    Ovsyannikov, Ruslan; Sanchez-Barriga, Jaime; Fink, Joerg; Duerr, Hermann A. [Helmholtz Zentrum Berlin (Germany). BESSY II

    2009-07-01

    One of the fundamental consequences of electron correlation effects is that the bare particles in solids become 'dressed', i.e. they acquire an increased effective mass and a lifetime. We studied the spin dependent quasiparticle band structure of Ni(111) with high resolution angle resolved photoemission spectroscopy. At low temperatures (50 K) a renormalization of quasiparticle energy and lifetime indicative of electron-phonon coupling is observed in agreement with literature. With increasing temperature we observe a decreasing quasiparticle lifetime at the Fermi level for all probed minority spin bands as expected from electron phonon coupling. Surprisingly the majority spin states behave differently. We actually observe a slightly increased lifetime at room temperature. The corresponding increase in Fermi velocity points to a temperature dependent reduction of the majority spin quasiparticle renormalization.

  17. Synthesis and temperature dependent Raman studies of large crystalline faces topological GeBi4Te7 single crystal

    Science.gov (United States)

    Mal, Priyanath; Bera, G.; Turpu, G. R.; Srivastava, Sunil K.; Das, Pradip

    2018-05-01

    We present a study of structural and vibrational properties of topological insulator GeBi4Te7. Modified Bridgeman technique is employed to synthesize the single crystal with relatively large crystalline faces. Sharp (0 0 l) reflection confirms the high crystallinity of the single crystal. We have performed temperature dependent Raman measurement for both parallel and perpendicular to crystallographic c axis geometry. In parallel configuration we have observed seven Raman modes whereas in perpendicular geometry only four of these are identified. Appearance and disappearance of Raman modes having different intensities for parallel and perpendicular to c measurement attribute to the mode polarization. Progressive blue shift is observed with lowering temperature, reflects the increase in internal stress.

  18. Temperature-dependent Hall effect studies of ZnO thin films grown by metalorganic chemical vapour deposition

    International Nuclear Information System (INIS)

    Roro, K T; Dangbegnon, J K; Sivaraya, S; Westraadt, J E; Neethling, J H; Leitch, A W R; Botha, J R; Kassier, G H

    2008-01-01

    The electrical properties of zinc oxide (ZnO) thin films of various thicknesses (0.3–4.4 µm) grown by metalorganic chemical vapour deposition on glass substrates have been studied by using temperature-dependent Hall-effect (TDH) measurements in the 18–300 K range. The high quality of the layers has been confirmed with x-ray diffraction, transmission electron microscopy, scanning electron microscopy and photoluminescence techniques. TDH measurements indicate the presence of a degenerate layer which significantly influences the low-temperature data. It is found that the measured mobility generally increases with increasing layer thickness, reaching a value of 120 cm 2 V −1 s −1 at room temperature for the 4.4 µm thick sample. The lateral grain size of the layers is also found to increase with thickness indicating a clear correlation between the size of the surface grains and the electrical properties of corresponding films. Theoretical fits to the Hall data suggest that the bulk conduction of the layers is dominated by a weakly compensated donor with activation energy in the 33–41 meV range and concentration of the order of 10 17 cm −3 , as well as a total acceptor concentration of mid-10 15 cm −3 . Grain boundary scattering is found to be an important limiting factor of the mobility throughout the temperature range considered

  19. Pulse radiolysis study on temperature and pressure dependence of the yield of solvated electron in methanol from room temperature to supercritical condition

    International Nuclear Information System (INIS)

    Han, Zhenhui; He, Hui; Lin, Mingzhang; Muroya, Yusa; Katsumura, Yosuke

    2012-09-01

    . Therefore, it was suggested that the supercritical primary alcohols, for example methanol, as the simplest alcohol and an analogue of water, might become a promising substitute of water in a radiolysis study. As our knowledge, the yield of solvated electron in methanol at high temperatures and pressures, especially at supercritical condition, is still unknown now. In this work, the yield of solvated electron in methanol has been investigated at different temperatures from room temperature to supercritical condition by a method of nanosecond pulse radiolysis. By using 4,4'-bipyridyl as a scavenger, the temperature-, pressure- and density-dependent yields of solvated electron, i.e., G-values, have been measured for the first time, which revealing a special density effect on the yield in supercritical methanol. With increasing temperature under 9 MPa, the yield just changes slightly below 230 deg. C, and increases dramatically to peak at around 250 deg. C, after that decreases again. The pressure and density dependence of the yields at elevated temperatures are also measured and discussed. The results imply that, in supercritical region, especially near to critical point, the density effect becomes predominant influence on the yield of radiolysis products. (authors)

  20. Temperature and time dependence of free volume in bisphenol A polycarbonate studied by positron lifetime spectroscopy

    NARCIS (Netherlands)

    Kluin, J.E.; Yu, Z.; Vleeshouwers, S.M.; McGervey, J.D.; Jamieson, A.M.; Simha, R.

    1992-01-01

    New positron lifetime expts. were carried out for Bisphenol-A polycarbonate. The influence of unavoidable pos. charged positron irradn. on the lifetime and intensity of o-positronium (o-Ps) annihilation was studied. Results obtained using a state-of-the-art lifetime spectrometer (count rate 670 cps

  1. Mobility field and mobility temperature dependence in PC61BM: A kinetic Monte-Carlo study

    Science.gov (United States)

    Sousa, Leonardo; Volpi, Riccardo; da Silva Filho, Demétrio Antônio; Linares, Mathieu

    2017-12-01

    A study of electron mobility in a PCBM system is performed by means of analytical considerations and Kinetic Monte Carlo simulations. Orbital energies are calculated at the ZINDO level of theory and successively corrected considering contributions from permanent charges and polarization interactions. The relative importance of these environmental effects is analyzed in details, furthermore the predicted mobilities are compared with experimental results and similar simulations performed in C60.

  2. Ab initio molecular dynamics study of temperature and pressure-dependent infrared dielectric functions of liquid methanol

    Directory of Open Access Journals (Sweden)

    C. C. Wang

    2017-03-01

    Full Text Available The temperature and pressure-dependent dielectric functions of liquids are of great importance to the thermal radiation transfer and the diagnosis and control of fuel combustion. In this work, we apply the state-of-the-art ab initio molecular dynamics (AIMD method to calculate the infrared dielectric functions of liquid methanol at 183–573 K and 0.1–160 MPa in the spectral range 10−4000 cm−1, and study the temperature and pressure effects on the dielectric functions. The AIMD approach is validated by the Infrared Variable Angle Spectroscopic Ellipsometry (IR-VASE experimental measurements at 298 K and 0.1 MPa, and the proposed IR-VASE method is verified by comparison with paper data of distilled water. The results of the AIMD approach agrees well with the experimental values of IR-VASE. The experimental and theoretical analyses indicate that the temperature and pressure exert a noticeable influence on the infrared dielectric functions of liquid methanol. As temperature increases, the average molecular dipole moment decreases. The amplitudes of dominant absorption peaks reduce to almost one half as temperature increases from 183 to 333 K at 0.1 MPa and from 273 to 573 K at 160 MPa. The absorption peaks below 1500 cm–1 show a redshift, while those centered around 3200 cm–1 show a blueshift. Moreover, larger average dipole moments are observed as pressure increases. The amplitudes of dominant absorption peaks increase to almost two times as pressure increases from 1 to 160 MPa at 373 K.

  3. Temperature dependent structural, luminescent and XPS studies of CdO:Ga thin films deposited by spray pyrolysis

    International Nuclear Information System (INIS)

    Moholkar, A.V.; Agawane, G.L.; Sim, Kyu-Ung; Kwon, Ye-bin; Choi, Doo Sun; Rajpure, K.Y.; Kim, J.H.

    2010-01-01

    Research highlights: → The CdO:Ga thin films seems an alternative to traditional TCO materials used in photovoltaic applications. This work deals the effect of deposition temperature on sprayed CdO:Ga films with respect to the structural, luminescent and XPS studies. → The crystalline quality of the GCO films improves with deposition temperature. → The oxygen vacancies are responsible for n-type conductivity and green emission. → The minimum resistivity, highest carrier concentration and mobility are 1.9 x 10 -4 Ω cm, 11.7 x 10 21 cm -3 and 27.64 cm 2 V -1 s -1 , respectively. - Abstract: The structural, compositional, photoluminescent and XPS properties of CdO:Ga thin films deposited at temperatures ranging from 275 to 350 o C, using spray pyrolysis are reported. X-ray diffraction characterization of as-deposited GCO thin films reveals that films are of cubic structure with a (2 0 0) preferred orientation. The crystalline quality of the GCO films improves and the grain size increases with deposition temperature. The EDS analyses confirm oxygen deficiency present in the film and are responsible for n-type conductivity. The photoluminescence spectra demonstrated that the green emission peaks of CdO thin films are centered at 482 nm. The relative intensity of these peaks is strongly dependent on the deposition temperature. Oxygen vacancies are dominant luminescent centers for green emission in CdO thin films. The XPS measurement shows the presence of Cd, Ga, O and C elements and confirms that CdO:Ga films are cadmium-rich.

  4. Density functional and theoretical study of the temperature and pressure dependency of the plasmon energy of solids

    International Nuclear Information System (INIS)

    Attarian Shandiz, M.; Gauvin, R.

    2014-01-01

    The temperature and pressure dependency of the volume plasmon energy of solids was investigated by density functional theory calculations. The volume change of crystal is the major factor responsible for the variation of valence electron density and plasmon energy in the free electron model. Hence, to introduce the effect of temperature and pressure for the density functional theory calculations of plasmon energy, the temperature and pressure dependency of lattice parameter was used. Also, by combination of the free electron model and the equation of state based on the pseudo-spinodal approach, the temperature and pressure dependency of the plasmon energy was modeled. The suggested model is in good agreement with the results of density functional theory calculations and available experimental data for elements with the free electron behavior.

  5. (Alpha-) quenching temperature dependence in liquid scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Arnd; Lozza, Valentina; Krosigk, Belina von; Zuber, Kai [Institut fuer Kern- und Teilchenphysik, TU Dresden (Germany)

    2015-07-01

    Liquid scintillator (LS) is an effective and promising detector material, which is and will be used by many small and large scale experiments. In order to perform correct signal identification and background suppression, a very good knowledge of LS properties is crucial. One of those is the light yield from alpha particles in liquid scintillator. This light output strongly quenched, approx. 10 times compared to that of electrons, and has been precisely studied at room temperature for various LS. Big scintillator experiments, such as SNO+ and maybe future large scale detectors, will operate at different temperatures. While a strong temperature dependence is well known for solid state scintillators, due to the different scintillation process, a quenching temperature dependence in LS is usually assumed negligible. On the other hand, inconsistencies in between measurements are often explained by potential temperature effects. This study investigates LAB based liquid scintillator with an intrinsic, dissolved alpha emitter and its behaviour with temperature change. In a small, cooled and heated setup, a stabilized read-out with two PMTs is realised. First results are presented.

  6. Experimental and theoretical investigation of temperature-dependent electrical fatigue studies on 1-3 type piezocomposites

    Directory of Open Access Journals (Sweden)

    Y. Mohan

    2016-03-01

    Full Text Available 1-3 type piezocomposites are very attractive materials for transducers and biomedical application, due to its high electromechanical coupling effects. Reliability study on 1-3 piezocomposites subjected to cyclic loading condition in transducer application is one of the primary concern. Hence, this study focuses on 1-3 piezocomposites for various PZT5A1 fiber volume fraction subjected to electrical fatigue loading up-to 106 cycles and at various elevated temperature. Initially experiments are performed on 1-3 piezocomposites, in order to understand the degradation phenomena due to various range in amplitude of electric fields (unipolar & bipolar, frequency of applied electric field and for various ambient temperature. Performing experiments for high cycle fatigue and for different fiber volume fraction of PZT5A1 is a time consuming process. Hence, a simplified macroscopic uni-axial model based on physical mechanisms of domain switching and continuum damage mechanics has been developed to predict the non-linear fatigue behaviour of 1-3 piezocomposites for temperature dependent electrical fatigue loading conditions. In this model, damage effects namely domain pinning, frozen domains and micro cracks, are considered as a damage variable (ω. Remnant variables and material properties are considered as a function of internal damage variable and the growth of the damage is derived empirically based on the experimental observation to predict the macroscopic changes in the properties. The measured material properties and dielectric hysteresis (electric displacement vs. electric field as well as butterfly curves (longitudinal strain vs. electric field are compared with the simulated results. It is observed that variation in amplitude of bipolar electric field and temperature has a strong influence on the response of 1-3 piezocomposites.

  7. Temperature dependence of nuclear surface properties

    International Nuclear Information System (INIS)

    Campi, X.; Stringari, S.

    1982-01-01

    Thermal properties of nuclear surface are investigated in a semi-infinite medium. Explicit analytical expression are given for the temperature dependence of surface thickness, surface energy and surface free energy. In this model the temperature effects depend critically on the nuclear incompressibility and on the shape of the effective mass at the surface. To illustrate the relevance of these effects we made an estimate of the temperature dependence of the fission barrier height. (orig.)

  8. TEMPERATURE DEPENDENCE OF THE THERMAL ...

    African Journals Online (AJOL)

    Thermal conductivity values, in the temperature range 300 – 1200 K, have been measured in air and at atmospheric pressure for a Kenyan kaolinite refractory with 0% - 50% grog proportions. The experimental thermal conductivity values were then compared with those calculated using the Zumbrunnen et al [1] and the ...

  9. Temperature dependence in magnetic particle imaging

    Science.gov (United States)

    Wells, James; Paysen, Hendrik; Kosch, Olaf; Trahms, Lutz; Wiekhorst, Frank

    2018-05-01

    Experimental results are presented demonstrating how temperature can influence the dynamics of magnetic nanoparticles (MNPs) in liquid suspension, when exposed to alternating magnetic fields in the kilohertz frequency range. The measurements used to probe the nanoparticle systems are directly linked to both the emerging biomedical technique of magnetic particle imaging (MPI), and to the recently proposed concept of remote nanoscale thermometry using MNPs under AC field excitation. Here, we report measurements on three common types of MNPs, two of which are currently leading candidates for use as tracers in MPI. Using highly-sensitive magnetic particle spectroscopy (MPS), we demonstrate significant and divergent thermal dependences in several key measures used in the evaluation of MNP dynamics for use in MPI and other applications. The temperature range studied was between 296 and 318 Kelvin, making our findings of particular importance for MPI and other biomedical technologies. Furthermore, we report the detection of the same temperature dependences in measurements conducted using the detection coils within an operational preclinical MPI scanner. This clearly shows the importance of considering temperature during MPI development, and the potential for temperature-resolved MPI using this system. We propose possible physical explanations for the differences in the behaviors observed between the different particle types, and discuss our results in terms of the opportunities and concerns they raise for MPI and other MNP based technologies.

  10. A study on the temperature dependence of the threshold switching characteristics of Ge2Sb2Te5

    Science.gov (United States)

    Lee, Suyoun; Jeong, Doo Seok; Jeong, Jeung-hyun; Zhe, Wu; Park, Young-Wook; Ahn, Hyung-Woo; Cheong, Byung-ki

    2010-01-01

    We investigated the temperature dependence of the threshold switching characteristics of a memory-type chalcogenide material, Ge2Sb2Te5. We found that the threshold voltage (Vth) decreased linearly with temperature, implying the existence of a critical conductivity of Ge2Sb2Te5 for its threshold switching. In addition, we investigated the effect of bias voltage and temperature on the delay time (tdel) of the threshold switching of Ge2Sb2Te5 and described the measured relationship by an analytic expression which we derived based on a physical model where thermally activated hopping is a dominant transport mechanism in the material.

  11. Temperature dependence of gafchromic MD-55 dosimeter

    International Nuclear Information System (INIS)

    Klassen, Norman V.; Zwan, Len van der; Cygler, Joanna

    1997-01-01

    Objective: Gafchromic MD-55 is a fairly new, thin film dosimeter that develops a blue color (λ max = 676 nm) when irradiated with ionizing radiation. The increase in absorbance is nearly proportional to the absorbed dose. MD-55 can be used for high precision dosimetry if care is taken to assure reproducible film orientation in the spectrophotometer as well as temperature control during both irradiation and reading. In order to achieve the maximum sensitivity of this dosimeter the readings of the optical density should be taken at λ max . It was reported for another type of Gafchromic film (DM-1260), that both λ max and ε max decrease with an increase in the temperature of the spectrophotometer. The purpose of this study was to characterize the reading temperature dependence of the new type of Gafchromic film available on the market and to find optimal conditions for using it for high precision dosimetry. Materials and Methods: Irradiations were carried out using 60 Co gamma rays from an Eldorado irradiator. The dosimeters were sandwiched in a lucite phantom with 4.4 mm build-up and irradiated in the center of a 10 cm x 10 cm field at 1 meter from the source. The temperature during irradiations was 22 deg. C. The dose rate was about 0.68 Gy/min. Measurements of optical density were made using a Cary 210 spectrophotometer. A bandpass of 3.5 nm was used. The temperature of the baseplate of the sample holder was regulated to +/-0.05 deg. C and measured by a probe lying on the baseplate. In all cases, values of OD were only recorded after they had come to a constant value, which was reached within 5 minutes of inserting the dosimeter into the sample chamber of the spectrophotometer. Results: The temperature dependence of the OD at 676 nm was measured in 2 studies using 6 dosimeters that had received 0, 1.0, 3.5, 6.2, 14.5 Gy. Readings were taken at 7 temperatures between 18.8 and 28.1 deg. C. By returning to the initial temperature several hours later, it was found

  12. Temperature dependence of elastic properties of paratellurite

    International Nuclear Information System (INIS)

    Silvestrova, I.M.; Pisarevskii, Y.V.; Senyushenkov, P.A.; Krupny, A.I.

    1987-01-01

    New data are presented on the temperature dependence of the elastic wave velocities, elastic stiffness constants, and thermal expansion of paratellurite. It is shown that the external pressure appreciably influences the elastic properties of TeO 2 , especially the temperature dependence of the elastic modulus connected with the crystal soft mode. (author)

  13. Temperature-dependent magnetic field effect study on exciplex luminescence: probing the triton X-100 reverse micelle in cyclohexane.

    Science.gov (United States)

    Das, Doyel; Nath, Deb Narayan

    2007-09-20

    The microenvironment within the reverse micelle of the nonionic surfactant Triton X-100 (TX-100) in cyclohexane has been investigated by studying the magnetic field effect (MFE) on pyrene-dimethylaniline exciplex luminescence. The nature of exciplex fluorescence and its behavior in the presence of a magnetic field have been found to vary significantly with the water content of the medium. Results are discussed in light of multiple exciplex formation within the micelle which is further supported by the fluorescence lifetime measurements. Those exciplexes emitting at longer wavelength are found to be magnetic field sensitive while those emitting toward the blue region of the spectrum are insensitive toward magnetic field. Since the exciplex's emission characteristics and magnetic field sensitivity depend on its immediate surrounding, it has been concluded that the environment within the micelle is nonuniform. With an increase in hydration level, different zones of varying polarity are created within the reverse micelle. It has been pointed out that the magnetic field sensitive components reside inside the polar core of the micelle while those located near the hydrocarbon tail are field insensitive. However it has been presumed that an interconversion between the different types of exciplexes is possible. The environment within the reverse micelle is found to be largely affected by the change in temperature, and this is reflected in the exciplex emission property and the extent of magnetic field effect. Interestingly, the variation of MFE with temperature follows different trends in the dry and the wet reverse micelle. A comparison has been drawn with the reverse micelle of the ionic surfactant to get an insight into the difference between the various types of micellar environment.

  14. Study of the temperature dependence of the bainitic transformation rate in a multiphase TRIP-assisted steel

    International Nuclear Information System (INIS)

    Girault, E.; Ratchev, P.; Van Humbeeck, J.; Verlinden, B.; Aernoudt, E.

    1999-01-01

    A prerequisite to the development of multiphase TRIP-assisted steels is a good understanding of the bainitic transformation that takes place during the related thermo-mechanical processing. In this framework, the present paper proposes to investigate the formation of bainite when originating from intercritical austenite in a Si bearing steel. The experimental results suggest the contribution of a martensitic type mechanism to the transformation process. Yet, the overall bainitic reaction rates are found to strongly depend on the holding temperature. This original kinetics is correlated with the typical microstructure the steel exhibits after the intercritical annealing stage. To this extent, the crucial role of the adjacent development of bainitic ferrite for the observed temperature dependence is discussed. (orig.)

  15. High Momentum Particle Identification Detector The Study of Cesium Iodide Quantum Efficiency Dependency on Substrate Material, Temperature and Quartz Window

    CERN Document Server

    Wisna, Gde Bimananda M

    2014-01-01

    The Cesium Iodide (CsI) is used as a material for detecting Cherenkov radiation produced by high momentum particle in High Momentum Particle Identification Detector (HMPID) at ALICE Experiment at CERN. This work provides investigation and analysis of The Quantum Efficiency (QE) result of CsI which is deposited on five samples substrates such as copper passivated red, copper passivated yellow, aluminium, copper coated with nickel and copper coated with nickel then coated with gold. The measurement of five samples is held under temperature $60^{0}$ C and $25^{0}$ C (room temperature) and also with optical quartz window which can be adjusted to limit the wavelength range which reach the CsI. The result shows there are dependency of substrate, temperature due to enhancement effect and also quartz windows usage on QE of CsI. The results of five samples is then compared and analyzed.

  16. A temperature dependent tunneling study of the spin density wave gap in EuFe2As2 single crystals.

    Science.gov (United States)

    Dutta, Anirban; Anupam; Hossain, Z; Gupta, Anjan K

    2013-09-18

    We report temperature dependent scanning tunneling microscopy and spectroscopy measurements on single crystals of EuFe2As2 in the 15-292 K temperature range. The in situ cleaved crystals show atomic terraces with homogeneous tunnel spectra that correlate well with the spin density wave (SDW) transition at a temperature, TSDW ≈ 186 K. Above TSDW the local tunnel spectra show a small depression in the density of states (DOS) near the Fermi energy (EF). The gap becomes more pronounced upon entering the SDW state with a gap value ∼90 meV at 15 K. However, the zero bias conductance remains finite down to 15 K indicating a finite DOS at the EF in the SDW phase. Furthermore, no noticeable change is observed in the DOS at the antiferromagnetic ordering transition of Eu(2+) moments at 19 K.

  17. Temperature dependence of coherence in transmon qubits

    Energy Technology Data Exchange (ETDEWEB)

    Schloer, Steffen; Braumueller, Jochen; Lukashenko, Oleksandr; Rotzinger, Hannes; Weides, Martin; Ustinov, Alexey V. [Physikalisches Institut, KIT, Karlsruhe (Germany); Sandberg, Martin; Vissers, Michael R.; Pappas, David P. [NIST, Boulder, CO (United States)

    2015-07-01

    Superconducting qubits are a promising field of research, not only with respect to quantum computing but also as highly sensitive detectors and due to the possibility of using them to study fundamental implications of quantum mechanics. The requirements for qubits that can be used as building blocks in a potential quantum computer are challenging. Modern superconducting qubits like the transmon are strong candidates for achieving these goals. The main challenge here is to increase the coherence of prepared quantum states. Here, we experimentally investigate the influence of temperature variation on relaxation and dephasing of a transmon qubit. Our goal is to understand decoherence mechanisms in material optimized circuits. Aiming at longer coherence, in this case peaking over 50 μs for T{sub 1} and T{sub 2}, our samples are fabricated at NIST using two different materials. Low-loss TiN was used for the shunt capacitance as well as the resonator, combined with shadow evaporated ultra-small Al-AlO{sub x}-Al Josephson junctions. We will present temperature-dependent data on qubit relaxation and dephasing times as well as power spectra. Our data will be compared to previously obtained temperature dependent data for other types of qubits.

  18. Temperature dependent and applied field strength dependent magnetic study of cobalt nickel ferrite nano particles: Synthesized by an environmentally benign method

    Science.gov (United States)

    Sontu, Uday Bhasker; G, Narsinga Rao; Chou, F. C.; M, V. Ramana Reddy

    2018-04-01

    Spinel ferrites have come a long way in their versatile applications. The ever growing applications of these materials demand detailed study of material properties and environmental considerations in their synthesis. In this article, we report the effect of temperature and applied magnetic field strength on the magnetic behavior of the cobalt nickel ferrite nano powder samples. Basic structural properties of spinel ferrite nano particles, that are synthesized by an environmentally benign method of auto combustion, are characterized through XRD, TEM, RAMAN spectroscopy. Diffuse Reflectance Spectroscopy (DRS) is done to understand the nickel substitution effect on the optical properties of cobalt ferrite nano particles. Thermo magnetic studies using SQUID in the temperature range 5 K to 400 K and room temperature (300 K) VSM studies are performed on these samples. Fields of 0Oe (no applied field: ZF), 1 kOe (for ZFC and FC curves), 5 kOe (0.5 T), 50 kOe (5T) (for M-H loop study) are used to study the magnetic behavior of these nano particles. The XRD,TEM analysis suggest 40 nm crystallites that show changes in the cation distribution and phase changes in the spinel structure with nickel substitution. Raman micrographs support phase purity changes and cation redistributions with nickel substitution. Diffuse reflectance study on powder samples suggests two band gap values for nickel rich compounds. The Magnetic study of these sample nano particles show varied magnetic properties from that of hard magnetic, positive multi axial anisotropy and single-magnetic-domain structures at 5 K temperature to soft magnetic core shell like structures at 300 K temperature. Nickel substitution effect is non monotonous. Blocking temperature of all the samples is found to be higher than the values suggested in the literature.

  19. Temperature Dependence of Factors Controlling Isoprene Emissions

    Science.gov (United States)

    Duncan, Bryan N.; Yoshida, Yasuko; Damon, Megan R.; Douglass, Anne R.; Witte, Jacquelyn C.

    2009-01-01

    We investigated the relationship of variability in the formaldehyde (HCHO) columns measured by the Aura Ozone Monitoring Instrument (OMI) to isoprene emissions in the southeastern United States for 2005-2007. The data show that the inferred, regional-average isoprene emissions varied by about 22% during summer and are well correlated with temperature, which is known to influence emissions. Part of the correlation with temperature is likely associated with other causal factors that are temperature-dependent. We show that the variations in HCHO are convolved with the temperature dependence of surface ozone, which influences isoprene emissions, and the dependence of the HCHO column to mixed layer height as OMI's sensitivity to HCHO increases with altitude. Furthermore, we show that while there is an association of drought with the variation in HCHO, drought in the southeastern U.S. is convolved with temperature.

  20. An experimental study of magnetic-field and temperature dependence on magnetic fluid’s heating power

    International Nuclear Information System (INIS)

    Beković, Miloš; Trlep, Mladen; Jesenik, Marko; Goričan, Viktor; Hamler, Anton

    2013-01-01

    This paper firstly presents a measurement system for determining the magnetic properties of magnetic fluids, based on three pickup coils. The accuracy of the system was tested on known samples and then used for the characterization of magnetic losses (heating power P) on the magnetic fluid sample using two different methods. The first method is based on determining the hysteresis loop area and the second on determining the complex susceptibility; and showed that both methods are equivalent. The aim of this paper was to identify the heating power of the liquid at a known value for the magnetic field, and the arbitrary temperature. Thus, we explored the actual reduction in the heating power due to the heating of the sample, which cannot be achieved without the temperature regulated heat bath using established calorimetric methods. -- Highlights: ► A new measurement system was tested with numerous samples, and results were promising. ► Magnetic fluid heating power was determined using a system of J-compensated coil. ► Complex susceptibility method results equal losses as hysteresis loops approach. ► Temperature dependent heating power was explored without the heath-bath . ► For larger magnetic fields a linear H dependence of heating power is revealed

  1. Evaluation of temperature dependent neutron resonance integrals

    International Nuclear Information System (INIS)

    Menon, S.V.G.; Sahni, D.C.

    1975-01-01

    The Fourier transform method is extended for evaluating temperature dependent resonance integrals and Doppler coefficients. With the temperature dependent cross-sections, the slowing-down equation is transformed into a Fredholm integral equation of second kind. A method of solution is presented using the familiar Gauss-Hermite quadrature formulae. As a byproduct of the above technique, a fast and accurate method for computing the resonance integral J-function is given. (orig.) [de

  2. Investigation Of Temperature Dependent Characteristics Of ...

    African Journals Online (AJOL)

    The structure, magnetization and magnetostriction of Laves phase compound TbCo2 were investigated by temperature dependent high resolution neutron powder diffraction. The compound crystallizes in the cubic Laves phase C15 structure above its Curie temperature, TC and exhibits a rhombohedral distortion (space ...

  3. Photoemission study of the temperature-dependent energy-gap formation in the Kondo semiconductor CeRhAs

    International Nuclear Information System (INIS)

    Shimada, K.; Arita, M.; Takeda, Y.; Namatame, H.; Taniguchi, M.; Higashiguchi, M.; Oguchi, T.; Sasakawa, T.; Suemitsu, T.; Takabatake, T.

    2004-01-01

    Full text: The orthorhombic CeRhAs, known as a Kondo semiconductor, has attracted much interest for its unusual energy-gap formation associated with the successive 1st order phase transitions. In order to elucidate the mechanism of the energy- gap formation, we have done high-resolution temperature-dependent photoemission spectroscopy on the undulator beamlines of a compact electron-storage ring, HiSOR, at Hiroshima University. We have observed directly the energy-gap formation in the Ce 4f states and in the conduction bands. Comparing with the isostructural Kondo semimetal CeRhSb, we discuss the energy gap formation in CeRhAs

  4. Escherichia coli survival in waters: Temperature dependence

    Science.gov (United States)

    Knowing the survival rates of water-borne Escherichia coli is important in evaluating microbial contamination and making appropriate management decisions. E. coli survival rates are dependent on temperature, a dependency that is routinely expressed using an analogue of the Q10 mo...

  5. Temperature induced changes in size dependent distributions of two boreal and three Lusitanian flatfish species: A comparative study

    NARCIS (Netherlands)

    Hal, van R.; Kooten, van T.; Rijnsdorp, A.D.

    2016-01-01

    Changes in spatial distribution in several fish species have been related to recent increase in global temperature. In the North Sea, both a poleward shift and a shift to deeper water have been observed. Here, we study the underlying mechanism of these shifts in a comparative study of the changes in

  6. Pulse Radiolysis Studies of Temperature Dependent Electron Transfers among Redox Centers in ba(3)-Cytochrome c Oxidase from Thermus thermophilus

    DEFF Research Database (Denmark)

    Farver, Ole; Wherland, Scot; Antholine, William E

    2010-01-01

    The functioning of cytochrome c oxidases involves orchestration of long-range electron transfer (ET) events among the four redox active metal centers. We report the temperature dependence of electron transfer from the Cu(A)(r) site to the low-spin heme-(a)b(o) site, i.e., Cu(A)(r) + heme-a(b)(o) ......The functioning of cytochrome c oxidases involves orchestration of long-range electron transfer (ET) events among the four redox active metal centers. We report the temperature dependence of electron transfer from the Cu(A)(r) site to the low-spin heme-(a)b(o) site, i.e., Cu(A)(r) + heme...... in cytochrome ba(3) had no effect on the rate of this reaction whereas the II-Met160Leu Cu(A)-mutation was slower by an amount corresponding to a decreased driving force of ∼0.06 eV. The structures support the presence of a common, electron-conducting "wire" between Cu(A) and heme-a(b). The transfer...

  7. Radio-Frequency-Based NH3-Selective Catalytic Reduction Catalyst Control: Studies on Temperature Dependency and Humidity Influences

    Directory of Open Access Journals (Sweden)

    Markus Dietrich

    2017-07-01

    Full Text Available The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF catalyst state determination offers the only approach for directly measuring the NH3 loading on selective catalytic reduction (SCR catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH3 storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13 was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH3 storage control, the influence of the storage degree on the catalyst performance, i.e., on NOx conversion and NH3 slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH3 storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals.

  8. Radio-Frequency-Based NH₃-Selective Catalytic Reduction Catalyst Control: Studies on Temperature Dependency and Humidity Influences.

    Science.gov (United States)

    Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf

    2017-07-12

    The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF) catalyst state determination offers the only approach for directly measuring the NH₃ loading on selective catalytic reduction (SCR) catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH₃ storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13) was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH₃ storage control, the influence of the storage degree on the catalyst performance, i.e., on NO x conversion and NH₃ slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH₃ storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals.

  9. Radio-Frequency-Based NH3-Selective Catalytic Reduction Catalyst Control: Studies on Temperature Dependency and Humidity Influences

    Science.gov (United States)

    Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf

    2017-01-01

    The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF) catalyst state determination offers the only approach for directly measuring the NH3 loading on selective catalytic reduction (SCR) catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH3 storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13) was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH3 storage control, the influence of the storage degree on the catalyst performance, i.e., on NOx conversion and NH3 slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH3 storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals. PMID:28704929

  10. Temperature dependence of the magnetization of canted spin structures

    DEFF Research Database (Denmark)

    Jacobsen, Henrik; Lefmann, Kim; Brok, Erik

    2012-01-01

    Numerous studies of the low-temperature saturation magnetization of ferrimagnetic nanoparticles and diamagnetically substituted ferrites have shown an anomalous temperature dependence. It has been suggested that this is related to freezing of canted magnetic structures. We present models for the ......Numerous studies of the low-temperature saturation magnetization of ferrimagnetic nanoparticles and diamagnetically substituted ferrites have shown an anomalous temperature dependence. It has been suggested that this is related to freezing of canted magnetic structures. We present models...... for the temperature dependence of the magnetization of a simple canted spin structure in which relaxation can take place at finite temperatures between spin configurations with different canting angles. We show that the saturation magnetization may either decrease or increase with decreasing temperature, depending...

  11. Study of the temperature dependence of the structureof KY3F10

    DEFF Research Database (Denmark)

    Friese, K; Krüger, H; Kahlenberg, V

    2006-01-01

    KY3F10 (Fm¯3m, Z = 8) is an anion-excess fluorite-related superstructure, which is employed as a room-temperature laser, when doped with rare-earths. Earlier conductivity measurements have revealed two thermally activated processes below and above 600 K. In this work we studied the high-temperatu...

  12. Using Check-All-That-Apply (CATA) method for determining product temperature-dependent sensory-attribute variations: A case study of cooked rice.

    Science.gov (United States)

    Pramudya, Ragita C; Seo, Han-Seok

    2018-03-01

    Temperatures of most hot or cold meal items change over the period of consumption, possibly influencing sensory perception of those items. Unlike temporal variations in sensory attributes, product temperature-induced variations have not received much attention. Using a Check-All-That-Apply (CATA) method, this study aimed to characterize variations in sensory attributes over a wide range of temperatures at which hot or cold foods and beverages may be consumed. Cooked milled rice, typically consumed at temperatures between 70 and 30°C in many rice-eating countries, was used as a target sample in this study. Two brands of long-grain milled rice were cooked and randomly presented at 70, 60, 50, 40, and 30°C. Thirty-five CATA terms for cooked milled rice were generated. Eighty-eight untrained panelists were asked to quickly select all the CATA terms that they considered appropriate to characterize sensory attributes of cooked rice samples presented at each temperature. Proportions of selection by panelists for 13 attributes significantly differed among the five temperature conditions. "Product temperature-dependent sensory-attribute variations" differed with two brands of milled rice grains. Such variations in sensory attributes, resulted from both product temperature and rice brand, were more pronounced among panelists who more frequently consumed rice. In conclusion, the CATA method can be useful for characterizing "product temperature-dependent sensory attribute variations" in cooked milled-rice samples. Further study is needed to examine whether the CATA method is also effective in capturing "product temperature-dependent sensory-attribute variations" in other hot or cold foods and beverages. Published by Elsevier Ltd.

  13. Temperature dependence of LRE-HRE-TM thin films

    Science.gov (United States)

    Li, Zuoyi; Cheng, Xiaomin; Lin, Gengqi; Li, Zhen; Huang, Zhixin; Jin, Fang; Wang, Xianran; Yang, Xiaofei

    2003-04-01

    Temperature dependence of the properties of RE-TM thin films is very important for MO recording. In this paper, we studied the temperature dependence of the magnetic and magneto-optical properties of the amorphous LRE-HRE-TM single layer thin films and LRE-HRE-TM/HRE-TM couple-bilayered thin films. For LRE-HRE-TM single layer thin films, the temperature dependence of the magnetization was investigated by using the mean field theory. The experimental and theoretical results matched very well. With the LRE substitution in HRE-TM thin film, the compensation temperature Tcomp decreased and the curie temperature Tc remained unchanged. Kerr rotation angle became larger and the saturation magnetization Ms at room temperature increased. For LRE-HRE-TM/HRE-TM couple-bilayered thin films, comparisons of the temperature dependences of the coercivities and Kerr rotation angles were made between isolated sublayers and couple-bilayered thin film.

  14. Study on phase transformations in superconducting Ti-50%Nb alloy using temperature-dependent internal friction method

    International Nuclear Information System (INIS)

    Shapoval, B.I.; Tikhinskij, G.F.; Somov, A.I.; Chernyj, O.V.; Rudycheva, T.Yu.; Andrievskaya, N.F.

    1980-01-01

    The internal friction method is used to study phase transformations in the Ti-50%Nb alloy parallel with other methods. The effect of annealing temperature and time, as well as the content of interstitial impurities in the alloy and its thermomechanical treatment (TMT) is studied. In the 250-300 deg C temperature range the complex maximum of internal friction caused by extraction of secondary phases is observed. The latter is confirmed by the measurement data of mechanical properties and electron microscopic analysis. The maximum consists of three overlapping peaks that reflects stepped form of the decomposition process of the metastable solid solution. The preliminary thermo-mechanical alloy treatment consisting of equidirectional plastic deformation with the following recrystallization annealing leads to peak increase. This fact testifies to the stimulating effect of thermo-mechanical treatment on the degree of solid solution decomposition and reveals in the increase of the critical current density of a wire made of the ingot. The increase of the interstitial impurity content in the alloy has the analogous effect. The reduction of the internal friction level during isothermal stand-up at temperatures higher than the third peak temperature proceeds in two stages [ru

  15. Reorientational Dynamics of Enzymes Adsorbed on Quartz: A Temperature-Dependent Time-Resolved TIRF Anisotropy Study

    Science.gov (United States)

    Czeslik, C.; Royer, C.; Hazlett, T.; Mantulin, W.

    2003-01-01

    The preservation of enzyme activity and protein binding capacity upon protein adsorption at solid interfaces is important for biotechnological and medical applications. Because these properties are partly related to the protein flexibility and mobility, we have studied the internal dynamics and the whole-body reorientational rates of two enzymes, staphylococcal nuclease (SNase) and hen egg white lysozyme, over the temperature range of 20–80°C when the proteins are adsorbed at the silica/water interface and, for comparison, when they are dissolved in buffer. The data were obtained using a combination of two experimental techniques, total internal reflection fluorescence spectroscopy and time-resolved fluorescence anisotropy measurements in the frequency domain, with the protein Trp residues as intrinsic fluorescence probes. It has been found that the internal dynamics and the whole-body rotation of SNase and lysozyme are markedly reduced upon adsorption over large temperature ranges. At elevated temperatures, both protein molecules appear completely immobilized and the fractional amplitudes for the whole-body rotation, which are related to the order parameter for the local rotational freedom of the Trp residues, remain constant and do not approach zero. This behavior indicates that the angular range of the Trp reorientation within the adsorbed proteins is largely restricted even at high temperatures, in contrast to that of the dissolved proteins. The results of this study thus provide a deeper understanding of protein activity at solid surfaces. PMID:12668461

  16. First-principles study on doping and temperature dependence of thermoelectric property of Bi2S3 thermoelectric material

    International Nuclear Information System (INIS)

    Guo, Donglin; Hu, Chenguo; Zhang, Cuiling

    2013-01-01

    Graphical abstract: The direction-induced ZT is found. At ZZ direction and n = 1.47 × 10 19 cm −3 , the ZT can reach maximal value, 0.36, which is three times as much as maximal laboratorial value. This result matches well the analysis of electron effective mass. Highlights: ► Electrical transportations of Bi 2 S 3 depend on the concentration and temperature. ► The direction-induced ZT is found. ► At ZZ direction and n = 1.47 × 10 19 cm −3 , the ZT can reach maximal value, 0.36. ► The maximal ZT value is three times as much as maximal laboratorial value. ► By doping and temperature tuning, Bi 2 S 3 is a promising thermoelectric material. - Abstract: The electronic structure and thermoelectric property of Bi 2 S 3 are investigated. The electron and hole effective mass of Bi 2 S 3 is analyzed in detail, from which we find that the thermoelectric transportation varies in different directions in Bi 2 S 3 crystal. Along ac plane the higher figure of merit (ZT) could be achieved. For n-type doped Bi 2 S 3 , the optimal doping concentration is found in the range of (1.0–5.0) × 10 19 cm −3 , in which the maximal ZT reaches 0.21 at 900 K, but along ZZ direction, the maximal ZT reaches 0.36. These findings provide a new understanding of thermoelectricity-dependent structure factors and improving ZT ways. The donor concentration N increases as T increases at one bar of pressure under a suitable chemical potential μ, but above this chemical potential μ, the donor concentration N keeps a constant

  17. Angle-dependent XPS study of the mechanisms of 'high-low temperature' activation of GaAs photocathode

    International Nuclear Information System (INIS)

    Du Xiaoqing; Chang Benkang

    2005-01-01

    The surface chemical compositions, atomic concentration percentage and layer thickness after 'high-temperature' single-step activation and 'high-low temperature' two-step activation were obtained using quantitative analysis of angle-dependent X-ray photoelectron spectroscopy (XPS). It was found that compared to single-step activation, the thickness of GaAs-O interface barrier had a remarkable decrease, the degree of As-O bond became much smaller and the Ga-O bond became dominating, and at the same time the thickness of (Cs, O) layer also had a deduction while the ratio of Cs to O had no change after two-step activation. The measured spectral response curves showed that a increase of 29% of sensitivity had been obtained after two-step activation. To explore the inherent mechanisms of influences of the evolution of GaAs(Cs, O) surface layers on photoemission, surface electric barrier models based on the experimental results were built. By calculation of electron escape probability it was found that the decrease of thickness of GaAs-O interface barrier and (Cs, O) layer is the main reasons, which explained why higher sensitivity is achieved after two-step activation than single-step activation

  18. Investigations of Low Temperature Time Dependent Cracking

    Energy Technology Data Exchange (ETDEWEB)

    Van der Sluys, W A; Robitz, E S; Young, B A; Bloom, J

    2002-09-30

    The objective of this project was to investigate metallurgical and mechanical phenomena associated with time dependent cracking of cold bent carbon steel piping at temperatures between 327 C and 360 C. Boiler piping failures have demonstrated that understanding the fundamental metallurgical and mechanical parameters controlling these failures is insufficient to eliminate it from the field. The results of the project consisted of the development of a testing methodology to reproduce low temperature time dependent cracking in laboratory specimens. This methodology was used to evaluate the cracking resistance of candidate heats in order to identify the factors that enhance cracking sensitivity. The resultant data was integrated into current available life prediction tools.

  19. A temperature dependent slip factor based thermal model for friction

    Indian Academy of Sciences (India)

    This paper proposes a new slip factor based three-dimensional thermal model to predict the temperature distribution during friction stir welding of 304L stainless steel plates. The proposed model employs temperature and radius dependent heat source to study the thermal cycle, temperature distribution, power required, the ...

  20. Temperature-dependent study of isotropic-nematic transition for a Gay-Berne fluid using density-functional theory

    International Nuclear Information System (INIS)

    Singh, Ram Chandra

    2007-01-01

    We have used the density-functional theory to study the effect of varying temperature on the isotropic-nematic transition of a fluid of molecules interacting via the Gay-Berne intermolecular potential. The nematic phase is found to be stable with respect to isotropic phase in the temperature range 0.80≤T*≤1.25. Pair correlation functions needed as input information in density-functional theory is calculated using the Percus-Yevick integral equation theory. We find that the density-functional theory is good for studying the isotropic-nematic transition in molecular fluids if the values of the pair-correlation functions in the isotropic phase are known accurately. We have also compared our results with computer simulation results wherever they are available

  1. Temperature dependence of the electronic structure of Sr14Cu24O41 studied by resonant inelastic X-ray scattering

    International Nuclear Information System (INIS)

    Yoshida, M.; Ishii, K.; Ikeuchi, K.; Jarrige, I.; Murakami, Y.; Mizuki, J.; Tsutsui, K.; Tohyama, T.; Maekawa, S.; Kudo, K.; Koike, Y.; Endoh, Y.

    2010-01-01

    We report a resonant inelastic X-ray scattering (RIXS) study of charge excitations in the two-leg ladder Sr 14 Cu 24 O 41 . RIXS spectra at 1-5 eV are found to be dependent on temperature. An intraband excitation of the ladder, which appears as a continuum intensity below the Mott gap, decreases in intensity with temperature. Because the intraband excitation is related to the dynamics of doped holes in the ladder, its decrease of the intraband excitation is attributed to the reduction of the mobile holes in the ladder at low temperature.

  2. Temperature dependent photoreflectance study of Cu2SnS3 thin films produced by pulsed laser deposition

    DEFF Research Database (Denmark)

    Raadik, T.; Grossberg, M.; Krustok, J.

    2017-01-01

    structure (C1c1) prevails in the studied CTS thin film; however, a weak contribution from cubic CTS (F-43m) was also detected. The PR spectra revealed the valence band splitting of CTS. Optical transitions at EA = 0.92 eV, EB = 1.04 eV, and EC = 1.08 eV were found for monoclinic CTS at low-temperature (T...

  3. Temperature Dependent Wire Delay Estimation in Floorplanning

    DEFF Research Database (Denmark)

    Winther, Andreas Thor; Liu, Wei; Nannarelli, Alberto

    2011-01-01

    Due to large variations in temperature in VLSI circuits and the linear relationship between metal resistance and temperature, the delay through wires of the same length can be different. Traditional thermal aware floorplanning algorithms use wirelength to estimate delay and routability. In this w......Due to large variations in temperature in VLSI circuits and the linear relationship between metal resistance and temperature, the delay through wires of the same length can be different. Traditional thermal aware floorplanning algorithms use wirelength to estimate delay and routability....... In this work, we show that using wirelength as the evaluation metric does not always produce a floorplan with the shortest delay. We propose a temperature dependent wire delay estimation method for thermal aware floorplanning algorithms, which takes into account the thermal effect on wire delay. The experiment...

  4. Heat transfer study on convective–radiative semi-spherical fins with temperature-dependent properties and heat generation using efficient computational methods

    International Nuclear Information System (INIS)

    Atouei, S.A.; Hosseinzadeh, Kh.; Hatami, M.; Ghasemi, Seiyed E.; Sahebi, S.A.R.; Ganji, D.D.

    2015-01-01

    In this study, heat transfer and temperature distribution equations for semi-spherical convective–radiative porous fins are presented. Temperature-dependent heat generation, convection and radiation effects are considered and after deriving the governing equation, Least Square Method (LSM), Collocation Method (CM) and fourth order Runge-Kutta method (NUM) are applied for predicting the temperature distribution in the described fins. Results reveal that LSM has excellent agreement with numerical method, so can be suitable analytical method for solving the problem. Also, the effect of some physical parameters which are appeared in the mathematical formulation on fin surface temperature is investigated to show the effect of radiation and heat generation in a solid fin temperature. - Highlights: • Thermal analysis of a semi-spherical fin is investigated. • Collocation and Least Square Methods are applied on the problem. • Convection, radiation and heat generation is considered. • Physical results are compared to numerical outcomes.

  5. Temperature Dependent Models of Semiconductor Devices for ...

    African Journals Online (AJOL)

    The paper presents an investigation of the temperature dependent model of a diode and bipolar transistor built-in to the NAP-2 program and comparison of these models with experimentally measured characteristics of the BA 100 diode and BC 109 transistor. The detail of the modelling technique has been discussed and ...

  6. Temperature dependence of PZT film optical properties

    Czech Academy of Sciences Publication Activity Database

    Deineka, Alexander; Jastrabík, Lubomír; Suchaneck, G.; Gerlach, G.

    11-12, - (2001), s. 352-354 ISSN 0447-6441 R&D Projects: GA ČR GA202/00/1425; GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z1010914 Keywords : refractive index profile * PZT film * temperature dependence of optical properties Subject RIV: BH - Optics, Masers, Lasers

  7. Measurements of temperature dependence of 'localized susceptibility'

    CERN Document Server

    Shiozawa, H; Ishii, H; Takayama, Y; Obu, K; Muro, T; Saitoh, Y; Matsuda, T D; Sugawara, H; Sato, H

    2003-01-01

    The magnetic susceptibility of some rare-earth compounds is estimated by measuring magnetic circular dichroism (MCD) of rare-earth 3d-4f absorption spectra. The temperature dependence of the magnetic susceptibility obtained by the MCD measurement is remarkably different from the bulk susceptibility in most samples, which is attributed to the strong site selectivity of the core MCD measurement.

  8. Self-assembled 3D zinc borate florets via surfactant assisted synthesis under moderate pressures: Process temperature dependent morphology study

    Science.gov (United States)

    Mahajan, Dhiraj S.; Deshpande, Tushar; Bari, Mahendra L.; Patil, Ujwal D.; Narkhede, Jitendra S.

    2018-04-01

    In the present study, we prepared zinc borates using aqueous phase synthesis under moderate pressures (MP) (ethanol as a co-solvent in the presence of a quaternary ammonium surfactant-Cetyltrimethylammonium bromide (CTAB). 3D morphologies of self-assembled zinc borate (Zn(H2O)B2O4 · 0.12 H2O, Zn3B6O12 · 3.5H2O, ZnB2O4) resembling flower-like structures were obtained by varying temperature under moderate pressure conditions. Synthesized zinc borates’ florets were morphologically characterized by Field Emission Scanning Electron Microscopy. The x-ray diffractions of borate species reveal rhombohydra, monoclinic and cubic phases of zinc borate crystals as a function of process temperature. Additionally, thermal analysis confirms excellent dehydration/degradation behavior for the zinc borate crystals synthesized at moderate pressures and elevated temperatures and could be utilized as potential flame retardant fillers in the polymer matrices.

  9. Temperature dependence of three-body ion-molecule reactions

    International Nuclear Information System (INIS)

    Boehringer, H.; Arnold, F.

    1983-01-01

    The temperature dependence of the ion-molecule association reactions (i) N 2 + + N 2 + M → N 4 + + M (M=N 2 , He), (ii) O 2 + + O 2 + M → O 4 + + M (M=O 2 , He) and (iii) He + + 2He → He 2 + + He have been studied over an extended temperature range to temperatures as low as 30K with a recently constructed liquid helium-cooled ion drift tube. Over most of the temperature range the threebody reaction rate coefficients show an inverse temperature dependence proportional to Tsup(-n) with n in the range 0.6 to 2.9. This temperature dependence is quite consistent with current theories of ion molecule association. At low temperatures, however, a deviation from the Tsup(-n) dependence was observed for the association reactions (ii). For reactions (i) different temperature dependences were obtained for N 2 and He third bodies indicating an additional temperature dependence of the collisional stabilisation process. (Authors)

  10. Temperature dependence of giant dipole resonance width

    International Nuclear Information System (INIS)

    Vdovin, A.I.; Storozhenko, A.N.

    2005-01-01

    The quasiparticle-phonon nuclear model extended to finite temperature within the framework of the thermo field dynamics is applied to calculate a temperature dependence of the spreading width Γ d own of a giant dipole resonance. Numerical calculations are made for 12S n and 208 Pb nuclei. It is found that the width Γ d own increases with T. The reason of this effect is discussed as well as a relation of the present approach to other ones existing in the literature

  11. Role of temperature-dependent O-p-Fe-d hybridization parameter in the metal-insulator transition of Fe3O4: a theoretical study

    Science.gov (United States)

    Fauzi, A. D.; Majidi, M. A.; Rusydi, A.

    2017-04-01

    We propose a simple tight-binding based model for Fe3O4 that captures the preference of ferrimagnetic over ferromagnetic spin configuration of the system. Our model is consistent with previous theoretical and experimental studies suggesting that the system is half metallic, in which spin polarized electrons hop only among the Fe B sites. To address the metal-insulator transition (MIT) we propose that the strong correlation among electrons, which may also be influenced by the electron-phonon interactions, manifest as the temperature-dependence of the O-p-Fe-d hybridization parameter, particularly Fe-d belonging to one of the Fe B sites (denoted as {t}{{FeB}-{{O}}}(2)). By proposing that this parameter increases as the temperature decreases, our density-of-states calculation successfully captures a gap opening at the Fermi level, transforming the system from half metal to insulator. Within this model along with the corresponding choice of parameters and a certain profile of the temperature dependence of {t}{{FeB}-{{O}}}(2), we calculate the resistivity of the system as a function of temperature. Our calculation result reveals the drastic uprising trend of the resistivity profile as the temperature decreases, with the MIT transition temperature located around 100 K, which is in agreement with experimental data.

  12. Temperature dependent tunneling study of CaFe{sub 1.96}Ni{sub 0.04}As{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Anirban, E-mail: adatta@iitk.ac.in; Gupta, Anjan K. [Department of Physics, IIT Kanpur, Kanpur-208 016 (India); Thamizhavel, A. [Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai-400 005 (India)

    2014-04-24

    We report on temperature dependent scanning tunneling microscopy and spectroscopy studies on CaFe{sub 1.96}Ni{sub 0.04}As{sub 2} single crystals in 5.4 – 19.7 K temperature range across the normal metal - superconductor transition temperature, T{sub C} = 14K. The in-situ cleaved crystals show reasonably flat surface with signatures of atomic resolution. The tunnel spectra show significant spatial inhomogeneity below T{sub C}, which reduces significantly as the temperature goes above the T{sub C}. We discuss these results in terms of an inhomogeneous electronic phase that may exist due to the vicinity of this composition to the quantum critical point.

  13. Temperature dependent charge transport in poly(3-hexylthiophene) diodes

    Science.gov (United States)

    Rahaman, Abdulla Bin; Sarkar, Atri; Banerjee, Debamalya

    2018-04-01

    In this work, we present charge transport properties of poly(3-hexylthiophene) (P3HT) diodes under dark conditions. Temperature dependent current-voltage (J-V) characteristics shows that charge transport represents a transition from ohomic to trap limited current. The forward current density obeys a power law J˜Vm, m>2 represents the space charge limited current region in presence of traps within the band gap. Frequency dependent conductivity has been studied in a temperature range 150K-473K. The dc conductivity values show Arrhenius like behavior and it gives conductivity activation energy 223 meV. Temperature dependent conductivity indicates a thermodynamic transition of our system.

  14. Pipeline flow of heavy oil with temperature-dependent viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Maza Quinones, Danmer; Carvalho, Marcio da Silveira [Pontifical Catholic University of Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. of Mechanical Engineering], E-mail: msc@puc-rio.br

    2010-07-01

    The heavy oil produced offshore needs to be transported through pipelines between different facilities. The pipelines are usually laid down on the seabed and are submitted to low temperatures. Although heavy oils usually present Newtonian behavior, its viscosity is a strong function of temperature. Therefore, the prediction of pressure drops along the pipelines should include the solution of the energy equation and the dependence of viscosity to temperature. In this work, an asymptotic model is developed to study this problem. The flow is considered laminar and the viscosity varies exponentially with temperature. The model includes one-dimensional equations for the temperature and pressure distribution along the pipeline at a prescribed flow rate. The solution of the coupled differential equation is obtained by second-order finite difference. Results show a nonlinear behavior as a result of coupled interaction between the velocity, temperature, and temperature dependent material properties. (author)

  15. Study of the temperature dependence of the uniaxial creep property of similar material of new soft rock

    Science.gov (United States)

    Wang, Y. Y.; Wu, Y.; Fan, X. Y.; Zhang, J. L.; Guo, P.; Li, J. G.

    2017-11-01

    Using the experimental method, the experimental research of creep properties were conducted under different temperature ranging from 10°C to 60°C. The similar material of new soft rock consists of paraffin, which can obtain that the deformation contains the instantaneous elastic deformation and creep deformation through the uniaxial creep experimental results. And thus the increase of temperature has great influence on the creep characteristics of similar soft rock according to the creep curve of similar soft rock at 10°C to 60°C. With the increase of temperature, the slope of the stress-strain curve of similar soft rock is increasing, while the average of the creep modulus is decreasing, which means that the capacity of resist deformation is reduced. Therefore, the creeps law of high-temperature and short-time can be shown the creep phenomenon of low-temperature and long-time, and further shorten the creep experimental cycle.

  16. Temperature dependent electronic conduction in semiconductors

    International Nuclear Information System (INIS)

    Roberts, G.G.; Munn, R.W.

    1980-01-01

    This review describes the temperature dependence of bulk-controlled electronic currents in semiconductors. The scope of the article is wide in that it contrasts conduction mechanisms in inorganic and organic solids and also single crystal and disordered semiconductors. In many experimental situations it is the metal-semiconductor contact or the interface between two dissimilar semiconductors that governs the temperature dependence of the conductivity. However, in order to keep the length of the review within reasonable bounds, these topics have been largely avoided and emphasis is therefore placed on bulk-limited currents. A central feature of electronic conduction in semiconductors is the concentrations of mobile electrons and holes that contribute to the conductivity. Various statistical approaches may be used to calculate these densities which are normally strongly temperature dependent. Section 1 emphasizes the relationship between the position of the Fermi level, the distribution of quantum states, the total number of electrons available and the absolute temperature of the system. The inclusion of experimental data for several materials is designed to assist the experimentalist in his interpretation of activation energy curves. Sections 2 and 3 refer to electronic conduction in disordered solids and molecular crystals, respectively. In these cases alternative approaches to the conventional band theory approach must be considered. For example, the velocities of the charge carriers are usually substantially lower than those in conventional inorganic single crystal semiconductors, thus introducing the possibility of an activated mobility. Some general electronic properties of these materials are given in the introduction to each of these sections and these help to set the conduction mechanisms in context. (orig.)

  17. Temperature dependence of the dispersion of single crystals SrCl/sub 2/. [Temperature coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Kuzin, M P [L' vovskij Gosudarstvennyj Univ. (Ukrainian SSR)

    1976-01-01

    The dispersion of the refractive index of SrCl/sub 2/ monocrystals in the spectral range 300-700 nm at temperatures of 223, 295 adn 373 K has been studied. The temperature coefficient of the refractive index as a function of the wave length has been determined for the room temperature. The function resembles the corresponding dependence for alkali-halide crystals.

  18. Northeast Cooperative Research Study Fleet (SF) Program Combined GPS, Temperature/Depth, and Effort Fishery Dependent Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, depth(TD), GPS and haul by haul effort and catch data are collected during normal fishing activity of commercial fishing vessels participating in the...

  19. Temperature Dependence of Charge Localization in High-Mobility, Solution-Crystallized Small Molecule Semiconductors Studied by Charge Modulation Spectroscopy

    DEFF Research Database (Denmark)

    Meneau, Aurélie Y. B.; Olivier, Yoann; Backlund, Tomas

    2016-01-01

    In solution-processable small molecule semiconductors, the extent of charge carrier wavefunction localization induced by dynamic disorder can be probed spectroscopically as a function of temperature using charge modulation spectroscopy (CMS). Here, it is shown based on combined fi eld-effect tran......In solution-processable small molecule semiconductors, the extent of charge carrier wavefunction localization induced by dynamic disorder can be probed spectroscopically as a function of temperature using charge modulation spectroscopy (CMS). Here, it is shown based on combined fi eld......-effect transistor and CMS measurements as a function of temperature that in certain molecular semiconductors, such as solution-processible pentacene, charge carriers become trapped at low temperatures in environments in which the charges become highly localized on individual molecules, while in some other molecules...

  20. Temperature dependence of the phonon structure in the high-temperature superconductor Bi2Sr2CaCu2O8 studied by infrared reflectance spectroscopy

    International Nuclear Information System (INIS)

    Kamaras, K.; Herr, S.L.; Porter, C.D.; Tanner, D.B.; Etemad, S.; Tarascon, J.

    1991-01-01

    We have investigated a ceramic sample of the high-temperature superconductor Bi 2 Sr 2 CaCu 2 O 8 (T c =85 K) by infrared and visible reflectance spectroscopy at several temperatures both below and above the superconducting transition. We find that the temperature variation in the vibrational region is associated with minima or antiresonance features of the optical conductivity, instead of maxima, indicating strong Fano-type electron-phonon interaction and implying that the phonon structure in the infrared is strongly affected by the ab-plane response

  1. Temperature-dependent ion beam mixing

    International Nuclear Information System (INIS)

    Rehn, L.E.; Alexander, D.E.

    1993-08-01

    Recent work on enhanced interdiffusion rates during ion-beam mixing at elevated temperatures is reviewed. As discussed previously, expected increase in ion-beam mixing rates due to 'radiation-enhanced diffusion' (RED), i.e. the free migration of isolated vacancy and interstitial defects, is well documented in single-crystal specimens in the range of 0.4 to 0.6 of absolute melting temperature. In contrast, the increase often observed at somewhat lower temperatures during ion-beam mixing of polycrystalline specimens is not well understood. However, sufficient evidence is available to show that this increase reflects intracascade enhancement of a thermally-activated process that also occurs without irradiation. Recent evidence is presented which suggests that this process is Diffusion-induced Grain-Boundary Migration (DIGM). An important complementary conclusion is that because ion-beam mixing in single-crystal specimens exhibits no significant temperature dependence below that of RED, models that invoke only irradiation-specific phenomena, e.g., cascade-overlap, thermal-spikes, or liquid-diffusion, and hence which predict no difference in mixing behavior between single- or poly-crystalline specimens, cannot account for the existing results

  2. Atmospheric reaction of Cl + methacrolein: a theoretical study on the mechanism, and pressure- and temperature-dependent rate constants.

    Science.gov (United States)

    Sun, Cuihong; Xu, Baoen; Zhang, Shaowen

    2014-05-22

    Methacrolein is a major degradation product of isoprene, the reaction of methacrolein with Cl atoms may play some roles in the degradation of isoprene where these species are relatively abundant. However, the energetics and kinetics of this reaction, which govern the reaction branching, are still not well understood so far. In the present study, two-dimensional potential energy surfaces were constructed to analyze the minimum energy path of the barrierless addition process between Cl and the C═C double bond of methacrolein, which reveals that the terminal addition intermediate is directly formed from the addition reaction. The terminal addition intermediate can further yield different products among which the reaction paths abstracting the aldehyde hydrogen atom and the methyl hydrogen atom are dominant reaction exits. The minimum reaction path for the direct aldehydic hydrogen atom abstraction is also obtained. The reaction kinetics was calculated by the variational transition state theory in conjunction with the master equation method. From the theoretical model we predicted that the overall rate constant of the Cl + methacrolein reaction at 297 K and atmospheric pressure is koverall = 2.3× 10(-10) cm(3) molecule(-1) s(-1), and the branching ratio of the aldehydic hydrogen abstraction is about 12%. The reaction is pressure dependent at P pressure limit at about 100 Torr. The calculated results could well account for the experimental observations.

  3. DiMES Studies of Temperature Dependence of Carbon Erosion and Re-Deposition in the DIII-D Divertor

    Energy Technology Data Exchange (ETDEWEB)

    Rudakov, D L; Jacob, W; Krieger, K; Litnovsky, A; Philipps, V; West, W P; Wong, C C; Allen, S L; Bastasz, R J; Boedo, J A; Brooks, N H; Boivin, R L; De Temmerman, G; Fenstermacher, M E; Groth, M; Hollmann, E M; Lasnier, C J; McLean, A G; Moyer, R A; Stangeby, P C; Wampler, W R; Watkins, J G; Wienhold, P; Whaley, J

    2007-03-15

    A strong effect of a moderately elevated surface temperature on net carbon deposition and deuterium co-deposition in the DIII-D divertor was observed under detached conditions. A DiMES sample with a gap 2 mm wide and 18 mm deep was exposed to lower-single-null (LSN) L-mode plasmas first at room temperature, and then at 200 C. At the elevated temperature, deuterium co-deposition in the gap was reduced by an order of magnitude. At the plasma-facing surface of the heated sample net carbon erosion was measured at a rate of 3 nm/s, whereas without heating net deposition is normally observed under detachment. In a related experiment three sets of molybdenum mirrors recessed 2 cm below the divertor floor were exposed to identical LSN ELMy H-mode discharges. The first set of mirrors exposed at ambient temperature exhibited net carbon deposition at a rate of up to 3.7 nm/s and suffered a significant drop in reflectivity. In contrast, two other mirror sets exposed at elevated temperatures between 90 C and 175 C exhibited practically no carbon deposition.

  4. Temperature dependent electron transport and rate coefficient studies for e-beam-sustained diffuse gas discharge switching

    International Nuclear Information System (INIS)

    Carter, J.G.; Hunter, S.R.; Christophorou, L.G.

    1987-01-01

    Measurements of the electron drift velocity, w, attachment coefficient, eta/N/sub a/, and ionization coefficient, α/N, have been made in C 2 F 6 /Ar and C 2 F 6 /CH 4 gas mixtures at gas temperatures, T, of 300 and 500 0 K over the concentration range of 0.1 to 100% of the C 2 F 6 . These measurements are useful for modeling the expected behavior of repetitively operated electron-beam sustained diffuse gas discharge opening switches where gas temperatures within the switch are anticipated to rise several hundred degrees during switch operation

  5. Low-valent low-coordinated manganese(I) ion dimer: a temperature dependent W-band EPR study.

    Science.gov (United States)

    Sorace, Lorenzo; Golze, Christian; Gatteschi, Dante; Bencini, Alessandro; Roesky, Herbert W; Chai, Jianfang; Stückl, A Claudia

    2006-01-09

    W-Band EPR spectra of [[HC(CMeNAr)(2)]Mn](2) (Ar = 2,6-(i)Pr(2)C(6)H(3)) have been measured at different temperatures. The spectra show a behavior which is typical for an antiferromagnetically coupled dimer with excited states populating upon increasing temperature. By following the intensity variation of the different features of the spectra with temperature, we attributed different groups of resonances to the S = 1, 2, and 3 states of the dimer. Their corresponding spin Hamiltonian parameters were derived from simulations. The zero-field-splitting parameters measured in this way were D(S=1) = 1.57 cm(-1) and E(S=1) = 0.064 cm(-1), D(S=2) = 0.266 cm(-1) and E(S=2) = 0.0045 cm(-1), and D(S=3) = 0.075 cm(-1) and E(S=3) = 0. On the basis of the molecular structure of the system, we could estimate that zero-field splitting (ZFS) is the result of anisotropic exchange and single-ion anisotropic contributions of similar magnitude (|D| approximately 0.2 cm(-1)). These results allow a deeper insight into the electronic structure of the Mn(I) centers in low-coordination environments, further supporting the electronic structure of Mn(I) to be 4s(1)3d(5), as previously indicated by DFT calculations.

  6. On the temperature dependence of flammability limits of gases.

    Science.gov (United States)

    Kondo, Shigeo; Takizawa, Kenji; Takahashi, Akifumi; Tokuhashi, Kazuaki

    2011-03-15

    Flammability limits of several combustible gases were measured at temperatures from 5 to 100 °C in a 12-l spherical flask basically following ASHRAE method. The measurements were done for methane, propane, isobutane, ethylene, propylene, dimethyl ether, methyl formate, 1,1-difluoroethane, ammonia, and carbon monoxide. As the temperature rises, the lower flammability limits are gradually shifted down and the upper limits are shifted up. Both the limits shift almost linearly to temperature within the range examined. The linear temperature dependence of the lower flammability limits is explained well using a limiting flame temperature concept at the lower concentration limit (LFL)--'White's rule'. The geometric mean of the flammability limits has been found to be relatively constant for many compounds over the temperature range studied (5-100 °C). Based on this fact, the temperature dependence of the upper flammability limit (UFL) can be predicted reasonably using the temperature coefficient calculated for the LFL. However, some compounds such as ethylene and dimethyl ether, in particular, have a more complex temperature dependence. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Temperature dependence of high field electromechanical coupling in ferroelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, P M; Cain, M G; Stewart, M, E-mail: paul.weaver@npl.co.u [National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW (United Kingdom)

    2010-04-28

    A study of the temperature dependence of the electromechanical response of ferroelectric lead zirconate titanate (PZT) ceramics at high electric fields (up to 1.3 kV mm{sup -1}) is reported. Simultaneous measurements were performed of strain, electric field and polarization to form a complete response map from room temperature up to 200 {sup 0}C. An electrostrictive model is shown to provide an accurate description of the electromechanical response to high levels of induced polarization and electric field. This provides a method for decoupling strain contributions from thermal expansion and polarization changes. Direct measurements of electrostriction and thermal expansion, above and below the Curie temperature, are reported. Electrostriction coefficients are shown to be temperature dependent in these ceramic materials, with different values above and below the Curie temperature.

  8. Temperature-dependent μ-Raman investigation of struvite crystals.

    Science.gov (United States)

    Prywer, Jolanta; Kasprowicz, D; Runka, T

    2016-04-05

    The effect of temperature on the vibrational properties of struvite crystals grown from silica gels was systematically studied by μ-Raman spectroscopy. The time-dependent Raman spectra recorded in the process of long time annealing of struvite crystal at 353 K do not indicate structural changes in the struvite crystal with the time of annealing. The temperature-dependent Raman spectra recorded in the range 298-423 K reveal a phase transition in struvite at about 368 K. Above this characteristic temperature, some of bands assigned to vibrations of the PO4 and NH4 tetrahedra and water molecules observed in the Raman spectra in low temperatures (orthorhombic phase) change their spectral parameters or disappear, which indicates a transition to a higher symmetry structure of struvite in the range of high temperatures. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Temperature-dependent enthalpy of oxygenation in Antarctic fish hemoglobins

    DEFF Research Database (Denmark)

    Fago, A.; Wells, R.M.G.; Weber, Roy E.

    1997-01-01

    The effect of temperature on the oxygen-binding properties of the hemoglobins of three cold-adapted Antarctic fish species, Dissostichus mawsoni, Pagothenia borchgrevinki and Trematomus, sp., has been investigated under different pH values and buffer conditions. A clear non linear van't Hoff plot...... (logP(50) vs 1/T) of D. mawsoni hemoglobin indicates that the enthalpy of oxygenation (slope of the plot) is temperature dependent and that at high temperatures oxygen-binding becomes less exothermic. Nearly linear relationships were found in the hemoglobins of the other two species. The data were...... oxygen binding. The degree of the temperature dependence of the heat of oxygenation observed in these hemoglobins seems to reflect the differences in their allosteric effects rather than a specific molecular adaptation to low temperatures. Moreover, this study indicates that the disagreement between...

  10. Correction of SiPM temperature dependencies

    International Nuclear Information System (INIS)

    Kaplan, A.

    2009-01-01

    The performance of a high granular analogue hadronic calorimeter (AHCAL) using scintillator tiles with built-in Silicon Photomultiplier (SiPM) readout is reported. A muon beam is used for the minimum ionizing particle (MIP) based calibration of the single cells. The calibration chain including corrections for the non-linearity of the SiPM is presented. The voltage and temperature dependencies of the SiPM signal have been investigated using the versatile LED system of the AHCAL. Monitoring and correction methods are discussed. Measurements from the operation 2006 and 2007 at the CERN SPS test beam and data provided by the Institute for Theoretical and Experimental Physics (ITEP) in Moscow are compared.

  11. Temperature dependent evolution of the local electronic structure of atmospheric plasma treated carbon nanotubes: Near edge x-ray absorption fine structure study

    International Nuclear Information System (INIS)

    Roy, S. S.; Papakonstantinou, P.; Okpalugo, T. I. T.; Murphy, H.

    2006-01-01

    Near edge x-ray absorption fine structure (NEXAFS) spectroscopy has been employed to obtain the temperature dependent evolution of the electronic structure of acid treated carbon nanotubes, which were further modified by dielectric barrier discharge plasma processing in an ammonia atmosphere. The NEXAFS studies were performed from room temperature up to 900 deg. C. The presence of oxygen and nitrogen containing functional groups was observed in C K edge, N K edge, and O K edge NEXAFS spectra of the multiwalled carbon nanotubes. The N K edge spectra revealed three types of π* features, the source of which was decisively identified by their temperature dependent evolution. It was established that these features are attributed to pyridinelike, NO, and graphitelike structures, respectively. The O K edge indicated that both carbonyl (C=O), π*(CO), and ether C-O-C, σ*(CO), functionalities were present. Upon heating in a vacuum to 900 deg. C the π*(CO) resonances disappeared while the σ*(CO) resonances were still present confirming their higher thermal stability. Heating did not produce a significant change in the π* feature of the C K edge spectrum indicating that the tabular structure of the nanotubes is essentially preserved following the thermal decomposition of the functional groups on the nanotube surface

  12. Temperature dependence of piezoelectric properties for textured SBN ceramics.

    Science.gov (United States)

    Kimura, Masahiko; Ogawa, Hirozumi; Kuroda, Daisuke; Sawada, Takuya; Higuchi, Yukio; Takagi, Hiroshi; Sakabe, Yukio

    2007-12-01

    Temperature dependences of piezoelectric properties were studied for h001i textured ceramics of bismuth layer-structured ferroelectrics, SrBi(2)Nb(2)O(9) (SBN). The textured ceramics with varied orientation degrees were fabricated by templated, grain-growth method, and the temperature dependences of resonance frequency were estimated. Excellent temperature stability of resonance frequency was obtained for the 76% textured ceramics. The resonance frequency of the 76% textured specimens varied almost linearly over a wide temperature range. Therefore, the variation was slight, even in a high temperature region above 150 degrees C. Temperature stability of a quartz crystal oscillator is generally higher than that of a ceramic resonator around room temperature. The variation of resonance frequency for the 76% textured SrBi(2)Nb(2)O(9) was larger than that of oscillation frequency for a typical quartz oscillator below 150 degrees C also in this study. However, the variation of the textured SrBi(2)Nb(2)O(9) was smaller than that of the quartz oscillator over a wide temperature range from -50 to 250 degrees C. Therefore, textured SrBi(2)Nb(2)O(9) ceramics is a major candidate material for the resonators used within a wide temperature range.

  13. Saturation of bentonite dependent upon temperature

    International Nuclear Information System (INIS)

    Hausmannova, Lucie; Vasicek, Radek

    2010-01-01

    of the sample models. The bentonite samples completely filled the available volume of the models. Following dismantling, the mass water content was determined so that the degree of saturation could be calculated. As far as the subsequent calculation of the degree of saturation was concerned, a problem with the exact identification of water density at higher temperatures occurred because the pressure within the pressure cookers was not monitored. Of course, the water density value does not change significantly but it does cause a degree of uncertainty regarding the calculated results. An estimation of two water density values for one sample was used for identifying the uncertainty range. It is believed that the real water density value lies within this range. The resultant values of the degree of saturation were within the range 1.15 (25 deg. C) - 1.24 (110 deg. C). This would seem to show a nominal increase in the degree of saturation depending on temperature but that overall the degree of saturation is not significantly affected by temperature. This outcome is consistent with certain findings in literature and it confirms the Mock-Up experiment hypothesis. (authors)

  14. Study of Thermal-Field Emission Properties and Investigation of Temperature dependent Noise in the Emission Current form vertical Carbon nanotube emitters

    KAUST Repository

    Kolekar, Sadhu; Patole, Shashikant P.; Patil, Sumati; Yoo, J.B.; Dharmadhikari, C.V.

    2017-01-01

    We have investigated temperature dependent field electron emission characteristics of vertical carbon nanotubes (CNTs). The generalized expression for electron emission from well defined cathode surface is given by Millikan and Lauritsen [1

  15. Temperature dependence of the elastocaloric effect in natural rubber

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhongjian, E-mail: zhongjian.xie521@gmail.com; Sebald, Gael; Guyomar, Daniel

    2017-07-12

    The temperature dependence of the elastocaloric (eC) effect in natural rubber (NR) has been studied. This material exhibits a large eC effect over a broad temperature range from 0 °C to 49 °C. The maximum adiabatic temperature change (ΔT) occurred at 10 °C and the behavior could be predicted by the temperature dependence of the strain-induced crystallization (SIC) and the temperature-induced crystallization (TIC). The eC performance of NR was then compared with that of shape memory alloys (SMAs). This study contributes to the SIC research of NR and also broadens the application of elastomers. - Highlights: • A large elastocaloric effect over a broad temperature range was found in natural rubber (NR). • The caloric performance of NR was compared with that of shape memory alloys. • The temperature dependence of the elastocaloric effect in NR can be prediced by the theory of strain-induced crystallization.

  16. Similar temperature dependencies of glycolytic enzymes: an evolutionary adaptation to temperature dynamics?

    Directory of Open Access Journals (Sweden)

    Cruz Luisa Ana B

    2012-12-01

    Full Text Available Abstract Background Temperature strongly affects microbial growth, and many microorganisms have to deal with temperature fluctuations in their natural environment. To understand regulation strategies that underlie microbial temperature responses and adaptation, we studied glycolytic pathway kinetics in Saccharomyces cerevisiae during temperature changes. Results Saccharomyces cerevisiae was grown under different temperature regimes and glucose availability conditions. These included glucose-excess batch cultures at different temperatures and glucose-limited chemostat cultures, subjected to fast linear temperature shifts and circadian sinoidal temperature cycles. An observed temperature-independent relation between intracellular levels of glycolytic metabolites and residual glucose concentration for all experimental conditions revealed that it is the substrate availability rather than temperature that determines intracellular metabolite profiles. This observation corresponded with predictions generated in silico with a kinetic model of yeast glycolysis, when the catalytic capacities of all glycolytic enzymes were set to share the same normalized temperature dependency. Conclusions From an evolutionary perspective, such similar temperature dependencies allow cells to adapt more rapidly to temperature changes, because they result in minimal perturbations of intracellular metabolite levels, thus circumventing the need for extensive modification of enzyme levels.

  17. A temperature dependence kinetics study of the reactions of Cl/2-P-3/2/ with O3, CH4, and H2O2

    Science.gov (United States)

    Watson, R.; Machado, G.; Fischer, S.; Davis, D. D.

    1976-01-01

    The temperature dependence of two chlorine atom reactions of considerable fundamental importance to stratospheric chemistry was studied using the technique of flash photolysis-resonance fluorescence. The reactions of interest were: (1) Cl + O3 yields ClO + O2 studied at 220-350 K, and (2) Cl + CH4 yields CH3 + HCl studied at 218-401 K. In addition, the reaction Cl + H2O2 yields HCl + HO2 was studied at 300 K. The corresponding rate constants are provided for the three reactions. The new rate data implies the need to revise downward by a factor of 2.4-3 the magnitude of the ozone perturbation due to the presence of ClO/x/ species in the stratosphere, predicted by earlier model calculations.

  18. Temperature-dependent luminescence dynamics in ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Priller, H. [Institut fuer Angewandte Physik, Universitaet Karlsruhe and Center for Functional Nanostructures (CFN), Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe (Germany)]. E-mail: heiko.priller@physik.uni-karlsruhe.de; Hauschild, R. [Institut fuer Angewandte Physik, Universitaet Karlsruhe and Center for Functional Nanostructures (CFN), Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe (Germany); Zeller, J. [Institut fuer Angewandte Physik, Universitaet Karlsruhe and Center for Functional Nanostructures (CFN), Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe (Germany); Klingshirn, C. [Institut fuer Angewandte Physik, Universitaet Karlsruhe and Center for Functional Nanostructures (CFN), Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe (Germany); Kalt, H. [Institut fuer Angewandte Physik, Universitaet Karlsruhe and Center for Functional Nanostructures (CFN), Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe (Germany); Kling, R. [Abteilung Halbleiterphysik, Universitaet Ulm, Albert-Einstein Allee 45, 89081 Ulm (Germany); Reuss, F. [Abteilung Halbleiterphysik, Universitaet Ulm, Albert-Einstein Allee 45, 89081 Ulm (Germany); Kirchner, Ch. [Abteilung Halbleiterphysik, Universitaet Ulm, Albert-Einstein Allee 45, 89081 Ulm (Germany); Waag, A. [Institut fuer Halbleitertechnik, TU Braunschweig, Hans-Sommer-Str. 66, D-38106 Braunschweig (Germany)

    2005-04-15

    We report on an experimental study of the temporal photoluminescence dynamics of high-quality ZnO nanopillars from 10 K to room temperature. We find that defect states play an important role in the time evolution of the photoluminescence signal. At low excitation intensities capture into defects dominates the time dependence of the PL, at higher intensities they are saturated and the intrinsic excitation decay is observed. We separate the intrinsic exciton decay from the fast nonlinear M-band with the method of decay associated spectra and obtain the temperature dependence of the intrinsic exciton decay. High excitation measurements show a reduced exciton-exciton scattering in these thin nanorods.

  19. Temperature dependence of grain boundary free energy and elastic constants

    International Nuclear Information System (INIS)

    Foiles, Stephen M.

    2010-01-01

    This work explores the suggestion that the temperature dependence of the grain boundary free energy can be estimated from the temperature dependence of the elastic constants. The temperature-dependent elastic constants and free energy of a symmetric Σ79 tilt boundary are computed for an embedded atom method model of Ni. The grain boundary free energy scales with the product of the shear modulus times the lattice constant for temperatures up to about 0.75 the melting temperature.

  20. In-situ transmission electron microscopy study of ion-irradiated copper : comparison of the temperature dependence of cascade collapse in FCC- and BCC- metals.

    Energy Technology Data Exchange (ETDEWEB)

    Daulton, T. L.

    1998-10-23

    The kinetics which drive cascade formation and subsequent collapse into point-defect clusters is investigated by analyzing the microstructure produced in situ by low fluence 100 keV Kr ion irradiations of fcc-Cu over a wide temperature range (18-873 K). The yield of collapsed point-defect clusters is demonstrated unequivocally to be temperature dependent, remaining approximately constant up to lattice temperatures of 573 K and then abruptly decreasing with increasing temperature. This drop in yield is not caused by defect loss during or following ion irradiation. This temperature dependence can be explained by a thermal spike effect. These in-situ yield measurements are compared to previous ex-situ yield measurements in fcc-Ni and bcc-Mo.

  1. In situ transmission electron microscopy study of ion-irradiated copper: comparison of the temperature dependence of cascade collapse in fcc- and bcc-metals

    International Nuclear Information System (INIS)

    Daulton, T.L.; Kirk, M.A.; Rehn, L.E.

    2000-01-01

    The kinetics which drive cascade formation and subsequent collapse into point-defect clusters are investigated by analyzing the microstructure produced in situ by low fluence 100 keV Kr ion irradiations of fcc-Cu over a wide temperature range (18-873 K). The yield of collapsed point-defect clusters is demonstrated unequivocally to be temperature dependent, remaining approximately constant up to lattice temperatures of 573 K and then abruptly decreasing with increasing temperature. This drop in yield is not caused by defect loss during or following ion irradiation. In addition, this temperature dependence can be explained by a thermal spike effect. These in situ yield measurements are compared to previous ex situ yield measurements in fcc-Ni and bcc-Mo

  2. Temperature Dependence of Lattice Dynamics of Lithium 7

    DEFF Research Database (Denmark)

    Beg, M. M.; Nielsen, Mourits

    1976-01-01

    10% smaller than those at 100 K. Temperature dependences of selected phonons have been studied from 110 K to near the melting point. The energy shifts and phonon linewidths have been evaluated at 293, 383, and 424 K by comparing the widths and energies to those measured at 110 K. The lattice...

  3. Complex temperature dependence of coupling and dissipation of cavity magnon polaritons from millikelvin to room temperature

    Science.gov (United States)

    Boventer, Isabella; Pfirrmann, Marco; Krause, Julius; Schön, Yannick; Kläui, Mathias; Weides, Martin

    2018-05-01

    Hybridized magnonic-photonic systems are key components for future information processing technologies such as storage, manipulation, or conversion of data both in the classical (mostly at room temperature) and quantum (cryogenic) regime. In this work, we investigate a yttrium-iron-garnet sphere coupled strongly to a microwave cavity over the full temperature range from 290 K to 30 mK . The cavity-magnon polaritons are studied from the classical to the quantum regimes where the thermal energy is less than one resonant microwave quanta, i.e., at temperatures below 1 K . We compare the temperature dependence of the coupling strength geff(T ) , describing the strength of coherent energy exchange between spin ensemble and cavity photon, to the temperature behavior of the saturation magnetization evolution Ms(T ) and find strong deviations at low temperatures. The temperature dependence of magnonic disspation is governed at intermediate temperatures by rare-earth impurity scattering leading to a strong peak at 40 K . The linewidth κm decreases to 1.2 MHz at 30 mK , making this system suitable as a building block for quantum electrodynamics experiments. We achieve an electromagnonic cooperativity in excess of 20 over the entire temperature range, with values beyond 100 in the millikelvin regime as well as at room temperature. With our measurements, spectroscopy on strongly coupled magnon-photon systems is demonstrated as versatile tool for spin material studies over large temperature ranges. Key parameters are provided in a single measurement, thus simplifying investigations significantly.

  4. Why does the martensitic transformation temperature strongly depend on composition?

    International Nuclear Information System (INIS)

    Ren, X.; Otsuka, K.

    2000-01-01

    The reason for the strong composition and heat-treatment dependence of the martensitic transformation temperature was investigated by a simple Landau-type model. Assuming the anharmonic and coupling coefficients are insensitive to composition, we obtained an important result martensitic transformation occurs at a critical elastic constant c' and a critical TA 2 phonon energy ω η 2 , which are independent of alloy composition. This result gained support from a large body of experimental data of Cu-based alloys. Since c' and phonon energy are strongly dependent on composition, the constancy of c' at Ms demands that the (transformation) temperature must exhibit an opposite effect to compensate the composition effect. Therefore, the lower the c', the higher the Ms is. Because the temperature dependence of c' is weak (due to the 1 st order nature of the transformation), the big c' change by a slight composition change must be compensated by a large change in temperature. Thus Ms has strong composition dependence. The effect of quench is to increase point defects, being equivalent to a composition change, thus has a strong effect on Ms. From the present study, we can conclude that the strong composition dependence of Ms is mainly a harmonic effect. (orig.)

  5. Muon-spin-rotation studies of the temperature dependence of the magnetic penetration depth in the YBa2Cu3Ox family and related compounds

    International Nuclear Information System (INIS)

    Zimmermann, P.; Keller, H.; Lee, S.L.; Savic, I.M.; Warden, M.; Zech, D.; Cubitt, R.; Forgan, E.M.; Kaldis, E.; Karpinski, J.; Krueger, C.

    1995-01-01

    A systematic muon-spin-rotation (μ + SR) study is presented of the temperature dependence of the London penetration depth in sintered powder samples of the YBa 2 Cu 3 O x system and related compounds. The in-plane penetration depth λ ab is estimated from the μ + SR depolarization rate of Bi 2 Sr 2 CaCu 2 O 8+δ , YBa 2 Cu 4 O 8 , and a series of samples of the YBa 2 Cu 3 O x family, respectively. It is found that not only the low-temperature value λ ab (0), but also the temperature behavior λ ab (T) is specific to each compound. The form of λ ab (T) can be well characterized by a simple power law. In particular, the YBa 2 Cu 3 O x family shows a systematic variation of the form of λ ab (T) with the oxygen content x which points to a varying coupling strength, whereas λ ab (0) as a function of x suggests a positive charge transfer into the CuO 2 planes with increasing oxygen doping. Furthermore, our data is consistent with an empirical ansatz which has been proposed in the framework of a Bose-gas picture of high-temperature superconductivity. As a consequence, the pressure and the isotope coefficients can be extracted from the μ + SR depolarization rate and compared to direct measurements of these quantities, showing good agreement. Moreover, in the Bose-gas picture the variation of λ ab (T) in the YBa 2 Cu 3 O x family may be interpreted as a crossover from a dense (high-T c ) to a dilute (low-T c ) system of weakly interacting local pairs

  6. Study of Thermal-Field Emission Properties and Investigation of Temperature dependent Noise in the Emission Current form vertical Carbon nanotube emitters

    KAUST Repository

    Kolekar, Sadhu

    2017-05-05

    We have investigated temperature dependent field electron emission characteristics of vertical carbon nanotubes (CNTs). The generalized expression for electron emission from well defined cathode surface is given by Millikan and Lauritsen [1] for the combination of temperature and electric field effect. The same expression has been used to explain the electron emission characteristics from vertical CNT emitters. Furthermore, this has been applied to explain the electron emission for different temperatures ranging from room temperature to 1500 K. The real-time field electron emission images at room temperature and 1500 K are recorded by using Charge Coupled Device (CCD), in order to understand the effect of temperature on electron emission spots in image morphology (as indicated by ring like structures) and electron emission spot intensity of the emitters. Moreover, the field electron emission images can be used to calculate the total number of emitters per cm2 for electron emission. The calculated number of emitters per cm2 is 4.5x107 and, the actual number emitters per cm2 present for electron emission calculated from Atomic Force Microscopy (AFM) data is 1.2x1012. The measured Current-Voltage (I-V) characteristics obey the Folwer-Nordheim (F-N) type behavior. The fluctuations in the emission current are recorded at different temperatures and, temperature dependence of power spectral density obeys power law relation s(f)=I2/f2 with that of emission current and frequency.

  7. Temperature dependence of magnetoresistance in lanthanum manganite ceramics

    International Nuclear Information System (INIS)

    Gubkin, M.K.; Zalesskii, A.V.; Perekalina, T.M.

    1996-01-01

    Magnetoresistivity in the La0.9Na0.1Mn0.9(V,Co)0.1O3 and LaMnO3+δ ceramics was studied. The temperature dependence of magnetoresistance in these specimens was found to differ qualitatively from that in the La0.9Na0.1MnO3 single crystal (the magnetoresistance value remains rather high throughout the measurement range below the Curie temperature), with the maximum values being about the same (20-40% in the field of 20 kOe). Previously published data on magnetization, high frequency magnetic susceptibility, and local fields at the 139La nuclei of the specimens with similar properties attest to their magnetic inhomogeneity. The computation of the conductivity of the nonuniformly ordered lanthanum manganite was performed according to the mean field theory. The calculation results allow one to interpret qualitatively various types of experimental temperature dependences of magnetoresistance

  8. Temperature dependent charge transport studies across thermodynamic glass transition in P3HT:PCBM bulk heterojunction: insight from J-V and impedance spectroscopy

    Science.gov (United States)

    Sarkar, Atri; Rahaman, Abdulla Bin; Banerjee, Debamalya

    2018-03-01

    Temperature dependent charge transport properties of P3HT:PCBM bulk heterojunction are analysed by dc and ac measurements under dark conditions across a wide temperature range of 110-473 K, which includes the thermodynamic glass transition temperature (Tg ˜320 K) of the system. A change from Ohmic conduction to space charge limited current conduction at higher (⩾1.2 V) applied bias voltages above  ⩾200 K is observed from J-V characteristics. From capacitance-voltage (C-V) measurement at room temperature, the occurrence of a peak near the built-in voltage is observed below the dielectric relaxation frequency, originating from the competition between drift and diffusion driven motions of charges. Carrier concentration (N) is calculated from C-V measurements taken at different temperatures. Room temperature mobility values at various applied bias voltages are in accordance with that obtained from transient charge extraction by linearly increasing voltage measurement. Sample impedance is measured over five decades of frequency across temperature range by using lock-in detection. This data is used to extract temperature dependence of carrier mobility (μ), and dc conductivity (σ_dc ) which is low frequency extrapolation of ac conductivity. An activation energy of  ˜126 meV for the carrier hopping process at the metal-semiconductor interface is estimated from temperature dependence of σ_dc . Above T g, μ levels off to a constant value, whereas σ_dc starts to decrease after a transition knee at T g that can be seen as a combined effect of changes in μ and N. All these observed changes across T g can be correlated to enhanced polymer motion above the glass transition.

  9. A combined temperature-dependent electron and single-crystal X-ray diffraction study of the fresnoite compound Rb2V4+V25+O8

    International Nuclear Information System (INIS)

    Withers, R.L.; Hoeche, Thomas; Liu Yun; Esmaeilzadeh, Saeid; Keding, Ralf; Sales, Brian

    2004-01-01

    High-purity Rb 2 V 3 O 8 has been grown and temperature-dependent electron and single-crystal X-ray diffraction used to carefully investigate its fresnoite-type reciprocal lattice. In contrast to other recently investigated representatives of the fresnoite family of compounds, Rb 2 V 3 O 8 is not incommensurately modulated with an incommensurate basal plane primary modulation wave vector given by q∼0.3 *. A careful low-temperature electron diffraction study has, however, revealed the existence of weak incommensurate satellite reflections characterized by the primitive primary modulation wave vector q 1 ∼0.16c*. The reciprocal space positioning of these incommensurate satellite reflections, the overall (3+1)-d superspace group symmetry, as well as the shapes of the refined displacement ellipsoids determined from single-crystal XRD refinement, are all consistent with their arising from a distinct type of condensed rigid unit modes (RUMs) of distortion of the Rb 2 V 3 O 8 parent structure

  10. Temperature-Dependent Dielectric Properties of Al/Epoxy Nanocomposites

    Science.gov (United States)

    Wang, Zijun; Zhou, Wenying; Sui, Xuezhen; Dong, Lina; Cai, Huiwu; Zuo, Jing; Chen, Qingguo

    2016-06-01

    Broadband dielectric spectroscopy was carried out to study the transition in electrical properties of Al/epoxy nanocomposites over the frequency range of 1-107 Hz and the temperature range of -20°C to 200°C. The dielectric permittivity, dissipation factor, and electrical conductivity of the nanocomposites increased with temperature and showed an abrupt increase around the glass transition temperature ( T g). The results clearly reveal an interesting transition of the electrical properties with increasing temperature: insulator below 70°C, conductor at about 70°C. The behavior of the transition in electrical properties of the nanocomposites was explored at different temperatures. The presence of relaxation peaks in the loss tangent and electric modulus spectra of the nanocomposites confirms that the chain segmental dynamics of the polymer is accompanied by the absorption of energy given to the system. It is suggested that the temperature-dependent transition of the electric properties in the nanocomposite is closely associated with the α-relaxation. The large increase in the dissipation factor and electric conductivity depends on the direct current conduction of thermally activated charge carriers resulting from the epoxy matrix above T g.

  11. Temperature and momentum transfer dependence of the dynamics of the α-relaxation in polymer melts. A quasielastic neutron scattering study

    Science.gov (United States)

    Colmenero, J.; Alegría, A.; Arbe, A.; Frick, B.

    1992-12-01

    The dynamics of the α-relaxation in three glass-forming polymeric systems, poly(vinyl methyl ether) (PVME), poly(vinyl chloride) (PVC), and poly(bisphenol A, 2-hydroxypropylether) (PH) has been studied by means of quasielastic neutron scattering and compared with the results obtained from relaxation techniques. The results indicate that the dynamics of the α-relaxation in a wide timescale shows a clear non-Debye behaviour and can be well described by means of the same spectral shape, which is found to be independent of temperature and momentum transfer ( Q). Moreover, the Havriliak-Negami characteristic times deduced from the fitting of the experimental data can also be described using only one Vogel-Fulcher functional form. This implies a self-consistent description of the dynamics of the α-relaxation obtained by very different probes. Besides, we found that the Q-dependence of the characteristic times obtained by QENS is given by a power law, τ(Q) ∝ Q - n ( n > 2), n being dependent on the system, and that the Q-behaviour and the non-Debye behaviour are directly correlated. These results have main implications about the physical mechanisms behind the dynamics of the α-relaxation.

  12. Correlation between temperature dependence of elastic moduli and Debye temperature of paramagnetic metal

    International Nuclear Information System (INIS)

    Bodryakov, V.Yu.; Povzner, A.A.

    2000-01-01

    The correlation between the temperature dependence of elastic moduli and the Debye temperature of paramagnetic metal is analyzed in neglect of the temperature dependence of the Poison coefficient σ within the frames of the Debye-Grueneisen presentations. It is shown, that namely the temperature dependence of the elastic moduli determines primarily the temperature dependence of the Debye temperature Θ(T). On the other hand, the temperature dependence Θ(T) very weakly effects the temperature dependence of the elastic moduli. The later made it possible to formulate the self-consistent approach to calculation of the elastic moduli temperature dependence. The numerical estimates of this dependence parameters are conducted by the example of the all around compression modulus of the paramagnetic lutetium [ru

  13. Temperature dependence of contact resistance at metal/MWNT interface

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Eui; Moon, Kyoung-Seok; Sohn, Yoonchul, E-mail: yoonchul.son@samsung.com [Materials Research Center, Samsung Advanced Institute of Technology, Samsung Electronics, Suwon 443-803 (Korea, Republic of)

    2016-07-11

    Although contact resistance of carbon nanotube (CNT) is one of the most important factors for practical application of electronic devices, a study regarding temperature dependence on contact resistance of CNTs with metal electrodes has not been found. Here, we report an investigation of contact resistance at multiwalled nanotube (MWNT)/Ag interface as a function of temperature, using MWNT/polydimethylsiloxane (PDMS) composite. Electrical resistance of MWNT/PDMS composite revealed negative temperature coefficient (NTC). Excluding the contact resistance with Ag electrode, the NTC effect became less pronounced, showing lower intrinsic resistivity with the activation energy of 0.019 eV. Activation energy of the contact resistance of MWNT/Ag interface was determined to be 0.04 eV, two times larger than that of MWNT-MWNT network. The increase in the thermal fluctuation assisted electron tunneling is attributed to conductivity enhancement at both MWNT/MWNT and MWNT/Ag interfaces with increasing temperature.

  14. Temperature dependence of phonons in pyrolitic graphite

    International Nuclear Information System (INIS)

    Brockhouse, B.N.; Shirane, G.

    1977-01-01

    Dispersion curves for longitudinal and transverse phonons propagating along and near the c-axis in pyrolitic graphite at temperatures between 4 0 K and 1500 0 C have been measured by neutron spectroscopy. The observed frequencies decrease markedly with increasing temperature (except for the transverse optical ''rippling'' modes in the hexagonal planes). The neutron groups show interesting asymmetrical broadening ascribed to interference between one phonon and many phonon processes

  15. Temperature dependence of microwave oscillations in magnetic tunnel junctions with a perpendicularly magnetized free layer

    International Nuclear Information System (INIS)

    Guo, Peng; Feng, Jiafeng; Wei, Hongxiang; Han, Xiufeng; Fang, Bin; Zhang, Baoshun; Zeng, Zhongming

    2015-01-01

    We experimentally study the temperature dependence of the spin-transfer-torque-induced microwave oscillations in MgO-based magnetic tunnel junction nanopillars with a perpendicularly magnetized free layer. We demonstrate that the oscillation frequency increases rapidly with decreasing temperature, which is mainly ascribed to the temperature dependence of both the saturation magnetization and the perpendicular magnetic anisotropy. We also find that a strong temperature dependence of the output power while a nonmonotonic temperature dependence of spectral linewidth are maintained for a constant dc bias in measured temperature range. Possible mechanisms leading to the different dependences of oscillation frequency, output power, and linewidth are discussed

  16. Temperature dependence of APD-based PET scanners

    International Nuclear Information System (INIS)

    Keereman, Vincent; Van Holen, Roel; Vandenberghe, Stefaan; Vanhove, Christian

    2013-01-01

    C , R = −0.96) temperature changes. Count rate evaluation showed that although the total count rate is consistently higher at 21 °C than at 24 °C for different source activity concentrations, this is mainly due to an increase in scattered and random coincidences. The peak total count rate is 400 kcps at both temperatures but is reached at lower activity at 21 °C. The peak true count rate is 138 kcps (at 100 MBq) at 21 °C and 180 kcps (at 125 MBq) at 24 °C. The peak noise equivalent count rate is also lower at 21 °C (70 kcps at 70 MBq) than at 24 °C (100 kcps at 100 MBq). At realistic activity levels, the scatter fraction is lower at higher temperatures, but at the cost of a strong decrease in true count rate.Conclusions: A model was proposed for the temperature dependence of APD-based PET scanners and evaluated using the LabPET small animal PET scanner. System sensitivity and count rate performance are strongly dependent on ambient temperature while system resolution is not. The authors’ results indicate that it is important to assure stable ambient temperature to obtain reproducible results in imaging studies with APD-based PET scanners

  17. Temperature dependence of autoxidation of perilla oil and tocopherol degradation.

    Science.gov (United States)

    Wang, Seonyeong; Hwang, Hyunsuk; Yoon, Sukhoo; Choe, Eunok

    2010-08-01

    Temperature dependence of the autoxidation of perilla oil and tocopherol degradation was studied with corn oil as a reference. The oils were oxidized in the dark at 20, 40, 60, and 80 degrees C. Oil oxidation was determined by peroxide and conjugated dienoic acid values. Tocopherols in the oils were quantified by HPLC. The oxidation of both oils increased with oxidation time and temperature. Induction periods for oil autoxidation decreased with temperature, and were longer in corn oil than in perilla oil, indicating higher sensitivity of perilla oil to oxidation. However, time lag for tocopherol degradation was longer in perilla oil, indicating higher stability of tocopherols in perilla oil than in corn oil. Activation energies for oil autoxidation and tocopherol degradation were higher in perilla oil (23.9 to 24.2, 9.8 kcal/mol, respectively) than in corn oil (12.5 to 15.8, 8.8 kcal/mol, respectively) indicating higher temperature-dependence in perilla oil. Higher stability of tocopherols in perilla oil was highly related with polyphenols. The study suggests that more careful temperature control is required to decrease the autoxidation of perilla oil than that of corn oil, and polyphenols contributed to the oxidative stability of perilla oil by protecting tocopherols from degradation, especially at the early stage of oil autoxidation.

  18. Parametric dependencies of JET electron temperature profiles

    Energy Technology Data Exchange (ETDEWEB)

    Schunke, B [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Imre, K; Riedel, K [New York Univ., NY (United States)

    1994-07-01

    The JET Ohmic, L-Mode and H-Mode electron temperature profiles obtained from the LIDAR Thomson Scattering Diagnostic are parameterized in terms of the normalized flux parameter and a set of the engineering parameters like plasma current, toroidal field, line averages electron density... It is shown that the electron temperature profiles fit a log-additive model well. It is intended to use the same model to predict the profile shape for D-T discharges in JET and in ITER. 2 refs., 5 figs.

  19. Temperature Dependent Electrical Properties of PZT Wafer

    Science.gov (United States)

    Basu, T.; Sen, S.; Seal, A.; Sen, A.

    2016-04-01

    The electrical and electromechanical properties of lead zirconate titanate (PZT) wafers were investigated and compared with PZT bulk. PZT wafers were prepared by tape casting technique. The transition temperature of both the PZT forms remained the same. The transition from an asymmetric to a symmetric shape was observed for PZT wafers at higher temperature. The piezoelectric coefficient (d 33) values obtained were 560 pc/N and 234 pc/N, and the electromechanical coupling coefficient (k p) values were 0.68 and 0.49 for bulk and wafer, respectively. The reduction in polarization after fatigue was only ~3% in case of PZT bulk and ~7% for PZT wafer.

  20. The temperature dependences of electromechanical properties of PLZT ceramics

    Science.gov (United States)

    Czerwiec, M.; Zachariasz, R.; Ilczuk, J.

    2008-02-01

    The mechanical and electrical properties in lanthanum modified lead zirconate-titanate ceramics of 5/50/50 and 10/50/50 were studied by mechanical loss Q - 1, Young's modulus E, electric permittivity ɛ and tangent of dielectric loss of angle tgδ measurements. The internal friction Q - 1 and Young modulus E measured from 290 K to 600 K shows that Curie temperature TC is located at 574 K and 435 K (1st cycle of heating) respectively for ceramic samples 5/50/50 and 10/50/50. The movement of TC in second cycle of heating to lower temperature (561 K for 5/50/50 and 420 K for 10/50/50) has been observed. Together with Q - 1 and E measurements, temperature dependences of ɛ=f(T) and tgδ=f(T) were determinated in temperature range from 300 K to 730 K. The values of TC obtained during ɛ and tgδ measurements were respectively: 560 K for 5/50/50 and 419 K for 10/50/50. These temperatures are almost as high as the temperatures obtained by internal friction Q - 1 measurements in second cycle of heating. In ceramic sample 10/50/50 the additional maximum on internal friction Q - 1 curve at the temperature 316 K was observed.

  1. Temperature Dependence of the Resonant Magnetoelectric Effect in Layered Heterostructures

    Directory of Open Access Journals (Sweden)

    Dmitrii A. Burdin

    2017-10-01

    Full Text Available The dependence of the resonant direct magnetoelectric effect on temperature is studied experimentally in planar composite structures. Samples of rectangular shapes with dimensions of 5 mm × 20 mm employed ferromagnetic layers of either an amorphous (metallic glass alloy or nickel with a thickness of 20–200 μm and piezoelectric layers of single crystalline langatate material or lead zirconate titanate piezoelectric ceramics with a thickness of 500 μm. The temperature of the samples was varied in a range between 120 and 390 K by blowing a gaseous nitrogen stream around them. It is shown that the effective characteristics of the magnetoelectric effect—such as the mechanical resonance frequency fr, the quality factor Q and the magnitude of the magnetoelectric coefficient αE at the resonance frequency—are contingent on temperature. The interrelations between the temperature changes of the characteristics of the magnetoelectric effect and the temperature variations of the following material parameters—Young’s modulus Y, the acoustic quality factor of individual layers, the dielectric constant ε, the piezoelectric modulus d of the piezoelectric layer as well as the piezomagnetic coefficients λ(n of the ferromagnetic layer—are established. The effect of temperature on the characteristics of the nonlinear magnetoelectric effect is observed for the first time. The results can be useful for designing magnetoelectric heterostructures with specified temperature characteristics, in particular, for the development of thermally stabilized magnetoelectric devices.

  2. Temperature dependence of sound velocity in yttrium ferrite

    International Nuclear Information System (INIS)

    L'vov, V.A.

    1979-01-01

    The effect of the phonon-magnon and phonon-phonon interoctions on the temperature dependence of the longitudinal sound velocity in yttrium ferrite is considered. It has been shown that at low temperatures four-particle phonon-magnon processes produce the basic contribution to renormalization of the sound velocity. At higher temperatures the temperature dependence of the sound velocity is mainly defined by phonon-phonon processes

  3. Change of MMP dependent on temperature

    DEFF Research Database (Denmark)

    Rudyk, Svetlana Nikolayevna; Søgaard, Erik Gydesen; Akwansa, Eugene

    2008-01-01

       The experiment was conducted with the purpose to investigate how Minimum Miscibility Pressure (MMP) changes at different temperatures. MMP was measured in a high pressure unit. An original oil saturated chalk core plug from the Danish oil field in North Sea was under investigation. The plug...... underestimation of MMP values which can lead to the loss of efficiency of oil extraction....

  4. Temperature-dependent Raman spectroscopy studies of the interface coupling effect of monolayer ReSe2 single crystals on Au foils

    Science.gov (United States)

    Jiang, Shaolong; Zhao, Liyun; Shi, Yuping; Xie, Chunyu; Zhang, Na; Zhang, Zhepeng; Huan, Yahuan; Yang, Pengfei; Hong, Min; Zhou, Xiebo; Shi, Jianping; Zhang, Qing; Zhang, Yanfeng

    2018-05-01

    Rhenium diselenide (ReSe2), which bears in-plane anisotropic optical and electrical properties, is of considerable interest for its excellent applications in novel devices, such as polarization-sensitive photodetectors and integrated polarization-controllers. However, great challenges to date in the controllable synthesis of high-quality ReSe2 have hindered its in-depth investigations and practical applications. Herein, we report a feasible synthesis of monolayer single-crystal ReSe2 flakes on the Au foil substrate by using a chemical vapor deposition route. Particularly, we focus on the temperature-dependent Raman spectroscopy investigations of monolayer ReSe2 grown on Au foils, which present concurrent red shifts of Eg-like and Ag-like modes with increasing measurement temperature from 77–290 K. Linear temperature dependences of both modes are revealed and explained from the anharmonic vibration of the ReSe2 lattice. More importantly, the strong interaction of ReSe2 with Au, with respect to that with SiO2/Si, is further confirmed by temperature-dependent Raman characterization. This work is thus proposed to shed light on the optical and thermal properties of such anisotropic two-dimensional three-atom-thick materials.

  5. Temperature-dependent errors in nuclear lattice simulations

    International Nuclear Information System (INIS)

    Lee, Dean; Thomson, Richard

    2007-01-01

    We study the temperature dependence of discretization errors in nuclear lattice simulations. We find that for systems with strong attractive interactions the predominant error arises from the breaking of Galilean invariance. We propose a local 'well-tempered' lattice action which eliminates much of this error. The well-tempered action can be readily implemented in lattice simulations for nuclear systems as well as cold atomic Fermi systems

  6. A Temperature-Dependent Hysteresis Model for Relaxor Ferroelectric Compounds

    National Research Council Canada - National Science Library

    Raye, Julie K; Smith, Ralph C

    2004-01-01

    This paper summarizes the development of a homogenized free energy model which characterizes the temperature-dependent hysteresis and constitutive nonlinearities inherent to relaxor ferroelectric materials...

  7. Heat experiment design to estimate temperature dependent thermal properties

    International Nuclear Information System (INIS)

    Romanovski, M

    2008-01-01

    Experimental conditions are studied to optimize transient experiments for estimating temperature dependent thermal conductivity and volumetric heat capacity. A mathematical model of a specimen is the one-dimensional heat equation with boundary conditions of the second kind. Thermal properties are assumed to vary nonlinearly with temperature. Experimental conditions refer to the thermal loading scheme, sampling times and sensor location. A numerical model of experimental configurations is studied to elicit the optimal conditions. The numerical solution of the design problem is formulated on a regularization scheme with a stabilizer minimization without a regularization parameter. An explicit design criterion is used to reveal the optimal sensor location, heating duration and flux magnitude. Results obtained indicate that even the strongly nonlinear experimental design problem admits the aggregation of its solution and has a strictly defined optimal measurement scheme. Additional region of temperature measurements with allowable identification error is revealed.

  8. Temperature dependence of muonium reaction rates in the gas phase

    International Nuclear Information System (INIS)

    Fleming, D.G.; Garner, D.M.; Mikula, R.J.; British Columbia Univ., Vancouver

    1981-01-01

    A study of the temperature dependence of reaction rates has long been an important tool in establishing reaction pathways in chemical reactions. This is particularly true for the reactions of muonium (in comparison with those of hydrogen) since a measurement of the activation energy for chemical reaction is sensitive to both the height and the position of the potential barrier in the reaction plane. For collision controlled reactions, on the other hand, the reaction rate is expected to exhibit a weak T 1 sup(/) 2 dependence characteristic of the mean collision velocity. These concepts are discussed and their effects illustrated in a comparison of the chemical and spin exchange reaction rates of muonium and hydrogen in the temperature range approx.300-approx.500 K. (orig.)

  9. Temperature dependent heterogeneous rotational correlation in lipids.

    Science.gov (United States)

    Dadashvand, Neda; Othon, Christina M

    2016-11-15

    Lipid structures exhibit complex and highly dynamic lateral structure; and changes in lipid density and fluidity are believed to play an essential role in membrane targeting and function. The dynamic structure of liquids on the molecular scale can exhibit complex transient density fluctuations. Here the lateral heterogeneity of lipid dynamics is explored in free standing lipid monolayers. As the temperature is lowered the probes exhibit increasingly broad and heterogeneous rotational correlation. This increase in heterogeneity appears to exhibit a critical onset, similar to those observed for glass forming fluids. We explore heterogeneous relaxation in in a single constituent lipid monolayer of 1, 2-dimyristoyl-sn-glycero-3-phosphocholine  by measuring the rotational diffusion of a fluorescent probe (1-palmitoyl-2-[1]-sn-glycero-3-phosphocholine), which is embedded in the lipid monolayer at low labeling density. Dynamic distributions are measured using wide-field time-resolved fluorescence anisotropy. The observed relaxation exhibits a narrow, liquid-like distribution at high temperatures (τ ∼ 2.4 ns), consistent with previous experimental measures (Dadashvand et al 2014 Struct. Dyn. 1 054701, Loura and Ramalho 2007 Biochim. Biophys. Acta 1768 467-478). However, as the temperature is quenched, the distribution broadens, and we observe the appearance of a long relaxation population (τ ∼ 16.5 ns). This supports the heterogeneity observed for lipids at high packing densities, and demonstrates that the nanoscale diffusion and reorganization in lipid structures can be significantly complex, even in the simplest amorphous architectures. Dynamical heterogeneity of this form can have a significant impact on the organization, permeability and energetics of lipid membrane structures.

  10. Density of biogas digestate depending on temperature and composition.

    Science.gov (United States)

    Gerber, Mandy; Schneider, Nico

    2015-09-01

    Density is one of the most important physical properties of biogas digestate to ensure an optimal dimensioning and a precise design of biogas plant components like stirring devices, pumps and heat exchangers. In this study the density of biogas digestates with different compositions was measured using pycnometers at ambient pressure in a temperature range from 293.15 to 313.15K. The biogas digestates were taken from semi-continuous experiments, in which the marine microalga Nannochloropsis salina, corn silage and a mixture of both were used as feedstocks. The results show an increase of density with increasing total solid content and a decrease with increasing temperature. Three equations to calculate the density of biogas digestate were set up depending on temperature as well as on the total solid content, organic composition and elemental composition, respectively. All correlations show a relative deviation below 1% compared to experimental data. Copyright © 2015. Published by Elsevier Ltd.

  11. Temperature-dependent particle-number projected moment of inertia

    International Nuclear Information System (INIS)

    Allal, N. H.; Fellah, M.; Benhamouda, N.; Oudih, M. R.

    2008-01-01

    Expressions of the parallel and perpendicular temperature-dependent particle-number projected nuclear moment of inertia have been established by means of a discrete projection method. They generalize that of the FTBCS method and are well adapted to numerical computation. The effects of particle-number fluctuations have been numerically studied for some even-even actinide nuclei by using the single-particle energies and eigenstates of a deformed Woods-Saxon mean field. It has been shown that the parallel moment of inertia is practically not modified by the use of the projection method. In contrast, the discrepancy between the projected and FTBCS perpendicular moment of inertia values may reach 5%. Moreover, the particle-number fluctuation effects vary not only as a function of the temperature but also as a function of the deformation for a given temperature. This is not the case for the system energy

  12. Temperature dependent kinematic viscosity of different types of engine oils

    Directory of Open Access Journals (Sweden)

    Libor Severa

    2009-01-01

    Full Text Available The objective of this study is to measure how the viscosity of engine oil changes with temperature. Six different commercially distributed engine oils (primarily intended for motorcycle engines of 10W–40 viscosity grade have been evaluated. Four of the oils were of synthetic type, two of semi–synthetic type. All oils have been assumed to be Newtonian fluids, thus flow curves have not been determined. Oils have been cooled to below zero temperatures and under controlled temperature regulation, kinematic viscosity (mm2 / s have been measured in the range of −5 °C and +115 °C. Anton Paar digital viscometer with concentric cylinders geometry has been used. In accordance with expected behavior, kinematic viscosity of all oils was decreasing with increasing temperature. Viscosity was found to be independent on oil’s density. Temperature dependence has been modeled using se­ve­ral mathematical models – Vogel equation, Arrhenius equation, polynomial, and Gaussian equation. The best match between experimental and computed data has been achieved for Gaussian equation (R2 = 0.9993. Knowledge of viscosity behavior of an engine oil as a function of its temperature is of great importance, especially when considering running efficiency and performance of combustion engines. Proposed models can be used for description and prediction of rheological behavior of engine oils.

  13. Temperature dependence of organic solar cell parameters

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Matthias; Mueller, Klaus; Philip, Shine; Paloumpa, Ioanna; Henkel, Karsten; Schmeisser, Dieter [Brandenburgische Technische Universitaet Cottbus (Germany). Angewandte Physik - Sensorik

    2009-07-01

    The influence of an annealing step on the parameters of bulk heterojunction organic solar cells is investigated. In order to fabricate the solar cells we use glass coated with ITO (indium-tin oxide) as a substrate on which the active layer consisting of P3HT and PCBM is spincoated. Al-electrodes are evaporated on top of the active layer. We use PEDOT:PSS as buffer layer. Each sample is annealed at different temperatures for a short time. Between every temperature step the I-V characteristic of the cell is measured. The following parameters are derived afterwards: FF, I{sub sc} (density), V{sub oc}. Also the efficiency is estimated. The results show a maximum cell efficiency for drying at 100 C for 20sec. A further important step for preparation is the drying procedure of the PEDOT:PSS layer. Here an improvement of about 50% in cell efficiency is measured after drying at 50 C for 5 days under inert gas atmosphere.

  14. Crossing regimes of temperature dependence in animal movement.

    Science.gov (United States)

    Gibert, Jean P; Chelini, Marie-Claire; Rosenthal, Malcolm F; DeLong, John P

    2016-05-01

    A pressing challenge in ecology is to understand the effects of changing global temperatures on food web structure and dynamics. The stability of these complex ecological networks largely depends on how predator-prey interactions may respond to temperature changes. Because predators and prey rely on their velocities to catch food or avoid being eaten, understanding how temperatures may affect animal movement is central to this quest. Despite our efforts, we still lack a mechanistic understanding of how the effect of temperature on metabolic processes scales up to animal movement and beyond. Here, we merge a biomechanical approach, the Metabolic Theory of Ecology and empirical data to show that animal movement displays multiple regimes of temperature dependence. We also show that crossing these regimes has important consequences for population dynamics and stability, which depend on the parameters controlling predator-prey interactions. We argue that this dependence upon interaction parameters may help explain why experimental work on the temperature dependence of interaction strengths has so far yielded conflicting results. More importantly, these changes in the temperature dependence of animal movement can have consequences that go well beyond ecological interactions and affect, for example, animal communication, mating, sensory detection, and any behavioral modality dependent on the movement of limbs. Finally, by not taking into account the changes in temperature dependence reported here we might not be able to properly forecast the impact of global warming on ecological processes and propose appropriate mitigation action when needed. © 2016 John Wiley & Sons Ltd.

  15. Temperature dependence of the resonance frequency of thermogravimetric devices

    NARCIS (Netherlands)

    Iervolino, E.; Riccio, M.; Van Herwaarden, A.W.; Irace, A.; Breglio, G.; Van der Vlist, W.; Sarro, P.M.

    2010-01-01

    This paper investigates the temperature dependence of the resonance frequency of thermogravimetric (TG) devices for tip heating over the temperature range of View the MathML source 25–600?C. The resonance frequency of a fabricated TG device shows to be temperature independent for tip heating up to

  16. Time dependence of magnetization of high temperature superconductors

    International Nuclear Information System (INIS)

    Larkin, A.I.; Geshkenbein, V.B.

    1988-10-01

    Magnetization of high T c superconductors logarithmically decreases with time. There is a maximum in the temperature dependence of the coefficient at this logarithm. If one assumes that there do exist two kinds of pinning centers, then this dependence can be described in the Anderson theory of thermal creeps of Abrikosov's vortices. The temperature dependence of the critical current is also discussed. (author). 23 refs

  17. Temperature Dependence in Homogeneous and Heterogeneous Nucleation

    Energy Technology Data Exchange (ETDEWEB)

    McGraw R. L.; Winkler, P. M.; Wagner, P. E.

    2017-08-01

    Heterogeneous nucleation on stable (sub-2 nm) nuclei aids the formation of atmospheric cloud condensation nuclei (CCN) by circumventing or reducing vapor pressure barriers that would otherwise limit condensation and new particle growth. Aerosol and cloud formation depend largely on the interaction between a condensing liquid and the nucleating site. A new paper published this year reports the first direct experimental determination of contact angles as well as contact line curvature and other geometric properties of a spherical cap nucleus at nanometer scale using measurements from the Vienna Size Analyzing Nucleus Counter (SANC) (Winkler et al., 2016). For water nucleating heterogeneously on silver oxide nanoparticles we find contact angles around 15 degrees compared to around 90 degrees for the macroscopically measured equilibrium angle for water on bulk silver. The small microscopic contact angles can be attributed via the generalized Young equation to a negative line tension that becomes increasingly dominant with increasing curvature of the contact line. These results enable a consistent theoretical description of heterogeneous nucleation and provide firm insight to the wetting of nanosized objects.

  18. A temperature dependent study of the Raman-active phonon modes in Ca and Zn doped YBa2Cu3O7-x

    International Nuclear Information System (INIS)

    Quilty, J. W.; Trodahl, H. J.; Simpson, A.; Flower, N.; Staines, M.; Downes, J.

    1996-01-01

    Full text: The temperature dependent behaviour of the phonon modes in YBa 2 Cu 3 O 7-x (Y-123) are of interest because the strong electron-phonon coupling within these materials yields information about the magnitude of the superconducting gap. The opening of a gap provides a new decay route for phonons, hence phonons near the gap energy show changes in their frequencies and widths as the temperature drops below T c . The magnitude of the superconducting gap may be estimated from these changes. We report our temperature-dependent measurements of the Raman-active phonon modes in ceramic and preferentially oriented polycrystalline samples of Y-123, under a variety of doping regimes. The samples were made underdoped, optimally doped and overdoped by manipulation of the hole concentration on the Cu-O planes, achieved by changing the oxygen stoichiometry, substitution of Zn for Cu, and substitution of Ca for Y. As observed by others, the 340cm -1 phonon, involving vibrations of the oxygen ions on the Cu-O planes, showed the greatest magnitude of change when the samples were cooled below T c , indicating that the superconducting gap energy is close to that of the 340cm -1 phonon

  19. A Generalized Time-Dependent Harmonic Oscillator at Finite Temperature

    International Nuclear Information System (INIS)

    Majima, H.; Suzuki, A.

    2006-01-01

    We show how a generalized time-dependent harmonic oscillator (GTHO) is extended to a finite temperature case by using thermo field dynamics (TFD). We derive the general time-dependent annihilation and creation operators for the system, and obtain the time-dependent quasiparticle annihilation and creation operators for the GTHO by using the temperature-dependent Bogoliubov transformation of TFD. We also obtain the thermal state as a two-mode squeezed vacuum state in the time-dependent case as well as in the time-independent case. The general formula is derived to calculate the thermal expectation value of operators

  20. Disorder in Ag{sub 7}GeSe{sub 5}I, a superionic conductor: temperature-dependent anharmonic structural study

    Energy Technology Data Exchange (ETDEWEB)

    Albert, S.; Pradel, A.; Ribes, M. [CNRS Montpellier Univ., 34 (France). Inst. Charles Gerhardt Montpellier; Pillet, S.; Lecomte, C. [CNRS Nancy Univ., 54 - Vandoeuvre-les-Nancy (France). Lab. de Cristallographie et de Modelisation des Materiaux Mineraux et Biologiques

    2008-02-15

    A temperature-dependent structural investigation of the substituted argyrodite Ag{sub 7}GeSe{sub 5}I has been carried out on a single crystal from 15 to 475 K, in steps of 50 K, and correlated to its conductivity properties. The argyrodite crystallizes in a cubic cell with the F anti 43m space group. The crystal structure exhibits high static and dynamic disorder which has been efficiently accounted for using a combination of (i) Gram- Charlier development of the Debye-Waller factors for iodine and silver, and (ii) a split-atom model for Ag{sup +} ions. An increased delocalization of the mobile d{sup 10} Ag{sup +} cations with temperature has been clearly shown by the inspection of the joint probability-density functions; the corresponding diffusion pathways have been determined. (orig.)

  1. Temperature and phase dependence of positron lifetimes in solid cyclohexane

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard

    1985-01-01

    The temperature dependence of position lifetimes in both the brittle and plastic phases of cyclohaxane has been examined. Long-lived components in both phases are associated with the formation of positronium (Ps). Two long lifetimes attributable to ortho-Ps are resolvable in the plastic phase....... The longer of these (≈ 2.5 ns), which is temperature dependent, is ascribed to ortho-Ps trapped at vacancies. The shorter lifetime (≈ 0.9 ns), shows little temperature dependence. In contrast to most other plastic crystals, no sigmoidal behaviour of the average ortho-Ps lifetime is observed. A possibility...

  2. Temperature-dependent structure evolution in liquid gallium

    International Nuclear Information System (INIS)

    Xiong, L.H.; Wang, X.D.; Yu, Q.; Zhang, H.; Zhang, F.; Sun, Y.; Cao, Q.P.; Xie, H.L.; Xiao, T.Q.; Zhang, D.X.; Wang, C.Z.; Ho, K.M.

    2017-01-01

    Temperature-dependent atomistic structure evolution of liquid gallium (Ga) has been investigated by using in situ high energy X-ray diffraction experiment and ab initio molecular dynamics simulation. Both experimental and theoretical results reveal the existence of a liquid structural change around 1000 K in liquid Ga. Below and above this temperature the liquid exhibits differences in activation energy for self-diffusion, temperature-dependent heat capacity, coordination numbers, density, viscosity, electric resistivity and thermoelectric power, which are reflected from structural changes of the bond-orientational order parameter Q_6, fraction of covalent dimers, averaged string length and local atomic packing. This finding will trigger more studies on the liquid-to-liquid crossover in metallic melts. - Graphical abstract: Atomistic structure evolution of liquid gallium has been investigated by using in situ high energy X-ray diffraction and ab initio molecular dynamics simulations, which both demonstrate the existence of a liquid structural change together with reported density, viscosity, electric resistivity and absolute thermoelectric power data.

  3. Temperature-dependent electrical property transition of graphene oxide paper

    International Nuclear Information System (INIS)

    Huang Xingyi; Jiang Pingkai; Zhi Chunyi; Golberg, Dmitri; Bando, Yoshio; Tanaka, Toshikatsu

    2012-01-01

    Reduction of graphene oxide is primarily important because different reduction methods may result in graphene with totally different properties. For systematically exploring the reduction of graphene oxide, studies of the temperature-dependent electrical properties of graphene oxide (GO) are urgently required. In this work, for the first time, broadband dielectric spectroscopy was used to carry out an in situ investigation on the transition of the electrical properties of GO paper from −40 to 150 °C. The results clearly reveal a very interesting four-stage transition of electrical properties of GO paper with increasing temperature: insulator below 10 °C (stage 1), semiconductor at between 10 and 90 °C (stage 2), insulator at between 90 and 100 °C (stage 3), and semiconductor again at above 100 °C (stage 4). Subsequently, the transition mechanism was discussed in combination with detailed dielectric properties, microstructure and thermogravimetric analyses. It is suggested that the temperature-dependent transition of electronic properties of GO is closely associated with the ion mobility, water molecules removal and the reduction of GO in the GO paper. Most importantly, the present work clearly demonstrates the reduction of GO paper starts at above 100 °C. (paper)

  4. Temperature dependence of positron trapping by vacancies, loops and voids in molybdenum

    International Nuclear Information System (INIS)

    Bentzon, M.D.; Linderoth, S.; Petersen, K.

    1985-01-01

    The temperature dependence of positron trapping by defects in molybdenum has been studied. By resolving positron lifetime spectra into three components, it has been possible to distinguish the temperature dependence of positron trapping into loops and voids. The results show that the positron trapping rate into voids depends linearly on temperature. The temperature dependence of positron trapping by loops can be interpreted as positrons being trapped by jogs, directly or via the dislocation line. The temperature dependence of positrons trapped by loops is argued mainly to be due to the trapping at the dislocation line, and not to detrapping. The observed temperature dependence of positron annihilation parameters in an electron irradiated sample (below stage III), is explained by competitive positron trapping in interstitial loops at low temperatures

  5. Theory of temperature dependent photoemission spectrum of heavy fermion semiconductors

    International Nuclear Information System (INIS)

    Riseborough, P.S.

    1998-01-01

    The heavy fermion semiconductors are a class of strongly correlated materials, that at high temperatures show properties similar to those of heavy fermion materials, but at low temperatures show a cross-over into a semi-conducting state. The low temperature insulating state is characterized by an anomalously small energy gap, varying between 10 and 100 K. The smallness of the gap is attributed to the result of a many-body renormalization, and is temperature dependent. The temperature dependence of the electronic spectral density of states is calculated, using the Anderson lattice model at half filling. The spectrum is calculated to second order in 1/N, where N is the degeneracy of the 'f' orbitals, using a slave boson technique. The system is an indirect gap semi-conductor, with an extremely temperature dependent electronic spectral density A(k, ω). The indirect gap is subject to a temperature dependent many-body renormalization, and leads to a sharp temperature dependent structure in the angle resolved photo-emission spectrum at the indirect threshold. The theoretical predictions are compared with experimental observations on FeSi. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  6. On the evaluation of temperature dependence of elastic constants of martensitic phases in shape memory alloys from resonant ultrasound spectroscopy studies

    International Nuclear Information System (INIS)

    Landa, Michal; Sedlak, Petr; Sittner, Petr; Seiner, Hanus; Heller, Ludek

    2008-01-01

    Elastic constants of austenite and martensite phases in shape memory alloys reflect fundamental thermodynamic properties of these materials-i.e. important physical information can be deduced not just from the values of the constants but, mainly from their temperature and stress dependencies. As regards to the parent austenite phase, such information is available in the literature for most of the known shape memory alloys. For the martensitic phases, however, only few reliable experimental data exist, due to the experimental difficulties with the preparation of martensite single crystals as well as due to the difficulties with the ultrasonic measurement of elastic properties of strongly anisotropic media with low symmetry. In this work, the temperature dependence of all elastic constants of cubic austenite and orthorhombic 2H martensite phases in Cu-Al-Ni alloy determined by resonance ultrasound spectroscopy (RUS) is reported. Experimental and theoretical improvements of the RUS method which had to be made to perform the successful measurements on strongly anisotropic and martensitic phases are discussed

  7. Temperature dependence of postmortem MR quantification for soft tissue discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Zech, Wolf-Dieter; Schwendener, Nicole; Jackowski, Christian [University of Bern, From the Institute of Forensic Medicine, Bern (Switzerland); Persson, Anders; Warntjes, Marcel J. [University of Linkoeping, The Center for Medical Image Science and Visualization (CMIV), Linkoeping (Sweden)

    2015-08-15

    To investigate and correct the temperature dependence of postmortem MR quantification used for soft tissue characterization and differentiation in thoraco-abdominal organs. Thirty-five postmortem short axis cardiac 3-T MR examinations were quantified using a quantification sequence. Liver, spleen, left ventricular myocardium, pectoralis muscle and subcutaneous fat were analysed in cardiac short axis images to obtain mean T1, T2 and PD tissue values. The core body temperature was measured using a rectally inserted thermometer. The tissue-specific quantitative values were related to the body core temperature. Equations to correct for temperature differences were generated. In a 3D plot comprising the combined data of T1, T2 and PD, different organs/tissues could be well differentiated from each other. The quantitative values were influenced by the temperature. T1 in particular exhibited strong temperature dependence. The correction of quantitative values to a temperature of 37 C resulted in better tissue discrimination. Postmortem MR quantification is feasible for soft tissue discrimination and characterization of thoraco-abdominal organs. This provides a base for computer-aided diagnosis and detection of tissue lesions. The temperature dependence of the T1 values challenges postmortem MR quantification. Equations to correct for the temperature dependence are provided. (orig.)

  8. Temperature dependence of postmortem MR quantification for soft tissue discrimination

    International Nuclear Information System (INIS)

    Zech, Wolf-Dieter; Schwendener, Nicole; Jackowski, Christian; Persson, Anders; Warntjes, Marcel J.

    2015-01-01

    To investigate and correct the temperature dependence of postmortem MR quantification used for soft tissue characterization and differentiation in thoraco-abdominal organs. Thirty-five postmortem short axis cardiac 3-T MR examinations were quantified using a quantification sequence. Liver, spleen, left ventricular myocardium, pectoralis muscle and subcutaneous fat were analysed in cardiac short axis images to obtain mean T1, T2 and PD tissue values. The core body temperature was measured using a rectally inserted thermometer. The tissue-specific quantitative values were related to the body core temperature. Equations to correct for temperature differences were generated. In a 3D plot comprising the combined data of T1, T2 and PD, different organs/tissues could be well differentiated from each other. The quantitative values were influenced by the temperature. T1 in particular exhibited strong temperature dependence. The correction of quantitative values to a temperature of 37 C resulted in better tissue discrimination. Postmortem MR quantification is feasible for soft tissue discrimination and characterization of thoraco-abdominal organs. This provides a base for computer-aided diagnosis and detection of tissue lesions. The temperature dependence of the T1 values challenges postmortem MR quantification. Equations to correct for the temperature dependence are provided. (orig.)

  9. Ultrasonic study of the temperature and hydrostatic-pressure dependences of the elastic properties of polycrystalline cementite (Fe{sub 3}C)

    Energy Technology Data Exchange (ETDEWEB)

    Dodd, S.P.; Saunders, G.A. [Department of Physics, University of Bath, Bath BA2 7AY (United Kingdom); Cankurtaran, M. [Hacettepe University, Department of Physics, Beytepe, 06532 Ankara (Turkey); James, B. [DSTL-Chertsey (Armour Group), Chobham Lane, Chertsey, Surrey KT16 OEE (United Kingdom); Acet, M. [Tieftemperaturephysik, Universitaet Duisburg, 47048 Duisburg (Germany)

    2003-08-01

    Pulse-echo-overlap measurements of ultrasonic wave velocity have been used to determine the dependences of the elastic stiffness moduli of polycrystalline cementite (Fe{sub 3}C) on temperature in the range 75-295 K and hydrostatic pressure up to 0.1 GPa at room temperature. The longitudinal stiffness (C{sub L}) and adiabatic bulk modulus (B{sup S}) stiffen, while the shear stiffness ({mu}) and Young's modulus (E) soften with decreasing temperature. The ultrasonic velocities increase approximately linearly with pressure, much more steeply for the longitudinal than the shear mode. The values obtained at 295 K for the hydrostatic-pressure derivatives ({partial_derivative}C{sub L}/{partial_derivative}P){sub P=0}, ({partial_derivative}{mu}/{partial_derivative}P){sub P=0} and ({partial_derivative}B{sup S}/{partial_derivative}P){sub P=0} of cementite are 7.9{+-} 1.7, 1.4{+-}0.1 and 6.1{+-}1.7, respectively: the zone-centre acoustic phonons stiffen under pressure. The longitudinal ({gamma}{sub L}), shear ({gamma}{sub S}) and mean ({gamma}{sup el}) acoustic-mode Grueneisen parameters of cementite are positive; {gamma}{sub S} is markedly smaller than {gamma}{sub L} indicating that the shear acoustic modes are less anharmonic than the longitudinal modes. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  10. Modeling temperature dependent singlet exciton dynamics in multilayered organic nanofibers

    Science.gov (United States)

    de Sousa, Leonardo Evaristo; de Oliveira Neto, Pedro Henrique; Kjelstrup-Hansen, Jakob; da Silva Filho, Demétrio Antônio

    2018-05-01

    Organic nanofibers have shown potential for application in optoelectronic devices because of the tunability of their optical properties. These properties are influenced by the electronic structure of the molecules that compose the nanofibers and also by the behavior of the excitons generated in the material. Exciton diffusion by means of Förster resonance energy transfer is responsible, for instance, for the change with temperature of colors in the light emitted by systems composed of different types of nanofibers. To study in detail this mechanism, we model temperature dependent singlet exciton dynamics in multilayered organic nanofibers. By simulating absorption and emission spectra, the possible Förster transitions are identified. Then, a kinetic Monte Carlo model is employed in combination with a genetic algorithm to theoretically reproduce time-resolved photoluminescence measurements for several temperatures. This procedure allows for the obtainment of different information regarding exciton diffusion in such a system, including temperature effects on the Förster transfer efficiency and the activation energy of the Förster mechanism. The method is general and may be employed for different systems where exciton diffusion plays a role.

  11. Multilayered cuprate superconductor Ba2Ca5Cu6O12(O1-x,Fx) 2 studied by temperature-dependent scanning tunneling microscopy and spectroscopy

    Science.gov (United States)

    Sugimoto, Akira; Ekino, Toshikazu; Gabovich, Alexander M.; Sekine, Ryotaro; Tanabe, Kenji; Tokiwa, Kazuyasu

    2017-05-01

    Scanning tunneling microscopy/spectroscopy (STM/STS) measurements were carried out on a multilayered cuprate superconductor Ba2Ca5Cu6O12 (O1 -x,Fx )2. STM topography revealed random spot structures with the characteristic length ≤0.5 nm. The conductance spectra d I /d V (V ) show the coexistence of smaller gaps ΔS and large gaps (pseudogaps) ΔL. The pseudogap-related features in the superconducting state were traced with the spatial resolution of ˜0.07 nm. Here, I and V are the tunnel current and bias voltage, respectively. The temperature, T , dependence of ΔS follows the reduced Bardeen-Cooper-Schrieffer (BCS) dependence. The hallmark ratio 2 ΔS(T =0 ) /kBTc equals to 4.9, which is smaller than those of other cuprate superconductors. Here, Tc is the superconducting critical temperature and kB is the Boltzmann constant. The larger gap ΔL survives in the normal state and even increases with T above Tc. The T dependencies of the spatial distributions for both relevant gaps (Δ map), as well as for each gap separately (ΔS and ΔL), were obtained. From the histogram of Δ map, the averaged gap values were found to be Δ¯S=˜24 meV and Δ¯L=˜79 meV. The smaller gap ΔS shows a spatially homogeneous distribution while the larger gap ΔL is quite inhomogeneous, indicating that rather homogeneous superconductivity coexists with the patchy distributed pseudogap. The spatial variation length ξΔ L of ΔL correlates with the scale of the topography spot structures, being approximately 0.4 nm. This value is considerably smaller than the coherence length of this class of superconductors, suggesting that ΔL is strongly affected by the disorder of the apical O/F.

  12. Energy based model for temperature dependent behavior of ferromagnetic materials

    International Nuclear Information System (INIS)

    Sah, Sanjay; Atulasimha, Jayasimha

    2017-01-01

    An energy based model for temperature dependent anhysteretic magnetization curves of ferromagnetic materials is proposed and benchmarked against experimental data. This is based on the calculation of macroscopic magnetic properties by performing an energy weighted average over all possible orientations of the magnetization vector. Most prior approaches that employ this method are unable to independently account for the effect of both inhomogeneity and temperature in performing the averaging necessary to model experimental data. Here we propose a way to account for both effects simultaneously and benchmark the model against experimental data from ~5 K to ~300 K for two different materials in both annealed (fewer inhomogeneities) and deformed (more inhomogeneities) samples. This demonstrates that this framework is well suited to simulate temperature dependent experimental magnetic behavior. - Highlights: • Energy based model for temperature dependent ferromagnetic behavior. • Simultaneously accounts for effect of temperature and inhomogeneities. • Benchmarked against experimental data from 5 K to 300 K.

  13. Temperature dependence of photovoltaic cells, modules, and systems

    Energy Technology Data Exchange (ETDEWEB)

    Emery, K.; Burdick, J.; Caiyem, Y. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    Photovoltaic (PV) cells and modules are often rated in terms of a set of standard reporting conditions defined by a temperature, spectral irradiance, and total irradiance. Because PV devices operates over a wide range of temperatures and irradiances, the temperature and irradiance related behavior must be known. This paper surveys the temperature dependence of crystalline and thin-film, state-of-the-art, research-size cells, modules, and systems measured by a variety of methods. The various error sources and measurement methods that contribute to cause differences in the temperature coefficient for a given cell or module measured with various methods are discussed.

  14. Identification of temperature-dependent thermal conductivity and experimental verification

    International Nuclear Information System (INIS)

    Pan, Weizhen; Yi, Fajun; Zhu, Yanwei; Meng, Songhe

    2016-01-01

    A modified Levenberg–Marquardt method (LMM) for the identification of temperature-dependent thermal conductivity is proposed; the experiment and structure of the specimen for identification are also designed. The temperature-dependent thermal conductivities of copper C10200 and brass C28000 are identified to verify the effectiveness of the proposed identification method. The comparison between identified results and the measured data of laser flash diffusivity apparatus indicates the fine consistency and potential usage of the proposed method. (paper)

  15. Temperature dependent spectroscopic studies of the electron delocalization dynamics of excited Ce ions in the wide band gap insulator, Lu2SiO5

    NARCIS (Netherlands)

    Van der Kolk, E.; Basun, S.A.; Imbusch, G.F.; Yen, W.M.

    2003-01-01

    Electron delocalization processes of optically excited states of Ce3+ impurities in Lu2SiO5 were investigated by means of a temperature and spectrally resolved photoconductivity study. By monitoring separately the strength of the photocurrent resulting from excitation into each of the Ce3+?5d

  16. Resistivity studies on the layered semi-metallic CaAl2Si2: evaluating its temperature-, field- and pressure-dependence

    International Nuclear Information System (INIS)

    ElMassalami, M; Soares de Oliveira Paixao, L; Chaves, F A B

    2011-01-01

    We studied the layered, hexagonal, semi-metal CaAl 2 Si 2 by magnetization, specific heat and resistivity measurements over a wide range of temperature, pressure and magnetic field. Both the Sommerfeld coefficient (γ = 1 mJ mol -1 K -2 ) and the Debye temperature (θ D = 288 K) are in agreement with the values obtained from the band structure calculation. The resistivity shows a metallic character up to 200 K, followed by saturation and, afterwards, a weak decrease up to 840 K, at which it sharply rises reaching a local maximum at 847 ± 5 K. While the low-temperature thermal evolution was accounted for in terms of intrinsic and extrinsic effects, the additional high-temperature scattering was attributed, based on differential thermal analysis, to a first-order thermal event. No appreciable magnetoresistivity was observed at liquid helium temperatures even for fields up to 90 kOe, indicating an absence of coupling between the electronic and magnetic degrees of freedom. Finally, an externally applied pressure was found to induce a strong reduction in the resistivity following a second-order polynomial: this effect will be discussed in terms of the influence of pressure on the effective mobility and concentration of charge carriers.

  17. Temperature-Dependent Change of Packing Structure of Condensed-Phase in a Micro-Phase Separated Langmuir Monolayer Studied by Grazing-Incidence X-ray Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Iimura, Ken-ichi [Department of Applied Chemisty, Faculty of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya 321-8585, Utsunomiya (Japan); Kato, Teiji [Department of Applied Chemisty, Faculty of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya 321-8585, Utsunomiya (Japan); Brezesinski, Gerald [Max-Planck Instutite of Colloids and Interfaces, Research Campus Golm, D-14476 Potsdam (Germany)

    2007-10-15

    Packing structure of condensed-phase in a binary mixed Langmuir monolayer of behenic acid (C22) and perfluoro-2,5,8-trimethyl-3,6,9-trioxadodecanoic acid (PFPE) on a cadmium acetate aqueous solution was studied by grazing incidence X-ray diffraction (GIXD) as a function of the subphase temperature. The measurements were made during temperature scan at a fixed molecular area to explain the morphological change of the condensed-phase domains due to a thermal treatment reported previously. Analysis of GIXD data implies that the condensed-phase domains are composed of only the C22 molecules perpendicularly oriented and very closely packed in a centered rectangular unit cell with orthorhombic distortion at low temperatures. As the temperature increases the area occupied by molecule increases, and above 25 deg. C the lattice becomes disordered, which would allow morphological transformation of the condensed-phase domains. The process of packing structure change is almost reversible except for non-equilibrium phases observed for the monolayer spread at a low temperature, 5.5 deg. C.

  18. Temperature-Dependent Change of Packing Structure of Condensed-Phase in a Micro-Phase Separated Langmuir Monolayer Studied by Grazing-Incidence X-ray Diffraction

    International Nuclear Information System (INIS)

    Iimura, Ken-ichi; Kato, Teiji; Brezesinski, Gerald

    2007-01-01

    Packing structure of condensed-phase in a binary mixed Langmuir monolayer of behenic acid (C22) and perfluoro-2,5,8-trimethyl-3,6,9-trioxadodecanoic acid (PFPE) on a cadmium acetate aqueous solution was studied by grazing incidence X-ray diffraction (GIXD) as a function of the subphase temperature. The measurements were made during temperature scan at a fixed molecular area to explain the morphological change of the condensed-phase domains due to a thermal treatment reported previously. Analysis of GIXD data implies that the condensed-phase domains are composed of only the C22 molecules perpendicularly oriented and very closely packed in a centered rectangular unit cell with orthorhombic distortion at low temperatures. As the temperature increases the area occupied by molecule increases, and above 25 deg. C the lattice becomes disordered, which would allow morphological transformation of the condensed-phase domains. The process of packing structure change is almost reversible except for non-equilibrium phases observed for the monolayer spread at a low temperature, 5.5 deg. C

  19. Hysteresis and Temperature Dependency of Moisture Sorption – New Measurements

    DEFF Research Database (Denmark)

    Rode, Carsten; Hansen, Kurt Kielsgaard

    2011-01-01

    measurements of hysteresis and temperature dependency of the moisture sorption characteristics of three different porous building materials: aerated concrete, cement paste and spruce. Scanning curves are measured for all three materials where periods with adsorption and desorption interrupt each other...... intermittently. For one of the materials, aerated concrete, the sorption curves are determined at three different temperatures....

  20. Frequency and temperature dependence of dielectric properties of chicken meat

    Science.gov (United States)

    Dielectric properties of chicken breast meat were measured with an open-ended coaxial-line probe between 200 MHz and 20 GHz at temperatures ranging from -20 degree C to +25 degree C. At a given temperature, the frequency dependence of the dielectric constant reveals two relaxations while those of th...

  1. Temperature dependence of dose rate laser simulation adequacy

    International Nuclear Information System (INIS)

    Skorobogatov, P.K.; Nikiforov, A.Y.; Demidov, A.A.

    1999-01-01

    2-D numerical modeling was carried out to analyze the temperature dependence of dose rate laser simulation adequacy in application to p-n junction ionising current. Experimental validation was performed using test structure in the temperature range of 0 to 100 deg.C. (authors)

  2. Time dependent temperature distribution in pulsed Ti:sapphire lasers

    Science.gov (United States)

    Buoncristiani, A. Martin; Byvik, Charles E.; Farrukh, Usamah O.

    1988-01-01

    An expression is derived for the time dependent temperature distribution in a finite solid state laser rod for an end-pumped beam of arbitrary shape. The specific case of end pumping by circular (constant) or Gaussian beam is described. The temperature profile for a single pump pulse and for repetitive pulse operation is discussed. The particular case of the temperature distribution in a pulsed titanium:sapphire rod is considered.

  3. Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance

    International Nuclear Information System (INIS)

    Alamusi; Li, Yuan; Hu, Ning; Wu, Liangke; Liu, Yaolu; Ning, Huiming; Li, Jinhua; Surina; Yuan, Weifeng; Chang, Christiana; Atobe, Satoshi; Fukunaga, Hisao

    2013-01-01

    A temperature sensor was fabricated from a polymer nanocomposite with multi-walled carbon nanotube (MWCNT) as nanofiller (i.e., MWCNT/epoxy). The electrical resistance and temperature coefficient of resistance (TCR) of the temperature sensor were characterized experimentally. The effects of temperature (within the range 333–373 K) and MWCNT content (within the range 1–5 wt%) were investigated thoroughly. It was found that the resistance increases with increasing temperature and decreasing MWCNT content. However, the resistance change ratio related to the TCR increases with increasing temperature and MWCNT content. The highest value of TCR (0.021 K −1 ), which was observed in the case of 5 wt% MWCNT, is much higher than those of traditional metals and MWCNT-based temperature sensors. Moreover, the corresponding numerical simulation—conducted to explain the above temperature-dependent piezoresistivity of the nanocomposite temperature sensor—indicated the key role of a temperature-dependent tunneling effect. (paper)

  4. Temperature dependence of photonic crystals based on thermoresponsive magnetic fluids

    International Nuclear Information System (INIS)

    Pu Shengli; Bai Xuekun; Wang Lunwei

    2011-01-01

    The influence mechanisms of temperature on the band gap properties of the magnetic fluids based photonic crystals are elaborated. A method has been developed to obtain the temperature-dependent structure information (A sol /A) from the existing experimental data and then two critical parameters, i.e. the structure ratio (d/a) and the refractive index contrast (Δn) of the magnetic fluids photonic crystals are deduced for band diagram calculations. The temperature-dependent band gaps are gained for z-even and z-odd modes. Band diagram calculations display that the mid frequencies and positions of the existing forbidden bands are not very sensitive to the temperature, while the number of the forbidden bands at certain strengths of magnetic field may change with the temperature variation. The results presented in this work give a guideline for designing the potential photonic devices based on the temperature characteristics of the magnetic fluids based photonic crystals and are helpful for improving their quality. - Highlights: → Mechanisms of temperature dependence of magnetic fluids based photonic crystals are elaborated. → Properties of existing forbidden bands have relatively fine temperature stability. → Disappearance of existing forbidden band is found for some magnetic fields. → Emergence of new forbidden band with temperature is found for some magnetic fields.

  5. The temperature dependent amide I band of crystalline acetanilide

    International Nuclear Information System (INIS)

    Cruzeiro, Leonor; Freedman, Holly

    2013-01-01

    The temperature dependent anomalous peak in the amide I band of crystalline acetanilide is thought to be due to self-trapped states. On the contrary, according to the present model, the anomalous peak comes from the fraction of ACN molecules strongly hydrogen-bonded to a neighboring ACN molecule, and its intensity decreases because, on average, this fraction decreases as temperature increases. This model provides, for the first time, an integrated and theoretically consistent view of the temperature dependence of the full amide I band and a qualitative explanation of some of the features of nonlinear pump–probe experiments.

  6. The temperature dependent amide I band of crystalline acetanilide

    Energy Technology Data Exchange (ETDEWEB)

    Cruzeiro, Leonor [CCMAR, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Physics Department, FCT, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Freedman, Holly [CCMAR, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal)

    2013-10-01

    The temperature dependent anomalous peak in the amide I band of crystalline acetanilide is thought to be due to self-trapped states. On the contrary, according to the present model, the anomalous peak comes from the fraction of ACN molecules strongly hydrogen-bonded to a neighboring ACN molecule, and its intensity decreases because, on average, this fraction decreases as temperature increases. This model provides, for the first time, an integrated and theoretically consistent view of the temperature dependence of the full amide I band and a qualitative explanation of some of the features of nonlinear pump–probe experiments.

  7. The temperature dependent amide I band of crystalline acetanilide

    Science.gov (United States)

    Cruzeiro, Leonor; Freedman, Holly

    2013-10-01

    The temperature dependent anomalous peak in the amide I band of crystalline acetanilide is thought to be due to self-trapped states. On the contrary, according to the present model, the anomalous peak comes from the fraction of ACN molecules strongly hydrogen-bonded to a neighboring ACN molecule, and its intensity decreases because, on average, this fraction decreases as temperature increases. This model provides, for the first time, an integrated and theoretically consistent view of the temperature dependence of the full amide I band and a qualitative explanation of some of the features of nonlinear pump-probe experiments.

  8. In operando neutron diffraction study of the temperature and current rate-dependent phase evolution of LiFePO4 in a commercial battery

    Science.gov (United States)

    Sharma, N.; Yu, D. H.; Zhu, Y.; Wu, Y.; Peterson, V. K.

    2017-02-01

    In operando NPD data of electrodes in lithium-ion batteries reveal unusual LiFePO4 phase evolution after the application of a thermal step and at high current. At low current under ambient conditions the LiFePO4 to FePO4 two-phase reaction occurs during the charge process, however, following a thermal step and at higher current this reaction appears at the end of charge and continues into the next electrochemical step. The same behavior is observed for the FePO4 to LiFePO4 transition, occurring at the end of discharge and continuing into the following electrochemical step. This suggests that the bulk (or the majority of the) electrode transformation is dependent on the battery's history, current, or temperature. Such information concerning the non-equilibrium evolution of an electrode allows a direct link between the electrode's functional mechanism that underpins lithium-ion battery behavior and the real-life operating conditions of the battery, such as variable temperature and current, to be made.

  9. Temperature dependence of the two photon absorption in indium arsenide

    International Nuclear Information System (INIS)

    Berryman, K.W.; Rella, C.W.

    1995-01-01

    Nonlinear optical processes in semiconductors have long been a source of interesting physics. Two photon absorption (TPA) is one such process, in which two photons provide the energy for the creation of an electron-hole pair. Researchers at other FEL centers have studied room temperature TPA in InSb, InAs, and HgCdTe. Working at the Stanford Picosecond FEL Center, we have extended and refined this work by measuring the temperature dependence of the TPA coefficient in InAs over the range from 80 to 350 K at four wavelengths: 4.5, 5.06, 6.01, and 6.3 microns. The measurements validate the functional dependence of recent band structure calculations with enough precision to discriminate parabolic from non-parabolic models, and to begin to observe smaller effects, such as contributions due to the split-off band. These experiments therefore serve as a strong independent test of the Kane band theory, as well as providing a starting point for detailed observations of other nonlinear absorption mechanisms

  10. Temperature dependency of silicon structures for magnetic field gradient sensing

    Science.gov (United States)

    Dabsch, Alexander; Rosenberg, Christoph; Stifter, Michael; Keplinger, Franz

    2018-02-01

    This work describes the temperature dependence of two sensors for magnetic field gradient sensors and demonstrates a structure to compensate for the drift of resonance frequency over a wide temperature range. The temperature effect of the sensing element is based on internal stresses induced by the thermal expansion of material, therefore FEM is used to determine the change of the eigenvalues of the sensing structure. The experimental setup utilizes a Helmholtz coil system to generate the magnetic field and to excite the MEMS structure with Lorentz forces. The MEMS structure is placed on a plate heated with resistors and cooled by a Peltier element to control the plate temperature. In the second part, we describe how one can exploit temperature sensitivity for temperature measurements and we show the opportunity to include the temperature effect to increase the sensitivity of single-crystal silicon made flux density gradient sensors.

  11. Residential Indoor Temperature Study

    Energy Technology Data Exchange (ETDEWEB)

    Booten, Chuck [National Renewable Energy Lab. (NREL), Golden, CO (United States); Robertson, Joseph [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, Dane [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heaney, Mike [Arrow Electronics, Centennial, CO (United States); Brown, David [Univ. of Virginia, Charlottesville, VA (United States); Norton, Paul [Norton Energy Research and Development, Boulder, CO (United States); Smith, Chris [Ingersoll-Rand Corp., Dublin (Ireland)

    2017-04-07

    In this study, we are adding to the body of knowledge around answering the question: What are good assumptions for HVAC set points in U.S. homes? We collected and analyzed indoor temperature data from US homes using funding from the U.S. Department of Energy's Building America (BA) program, due to the program's reliance on accurate energy simulation of homes. Simulations are used to set Building America goals, predict the impact of new building techniques and technologies, inform research objectives, evaluate home performance, optimize efficiency packages to meet savings goals, customize savings approaches to specific climate zones, and myriad other uses.

  12. Temperature dependence of mobility in silicon (100) inversion layers at low temperatures

    International Nuclear Information System (INIS)

    Kawaguchi, Y.; Suzuki, T.; Kawaji, S.

    1982-01-01

    Electron mobility of Si(100) n-inversion layers in MOSFETs having μsub(peak) (4.2 K) = 4000.6500 and 12000 cm 2 /V x s has been measured at temperatures between 1 and 80 K. The carrier concentration dependence of the mobility extrapolated to T = O and the temperature dependent part of the scattering probability are investigated. (orig.)

  13. Relativistic Random-Phase Approximation with Density-dependent Meson-nucleon Couplings at Finite Temperature

    International Nuclear Information System (INIS)

    Niu, Y.; Paar, N.; Vretenar, D.; Meng, J.

    2009-01-01

    The fully self-consistent relativistic random-phase approximation (RRPA) framework based on effective interactions with a phenomenological density dependence is extended to finite temperatures. The RRPA configuration space is built from the spectrum of single-nucleon states at finite temperature obtained by the temperature dependent relativistic mean field (RMF-T) theory based on effective Lagrangian with density dependent meson-nucleon vertex functions. As an illustration, the dependence of binding energy, radius, entropy and single particle levels on temperature for spherical nucleus 2 08P b is investigated in RMF-T theory. The finite temperature RRPA has been employed in studies of giant monopole and dipole resonances, and the evolution of resonance properties has been studied as a function of temperature. In addition, exotic modes of excitation have been systematically explored at finite temperatures, with an emphasis on the case of pygmy dipole resonances.(author)

  14. Temperature and relative humidity dependence of radiochromic film dosimeter response to gamma electron radiation

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Puhl, J.M.; Miller, A.

    1995-01-01

    on some earlier studies, their response functions have been reported to be dependent on the temperature and relative humidity during irradiation. The present study investigates differences in response over practical ranges of temperature, relative humidity, dose, and for different recent batches of films...... humidity) and should be calibrated under environmental conditions (temperature) at which they will be used routinely....

  15. Temperature dependence of ion irradiation induced amorphization of zirconolite

    International Nuclear Information System (INIS)

    Smith, K. L.; Blackford, M. G.; Lumpkin, G. R.; Zaluzec, N. J.

    1999-01-01

    Zirconolite is one of the major host phases for actinides in various wasteforms for immobilizing high level radioactive waste (HLW). Over time, zirconolite's crystalline matrix is damaged by α-particles and energetic recoil nuclei recoil resulting from α-decay events. The cumulative damage caused by these particles results in amorphization. Data from natural zirconolites suggest that radiation damage anneals over geologic time and is dependant on the thermal history of the material. Proposed HLW containment strategies rely on both a suitable wasteform and geologic isolation. Depending on the waste loading, depth of burial, and the repository-specific geothermal gradient, burial could result in a wasteform being exposed to temperatures of between 100--450 C. Consequently, it is important to assess the effect of temperature on radiation damage in synthetic zirconolite. Zirconolite containing wasteforms are likely to be hot pressed at or below 1,473 K (1,200 C) and/or sintered at or below 1,623 K (1,350 C). Zirconolite fabricated at temperatures below 1,523 K (1,250 C) contains many stacking faults. As there have been various attempts to link radiation resistance to structure, the authors decided it was also pertinent to assess the role of stacking faults in radiation resistance. In this study, they simulate α-decay damage in two zirconolite samples by irradiating them with 1.5 MeV Kr + ions using the High Voltage Electron Microscope-Tandem User Facility (HTUF) at Argonne National Laboratory (ANL) and measure the critical dose for amorphization (D c ) at several temperatures between 20 and 773 K. One of the samples has a high degree of crystallographic perfection, the other contains many stacking faults on the unit cell scale. Previous authors proposed a model for estimating the activation energy of self annealing in zirconolite and for predicting the critical dose for amorphization at any temperature. The authors discuss their results and earlier published data in

  16. Arrhenius temperature dependence of in vitro tissue plasminogen activator thrombolysis

    International Nuclear Information System (INIS)

    Shaw, George J; Dhamija, Ashima; Bavani, Nazli; Wagner, Kenneth R; Holland, Christy K

    2007-01-01

    Stroke is a devastating disease and a leading cause of death and disability. Currently, the only FDA approved therapy for acute ischemic stroke is the intravenous administration of the thrombolytic medication, recombinant tissue plasminogen activator (tPA). However, this treatment has many contraindications and can have dangerous side effects such as intra-cerebral hemorrhage. These treatment limitations have led to much interest in potential adjunctive therapies, such as therapeutic hypothermia (T ≤ 35 deg. C) and ultrasound enhanced thrombolysis. Such interest may lead to combining these therapies with tPA to treat stroke, however little is known about the effects of temperature on the thrombolytic efficacy of tPA. In this work, we measure the temperature dependence of the fractional clot mass loss Δm(T) resulting from tPA exposure in an in vitro human clot model. We find that the temperature dependence is well described by an Arrhenius temperature dependence with an effective activation energy E eff of 42.0 ± 0.9 kJ mole -1 . E eff approximates the activation energy of the plasminogen-to-plasmin reaction of 48.9 kJ mole -1 . A model to explain this temperature dependence is proposed. These results will be useful in predicting the effects of temperature in future lytic therapies

  17. Arrhenius temperature dependence of in vitro tissue plasminogen activator thrombolysis

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, George J [Department of Emergency Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0769 (United States); Dhamija, Ashima [Department of Emergency Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0769 (United States); Bavani, Nazli [Department of Emergency Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0769 (United States); Wagner, Kenneth R [Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0769 (United States); Holland, Christy K [Department of Biomedical Engineering, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0769 (United States)

    2007-06-07

    Stroke is a devastating disease and a leading cause of death and disability. Currently, the only FDA approved therapy for acute ischemic stroke is the intravenous administration of the thrombolytic medication, recombinant tissue plasminogen activator (tPA). However, this treatment has many contraindications and can have dangerous side effects such as intra-cerebral hemorrhage. These treatment limitations have led to much interest in potential adjunctive therapies, such as therapeutic hypothermia (T {<=} 35 deg. C) and ultrasound enhanced thrombolysis. Such interest may lead to combining these therapies with tPA to treat stroke, however little is known about the effects of temperature on the thrombolytic efficacy of tPA. In this work, we measure the temperature dependence of the fractional clot mass loss {delta}m(T) resulting from tPA exposure in an in vitro human clot model. We find that the temperature dependence is well described by an Arrhenius temperature dependence with an effective activation energy E{sub eff} of 42.0 {+-} 0.9 kJ mole{sup -1}. E{sub eff} approximates the activation energy of the plasminogen-to-plasmin reaction of 48.9 kJ mole{sup -1}. A model to explain this temperature dependence is proposed. These results will be useful in predicting the effects of temperature in future lytic therapies.

  18. Temperature Dependence Viscosity and Density of Different Biodiesel Blends

    Directory of Open Access Journals (Sweden)

    Vojtěch Kumbár

    2015-01-01

    Full Text Available The main goal of this paper is to assess the effect of rapeseed oil methyl ester (RME concentration in diesel fuel on its viscosity and density behaviour. The density and dynamic viscosity were observed at various mixing ratios of RME and diesel fuel. All measurements were performed at constant temperature of 40 °C. Increasing ratio of RME in diesel fuel was reflected in increased density value and dynamic viscosity of the blend. In case of pure RME, pure diesel fuel, and a blend of both (B30, temperature dependence of dynamic viscosity and density was examined. Temperature range in the experiment was −10 °C to 80 °C. Considerable temperature dependence of dynamic viscosity and density was found and demonstrated for all three samples. This finding is in accordance with theoretical assumptions and reference data. Mathematical models were developed and tested. Temperature dependence of dynamic viscosity was modeled using a polynomial 3rd polynomial degree. Correlation coefficients R −0.796, −0.948, and −0.974 between measured and calculated values were found. Temperature dependence of density was modeled using a 2nd polynomial degree. Correlation coefficients R −0.994, −0.979, and −0.976 between measured and calculated values were acquired. The proposed models can be used for flow behaviour prediction of RME, diesel fuel, and their blends.

  19. Time-dependent radiolytic yields at room temperature and temperature-dependent absorption spectra of the solvated electrons in polyols

    International Nuclear Information System (INIS)

    Lin Mingzhang; Mostafavi, M.; Lampre, I.; Muroya, Y.; Katsumura, Y.

    2007-01-01

    The molar extinction coefficients at the absorption maximum of the solvated electron spectrum have been evaluated to be 900, 970, and 1000 mol -1 ·m 2 for 1,2-ethanediol (12ED), 1,2-propanediol (12PD), and 1,3-propanediol (13PD), respectively. These values are two-third or three-fourth of the value usually reported in the published report. Picosecond pulse radiolysis studies have aided in depicting the radiolytic yield of the solvated electron in these solvents as a function of time from picosecond to microsecond. The radiolytic yield in these viscous solvents is found to be strongly different from that of the water solution. The temperature dependent absorption spectra of the solvated electron in 12ED, 12PD, and 13PD have been also investigated. In all the three solvents, the optical spectra shift to the red with increasing temperature. While the shape of the spectra does not change in 13PD, a widening on the blue side of the absorption band is observed in 12ED and 12PD at elevated temperatures. (authors)

  20. Temperature-dependent surface density of alkylthiol monolayers on gold nanocrystals

    Science.gov (United States)

    Liu, Xuepeng; Lu, Pin; Zhai, Hua; Wu, Yucheng

    2018-03-01

    Atomistic molecular dynamics (MD) simulations are performed to study the surface density of passivating monolayers of alkylthiol chains on gold nanocrystals at temperatures ranging from 1 to 800 K. The results show that the surface density of alkylthiol monolayer reaches a maximum value at near room temperature (200-300 K), while significantly decreases with increasing temperature in the higher temperature region (> 300 {{K}}), and slightly decreases with decreasing temperature at low temperature (< 200 {{K}}). We find that the temperature dependence of surface ligand density in the higher temperature region is attributed to the substantial ligand desorption induced by the thermal fluctuation, while that at low temperature results from the reduction in entropy caused by the change in the ordering of passivating monolayer. These results are expected helpful to understand the temperature-dependent surface coverage of gold nanocrystals.

  1. Temperature-dependent absorption cross sections for hydrogen peroxide vapor

    Science.gov (United States)

    Nicovich, J. M.; Wine, P. H.

    1988-01-01

    Relative absorption cross sections for hydrogen peroxide vapor were measured over the temperature ranges 285-381 K for lambda = 230 nm-295 nm and 300-381 K for lambda = 193 nm-350 nm. The well established 298 K cross sections at 202.6 and 228.8 nm were used as an absolute calibration. A significant temperature dependence was observed at the important tropospheric photolysis wavelengths lambda over 300 nm. Measured cross sections were extrapolated to lower temperatures, using a simple model which attributes the observed temperature dependence to enhanced absorption by molecules possessing one quantum of O-O stretch vibrational excitation. Upper tropospheric photodissociation rates calculated using the extrapolated cross sections are about 25 percent lower than those calculated using currently recommended 298 K cross sections.

  2. Temperature dependence of the luminescence lifetime of a europium complex immobilized in different polymer matrices

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Bharathi Bai J. [Surface Engineering Division, National Aerospace Laboratories, Bangalore 560017 (India)], E-mail: bharathi@css.nal.res.in; Vasantharajan, N. [Surface Engineering Division, National Aerospace Laboratories, Bangalore 560017 (India)

    2008-10-15

    The temperature dependence of the luminescence lifetime of temperature sensor films based on europium (III) thenoyltrifluoroacetonate (EuTTA) as sensor dye in various polymer matrices such as polystyrene (PS), polymethylmethacrylate (PMMA), polyurethane (PU) and model airplane dope was studied and compared. The luminescence lifetime of EuTTA was found to depend on the polymer matrix. The temperature sensitivity of lifetime was maximum for EuTTA-PS coating in the temperature range of 10-60 deg. C. The effect of concentration of the sensor dye in the polymer on the lifetime and temperature sensitivity was also studied.

  3. Temperature dependence of spreading width of giant dipole resonance

    International Nuclear Information System (INIS)

    Storozhenko, A.N.; Vdovin, A.I.; Ventura, A.; Blokhin, A.I.

    2002-01-01

    The Quasiparticle-Phonon Nuclear Model extended to finite temperature within the framework of Thermo Field Dynamics is applied to calculate a temperature dependence of the spreading width Γ ↓ of a giant dipole resonance. Numerical calculations are made for 120 Sn and 208 Pb nuclei. It is found that Γ ↓ increases with T. The reason of this effect is discussed as well as a relation of the present approach to other ones, existing in the literature

  4. Similar temperature dependencies of glycolytic enzymes : An evolutionary adaptation to temperature dynamics?

    NARCIS (Netherlands)

    Cruz, L.A.B.; Hebly, M.; Duong, G.H.; Wahl, S.A.; Pronk, J.T.; Heijnen, J.J.; Daran-Lapujade, P.; Van Gulik, W.M.

    2012-01-01

    Background Temperature strongly affects microbial growth, and many microorganisms have to deal with temperature fluctuations in their natural environment. To understand regulation strategies that underlie microbial temperature responses and adaptation, we studied glycolytic pathway kinetics in

  5. Temperature dependence of the electronic structure of semiconductors and insulators

    Energy Technology Data Exchange (ETDEWEB)

    Poncé, S., E-mail: samuel.pon@gmail.com; Gillet, Y.; Laflamme Janssen, J.; Gonze, X. [European Theoretical Spectroscopy Facility and Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Chemin des étoiles 8, bte L07.03.01, B-1348 Louvain-la-neuve (Belgium); Marini, A. [Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km 29.3, CP 10, 00016 Monterotondo Stazione (Italy); Verstraete, M. [European Theoretical Spectroscopy Facility and Physique des matériaux et nanostructures, Université de Liège, Allée du 6 Août 17, B-4000 Liège (Belgium)

    2015-09-14

    The renormalization of electronic eigenenergies due to electron-phonon coupling (temperature dependence and zero-point motion effect) is sizable in many materials with light atoms. This effect, often neglected in ab initio calculations, can be computed using the perturbation-based Allen-Heine-Cardona theory in the adiabatic or non-adiabatic harmonic approximation. After a short description of the recent progresses in this field and a brief overview of the theory, we focus on the issue of phonon wavevector sampling convergence, until now poorly understood. Indeed, the renormalization is obtained numerically through a slowly converging q-point integration. For non-zero Born effective charges, we show that a divergence appears in the electron-phonon matrix elements at q → Γ, leading to a divergence of the adiabatic renormalization at band extrema. This problem is exacerbated by the slow convergence of Born effective charges with electronic wavevector sampling, which leaves residual Born effective charges in ab initio calculations on materials that are physically devoid of such charges. Here, we propose a solution that improves this convergence. However, for materials where Born effective charges are physically non-zero, the divergence of the renormalization indicates a breakdown of the adiabatic harmonic approximation, which we assess here by switching to the non-adiabatic harmonic approximation. Also, we study the convergence behavior of the renormalization and develop reliable extrapolation schemes to obtain the converged results. Finally, the adiabatic and non-adiabatic theories, with corrections for the slow Born effective charge convergence problem (and the associated divergence) are applied to the study of five semiconductors and insulators: α-AlN, β-AlN, BN, diamond, and silicon. For these five materials, we present the zero-point renormalization, temperature dependence, phonon-induced lifetime broadening, and the renormalized electronic band structure.

  6. Temperature dependence of acceptor-hole recombination in germanium

    International Nuclear Information System (INIS)

    Darken, L.S.; Jellison, G.E. Jr.

    1989-01-01

    The recombination kinetics of several centers (Zn - , Cu - , B - , CuH - 2 , CuH - x , Zn = , Cu = , and CuH = x ) in high-purity Ge have been measured as a function of temperature from 8 to 160 K by transient capacitance techniques and are significantly faster than expected from cascade theory. The cascade theory also gives the wrong temperature dependence, and the wrong z dependence. Instead, the data are generally fit by the expression N v /4pτ c congruent kT/h (p and τ c are, respectively, the free-hole concentration in the sample and the experimental mean capture time for a center)

  7. Temperature dependence of collapse of quantized hall resistance

    International Nuclear Information System (INIS)

    Tanaka, Hiroyasu; Kawashima, Hironori; Iizuka, Hisamitsu; Fukuda, Hideaki; Kawaji, Shinji

    2006-01-01

    Similarity is observed in the deviation of Hall resistance from the quantized value with the increase in the source-drain current I SD in our butterfly-type Hall bars and in the Hall bars used by Jeanneret et al., while changes in the diagonal resistivity ρ xx with I SD are significantly different between these Hall bars. The temperature dependence of the critical Hall electric field F cr (T) for the collapse of R H (4) measured in these Hall bars is approximated using F cr (T) = F cr (0)(1 - (T/T cr ) 2 ). Here, the critical Hall electric field at zero temperature depends on the magnetic field B as F cr (0) ∝ B 3/2 . Theoretical considerations are given on F cr (T) on the basis of a temperature-dependent mobility edge model and a schema of temperature-dependent inter-Landau level tunneling probability arising from the Fermi distribution function. The former does not fit in with the I SD dependence of activation energy in ρ xx . (author)

  8. Solubility Temperature Dependence Predicted from 2D Structure

    Directory of Open Access Journals (Sweden)

    Alex Avdeef

    2015-12-01

    Full Text Available The objective of the study was to find a computational procedure to normalize solubility data determined at various temperatures (e.g., 10 – 50 oC to values at a “reference” temperature (e.g., 25 °C. A simple procedure was devised to predict enthalpies of solution, ΔHsol, from which the temperature dependence of intrinsic (uncharged form solubility, log S0, could be calculated. As dependent variables, values of ΔHsol at 25 °C were subjected to multiple linear regression (MLR analysis, using melting points (mp and Abraham solvation descriptors. Also, the enthalpy data were subjected to random forest regression (RFR and recursive partition tree (RPT analyses. A total of 626 molecules were examined, drawing on 2040 published solubility values measured at various temperatures, along with 77 direct calori    metric measurements. The three different prediction methods (RFR, RPT, MLR all indicated that the estimated standard deviations in the enthalpy data are 11-15 kJ mol-1, which is concordant with the 10 kJ mol-1 propagation error estimated from solubility measurements (assuming 0.05 log S errors, and consistent with the 7 kJ mol-1 average reproducibility in enthalpy values from interlaboratory replicates. According to the MLR model, higher values of mp, H‑bond acidity, polarizability/dipolarity, and dispersion forces relate to more positive (endothermic enthalpy values. However, molecules that are large and have high H-bond basicity are likely to possess negative (exothermic enthalpies of solution. With log S0 values normalized to 25 oC, it was shown that the interlaboratory average standard deviations in solubility measurement are reduced to 0.06 ‑ 0.17 log unit, with higher errors for the least-soluble druglike molecules. Such improvements in data mining are expected to contribute to more reliable in silico prediction models of solubility for use in drug discovery.

  9. Temperature dependence of non-Debye disorder in doped manganites

    International Nuclear Information System (INIS)

    Meneghini, C.; Cimino, R.; Pascarelli, S.; Mobilio, S.; Raghu, C.; Sarma, D.D.

    1997-01-01

    Ca-doped manganite La 1-x Ca x MnO 3 samples with x=0.2 and 0.4 were investigated by extended x-ray absorption fine structure (EXAFS) as a function of temperature and preparation method. The samples exhibit characteristic resistivity change across the metal-insulator (MI) transition temperature whose shape and position depend on Ca-doping concentration and sample thermal treatment. EXAFS results evidenced an increase of nonthermal disorder at the MI transition temperature which is significantly correlated with the resistivity behavior. copyright 1997 The American Physical Society

  10. Temperature dependent energy levels of methylammonium lead iodide perovskite

    Science.gov (United States)

    Foley, Benjamin J.; Marlowe, Daniel L.; Sun, Keye; Saidi, Wissam A.; Scudiero, Louis; Gupta, Mool C.; Choi, Joshua J.

    2015-06-01

    Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature.

  11. Temperature dependent energy levels of methylammonium lead iodide perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Foley, Benjamin J.; Marlowe, Daniel L.; Choi, Joshua J., E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Sun, Keye; Gupta, Mool C., E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Saidi, Wissam A. [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States); Scudiero, Louis, E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Chemistry Department and Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164 (United States)

    2015-06-15

    Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature.

  12. Temperature Dependence of the Moessbauer Effect on Prussian Blue Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Pingheng; Xue Desheng; Luo Haiqing; Shi Huigang [Lanzhou University, Key Lab for Magnetism and Magnetic Materials of MOE (China)

    2002-09-15

    Highly ordered Prussian blue nanowires with diameter of about 50 nm and length up to 4 {mu}m have been fabricated by an electrodepositing technology with two-step anodizing anodic aluminum oxide films. The Moessbauer spectra taken between 15 and 300 K indicate that the hyperfine parameters decrease as the temperature increases. The temperature dependence of the quadrupole splitting, the isomer shift and the spectra area are discussed. A decrease of Debye temperature for Prussian blue nanowires was found with respect to that of Prussian blue bulk.

  13. Thermal Aware Floorplanning Incorporating Temperature Dependent Wire Delay Estimation

    DEFF Research Database (Denmark)

    Winther, AndreasThor; Liu, Wei; Nannarelli, Alberto

    2015-01-01

    Temperature has a negative impact on metal resistance and thus wire delay. In state-of-the-art VLSI circuits, large thermal gradients usually exist due to the uneven distribution of heat sources. The difference in wire temperature can lead to performance mismatch because wires of the same length...... can have different delay. Traditional floorplanning algorithms use wirelength to estimate wire performance. In this work, we show that this does not always produce a design with the shortest delay and we propose a floorplanning algorithm taking into account temperature dependent wire delay as one...

  14. DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM

    Directory of Open Access Journals (Sweden)

    Davood Domairry Ganji

    2011-01-01

    Full Text Available In this paper, homotopy perturbation method has been used to evaluate the temperature distribution of annular fin with temperature-dependent thermal conductivity and to determine the temperature distribution within the fin. This method is useful and practical for solving the nonlinear heat transfer equation, which is associated with variable thermal conductivity condition. The homotopy perturbation method provides an approximate analytical solution in the form of an infinite power series. The annular fin heat transfer rate with temperature-dependent thermal conductivity has been obtained as a function of thermo-geometric fin parameter and the thermal conductivity parameter describing the variation of the thermal conductivity.

  15. Temperature dependence of electronic transport property in ferroelectric polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X.L.; Wang, J.L., E-mail: jlwang@mail.sitp.ac.cn; Tian, B.B.; Liu, B.L.; Zou, Y.H.; Wang, X.D.; Sun, S.; Sun, J.L., E-mail: jlsun@mail.sitp.ac.cn; Meng, X.J.; Chu, J.H.

    2014-10-15

    Highlights: • The ferroelectric polymer was fabricated by Langmuir–Blodgett method. • The electrons as the dominant injected carrier were conformed in the ferroelectric polymer films. • The leakage current conduction mechanisms in ferroelectric polymer were investigated. - Abstract: The leakage current mechanism of ferroelectric copolymer of polyvinylidene fluoride with trifluoroethylene prepared by Langmuir–Blodgett was investigated in the temperature range from 100 K to 350 K. The electron as the dominant injected carrier was observed in the ferroelectric copolymer films. The transport mechanisms in copolymer strongly depend on the temperature and applied voltage. From 100 K to 200 K, Schottky emission dominates the conduction. With temperature increasing, the Frenkel–Poole emission instead of the Schottky emission to conduct the carrier transport. When the temperature gets to 260 K, the leakage current becomes independent of temperature, and the space charge limited current conduction was observed.

  16. The rotational mobility of spin labels in wool creatine depending on temperature, humidity and deformation

    International Nuclear Information System (INIS)

    Bobodzhanov, P.Kh.; Yusupov, I.Kh.; Marupov, R.

    2001-01-01

    Present article is devoted to study of rotational mobility of spin labels in wool creatine depending on temperature, humidity and deformation. The experimental data of study of structure and molecular mobility of wool creatine modified by spin labels was considered.

  17. Temperature dependent quasiparticle renormalization in nickel and iron

    Energy Technology Data Exchange (ETDEWEB)

    Ovsyannikov, Ruslan; Thirupathaiah, Setti; Sanchez-Barriga, Jaime; Fink, Joerg; Duerr, Hermann [Helmholtz Zentrum Berlin, BESSY II, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany)

    2010-07-01

    One of the fundamental consequences of electron correlation effects is that the bare particles in solids become 'dressed' with an excitation cloud resulting in quasiparticles. Such a quasiparticle will carry the same spin and charge as the original particle, but will have a renormalized mass and a finite lifetime. The properties of many-body interactions are described with a complex function called self energy which is directly accessible to modern high-resolution angle resolved photoemission spectroscopy (ARPES). Ferromagnetic metals like nickel or iron offers the exciting possibility to study the spin dependence of quasiparticle coupling to bosonic modes. Utilizing the exchange split band structure as an intrinsic 'spin detector' it is possible to distinguish between electron-phonon and electron-magnon coupling phenomena. In this contribution we will report a systematic investigation of the k- and temperature dependence of the electron-boson coupling in nickel and iron metals as well as discuss origin of earlier observed anomalous lifetime broadening of majority spin states of nickel at Fermi level.

  18. Temperature dependence of nitrogen solubility in iron base multicomponent melts

    International Nuclear Information System (INIS)

    Sokolov, V.M.; Koval'chuk, L.A.

    1986-01-01

    Method for calculating temperature dependence of nitrogen solubility in iron base multicomponent melts is suggested. Application areas of existing methods were determined and advantages of the new method for calculating nitrogen solubility in multicomponent-doped iron melts (Fe-Ni-Cr-Mo, Fe-Ni-Cr-Mn, Fe-Mo-V) at 1773-2073 K are shown

  19. Electronically induced nuclear transitions - temperature dependence and Rabi oscillations

    International Nuclear Information System (INIS)

    Niez, J.J.

    2002-01-01

    This paper deals with a nucleus electromagnetically coupled with the bound states of its electronic surroundings. It describes the temperature dependence of its dynamics and the onset of potential Rabi oscillations by means of a Master Equation. The latter is generalized in order to account for possible strong resonances. Throughout the paper the approximation schemes are discussed and tested. (authors)

  20. Quasi-pions with temperature dependent dispersion relation

    International Nuclear Information System (INIS)

    Gorenstein, M.I.

    1995-01-01

    We construct the procedure to calculate thermodynamical functions for a system of quasi-particles with temperature dependent dispersion relation. Two models for the hot quasi-pion system are considered to illustrate the importance of thermodynamical self consistency requirements. 8 refs., 9 figs

  1. Temperature dependence of the μ+ hyperfine field in ferromagnets

    International Nuclear Information System (INIS)

    Nagamine, K.; Nirhida, N.; Hayano, R.S.; Yamazaki, T.; Brewes, J.H.; Fleming, D.G.

    1977-01-01

    The temperature dependences of the μ + hyperfine fields in Ni and in Fe were found to deviate from that of the saturation magnetization in opposite senses. Difference in the screening mechanism of conduction electrons around the μ + is considered, among several possible explanations. (Auth.)

  2. Anomalous temperature dependence of excitation transfer between quantum dots

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Menšík, Miroslav

    2015-01-01

    Roč. 7, č. 4 (2015), 325-330 ISSN 2164-6627 R&D Projects: GA MŠk(CZ) LD14011; GA MŠk LH12236; GA MŠk LH12186 Institutional support: RVO:68378271 ; RVO:61389013 Keywords : excitation transfer * quantum dots * temperature dependence * electron-phonon interaction Subject RIV: BM - Solid Matter Physics ; Magnetism

  3. Temperature dependence of critical resolved shear stress for cubic metals

    International Nuclear Information System (INIS)

    Rashid, H.; Fazal-e-Aleem; Ali, M.

    1996-01-01

    The experimental measurements for critical resolved shear stress of various BCC and FCC metals have been explained by using Radiation Model. The temperature dependence of CRSS for different cubic metals is found to the first approximation, to upon the type of the crystal. A good agreement between experimental observations and predictions of the Radiation Model is found. (author)

  4. Temperature dependence of electron concentration in cadmium arsenide

    NARCIS (Netherlands)

    Gelten, M.J.; Blom, F.A.P.

    1979-01-01

    From measurements of the temperature dependence of the electron concentration in Cd 3 As 2 , we found values for the conduction-band parameters that are in good agreement with those recently reported by Aubin, Caron, and Jay-Gerin. However, in contrast with these authors we found no small overlap,

  5. Temperature-dependent imaging of living cells by AFM

    International Nuclear Information System (INIS)

    Espenel, Cedric; Giocondi, Marie-Cecile; Seantier, Bastien; Dosset, Patrice; Milhiet, Pierre-Emmanuel; Le Grimellec, Christian

    2008-01-01

    Characterization of lateral organization of plasma membranes is a prerequisite to the understanding of membrane structure-function relationships in living cells. Lipid-lipid and lipid-protein interactions are responsible for the existence of various membrane microdomains involved in cell signalization and in numerous pathologies. Developing approaches for characterizing microdomains associate identification tools like recognition imaging with high-resolution topographical imaging. Membrane properties are markedly dependent on temperature. However, mesoscopic scale topographical information of cell surface in a temperature range covering most of cell biology experimentation is still lacking. In this work we have examined the possibility of imaging the temperature-dependent behavior of eukaryotic cells by atomic force microscopy (AFM). Our results establish that the surface of living CV1 kidney cells can be imaged by AFM, between 5 and 37 deg. C, both in contact and tapping modes. These first temperature-dependent data show that large cell structures appeared essentially stable at a microscopic scale. On the other hand, as shown by contact mode AFM, the surface was highly dynamic at a mesoscopic scale, with marked changes in apparent topography, friction, and deflection signals. When keeping the scanning conditions constant, a progressive loss in the image contrast was however observed, using tapping mode, on decreasing the temperature

  6. Ferromagnetism and temperature-dependent electronic structure in metallic films

    International Nuclear Information System (INIS)

    Herrmann, T.

    1999-01-01

    In this work the influence of the reduced translational symmetry on the magnetic properties of thin itinerant-electron films and surfaces is investigated within the strongly correlated Hubbard model. Firstly, the possibility of spontaneous ferromagnetism in the Hubbard model is discussed for the case of systems with full translational symmetry. Different approximation schemes for the solution of the many-body problem of the Hubbard model are introduced and discussed in detail. It is found that it is vital for a reasonable description of spontaneous ferromagnetism to be consistent with exact results concerning the general shape of the single-electron spectral density in the limit of strong Coulomb interaction between the electrons. The temperature dependence of the ferromagnetic solutions is discussed in detail by use of the magnetization curves as well as the spin-dependent quasi particle spectrum. For the investigation of thin films and surfaces the approximation schemes for the bulk system have to be generalized to deal with the reduced translational symmetry. The magnetic behavior of thin Hubbard films is investigated by use of the layer dependent magnetization as a function of temperature as well as the thickness of the film. The Curie-temperature is calculated as a function of the film thickness. Further, the magnetic stability at the surface is discussed in detail. Here it is found that for strong Coulomb interaction the magnetic stability at finite temperatures is reduced at the surface compared to the inner layers. This observation clearly contradicts the well-known Stoner picture of band magnetism and can be explained in terms of general arguments which are based on exact results in the limit of strong Coulomb interaction. The magnetic behavior of the Hubbard films can be analyzed in detail by inspecting the local quasi particle density of states as well as the wave vector dependent spectral density. The electronic structure is found to be strongly spin

  7. Temperature dependence and hysteresis of the initial permeability of the 50%Ni - 50%Fe alloy

    International Nuclear Information System (INIS)

    Kekalo, I.B.; Stolyarov, V.L.; Patsionov, V.A.

    1979-01-01

    Studied has been a temperature dependence of the initial permeability of the 50% Ni - 50% Fe alloy after primary and secondary recrystallization and effect of thermomagnetic treatment upon the dependence. For all the alloys with the structure of primary recrystallization a monotonous increase of initial permeability with temperature and the presence of slight temperature hysteresis are typical. Thermomagnetic treatment, not affecting considerably the temperature dependence of permeability for all the primarily recrystallized alloys, changes to a great extent the character of the dependence in the secondary recrystallized alloys. For 20-200-20 deg C temperature cycle of the alloys with secondary recrystallized structure are characterized after thermomagnetic treatment by the presence of gigantic hysteresis of initial permeability and a maximum on the heating branch of the curve in the vicinity of 130 deg C which are accounted for by peculiarities of temperature hysteresis of domain structure in the given alloy

  8. Experimental determination of the temperature dependence of metallic work functions at low temperatures. Progress report

    International Nuclear Information System (INIS)

    Pipes, P.B.

    1977-01-01

    Progress made under ERDA Contract No. EY-76-S-02-2314.002 is described. Efforts to gain theoretical insight into the temperature dependence of the contact potential of Nb near the superconducting transition have only been qualitatively successful. Preliminary measurements of adsorbed 4 He gas on the temperature dependence of the contact potentials of metals were performed and compared with a previously developed theory

  9. Temperature dependence of carbon isotope fractionation in CAM plants

    International Nuclear Information System (INIS)

    Deleens, E.; Treichel, I.; O'Leary, M.H.

    1985-01-01

    The carbon isotope fractionation associated with nocturnal malic acid synthesis in Kalanchoë daigremontiana and Bryophyllum tubiflorum was calculated from the isotopic composition of carbon-4 of malic acid, after appropriate corrections. In the lowest temperature treatment (17 degrees C nights, 23 degrees C days), the isotope fractionation for both plants is -4 per thousand (that is, malate is enriched in (13)C relative to the atmosphere). For K. daigremontiana, the isotope fractionation decreases with increasing temperature, becoming approximately 0 per thousand at 27 degrees C/33 degrees C. Detailed analysis of temperature effects on the isotope fractionation indicates that stomatal aperture decreases with increasing temperature and carboxylation capacity increases. For B. tubiflorum, the temperature dependence of the isotope fractionation is smaller and is principally attributed to the normal temperature dependences of the rates of diffusion and carboxylation steps. The small change in the isotopic composition of remaining malic acid in both species which is observed during deacidification indicates that malate release, rather than decarboxylation, is rate limiting in the deacidification process

  10. Temperature dependence of carbon isotope fractionation in CAM plants

    Energy Technology Data Exchange (ETDEWEB)

    Deleens, E.; Treichel, I.; O' Leary, M.H.

    1985-09-01

    The carbon isotope fractionation associated with nocturnal malic acid synthesis in Kalanchoe daigremontiana and Bryophyllum tubiflorum was calculated from the isotopic composition of carbon-4 of malic acid, after appropriate corrections. In the lowest temperature treatment (17/sup 0/C nights, 23/sup 0/C days), the isotope fractionation for both plants is -4% per thousand (that is, malate is enriched in /sup 13/C relative to the atmosphere). For K. daigremontiana, the isotope fractionation decreases with increasing temperature, becoming approximately 0% per thousand at 27/sup 0/C/33/sup 0/C. Detailed analysis of temperature effects on the isotope fractionation indicates that stomatal aperture decreases with increasing temperature and carboxylation capacity increases. For B. tubiflorum, the temperature dependence of the isotope fractionation is smaller and is principally attributed to the normal temperature dependences of the rates of diffusion and carboxylation steps. The small change in the isotopic composition of remaining malic acid in both species which is observed during deacidification indicates that malate release, rather than decarboxylation, is rate limiting in the deacidification process. 28 references, 1 figure, 4 tables.

  11. Temperature dependence of the electrical resistivity of amorphous Co80-xErxB20 alloys

    International Nuclear Information System (INIS)

    Touraghe, O.; Khatami, M.; Menny, A.; Lassri, H.; Nouneh, K.

    2008-01-01

    The temperature dependence of the electrical resistivity of amorphous Co 80-x Er x B 20 alloys with x=0, 3.9, 7.5 and 8.6 prepared by melt spinning in pure argon atmosphere was studied. All amorphous alloys investigated here are found to exhibit a resistivity minimum at low temperature. The electrical resistivity exhibits logarithmic temperature dependence below the temperature of resistivity minimum T min . In addition, the resistivity shows quadratic temperature behavior in the interval T min < T<77 K. At high temperature, the electrical resistivity was discussed by the extended Ziman theory. For the whole series of alloys, the composition dependence of the temperature coefficient of electrical resistivity α shows a change in structural short range occurring in the composition range 8-9 at%

  12. Temperature dependency of tensile properties of GFRP composite for wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Yong Hak; Kim, Jong Il; Kim, Dong Jin; Lee, Gun Chang [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2012-09-15

    In this study, the temperature dependency of the tensile properties of a glass fiber reinforced plastic (GFRP) used in wind turbine blades was examined. The tensile strength, elastic modulus, and Poisson's ratio of the tensile specimen manufactured from uniaxial (0 .deg.) and triaxial (0/{+-}45.deg) laminate composite plates were measured at four different testing temperatures-room temperature, -30 .deg. C, -50 .deg. C, and 60 .deg. C. It was found that the tensile strengths and elastic moduli of the uniaxial laminates were greater than those of the triaxial laminates over the testing temperature range. The tensile strength of the two laminates was significantly dependent on the testing temperature, while the dependency of the elastic modulus on the temperature was insignificant. Furthermore, it could be considered that the Poisson's ratio changed slightly with a change in the testing temperature.

  13. Temperature dependency of tensile properties of GFRP composite for wind turbine blades

    International Nuclear Information System (INIS)

    Huh, Yong Hak; Kim, Jong Il; Kim, Dong Jin; Lee, Gun Chang

    2012-01-01

    In this study, the temperature dependency of the tensile properties of a glass fiber reinforced plastic (GFRP) used in wind turbine blades was examined. The tensile strength, elastic modulus, and Poisson's ratio of the tensile specimen manufactured from uniaxial (0 .deg.) and triaxial (0/±45.deg) laminate composite plates were measured at four different testing temperatures-room temperature, -30 .deg. C, -50 .deg. C, and 60 .deg. C. It was found that the tensile strengths and elastic moduli of the uniaxial laminates were greater than those of the triaxial laminates over the testing temperature range. The tensile strength of the two laminates was significantly dependent on the testing temperature, while the dependency of the elastic modulus on the temperature was insignificant. Furthermore, it could be considered that the Poisson's ratio changed slightly with a change in the testing temperature

  14. On the Temperature Dependence of Enzyme-Catalyzed Rates.

    Science.gov (United States)

    Arcus, Vickery L; Prentice, Erica J; Hobbs, Joanne K; Mulholland, Adrian J; Van der Kamp, Marc W; Pudney, Christopher R; Parker, Emily J; Schipper, Louis A

    2016-03-29

    One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase "macromolecular rate theory (MMRT)" to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔCp(‡) that are in general negative. That is, the heat capacity (Cp) for the enzyme-substrate complex is generally larger than the Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔCp(‡) is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔCp(‡) has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a "psychrophilic trap" which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems.

  15. Temperature dependence of liquid lithium film formation and deuterium retention on hot W samples studied by LID-QMS. Implications for future fusion reactors

    Science.gov (United States)

    de Castro, A.; Sepetys, A.; González, M.; Tabarés, F. L.

    2018-04-01

    Liquid metal (LM) divertor concepts explore an alternative solution to the challenging power/particle exhaust issues in future magnetic fusion reactors. Among them, lithium (Li) is the most promising material. Its use has shown important advantages in terms of improved H-mode plasma confinement and heat handling capabilities. In such scenario, a possible combination of tungsten (W) on the first wall and liquid Li on the divertor could be an acceptable solution, but several issues related to material compatibility remain open. In particular, the co-deposition of Li and hydrogen isotopes on W components could increase the associated tritium retention and represent a safety risk, especially if these co-deposits can uncontrollably grow in remote/plasma shadowed zones of the first wall. In this work, the retention of Li and deuterium (D) on tungsten at different surface temperature (200 °C-400 °C) has been studied by exposing W samples to Li evaporation under several D2 gaseous environments. Deuterium retention in the W-Li films has been quantified by using laser induced desorption-mass spectrometry (LID-QMS). Additional techniques as thermal desorption spectroscopy, secondary ion mass spectrometry, profilemetry and flame atomic emission spectroscopy were implemented to corroborate the retention results and for the qualitative and quantitative characterization of the films. The results showed a negligible (below LID sensibility) D uptake at T surface  =  225 °C, when the W-Li layer is exposed to simultaneous Li evaporation and D2 gas exposition (0.67 Pa). Pre-lithiated samples were also exposed to higher D2 pressures (133.3 Pa) at different temperatures (200 °C-400 °C). A non-linear drastic reduction in the D retention with increasing temperatures was found on the W-Li films, presenting a D/Li atomic ratio at 400 °C lower than 0.1 at.% on a thin film of  ≈100 nm thick. These results bode well (in terms of tritium inventory) for the potential

  16. Temperature-dependent liquid metal flowrate control device

    International Nuclear Information System (INIS)

    Carlson, R.D.

    1978-01-01

    A temperature-dependent liquid metal flowrate control device includes a magnet and a ferromagnetic member defining therebetween a flow path for liquid metal, the ferromagnetic member being formed of a material having a curie temperature at which a change in the flow rate of the liquid metal is desired. According to the preferred embodiment the magnet is a cylindrical rod magnet axially disposed within a cylindrical member formed of a curie material and having iron pole pieces at the ends. A cylindrical iron shunt and a thin wall stainless steel barrier are disposed in the annulus between magnet and curie material. Below the curie temperature flow between steel barrier and curie material is impeded and above the curie temperature flow impedance is reduced

  17. Temperature and angular dependence of substrate response in SEGR

    International Nuclear Information System (INIS)

    Mouret, I.; Allenspach, M.; Schrimpf, R.D.; Brews, J.R.; Galloway, K.F.

    1994-01-01

    This work examines the role of the substrate response in determining the temperature and angular dependence of Single-Event Gate Rupture (SEGR). Experimental data indicate that the likelihood of SEGR increases when the temperature of the device is increased or when the incident angle is made closer to normal. In this work, simulations are used to explore this influence of high temperature on SEGR and to support physical explanations for this effect. The reduced hole mobility at high temperature causes the hole concentration at the oxide-silicon interface to be greater, increasing the transient oxide field near the strike position. In addition, numerical calculations show that the transient oxide field decreases as the ion's angle of incidence is changed from normal. This decreased field suggests a lowered likelihood for SEGR, in agreement with the experimental trend

  18. Temperature dependent structural and vibrational properties of liquid indium

    Science.gov (United States)

    Patel, A. B.; Bhatt, N. K.

    2018-05-01

    The influence of the temperature effect on both the structure factor and the phonon dispersion relation of liquid indium have been investigated by means of pseudopotential theory. The Percus-Yevick Hard Sphere reference system is applied to describe the structural calculation. The effective electron-ion interaction is explained by using modified empty core potential due to Hasegawa et al. along with a local field correction function due to Ichimaru-Utsumi (IU). The temperature dependence of pair potential needed at higher temperatures was achieved by multiplying the damping factor exp(- π/kBT2k F r ) in the pair potential. Very close agreement of static structure factor, particularly, at elevated temperatures confirms the validity of the local potential. A positive dispersion is found in low-q region and the correct trend of phonon dispersion branches like the experimental; shows all broad features of collective excitations in liquid metals.

  19. Temperature-dependence of the QCD topological susceptibility

    Science.gov (United States)

    Kovacs, Tamas G.

    2018-03-01

    We recently obtained an estimate of the axion mass based on the hypothesis that axions make up most of the dark matter in the universe. A key ingredient for this calculation was the temperature-dependence of the topological susceptibility of full QCD. Here we summarize the calculation of the susceptibility in a range of temperatures from well below the finite temperature cross-over to around 2 GeV. The two main difficulties of the calculation are the unexpectedly slow convergence of the susceptibility to its continuum limit and the poor sampling of nonzero topological sectors at high temperature. We discuss how these problems can be solved by two new techniques, the first one with reweighting using the quark zero modes and the second one with the integration method.

  20. A nanoscale temperature-dependent heterogeneous nucleation theory

    International Nuclear Information System (INIS)

    Cao, Y. Y.; Yang, G. W.

    2015-01-01

    Classical nucleation theory relies on the hypothetical equilibrium of the whole nucleation system, and neglects the thermal fluctuations of the surface; this is because the high entropic gains of the (thermodynamically extensive) surface would lead to multiple stable states. In fact, at the nanometer scale, the entropic gains of the surface are high enough to destroy the stability of the thermal equilibrium during nucleation, comparing with the whole system. We developed a temperature-dependent nucleation theory to elucidate the heterogeneous nucleation process, by considering the thermal fluctuations based on classical nucleation theory. It was found that the temperature not only affected the phase transformation, but also influenced the surface energy of the nuclei. With changes in the Gibbs free energy barrier, nucleation behaviors, such as the nucleation rate and the critical radius of the nuclei, showed temperature-dependent characteristics that were different from those predicted by classical nucleation theory. The temperature-dependent surface energy density of a nucleus was deduced based on our theoretical model. The agreement between the theoretical and experimental results suggested that the developed nucleation theory has the potential to contribute to the understanding and design of heterogeneous nucleation at the nanoscale

  1. Depth Dependent Relationships between Temperature and Ocean Heterotrophic Prokaryotic Production

    KAUST Repository

    Lønborg, Christian

    2016-06-07

    Marine prokaryotes play a key role in cycling of organic matter and nutrients in the ocean. Using a unique dataset (>14,500 samples), we applied a space-for-time substitution analysis to assess the temperature dependence of prokaryotic heterotrophic production (PHP) in epi- (0-200 m), meso- (201-1000 m) and bathypelagic waters (1001-4000 m) of the global ocean. Here, we show that the temperature dependence of PHP is fundamentally different between these major oceanic depth layers, with an estimated ecosystem-level activation energy (E) of 36 ± 7 kJ mol for the epipelagic, 72 ± 15 kJ mol for the mesopelagic and 274 ± 65 kJ mol for the bathypelagic realm. We suggest that the increasing temperature dependence with depth is related to the parallel vertical gradient in the proportion of recalcitrant organic compounds. These Ea predict an increased PHP of about 5, 12, and 55% in the epi-, meso-, and bathypelagic ocean, respectively, in response to a water temperature increase by 1°C. Hence, there is indication that a major thus far underestimated feedback mechanism exists between future bathypelagic ocean warming and heterotrophic prokaryotic activity.

  2. Depth Dependent Relationships between Temperature and Ocean Heterotrophic Prokaryotic Production

    KAUST Repository

    Lø nborg, Christian; Cuevas, L. Antonio; Reinthaler, Thomas; Herndl, Gerhard J.; Gasol, Josep M.; Moran, Xose Anxelu G.; Bates, Nicholas R.; á lvarez-Salgado, Xosé A.

    2016-01-01

    Marine prokaryotes play a key role in cycling of organic matter and nutrients in the ocean. Using a unique dataset (>14,500 samples), we applied a space-for-time substitution analysis to assess the temperature dependence of prokaryotic heterotrophic production (PHP) in epi- (0-200 m), meso- (201-1000 m) and bathypelagic waters (1001-4000 m) of the global ocean. Here, we show that the temperature dependence of PHP is fundamentally different between these major oceanic depth layers, with an estimated ecosystem-level activation energy (E) of 36 ± 7 kJ mol for the epipelagic, 72 ± 15 kJ mol for the mesopelagic and 274 ± 65 kJ mol for the bathypelagic realm. We suggest that the increasing temperature dependence with depth is related to the parallel vertical gradient in the proportion of recalcitrant organic compounds. These Ea predict an increased PHP of about 5, 12, and 55% in the epi-, meso-, and bathypelagic ocean, respectively, in response to a water temperature increase by 1°C. Hence, there is indication that a major thus far underestimated feedback mechanism exists between future bathypelagic ocean warming and heterotrophic prokaryotic activity.

  3. Temperature dependence of erythrocyte aggregation in vitro by backscattering nephelometry

    Science.gov (United States)

    Sirko, Igor V.; Firsov, Nikolai N.; Ryaboshapka, Olga M.; Priezzhev, Alexander V.

    1997-05-01

    We apply backscattering nephelometry technique to register the alterations of the scattering signal from a whole blood sample due to appearance or disappearance of different types of erythrocyte aggregates in stasis and under controlled shear stress. The measured parameters are: the characteristic times of linear and 3D aggregates formation, and the strength of aggregates of different types. These parameters depend on the sample temperature in the range of 2 divided by 50 degrees C. Temporal parameters of the aggregation process strongly increase at temperature 45 degrees C. For samples of normal blood the aggregates strength parameters do not significantly depend on the sample temperature, whereas for blood samples from patients suffering Sjogren syndrome we observe high increase of the strength of 3D and linear aggregates and decrease of time of linear aggregates formation at low temperature of the sample. This combination of parameters is opposite to that observed in the samples of pathological blood at room temperature. Possible reasons of this behavior of aggregation state of blood and explanation of the observed effects will be discussed.

  4. Temperature dependence of work hardening in sparsely twinning zirconium

    International Nuclear Information System (INIS)

    Singh, Jaiveer; Mahesh, S.; Roy, Shomic; Kumar, Gulshan; Srivastava, D.; Dey, G.K.; Saibaba, N.; Samajdar, I.

    2017-01-01

    Fully recrystallized commercial Zirconium plates were subjected to uniaxial tension. Tests were conducted at different temperatures (123 K - 623 K) and along two plate directions. Both directions were nominally unfavorable for deformation twinning. The effect of the working temperature on crystallographic texture and in-grain misorientation development was insignificant. However, systematic variation in work hardening and in the area fraction and morphology of deformation twins was observed with temperature. At all temperatures, twinning was associated with significant near boundary mesoscopic shear, suggesting a possible linkage with twin nucleation. A binary tree based model of the polycrystal, which explicitly accounts for grain boundary accommodation and implements the phenomenological extended Voce hardening law, was implemented. This model could capture the measured stress-strain response and twin volume fractions accurately. Interestingly, slip and twin system hardness evolution permitted multiplicative decomposition into temperature-dependent, and accumulated strain-dependent parts. Furthermore, under conditions of relatively limited deformation twinning, the work hardening of the slip and twin systems followed two phenomenological laws proposed in the literature for non-twinning single-phase face centered cubic materials.

  5. Quantitative Temperature Dependence of Longitudinal Spin Seebeck Effect at High Temperatures

    Directory of Open Access Journals (Sweden)

    Ken-ichi Uchida

    2014-11-01

    Full Text Available We report temperature-dependent measurements of longitudinal spin Seebeck effects (LSSEs in Pt/Y_{3}Fe_{5}O_{12} (YIG/Pt systems in a high temperature range from room temperature to above the Curie temperature of YIG. The experimental results show that the magnitude of the LSSE voltage in the Pt/YIG/Pt systems rapidly decreases with increasing the temperature and disappears above the Curie temperature. The critical exponent of the LSSE voltage in the Pt/YIG/Pt systems at the Curie temperature is estimated to be 3, which is much greater than that for the magnetization curve of YIG. This difference highlights the fact that the mechanism of the LSSE cannot be explained in terms of simple static magnetic properties in YIG.

  6. Tiny optical fiber temperature sensor based on temperature-dependent refractive index of zinc telluride film

    Science.gov (United States)

    Bian, Qiang; Song, Zhangqi; Song, Dongyu; Zhang, Xueliang; Li, Bingsheng; Yu, Yang; Chen, Yuzhong

    2018-03-01

    The temperature-dependent refractive index of zinc telluride film can be used to develop a tiny, low cost and film-coated optical fiber temperature sensor. Pulse reference-based compensation technique is used to largely reduce the background noise which makes it possible to detect the minor reflectivity change of the film in different temperatures. The temperature sensitivity is 0.0034dB/° and the background noise is measured to be 0.0005dB, so the resolution can achieve 0.2°.

  7. On the Temperature Dependence of the UNIQUAC/UNIFAC Models

    DEFF Research Database (Denmark)

    Skjold-Jørgensen, Steen; Rasmussen, Peter; Fredenslund, Aage

    1980-01-01

    of the simultaneous correlation. The temperature dependent parameters have, however, little physical meaning and very odd results are frequently obtained when the interaction parameters obtained from excess enthalpy information alone are used for the prediction of vapor-liquid equilibria. The UNIQUAC/UNIFAC models...... parameters based on excess enthalpy data, and the prediction of excess enthalpy information from only one isothermal set of vapor-liquid equilibrium data is qualitatively acceptable. A parameter table for the modified UNIFAC model is given for the five main groups: CH2, C = C, ACH, ACCH2 and CH2O.......Local composition models for the description of the properties of liquid mixtures do not in general give an accurate representation of excess Gibbs energy and excess enthalpy simultaneously. The introduction of temperature dependent interaction parameters leads to considerable improvements...

  8. Temperature dependence of the beam-foil interaction

    International Nuclear Information System (INIS)

    Gay, T.J.; Berry, H.G.

    1978-01-01

    The beam energy dependence between 50 and 200 keV of the linear polarization fraction (M/I) of the 2s 1 S--3p 1 P, 5016 A transition in He I on temperature was measured. The thin carbon exciter foils were heated externally by nichrome resistance elements. The measurements of Hight et al. are duplicated; the energy and current dependences are the same for corresponding between beam heating and external heating. It was also observed that γ, the number of slow secondary electrons produced per incident ion, decreases with increasing foil temperature. These two effects, in conjunction, offer a plausible explanation for the variation of polarization with beam current density. 5 figures

  9. On the urban heat island effect dependence on temperature trends

    International Nuclear Information System (INIS)

    Camilloni, I.; Barros, V.

    1997-01-01

    For US, Argentine and Australian cities, yearly mean urban to rural temperature differences (ΔT u-r ) and rural temperatures (T r ) are negatively correlated in almost every case, suggesting that urban heat island intensity depends, among other parameters on the temperature itself. This negative correlation is related to the fact that interannual variability of temperature is generally lower in urban environments than in rural areas. This seems to hold true at low frequencies leading to opposite trends in the two variables. Hence, urban stations are prone to have lower trends in absolute value than rural ones. Therefore, regional data sets including records from urban locations, in addition to urban growth bias may have a second type of urban bias associated with temperature trends. A bulk estimate of this second urban bias trend for the contiguous United States during 1901-1984 indicates that it could be of the same order as the urban growth bias and of opposite sign. If these results could be extended to global data, it could be expected that the spurious influence of urban growth on global temperature trends during warming periods will be offset by the diminishing of the urban heat island intensity. 36 refs., 7 figs., 2 tabs

  10. Temperature dependence of heat sensitization and thermotolerance induction with ethanol

    International Nuclear Information System (INIS)

    Henle, K.J.; Nagle, W.A.; Moss, A.J.

    1987-01-01

    Cytoxicity of 1 M ethanol was strongly temperature dependent; survival curves between 34 0 and 39 0 C were similar to heat survival curves between 40 and 45 0 without ethanol. Ethanol was non-toxic at 22 0 ; at 34.5 0 and 35.5 0 ethanol survival curves were biphasic. The major effect of 1 M ethanol was an effective temperature shift of 6.4 Celsius degrees, although temperatures between 34 0 and 36 0 caused additional sensitization reminiscent of the stepdown heating phenomenon. Induction of thermotolerance with equitoxic ethanol exposures at 35.5 0 and 37 0 or with heat alone (10 min, 45 0 ) resulted in tolerance development with similar kinetics; in contrast, ethanol exposures at 22 0 did not induce any tolerance development with similar kinetics; in contrast, ethanol exposures at 22 0 did not induce any tolerance to hyperthermia. These data provide a rationale for conflicting reports in the literature regarding thermotolerance induction by ethanol and suggest that ethanol causes ''heat'' stress at temperatures that are generally considered to be physiological. This interpretation predicts that the use of ethanol and other organic solvents in high concentrations will cause effects at 37 0 that normally occur only at hyperthermic temperatures, including membrane perturbations and HSP synthesis, and that ''physiological'' temperatures must be precisely controlled under those conditions

  11. Temperature dependence on the time and momentum spectra in germanium

    International Nuclear Information System (INIS)

    Schultz, P.J.; MacKenzie, I.K.

    1982-01-01

    Recent measurements using the slow-#betta# + beam at Brookhaven, have suggested a thermally activated trapping mechanism which inhibited positron diffusion in single-crystal Ge. Supporting evidence has now been obtained from both Doppler broadening and lifetime measurements but, in both cases, the temperature dependence was so weak that it required the use of dual digital stabilization and unusual statistical precision in both types of spectrometry. (Auth.)

  12. Tunneling magnetoresistance dependence on the temperature in a ferromagnetic Zener diode

    Energy Technology Data Exchange (ETDEWEB)

    Comesana, E; Aldegunde, M; GarcIa-Loureiro, A, E-mail: enrique.comesana@usc.e [Departamento de Electronica e Computacion, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain)

    2009-11-15

    In the present work we focus on the study of the temperature dependence of the tunnelling current in a ferromagnetic Zener diode. We predict the tunneling magnetoresistance dependence on the temperature. Large doping concentrations lead to magnetic semiconductors with Curie temperature T{sub C} near or over room temperature and this will facilitate the introduction of new devices that make use of the ferromagnetism effects. According to our calculations the tunneling magnetoresistance has the form TMR {proportional_to} (T{sup n}{sub C}-T{sup n}).

  13. High resolution x-ray diffraction study of the substrate temperature and thickness dependent microstructure of reactively sputtered epitaxial ZnO films

    KAUST Repository

    Singh, Devendra

    2017-08-24

    Epitaxial ZnO films were grown on c-sapphire by reactive sputtering of zinc target in Ar-O2 mixture. High resolution X-ray diffraction measurements were carried out to obtain lateral and vertical coherence lengths, crystallite tilt and twist, micro-strain and densities of screw and edge dislocations in epilayers of different thickness (25 - 200 nm) and those grown at different temperatures (100 - 500 °C). phgr-scans indicate epitaxial growth in all the cases, although epilayers grown at lower substrate temperatures (100 °C and 200 °C) and those of smaller thickness (25 nm and 50 nm) display inferior microstructural parameters. This is attributed to the dominant presence of initially grown strained 2D layer and subsequent transition to an energetically favorable mode. With increase in substrate temperature, the transition shifts to lower thickness and growth takes place through the formation of 2D platelets with intermediate strain, over which 3D islands grow. Consequently, 100 nm thick epilayers grown at 300 °C display the best microstructural parameters (micro-strain ~1.2 x 10-3, screw and edge dislocation densities ~1.5 x 1010 cm-2 and ~2.3 x 1011 cm-2, respectively). A marginal degradation of microstructural parameters is seen in epilayers grown at higher substrate temperatures, due to the dominance of 3D hillock type growth.

  14. High resolution x-ray diffraction study of the substrate temperature and thickness dependent microstructure of reactively sputtered epitaxial ZnO films

    KAUST Repository

    Singh, Devendra; Kumar, Ravi; Ganguli, Tapas; Major, Syed S

    2017-01-01

    Epitaxial ZnO films were grown on c-sapphire by reactive sputtering of zinc target in Ar-O2 mixture. High resolution X-ray diffraction measurements were carried out to obtain lateral and vertical coherence lengths, crystallite tilt and twist, micro-strain and densities of screw and edge dislocations in epilayers of different thickness (25 - 200 nm) and those grown at different temperatures (100 - 500 °C). phgr-scans indicate epitaxial growth in all the cases, although epilayers grown at lower substrate temperatures (100 °C and 200 °C) and those of smaller thickness (25 nm and 50 nm) display inferior microstructural parameters. This is attributed to the dominant presence of initially grown strained 2D layer and subsequent transition to an energetically favorable mode. With increase in substrate temperature, the transition shifts to lower thickness and growth takes place through the formation of 2D platelets with intermediate strain, over which 3D islands grow. Consequently, 100 nm thick epilayers grown at 300 °C display the best microstructural parameters (micro-strain ~1.2 x 10-3, screw and edge dislocation densities ~1.5 x 1010 cm-2 and ~2.3 x 1011 cm-2, respectively). A marginal degradation of microstructural parameters is seen in epilayers grown at higher substrate temperatures, due to the dominance of 3D hillock type growth.

  15. Complete FDTD analysis of microwave heating processes in frequency-dependent and temperature dependent media

    Energy Technology Data Exchange (ETDEWEB)

    Torres, F.; Jecko, B. [Univ. de Limoges (France). Inst. de Recherche en Communications Optiques et Microondes

    1997-01-01

    It is well known that the temperature rise in a material modifies its physical properties and, particularly, its dielectric permittivity. The dissipated electromagnetic power involved in microwave heating processes depending on {var_epsilon}({omega}), the electrical characteristics of the heated media must vary with the temperature to achieve realistic simulations. In this paper, the authors present a fast and accurate algorithm allowing, through a combined electromagnetic and thermal procedure, to take into account the influence of the temperature on the electrical properties of materials. First, the temperature dependence of the complex permittivity ruled by a Debye relaxation equation is investigated, and a realistic model is proposed and validated. Then, a frequency-dependent finite-differences time-domain ((FD){sup 2}TD) method is used to assess the instantaneous electromagnetic power lost by dielectric hysteresis. Within the same iteration, a time-scaled form of the heat transfer equation allows one to calculate the temperature distribution in the heated medium and then to correct the dielectric properties of the material using the proposed model. These new characteristics will be taken into account by the EM solver at the next iteration. This combined algorithm allows a significant reduction of computation time. An application to a microwave oven is proposed.

  16. Yolk-albumen testosterone in a lizard with temperature-dependent sex determination: relation with development.

    Science.gov (United States)

    Huang, Victoria; Bowden, Rachel M; Crews, David

    2013-06-01

    The leopard gecko (Eublepharis macularius) exhibits temperature-dependent sex determination as well as temperature-influenced polymorphisms. Research suggests that in oviparous reptiles with temperature-dependent sex determination, steroid hormones in the yolk might influence sex determination and sexual differentiation. From captive leopard geckos that were all from the same incubation temperature regime, we gathered freshly laid eggs, incubated them at one of two female-biased incubation temperatures (26 or 34°C), and measured testosterone content in the yolk-albumen at early or late development. No differences in the concentration of testosterone were detected in eggs from different incubation temperatures. We report testosterone concentrations in the yolk-albumen were higher in eggs of late development than early development at 26°C incubation temperatures, a finding opposite that reported in other TSD reptiles studied to date. Copyright © 2013. Published by Elsevier Inc.

  17. Temperature dependence of magnetically dead layers in ferromagnetic thin-films

    Directory of Open Access Journals (Sweden)

    M. Tokaç

    2017-11-01

    Full Text Available Polarized neutron reflectometry has been used to study interface magnetism and magnetic dead layers in model amorphous CoFeB:Ta alloy thin-film multilayers with Curie temperatures tuned to be below room-temperature. This allows temperature dependent variations in the effective magnetic thickness of the film to be determined at temperatures that are a significant fraction of the Curie temperature, which cannot be achieved in the material systems used for spintronic devices. In addition to variation in the effective magnetic thickness due to compositional grading at the interface with the tantalum capping layer, the key finding is that at the interface between ferromagnetic film and GaAs(001 substrate local interfacial alloying creates an additional magnetic dead-layer. The thickness of this magnetic dead-layer is temperature dependent, which may have significant implications for elevated-temperature operation of hybrid ferromagnetic metal-semiconductor spintronic devices.

  18. STM and x-ray diffraction temperature-dependent growth study of SrRuO{sub 3} PLD thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, M.E.; Jia, Q.X.; Brown, G.W.

    1996-12-31

    SrRuO{sub 3} (SRO) has recently found a number of applications in different fields, e.g. as a buffer layer for the growth of high temperature superconductor (HTS) YBa{sub 2}Cu{sub 3}O{sub 7-x} films and as a bottom electrode for ferroelectric or high dielectric constant thin film capacitors and nonvolatile data storage. The growth of high crystallinity SRO films with good structural and electrical properties is the prerequisite for each of these applications. In this paper we describe the affect of one growth parameters temperature (T), on the crystalline quality, epitaxial substrate relationship and resulting electrical properties. SRO films were deposited on LaAlO{sub 3} single crystal substrates by pulsed laser deposition at substrate temperatures (T{sub s}) ranging from room temperature (RT) up to 800{degrees}C with a nominal film thickness of 150 nm range. The resulting films were characterized by x-ray diffraction, 4-point transport, and STM. The films` microstructures, as revealed by STM, evolved from polygranular at RT to a layered plate-like structure at higher deposition temperatures, T{sub s}, Increasing T{sub s} was marked first by increasing grain size, then a stronger orientational relationship between film and substrate, finally followed by the development of increased connectivity between grains to an extended island or condensed layered state. The transition from polygranular to layered structure occurred at T{sub s} > 650{degrees}C. Increased conductivity paralleled the changes in microstructure. The surfaces of all of the films were relatively smooth; the oriented films are suitable for use as conductive templates in multilayer structures.

  19. The Temperature Condition of the Plate with Temperature-Dependent Thermal Conductivity and Energy Release

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2016-01-01

    Full Text Available The temperature state of a solid body, in addition to the conditions of its heat exchange with the environment, can greatly depend on the heat release (or heat absorption processes within the body volume. Among the possible causes of these processes should be noted such as a power release in the fuel elements of nuclear reactors, exothermic or endothermic chemical reactions in the solid body material, which respectively involve heat release or absorbtion, heat transfer of a part of the electric power in the current-carrying conductors (so-called Joule’s heat or the energy radiation penetrating into the body of a semitransparent material, etc. The volume power release characterizes an intensity of these processes.The extensive list of references to the theory of heat conductivity of solids offers solutions to problems to determine a stationary (steady over time and non-stationary temperature state of the solids (as a rule, of the canonical form, which act as the sources of volume power release. Thus, in general case, a possibility for changing power release according to the body volume and in solving the nonstationary problems also a possible dependence of this value on the time are taken into consideration.However, in real conditions the volume power release often also depends on the local temperature, and such dependence can be nonlinear. For example, with chemical reactions the intensity of heat release or absorption is in proportion to their rate, which, in turn, is sensitive to the temperature value, and a dependence on the temperature is exponential. A further factor that in such cases makes the analysis of the solid temperature state complicated, is dependence on the temperature and the thermal conductivity of this body material, especially when temperature distribution therein  is significantly non-uniform. Taking into account the influence of these factors requires the mathematical modeling methods, which allow us to build an adequate

  20. Study of temperature dependence and angular distribution of poly(9,9-dioctylfluorene) polymer films deposited by matrix-assisted pulsed laser evaporation (MAPLE)

    International Nuclear Information System (INIS)

    Caricato, A.P.; Anni, M.; Manera, M.G.; Martino, M.; Rella, R.; Romano, F.; Tunno, T.; Valerini, D.

    2009-01-01

    Poly(9,9-dioctylfluorene) (PFO) polymer films were deposited by matrix-assisted pulsed laser evaporation (MAPLE) technique. The polymer was diluted (0.5 wt%) in tetrahydrofuran and, once cooled to liquid nitrogen temperature, it was irradiated with a KrF excimer laser. 10,000 laser pulses were used to deposit PFO films on Si substrates at different temperatures (-16, 30, 50 and 70 deg. C). One PFO film was deposited with 16,000 laser pulses at a substrate temperature of 50 deg. C. The morphology, optical and structural properties of the films were investigated by SEM, AFM, PL and FTIR spectroscopy. SEM inspection showed different characteristic features on the film surface, like deflated balloons, droplets and entangled polymer filaments. The roughness of the films was, at least partially, controlled by substrate heating, which however had the effect to reduce the deposition rate. The increase of the laser pulse number modified the target composition and increased the surface roughness. The angular distribution of the material ejected from the target confirmed the forward ejection of the target material. PFO films presented negligible modification of the chemical structure respect to the bulk material.

  1. Temperature-dependent Raman and ultraviolet photoelectron spectroscopy studies on phase transition behavior of VO{sub 2} films with M1 and M2 phases

    Energy Technology Data Exchange (ETDEWEB)

    Okimura, Kunio, E-mail: okifn@keyaki.cc.u-tokai.ac.jp; Hanis Azhan, Nurul [Graduate School of Engineering, Tokai University, Hiratsuka 259-1292 (Japan); Hajiri, Tetsuya [UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Kimura, Shin-ichi [UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871 (Japan); Zaghrioui, Mustapha; Sakai, Joe [GREMAN, UMR 7347 CNRS, Université François Rabelais de Tours, Parc de Grandmont, 37200 Tours (France)

    2014-04-21

    Structural and electronic phase transitions behavior of two polycrystalline VO{sub 2} films, one with pure M1 phase and the other with pure M2 phase at room temperature, were investigated by temperature-controlled Raman spectroscopy and ultraviolet photoelectron spectroscopy (UPS). We observed characteristic transient dynamics in which the Raman modes at 195 cm{sup −1} (V-V vibration) and 616 cm{sup −1} (V-O vibration) showed remarkable hardening along the temperature in M1 phase film, indicating the rearrangements of V-V pairs and VO{sub 6} octahedra. It was also shown that the M1 Raman mode frequency approached those of invariant M2 peaks before entering rutile phase. In UPS spectra with high energy resolution of 0.03 eV for the M2 phase film, narrower V{sub 3d} band was observed together with smaller gap compared to those of M1 phase film, supporting the nature of Mott insulator of M2 phase even in the polycrystalline film. Cooperative behavior of lattice rearrangements and electronic phase transition was suggested for M1 phase film.

  2. Temperature dependent dynamic susceptibility calculations for itinerant ferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, J. F.

    1980-10-01

    Inelastic neutron scattering experiments have revealed a variety of interesting and unusual phenomena associated with the spin dynamics of the 3-d transition metal ferromagnets nickel and iron. An extensive series of calculations based on the itinerant electron formalism has demonstrated that the itinerant model does provide an excellent quantitative as well as qualitative description of the measured spin dynamics of both nickel and iron at low temperatures. Recent angular photo emission experiments have indicated that there is a rather strong temperature dependence of the electronic spin-splitting which, from relatively crude arguments, appears to be inconsistent with neutron scattering results. In order to investigate this point and also the origin of spin-wave renormalization, a series of calculations of the dynamic susceptibility of nickel and iron has been undertaken. The results of these calculations indicate that a discrepancy exists between the interpretations of neutron and photoemission experimental results regarding the temperature dependence of the spin-splitting of the electronic energy bands.

  3. Temperature-dependent photoluminescence from CdS/Si nanoheterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yue Li; Li, Yong; Ji, Peng Fei; Zhou, Feng Qun; Sun, Xiao Jun; Yuan, Shu Qing; Wan, Ming Li [Pingdingshan University, Department of Physics, Solar New Energy Research Center, Pingdingshan (China); Ling, Hong [North China University of Water Resources and Electric Power, Department of Mathematics and Information Science, Zhengzhou (China)

    2016-12-15

    CdS/Si nanoheterojunctions have been fabricated by growing nanocrystal CdS (nc-CdS) on the silicon nanoporous pillar array (Si-NPA) through using a chemical bath deposition method. The nanoheterojunctions have been constructed by three layers: the upper layer being a nc-CdS thin films, the intermediate layer being the interface region including nc-CdS and nanocrystal silicon (nc-Si), and the bottom layer being nc-Si layer grown on sc-Si substrate. The room temperature and temperature-dependent photoluminescence (PL) have been measured and analyzed to provide some useful information of defect states. Utilizing the Gauss-Newton fitting method, five emission peaks from the temperature-dependent PL spectra can be determined. From the high energy to low energy, these five peaks are ascribed to the some luminescence centers which are formed by the oxygen-related deficiency centers in the silicon oxide layer of Si-NPA, the band gap emission of nc-CdS, the transition from the interstitial cadmium (I{sub Cd}) to the valence band, the recombination from I{sub Cd} to cadmium vacancies (V{sub Cd}), and from sulfur vacancies (V{sub s}) to the valence band, respectively. Understanding of the defect states in the CdS/Si nanoheterojunctions is very meaningful for the performance of devices based on CdS/Si nanoheterojunctions. (orig.)

  4. Temperature-dependent magnetic EXAFS investigation of Gd

    CERN Document Server

    Wende, H; Poulopoulos, P N; Rogalev, A; Goulon, J; Schlagel, D L; Lograsso, T A; Baberschke, K

    2001-01-01

    Magnetic EXAFS (MEXAFS) is the helicity-dependent counterpart of the well-established EXAFS technique. By means of MEXAFS it is possible not only to analyze the local magnetic structure but also to learn about magnetic fluctuations. Here we present the MEXAFS of a Gd single crystal at the L sub 3 sub , sub 2 -edges in the temperature range of 10-250 K. For the first time MEXAFS was probed over a large range in reduced temperature of 0.04<=T/T sub C<=0.85 with T sub C =293 K. We show that the vibrational damping described by means of a Debye temperature of theta sub D =160 K must be taken into account for the spin-dependent MEXAFS before analyzing magnetic fluctuations. For a detailed analysis of the MEXAFS and the EXAFS, the experimental data are compared to ab initio calculations. This enables us to separate the individual single- from the multiple-scattering contributions. The MEXAFS data have been recorded at the ID 12A beamline of the European Synchrotron Radiation Facility (ESRF). To ensure that th...

  5. Temperature dependence and the moving species during ion mixing

    International Nuclear Information System (INIS)

    Xia, W.; Fernandes, M.; Hewett, C.A.; Lau, S.S.; Poker, D.B.; Biersack, J.P.

    1988-01-01

    In this paper, the authors review the experimental observations of the temperature dependence and the moving species in ion mixing, emphasizing the metal-semiconductor systems. Ion mixing is the combined effect of two components. One component is temperature independent and is primarily due to events in the prompt regime, the other component is temperature dependent and has the characteristics of the associated thermal reactions. The moving species during ion mixing are influenced by collisional effects, either due to secondary recoils, or due to local hot spots, or both. The secondary recoil concept is consistent with experimental observations that the motion of the lighter element in a bilayer sample is enhanced. There is ample evidence that while the a thermal regime is caused by particle-solid interactions, thermodynamical forces are important in deciding the magnitude of mixing. In the thermally activated regime, the ion induced reaction product should be influenced by the heats of formation of various compounds. We also indicate areas where satisfactory explanations are not available at present

  6. Peculiarities of the temperature dependences of trapped magnetic field in Y-HTSC ceramics

    International Nuclear Information System (INIS)

    Sukhanov, A.A.; Omel'chenko, V.I.

    2001-01-01

    The temperature dependence H t (T) of trapped magnetic field (TMF) in Y-HTSC ceramics are studied. For the fields-cooled trapping the H t (T) dependences coincide with the dependences of H t on trapping temperature T t . Both dependences fall off monotonously with increasing temperature, and for low fields they reach saturation as temperature is decreased. When the trapping is induced by the field pulse after zero cooling the H t (T t ) dependences show a maximum while the H t (T) curves drop monotonously with increase in temperature. In this case the rate of their dropping increases with decrease in pulse magnitude and the temperature of TMF vanishing decreases with T t and H. The results are discussed and it is shown that contrast to the Been model the theory based on the model of TMF in superconductive loops gives an adequate analytical description of the observed features of the temperature dependences of trapped magnetic field in the Y-HTSC ceramics

  7. Dependence of negative muon depolarization on molecular weight and temperature in organic compounds

    International Nuclear Information System (INIS)

    Djuraev, A.A.; Evseev, V.S.; Obukhov, Yu.V.; Roganov, V.S.

    2009-01-01

    An atomic capture of negative muons in the aliphatic spirit series, the dependence of muon rest polarization on the molecular weight of spirit have been studied. The temperature dependence of depolarization in benzole and styrene has been obtained. The results on depolarization are being interpreted basing on notions about chemical interactions of mesic atoms in organic compounds. (author)

  8. Temperature dependent pinning landscapes in REBCO thin films

    Science.gov (United States)

    Jaroszynski, Jan; Constantinescu, Anca-Monia; Hu, Xinbo Paul

    2015-03-01

    The pinning landscapes of REBCO (RE=rare earth elements) thin films have been a topic of study in recent years due to, among other reasons, their high ability to introduce various phases and defects. Pinning mechanisms studies in high temperature superconductors often require detailed knowledge of critical current density as a function of magnetic field orientation as well as field strength and temperature. Since the films can achieve remarkably high critical current, challenges exist in evaluating these low temperature (down to 4.2 K) properties in high magnetic fields up to 30 T. Therefore both conventional transport, and magnetization measurements in a vibrating coil magnetometer equipped with rotating sample platform were used to complement the study. Our results clearly show an evolution of pinning from strongly correlated effects seen at high temperatures to significant contributions from dense but weak pins that thermal fluctuations render ineffective at high temperatures but which become strong at lower temperatures Support for this work is provided by the NHMFL via NSF DRM 1157490

  9. Non stoichiometry in U3O(8±x), its temperature and oxygen pressure dependence

    International Nuclear Information System (INIS)

    Rodriguez De Sastre, M.S.; Philippot, J.; Moreau, C.

    1967-01-01

    The deviation from stoichiometry in uranium oxide U 3 O 8 obtained by oxidation of UO 2 , has been studied with respect to its dependence on temperature and oxygen pressure. It is shown that the ratio r = O/U increases with oxygen pressure up to 200 mm Hg at any temperature. At higher pressures, this ratio tends toward a limit which decreases with increasing temperatures. The curve r = f(P) suggest a chemisorption phenomenon as the reaction limiting mechanism. (authors) [fr

  10. [CAM in Tillandsia usneoides: Studies on the pathway of carbon and the dependency of CO2-exchange on light intensity, temperature and water content of the plant].

    Science.gov (United States)

    Kluge, M; Lange, O L; Eichmann, M V; Schmid, R

    1973-12-01

    Tillandsia usneoides, in the common sense a non-succulent plant, exhibits CO2 exchange characterized by net CO2 dark fixation during the night and depression of CO2 exchange during the day. Malate has been demonstrated to accumulate during CO2 dark fixation and to be converted to carbohydrates in light. Thus, T. usneoides exhibits CAM like typical succulents.Net CO2 uptake during the day is increased with net CO2 output being suppressed in duration of time and extent when light intensity increases. Furthermore, a slight increase in CO2 fixation during the following night can be observed if the plants were treated with high light intensity during the previous day.Curves of CO2 exchange typical for CAM are obtained if T. usneoides is kept at 15°C and 20°C. Lower temperature tend to increase CO2 uptake during the day and to inhibit CO2 dark fixation. Temperatures higher than 20°C favour loss of CO2 by respiration, which becomes apparent during the whole day and night at 30°C and higher temperatures. Thus, T. usneoides gains carbon only at temperatures well below 25°C.Net CO2 uptake during the day occurs only in moist plant material and is inhibited in plants cept under water stress conditions. However, CO2 uptake during the night is clearly favoured if the plants dry out. Therefore dry plants gain more carbon than moist ones.Curves of CO2 exchange typical for CAM were also obtained with 13 other species of the genus Tillandsia.The exhibition of CAM by the non-succulent T. usneoides calls for a new definition of the term "succulence" if it is to remain useful in characterizing this metabolic pathway. Because CO2-fixing cells of T. usneoides possess relatively large vacuoles and are relatively poor in chloroplasts, they resembles the assimilatory cells of typical CAM-exhibiting succulents. Therefore, if "succulence" only means the capacity of big vacuoles to store malate, the assimilatory cells in T. usneoides are succulent. It seems to be useful to investigate

  11. Shock temperature dependent rate law for plastic bonded explosives

    Science.gov (United States)

    Aslam, Tariq D.

    2018-04-01

    A reactive flow model for the tri-amino-tri-nitro-benzene (TATB) based plastic bonded explosive PBX 9502 (95% TATB, 5% polymeric binder Kel-F 800) is presented. This newly devised model is based primarily on the shock temperature of the material, along with local pressure, and accurately models a broader range of detonation and initiation scenarios. Specifically, sensitivity changes to the initial explosive temperature are accounted for naturally and with a single set of parameters. The equation of state forms for the reactants and products, as well as the thermodynamic closure of pressure and temperature equilibration, are carried over from the Wescott-Stewart-Davis (WSD) model [Wescott et al., J. Appl. Phys. 98, 053514 (2005) and "Modeling detonation diffraction and dead zones in PBX-9502," in Proceedings of the Thirteenth International Detonation Symposium (2006)]. This newly devised model, with Arrhenius state dependence on the shock temperature, based on the WSD equation of states, is denoted by AWSD. Modifying an existing implementation of the WSD model to the AWSD model in a hydrocode is a rather straightforward procedure.

  12. Temperature dependence of thermal pressure for NaCl

    Science.gov (United States)

    Singh, Chandra K.; Pande, Brijesh K.; Pandey, Anjani K.

    2018-05-01

    Engineering applications of the materials can be explored upto the desired limit of accuracy with the better knowledge of its mechanical and thermal properties such as ductility, brittleness and Thermal Pressure. For the resistance to fracture (K) and plastic deformation (G) the ratio K/G is treated as an indication of ductile or brittle character of solids. In the present work we have tested the condition of ductility and brittleness with the calculated values of K/G for the NaCl. It is concluded that the nature of NaCl can be predicted upto high temperature simply with the knowledge of its elastic stiffness constant only. Thermoelastic properties of materials at high temperature is directly related to thermal pressure and volume expansion of the materials. An expression for the temperature dependence of thermal pressure is formulated using basic thermodynamic identities. It is observed that thermal pressure ΔPth calculated for NaCl by using Kushwah formulation is in good agreement with the experimental values also the thermal pressure increases with the increase in temperature.

  13. Force-dependent melting of supercoiled DNA at thermophilic temperatures.

    Science.gov (United States)

    Galburt, E A; Tomko, E J; Stump, W T; Ruiz Manzano, A

    2014-01-01

    Local DNA opening plays an important role in DNA metabolism as the double-helix must be melted before the information contained within may be accessed. Cells finely tune the torsional state of their genomes to strike a balance between stability and accessibility. For example, while mesophilic life forms maintain negatively superhelical genomes, thermophilic life forms use unique mechanisms to maintain relaxed or even positively supercoiled genomes. Here, we use a single-molecule magnetic tweezers approach to quantify the force-dependent equilibrium between DNA melting and supercoiling at high temperatures populated by Thermophiles. We show that negatively supercoiled DNA denatures at 0.5 pN lower tension at thermophilic vs. mesophilic temperatures. This work demonstrates the ability to monitor DNA supercoiling at high temperature and opens the possibility to perform magnetic tweezers assays on thermophilic systems. The data allow for an estimation of the relative energies of base-pairing and DNA bending as a function of temperature and support speculation as to different general mechanisms of DNA opening in different environments. Lastly, our results imply that average in vivo DNA tensions range between 0.3 and 1.1 pN. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Gas diffusion and temperature dependence of bubble nucleation during irradiation

    DEFF Research Database (Denmark)

    Foreman, A. J. E.; Singh, Bachu Narain

    1986-01-01

    The continuous production of gases at relatively high rates under fusion irradiation conditions may enhance the nucleation of cavities. This can cause dimensional changes and could induce embrittlement arising from gas accumulation on grain boundaries. Computer calculations have been made...... of the diatomic nucleation of helium bubbles, assuming helium to diffuse substitutionally, with radiation-enhanced diffusion at lower temperatures. The calculated temperature dependence of the bubble density shows excellent agreement with that observed in 600 MeV proton irradiations, including a reduction...... in activation energy below Tm/2. The coalescence of diatomic nuclei due to Brownian motion markedly improves the agreement and also provides a well-defined terminal density. Bubble nucleation by this mechanism is sufficiently fast to inhibit any appreciable initial loss of gas to grain boundaries during...

  15. Temperature dependence of the kinetics of isometric myocardium relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Izakov, V.Ya.; Bykov, B.L.; Kimmelman, I.Ya.

    1981-11-01

    The dependence of the exponential decay constant expressing the isometric relaxation of the myocardium on temperature is investigated in animals with various specific contents of myocardial sarcoplasmic reticulum. Experiments were performed on cardiac ventricles and atria isolated from rabbits, frogs and turtles and electrically stimulated to produce maximal contraction at temperatures from 10 to 35 C. Arrhenius plots derived from the data are found to be linear in the myocardia of the rabbit and frog, with a greater activation energy for the relaxation found in the rabbit. The Arrhenius plot for the turtle, which has a sarcoplasmic reticulum content intermediate between those of the frog and rabbit, corresponds to two straight lines with different activation energies. Results thus support the hypothesis of two separate mechanisms of calcium removal, involving the sarcoplasmic reticulum and cellular membrane, in muscle relaxation.

  16. Determination of the temperature dependence of tungsten erosion

    International Nuclear Information System (INIS)

    Maier, H.; Greuner, H.; Toussaint, U. von; Balden, M.; Böswirth, B.; Elgeti, S.

    2015-01-01

    We present the results of erosion measurements on actively cooled tungsten samples at quasi-constant surface temperature conditions performed in the high heat flux facility GLADIS. The samples were exposed to a H beam at a central power density of 10 MW/m 2 up to a fluence of 10 26 m −2 . We observe a weak temperature dependence of the erosion yield. The data are compared with similar data obtained from loading with a H beam with He admixture. Both datasets are analysed in a probabilistic approach. We obtain activation energies of 0.04 eV and 0.06 eV for the cases with and without He, respectively

  17. Temperature dependence of bulk viscosity in water using acoustic spectroscopy

    International Nuclear Information System (INIS)

    Holmes, M J; Parker, N G; Povey, M J W

    2011-01-01

    Despite its fundamental role in the dynamics of compressible fluids, bulk viscosity has received little experimental attention and there remains a paucity of measured data. Acoustic spectroscopy provides a robust and accurate approach to measuring this parameter. Working from the Navier-Stokes model of a compressible fluid one can show that the bulk viscosity makes a significant and measurable contribution to the frequency-squared acoustic attenuation. Here we employ this methodology to determine the bulk viscosity of Millipore water over a temperature range of 7 to 50 0 C. The measured attenuation spectra are consistent with the theoretical predictions, while the bulk viscosity of water is found to be approximately three times larger than its shear counterpart, reinforcing its significance in acoustic propagation. Moreover, our results demonstrate that this technique can be readily and generally applied to fluids to accurately determine their temperature dependent bulk viscosities.

  18. Temperature-dependent chemical changes of metallic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Young Sang; Lee, Jeong Mook; KimJong Hwan; Song, Hoon; Kim, Jong Yun [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    We observed the temperature-dependent variations of UZr alloy using surface analysis techniques such as X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, X-ray diffraction (XRD), and scanning electron microscope (SEM) equipped with energy-dispersive Xray spectroscope (EDS). In this work, we exhibited the results of XPS, Raman, XRD, and SEM-EDS for U-10wt%Zr alloy at room temperature, 610 and 1130 .deg. C. In SEM-EDS data, we observed that uranium and zirconium elements uniformly exist. After the annealing of U-10Zr sample at 1130 .deg. C, the formation of zirconium carbide is verified through Raman spectroscopy and XRD results. Additionally, the change of valence state for uranium element is also confirmed by XPS analysis.

  19. Temperature dependence of magnetoresistance in copper single crystals

    Science.gov (United States)

    Bian, Q.; Niewczas, M.

    2018-03-01

    Transverse magnetoresistance of copper single crystals has been measured in the orientation of open-orbit from 2 K to 20 K for fields up to 9 T. The experimental Kohler's plots display deviation between individual curves below 16 K and overlap in the range of 16 K-20 K. The violation of the Kohler's rule below 16 K indicates that the magnetotransport can not be described by the classical theory of electron transport on spherical Fermi surface with a single relaxation time. A theoretical model incorporating two energy bands, spherical and cylindrical, with different relaxation times has been developed to describe the magnetoresistance data. The calculations show that the electron-phonon scattering rates at belly and neck regions of the Fermi surface have different temperature dependencies, and in general, they do not follow T3 law. The ratio of the relaxation times in belly and neck regions decreases parabolically with temperature as A - CT2 , with A and C being constants.

  20. Temperature Dependent Variations of Phonon Interactions in Nanocrystalline Cerium Oxide

    Directory of Open Access Journals (Sweden)

    Sugandha Dogra Pandey

    2015-01-01

    Full Text Available The temperature dependent anharmonic behavior of the phonon modes of nanocrystalline CeO2 was investigated in the temperature range of 80–440 K. The anharmonic constants have been derived from the shift in phonon modes fitted to account for the anharmonic contributions as well as the thermal expansion contribution using the high pressure parameters derived from our own high pressure experimental data reported previously. The total anharmonicity has also been estimated from the true anharmonicity as well as quasiharmonic component. In the line-width variation analysis, the cubic anharmonic term was found to dominate the quartic term. Finally, the phonon lifetime also reflected the trend so observed.

  1. Temperature dependent fission product removal efficiency due to pool scrubbing

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Shunsuke, E-mail: suchida@iae.or.jp [Institute of Applied Energy, 1-14-2, Nishi-Shimbashi, Minato-ku, Tokyo 105-0003 (Japan); Itoh, Ayumi; Naitoh, Masanori; Okada, Hidetoshi; Suzuki, Hiroyuki [Institute of Applied Energy, 1-14-2, Nishi-Shimbashi, Minato-ku, Tokyo 105-0003 (Japan); Hanamoto, Yukio [KAKEN, Inc., 1044, Hori-machi, Mito 310-0903 (Japan); Osakabe, Masahiro [Tokyo University of Marine Science & Technology, Koutou-ku, Tokyo 135-8533 (Japan); Fujikawa, Masahiro [Japan Broadcasting Corporation, 2-2-1, Jinnan, Shibuya-ku, Tokyo 150-8001 (Japan)

    2016-03-15

    Highlights: • Pool temperature effects on the FP removal were not clearly concluded in the previous publications. • It was confirmed that the removal efficiency decreased with temperature around the boiling point. • A modified empirical formula for FP removal was proposed as a function of sub-cooling temperature. • DF could be predicted with an accuracy within a factor of 2 with the proposed formula. - Abstract: The wet-well of boiling water reactors plays important roles not only to suppress the pressure in the primary containment vessel due to steam scrubbing effects during severe accidents but also to mitigate release of radioactive fission products (FP), aerosols and particulates, into the environment. The effects of steam scrubbing in the wet-well on FP removal have been well studied and reported by changing major parameters determining the removal efficiencies, e.g., aerosol diameters, submergence (depth of scrubbing nozzles) and steam/non-condensable gas volume fraction. Unfortunately, the effects of pool temperature on the FP removal were not clearly concluded in the previous publications, though it would be easily expected that boiling in the pool resulted in reduced aerosol removal efficiency. In order to determine the temperature effects on FP removal efficiency, amounts of cesium in aerosols released from scrubbing pool were measured by changing pool temperature in mini and medium scale scrubbing experiments, and then, it was confirmed that the removal efficiency clearly decreased with temperature around the boiling point. Then, a modified empirical formula to express the FP removal around the boiling point temperature was proposed as a function of sub-cooling temperature by applying the effective steam volume fraction, which was designated as the volume ratio of condensed steam in the pool versus the sum of input steam and non-condensable gas. By comparing the measured removal efficiency with the calculated, it was validated that the

  2. Temperature dependent fission product removal efficiency due to pool scrubbing

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Itoh, Ayumi; Naitoh, Masanori; Okada, Hidetoshi; Suzuki, Hiroyuki; Hanamoto, Yukio; Osakabe, Masahiro; Fujikawa, Masahiro

    2016-01-01

    Highlights: • Pool temperature effects on the FP removal were not clearly concluded in the previous publications. • It was confirmed that the removal efficiency decreased with temperature around the boiling point. • A modified empirical formula for FP removal was proposed as a function of sub-cooling temperature. • DF could be predicted with an accuracy within a factor of 2 with the proposed formula. - Abstract: The wet-well of boiling water reactors plays important roles not only to suppress the pressure in the primary containment vessel due to steam scrubbing effects during severe accidents but also to mitigate release of radioactive fission products (FP), aerosols and particulates, into the environment. The effects of steam scrubbing in the wet-well on FP removal have been well studied and reported by changing major parameters determining the removal efficiencies, e.g., aerosol diameters, submergence (depth of scrubbing nozzles) and steam/non-condensable gas volume fraction. Unfortunately, the effects of pool temperature on the FP removal were not clearly concluded in the previous publications, though it would be easily expected that boiling in the pool resulted in reduced aerosol removal efficiency. In order to determine the temperature effects on FP removal efficiency, amounts of cesium in aerosols released from scrubbing pool were measured by changing pool temperature in mini and medium scale scrubbing experiments, and then, it was confirmed that the removal efficiency clearly decreased with temperature around the boiling point. Then, a modified empirical formula to express the FP removal around the boiling point temperature was proposed as a function of sub-cooling temperature by applying the effective steam volume fraction, which was designated as the volume ratio of condensed steam in the pool versus the sum of input steam and non-condensable gas. By comparing the measured removal efficiency with the calculated, it was validated that the

  3. Temperature Dependence of Arn+ Cluster Backscattering from Polymer Surfaces: a New Method to Determine the Surface Glass Transition Temperature.

    Science.gov (United States)

    Poleunis, Claude; Cristaudo, Vanina; Delcorte, Arnaud

    2018-01-01

    In this work, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to study the intensity variations of the backscattered Ar n + clusters as a function of temperature for several amorphous polymer surfaces (polyolefins, polystyrene, and polymethyl methacrylate). For all these investigated polymers, our results show a transition of the ratio Ar 2 + /(Ar 2 + + Ar 3 + ) when the temperature is scanned from -120 °C to +125 °C (the exact limits depend on the studied polymer). This transition generally spans over a few tens of degrees and the temperature of the inflection point of each curve is always lower than the bulk glass transition temperature (T g ) reported for the considered polymer. Due to the surface sensitivity of the cluster backscattering process (several nanometers), the presented analysis could provide a new method to specifically evaluate a surface transition temperature of polymers, with the same lateral resolution as the gas cluster beam. Graphical abstract ᅟ.

  4. Natural convection heat transfer of fluid with temperature-dependent specific heat

    International Nuclear Information System (INIS)

    Tanaka, Amane; Kubo, Shinji; Akino, Norio

    1998-01-01

    The present study investigates natural convection from a heated vertical plate of fluid with temperature-dependent specific heat, which is introduced as a model of microencapsulated phase change material slurries (MCPCM slurries). The temperature dependence of specific heat is represented by Gauss function with three physical parameters (peak temperature, width of phase change temperature and latent heat). Boundary layer equations are solved numerically, and the velocity and temperature fields of the flow are obtained. The relation between the heat transfer coefficients and the physical parameters of specific heat is discussed. The results show that the velocities and temperatures are smaller, and the heat transfer coefficients are larger comparing with those of the fluid with constant specific heat. (author)

  5. Temperature Dependence of Faraday Effect-Induced Bias Error in a Fiber Optic Gyroscope.

    Science.gov (United States)

    Li, Xuyou; Liu, Pan; Guang, Xingxing; Xu, Zhenlong; Guan, Lianwu; Li, Guangchun

    2017-09-07

    Improving the performance of interferometric fiber optic gyroscope (IFOG) in harsh environments, such as magnetic field and temperature field variation, is necessary for its practical applications. This paper presents an investigation of Faraday effect-induced bias error of IFOG under varying temperature. Jones matrix method is utilized to formulize the temperature dependence of Faraday effect-induced bias error. Theoretical results show that the Faraday effect-induced bias error changes with the temperature in the non-skeleton polarization maintaining (PM) fiber coil. This phenomenon is caused by the temperature dependence of linear birefringence and Verdet constant of PM fiber. Particularly, Faraday effect-induced bias errors of two polarizations always have opposite signs that can be compensated optically regardless of the changes of the temperature. Two experiments with a 1000 m non-skeleton PM fiber coil are performed, and the experimental results support these theoretical predictions. This study is promising for improving the bias stability of IFOG.

  6. Temperature-dependent structural relaxation in As{sub 40}Se{sub 60} glass

    Energy Technology Data Exchange (ETDEWEB)

    Golovchak, R., E-mail: roman_ya@yahoo.com [Lviv Sci. and Res. Institute of Materials of SRC ' Carat' , 202 Stryjska str., 79031 Lviv (Ukraine); Kozdras, A. [Opole University of Technology, 75, Ozimska str., Opole, PL-45370 (Poland); Academy of Management and Administration, 18 Niedzialkowski str., Opole, PL-45085 (Poland); Shpotyuk, O. [Jan Dlugosz University, 13/15, al. Armii Krajowej, 42201, Czestochowa (Poland); Gorecki, Cz. [Opole University of Technology, 75, Ozimska str., Opole, PL-45370 (Poland); Kovalskiy, A.; Jain, H. [Department of Materials Science and Engineering, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States)

    2011-08-01

    The origin of structural relaxation in As{sub 40}Se{sub 60} glass at different annealing temperatures is studied by differential scanning calorimetry (DSC) and in situ extended X-ray absorption fine structure (EXAFS) methods. Strong physical aging effect, expressed through the increase of endothermic peak area in the vicinity of T{sub g}, is recorded by DSC technique at the annealing temperatures T{sub a}>90{sup o}C. EXAFS data show that the observed structural relaxation is not associated with significant changes in the short-range order of this glass. An explanation is proposed for this relaxation behavior assuming temperature-dependent constraints. -- Highlights: → In this study we report experimental evidence for temperature-dependent constraints theory. → Structural relaxation of As{sub 2}Se{sub 3} glass at higher annealing temperatures is studied by DSC technique. → Accompanied changes in the structure are monitored by in situ EXAFS measurements.

  7. Temperature-dependent surface structure, composition, and electronic properties of the clean SrTiO3(111) crystal face: Low-energy-electron diffraction, Auger-electron spectroscopy, electron energy loss, and ultraviolet-photoelectron spectroscopy studies

    International Nuclear Information System (INIS)

    Lo, W.J.; Somorjai, G.A.

    1978-01-01

    Low-energy-electron diffraction, Auger-electron spectroscopy, electron-energy-loss, and ultraviolet-photoelectron spectroscopies were used to study the structure, composition, and electron energy distribution of a clean single-crystal (111) face of strontium titanate (perovskite). The dependence of the surface chemical composition on the temperature has been observed along with corresponding changes in the surface electronic properties. High-temperature Ar-ion bombardment causes an irreversible change in the surface structure, stoichiometry, and electron energy distribution. In contrast to the TiO 2 surface, there are always significant concentrations of Ti 3+ in an annealed ordered SrTiO 3 (111) surface. This stable active Ti 3+ monolayer on top of a substrate with large surface dipole potential makes SrTiO 3 superior to TiO 2 when used as a photoanode in the photoelectrochemical cell

  8. Temperature dependent transport characteristics of graphene/n-Si diodes

    International Nuclear Information System (INIS)

    Parui, S.; Ruiter, R.; Zomer, P. J.; Wojtaszek, M.; Wees, B. J. van; Banerjee, T.

    2014-01-01

    Realizing an optimal Schottky interface of graphene on Si is challenging, as the electrical transport strongly depends on the graphene quality and the fabrication processes. Such interfaces are of increasing research interest for integration in diverse electronic devices as they are thermally and chemically stable in all environments, unlike standard metal/semiconductor interfaces. We fabricate such interfaces with n-type Si at ambient conditions and find their electrical characteristics to be highly rectifying, with minimal reverse leakage current (<10 −10  A) and rectification of more than 10 6 . We extract Schottky barrier height of 0.69 eV for the exfoliated graphene and 0.83 eV for the CVD graphene devices at room temperature. The temperature dependent electrical characteristics suggest the influence of inhomogeneities at the graphene/n-Si interface. A quantitative analysis of the inhomogeneity in Schottky barrier heights is presented using the potential fluctuation model proposed by Werner and Güttler

  9. Optofluidic intracavity spectroscopy for spatially, temperature, and wavelength dependent refractometry

    Science.gov (United States)

    Kindt, Joel D.

    A microfluidic refractometer was designed based on previous optofluidic intracavity spectroscopy (OFIS) chips utilized to distinguish healthy and cancerous cells. The optofluidic cavity is realized by adding high reflectivity dielectric mirrors to the top and bottom of a microfluidic channel. This creates a plane-plane Fabry-Perot optical cavity in which the resonant wavelengths are highly dependent on the optical path length inside the cavity. Refractometry is a useful method to determine the nature of fluids, including the concentration of a solute in a solvent as well as the temperature of the fluid. Advantages of microfluidic systems are the easy integration with lab-on-chip devices and the need for only small volumes of fluid. The unique abilities of the microfluidic refractometer in this thesis include its spatial, temperature, and wavelength dependence. Spatial dependence of the transmission spectrum is inherent through a spatial filtering process implemented with an optical fiber and microscope objective. A sequence of experimental observations guided the change from using the OFIS chip as a cell discrimination device to a complimentary refractometer. First, it was noted the electrode structure within the microfluidic channel, designed to trap and manipulate biological cells with dielectrophoretic (DEP) forces, caused the resonant wavelengths to blue-shift when the electrodes were energized. This phenomenon is consistent with the negative dn/dT property of water and water-based solutions. Next, it was necessary to develop a method to separate the optical path length into physical path length and refractive index. Air holes were placed near the microfluidic channel to exclusively measure the cavity length with the known refractive index of air. The cavity length was then interpolated across the microfluidic channel, allowing any mechanical changes to be taken into account. After the separation of physical path length and refractive index, it was of interest

  10. Temperature dependence of mode conversion in warm, unmagnetized plasmas with a linear density profile

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Dae Jung; Lee, Dong-Hun [School of Space Research, Kyung Hee University, Yongin (Korea, Republic of); Kim, Kihong [Division of Energy Systems Research, Ajou University, Suwon (Korea, Republic of)

    2013-06-15

    We study theoretically the linear mode conversion between electromagnetic waves and Langmuir waves in warm, stratified, and unmagnetized plasmas, using a numerically precise calculation based on the invariant imbedding method. We verify that the principle of reciprocity for the forward and backward mode conversion coefficients holds precisely regardless of temperature. We also find that the temperature dependence of the mode conversion coefficient is substantially stronger than that previously reported. Depending on the wave frequency and the incident angle, the mode conversion coefficient is found to increase or decrease with the increase of temperature.

  11. Temperature dependence of damage accumulation in α-zirconium

    International Nuclear Information System (INIS)

    Arevalo, C.; Caturla, M.J.; Perlado, J.M.

    2007-01-01

    Using the input data obtained from molecular dynamics (MD) simulations on defect energetics and cascade damage, we present results obtained on irradiation of hexagonal-close-packed (hcp) α-zirconium under different conditions with a kinetic Monte Carlo (kMC) model. We used three 25 keV cascade databases at temperatures of 100 K, 300 K and 600 K respectively. The evolution of the microstructure during irradiation for a dose rate of 10 -6 dpa/s, at temperatures of 100 K, 300 K and 600 K until a final dose of 0.1 dpa has been studied. We have considered isotropic motion for vacancies and one dimensional movement for interstitials and we have studied how the accumulation of damage is affected considering different temperatures. We present preliminary comparisons with experimental data

  12. Study of an Amorphous Silicon Oxide Buffer Layer for p-Type Microcrystalline Silicon Oxide/n-Type Crystalline Silicon Heterojunction Solar Cells and Their Temperature Dependence

    Directory of Open Access Journals (Sweden)

    Taweewat Krajangsang

    2014-01-01

    Full Text Available Intrinsic hydrogenated amorphous silicon oxide (i-a-SiO:H films were used as front and rear buffer layers in crystalline silicon heterojunction (c-Si-HJ solar cells. The surface passivity and effective lifetime of these i-a-SiO:H films on an n-type silicon wafer were improved by increasing the CO2/SiH4 ratios in the films. Using i-a-SiO:H as the front and rear buffer layers in c-Si-HJ solar cells was investigated. The front i-a-SiO:H buffer layer thickness and the CO2/SiH4 ratio influenced the open-circuit voltage (Voc, fill factor (FF, and temperature coefficient (TC of the c-Si-HJ solar cells. The highest total area efficiency obtained was 18.5% (Voc=700 mV, Jsc=33.5 mA/cm2, and FF=0.79. The TC normalized for this c-Si-HJ solar cell efficiency was −0.301%/°C.

  13. A computational study on Lewis acid-catalyzed diastereoselective acyclic radical allylation reactions with unusual selectivity dependence on temperature and epimer precursor.

    Science.gov (United States)

    Georgieva, Miglena K; Santos, A Gil

    2014-12-05

    In stereoselective radical reactions, it is accepted that the configuration of the radical precursor has no impact on the levels of stereoinduction, as a prochiral radical intermediate is planar, with two identical faces, independently of its origin. However, Sibi and Rheault (J. Am. Chem. Soc. 2000, 122, 8873-8879) remarkably obtained different selectivities in the trapping of radicals originated from two epimeric bromides, catalyzed by chelating Lewis acids. The selectivity rationalization was made on the basis of different conformational properties of each epimer. However, in this paper we show that the two epimers have similar conformational properties, which implies that the literature proposal is unable to explain the experimental results. We propose an alternative mechanism, in which the final selectivity is dependent on different reaction rates for radical formation from each epimer. By introducing a different perspective of the reaction mechanism, our model also allows the rationalization of different chemical yields obtained from each epimer, a result not rationalized by the previous model. Adaptation to other radical systems, under different reaction conditions, is also possible.

  14. In situ neutron diffraction study of grain-orientation-dependent phase transformation in 304L stainless steel at a cryogenic temperature

    International Nuclear Information System (INIS)

    Tao Kaixiang; Wall, James J.; Li, Hongqi; Brown, Donald W.; Vogel, Sven C.; Choo, Hahn

    2006-01-01

    In situ time-of-flight neutron diffraction was performed to investigate the martensitic phase transformation during quasistatic uniaxial compression testing of 304L stainless steel at 300 and 203 K. In situ neutron diffraction enabled the bulk measurement of intensity evolution for various hkl atomic planes during the austenite (fcc) to martensite (hcp and bcc) phase transformation. Based on the neutron diffraction patterns, the martensite phases were observed from the very beginning of the plastic deformation at 203 K. However, at 300 K, no newly formed martensite, except a small amount of preexisting hcp phase, was observed throughout the test. From the changes in the relative intensities of individual hkl atomic planes, the grain-orientation-dependent phase transformation was investigated. The preferred orientation of the newly formed martensite grains was also investigated for the sample deformed at 203 K using neutron diffraction. The results reveal the orientation relationships between the austenite and the newly formed martensites. The fcc grain family diffracting with (200) plane normal parallel to the loading axis is favored for the fcc to bcc transformation and the bcc (200) plane normals are primarily aligned along the loading direction. For the fcc to hcp transformation, the fcc grains with (111) plane normals at an angle in between about 10 deg. and 50 deg. to the loading direction are favored

  15. Mechanical properties and dependence with temperature of tetragonal polycrystalline zirconia materials

    International Nuclear Information System (INIS)

    Orange, G.

    1986-01-01

    Polycrystalline zirconia materials with a high content of metastable tetragonal phase have been obtained by pressureless sintering from experimental powders. Mechanical properties have been determined at room temperature and compared with similar materials. The fracture strength (σ /SUB f/ ) and fracture toughness (K /SUB 1c/ ) temperature dependence has been studied, in air environment up to 1000 0 C. Microstructure was studied by SEM examinations of fracture faces and TEM observations. Fracture toughness (of about 10 MPa √m at room temperature) decreases from 200 0 C to 800 0 C. The critical temperature (T /SUB c/ ) is estimated at 600 0 C. We observe an important decreases of fracture strength at 200 0 C. These mechanical properties are discussed on the basis of the stability of the tetragonal phase depending on additive content, grain size and temperature

  16. Temperature response of soil respiration is dependent on concentration of readily decomposable C

    Science.gov (United States)

    Larionova, A. A.; Yevdokimov, I. V.; Bykhovets, S. S.

    2007-12-01

    Temperature acclimation of soil organic matter (SOM) decomposition is one of the major uncertainties in predicting soil CO2 efflux associated with the increase in global mean temperature. A reasonable explanation for an apparent acclimation proposed by Davidson and colleagues (2006) based on Michaelis-Menten kinetics suggests that temperature sensitivity decreases when both maximal activity of respiratory enzymes (Vmax) and half-saturation constant (Ks) cancel each other upon temperature increase. We tested the hypothesis of the canceling effect by the mathematical simulation of data obtained in incubation experiments with forest and arable soils. Our data support the hypothesis and suggest that concentration of readily decomposable C substrate (as glucose equivalents) and temperature dependent substrate release are the important factors controlling temperature sensitivity of soil respiration. The highest temperature sensitivity of soil respiration was observed when substrate release was temperature dependent and C substrate concentration was much lower than Ks. Increase of substrate content to the half-saturation constant by glucose addition resulted in temperature acclimation associated with the canceling effect. Addition of the substrate to the level providing respiration at a maximal rate Vmax leads to the acclimation of the whole microbial community as such. However, growing microbial biomass was more sensitive to the temperature alterations. This study improves our understanding of the instability of temperature sensitivity of soil respiration under field conditions, attributing this phenomenon to changes in concentration of readily decomposable C substrate.

  17. Temperature dependence of transport coefficients of 'simple liquid ...

    African Journals Online (AJOL)

    ... has been investigated. The study carried out at two densities, r* = 0.60 and r* = 0.95. Result shows erratic variations of the shear viscosity in the two lattices structures. KeyWords: Temperature effect, face centred, simple cubic, transport properties, simple liquid. [Global Jnl Pure & Appl. Sci. Vol.9(3) 2003: 403-406] ...

  18. The external field dependence of the BCS critical temperature

    DEFF Research Database (Denmark)

    Frank, Rupert L.; Hainzl, Christian; Seiringer, Robert

    2016-01-01

    We consider the Bardeen-Cooper-Schrieffer free energy functional for particles interacting via a two-body potential on a microscopic scale and in the presence of weak external fields varying on a macroscopic scale. We study the influence of the external fields on the critical temperature. We show...

  19. Temperature Dependences on Various Types of Photovoltaic (PV) Panel

    International Nuclear Information System (INIS)

    Audwinto, I A; Leong, C S; Sopian, K; Zaidi, S H

    2015-01-01

    Temperature is one of the key roles in PV technology performance, since with the increases of temperature the open-circuit voltage will drop accordingly so do the electrical efficiency and power output generation. Different types of Photovoltaic (PV) panels- silicon solar panels and thin film solar panels; mono-crystalline, poly-crystalline, CIS, CIGS, CdTe, back-contact, and bi-facial solar panel under 40°C to 70°C approximately with 5°C interval have been comparatively analyzed their actual performances with uniformly distribution of light illumination from tungsten halogen light source, ±500W/m 2 . DC-Electronic Load and Data Logger devices with “Lab View” data program interface were used to collect all the necessary parameters in this study. Time needed to achieve a certain degree of temperature was recorded. Generally, each of the panels needed 15 minutes to 20 minutes to reach 70°C. Halogen based light source is not compatible in short wave-length in response to thin-film solar cell. Within this period of times, all the panels are facing a performance loss up to 15%. Other parameters; P max , V max , I max , V oc , I sc , R serries , R shunt , Fillfactor were collected as study cases. Our study is important in determining Photovoltaic type selection and system design as for study or industrial needed under different temperature condition. (paper)

  20. Positron annihilation studies on high temperature superconductors

    International Nuclear Information System (INIS)

    Sundar, C.S.; Bharathi, A.

    1996-01-01

    A survey of the positron annihilation studies on high temperature superconductors (HTSC), with results drawn mainly from our work, is presented. These include results of the studies on the temperature dependence of positron lifetime across T c , which have been carried out in the whole gamut of oxide superconductors. These experimental results are discussed in conjunction with the results of theoretically calculated positron density distribution, and it is shown that the observed temperature dependence of lifetime is intimately linked to the probing of the Cu-O network by the positrons. Results on the investigation of oxygen defects, which play a crucial role in HTSC, are presented. The most significant contribution of positrons to HTSC relates to the investigation of Fermi surface and the results of these studies, drawn from literature, are indicated. Some of our recent results in other novel superconducting materials, viz., the fullerenes and borocarbides are also presented. (author). 69 refs., 15 figs

  1. Temperature and pressure dependent thermodynamic behavior of 2H-CuInO2

    Science.gov (United States)

    Bhamu, K. C.

    2018-05-01

    Density functional theory and quasi-harmonic Debye model has been used to study the thermodynamic properties of 2H-CuInO2. At the optimized structural parameters, pressure (0 to 80 GPa) dependent variation in the various thermodynamic properties, i.e. unit cell volume (V), bulk modulus (B), specific heat (Cv), Debye temperature (θD), Grüneisen parameter (γ) and thermal expansion coefficient (α) are calculated for various temperature values. The results predict that the pressure has significant effect on unit cell volume and bulk modulus while the temperature shows negligible effect on both parameters. With increasing temperature thermal expansion coefficient increase while with increasing pressure it decreases. The specific heat remains close to zero for ambient pressure and temperature values and it increases with increasing temperature. It is observed that the pressure has high impact on Debye temperature and Grüneisen parameter instead of temperature. Debye temperature and Grüneisen parameter both remains almost constant for the temperature range (0-300K) while Grüneisen parameter decrease with increasing pressure at constant temperature and Debye temperature increases rapidly with increasing pressure. An increase in Debye temperature with respect to pressure shows that the thermal vibration frequency changes rapidly.

  2. Temperature dependence of looping rates in a short peptide.

    Science.gov (United States)

    Roccatano, Danilo; Sahoo, Harekrushna; Zacharias, Martin; Nau, Werner M

    2007-03-15

    Knowledge of the influence of chain length and amino acid sequence on the structural and dynamic properties of small peptides in solution provides essential information on protein folding pathways. The combination of time-resolved optical spectroscopy and molecular dynamics (MD) simulation methods has become a powerful tool to investigate the kinetics of end-to-end collisions (looping rates) in short peptides, which are relevant in early protein folding events. We applied the combination of both techniques to study temperature-dependent (280-340 K) looping rates of the Dbo-AlaGlyGln-Trp-NH2 peptide, where Dbo represents a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine, which served as a fluorescent probe in the time-resolved spectroscopic experiments. The experimental looping rates increased from 4.8 x 10(7) s(-1) at 283 K to 2.0 x 10(8) s(-1) at 338 K in H2O. The corresponding Arrhenius plot provided as activation parameters Ea = 21.5 +/- 1.0 kJ mol(-1) and ln(A/s-1) = 26.8 +/- 0.2 in H2O. The results in D2O were consistent with a slight solvent viscosity effect, i.e., the looping rates were 10-20% slower. MD simulations were performed with the GROMOS96 force field in a water solvent model, which required first a parametrization of the synthetic amino acid Dbo. After corrections for solvent viscosity effects, the calculated looping rates varied from 1.5 x 10(8) s(-1) at 280 K to 8.2 x 10(8) s(-1) at 340 K in H2O, which was about four times larger than the experimental data. The calculated activation parameters were Ea = 24.7 +/- 1.5 kJ mol(-1) and ln(A/s(-1)) = 29.4 +/- 0.1 in H2O.

  3. Temperature-dependent phenotypic variation of Campylobacter jejuni lipooligosaccharides

    LENUS (Irish Health Repository)

    Semchenko, Evgeny A

    2010-11-30

    Abstract Background Campylobacter jejuni is a major bacterial cause of food-borne enteritis, and its lipooligosaccharide (LOS) plays an initiating role in the development of the autoimmune neuropathy, Guillain-Barré syndrome, by induction of anti-neural cross-reactive antibodies through ganglioside molecular mimicry. Results Herein we describe the existence and heterogeneity of multiple LOS forms in C. jejuni strains of human and chicken origin grown at 37°C and 42°C, respectively, as determined on sodium dodecyl sulphate-polyacrylamide electrophoresis gels with carbohydrate-specific silver staining and blotting with anti-ganglioside ligands, and confirmed by nuclear magnetic resonance (NMR) spectroscopy. The C. jejuni NCTC 11168 original isolate (11168-O) was compared to its genome-sequenced variant (11168-GS), and both were found to have a lower-Mr LOS form, which was different in size and structure to the previously characterized higher-Mr form bearing GM1 mimicry. The lower-Mr form production was found to be dependent on the growth temperature as the production of this form increased from ~5%, observed at 37°C to ~35% at 42°C. The structure of the lower-Mr form contained a β-D-Gal-(1→3)-β-D-GalNAc disaccharide moiety which is consistent with the termini of the GM1, asialo-GM1, GD1, GT1 and GQ1 gangliosides, however, it did not display GM1 mimicry as assessed in blotting studies but was shown in NMR to resemble asialo-GM1. The production of multiple LOS forms and lack of GM1 mimicry was not a result of phase variation in the genes tested of NCTC 11168 and was also observed in most of the human and chicken isolates of C. jejuni tested. Conclusion The presence of differing amounts of LOS forms at 37 and 42°C, and the variety of forms observed in different strains, indicate that LOS form variation may play a role in an adaptive mechanism or a stress response of the bacterium during the colonization of different hosts.

  4. Temperature dependence of magnetization reversal in Co and Fe3O4 nanowire arrays

    International Nuclear Information System (INIS)

    Kazakova, Olga; Erts, Donats; Crowley, Timothy A.; Kulkarni, Jaideep S.; Holmes, Justin D.

    2005-01-01

    In this paper, we investigate the magnetization reversal of cobalt and magnetite nanowires, 4 nm in diameter, synthesized within the pores of mesoporous silica thin films. A SQUID magnetometer was used to study the magnetic properties of the nanowire arrays over a broad temperature interval, T=1.8-300 K. The magnetization reversal process was found to be strongly temperature dependent. While a coherent rotation may occur at room temperature, a process involving the formation of domain structures takes place as the temperature decreases down to 1.8 K

  5. Temperature dependent viscosity of cobalt ferrite / ethylene glycol ferrofluids

    Science.gov (United States)

    Kharat, Prashant B.; Somvanshi, Sandeep B.; Kounsalye, Jitendra S.; Deshmukh, Suraj S.; Khirade, Pankaj P.; Jadhav, K. M.

    2018-04-01

    In the present work, cobalt ferrite / ethylene glycol ferrofluid is prepared in 0 to 1 (in the step of 0.2) volume fraction of cobalt ferrite nanoparticles synthesized by co-precipitation method. The XRD results confirmed the formation of single phase spinel structure. The Raman spectra have been deconvoluted into individual Lorentzian peaks. Cobalt ferrite has cubic spinel structure with Fd3m space group. FT-IR spectra consist of two major absorption bands, first at about 586 cm-1 (υ1) and second at about 392 cm-1 (υ2). These absorption bands confirm the formation of spinel-structured cobalt ferrite. Brookfield DV-III viscometer and programmable temperature-controlled bath was used to study the relationship between viscosity and temperature. Viscosity behavior with respect to temperature has been studied and it is revealed that the viscosity of cobalt ferrite / ethylene glycol ferrofluids increases with an increase in volume fraction of cobalt ferrite. The viscosity of the present ferrofluid was found to decrease with increase in temperature.

  6. Temperature dependent electrical characteristics of Zn/ZnSe/n-GaAs/In structure

    Science.gov (United States)

    Sağlam, M.; Güzeldir, B.

    2016-04-01

    We have reported a study of the I-V characteristics of Zn/ZnSe/n-GaAs/In sandwich structure in a wide temperature range of 80-300 K by a step of 20 K, which are prepared by Successive Ionic Layer Adsorption and Reaction (SILAR) method. The main electrical parameters, such as ideality factor and zero-bias barrier height determined from the forward bias I-V characteristics were found strongly depend on temperature and when the increased, the n decreased with increasing temperature. The ideality factor and barrier height values as a function of the sample temperature have been attributed to the presence of the lateral inhomogeneities of the barrier height. Furthermore, the series resistance have been calculated from the I-V measurements as a function of temperature dependent.

  7. Temperature dependent measurement of internal damping of austenitic stainless steels

    Directory of Open Access Journals (Sweden)

    Oravcová Monika

    2018-01-01

    Full Text Available This article is aimed on the analysis of the internal damping changes of austenitic stainless steels AISI 304, AISI 316L and AISI 316Ti depending from temperature. In experimental measurements only resonance method was used which is based on continuous excitation of oscillations of the specimens and the whole apparatus vibrates at the frequency near to the resonance. Microplastic processes and dissipation of energy within the metals are evaluated and investigated by internal damping measurements. Damping capacity of materials is closely tied to the presence of defects including second phase particles and voids. By measuring the energy dissipation in the material, we can determine the elastic characteristics, Youngs modulus, the level of stress relaxation and many other.

  8. Temperature Dependence of the Viscosity of Isotropic Liquids

    Science.gov (United States)

    Jadzyn, J.; Czechowski, G.; Lech, T.

    1999-04-01

    Temperature dependence of the shear viscosity measured for isotropic liquids belonging to the three homologous series: 4-(trans-4'-n-alkylcyclohexyl) isothiocyanatobenzenes (Cn H2n+1 CyHx Ph NCS; nCHBT, n=0-12), n-alkylcyanobiphenyls (CnH2n+1 Ph Ph CN; nCB, n=2-12) and 1,n-alkanediols (HO(CH2)nOH; 1,nAD, n=2-10) were analysed with the use of Arrhenius equation and its two modifications: Vogel--Fulcher and proposed in this paper. The extrapolation of the isothermal viscosity of 1,n-alkanediols (n=2-10) to n=1 leads to an interesting conclusion concerning the expected viscosity of methanediol, HOCH2OH, the compound strongly unstable in a pure state.

  9. Preparation and temperature dependence of electrostriction properties for PMN-based composite ceramics

    International Nuclear Information System (INIS)

    Zhao Jingbo; Qu Shaobo; Du Hongliang; Zheng Yanju; Xu Zhuo

    2009-01-01

    Both low- and high-temperature units were prepared by columbite precursor method, and Pb(Mg 1/3 Nb 2/3 )O 3 (PMN)-based ferroelectric composite ceramics were prepared by conventional method, baking-block method and coating method, respectively. The effects of preparation methods on dielectric and electrostriction properties as well as the temperature-dependence property of the obtained composite ceramics were studied. The results show that compared with the samples prepared by traditional blend sintering method, of the samples prepared by baking-block and coating methods have much better dielectric and electrostriction properties. For those prepared by baking-block method, the electrostriction temperature-dependence properties are good in the range of 20-60 deg. C. For those prepared by coating method, the dielectric temperature-dependence properties are also good in the broad range of -30 to 70 deg. C, and the electrostriction temperature properties are better than those prepared by blending-block. Compared with the traditional blending sintering method, the dielectric and electrostriction temperature-dependence properties are much better, which effectively solves the problem of temperature properties existing in present engineering applications.

  10. Temperature dependence of the in situ widths of a rotating condensate in one dimensional optical potential

    International Nuclear Information System (INIS)

    Hassan, Ahmed S.; Soliman, Shemi S.M.

    2016-01-01

    In this paper, a conventional method of quantum statistical mechanics is used to study the temperature dependence of the in situ widths of a rotating condensate bosons in 1D optical potential. We trace the experimentally accessible parameters for which the temperature dependence of the in situ widths becomes perceivable. The calculated results showed that the temperature dependence of the in situ widths is completely different from that of a rotating condensate or trapped bosons in the optical lattice separately. The z-width shows distinct behavior from x- and y-widths due to the rotation effect. The obtained results provide useful qualitative theoretical results for future Bose Einstein condensation experiments in such traps. - Highlights: • The temperature dependence of the in situ widths of a rotating condensate boson in 1D optical potential is investigated. • We trace the experimentally accessible parameters for which the in situ widths become perceivable. • The above mentioned parameters exhibit a characteristic rotation rate and optical potential depth dependence. • Characteristic dependence of the effective widths on temperature is investigated. • Our results provide useful qualitatively and quantitative theoretical results for experiments in various traps.

  11. Substrate bias voltage and deposition temperature dependence on ...

    Indian Academy of Sciences (India)

    Thin films or a coating of any sort prior to its application into real world has to be studied for the dependence of ..... For line focusing, incident beam mask was employed with ..... org/content/avs/journal/jvst/11/4/10.1116/1.1312732. Thornton J A ...

  12. Effect of temperature dependent properties on MHD convection of water near its density maximum in a square cavity

    International Nuclear Information System (INIS)

    Sivasankaran, S.; Hoa, C.J.

    2008-01-01

    Natural convection of water near its density maximum in the presence of magnetic field in a cavity with temperature dependent properties is studied numerically. The viscosity and thermal conductivity of the water is varied with reference temperature and calculated by cubic polynomial. The finite volume method is used to solve the governing equations. The results are presented graphically in the form of streamlines, isotherms and velocity vectors and are discussed for various combinations of reference temperature parameter, Rayleigh number, density inversion parameter and Hartmann number. It is observed that flow and temperature field are affected significantly by changing the reference temperature parameter for temperature dependent thermal conductivity and both temperature dependent viscosity and thermal conductivity cases. There is no significant effect on fluid flow and temperature distributions for temperature dependent viscosity case when changing the values of reference temperature parameter. The average heat transfer rate considering temperature-dependent viscosity are higher than considering temperature-dependent thermal conductivity and both temperature-dependent viscosity and thermal conductivity. The average Nusselt number decreases with an increase of Hartmann number. It is observed that the density inversion of water leaves strong effects on fluid flow and heat transfer due to the formation of bi-cellular structure. The heat transfer rate behaves non-linearly with density inversion parameter. The direction of external magnetic field also affect the fluid flow and heat transfer. (authors)

  13. Temperature dependence of the deformation behavior of 316 stainless steel after low temperature neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pawel-Robertson, J.E.; Rowcliffe, A.F.; Grossbeck, M.L. [Oak Ridge National Lab., TN (United States)] [and others

    1996-10-01

    The effects of low temperature neutron irradiation on the tensile behavior of 316 stainless steel have been investigated. A single heat of solution annealed 316 was irradiated to 7 and 18 dpa at 60, 200, 330, and 400{degrees}C. The tensile properties as a function of dose and as a function of temperature were examined. Large changes in yield strength, deformation mode, strain to necking, and strain hardening capacity were seen in this irradiation experiment. The magnitudes of the changes are dependent on both irradiation temperature and neutron dose. Irradiation can more than triple the yield strength over the unirradiated value and decrease the strain to necking (STN) to less than 0.5% under certain conditions. A maximum increase in yield strength and a minimum in the STN occur after irradiation at 330{degrees}C but the failure mode remains ductile.

  14. Temperature-dependent binding of cyclosporine to an erythrocyte protein

    International Nuclear Information System (INIS)

    Agarwal, R.P.; Threatte, G.A.; McPherson, R.A.

    1987-01-01

    In this competitive binding assay to measure endogenous binding capacity for cyclosporine (CsA) in erythrocyte lysates, a fixed amount of [ 3 H]CsA plus various concentrations of unlabeled CsA is incubated with aliquots of a test hemolysate. Free CsA is then adsorbed onto charcoal and removed by centrifugation; CsA complexed with a cyclosporine-binding protein (CsBP) remains in the supernate. We confirmed the validity of this charcoal-separation mode of binding analysis by comparison with equilibrium dialysis. Scatchard plot analysis of the results at 4 degrees C yielded a straight line with slope corresponding to a binding constant of 1.9 X 10(7) L/mol and a saturation capacity of approximately 4 mumol per liter of packed erythrocytes. Similar analysis of binding data at 24 degrees C and 37 degrees C showed that the binding constant decreased with increasing temperature, but the saturation capacity did not change. CsBP was not membrane bound but appeared to be freely distributed within erythrocytes. 125 I-labeled CsA did not complex with the erythrocyte CsBP. Several antibiotics and other drugs did not inhibit binding between CsA and CsBP. These findings may explain the temperature-dependent uptake of CsA by erythrocytes in whole blood and suggest that measurement of CsBP in erythrocytes or lymphocytes may help predict therapeutic response or toxicity after administration of CsA

  15. Temperature dependence of single-particle properties in nuclear matter

    International Nuclear Information System (INIS)

    Zuo, W.; Lu, G.C.; Li, Z.H.; Lombardo, U.; Schulze, H.-J.

    2006-01-01

    The single-nucleon potential in hot nuclear matter is investigated in the framework of the Brueckner theory by adopting the realistic Argonne V 18 or Nijmegen 93 two-body nucleon-nucleon interaction supplemented by a microscopic three-body force. The rearrangement contribution to the single-particle potential induced by the ground state correlations is calculated in terms of the hole-line expansion of the mass operator and provides a significant repulsive contribution in the low-momentum region around and below the Fermi surface. Increasing temperature leads to a reduction of the effect, while increasing density makes it become stronger. The three-body force suppresses somewhat the ground state correlations due to its strong short-range repulsion, increasing with density. Inclusion of the three-body force contribution results in a quite different temperature dependence of the single-particle potential at high enough densities as compared to that adopting the pure two-body force. The effects of three-body force and ground state correlations on the nucleon effective mass are also discussed

  16. Anomalous temperature dependent magneto-conductance in organic light-emitting diodes with multiple emissive states

    Science.gov (United States)

    Zhao, Chen-xiao; Jia, Wei-yao; Huang, Ke-Xun; Zhang, Qiao-ming; Yang, Xiao-hui; Xiong, Zu-hong

    2015-07-01

    The temperature dependence of the magneto-conductance (MC) in organic electron donor-acceptor hybrid and layer heterojunction diodes was studied. The MC value increased with temperature in layer heterojunction and in 10 wt. % hybrid devices. An anomalous decrease of the MC with temperature was observed in 25 wt. %-50 wt. % hybrid devices. Further increasing donor concentration to 75 wt. %, the MC again increased with temperature. The endothermic exciplex-exciton energy transfer and the change in electroplex/exciton ratio caused by change in charge transport with temperature may account for these phenomena. Comparative studies of the temperature evolutions of the IV curves and the electroluminescence and photoluminescence spectra back our hypothesis.

  17. Anomalous temperature dependent magneto-conductance in organic light-emitting diodes with multiple emissive states

    International Nuclear Information System (INIS)

    Zhao, Chen-xiao; Jia, Wei-yao; Huang, Ke-Xun; Zhang, Qiao-ming; Yang, Xiao-hui; Xiong, Zu-hong

    2015-01-01

    The temperature dependence of the magneto-conductance (MC) in organic electron donor-acceptor hybrid and layer heterojunction diodes was studied. The MC value increased with temperature in layer heterojunction and in 10 wt. % hybrid devices. An anomalous decrease of the MC with temperature was observed in 25 wt. %–50 wt. % hybrid devices. Further increasing donor concentration to 75 wt. %, the MC again increased with temperature. The endothermic exciplex-exciton energy transfer and the change in electroplex/exciton ratio caused by change in charge transport with temperature may account for these phenomena. Comparative studies of the temperature evolutions of the IV curves and the electroluminescence and photoluminescence spectra back our hypothesis

  18. Anomalous temperature dependent magneto-conductance in organic light-emitting diodes with multiple emissive states

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chen-xiao; Jia, Wei-yao; Huang, Ke-Xun; Zhang, Qiao-ming; Yang, Xiao-hui; Xiong, Zu-hong, E-mail: zhxiong@swu.edu.cn [School of Physical Science and Technology, MOE Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chongqing 400715 (China)

    2015-07-13

    The temperature dependence of the magneto-conductance (MC) in organic electron donor-acceptor hybrid and layer heterojunction diodes was studied. The MC value increased with temperature in layer heterojunction and in 10 wt. % hybrid devices. An anomalous decrease of the MC with temperature was observed in 25 wt. %–50 wt. % hybrid devices. Further increasing donor concentration to 75 wt. %, the MC again increased with temperature. The endothermic exciplex-exciton energy transfer and the change in electroplex/exciton ratio caused by change in charge transport with temperature may account for these phenomena. Comparative studies of the temperature evolutions of the IV curves and the electroluminescence and photoluminescence spectra back our hypothesis.

  19. Temperature-dependent striped antiferromagnetism of LaFeAsO in a Green's function approach

    International Nuclear Information System (INIS)

    Liu Guibin; Liu Banggui

    2009-01-01

    We use a Green's function method to study the temperature-dependent average moment and magnetic phase-transition temperature of the striped antiferromagnetism of LaFeAsO, and other similar compounds, as the parents of FeAs-based superconductors. We consider the nearest and the next-nearest couplings in the FeAs layer, and the nearest coupling for inter-layer spin interaction. The dependence of the transition temperature T N and the zero-temperature average spin on the interaction constants is investigated. We obtain an analytical expression for T N and determine our temperature-dependent average spin from zero temperature to T N in terms of unified self-consistent equations. For LaFeAsO, we obtain a reasonable estimation of the coupling interactions with the experimental transition temperature T N = 138 K. Our results also show that a non-zero antiferromagnetic (AFM) inter-layer coupling is essential for the existence of a non-zero T N , and the many-body AFM fluctuations reduce substantially the low-temperature magnetic moment per Fe towards the experimental value. Our Green's function approach can be used for other FeAs-based parent compounds and these results should be useful to understand the physical properties of FeAs-based superconductors.

  20. A model for temperature dependent resistivity of metallic superlattices

    Directory of Open Access Journals (Sweden)

    J. I. Uba

    2015-11-01

    Full Text Available The temperature dependent resistivity of metallic superlattices, to first order approximation, is assumed to have same form as bulk metal, ρ(T = ρo + aT, which permits describing these structures as linear atomic chain. The assumption is, substantiated with the derivation of the above expression from the standard magnetoresistance equation, in which the second term, a Bragg scattering factor, is a correction to the usual model involving magnon and phonon scatterings. Fitting the model to Fe/Cr data from literature shows that Bragg scattering is dominant at T < 50 K and magnon and phonon coefficients are independent of experiment conditions, with typical values of 4.7 × 10−4 μΩcmK−2 and −8 ± 0.7 × 10−7μΩcmK−3. From the linear atomic chain model, the dielectric constant ε q , ω = 8 . 33 × 10 − 2 at Debye frequency for all materials and acoustic speed and Thomas – Fermi screening length are pressure dependent with typical values of 1.53 × 104 m/s and 1.80 × 109 m at 0.5 GPa pressure for an Fe/Cr structure.

  1. Time and temperature dependence of cascade induced defect production in in situ experiments and computer simulation

    International Nuclear Information System (INIS)

    Ishino, Shiori

    1993-01-01

    Understanding of the defect production and annihilation processes in a cascade is important in modelling of radiation damage for establishing irradiation correlation. In situ observation of heavy ion radiation damage has a great prospect in this respect. Time and temperature dependence of formation and annihilation of vacancy clusters in a cascade with a time resolution of 30 ms has been studied with a facility which comprises a heavy ion accelerator and an electron microscope. Formation and annihilation rates of defect clusters have been separately measured by this technique. The observed processes have been analysed by simple kinetic equations, taking into account the sink effect of surface and the defect clusters themselves together with the annihilation process due to thermal emission of vacancies from the defect clusters. Another tool to study time and temperature dependence of defect production in a cascade is computer simulation. Recent results of molecular dynamics calculations on the temperature dependence of cascade evolution are presented, including directional and temperature dependence of the lengths of replacement collision sequences, temperature dependence of the process to reach thermal equilibrium and so on. These results are discussed under general time frame of radiation damage evolution covering from 10 -15 to 10 9 s, and several important issues for the general understanding have been identified. (orig.)

  2. The temperature dependence of the friction in the fission

    International Nuclear Information System (INIS)

    Yamaji, Shuhei

    1996-01-01

    We study the slow collective motion at finite excitation on the basis of the linear response theory. The transport coefficients such as friction γ, inertia M and local stiffness C formulated within a locally harmonic approximation are computed along the fission path of 224 Th. It is found that the effective damping rate η = γ/=2√(M|C|)= increases with the temperature T in accord with the fission experiment with the emission of γ-rays. (author)

  3. Dependence of the brittle ductile transition on strain-rate-dependent critical homologous temperature

    Science.gov (United States)

    Davis, Paul M.

    2017-05-01

    Earthquakes mainly occur in crust or mantle that is below a critical temperature for the tectonic strain-rate, \\dot{e}_t, such that stress builds up to the breaking point before it can relax due to creep. Then long-range stress correlation gives rise to power law seismicity including large events. The limiting temperature depends on pressure, which is taken into account by finding a critical homologous temperature THc = T/TM above which earthquakes are rarely observed (where T, TM are temperature and average melting temperature of constituent minerals). We find that THc for ocean plates is ∼0.55. For California earthquakes, it is also close to 0.55. The uppermost mantle layer of oceanic plates of thickness ∼50 km is composed of harzburgite and depleted peridotite from which basalt has been removed to form ocean crust. Thus it has a higher melting temperature than the peridotite of the surrounding mantle, or the lower halves of plates. Thicknesses of seismicity in deep subduction zones, determined from 2-D polynomial fits to a relocated catalogue, are ∼50 km, which suggests that the earthquake channel is confined to this layer. We construct models to find homologous temperatures in slabs, and find that seismicity thicknesses are also, on average, confined to TH ≤ 0.55 ± 0.05. The associated rheology is compared with that obtained from flexure models of ocean lithosphere. The brittle-ductile transition occurs where viscosity drops from high values in the cold cores of slabs to values of 1022-1023 Pa s, that is, where creep strain-rates become comparable to tectonic rates. The cut-off for deep earthquakes is not sharp. However they appear unlikely to occur if homologous temperature is high TH > 0.55. Exceptions to the rule are anomalously deep earthquakes such as those beneath the Iceland and the Hawaiian hotspots, and the Newport Inglewood Fault. These are smaller events with short-range stress correlation, and can be explained if strain-rates are two to

  4. Temperature dependence of the radiation induced change of depletion voltage in silicon PIN detectors

    International Nuclear Information System (INIS)

    Ziock, H.J.; Holzscheiter, K.; Morgan, A.; Palounek, A.P.T.; Ellison, J.; Heinson, A.P.; Mason, M.; Wimpenny, S.J.; Barberis, E.; Cartiglia, N.; Grillo, A.; O'Shaughnessy, K.; Rahn, J.; Rinaldi, P.; Rowe, W.A.; Sadrozinski, H.F.W.; Seiden, A.; Spencer, E.; Webster, A.; Wichmann, R.; Wilder, M.; Coupal, D.; Pal, T.

    1993-01-01

    The silicon microstrip detectors that will be used in the SDC experiment at the Superconducting Super Collider (SSC) will be exposed to very large fluences of charged particles, neutrons, and gammas. The authors present a study of how temperature affects the change in the depletion voltage of silicon PIN detectors damaged by radiation. They study the initial radiation damage and the short-term and long-term annealing of that damage as a function of temperature in the range from -10 degrees C to +50 degrees C, and as a function of 800 MeV proton fluence up to 1.5 x 10 14 p/cm 2 . They express the pronounced temperature dependencies in a simple model in terms of two annealing time constants which depend exponentially on the temperature

  5. Summertime Aerosol Radiative Effects and Their Dependence on Temperature over the Southeastern USA

    Directory of Open Access Journals (Sweden)

    Tero Mielonen

    2018-05-01

    Full Text Available Satellite data suggest that summertime aerosol optical depth (AOD over the southeastern USA depends on the air/land surface temperature, but the magnitude of the radiative effects caused by this dependence remains unclear. To quantify these radiative effects, we utilized several remote sensing datasets and ECMWF reanalysis data for the years 2005–2011. In addition, the global aerosol–climate model ECHAM-HAMMOZ was used to identify the possible processes affecting aerosol loads and their dependence on temperature over the studied region. The satellite-based observations suggest that changes in the total summertime AOD in the southeastern USA are mainly governed by changes in anthropogenic emissions. In addition, summertime AOD exhibits a dependence on southerly wind speed and land surface temperature (LST. Transport of sea salt and Saharan dust is the likely reason for the wind speed dependence, whereas the temperature-dependent component is linked to temperature-induced changes in the emissions of biogenic volatile organic compounds (BVOCs over forested regions. The remote sensing datasets indicate that the biogenic contribution increases AOD with increasing temperature by approximately (7 ± 6 × 10−3 K−1 over the southeastern USA. In the model simulations, the increase in summertime AOD due to temperature-enhanced BVOC emissions is of a similar magnitude, i.e., (4 ± 1 × 10−3 K−1. The largest source of BVOC emissions in this region is broadleaf trees, thus if the observed temperature dependence of AOD is caused by biogenic emissions the dependence should be the largest in the vicinity of forests. Consequently, the analysis of the remote sensing data shows that over mixed forests the biogenic contribution increases AOD by approximately (27 ± 13 × 10−3 K−1, which is over four times higher than the value for over the whole domain, while over other land cover types in the study region (woody savannas and cropland/natural mosaic

  6. Temperature dependent surface modification of molybdenum due to low energy He+ ion irradiation

    International Nuclear Information System (INIS)

    Tripathi, J.K.; Novakowski, T.J.; Joseph, G.; Linke, J.; Hassanein, A.

    2015-01-01

    In this paper, we report on the temperature dependent surface modifications in molybdenum (Mo) samples due to 100 eV He + ion irradiation in extreme conditions as a potential candidate to plasma-facing components in fusion devices alternative to tungsten. The Mo samples were irradiated at normal incidence, using an ion fluence of 2.6 × 10 24 ions m −2 (with a flux of 7.2 × 10 20 ions m −2 s −1 ). Surface modifications have been studied using high-resolution field emission scanning electron-(SEM) and atomic force (AFM) microscopy. At 773 K target temperature homogeneous evolution of molybdenum nanograins on the entire Mo surface were observed. However, at 823 K target temperature appearance of nano-pores and pin-holes nearby the grain boundaries, and Mo fuzz in patches were observed. The fuzz density increases significantly with target temperatures and continued until 973 K. However, at target temperatures beyond 973 K, counterintuitively, a sequential reduction in the fuzz density has been seen till 1073 K temperatures. At 1173 K and above temperatures, only molybdenum nano structures were observed. Our temperature dependent studies confirm a clear temperature widow, 823–1073 K, for Mo fuzz formation. Ex-situ high resolution X-ray photoelectron spectroscopy studies on Mo fuzzy samples show the evidence of MoO 3 3d doublets. This elucidates that almost all the Mo fuzz were oxidized during open air exposure and are thick enough as well. Likewise the microscopy studies, the optical reflectivity measurements also show a sequential reduction in the reflectivity values (i.e., enhancement in the fuzz density) up to 973 K and after then a sequential enhancement in the reflectivity values (i.e., reduction in the fuzz density) with target temperatures. This is in well agreement with microscopy studies where we observed clear temperature window for Mo fuzz growth

  7. Temperature-dependent sex determination in the leopard gecko, Eublepharis macularius.

    Science.gov (United States)

    Viets, B E; Tousignant, A; Ewert, M A; Nelson, C E; Crews, D

    1993-05-01

    The leopard gecko, Eublepharis macularius, has temperature-dependent sex determination (TSD). Previous reports have shown that females are produced predominantly at cool incubation temperatures and males are produced predominantly at warm incubation temperatures (Pattern Ib). We report here that incubation at even higher temperatures (34 and 35 degrees C) produces mostly females (Pattern II). The lethal maximum constant incubation temperature for this species appears to be just above 35 degrees C. Although a previous study indicated that females from a warm incubation temperature (32 degrees C) failed to lay eggs, we found that 12 of 14 mature females incubated at 32.5 degrees C, and 5 of 6 mature females incubated at 34 degrees C produced fertile eggs and viable hatchlings.

  8. Volume dependence of the melting temperature for alkali metals with Debye's model

    International Nuclear Information System (INIS)

    Soma, T.; Kagaya, H.M.; Nishigaki, M.

    1983-01-01

    Using the volume dependence of the Grueneisen constant at higher temperatures, the volume effect on the melting temperature of alkali metals is studied by Lindeman's melting law and Debye's model. The obtained melting curve increases as a function of the compressed volume and shows the maximum of the melting point at the characteristic volume. The resultant data are qualitatively in agreement with the observed tendency for alkali metals. (author)

  9. Time-Dependent Behavior of Shrinkage Strain for Early Age Concrete Affected by Temperature Variation

    OpenAIRE

    Qin, Yu; Yi, Zhijian; Wang, Weina; Wang, Di

    2017-01-01

    Shrinkage has been proven to be an important property of early age concrete. The shrinkage strain leads to inherent engineering problems, such as cracking and loss of prestress. Atmospheric temperature is an important factor in shrinkage strain. However, current research does not provide much attention to the effect of atmospheric temperature on shrinkage of early age concrete. In this paper, a laboratory study was undertaken to present the time-dependent shrinkage of early age concrete under...

  10. Transient thermal stresses in multiple connected region exhibiting temperature dependence of material properties

    International Nuclear Information System (INIS)

    Sugano, Yoshihiro; Maekawa, Toshiya.

    1983-01-01

    The examples of the analysis of thermal stress in multiple connection regions such as heat exchangers, nuclear reactor cores, ingot cases and polygonal region with elliptic holes are not few, but the temperature dependence of material constants was neglected in these researches because of the difficulty of analysis though the industrial problems related to thermal stress are apt to occur in the condition of relatively large temperature gradient. Also, the analysis of heat conduction problems taking the temperature dependence of material constants into account was limited to one-dimensional problems for which Kirchhoff's transmission can be used. The purpose of this study is to derive the equation of condition which assures the one-value property of rotation and displacement, taking the temperature dependence of material constants into account, and to complete the formulation of the plane thermal stress problems in multiple connection regions by stress function method. Also the method of numerical analysis using difference method is shown to examine the effectiveness of various formulated equations and the effect of the temperature dependence of material constants on temperature and thermal stress. The example of numerical calculation on a thin rectangular plate with a rectangular hole is shown. (Kako, I.)

  11. Temperature dependence of the superconducting proximity effect quantified by scanning tunneling spectroscopy

    Directory of Open Access Journals (Sweden)

    A. Stępniak

    2015-01-01

    Full Text Available Here, we present the first systematic study on the temperature dependence of the extension of the superconducting proximity effect in a 1–2 atomic layer thin metallic film, surrounding a superconducting Pb island. Scanning tunneling microscopy/spectroscopy (STM/STS measurements reveal the spatial variation of the local density of state on the film from 0.38 up to 1.8 K. In this temperature range the superconductivity of the island is almost unaffected and shows a constant gap of a 1.20 ± 0.03 meV. Using a superconducting Nb-tip a constant value of the proximity length of 17 ± 3 nm at 0.38 and 1.8 K is found. In contrast, experiments with a normal conductive W-tip indicate an apparent decrease of the proximity length with increasing temperature. This result is ascribed to the thermal broadening of the occupation of states of the tip, and it does not reflect an intrinsic temperature dependence of the proximity length. Our tunneling spectroscopy experiments shed fresh light on the fundamental issue of the temperature dependence of the proximity effect for atomic monolayers, where the intrinsic temperature dependence of the proximity effect is comparably weak.

  12. A space and time scale-dependent nonlinear geostatistical approach for downscaling daily precipitation and temperature

    KAUST Repository

    Jha, Sanjeev Kumar

    2015-07-21

    A geostatistical framework is proposed to downscale daily precipitation and temperature. The methodology is based on multiple-point geostatistics (MPS), where a multivariate training image is used to represent the spatial relationship between daily precipitation and daily temperature over several years. Here, the training image consists of daily rainfall and temperature outputs from the Weather Research and Forecasting (WRF) model at 50 km and 10 km resolution for a twenty year period ranging from 1985 to 2004. The data are used to predict downscaled climate variables for the year 2005. The result, for each downscaled pixel, is daily time series of precipitation and temperature that are spatially dependent. Comparison of predicted precipitation and temperature against a reference dataset indicates that both the seasonal average climate response together with the temporal variability are well reproduced. The explicit inclusion of time dependence is explored by considering the climate properties of the previous day as an additional variable. Comparison of simulations with and without inclusion of time dependence shows that the temporal dependence only slightly improves the daily prediction because the temporal variability is already well represented in the conditioning data. Overall, the study shows that the multiple-point geostatistics approach is an efficient tool to be used for statistical downscaling to obtain local scale estimates of precipitation and temperature from General Circulation Models. This article is protected by copyright. All rights reserved.

  13. Temperature dependence of the thermal conductivity in chiral carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mensah, N.G. [Department of Mathematics, University of Cape Coast, Cape Coast (Ghana); Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Nkrumah, G. [Department of Physics, University of Ghana, Legon, Accra (Ghana) and Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)]. E-mail: geon@ug.edu.gh; Mensah, S.Y. [Department of Physics, Laser and Fibre Optics Centre, University of Cape Coast, Cape Coast (Ghana); Allotey, F.K.A. [Institute of Mathematical Sciences, Accra (Ghana)

    2004-08-30

    The thermal conductivity of a chiral carbon nanotube (CCNT) is calculated using a tractable analytical approach. This is based on solving the Boltzmann kinetic equation with energy dispersion relation obtained in the tight binding approximation. The results obtained are numerically analysed. Unusually high electron thermal conductivity {chi}{sub ez} is observed along the tubular axis. The dependence of {chi}{sub ez} against temperature T was plotted for varying {delta}{sub z} and a given {delta}{sub s} ({delta}{sub z} and {delta}{sub s} are the overlapping integrals (exchange energy) for the jumps along the tubular axis and the base helix, respectively). It is noted that {chi}{sub ez} shows a peaking behaviour before falling off at higher temperature. As {delta}{sub z} varies from 0.010 eV to 0.048 eV for a given {delta}{sub s}=0.0150 eV, the peak values of {chi}{sub ez} shift from 40000 W/m K at 100 K to 55000 W/m K at about 300 K. Interestingly our results at 104 K which is 41000 W/m K and occurred at {delta}{sub z}=0.023 eV compares very well with that reported for a 99.9% isotopically enriched {sup 12}C diamond crystal. Another interesting result obtained is the fact that the circumferential electron thermal conductivity {chi}{sub ec} appears to be very small. The ratio of {chi}{sub ez} to {chi}{sub ec} is of the order of 2.

  14. Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe

    International Nuclear Information System (INIS)

    Liu Tiancai; Huang Zhenli; Wang Haiqiao; Wang Jianhao; Li Xiuqing; Zhao Yuandi; Luo Qingming

    2006-01-01

    The photoluminescence of water-soluble CdSe/ZnS core/shell quantum dots is found to be temperature-dependent: as temperature arising from 280 K to 351 K, the photoluminescence declines with emission peak shifting towards the red at a rate of ∼0.11 nm K -1 . And the studies show that the photoluminescence of water-soluble CdSe/ZnS quantum dots with core capped by a thinner ZnS shell is more sensitive to temperature than that of ones with core capped by a thicker one. That is, with 50% decrement of the quantum yield the temperature of the former need to arise from 280 K to 295 K, while the latter requires much higher temperature (315.6 K), which means that the integrality of shell coverage is a very important factor on temperature-sensitivity to for the photoluminescence of water-soluble CdSe/ZnS quantum dots. Moreover, it is found that the water-soluble CdSe quantum dots with different core sizes, whose cores are capped by thicker ZnS shells, possess almost the same sensitivity to the temperature. All of the studies about photoluminescence temperature-dependence of water-soluble CdSe/ZnS core/shell quantum dots show an indispensable proof for their applications in life science

  15. Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe

    Energy Technology Data Exchange (ETDEWEB)

    Liu Tiancai [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Huang Zhenli [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wang Haiqiao [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wang Jianhao [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Li Xiuqing [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zhao Yuandi [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)]. E-mail: zydi@mail.hust.edu.cn; Luo Qingming [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2006-02-10

    The photoluminescence of water-soluble CdSe/ZnS core/shell quantum dots is found to be temperature-dependent: as temperature arising from 280 K to 351 K, the photoluminescence declines with emission peak shifting towards the red at a rate of {approx}0.11 nm K{sup -1}. And the studies show that the photoluminescence of water-soluble CdSe/ZnS quantum dots with core capped by a thinner ZnS shell is more sensitive to temperature than that of ones with core capped by a thicker one. That is, with 50% decrement of the quantum yield the temperature of the former need to arise from 280 K to 295 K, while the latter requires much higher temperature (315.6 K), which means that the integrality of shell coverage is a very important factor on temperature-sensitivity to for the photoluminescence of water-soluble CdSe/ZnS quantum dots. Moreover, it is found that the water-soluble CdSe quantum dots with different core sizes, whose cores are capped by thicker ZnS shells, possess almost the same sensitivity to the temperature. All of the studies about photoluminescence temperature-dependence of water-soluble CdSe/ZnS core/shell quantum dots show an indispensable proof for their applications in life science.

  16. Dependence of O{sub 2} diffusion dynamics on pressure and temperature in silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Iovino, G., E-mail: giuseppe.iovino@unipa.it; Agnello, S., E-mail: simonpietro.agnello@unipa.it; Gelardi, F. M., E-mail: franco.gelardi@unipa.it [University of Palermo, Department of Physics and Chemistry (Italy)

    2013-10-15

    An experimental study of the molecular O{sub 2} diffusion process in high purity non-porous silica nanoparticles having 50 m{sup 2}/g BET specific surface and 20 nm average radius was carried out in the temperature range from 127 to 177 Degree-Sign C at O{sub 2} pressure in the range from 0.2 to 66 bar. The study was performed by measuring the volume average interstitial O{sub 2} concentration by a Raman and photoluminescence technique using a 1,064 nm excitation laser to detect the singlet to triplet emission at 1,272 nm of the molecular oxygen in silica. A dependence of the diffusion kinetics on the O{sub 2} absolute pressure, in addition to temperature dependence, was found. The kinetics can be fit by the solution of Fick's diffusion equation using an effective diffusion coefficient related to temperature and O{sub 2} external pressure. The fit results have evidenced that the temperature and pressure dependencies can be disentangled and that the pressure effects are more pronounced at lower temperatures. An Arrhenius temperature law is determined for the effective diffusion coefficient and the activation energy and pre-exponential factor are found in the explored experimental range. The reported findings have not been evidenced previously in the studies in bulk silica and could probably be originated by the reduced spatial extension of the considered system.

  17. Temperature dependence of the coherence in polariton condensates

    Science.gov (United States)

    Rozas, E.; Martín, M. D.; Tejedor, C.; Viña, L.; Deligeorgis, G.; Hatzopoulos, Z.; Savvidis, P. G.

    2018-02-01

    We present a time-resolved experimental study of the temperature effect on the coherence of traveling polariton condensates. The simultaneous detection of their emission both in real and reciprocal space allows us to fully monitor the condensates' dynamics. We obtain fringes in reciprocal space as a result of the interference between polariton wave packets (WPs) traveling with the same speed. The periodicity of these fringes is inversely proportional to the spatial distance between the interfering WPs. In a similar fashion, we obtain interference fringes in real space when WPs traveling in opposite directions meet. The visibility of both real- and reciprocal-space interference fringes rapidly decreases with increasing temperature and vanishes. A theoretical description of the phase transition, considering the coexistence of condensed and noncondensed particles, for an out-of-equilibrium condensate such as ours is still missing, yet a comparison with theories developed for atomic condensates allows us to infer a critical temperature for the BEC-like transition when the visibility goes to zero.

  18. Temperature dependence of electroluminescent emission from (ZnS : Cu, Mn(H)) type luminophors

    International Nuclear Information System (INIS)

    Singh, L.K.

    1986-04-01

    The dependence of electroluminescent yield on temperature for hydrogen coactivated (ZnS : Cu, Mn) type triple band emitting phosphors has been investigated at various temperatures under varied operating conditions of excitations. The influence of the excitation frequency, voltage and of emission wavelengths for the electroluminescent characteristics has also been observed on temperature variations. The results have also been studied for temperature dependences of emitting brightness under the excitation by UV-radiations of 3650 A.U. and a comparison is made between temperature dependent characteristics of E.L. and PL-brightness of emissions. It was observed that, as usual, brightness maxima on temperature scale varied with alteration of operating electric fields regarding frequency and voltage both for blue, green and yellow orange emissions of attempted samples. The important thing which is observed here, is that with regards the temperature EL-intensities vary respectively for all respective emissions but emission peaks are not shifted on wave-length scale. This no shift is due to the narrowly and compactly distributed coactivator levels of hydrogen. (author)

  19. Temperature and humidity dependence of air fluorescence yield measured by AIRFLY

    International Nuclear Information System (INIS)

    Ave, M.; Bohacova, M.; Buonomo, B.; Busca, N.; Cazon, L.; Chemerisov, S.D.; Conde, M.E.; Crowell, R.A.; Di Carlo, P.; Di Giulio, C.; Doubrava, M.; Esposito, A.; Facal, P.; Franchini, F.J.; Hoerandel, J.; Hrabovsky, M.; Iarlori, M.; Kasprzyk, T.E.; Keilhauer, B.

    2008-01-01

    The fluorescence detection of ultra high energy cosmic rays requires a detailed knowledge of the fluorescence light emission from nitrogen molecules over a wide range of atmospheric parameters, corresponding to altitudes typical of the cosmic ray shower development in the atmosphere. We have studied the temperature and humidity dependence of the fluorescence light spectrum excited by MeV electrons in air. Results for the 313.6, 337.1, 353.7 and 391.4 nm bands are reported in this paper. We found that the temperature and humidity dependence of the quenching process changes the fluorescence yield by a sizeable amount (up to 20% for the temperature dependence in the 391.4 nm band) and its effect must be included for a precise estimation of the energy of ultra high energy cosmic rays.

  20. Quantitative assessment of accumulation of radionuclides in fish organism in dependence on water temperature

    International Nuclear Information System (INIS)

    Katkov, A.E.

    1980-01-01

    Eperimentally studied are the changes of levels of several indices of radionuclide metabolism in fishes in dependence on water temperature at its absorption directly from water and at introduction into the digestive tract. Presented are the coefficients of radionuclide storage by the fish tissues in the dependence on temperature (scales and fins, gills, head, intestines, skin, muscles, axial skeleton) and the coefficients of radionuclide retention in the whole fish. It is shown that the connection between the coefficient of radionuclide storage in the fish organism and water temperature is described by the logarithmic dependence. At the systematic entering of radionuclides into the digestive tract the retention coefficient of them in the organism expressed in the form of the ratio of residual quantity in the fish to the quantity in day dose is constant

  1. Magnetic field and temperature dependence of the critical vortex velocity in type-II superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Grimaldi, G; Leo, A; Cirillo, C; Attanasio, C; Nigro, A; Pace, S [CNR-INFM Laboratorio Regionale SuperMat, Via Salvador Allende, I-84081 Baronissi (Italy)], E-mail: grimaldi@sa.infn.it

    2009-06-24

    We study the vortex dynamics in the instability regime induced by high dissipative states well above the critical current in Nb superconducting strips. The magnetic field and temperature behavior of the critical vortex velocity corresponding to the observed dynamic instability is ascribed to intrinsic non-equilibrium phenomena. The Larkin-Ovchinnikov (LO) theory of electronic instability in high velocity vortex motion has been applied to interpret the temperature dependence of the critical vortex velocity. The magnetic field dependence of the vortex critical velocity shows new features in the low-field regime not predicted by LO.

  2. Temperature-dependence of Threshold Current Density-Length Product in Metallization Lines: A Revisit

    International Nuclear Information System (INIS)

    Duryat, Rahmat Saptono; Kim, Choong-Un

    2016-01-01

    One of the important phenomena in Electromigration (EM) is Blech Effect. The existence of Threshold Current Density-Length Product or EM Threshold has such fundamental and technological consequences in the design, manufacture, and testing of electronics. Temperature-dependence of Blech Product had been thermodynamically established and the real behavior of such interconnect materials have been extensively studied. The present paper reviewed the temperature-dependence of EM threshold in metallization lines of different materials and structure as found in relevant published articles. It is expected that the reader can see a big picture from the compiled data, which might be overlooked when it was examined in pieces. (paper)

  3. Calculated temperature dependence of elastic constants and phonon dispersion of hcp and bcc beryllium

    Science.gov (United States)

    Hahn, Steven; Arapan, Sergiu; Harmon, Bruce; Eriksson, Olle

    2011-03-01

    Conventional first principle methods for calculating lattice dynamics are unable to calculate high temperature thermophysical properties of materials containing modes that are entropically stabilized. In this presentation we use a relatively new approach called self-consistent ab initio lattice dynamics (SCAILD) to study the hcp to bcc transition (1530 K) in beryllium. The SCAILD method goes beyond the harmonic approximation to include phonon-phonon interactions and produces a temperature-dependent phonon dispersion. In the high temperature bcc structure, phonon-phonon interactions dynamically stabilize the N-point phonon. Fits to the calculated phonon dispersion were used to determine the temperature dependence of the elastic constants in the hcp and bcc phases. Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358.

  4. Temperature dependence of positron lifetime in ordered porous silica (SBA-3)

    International Nuclear Information System (INIS)

    Kunishige, S.; Koshimizu, M.; Asai, K.

    2009-01-01

    The temperature dependence of positron lifetime in uniform mesopores was analyzed. We used SBA-3 as the sample material, which possesses an ordered porous structure with uniform cylindrical mesopores. The positron lifetime corresponding to the annihilation in the mesopores increased gradually with a decrease in temperature down to 100 K, and its relative intensity also increased concomitantly. This result was attributed to the lower probability of the escape of the ortho-positronium (o-Ps) from the mesopores into the intergrain space at lower temperatures. An anomalous and sudden increase in the lifetime was observed at around 100 K; this result was in agreement with an increase in the positron lifetime reported in a previous study. It was revealed that the increase in the lifetime is very steep in cases of uniform mesopores, suggesting that the temperature dependence is influenced by the pore size.

  5. Temperature Dependence and Magnetic Field Dependence of Quantum Point Contacts in Si-Inversion Layers

    NARCIS (Netherlands)

    Wang, S.L.; Son, P.C. van; Wees, B.J. van; Klapwijk, T.M.

    1992-01-01

    The conductance of ballistic point contacts in high-mobility Si-inversion layers has been studied at several temperatures between 75 and 600 mK both without and in a magnetic field (up to 12T). When the width of constriction is varied in zero magnetic field, step-like features at multiples of 4e2/h

  6. Dynamic temperature dependence patterns in future energy demand models in the context of climate change

    International Nuclear Information System (INIS)

    Hekkenberg, M.; Moll, H.C.; Uiterkamp, A.J.M. Schoot

    2009-01-01

    Energy demand depends on outdoor temperature in a 'u' shaped fashion. Various studies have used this temperature dependence to investigate the effects of climate change on energy demand. Such studies contain implicit or explicit assumptions to describe expected socio-economic changes that may affect future energy demand. This paper critically analyzes these implicit or explicit assumptions and their possible effect on the studies' outcomes. First we analyze the interaction between the socio-economic structure and the temperature dependence pattern (TDP) of energy demand. We find that socio-economic changes may alter the TDP in various ways. Next we investigate how current studies manage these dynamics in socio-economic structure. We find that many studies systematically misrepresent the possible effect of socio-economic changes on the TDP of energy demand. Finally, we assess the consequences of these misrepresentations in an energy demand model based on temperature dependence and climate scenarios. Our model results indicate that expected socio-economic dynamics generally lead to an underestimation of future energy demand in models that misrepresent such dynamics. We conclude that future energy demand models should improve the incorporation of socio-economic dynamics. We propose dynamically modeling several key parameters and using direct meteorological data instead of degree days. (author)

  7. Temperature dependent elasticity and damping in dehydrated sandstone

    Science.gov (United States)

    Darling, T. W.; Struble, W.

    2013-12-01

    Work reported previously at this conference, outlining our observation of anomalously large elastic softening and damping in dehydrated Berea sandstone at elevated temperatures, has been analysed to study shear and compressional effects separately. Modeling of the sample using COMSOL software was necessary to identify modes, as the vibration spectrum of the sample is poorly approximated by a uniform isotropic solid. The first torsional mode of our evacuated, dry, core softens at nearly twice the rate of Young's modulus modes (bending and compressional) and is also damped nearly twice as strongly as temperature increases. We consider two possible models for explaining this behavior, based on the assumption that the mechanical properties of the sandstone are dominated by the framework of quartz grains and polycrystalline cementation, neglecting initially the effects of clay and feldspar inclusions. The 20cm x 2.54cm diameter core is dry such that the pressure of water vapor in the experiment chamber is below 1e-6 Torr at 70C, suggesting that surface water beyond a small number of monolayers is negligible. Our models consider (1) enhanced sliding of grain boundaries in the cementation at elevated temperature and reduced internal water content, and (2) strain microcracking of the cementatioin at low water content due to anisotropic expansion in the quartz grains. In model (1) interfaces parallel to polyhedral grain surfaces were placed in the cement bonds and assigned frictional properties. Model (2) has not yet been implemented. The overall elasticity of a 3-D several-grain model network was determined by modeling quasistatic loading and measuring displacements. Initial results with a small number of grains/bonds suggests that only the first model provides softening and damping for all the modes, however the details of the effects of defect motioin at individual interfaces as the source for the frictional properties is still being evaluated. Nonlinear effects are

  8. Modelled temperature-dependent excitability behaviour of a generalised human peripheral sensory nerve fibre.

    Science.gov (United States)

    Smit, Jacoba E; Hanekom, Tania; Hanekom, Johan J

    2009-08-01

    The objective of this study was to determine if a recently developed human Ranvier node model, which is based on a modified version of the Hodgkin-Huxley model, could predict the excitability behaviour in human peripheral sensory nerve fibres with diameters ranging from 5.0 to 15.0 microm. The Ranvier node model was extended to include a persistent sodium current and was incorporated into a generalised single cable nerve fibre model. Parameter temperature dependence was included. All calculations were performed in Matlab. Sensory nerve fibre excitability behaviour characteristics predicted by the new nerve fibre model at different temperatures and fibre diameters compared well with measured data. Absolute refractory periods deviated from measured data, while relative refractory periods were similar to measured data. Conduction velocities showed both fibre diameter and temperature dependence and were underestimated in fibres thinner than 12.5 microm. Calculated strength-duration time constants ranged from 128.5 to 183.0 micros at 37 degrees C over the studied nerve fibre diameter range, with chronaxie times about 30% shorter than strength-duration time constants. Chronaxie times exhibited temperature dependence, with values overestimated by a factor 5 at temperatures lower than body temperature. Possible explanations include the deviated absolute refractory period trend and inclusion of a nodal strangulation relationship.

  9. Dependence of Subduction Zone seismicity on Strain-Rate-Dependent Critical Homologous Temperature

    Science.gov (United States)

    Davis, P. M.

    2016-12-01

    Earthquakes mainly occur in crust or mantle that is below a critical temperature for the tectonic strain-rate, such that stress builds up to the breaking point before it can relax due to creep. Then long-range stress correlation gives rise to power law seismicity with large events. The limiting temperature depends on pressure, which is taken into account by finding a critical homologous temperature THc=T/TM above which earthquakes are rarely observed. We find that THc for ocean plates is ˜0.55. For California earthquakes, it is also close to 0.55. The uppermost mantle layer of oceanic plates of thickness ˜50 km is composed of harzburgite and depleted peridotite from which basalt has been removed to form ocean crust. Thus it has a higher melting temperature than the peridotite of the surrounding mantle, or the lower halves of plates. Thicknesses of seismicity in deep subduction zones, determined from 2D polynomial fits to a relocated catalog, are ˜50 km, which suggests that the earthquake channel is confined to this layer. We construct models to find homologous temperatures in slabs, and find that seismicity thicknesses are also, on average, confined to TH ≤ 0.55 ± 0.05. The associated rheology is compared with that obtained from flexure models of ocean lithosphere. The brittle-ductile transition occurs where viscosity drops from high values in the cold cores of slabs to values of 1022 to $1023 Pa s, i.e., where creep strain-rates become comparable to tectonic rates. The cutoff for deep earthquakes is not sharp. However they appear unlikely to occur if homologous temperature is high TH>0.55. Exceptions to the rule are anomalously deep earthquakes such as those beneath the Iceland and the Hawaiian hotspots, and the Newport Inglewood Fault. These are smaller events with short-range stress correlation, and can be explained if strain-rates are 2 to 3 orders of magnitude higher than those associated with earthquakes located where TH ≤0.55. We conclude that the

  10. Temperature dependent transport of two dimensional electrons in the integral quantum Hall regime

    International Nuclear Information System (INIS)

    Wi, H.P.

    1986-01-01

    This thesis is concerned with the temperature dependent electronic transport properties of a two dimensional electron gas subject to background potential fluctuations and a perpendicular magnetic field. The author carried out an extensive temperature dependent study of the transport coefficients, in the region of an integral quantum plateau, in an In/sub x/Ga/sub 1-x/As/InP heterostructure for 4.2K 10 cm -2 meV -1 ) even at the middle between two Landau levels, which is unexpected from model calculations based on short ranged randomness. In addition, the different T dependent behavior of rho/sub xx/ between the states in the tails and those near the center of a Landau level, indicates the existence of different electron states in a Landau level. Additionally, the author reports T-dependent transport measurements in the transition region between two quantum plateaus in several different materials

  11. Temperature-dependent evolution of chemisorbed digermane in Ge thin film growth

    International Nuclear Information System (INIS)

    Eres, D.; Sharp, J.W.

    1992-01-01

    The formation and evolution of chemisorbed digermane layers in context with germanium thin film growth was investigated by time- resolved surface reflectometry. Modulation of the source gas supply made possible the separation and independent study of the temperature dependence of the adsorption and desorption processes. The regeneration of active sites by molecular hydrogen desorption was identified as the rate-limiting step at low substrate temperatures. A dynamic method of thin film growth was demonstrated by repetitively replenishing the active film growth sites regenerated between two successive source gas pulses. The film growth rate was shown to be related to the substrate temperature and the delay time between successive source gas pulses

  12. Temperature dependence of UV radiation effects in Arctic and temperate isolates of three red macrophytes

    NARCIS (Netherlands)

    van de Poll, W.H.; Eggert, A.; Buma, A.G.J.; Breeman, Arno

    The temperature dependence of UV effects was studied for Arctic and temperate isolates of the red macrophytes Palmaria palmata, Coccotylus truncatus and Phycodrys rubens. The effects of daily repeated artificial ultraviolet B and A radiation (UVBR: 280-320 nm, UVAR: 320-400 nm) treatments were

  13. Temperature-dependent built-in potential in organic semiconductor devices

    NARCIS (Netherlands)

    Kemerink, M.; Kramer, J.M.; Gommans, H.H.P.; Janssen, R.A.J.

    2006-01-01

    The temperature dependence of the built-in voltage of organic semiconductor devices is studied. The results are interpreted using a simple analytical model for the band bending at the electrodes. It is based on the notion that, even at zero current, diffusion may cause a significant charge density

  14. Temperature Dependence on The Synthesis of Jatropha Biolubricant

    International Nuclear Information System (INIS)

    Resul, Muhammad Faiz M Gunam; Ghazi, Tinia Idaty Mohd; Idris, Azni

    2011-01-01

    Jatropha oil has good potential as the renewable energy as well as lubricant feedstock. The synthesis of jatropha biolubricant was performed by transesterification of jatropha methyl ester (JME) with trimethyl-ol-propane (TMP) with sodium methoxide (NaOCH3) catalyst. The effects of temperature on the synthesis were studied at a range between 120 deg. C and 200 deg. C with pressure kept at 10mbar. The conversion of JME to jatropha biolubricant was found to be the highest (47%) at 200 deg. C. However, it was suggested that the optimum temperature of the reaction is at 150 deg. C due to insignificant improvement in biolubricant production. To maintain forward reaction, the excess amount of JME was maintained at 3.9:1 ratios to TMP. Kinetic study was done and compared. The synthesis was found to follow a second order reaction with overall rate constant of 1.49 x 10-1 (%wt/wt.min.deg. C)-1. The estimated activation energy was 3.94 kJ/mol. Pour point for jatropha biolubricant was at -3 deg. C and Viscosity Index (VI) ranged from 178 to 183. The basic properties of jatropha biolubricant, pour point and viscosities are found comparable to other plant based biolubricant, namely palm oil and soybean based biolubricant.

  15. Temperature dependence on sodium-water chemical reaction

    International Nuclear Information System (INIS)

    Tamura, Kenta; Deguchi, Yoshihiro; Suzuki, Koichi; Takata, Takashi; Yamaguchi, Akira; Kikuchi, Shin; Ohshima, Hiroyuki

    2012-01-01

    In a sodium-cooled fast reactor (SFR), liquid sodium is used as a heat transfer fluid because of its excellent heat transport capability. On the other hand, it has strong chemical reactivity with water vapor. One of the design basis accidents of the SFR is the water leakage into the liquid sodium flow by a breach of heat transfer tubes. This process ends up damages on the heat transport equipment in the SFR. Therefore, the study on sodium-water chemical reactions is of paramount importance for security reasons. This study aims to clarify the sodium-water reaction mechanisms using laser diagnostics. A quasi one-dimensional flame model is also applied to a sodium-water counter-flow reaction field. Temperature, H 2 , H 2 O, OH, Na and Particulate matter were measured using laser induced fluorescence and CARS in the counter-flow reaction field. The temperature of the reaction field was also modified to reduce the condensation of Na in the reaction zone. (author)

  16. Temperature dependence on the synthesis of Jatropha bio lubricant

    International Nuclear Information System (INIS)

    Gunam Resul, M.F.M.; Tinia Idaty Mohd Ghazi; Idris, A.

    2009-01-01

    Full text: Jatropha oil has good potential as the renewable energy as well as lubricant feedstock. The synthesis of jatropha bio lubricant was performed by transesterification of jatropha methyl ester (JME) with trimethyl-ol-propane (TMP) with sodium methoxide (NaOCH 3 ) catalyst. The effects of temperature on the synthesis were studied at a range between 120 degree Celsius and 200 degree Celsius with pressure kept at 10 mbar. The conversion of JME to jatropha bio lubricant was found to be the highest (47 %) at 200 degree Celsius. However, it was suggested that the optimum temperature of the reaction is at 150 degree Celsius due to insignificant improvement in bio lubricant production. To maintain forward reaction, the excess amount of JME was maintained at 3.9:1 ratios to TMP. Kinetic study was done and compared. The synthesis was found to follow a second order reaction with overall rate constant of 1.49 x 10 -1 (% wt/ wt.min.degree Celsius) -1 . The estimated activation energy was 3.94 kJ/mol. Pour point for jatropha bio lubricant was at -3 degree Celsius and Viscosity Index (VI) ranged from 178 to 183. The basic properties of jatropha bio lubricant, pour point and viscosities are found comparable to other plant based bio lubricant, namely palm oil and soybean based bio lubricant. (author)

  17. Temperature dependence of 1.55 μm VCSELs

    Science.gov (United States)

    Masum, J.; Balkan, N.; Adams, M. J.

    1998-08-01

    The temperature for minimum threshold carrier concentration in 1.55 μm VCSELs can be significantly lower than that at which the peak gain matches the cavity resonance. A simple model is implemented to investigate the magnitude of this temperature difference and to aid the design of VCSELs for room temperature operation.

  18. Temperature dependences in electron-stimulated desorption of neutral europium

    CERN Document Server

    Ageev, V N; Madey, T E

    2003-01-01

    The electron-stimulated desorption (ESD) yield for neutral europium (Eu) atoms from Eu layers adsorbed on oxygen-covered tungsten surfaces has been measured as a function of electron energy, europium coverage and degree of oxidation of tungsten, with an emphasis on effects of substrate temperature. The measurements have been carried out using a time-of-flight method and surface ionization detector. We expand on an earlier report, and compare ESD of multivalent Eu with ESD of monovalent alkali atoms, studied previously. The Eu atom ESD is a complicated function of Eu coverage, electron energy and substrate temperature. In the coverage range 0.05-0.35 monolayer (ML), overlapping resonant-like Eu atom yield peaks are observed at electron energies E sub e of 36 and 41 eV that might be associated with Eu or W shallow core level excitations. Additional resonant-like peaks are seen at E sub e of 54 and 84 eV that are associated with W 5p and 5s level excitations. The Eu atom yield peaks at 36 and 41 eV are seen only...

  19. Temperature dependent optical properties of (002) oriented ZnO thin film using surface plasmon resonance

    Science.gov (United States)

    Saha, Shibu; Mehan, Navina; Sreenivas, K.; Gupta, Vinay

    2009-08-01

    Temperature dependent optical properties of c-axis oriented ZnO thin film were investigated using surface plasmon resonance (SPR) technique. SPR data for double layer (prism-Au-ZnO-air) and single layer (prism-Au-air) systems were taken over a temperature range (300-525 K). Dielectric constant at optical frequency and real part of refractive index of the ZnO film shows an increase with temperature. The bandgap of the oriented ZnO film was found to decrease with rise in temperature. The work indicates a promising application of the system as a temperature sensor and highlights an efficient scientific tool to study optical properties of thin film under varying ambient conditions.

  20. Measurement of the temperature-dependent threshold shear-stress of red blood cell aggregation.

    Science.gov (United States)

    Lim, Hyun-Jung; Nam, Jeong-Hun; Lee, Yong-Jin; Shin, Sehyun

    2009-09-01

    Red blood cell (RBC) aggregation is becoming an important hemorheological parameter, which typically exhibits temperature dependence. Quite recently, a critical shear-stress was proposed as a new dimensional index to represent the aggregative and disaggregative behaviors of RBCs. The present study investigated the effect of the temperature on the critical shear-stress that is required to keep RBC aggregates dispersed. The critical shear-stress was measured at various temperatures (4, 10, 20, 30, and 37 degrees C) through the use of a transient microfluidic aggregometry. The critical shear-stress significantly increased as the blood temperature lowered, which accorded with the increase in the low-shear blood viscosity with the lowering of the temperature. Furthermore, the critical shear-stress also showed good agreement with the threshold shear-stress, as measured in a rotational Couette flow. These findings assist in rheologically validating the critical shear-stress, as defined in the microfluidic aggregometry.

  1. Temperature response of soil respiration is dependent on concentration of readily decomposable C

    Directory of Open Access Journals (Sweden)

    A. A. Larionova

    2007-12-01

    Full Text Available Temperature acclimation of soil organic matter (SOM decomposition is one of the major uncertainties in predicting soil CO2 efflux associated with the increase in global mean temperature. A reasonable explanation for an apparent acclimation proposed by Davidson and colleagues (2006 based on Michaelis-Menten kinetics suggests that temperature sensitivity decreases when both maximal activity of respiratory enzymes (Vmax and half-saturation constant (Ks cancel each other upon temperature increase. We tested the hypothesis of the canceling effect by the mathematical simulation of data obtained in incubation experiments with forest and arable soils. Our data support the hypothesis and suggest that concentration of readily decomposable C substrate (as glucose equivalents and temperature dependent substrate release are the important factors controlling temperature sensitivity of soil respiration. The highest temperature sensitivity of soil respiration was observed when substrate release was temperature dependent and C substrate concentration was much lower than Ks. Increase of substrate content to the half-saturation constant by glucose addition resulted in temperature acclimation associated with the canceling effect. Addition of the substrate to the level providing respiration at a maximal rate Vmax leads to the acclimation of the whole microbial community as such. However, growing microbial biomass was more sensitive to the temperature alterations. This study improves our understanding of the instability of temperature sensitivity of soil respiration under field conditions, attributing this phenomenon to changes in concentration of readily decomposable C substrate.

  2. A revisit to the temperature dependence of electrical resistivity of α - Titanium at low temperatures

    Science.gov (United States)

    Sharath Chandra, L. S.; Mondal, R.; Thamizhavel, A.; Dhar, S. K.; Roy, S. B.

    2017-09-01

    The temperature dependence of resistivity ρ(T) of a polycrystalline sample and a single crystal sample (current along the [0001] direction) of α - Titanium (Ti) at low temperatures is revisited to understand the electrical charge transport phenomena in this hexagonal closed pack metal. We show that the ρ(T) in single crystal Ti can be explained by considering the scattering of electrons due to electron-phonon, electron-electron, inter-band s-d and electron-impurity interactions, whereas the ρ(T) of polycrystalline Ti could not be explained by these interactions alone. We observed that the effects of the anisotropy of the hexagonal structure on the electronic band structure and the phonon dispersion need to be taken into account to explain ρ(T) of polycrystalline Ti. Two Debye temperatures corresponding to two different directions for the electron-phonon interactions and inter-band s-d scattering are needed to account the observed ρ(T) in polycrystalline Ti.

  3. Temperature dependence of poly(lactic acid) mechanical properties

    DEFF Research Database (Denmark)

    Zhou, Chengbo; Guo, Huilong; Li, Jingqing

    2016-01-01

    The mechanical properties of polymers are not only determined by their structures, but also related to the temperature field in which they are located. The yield behaviors, Young's modulus and structures of injection-molded poly(lactic acid) (PLA) samples after annealing at different temperatures....... The crystallinity increases with increasing annealing temperature and a' form crystal is formed when the annealing temperature is higher than 100 oC. The stretched samples with low crystallinity show the first yield at draw temperatures below the glass transition temperature (Tg) and the second yield above Tg....... For the samples annealed between 80 and 120 oC, a peculiar double yield appears when stretched within 50–60 oC and only the first or the second yield can be found at the lower and higher draw temperatures. The yield strain and yield stress together with Young's modulus were obtained and discussed in terms...

  4. Temperature dependent empirical pseudopotential theory for self-assembled quantum dots.

    Science.gov (United States)

    Wang, Jianping; Gong, Ming; Guo, Guang-Can; He, Lixin

    2012-11-28

    We develop a temperature dependent empirical pseudopotential theory to study the electronic and optical properties of self-assembled quantum dots (QDs) at finite temperature. The theory takes the effects of both lattice expansion and lattice vibration into account. We apply the theory to InAs/GaAs QDs. For the unstrained InAs/GaAs heterostructure, the conduction band offset increases whereas the valence band offset decreases with increasing temperature, and there is a type-I to type-II transition at approximately 135 K. Yet, for InAs/GaAs QDs, the holes are still localized in the QDs even at room temperature, because the large lattice mismatch between InAs and GaAs greatly enhances the valence band offset. The single-particle energy levels in the QDs show a strong temperature dependence due to the change of confinement potentials. Because of the changes of the band offsets, the electron wavefunctions confined in QDs increase by about 1-5%, whereas the hole wavefunctions decrease by about 30-40% when the temperature increases from 0 to 300 K. The calculated recombination energies of excitons, biexcitons and charged excitons show red shifts with increasing temperature which are in excellent agreement with available experimental data.

  5. Temperature dependence of the vibrational spectra of acetanilide: Davydov solitons or Fermi coupling

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, C.T.; Swanson, B.I.

    1985-03-15

    The unusual temperature dependence of the amide-I region in the IR spectrum of acetanilide (C/sub 6/H/sub 5/NHCOCH/sub 3/) has recently been attributed to a self-trapped Davydov-like soliton. The temperature dependence of the single-crystal Raman scattering from acetanilide and its N-D and /sup 13/C-O substituted analogs in the phonon and internal mode regions has now been studied. The behavior of the amide-I region in the Raman spectra of the normal isotopic species is similar to that observed earlier in infrared studies. However, on the basis of results obtained from the N-D and /sup 13/C-O substituted species the unusual temperature dependence in the 1650 cm/sup -1/ region has been attributed to Fermi coupling of the amide-I fundamental and a combination band involving the in-plane N-H deformation and a low-frequency torsional mode. As temperature is lowered, the strong blue-shift of the torsional mode results in a commensurate blue-shift in the combination level thereby increasing the Fermi coupling. Temperature tuning of the Fermi coupling results in the anomalous intensity changes observed in the IR and Raman spectra of the amide-I region for the normal isotopic species. 20 references, 3 figures.

  6. Temperature dependence of the vibrational spectra of acetanilide: Davydov solitons or Fermi coupling?

    Science.gov (United States)

    Johnston, Clifford T.; Swanson, Basil I.

    1985-03-01

    The unusual temperature dependence of the amide-I region in the IR spectrum of acetanilide (C 6H 5NHCOCH 3) has recently been attributed to a self-trapped Davydov-like soliton. The temperature dependence of the single-crystal Raman scattering, from acetanilide and its ND and 13CO substituted analogs in the phonon and internal mode regions has now been studied. The behavior of the amide-I region in the Raman spectra of the normal isotopic species is similar to that observed earlier in infrared studies. However, on the basis of results obtained from the ND and 13CO substituted species the unusual temperature dependence in the 1650 cm -1 region has been attributed to Fermi coupling of the amide-I fundamental and a combination band involving the in-plane NH deformation and a low-frequency torsional mode. As temperature is lowered, the strong blue-shift of the torsional mode results in a commensurate blue-shift in the combination level thereby increasing the Fermi coupling. Temperature tuning of the Fermi coupling results in the anomalous intensity changes observed in the IR and Raman spectra of the amide-I region for the normal isotopic species.

  7. Temperature-dependent stress response in oysters, Crassostrea virginica: Pollution reduces temperature tolerance in oysters

    International Nuclear Information System (INIS)

    Lannig, Gisela; Flores, Jason F.; Sokolova, Inna M.

    2006-01-01

    Combined effects of temperature and a toxic metal, cadmium (Cd), on energy metabolism were studied in a model marine bivalve, the eastern oyster Crassostrea virginica, acclimated at 20, 24 and 28 deg. C and exposed to 50 μg l -1 of Cd. Both increasing temperature and Cd exposure led to a rise in standard metabolic rates, and combined stressors appeared to override the capability for aerobic energy production resulting in impaired stress tolerance. Oysters exposed to elevated temperature but not Cd showed no significant change in condition, survival rate and lipid peroxidation, whereas those exposed to both Cd and temperature stress suffered high mortality accompanied by low condition index and elevated lipid peroxidation. Furthermore, RNA/DNA ratios indicative of protein synthesis rate, and levels of glutathione, which is involved in metal detoxification, increased in Cd-exposed oysters at 20 deg. C but not at 28 deg. C. Implications of the synergism between elevated temperatures and cadmium stress on energy metabolism of oysters are discussed in the light of the potential effects of climate change on oyster populations in polluted areas

  8. Incorporating residual temperature and specific humidity in predicting weather-dependent warm-season electricity consumption

    Science.gov (United States)

    Guan, Huade; Beecham, Simon; Xu, Hanqiu; Ingleton, Greg

    2017-02-01

    Climate warming and increasing variability challenges the electricity supply in warm seasons. A good quantitative representation of the relationship between warm-season electricity consumption and weather condition provides necessary information for long-term electricity planning and short-term electricity management. In this study, an extended version of cooling degree days (ECDD) is proposed for better characterisation of this relationship. The ECDD includes temperature, residual temperature and specific humidity effects. The residual temperature is introduced for the first time to reflect the building thermal inertia effect on electricity consumption. The study is based on the electricity consumption data of four multiple-street city blocks and three office buildings. It is found that the residual temperature effect is about 20% of the current-day temperature effect at the block scale, and increases with a large variation at the building scale. Investigation of this residual temperature effect provides insight to the influence of building designs and structures on electricity consumption. The specific humidity effect appears to be more important at the building scale than at the block scale. A building with high energy performance does not necessarily have low specific humidity dependence. The new ECDD better reflects the weather dependence of electricity consumption than the conventional CDD method.

  9. Parasitic bipolar amplification in a single event transient and its temperature dependence

    International Nuclear Information System (INIS)

    Liu Zheng; Chen Shu-Ming; Chen Jian-Jun; Qin Jun-Rui; Liu Rong-Rong

    2012-01-01

    Using three-dimensional technology computer-aided design (TCAD) simulation, parasitic bipolar amplification in a single event transient (SET) current of a single transistor and its temperature dependence are studied. We quantify the contributions of different current components in a SET current pulse, and it is found that the proportion of parasitic bipolar amplification in total collected charge is about 30% in both 130-nm and 90-nm technologies. The temperature dependence of parasitic bipolar amplification and the mechanism of the SET pulse are also investigated and quantified. The results show that the proportion of charge induced by parasitic bipolar increases with rising temperature, which illustrates that the parasitic bipolar amplification plays an important role in the charge collection of a single transistor

  10. Temperature dependent thermoelectric properties of chemically derived gallium zinc oxide thin films

    KAUST Repository

    Barasheed, Abeer Z.; Sarath Kumar, S. R.; Alshareef, Husam N.

    2013-01-01

    In this study, the temperature dependent thermoelectric properties of sol-gel prepared ZnO and 3% Ga-doped ZnO (GZO) thin films have been explored. The power factor of GZO films, as compared to ZnO, is improved by nearly 17% at high temperature. A stabilization anneal, prior to thermoelectric measurements, in a strongly reducing Ar/H2 (95/5) atmosphere at 500°C was found to effectively stabilize the chemically derived films, practically eliminating hysteresis during thermoelectric measurements. Subtle changes in the thermoelectric properties of stabilized films have been correlated to oxygen vacancies and excitonic levels that are known to exist in ZnO-based thin films. The role of Ga dopants and defects, formed upon annealing, in driving the observed complex temperature dependence of the thermoelectric properties is discussed. © The Royal Society of Chemistry 2013.

  11. Temperature dependence of electromechanical properties of PLZT x ...

    Indian Academy of Sciences (India)

    ... broad peak at a temperature higher than mt. The voltage constant 31 decreases and the planar coupling coefficient p remains constant up to half of the mt and then falls sharply with . Half of the mt can, therefore, be used for specifying the working temperature limit of the piezoceramics for the device applications.

  12. Temperature dependent lattice constant of InSb above room temperature

    Science.gov (United States)

    Breivik, Magnus; Nilsen, Tron Arne; Fimland, Bjørn-Ove

    2013-10-01

    Using temperature dependent X-ray diffraction on two InSb single crystalline substrates, the bulk lattice constant of InSb was determined between 32 and 325 °C. A polynomial function was fitted to the data: a(T)=6.4791+3.28×10-5×T+1.02×10-8×T2 Å (T in °C), which gives slightly higher values than previously published (which go up to 62 °C). From the fit, the thermal expansion of InSb was calculated to be α(T)=5.062×10-6+3.15×10-9×T K-1 (T in °C). We found that the thermal expansion coefficient is higher than previously published values above 100 °C (more than 10% higher at 325 °C).

  13. Local chemical potential, local hardness, and dual descriptors in temperature dependent chemical reactivity theory.

    Science.gov (United States)

    Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2017-05-31

    In this work we establish a new temperature dependent procedure within the grand canonical ensemble, to avoid the Dirac delta function exhibited by some of the second order chemical reactivity descriptors based on density functional theory, at a temperature of 0 K. Through the definition of a local chemical potential designed to integrate to the global temperature dependent electronic chemical potential, the local chemical hardness is expressed in terms of the derivative of this local chemical potential with respect to the average number of electrons. For the three-ground-states ensemble model, this local hardness contains a term that is equal to the one intuitively proposed by Meneses, Tiznado, Contreras and Fuentealba, which integrates to the global hardness given by the difference in the first ionization potential, I, and the electron affinity, A, at any temperature. However, in the present approach one finds an additional temperature-dependent term that introduces changes at the local level and integrates to zero. Additionally, a τ-hard dual descriptor and a τ-soft dual descriptor given in terms of the product of the global hardness and the global softness multiplied by the dual descriptor, respectively, are derived. Since all these reactivity indices are given by expressions composed of terms that correspond to products of the global properties multiplied by the electrophilic or nucleophilic Fukui functions, they may be useful for studying and comparing equivalent sites in different chemical environments.

  14. Temperature dependence of bulk respiration of crop stands. Measurement and model fitting

    International Nuclear Information System (INIS)

    Tani, Takashi; Arai, Ryuji; Tako, Yasuhiro

    2007-01-01

    The objective of the present study was to examine whether the temperature dependence of respiration at a crop-stand scale could be directly represented by an Arrhenius function that was widely used for representing the temperature dependence of leaf respiration. We determined temperature dependences of bulk respiration of monospecific stands of rice and soybean within a range of the air temperature from 15 to 30degC using large closed chambers. Measured responses of respiration rates of the two stands were well fitted by the Arrhenius function (R 2 =0.99). In the existing model to assess the local radiological impact of the anthropogenic carbon-14, effects of the physical environmental factors on photosynthesis and respiration of crop stands are not taken into account for the calculation of the net amount of carbon per cultivation area in crops at harvest which is the crucial parameter for the estimation of the activity concentration of carbon-14 in crops. Our result indicates that the Arrhenius function is useful for incorporating the effect of the temperature on respiration of crop stands into the model which is expected to contribute to a more realistic estimate of the activity concentration of carbon-14 in crops. (author)

  15. Observing the temperature dependent transition of the GP2 peptide using terahertz spectroscopy.

    Directory of Open Access Journals (Sweden)

    Yiwen Sun

    Full Text Available The GP2 peptide is derived from the Human Epidermal growth factor Receptor 2 (HER2/nue, a marker protein for breast cancer present in saliva. In this paper we study the temperature dependent behavior of hydrated GP2 at terahertz frequencies and find that the peptide undergoes a dynamic transition between 200 and 220 K. By fitting suitable molecular models to the frequency response we determine the molecular processes involved above and below the transition temperature (T(D. In particular, we show that below T(D the dynamic transition is dominated by a simple harmonic vibration with a slow and temperature dependent relaxation time constant and that above T(D, the dynamic behavior is governed by two oscillators, one of which has a fast and temperature independent relaxation time constant and the other of which is a heavily damped oscillator with a slow and temperature dependent time constant. Furthermore a red shifting of the characteristic frequency of the damped oscillator was observed, confirming the presence of a non-harmonic vibration potential. Our measurements and modeling of GP2 highlight the unique capabilities of THz spectroscopy for protein characterization.

  16. Loading direction-dependent shear behavior at different temperatures of single-layer chiral graphene sheets

    Science.gov (United States)

    Zhao, Yang; Dong, Shuhong; Yu, Peishi; Zhao, Junhua

    2018-06-01

    The loading direction-dependent shear behavior of single-layer chiral graphene sheets at different temperatures is studied by molecular dynamics (MD) simulations. Our results show that the shear properties (such as shear stress-strain curves, buckling strains, and failure strains) of chiral graphene sheets strongly depend on the loading direction due to the structural asymmetry. The maximum values of both the critical buckling shear strain and the failure strain under positive shear deformation can be around 1.4 times higher than those under negative shear deformation. For a given chiral graphene sheet, both its failure strain and failure stress decrease with increasing temperature. In particular, the amplitude to wavelength ratio of wrinkles for different chiral graphene sheets under shear deformation using present MD simulations agrees well with that from the existing theory. These findings provide physical insights into the origins of the loading direction-dependent shear behavior of chiral graphene sheets and their potential applications in nanodevices.

  17. Frequency and temperature dependent dielectric properties of TiO2-V2O5 nanocomposites

    Science.gov (United States)

    Ray, Apurba; Roy, Atanu; De, Sayan; Chatterjee, Souvik; Das, Sachindranath

    2018-03-01

    In this manuscript, we have reported the crystal structure, dielectric response, and transport phenomenon of TiO2-V2O5 nanocomposites. The nanocomposites were synthesized using a sol-gel technique having different molar ratios of Ti:V (10:10, 10:15, and 10:20). The phase composition and the morphology have been studied using X-ray diffraction and field emission scanning electron microscope, respectively. The impedance spectroscopy studies of the three samples over a wide range of temperature (50 K-300 K) have been extensively described using the internal barrier layer capacitor model. It is based on the contribution of domain and domain boundary, relaxations of the materials, which are the main crucial factors for the enhancement of the dielectric response. The frequency dependent ac conductivity of the ceramics strongly obeys the well-known Jonscher's power law, and it has been clearly explained using the theory of jump relaxation model. The temperature dependent bulk conductivity is fairly recognized to the variable-range hopping of localized polarons. The co-existence of mixed valence state of Ti ions (Ti3+ and Ti4+) in the sample significantly contributes to the change of dielectric property. The overall study of dielectric response explains that the dielectric constant and the dielectric loss are strongly dependent on temperature and frequency and decrease with an increase of frequency as well as temperature.

  18. Temperature-dependent structural properties of P3HT films

    Energy Technology Data Exchange (ETDEWEB)

    Grigorian, S; Joshi, S; Pietsch, U, E-mail: grigorian@physik.uni-siegen.de [Institute of Physics, University Siegen, Walter Flex Strasse 3, D-57068, Siegen (Germany)

    2010-11-15

    Structural investigations of spin coated and drop cast poly(3-hexylthiophene) P3HT films have been performed under x-ray grazing incidence geometry. Drop cast films revealed to be highly oriented and crystalline and only slightly modify with the temperature. In contrast, spin coated films provided random orientational distribution of nanocrystallites and undergo significant morphological and structural changes during annealing. Interestingly, spin coated films of low and high molecular weight fractions behavior differently as a function of temperature. Crystalline domains of the low molecular weight fractions have been decreased, and, in contrast, we found an improvement of crystallinity of high molecular weight fraction with increase of the temperature.

  19. Temperature-dependent structural properties of P3HT films

    International Nuclear Information System (INIS)

    Grigorian, S; Joshi, S; Pietsch, U

    2010-01-01

    Structural investigations of spin coated and drop cast poly(3-hexylthiophene) P3HT films have been performed under x-ray grazing incidence geometry. Drop cast films revealed to be highly oriented and crystalline and only slightly modify with the temperature. In contrast, spin coated films provided random orientational distribution of nanocrystallites and undergo significant morphological and structural changes during annealing. Interestingly, spin coated films of low and high molecular weight fractions behavior differently as a function of temperature. Crystalline domains of the low molecular weight fractions have been decreased, and, in contrast, we found an improvement of crystallinity of high molecular weight fraction with increase of the temperature.

  20. Temperature-dependent plastic hysteresis in highly confined polycrystalline Nb films

    Science.gov (United States)

    Waheed, S.; Hao, R.; Zheng, Z.; Wheeler, J. M.; Michler, J.; Balint, D. S.; Giuliani, F.

    2018-02-01

    In this study, the effect of temperature on the cyclic deformation behaviour of a confined polycrystalline Nb film is investigated. Micropillars encapsulating a thin niobium interlayer are deformed under cyclic axial compression at different test temperatures. A distinct plastic hysteresis is observed for samples tested at elevated temperatures, whereas negligible plastic hysteresis is observed for samples tested at room temperature. These results are interpreted using planar discrete dislocation plasticity incorporating slip transmission across grain boundaries. The effect of temperature-dependent grain boundary energy and dislocation mobility on dislocation penetration and, consequently, the size of plastic hysteresis is simulated to correlate with the experimental results. It is found that the decrease in grain boundary energy barrier caused by the increase in temperature does not lead to any appreciable change in the cyclic response. However, dislocation mobility significantly affects the size of plastic hysteresis, with high mobilities leading to a larger hysteresis. Therefore, it is postulated that the experimental observations are predominantly caused by an increase in dislocation mobility as the temperature is increased above the critical temperature of body-centred cubic niobium.

  1. On the temperature dependence of H-U{sub iso} in the riding hydrogen model

    Energy Technology Data Exchange (ETDEWEB)

    Lübben, Jens; Volkmann, Christian [Institut für Anorganische Chemie, Georg-August-Universität, Tammannstrasse 4, D-37077 Göttingen (Germany); Grabowsky, Simon [School of Chemistry and Biochemistry, Stirling Highway 35, WA-6009 Crawley (Australia); Edwards, Alison [Bragg Institute, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Morgenroth, Wolfgang [Institut für Geowissenschaften, Abteilung Kristallographie, Goethe-Universität, Altenhöferallee 1, 60438 Frankfurt am Main (Germany); Fabbiani, Francesca P. A. [GZG, Abteilung Kristallographie, Georg-August Universität, Goldschmidtstrasse 1, 37077 Göttingen (Germany); Sheldrick, George M. [Institut für Anorganische Chemie, Georg-August-Universität, Tammannstrasse 4, D-37077 Göttingen (Germany); Dittrich, Birger, E-mail: birger.dittrich@chemie.uni-hamburg.de [Institut für Anorganische und Angewandte Chemie, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Institut für Anorganische Chemie, Georg-August-Universität, Tammannstrasse 4, D-37077 Göttingen (Germany)

    2014-07-01

    The temperature dependence of hydrogen U{sub iso} and parent U{sub eq} in the riding hydrogen model is investigated by neutron diffraction, aspherical-atom refinements and QM/MM and MO/MO cluster calculations. Fixed values of 1.2 or 1.5 appear to be underestimated, especially at temperatures below 100 K. The temperature dependence of H-U{sub iso} in N-acetyl-l-4-hydroxyproline monohydrate is investigated. Imposing a constant temperature-independent multiplier of 1.2 or 1.5 for the riding hydrogen model is found to be inaccurate, and severely underestimates H-U{sub iso} below 100 K. Neutron diffraction data at temperatures of 9, 150, 200 and 250 K provide benchmark results for this study. X-ray diffraction data to high resolution, collected at temperatures of 9, 30, 50, 75, 100, 150, 200 and 250 K (synchrotron and home source), reproduce neutron results only when evaluated by aspherical-atom refinement models, since these take into account bonding and lone-pair electron density; both invariom and Hirshfeld-atom refinement models enable a more precise determination of the magnitude of H-atom displacements than independent-atom model refinements. Experimental efforts are complemented by computing displacement parameters following the TLS+ONIOM approach. A satisfactory agreement between all approaches is found.

  2. On the temperature dependence of H-Uiso in the riding hydrogen model

    International Nuclear Information System (INIS)

    Lübben, Jens; Volkmann, Christian; Grabowsky, Simon; Edwards, Alison; Morgenroth, Wolfgang; Fabbiani, Francesca P. A.; Sheldrick, George M.; Dittrich, Birger

    2014-01-01

    The temperature dependence of hydrogen U iso and parent U eq in the riding hydrogen model is investigated by neutron diffraction, aspherical-atom refinements and QM/MM and MO/MO cluster calculations. Fixed values of 1.2 or 1.5 appear to be underestimated, especially at temperatures below 100 K. The temperature dependence of H-U iso in N-acetyl-l-4-hydroxyproline monohydrate is investigated. Imposing a constant temperature-independent multiplier of 1.2 or 1.5 for the riding hydrogen model is found to be inaccurate, and severely underestimates H-U iso below 100 K. Neutron diffraction data at temperatures of 9, 150, 200 and 250 K provide benchmark results for this study. X-ray diffraction data to high resolution, collected at temperatures of 9, 30, 50, 75, 100, 150, 200 and 250 K (synchrotron and home source), reproduce neutron results only when evaluated by aspherical-atom refinement models, since these take into account bonding and lone-pair electron density; both invariom and Hirshfeld-atom refinement models enable a more precise determination of the magnitude of H-atom displacements than independent-atom model refinements. Experimental efforts are complemented by computing displacement parameters following the TLS+ONIOM approach. A satisfactory agreement between all approaches is found

  3. Experimental determination of monoethanolamine protonation constant and its temperature dependency

    Directory of Open Access Journals (Sweden)

    Ma’mun Sholeh

    2017-01-01

    Full Text Available Carbon dioxide as one of the major contributors to the global warming problem is produced in large quantities by many important industries and its emission seems to rise from year to year. Aminebased absorption is one of the methods to capture CO2 from its sources. As a reactive system, mass transfer and chemical reaction take place simultaneously. In a vapor-liquid equilibrium model for the CO2-amine-water system, some parameters such as mass transfer coefficients and chemical equilibrium constants need to be known. However, some parameters could be determined experimentally and the rests could be regressed from the model. The protonation constant (pKa, as one of the model parameters, could then be measured experimentally. The purpose of this study is to measure the pKa of monoethanolamine (MEA at a range of temperatures from 303 to 330K by a potentiometric titration method. The experimental data obtained were in a good agreement with the literature data. The pKa data from this work together with those from the literature were then correlated in an empirical correlation to be used for future research.

  4. Temperature dependence of the fundamental band gap parameters ...

    Indian Academy of Sciences (India)

    the energy and broadening of the fundamental band gap have been evaluated using various models including the ... other crucial parameters including the operating temperatures of these devices. ... refrigeration system (Air Product Displex).

  5. Temperature-dependent gas transport and its correlation with kinetic ...

    Indian Academy of Sciences (India)

    2017-05-20

    May 20, 2017 ... have been made to see this trade-off relation at relatively higher temperature. It is found that selectivity ... acceptable due to low capital cost, less energy requirement ... in solubility, with increased permeability due to interac-.

  6. EXPERIMENTAL MEASUREMENT, ANALYSIS AND MODELLING OF DEPENDENCY EMISSIVITY IN FUNCTION OF TEMPERATURE

    Directory of Open Access Journals (Sweden)

    N. Baba Ahmed

    2015-08-01

    Full Text Available We propose a direct method of measurement of the total emissivity of opaque samples on a range of temperature around the ambient one. The method rests on the modulation of the temperature of the sample and the infra-red signal processing resulting from the surface of the sample we model the total emissivity obtained in experiments according to the temperature to establish linear correlations. This leads us to apply the method of optimal linearization associated the finite element method with the nonlinear problem of transfer of heat if thermal conductivity, the specific heat and the emissivity of studied material depend on the temperature. We obtain a good agreement between the resolution of the nonlinear equation of heat and the results obtained by the experimentation. .

  7. Doping and temperature dependence of incommensurate antiferromagnetism in underdoped lanthanum cuprates

    International Nuclear Information System (INIS)

    Yuan Feng; Feng Shiping; Su Zhaobin; Yu Lu

    2001-08-01

    The doping, temperature and energy dependence of the dynamical spin structure factors of the underdoped lanthanum cuprates in the normal state is studied within the t-J model using the fermion-spin transformation technique. Incommensurate peaks are found at [(1±δ)π, π], [π, (1±δ)π] at relatively low temperatures with δ linearly increasing with doping at the beginning and then saturating at higher dopings. These peaks broaden and weaken in amplitude with temperature and energy, in good agreement with experiments. The theory also predicts a rotation of these peaks by π/4 at even higher temperatures, being shifted to [(1±δ/√2)π, (1±δ/√2)π]. (author)

  8. Temperature dependence of rippled corrugations induced on the Rh(1 1 0) surface via ion sputtering

    International Nuclear Information System (INIS)

    Molle, Alessandro; Buatier de Mongeot, F.; Granone, F.; Buzio, R.; Firpo, G.; Boragno, C.; Valbusa, U.

    2005-01-01

    Metal surfaces can be easily nanopatterned via ion sputtering: mounds or ripples can be created depending on the surface symmetry and temperature. However, in many cases these structures are unstable at room temperature and above, due to the adatom fast diffusion. This fact prevents the use of such systems as substrate or nanostamps for a technological implementation. In this paper we present a spot profile analysis low energy electron diffraction (SPA-LEED) study on the nanopatterning of a Rh(1 1 0) single crystal. Like the other (1 1 0) metal surfaces, previously investigated, also Rh(1 1 0) shows for increasing temperatures a transition between different rippled morphologies. The main advantage of this system is its stability at room temperature. From SPA-LEED data we can measure the structural features (average periodicity and local faceting) of the observed rippled structures

  9. Anomalous Temperature Dependence of the Band Gap in Black Phosphorus

    OpenAIRE

    Villegas, Cesar E. P.; Rocha, A. R.; Marini, Andrea

    2016-01-01

    Black Phosphorus (BP) has gained renewed attention due to its singular anisotropic electronic and optical properties that might be exploited for a wide range of technological applications. In this respect, the thermal properties are particularly important both to predict its room temperature operation and to determine its thermoelectric potential. From this point of view, one of the most spectacular and poorly understood phenomena is, indeed, the BP temperature-induced band-gap opening: when ...

  10. Plasmon resonance enhanced temperature-dependent photoluminescence of Si-V centers in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Shaoheng [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Song, Jie; Wang, Qiliang; Liu, Junsong; Li, Hongdong, E-mail: hdli@jlu.edu.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Zhang, Baolin [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2015-11-23

    Temperature dependent optical property of diamond has been considered as a very important factor for realizing high performance diamond-based optoelectronic devices. The photoluminescence feature of the zero phonon line of silicon-vacancy (Si-V) centers in Si-doped chemical vapor deposited single crystal diamond (SCD) with localized surface plasmon resonance (LSPR) induced by gold nanoparticles has been studied at temperatures ranging from liquid nitrogen temperature to 473 K, as compared with that of the SCD counterpart in absence of the LSPR. It is found that with LSPR the emission intensities of Si-V centers are significantly enhanced by factors of tens and the magnitudes of the redshift (width) of the emissions become smaller (narrower), in comparison with those of normal emissions without plasmon resonance. More interestingly, these strong Si-V emissions appear remarkably at temperatures up to 473 K, while the spectral feature was not reported in previous studies on the intrinsic Si-doped diamonds when temperatures are higher than room temperature. These findings would lead to reaching high performance diamond-based devices, such as single photon emitter, quantum cryptography, biomarker, and so forth, working under high temperature conditions.

  11. Glass transition in thaumatin crystals revealed through temperature-dependent radiation-sensitivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Warkentin, Matthew, E-mail: maw64@cornell.edu; Thorne, Robert E. [Physics Department, Cornell University, Ithaca, New York (United States)

    2010-10-01

    Radiation damage to protein crystals exhibits two regimes of temperature-activated behavior between T = 300 and 100 K, with a crossover at the protein glass transition near 200 K. These results have implications for mechanistic studies of proteins and for structure determination when cooling to T = 100 K creates excessive disorder. The temperature-dependence of radiation damage to thaumatin crystals between T = 300 and 100 K is reported. The amount of damage for a given dose decreases sharply as the temperature decreases from 300 to 220 K and then decreases more gradually on further cooling below the protein-solvent glass transition. Two regimes of temperature-activated behavior were observed. At temperatures above ∼200 K the activation energy of 18.0 kJ mol{sup −1} indicates that radiation damage is dominated by diffusive motions in the protein and solvent. At temperatures below ∼200 K the activation energy is only 1.00 kJ mol{sup −1}, which is of the order of the thermal energy. Similar activation energies describe the temperature-dependence of radiation damage to a variety of solvent-free small-molecule organic crystals over the temperature range T = 300–80 K. It is suggested that radiation damage in this regime is vibrationally assisted and that the freezing-out of amino-acid scale vibrations contributes to the very weak temperature-dependence of radiation damage below ∼80 K. Analysis using the radiation-damage model of Blake and Phillips [Blake & Phillips (1962 ▶), Biological Effects of Ionizing Radiation at the Molecular Level, pp. 183–191] indicates that large-scale conformational and molecular motions are frozen out below T = 200 K but become increasingly prevalent and make an increasing contribution to damage at higher temperatures. Possible alternative mechanisms for radiation damage involving the formation of hydrogen-gas bubbles are discussed and discounted. These results have implications for mechanistic studies of proteins and for

  12. Temperature dependence of magnetic properties of Cu80Co19Ni1 thin microwires

    International Nuclear Information System (INIS)

    Garcia, C.; Zhukov, A.; Zhukova, V.; Larin, V.; Gonzalez, J.; Val, J.J. del; Knobel, M.

    2007-01-01

    In the present work, we report the studies of temperature dependence of magnetic properties in thin microwires with composition Cu 80 Co 19 Ni 1 . An extensive study of structural and magnetic characterization was realized. The structure was observed using X-ray diffraction with CuK α radiation. The magnetic measurements were carried out using a SQUID at temperatures between 5 and 300 K. The as-prepared Cu 80 Co 19 Ni 1 microwire presents a coercivity of about 80 Oe. The variation of the coercivity and remanent magnetization at 5-300 K were obtained from the hysteresis loops. From the difference of the ZFC and FC curves below T=100 K, we can assume the presence of small superparamagnetic grains embedded in the Cu matrix. Those superparamagnetic grains should be blocked at temperatures below the maximum of the magnetization observed below 50 K. The measurements show an unusual temperature dependence of the coercive field, consequence of a coexistence of blocked and unblocked particles, and the typical decreasing behaviour of the remanence increasing temperature

  13. Temperature dependent electrical properties of polyaniline film grown on paper through aniline vapor polymerization

    International Nuclear Information System (INIS)

    Deb, K.; Bera, A.; Saha, B.; Bhowmik, K. L.; Chattopadhyay, K. K.

    2016-01-01

    Polyaniline thin film has been prepared on paper by aniline vapor deposition technique. Ferric chloride has been used as polymerizing agent in this approach. The prepared films were studied through electrical resistivity and optical properties measurements. The electrical resistivity of the polyaniline film shows significant temperature dependence. The resistance sharply falls with the increase in temperature. The optical absorbance measurements shows characteristics absorbance peak indicating the formation of conducting emeraldine salt form of polyaniline. The optical energy band gap of the film was calculated from the transmittance spectra. The optical energy band gap and electrical conductivity of the polyaniline film is well suited for their applications in electronic devices.

  14. Temperature dependent electrical properties of polyaniline film grown on paper through aniline vapor polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Deb, K.; Bera, A.; Saha, B., E-mail: biswajit.physics@gmail.com [Department of Physics, National Institute of Technology Agartala, Jirania, West Tripura 799046 (India); Bhowmik, K. L. [Department of Physics, National Institute of Technology Agartala, Jirania, West Tripura 799046 (India); Department of Chemistry, Bir Bikram Memorial College, Agartala, West Tripura 799004 (India); Chattopadhyay, K. K. [Department of Physics, Jadavpur University, Kolkata 700 032 (India)

    2016-05-23

    Polyaniline thin film has been prepared on paper by aniline vapor deposition technique. Ferric chloride has been used as polymerizing agent in this approach. The prepared films were studied through electrical resistivity and optical properties measurements. The electrical resistivity of the polyaniline film shows significant temperature dependence. The resistance sharply falls with the increase in temperature. The optical absorbance measurements shows characteristics absorbance peak indicating the formation of conducting emeraldine salt form of polyaniline. The optical energy band gap of the film was calculated from the transmittance spectra. The optical energy band gap and electrical conductivity of the polyaniline film is well suited for their applications in electronic devices.

  15. Temperature dependent electrical properties of polyaniline film grown on paper through aniline vapor polymerization

    Science.gov (United States)

    Deb, K.; Bhowmik, K. L.; Bera, A.; Chattopadhyay, K. K.; Saha, B.

    2016-05-01

    Polyaniline thin film has been prepared on paper by aniline vapor deposition technique. Ferric chloride has been used as polymerizing agent in this approach. The prepared films were studied through electrical resistivity and optical properties measurements. The electrical resistivity of the polyaniline film shows significant temperature dependence. The resistance sharply falls with the increase in temperature. The optical absorbance measurements shows characteristics absorbance peak indicating the formation of conducting emeraldine salt form of polyaniline. The optical energy band gap of the film was calculated from the transmittance spectra. The optical energy band gap and electrical conductivity of the polyaniline film is well suited for their applications in electronic devices.

  16. Patterns in new dimensionless quantities containing melting temperature, and their dependence on pressure

    Directory of Open Access Journals (Sweden)

    U. WALZER

    1980-06-01

    Full Text Available The relationships existing between melting temperature and other
    macroscopic physical quantities are investigated. A new dimensionless
    quantity Q(1 not containing the Grtineisen parameter proves to be suited for serving in future studies as a tool for the determination of the melting temperature in the outer core of the Earth. The pressure dependence of more general dimensionless quantities Q„ is determined analytically and, for the chemical elements, numerically, too. The patterns of various interesting dimensionless quantities are shown in the Periodic Table and compared.

  17. Temperature and carrier density dependence of anisotropy in supercurrent density in layered cuprate superconductors

    International Nuclear Information System (INIS)

    Singh, M.P.; Tewari, B.S.; Ajay

    2006-01-01

    In the present work, we have studied the effect of temperature and carrier density on anisotropy in supercurrent density in bilayer cuprate superconductors. Here, we have considered a tight binding bilayered Hubbard Hamiltonian containing intra and interlayer attractive interactions. The situation considered here is similar to a SIS junction. We have got the expressions for the superconducting order parameters, carrier density and anisotropy in superconducting density (I ab /I c ) for such SIS junction. The numerical analysis show that the anisotropy in the supercurrent density depends on temperature and carrier density in layered high T c cuprates. (author)

  18. Temperature dependence of nonsteady radiation conductivity of polymers

    International Nuclear Information System (INIS)

    Tyutnev, A.P.; Saenko, V.S.; Dunaev, A.F.; Sichkar', V.P.; Vannikov, A.V.

    1984-01-01

    Influence of temperature on non-steady radiation conductivity (NRC) of polymeric dielectrics is investigated. It is revealed that the temperature effects first of all delayed NRC constituent. Temperature increase up to 100 deg C is followed by certain slowing down the rate of current drop of induced conductivity, in this case the nature of the volt-ampere characteristic of delayed NRC constituent does not essentially change, as a rule. The obtained experimental results interpreted in the frames of the band model permitted to make conclusions on the effect of chemical structure of the polymer on its NRC. Presence of carbazole or phenylic groups in the elementary chain is shown to increase the delayed constituent of induced conductivity and to ensure prevailing yield of free charges. Appearance of methyl groups in the composition of the chain essentially suppresses the delayed constituent and results in high values of activation energy and rather slowed down current drop

  19. Temperature-dependent shock initiation of LX-17 explosive

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R.S.; Chau, H.H.; Druce, R.L.; Moua, K.

    1995-02-01

    LX-17 samples, heated to temperatures up to 250 C, were impacted by 3 to 10-mm-wide, 50.8-mm-long strips of 0.13-mm-thick Kapton polyimide film at velocities up to 7.7 km/s. The Kapton strips were laminated onto a thin aluminum bridge foil and were launched to the desired velocity by discharging a capacitor bank through the foil, causing the foil to explode. The LX-17 samples were confined in a steel holder and heated in an oven to the desired temperature. After the capacitor bank was charged, the LX-17 sample in its steel holder was remotely drawn out of the oven on rails and positioned over the bridge-foil/Kapton-strip laminate. When the sample was in position, the bank was discharged, launching the Kapton strip against the LX-17 surface. The shock initiation threshold was measured for 3, 7, and 10-mm-wide strips at room temperature, 200 C and 250 C. The authors found a significant reduction in the velocity threshold and in the critical area for initiation when the samples were heated. The authors compare the results with the earlier data of Bloom, who measured the initiation threshold of LX-17 over the density range 1.8--1.91 g/cm{sup 3} at room temperature and {minus}54 C. LX-17 has a large coefficient of thermal expansion, as reported by Urtiew, et al., which reduces its density significantly t elevated temperatures. They find that the change of shock initiation threshold with temperature is consistent with the change in sample density, using the relation between threshold and density reported by Bloom.

  20. Temperature dependence of current–voltage characteristics of Au/n ...

    Indian Academy of Sciences (India)

    Unknown

    2000-05-05

    May 5, 2000 ... factor with temperature has been explained considering lateral inhomogeneities in the Schottky barrier height ... The dependence of SBH on temperature can give ... effect in MS contacts, Tung has modeled the influence.

  1. Temperature dependence of lattice parameters of alpha-zirconium

    International Nuclear Information System (INIS)

    Versaci, R.A.; Ipohorski, M.

    1991-01-01

    This work presents a brief review of X-ray and thermal expansion determination of lattice parameters for α-Zirconium. Data reported by different authors cover almost all the field of existence of the hexagonal phase of Zirconium, from temperatures as low as 4.2 K up to about 1130 K, near the α→β transformation temperature. Polynomial expressions based on a least squares fitting of experimental data are also presented. The expressions obtained by Goldak et al. are considered to be the most complete. The influence of impurities on the lattice parameters is also discussed. (Author) [es

  2. On the frequency dependence of the high temperature background

    International Nuclear Information System (INIS)

    Povolo, F.; Hermida, E.B.

    1996-01-01

    The high temperature background (HTB) damping in metals and alloys has been measured mostly as a function of temperature. These data were described by several empirical expressions proposed in the literature. In the present work, HTB in pure Mg and in two alloys (Zry-4 and Cu-5 at.%Au), measured with a torsion pendulum with variable moment of inertia, are analyzed on considering a new treatment of the data. This analysis provides an useful tool to determine whether a damping process is linear or not. (orig.)

  3. The Dependence of the Dose Response Supralinearity of Peak 5 in TLD-100 on Recombination Temperature

    International Nuclear Information System (INIS)

    Horowitz, Y.S.; Satinger, D.; Oster, L.

    1999-01-01

    Isothermal readout of LiF:Mg,Ti (TLD-700) has recently been used to study the dependence of the supralinearity of peak 5 on recombination temperature. The results were interpreted to be in conflict with earlier results which investigated the effect of readout heating rate on the supralinearity of peak 5 in TLD-100. In this work the two experiments are inspected in greater detail. It is illustrated that the isothermal decay data is not in conflict with the heating rate data. However, the heating rate results do apparently indicate a strong transition in the temperature dependence of the relative strengths of the recombination and competitive cross sections at approximately 235 deg. C, which requires further study and analysis. (author)

  4. An improved stochastic algorithm for temperature-dependent homogeneous gas phase reactions

    CERN Document Server

    Kraft, M

    2003-01-01

    We propose an improved stochastic algorithm for temperature-dependent homogeneous gas phase reactions. By combining forward and reverse reaction rates, a significant gain in computational efficiency is achieved. Two modifications of modelling the temperature dependence (with and without conservation of enthalpy) are introduced and studied quantitatively. The algorithm is tested for the combustion of n-heptane, which is a reference fuel component for internal combustion engines. The convergence of the algorithm is studied by a series of numerical experiments and the computational cost of the stochastic algorithm is compared with the DAE code DASSL. If less accuracy is needed the stochastic algorithm is faster on short simulation time intervals. The new stochastic algorithm is significantly faster than the original direct simulation algorithm in all cases considered.

  5. Magnetic field and temperature dependent measurements of hall coefficient in thermal evaporated Tin-Doped Cadmium Oxide Thin films

    International Nuclear Information System (INIS)

    Hamadi, O.; Shakir, N.; Mohammed, F.

    2010-01-01

    CdO:Sn thin films are deposited onto glass substrates by thermal evaporation under vacuum. The studied films are polycrystalline and have an NaCl structure. The Hall effect is studied for films with different thickness as substrates are maintained at different temperatures. The temperature dependence of the Hall mobility is also investigated. (authors)

  6. Temperature-dependent behaviours are genetically variable in the nematode Caenorhabditis briggsae.

    Science.gov (United States)

    Stegeman, Gregory W; de Mesquita, Matthew Bueno; Ryu, William S; Cutter, Asher D

    2013-03-01

    Temperature-dependent behaviours in Caenorhabditis elegans, such as thermotaxis and isothermal tracking, are complex behavioural responses that integrate sensation, foraging and learning, and have driven investigations to discover many essential genetic and neural pathways. The ease of manipulation of the Caenorhabditis model system also has encouraged its application to comparative analyses of phenotypic evolution, particularly contrasts of the classic model C. elegans with C. briggsae. And yet few studies have investigated natural genetic variation in behaviour in any nematode. Here we measure thermotaxis and isothermal tracking behaviour in genetically distinct strains of C. briggsae, further motivated by the latitudinal differentiation in C. briggsae that is associated with temperature-dependent fitness differences in this species. We demonstrate that C. briggsae performs thermotaxis and isothermal tracking largely similar to that of C. elegans, with a tendency to prefer its rearing temperature. Comparisons of these behaviours among strains reveal substantial heritable natural variation within each species that corresponds to three general patterns of behavioural response. However, intraspecific genetic differences in thermal behaviour often exceed interspecific differences. These patterns of temperature-dependent behaviour motivate further development of C. briggsae as a model system for dissecting the genetic underpinnings of complex behavioural traits.

  7. Temperature-dependent inhibition of opportunistic Vibrio pathogens by native coral commensal bacteria.

    Science.gov (United States)

    Frydenborg, Beck R; Krediet, Cory J; Teplitski, Max; Ritchie, Kim B

    2014-02-01

    Bacteria living within the surface mucus layer of corals compete for nutrients and space. A number of stresses affect the outcome of this competition. The interactions between native microorganisms and opportunistic pathogens largely determine the coral holobiont's overall health and fitness. In this study, we tested the hypothesis that commensal bacteria isolated from the mucus layer of a healthy elkhorn coral, Acropora palmata, are capable of inhibition of opportunistic pathogens, Vibrio shiloi AK1 and Vibrio coralliilyticus. These vibrios are known to cause disease in corals and their virulence is temperature dependent. Elevated temperature (30 °C) increased the cell numbers of one commensal and both Vibrio pathogens in monocultures. We further tested the hypothesis that elevated temperature favors pathogenic organisms by simultaneously increasing the fitness of vibrios and decreasing the fitness of commensals by measuring growth of each species within a co-culture over the course of 1 week. In competition experiments between vibrios and commensals, the proportion of Vibrio spp. increased significantly under elevated temperature. We finished by investigating several temperature-dependent mechanisms that could influence co-culture differences via changes in competitive fitness. The ability of Vibrio spp. to utilize glycoproteins found in A. palmata mucus increased or remained stable when exposed to elevated temperature, while commensals' tended to decrease utilization. In both vibrios and commensals, protease activity increased at 30 °C, while chiA expression increased under elevated temperatures for Vibrio spp. These results provide insight into potential mechanisms through which elevated temperature may select for pathogenic bacterial dominance and lead to disease or a decrease in coral fitness.

  8. Thermal analysis and temperature dependent dielectric responses of Co doped anatase TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Alamgir; Khan, Wasi; Ahammed, Nashiruddin; Naqvi, A. H.; Ahmad, Shabbir

    2015-01-01

    Nanoparticles (NPs) of pure and 5 mol % cobalt doped TiO 2 synthesized through acid modified sol-gel method were characterized to understand their thermal, structural, morphological, and temperature dependent dielectric properties. Thermogravimetric analysis (TGA) has been used for thermal studies and indicates the weight loss in two steps due to the removal of residual organics. X-ray diffraction study was employed to confirm the formation of single anatase phase with tetragonal symmetry for both pure and 5 mol % Co doped TiO 2 NPs. The average crystallite size of both samples was calculated from the Scherrer’s formula and was found in the range from 9-11 nm. TEM micrographs of these NPs reflect their shape and distribution. The dielectric constant (ε′), dielectric loss (tanδ) and ac conductivity (σ ac ) were also studied as a function of temperature at different frequencies. Electrical responses of the synthesized NPs have been analyzed carefully in the framework of relevant models. It is also noticed that the dielectric constant (ε′) of the samples found to decrease with increasing frequency but increases with increasing temperature up to a particular value and then sharply decreases. Temperature variation of dielectric constant exhibits step like escalation and shows relaxation behavior. Study of dielectric properties shows dominant dependence on the grain size as well as Co ion incorporation in TiO 2

  9. Temperature dependent evolution of wrinkled single-crystal silicon ribbons on shape memory polymers.

    Science.gov (United States)

    Wang, Yu; Yu, Kai; Qi, H Jerry; Xiao, Jianliang

    2017-10-25

    Shape memory polymers (SMPs) can remember two or more distinct shapes, and thus can have a lot of potential applications. This paper presents combined experimental and theoretical studies on the wrinkling of single-crystal Si ribbons on SMPs and the temperature dependent evolution. Using the shape memory effect of heat responsive SMPs, this study provides a method to build wavy forms of single-crystal silicon thin films on top of SMP substrates. Silicon ribbons obtained from a Si-on-insulator (SOI) wafer are released and transferred onto the surface of programmed SMPs. Then such bilayer systems are recovered at different temperatures, yielding well-defined, wavy profiles of Si ribbons. The wavy profiles are shown to evolve with time, and the evolution behavior strongly depends on the recovery temperature. At relatively low recovery temperatures, both wrinkle wavelength and amplitude increase with time as evolution progresses. Finite element analysis (FEA) accounting for the thermomechanical behavior of SMPs is conducted to study the wrinkling of Si ribbons on SMPs, which shows good agreement with experiment. Merging of wrinkles is observed in FEA, which could explain the increase of wrinkle wavelength observed in the experiment. This study can have important implications for smart stretchable electronics, wrinkling mechanics, stimuli-responsive surface engineering, and advanced manufacturing.

  10. Temperature dependence of the Al2O3:C response in medical luminescence dosimetry

    DEFF Research Database (Denmark)

    Edmund, Jens Morgenthaler; Andersen, Claus Erik

    2007-01-01

    is not varied. The RL response only depends on the irradiation temperature. We recommend that calibration should be carried out at the same irradiation temperature at which the measurement is performed (i.e. at body temperature for in vivo measurements). The overall change in the integrated OSL and RL signals...... and detection wavelengths. The reported temperature dependence seems to be a general property of Al2O3:C. (C) 2006 Elsevier Ltd. All rights reserved....

  11. Second law analysis of a reacting temperature dependent viscous ...

    African Journals Online (AJOL)

    In this paper, entropy generation during the flow of a reacting viscous fluid through an inclined Channel with isothermal walls are investigated. The coupled energy and momentum equations were solved numerically. Previous results in literature (Adesanya et al 2006 [[17]) showed both velocity and temperature have two ...

  12. Le Chatelier's Principle Applied to the Temperature Dependence of Solubility.

    Science.gov (United States)

    Treptow, Richard S.

    1984-01-01

    One effect of temperature is its influence on solubility, and that effect is used as a common example when teaching Le Chatelier's principle. Attempts to clarify the question of whether the principle holds in the case of the solubility of ionic compounds in water by investigating the literature data in detail. (JN)

  13. Temperature dependence of twinning activity in random textured cast magnesium

    Czech Academy of Sciences Publication Activity Database

    Čapek, J.; Farkas, G.; Pilch, Jan; Máthis, K.

    2015-01-01

    Roč. 627, MAR (2015), s. 333-335 ISSN 0921-5093 R&D Projects: GA ČR(CZ) GAP204/12/1360; GA MŠk LM2011019 Institutional support: RVO:61389005 Keywords : magnesium * acoustic emission * neutron diffraction * deformation twinning * high temperature Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.647, year: 2015

  14. Temperature-dependent structure of Tb-doped magnetite nanoparticles

    International Nuclear Information System (INIS)

    Rice, Katherine P.; Russek, Stephen E.; Shaw, Justin M.; Usselman, Robert J.; Evarts, Eric R.; Silva, Thomas J.; Nembach, Hans T.; Geiss, Roy H.; Arenholz, Elke; Idzerda, Yves U.

    2015-01-01

    High quality 5 nm cubic Tb-doped magnetite nanoparticles have been synthesized by a wet-chemical method to investigate tailoring of magnetic properties for imaging and biomedical applications. We show that the Tb is incorporated into the octahedral 3+ sites. High-angle annular dark-field microscopy shows that the dopant is well-distributed throughout the particle, and x-ray diffraction measurements show a small lattice parameter shift with the inclusion of a rare-earth dopant. Magnetization and x-ray magnetic circular dichroism data indicate that the Tb spins are unpolarized and weakly coupled to the iron spin lattice at room temperature, and begin to polarize and couple to the iron oxide lattice at temperatures below 50 K. Broadband ferromagnetic resonance measurements show no increase in magnetic damping at room temperature for Tb-doped nanoparticles relative to undoped nanoparticles, further confirming weak coupling between Fe and Tb spins at room temperature. The Gilbert damping constant, α, is remarkably low for the Tb-doped nanoparticles, with α = 0.024 ± 0.003. These nanoparticles, which have a large fixed moment, a large fluctuating moment and optically active rare-earth elements, are potential high-relaxivity T1 and T2 MRI agents with integrated optical signatures

  15. Temperature dependence of the dielectric properties of rubber wood

    Science.gov (United States)

    Mohammed Firoz Kabir; Wan M. Daud; Kaida B. Khalid; Haji A.A. Sidek

    2001-01-01

    The effect of temperature on the dielectric properties of rubber wood was investigated in three anisotropic directions—longitudinal, radial, and tangential, and at different measurement frequencies. Low frequency measurements were conducted with a dielectric spectrometer, and high frequencies used microwave applied with open-ended coaxial probe sensors. Dielectric...

  16. Temperature-dependent structure of Tb-doped magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rice, Katherine P.; Russek, Stephen E., E-mail: stephen.russek@nist.gov; Shaw, Justin M.; Usselman, Robert J.; Evarts, Eric R.; Silva, Thomas J.; Nembach, Hans T. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Geiss, Roy H. [Colorado State University, Fort Collins, Colorado 80523 (United States); Arenholz, Elke [Lawrence Berkeley National Laboratory, Advanced Light Source, Berkeley, California 94720 (United States); Idzerda, Yves U. [Department of Physics, Montana State University, Bozeman, Montana 59717 (United States)

    2015-02-09

    High quality 5 nm cubic Tb-doped magnetite nanoparticles have been synthesized by a wet-chemical method to investigate tailoring of magnetic properties for imaging and biomedical applications. We show that the Tb is incorporated into the octahedral 3+ sites. High-angle annular dark-field microscopy shows that the dopant is well-distributed throughout the particle, and x-ray diffraction measurements show a small lattice parameter shift with the inclusion of a rare-earth dopant. Magnetization and x-ray magnetic circular dichroism data indicate that the Tb spins are unpolarized and weakly coupled to the iron spin lattice at room temperature, and begin to polarize and couple to the iron oxide lattice at temperatures below 50 K. Broadband ferromagnetic resonance measurements show no increase in magnetic damping at room temperature for Tb-doped nanoparticles relative to undoped nanoparticles, further confirming weak coupling between Fe and Tb spins at room temperature. The Gilbert damping constant, α, is remarkably low for the Tb-doped nanoparticles, with α = 0.024 ± 0.003. These nanoparticles, which have a large fixed moment, a large fluctuating moment and optically active rare-earth elements, are potential high-relaxivity T1 and T2 MRI agents with integrated optical signatures.

  17. Temperature-dependent reactions of phthalic acid on Ag(100)

    Czech Academy of Sciences Publication Activity Database

    Franke, M.; Marchini, M.; Zhang, L.; Tariq, Q.; Tsud, N.; Vorokhta, M.; Vondráček, Martin; Prince, K.; Röckert, M.; Williams, F.J.; Steinrück, H.-P.; Lytken, O.

    2015-01-01

    Roč. 119, č. 41 (2015), 23580-23585 ISSN 1932-7447 Institutional support: RVO:68378271 Keywords : phthalic acid * NEXAFS * photoemission spectroscopy * temperature - programmed desoprtion Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.509, year: 2015

  18. Empirical temperature dependence of the refractive index of semiconductors

    NARCIS (Netherlands)

    Herve, P.J.L.; Vandamme, L.K.J.

    1995-01-01

    Values of the temperature coefficient of the refractive index were obtained from the derivation of a simple relation between energy band-gap and refractive index in semiconductors. These values, (dn/dT)/n, were compared to the experimental data found in literature. Our model, with only one fitting

  19. Temperature dependence of deuterium retention mechanisms in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Roszell, J.P. [University of Toronto Institute for Aerospace Studies, 4925 Dufferin Street, Toronto, Ontario, M3H 5T6 (Canada); Davis, J.W., E-mail: jwdavis@starfire.utias.utoronto.ca [University of Toronto Institute for Aerospace Studies, 4925 Dufferin Street, Toronto, Ontario, M3H 5T6 (Canada); Haasz, A.A. [University of Toronto Institute for Aerospace Studies, 4925 Dufferin Street, Toronto, Ontario, M3H 5T6 (Canada)

    2012-10-15

    The retention of 500 eV D{sup +} was measured as a function of implantation temperature in single- (SCW) and poly-crystalline (PCW) tungsten. The results show a decrease in retention of {approx}2 orders of magnitude over the temperature range of 350-550 K in SCW and a decrease of an order of magnitude over the temperature range of 600-700 K in PCW. Inspection of the TDS spectra showed a shift in peak location from 600 to 800 K as temperature was increased above 350 K in SCW and above 450 K in PCW specimens. TMAP modeling showed that the change in peak location corresponds to a change in trapping energy from 1.3 eV for the 600 K peak to 2.1 eV for the 800 K peak. It is proposed that for implantations performed above 350 K in SCW and 450 K in PCW, deuterium-containing vacancies are able to diffuse and combine to create stable nano-bubbles within the crystal lattice. The formation of nano-bubbles due to the annihilation of deuterium-vacancy complexes results in a change in the trapping energy from 1.3 to 2.1 eV as well as a decrease in retention as some of the deuterium-vacancy complexes will be destroyed at surfaces or grain boundaries, decreasing the number of trapping sites available.

  20. Temperature dependence of deuterium retention mechanisms in tungsten

    International Nuclear Information System (INIS)

    Roszell, J.P.; Davis, J.W.; Haasz, A.A.

    2012-01-01

    The retention of 500 eV D + was measured as a function of implantation temperature in single- (SCW) and poly-crystalline (PCW) tungsten. The results show a decrease in retention of ∼2 orders of magnitude over the temperature range of 350–550 K in SCW and a decrease of an order of magnitude over the temperature range of 600–700 K in PCW. Inspection of the TDS spectra showed a shift in peak location from 600 to 800 K as temperature was increased above 350 K in SCW and above 450 K in PCW specimens. TMAP modeling showed that the change in peak location corresponds to a change in trapping energy from 1.3 eV for the 600 K peak to 2.1 eV for the 800 K peak. It is proposed that for implantations performed above 350 K in SCW and 450 K in PCW, deuterium-containing vacancies are able to diffuse and combine to create stable nano-bubbles within the crystal lattice. The formation of nano-bubbles due to the annihilation of deuterium-vacancy complexes results in a change in the trapping energy from 1.3 to 2.1 eV as well as a decrease in retention as some of the deuterium-vacancy complexes will be destroyed at surfaces or grain boundaries, decreasing the number of trapping sites available.

  1. Temperature dependence of deuterium retention mechanisms in tungsten

    Science.gov (United States)

    Roszell, J. P.; Davis, J. W.; Haasz, A. A.

    2012-10-01

    The retention of 500 eV D+ was measured as a function of implantation temperature in single- (SCW) and poly-crystalline (PCW) tungsten. The results show a decrease in retention of ˜2 orders of magnitude over the temperature range of 350-550 K in SCW and a decrease of an order of magnitude over the temperature range of 600-700 K in PCW. Inspection of the TDS spectra showed a shift in peak location from 600 to 800 K as temperature was increased above 350 K in SCW and above 450 K in PCW specimens. TMAP modeling showed that the change in peak location corresponds to a change in trapping energy from 1.3 eV for the 600 K peak to 2.1 eV for the 800 K peak. It is proposed that for implantations performed above 350 K in SCW and 450 K in PCW, deuterium-containing vacancies are able to diffuse and combine to create stable nano-bubbles within the crystal lattice. The formation of nano-bubbles due to the annihilation of deuterium-vacancy complexes results in a change in the trapping energy from 1.3 to 2.1 eV as well as a decrease in retention as some of the deuterium-vacancy complexes will be destroyed at surfaces or grain boundaries, decreasing the number of trapping sites available.

  2. Temperature dependence of fluctuation time scales in spin glasses

    DEFF Research Database (Denmark)

    Kenning, Gregory G.; Bowen, J.; Sibani, Paolo

    2010-01-01

    Using a series of fast cooling protocols we have probed aging effects in the spin glass state as a function of temperature. Analyzing the logarithmic decay found at very long time scales within a simple phenomenological barrier model, leads to the extraction of the fluctuation time scale of the s...

  3. Temperature dependence of exchange anisotropy in monodisperse cobalt nanoparticles with a cobalt oxide shell

    International Nuclear Information System (INIS)

    Spasova, M.; Wiedwald, U.; Farle, M.; Radetic, T.; Dahmen, U.; Hilgendorff, M.; Giersig, M.

    2004-01-01

    Exchange anisotropy was studied by SQUID magnetometry on an array of monodisperse colloidal nanoparticles consisting of a 7-8 nm diameter FCC Co core covered with a 2-2.5 nm thick FCC CoO shell. Temperature-dependent measurements of the exchange bias field show that the exchange anisotropy vanishes when a magnetic field was applied during cooling below 150 K. The suppression of exchange anisotropy is due to uncompensated interfacial antiferromagnetic spins

  4. Temperature-dependent growth of Geomyces destructans, the fungus that causes bat white-nose syndrome.

    Directory of Open Access Journals (Sweden)

    Michelle L Verant

    Full Text Available White-nose syndrome (WNS is an emergent disease estimated to have killed over five million North American bats. Caused by the psychrophilic fungus Geomyces destructans, WNS specifically affects bats during hibernation. We describe temperature-dependent growth performance and morphology for six independent isolates of G. destructans from North America and Europe. Thermal performance curves for all isolates displayed an intermediate peak with rapid decline in performance above the peak. Optimal temperatures for growth were between 12.5 and 15.8°C, and the upper critical temperature for growth was between 19.0 and 19.8°C. Growth rates varied across isolates, irrespective of geographic origin, and above 12°C all isolates displayed atypical morphology that may have implications for proliferation of the fungus. This study demonstrates that small variations in temperature, consistent with those inherent of bat hibernacula, affect growth performance and physiology of G. destructans, which may influence temperature-dependent progression and severity of WNS in wild bats.

  5. Temperature-dependent growth of Geomyces destructans, the fungus that causes bat white-nose syndrome.

    Science.gov (United States)

    Verant, Michelle L; Boyles, Justin G; Waldrep, William; Wibbelt, Gudrun; Blehert, David S

    2012-01-01

    White-nose syndrome (WNS) is an emergent disease estimated to have killed over five million North American bats. Caused by the psychrophilic fungus Geomyces destructans, WNS specifically affects bats during hibernation. We describe temperature-dependent growth performance and morphology for six independent isolates of G. destructans from North America and Europe. Thermal performance curves for all isolates displayed an intermediate peak with rapid decline in performance above the peak. Optimal temperatures for growth were between 12.5 and 15.8°C, and the upper critical temperature for growth was between 19.0 and 19.8°C. Growth rates varied across isolates, irrespective of geographic origin, and above 12°C all isolates displayed atypical morphology that may have implications for proliferation of the fungus. This study demonstrates that small variations in temperature, consistent with those inherent of bat hibernacula, affect growth performance and physiology of G. destructans, which may influence temperature-dependent progression and severity of WNS in wild bats.

  6. Expected changes in future temperature extremes and their elevation dependency over the Yellow River source region

    Directory of Open Access Journals (Sweden)

    Y. Hu

    2013-07-01

    Full Text Available Using the Statistical DownScaling Model (SDSM and the outputs from two global climate models, we investigate possible changes in mean and extreme temperature indices and their elevation dependency over the Yellow River source region for the two future periods 2046–2065 and 2081–2100 under the IPCC SRES A2, A1B and B1 emission scenarios. Changes in interannual variability of mean and extreme temperature indices are also analyzed. The validation results show that SDSM performs better in reproducing the maximum temperature-related indices than the minimum temperature-related indices. The projections show that by the middle and end of the 21st century all parts of the study region may experience increases in both mean and extreme temperature in all seasons, along with an increase in the frequency of hot days and warm nights and with a decrease in frost days. By the end of the 21st century, interannual variability increases in all seasons for the frequency of hot days and warm nights and in spring for frost days while it decreases for frost days in summer. Autumn demonstrates pronounced elevation-dependent changes in which around six out of eight indices show significant increasing changes with elevation.

  7. On the gauge dependence of vacuum transitions at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Garny, Mathias [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Konstandin, Thomas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2012-05-15

    In principle, observables as for example the sphaleron rate or the tunneling rate in a first-order phase transition are gauge-independent. However, in practice a gauge dependence is introduced in explicit perturbative calculations due to the breakdown of the gradient expansion of the effective action in the symmetric phase. We exemplify the situation using the effective potential of the Abelian Higgs model in the general renormalizable gauge. Still, we find that the quantitative dependence on the gauge choice is small for gauges that are consistent with the perturbative expansion.

  8. On the temperature dependence of the Adam-Gibbs equation around the crossover region in the glass transition

    Science.gov (United States)

    Duque, Michel; Andraca, Adriana; Goldstein, Patricia; del Castillo, Luis Felipe

    2018-04-01

    The Adam-Gibbs equation has been used for more than five decades, and still a question remains unanswered on the temperature dependence of the chemical potential it includes. Nowadays, it is a well-known fact that in fragile glass formers, actually the behavior of the system depends on the temperature region it is being studied. Transport coefficients change due to the appearance of heterogeneity in the liquid as it is supercooled. Using the different forms for the logarithmic shift factor and the form of the configurational entropy, we evaluate this temperature dependence and present a discussion on our results.

  9. Plateau on temperature dependence of magnetization of nanostructured rare earth titanates

    Science.gov (United States)

    Rinkevich, A. B.; Korolev, A. V.; Samoylovich, M. I.; Demokritov, S. O.; Perov, D. V.

    2018-05-01

    Magnetic properties of nanocomposite materials containing particles of rare earth titanates of R2Ti2O7 type, where R is a rare earth ion, including "spin ice" materials are investigated. The descending branches of hysteresis loop have been studied in detail in temperature range from 2 to 50 K. It has been shown that nanocomposites with Yb2Ti2O7, Dy2Ti2O7 and Er2Ti2O7 particles have one intersection point of the descending branches in some temperature range unlike many other nanocomposites. It is shown that magnetization has only weak temperature dependence near this point. It has been obtained that nanocomposites with Pr2Ti2O7 and Nd2Ti2O7 particles have no hysteresis loop. All above findings point out to unusual magnetic structures of the studied samples.

  10. Temperature dependent power capability estimation of lithium-ion batteries for hybrid electric vehicles

    International Nuclear Information System (INIS)

    Zheng, Fangdan; Jiang, Jiuchun; Sun, Bingxiang; Zhang, Weige; Pecht, Michael

    2016-01-01

    The power capability of lithium-ion batteries affects the safety and reliability of hybrid electric vehicles and the estimate of power by battery management systems provides operating information for drivers. In this paper, lithium ion manganese oxide batteries are studied to illustrate the temperature dependency of power capability and an operating map of power capability is presented. Both parametric and non-parametric models are established in conditions of temperature, state of charge, and cell resistance to estimate the power capability. Six cells were tested and used for model development, training, and validation. Three samples underwent hybrid pulse power characterization tests at varied temperatures and were used for model parameter identification and model training. The other three were used for model validation. By comparison, the mean absolute error of the parametric model is about 29 W, and that of the non-parametric model is around 20 W. The mean relative errors of two models are 0.076 and 0.397, respectively. The parametric model has a higher accuracy in low temperature and state of charge conditions, while the non-parametric model has better estimation result in high temperature and state of charge conditions. Thus, two models can be utilized together to achieve a higher accuracy of power capability estimation. - Highlights: • The temperature dependency of power capability of lithium-ion battery is investigated. • The parametric and non-parametric power capability estimation models are proposed. • An exponential function is put forward to compensate the effects of temperature. • A comparative study on the accuracy of two models using statistical metrics is presented.

  11. Studies of high temperature superconductors

    International Nuclear Information System (INIS)

    Narlikar, A.

    1989-01-01

    The high temperature superconductors (HTSCs) discovered are from the family of ceramic oxides. Their large scale utilization in electrical utilities and in microelectronic devices are the frontal challenges which can perhaps be effectively met only through consolidated efforts and expertise of a multidisciplinary nature. During the last two years the growth of the new field has occurred on an international scale and perhaps has been more rapid than in most other fields. There has been an extraordinary rush of data and results which are continually being published as short texts dispersed in many excellent journals, some of which were started to ensure rapid publication exclusively in this field. As a result, the literature on HTSCs has indeed become so massive and so diffuse that it is becoming increasingly difficult to keep abreast with the important and reliable facets of this fast-growing field. This provided the motivation to evolve a process whereby both professional investigators and students can have ready access to up-to- date in-depth accounts of major technical advances happening in this field. The present series Studies of High Temperature Superconductors has been launched to, at least in part, fulfill this need

  12. MATERIAL DEPENDENCE OF TEMPERATURE DISTRIBUTION IN MULTI-LAYER MULTI-METAL COOKWARE

    Directory of Open Access Journals (Sweden)

    MOHAMMADREZA SEDIGH

    2017-09-01

    Full Text Available Laminated structure is becoming more popular in cookware markets; however, there seems to be a lack of enough scientific studies to evaluate its pros and cons, and to show that how it functions. A numerical model using a finite element method with temperature-dependent material properties has been performed to investigate material and layer dependence of temperature distribution in multi-layer multi-metal plate exposed to irregular heating. Behavior of two parameters including mean temperature value and uniformity on the inner surface of plate under variations of thermal properties and geometrical conditions have been studied. The results indicate that conductive metals used as first layer in bi-layer plates have better thermal performance than those used in the second layer. In addition, since cookware manufacturers increasingly prefer to use all-clad aluminium plate, recently, this structure is analysed in the present study as well. The results show all-clad copper and aluminum plate possesses lower temperature gradient compared with single layer aluminum and all-clad aluminum core plates.

  13. Temperature dependent transport characteristics of graphene/n-Si diodes

    NARCIS (Netherlands)

    Parui, S.; Ruiter, R.; Zomer, P. J.; Wojtaszek, M.; van Wees, B. J.; Banerjee, T.

    2014-01-01

    Realizing an optimal Schottky interface of graphene on Si is challenging, as the electrical transport strongly depends on the graphene quality and the fabrication processes. Such interfaces are of increasing research interest for integration in diverse electronic devices as they are thermally and

  14. Insight into temperature dependence of GTPase activity in human guanylate binding protein-1.

    Directory of Open Access Journals (Sweden)

    Anjana Rani

    Full Text Available Interferon-γ induced human guanylate binding protein-1(hGBP1 belongs to a family of dynamin related large GTPases. Unlike all other GTPases, hGBP1 hydrolyzes GTP to a mixture of GDP and GMP with GMP being the major product at 37°C but GDP became significant when the hydrolysis reaction was carried out at 15°C. The hydrolysis reaction in hGBP1 is believed to involve with a number of catalytic steps. To investigate the effect of temperature in the product formation and on the different catalytic complexes of hGBP1, we carried out temperature dependent GTPase assays, mutational analysis, chemical and thermal denaturation studies. The Arrhenius plot for both GDP and GMP interestingly showed nonlinear behaviour, suggesting that the product formation from the GTP-bound enzyme complex is associated with at least more than one step. The negative activation energy for GDP formation and GTPase assay with external GDP together indicate that GDP formation occurs through the reversible dissociation of GDP-bound enzyme dimer to monomer, which further reversibly dissociates to give the product. Denaturation studies of different catalytic complexes show that unlike other complexes the free energy of GDP-bound hGBP1 decreases significantly at lower temperature. GDP formation is found to be dependent on the free energy of the GDP-bound enzyme complex. The decrease in the free energy of this complex at low temperature compared to at high is the reason for higher GDP formation at low temperature. Thermal denaturation studies also suggest that the difference in the free energy of the GTP-bound enzyme dimer compared to its monomer plays a crucial role in the product formation; higher stability favours GMP but lower favours GDP. Thus, this study provides the first thermodynamic insight into the effect of temperature in the product formation of hGBP1.

  15. Effects of Temperature on Time Dependent Rheological Characteristics of Koumiss

    Directory of Open Access Journals (Sweden)

    Serdal Sabancı

    2016-04-01

    Full Text Available The rheological properties of koumiss were investigated at different temperatures (4, 10, and 20°C. Experimental shear stress–shear rate data were fitted to different rheological models. The consistency of koumiss was predicted by using the power-law model since it described the consistency of koumiss best with highest regression coefficient and lowest errors (root mean square error and chi-square. Koumiss exhibited shear thinning behavior (n

  16. Temperature Dependence of Short-Range Order in β-Brass

    DEFF Research Database (Denmark)

    Dietrich, O.W.; Als-Nielsen, Jens Aage

    1967-01-01

    Critical scattering of neutrons around the superlattice reflections (1, 0, 0) and (1, 1, 1) from a single crystal of beta-brass has been measured at temperatures from 2 to 25deg C above the transition temperature. The temperature dependence of the critical peak intensity, proportional to the susc......Critical scattering of neutrons around the superlattice reflections (1, 0, 0) and (1, 1, 1) from a single crystal of beta-brass has been measured at temperatures from 2 to 25deg C above the transition temperature. The temperature dependence of the critical peak intensity, proportional...

  17. Frequency and temperature dependence of high damping elastomers

    International Nuclear Information System (INIS)

    Kulak, R.F.; Hughes, T.H.

    1993-01-01

    High damping steel-laminated elastomeric seismic isolation bearings are one of the preferred devices for isolating large buildings and structures. In the US, the current reference design for the Advanced Liquid Metal Reactor (ALMR) uses laminated bearings for seismic isolation. These bearings are constructed from alternating layers of high damping rubber and steel plates. They are typically designed for shear strains between 50 and 100% and are expected to sustain two to three times these levels for beyond design basis loading conditions. Elastomeric bearings are currently designed to provide a system frequency between 0.4 and 0.8 Hz and expected to operate between -20 and 40 degrees Centigrade. To assure proper performance of isolation bearings, it is necessary to characterize the elastomer's response under expected variations of frequency and temperature. The dynamic response of the elastomer must be characterized within the frequency range that spans the bearing acceptance test frequency, which may be as low as 0.005 Hz, and the design frequency. Similarly, the variation in mechanical characteristics of the elastomer must be determined over the design temperature range, which is between -20 and 40 degrees Centigrade. This paper reports on (1) the capabilities of a testing facility at ANL for testing candidate elastomers, (2) the variation with frequency and temperature of the stiffness and damping of one candidate elastomer, and (3) the effect of these variations on bearing acceptance testing criteria and on the choice of bearing design values for stiffness and damping

  18. Rate of egg maturation in marine turtles exhibits 'universal temperature dependence'.

    Science.gov (United States)

    Weber, Sam B; Blount, Jonathan D; Godley, Brendan J; Witt, Matthew J; Broderick, Annette C

    2011-09-01

    1. The metabolic theory of ecology (MTE) predicts that, after correcting for body mass variation among organisms, the rates of most biological processes will vary as a universal function of temperature. However, empirical support for 'universal temperature dependence' (UTD) is currently equivocal and based on studies of a limited number of traits. 2. In many ectothermic animals, the rate at which females produce mature eggs is temperature dependent and may be an important factor in determining the costs of reproduction. 3. We tested whether the rate of egg maturation in marine turtles varies with environmental temperature as predicted by MTE, using the time separating successive clutches of individual females to estimate the rate at which eggs are formed. We also assessed the phenotypic contribution to this rate, by using radio telemetry to make repeated measurements of interclutch intervals for individual green turtles (Chelonia mydas). 4. Rates of egg maturation increased with seasonally increasing water temperatures in radio-tracked green turtles, but were not repeatable for individual females, and did not vary according to maternal body size or reproductive investment (number and size of eggs produced). 5. Using a collated data set from several different populations and species of marine turtles, we then show that a single relationship with water temperature explains most of the variation in egg maturation rates, with a slope that is statistically indistinguishable from the UTD predicted by MTE. However, several alternative statistical models also described the relationship between temperature and egg maturation rates equally parsimoniously. 6. Our results offer novel support for the MTE's predicted UTD of biological rates, although the underlying mechanisms require further study. The strong temperature dependence of egg maturation combined with the apparently weak phenotypic contribution to this rate has interesting behavioural implications in ectothermic

  19. The role of inelastic processes in the temperature dependence of hall induced resistance oscillations

    International Nuclear Information System (INIS)

    Kunold, Alejandro; Torres, Manuel

    2013-01-01

    We develop a model of magnetoresistance oscillations induced by the Hall field in order to study the temperature dependence observed in recent experiments in two dimensional electron systems. The model is based on the solution of the von Neumann equation incorporating the exact dynamics of two-dimensional damped electrons in the presence of arbitrarily strong magnetic and dc electric fields, while the effects of randomly distributed neutral and charged impurities are perturbatively added. Both the effects of elastic impurity scattering as well as those related to inelastic processes play an important role. The theoretical predictions correctly reproduce the experimentally observed oscillations amplitude, provided that the quantum inelastic scattering rate obeys a T 2 temperature dependence, consistent with electron–electron interaction effects

  20. The temperature dependence of atomic incorporation characteristics in growing GaInNAs films

    International Nuclear Information System (INIS)

    Li, Jingling; Gao, Fangliang; Wen, Lei; Zhou, Shizhong; Zhang, Shuguang; Li, Guoqiang

    2015-01-01

    We have systematically studied the temperature dependence of incorporation characteristics of nitrogen (N) and indium (In) in growing GaInNAs films. With the implementation of Monte-Carlo simulation, the low N adsorption energy (−0.10 eV) is demonstrated. To understand the atomic incorporation mechanism, temperature dependence of interactions between Group-III and V elements are subsequently discussed. We find that the In incorporation behaviors rather than that of N are more sensitive to the T g , which can be experimentally verified by exploring the compositional modulation and structural changes of the GaInNAs films by means of high-resolution X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscope, and secondary ion mass spectroscopy

  1. Size and temperature dependent stability and phase transformation in single-crystal zirconium nanowire

    International Nuclear Information System (INIS)

    Sutrakar, Vijay Kumar; Roy Mahapatra, D.

    2011-01-01

    A novel size dependent FCC (face-centered-cubic) → HCP (hexagonally-closed-pack) phase transformation and stability of an initial FCC zirconium nanowire are studied. FCC zirconium nanowires with cross-sectional dimensions 20 Å, in which surface stresses are not enough to drive the phase transformation, show meta-stability. In such a case, an external kinetic energy in the form of thermal heating is required to overcome the energy barrier and achieve FCC → HCP phase transformation. The FCC-HCP transition pathway is also studied using Nudged Elastic Band (NEB) method, to further confirm the size dependent stability/metastability of Zr nanowires. We also show size dependent critical temperature, which is required for complete phase transformation of a metastable-FCC nanowire.

  2. Temperature dependence of coercivity behavior in iron films on silicone oil surfaces

    International Nuclear Information System (INIS)

    Xu Xiaojun; Ye Quanlin; Ye Gaoxiang

    2007-01-01

    A new iron film system, deposited on silicone oil surfaces by vapor phase deposition method, has been fabricated and its microstructure as well as magnetic properties has been studied. It is found that the temperature dependence of the coercive field H c (T) of the films exhibits a peak around a critical temperature T crit =10-15 K: for the temperature T crit ,H c (T) increases with the temperature; if T>T crit , however, it decreases rapidly and then approaches a steady value as T further increases. Our study shows that, for T>T crit , the observed coercivity behavior is mainly dominated by the effect of the non-uniform single-domain particle size distribution, and for T crit , the anomalous coercivity behavior may be resulted from the surface anisotropy, the surface effect and the characteristic internal stress distribution in the films. The influence of the shape and size of the particles on the thermal dependence of the magnetization is also investigated

  3. Polysaccharide peptide induces a tumor necrosis factor-α-dependent drop of body temperature in rats.

    Science.gov (United States)

    Jedrzejewski, Tomasz; Piotrowski, Jakub; Wrotek, Sylwia; Kozak, Wieslaw

    2014-08-01

    Polysaccharide peptide (PSP) extracted from the Coriolus versicolor mushroom is frequently suggested as an adjunct to the chemo- or radiotherapy in cancer patients. It improves quality of the patients' life by decreasing pain, fatigue, loss of appetite, nausea, and vomiting. However, the effect of PSP on body temperature has not thus far been studied, although it is well known that treatment with other polysaccharide adjuvants, such as lipopolysaccharides, may induce fever. The aim of the present study, therefore, was to investigate the influence of PSP on temperature regulation in rats. We report that intraperitoneal injection of PSP provoked a dose-dependent decrease of temperature in male Wistar rats equipped with biotelemetry devices to monitor deep body temperature (Tb). The response was rapid (i.e., with latency of 15-20min), transient (lasting up to 5h post-injection), and accompanied by a significant elevation of the blood tumor necrosis factor-α (TNF-α) level. Pretreatment of the rats with anti-TNF-α antibody prevented the PSP-induced drop in Tb. Based on these data, we conclude that rats may develop an anapyrexia-like response to the injection of peptidopolysaccharide rather than fever, and the response was TNF-α-dependent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Temperature Dependence of Apparent Respiratory Quotients and Oxygen Penetration Depth in Contrasting Lake Sediments

    Science.gov (United States)

    Sobek, Sebastian; Gudasz, Cristian; Koehler, Birgit; Tranvik, Lars J.; Bastviken, David; Morales-Pineda, María.

    2017-11-01

    Lake sediments constitute an important compartment in the carbon cycle of lakes, by burying carbon over geological timescales and by production and emission of greenhouse gases. The degradation of organic carbon (OC) in lake sediments is linked to both temperature and oxygen (O2), but the interactive nature of this regulation has not been studied in lake sediments in a quantitative way. We present the first systematic investigation of the effects of temperature on the apparent respiratory quotient (RQ, i.e., the molar ratio between carbon dioxide (CO2) production and O2 consumption) in two contrasting lake sediments. Laboratory incubations of sediment cores of a humic lake and an eutrophic lake across a 1-21°C temperature gradient over 157 days revealed that both CO2 production and O2 consumption were positively, exponentially, and similarly dependent on temperature. The apparent RQ differed significantly between the lake sediments (0.63 ± 0.26 and 0.99 ± 0.28 in the humic and the eutrophic lake, respectively; mean ± SD) and was significantly and positively related to temperature. The O2 penetration depth into the sediment varied by a factor of 2 over the 1-21°C temperature range and was significantly, negatively, and similarly related to temperature in both lake sediments. Accordingly, increasing temperature may influence the overall extent of OC degradation in lake sediments by limiting O2 supply to aerobic microbial respiration to the topmost sediment layer, resulting in a concomitant shift to less effective anaerobic degradation pathways. This suggests that temperature may represent a key controlling factor of the OC burial efficiency in lake sediments.

  5. Processing methods for temperature-dependent MCNP libraries

    International Nuclear Information System (INIS)

    Li Songyang; Wang Kan; Yu Ganglin

    2008-01-01

    In this paper,the processing method of NJOY which transfers ENDF files to ACE (A Compact ENDF) files (point-wise cross-Section file used for MCNP program) is discussed. Temperatures that cover the range for reactor design and operation are considered. Three benchmarks are used for testing the method: Jezebel Benchmark, 28 cm-thick Slab Core Benchmark and LWR Benchmark with Burnable Absorbers. The calculation results showed the precision of the neutron cross-section library and verified the correct processing methods in usage of NJOY. (authors)

  6. Temperature-dependent dielectric properties in ITO/AF/Al device

    International Nuclear Information System (INIS)

    Choi, Hyun-Min; Kim, Won-Jong; Lee, Jong-Yong; Hong, Jin-Woong; Kim, Tae-Wan

    2010-01-01

    Temperature-dependent dielectric properties were studied in a device with a structure of ITO/amorphous fluoropolymer (AF)/Al. The AF was thermally deposited at a deposition rate of 0.1 A/s to a thickness of 20 nm under a pressure of 5 x 10 -6 Torr. From the dielectric properties of the device, an equivalent circuit for and the equivalent complex impedance Z eq of the device were obtained. The interfacial resistance was found to be approximately 38 Ω. As the temperature was increased, the radius of the Cole-Cole plot and β also increased for a constant applied voltage. However, as the applied voltage was increased, those values decreased at a constant temperature. These behaviors are thought to be due to an orientational polarization effect of the molecules inside the AF layer.

  7. Temperature dependence of the optical absorption spectra of InP/ZnS quantum dots

    Science.gov (United States)

    Savchenko, S. S.; Vokhmintsev, A. S.; Weinstein, I. A.

    2017-03-01

    The optical-absorption spectra of InP/ZnS (core/shell) quantum dots have been studied in a broad temperature range of T = 6.5-296 K. Using the second-order derivative spectrophotometry technique, the energies of optical transitions at room temperature were found to be E 1 = 2.60 ± 0.02 eV (for the first peak of excitonic absorption in the InP core) and E 2 = 4.70 ± 0.02 eV (for processes in the ZnS shell). The experimental curve of E 1( T) has been approximated for the first time in the framework of a linear model and in terms of the Fan's formula. It is established that the temperature dependence of E 1 is determined by the interaction of excitons and longitudinal acoustic phonons with hω = 15 meV.

  8. Implementation of a method for calculating temperature-dependent resistivities in the KKR formalism

    Science.gov (United States)

    Mahr, Carsten E.; Czerner, Michael; Heiliger, Christian

    2017-10-01

    We present a method to calculate the electron-phonon induced resistivity of metals in scattering-time approximation based on the nonequilibrium Green's function formalism. The general theory as well as its implementation in a density-functional theory based Korringa-Kohn-Rostoker code are described and subsequently verified by studying copper as a test system. We model the thermal expansion by fitting a Debye-Grüneisen curve to experimental data. Both the electronic and vibrational structures are discussed for different temperatures, and employing a Wannier interpolation of these quantities we evaluate the scattering time by integrating the electron linewidth on a triangulation of the Fermi surface. Based thereupon, the temperature-dependent resistivity is calculated and found to be in good agreement with experiment. We show that the effect of thermal expansion has to be considered in the whole calculation regime. Further, for low temperatures, an accurate sampling of the Fermi surface becomes important.

  9. Temperature-dependent charge injection and transport in pentacene thin-film transistors

    International Nuclear Information System (INIS)

    Kim, Dong Wook; Shin, Hyunji; Choi, Jong Sun; Park, Ji-Ho; Park, Jaehoon

    2015-01-01

    The electrical characteristics of p-channel pentacene thin-film transistors (TFTs) were analyzed at different operating temperatures ranging from 253 to 353 K. An improvement in the drain current and field-effect mobility of the pentacene TFTs is observed with increasing temperature. From the Arrhenius plots of field-effect mobility extracted at various temperatures, a lower activation energy of 99.34 meV was obtained when the device is operating in the saturation region. Such observation is ascribed to the thermally activated hole transport through the pentacene grain boundaries. On the other hand, it was found that the Au/pentacene contact significantly affects the TFTs electrical characteristics in the linear region, which resulted in a higher activation energy. The activation energy based on the linear field-effect mobility, which increased from 344.61 to 444.70 meV with decreasing temperature, implies the charge-injection-limited electrical behavior of pentacene TFTs at low temperatures. The thermally induced electrical characteristic variations in pentacene TFTs can thus be studied through the temperature dependence of the charge injection and transport processes. (paper)

  10. Anomalous Temperature Dependence in Metal-Black Phosphorus Contact.

    Science.gov (United States)

    Li, Xuefei; Grassi, Roberto; Li, Sichao; Li, Tiaoyang; Xiong, Xiong; Low, Tony; Wu, Yanqing

    2018-01-10

    Metal-semiconductor contact has been the performance limiting problem for electronic devices and also dictates the scaling potential for future generation devices based on novel channel materials. Two-dimensional semiconductors beyond graphene, particularly few layer black phosphorus, have attracted much attention due to their exceptional electronic properties such as anisotropy and high mobility. However, due to its ultrathin body nature, few layer black phosphorus-metal contact behaves differently than conventional Schottky barrier (SB) junctions, and the mechanisms of its carrier transport across such a barrier remain elusive. In this work, we examine the transport characteristic of metal-black phosphorus contact under varying temperature. We elucidated the origin of apparent negative SB heights extracted from classical thermionic emission model and also the phenomenon of metal-insulator transition observed in the current-temperature transistor characteristic. In essence, we found that the SB height can be modulated by the back-gate voltage, which beyond a certain critical point becomes so low that the injected carrier can no longer be described by the conventional thermionic emission theory. The transition from transport dominated by a Maxwell-Boltzmann distribution for the high energy tail states, to that of a Fermi distribution by low energy Fermi sea electrons, is the physical origin of the observed metal-insulator transition. We identified two distinctive tunneling limited transport regimes in the contact: vertical and longitudinal tunneling.

  11. Temperature dependent simulation of diamond depleted Schottky PIN diodes

    International Nuclear Information System (INIS)

    Hathwar, Raghuraj; Dutta, Maitreya; Chowdhury, Srabanti; Goodnick, Stephen M.; Koeck, Franz A. M.; Nemanich, Robert J.

    2016-01-01

    Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context, we use Silvaco ® Atlas, a drift-diffusion based commercial software, to model diamond based power devices. The models used in Atlas were modified to account for both variable range and nearest neighbor hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond. The models were fit to experimentally reported resistivity data over a wide range of doping concentrations and temperatures. We compare to recent data on depleted diamond Schottky PIN diodes demonstrating low turn-on voltages and high reverse breakdown voltages, which could be useful for high power rectifying applications due to the low turn-on voltage enabling high forward current densities. Three dimensional simulations of the depleted Schottky PIN diamond devices were performed and the results are verified with experimental data at different operating temperatures

  12. Temperature dependent simulation of diamond depleted Schottky PIN diodes

    Science.gov (United States)

    Hathwar, Raghuraj; Dutta, Maitreya; Koeck, Franz A. M.; Nemanich, Robert J.; Chowdhury, Srabanti; Goodnick, Stephen M.

    2016-06-01

    Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context, we use Silvaco® Atlas, a drift-diffusion based commercial software, to model diamond based power devices. The models used in Atlas were modified to account for both variable range and nearest neighbor hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond. The models were fit to experimentally reported resistivity data over a wide range of doping concentrations and temperatures. We compare to recent data on depleted diamond Schottky PIN diodes demonstrating low turn-on voltages and high reverse breakdown voltages, which could be useful for high power rectifying applications due to the low turn-on voltage enabling high forward current densities. Three dimensional simulations of the depleted Schottky PIN diamond devices were performed and the results are verified with experimental data at different operating temperatures

  13. Temperature dependent simulation of diamond depleted Schottky PIN diodes

    Energy Technology Data Exchange (ETDEWEB)

    Hathwar, Raghuraj; Dutta, Maitreya; Chowdhury, Srabanti; Goodnick, Stephen M. [Department of Electrical Engineering, Arizona State University, Tempe, Arizona 85287-8806 (United States); Koeck, Franz A. M.; Nemanich, Robert J. [Department of Physics, Arizona State University, Tempe, Arizona 85287-8806 (United States)

    2016-06-14

    Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context, we use Silvaco{sup ®} Atlas, a drift-diffusion based commercial software, to model diamond based power devices. The models used in Atlas were modified to account for both variable range and nearest neighbor hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond. The models were fit to experimentally reported resistivity data over a wide range of doping concentrations and temperatures. We compare to recent data on depleted diamond Schottky PIN diodes demonstrating low turn-on voltages and high reverse breakdown voltages, which could be useful for high power rectifying applications due to the low turn-on voltage enabling high forward current densities. Three dimensional simulations of the depleted Schottky PIN diamond devices were performed and the results are verified with experimental data at different operating temperatures.

  14. On the spectral dependence of the critical temperature of superconductors

    International Nuclear Information System (INIS)

    Combescot, R.

    1989-01-01

    The authors have solved analytically the linearized Eliashberg equations for T c in the weak coupling limit. The corrections to their result go to zero in this limit. Their calculation is valid for any spectral shape. They find a smooth dependence of T c on the spectral shape. Only the gross features of the spectrum are relevant. The authors propose for T c an interpolation formula valid for any coupling strength and any spectral shape. This formula is in good agreement with known numerical results. It agrees with all the qualitative behavior obtained from computer work

  15. Inclusion of temperature dependence of fission barriers in statistical model calculations

    International Nuclear Information System (INIS)

    Newton, J.O.; Popescu, D.G.; Leigh, J.R.

    1990-08-01

    The temperature dependence of fission barriers has been interpolated from the results of recent theoretical calculations and included in the statistical model code PACE2. It is shown that the inclusion of temperature dependence causes significant changes to the values of the statistical model parameters deduced from fits to experimental data. 21 refs., 2 figs

  16. Temperature dependence of the magnetization of disc shaped NiO nanoparticles

    DEFF Research Database (Denmark)

    Klausen, Stine Nyborg; Lindgard, P.A.; Lefmann, Kim

    2002-01-01

    as a temperature dependent contribution of a structural peak in contrast to bulk NiO. The two magnetic signals vanish at the same temperature. The data are interpreted on the basis of an extended mean field model on disc shaped NiO particles. This model includes the finite size dependence of the effective field...

  17. Barley (Hordeum vulgare) circadian clock genes can respond rapidly to temperature in an EARLY FLOWERING 3-dependent manner

    Science.gov (United States)

    Ford, Brett; Deng, Weiwei; Clausen, Jenni; Oliver, Sandra; Boden, Scott; Hemming, Megan; Trevaskis, Ben

    2016-01-01

    An increase in global temperatures will impact future crop yields. In the cereal crops wheat and barley, high temperatures accelerate reproductive development, reducing the number of grains per plant and final grain yield. Despite this relationship between temperature and cereal yield, it is not clear what genes and molecular pathways mediate the developmental response to increased temperatures. The plant circadian clock can respond to changes in temperature and is important for photoperiod-dependent flowering, and so is a potential mechanism controlling temperature responses in cereal crops. This study examines the relationship between temperature, the circadian clock, and the expression of flowering-time genes in barley (Hordeum vulgare), a crop model for temperate cereals. Transcript levels of barley core circadian clock genes were assayed over a range of temperatures. Transcript levels of core clock genes CCA1, GI, PRR59, PRR73, PRR95, and LUX are increased at higher temperatures. CCA1 and PRR73 respond rapidly to a decrease in temperature whereas GI and PRR59 respond rapidly to an increase in temperature. The response of GI and the PRR genes to changes in temperature is lost in the elf3 mutant indicating that their response to temperature may be dependent on a functional ELF3 gene. PMID:27580625

  18. The temperature dependent strontium isotope fractionation (δ88/86Sr) during calcium carbonate precipitation

    International Nuclear Information System (INIS)

    Fietzke, J.; Eisenhauer, A.

    2006-01-01

    Full text: In order to study the influence of stable isotope fractionation during inorganic and biologically controlled CaCO 3 precipitation we have developed the analytical principles for the measurement of strontium (Sr) isotope fractionation. We have established a measurement protocol for the application on a MC-ICP-MS (AXIOM) using the common bracketing standard technique. The Sr-standard CRM NBS987 was used as reference material for all measurements and to calculate the Sr fractionation. Latter value is expressed by the δ-notation defined as: δ 88/86 Sr = [( 88 Sr/ 86 Sr)sample / ( 88 Sr/ 86 Sr)standard ] * 1000 -1. A first set of experiments focused on the temperature dependency of Sr-isotope fractionation. For this purpose inorganically precipitated aragonite and calcite was prepared under controlled conditions in a temperature range from 10 to 50 o C. In addition, cultured and naturally grown corals were analyzed for their δ 88/86 Sr values. Repeated measurements of IAPSO seawater standard showed a mean δ 88/86 Sr value of 0.383 ± 0.008 (2 SEM) being the isotopically heaviest material measured so far. The first results of the inorganically precipitated aragonite and the natural corals revealed a clear temperature dependency of the δ 88/86 Sr values. For inorganic aragonite the slope of this correlation is about 0.0055 permil/ o C. However, for naturally grown corals (Pavona clavus) a 6 fold steeper slope of 0.033 permil/ o C was determined. This strong temperature dependency implies the potential to use stable Sr isotopes as a new marine (paleo)temperature proxy. (author)

  19. Dependence of electric strength on the ambient temperature

    International Nuclear Information System (INIS)

    Čaja, Alexander; Nemec, Patrik; Malcho, Milan

    2014-01-01

    At present, the volume concentration of electronic components in their miniaturization to different types of microchips and increasing their performance raises the problem of cooling such elements due to the increasing density of heat flow of heat loss. Compliance with safe operating temperature of active semiconductor element is very closely related to the reliability and durability not only components, but also the entire device. Often it is also necessary to electrically isolate the unit from the side of the cooler air. Cooling demand by natural convection is typical for applications with high operating reliability. To the reliability of the system for removing heat loss increased, it is necessary to minimize need to use the mechanically or electrically powered elements, such as circulation pumps or fans. Experience to date with applications of heat pipe in specific systems appears to be the most appropriate method of cooling

  20. Temperature dependence of microwave absorption phenomena in single and biphase soft magnetic microwires

    Energy Technology Data Exchange (ETDEWEB)

    El Kammouni, Rhimou, E-mail: elkammounirhimou@gmail.com [Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid (Spain); Vázquez, Manuel [Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid (Spain); Lezama, Luis [Depto. Química Inorgánica, Universidad País Vasco, UPV/EHU, Bilbao (Spain); Kurlyandskaya, Galina [Depto. Electricidad y Electrónica, Universidad País Vasco, UPV/EHU, Bilbao (Spain); Dept. Magnetism and Magnetic Nanomaterials, Ural Federal University, Ekaterinburg (Russian Federation); Kraus, Ludek [Institute of Physics, Academy of Sciences of the Czech Republic, Prague (Czech Republic)

    2014-11-15

    The microwave absorption phenomena of single and biphase magnetic microwires with soft magnetic behavior have been investigated as a function of DC applied magnetic field using two alternative techniques: (i) absorption measurements in the temperature range of 4–300 K using a spectrometer operating at X-band frequency, at 9.5 GHz, and (ii) room-temperature, RT, ferromagnetic resonance measurements in a network analyzer in the frequency range up to 20 GHz. Complementary low-frequency magnetic characterization was performed in a Vibrating Sample Magnetometer. Studies have been performed for 8 μm diameter small-magnetostriction amorphous CoFeSiB single-phase microwire, coated by micrometric Pyrex layer, and after electroplating an external shell, 2 µm or 4 µm thick, of FeNi alloys. For single phase CoFeSiB microwire, a single absorption is observed, whose DC field dependence of resonance frequency at RT fits to a Kittel-law behavior for in-plane magnetized thin film. The temperature dependence behavior shows a monotonic increase in the resonance field, H{sub r}, with temperature. A parallel reduction of the circular anisotropy field, H{sub K}, is deduced from the temperature dependence of hysteresis loops. For biphase, CoFeSiB/FeNi, microwires, the absorption phenomena at RT also follow the Kittel condition. The observed opposite evolution with temperature of resonance field, H{sub r}, in 2 and 4 µm thick FeNi samples is interpreted considering the opposite sign of magnetostriction of the respective FeNi layers. The stress-induced magnetic anisotropy field, H{sub K}, in the FeNi shell is deduced to change sign at around 130 K. - Highlights: • A single absorption phenomenon is observed for single phase CoFeSiB. • The T dependence of the microwave behavior shows a monotonic increase of H{sub r} with T. • The absorption at RT follows the Kittel condition for biphase CoFe/FeNi microwires. • The T dependence of resonant field of CoFe/FeNi is interpreted to be

  1. A micromechanical interpretation of the temperature dependence of Beremin model parameters for French RPV steel

    International Nuclear Information System (INIS)

    Mathieu, Jean-Philippe; Inal, Karim; Berveiller, Sophie; Diard, Olivier

    2010-01-01

    Local approach to brittle fracture for low-alloyed steels is discussed in this paper. A bibliographical introduction intends to highlight general trends and consensual points of the topic and evokes debatable aspects. French RPV steel 16MND5 (equ. ASTM A508 Cl.3), is then used as a model material to study the influence of temperature on brittle fracture. A micromechanical modelling of brittle fracture at the elementary volume scale already used in previous work is then recalled. It involves a multiscale modelling of microstructural plasticity which has been tuned on experimental inter-phase and inter-granular stresses heterogeneities measurements. Fracture probability of the elementary volume can then be computed using a randomly attributed defect size distribution based on realistic carbides repartition. This defect distribution is then deterministically correlated to stress heterogeneities simulated within the microstructure using a weakest-link hypothesis on the elementary volume, which results in a deterministic stress to fracture. Repeating the process allows to compute Weibull parameters on the elementary volume. This tool is then used to investigate the physical mechanisms that could explain the already experimentally observed temperature dependence of Beremin's parameter for 16MND5 steel. It is showed that, assuming that the hypothesis made in this work about cleavage micro-mechanisms are correct, effective equivalent surface energy (i.e. surface energy plus plastically dissipated energy when blunting the crack tip) for propagating a crack has to be temperature dependent to explain Beremin's parameters temperature evolution.

  2. Investigation of temperature dependent barrier height of Au/ZnO/Si schottky diodes

    International Nuclear Information System (INIS)

    Asghar, M.; Mahmood, K.; Rabia, S.; BM, S.; Shahid, M. Y.; Hasan, M. A.

    2013-01-01

    In this study, temperature dependent current-voltage (I-V) measurements have been performed to investigate the inhomogeneity in the temperature dependent barrier heights of Au/ZnO/Si Schottky barrier diode in the temperature range 150 - 400K. The room temperature values for ideality factor and barrier height were found to be 2.9 and 0.60 eV respectively indicating the inhomogenity in the barrier heights of grown samples. The Richardson plot and ideality factor verses barrier height graph were also drawn to verified the discontinuity between Au and ZnO. This barrier height inhomogenity was explained by applying Gaussian distribution model. The extrapolation of the linear Fap (n) plot to n= 1 has given a homogeneous barrier height of approximately 1.1 eV. Fap versus 1/T plot was drawn to obtain the values of mean barrier height for Au/ZnO/Si Schottky diode (1.1 eV) and standard deviation(ds) (0.02 V) at zero bais. (author)

  3. Investigation of temperature dependent barrier height of Au/ZnO/Si schottky diodes

    International Nuclear Information System (INIS)

    Asghar, M; Mahmood, K; Rabia, S; M, Samaa B; Shahid, M Y; Hasan, M A

    2014-01-01

    In this study, temperature dependent current-voltage (I-V) measurements have been performed to investigate the inhomogeneity in the temperature dependent barrier heights of Au/ZnO/Si Schottky barrier diode in the temperature range 150 – 400K. The room temperature values for ideality factor and barrier height were found to be 2.9 and 0.60 eV respectively indicating the inhomogenity in the barrier heights of grown samples. The Richardson plot and ideality factor verses barrier height graph were also drawn to verified the discontinuity between Au and ZnO. This barrier height inhomogenity was explained by applying Gaussian distribution model. The extrapolation of the linear Φ ap (n) plot to n= 1 has given a homogeneous barrier height of approximately 1.1 eV. Φ ap versus 1/T plot was drawn to obtain the values of mean barrier height for Au/ZnO/Si Schottky diode (1.1 eV) and standard deviation(δ s ) (0.02 V) at zero bais

  4. Temperature Dependence of Emission Properties of Self-Assembled InGaN Quantum Dots

    International Nuclear Information System (INIS)

    Zhao Wan-Ru; Zhang Jiang-Yong; Zhang Bao-Ping; Weng Guo-En; Liang Ming-Ming; Li Zeng-Cheng; Liu Jian-Ping

    2014-01-01

    Emission properties of self-assembled green-emitting InGaN quantum dots (QDs) grown on sapphire substrates by using metal organic chemical vapor deposition are studied by temperature-dependent photoluminescence (PL) measurements. As temperature increases (15–300 K), the PL peak energy shows an anomalous V-shaped (redshift—blueshift) variation instead of an S-shaped (redshift—blueshift—redshift) variation, as observed typically in green-emitting InGaN/GaN multi-quantum wells (MQWs). The PL full width at half maximum (FWHM) also shows a V-shaped (decrease—increase) variation. The temperature dependence of the PL peak energy and FWHM of QDs are well explained by a model similar to MQWs, in which carriers transferring in localized states play an important role, while the confinement energy of localized states in the QDs is significantly larger than that in MQWs. By analyzing the integrated PL intensity, the larger confinement energy of localized states in the QDs is estimated to be 105.9 meV, which is well explained by taking into account the band-gap shrinkage and carrier thermalization with temperature. It is also found that the nonradiative combination centers in QD samples are much less than those in QW samples with the same In content

  5. Temperature-dependent effect of filamentous cyanobacteria on Daphnia magna life history traits

    Directory of Open Access Journals (Sweden)

    Piotr DAWIDOWICZ

    2011-08-01

    Full Text Available Filamentous cyanobacteria are unsuitable food for Daphnia due to their poor manageability, poor nutritional value and, in some cases, toxicity. As the strength of harmful effects of cyanobacteria on filter-feeding zooplankton is temperature dependent, the global warming scenarios for eutrophic lakes in temperate zone might include an escalated suppression of Daphnia populations caused by the presence of cyanobacterial filaments. To test this assumption, we conducted life-table experiments with four clones of Daphnia magna fed either a green alga Scenedesmus obliquus or a non-toxic strain of filamentous cyanobacteria Cylindrospermopsis raciborskii in two temperatures (20 °C and 24 °C. Key life history parameters of Daphnia, i.e., age and size at first reproduction, fecundity, and individual growth rate, were measured. Both food and temperature significantly affected Daphnia performance, however, the effect of interaction of these two factors was ambiguous and highly genotype-dependent. We conclude that the temperature increase within the studied range will not necessarily strengthen the suppression of Daphnia growth by filamentous cyanobacteria, but may affect clonal selection within population of Daphnia, thus possibly triggering microevolutionary changes within affected populations.

  6. Effects of a metallic front gate on the temperature-dependent electronic property of pentacene films

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yow-Jon, E-mail: rzr2390@yahoo.com.tw [Institute of Photonics, National Changhua University of Education, Changhua 500, Taiwan (China); Tsao, Hou-Yen [Institute of Photonics, National Changhua University of Education, Changhua 500, Taiwan (China); Liu, Day-Shan [Graduate Institute of Electro-Optical and Materials Science, National Formosa University, Huwei 632, Taiwan (China)

    2014-11-14

    The effect of a metallic front gate on the temperature-dependent electronic property of pentacene films was investigated in this study. The carrier mobility exhibits strong temperature dependence, implying the dominance of tunneling (hopping) at low (high) temperatures. The room-temperature mobility was drastically increased by capping an In (Au) layer on the pentacene front surface. However, the carrier concentration is not affected. An increase in the phonon energy occurs for In-capped or Au-capped pentacene samples, which corresponds to the abrupt transition to the nonlocal electron–phonon coupling. The enhanced mobility by capping a metal layer is attributed to a change in the electron–phonon coupling. - Highlights: • For the metal-capped and uncapped pentacene films, the mobility was researched. • The mobility was dramatically increased by capping an In (Au) layer. • The induced strain by capping a metal layer is found. • The strain may lead to the electron–phonon coupling variation. • The enhanced mobility is attributed to the weakened electron–phonon coupling.

  7. The tunneling magnetoresistance current dependence on cross sectional area, angle and temperature

    Directory of Open Access Journals (Sweden)

    Z. H. Zhang

    2015-03-01

    Full Text Available The magnetoresistance of a MgO-based magnetic tunnel junction (MTJ was studied experimentally. The magnetoresistance as a function of current was measured systematically on MTJs for various MgO cross sectional areas and at various temperatures from 7.5 to 290.1 K. The resistance current dependence of the MTJ was also measured for different angles between the two ferromagnetic layers. By considering particle and angular momentum conservation of transport electrons, the current dependence of magnetoresistance can be explained by the changing of spin polarization in the free magnetic layer of the MTJ. The changing of spin polarization is related to the magnetoresistance, its angular dependence and the threshold current where TMR ratio equals zero. A phenomenological model is used which avoid the complicated barrier details and also describes the data.

  8. On the temperature dependence of the excess resistivity in dilute volatile alloys

    International Nuclear Information System (INIS)

    Uray, L.; Vicsek, T.

    1978-01-01

    In recrystallized wires of many important refractory alloys, an appreciable part of the temperature dependence of the measured excess resistivity is related to the radial distribution of the volatile solutes (extrinsic temperature dependence). Both the extrinsic and the intrinsic part of the temperature dependence of the excess resistivity have been determined for dilute WFe, WCo and WRe alloys, by measuring the resistance as a function of temperature and the thickness of layers removed by electrothinning. In this way the parameters of the evaporation profiles were also determined. In the surface region at low temperatures the length scale of the inhomogeneity is comparable to the mean-free path. Therefore, the observed extrinsic temperature dependence of the excess resistivity was calculated directly from the Boltzmann equation. The WCo alloy is a Kondo system, since its resistivity shows a minimum a 20 K. (author)

  9. SENSITIVITY TEMPERATURE DEPENDENCE RESEARCH OF TV-CAMERAS BASED ON SILICON MATRIXES

    Directory of Open Access Journals (Sweden)

    Alexey N. Starchenko

    2017-07-01

    Full Text Available Subject of Research. The research is dedicated to the analysis of sensitivity change patterns of the cameras based on silicon CMOS-matrixes in various ambient temperatures. This information is necessary for the correct camera application for photometric measurements in-situ. The paper deals with studies of sensitivity variations of two digital cameras with different silicon CMOS matrixes in visible and near IR regions of the spectrum at temperature change. Method. Due to practical restrictions the temperature changes were recorded in separate spectral intervals important for practical use of the cameras. The experiments were carried out with the use of a climatic chamber, providing change and keeping the temperature range from minus 40 to plus 50 °C at a pitch of 10 о С. Two cameras were chosen for research: VAC-135-IP with OmniVision OV9121 matrix and VAC-248-IP with OnSemiconductor VITA2000 matrix. The two tested devices were placed in a climatic chamber at the same time and illuminated by one radiation source with a color temperature about 3000 K in order to eliminate a number of methodological errors. Main Results. The temperature dependence of the signals was shown to be linear and the matrixes sensitivities were determined. The results obtained are consistent with theoretical views, in general. The coefficients of thermal sensitivity were computed by these dependencies. It is shown that the greatest affect of temperature on the sensitivity occurs in the area (0.7–1.1 mkm. Temperature coefficients of sensitivity increase with the downward radiation wavelength increase. The experiments carried out have shown that it is necessary to take into account the changes in temperature sensitivity of silicon matrixes in the red and near in IR regions of the spectrum. The effect reveals itself in a clearly negative way in cameras with an amplitude resolution of 10-12 bits used for aerospace and space spectrozonal photography. Practical Relevance

  10. Temperature dependence of scintillation properties of SrMoO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailik, V.B., E-mail: vmikhai@hotmail.com [Diamond Light Source, Harwell Science Campus, Didcot OX11 0DE (United Kingdom); Elyashevskyi, Yu. [Department of Physics, University of Oxford, Keble Rd., Oxford OX1 3RH (United Kingdom); Scientific-technical and Educational Centre of Low Temperature Studies, I. Franko National University of Lviv, 50 Dragomanova Str., 79005 Lviv (Ukraine); Kraus, H. [Department of Physics, University of Oxford, Keble Rd., Oxford OX1 3RH (United Kingdom); Kim, H.J. [Department of Physics of Kyungpook National University, 1370 Sangyeok-dong, Buk-gu, Daegu 702-701 (Korea, Republic of); Kapustianyk, V.; Panasyuk, M. [Scientific-technical and Educational Centre of Low Temperature Studies, I. Franko National University of Lviv, 50 Dragomanova Str., 79005 Lviv (Ukraine)

    2015-08-21

    Studies of the X-ray luminescence and scintillation properties of a SrMoO{sub 4} crystal as function of temperature down to T=10 K have been carried out. The luminescence in SrMoO{sub 4} is quenched at room temperature, but below T<200 K the crystal exhibits a broad emission band with a maximum at a wavelength of 520 nm. The emission is attributed to the radiative decay of self-trapped excitons and defects acting as traps for the exactions at low temperatures. Such complex character of radiative decay is reflected in the kinetics which contains several components plus a contribution from delayed recombination at low temperatures. The temperature dependence of scintillation light output of SrMoO{sub 4} was studied. Comparing with a reference ZnWO{sub 4} crystal measured under the same experimental conditions it was found that the light output of SrMoO{sub 4} is 15±5%. It is suggested, therefore, that there is scope for optimisation of strontium molybdate for application as scintillator in cryogenic rare event searches.

  11. Wall temperature measurements using a thermal imaging camera with temperature-dependent emissivity corrections

    International Nuclear Information System (INIS)

    McDaid, Chloe; Zhang, Yang

    2011-01-01

    A methodology is presented whereby the relationship between temperature and emissivity for fused quartz has been used to correct the temperature values of a quartz impingement plate detected by an SC3000 thermal imaging camera. The methodology uses an iterative method using the initial temperature (obtained by assuming a constant emissivity) to find the emissivity values which are then put into the thermal imaging software and used to find the subsequent temperatures, which are used to find the emissivities, and so on until converged. This method is used for a quartz impingement plate that has been heated under various flame conditions, and the results are compared. Radiation losses from the plate are also calculated, and it is shown that even a slight change in temperature greatly affects the radiation loss. It is a general methodology that can be used for any wall material whose emissivity is a function of temperature

  12. Measured Temperature Dependence of the cos-phi Conductance in Josephson Tunnel Junctions

    DEFF Research Database (Denmark)

    Sørensen, O. H.; Mygind, Jesper; Pedersen, Niels Falsig

    1977-01-01

    The temperature dependence of the cosϕ conductance in Sn-O-Sn Josephson tunnel junctions has been measured just below the critical temperature, Tc. From the resonant microwave response at the junction plasma frequency as the temperature is decreased from Tc it is deduced that the amplitude of the...

  13. Optical power limiting and transmitting properties of cadmium iodide single crystals: Temperature dependence

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.a [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)] [Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)] [Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2009-09-14

    Optical limiting properties of the single crystals of cadmium iodide are investigated using ns laser pulses. It is found that the transmissions in the crystals increase with increasing temperature. However, they limit the transmissions at high input powers. The limiting power is found to be higher at higher temperature. From the measured transmission data, the photon absorption coefficients are estimated. The temperature dependence of the coefficients shows a decrease in magnitude with increasing temperature. This might be due to the temperature-dependent bandgap shift of the material. The results demonstrate that the cadmium iodide single crystals are promising materials for applications in optical power limiting devices.

  14. Optical power limiting and transmitting properties of cadmium iodide single crystals: Temperature dependence

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2009-01-01

    Optical limiting properties of the single crystals of cadmium iodide are investigated using ns laser pulses. It is found that the transmissions in the crystals increase with increasing temperature. However, they limit the transmissions at high input powers. The limiting power is found to be higher at higher temperature. From the measured transmission data, the photon absorption coefficients are estimated. The temperature dependence of the coefficients shows a decrease in magnitude with increasing temperature. This might be due to the temperature-dependent bandgap shift of the material. The results demonstrate that the cadmium iodide single crystals are promising materials for applications in optical power limiting devices.

  15. Analysis of microwave heating of materials with temperature-dependent properties

    International Nuclear Information System (INIS)

    Ayappa, K.G.; Davis, H.T.; Davis, E.A.; Gordon, J.

    1991-01-01

    In this paper transient temperature profiles in multilayer slabs are predicted, by simultaneously solving Maxwell's equations with the heat conduction equation, using Galerkin-finite elements. It is assumed that the medium is homogeneous and has temperature-dependent dielectric and thermal properties. The method is illustrated with applications involving the heating of food and polymers with microwaves. The temperature dependence of dielectric properties affects the heating appreciably, as is shown by comparison with a constant property model

  16. Temperature dependence of the thermoelectric coeffiicients of lithium niobate and lithium tantalate

    International Nuclear Information System (INIS)

    Khachaturyan, O.A.; Gabrielyan, A.I.; Kolesnik, S.P.

    1988-01-01

    Thermoelectric Zeebeck,Thomson, Peltier coefficients for LiNbO 3 and LiTaO 3 monocrystals and their dependence on temperature in 300-1400 K range were investigated. It is shown that Zeebeck (α) coefficient changes its sign, depending on temperature change - the higher is α, the higher is material conductivity in the corresponding temperature region. Thomson and Peltier coefficients were calculated analytically for lithium niobate and tantalate

  17. Temperature dependence of shot noise in double barrier magnetic tunnel junctions

    Science.gov (United States)

    Niu, Jiasen; Liu, Liang; Feng, J. F.; Han, X. F.; Coey, J. M. D.; Zhang, X.-G.; Wei, Jian

    2018-03-01

    Shot noise reveals spin dependent transport properties in a magnetic tunnel junction. We report measurement of shot noise in CoFeB/MgO/CoFeB/MgO/CoFeB double barrier magnetic tunnel junctions, which shows a strong temperature dependence. The Fano factor used to characterize shot noise increases with decreasing temperature. A sequential tunneling model can be used to account for these results, in which a larger Fano factor results from larger spin relaxation length at lower temperatures.

  18. Temperature-dependent mid-IR absorption spectra of gaseous hydrocarbons

    International Nuclear Information System (INIS)

    Klingbeil, Adam E.; Jeffries, Jay B.; Hanson, Ronald K.

    2007-01-01

    Quantitative mid-IR absorption spectra (2500-3400 cm -1 ) for 12 pure hydrocarbon compounds are measured at temperatures ranging from 25 to 500 deg. C using an FTIR spectrometer. The hydrocarbons studied are n-pentane, n-heptane, n-dodecane, 2,2,4-trimethyl-pentane (iso-octane), 2-methyl-butane, 2-methyl-pentane, 2,4,4-trimethyl-1-pentene, 2-methyl-2-butene, propene, toluene, m-xylene, and ethylbenzene. Room-temperature measurements of neat hydrocarbon vapor were made with an instrument resolution of both 0.1 and 1 cm -1 (FWHM) to confirm that the high-resolution setting was required only to resolve the propene absorption spectrum while the spectra of the other hydrocarbons could be resolved with 1 cm -1 resolution. High-resolution (0.1 cm -1 ), room-temperature measurements of neat hydrocarbons were made at low pressure (∼1 Torr, 133 Pa) and compared to measurements of hydrocarbon/N 2 mixtures at atmospheric pressure to verify that no pressure broadening could be observed over this pressure range. The temperature was varied between 25 and 500 o C for atmospheric-pressure measurements of hydrocarbon/N 2 mixtures (X hydrocarbon ∼0.06-1.5%) and it was found that the absorption cross section shows simple temperature-dependent behavior for a fixed wavelength over this temperature range. Comparisons with previous FTIR data over a limited temperature range and with high-resolution laser absorption data over a wide temperature range show good agreement

  19. A method to stabilize the temperature dependent performance of G-APD arrays

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Yoonsuk [Molecular Imaging Research and Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul (Korea, Republic of); Sungkyunkwan University, School of Medicine, Seoul (Korea, Republic of); Choi, Yong; Ho Jung, Jin; Jung, Jiwoong [Molecular Imaging Research and Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul (Korea, Republic of)

    2015-02-01

    This paper presents a compensation method to stabilize the temperature dependent performance of Geiger-mode Avalanche Photodiode (G-APD) arrays for Positron Emission Tomography (PET). The compensation method is used to identify the bias voltage range that provides stable performance even at different temperatures using the G-APD’s characteristics, and to control the photo-peak variation as a function of temperature using the preamplifier gain within the identified bias voltage range. A pair of G-APD detectors and temperature sensors were located in the temperature chamber and the preamplifiers which can control the gain of the detectors using the digital potentiometer were positioned outside the chamber. The performance of the G-APD detector, especially energy resolution and coincidence timing resolution, was characterized as a function of bias voltage at different temperatures from 20 °C to 40 °C at 5 °C increments; the energy resolution, coincidence timing resolution, and photo-peak position of all channels of G-APD PET detectors before and after the preamplifier gain correction were then measured and compared. The results of this study demonstrated that the optimal bias voltage range providing the good energy and coincidence timing resolution, 12.1±1.2% and 1.30±0.09 ns, respectively, could be identified at the temperature range and the photo-peak variation and the performance at different temperatures could be stabilized by adjusting the preamplifier gain within the identified bias voltage range. We concluded the proposed method to be reliable and useful for the development of the PET system using G-APD arrays.

  20. A Novel Candidate Gene for Temperature-Dependent Sex Determination in the Common Snapping Turtle

    Science.gov (United States)

    Schroeder, Anthony L.; Metzger, Kelsey J.; Miller, Alexandra; Rhen, Turk

    2016-01-01

    Temperature-dependent sex determination (TSD) was described nearly 50 years ago. Researchers have since identified many genes that display differential expression at male- vs. female-producing temperatures. Yet, it is unclear whether these genes (1) are involved in sex determination per se, (2) are downstream effectors involved in differentiation of ovaries and testes, or (3) are thermo-sensitive but unrelated to gonad development. Here we present multiple lines of evidence linking CIRBP to sex determination in the snapping turtle, Chelydra serpentina. We demonstrate significant associations between a single nucleotide polymorphism (SNP) (c63A > C) in CIRBP, transcript levels in embryonic gonads during specification of gonad fate, and sex in hatchlings from a thermal regime that produces mixed sex ratios. The A allele was induced in embryos exposed to a female-producing temperature, while expression of the C allele did not differ between female- and male-producing temperatures. In accord with this pattern of temperature-dependent, allele-specific expression, AA homozygotes were more likely to develop ovaries than AC heterozygotes, which, in turn, were more likely to develop ovaries than CC homozygotes. Multiple regression using SNPs in CIRBP and adjacent loci suggests that c63A > C may be the causal variant or closely linked to it. Differences in CIRBP allele frequencies among turtles from northern Minnesota, southern Minnesota, and Texas reflect small and large-scale latitudinal differences in TSD pattern. Finally, analysis of CIRBP protein localization reveals that CIRBP is in a position to mediate temperature effects on the developing gonads. Together, these studies strongly suggest that CIRBP is involved in determining the fate of the bipotential gonad. PMID:26936926