WorldWideScience

Sample records for temperature corrosion problems

  1. Potential high temperature corrosion problems due to co-firing of biomass and fossil fuels

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Vilhelmsen, T.; Jensen, S.A.

    2007-01-01

    Over the past years, considerable high temperature corrosion problems have been encountered when firing biomass in power plants due to the high content of potassium chloride in the deposits. Therefore to combat chloride corrosion problems co-firing of biomass with a fossil fuel has been undertaken....... This results in potassium chloride being converted to potassium sulphate in the combustion chamber and it is sulphate rich deposits that are deposited on the vulnerable metallic surfaces such as high temperature superheaters. Although this removes the problem of chloride corrosion, other corrosion mechanisms...... appear such as sulphidation and hot corrosion due to sulphate deposits. At Studstrup power plant Unit 4, based on trials with exposure times of 3000 hours using 0-20% straw co-firing with coal, the plant now runs with a fuel of 10% straw + coal. After three years exposure in this environment...

  2. Potential high temperature corrosion problems due to co-firing of biomass and fossil fuels

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Vilhelmsen, T.; Jensen, S.A.

    2008-01-01

    Over the past few years, considerable high temperature corrosion problems have been encountered when firing biomass in power plants due to the high content of potassium chloride in the deposits. Therefore, to combat chloride corrosion problems cofiring of biomass with a fossil fuel has been...... undertaken. This results in potassium chloride being converted to potassium sulphate in the combustion chamber and it is sulphate rich deposits that are deposited on the vulnerable metallic surfaces such as high temperature superheaters. Although this removes the problem of chloride corrosion, other...... corrosion mechanisms appear such as sulphidation and hot corrosion due to sulphate deposits. At Studstrup power plant Unit 4, based on trials with exposure times of 3000 h using 0–20% straw co-firing with coal, the plant now runs with a fuel mix of 10% strawþcoal. Based on results from a 3 years exposure...

  3. High Temperature Corrosion Problem of Boiler Components in presence of Sulfur and Alkali based Fuels

    Science.gov (United States)

    Ghosh, Debashis; Mitra, Swapan Kumar

    2011-04-01

    Material degradation and ageing is of particular concern for fossil fuel fired power plant components. New techniques/approaches have been explored in recent years for Residual Life assessment of aged components and material degradation due to different damage mechanism like creep, fatigue, corrosion and erosion etc. Apart from the creep, the high temperature corrosion problem in a fossil fuel fired boiler is a matter of great concern if the fuel contains sulfur, chlorine sodium, potassium and vanadium etc. This paper discusses the material degradation due to high temperature corrosion in different critical components of boiler like water wall, superheater and reheater tubes and also remedial measures to avoid the premature failure. This paper also high lights the Residual Life Assessment (RLA) methodology of the components based on high temperature fireside corrosion. of different critical components of boiler.

  4. Corrosion problems in light water nuclear reactors

    International Nuclear Information System (INIS)

    Berry, W.E.

    1984-01-01

    The corrosion problems encountered during the author's career are reviewed. Attention is given to the development of Zircaloys and attendant factors that affect corrosion; the caustic and chloride stress corrosion cracking (SCC) of austenitic stainless steel steam generator tubing; the qualification of Inconel Alloy 600 for steam generator tubing and the subsequent corrosion problem of secondary side wastage, caustic SCC, pitting, intergranular attack, denting, and primary side SCC; and SCC in weld and furnace sensitized stainless steel piping and internals in boiling water reactor primary coolants. Also mentioned are corrosion of metallic uranium alloy fuels; corrosion of aluminum and niobium candidate fuel element claddings; crevice corrosion and seizing of stainless steel journal-sleeve combinations; SCC of precipitation hardened and martensitic stainless steels; low temperature SCC of welded austenitic stainless steels by chloride, fluoride, and sulfur oxy-anions; and corrosion problems experienced by condensers

  5. High temperature corrosion of metals

    International Nuclear Information System (INIS)

    Quadakkers, W.J.; Schuster, H.; Ennis, P.J.

    1988-08-01

    This paper covers three main topics: 1. high temperature oxidation of metals and alloys, 2. corrosion in sulfur containing environments and 3. structural changes caused by corrosion. The following 21 subjects are discussed: Influence of implanted yttrium and lanthanum on the oxidation behaviour of beta-NiA1; influence of reactive elements on the adherence and protective properties of alumina scales; problems related to the application of very fine markers in studying the mechanism of thin scale formation; oxidation behaviour of chromia forming Co-Cr-Al alloys with or without reactive element additions; growth and properties of chromia-scales on high-temperature alloys; quantification of the depletion zone in high temperature alloys after oxidation in process gas; effects of HC1 and of N2 in the oxidation of Fe-20Cr; investigation under nuclear safety aspects of Zircaloy-4 oxidation kinetics at high temperatures in air; on the sulfide corrosion of metallic materials; high temperature sulfide corrosion of Mn, Nb and Nb-Si alloys; corrosion behaviour or NiCrAl-based alloys in air and air-SO2 gas mixtures; sulfidation of cobalt at high temperatures; preoxidation for sulfidation protection; fireside corrosion and application of additives in electric utility boilers; transport properties of scales with complex defect structures; observations of whiskers and pyramids during high temperature corrosion of iron in SO2; corrosion and creep of alloy 800H under simulated coal gasification conditions; microstructural changes of HK 40 cast alloy caused by exploitation in tubes in steam reformer installation; microstructural changes during exposure in corrosive environments and their effect on mechanical properties; coatings against carburization; mathematical modeling of carbon diffusion and carbide precipitation in Ni-Cr-based alloys. (MM)

  6. Erosion–corrosion and corrosion properties of DLC coated low temperature Erosion–corrosion and corrosion properties of DLC coated low temperature

    DEFF Research Database (Denmark)

    Jellesen, Morten Stendahl; Christiansen, Thomas; Hilbert, Lisbeth Rischel

    2009-01-01

    of AISI 316 as substrate for DLC coatings are investigated. Corrosion and erosion–corrosion measurements were carried out on low temperature nitrided stainless steel AISI 316 and on low temperature nitrided stainless steel AISI 316 with a top layer of DLC. The combination of DLC and low temperature...... nitriding dramatically reduces the amount of erosion–corrosion of stainless steel under impingement of particles in a corrosive medium....

  7. High Temperature Corrosion in Biomass-Fired Boilers

    DEFF Research Database (Denmark)

    Henriksen, Niels; Montgomery, Melanie; Hede Larsen, Ole

    2002-01-01

    condense on superheater components. This gives rise to specific corrosion problems not previously encountered in coal-fired power plants. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. To avoid such high corrosion rates, woodchip...... has also been utilised as a fuel. Combustion of woodchip results in a smaller amount of ash, and potassium and chlorine are present in lesser amounts. However, significant corrosion rates were still seen. A case study of a woodchip fired boiler is described. The corrosion mechanisms in both straw-fired...... and woodchip fired boilers are discussed....

  8. Aspects of high temperature corrosion of boiler tubes

    Energy Technology Data Exchange (ETDEWEB)

    Spiegel, M.; Bendick, W. [Salzgitter-Mannesmann-Forschung GmbH, Duisburg (Germany)

    2008-07-01

    The development of new boiler steels for power generation has to consider significant creep strength as well as oxidation and corrosion resistance. High temperature corrosion of boiler materials concerns steam oxidation as well as fireside corrosion of parts, in contact with the flue gas. It will be shown that depending on the quality of the fuel, especially chlorine and sulphur are responsible for most of the fireside corrosion problems. Corrosion mechanisms will be presented for flue gas induced corrosion (HCl) and deposit induced corrosion (chlorides and sulfates). Especially for the 700 C technology, deposit induced corrosion issues have to be considered and the mechanisms of corrosion by molten sulfates 'Hot Corrosion' will be explained. Finally, an overview will be given on the selection of suitable materials in order to minimise corrosion relates failures. (orig.)

  9. Metallic materials corrosion problems in molten salt reactors

    International Nuclear Information System (INIS)

    Chauvin, G.; Dixmier, J.; Jarny, P.

    1977-01-01

    The USA forecastings concerning the molten salt reactors are reviewed (mixtures of fluorides containing the fuel, operating between 560 and 700 0 C). Corrosion problems are important in these reactors. The effects of certain characteristic factors on corrosion are analyzed: humidity and metallic impurities in the salts, temperature gradients, speed of circulation of salts, tellurium from fission products, coupling. In the molten fluorides and experimental conditions, the materials with high Ni content are particularly corrosion resistant alloys (hastelloy N). The corrosion of this material is about 2.6 mg.cm -2 at 700 0 C [fr

  10. High temperature (salt melt) corrosion tests with ceramic-coated steel

    Energy Technology Data Exchange (ETDEWEB)

    Schütz, Adelheid [University Bayreuth, Metals and Alloys, Ludwig-Thoma-Str. 36b, D-95447 Bayreuth (Germany); Günthner, Martin; Motz, Günter [University Bayreuth, Ceramic Materials Engineering, L.-Thoma-Str. 36b, D-95447 Bayreuth (Germany); Greißl, Oliver [EnBW Kraftwerke AG, Schelmenwasenstraße 13-15, D-70567 Stuttgart (Germany); Glatzel, Uwe, E-mail: uwe.glatzel@uni-bayreuth.de [University Bayreuth, Metals and Alloys, Ludwig-Thoma-Str. 36b, D-95447 Bayreuth (Germany)

    2015-06-01

    Thermal recycling of refuse in waste-to-energy plants reduces the problems connected to waste disposal, and is an alternative source of electric energy. However, the combustion process in waste incinerators results in a fast degradation of the steam-carrying superheater steel tubes by corrosive attack and abrasive wear. Higher firing temperatures are used to increase their efficiency but lead to higher corrosion rates. It is more economical to apply protective coatings on the superheater steel tubes than to replace the base material. In-situ tests were conducted in a waste-to-energy plant first in order to identify and quantify all involved corrosive elements. Laboratory scale experiments with salt melts were developed accordingly. The unprotected low-alloyed steel displayed substantial local corrosion. Corrosion was predominant along the grain boundaries of α-ferrite. The corrosion rate was further increased by FeCl{sub 3} and a mixture of HCL and FeCl{sub 3}. Coatings based on pre-ceramic polymers with specific filler particles were engineered to protect superheater tubes. Tests proved their suitability to protect low-alloYed steel tubes from corrosive attack under conditions typical for superheaterS in waste incinerators, rendering higher firing temperatures in waste-to-energy plants possible. - Highlights: • Corrosion wall thickness losses of 400 μm/2 weeks occurred in a waste incinerator. • Abrasion is a major problem on superheater tubes in waste incinerators. • Laboratory salt melt tests can simulate metal corrosion in waste incinerators. • Corrosion protection coatings for steel (temperature: max. 530 °C) were developed. • Higher steam temperatures are possible in WIs with the developed coatings.

  11. Corrosion problems and its prevention in nuclear industries

    International Nuclear Information System (INIS)

    Sakae, Yukio; Susukida, Hiroshi; Kowaka, Masamichi; Fujikawa, Hisao.

    1979-01-01

    29 nuclear power plants with 2.56 million kW output are expected to be in operation by 1985 in Japan. The main problems of corrosion in the nuclear reactors in operation at present and promising for the future are as follows: corrosion, denting and stress corrosion cracking in the steam generator tubes for PWRs, stress corrosion cracking in SUS pipings for BWRs, sodium corrosion and mass transfer in FBRs, high temperature gas corrosion in HTGRs, and interaction between coolant, blanket material and structural material in nuclear fusion reactors. In LWRs, the countermeasures based on the experiences in actual plants and the results of simulation tests have attained the good results. Various monitoring systems and the techniques for in-service inspection and preservice inspection have accomplished astonishing progress. These contributed largely to establish the reliability of nuclear power plants. The cases of troubles in primary and secondary systems, the experiences of the corrosion of steam generator tubes and the countermeasures, and the denting troubles occurred in USA and the trend of countermeasures in PWRs, the cases of stress corrosion cracking in SUS 304 and 316 pipings for BWRs, and the problems of various future reactors are described. Unexpected troubles often occur in practical plants of large capacity, therefore the method of predicting tests must be established, and the monitoring of safety must be thorough. (Kako, I.)

  12. New technologies - new corrosion problems

    International Nuclear Information System (INIS)

    Heitz, E.

    1994-01-01

    Adequate resistance of materials to corrosion is equally important for classical and for new technologies. This article considers the economic consequences of corrosion damage and, in addition to the long-known GNP orientation, presents a new approach to the estimation of the costs of corrosion and corrosion protection via maintenance and especially corrosion-related maintenance. The significance of ''high-tech'', ''medium-tech'' and ''low-tech'' material and corrosion problems is assessed. Selected examples taken from new technologies in the areas of power engineering, environmental engineering, chemical engineering, and biotechnology demonstrate the great significance of the problems. It is concluded that corrosion research and corrosion prevention technology will never come to an end but will constantly face new problems. Two technologies are of particular interest since they focus attention on new methods of investigation: microelectronics and final disposal of radioactive wastes. The article closes by considering the importance of the transfer of experience and technology. Since the manufacturs and operators of machines and plant do not generally have access to the very latest knowledge, they should be kept informed through advisory services, experimental studies, databases, and further education. (orig.) [de

  13. HIGH TEMPERATURE CORROSION RESISTANCE OF METALLIC MATERIALS IN HARSH CONDITIONS

    OpenAIRE

    Novello, Frederic; Dedry, Olivier; De Noose, Vincent; Lecomte-Beckers, Jacqueline

    2014-01-01

    Highly efficient energy recovery from renewable sources and from waste incineration causes new problems of corrosion at high temperature. A similar situation exists for new recycling processes and new energy storage units. These corrosions are generally considered to be caused by ashes or molten salts, the composition of which differs considerably from one plant to another. Therefore, for the assessment of corrosion-resistance of advanced materials, it is essential to precisely evaluate the c...

  14. Materials corrosion and protection at high temperatures

    International Nuclear Information System (INIS)

    Balbaud, F.; Desgranges, Clara; Martinelli, Laure; Rouillard, Fabien; Duhamel, Cecile; Marchetti, Loic; Perrin, Stephane; Molins, Regine; Chevalier, S.; Heintz, O.; David, N.; Fiorani, J.M.; Vilasi, M.; Wouters, Y.; Galerie, A.; Mangelinck, D.; Viguier, B.; Monceau, D.; Soustelle, M.; Pijolat, M.; Favergeon, J.; Brancherie, D.; Moulin, G.; Dawi, K.; Wolski, K.; Barnier, V.; Rebillat, F.; Lavigne, O.; Brossard, J.M.; Ropital, F.; Mougin, J.

    2011-01-01

    This book was made from the lectures given in 2010 at the thematic school on 'materials corrosion and protection at high temperatures'. It gathers the contributions from scientists and engineers coming from various communities and presents a state-of-the-art of the scientific and technological developments concerning the behaviour of materials at high temperature, in aggressive environments and in various domains (aerospace, nuclear, energy valorization, and chemical industries). It supplies pedagogical tools to grasp high temperature corrosion thanks to the understanding of oxidation mechanisms. It proposes some protection solutions for materials and structures. Content: 1 - corrosion costs; macro-economical and metallurgical approach; 2 - basic concepts of thermo-chemistry; 3 - introduction to the Calphad (calculation of phase diagrams) method; 4 - use of the thermodynamic tool: application to pack-cementation; 5 - elements of crystallography and of real solids description; 6 - diffusion in solids; 7 - notions of mechanics inside crystals; 8 - high temperature corrosion: phenomena, models, simulations; 9 - pseudo-stationary regime in heterogeneous kinetics; 10 - nucleation, growth and kinetic models; 11 - test experiments in heterogeneous kinetics; 12 - mechanical aspects of metal/oxide systems; 13 - coupling phenomena in high temperature oxidation; 14 - other corrosion types; 15 - methods of oxidized surfaces analysis at micro- and nano-scales; 16 - use of SIMS in the study of high temperature corrosion of metals and alloys; 17 - oxidation of ceramics and of ceramic matrix composite materials; 18 - protective coatings against corrosion and oxidation; 19 - high temperature corrosion in the 4. generation of nuclear reactor systems; 20 - heat exchangers corrosion in municipal waste energy valorization facilities; 21 - high temperature corrosion in oil refining and petrochemistry; 22 - high temperature corrosion in new energies industry. (J.S.)

  15. High temperature corrosion in straw-fired power plants: Influence of steam/metal temperature on corrosion rates for TP347H

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Biede, O; Larsen, OH

    2002-01-01

    The corrosion in straw-fired boilers has been investigated at various straw-fired power plants in Denmark. Water/air-cooled probes, a test superheater and test sections removed from the actual superheater have been utilised to characterise corrosion and corrosion rates. This paper describes...... the corrosion rates measured for the TP347H type steel. The corrosion morphology at high temperature consists of grain boundary attack and selective attack of chromium. The corrosion rate increases with calculated metal temperature (based on steam temperature), however there is great variation within....... The difference in the results could be traced back to a lower flue gas temperature on one side of the boiler. Although metal temperature is the most important parameter with respect to corrosion rate, flue gas temperature also plays an important role. Efforts to quantify the effect of flue gas temperature...

  16. Corrosion test by low-temperature coal tar

    Energy Technology Data Exchange (ETDEWEB)

    Ando, S; Yamamoto, S

    1952-01-01

    Corrosive actions of various fractions of low-temperature coal tar against mild steel or Cr 13-steel were compared at their boiling states. Corrosions became severe when the boiling points exceeded 240/sup 0/. The acidic fractions were more corrosive. In all instances, corrosion was excessive at the beginning of immersion testing and then gradually became mild; boiling accelerated the corrosion. Cr 13-steel was corrosion-resistant to low-temperature coal-tar fractions.

  17. Deposition and high temperature corrosion in a 10 MW straw

    DEFF Research Database (Denmark)

    Michelsen, Hanne Philbert; Frandsen, Flemming; Dam-Johansen, Kim

    1998-01-01

    Deposition and corrosion measurements were conducted at a 10 MW wheat straw fired stoker boiler used for combined power and heat production. The plant experiences major problems with deposits on the heat transfer surfaces, and test probes have shown enhanced corrosion due to selective corrosion...... for metal temperatures above 520 C. Deposition measurements carried out at a position equal to the secondary superheater showed deposits rich in potassium and chlorine and to a lesser extent in silicon, calcium, and sulfur. Potassium and chlorine make up 40-80 wt% of the deposits. Mechanisms of deposit...

  18. Influence of Chloride Ion and Temperature on the Corrosion Behavior of Ni-Fe-Cr Alloy 028

    Science.gov (United States)

    Zhang, L. N.; Dong, J. X.; Szpunar, J. A.; Zhang, M. C.; Basu, R.

    Recently, the working condition of tubing systems used in oil and natural gas industries are severer than before with the increasing exploitation of acidic gas fields. The corrosion problems induced from the corrosive environment with chloride ion medium and high temperature have been much more concerned. The presence of chloride ion can accelerate the dissolution of metals. The corrosion performance is also sensitive to the operating temperature. Classic localized corrosions such as the pitting or the crevice type due to environmental temperature and chloride ion.

  19. Low temperature corrosion in bark fuelled, small boilers

    Energy Technology Data Exchange (ETDEWEB)

    Lindau, Leif; Goldschmidt, Barbara

    2008-05-15

    A number of small (3-12 MW), new biofuel boiler plants in southern Sweden, and (at least) in Austria, have suffered a high (wastage of mm/yrs) corrosion rate on the low temperature boiler side. This problem has been investigated with respect to its occurrence and its character by contacts with operators, by plant inspections, and by analysis of cold-side deposits. The plants affected have low feed water temperatures (< 100 deg C). The plants fire most types of Swedish biofuel: chips, bark, hog fuel, and 'GROT' (=twigs and tops). The results found give basis for a hypothesis that the corrosion results from the presence of an aqueous phase in the deposits, this phase being stabilized by dissolved salts having high solubility. It then follows that for each salt, there is a critical relative humidity (calculated from the flue gas water partial pressure and the cooling surface temperature as is common practice among boiler engineers) for both the presence of the aqueous phase and the corrosion. Some critical single salts, ZnCl{sub 2} and CaCl{sub 2} have been identified, and they give critical 'relative humidities' of 5% and 18% respectively. These figures are a lower bound. The corresponding figure, derived from the practical experience and the reported plant operational data, is between 20 and 30%. Corrosion tests have been carried out by exposing an air-cooled probe in the flue gases at a 12 MW boiler at Saevelundsverket in Alingsaas, and the material wastage at different temperatures has been measured with a profilometer. The high corrosion rates were reproduced in the tests for high relative humidities. The corrosion rate was small and not measurable (<0.1 mm/year) for relative humidity <22%. The work shows by means of indirect evidence that the corrosion critical components are ZnCl{sub 2} and possibly CaCl{sub 2} as well. The practical engineering design criterion derived from the work is that the relative humidity (calculated from the flue

  20. Corrosion of structural materials and electrochemistry in high temperature water of nuclear power systems

    International Nuclear Information System (INIS)

    Uchida, Shunsuke

    2014-01-01

    The latest experiences with corrosion in the cooling systems of nuclear power plants are reviewed. High temperature cooling water causes corrosion of structural materials, which often leads to adverse effects in the plants, e.g., generating defects in materials of major components and fuel claddings, increasing shutdown radiation and increasing the volume of radwaste sources. Corrosion behaviors are much affected by water qualities and differ according to the values of water qualities and the materials themselves. In order to establish reliable operation, each plant requires its own unique optimal water chemistry control based on careful consideration of its system, materials and operational history. Electrochemistry is one of key issues that determine corrosion related problems but it is not the only issue. Most phenomena for corrosion related problems, e.g., flow-accelerated corrosion (FAC), intergranular stress corrosion cracking (IGSCC), primary water stress corrosion cracking (PWSCC) and thinning of fuel cladding materials, can be understood based on an electrochemical index, e.g., electrochemical corrosion potential (ECP), conductivities and pH. The most important electrochemical index, ECP, can be measured at elevated temperature and applied to in situ sensors of corrosion conditions to detect anomalous conditions of structural materials at their very early stages. In the paper, theoretical models based on electrochemistry to estimate wall thinning rate of carbon steel piping due to flow-accelerated corrosion and corrosive conditions determining IGSCC crack initiation and growth rate are introduced. (author)

  1. High temperature corrosion of superheater materials for power production through biomass

    Energy Technology Data Exchange (ETDEWEB)

    Gotthjaelp, K.; Broendsted, P. [Forskningscenter Risoe (Denmark); Jansen, P. [FORCE Institute (Denmark); Montgomery, M.; Nielsen, K.; Maahn, E. [Technical Univ. of Denmark, Corrosion and Surface Techn. Inst. of Manufacturing Engineering (Denmark)

    1996-08-01

    The aim of the present study has been to establish a fundamental knowledge of the corrosion mechanisms acting on materials for use in biomass fired power plants. The knowledge is created based on laboratory exposures of selected materials in well-defined corrosive gas environments. The experiments using this facility includes corrosion studies of two types of high temperature resistant steels, Sanvik 8LR30 (18Cr 10Ni Ti) and Sanicro 28 (27Cr 31Ni 4Mo), investigated at 600 deg. C in time intervals up to 300 hours. The influence of HCl (200 ppm) and of SO{sub 2} (300 ppm) on the corrosion progress has been investigated. In addition the corrosion behaviour of the same materials was investigated after having been exposed under a cover of ash in air in a furnace at temperatures of 525 deg. C, 600 deg. C, and 700 deg. C. The ashes utilised are from a straw fired power plant and a synthetic ash composed of potassium chloride (KCl) and potassium sulphate (K{sub 2}SO{sub 4}). Different analysis techniques to characterise the composition of the ash coatings have been investigated in order to judge the reliability and accuracy of the SEM-EDX method. The results are considered as an important step towards a better understanding of the high temperature corrosion under the conditions found in biomass fired power plants. One of the problems to solve in a suggested subsequent project is to combine the effect of the aggressive gases (SO{sub 2} and HCl) and the active ash coatings on high temperature corrosion of materials. (EG) 20 refs.

  2. Corrosion problems in boiling water reactors and their remedies

    International Nuclear Information System (INIS)

    Rosborg, B.

    1989-01-01

    This article briefly presents current corrosion problems in boiling water reactors and their remedies. The problems are different forms of environmentally assisted cracking, and the remedies are divided into material-, environment-, and stress-related remedies. The list of problems comprises: intergranular stress corrosion cracking (IGSCC) in weld-sensitized stainless steel piping; IGSCC in cold-bent stainless steel piping; irradiation-assisted stress corrosion cracking (IASCC) in stainless alloys; IGSCC in high-strength stainless alloys. A prospective corrosion problem, as judged from literature references, and one which relates to plant life, is corrosion fatigue in pressure vessel steel, since the reactor pressure vessel is the most critical component in the BWR pressure boundary as regards plant safety. (author)

  3. Corrosion problems and solutions in oil refining and petrochemical industry

    CERN Document Server

    Groysman, Alec

    2017-01-01

    This book addresses corrosion problems and their solutions at facilities in the oil refining and petrochemical industry, including cooling water and boiler feed water units. Further, it describes and analyzes corrosion control actions, corrosion monitoring, and corrosion management. Corrosion problems are a perennial issue in the oil refining and petrochemical industry, as they lead to a deterioration of the functional properties of metallic equipment and harm the environment – both of which need to be protected for the sake of current and future generations. Accordingly, this book examines and analyzes typical and atypical corrosion failure cases and their prevention at refineries and petrochemical facilities, including problems with: pipelines, tanks, furnaces, distillation columns, absorbers, heat exchangers, and pumps. In addition, it describes naphthenic acid corrosion, stress corrosion cracking, hydrogen damages, sulfidic corrosion, microbiologically induced corrosion, erosion-corrosion, and corrosion...

  4. High temperature corrosion in gasifiers

    Directory of Open Access Journals (Sweden)

    Bakker Wate

    2004-01-01

    Full Text Available Several commercial scale coal gasification combined cycle power plants have been built and successfully operated during the last 5-10 years. Supporting research on materials of construction has been carried out for the last 20 years by EPRI and others. Emphasis was on metallic alloys for heat exchangers and other components in contact with hot corrosive gases at high temperatures. In this paper major high temperature corrosion mechanisms, materials performance in presently operating gasifiers and future research needs will be discussed.

  5. The corrosion behavior of hafnium in high-temperature-water environments

    Energy Technology Data Exchange (ETDEWEB)

    Rishel, D.M.; Smee, J.D.; Kammenzind, B.F.

    1999-10-01

    The high-temperature-water corrosion performance of hafnium is evaluated. Corrosion kinetic data are used to develop correlations that are a function of time and temperature. The evaluation is based on corrosion tests conducted in out-of-pile autoclaves and in out-of-flux locations of the Advanced Test Reactor (ATR) at temperatures ranging from 288 to 360 C. Similar to the corrosion behavior of unalloyed zirconium, the high-temperature-water corrosion response of hafnium exhibits three corrosion regimes: pretransition, posttransition, and spalling. In the pretransition regime, cubic corrosion kinetics are exhibited, whereas in the posttransition regime, linear corrosion kinetics are exhibited. Because of the scatter in the spalling regime data, it is not reasonable to use a best fit of the data to describe spalling regime corrosion. Data also show that neutron irradiation does not alter the corrosion performance of hafnium. Finally, the data illustrate that the corrosion rate of hafnium is significantly less than that of Zircaloy-2 and Zircaloy-4.

  6. Corrosion problems in PWR steam generators

    International Nuclear Information System (INIS)

    Weber, J.; Suery, P.

    1976-01-01

    Examinations on pulled steam generator tubes from the Swiss nuclear power plants Beznau I and II, together with some laboratory tests, may be summarized as follows: Corrosion problems in vertical U-tube steam generators with Alloy 600 as tube material are localized towards relatively narrow regions above the tube sheet where thermohydraulic conditions and, as a consequence thereof, chemical conditions are uncontrolled. Within these zones Alloy 600 is not sufficienthy resistent to caustic or phosphate attack (caustic stress corrosion cracking and general corrosion, resp.). The mechanisms of several corrosion phenomena are not fully understood. (orig.) [de

  7. Influence of temperature on corrosion rate and porosity of corrosion products of carbon steel in anoxic bentonite environment

    International Nuclear Information System (INIS)

    Stoulil, J.; Kaňok, J.; Kouřil, M.; Parschová, H.; Novák, P.

    2013-01-01

    Highlights: •The corrosion rate is not significantly dependent on temperature. •Corrosion products at higher temperatures have different color. •Corrosion products at higher temperatures are more compact. •The change in corrosion products nature is reversible. -- Abstract: The study focuses on the porosity of layers of corrosion products and its impact on corrosion rate of carbon steel in moist bentonite. Measurements were performed in an aggressive Czech type of bentonite – Rokle B75 at temperatures of 90 and 40 °C. Aggressiveness of B75 bentonite consists in low content of chlorides. Presence of chlorides in pore solution allows formation of more protective magnetite. The evaluation was made by electrochemical techniques (red/ox potential, open circuit potential, linear polarization resistance, impedance spectroscopy) and resistometric sensor measurements. The result imply that the higher the temperature the more compact is the layer of corrosion products that slightly decelerates corrosion rate compared to the state at 40 °C. The state of corrosion products at both temperatures is reversible

  8. Influence of temperature on corrosion rate and porosity of corrosion products of carbon steel in anoxic bentonite environment

    Energy Technology Data Exchange (ETDEWEB)

    Stoulil, J., E-mail: jan.stoulil@vscht.cz [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague (Czech Republic); Kaňok, J.; Kouřil, M. [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague (Czech Republic); Parschová, H. [Department of Power Engineering, Institute of Chemical Technology, Prague (Czech Republic); Novák, P. [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague (Czech Republic)

    2013-11-15

    Highlights: •The corrosion rate is not significantly dependent on temperature. •Corrosion products at higher temperatures have different color. •Corrosion products at higher temperatures are more compact. •The change in corrosion products nature is reversible. -- Abstract: The study focuses on the porosity of layers of corrosion products and its impact on corrosion rate of carbon steel in moist bentonite. Measurements were performed in an aggressive Czech type of bentonite – Rokle B75 at temperatures of 90 and 40 °C. Aggressiveness of B75 bentonite consists in low content of chlorides. Presence of chlorides in pore solution allows formation of more protective magnetite. The evaluation was made by electrochemical techniques (red/ox potential, open circuit potential, linear polarization resistance, impedance spectroscopy) and resistometric sensor measurements. The result imply that the higher the temperature the more compact is the layer of corrosion products that slightly decelerates corrosion rate compared to the state at 40 °C. The state of corrosion products at both temperatures is reversible.

  9. Corrosion of structural materials and electrochemistry in high temperature water of nuclear power systems

    International Nuclear Information System (INIS)

    Uchida, Shunsuke

    2008-01-01

    The latest experiences with corrosion in the cooling systems of nuclear power plants are reviewed. High temperature cooling water causes corrosion of structural materials, which often leads to adverse effects in the plants, e.g., increased shutdown radiation, generation of defects in materials of major components and fuel claddings, and increased volume of radwaste sources. Corrosion behavior is greatly affected by water quality and differs according to the water quality values and the materials themselves. In order to establish reliable operation, each plant requires its own unique optimal water chemistry control based on careful consideration of its system, materials and operational history. Electrochemistry is one of the key issues that determine corrosion-related problems, but it is not the only issue. Most corrosion-related phenomena, e.g., flow accelerated corrosion (FAC), intergranular stress corrosion cracking (IGSCC), primary water stress corrosion cracking (PWSCC) and thinning of fuel cladding materials, can be understood based on an electrochemical index, e.g., the electrochemical corrosion potential (ECP), conductivities and pH. The most important electrochemical index, the ECP, can be measured at elevated temperature and applied to in situ sensors of corrosion conditions to detect anomalous conditions of structural materials at their very early stages. (orig.)

  10. Corrosion problems of PWR steam generators

    International Nuclear Information System (INIS)

    Urbancik, L.; Kostal, M.

    Literature data are assessed on corrosion failures of steam generator tubes made of INCONEL 600 or INCOLOY 800. It was found that both alloys with high nickel content showed good stability in a corrosion environment while being sensitive to carbide formation on grain boundaries. The gradual depletion of chromium results from the material and corrosion resistance deteriorates. INCOLOY 800 whose chromium carbide precipitation on grain boundaries in pure water and steam is negligible up to 75O degC and which is not subject to corrosion attacks in the above media and in an oxidizing environment at a temperature to about 700 degC shows the best corrosion resistance. Its favourable properties were tested in long-term operation in the Peach Bottom 1 nuclear power plant where no failures due to corrosion of this material have been recorded since 1967. In view of oxygenic-acid surface corrosion, it is necessary to work in a neutral or slightly basic environment should any one of the two alloys be used for steam generator construction. The results are summed up of an analysis conducted for the Beznau I NOK reactor. Water treatment with ash-free amines can be used as prevention against chemical corrosion mechanisms, although the treatment itself does not ensure corrosion resistance of steam generator key components. (J.B.)

  11. ASSET, An Information System for Alloy Corrosion in High Temperature Gases

    International Nuclear Information System (INIS)

    R. C. John; A. D. Pelton; A. L. Young; W. T. Thompson; I. G. Wright

    2001-01-01

    A large database for corrosion data and a corrosion prediction information system for metals and alloys corroding in high-temperature gases have been created. Corrosion data for about 75 commercial alloys, 4600 corrosion data measurements, and six million exposure hours have been compiled into an information system, ASSET. ASSET allows prediction of sound metal thickness losses for metals and alloys corroding by several common corrosion mechanisms at high-temperatures as functions of gas composition, temperature, time, and alloy. This paper presents examples of predicted metal losses of alloys corroding in standard conditions for several corrosion mechanisms expected in high-temperature gases. ASSET also provides a comprehensive capability to analyze the thermochemical interactions between alloys, corrosion products and exposure conditions. Some of the uses of the data compilation and the corrosion prediction feature are illustrated for oxidizing, sulfidizing, sulfidizing/oxidizing , and carburizing conditions

  12. Some problems on the aqueous corrosion of structural materials in nuclear engineering; Problemes de corrosion aqueuse de materiaux de structure dans les constructions nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Coriou, H; Grall, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The purpose of this report is to give a comprehensive view of some aqueous corrosion studies which have been carried out with various materials for utilization either in nuclear reactors or in irradiated fuel treatment plants. The various subjects are listed below. Austenitic Fe-Ni-Cr alloys: the behaviour of austenitic Fe-Ni-Cr alloys in nitric medium and in the presence of hexavalent chromium; the stress corrosion of austenitic alloys in alkaline media at high temperatures; the stress corrosion of austenitic Fe-Ni-Cr alloys in 650 C steam. Ferritic steels: corrosion of low alloy steels in water at 25 and 360 C; zirconium alloys; the behaviour of ultrapure zirconium in water and steam at high temperature. (authors) [French] On presente un ensemble d'etudes de corrosion en milieu aqueux effectuees sur des materiaux utilises, soit dans la construction des reacteurs soit pour la realisation des usines de traitement des combustibles irradies. Les differents sujets etudies sont les suivants. Les alliages austenitiques Fer-Nickel-Chrome: comportement d'alliages austenitiques fer-nickel-chrome en milieu nitrique en presence de chrome hexavalent; Corrosion sous contrainte d'alliages austenitiques dans les milieux alcalins a haute temperature; Corrosion sous contrainte dans la vapeur a 650 C d'alliages austenitiques fer-nickel-chrome. Les aciers ferritiques; Corrosion d'aciers faiblement allies dans l'eau a 25 et 360 C; le zirconium et ses alliages; Comportement du zirconium tres pur dans l'eau et la vapeur a haute temperature. (auteurs)

  13. Molten salt: Corrosion problems and electrometallurgy in nuclear applications

    International Nuclear Information System (INIS)

    Santarini, G.

    1981-01-01

    A bibliographic survey is given of corrosion problems and electrometallurgical problems of molten salt in nuclear reactor applications. Due to the high potential to be achieved, their high ionic conductivity and the rapidity of reactions in a molten salt atmosphere, molten salts are interesting solvents for various electrometallurgical processes. Another important field of application is in the separation or electrolytical refining of various metals (Be, U, Pu, Th, Hf, Zr). However, these very characteristics of molten salts may also cause serious corrosion problems. Results obtained for the molten-salt reactor and the different causes of corrosion are reviewed an possible countermeasures analyzed. (orig.)

  14. Double shell slurry low-temperature corrosion tests

    International Nuclear Information System (INIS)

    Divine, J.R.; Bowen, W.M.; McPartland, S.A.; Elmore, R.P.; Engel, D.W.

    1983-09-01

    A series of year-long tests have been completed on potential double shell slurry (DSS) compositions at temperatures up to 100 0 C. These tests have sought data on uniform corrosion, pitting, and stress-corrosion cracking. No indication of the latter two types of corrosion were observed within the test matrix. Corrosion rates after four months were generally below the 1 mpy (25 μm/y) design limit. By the end of twelve months all results were below this limit and, except for very concentrated mixtures, all were below 0.5 mpy. Prediction equations were generated from a model fitted to the data. The equations provide a rapid means of estimating the corrosion rate for proposed DSS compositions

  15. High temperature corrosion of advanced ceramic materials for hot gas filters. Topical report for part 1 of high temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Spear, K.E.; Crossland, C.E.; Shelleman, D.L.; Tressler, R.E. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering

    1997-12-11

    This program consists of two separate research areas. Part 1, for which this report is written, studied the high temperature corrosion of advanced ceramic hot gas filters, while Part 2 studied the long-term durability of ceramic heat exchangers to coal combustion environments. The objectives of Part 1 were to select two candidate ceramic filter materials for flow-through hot corrosion studies and subsequent corrosion and mechanical properties characterization. In addition, a thermodynamic database was developed so that thermochemical modeling studies could be performed to simulate operating conditions of laboratory reactors and existing coal combustion power plants, and to predict the reactions of new filter materials with coal combustion environments. The latter would make it possible to gain insight into problems that could develop during actual operation of filters in coal combustion power plants so that potential problems could be addressed before they arise.

  16. Evaluation of corrosion inhibitors for high temperature decontamination applications

    International Nuclear Information System (INIS)

    Sathyaseelan, V.S.; Rufus, A.L.; Velmurugan, S.

    2015-01-01

    Normally, chemical decontamination of coolant systems of nuclear power reactors is carried out at temperatures less than 90 °C. At these temperatures, though magnetite dissolves effectively, the rate of dissolution of chromium and nickel containing oxides formed over stainless steel and other non-carbon steel coolant system surfaces is not that appreciable. A high temperature dissolution process using 5 mM NTA at 160 °C developed earlier by us was very effective in dissolving the oxides such as ferrites and chromites. However, the corrosion of structural materials such as carbon steel (CS) and stainless steel (SS) also increased beyond the acceptable limits at elevated temperatures. Hence, the control of base metal corrosion during the high temperature decontamination process is very important. In view of this, it was felt essential to investigate and develop a suitable inhibitor to reduce the corrosion that can take place on coolant structural material surfaces during the high temperature decontamination applications with weak organic acids. Three commercial inhibitors viz., Philmplus 5K655, Prosel PC 2116 and Ferroqest were evaluated at ambient and at 160 °C temperature in NTA formulation. Preliminary evaluation of these corrosion inhibitors carried out using electrochemical techniques showed maximum corrosion inhibition efficiency for Philmplus. Hence, it was used for high temperature applications. A concentration of 500 ppm was found to be optimum at 160 °C and at this concentration it showed an inhibition efficiency of 62% for CS. High temperature dissolution of oxides such as Fe 3 O 4 and NiFe 2 O 4 , which are relevant to nuclear reactors, was also carried out and the rate of dissolution observed was less in the presence of Philmplus. Studies were also carried out to evaluate hydrazine as a corrosion inhibitor for high temperature applications. The results revealed that for CS inhibition efficiency of hydrazine is comparable to that of Philmplus, while

  17. Corrosion of metallic materials by uranium hexafluoride at high temperatures (1963); Corrosion de materiaux metalliques par l'hexafluorure d'uranium a haute temperature (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Langlois, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    The corrosion of the following metals or alloys by UF{sub 6}: nickel, monel, Inconel, gold, platinum, stainless steel, is studied in the temperature range from 300 to 1000 deg. C. The test method, designed to avoid heating the apparatus containing the corrosive fluid to a high temperature, consists in using threadlike samples heated by the Joule effect, the rest of the apparatus being maintained close to room temperature. This technique makes it possible also to determine continuously the penetration of the corrosion by measuring the electrical resistance of the sample with a double Thomson bridge. A series of rapid comparison tests shows that stainless steel, precious metals and Inconel are attacked far too rapidly to be used above 500 deg. C; only monel and especially nickel appear capable of resisting at high temperatures. The detailed examination of the behaviour of nickel shows that the metallic fluoride is volatilized and that this influences the corrosion rate. It shows also the existence of a temperature zone situated between 550 and 700 deg. C in which occurs A strong intergranular corrosion the cause of which appears to be the presence of impurities in the metal. (author) [French] La corrosion par l'UF{sub 6} des metaux ou alliages suivants: lickel, monel, inconel, or, platine, acier inoxydable, est etudiee dans le un domaine de temperature compris entre 300 et 1000 deg. C. La methode d'essai, destinee a eviter le chauffage de l'enceinte contenant le fluide corrosif a temperature elevee, consiste a utiliser des eprouvettes filiformes, echauffees par effet Joule, le reste de l'appareillage etant maintenu a une temperature proche de l'ambiance. Cette technique permet en outre de determiner en continu la penetration de la corrosion, par mesure de la resistance electrique de l'eprouvette, au moyen d'un pont double de Thomson. Une serie d'essais comparatifs, assez sommaires, montre que l'acier inoxydable, les metaux precieux et l'inconel sont attaques beaucoup

  18. Topical problems of corrosion research for nuclear power purposes

    International Nuclear Information System (INIS)

    Eremias, B.

    1978-01-01

    Currently, research is focused on stress corrosion, intergranular corrosion, corrosion in water and steam, hydrogen-induced corrosion and corrosion in liquid sodium. The effort to limit stress corrosion resulted in the application of high nickel content austenitic steels. In these steels, the susceptibility to stress corrosion is mainly affected by previous heat treatment and the presence of chloride ions. Attention is also paid to medium and high-alloy chromium steels and susceptibility is studied to intergranular corrosion and stress corrosion. Of low-alloy steels the 21/4Cr-1Mo type steels stabilized with Nb or nonstabilized are studied with respect to decarburization kinetics and changes in mechanical properties in the presence of hydrogen. Of nonferrous metals zirconium alloys are studied used as cladding materials for fuel elements, mainly Zircaloy 2 and 4, with regard to their resistance to high-temperature oxidation, high-pressure steam action, etc. (J.F.)

  19. High temperature cyclic oxidation and hot corrosion behaviours of ...

    Indian Academy of Sciences (India)

    Administrator

    eutectic reaction below 600°C. When the temperature ... blades, consequently corrosion rate rapidly increases due ... the corrosion run. ... Figure 1. Surface macrographs of superalloys subjected to hot corrosion and oxidation .... show the oxide scales of three different chemical compo- .... Li J and Wahi R P 1995 Acta Metall.

  20. Low temperature corrosion in bark fuelled, small boilers; Laagtemperaturkorrosion i barkeldade, mindre pannor

    Energy Technology Data Exchange (ETDEWEB)

    Lindau, Leif; Goldschmidt, Barbara [Sycon Energikonsult AB, Malmoe (Sweden)

    2002-04-01

    A number of small (3-12 MW), new biofuel boiler plants in South Sweden, and (at least) in Austria, have suffered a high (wastage of mm/yrs.) corrosion rate on the low temperature boiler side. This problem has been investigated with respect to its occurrence and its character by contacts with operators, by plant inspections, and by analysis of cold side deposits. The plants affected have low feed water temperatures (< 100 deg C ). The plants fire most types of Swedish biofuel: chips, bark, hog fuel, and 'GROT'(=twigs and tops). The results found give basis for a hypothesis that the corrosion results from the presence of an aqueous phase in the deposits, this phase being stabilized by dissolved salts having high solubility. It then follows that for each salt, there is a critical relative humidity (calculated from the flue gas water partial pressure and the cooling surface temperature as is common practice among boiler engineers) for both the presence of the aqueous phase and the corrosion. Some critical single salts, ZnC12 and CaC12 have been identified, and they give critical 'relative humidities' of 5% and 18% respectively. These figures are a lower bound. The corresponding figure, derived from the practical experience and the reported plant operational data, is between 20 and 30%. Corrosion tests have been carried out by exposing an air-cooled probe in the fluegases at a 12 MW boiler at Saevelundsverket in Alingsaas, and the material wastage at different temperatures has been measured with a profilometer. The high corrosion rates were reproduced in the tests for high relative humidities. The corrosion rate was small and not measurable (<0.1 mm/yr) for relative humidity < 22%. The work shows by means of indirect evidence that the corrosion critical components are ZnCl{sub 2} and possibly CaCl{sub 2} as well. The practical engineering design criterion derived from the work is that the relative humidity (calculated from the flue gas water partial

  1. Corrosion problems of materials for mechanical, power and chemical engineering

    International Nuclear Information System (INIS)

    Bouska, P.; Cihal, V.; Malik, K.; Vyklicky, M.; Stefec, R.

    1988-01-01

    The proceedings contain 47 contributions, out of which 8 have been inputted in INIS. These are concerned with various corrosion problems of WWER primary circuit components and their testing. The factors affecting the corrosion resistance are analyzed, the simultaneous corrosion action of decontamination of steels is assessed, and the corrosion cracking of special steels is dealt with. The effects of deformation on the corrosion characteristics are examined for steel to be used in fast reactors. The corrosion potentials were measured for various steels. A testing facility for corrosion-mechanical tests is briefly described. (M.D.). 5 figs., 5 tabs., 25 refs

  2. Electrochemical corrosion potential and noise measurement in high temperature water

    International Nuclear Information System (INIS)

    Fong, Clinton; Chen, Yaw-Ming; Chu, Fang; Huang, Chia-Shen

    2000-01-01

    Hydrogen water chemistry (HWC) is one of the most important methods in boiling water reactor(BWR) system to mitigate and prevent stress corrosion cracking (SCC) problems of stainless steel components. Currently, the effectiveness of HWC in each BWR is mainly evaluated by the measurement of electrochemical corrosion potentials (ECP) and on-line monitoring of SCC behaviors of stainless steels. The objective of this work was to evaluate the characteristics and performance of commercially available high temperature reference electrodes. In addition, SCC monitoring technique based on electrochemical noise analysis (ECN) was also tested to examine its crack detection capability. The experimental work on electrochemical corrosion potential (ECP) measurements reveals that high temperature external Ag/AgCl reference electrode of highly dilute KCl electrolyte can adequately function in both NWC and HWC environments. The high dilution external Ag/AgCl electrode can work in conjunction with internal Ag/AgCl reference electrode, and Pt electrode to ensure the ECP measurement reliability. In simulated BWR environment, the electrochemical noise tests of SCC were carried out with both actively and passively loaded specimens of type 304 stainless steel with various electrode arrangements. From the coupling current and corrosion potential behaviors of the passive loading tests during immersion test, it is difficult to interpret the general state of stress corrosion cracking based on the analytical results of overall current and potential variations, local pulse patterns, statistical characteristics, or power spectral density of electrochemical noise signals. However, more positive SCC indication was observed in the power spectral density analysis. For aqueous environments of high solution impedance, successful application of electrochemical noise technique for SCC monitoring may require further improvement in specimen designs and analytical methods to enhance detection sensitivity

  3. Thermal Spray Coatings for High-Temperature Corrosion Protection in Biomass Co-Fired Boilers

    Science.gov (United States)

    Oksa, M.; Metsäjoki, J.; Kärki, J.

    2015-01-01

    There are over 1000 biomass boilers and about 500 plants using waste as fuel in Europe, and the numbers are increasing. Many of them encounter serious problems with high-temperature corrosion due to detrimental elements such as chlorides, alkali metals, and heavy metals. By HVOF spraying, it is possible to produce very dense and well-adhered coatings, which can be applied for corrosion protection of heat exchanger surfaces in biomass and waste-to-energy power plant boilers. Four HVOF coatings and one arc sprayed coating were exposed to actual biomass co-fired boiler conditions in superheater area with a probe measurement installation for 5900 h at 550 and 750 °C. The coating materials were Ni-Cr, IN625, Fe-Cr-W-Nb-Mo, and Ni-Cr-Ti. CJS and DJ Hybrid spray guns were used for HVOF spraying to compare the corrosion resistance of Ni-Cr coating structures. Reference materials were ferritic steel T92 and nickel super alloy A263. The circulating fluidized bed boiler burnt a mixture of wood, peat and coal. The coatings showed excellent corrosion resistance at 550 °C compared to the ferritic steel. At higher temperature, NiCr sprayed with CJS had the best corrosion resistance. IN625 was consumed almost completely during the exposure at 750 °C.

  4. General corrosion of carbon steels in high temperature water

    International Nuclear Information System (INIS)

    Gras, J.M.

    1994-04-01

    This short paper seeks to provide a summary of the main knowledge about the general corrosion of carbon steels in high temperature water. In pure water or slightly alkaline deaerated water, steels develop a protective coating of magnetite in a double layer (Potter and Mann oxide) or a single layer (Bloom oxide). The morphology of the oxide layer and the kinetics of corrosion depend on the test parameters controlling the solubility of iron. The parameters exercising the greatest influence are partial hydrogen pressure and mass transfer: hydrogen favours the solubilization of the magnetite; the entrainment of the dissolved iron prevents a redeposition of magnetite on the surface of the steel. Cubic or parabolic in static conditions, the kinetics of corrosion tends to be linear in dynamic conditions. In dynamic operation, corrosion is at least one order of magnitude lower in water with a pH of 10 than in pure water with a pH of 7. The activation energy of corrosion is 130 kJ/mol (31 kcal/mol). This results in the doubling of corrosion at around 300 deg C for a temperature increase of 15 deg C. Present in small quantities (100-200 ppb), oxygen decreases general corrosion but increases the risk of pitting corrosion - even for a low chloride content - and stress corrosion cracking or corrosion-fatigue. The steel composition has probably an influence on the kinetics of corrosion in dynamic conditions; further work would be required to clarify the effect of some residual elements. (author). 31 refs., 9 figs., 2 tabs

  5. High temperature corrosion investigations at AW2-bio. Final report; Biomass boiler

    Energy Technology Data Exchange (ETDEWEB)

    Borg, U.

    2011-01-15

    The measured corrosion rates in the test superheaters and ordinary superheaters of Avedoere 2 biomass boiler reveal that the corrosion rate increases with metal temperature and is significantly accelerated above steam temperatures of 540 deg. C. For the boiler with a live steam temperature of 540 deg. C, the measured corrosion rates in superheater 2 and 3 were up to 1mm pr. 10000 hours. It was observed that the flue gas temperature and heat flux had a significant effect on the corrosion rates through the surface metal temperature. Thus, the highest corrosion rates in the ordinary superheaters were not found at the position of the highest steam temperature in the outlet of superheater 3, but at the outlet of superheater 2. A steam temperature of approximately 580 deg. C at the outlet of one of the test superheater loops caused a tube fracture after a few months. A HVOF coating was applied to a section of superheater 2 and at a higher temperature in the test superheater loop. Analyses of the tube section after exposure showed that parts of the coating were not present and corrosion of the underlying TP347H FG was apparent. This indicates that the coating had spalled during operation. Furthermore, chlorine diffusion through the coating was observed causing attack at the coating-alloy interface. The project work has shown that it is not possible to increase the live steam temperature of the biomass fired boiler to more than 540 deg. C without a significant increase in superheater corrosion rates for the applied tube materials and coatings. (Author)

  6. Corrosion of metallic materials by uranium hexafluoride at high temperatures (1963); Corrosion de materiaux metalliques par l'hexafluorure d'uranium a haute temperature (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Langlois, G. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    The corrosion of the following metals or alloys by UF{sub 6}: nickel, monel, Inconel, gold, platinum, stainless steel, is studied in the temperature range from 300 to 1000 deg. C. The test method, designed to avoid heating the apparatus containing the corrosive fluid to a high temperature, consists in using threadlike samples heated by the Joule effect, the rest of the apparatus being maintained close to room temperature. This technique makes it possible also to determine continuously the penetration of the corrosion by measuring the electrical resistance of the sample with a double Thomson bridge. A series of rapid comparison tests shows that stainless steel, precious metals and Inconel are attacked far too rapidly to be used above 500 deg. C; only monel and especially nickel appear capable of resisting at high temperatures. The detailed examination of the behaviour of nickel shows that the metallic fluoride is volatilized and that this influences the corrosion rate. It shows also the existence of a temperature zone situated between 550 and 700 deg. C in which occurs A strong intergranular corrosion the cause of which appears to be the presence of impurities in the metal. (author) [French] La corrosion par l'UF{sub 6} des metaux ou alliages suivants: lickel, monel, inconel, or, platine, acier inoxydable, est etudiee dans le un domaine de temperature compris entre 300 et 1000 deg. C. La methode d'essai, destinee a eviter le chauffage de l'enceinte contenant le fluide corrosif a temperature elevee, consiste a utiliser des eprouvettes filiformes, echauffees par effet Joule, le reste de l'appareillage etant maintenu a une temperature proche de l'ambiance. Cette technique permet en outre de determiner en continu la penetration de la corrosion, par mesure de la resistance electrique de l'eprouvette, au moyen d'un pont double de Thomson. Une serie d'essais comparatifs, assez sommaires, montre que l'acier inoxydable, les metaux

  7. Corrosion behaviour of construction materials for high temperature steam electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Christensen, Erik

    2011-01-01

    temperature proton exchange membrane (PEM) steam electrolysers. Steady-state voltammetry was used in combination with scanning electron microscopy and energy-dispersive X-ray spectroscopy to evaluate the stability of the mentioned materials. It was found that stainless steels were the least resistant...... to corrosion under strong anodic polarisation. Among alloys, Ni-based showed the highest corrosion resistance in the simulated PEM electrolyser medium. In particular, Inconel 625 was the most promising among the tested corrosion-resistant alloys for the anodic compartment in high temperature steam electrolysis...

  8. Corrosion of metallic materials by uranium hexafluoride at high temperatures (1963)

    International Nuclear Information System (INIS)

    Langlois, G.

    1963-01-01

    The corrosion of the following metals or alloys by UF 6 : nickel, monel, Inconel, gold, platinum, stainless steel, is studied in the temperature range from 300 to 1000 deg. C. The test method, designed to avoid heating the apparatus containing the corrosive fluid to a high temperature, consists in using threadlike samples heated by the Joule effect, the rest of the apparatus being maintained close to room temperature. This technique makes it possible also to determine continuously the penetration of the corrosion by measuring the electrical resistance of the sample with a double Thomson bridge. A series of rapid comparison tests shows that stainless steel, precious metals and Inconel are attacked far too rapidly to be used above 500 deg. C; only monel and especially nickel appear capable of resisting at high temperatures. The detailed examination of the behaviour of nickel shows that the metallic fluoride is volatilized and that this influences the corrosion rate. It shows also the existence of a temperature zone situated between 550 and 700 deg. C in which occurs A strong intergranular corrosion the cause of which appears to be the presence of impurities in the metal. (author) [fr

  9. Corrosion of High Chromium Ferritic/Martensitic Steels in High Temperature Water. a Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, P.; Lapena, J.; Blazquez, F. [Ciemat, Madrid (Spain)

    2000-07-01

    Available literature concerning corrosion of high-chromium ferritic/martensitic steels in high temperature water has been reviewed. The subjects considered are general corrosion, effect of irradiation on corrosion, stress corrosion cracking (SCC) and irradiation-assisted stress corrosion cracking (IASCC). In addition some investigations about radiation induced segregation (RIS) are shown in order to know the compositional changes at grain boundaries of these alloys and their influence on corrosion properties. The data on general corrosion indicate moderate corrosion rates in high temperature water up to 350 degree centigree. Considerably larger corrosion rates were observed under neutron irradiation. The works concerning to the behaviour of these alloys to stress corrosion cracking seem to conclude that in these materials is necessary to optimize the temper temperature and to carry out the post-weld heat treatments properly in order to avoid stress corrosion cracking. (Author) 40 refs.

  10. Corrosion of High Chromium Ferritic/Martensitic Steels in High Temperature Water. a Literature Review

    International Nuclear Information System (INIS)

    Fernandez, P.; Lapena, J.; Blazquez, F.

    2000-01-01

    Available literature concerning corrosion of high-chromium ferritic/martensitic steels in high temperature water has been reviewed. The subjects considered are general corrosion, effect of irradiation on corrosion, stress corrosion cracking (SCC) and irradiation-assisted stress corrosion cracking (IASCC). In addition some investigations about radiation induced segregation (RIS) are shown in order to know the compositional changes at grain boundaries of these alloys and their influence on corrosion properties. The data on general corrosion indicate moderate corrosion rates in high temperature water up to 350 degree centigrade. Considerably larger corrosion rates were observed under neutron irradiation. The works concerning to the behaviour of these alloys to stress corrosion cracking seem to conclude that in these materials is necessary to optimize the temper temperature and to carry out the post-weld heat treatments properly in order to avoid stress corrosion cracking. (Author) 40 refs

  11. Corrosion behaviour of construction materials for high temperature water electrolysers

    Energy Technology Data Exchange (ETDEWEB)

    Nikiforov, A.; Petruchina, I.; Christensen, E.; Bjerrum, N.J.; Tomas-Garcya, A.L. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Chemistry, Materials Science Group

    2010-07-01

    This presentation reported on a study in which the feasibility of using different corrosion resistant stainless steels as a possible metallic bipolar plate and construction material was evaluated in terms of corrosion resistance under conditions corresponding to the conditions in high temperature proton exchange membrane (PEM) water electrolysers (HTPEMWE). PEM water electrolysis technology has been touted as an effective alternative to more conventional alkaline water electrolysis. Although the energy efficiency of this technology can be increased considerably at temperatures above 100 degrees C, this increases the demands to all the used materials with respect to corrosion stability and thermal stability. In this study, Ni-based alloys as well as titanium and tantalum samples were exposed to anodic polarization in 85 per cent phosphoric acid electrolyte solution. Tests were performed at 80 and 120 degrees C to determine the dependence of corrosion speed and working temperature. Platinum and gold plates were also tested for a comparative evaluation. Steady-state voltammetry was used along with scanning electron microscopy and energy-dispersive X-ray spectroscopy. Titanium showed the poorest corrosion resistance, while Ni-based alloys showed the highest corrosion resistance, with Inconel R 625 being the most promising alloy for the bipolar plate of an HTPEMWE. 3 refs., 1 tab., 2 figs.

  12. Effect of temperature on corrosion of steels in high purity water

    International Nuclear Information System (INIS)

    Honda, Takashi; Kashimura, Eiji; Ohashi, Kenya; Furutani, Yasumasa; Ohsumi, Katsumi; Aizawa, Motohiro; Matsubayashi, Hideo.

    1987-01-01

    Effect of temperature on corrosion behavior of steels was evaluated in the range of 150 - 300 deg C in high purity water containing about 200 ppb oxygen. The exposure tests were carried out in actual and simulated reactor water of BWR plants. Through X-ray diffractometry, SIMS, XPS and chemical analyses, it was clarified that the chemical composition and morphology of oxide films formed on austenitic stainless steel changed above about 250 deg C. Chromium dissolved easily through corrosion above this temperature, and the oxide films primarily consisted of spinel type oxides containing high concentration of nickel. Further, as the protectivety of oxide films increased with temperature, the corrosion rate had a peak around 250 deg C after a long exposure period. A major phase of oxide films on carbon steel was magnetite in the whole temperature range. However, as the oxide films formed at high temperatures had very compact structures, the effect of temperature on the corrosion rate was similar to that observed on stainless steel. (author)

  13. High temperature corrosion during biomass firing: improved understanding by depth resolved characterisation of corrosion products

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2015-01-01

    changes within the near surface region (covering both the deposit and the steel surface). Such cross-section analysis was further complemented by plan view investigations (additionally involving X-ray diffraction) combined with removal of the corrosion products. Improved insights into the nature......The high temperature corrosion of an austenitic stainless steel (TP 347H FG), widely utilised as a superheater tube material in Danish power stations, was investigated to verify the corrosion mechanisms related to biomass firing. KCl coated samples were exposed isothermally to 560 degrees C...... of the corrosion products as a function of distance from the deposit surface were revealed through this comprehensive characterisation. Corrosion attack during simulated straw-firing conditions was observed to occur through both active oxidation and sulphidation mechanisms....

  14. Corrosion of silicon nitride in high temperature alkaline solutions

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Liyan, E-mail: liyan.qiu@cnl.ca; Guzonas, Dave A.; Qian, Jing

    2016-08-01

    The corrosion of silicon nitride (Si{sub 3}N{sub 4}) in alkaline solutions was studied at temperatures from 60 to 300 °C. Si{sub 3}N{sub 4} experienced significant corrosion above 100 °C. The release rates of silicon and nitrogen follow zero order reaction kinetics and increase with increasing temperature. The molar ratio of dissolved silicon and nitrogen species in the high temperature solutions is the same as that in the solid phase (congruent dissolution). The activation energy for silicon and nitrogen release rates is 75 kJ/mol which agrees well with that of silica dissolution. At 300 °C, the release of aluminum is observed and follows first order reaction kinetics while other minor constituents including Ti and Y are highly enriched on the corrosion films due to the low solubility of their oxides.

  15. High temperature corrosion in biomass- and waste fired boilers. A status report; Kunskapslaeget betraeffande hoegtemperaturkorrosion i aangpannor foer biobraensle och avfall

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, P; Ifwer, K; Staalenheim, A; Montgomery, M; Hoegberg, J; Hjoernhede, A

    2006-12-15

    Many biomass- or waste-fired plants have problems with high temperature corrosion on the furnace walls or at the superheaters, especially if the steam temperature is greater than 500 deg C. An increase in the combustion of waste fuels means that an increasing number of boilers have had problems. Therefore, there is great interest from plant owners to reduce the costs associated with high temperature corrosion. At the same time there exists a considerable driving force towards improving the electrical efficiency of a plant by the use of more advanced steam data. The purpose of the work presented here was to answer three main questions: What can be done to reduce high temperature corrosion with current fuel blends and steam temperatures? How can more waste fuels be burnt without an increased risk for corrosion? What needs to be done to reach higher steam temperatures in the future? The level of knowledge of high temperature corrosion in biomass- and waste-fired boilers has been described and summarised. The following measures are recommended to reduce corrosion in existing plant: Make sure that the fuel is well mixed and improve fuel feeding to obtain a more even spread of the fuel over the cross-section of the boiler. Use combustion technology methods to stabilize the oxygen content of the flue gases near the membrane walls and other heat transfer surfaces. Experiment with additives and/or supplementary fuels which contain sulphur in some form, for example peat. Reduce the flue gas temperature at the superheaters. Review soot-blowing procedures or protect heat transfer surfaces from soot blowers. Evaluate coated membrane wall panels in parts of the furnace that experience the worst corrosion. Test more highly alloyed steels suitable for superheaters and when replacing a superheater change to a more highly alloyed steel. For the future, the following should be considered: The role of sulphur needs to be investigated more and other additives should be investigated

  16. Corrosion of titanium alloys in high temperature near anaerobic seawater

    International Nuclear Information System (INIS)

    Pang, Jianjun; Blackwood, Daniel J.

    2016-01-01

    Highlights: • In absence of CO 2 Ti grades 2 and 5 suffer crevice corrosion at temperatures 80 °C and 200 °C. • For Ti grade 5 crevice corrosion can occur as low as 80 °C in the presence of CO 2 . • Ti grade 7 is immune to crevice corrosion in test conditions. • All grades resistant to SCC and pitting in presence of CO 2 . • Rare earth yttrium additions below 0.2 wt%. for improved mechanical properties are detrimental to corrosions performance. • Analysis of threat of hydrogen induced cracking suggest this is not a threat at a deepsea well head. - Abstract: Grades 2, 5 and Grade 7 were investigated in near anaerobic (<1 ppm oxygen) seawater up to 200 °C with and without CO 2 . All three grades were found to resist stress corrosion cracking and pitting corrosion. Grades 2 and 5 suffer crevice corrosion at temperatures 80 °C and 200 °C respectively. In the presence of CO 2 Grade 5 becomes more vulnerable to crevice corrosion, with attack starting at 80 °C with preferential dissolution of the beta phase. An analysis of the threat of hydrogen induced cracking leads to the conclusion that this was not a likely threat to any of the Ti alloys investigated.

  17. Corrosion of Ferritic-Martensitic steels in high temperature water: A literature Review

    International Nuclear Information System (INIS)

    Fernandez, P.; Lapena, J.; Blazquez, F.

    2001-01-01

    Available literature concerning corrosion of high-chromium ferritic/martensitic steel in high temperature water as reviewed. The subjects considered are general corrosion, effect of irradiation on corrosion, environmentally assisted cracking (EAC) including stress corrosion cracking (SCC), corrosion fatigue and irradiation-assisted stress corrosion cracking (IASCC). In addition some investigations about radiation induced segregation (RIS). Are shown in order to know the compositional changes at grain boundaries of these alloys and their influence on corrosion properties. (Author)

  18. Corrosion Resistant Coatings for High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Besman, T.M.; Cooley, K.M.; Haynes, J.A.; Lee, W.Y.; Vaubert, V.M.

    1998-12-01

    Efforts to increase efficiency of energy conversion devices have required their operation at ever higher temperatures. This will force the substitution of higher-temperature structural ceramics for lower temperature materials, largely metals. Yet, many of these ceramics will require protection from high temperature corrosion caused by combustion gases, atmospheric contaminants, or the operating medium. This paper discusses examples of the initial development of such coatings and materials for potential application in combustion, aluminum smelting, and other harsh environments.

  19. MATHEMATICAL MODELING AND NUMERICAL SOLUTION OF IRON CORROSION PROBLEM BASED ON CONDENSATION CHEMICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Basuki Widodo

    2012-02-01

    Full Text Available Corrosion process is a natural case that happened at the various metals, where the corrosion process in electrochemical can be explained by using galvanic cell. The iron corrosion process is based on the acidity degree (pH of a condensation, iron concentration and condensation temperature of electrolyte. Those are applied at electrochemistry cell. The iron corrosion process at this electrochemical cell also able to generate electrical potential and electric current during the process takes place. This paper considers how to build a mathematical model of iron corrosion, electrical potential and electric current. The mathematical model further is solved using the finite element method. This iron corrosion model is built based on the iron concentration, condensation temperature, and iteration time applied. In the electric current density model, the current based on electric current that is happened at cathode and anode pole and the iteration time applied. Whereas on the potential  electric model, it is based on the beginning of electric potential and the iteration time applied. The numerical results show that the part of iron metal, that is gristle caused by corrosion, is the part of metal that has function as anode and it has some influences, such as time depth difference, iron concentration and condensation temperature on the iron corrosion process and the sum of reduced mass during corrosion process. Moreover, difference influence of time and beginning electric potential has an effect on the electric potential, which emerges during corrosion process at the electrochemical cell. Whereas, at the electrical current is also influenced by difference of depth time and condensation temperature applied.Keywords: Iron Corrosion, Concentration of iron, Electrochemical Cell and Finite Element Method

  20. High Temperature Corrosion of Superheater Materials for Power Production through Biomass

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Maahn, Ernst emanuel; Nielsen, Karsten agersted

    The aim of the present study has been to establish a fundamental knowledge of the corrosion mechanisms acting on materials for use in biomass fired power plants. The knowledge is created based on laboratory exposures on selected materials in well-defined corrosive gas environments. An experimental...... facility has been established wherein the planned exposures are completed. Specimens were exposed in combined synthetic flue gas at temperatures up to 900C. The specimens could be cooled to 300C below the gas temperature. Gas flow and gas mixture can be varied according to the conditions found in a power......) on the corrosion progress has been investigated.In addition the corrosion behaviour of the same materials was investigated after having been exposed under a cover of ash in air in a furnace at temperatures of 525C, 600C and 700C. The ashes utilised are from a straw-fired power plant and a synthetic ash composed...

  1. Burner rig alkali salt corrosion of several high temperature alloys

    Science.gov (United States)

    Deadmore, D. L.; Lowell, C. E.

    1977-01-01

    The hot corrosion of five alloys was studied in cyclic tests in a Mach 0.3 burner rig into whose combustion chamber various aqueous salt solutions were injected. Three nickel-based alloys, a cobalt-base alloy, and an iron-base alloy were studied at temperatures of 700, 800, 900, and 1000 C with various salt concentrations and compositions. The relative resistance of the alloys to hot corrosion attack was found to vary with temperature and both concentration and composition of the injected salt solution. Results indicate that the corrosion of these alloys is a function of both the presence of salt condensed as a liquid on the surface and of the composition of the gas phases present.

  2. Some problems on the aqueous corrosion of structural materials in nuclear engineering

    International Nuclear Information System (INIS)

    Coriou, H.; Grall, L.

    1964-01-01

    The purpose of this report is to give a comprehensive view of some aqueous corrosion studies which have been carried out with various materials for utilization either in nuclear reactors or in irradiated fuel treatment plants. The various subjects are listed below. Austenitic Fe-Ni-Cr alloys: the behaviour of austenitic Fe-Ni-Cr alloys in nitric medium and in the presence of hexavalent chromium; the stress corrosion of austenitic alloys in alkaline media at high temperatures; the stress corrosion of austenitic Fe-Ni-Cr alloys in 650 C steam. Ferritic steels: corrosion of low alloy steels in water at 25 and 360 C; zirconium alloys; the behaviour of ultrapure zirconium in water and steam at high temperature. (authors) [fr

  3. Corrosion behavior of construction materials for intermediate temperature steam electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Jensen, Jens Oluf

    2013-01-01

    Different corrosion resistant stainless steels, nickel-based alloys, pure nickel, Ta-coated stainless steel (AISI 316L), niobium, platinum and gold rods were evaluated as possible materials for use in the intermediate temperature (200-400 °C) acidic water electrolysers. The corrosion resistance w...

  4. Erosion-corrosion resistance properties of 316L austenitic stainless steels after low-temperature liquid nitriding

    Science.gov (United States)

    Zhang, Xiangfeng; Wang, Jun; Fan, Hongyuan; Pan, Dong

    2018-05-01

    The low-temperature liquid nitriding of stainless steels can result in the formation of a surface zone of so-called expanded austenite (S-phase) by the dissolution of large amounts of nitrogen in the solid solution and formation of a precipitate-free layer supersaturated with high hardness. Erosion-corrosion measurements were performed on low-temperature nitrided and non-nitrided 316L stainless steels. The total erosion-corrosion, erosion-only, and corrosion-only wastages were measured directly. As expected, it was shown that low-temperature nitriding dramatically reduces the degree of erosion-corrosion in stainless steels, caused by the impingement of particles in a corrosive medium. The nitrided 316L stainless steels exhibited an improvement of almost 84% in the erosion-corrosion resistance compared to their non-nitrided counterparts. The erosion-only rates and synergistic levels showed a general decline after low-temperature nitriding. Low-temperature liquid nitriding can not only reduce the weight loss due to erosion but also significantly reduce the weight loss rate of interactions, so that the total loss of material decreased evidently. Therefore, 316L stainless steels displayed excellent erosion-corrosion behaviors as a consequence of their highly favorable corrosion resistances and superior wear properties.

  5. Effect of ageing time and temperature on corrosion behaviour of aluminum alloy 2014

    Science.gov (United States)

    Gadpale, Vikas; Banjare, Pragya N.; Manoj, Manoranjan Kumar

    2018-03-01

    In this paper, the effect of corrosion behaviour of aluminium alloy 2014 were studied by potentiodynamic polarization in 1 mole of NaCl solution of aged sample. The experimental testing results concluded that, corrosion resistance of Aluminum alloy 2014 degraded with the increasing the temperature (150°C & 200°C) and time of ageing. Corroded surface of the aged specimens was tested under optical microscopes for microstructures for phase analysis. Optical micrographs of corroded surfaces showed general corrosion and pitting corrosion. The corrosion resistance of lower ageing temperature and lower ageing time is higher because of its fine distribution of precipitates in matrix phase.

  6. High temperature corrosion of separator materials for MCFC

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Masahiro; Tanimoto, Kazumi; Kojima, Toshikatsu [Osaka National Research Institute (Japan)] [and others

    1996-12-31

    The Molten Carbonate Fuel Cell (MCFC) is one of promising high efficiency power generation devices with low emission. Molten carbonate used for its electrolyte plays an important role in MCFC. It separates between anode and cathode gas environment and provides ionic conductivity on MCFC operation. Stainless steel is conventionally used as separator/current collector materials in MCFC cathode environment. As corrosion of the components of MCFC caused by the electrolyte proceeds with the electrolyte consumption, the corrosion in the MCFC is related to its performance and life. To understand and inhibit the corrosion in the MCFC is important to realize MCFC power generation system. We have studied the effect of alkaline earth carbonate addition into carbonate on corrosion of type 316L stainless steel. In this paper, we describe the effect of the temperature on corrosion behavior of type 316L stainless steel with carbonate mixture, (Li{sub 0.62}K{sub 0.38}){sub 2}CO{sub 3}, under the cathode environment in out-of-cell test.

  7. Corrosion/94 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The approximately 500 papers from this conference are divided into the following sections: Rail transit systems--stray current corrosion problems and control; Total quality in the coatings industry; Deterioration mechanisms of alloys at high temperatures--prevention and remediation; Research needs and new developments in oxygen scavengers; Computers in corrosion control--knowledge based system; Corrosion and corrosivity sensors; Corrosion and corrosion control of steel reinforced concrete structures; Microbiologically influenced corrosion; Practical applications in mitigating CO 2 corrosion; Mineral scale deposit control in oilfield-related operations; Corrosion of materials in nuclear systems; Testing nonmetallics for life prediction; Refinery industry corrosion; Underground corrosion control; Mechanisms and applications of deposit and scale control additives; Corrosion in power transmission and distribution systems; Corrosion inhibitor testing and field application in oil and gas systems; Decontamination technology; Ozone in cooling water applications, testing, and mechanisms; Corrosion of water and sewage treatment, collection, and distribution systems; Environmental cracking of materials; Metallurgy of oil and gas field equipment; Corrosion measurement technology; Duplex stainless steels in the chemical process industries; Corrosion in the pulp and paper industry; Advances in cooling water treatment; Marine corrosion; Performance of materials in environments applicable to fossil energy systems; Environmental degradation of and methods of protection for military and aerospace materials; Rail equipment corrosion; Cathodic protection in natural waters; Characterization of air pollution control system environments; and Deposit-related problems in industrial boilers. Papers have been processed separately for inclusion on the data base

  8. Corrosion behaviour of high temperature alloys in impure helium environments

    International Nuclear Information System (INIS)

    Shindo, Masami; Quadakkers, W.J.; Schuster, H.

    1986-01-01

    Corrosion tests with Ni-base high temperature alloys were carried out at 900 and 950 0 C in simulated high temperature reactor helium environments. It is shown that the carburization and decarburization behaviour is strongly affected by the Cr and Ti(Al) contents of the alloys. In carburizing environments, additions of Ti, alone or in combination with Al, significantly improve the carburization resistance. In oxidizing environment, the alloys with high Cr and Al(Ti) contents are the most resistant against decarburization. In this environment alloys with additions of Ti and Al show poor oxidation resistance. The experimental results obtained are compared with a recently developed theory describing corrosion of high temperature alloys in high temperature reactor helium environments. (orig.)

  9. THE SLOWING DOWN OF THE CORROSION OF ELEMENTS OF THE EQUIPMENT OF HEAVY MET-ALS AT ELEVATED TEMPERATURES

    OpenAIRE

    Носачова, Юлія Вікторівна; Ярошенко, М. М.; Корзун, А. О.; КОРОВЧЕНКО, К. С.

    2017-01-01

    In this article examined the heavy metals ions and their ability to slow down the corrosion process also the impact of ambient temperature on their effectiveness. Solving the problem of corrosion will reduce the impact of large industrial enterprises on the environment and minimize the economic costs. To do this, plants should create a system without a discharge of waste water that is closed recycling systems, which result is a significant reduction in intake of fresh water from natural sourc...

  10. Effects of high temperature surface oxides on room temperature aqueous corrosion and environmental embrittlement of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, R.A.; Perrin, R.L.

    1996-09-01

    Studies were conducted to determine the effects of high-temperature surface oxides, produced during thermomechanical processing, heat treatment (750 {degrees}C in air, one hour) or simulated in-service-type oxidation (1000{degrees}C in air, 24 hours) on the room-temperature aqueous-corrosion and environmental-embrittlement characteristics of iron aluminides. Materials evaluated included the Fe{sub 3}Al-based iron aluminides, FA-84, FA-129, FAL and FAL-Mo, a FeAl-based iron aluminide, FA-385, and a disordered low-aluminum Fe-Al alloy, FAPY. Tests were performed in a mild acid-chloride solution to simulate aggressive atmospheric corrosion. Cyclic-anodic-polarization tests were employed to evaluate resistances to localized aqueous corrosion. The high-temperature oxide surfaces consistently produced detrimental results relative to mechanically or chemically cleaned surfaces. Specifically, the pitting corrosion resistances were much lower for the as-processed and 750{degrees} C surfaces, relative to the cleaned surfaces, for FA-84, FA-129, FAL-Mo, FA-385 and FAPY. Furthermore, the pitting corrosion resistances were much lower for the 1000{degrees}C surfaces, relative to cleaned surfaces, for FA-129, FAL and FAL-Mo.

  11. Corrosion studies of austenitic and duplex stainless steels in aqueous lithium bromide solution at different temperatures

    International Nuclear Information System (INIS)

    Igual Munoz, A.; Garcia Anton, J.; Lopez Nuevalos, S.; Guinon, J.L.; Perez Herranz, V.

    2004-01-01

    The corrosion behavior of three stainless steels EN 14311, EN 14429 (austenitic stainless steels) and EN 14462 (duplex stainless steel) was studied in a commercial LiBr solution (850 g/l LiBr solution containing chromate as inhibitor) at different temperatures (25, 50, 75 and 85 deg C) by electrochemical methods. Open circuit potentials shifted towards more active values as temperature increased, while corrosion potentials presented the opposite tendency. The most resistant alloys to general corrosion were EN 14429 and EN 14462 because they had the lowest corrosion current for all temperatures. In all the cases corrosion current increases with temperature. Pitting corrosion resistance is improved by the EN 14462, which presented the highest pitting potential, and the lowest passivation current for the whole range of temperatures studied. The duplex alloy also presents the worst repassivation behavior (in terms of the narrowest difference between corrosion potential and pitting potential); it does not repassivate from 50 deg C

  12. High-Temperature Corrosion Behavior of Alloy 617 in Helium Environment of Very High Temperature Gas Reactor

    International Nuclear Information System (INIS)

    Lee, Gyeong-Geun; Jung, Sujin; Kim, Daejong; Jeong, Yong-Whan; Kim, Dong-Jin

    2012-01-01

    Alloy 617 is a Ni-base superalloy and a candidate material for the intermediate heat exchanger (IHX) of a very high temperature gas reactor (VHTR) which is one of the next generation nuclear reactors under development. The high operating temperature of VHTR enables various applications such as mass production of hydrogen with high energy efficiency. Alloy 617 has good creep resistance and phase stability at high temperatures in an air environment. However, it was reported that the mechanical properties decreased at a high temperature in an impure helium environment. In this study, high-temperature corrosion tests were carried out at 850°C-950°C in a helium environment containing the impurity gases H_2, CO, and CH_4, in order to examine the corrosion behavior of Alloy 617. Until 250 h, Alloy 617 specimens showed a parabolic oxidation behavior at all temperatures. The activation energy for oxidation in helium environment was 154 kJ/mol. The SEM and EDS results elucidated a Cr-rich surface oxide layer, Al-rich internal oxides and depletion of grain boundary carbides. The thickness and depths of degraded layers also showed a parabolic relationship with time. A normal grain growth was observed in the Cr-rich surface oxide layer. When corrosion tests were conducted in a pure helium environment, the oxidation was suppressed drastically. It was elucidated that minor impurity gases in the helium would have detrimental effects on the high temperature corrosion behavior of Alloy 617 for the VHTR application.

  13. Corrosion of Nickel-Based Alloys in Ultra-High Temperature Heat Transfer Fluid

    Science.gov (United States)

    Wang, Tao; Reddy, Ramana G.

    2017-03-01

    MgCl2-KCl binary system has been proposed to be used as high temperature reactor coolant. Due to its relatively low melting point, good heat capacity and excellent thermal stability, this system can also be used in high operation temperature concentrating solar power generation system as heat transfer fluid (HTF). The corrosion behaviors of nickel based alloys in MgCl2-KCl molten salt system at 1,000 °C were determined based on long-term isothermal dipping test. After 500 h exposure tests under strictly maintained high purity argon gas atmosphere, the weight loss and corrosion rate analysis were conducted. Among all the tested samples, Ni-201 demonstrated the lowest corrosion rate due to the excellent resistance of Ni to high temperature element dissolution. Detailed surface topography and corrosion mechanisms were also determined by using scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS).

  14. Corrosion, inspection and other problems associated with Heat exchangers in the heavy water industry

    International Nuclear Information System (INIS)

    Twigg, R.J.

    1980-01-01

    Corrosion, fabrication and inspection problems encountered in the heavy water industry Heat exchangers are discussed. Among the problems examined are erosion/corrosion of two pass exchangers, rolling of tubes, pitting, fretting and protection for long term storage. (auth)

  15. Problems raised by corrosion in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Tricot, R.; Boutonnet, G.; Perrot, M.; Blum, J.-M.

    1977-01-01

    In the uranium ore processing industry, materials which resist both mechanical abrasion and corrosion in an acid medium are required. Different typical cases are examined. For the reprocessing of irradiated fuels, two processes are possible: the conventional wet process, of the Purex type, and the fluoride volatilization process. In the latter case, the problems raised by fluoride corrosion in the presence of fission products is examined. The other parts of the fuel cycle are examined in the same manner [fr

  16. Coal-fired power plants and the causes of high temperature corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Oakey, J E; Simms, N J [British Coal Corporation, Coal Technology Development Div., Cheltenham, Glos (United Kingdom); Tomkings, A B [ERA Technology Ltd., Leatherhead, Surrey (United Kingdom)

    1996-12-01

    The heat exchangers in all types of coal-fired power plant operate in aggressive, high temperature environments where high temperature corrosion can severely limit their service lives. The extent of this corrosion is governed by the combined effects of the operating conditions of the heat exchanger and the presence of corrosive species released from the coal during operation. This paper reviews the coal-related factors, such as ash deposition, which influence the operating environments of heat exchangers in three types of coal-fired power plant - conventional pulverized coal boilers, fluidized bed boilers and coal gasification systems. The effects on the performance of the materials used for these heat exchangers are then compared. (au) 35 refs.

  17. Laboratory Study of High Temperature Corrosion in Straw-fired Power Plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Maahn, Ernst emanuel

    1997-01-01

    The components contributing to corrosion, HCl(g)SO2(g), KCl and K2SO4 were studied in the laboratory for Sandvik 8LR30 and Sanicro 28. The influence of HCl and SO2 was investigated at 600C material temperature and 600/800C flue gas temperature at time intervals up to 300 hours. The influence of ash...... deposits in air was examined at 525C-700C. Finally exposures were undertaken combining the aforementioned aggressive gas environment with the ash deposits. Thus the corrosion potential of individual components were evaluated and also whether they had a synergistic, antagonistic or additive effect on one...... another to influence the overall corrosion rate....

  18. corrosion problems and their relationship with the environment in the Colombian productive system

    International Nuclear Information System (INIS)

    Arroyave P, Carlos E; Herrera B, Francisco J; Delgado L, Juan; Cuervo T, Joaquin

    1999-01-01

    As a part of a broad study on the corrosion problems in the Colombian industry, it was included an assessment of the effect of the main corrosive environments (atmosphere, soil, salad and drinking water, and chemicals), on materials stability. On the other hand, the impact of the corrosion processes on the environmental constituents (live species, atmosphere, soil, materials, and water) was also assessed. Main conclusions are: Atmosphere is the more extensively corrosive environment, and, all the environmental constituents are affected by corrosion without significant differences

  19. High Temperature Corrosion in Biomass Incineration Plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Maahn, Ernst emanuel; Gotthjælp, K.

    1997-01-01

    The aim of the project is to study the role of ash deposits in high temperature corrosion of superheater materials in biomass and refuse fire combined heat and power plants. The project has included the two main activities: a) A chemical characterisation of ash deposits collected from a major...

  20. High temperature chlorosilane corrosion of iron and AISI 316L stainless steel

    Science.gov (United States)

    Aller, Joshua Loren

    Chlorosilane gas streams are used at high temperatures (>500°C) throughout the semiconductor, polycrystalline silicon, and fumed silica industries, primarily as a way to refine, deposit, and produce silicon and silicon containing materials. The presence of both chlorine and silicon in chlorosilane species creates unique corrosion environments due to the ability of many metals to form both metal-chlorides and metal-silicides, and it is further complicated by the fact that many metal-chlorides are volatile at high-temperatures while metal-silicides are generally stable. To withstand the uniquely corrosive environments, expensive alloys are often utilized, which increases the cost of final products. This work focuses on the corrosion behavior of iron, the primary component of low-cost alloys, and AISI 316L, a common low-cost stainless steel, in environments representative of industrial processes. The experiments were conducted using a customized high temperature chlorosilane corrosion system that exposed samples to an atmospheric pressure, high temperature, chlorosilane environment with variable input amounts of hydrogen, silicon tetrachloride, and hydrogen chloride plus the option of embedding samples in silicon during the exposure. Pre and post exposure sample analysis including scanning electron microscopy, x-ray diffraction, energy dispersive x-ray spectroscopy, and gravimetric analysis showed the surface corrosion products varied depending on the time, temperature, and environment that the samples were exposed to. Most commonly, a volatile chloride product formed first, followed by a stratified metal silicide layer. The chlorine and silicon activities in the corrosion environment were changed independently and were found to significantly alter the corrosion behavior; a phenomenon supported by computational thermodynamic equilibrium simulations. It was found that in comparable environments, the stainless steel corroded significantly less than the pure iron. This

  1. Temperature factors effect on occurrence of stress corrosion cracking of main gas pipeline

    Science.gov (United States)

    Nazarova, M. N.; Akhmetov, R. R.; Krainov, S. A.

    2017-10-01

    The purpose of the article is to analyze and compare the data in order to contribute to the formation of an objective opinion on the issue of the growth of stress corrosion defects of the main gas pipeline. According to available data, a histogram of the dependence of defects due to stress corrosion on the distance from the compressor station was constructed, and graphs of the dependence of the accident density due to stress corrosion in the winter and summer were also plotted. Data on activation energy were collected and analyzed in which occurrence of stress corrosion is most likely constructed, a plot of activation energy versus temperature is plotted, and the process of occurrence of stress corrosion by the example of two different grades of steels under the action of different temperatures was analyzed.

  2. Combating corrosion in biomass and waste fired plant

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Pamela [Vattenfall AB, Stockholm (Sweden). Research and Development; Hjoernhede, Anders [Vattenfall AB, Gothenburg (Sweden). Power Consultant

    2010-07-01

    Many biomass- or waste-fired plants have problems with high temperature corrosion especially if the steam temperature is greater than 500 C. An increase in the combustion of waste fuels means that an increasing number of boilers have had problems. Therefore, there is great interest in reducing the costs associated with high temperature corrosion and at the same time there exists a desire to improve the electrical efficiency of a plant by the use of higher steam temperatures. Assuming that the fuel is well-mixed and that there is good combustion control, there are in addition a number of other measures which can be used to reduce superheater corrosion in biomass and waste fired plants, and these are described in this paper. These include the use of fuel additives, specifically sulphur-containing ones; design aspects like placing superheaters in less corrosive positions in a boiler, using tube shielding, a wider pitch between the tubes; operational considerations such as more controlled soot-blowing and the use of better materials. (orig.)

  3. Corrosion and corrosion control

    International Nuclear Information System (INIS)

    Khanna, A.S.; Totlani, M.K.

    1995-01-01

    Corrosion has always been associated with structures, plants, installations and equipment exposed to aggressive environments. It effects economy, safety and product reliability. Monitoring of component corrosion has thus become an essential requirement for the plant health and safety. Protection methods such as appropriate coatings, cathodic protection and use of inhibitors have become essential design parameters. High temperature corrosion, especially hot corrosion, is still a difficult concept to accommodate in corrosion allowance; there is a lack of harmonized system of performance testing of materials at high temperatures. In order to discuss and deliberate on these aspects, National Association for Corrosion Engineers International organised a National Conference on Corrosion and its Control in Bombay during November 28-30, 1995. This volume contains papers presented at the symposium. Paper relevant to INIS is indexed separately. refs., figs., tabs

  4. Operation related on-line measurements of low temperature fire side corrosion during co-combustion of biomass and oil; Driftrelaterad direktmaetning av laagtemperaturkorrosion i en braensleeldad kraftvaermeanlaeggning

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Thomas [Studsvik Nuclear AB, Nykoeping (Sweden)

    2000-05-01

    A number of combustion plants have experienced corrosion attack on air preheaters and economisers when fired with biomass fuels. In certain plants the problems are great and reconstruction has been performed so that exposed components can be exchanged during operation. The electrochemical techniques offer on-line measurements of the changes in corrosion rate in the low temperature region in a waste incinerator. The purpose with this study was to evaluate the technique in a biomass fired boiler where the corrosion rate is considerable lower compared to a waste incinerator. Experiments were performed at the Haesselby plant, boiler 3, which was fired with pure biomass as well as a mixture of biomass and oil during the test period. It was found that the electrochemical technique is a useful tool for on-line measurements of the changes in corrosion rate in biomass fired utilities. Since the corrosion rate in the low temperature region is dependent on the boiler construction, electrochemical measurements give valuable information on the corrosion rate during optimisation of the fuel mixture, SNCR and temperature or the low temperature components. This is of special importance when introducing new fuels or fuel mixtures. Soot blowing is of prime importance for the total corrosion. During a few minutes an individual soot blower can initiate such a high corrosion rate that it represents the total corrosion. The material temperature is another important parameter. Above a certain temperature the corrosion rate is negligible. During co-combustion this temperature was found to be in the region 65-85 deg C. The influence of the SNCR with ammonia, with respect to corrosion, is dependent on the fuel mixture used. In utilities where acidic combustion products are formed, ammonia has a neutralising effect e.g. in Hoegdalen. At the Haesselby plant this neutralising effect was not found. During cocombustion with oil the ammonia forms ammoniahydrosulphate which increases the corrosion

  5. Corrosion problems related to the containment of high-level nuclear waste for disposal

    Energy Technology Data Exchange (ETDEWEB)

    Rothwell, G P

    1981-10-01

    The subject is examined under the headings: introduction (nature of problem; system of barriers which will initially contain the wasteform and subsequently limit the rate of transport of products from the wasteform to the external environment); environmental data (disposal in land-based repositories; disposal on or in the deep seabed); design philosophies and materials data (design; criteria for materials selection (kinetics of corrosion)); specific materials considerations (environmental parameters -temperature, pressure, heat transfer and radiation effects; single metals and alloys - steels, nickel based alloys, copper, lead, titanium, aluminium oxide); alternative approaches; an overview - information needs; summary.

  6. Corrosion behaviour of high temperature alloys in the cooling gas of high temperature reactors

    International Nuclear Information System (INIS)

    Quadakkers, W.J.; Schuster, H.

    1989-01-01

    The reactive impurities in the primary cooling helium of advanced high temperature gas cooled reactors (HTGR) can cause oxidation, carburization or decarburization of the heat exchanging metallic components. By studies of the fundamental aspects of the corrosion mechanisms it became possible to define operating conditions under which the metallic construction materials show, from the viewpoint of technical application, acceptable corrosion behaviour. By extensive test programmes with exposure times of up to 30,000 hours, a data base has been obtained which allows a reliable extrapolation of the corrosion effects up to the envisaged service lives of the heat exchanging components. (author). 6 refs, 7 figs

  7. Aspects of alkali chloride chemistry on deposit formation and high temperature corrosion in biomass and waste fired boilers

    OpenAIRE

    Broström, Markus

    2010-01-01

    Combustion of biomass and waste has several environmental, economical and political advantages over the use of fossil fuels for the generation of heat and electricity. However, these fuels often have a significantly different composition and the combustion is therefore associated with additional operational problems. A high content of chlorine and alkali metals (potassium and sodium) often causes problems with deposit formation and high temperature corrosion. Some different aspects of these i...

  8. Influence of LMFBR fuel pin temperature profiles on corrosion rate

    International Nuclear Information System (INIS)

    Shiels, S.A.; Bagnall, C.; Schrock, S.L.; Orbon, S.J.

    1976-01-01

    The paper describes the sodium corrosion behavior of 20 percent cold worked Type 316 stainless steel fuel pin cladding under a simulated reactor thermal environment. A temperature gradient, typical of a fuel pin, was generated in a 0.9 m long heater section by direct resistance heating. Specimens were located in an isothermal test section immediately downstream of the heater. A comparison of the measured corrosion rates with available data showed an enhancement factor of between 1.5 and 2 which was attributed to the severe axial temperature gradient through the heater. Differences in structure and surface chemistry were also noted

  9. Mechanism of Corrosion by Naphthenic Acids and Organosulfur Compounds at High Temperatures

    Science.gov (United States)

    Jin, Peng

    Due to the law of supply and demand, the last decade has witnessed a skyrocketing in the price of light sweet crude oil. Therefore, refineries are increasingly interested in "opportunity crudes", characterized by their discounted price and relative ease of procurement. However, the attractive economics of opportunity crudes come with the disadvantage of high acid/organosulfur compound content, which could lead to corrosion and even failure of facilities in refineries. However, it is generally accepted that organosulfur compounds may form protective iron sulfide layers on the metal surface and decrease the corrosion rate. Therefore, it is necessary to investigate the corrosive property of crudes at high temperatures, the mechanism of corrosion by acids (naphthenic acids) in the presence of organosulfur compounds, and methods to mitigate its corrosive effect. In 2004, an industrial project was initiated at the Institute for Corrosion and Multiphase Technology to investigate the corrosion by naphthenic acids and organosulfur compounds. In this project, for each experiment there were two experimentation phases: pretreatment and challenge. In the first pretreatment phase, a stirred autoclave was filled with a real crude oil fraction or model oil of different acidity and organosulfur compound concentration. Then, the stirred autoclave was heated to high temperatures to examine the corrosivity of the oil to different materials (specimens made from CS and 5% Cr containing steel were used). During the pretreatment, corrosion product layers were formed on the metal surface. In the second challenge phase, the steel specimens pretreated in the first phase were inserted into a rotating cylinder autoclave, called High Velocity Rig (HVR). The HVR was fed with a high-temperature oil solution of naphthenic acids to attack the iron sulfide layers. Based on the difference of specimen weight loss between the two steps, the net corrosion rate could be calculated and the protectiveness

  10. Corrosion tests of high temperature alloys in impure helium

    International Nuclear Information System (INIS)

    Berka, Jan; Kalivodova, Jana; Vilemova, Monika; Skoumalova, Zuzana; Brabec, Petr

    2014-01-01

    Czech research organizations take part several projects concerning technologies and materials for advanced gas cooled reactors, as an example international project ARCHER supported by EU within FP7, also several national projects supported by Technology Agency of the Czech Republic are solved in cooperation with industrial and research organization. Within these projects the material testing program is performed. The results presented in these paper concerning high temperature corrosion and degradation of alloys (800 H, SS 316 and P91) in helium containing minor impurities (H_2, CO, CH_4, HZO) at temperatures up to 760°C. After corrosion tests (up to 1500 hours) the specimens was investigated by several methods (gravimetry, SEM-EDX, optical microscopy, hardness and micro-hardness testing etc. (author)

  11. Experiences with high temperature corrosion at straw‐firing power plants in Denmark

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Jensen, S. A.; Borg, U.

    2011-01-01

    to enable better lifetime prediction of vulnerable components in straw‐firing plants since the corrosion rates are so much faster than in coal firing plants. Therefore, there are continued investigations in recently commissioned plants with test tubes installed into actual superheaters. In addition...... temperature is measured on the specific tube loops where there are test tube sections. Thus a corrosion rate can be coupled to a temperature histogram. This is important since although a superheater has a defined steam outlet temperature, there is variation in the tube bundle due to variations of heat flux...

  12. Study on Increasing High Temperature pH(t) to Reduce Iron Corrosion Products

    International Nuclear Information System (INIS)

    Shin, Dong Man; Hur, Nam Yong; Kim, Waang Bae

    2011-01-01

    The transportation and deposition of iron corrosion products are important elements that affect both the steam generator (SG) integrity and secondary system in pressurized water reactor (PWR) nuclear power plants. Most of iron corrosion products are generated on carbon steel materials due to flow accelerated corrosion (FAC). The several parameters like water chemistry, temperature, hydrodynamic, and steel composition affect FAC. It is well established that the at-temperature pH of the deaerated water system has a first order effect on the FAC rate of carbon steels through nuclear industry researches. In order to reduce transportation and deposition of iron corrosion products, increasing pH(t) tests were applied on secondary system of A, B units. Increasing pH(t) successfully reduced flow accelerated corrosion. The effect of increasing pH(t) to inhibit FAC was identified through the experiment and pH(t) evaluation in this paper

  13. Corrosion '98: 53. annual conference and exposition, proceedings

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    This conference was divided into the following sections: Corrosion in Gas Treating; Problems and Solutions in Commercial Building Water Systems; Green Corrosion/Scale Inhibitors; Atmospheric Corrosion; AIRPOL Update/98; Rubber Lining--Answers to Many Problems; Interference Problems; Environmental Assisted Cracking: Fundamental Research and Industrial Applications; Corrosion in Nuclear Systems; New Developments in Scale and Deposit Control; Corrosion and Corrosion Protection in the Transportation Industries; What's All the Noise About--Electrochemical That Is; Refining Industry Corrosion; Corrosion Problems in Military Hardware: Case Histories, Fixes and Lessons Learned; Cathodic Protection Test Methods and Instrumentation for Underground and On-grade Pipelines and Tanks; Recent Developments in Volatile Corrosion Inhibitors; Corrosion in Supercritical Fluids; Microbiologically Influenced Corrosion; Advances in Understanding and Controlling CO 2 Corrosion; Managing Corrosion with Plastics; Material Developments for Use in Exploration and Production Environments; Corrosion in Cold Regions; The Effect of Downsizing and Outsourcing on Cooling System Monitoring and Control Practices; New Developments in Mechanical and Chemical Industrial Cleaning; Mineral Scale Deposit Control in Oilfield Related Operations; Biocides in Cooling Water; Corrosion and Corrosion Control of Reinforced Concrete Structures; Materials Performance for Fossil Energy Conversion Systems; Marine corrosion; Thermal Spray--Coating and Corrosion Control; Flow Effects on Corrosion in Oil and Gas Production; Corrosion Measurement Technologies; Internal Pipeline Monitoring--Corrosion Monitoring, Intelligent Pigging and Leak Detection; Cathodic Protection in Natural Waters; Corrosion in Radioactive Liquid Waste Systems; On-line Hydrogen Permeation Monitoring Equipment and Techniques, State of the Art; Water Reuse and Recovery; Performance of Materials in High Temperature Environments; Advances in Motor

  14. Materials and coatings to resist high temperature oxidation and corrosion

    International Nuclear Information System (INIS)

    1977-01-01

    Object of the given papers are the oxidation and corrosion behaviour of several materials (such as stainless steels, iron-, or nickel-, or cobalt-base alloys, Si-based ceramics) used at high temperatures and various investigations on high-temperature protective coatings. (IHoe) [de

  15. Corrosion problems related to the containment of high-level nuclear waste for disposal

    International Nuclear Information System (INIS)

    Rothwell, G.P.

    1981-01-01

    The subject is examined under the headings: introduction (nature of problem; system of barriers which will initially contain the wasteform and subsequently limit the rate of transport of products from the wasteform to the external environment); environmental data (disposal in land-based repositories; disposal on or in the deep seabed); design philosophies and materials data (design; criteria for materials selection (kinetics of corrosion)); specific materials considerations (environmental parameters -temperature, pressure, heat transfer and radiation effects; single metals and alloys - steels, nickel based alloys, copper, lead, titanium, aluminium oxide); alternative approaches; an overview - information needs; summary. (U.K.)

  16. Laboratory Investigation of High Temperature Corrosion in Straw fired Power Plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie

    1998-01-01

    Corrosion in straw-fired power plants has been studied in the laboratory for Sandvik 8LR30 and Sanicro 28. The influence of HCl and SO2 was investigated at 600C metal temperature for upto 300 hours.In addition the corrosion behaviour of the same materials was examined in ash taken from a straw-fired...

  17. Effect of high temperature filtration on out-core corrosion product activity

    International Nuclear Information System (INIS)

    Horvath, G.L.; Bogancs, J.

    1983-01-01

    Investigation of the effect of high temperature filtration on corrosion product transport and out-core corrosion product activity has been carried out for VVER-440 plants. In the physico-chemical model applied particulate and dissolved corrosion products were taken into account. We supposed 100% effectivity for the particulate filter. It was found that about 0,5% 160 t/h/ of the main flow would result in an approx.50% reduction of the out-core corrosion product activity. Investigation of the details of the physico-chemical model in Nuclear Power Plant Paks showed a particle deposition rate measured during power transients fairly agreeing with other measurements and data used in the calculations. (author)

  18. Effect of heat treatment conditions on stress corrosion cracking resistance of alloy X-750 in high temperature water

    International Nuclear Information System (INIS)

    Yonezawa, Toshio; Onimura, Kichiro; Sakamoto, Naruo; Sasaguri, Nobuya; Susukida, Hiroshi; Nakata, Hidenori.

    1984-01-01

    In order to improve the resistance of the Alloy X-750 in high temperature and high purity water, the authors investigated the influence of heat treatment condition on the stress corrosion cracking resistance of the alloy. This paper describes results of the stress corrosion cracking test and some discussion on the mechanism of the stress corrosion cracking of Alloy X-750 in deaerated high temperature water. The following results were obtained. (1) The stress corrosion cracking resistance of Alloy X-750 in deaerated high temperature water remarkably depended upon the heat treatment condition. The materials solution heat treated and aged within temperature ranges from 1065 to 1100 0 C and from 704 to 732 0 C, respectively, have a good resistance to the stress corrosion cracking in deaerated high temperature water. Especially, water cooling after the solution heat treatment gives an excellent resistance to the stress corrosion cracking in deaerated high temperature water. (2) Any correlations were not observed between the stress corrosion cracking susceptibility of Alloy X-750 in deaerated high temperature water and grain boundary chromium depleted zones, precipitate free zones and the grain boundary segregation of impurity elements and so on. It appears that there are good correlations between the stress corrosion cracking resistance of the alloy in the environment and the kinds, morphology and coherency of precipitates along the grain boundaries. (author)

  19. Temperature effect on Zircaloy-4 stress corrosion cracking

    International Nuclear Information System (INIS)

    Farina, Silvia B.; Duffo, Gustavo S.; Galvele, Jose R.

    1999-01-01

    Stress corrosion cracking (SCC) susceptibility of Zircaloy-4 alloy in chloride, bromide and iodide solutions with variables as applied electrode potential, deformation rate and temperature have been studied. In those three halide solutions the susceptibility to SCC is only observed at potentials close to pitting potential, the crack propagation rate increases with the increase of deformation rate, and that the temperature has a notable effect only for iodide solutions. For chloride and bromide solutions and temperatures ranging between 20 to 90 C degrees it was not found measurable changes in crack propagation rates. (author)

  20. Corrosion assessment of refractory materials for high temperature waste vitrification

    International Nuclear Information System (INIS)

    Marra, J.C.; Congdon, J.W.; Kielpinski, A.L.

    1995-01-01

    A variety of vitrification technologies are being evaluated to immobilize radioactive and hazardous wastes following years of nuclear materials production throughout the Department of Energy (DOE) complex. The compositions and physical forms of these wastes are diverse ranging from inorganic sludges to organic liquids to heterogeneous debris. Melt and off-gas products can be very corrosive at the high temperatures required to melt many of these waste streams. Ensuring material durability is required to develop viable treatment processes. Corrosion testing of materials in some of the anticipated severe environments is an important aspect of the materials identification and selection process. Corrosion coupon tests on typical materials used in Joule heated melters were completed using glass compositions with high salt contents. The presence of chloride in the melts caused the most severe attack. In the metal alloys, oxidation was the predominant corrosion mechanism, while in the tested refractory material enhanced dissolution of the refractory into the glass was observed. Corrosion testing of numerous different refractory materials was performed in a plasma vitrification system using a surrogate heterogeneous debris waste. Extensive corrosion was observed in all tested materials

  1. A study on structural analysis of highly corrosive melts at high temperature

    CERN Document Server

    Ohtori, N

    2002-01-01

    When sodium is burned at high temperature in the atmosphere, it reacts simultaneously with H sub 2 O in the atmosphere so that it can produce high temperature melt of sodium hydroxide as a solvent. If this melt includes peroxide ion (O sub 2 sup 2 sup -), it will be a considerably active and corrosive for iron so that several sodium iron double oxides will be produced as corrosion products after the reaction with steel structures. The present study was carried out in order to investigate the ability of presence of peroxide ion in sodium hydroxide solvent at high temperature and that of identification of the several corrosion products using laser Raman spectroscopy. The measurement system with ultraviolet laser was developed simultaneously in the present work to improve the ability of the measurement at high temperature. As results from the measurements, the possibility of the presence of peroxide ion was shown up to 823K in sodium peroxide and 823K in the melt of sodium hydroxide mixed with sodium peroxide. A...

  2. Corrosion problem in the CRENK Triga Mark II research reactor

    International Nuclear Information System (INIS)

    Kalenga, M.

    1990-01-01

    In August 1987, a routine underwater optical inspection of the aluminum tank housing the core of the CRENK Triga Mark II reactor, carried out to update safety condition of the reactor, revealed pitting corrosion attacks on the 8 mm thick aluminum tank bottom. The paper discuss the work carried out by the reactor staff to dismantle the reactor in order to allow a more precise investigation of the corrosion problem, to repair the aluminum tank bottom, and to enhance the reactor overall safety condition

  3. Estimation of surface temperature by using inverse problem. Part 1. Steady state analyses of two-dimensional cylindrical system

    International Nuclear Information System (INIS)

    Takahashi, Toshio; Terada, Atsuhiko

    2006-03-01

    In the corrosive process environment of thermochemical hydrogen production Iodine-Sulfur process plant, there is a difficulty in the direct measurement of surface temperature of the structural materials. An inverse problem method can effectively be applied for this problem, which enables estimation of the surface temperature using the temperature data at the inside of structural materials. This paper shows analytical results of steady state temperature distributions in a two-dimensional cylindrical system cooled by impinging jet flow, and clarifies necessary order of multiple-valued function from the viewpoint of engineeringly satisfactory precision. (author)

  4. Corrosion behavior induced by LiCl-KCl in type 304 and 316 stainless steel and copper at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Jee Hyung; Kim, Yong Soo; Cho, Il Je [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of)

    2017-06-15

    The corrosion behavior of stainless steel (304 and 316 type) and copper induced by LiCl-KCl at low temperatures in the presence of sufficient oxygen and moisture was investigated through a series of experiments (at 30°C, 40°C, 60°C, and 80°C for 24 hours, 48 hours, 72 hours, and 96 hours). The specimens not coated on one side with an aqueous solution saturated with LiCl-KCl experienced no corrosion at any temperature, not even when the test duration exceeded 96 hours. Stainless steel exposed to LiCl-KCl experienced almost no corrosion below 40°C, but pitting corrosion was observed at temperatures above 60°C. As the duration of the experiment was increased, the rate of corrosion accelerated in proportion to the temperature. The 316 type stainless steel exhibited better corrosion resistance than did the 304 type. In the case of copper, the rate of corrosion accelerated in proportion to the duration and temperature but, unlike the case of stainless steel, the corrosion was more general. As a result, the extent of copper corrosion was about three times that of stainless steel.

  5. Ash deposition and high temperature corrosion at combustion of aggressive fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hede Larsen, O [I/S Fynsvaerket, Faelleskemikerne, Odense (Denmark); Henriksen, N [Elsamprojekt A/S, Faelleskemikerne, Fredericia (Denmark)

    1996-12-01

    In order to reduce CO{sub 2} emission, ELSAM is investigating the possibilities of using biomass - mainly straw - for combustion in high efficiency power plants. As straw has very high contents of chlorine and potassium, a fuel with high corrosion and ash deposition propensities has been introduced. ELSAM has investigated 3 ultra supercritical boiler concepts for combustion of straw alone or together with coal: (1) PF boilers with a relatively low share of straw, (2) CFB boilers with low to high share of straw and (3) vibrating grate boilers with 100% straw. These investigations has mainly been full-scale tests with straw fed into existing boilers. Corrosion tests have been performed in these boilers using temperature regulated probes and in-plant test tubes in existing superheaters. The corrosion has been determined by detailed measurements of wall thickness reduction and light optical microscopic measurements of the material degradation due to high temperature corrosion. Corrosion mechanisms have been evaluated using SEM/EDX together with thermodynamical considerations based on measurements of the chemical environment in the flue gas. Ash deposition is problematic in CFB boilers and in straw fired boilers, especially in years with high potassium and chlorine content of the straw. This ash deposition also is related to condensation of KCl and can probably only be handled by improved cleaning devices. (EG)

  6. Electrochemical Studies of Corrosion in Liquid Electrolytes for Energy Conversion Applications at Elevated Temperatures

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey Valerievich; Petrushina, Irina; Bjerrum, Niels J.

    2016-01-01

    -temperature (200–400°C) water electrolysis. Pt, Ta, Nb, Ti, Inconel®625, and Ni demonstrated high corrosion resistance. Au and the rest of the tested materials were not corrosion resistant. It means that Ni, Ti and Inconel®625 may be used as relatively cheap construction materials for the intermediate......-temperature water electrolyzer....

  7. FORMULATION OF MATHEMATICAL PROBLEM DESCRIBING PHYSICAL AND CHEMICAL PROCESSES AT CONCRETE CORROSION

    Directory of Open Access Journals (Sweden)

    Sergey V. Fedosov

    2017-06-01

    Full Text Available The article deals with the relevance of new scientific research focused on modeling of physical and chemical processes occurring in the cement concrete at their exploitation. The basic types of concrete corrosion are described. The problem of mass transfer processes in a flat reinforced concrete wall at concrete corrosion of the first and the second types has been mathematically formulated.

  8. The corrosion resistance of Zr-Nb and Zr-Nb-Sn alloys in high-temperature water and steam

    International Nuclear Information System (INIS)

    Dalgaard, S.B.

    1960-03-01

    An alloy of reactor-grade sponge zirconium-2.5 wt. % niobium was exposed to water and steam at high temperature. The corrosion was twice that of Zircaloy-2 while hydrogen pickup was found to be equal to that of Zircaloy-2. Ternary additions of tin to this alloy in the range 0.5-1.5 had no effect on the corrosion resistance in water at 315 o C up to 100 days. At higher temperatures, tin increased the corrosion, the effect varying with temperature. Heat treatment of the alloys was shown to affect corrosion resistance. (author)

  9. The corrosion resistance of Zr-Nb and Zr-Nb-Sn alloys in high-temperature water and steam

    Energy Technology Data Exchange (ETDEWEB)

    Dalgaard, S B

    1960-03-15

    An alloy of reactor-grade sponge zirconium-2.5 wt. % niobium was exposed to water and steam at high temperature. The corrosion was twice that of Zircaloy-2 while hydrogen pickup was found to be equal to that of Zircaloy-2. Ternary additions of tin to this alloy in the range 0.5-1.5 had no effect on the corrosion resistance in water at 315{sup o}C up to 100 days. At higher temperatures, tin increased the corrosion, the effect varying with temperature. Heat treatment of the alloys was shown to affect corrosion resistance. (author)

  10. High temperature corrosion under conditions simulating biomass firing: depth-resolved phase identification

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2014-01-01

    ) were coated with KCl and is o-thermally exposed at 560 o C for 168 h under a flue gas corresponding to straw firing. Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), and X-ray Diffraction (XRD) characterization techniques were employed for comprehensive characterization......Both cross-sectional and plan view, ‘top-down’ characterization methods were employed , for a depth-resolved characterization of corrosion products resulting from high temperature corrosion under laboratory conditions simulating biomass firing. Samples of an austenitic stainless steel (TP 347H FG...... of the corrosion product. Results from this comprehensive characterization revealed more details on the morphology and composition of the corrosion product....

  11. East Carnduff Unit: corrosion problems

    Energy Technology Data Exchange (ETDEWEB)

    Banks, C D

    1966-07-01

    Waterflooding of the East Carnduff Unit began in late 1962. The first injection line leak was discovered April 29, 1965. The first 6 leaks in the East Carnduff Unit occurred within a period of less than one month--a very startling and serious warning of pending problems. Analysis of the pipe removed showed a deep pit covered by a severe scale in the piping fitting. Several remedial actions were tried in order to develop the present inhibition program. First, the lines were cleaned as well as possible utilizing rubber pig spheres with normal injection pressure. This proved very effective and 2 passes wiped out most of the scale in the lines. Only one line required acid. After the lines had been cleaned, a water treating rate of an organic amine corrosion inhibitor, 10 ppm of the scale inhibitor, and bactericide at the rate of 40 ppm slugs 2 days per month was initiated. The above treating program is in use at the present time and is maintaining a very low leak frequency. This experience has demonstrated 2 important points in waterflood operations: (1) a bare piping system in warm brine service requires constant attention to insure that it is being kept clean; and (2) reliance cannot be placed on any one method of checking corrosion rates.

  12. Effects of metallurgical factors on stress corrosion cracking of Ni-base alloys in high temperature water

    International Nuclear Information System (INIS)

    Yonezawa, T.; Sasaguri, N.; Onimura, K.

    1988-01-01

    Nickel-base Alloy 600 is the principal material used for the steam generator tubes of PWRs. Generally, this alloy has been proven to be satisfactory for this application, however when it is subjected to extremely high stress level in PWR primary water, it may suffer from stress corrosion cracking. The authors have systematically studied the effects of test temperature and such metallurgical factors as cold working, chemical composition and heat treatment on the stress corrosion cracking of Alloy 600 in high temperature water, and also on that of Alloy 690 which is a promising material for the tubes and may provide improved crrosion resistance for steam generators. The test materials, the stress corrosion cracking test and the test results are reported. When the test temperature was raise, the stress corrosion cracking of the nickel-base alloys was accelerated. The time of stress corrosion cracking occurrence decreased with increasing applied stress, and it occurred at the stress level higher than the 0.2 % offset proof stress of Alloy 600. In Alloy 690, stress corrosion cracking was not observed at such stress level. Cold worked Alloy 600 showed higher resistance to stress corrosion cracking than the annealed alloy. (Kako, I.)

  13. Modelling of zircaloy-4 corrosion in nitrogen and oxygen mixtures at high temperature

    International Nuclear Information System (INIS)

    Lasserre, M.; Peres, V.; Pijolat, M.; Coindreau, O.; Duriez, C.; Mardon, J.P.

    2015-01-01

    Previous studies of zircaloy-4 corrosion in air have shown accelerated corrosion in the 600-1000 Celsius degrees temperature range with Zr nitrides precipitating near the metal/oxide surface. The aim of this series of slides is to assess the influence of N 2 and O 2 partial pressures on the kinetic rate of growth of a new phase and to propose a kinetic modelling of zircaloy-4 corrosion

  14. Review about corrosion of superheaters tubes in biomass plants; Revision sobre la corrosion de tubos sobrecalentadores en plantas de biomasa

    Energy Technology Data Exchange (ETDEWEB)

    Berlanga-Labari, C.; Fernandez-Carrasquilla, J.

    2006-07-01

    The design of new biomass-fired power plants with increased steam temperature raises concerns of high-temperature corrosion. The high potassium and chlorine contents in many biomass, specially in wheat straw, are potentially harmful elements with regard to corrosion. Chlorine may cause accelerated corrosion resulting in increased oxidation, metal wastage, internal attack, void formations and loose non-adherent scales. The most severe corrosion problems in biomass-fired systems are expected to occur due to Cl-rich deposits formed on superheater tubes. In the first part of this revision the corrosion mechanism proposed are described in function of the conditions and compounds involved. The second part is focused on the behaviour of the materials tested so far in the boiler and in the laboratory. First the traditional commercial alloys are studied and secondly the new alloys and the coasting. (Author). 102 refs.

  15. An assessment of thermal spray coating technologies for high temperature corrosion protection

    International Nuclear Information System (INIS)

    Heath, G.R.; Heimgartner, P.; Gustafsson, S.; Irons, G.; Miller, R.

    1997-01-01

    The use of thermally sprayed coatings in combating high temperature corrosion continues to grow in the major industries of chemical, waste incineration, power generation and pulp and paper. This has been driven partially by the development of corrosion resistant alloys, improved knowledge and quality in the thermal spray industry and continued innovation in thermal spray equipment. There exists today an extensive range of thermal spray process options, often with the same alloy solution. In demanding corrosion applications it is not sufficient to just specify alloy and coating method. For the production of reliable coatings the whole coating production envelope needs to be considered, including alloy selection, spray parameters, surface preparation, base metal properties, heat input etc. Combustion, arc-wire, plasma, HVOF and spray+fuse techniques are reviewed and compared in terms of their strengths and limitations to provide cost-effective solutions for high temperature corrosion protection. Arc wire spraying, HP/HVOF and spray+fuse are emerging as the most promising techniques to optimise both coating properties and economic/practical aspects. (orig.)

  16. Phase Stability Diagrams for High Temperature Corrosion Processes

    Directory of Open Access Journals (Sweden)

    J. J. Ramos-Hernandez

    2013-01-01

    Full Text Available Corrosion phenomena of metals by fused salts depend on chemical composition of the melt and environmental conditions of the system. Detail knowledge of chemistry and thermodynamic of aggressive species formed during the corrosion process is essential for a better understanding of materials degradation exposed to high temperature. When there is a lack of kinetic data for the corrosion processes, an alternative to understand the thermodynamic behavior of chemical species is to utilize phase stability diagrams. Nowadays, there are several specialized software programs to calculate phase stability diagrams. These programs are based on thermodynamics of chemical reactions. Using a thermodynamic data base allows the calculation of different types of phase diagrams. However, sometimes it is difficult to have access to such data bases. In this work, an alternative way to calculate phase stability diagrams is presented. The work is exemplified in the Na-V-S-O and Al-Na-V-S-O systems. This system was chosen because vanadium salts is one of the more aggressive system for all engineering alloys, especially in those processes where fossil fuels are used.

  17. Effects of zinc injection on electrochemical corrosion and cracking behavior of stainless steels in borated and lithiated high temperature water

    International Nuclear Information System (INIS)

    Wu Xinqiang; Liu Xiahe; Han Enhou; Ke Wei

    2014-01-01

    Zinc (Zn) injection water chemistry (ZWC) adopted in primary coolant system in pressurized water reactors (PWRs) is to reduce the radiation buildup as well as retard the corrosion degradation in high temperature pressurized water through improving the characteristics of oxide scales formed on components materials. However, Zn injection involved corrosion and cracking behavior and related mechanisms are still under discussion. The understanding of Zn-bearing oxide scale characteristics and their protective property is of significance to clarify the environmentally assisted material failure problems in PWRs power plants. In the present work, in-situ potentiodynamic polarization curves and electrochemical impedance spectra measurements in high temperature borated and lithiated water as well as ex-situ X-ray photoelectron spectroscopy analyses have been done to investigate the effects of temperature (R.T.-603 K), pH T value at 573 K (6.9-7.4) and Zn-injection concentration (0-150 ppb) on electrochemical corrosion behavior and oxide scale characteristics of nuclear-grade stainless steels. The protective property of oxide scales under Zn-free and Zn-injected conditions degraded with increasing temperature, with Cr-rich oxide layer playing a key role on retarding further corrosion. The composition of oxide scales appeared slightly pH T dependent: rich in chromites and ferrites at pH T =6.9 and pH T =7.4, respectively. The corrosion rate decreased significantly in the high pH T value solution with Zn injection due to the formation of thin and compact oxide scales. The ≤50 ppb Zn injection could significantly affect the formation of Zn-bearing oxides on the surfaces, while >50 ppb Zn injection showed no obvious influence on the oxide scales. A modified point defect model was proposed to discuss the effects of injected Zn concentrations on the oxide scales in high temperature water. A 10 ppb Zn injection obviously decreased the intergranular cracking susceptibility of

  18. The effect of Co-firing with Straw and Coal on High Temperature Corrosion

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Frandsen, Flemming; Larsen, OH

    2001-01-01

    As a part of ELSAMS development programme into alternative energy sources, various concepts of straw-firing have been investigated. This paper concerns co-firing of straw with coal to reduce the corrosion rate observed in straw-fired power plants. Co-firing with coal reduces the amount of potassium......: a) the exposure of metal rings on water/air cooled probes, and b) the exposure of a range of materials built into the existing superheaters. A range of austenitic and ferritic steels was exposed in the steam temperature region of 520-580°C. The flue gas temperature ranged from 925-1100°C....... The corrosion products for the various steel types were investigated using light optical and scanning electron microscopy. Corrosion mechanisms for the austenitic and ferritic steels are presented. These are discussed in relation to temperature and deposit composition. Co-firing with coal has removed potassium...

  19. Effect of Aging Temperature on Corrosion Behavior of Sintered 17-4 PH Stainless Steel in Dilute Sulfuric Acid Solution

    Science.gov (United States)

    Szewczyk-Nykiel, Aneta; Kazior, Jan

    2017-07-01

    The general corrosion behavior of sintered 17-4 PH stainless steel processed under different processing conditions in dilute sulfuric acid solution at 25 °C was studied by open-circuit potential measurement and potentiodynamic polarization technique. The corrosion resistance was evaluated based on electrochemical parameters, such as polarization resistance, corrosion potential, corrosion current density as well as corrosion rate. The results showed that the precipitation-hardening treatment could significantly improve the corrosion resistance of the sintered 17-4 PH stainless steel in studied environment. As far as the influence of aging temperature on corrosion behavior of the sintered 17-4 PH stainless steel is concerned, polarization resistance and corrosion rate are reduced with increasing aging temperature from 480 up to 500 °C regardless of the temperature of solution treatment. It can be concluded that the highest corrosion resistance in 0.5 M H2SO4 solution exhibits 17-4 PH after solution treatment at 1040 °C followed by aging at 480 °C.

  20. Corrosion/95 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The papers in this conference represent the latest technological advances in corrosion control and prevention. The following subject areas are covered: cathodic protection in natural waters; materials for fossil fuel combustion and conversion systems; modern problems in atmospheric corrosion; innovative ideas for controlling the decaying infrastructure; deposits and their effects on corrosion in industry; volatile high temperature and non aqueous corrosion inhibitors; corrosion of light-weight and precoated metals for automotive application; refining industry corrosion; corrosion in pulp and paper industry; arctic/cold weather corrosion; materials selection for waste incinerators and associated equipment; corrosion measurement technology; environmental cracking of materials; advancing technology in the coating industry; corrosion in gas treating; green inhibition; recent advances in corrosion control of rail equipment; velocity effects and erosion corrosion in oil and gas production; marine corrosion; corrosion of materials in nuclear systems; underground corrosion control; corrosion in potable and industrial water systems in buildings and its impact on environmental compliance; deposit related boiler tube failures; boiler systems monitoring and control; recent developments and experiences in reactive metals; microbiologically influenced corrosion; corrosion and corrosion control for steel reinforced concrete; international symposium on the use of 12 and 13 Cr stainless steels in oil and gas production environments; subsea corrosion /erosion monitoring in production facilities; fiberglass reinforced pipe and tubulars in oilfield service; corrosion control technology in power transmission and distribution; mechanisms and methods of scale and deposit control; closing the loop -- results oriented cooling system monitoring and control; and minimization of aqueous discharge

  1. Corrosion Resistant FBG-Based Quasi-Distributed Sensor for Crude Oil Tank Dynamic Temperature Profile Monitoring

    Science.gov (United States)

    da Silva Marques, Rogério; Prado, Adilson Ribeiro; da Costa Antunes, Paulo Fernando; de Brito André, Paulo Sérgio; Ribeiro, Moisés R. N.; Frizera-Neto, Anselmo; Pontes, Maria José

    2015-01-01

    This article presents a corrosion resistant, maneuverable, and intrinsically safe fiber Bragg grating (FBG)-based temperature optical sensor. Temperature monitoring is a critical activity for the oil and gas industry. It typically involves acquiring the desired parameters in a hazardous and corrosive environment. The use of polytetrafluoroethylene (PTFE) was proposed as a means of simultaneously isolating the optical fiber from the corrosive environment and avoiding undesirable mechanical tensions on the FBGs. The presented sensor head is based on multiple FBGs inscribed in a lengthy single mode fiber. The sensor presents an average thermal sensitivity of 8.82 ± 0.09 pm/°C, resulting in a typical temperature resolution of ~0.1 °C and an average time constant value of 6.25 ± 0.08 s. Corrosion and degradation resistance were verified by infrared spectroscopy and scanning electron microscopy during 90 days exposure to high salinity crude oil samples. The developed sensor was tested in a field pilot test, mimicking the operation of an inland crude tank, demonstrating its abilities to dynamically monitor temperature profile. PMID:26690166

  2. High Temperature Corrosion of Nickel in NaVO3-V2O5 Melts

    Directory of Open Access Journals (Sweden)

    J. Porcayo-Calderon

    2017-01-01

    Full Text Available Many alloys used at high temperature in industrial processes are Ni-based and many others contain it in appreciable quantities, so it is of interest to evaluate the performance of pure nickel in order to determine the behavior of its alloys once the elements responsible for their protection have been depleted due to accelerated corrosion processes in the presence of vanadium-rich molten salts. Due to this, this work presents the study of Ni behavior in NaVO3-V2O5 mixtures at different temperatures. The behavior of pure nickel was determined by both electrochemical and mass loss measurements. The results show that the aggressiveness of the vanadium salts is increased by increasing both the V2O5 content and temperature. V2O5 addition considerably increases the current densities of the anodic and cathodic reactions. The corrosion process of Ni is modified due to the presence of its corrosion products, and its presence increases the activation energy by at least one order of magnitude. Although nickel shows a high reactivity in vanadium-rich salts, its reaction products are highly stable and protect it from the corrosive medium because the corrosion reactions trap the vanadium and block the migration of nickel ions.

  3. The Corrosion Rate Measurement of Inconel 690 on High Temperature andPressure by Using CMS100

    International Nuclear Information System (INIS)

    Sriyono; Febrianto

    2000-01-01

    The corrosion rate measurement of Inconel 690 on high temperature andpressure had been done. By using an Autoclave, pressure and temperature canbe simulated. The environment of this experiment is 0.1 ppm of chloridesolution, which permit to dissolved in secondary cooling of steam generator.The corrosion rate measurement was done on temperature between 150 o C and230 o C with step 10 o C. Pressure experiment is the pressure, which occurredin Autoclave. Corrosion rate is measured by CMS100. From the Tafel analysis,corrosion rate of Inconel 690 linearity increased from 6.548 x 10 -5 mpy to4.331 x 10 -4 mpy. It concludes that Inconel 690 is resist on corrosionenvironment, so it's most using on the fabrication of steam generator tubeson the advanced power plant. (author)

  4. Effect of temperature on structure and corrosion resistance for ...

    Indian Academy of Sciences (India)

    The effect of plating temperatures between 60 and 90◦C on structure and corrosion resistance for elec- troless NiWP coatings ..... which helps to form fine grain. At 80 .... [23] Zhang W X, Jiang Z H, Li G Y and Jiang Q 2008 Surf. Coat. Technol.

  5. Radiolysis and corrosion aspects of the aqueous self-cooled blanket concept

    International Nuclear Information System (INIS)

    Bruggeman, A.; Snykers, M.; Bogaerts, W.F.; Waeben, R.; Embrechts, M.J.; Steiner, D.

    1989-01-01

    Corrosion and radiolysis aspects of the Aqueous Self-Cooled Blanket concept, proposed as a potential shielding breeding blanket for near term fusion devices and fusion reactors, have been investigated. On the basis of preliminary results for selected aqueous solutions of lithium compounds, no particular corrosion problems have been revealed for the low-temperature concept envisaged for NET and radiolysis effects might be controlled by appropriate countermeasures. For the reactor-relevant high-temperature concept particular attention has to be paid to intergranular stress-corrosion and to the synergistic radiolysis-corrosion effects. Further information is needed from tests performed in relevant operational conditions. (orig.)

  6. High-Temperature, Dual-Atmosphere Corrosion of Solid-Oxide Fuel Cell Interconnects

    Science.gov (United States)

    Gannon, Paul; Amendola, Roberta

    2012-12-01

    High-temperature corrosion of ferritic stainless steel (FSS) surfaces can be accelerated and anomalous when it is simultaneously subjected to different gaseous environments, e.g., when separating fuel (hydrogen) and oxidant (air) streams, in comparison with single-atmosphere exposures, e.g., air only. This so-called "dual-atmosphere" exposure is realized in many energy-conversion systems including turbines, boilers, gasifiers, heat exchangers, and particularly in intermediate temperature (600-800°C) planar solid-oxide fuel cell (SOFC) stacks. It is generally accepted that hydrogen transport through the FSS (plate or tube) and its subsequent integration into the growing air-side surface oxide layer can promote accelerated and anomalous corrosion—relative to single-atmosphere exposure—via defect chemistry changes, such as increased cation vacancy concentrations, decreased oxygen activity, and steam formation within the growing surface oxide layers. Establishment of a continuous and dense surface oxide layer on the fuel side of the FSS can inhibit hydrogen transport and the associated effects on the air side. Minor differences in FSS composition, microstructure, and surface conditions can all have dramatic influences on dual-atmosphere corrosion behaviors. This article reviews high-temperature, dual-atmosphere corrosion phenomena and discusses implications for SOFC stacks, related applications, and future research.

  7. Temperature and humidity effects on the corrosion of aluminium-base reactor fuel cladding materials during dry storage

    International Nuclear Information System (INIS)

    Peacock, H.B.; Sindelar, R.L.; Lam, P.S.

    2004-01-01

    The effect of temperature and relative humidity on the high temperature (up to 200 deg. C) corrosion of aluminum cladding alloys was investigated for dry storage of spent nuclear fuels. A dependency on alloy type and temperature was determined for saturated water vapor conditions. Models were developed to allow prediction of cladding behaviour of 1100, 5052, and 6061 aluminum alloys for up to 50+ years at 100% relative humidity. Calculations show that for a closed system, corrosion stops after all moisture and oxygen is used up during corrosion reactions with aluminum alloys. (author)

  8. Cracking and corrosion recovery boiler

    Energy Technology Data Exchange (ETDEWEB)

    Suik, H [Tallinn Technical University, Horizon Pulp and Paper, Tallinn (Estonia)

    1999-12-31

    The corrosion of heat surfaces and the cracking the drums are the main problems of the recovery boiler. These phenomena have been appeared during long-term operation of boiler `Mitsubishi - 315` erected at 1964. Depth of the crack is depending on the number of shutdowns and on operation time. Corrosion intensity of different heat surfaces is varying depend on the metal temperature and the conditions at place of positioning of tube. The lowest intensity of corrosion is on the bank tubes and the greatest is on the tubes of the second stage superheater and on the tubes at the openings of air ports. (orig.) 5 refs.

  9. Cracking and corrosion recovery boiler

    Energy Technology Data Exchange (ETDEWEB)

    Suik, H. [Tallinn Technical University, Horizon Pulp and Paper, Tallinn (Estonia)

    1998-12-31

    The corrosion of heat surfaces and the cracking the drums are the main problems of the recovery boiler. These phenomena have been appeared during long-term operation of boiler `Mitsubishi - 315` erected at 1964. Depth of the crack is depending on the number of shutdowns and on operation time. Corrosion intensity of different heat surfaces is varying depend on the metal temperature and the conditions at place of positioning of tube. The lowest intensity of corrosion is on the bank tubes and the greatest is on the tubes of the second stage superheater and on the tubes at the openings of air ports. (orig.) 5 refs.

  10. Countermeasures for electrolytic corrosion - Part I: Traditional methods and their problems

    International Nuclear Information System (INIS)

    Ha, Yoon-Cheol; Kim, Dae-Kyeong; Bae, Jeong-Hyo; Ha, Tae-Hyun; Lee, Hyun-Goo

    2004-01-01

    When an underground pipeline runs parallel with DC-powered railways, it suffers from electrolytic corrosion caused by the stray current leaked from the railway negative returns. Perforation due to the electrolytic corrosion may bring about large-scale accidents even in cathodically protected systems. Traditionally, bonding methods such as direct drainage, polarized drainage and forced drainage have been used in order to mitigate the damage on pipelines. In particular, the forced drainage method is widely adopted in Korea. In this paper, we report the real-time measurement data of the pipe-to-soil potential variation in the presence and absence of the IR compensation. The drainage current variation was also measured using the Stray Current Logger developed. By analysing them, the problems of current countermeasures for electrolytic corrosion are discussed. (authors)

  11. Countermeasures for electrolytic corrosion - Part I: Traditional methods and their problems

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Yoon-Cheol; Kim, Dae-Kyeong; Bae, Jeong-Hyo; Ha, Tae-Hyun; Lee, Hyun-Goo [Underground Systems Group, Korea Electrotechnology Research Institute, 28-1 Sungju-dong, Changwon (Korea, Republic of)

    2004-07-01

    When an underground pipeline runs parallel with DC-powered railways, it suffers from electrolytic corrosion caused by the stray current leaked from the railway negative returns. Perforation due to the electrolytic corrosion may bring about large-scale accidents even in cathodically protected systems. Traditionally, bonding methods such as direct drainage, polarized drainage and forced drainage have been used in order to mitigate the damage on pipelines. In particular, the forced drainage method is widely adopted in Korea. In this paper, we report the real-time measurement data of the pipe-to-soil potential variation in the presence and absence of the IR compensation. The drainage current variation was also measured using the Stray Current Logger developed. By analysing them, the problems of current countermeasures for electrolytic corrosion are discussed. (authors)

  12. Influence of yttria surface modification on high temperature corrosion of porous Ni22Cr alloy

    DEFF Research Database (Denmark)

    Karczewski, Jakub; Dunst, Katarzyna; Jasinski, Piotr

    2017-01-01

    Protective coatings for porous alloys for high temperature use are relatively new materials. Their main drawback is high temperature corrosion. In this work protective coatings based the on Y-precursor infiltrated into the sintered Ni22Cr alloys are studied at 700°C. Effects of the amount...... of the protective phase on the resulting corrosion properties are evaluated in air and humidified hydrogen. Weight gain of the samples, their open porosities and microstructures are analyzed and compared. Results show, that by the addition of even a minor amount of the Y-precursor corrosion rates can be decreased...

  13. Corrosion Behaviors of Structural Materials in High Temperature S-CO{sub 2} Environments

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Jung; Kim, Hyunmyung; Jang, Changheui [KAIST, Daejeon (Korea, Republic of)

    2014-04-15

    The isothermal corrosion tests of several types of stainless steels, Ni-based alloys, and ferritic-martensitic steels (FMS) were carried out at the temperature of 550 and 650 .deg. C in SFR S-CO{sub 2} environment (200 bar) for 1000 h. The weight gain was greater in the order of FMSs, stainless steels, and Ni-based alloys. For the FMSs (Fe-based with low Cr content), a thick outer Fe oxide, a middle (Fe,Cr)-rich oxide, and an inner (Cr,Fe)-rich oxide were formed. They showed significant weight gains at both 550 and 650 .deg. C. In the case of austenitic stainless steels (Fe-based) such as SS 316H and 316LN (18 wt.% Cr), the corrosion resistance was dependent on test temperatures except SS 310S (25 wt.% Cr). After corrosion test at 650 .deg. C, a large increase in weight gain was observed with the formation of outer thick Fe oxide and inner (Cr,Fe)-rich oxide. However, at 550 .deg. C, a thin Cr-rich oxide was mainly developed along with partially distributed small and nodular shaped Fe oxides. Meanwhile, for the Ni-based alloys (16-28 wt.% Cr), a very thin Cr-rich oxide was developed at both test temperatures. The superior corrosion resistance of high Cr or Ni-based alloys in the high temperature S-CO{sub 2} environment was attributed to the formation of thin Cr-rich oxide on the surface of the materials.

  14. Effect of temperature, of oxygen content and the downstream effect on corrosion rate of structural materials in liquid sodium

    International Nuclear Information System (INIS)

    Ilincev, G.

    1988-01-01

    The effects were experimentally tested of temperature and of oxygen content on the corrosion rate of structural materials in liquid sodium and on reducing the corrosion rate down the sodium stream. The results of the experiments are shown in graphs and tables and are discussed in detail. The duration of all tests was standard 1,000 hours. The test parameters were set such as to determine the effect of temperature on corrosion of a quantity of various materials in sodium with a low oxygen content (1.2 to 2 ppm) at temperatures of 500 to 800 degC and in sodium with a high oxygen content (345 ppm) at temperatures of 500 to 700 degC. More experiments served the determination of the effect of a different oxygen content varying between 1.2 and 2 ppm at a constant temperature of 600 degC. The materials being tested included main structural materials used for fast reactor construction and materials allowing to establish the effect of main alloying elements on their corrosion in liquid sodium of different temperatures and purity grades. The relationships showing the effects of temperature and oxygen content in sodium on the rate of corrosion of various structural materials in hot parts of the installation and on the reduction in the rate of corrosion downstream due to sodium saturation with corrosion products were constructed using the experimental results. (Z.M.). 15 figs., 2 tabs., 7 refs

  15. Peculiar high temperature corrosion of martensite alloy under impact of Estonian oil shale fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Tallermo, H; Klevtsov, I [Thermal Engineering Department of Tallinn Technical University, Tallinn (Estonia)

    1999-12-31

    The superheaters` surfaces of oil shale steam boiler made of pearlitic and austenitic alloys, are subject to intensive corrosion, mainly due to presence of chlorine in external deposits. The applicability of martensitic alloys X1OCrMoVNb91 and X20CrMoV121 for superheaters is examined here and empirical equations allowing to predict alloys` corrosion resistance in the range of operational temperatures are established. Alloy X1OCrMoVNb91 is found been most perspective for superheaters of boilers firing fossil fuel that contain alkaline metals and chlorine. The abnormal dependence of corrosion resistance of martensitic alloys on temperature is revealed, namely, corrosion at 580 deg C in presence of oil shale fly ash is more intensive than at 620 deg C. (orig.) 2 refs.

  16. Peculiar high temperature corrosion of martensite alloy under impact of Estonian oil shale fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Tallermo, H.; Klevtsov, I. [Thermal Engineering Department of Tallinn Technical University, Tallinn (Estonia)

    1998-12-31

    The superheaters` surfaces of oil shale steam boiler made of pearlitic and austenitic alloys, are subject to intensive corrosion, mainly due to presence of chlorine in external deposits. The applicability of martensitic alloys X1OCrMoVNb91 and X20CrMoV121 for superheaters is examined here and empirical equations allowing to predict alloys` corrosion resistance in the range of operational temperatures are established. Alloy X1OCrMoVNb91 is found been most perspective for superheaters of boilers firing fossil fuel that contain alkaline metals and chlorine. The abnormal dependence of corrosion resistance of martensitic alloys on temperature is revealed, namely, corrosion at 580 deg C in presence of oil shale fly ash is more intensive than at 620 deg C. (orig.) 2 refs.

  17. Pitting corrosion of Inconel 600 in chloride and sulfate solutions at low temperature

    International Nuclear Information System (INIS)

    Chang Mingyu; Yu Geping

    1993-01-01

    Pitting corrosion of Inconel 600 was examined in chloride and sulfate solutions through usage of potentiodynamic polarization techniques. The effects of chloride and sulfate concentration were investigated in the range of 0.0001 to 0.1 M. Increasing chloride concentrations resulted in active shifts of the pit nucleation potential. Immunity to pitting corrosion was evident at a chloride level below 0.005 M. Increasing sulfate concentrations resulted in improved pitting resistance of Inconel 600 in chloride solutions. Detrimental effects associated with pitting were evident with low-level sulfate being added to dilute chloride media. The density of pits increased with increasing chloride concentrations or temperature between room temperature and 70 C. Systematic trends for the depth of pits were not evident. The observations of pitting corrosion in open immersion were consistent with those in polarization methods. Corrosion products contained in the pits were enriched in nickel, chromium and iron with a small amount of titanium and silicon. The enrichment of chlorine or sulfur was still, however, not found. (orig.)

  18. Superheater corrosion in biomass-fired power plants: Investigation of Welds

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Carlsen, B; Biede, O

    2002-01-01

    -fired Masnedø combined heat and power (CHP) plant to investigate corrosion at temperatures higher than that of the actual plant. The highest steam temperature investigated was 570°C. Various alloys of 12-22% chromium content were welded into this test loop. Their corrosion rates were similar and increased...... condense on superheater components. This gives rise to specific corrosion problems not previously encountered in coal-fired power plants. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. A test superheater was built into the straw...... with temperature. The mechanism of attack was grain boundary attack as a precursor to selective chromium depletion of the alloy. In addition welds coupling various tubes sections were also investigated. It was seen that there was preferential attack around those welds that had a high nickel content. The welds...

  19. Review about corrosion of superheaters tubes in biomass plants

    International Nuclear Information System (INIS)

    Berlanga-Labari, C.; Fernandez-Carrasquilla, J.

    2006-01-01

    The design of new biomass-fired power plants with increased steam temperature raises concerns of high-temperature corrosion. The high potassium and chlorine contents in many biomass, specially in wheat straw, are potentially harmful elements with regard to corrosion. Chlorine may cause accelerated corrosion resulting in increased oxidation, metal wastage, internal attack, void formations and loose non-adherent scales. The most severe corrosion problems in biomass-fired systems are expected to occur due to Cl-rich deposits formed on superheater tubes. In the first part of this revision the corrosion mechanism proposed are described in function of the conditions and compounds involved. The second part is focused on the behaviour of the materials tested so far in the boiler and in the laboratory. First the traditional commercial alloys are studied and secondly the new alloys and the coasting. (Author). 102 refs

  20. Influence of Temperature on Corrosion Behavior of 2A02 Al Alloy in Marine Atmospheric Environments

    Directory of Open Access Journals (Sweden)

    Min Cao

    2018-02-01

    Full Text Available The corrosion behavior of 2A02 Al alloy under 4 mg/cm2 NaCl deposition at different temperatures (from 30 to 80 °C has been studied. This corrosion behavior was researched using mass-gain, scanning electron microscopy-SEM, laser scanning confocal microscopy-LSCM, X-ray photoelectron spectroscopy-XPS and other techniques. The results showed and revealed that the corrosion was maximal at 60 °C after 200 h of exposure. The increase of temperature not only affected the solubility of oxygen gas in the thin film, but also promoted the transport of ions (such as Cl−, and the formation of protective AlO(OH, which further affects the corrosion speed.

  1. Influence of Temperature on Corrosion Behavior of 2A02 Al Alloy in Marine Atmospheric Environments

    Science.gov (United States)

    Cao, Min; Liu, Li; Fan, Lei; Yu, Zhongfen; Li, Ying; Oguzie, Emeka E.; Wang, Fuhui

    2018-01-01

    The corrosion behavior of 2A02 Al alloy under 4 mg/cm2 NaCl deposition at different temperatures (from 30 to 80 °C) has been studied. This corrosion behavior was researched using mass-gain, scanning electron microscopy-SEM, laser scanning confocal microscopy-LSCM, X-ray photoelectron spectroscopy-XPS and other techniques. The results showed and revealed that the corrosion was maximal at 60 °C after 200 h of exposure. The increase of temperature not only affected the solubility of oxygen gas in the thin film, but also promoted the transport of ions (such as Cl−), and the formation of protective AlO(OH), which further affects the corrosion speed. PMID:29401690

  2. Monitoring corrosion and corrosion control of iron in HCl by non-ionic surfactants of the TRITON-X series - Part II. Temperature effect, activation energies and thermodynamics of adsorption

    International Nuclear Information System (INIS)

    Amin, Mohammed A.; Ahmed, M.A.; Arida, H.A.; Arslan, Taner; Saracoglu, Murat; Kandemirli, Fatma

    2011-01-01

    Research highlights: → TX-305 exhibits inhibiting properties for iron corrosion more than TX-165 and TX 100. → Inhibition efficiency increases with temperature, suggesting chemical adsorption. → The three tested surfactants act as mixed-type inhibitors with cathodic predominance. → Validation of corrosion rates measured by Tafel extrapolation method is confirmed. - Abstract: The inhibition characteristics of non-ionic surfactants of the TRITON-X series, namely TRITON-X-100 (TX-100), TRITON-X-165 (TX-165) and TRITON-X-305 (TX-305), on the corrosion of iron was studied in 1.0 M HCl solutions as a function of inhibitor concentration (0.005-0.075 g L -1 ) and solution temperature (278-338 K). Measurements were conducted based on Tafel extrapolation method. Electrochemical frequency modulation (EFM), a non-destructive corrosion measurement technique that can directly give values of corrosion current without prior knowledge of Tafel constants, is also presented. Experimental corrosion rates determined by the Tafel extrapolation method were compared with corrosion rates obtained by the EFM technique and an independent method of chemical analysis. The chemical method of confirmation of the corrosion rates involved determination of the dissolved cation, using ICP-AES (inductively coupled plasma atomic emission spectrometry). The aim was to confirm validation of corrosion rates measured by the Tafel extrapolation method. Results obtained showed that, in all cases, the inhibition efficiency increased with increase in temperature, suggesting that chemical adsorption occurs. The adsorptive behaviour of the three surfactants followed Temkin-type isotherm. The standard free energies of adsorption decreased with temperature, reflecting better inhibition performance. These findings confirm chemisorption of the tested inhibitors. Thermodynamic activation functions of the dissolution process were also calculated as a function of each inhibitor concentration. All the results

  3. Electrochemical techniques application in corrosion problems of fossil power plants; Aplicacion de tecnicas electroquimicas en problemas de corrosion en centrales termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Cano Castillo, Ulises; Garcia Ochoa, Esteban Miguel; Martinez Villafane, Alberto; Mariaca Rodriguez, Liboria; Malo Tamayo, Jose Maria; Uruchurtu Chavarin, Jorge [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1991-12-31

    Some aspects of the electrochemical techniques employed to evaluate the corrosion at low temperature in fossil power plants are commented, as well as the results obtained with the application of them in three power plants of this type. [Espanol] Se comentan algunos aspectos de tecnicas electroquimicas utilizadas para evaluar la corrosion en baja temperatura en centrales termoelectricas, asi como los resultados de la aplicacion de las mismas en tres centrales de este tipo.

  4. Electrochemical techniques application in corrosion problems of fossil power plants; Aplicacion de tecnicas electroquimicas en problemas de corrosion en centrales termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Cano Castillo, Ulises; Garcia Ochoa, Esteban Miguel; Martinez Villafane, Alberto; Mariaca Rodriguez, Liboria; Malo Tamayo, Jose Maria; Uruchurtu Chavarin, Jorge [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1990-12-31

    Some aspects of the electrochemical techniques employed to evaluate the corrosion at low temperature in fossil power plants are commented, as well as the results obtained with the application of them in three power plants of this type. [Espanol] Se comentan algunos aspectos de tecnicas electroquimicas utilizadas para evaluar la corrosion en baja temperatura en centrales termoelectricas, asi como los resultados de la aplicacion de las mismas en tres centrales de este tipo.

  5. High temperature corrosion behaviour of a new Ni-30Fe-10Ar-Cr-alloy

    International Nuclear Information System (INIS)

    Kloewer, J.; Sauthoff, G.

    1997-01-01

    The high temperature corrosion behaviour of a new duplex nickel-base alloy containing about 30 mass% iron, 10 mass% aluminium and 8 mass% chromium was determined in both air and hot process gases containing methane/hydrogen, sulphur dioxide and hydrogen sulphide, respectively. It was found that the corrosion resistance against carburisation, sulphidation and oxidation was excellent due to the formation of a dense, protective alumina scale. The adherence of the alumina scale was increased by an addition of 0.1 mass% hafnium. The concentration of chromium was found to have a remarkable impact on the oxidation and high temperature corrosion resistance. Alloys without chromium showed increased corrosion rates in both air and sulphur-containing gas atmospheres due to the initial formation of nickel oxides. In sulphidising SO 2 -and H 2 S- containing gases at least 4 mass% chromium are required to stabilise the formation of alumina and to prevent the formation of nickel/sulphur compounds. (orig.)

  6. Lifetime evaluation of superheater tubes exposed to steam oxidation, high temperature corrosion and creep

    Energy Technology Data Exchange (ETDEWEB)

    Henriksen, N [Elsamprojekt A/S, Faelleskemikerne, Fredericia (Denmark); Hede Larsen, O; Blum, R [I/S Fynsvaerket, Faelleskemikerne, Odense (Denmark)

    1996-12-01

    Advanced fossil fired plants operating at high steam temperatures require careful design of the superheaters. The German TRD design code normally used in Denmark is not precise enough for the design of superheaters with long lifetimes. The authors have developed a computer program to be used in the evaluation of superheater tube lifetime based on input related to tube dimensions, material, pressure, steam temperature, mass flux, heat flux and estimated corrosion rates. The program is described in the paper. As far as practically feasible, the model seems to give a true picture of the reality. For superheaters exposed to high heat fluxes or low internal heat transfer coefficients as is the case for superheaters located in fluidized bed environments or radiant environments, the program has been extremely useful for evaluation of surface temperature, oxide formation and lifetime. The total uncertainty of the method is mainly influenced by the uncertainty of the determination of the corrosion rate. More precise models describing the corrosion rate as a function of tube surface temperature, fuel parameters and boiler parameters need to be developed. (au) 21 refs.

  7. Effect of water chemistry on corrosion of stainless steel and deposition of corrosion products in high temperature pressurised water

    International Nuclear Information System (INIS)

    Morrison, Jonathan; Cooper, Christopher; Ponton, Clive; Connolly, Brian; Banks, Andrew

    2012-09-01

    In any water-cooled nuclear reactor, the corrosion of the structural materials in contact with the coolant and the deposition of the resulting oxidised species has long been an operational concern within the power generation industry. Corrosion of the structural materials at all points in the reactor leads to low concentrations of oxidised metal species in the coolant water. The oxidised metal species can subsequently be deposited out as CRUD deposits at various points around the reactor's primary and secondary loops. The deposition of soluble oxidised material at any location in the reactor cooling system is undesirable due to several effects; deposits have a porous structure, capable of incorporating radiologically active material (forming out of core radiation fields) and concentrating aggressively corrosive chemicals, which exacerbate environmental degradation of structural and fuel-cladding materials. Deposits on heat transfer surfaces also limit efficiency of the system as a whole. The work in this programme is an attempt to determine and understand the fundamental corrosion and deposition behaviour under controlled, simulated reactor conditions. The rates of corrosion of structural materials within pressurised water reactors are heavily dependent on the condition of the exposed surface. The effect of mechanical grinding and of electropolishing on the corrosion rate and structure of the resultant oxide film formed on grade 316L stainless steel exposed to high purity water, modified to pH 9.5 and 10.5 at temperatures between 200 and 300 deg. C and pressures of up to 100 bar will be investigated. The corrosion of stainless steel in water via electrochemical oxidation leads to the formation of surface iron, nickel and chromium based spinels. Low concentrations of these spinels can be found dissolved in the coolant water. The solubility of magnetite, stainless steels' major corrosion product, in high purity water will be studied at pH 9.5 to 10.5 at

  8. High Temperature Corrosion on Biodust Firing

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi

    The high content of alkali metals and chlorine in biomass gives rise to fouling/slagging and corrosion of heat exchange components, such as superheaters, in biomass fired power plants. Increasing the lifetime of these components, and in addition, preventing unwarranted plant shutdowns due...... to their failure, requires understanding of the complex corrosion mechanisms, as well as development of materials that are resistant to corrosion under biomass firing conditions, thereby motivating the current work. To understand the mechanisms of corrosion attack, comprehensive analysis of corrosion products...... by the combined use of complementary information from microscopy, energy dispersive X-ray spectroscopy and various X-ray diffraction characterization techniques. In light of the wide variation in operating conditions in biomass fired power plants, systematic and well-controlled, but realistic laboratory scale...

  9. Corrosion Behavior of Nickel-Plated Alloy 600 in High Temperature Water

    International Nuclear Information System (INIS)

    Kim, Ji Hyun; Hwang, Il Soon

    2008-01-01

    In this paper, electrochemical and microstructural characteristics of nickel-plated Alloy 600 wee investigated in order to identify the performance of electroless Ni-plating on Alloy 600 in high-temperature aqueous condition with the comparison of electrolytic nickel-plating. For high temperature corrosion test of nickel-plated Alloy 600, specimens were exposed for 770 hours to typical PWR primary water condition. During the test, open circuit potentials (OCP's) of all specimens were measured using a reference electrode. Also, resistance to flow accelerated corrosion (FAC) test was examined in order to check the durability of plated layers in high-velocity flow environment at high temperature. After exposures to high flow rate aqueous condition, the integrity of surfaces was confirmed by using both scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). For the field application, a remote process for electroless nickel-plating was demonstrated using a plate specimen with narrow gap on a laboratory scale. Finally, a practical seal design was suggested for more convenient application

  10. Electrochemical corrosion of Zircaloy-2 under PWR water chemistry but at room temperature

    International Nuclear Information System (INIS)

    Waheed, Abdel-Aziz Fahmy; Kandil, Abdel-Hakim Taha; Hamed, Hani M.

    2016-01-01

    Highlights: • There is no simple relation between the corrosion rate and LiOH concentration. • At low concentration, 100 ppm Li, an increase of the rate is due to the pH impact. • LiOH in concentrated solution led to accelerated corrosion by pH effect and porosity. • Boron abates the lithium effect by pH neutralizing and participation in the corrosion. - Abstract: Electrochemical corrosion of Zircaloy-2 was tested at room temperature in lithium hydroxide (LiOH) concentrations that ranged from 2.2 to 7000 ppm and boric acid (H 3 BO 3 ) concentrations that ranged from 50 to 4000 ppm. Following the corrosion experiments, the oxide films of specimens were examined by SEM to examine the oxide existence. LiOH concentrations as high as 1 M (7000-ppm lithium) can lead to significantly increased electrochemical corrosion rate. It is suggested that the accelerated corrosion in concentrated solution is caused by the synergetic effect of LiOH, pH and porosity generation. In solutions containing 100 ppm of lithium, the presence of boron had an ameliorating effect on the corrosion rates of Zircaloy-2. Similar to acceleration of corrosion by lithium, the inhibition by boron is due to a combined effect of pH neutralizing and its participation in the corrosion process.

  11. Corrosion resistant coatings suitable for elevated temperature application

    Science.gov (United States)

    Chan, Kwai S [San Antonio, TX; Cheruvu, Narayana Sastry [San Antonio, TX; Liang, Wuwei [Austin, TX

    2012-07-31

    The present invention relates to corrosion resistance coatings suitable for elevated temperature applications, which employ compositions of iron (Fe), chromium (Cr), nickel (Ni) and/or aluminum (Al). The compositions may be configured to regulate the diffusion of metals between a coating and a substrate, which may then influence coating performance, via the formation of an inter-diffusion barrier layer. The inter-diffusion barrier layer may comprise a face-centered cubic phase.

  12. Thermo chemical calculations applied to the study of ceramic corrosion at high temperature - Steel-making applications; Apport de la thermodynamique a l'etude de la corrosion des ceramiques a haute temperature - Applications siderurgiques

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, J. [Orleans Univ., Polytechnique, 45 (France); Centre National de la Recherche Scientifique (CNRS/CEMHTI), 45 - Orleans-la-Source (France)

    2008-05-15

    At high temperature, corrosion by gas, slag or metal is recognized in many cases as the essential degradation mode of ceramics. The reaction between the ceramic and the corrosive agent should be described taking into account both the kinetic aspects (rates and mechanisms of the reactions) and the thermodynamic aspects (equilibrium conditions). After a short description of the thermodynamic tools, we will show how some thermo chemical calculations, involving complex multi-component systems at high temperature, can be applied to explain some practical situations. Different examples, from steel making, will be considered: effects of composition changes upon the stability of the refractories and reactions of corrosion between the refractories, the gas and the liquid oxides. (author)

  13. Corrosion in waste incineration facilities; Korrosion i avfallsfoerbraenningsanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Staalenheim, Annika; Henderson, Pamela

    2004-11-01

    Waste is a heterogeneous fuel, often with high levels of chlorine, alkali and heavy metals. This leads to much more severe corrosion problems than combustion of fossil fuels. The corrosion rates of the materials used can be extremely high. Materials used for heat transferring parts are usually carbon steel or low alloyed steel. These are significantly cheaper than other steels. Austenitic stainless steel is also used, but is often avoided due to its sensitivity to stress corrosion cracking. More advanced materials, such as nickel base alloys, can be used in extremely aggressive environments. Since these materials are expensive and do not always have sufficient mechanical properties, they are often used as coatings on carbon steel tubes or as composite tubes. A new method, which shows good results at the first tests in plants, is electroplating with nickel. Plastic materials can be used in low temperature parts if the temperature does not exceed 150 deg C. A glass fibre inforced material is probably the best choice. The parts of the furnace that are most prone to corrosion are waterwalls where the refractory coating is lost, has not been applied to a sufficient height in the boiler or is not used at all. Failures of superheaters often occur in areas near soot blowers or on the tubes exposed to the highest flue gas temperatures. Few cases of low temperature corrosion are reported in the literature, possibly because these problems are unusual or because low temperature corrosion rarely causes costly and dramatic failures. Waterwall tubes should be made of carbon steel, because of the price and to minimise the risk for stress corrosion cracking. Usually the tubes must be covered with a more corrosion resistant material to withstand the environment in the boiler. Metal coatings can be used in less demanding environments. Refractory is probably the best protection for waterwalls from severe erosion. Surfaces in extremely corrosive areas, e.g. the fuel feed area, should

  14. Center of Competence in High Temperature Corrosion, HTC. Report of activities during stage 3, 2000-10-01--2003-12-31

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Lars-Gunnar [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Inorganic Chemistry

    2004-09-01

    HTC, the Swedish High Temperature Corrosion Centre, is a Swedish national competence centre jointly financed by the Swedish National Energy Agency, Chalmers Univ. of Technology and twelve member companies. HTC research has the following objectives: Improved materials performance resulting in increased service life of installations leading to lower maintenance and repair costs. Improved process performance resulting in improved energy efficiency and decreased emissions to the environment To achieve this, HTC aims to establish new and fundamental knowledge on High-Temperature Corrosion. The following research themes are pursued: High temperature corrosion in combustion gases and under deposits; Interaction of corrosion and mechanical factors such as erosion and fatigue. Main achievements during stage 3: HTC is at the cutting edge of science in certain areas of high temperature corrosion research. e.g., on the effect of water vapor on the corrosion of FeCr alloys, on the oxidation of platinum aluminide coatings and on the kinetics of the reactions at the oxide-gas interface.

  15. Corrosion behavior of low energy, high temperature nitrogen ion ...

    Indian Academy of Sciences (India)

    Corrosion behavior of low energy, high temperature nitrogen ion-implanted AISI 304 stainless steel. M GHORANNEVISS1, A SHOKOUHY1,∗, M M LARIJANI1,2,. S H HAJI HOSSEINI 1, M YARI1, A ANVARI4, M GHOLIPUR SHAHRAKI1,3,. A H SARI1 and M R HANTEHZADEH1. 1Plasma Physics Research Center, Science ...

  16. Resistance of various coatings to high temperature corrosion in HCl and SO{sub 2} containing environments

    Energy Technology Data Exchange (ETDEWEB)

    Cizner, Josef; Mlnarik, Jakub; Hruska, Jan [SVUM a.s., Prague (Czech Republic). Lab. of High Temperature Corrosion

    2010-07-01

    For high efficiency of the steam turbines it is necessary to produce steam of temperature at least 400 C, which in conjunction with specific composition of combustion gases causes fireside corrosion problems. The combustion gases contain aggressive compounds ike HCl and SO{sub 2} and some other elements which can form deposits on heat exchanging surfaces e.g. calcium, potassium salts etc. Using of high-alloy steels or nickel-based alloys is very costly and also these materials could have lower thermal conductivity. A cheaper solution is to produce a coating on low (medium)-alloy steel. Common heat-resistant steels show very short lifetime under these conditions. The solution is then to use the appropriate coatings. Some types of coatings can be applied even inside older boilers. In this work we tested many coatings composition (nickel-based, aluminium-based etc. As well as with different processing method - arc sprayed coating, weld deposits, HVOF, etc.) on 16Mo3 steel. In particular their high temperature corrosion behaviour in model atmosphere containing SO{sub 2} and HCl and also under deposit of fly ash was studied. (orig.)

  17. Solutions of corrosion Problems in advanced Technologies

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Karlsson, Asger

    1999-01-01

    Austenitic and ferritic steels were exposed in the superheater area of a straw-fired CHP plant. The specimens were exposed for 1400 hours at 450-600°C. The rate of corrosion was assessed based on unattacked metal remaining. The corrosion products and course of corrosion for the various steel types...

  18. Evaluation of corrosion products formed by sulfidation as inhibitors of the naphthenic corrosion of AISI-316 steel

    Science.gov (United States)

    Sanabria-Cala, J. A.; Montañez, N. D.; Laverde Cataño, D.; Y Peña Ballesteros, D.; Mejía, C. A.

    2017-12-01

    Naphthenic acids present in oil from most regions worldwide currently stand as the main responsible for the naphthenic corrosion problems, affecting the oil-refining industry. The phenomenon of sulfidation, accompanying corrosion processes brought about by naphthenic acids in high-temperature refining plant applications, takes place when the combination of sulfidic acid (H2S) with Fe forms layers of iron sulphide (FeS) on the material surface, layers with the potential to protect the material from attack by other corrosive species like naphthenic acids. This work assessed corrosion products formed by sulfidation as inhibitors of naphthenic corrosion rate in AISI-316 steel exposed to processing conditions of simulated crude oil in a dynamic autoclave. Calculation of the sulfidation and naphthenic corrosion rates were determined by gravimetry. The surfaces of the AISI-316 gravimetric coupons exposed to acid systems; were characterized morphologically by X-Ray Diffraction (XRD) and X-ray Fluorescence by Energy Dispersive Spectroscopy (EDS) combined with Scanning Electron Microscopy (SEM). One of the results obtained was the determination of an inhibiting effect of corrosion products at 250 and 300°C, where lower corrosion rate levels were detected. For the temperature of 350°C, naphthenic corrosion rates increased due to deposition of naphthenic acids on the areas where corrosion products formed by sulfidation have lower homogeneity and stability on the surface, thus accelerating the destruction of AISI-316 steel. The above provides an initial contribution to oil industry in search of new alternatives to corrosion control by the attack of naphthenic acids, from the formation of FeS layers on exposed materials in the processing of heavy crude oils with high sulphur content.

  19. Problems of technology and corrosion in sodium coolant and cover gas

    International Nuclear Information System (INIS)

    Kuenstler, K.; Ullmann, H.

    1977-07-01

    The meeting encloses the following themes: (i) Reactions in the system sodium-steel-cover gas (ii) Corrosion behaviour of structural and cladding materials (iii) Determination of impurities in sodium and cover gas (iv) Technology of sodium and cover gas (v) Testing equipments (vi) Safety problems

  20. The corrosion rate measurement of Inconel 690 on high temperature and pressure by using CMS100

    International Nuclear Information System (INIS)

    Sriyono; Satmoko, Ari; Febrianto; Hidayati, N R; Arifal; Sumarno, Ady; Handoyo, Ismu; Prasetjo, Joko

    1999-01-01

    The corrosion rate measurement of Inconel 690 on high temperature and pressure had been done. By using an Autoclave, and temperature can be simulated. For reducing the pressure on Autoclave so its can be measure by Corrosion Measurement System 100(CMS100), the electrodes placement had designed and fabrication on the cover of Autoclave. The electrodes of CMS100 are reference electrode, working electrodes and counter electrodes. The electrodes placement are made and and designed on two packages, these are Salt bridge and Counter-specimen placement. From the result of testing these both of placement are able to 90 bar (pressure) and 280 C (temperature) operation rate measurement was done on temperature variation from 150 0C, 190 0C, 200 0C, 210 0C, 220 0C and 230 0C, and the solution is 0.1 ppm chloride. The pressure experiment is the pressure, which occurred in Autoclave. From the Tafel analysis, even through very little The corrosion current increased from 150 C to 230 C it is 2,54x10-10 a/cm2 to 1,62x10-9 A/cm2, but the the corrosion rate is still zero

  1. Influence of temperature and lithium purity on corrosion of ferrous alloys in a flowing lithium environment

    International Nuclear Information System (INIS)

    Chopra, O.K.; Smith, D.L.

    1986-03-01

    Corrosion data have been obtained on ferritic HT-9 and Fe-9Cr-1Mo steel and austenitic Type 316 stainless steel in a flowing lithium environment at temperatures between 372 and 538 0 C. The corrosion behavior is evaluated by measurements of weight loss as a function of time and temperature. A metallographic characterization of materials exposed to a flowing lithium environment is presented

  2. KTA 625 alloy tube with excellent corrosion resistance and heat resistance

    International Nuclear Information System (INIS)

    Fujiwara, Kazuo; Kadonaga, Toshiki; Kikuma, Seiji.

    1982-01-01

    The problems when seamless tubes are produced by using nickel base 625 alloy (61Ni-22Cr-9Mo-Cb) which is known as a corrosion resistant and heat resistant alloyF were examined, and the confirmation experiment was carried out on its corrosion resistance and heat resistance. Various difficulties have been experienced in the tube making owing to the characteristics due to the chemical composition, but they were able to be solved by the repeated experiments. As for the characteristics of the product, the corrosion resistance was excellent particularly in the environment containing high temperature, high concentration chloride, and also the heat resistance was excellent in the wide temperature range from normal temperature to 1000 deg C. From these facts, the wide fields of application are expected for these alloy tubes, including the evaporation and concentration equipment for radioactive wastes in atomic energy field. Expecting the increase of demand hereafter, Kobe Steel Ltd. examined the problems when seamless tubes are produced from the 625 alloy by Ugine Sejournet process. The aptitude for tube production such as the chemical composition, production process and the product characteristics, the corrosion resistance against chloride, hydrogen sulfide, polythionic and other acids,F the high temperature strength and oxidation resistance are reported. (Kako, I.)

  3. High-Temperature Oxidation and Smelt Deposit Corrosion of Ni-Cr-Ti Arc-Sprayed Coatings

    Science.gov (United States)

    Matthews, S.; Schweizer, M.

    2013-08-01

    High Cr content Ni-Cr-Ti arc-sprayed coatings have been extensively applied to mitigate corrosion in black liquor recovery boilers in the pulp and paper industry. In a previous article, the effects of key spray parameters on the coating's microstructure and its composition were investigated. Three coating microstructures were selected from that previous study to produce a dense, oxidized coating (coating A), a porous, low oxide content coating (coating B), and an optimized coating (coating C) for corrosion testing. Isothermal oxidation trials were performed in air at 550 and 900 °C for 30 days. Additional trials were performed under industrial smelt deposits at 400 and 800 °C for 30 days. The effect of the variation in coating microstructure on the oxidation and smelt's corrosion response was investigated through the characterization of the surface corrosion products, and the internal coating microstructural developments with time at high temperature. The effect of long-term, high-temperature exposure on the interaction between the coating and substrate was characterized, and the mechanism of interdiffusion was discussed.

  4. High temperature corrosion studies on friction-welded dissimilar metals

    International Nuclear Information System (INIS)

    Arivazhagan, N.; Singh, Surendra; Prakash, Satya; Reddy, G.M.

    2006-01-01

    Understanding the behaviour of weldment at elevated temperatures and especially their corrosion behaviour has become an object of scientific investigation recently. Investigation has been carried out on friction-welded AISI 4140 and AISI 304 under molten salt of Na 2 SO 4 + V 2 O 5 (60%) environment at 500 and 550 deg. C under cyclic condition. The influences of welding parameters on the hot corrosion have been discussed. The resulting oxide scales in the weldment have been characterized systematically using surface analytical techniques. Scale thickness on low alloy steel side was found to be more and was prone to spalling. Weld region has been found to be more prone to degradation than base metals due to inter diffusion of element across the interface and the formation of intermetallic compound

  5. High temperature corrosion studies on friction-welded dissimilar metals

    Energy Technology Data Exchange (ETDEWEB)

    Arivazhagan, N. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Roorkee (India)]. E-mail: arivadmt@iitr.ernet.in; Singh, Surendra [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Roorkee (India); Prakash, Satya [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Roorkee (India); Reddy, G.M. [Defense Metallurgical and Research Laboratory, Hyderabad (India)

    2006-07-25

    Understanding the behaviour of weldment at elevated temperatures and especially their corrosion behaviour has become an object of scientific investigation recently. Investigation has been carried out on friction-welded AISI 4140 and AISI 304 under molten salt of Na{sub 2}SO{sub 4} + V{sub 2}O{sub 5} (60%) environment at 500 and 550 deg. C under cyclic condition. The influences of welding parameters on the hot corrosion have been discussed. The resulting oxide scales in the weldment have been characterized systematically using surface analytical techniques. Scale thickness on low alloy steel side was found to be more and was prone to spalling. Weld region has been found to be more prone to degradation than base metals due to inter diffusion of element across the interface and the formation of intermetallic compound.

  6. Effect of temperature on the crevice corrosion resistance of Ni-Cr-Mo alloys as engineered barriers in nuclear waste repositories

    International Nuclear Information System (INIS)

    Hornus, Edgard C.; Rodríguez, Martin A.

    2011-01-01

    Ni-Cr-Mo alloys offer an outstanding corrosion resistance in a wide variety of highly corrosive environments. Alloys 625, C-22, C-22HS and Hybrid-BC1 are considered among candidates as engineered barriers of nuclear repositories. The objective of the present work was to assess the effect of temperature on the crevice corrosion resistance of these alloys. The crevice corrosion re-passivation potential (E CO ) of the tested alloys was determined by the Potentiodynamic-Galvanostatic-Potentiodynamic (PD-GS-PD) method. Alloy Hybrid-BC1 was the most resistant to chloride-induced crevice corrosion, followed by alloys C-22HS, C-22 and 625. E CO showed a linear decrease with temperature. There is a temperature above which E CO does not decrease anymore, reaching a minimum value. This E CO value is a strong parameter for assessing the localized corrosion susceptibility of a material in a long term timescale, since it is independent of temperature, chloride concentration and geometrical variables such as crevicing mechanism, crevice gap and type of crevice formers. (author) [es

  7. Corrosion problems in nuclear power industry

    International Nuclear Information System (INIS)

    Flis, J.; Janik-Czachor, M.

    1980-01-01

    Characteristics were given of steels and alloys used in the PWR nuclear power plants and of water used in the primary and secondary systems. Corrosion damages of materials and installations were described. It was indicated that the damages were due mainly to stress corrosion cracking. Main preventive methods were listed. (author)

  8. Intergranular corrosion of 13Cr and 17Cr martensitic stainless steels in accelerated corrosive solution and high-temperature, high-purity water

    International Nuclear Information System (INIS)

    Ozaki, Toshinori; Ishikawa, Yuichi

    1988-01-01

    Intergranular corrosion behavior of 13Cr and 17Cr martensitic stainless steels was studied by electrochemical and immersing corrosion tests. Effects of the mEtallurgical and environmental conditions on the intergranular corrosion of various tempered steels were examined by the following tests and discussed. (a) Anodic polarization measurement and electrolytical etching test in 0.5 kmol/m 3 H 2 SO 4 solution at 293 K. (b) Immersion corrosion test in 0.88 kmol/m 3 HNO 3 solution at 293 K. (c) Long-time immersion test for specimens with a crevice in a high purity water at 473 K∼561 K. It was found from the anodic polarization curves in 0.5 kmol/m 3 H 2 SO 4 solution-at 293 K that the steels tempered at 773∼873 K had susceptibility to intergranular corrosion in the potential region indicating a second current maximum (around-0.1 V. vs. SCE). But the steel became passive in the more noble potential region than the second current peak potential, while in the less noble potential region general corrosion occurred independent of its microstructure. The intergranular corrosion occurred due to the localized dissolution along the pre-austenitic grain boundary and the martensitic lath boundary. It could be explained by the same dissolution model of the chromium depleted zone as proposed for the intergranular corrosion of austenitic and ferritic stainless steels. The intergranular corrosion occurred entirely at the free surface in 0.88 kmol/m 3 HNO 3 solution, while in the high temperature and high purity water only the entrance of the crevice corroded. It was also suggested that this intergranular corrosion might serve as the initiation site for stress corrosion cracking of the martensitic stainless steel. (author)

  9. Solubility of corrosion products in high temperature water

    International Nuclear Information System (INIS)

    Srinivasan, M.P.; Narasimhan, S.V.

    1995-01-01

    A short review of solubility of corrosion products at high temperature in either neutral or alkaline water as encountered in BWR, PHWR and PWR primary coolant reactor circuits is presented in this report. Based on the available literature, various experimental techniques involved in the study of the solubility, theory for fitting the solubility data to the thermodynamic model and discussion of the published results with a scope for future work have been brought out. (author). 17 refs., 7 figs

  10. Parameters of straining-induced corrosion cracking in low-alloy steels in high temperature water

    International Nuclear Information System (INIS)

    Lenz, E.; Liebert, A.; Stellwag, B.; Wieling, N.

    Tensile tests with slow deformation speed determine parameters of corrosion cracking at low strain rates of low-alloy steels in high-temperature water. Besides the strain rate the temperature and oxygen content of the water prove to be important for the deformation behaviour of the investigated steels 17MnMoV64, 20 MnMoNi55 and 15NiCuMoNb 5. Temperatures about 240 0 C, increased oxygen contents in the water and low strain rates cause a decrease of the material ductility as against the behaviour in air. Tests on the number of stress cycles until incipient cracking show that the parameters important for corrosion cracking at low strain velocities apply also to low-frequency cyclic loads with high strain amplitude. In knowledge of these influencing parameters the strain-induced corrosion cracking is counteracted by concerted measures taken in design, construction and operation of nuclear power stations. Essential aims in this matter are to avoid as far as possible inelastic strains and to fix and control suitable media conditions. (orig.) [de

  11. Localized corrosion problems in water reactors

    International Nuclear Information System (INIS)

    Coriou, Henri.

    1977-01-01

    Main localized etching on the structure materials of water reactors are studied: stress corrosion on stainless steel 304 (B.W.R), stress corrosion, 'wall thinning' and denting of Inconel 600 vapor generator tubes (P.W.R.). Some mechanisms are examined and practical exemples in reactors are described. Various possible cures are presented [fr

  12. Effects of 1000 C oxide surfaces on room temperature aqueous corrosion and environmental embrittlement of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, R.A.; Perrin, R.L. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering

    1997-12-01

    Results of electrochemical aqueous-corrosion studies at room temperature indicate that retained in-service-type high-temperature surface oxides (1000 C in air for 24 hours) on FA-129, FAL and FAL-Mo iron aluminides cause major reductions in pitting corrosion resistance in a mild acid-chloride solution designed to simulate aggressive atmospheric corrosion. Removal of the oxides by mechanical grinding restores the corrosion resistance. In a more aggressive sodium tetrathionate solution, designed to simulate an aqueous environment contaminated by sulfur-bearing combustion products, only active corrosion occurs for both the 1000 C oxide and mechanically cleaned surfaces at FAL. Results of slow-strain-rate stress-corrosion-cracking tests on FA-129, FAL and FAL-Mo at free-corrosion and hydrogen-charging potentials in the mild acid chloride solution indicate somewhat higher ductilities (on the order of 50%) for the 1000 C oxides retard the penetration of hydrogen into the metal substrates and, consequently, are beneficial in terms of improving resistance to environmental embrittlement. In the aggressive sodium tetrathionate solution, no differences are observed in the ductilities produced by the 1000 C oxide and mechanically cleaned surfaces for FAL.

  13. A new steel with good low-temperature sulfuric acid dew point corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, X.Q.; Li, X.G. [Corrosion and Protection Center, University of Science and Technology Beijing (China); Key Laboratory of Corrosion and Protection (Ministry of Education), Beijing (China); Sun, F.L. [Corrosion and Protection Center, University of Science and Technology Beijing (China); Lv, S.J. [Corrosion and Protection Center, University of Science and Technology Beijing (China); Equipment and Power Department, Shijiazhuang Refine and Chemical Company Limited, SINOPEC, Shijiazhuang (China)

    2012-07-15

    In this work, new steels (1, 2, and 3) were developed for low-temperature sulfuric acid dew point corrosion. The mass loss rate, macro- and micro-morphologies and compositions of corrosion products of new steels in 10, 30, and 50% H{sub 2}SO{sub 4} solutions at its corresponding dew points were investigated by immersion test, scanning electron microscopy (SEM) and energy-dispersive spectrometry (EDS). The results indicated that mass loss rate of all the tested steels first strongly increased and then decreased as H{sub 2}SO{sub 4} concentration increased, which reached maximum at 30%. Corrosion resistance of 2 steel is the best among all specimens due to its fine and homogeneous morphologies of corrosion products. The electrochemical corrosion properties of new steels in 10 and 30% H{sub 2}SO{sub 4} solutions at its corresponding dew points were studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The results demonstrated that corrosion resistance of 2 steel is the best among all the experimental samples due to its lowest corrosion current density and highest charge transfer resistance, which is consistent with the results obtained from immersion tests. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Corrosion kinetic of 2 and 4 zircaloys in air at high temperatures

    International Nuclear Information System (INIS)

    Goncalves, A.C.; Goncalves, Z.C.

    1986-01-01

    The corrosion results of 2 and 4 zircaloys obtained in a thermal balance between 500 and 850 0 C are discussed based on the model of 'reduction of diffusion path'. The behaviour of both alloys has shown almost similar in this interval of temperature, proving that the corrosion is processed by an identical kinetic mechanism. It is still analysed the formation of superposed layer of porous oxide and the possible influence of the oxygen partial pressure in inversion velocities between 750 and 800 0 C. (Author) [pt

  15. Analysis of corrosion data for carbon steels in simulated salt repository brines and acid chloride solutions at high temperatures

    International Nuclear Information System (INIS)

    Diercks, D.R.; Hull, A.B.; Kassner, T.F.

    1988-03-01

    Carbon steel is currently the leading candidate material for fabrication of a container for isolation of high level nuclear waste in a salt repository. Since brine entrapped in the bedded salt can migrate to the container by several transport processes, corrosion is an important consideration in the long-term performance of the waste package. A detailed literature search was performed to compile relevant corrosion data for carbon steels in anoxic acid chloride solutions, and simulated salt repository brines at temperatures between ∼ 20 and 400 0 C. The hydrolysis of Mg 2+ ions in simulated repository brines containing high magnesium concentrations causes acidification at temperatures above 25 0 C, which, in turn, influences the protective nature of the magnetite corrosion product layer on carbon steel. The corrosion data for the steels were analyzed, and an analytical model for general corrosion was developed to calculate the amount of penetration (i.e., wall thinning) as a function of time, temperature, and the pressure of corrosion product hydrogen than can build up during exposure in a closed system (e.g., a sealed capsule). Both the temperature and pressure dependence of the corrosion rate of steels in anoxic acid chloride solutions indicate that the rate-controlling partial reaction is the cathodic reduction of water to form hydrogen. Variations in the composition and microstructure of the steels or the concentration of the ionic species in the chloride solutions (provided that they do not change the pH significantly) do not appear to strongly influence the corrosion rate

  16. The development of an adsorbent for corrosion products in high-temperature water

    International Nuclear Information System (INIS)

    Kim, Yong Ik; Sung, Ki Woung; Kim, Kwang Rag; Kim, Yu Hwan; Koo, Jae Hyoo

    1996-08-01

    In order to use as adsorbent for removal of the soluble corrosion products, mainly Co 60 under PWR reactor coolant conditions (300 deg C, 160 kg/cm 2 ), stable ZrO 2 adsorbent was prepared using sol-gel process from zirconyl nitrate, AlO adsorbent was prepared by hydrolysis of aluminum isopropoxide, and titanium tetraisopropoxide, respectively. The prepared adsorbents were calcined at various temperature and analyzed by physical properties and the Co 2+ adsorption capacity. And it was shown that the Co 2+ adsorption capacity of the TiO 2 -Al 2 O 3 adsorbents were found to have larger than that of ZrO 2 and Al 2 O 3 adsorbents in high-temperature water. ZrO 2 , Al 2 O 3 and TiO 2 -Al 2 O 3 adsorbents were found to be suitable high-temperature adsorbents for the removal of dissolved corrosion products, mainly Co in PWR reactor coolant conditions. 15 tabs., 51 figs., 55 refs. (Author)

  17. Effects of sintering temperature on the corrosion behavior of AZ31 alloy with Ca–P sol–gel coating

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Bo [School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning Province, 121001 (China); Shi, Ping, E-mail: p_shi@sohu.com [School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning Province, 121001 (China); Wei, Donghua [School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning Province, 121001 (China); E, Shanshan [School of Mathematics and Physics, Bohai University, Jinzhou, Liaoning Province, 121013 (China); Li, Qiang; Chen, Yang [School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning Province, 121001 (China)

    2016-04-25

    To slow down the initial biodegradation rate of magnesium alloy, calcium phosphate (Ca–P) coatings were prepared on AZ31 magnesium alloy by a sol–gel technique. To study the effects of sintering temperature on microstructure, bonding strength and corrosion behavior of the coatings, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and an adhesive strength test were used to characterize the coatings. The corrosion resistance of the coatings was investigated by immersion test and electrochemical corrosion techniques in simulated body fluid (SBF) solution. It shows that the sol–gel coatings consist of Ca{sub 2}P{sub 2}O{sub 7}, mixture of Ca{sub 2}P{sub 2}O{sub 7}, Ca{sub 3}(PO{sub 4}){sub 2} and hydroxyapatite, and hydroxyapatite, by sintering respectively at 300 °C, 400 °C and 500 °C. There are major cracks on the coatings. The crack area portion on the coating and the bonding strength at the interface between the calcium phosphate coating and the bare AZ31 increases, and the corrosion resistance of the coated AZ31 in SBF decreases with increasing sintering temperatures from 300 °C to 500 °C. Based on our investigations, the corrosion resistance of the coated AZ31 in SBF depends mainly on the crack area portion on the coatings, rather than on the coating phase stability. - Highlights: • Ca–P coating was prepared on AZ31 alloy by a sol–gel technique. • Crack area portion in the coating increases with temperatures. • Bonding strength between Ca–P coating and substrate increases with temperatures. • Corrosion resistance of the coated AZ31 in SBF decreases with temperatures. • Corrosion resistance of the coated AZ31 depends mainly on the crack area portion.

  18. Corrosion evaluation technology

    International Nuclear Information System (INIS)

    Kim, Uh Chul; Han, Jeong Ho; Nho, Kye Ho; Lee, Eun Hee; Kim, Hong Pyo; Hwang, Seong Sik; Lee, Deok Hyun; Hur, Do Haeng; Kim, Kyung Mo.

    1997-09-01

    A multifrequency ACPD system was assembled which can measure very small crack. Stress corrosion cracking test system with SSRT operating high temperature was installed. Stress corrosion cracking test of newly developed alloy 600 and existing alloy 600 was carried out in steam atmosphere of 400 deg C. No crack was observed in both materials within a test period of 2,000 hrs. Corrosion fatigue test system operating at high temperature was installed in which fatigue crack was measured by CDPD. Lead enhanced the SCC of the Alloy 600 in high temperature water, had a tendency to modify a cracking morphology from intergranular to transgranular. Pit initiation preferentially occurred at Ti-rich carbide. Resistance to pit initiation decreased with increasing temperature up to 300 deg C. Test loop for erosion corrosion was designed and fabricated. Thin layer activation technique was very effective in measuring erosion corrosion. Erosion corrosion of a part of secondary side pipe was evaluated by the Check Family Codes of EPRI. Calculated values of pipe thickness by Check Family Codes coincided with the pipe thickness measured by UT with an error of ± 20%. Literature review on turbine failure showed that failure usually occurred in low pressure turbine rotor disc and causes of failure are stress corrosion cracking and corrosion fatigue. (author). 12 refs., 20 tabs., 77 figs

  19. Corrosion kinetics at high pressure and temperature of Zr-2.5 Nb with different heat treatments

    International Nuclear Information System (INIS)

    Jaime Solis, F.; Bordoni, Roberto; Olmedo, Ana M.; Villegas, Marina; Miyagusuku, Marcela

    2003-01-01

    The corrosion behaviour of Zr-2.5 Nb pressure tube (PT) specimens, with ageing treatments at 400 and 500 C degrees for different times, was studied. The results were analyzed using the corrosion behavior of Zr-20 Nb and Zr-1 Nb samples heat treated during 1 hour at 850 C degrees, cooled in air and aged at the same temperature and times than the PT specimens. The comparison between the corrosion behaviour of Zr-1 Nb and Zr-20 Nb aged coupons with the aged pressure tube specimens, together with the metal/oxide interface morphology of Zr-2.5 Nb specimens, suggest that the increase in the corrosion resistance in the latter coupons is associated with the decomposition of the β-Zr phase. There is also a contribution of α-Zr phase when the ageing temperatures are high enough or the ageing times are long enough, due to a decrease in the Nb content of this phase. This last contribution is associated with an increase in the corrosion resistance of the central zone of pressure tube in the reactor. (author)

  20. Development of self-powered wireless high temperature electrochemical sensor for in situ corrosion monitoring of coal-fired power plant.

    Science.gov (United States)

    Aung, Naing Naing; Crowe, Edward; Liu, Xingbo

    2015-03-01

    Reliable wireless high temperature electrochemical sensor technology is needed to provide in situ corrosion information for optimal predictive maintenance to ensure a high level of operational effectiveness under the harsh conditions present in coal-fired power generation systems. This research highlights the effectiveness of our novel high temperature electrochemical sensor for in situ coal ash hot corrosion monitoring in combination with the application of wireless communication and an energy harvesting thermoelectric generator (TEG). This self-powered sensor demonstrates the successful wireless transmission of both corrosion potential and corrosion current signals to a simulated control room environment. Copyright © 2014 ISA. All rights reserved.

  1. High temperature aqueous stress corrosion testing device

    International Nuclear Information System (INIS)

    Bornstein, A.N.; Indig, M.E.

    1975-01-01

    A description is given of a device for stressing tensile samples contained within a high temperature, high pressure aqueous environment, thereby permitting determination of stress corrosion susceptibility of materials in a simple way. The stressing device couples an external piston to an internal tensile sample via a pull rod, with stresses being applied to the sample by pressurizing the piston. The device contains a fitting/seal arrangement including Teflon and weld seals which allow sealing of the internal system pressure and the external piston pressure. The fitting/seal arrangement allows free movement of the pull rod and the piston

  2. Studies of the corrosion and cracking behavior of steels in high temperature water by electrochemical techniques

    International Nuclear Information System (INIS)

    Cheng, Y.F.; Bullerwell, J.; Steward, F.R.

    2003-01-01

    Electrochemical methods were used to study the corrosion and cracking behavior of five Fe-Cr alloy steels and 304L stainless steel in high temperature water. A layer of magnetite film forms on the metal surface, which decreases the corrosion rate in high temperature water. Passivity can be achieved on A-106 B carbon steel with a small content of chromium, which cannot be passivated at room temperature. The formation rate and the stability of the passive film (magnetite film) increased with increasing Cr-content in the steels. A mechanistic model was developed to simulate the corrosion and cracking processes of steels in high temperature water. The crack growth rate on steels was calculated from the maximum current of the repassivation current curves according to the slip-oxidation model. The highest crack growth rate was found for 304L stainless steel in high temperature water. Of the four Fe-Cr alloys, the crack growth rate was lower on 0.236% Cr- and 0.33% Cr-steels than on 0.406% Cr-steel and 2.5% Cr-1% Mo steel. The crack growth rate on 0.33% Cr-steel was the smallest over the tested potential range. A higher temperature of the electrolyte led to a higher rate of electrochemical dissolution of steel and a higher susceptibility of steel to cracking, as shown by the positive increase of the electrochemical potential. An increase in Cr-content in the steel is predicted to reduce the corrosion rate of steel at high temperatures. However, this increase in Cr-content is predicted not to reduce the susceptibility of steel to cracking at high temperatures. (author)

  3. Evaluation of High Temperature Corrosion Resistance of Finned Tubes Made of Austenitic Steel And Nickel Alloys

    Directory of Open Access Journals (Sweden)

    Turowska A.

    2016-06-01

    Full Text Available The purpose of the paper was to evaluate the resistance to high temperature corrosion of laser welded joints of finned tubes made of austenitic steel (304,304H and nickel alloys (Inconel 600, Inconel 625. The scope of the paper covered the performance of corrosion resistance tests in the atmosphere of simulated exhaust gases of the following chemical composition: 0.2% HCl, 0.08% SO2, 9.0% O2 and N2 in the temperature of 800°C for 1000 hours. One found out that both tubes made of austenitic steel and those made of nickel alloy displayed good resistance to corrosion and could be applied in the energy industry.

  4. Some problems on materials tests in high temperature hydrogen base gas mixture

    International Nuclear Information System (INIS)

    Shikama, Tatsuo; Tanabe, Tatsuhiko; Fujitsuka, Masakazu; Yoshida, Heitaro; Watanabe, Ryoji

    1980-01-01

    Some problems have been examined on materials tests (creep rupture tests and corrosion tests) in high temperature mixture gas of hydrogen (80%H 2 + 15%CO + 5%CO 2 ) simulating the reducing gas for direct steel making. H 2 , CO, CO 2 and CH 4 in the reducing gas interact with each other at elevated temperature and produce water vapor (H 2 O) and carbon (soot). Carbon deposited on the walls of retorts and the water condensed at pipings of the lower temperature gas outlet causes blocking of gas flow. The gas reactions have been found to be catalyzed by the retort walls, and appropriate selection of the materials for retorts has been found to mitigate the problems caused by water condensation and carbon deposition. Quartz has been recognized to be one of the most promising materials for minimizing the gas reactions. And ceramic coating, namely, BN (born nitride) on the heat resistant superalloy, MO-RE II, has reduced the amounts of water vapor and deposited carbon (sooting) produced by gas reactions and has kept dew points of outlet gas below room temperature. The well known emf (thermo-electromotive force) deterioration of Alumel-Chromel thermocouples in the reducing gases at elevated temperatures has been also found to be prevented by the ceramic (BN) coating. (author)

  5. Corrosion behavior in high-temperature pressurized water of Zircaloy-4 joints brazed with Zr-Cu-based amorphous filler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Gu, E-mail: jglee88@ulsan.ac.kr [School of Materials Science and Engineering, University of Ulsan, Ulsan 44610 (Korea, Republic of); Lee, Gyoung-Ja; Park, Jin-Ju [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 34057 (Korea, Republic of); Lee, Min-Ku, E-mail: leeminku@kaeri.re.kr [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 34057 (Korea, Republic of)

    2017-05-15

    The compositional effects of ternary Zr-Cu-X (X: Al, Fe) amorphous filler alloys on galvanic corrosion susceptibility in high-temperature pressurized water were investigated for Zircaloy-4 brazed joints. Through an Al-induced microgalvanic reaction that deteriorated the overall nobility of the joint, application of the Zr-Cu-Al filler alloy caused galvanic coupling to develop readily between the Al-bearing joint and the Al-free base metal, finally leading to massive localized corrosion of the joint. Contrastingly, joints prepared with a Zr-Cu-Fe filler alloy showed excellent corrosion resistance comparable to that of the Zircaloy-4 base metal, since the Cu and Fe elements forming fine intermetallic particles with Zr did not influence the electrochemical stability of the resultant joints. The present results demonstrate that Fe is a more suitable alloying element than Al for brazing filler alloys subjected to high-temperature corrosive environments. - Highlights: •Corrosion of Zircaloy-4 joints brazed with Zr-Cu-X filler alloys was investigated. •Alloyed Al deteriorated the overall nobility of joints by microgalvanic reaction. •Compositional gradient of Al in joints was the driving force for galvanic corrosion. •Cu and Fe did not influence the electrochemical stability of joints. •Zr-Cu-Fe filler alloy yielded excellent high-temperature corrosion resistance.

  6. Corrosion behavior in high-temperature pressurized water of Zircaloy-4 joints brazed with Zr-Cu-based amorphous filler alloys

    International Nuclear Information System (INIS)

    Lee, Jung Gu; Lee, Gyoung-Ja; Park, Jin-Ju; Lee, Min-Ku

    2017-01-01

    The compositional effects of ternary Zr-Cu-X (X: Al, Fe) amorphous filler alloys on galvanic corrosion susceptibility in high-temperature pressurized water were investigated for Zircaloy-4 brazed joints. Through an Al-induced microgalvanic reaction that deteriorated the overall nobility of the joint, application of the Zr-Cu-Al filler alloy caused galvanic coupling to develop readily between the Al-bearing joint and the Al-free base metal, finally leading to massive localized corrosion of the joint. Contrastingly, joints prepared with a Zr-Cu-Fe filler alloy showed excellent corrosion resistance comparable to that of the Zircaloy-4 base metal, since the Cu and Fe elements forming fine intermetallic particles with Zr did not influence the electrochemical stability of the resultant joints. The present results demonstrate that Fe is a more suitable alloying element than Al for brazing filler alloys subjected to high-temperature corrosive environments. - Highlights: •Corrosion of Zircaloy-4 joints brazed with Zr-Cu-X filler alloys was investigated. •Alloyed Al deteriorated the overall nobility of joints by microgalvanic reaction. •Compositional gradient of Al in joints was the driving force for galvanic corrosion. •Cu and Fe did not influence the electrochemical stability of joints. •Zr-Cu-Fe filler alloy yielded excellent high-temperature corrosion resistance.

  7. Corrosion monitoring in insulated pipes using x-ray radiography

    International Nuclear Information System (INIS)

    Azali Muhammad; Abd Razak Hamzah; Abd Aziz Mohamed; Abd Nasir Ibrahim; Suffian Saad; Shaharuddin Sayuti; Shukri Ahmad

    2000-01-01

    In engineering plants, detection of corrosion and evaluation of deposit in insulated pipes using radiography method are considered as very challenging tasks. In general, this degradation problem is attributed to water condensation. It causes the formation of deposit and scale inside the pipe, as well as between the insulation and pipe in cold temperature pipes. On the other hand, for hot temperature pipes the main problem is mainly due to corrosion/erosion attack inside the pipe. In the study of corrosion in pipelines, one of the most important parameters to be monitored and measured is the wall thickness. Currently, most pipeline corrosion monitoring and evaluation for both insulated and non-insulated pipes is performed using an ultrasonic method. The most notable disadvantage of using this method is that the insulation covering the pipe has to be removed before the inspection can be carried out and this is considered as not so cost effective. Due to this reason, the possibility of employing other alternative NDT method, namely radiographic testing method was studied. The technique used in this studied are known as tangential technique. In this study it was found that the result found using tangential technique is consistent with the actual thickness of the pipe. Besides the thickness, types of corrosion can also be identified easily. Result of this study is presented and discussed in this paper. (Author)

  8. Effect of the deposition temperature on corrosion resistance and biocompatibility of the hydroxyapatite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Vladescu, A., E-mail: alinava@inoe.ro [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Braic, M. [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Azem, F. Ak [Dokuz Eylul University, Engineering Faculty, Metallurgical and Materials Engineering Department, Buca-Izmir (Turkey); Titorencu, I. [Institute of Cellular Biology and Pathology Nicolae Simionescu of the Romanian Academy, 8 B.P.Hasdeu, Bucharest (Romania); Braic, V. [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Pruna, V. [Institute of Cellular Biology and Pathology Nicolae Simionescu of the Romanian Academy, 8 B.P.Hasdeu, Bucharest (Romania); Kiss, A. [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Parau, A.C.; Birlik, I. [Dokuz Eylul University, Engineering Faculty, Metallurgical and Materials Engineering Department, Buca-Izmir (Turkey)

    2015-11-01

    Highlights: • Hydroxyapatite has been produced at temperature from 400 to 800 °C by magnetron sputtering. • Hydroxyapatite crystallinity is improved by increasing substrate temperature. • The increase of substrate temperature resulted in corrosion resistance increasing. • The coating shows high growth of the osteosarcoma cells over a wide temperature range. - Abstract: Hydroxyapatite (HAP) ceramics belong to a class of calcium phosphate-based materials, which have been widely used as coatings on titanium medical implants in order to improve bone fixation and thus to increase the lifetime of the implant. In this study, HAP coatings were deposited from pure HAP targets on Ti6Al4V substrates using the radio-frequency magnetron sputtering technique at substrate temperatures ranging from 400 to 800 °C. The surface morphology and the crystallographic structure of the films were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion resistance of the coatings in saliva solution at 37 °C was evaluated by potentiodynamic polarization. Additionally, the human osteosarcoma cell line (MG-63) was used to test the biocompatibility of the coatings. The results showed that all of the coatings grown uniformly and that the increasing substrate temperature induced an increase in their crystallinity. Corrosion performance of the coatings was improved with the increase of the substrate temperature from 400 °C to 800 °C. Furthermore, all the coatings support the attachment and growth of the osteosarcoma cells with regard to the in vitro test findings.

  9. SRB seawater corrosion project

    Science.gov (United States)

    Bozack, M. J.

    1991-01-01

    The corrosion behavior of 2219 aluminum when exposed to seawater was characterized. Controlled corrosion experiments at three different temperatures (30, 60 and 100 C) and two different environments (seawater and 3.5 percent salt solution) were designed to elucidate the initial stages in the corrosion process. It was found that 2219 aluminum is an active catalytic surface for growth of Al2O3, NaCl, and MgO. Formation of Al2O3 is favored at lower temperatures, while MgO is favored at higher temperatures. Visible corrosion products are formed within 30 minutes after seawater exposure. Corrosion characteristics in 3.5 percent salt solution are different than corrosion in seawater. Techniques utilized were: (1) scanning electron microscopy, (2) energy dispersive x-ray spectroscopy, and (3) Auger electron spectroscopy.

  10. Optimization of Arc-Sprayed Ni-Cr-Ti Coatings for High Temperature Corrosion Applications

    Science.gov (United States)

    Matthews, S.; Schweizer, M.

    2013-04-01

    High Cr content Ni-Cr-Ti arc-spray coatings have proven successful in resisting the high temperature sulfidizing conditions found in black liquor recovery boilers in the pulp and paper industry. The corrosion resistance of the coatings is dependent upon the coating composition, to form chromium sulfides and oxides to seal the coating, and on the coating microstructure. Selection of the arc-spray parameters influences the size, temperature and velocity of the molten droplets generated during spraying, which in turn dictates the coating composition and formation of the critical coating microstructural features—splat size, porosity and oxide content. Hence it is critical to optimize the arc-spray parameters in order to maximize the corrosion resistance of the coating. In this work the effect of key spray parameters (current, voltage, spray distance and gas atomizing pressure) on the coating splat thickness, porosity content, oxide content, microhardness, thickness, and surface profile were investigated using a full factorial design of experiment. Based on these results a set of oxidized, porous and optimized coatings were prepared and characterized in detail for follow-up corrosion testing.

  11. Effect of Annealing Temperature on the Corrosion Protection of Hot Swaged Ti-54M Alloy in 2 M HCl Pickling Solutions

    Directory of Open Access Journals (Sweden)

    El-Sayed M. Sherif

    2017-01-01

    Full Text Available The corrosion of Ti-54M titanium alloy processed by hot rotary swaging and post-annealed to yield different grain sizes, in 2 M HCl solutions is reported. Two annealing temperatures of 800 °C and 940 °C, followed by air cooling and furnace cooling were used to give homogeneous grain structures of 1.5 and 5 μm, respectively. It has been found that annealing the alloy at 800 °C decreased the corrosion of the alloy, with respect to the hot swaged condition, through increasing its corrosion resistance and decreasing the corrosion current and corrosion rate. Increasing the annealing temperature to 940 °C further decreased the corrosion of the alloy.

  12. Tests on dynamic corrosion by water. Influence of the passage of a heat flux on the corrosion kinetics. pH measurement in water at high temperature; Essais de corrosion dynamique par l'eau. Influence du passage d'un flux thermique sur la cinetique de corrosion. Mesure du pH dans l'eau a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Coriou, H; Grall, L; Hure, J; Saint-James, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Berthod, [Societe Grenobloise d' Etudes et d' Applications Hydrauliques, 38 (France); peintre, Le [Centre National de la Recherche Scientifique (CNRS), 38 - Grenoble (France)

    1958-07-01

    The passage of a heat flux through the surface of a metal placed in a corrosive medium influences the rate of corrosion, these being higher than under adiabatic conditions. The apparatus developed for corrosion tests is described, it is possible to obtain with this equipment: 1) Heat fluxes greater than 200 W/cm{sup 2}, across aluminium canning, which is cooled by water (temperature 50 deg. C), circulating with flow rates of the order of 5 to 6 m/s. 2) Heat fluxes which can go up to 150 W/cm{sup 2}, across canning of zircaloy or stainless steel. The cooling fluid is pressurized water at a temperature around 280 deg. C, the flow-rate of circulation reaching 6 m/s. The results obtained on aluminium canning are studied from the viewpoint of corrosion, paying particular attention to cavitation phenomena which can cause serious damage in certain special circumstances. After developing a glass electrode system capable of supporting high pressures, the authors have investigated materials capable of functioning as a hydrogen electrode and of resisting satisfactorily corrosion by water at 200 deg. C. Various possibilities have been examined: electrodes of special glasses, quartz, metals, with a membrane etc... The results of the various tests and the practical limits of utilisation are given. (author)Fren. [French] Le passage d'un flux thermique a travers la surface d'un metal place dans un milieu corrosif influence les vitesses de corrosion, celles-ci etant plus elevees que dans des conditions adiabatiques. On decrit les appareils mis au point, pour essais de corrosion. Ils permettent d'obtenir: 1) A travers des gaine aluminium des flux thermiques depassant 200 W /cm{sup 2}. Les gaines sont refroidies par l'eau (temperature 50 deg. C), circulant a des vitesses de l'ordre de 5 a 6 m/s. 2) A travers des gaines en zircaloy ou acier inoxydable des flux thermiques pouvant s'elever a 150 W/cm{sup 2}. Le fluide de refroidissement est de l'eau sous pression a une temperature

  13. Corrosion management in nuclear industry

    International Nuclear Information System (INIS)

    Kamachi Mudali, U.

    2012-01-01

    Corrosion is a major degradation mechanism of metals and alloys which significantly affects the global economy with an average loss of 3.5% of GDP of several countries in many important industrial sectors including chemical, petrochemical, power, oil, refinery, fertilizer etc. The demand for higher efficiency and achieving name plate capacity, in addition to ever increasing temperatures, pressures and complexities in equipment geometry of industrial processes, necessitate utmost care in adopting appropriate corrosion management strategies in selecting, designing, fabricating and utilising various materials and coatings for engineering applications in industries. Corrosion control and prevention is an important focus area as the savings achieved from practicing corrosion control and prevention would bring significant benefits to the industry. Towards this, advanced corrosion management strategies starting from design, manufacturing, operation, maintenance, in-service inspection and online monitoring are essential. At the Indira Gandhi Centre for Atomic Research (IGCAR) strategic corrosion management efforts have been pursued in order to provide solutions to practical problems emerging in the plants, in addition to innovative efforts to provide insight into mechanism and understanding of corrosion of various engineering materials and coatings. In this presentation the author highlights how the nuclear industry benefited from the practical approach to successful corrosion management, particularly with respect to fast breeder reactor programme involving both reactor and associated reprocessing plants. (author)

  14. Ageing temperature effect on inclination of martensite high strength steels EhP699, EhP678, EhP679 to corrosion cracking

    International Nuclear Information System (INIS)

    Rozenfel'd, I.L.; Spiridonov, V.B.; Konradi, M.V.; Krasnorutskaya, I.B.; Fridman, V.S.

    1979-01-01

    Stated are the data permitting to judge of the role of ageing temperature in the total number of factors, determining the inclination to corrosion cracking of high strength maraging steels, which contain chromium as a main alloying element. The inclination of the EhP699, EhP678, EhP679 steels to corrosion cracking was estimated on smooth stressed specimens in 3 % NaCl solution with the use of electrochemical polarization. The tensile stress resulted from deflection; anode and cathode current density was 10 mA/cm 2 . It is shown, that resistance to corrosion cracking depends on the ageing temperature: maximum sensitivity to corrosion cracking the steels manifest at the ageing temperatures, providing for maximum strength (470-500 deg). At the ageing temperatures by 20-30 deg over the temperature of this maximum the sensitivity to corrosion cracking disappears, which may result from the loss of coherence of strengthening phase in a matrix, from particle coagulation and stress relaxation in the crack peak

  15. Achievments of corrosion science and corrosion protection technology

    International Nuclear Information System (INIS)

    Fontana, M.; Stehjl, R.

    1985-01-01

    Problems of corrosion-mechanical strength of metals, effect of corrosive media on creep characteristics are presented. New concepts of the mechanism of corrosion cracking and its relation to hydrogen embrittlement are described. Kinetics and mechanism of hydrogen embrittlement effect on the process of corrosion cracking of different steels and alloys are considered. The dependence of such types of failure on various structural factors is shown. Data on corrosion cracking of high-strength aluminium and titanium alloys, mechanism of the processes and protective methods are given

  16. High temperature solution-nitriding and low-temperature nitriding of AISI 316: Effect on pitting potential and crevice corrosion performance

    DEFF Research Database (Denmark)

    Bottoli, Federico; Jellesen, Morten Stendahl; Christiansen, Thomas Lundin

    2018-01-01

    in a 0.1M NaCl solution and crevice corrosion immersion tests in 3wt% FeCl3 solution were studied before and after the bulk and surface treatments.Nitrogen addition in the bulk proved to have a beneficial effect on the pitting resistance of the alloy. The formation of a zone of expanded austenite...... at the material surface through low-temperature nitriding resulted in a considerable improvement of the pitting potential and the crevice corrosion performance of the steels....

  17. High temperature corrosion in the service environments of a nuclear process heat plant

    International Nuclear Information System (INIS)

    Quadakkers, W.J.

    1987-01-01

    In a nuclear process heat plant the heat-exchanging components fabricated from nickel- and Fe-Ni-based alloys are subjected to corrosive service environments at temperatures up to 950 0 C for service lives of up to 140 000 h. In this paper the corrosion behaviour of the high temperature alloys in the different service environments will be described. It is shown that the degree of protection provided by Cr 2 O 3 -based surface oxide scales against carburization and decarburization of the alloys is primarily determined not by the oxidation potential of the atmospheres but by a dynamic process involving, on the one hand, the oxidizing gas species and the metal and, on the other hand, the carbon in the alloy and the oxide scale. (orig.)

  18. Application of an empirical model in CFD simulations to predict the local high temperature corrosion potential in biomass fired boilers

    International Nuclear Information System (INIS)

    Gruber, Thomas; Scharler, Robert; Obernberger, Ingwald

    2015-01-01

    To gain reliable data for the development of an empirical model for the prediction of the local high temperature corrosion potential in biomass fired boilers, online corrosion probe measurements have been carried out. The measurements have been performed in a specially designed fixed bed/drop tube reactor in order to simulate a superheater boiler tube under well-controlled conditions. The investigated boiler steel 13CrMo4-5 is commonly used as steel for superheater tube bundles in biomass fired boilers. Within the test runs the flue gas temperature at the corrosion probe has been varied between 625 °C and 880 °C, while the steel temperature has been varied between 450 °C and 550 °C to simulate typical current and future live steam temperatures of biomass fired steam boilers. To investigate the dependence on the flue gas velocity, variations from 2 m·s −1 to 8 m·s −1 have been considered. The empirical model developed fits the measured data sufficiently well. Therefore, the model has been applied within a Computational Fluid Dynamics (CFD) simulation of flue gas flow and heat transfer to estimate the local corrosion potential of a wood chips fired 38 MW steam boiler. Additionally to the actual state analysis two further simulations have been carried out to investigate the influence of enhanced steam temperatures and a change of the flow direction of the final superheater tube bundle from parallel to counter-flow on the local corrosion potential. - Highlights: • Online corrosion probe measurements in a fixed bed/drop tube reactor. • Development of an empirical corrosion model. • Application of the model in a CFD simulation of flow and heat transfer. • Variation of boundary conditions and their effects on the corrosion potential

  19. Tank 241-AY-102 Secondary Liner Corrosion Evaluation - 14191

    International Nuclear Information System (INIS)

    Boomer, Kayle D.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2014-01-01

    In October 2012, Washington River Protection Solutions, LLC (WRPS) determined that the primary tank of 241-AY-102 (AY-102) was leaking. A number of evaluations were performed after discovery of the leak which identified corrosion from storage of waste at the high waste temperatures as one of the major contributing factors in the failure of the tank. The propensity for corrosion of the waste on the annulus floor will be investigated to determine if it is corrosive and must be promptly removed or if it is benign and may remain in the annulus. The chemical composition of waste, the temperature and the character of the steel are important factors in assessing the propensity for corrosion. Unfortunately, the temperatures of the wastes in contact with the secondary steel liner are not known; they are estimated to range from 45 deg C to 60 deg C. It is also notable that most corrosion tests have been carried out with un-welded, stress-relieved steels, but the secondary liner in tank AY-102 was not stress-relieved. In addition, the cold weather fabrication and welding led to many problems, which required repeated softening of the metal to flatten secondary bottom during its construction. This flame treatment may have altered the microstructure of the steel

  20. KCl-induced high temperature corrosion of selected commercial alloys. Part I: chromia-formers

    DEFF Research Database (Denmark)

    Kiamehr, Saeed; Dahl, Kristian Vinter; Montgomery, Melanie

    2015-01-01

    -grained), Sanicro 28 and the nickel-based alloys 625, 263 and C276. Exposure was performed at 600 °C for 168 h in flowing N2(g)+5%O2(g)+15% H2O(g) (vol.%). Samples were covered with KCl powder prior to exposure. A salt-free exposure was also performed for comparison. Corrosion morphology and products were studied......Laboratory testing of selected chromia-forming alloys was performed to rank the materials and gain further knowledge on the mechanism of KCl-induced high temperature corrosion. The investigated alloys were stainless steels EN1.4021, EN1.4057, EN1.4521, TP347H (coarse-grained), TP347HFG (fine....... In the presence of solid KCl, all the alloys showed significant corrosion. Measurement of corrosion extent indicated that alloys EN1.4057, Sanicro 28 and 625 show a better performance compared to the industrial state of the art material TP347HFG under laboratory conditions. An additional test was performed...

  1. The development of an adsorbent for corrosion products in high-temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Ik; Sung, Ki Woung; Kim, Kwang Rag; Kim, Yu Hwan; Koo, Jae Hyoo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-08-01

    In order to use as adsorbent for removal of the soluble corrosion products, mainly Co{sup 60} under PWR reactor coolant conditions (300 deg C, 160 kg/cm{sup 2}), stable ZrO{sub 2} adsorbent was prepared using sol-gel process from zirconyl nitrate, AlO adsorbent was prepared by hydrolysis of aluminum isopropoxide, and titanium tetraisopropoxide, respectively. The prepared adsorbents were calcined at various temperature and analyzed by physical properties and the Co{sup 2+} adsorption capacity. And it was shown that the Co{sup 2+} adsorption capacity of the TiO{sub 2}-Al{sub 2}O{sub 3} adsorbents were found to have larger than that of ZrO{sub 2} and Al{sub 2}O{sub 3} adsorbents in high-temperature water. ZrO{sub 2}, Al{sub 2}O{sub 3} and TiO{sub 2}-Al{sub 2}O{sub 3} adsorbents were found to be suitable high-temperature adsorbents for the removal of dissolved corrosion products, mainly Co in PWR reactor coolant conditions. 15 tabs., 51 figs., 55 refs. (Author).

  2. Automated Methods Of Corrosion Measurements

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers; Andersen, Jens Enevold Thaulov; Reeve, John Ch

    1997-01-01

    The chapter describes the following automated measurements: Corrosion Measurements by Titration, Imaging Corrosion by Scanning Probe Microscopy, Critical Pitting Temperature and Application of the Electrochemical Hydrogen Permeation Cell.......The chapter describes the following automated measurements: Corrosion Measurements by Titration, Imaging Corrosion by Scanning Probe Microscopy, Critical Pitting Temperature and Application of the Electrochemical Hydrogen Permeation Cell....

  3. An evaluation of corrosion resistant alloys by field corrosion test in Japanese refuse incineration plants

    International Nuclear Information System (INIS)

    Kawahara, Yuuzou; Nakamura, Masanori; Shibuya, Eiichi; Yukawa, Kenichi

    1995-01-01

    As the first step for development of the corrosion resistant superheater tube materials of 500 C, 100 ata used in high efficient waste-to-energy plants, field corrosion tests of six conventional alloys were carried out at metal temperatures of 450 C and 550 C for 700 and 3,000 hours in four typical Japanese waste incineration plants. The test results indicate that austenitic alloys containing approximately 80 wt% [Cr+Ni] show excellent corrosion resistance. When the corrosive environment is severe, intergranular corrosion of 40∼200 microm depth occurs in stainless steel and high alloyed materials. It is confirmed quantitatively that corrosion behavior is influenced by environmental corrosion factors such as Cl concentration and thickness of deposits on tube surface, metal temperature, and flue gas temperature. The excellent corrosion resistance of high [Cr+Ni+Mo] alloys such as Alloy 625 is explained by the stability of its protective oxide, such that the time dependence of corrosion nearly obeys the parabolic rate law

  4. Corrosion phenomena on alloy 625 in aqueous solutions containing hydrochloric acid and oxygen under subcritical and supercritical conditions

    International Nuclear Information System (INIS)

    Boukis, N.; Kritzer, P.

    1997-01-01

    Supercritical Water Oxidation (SCWO) is a very effective process to destroy hazardous aqueous wastes containing organic contaminants. The main target applications in the USA are the destruction of DOD and DOE wastes such as rocket fuels and explosives, warfare agents and organics present in low level radioactive liquid wastes. Alloy 625 is frequently used as reactor material for Supercritical Water Oxidation (SCWO) applications. This is due to the favorable combination of mechanical properties, corrosion resistance, price and availability. Nevertheless, the corrosion of alloy 625 like the corrosion of other Ni-base alloys during oxidation of hazardous organic waste containing chloride proceeds too fast and is a major problem in SCWO applications. In these experiments high pressure, high-temperature resistant tube reactors made of alloy 625 were used as specimens. They were exposed to SCWO conditions, without organics, at temperatures up to 500 C and pressures up to 37 MPa for up to 150 h. Simultaneously, coupons also made from alloy 625 are exposed inside the test tubes. The most important corrosion problem for alloy 625 is pitting and intercrystalline corrosion at temperatures near the critical temperature, i.e. in the preheater and cooling sections of the test tubes. Under certain conditions, stress corrosion cracking appears and leads to premature failure of the test reactors. The corrosion products were insoluble in supercritical water and formed thick layers in the supercritical part of the reactor. Under these layers only minor corrosion occurred. 33 refs

  5. Underground pipeline corrosion

    CERN Document Server

    Orazem, Mark

    2014-01-01

    Underground pipelines transporting liquid petroleum products and natural gas are critical components of civil infrastructure, making corrosion prevention an essential part of asset-protection strategy. Underground Pipeline Corrosion provides a basic understanding of the problems associated with corrosion detection and mitigation, and of the state of the art in corrosion prevention. The topics covered in part one include: basic principles for corrosion in underground pipelines, AC-induced corrosion of underground pipelines, significance of corrosion in onshore oil and gas pipelines, n

  6. Research and development on is process components for hydrogen production. (2) Corrosion resistance of glass lining in high temperature sulfuric acid

    International Nuclear Information System (INIS)

    Tanaka, Nobuyuki; Iwatsuki, Jin; Kubo, Shinji; Terada, Atsuhiko; Onuki, Kaoru

    2009-01-01

    Japan Atomic Energy Agency has been conducting a research and development on hydrogen production system using High Temperature Gas-Cooled Reactor. As a part of this effort, thermochemical water-splitting cycle featuring iodine- and sulfur-compounds (IS process) is under development considering its potential of large-scale economical hydrogen production. The IS process constitutes very severe environments on the materials of construction because of the corrosive nature of process chemicals, especially of the high temperature acidic solution of sulfuric acid and hydriodic acid dissolving iodine. Therefore, selection of the corrosion-resistant materials and development of the components has been studied as a crucial subject of the process development. This paper discusses corrosion resistance of commercially available glass-lining material in high temperature sulfuric acid. Corrosion resistance of a soda glass used for glass-lining was examined by immersion tests. The experiments were performed in 47-90wt% sulfuric acids at temperatures of up to 400degC and for the maximum immersion time of 100 hours using an autoclave designed for the concerned tests. In every condition tested, no indication of localized corrosion such as defect formation or pitting corrosion was observed. Also, the corrosion rates decreased with the progress of immersion, and were low enough (≅0.1 mm/year) after 60-90 hours of immersion probably due to formation of a silica rich surface. (author)

  7. Dependence on Temperature, pH, and Cl"− in the Uniform Corrosion of Aluminum Alloys 2024-T3, 6061-T6, and 7075-T6

    International Nuclear Information System (INIS)

    Huang, I-Wen; Hurley, Belinda L.; Yang, Fan; Buchheit, Rudolph G.

    2016-01-01

    With regards to localized corrosion, the role of uniform corrosion of aluminum alloys has not always been accounted for in the past. The impact of uniform corrosion on aluminum alloys 2024-T3, 6061-T6, and 7075-T6 is studied here to provide quantitative evidence of its importance. Preliminary weight loss experiments combined with optical profilometry (OP) indicate that corrosion attributed to uniform corrosion is very significant when compared to localized corrosion. A series of free immersion tests were conducted to understand the influence of environmental variables including temperature (20, 40, 60, 80 °C), initial pH without buffering (3, 5, 8, 10) and chloride concentration (0.01, 0.1, 1 M) for 1, 7, and 30 days. With time, uniform corrosion results exhibited a strong dependence on temperature accompanied by variable pH- and temperature-dependent corrosion product formation. Electrochemical approaches including electrochemical impedance spectroscopy (EIS) and cathodic polarization were utilized to characterize the oxygen reduction reaction (ORR) and corrosion product formation as a function of temperature. Electron microscopy was conducted to assess the microstructure and morphology of corrosion products and provide supporting evidence for electrochemical findings.

  8. The synergy of corrosion and fretting wear process on Inconel 690 in the high temperature high pressure water environment

    Science.gov (United States)

    Wang, Zihao; Xu, Jian; Li, Jie; Xin, Long; Lu, Yonghao; Shoji, Tetsuo; Takeda, Yoichi; Otsuka, Yuichi; Mutoh, Yoshiharu

    2018-04-01

    The synergistic effect of corrosion and fretting process of the steam generator (SG) tube was investigated by using a self-designed high temperature test rig in this paper. The experiments were performed at 100°C , 200°C and 288°C , respectively. The fretting corrosion damage was studied by optical microscopy (OM), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), Raman spectroscopy and auger electron spectroscopy (AES). The results demonstrated that the corrosion process in high temperature high pressure (HTHP) water environment had a distinct interaction with the fretting process of Inconel 690. With the increment of temperature, the damage mechanism changed from a simple mechanical process to a mechanochemical process.

  9. New corrosion issues in gas sweetening plants

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, R.G. (CLI International and Asperger Technologies, Houston, TX (United States))

    Gas treating plants are experiencing corrosion problems which impact on efficiency and safety. While general corrosion is not particularly hazardous in the gas processing industry, local corrosion is very dangerous since it has several different mechanisms, all of which have dangerously high rates, and it occurs at locations which are hard to find and hard to predict. A newly discovered, velocity-dependent type of corrosion is reported. It is related to yet-undefined species which cause excessively high corrosion in areas of turbulence. This accelerated corrosion is not due to erosion or cavitation, but to a diffusion-limited reaction accelerated by turbulence. A full-flow test loop was built to evaluate the corrosiveness of gas plant solutions at their normal temperature and flow rates. Test runs were conducted with Co[sub 2]-loaded amine solutions for periods of 12 days. Carbon steel specimens mounted in the test loop were examined and corrosion rates calculated. Chromium alloys were shown to be attacked by corrodents in the low-velocity part of the loop and very aggressively attacked in the high-velocity part. The tests demonstrate the need for rigorous monitoring of corrosion in areas of higher velocity such as piping elbows and other points of turbulence. 5 refs., 2 figs., 3 tabs.

  10. Catastrophes caused by corrosion

    OpenAIRE

    PETROVIC ZORAN C.

    2016-01-01

    For many years, huge attention has been paid to the problem of corrosion damage and destruction of metallic materials. Experience shows that failures due to corrosion problems are very important, and statistics at the world level shows that the damage resulting from the effects of various forms of corrosion is substantial and that, for example, in industrialized countries it reaches 4-5% of national incomes. Significant funds are determined annually for the prevention and control of corrosion...

  11. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position

    Science.gov (United States)

    Liu, Yun-Fei; Liu, Shu-Fa; Duan, Jin-Zhuo

    2018-01-01

    The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2), titanium (TA2), and 316L stainless steel (316L SS). These electrodes were used with artificial seawater at different temperatures. The potential and current–density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles. PMID:29495617

  12. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position.

    Science.gov (United States)

    Ju, Hong; Yang, Yuan-Feng; Liu, Yun-Fei; Liu, Shu-Fa; Duan, Jin-Zhuo; Li, Yan

    2018-02-28

    The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2), titanium (TA2), and 316L stainless steel (316L SS). These electrodes were used with artificial seawater at different temperatures. The potential and current-density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles.

  13. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position

    Directory of Open Access Journals (Sweden)

    Hong Ju

    2018-02-01

    Full Text Available The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2, titanium (TA2, and 316L stainless steel (316L SS. These electrodes were used with artificial seawater at different temperatures. The potential and current–density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles.

  14. Quantitative evaluation of safety use limit for crevice corrosion in Ni-Cr-Mo alloys

    International Nuclear Information System (INIS)

    Fukaya, Yuichi; Akashi, Masatsune; Sasaki, Hidetsugu; Tsujikawa, Shigeo

    2007-01-01

    The most important problem with corrosion-resistant alloys such as stainless steels is localized corrosion. Crevice corrosion, which is a typical localized corrosion, occurs under the mildest environmental conditions. Consequently, whether crevice corrosion occurs or not is an important issue in structural material selection. This study investigated highly corrosion-resistant Ni-Cr-Mo alloys whose resistance for crevice corrosion is difficult to evaluate with the JIS G 0592 standard for common strainless steels. The optimized procedures for determining the critical potential and temperature for crevice corrosion of the alloys were developed based on the JIS method. The limits of safety usage of various Ni-Cr-Mo alloys were evaluated quantitatively in chloride solution environments. (author)

  15. Corrosion of titanium alloys in concentrated chloride solutions at temperature up to 160 deg C

    International Nuclear Information System (INIS)

    Ruskol, Yu.S.; Viter, L.I.; Balakin, A.I.; Fokin, M.N.

    1982-01-01

    Resistance of VT1-0 titanium and 4200, 4207 titanium alloys to pitting and total corrosion in chlorides of cadmium, potassium, nickel, ammonium, barium, calcium, lithium, magnesium in respect to pH value and temperature (120,140,160 deg C) is determined. The results obtained are presented as nomograms of stability. Possible reasons for corrosion behaviour of titanium in each of the chlorides are discussed

  16. Investigation of corrosion experienced in a spray calciner/ceramic melter vitrification system

    International Nuclear Information System (INIS)

    Dierks, R.D.; Mellinger, G.B.; Miller, F.A.; Nelson, T.A.; Bjorklund, W.J.

    1980-08-01

    After periodic testing of a large-scale spray calciner/ceramic melter vitrification system over a 2-yr period, sufficient corrosion was noted on various parts of the vitrification system to warrant its disassembly and inspection. A majority of the 316 SS sintered metal filters on the spray calciner were damaged by chemical corrosion and/or high temperature oxidation. Inconel-601 portions of the melter lid were attacked by chlorides and sulfates which volatilized from the molten glass. The refractory blocks, making up the walls of the melter, were attacked by the waste glass. This attack was occurring when operating temperatures were >1200 0 C. The melter floor was protected by a sludge layer and showed no corrosion. Corrosion to the Inconel-690 electrodes was minimal, and no corrosion was noted in the offgas treatment system downstream of the sintered metal filters. It is believed that most of the melter corrosion occurred during one specific operating period when the melter was operated at high temperatures in an attempt to overcome glass foaming behavior. These high temperatures resulted in a significant release of volatile elements from the molten glass, and also created a situation where the glass was very fluid and convective, which increased the corrosion rate of the refractories. Specific corrosion to the calciner components cannot be proven to have occurred during a specific time period, but the mechanisms of attack were all accelerated under the high-temperature conditions that were experienced with the melter. A review of the materials of construction has been made, and it is concluded that with controlled operating conditions and better protection of some materials of construction corrosion of these systems will not cause problems. Other melter systems operating under similar strenuous conditions have shown a service life of 3 yr

  17. Influence of Zn injection on corrosion behavior and oxide film characteristics of 304 stainless steel in borated and lithiated high temperature water

    International Nuclear Information System (INIS)

    Wu, Xinqiang; Liu, Xiahe; Han, En-Hou; Ke, Wei

    2012-09-01

    Water chemistry of the reactor coolant system plays a major role in maintaining safety and reliability of light water reactor nuclear power plants (NPPs). Zn water chemistry into pressurized water reactors (PWRs) in order to reduce the radiation buildup in primary coolant system has been widely applied, and the reduction effect has been experimentally confirmed. Zn injection can also lessen the corrosion phenomena in high temperature pressurized water by changing oxide films formed on components materials. Both the radiation buildup and material corrosion resistance in PWR coolant system are closely dependent on the oxide films formed. However, the influence of Zn injection on the chemical composition and structure of the oxide films on their protective properties is still a matter of considerable debate. The influence of Zn injection on corrosion inhibition and environmental degradation has not been fully clarified yet. Therefore, the understanding of corrosion behaviour, oxide film characteristics and their protective property is of significance to clarify the environmentally assisted material failure problems in NPPs. In the present work, oxide films formed on nuclear-grade 304 SS exposed to borated and lithiated high temperature water environments at 300 deg. C up to 4000 h with or without 10 ppb Zn injection were investigated ex-situ. Without Zn injection, the oxide films mainly consisted of Fe 3 O 4 and FeCr 2 O 4 . With Zn injection, ZnFe 2 O 4 and ZnCr 2 O 4 were detected in the oxide films at the initial stage of immersion and ZnCr 2 O 4 became dominant after long-term immersion. It was believed that the above Zn-Fe and Zn-Cr spinel oxides were formed by substitution reactions between Zn 2+ and Fe 2+ . At the initial stage of immersion, water chemistry significantly affected the formation of the oxide films. Once a stable oxide film formed, it is rather difficult to change its structure through changing water chemistry. The potential-pH diagrams for Zn

  18. Thermal spraying of corrosion protection layers in biogas plants; Erzeugung von Korrosionsschutzschichten fuer Bioenergieanlagen mittels Thermischen Spritzens

    Energy Technology Data Exchange (ETDEWEB)

    Crimmann, P.; Dimaczek, G.; Faulstich, M. [ATZ Entwicklungszentrum, Sulzbach-Rosenberg (Germany)

    2004-07-01

    Corrosion in plants for the energetic conversion of biomass is a severe problem that often causes premature damage of components. Thermal spraying is a process for the creation of corrosion protection layer. An advantage of thermal spraying is that as well as each material can be used as layer material. First practical results demonstrated that thermal spraying has the potential to create coatings to protect components against high temperature corrosion as well as biocorrosion. Layer materials are for example nickel base alloys (high temperature corrosion) and titan alloys (biocorrosion). Further investigations are necessary in order to examine whether cost-efficient coatings also contribute to the corrosion protection (e.g. polymer materials against biocorrosion). (orig.)

  19. Silicon coating treatment to improve high temperature corrosion resistance of 9%Cr steels

    International Nuclear Information System (INIS)

    Hill, M.P.

    1989-01-01

    A silicon coating process is described which confers good protection on 9%Cr steels and alloys in CO 2 based atmospheres at high temperatures and pressures. The coatings are formed by decomposition of silane at temperatures above 720 K. Protective layers are typically up to 1 μm thick. The optimum coating conditions are discussed. The chemical state of the coatings has been investigated by X-ray photoelectron spectroscopy and has demonstrated the importance of avoiding silicon oxide formation during processing. Corrosion testing has been carried out for extended periods, up to 20 000 h, at temperatures between 753 and 853 K, in a simulated advanced gas cooled reactor gas at 4 MPa pressure. Benefit factors of up to 60 times have been measured for 9%Cr steels. Even higher values have been measured for 9Cr-Fe binary alloy on which a 1 μm coating was sufficient to eliminate significant oxidation over 19 000 h except at the specimen edges. The mechanism of protection is discussed. It is suggested that a silicon surface coating for protecting steels from high temperature corrosion has some advantages over adding silicon to the bulk metal. (author)

  20. Tests on dynamic corrosion by water. Influence of the passage of a heat flux on the corrosion kinetics. pH measurement in water at high temperature; Essais de corrosion dynamique par l'eau. Influence du passage d'un flux thermique sur la cinetique de corrosion. Mesure du pH dans l'eau a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Coriou, H.; Grall, L.; Hure, J.; Saint-James, R. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Berthod [Societe Grenobloise d' Etudes et d' Applications Hydrauliques, 38 (France); Le peintre [Centre National de la Recherche Scientifique (CNRS), 38 - Grenoble (France)

    1958-07-01

    The passage of a heat flux through the surface of a metal placed in a corrosive medium influences the rate of corrosion, these being higher than under adiabatic conditions. The apparatus developed for corrosion tests is described, it is possible to obtain with this equipment: 1) Heat fluxes greater than 200 W/cm{sup 2}, across aluminium canning, which is cooled by water (temperature 50 deg. C), circulating with flow rates of the order of 5 to 6 m/s. 2) Heat fluxes which can go up to 150 W/cm{sup 2}, across canning of zircaloy or stainless steel. The cooling fluid is pressurized water at a temperature around 280 deg. C, the flow-rate of circulation reaching 6 m/s. The results obtained on aluminium canning are studied from the viewpoint of corrosion, paying particular attention to cavitation phenomena which can cause serious damage in certain special circumstances. After developing a glass electrode system capable of supporting high pressures, the authors have investigated materials capable of functioning as a hydrogen electrode and of resisting satisfactorily corrosion by water at 200 deg. C. Various possibilities have been examined: electrodes of special glasses, quartz, metals, with a membrane etc... The results of the various tests and the practical limits of utilisation are given. (author)Fren. [French] Le passage d'un flux thermique a travers la surface d'un metal place dans un milieu corrosif influence les vitesses de corrosion, celles-ci etant plus elevees que dans des conditions adiabatiques. On decrit les appareils mis au point, pour essais de corrosion. Ils permettent d'obtenir: 1) A travers des gaine aluminium des flux thermiques depassant 200 W /cm{sup 2}. Les gaines sont refroidies par l'eau (temperature 50 deg. C), circulant a des vitesses de l'ordre de 5 a 6 m/s. 2) A travers des gaines en zircaloy ou acier inoxydable des flux thermiques pouvant s'elever a 150 W/cm{sup 2}. Le fluide de refroidissement est de l

  1. Corrosion and anticorrosion. Industrial practice

    International Nuclear Information System (INIS)

    Beranger, G.; Mazille, H.

    2002-01-01

    This book comprises 14 chapters written with the collaboration of about 50 French experts of corrosion. It is complementary to another volume entitled 'corrosion of metals and alloys' and published by the same editor. This volume comprises two parts: part 1 presents the basic notions of corrosion phenomena, the properties of surfaces, the electrochemical properties of corrosion etc.. Part 2 describes the most frequent forms of corrosion encountered in industrial environments and corresponding to specific problems of protection: marine environment, atmospheric corrosion, galvanic corrosion, tribo-corrosion, stress corrosion etc.. The first 8 chapters (part 1) treat of the corrosion problems encountered in different industries and processes: oil and gas production, chemical industry, phosphoric acid industry, PWR-type power plants, corrosion of automobile vehicles, civil engineering and buildings, corrosion of biomaterials, non-destructive testing for the monitoring of corrosion. The other chapters (part 2) deal with anticorrosion and protective coatings and means: choice of materials, coatings and surface treatments, thick organic coatings and enamels, paints, corrosion inhibitors and cathodic protection. (J.S.)

  2. Corrosion Evaluation and Corrosion Control of Steam Generators

    International Nuclear Information System (INIS)

    Maeng, W. Y.; Kim, U. C.; Sung, K. W.; Na, J. W.; Lee, Y. H.; Lee, D. H.; Kim, K. M.

    2008-06-01

    Corrosion damage significantly influences the integrity and efficiency of steam generator. Corrosion problems of steam generator are unsolved issues until now even though much effort is made around world. Especially the stress corrosion cracking of heat exchange materials is the first issue to be solved. The corrosion protection method of steam generator is important and urgent for the guarantee of nuclear plant's integrity. The objectives of this study are 1) to evaluate the corrosion properties of steam generator materials, 2) to optimize the water chemistry of steam generator and 3) to develop the corrosion protection method of primary and secondary sides of steam generator. The results will be reflected to the water chemistry guideline for improving the integrity and efficiency of steam generator in domestic power plants

  3. High Temperature Corrosion under Laboratory Conditions Simulating Biomass-Firing: A Comprehensive Characterization of Corrosion Products

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2014-01-01

    characterization of the corrosion products. The corrosion products consisted of three layers: i) the outermost layer consisting of a mixed layer of K2SO4 and FexOy on a partly molten layer of the initial deposit, ii) the middle layer consists of spinel (FeCr2O4) and Fe2O3, and iii) the innermost layer is a sponge......-like Ni3S2 containing layer. At the corrosion front, Cl-rich protrusions were observed. Results indicate that selective corrosion of Fe and Cr by Cl, active oxidation and sulphidation attack of Ni are possible corrosion mechanisms....

  4. Corrosion of high temperature resisting alloys exposed to heavy fuel ash; Corrosion de aleaciones resistentes a altas temperaturas expuestas a ceniza de combustoleo pesado

    Energy Technology Data Exchange (ETDEWEB)

    Wong Moreno, Adriana del Carmen

    1998-03-01

    The objective of the performed research was to study the degradation process by high temperature corrosion of alloys exposed to heavy fuel oil ashes through a comparative experimental evaluation of its performance that allowed to establish the mechanisms involved in the phenomenon. The experimentation carried out involved the determination of the resistance to the corrosion of 14 alloys of different type (low and medium alloy steels, ferritic and austenitic stainless steels, nickel base alloys and a FeCrAl alloy of type ODS) exposed to high temperatures (580 Celsius degrees - 900 Celsius degrees) in 15 ash deposits with different corrosive potential, which were collected in the high temperature zone of boilers of thermoelectric power stations. The later studies to the corrosion tests consisted of the analysis by sweeping electron microscopy supported by microanalysis of the corroded probes, with the purpose of determining the effect of Na, V and S on the corrosivity of the ash deposits and the effect of the main alloying elements on the corrosion resistance of the alloys. Such effects are widely documented to support the proposed mechanisms of degradation that are occurring. The global analysis of the generated results has allowed to propose a model to explain the global mechanism of corrosion of alloys exposed to the high temperatures of ash deposits. The proposed model, complements the processed one by Wilson, widely accepted for fused vanadates, as far as on one hand, it considers the effect of the sodium sulfate presence (in addition to the vanadium compounds) in the deposits, and on the other hand, it extends it to temperatures higher than the point of fusion of constituent vanadium compounds of the deposits. Both aspects involve considering the roll that the process of diffusion of species has on the degradation and the capacity of protection of the alloy. The research performed allowed to confirm what the Wilson model had established for deposits with high

  5. High temperature corrosion investigation in an oxyfuel combustion test rig

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Bjurman, M.; Hjörnhede, A

    2014-01-01

    Oxyfuel firing and subsequent capture of CO2 is a way to reduce CO2 emissions from coal‐fired boilers. Literature is summarized highlighting results which may contribute to understanding of the corrosion processes in an oxyfuel boiler.Tests were conducted in a 500 kWth oxyfuel test facility...... constructed by Brandenburg Technical University to gain understanding into oxyfuel firing. Two air‐cooled corrosion probes were exposed in this oxyfuel combustion chamber where the fuel was lignite. Gas composition was measured at the location of testing. Various alloys from a 2½ Cr steel, austenitic steels...... to nickel alloys were exposed at set metal temperatures of 570 and 630 °C for 287 h. The specimens were investigated using light optical and scanning electron microscopy and X‐ray diffraction.The deposit on the probe contained predominantly CaSO4 and Fe2O3. Oxide thickness and depth of the precipitated...

  6. High-temperature corrosion of lanthanum in equimole mixture of sodium and potassium chlorides

    International Nuclear Information System (INIS)

    Kochergin, V.P.; Obozhina, R.N.; Dragoshanskaya, T.I.; Startsev, B.P.

    1984-01-01

    Results of investigation into the process of lanthanum corrosion in the molted equimole NaCl-KCl mixture after the change of test time, temperature and lanthanum trichloride were summarized. It was shown that polarization of lanthanum anode in equimole NaCl-KCl melt is controlled by La 3+ diffusion from near-electrode layer to electrolyte depth, which results in decrease of corrosion rate in time. The established electrochemical properties of metallic lanthanum in equimole NaCl-KCl mixture must be considered when improving the technology of electrochemical production of lanthanum or its alloys of molten chlorides of lanthanum and alkaline metals

  7. The effects of time, temperature and rotation of water on the corrosion rate of different types of steels

    International Nuclear Information System (INIS)

    Muhamad Daud; Jamaliah Shariff.

    1984-01-01

    By using hot plate/magnetic stirrer and immersion technique, the steel corroded uniformly and their corrosion rates vary due to type of steel, time of immersion, temperature and rotation of water. Therefore the rate of general corrosion, or sealing, of steel alloys is influenced by a number of factors, those best established being the composition of the metal, time, temperature, velocity, cleanliness or roughness of the metal surface and direct contact with solutions of the other materials. (author)

  8. Corrosion Evaluation and Corrosion Control of Steam Generators

    Energy Technology Data Exchange (ETDEWEB)

    Maeng, W. Y.; Kim, U. C.; Sung, K. W.; Na, J. W.; Lee, Y. H.; Lee, D. H.; Kim, K. M

    2008-06-15

    Corrosion damage significantly influences the integrity and efficiency of steam generator. Corrosion problems of steam generator are unsolved issues until now even though much effort is made around world. Especially the stress corrosion cracking of heat exchange materials is the first issue to be solved. The corrosion protection method of steam generator is important and urgent for the guarantee of nuclear plant's integrity. The objectives of this study are 1) to evaluate the corrosion properties of steam generator materials, 2) to optimize the water chemistry of steam generator and 3) to develop the corrosion protection method of primary and secondary sides of steam generator. The results will be reflected to the water chemistry guideline for improving the integrity and efficiency of steam generator in domestic power plants.

  9. Oxygen sensor development and low temperature corrosion study in lead-alloy coolant loop

    International Nuclear Information System (INIS)

    Hwang, Il Soon; Bahn, Chi Bum; Lee, Seung Gi; Jeong, Seung Ho; Nam, Hyo On; Lim, Jun

    2007-07-01

    Oxygen sensor to measure dissolved oxygen concentration at liquid lead-bismuth eutectic environments have been developed. Developed oxygen sensor for application in lead-bismuth eutectic (LBE) system was based on the oxygen ion conductor made of YSZ ceramic having Bi/Bi2O3 reference joined by electro-magnetic swaging. Leakage problem, which was major problem of existing sensors, can be solved by using electro-magnetic swaging method. A new calibration strategy combining the oxygen titration with electrochemical impedance spectroscopy (EIS) was performed to increase the reliability of sensor. Another calibration was also conducted by controlling the oxygen concentration using OCS (oxygen control system). Materials corrosion tests of various metals (SS316, EP823, T91 and HT9) were conducted for up to 1,000 hours with specimen inspection after every 333hours at 450 .deg. C in HELIOS. Oxygen concentration was controlled at 10 -6 wt% by using the direct gas bubbling of Ar+4%H 2 , Ar+5%O 2 and pure Ar. The dissolved oxygen concentration in LBE was also monitored by two calibrated YSZ oxygen sensors located at different places under different temperatures within HELIOS. It shows a good performance during 1000 hours. Liquid metal embrittlement (LME) test of SS316L specimen in the LBE was performed at various temperature and strain rate. The result shows that the liquid metal embrittlement effect is not crucial at tested conditions

  10. Corrosion evaluation of uranyl nitrate solution evaporator and denitrator in Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Yamanaka, Atsushi; Hashimoto, Kowa; Uchida, Toyomi; Shirato, Yoji; Isozaki, Toshihiko; Nakamura, Yoshinobu

    2011-01-01

    The Tokai reprocessing plant (TRP) adopted the PUREX method in 1977 and has reprocessed spent nuclear fuel of 1140 tHM (tons of heavy metals) since then. The reprocessing equipment suffers from various corrosion phenomena because of high nitric acidity, solution ion concentrations, such as uranium, plutonium, and fission products, and temperature. Therefore, considering corrosion performance in such a severe environment, stainless steels, titanium steel, and so forth were employed as corrosion resistant materials. The severity of the corrosive environment depends on the nitric acid concentration and the temperature of the solution, and uranium in the solution reportedly does not significantly affect the corrosion of stainless steels and controls the corrosion rates of titanium steel. The TRP equipment that handles uranyl nitrate solution operates at a low nitric acid concentration and has not experienced corrosion problems until now. However, there is a report that corrosion rates of some stainless steels increase in proportion to rising uranium concentrations. The equipment that handles the uranyl nitrate solution in the TRP includes the evaporators, which concentrate uranyl nitrate to a maximum concentration of about 1000 gU/L (grams of uranium per liter), and the denitrator, where uranyl nitrate is converted to UO 3 powder at about 320degC. These equipments are therefore required to grasp the degree of the progress of corrosion to handle high-temperature and high-concentration uranyl nitrate. The evaluation of this equipment on the basis of thickness measurement confirmed only minor corrosion and indicated that the equipment would be fully adequate for future operation. (author)

  11. Synthesis of Ceramic Protective Coatings for Chemical Plant Parts Operated in Hi-temperature and Corrosive/Erosive Environment

    International Nuclear Information System (INIS)

    Son, M. C.; Park, J. R.; Hong, K. T.; Seok, H. K.

    2005-01-01

    Some feasibility studies are conducted to produce an advanced ceramic coating, which reveals superior chemical and mechanical strength, on metal base structure used in chemical plant. This advanced coating on metallic frame can replace ceramic delivery pipe and reaction chamber used in chemical plant, which are operated in hi-temperature and corrosive/erosive environment. An dual spraying is adopted to reduce the residual stress in order to increase the coating thickness and the residual stress is estimated by in-situ manner. Then new methodology is tried to form special coating of yttrium aluminum garnet(YAG), which reveals hi-strength and low-creep rates at hi-temperature, superior anti-corrosion property, hi-stability against Alkali-Vapor corrosion, and so on, on iron base structure. To verify the formation of YAG during thermal spraying, XRD(X ray diffraction) technique was used

  12. Corrosion of beryllium

    International Nuclear Information System (INIS)

    Mueller, J.J.; Adolphson, D.R.

    1987-01-01

    The corrosion behavior of beryllium in aqueous and elevated-temperature oxidizing environments has been extensively studied for early-intended use of beryllium in nuclear reactors and in jet and rocket propulsion systems. Since that time, beryllium has been used as a structural material in les corrosive environments. Its primary applications include gyro systems, mirror and reentry vehicle structures, and aircraft brakes. Only a small amount of information has been published that is directly related to the evaluation of beryllium for service in the less severe or normal atmospheric environments associated with these applications. Despite the lack of published data on the corrosion of beryllium in atmospheric environments, much can be deduced about its corrosion behavior from studies of aqueous corrosion and the experiences of fabricators and users in applying, handling, processing, storing, and shipping beryllium components. The methods of corrosion protection implemented to resist water and high-temperature gaseous environments provide useful information on methods that can be applied to protect beryllium for service in future long-term structural applications

  13. Corrosion in the nuclear power industry

    International Nuclear Information System (INIS)

    Danko, J.C.

    1987-01-01

    This article reviews the major corrosion problems in light water reactors, the research on the corrosion mechanism(s), and the development of engineering solutions and their implementation. To understand the occurrence of corrosion problems, a brief historical perspective of the corrosion design basis of commercial light water reactors, boiling water, and pressurized water reactors is necessary. Although corrosion was considered in the plant designs, it was not viewed as a serious problem. This was based on the results of laboratory experiments and in-reactor tests that did not indicate any major corrosion problems with the materials selected for the plant construction. However, the laboratory tests did not necessarily reproduce the reactor operating conditions and the early in-reactor test did not fully represent the commercial reactor conditions in all cases, and, finally, the test times were indeed of short duration relative to the plant design lifetime of 40 years. Thus, the design basis for the materials selection was determined on the favorable but limited test data that were available, and corrosion limitations on component integrity were therefore not anticipated

  14. Carbon Dioxide Corrosion:

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup

    2008-01-01

    CO2 corrosion is a general problem in the industry and it is expensive. The focus of this study is an oil gas production related problem. CO2 corrosion is observed in offshore natural gas transportation pipelines. A general overview of the problem is presented in chapter 1. The chemical system...... with the basic thermodynamics of electrolytes in chapter 2, the extension and general description of electrolyte mass transport in chapter 3, and the electrochemical kinetics of corrosion in chapter 4. A literature overview of CO2 corrosion is shown in chapter 5 and possible extensions of the models...... and validated against heat capacity data. The model is also fitted to experimental data produced and shown in chapter 8 for SLE in the Na2CO3-NaHCO3-MEG-H2O system. The application of the above model is shown in chapter 9. Here the thermodynamic correction factors are calculated. These show how the diffusion...

  15. Corrosion behavior in high-temperature pressurized water of Zircaloy-4 joints brazed with Zr-Cu-based amorphous filler alloys

    Science.gov (United States)

    Lee, Jung Gu; Lee, Gyoung-Ja; Park, Jin-Ju; Lee, Min-Ku

    2017-05-01

    The compositional effects of ternary Zr-Cu-X (X: Al, Fe) amorphous filler alloys on galvanic corrosion susceptibility in high-temperature pressurized water were investigated for Zircaloy-4 brazed joints. Through an Al-induced microgalvanic reaction that deteriorated the overall nobility of the joint, application of the Zr-Cu-Al filler alloy caused galvanic coupling to develop readily between the Al-bearing joint and the Al-free base metal, finally leading to massive localized corrosion of the joint. Contrastingly, joints prepared with a Zr-Cu-Fe filler alloy showed excellent corrosion resistance comparable to that of the Zircaloy-4 base metal, since the Cu and Fe elements forming fine intermetallic particles with Zr did not influence the electrochemical stability of the resultant joints. The present results demonstrate that Fe is a more suitable alloying element than Al for brazing filler alloys subjected to high-temperature corrosive environments.

  16. Applications of electricity and corrosion. Precautions for use of metals and stainless and refractory alloys

    International Nuclear Information System (INIS)

    Gras, J.M.

    1993-09-01

    The development of applications of electricity poses highly diversified problems with materials where the resistance to corrosion prevails. Corrosion occurs under various conditions, which sometimes look harmless, and it covers diverse phenomenons linked to the nature of materials and to the physical and chemical context. However, in spite of the diversity of the processes used (electrical boilers, mechanical steam compression, heat pumps, Joule effect,) the knowledge required to approach the corrosion problems corresponds to a limited number of generic situations with regard not only to the phenomenons proper (general corrosion of copper, pitting and stress corrosion cracking of stainless steels, refractory alloys oxidation,) but also to chemical conditions which favour the corrosion (natural waters, acidic condensates, hot gases). This report is a short guide to anti-corrosion. With the aid of questions asked during the past few years, it aims to provide engineers in charge of the development of applications of electricity with a few recommendations upon the precautions for use of metallic materials. We analyze in turn the problems met with wet air and drying mists, chloride-containing neutral waters, alkaline waters and caustic media, acidic waters and concentrated acids, and, last, hot gases. We lay stress upon the behaviour of materials deemed to withstand corrosion under aqueous conditions (stainless steels and alloys, copper,titanium) and corrosion at high temperatures (refractory alloys). (author). 11 figs., 43 refs., 11 tabs

  17. Effect of temperature and heat fluxes on the corrosion's damage nature for mild and stainless steels in neutral chloride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kaluzhina, S.A. [Voronezh State University, University Sq.1, 394006 Voronezh (Russian Federation); Malygin, A.V. [JSC Voronezhsynthezkauchuk, Leninsky Av. 2, 394014 Voronezh (Russian Federation); Vigdorovitch, V.V. [Derzhavin State University, International St. 33, 392622 Tambov (Russian Federation)

    2004-07-01

    The detail research of the corrosion-electrochemical behavior of two types steels - mild steel (0.1%C) and stainless steel 12FeCr18Ni10Ti in series chloride solutions under elevated temperature and heat flux on interface has been carried out in the present work using the special plant and the complex electrochemical and microscopic methods. The comparative data has shown that the temperature increase is stimulating as the active alloy's corrosion (mild steel), so the passive alloy's corrosion (12FeCr18Ni10Ti).However at the last case the temperature effect is being higher because the thermal de-passivation of the stainless steel which undergoes pit corrosion under t > 50 deg C. The heat-transfer role in the studied systems is ambiguous. The corrosion rate of heat-transferring electrode from mild steel exceeds the thermo-equilibrium with solution electrode's corrosion rate because of intensification of the oxygen reduction cathodic process. The opposite effect has been established for steel 12FeCr18Ni10Ti where the oxygen flux's strengthening from cold solution to the heated surface transfers the alloy to the most stable passive state and increases its resistance to general and local corrosion. The experimental results demonstrates that the thermal condition's influence on the nature and corrosion intensity of the investigated steels is being commensurable by effect's degree with their composition and showing strictly individually. (authors)

  18. Corrosion monitoring of insulated pipe using radiographic technique

    International Nuclear Information System (INIS)

    Azali Muhammad; Abd Aziz Mohamed; Abd Razak Hamzah; Mohd Pauzi Ismail; Abd Nassir Ibrahim; Shaharudin Sayuti; Shukri Ahmad

    2001-01-01

    In petrochemical and power plants, detection of corrosion and evaluation of deposit in insulated pipes using radiographic technique are considered as very challenging tasks. In general this degradation problem is attributed to water condensation. It causes the formation of deposit and scale inside the pipe, as well as between the insulation and pipe in cold temperature pipes. On the other hand, for hot temperature pipes the main problem is mainly due to corrosion/erosion attack inside the pipe. In the study of corrosion in pipelines, one of the most important parameters to be monitored and measured is he wall thickness. Currently, most pipeline corrosion monitoring and evaluation for both insulated and non-insulated pipes is performed using an ultrasonic method. The most common technique is that based on the A-Scan, using either a normal flaw detector or some form of dedicated equipment. However, with recent development of ultrasonic technology, more advance method, namely B-Scan and C-scan techniques are also available. The most notable disadvantage of using this method is that the insulation covering the pipe has to be removed before the inspection can be carried out and this is considered as not so cost effective. Due to this reason, the possibility of employing other alternative NDT method, namely radiographic testing method was studied. The technique used in this studied are known as tangential technique. In this study it was found that the result found using tangential technique is consistent with the actual thickness of the pipe. Result of this study is presented and discussed in this paper. (Author)

  19. Corrosion behaviour of boiler tube materials during combustion of fuels containing Zn and Pb

    Energy Technology Data Exchange (ETDEWEB)

    Bankiewicz, D.

    2012-11-01

    Many power plants burning challenging fuels such as waste-derived fuels experience failures of the superheaters and/or increased waterwall corrosion due to aggressive fuel components already at low temperatures. To minimize corrosion problems in waste-fired boilers, the steam temperature is currently kept at a relatively low level which drastically limits power production efficiency. The elements found in deposits of waste and waste-derived fuels burning boilers that are most frequently associated with high-temperature corrosion are: Cl, S, and there are also indications of Br; alkali metals, mainly K and Na, and heavy metals such as Pb and Zn. The low steam pressure and temperature in waste-fired boilers also influence the temperature of the waterwall steel which is nowadays kept in the range of 300 deg C - 400 deg C. Alkali chloride (KCl, NaCl) induced high-temperature corrosion has not been reported to be particularly relevant at such low material temperatures, but the presence of Zn and Pb compounds in the deposits have been found to induce corrosion already in the 300 deg C - 400 deg C temperature range. Upon combustion, Zn and Pb may react with Cl and S to form chlorides and sulphates in the flue gases. These specific heavy metal compounds are of special concern due to the formation of low melting salt mixtures. These low melting, gaseous or solid compounds are entrained in the flue gases and may stick or condense on colder surfaces of furnace walls and superheaters when passing the convective parts of the boiler, thereby forming an aggressive deposit. A deposit rich in heavy metal (Zn, Pb) chlorides and sulphates increases the risk for corrosion which can be additionally enhanced by the presence of a molten phase. The objective of this study was to obtain better insight into high-temperature corrosion induced by Zn and Pb and to estimate the behaviour and resistance of some boiler superheater and waterwall materials in environments rich in those heavy metals

  20. KCl-induced high temperature corrosion of selected commercial alloys. Part II: alumina and silica-formers

    DEFF Research Database (Denmark)

    Kiamehr, Saeed; Dahl, Kristian Vinter; Montgomery, Melanie

    2016-01-01

    for 168 h in flowing N2(g)+5%O2(g)+15%H2O(g) (vol.%) with samples covered under KCl powder. A KCl-free exposure was also performed for comparison.Corrosion morphology and products were studied with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffractometry (XRD......Laboratory testing on selected alumina and silica-forming alloys was performed to evaluate their performance against high temperature corrosion induced by potassium chloride (KCl). The alloys studied were FeCrAlY, Kanthal APM, Nimonic 80A, 214, 153MA and HR160. Exposure was conducted at 600 °C......-chromium-silicon-oxygen containing layer forms as the innermost corrosion product. The layer was uniformly distributed over the surface and appears to render some protection as this alloy exhibited the best performance among the investigated alloys. To reveal further aspects of the corrosion mechanism, Nimonic 80A was exposed...

  1. High temperature corrosion of metallic interconnects in solid oxide fuel cells

    International Nuclear Information System (INIS)

    Bastidas, D. M.

    2006-01-01

    Research and development has made it possible to use metallic interconnects in solid oxide fuel cells (SOFC) instead of ceramic materials. The use of metallic interconnects was formerly hindered by the high operating temperature, which made the interconnect degrade too much and too fast to be an efficient alternative. When the operating temperature was lowered, the use of metallic interconnects proved to be favourable since they are easier and cheaper to produce than ceramic interconnects. However, metallic interconnects continue to be degraded despite the lowered temperature, and their corrosion products contribute to electrical degradation in the fuel cell. coatings of nickel, chromium, aluminium, zinc, manganese, yttrium or lanthanum between the interconnect and the electrodes reduce this degradation during operation. (Author) 66 refs

  2. Analysis of the corrosion of carbon steels in simulated salt repository brines and acid chloride solutions at high temperatures

    International Nuclear Information System (INIS)

    Diercks, D.R.; Kassner, T.F.

    1988-04-01

    An analysis of literature data on the corrosion of carbon steels in anoxic brines and acid chloride solutions was performed, and the results were used to assess the expected life of high-level nuclear waste package containers in a salt repository environment. The corrosion rate of carbon steels in moderately acidic aqueous chloride environments obeys an Arrhenius dependence on temperature and a (pH 2 ) -1/2 dependence on hydrogen partial pressure. The cathodic reduction of water to produce hydrogen is the rate-controlling step in the corrosion process. An expression for the corrosion rate incorporating these two dependencies was used to estimate the corrosion life of several proposed waste package configurations. 42 refs., 11 figs., 2 tabs

  3. Corrosion cracking of rotor steels of steam turbines

    International Nuclear Information System (INIS)

    Melekhov, R.K.; Litvintseva, E.N.

    1994-01-01

    Results of investigation of stress corrosion cracking of steam turbine materials in nuclear, fossil and geothermal power plants have been analysed. The role of factors that cause damage to rotor discs, mono block and welding rotors of steam turbines has been shown. These are yield stress and steel composition, stress intensity coefficient and crack growth rate, composition and temperature of the condensed steam and water, electrochemical conditions. The conclusion has been made about the state of stress corrosion cracking of the rotors materials, and main investigation trends which are necessary to solve this problem have been listed

  4. Electrochemical evaluation of zinc effect on the corrosion of nickel alloy in PWR solutions with increasing temperature

    International Nuclear Information System (INIS)

    Alvial M, Gaston; Neves, Celia F.C.; Schvartzman, Monica M.A.M.; Quinan, Marco Antonio D.

    2007-01-01

    The main objective for the addition of zinc acetate to the reactor coolant system of PWRs is to effect radiation dose rate reductions. However, zinc is also added as an approach to mitigate the occurrence or severity of primary water stress corrosion cracking of nickel alloy 600. The mechanism by which zinc affects the corrosion of austenitic nickel-base alloys is by incorporation of zinc into the spinel oxide corrosion films. The purpose of this work is to evaluate the influence of zinc on the corrosion behavior of the nickel alloy 600 in PWR chemical environment (1200 ppm B, 2.2 ppm Li, deoxygenated water) with increasing temperature at room pressure. Electrochemical tests (anodic potentiodynamic polarization and electrochemical impedance spectroscopy) were used to characterize the alloy 600. Two conditions were applied: 0 and 100 ppb zinc and the temperature range was 50 - 90 deg C, at ambient pressure. Potentiodynamic polarization was inefficient to present conclusive results. Impedance measurements showed single semicircle in the Nyquist plane suggesting reduction of the charge transference resistance in zinc-containing solutions. This effect is evident at 90 deg C suggesting prejudicial influence of zinc for the alloy 600 at room pressure. (author)

  5. Corrosion of high temperature alloys in the primary circuit helium of high temperature gas cooled reactors. Pt. 2

    International Nuclear Information System (INIS)

    Quadakkers, W.J.

    1985-01-01

    The reactive impurities H 2 O, CO, H 2 and CH 4 which are present in the primary coolant helium of high temperature gas-cooled reactors can cause scale formation, internal oxidation and carburization or decarburization of the high temperature structural alloys. In Part 1 of this contribution a theoretical model was presented, which allows the explanation and prediction of the observed corrosion effects. The model is based on a classical stability diagram for chromium, modified to account for deviations from equilibrium conditions caused by kinetic factors. In this paper it is shown how a stability diagram for a commercial alloy can be constructed and how this can be used to correlate the corrosion results with the main experimental parameters, temperature, gas and alloy composition. Using the theoretical model and the presented experimental results, conditions are derived under which a protective chromia based surface scale will be formed which prevents a rapid transfer of carbon between alloy and gas atmosphere. It is shown that this protective surface oxide can only be formed if the carbon monoxide pressure in the gas exceeds a critical value. Psub(CO), which depends on temperature and alloy composition. Additions of methane only have a limited effect provided that the methane/water ratio is not near to, or greater than, a critical value of around 100/1. The influence of minor alloying additions of strong oxide forming elements, commonly present in high temperature alloys, on the protective properties of the chromia surface scales and the kinetics of carbon transfer is illustrated. (orig.) [de

  6. The effect of zinc bath temperature on the morphology, texture and corrosion behaviour of industrially produced hot-dip galvanized coatings

    Directory of Open Access Journals (Sweden)

    A. Bakhtiari

    2014-03-01

    Full Text Available The purpose of this work is to identify the influence of zinc bath temperature on the morphology, texture and corrosion behavior of hot-dip galvanized coatings. Hot-dip galvanized samples were prepared at temperature in the range of 450-480 °C in steps of 10 °C, which is the conventional galvanizing temperature range in the galvanizing industries. The morphology of coatings was examined with optical microscopy and scanning electron microscopy (SEM. The composition of the coating layers was determined using energy dispersive spectroscopy (EDS analysis. The texture of the coatings was evaluated using X-ray diffraction. Corrosion behavior was performed using salt spray cabinet test and Tafel extrapolation test. From the experimental results, it was found that increasing the zinc bath temperature affects the morphology of the galvanized coatings provoking the appearance of cracks in the coating structure. These cracks prevent formation of a compact structure. In addition, it was concluded that (00.2 basal plane texture component was weakened by increasing the zinc bath temperature and, conversely, appearance of (10.1 prism component, (20.1 high angle pyramidal component and low angle component prevailed. Besides, coatings with strong (00.2 texture component and weaker (20.1 components have better corrosion resistance than the coatings with weak (00.2 and strong (20.1 texture components. Furthermore, corrosion resistance of the galvanized coatings was decreased by increasing the zinc bath temperature.

  7. Physical metallurgy. Vol. 6. Corrosion, oxidation and physical metallurgy applications

    International Nuclear Information System (INIS)

    Adda, Y.; Dupuy, J.M.; Philibert, J.; Quere, Y.

    1982-12-01

    This document deals with the following subjects: oxidation, corrosion and surface treatments. Some physical metallurgy applications are presented: aluminium alloys, high elastic limit materials, materials for very high temperature, nuclear metallurgy problems, composite materials, magnetic materials, very high purity materials, and, superconductor materials [fr

  8. Effect of Plasma Nitriding Process Conditions on Corrosion Resistance of 440B Martensitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Łępicka Magdalena

    2014-09-01

    Full Text Available Martensitic stainless steels are used in a large number of various industrial applications, e.g. molds for plastic injections and glass moldings, automotive components, cutting tools, surgical and dental instruments. The improvement of their tribological and corrosion properties is a problem of high interest especially in medical applications, where patient safety becomes a priority. The paper covers findings from plasma nitrided AISI 440B (PN-EN or DIN X90CrMoV18 stainless steel corrosion resistance studies. Conventionally heat treated and plasma nitrided in N2:H2 reaction gas mixture (50:50, 65:35 and 80:20, respectively in two different temperature ranges (380 or 450°C specimens groups were examined. Microscopic observations and electrochemical corrosion tests were performed using a variety of analytical techniques. As obtained findings show, plasma nitriding of AISI 440B stainless steel, regardless of the process temperature, results in reduction of corrosion current density. Nevertheless, applying thermo-chemical process which requires exceeding temperature of about 400°C is not recommended due to increased risk of steel sensitization to intergranular and stress corrosion. According to the results, material ion nitrided in 450°C underwent leaching corrosion processes, which led to significant disproportion in chemical composition of the corroded and corrosion-free areas. The authors suggest further research into corrosion process of plasma nitrided materials and its degradation products.

  9. Corrosion control in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Steele, D.F.

    1986-01-01

    This article looks in detail at tribology-related hazards of corrosion in irradiated fuel reprocessing plants and tries to identify and minimize problems which could contribute to disaster. First, the corrosion process is explained. Then the corrosion aspects at each of four stages in reprocessing are examined, with particular reference to oxide fuel reprocessing. The four stages are fuel receipt and storage, fuel breakdown and dissolution, solvent extraction and product concentration and waste management. Results from laboratory and plant corrosion trails are used at the plant design stage to prevent corrosion problems arising. Operational procedures which minimize corrosion if it cannot be prevented at the design stage, are used. (UK)

  10. Corrosion testing and prediction in SCWO environments

    International Nuclear Information System (INIS)

    Kriksunov, L.B.; Macdonald, D.D.

    1995-01-01

    The authors review recent advances in corrosion monitoring and modeling in SCWO systems. Techniques and results of experimental corrosion measurements at high temperatures are presented. Results of modeling corrosion in high subcritical and supercritical aqueous systems indicate the primary importance of density of water in corrosion processes. A phenomenological model has been developed to simulate corrosion processes at nearcritical and supercritical temperatures in SCWO systems. They discuss as well the construction of Pourbaix diagrams for metals in SCW

  11. Manufacture and evaluation of integrated metal-oxide electrode prototype for corrosion monitoring in high temperature water

    International Nuclear Information System (INIS)

    Hashimoto, Yoshinori; Tani, Jun-ichi

    2014-01-01

    We have developed an integrated metal-oxide (M/O) electrode based on an yttria-stabilized-zirconia-(YSZ)-membrane M/O electrode, which was used as a reference electrode for corrosion monitoring in high temperature water. The YSZ-membrane M/O electrode can operate at high temperatures because of the conductivity of YSZ membrane tube. We cannot utilize it for long term monitoring at a wide range of temperatures. It also has a braze juncture between the YSZ membrane and metal tubes, which may corrode in high-temperature water. This corrosion should be prevented to improve the performance of the M/O electrode. An integrated M/O electrode was developed (i.e., integrated metal-oxide electrode, IMOE) to eliminate the braze juncture and increase the conductivity of YSZ. These issues should be overcome to improve the performance of M/O electrode. So we have developed two type of IMOE prototype with sputter - deposition or thermal oxidation. In this paper we will present and discuss the performance of our IMOEs in buffer solution at room temperature. (author)

  12. Temperature dependency of external stress corrosion crack propagation of 304 stainless steel

    International Nuclear Information System (INIS)

    Hayashibara, Hitoshi; Mizutani, Yoshihiro; Mayuzumi, Masami; Tani, Jun-ichi

    2010-01-01

    Temperature dependency of external stress corrosion cracking (ESCC) of 304 stainless steel was examined with CT specimens. Maximum ESCC propagation rates appeared in the early phase of ESCC propagation. ESCC propagation rates generally became smaller as testing time advance. Temperature dependency of maximum ESCC propagation rate was analyzed with Arrhenius plot, and apparent activation energy was similar to that of SCC in chloride solutions. Temperature dependency of macroscopic ESCC incubation time was different from that of ESCC propagation rate. Anodic current density of 304 stainless steel was also examined by anodic polarization measurement. Temperature dependency of critical current density of active state in artificial sea water solution of pH=1.3 was similar to that of ESCC propagation rate. (author)

  13. A fundamental study on stress corrosion cracking of SUS 304 steel in high temperature water

    International Nuclear Information System (INIS)

    Mukai, Yoshihiko; Murata, Masato

    1985-01-01

    SCC susceptibility of sensitized SUS 304 stainless steel in high temperature water was studied. The results obtained are as follows. SCC susceptibility was increased by adding crevices to the tensile specimen surface, for the corrodent became acidified by hydrolysis in crevices. SCC susceptibility was best fit to TTS curve obtained by EPR test, not by other corrosion tests such as Strauss test or the grain boundary corrosion test in high temperature water. In addition, by giving a simulated weld thermal cycle before the sensitizing heat treatment, the sensitization was clearly promoted. This seemed to be caused by the reason that nucleation of carbide occured in the simulated weld thermal cycle process and it promoted the carbide growth and the formation of Cr poor layer around carbide in the subsequent sensitization process. (author)

  14. Corrosion in power industry

    International Nuclear Information System (INIS)

    Ventakeshwarlu, K.S.

    1979-01-01

    A brief account of the problem areas encountered as a result of corrosion in the electrical power industry including nuclear power industry is given and some of the measures contemplated and/or implemented to control corrosion are outlined. The corrosion problems in the steam generators and cladding tubes of the nuclear power plant have an added dimension of radioactivation which leads to contamination and radiation field. Importance of monitoring water quality and controlling water chemistry by addition of chemicals is emphasised. (M.G.B.)

  15. Corrosion testing of NiCrAl(Y) coating alloys in high-temperature and supercritical water

    International Nuclear Information System (INIS)

    Biljan, S.; Huang, X.; Qian, Y.; Guzonas, D.

    2011-01-01

    With the development of Generation IV (Gen IV) nuclear power reactors, materials capable of operating in high-temperature and supercritical water environment are essential. This study focuses on the corrosion behavior of five alloys with compositions of Ni20Cr, Ni5Al, Ni50Cr, Ni20Cr5Al and Ni20Cr10AlY above and below the critical point of water. Corrosion tests were conducted at three different pressures, while the temperature was maintained at 460 o C, in order to examine the effects of water density on the corrosion. From the preliminary test results, it was found that the binary alloys Ni20Cr and Ni50Cr showed weight loss above the critical point (23.7 MPa and 460 o C). The higher Cr content alloy Ni50Cr suffered more weight loss than Ni-20Cr under the same conditions. Accelerated weight gain was observed above the critical point for the binary alloy Ni5Al. The combination of Cr, Al and Y in Ni20Cr10AlY provides stable scale formation under all testing conditions employed in this study. (author)

  16. Acoustic emission analysis coupled with thermogravimetric experiments dedicated to high temperature corrosion studies on metallic alloys

    International Nuclear Information System (INIS)

    Serris, Eric; Al Haj, Omar; Peres, Veronique; Cournil, Michel; Kittel, Jean; Grosjean, Francois; Ropital, Francois

    2014-01-01

    High temperature corrosion of metallic alloys (like iron, nickel, zirconium alloys) can damage equipment of many industrial fields (refinery, petrochemical, nuclear..). Acoustic emission (AE) is an interesting method owing to its sensitivity and its non-destructive aspect to quantify the level of damage in use of these alloys under various environmental conditions. High temperature corrosive phenomena create stresses in the materials; the relaxation by cracks of these stresses can be recorded and analyzed using the AE system. The goal of our study is to establish an acoustic signals database which assigns the acoustic signals to the specific corrosion phenomena. For this purpose, thermogravimetric analysis (TGA) is coupled with acoustic emission (AE) devices. The oxidation of a zirconium alloy, zircaloy-4, is first studied using thermogravimetric experiment coupled to acoustic emission analysis at 900 C. An inward zirconium oxide scale, preliminary dense, then porous, grow during the isothermal isobaric step. The kinetic rate increases significantly after a kinetic transition (breakaway). This acceleration occurs with an increase of acoustic emission activity. Most of the acoustic emission bursts are recorded after the kinetic transition. Acoustic emission signals are also observed during the cooling of the sample. AE numerical treatments (using wavelet transform) completed by SEM microscopy characterizations allows us to distinguish the different populations of cracks. Metal dusting represents also a severe form of corrosive degradation of metal alloy. Iron metal dusting corrosion is studied by AE coupled with TGA at 650 C under C 4 H 10 + H 2 + He atmosphere. Acoustic emission signals are detected after a significant increase of the sample mass.

  17. Effect of substrate temperature on corrosion performance of nitrogen doped amorphous carbon thin films in NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Khun, N.W. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Liu, E., E-mail: MEJLiu@ntu.edu.s [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2009-07-01

    Nitrogen doped amorphous carbon (a-C:N) thin films were deposited on p-Si substrates by DC magnetron sputtering at varying substrate temperature from room temperature (RT) to 300 {sup o}C. The bonding structure, surface morphology and adhesion strength of the a-C:N films were investigated by using X-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy, atomic force microscopy (AFM) and micro-scratch testing. The corrosion behavior of the a-C:N films was evaluated by potentiodynamic polarization test in a 0.6 M NaCl solution. The results indicated that the corrosion resistance of the films depended on the sp{sup 3}-bonded cross-link structure that was significantly affected by the substrate temperature.

  18. Effect of substrate temperature on corrosion performance of nitrogen doped amorphous carbon thin films in NaCl solution

    International Nuclear Information System (INIS)

    Khun, N.W.; Liu, E.

    2009-01-01

    Nitrogen doped amorphous carbon (a-C:N) thin films were deposited on p-Si substrates by DC magnetron sputtering at varying substrate temperature from room temperature (RT) to 300 o C. The bonding structure, surface morphology and adhesion strength of the a-C:N films were investigated by using X-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy, atomic force microscopy (AFM) and micro-scratch testing. The corrosion behavior of the a-C:N films was evaluated by potentiodynamic polarization test in a 0.6 M NaCl solution. The results indicated that the corrosion resistance of the films depended on the sp 3 -bonded cross-link structure that was significantly affected by the substrate temperature.

  19. EUROCORR 2007 - The European corrosion congress - Progress by corrosion control. Book of Abstracts

    International Nuclear Information System (INIS)

    2007-01-01

    This book of abstracts contains lectures, workshops and posters which were held on the European Corrosion Congress 2007 in Freiburg (Germany). The main topics of the sessions and posters are: 1. Corrosion and scale inhibition; 2. Corrosion by hot gases and combustion products; 3. Nuclear corrosion; 4. Environment sensitive fracture; 5. Surface Science; 6. Physico-chemical methods of corrosion testing; 7. Marine corrosion; 8. Microbial corrosion; 9. Corrosion of steel in concrete; 10. Corrosion in oil and gas production; 11. Coatings; 12. Corrosion in the refinery industry; 13. Cathodic protection; 14. Automotive Corrosion; 15. Corrosion of polymer materials. The main topics of the workshops are: 1. High temperature corrosion in the chemical, refinery and petrochemical industries; 2. Bio-Tribocorrosion; 3. Stress corrosion cracking in nuclear power plants; 4. Corrosion monitoring in nuclear systems; 5. Cathodic protection for marine and offshore environments; 6. Self-healing properties of new surface treatments; 7. Bio-Tribocorrosion - Cost 533/Eureka-ENIWEP-Meeting; 8. Drinking water systems; 9. Heat exchangers for seawater cooling

  20. Plasma nitrocarburizing process - a solution to improve wear and corrosion resistance

    International Nuclear Information System (INIS)

    Joseph, Alphonsa J.; Ghanshyam, J.; Mukherjee, S.

    2015-01-01

    To prevent wear and corrosion problems in steam turbines, coatings have proved to have an advantage of isolating the component substrate from the corrosive environment with minimal changes in turbine material and design. Diffusion based coatings like plasma nitriding and plasma nitrocarburizing have been used for improving the wear and corrosion resistance of components undergoing wear during their operation. In this study plasma nitrocarburizing process was carried out on ferritic alloys like ASTM A182 Grade F22 and ATM A105 alloy steels and austenitic stainless steels like AISI 304 and AISI 316 which are used to make trim parts of control valves used for high pressure and high temperature steam lines to enhance their wear and corrosion resistance properties. The corrosion rate was measured by a potentiodynamic set up and salt spray unit in two different environments viz., tap water and 5% NaCl solutions. The Tafel plots of ferritic alloys and austenitic stainless steels show that plasma nitrocarburizing process show better corrosion resistance compared to that of the untreated steel. It was found that after plasma nitrocarburizing process the hardness of the alloy steels increased by a factor of two. The corrosion resistance of all the steels mentioned above improved in comparison to the untreated steels. This improvement can be attributed to the nitrogen and carbon incorporation in the surface of the material. This process can be also applied to components used in nuclear industries to cater to the wear and corrosion problems. (author)

  1. Stress corrosion cracking susceptibilities of various stainless steels in high temperature water

    International Nuclear Information System (INIS)

    Shoji, Saburo; Ohnaka, Noriyuki; Kikuchi, Eiji; Minato, Akira; Tanno, Kazuo.

    1980-01-01

    The intergranular stress corrosion cracking (IGSCC) behaviors of several austenitic stainless steels in high temperature water were evaluated using three types of SCC tests, i.e., single U-bend test in chloride containing water, uniaxial constant load and constant extension rate tests (CERT) in pure water. The steels used were SUS 304, 304L, 316, 316L, 321 and 347 and several heats of them to examine heat to heat variations. The three test methods gave the same relative ranking of the steels. The CERT is the most sensitive method to detect the relative IGSCC susceptibilities. The CERT result for relative ranking from poor to good is: SUS 304 - 0.07% C, 304 - 0.06% C, 304L - 0.028% C, 316 - 0.07% C. The IGSCC susceptibilities of SUS 304L - 0.020% C, 316L - 0.023% C, 321 and 347 were not detected. These test results suggest that the use of the low carbon, molybdenum bearing, or stabilized austenitic stainless steel is beneficial for eliminating the IGSCC problem in boiling water reactor environment. (author)

  2. Filterability of corrosion products formed between carbon steel and water. Influence of temperature and oxygen content

    International Nuclear Information System (INIS)

    Kelen, T.; Falk, I.

    1975-09-01

    A laboratory investigation has been made for the purpose of studying the influence of temperature and oxygen content on the filterability of corrosion products formed between carbon-steel and water. The experiments were performed in a high temperature loop where the water is initially heated in a pre-heater, then cooled and finally filtered. The corrosion products were transferred to thewater from a carbon-steel surface that had previously been neutron activated and the amount of iron present was determined from measurements of the γ-radiation emitted by Fe-59. Filterability was then computed as the ratio between the total amount of iron in the water phase and the amount of iron retained on the filter. The investigation covers a series of experiments at filtering temperatures of 20, 90 and 160 dec G, pre-heater temperatures up to 300 deg C and oxygen contents of 10 and 300 ppb O 2 . In addition the extent of iron deposition in the pre-heater and heat regulator has been determined after each series of experiments. Filterability exhibited a pronounced dependence upon both the filter and pre-heater temperatures and also upon the oxygen content. Among the conclusions to which the results lead is the observation that a strict comparison of filterability values for the fraction of corrosion products in cooled water samples is impossible when these are taken from 1) different sections of a high temperature system 2) a single sampling point while the system is being run up 3) two separate systems (e.g. steam boilers) operated at different temperatures 4) two separate systems operated at different oxygen contents. It accordingly appears advizable to restrict the use of cold-filtered samples from conventional steam-raising plants to the comparison of values relating to a single sampling point under constant operating conditions. (author)

  3. Application of aluminum diffusion coatings to mitigate the KCl-induced high-temperature corrosion

    DEFF Research Database (Denmark)

    Kiamehr, Saeed; Lomholt, T. N.; Dahl, Kristian Vinter

    2017-01-01

    Pack cementation was used to produce Fe1−xAl and Fe2Al5 diffusion coatings on ferritic-martensitic steel P91 and a Ni2Al3 diffusion coating on pure nickel. The performance of diffusion coatings against high-temperature corrosion induced by potassium chloride (KCl) was evaluated by exposing...

  4. Investigation of the Effects of Solution Temperature on the Corrosion Behavior of Austenitic Low-Nickel Stainless Steels in Citric Acid using Impedance and Polarization Measurements

    Directory of Open Access Journals (Sweden)

    Mulimbayan Francis M.

    2015-01-01

    Full Text Available Stainless steels may be classified according to alloy microstructure – ferritic, austenitic, martensitic, duplex, and precipitation hardening grades. Among these, austenitic grade has the largest contribution to market due to the alloy’s numerous industrial and domestic applications. In this study, the corrosion behavior of low-Nickel stainless steel in citric acid was investigated using potentiodynamic polarization techniques and Electrochemical Impedance Spectroscopy (EIS. The corrosion current density which is directly related to corrosion rate was extracted from the generated anodic polarization curve. Increasing the temperature of the citric acid resulted to increased corrosion current densities indicating higher corrosion rates at initial corrosion condition. EIS was performed to generate Nyquist plots whose shape and size depicts the corrosion mechanism and corrosion resistance of the alloy in citric acid, respectively. All the generated Nyquist plots have depressed semi-circle shapes implying that corrosion process takes place with charge-transfer as the rate-determining step. Based from the extracted values of polarization resistance (Rp, the temperature of the solution has negative correlation with the corrosion resistance of the studied alloy.

  5. Corrosion Investigations in Straw-Fired Power Plants in Denmark

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Frandsen, Flemming; Karlsson, A

    2001-01-01

    of accelerated corrosion. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. A series of field tests have been undertaken in the various straw-fired power plants in Denmark, namely the Masnedø, Rudkøbing and Ensted CHP plants. Three types......In Denmark, straw and other types of biomass are used for generating energy in power plants. Straw has the advantage that it is a "carbon dioxide neutral fuel" and therefore environmentally acceptable. Straw combustion is associated with corrosion problems which are not encountered in coal-fired...... of exposure were undertaken to investigate corrosion: a) the exposure of metal rings on water/air cooled probes, b) the exposure of test tubes in a test superheater, and c) the exposure of test tubes in existing superheaters. Thus both austenitic steels and ferritic steels were exposed in the steam...

  6. Bacterial corrosion in low-temperature geothermal. Mechanisms of corrosion by sulphate-reducing bacteria

    International Nuclear Information System (INIS)

    Daumas, Sylvie

    1987-01-01

    Within the frame of researches aimed at determining the causes of damages noticed on geothermal equipment, this research thesis aims at assessing the respective importance of physical-chemical processes and bacterial intervention in corrosion phenomena. It proposes an ecological approach of the fluid sampled in the Creil geothermal power station. The aim is to define the adaptation and activity degree of isolated sulphate-reducing bacteria with respect to their environment conditions. The author studied the effect of the development of these bacteria on the corrosion of carbon steel used in geothermal. Thus, he proposes a contribution to the understanding of mechanisms related to iron attack by these bacteria. Electrochemical techniques have been adapted to biological processes and used to measure corrosion [fr

  7. Stainless steel waste containers: an assessment of the probability of stress corrosion cracking

    International Nuclear Information System (INIS)

    Wanklyn, J.N.; Naish, C.C.

    1991-06-01

    The paper summarises information obtained from the literature and discussions held with corrosion experts from universities and industry, relevant to the possibility that stainless steel radioactive waste containers containing low level and intermediate level radioactive waste (LLW and ILW) could, when buried in concrete, suffer one or more of the forms of stress corrosion cracking (SCC). Stress corrosion cracking is caused by the simultaneous and synergistic action of a corrosive environment and stress. The initiation and propagation of SCC depend on a number of factors being present, namely a certain level of stress, an environment which will cause cracking and a susceptible metal or alloy. Generally the susceptibility of a metal or alloy to SCC increases as its strength level increases. The susceptibility in a specific environment will depend on: solution concentration, pH, temperature, and electrochemical potential of the metal/alloy. It is concluded that alkaline stress corrosion cracking is unlikely to occur under even the worst case conditions, that chloride stress corrosion cracking is a distinct possibility at the higher end of the temperature range (25-80 o C) and that stress corrosion related to sensitization of the steel will not be a problem for the majority of container material which is less than 5 mm in cross section. Thicker section material could become sensitized leading to a local problem in these areas. Contact with metals that are electrochemically more negative in corrosion potential is likely to reduce the incidence of SCC, at least locally. Measurement of repassivation potentials and rest potentials in solutions of relevant composition would provide a firmer prediction of the extent to which a high pH could reduce the likelihood of SCC caused by chlorides. (author)

  8. Corrosion characteristics of Hastelloy N alloy after He+ ion irradiation

    International Nuclear Information System (INIS)

    Lin Jianbo; Yu Xiaohan; Li Aiguo; He Shangming; Cao Xingzhong; Wang Baoyi; Li Zhuoxin

    2014-01-01

    With the goal of understanding the invalidation problem of irradiated Hastelloy N alloy under the condition of intense irradiation and severe corrosion, the corrosion behavior of the alloy after He + ion irradiation was investigated in molten fluoride salt at 700 °C for 500 h. The virgin samples were irradiated by 4.5 MeV He + ions at room temperature. First, the virgin and irradiated samples were studied using positron annihilation lifetime spectroscopy (PALS) to analyze the influence of irradiation dose on the vacancies. The PALS results showed that He + ion irradiation changed the size and concentration of the vacancies which seriously affected the corrosion resistance of the alloy. Second, the corroded samples were analyzed using synchrotron radiation micro-focused X-ray fluorescence, which indicated that the corrosion was mainly due to the dealloying of alloying element Cr in the matrix. Results from weight-loss measurement showed that the corrosion generally correlated with the irradiation dose of the alloy. (author)

  9. Corrosion control. 2. ed.

    International Nuclear Information System (INIS)

    Bradford, S.A.

    2001-01-01

    The purpose of this text is to train engineers and technologists not just to understand corrosion but to control it. Materials selection, coatings, chemical inhibitors, cathodic and anodic protection, and equipment design are covered in separate chapters. High-temperature oxidation is discussed in the final two chapters ne on oxidation theory and one on controlling oxidation by alloying and with coatings. This book treats corrosion and high-temperature oxidation separately. Corrosion is divided into three groups: (1) chemical dissolution including uniform attack, (2) electrochemical corrosion from either metallurgical or environmental cells, and (3) stress-assisted corrosion. Corrosion is logically grouped according to mechanisms rather than arbitrarily separated into different types of corrosion as if they were unrelated. For those university students and industry personnel who approach corrosion theory very hesitantly, this text will present the electrochemical reactions responsible for corrosion summed up in only five simple half-cell reactions. When these are combined on a polarization diagram, which is also explained in detail, the electrochemical processes become obvious. For those who want a text stripped bare of electrochemical theory, several noted sections can be omitted without loss of continuity. However, the author has presented the material in such a manner that these sections are not beyond the abilities of any high school graduate who is interested in technology

  10. Is KCl(g) corrosive at temperatures above its dew point? Influence of KCl(g) on initial stages of the high temperature corrosion of 11% Cr steel at 600 C

    Energy Technology Data Exchange (ETDEWEB)

    Segerdahl, K.; Pettersson, J.; Svensson, J.E.; Johansson, L.G. [Dept. of Environmental Inorganic Chemistry, High Temperature Corrosion Centre, Chalmers Univ. of Technology, Goeteborg (Sweden)

    2004-07-01

    The influence of gaseous KCl on the high temperature oxidation of CrMoV11 1 (X20) steel at 600 C is reported. The sample temperature was above the dew point of KCl, the partial pressure of KCl being about 5ppm. The samples were investigated by a number of surface analytical techniques including grazing angle XRD, SEM/EDX, and SAM. CrMoV11 1 steel shows protective behaviour in clean dry O{sub 2} and O{sub 2}/H{sub 2}O environment because of the formation of a chromium-rich oxide ({alpha}-(Fe,Cr){sub 2}O{sub 3}). It is often considered that alkali salts accelerate the corrosion of steel only when present on the surface in solid or liquid form. In contrast, the present result shows that gaseous KCl is very corrosive, also in the absence of condensation. KCl(g) reacts with chromium in the scale, forming K{sub 2}CrO{sub 4}(s). This depletes the protective oxide in chromium and leads to the formation of non-protective hematite, Fe{sub 2}O{sub 3}. (orig.)

  11. Effect of Water Content, Temperature and NaCl on CO2 Corrosion of Carbon Steel (A106B in Iraqi Crude Oil

    Directory of Open Access Journals (Sweden)

    Saad Ahmed Jafar

    2018-01-01

    Full Text Available An investigation was carried out to determine the corrosion rate of carbon steel (A 106 GradeB as flow line in crude oil production with CO2 content employing three Iraqi crude oil (Kirkuk crude oil, Halfaya crude oil, and Rumalia crude oil with identical produced water (brine [1%NaCl,2%NaCl, and 3%NaCl]. Experiments were performed in an autoclave test apparatus, crude oilproduced water mixtures, water cuts were (0, 10, 20, 30, 40, and 100%, and temperature (20, 40, 60°C. For all experiments, CO2 partial pressure was maintained at 4bar and rotational speed 500 rpm. The corrosion rates were determined by the weight loss method. The results revealed that the corrosion rate of carbon steel increased by increasing water cut and temperature, but decreased with increasing salt concentration for all types of crude oil. Rumaila crude oil exhibited the highest corrosion rate and Kirkuk crude oil exhibits the lowest corrosion rate while Halfaya crude oil exhibits a moderate corrosion rate.

  12. Studies of corrosion resistance of Japanese steels in liquid lead-bismuth

    International Nuclear Information System (INIS)

    Kamata, Kin-ya; Ono, Hiroshi; Kitano, Teruaki; Ono, Mikinori

    2003-01-01

    Liquid lead-bismuth has attractive characteristics as a coolant in future fast reactors and Accelerator Driven Sub-critical Systems (ADS) applications. The corrosion behavior of structural materials in lead-bismuth eutectic is one of key problems in developing nuclear power plants and installations using lead-bismuth coolant. Our experiences with heat exchangers using liquid lead-bismuth and the results of corrosion tests of Japanese steels are reported in this paper. A series of corrosion tests was carried out in collaboration with the Institute of Physics and Power Engineering (IPPE). Test specimens of various Japanese steels were exposed in a non-isothermal forced circulation loop. The influence of maximum temperature and oxygen content in lead bismuth were chosen for study as the primary causes of corrosion in Japanese steels. After the corrosion tests, corrosion behavior was analyzed by visual inspection, measurement of weight loss and metallurgical examination of the microstructure of the corroded zone. The corrosion mechanism in liquid lead bismuth is discussed on the basis of the metallurgical examination of the corroded zone. (author)

  13. High temperature corrosion in the thermochemical hydrogen production from nuclear heat

    International Nuclear Information System (INIS)

    Coen-Porisini, F.; Imarisio, G.

    1976-01-01

    In the production of hydrogen by water decomposition utilizing nuclear heat, a multistep process has to be employed. Water and the intermediate chemical products reach in chemical cycles giving hydrogen and oxygen with regeneration of the primary products used. Three cycles are examined, characterized by the presence of halide compounds and particularly hydracids at temperatures up to 800 0 C. Corrosion tests were carried out in hydrobromic acid, hydrochloric acid, ferric chloride solutions, and hydriodic acid

  14. Corrosion Behavior of SA508 Coupled with and without Magnetite in Chemical Cleaning Environments

    International Nuclear Information System (INIS)

    Son, Yeong-Ho; Jeon, Soon-Hyeok; Song, Geun Dong; Hur, Do Haeng; Lee, Jong-Hyeon

    2017-01-01

    To mitigate these problems, chemical cleaning process has been widely used. However, the chemical cleaning solution can affect the corrosion of SG structural materials as well as the magnetite dissolution. During the chemical cleaning process, the galvanic corrosion between SG materials and magnetite is also anticipated because they are in electrical connection. However, the corrosion measurement or monitoring for the materials has been performed without consideration of galvanic effect coupled with magnetite during the chemical cleaning process. In this study, the effect of temperature and EDTA concentration on the corrosion behavior of SA508 tubesheet material with and without magnetite was studied in chemical cleaning solutions. The galvanic corrosion behavior between SA508 and magnetite is predicted by using the mixed potential theory and its effect on the corrosion rate of SA508 is also discussed. By newly designed immersion test, it was confirmed that the extent of galvanic corrosion effect between SA508 and magnetite increased with increasing temperature and EDTA concentration. The galvanic corrosion behavior of SA508 coupled with magnetite in chemical cleaning environments was predicted by the mixed potential theory and verified by ZRA and LP technique. Galvanic coupling increased the corrosion rate of SA508 due to the shift in its potential to the anodic direction. Therefore, the galvanic corrosion effect between SA508 and magnetite should be considered when the corrosion measurement is performed during the chemical cleaning process in steam generators.

  15. IMPROVED CORROSION RESISTANCE OF ALUMINA REFRACTORIES

    Energy Technology Data Exchange (ETDEWEB)

    John P. Hurley; Patty L. Kleven

    2001-09-30

    The initial objective of this project was to do a literature search to define the problems of refractory selection in the metals and glass industries. The problems fall into three categories: Economic--What do the major problems cost the industries financially? Operational--How do the major problems affect production efficiency and impact the environment? and Scientific--What are the chemical and physical mechanisms that cause the problems to occur? This report presents a summary of these problems. It was used to determine the areas in which the EERC can provide the most assistance through bench-scale and laboratory testing. The final objective of this project was to design and build a bench-scale high-temperature controlled atmosphere dynamic corrosion application furnace (CADCAF). The furnace will be used to evaluate refractory test samples in the presence of flowing corrodents for extended periods, to temperatures of 1600 C under controlled atmospheres. Corrodents will include molten slag, steel, and glass. This test should prove useful for the glass and steel industries when faced with the decision of choosing the best refractory for flowing corrodent conditions.

  16. Temperature Effects on Stainless Steel 316L Corrosion in the Environment of Sulphuric Acid (H2SO4)

    Science.gov (United States)

    Ayu Arwati, I. G.; Herianto Majlan, Edy; Daud, Wan Ramli Wan; Shyuan, Loh Kee; Arifin, Khuzaimah Binti; Husaini, Teuku; Alfa, Sagir; Ashidiq, Fakhruddien

    2018-03-01

    In its application, metal is always in contact with its environment whether air, vapor, water, and other chemicals. During contact, chemical interactions emerge between metals and their respective environments such that the metal surface corrodes. This study aims to determine the corrosion rate of 316L stainless steel sulphuric acid environment (H2SO4) with weight loss and electrochemical methods. The corrosion rate (CR) is value of 316L stainless steel by weight loss method with sulfuric acid (H2SO4) with concentration of 0.5 M. The result obtained in conjunction with the increase of temperature the rate of erosion obtained appears to be larger, with a consecutive 3 hour the temperature of 50°C is 0.27 mg/cm2h, temperature 70°C 0.38 mg/cm2h, and temperature 90 °C 0.52 mg/cm2h. With the electrochemical method, the current value increases by using a C350 potentiostal tool. The higher the current, the longer the time the corrosion rate increases, where the current is at 90 °C with a 10-minute treatment time of 0.0014736 A. The 316L stainless steel in surface metal morphology is shown by using a Scanning Electron Microscope (SEM).

  17. Corrosion control for low-cost reliability

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This conference was held September 19-24, 1993 in Houston, Texas to provide a forum for exchange of state-of-the-art information on corrosion. Topics of interest focus on the following: atmospheric corrosion; chemical process industry corrosion; high temperature corrosion; and corrosion of plant materials. Individual papers have been processed separately for inclusion in the appropriate data bases

  18. Responses of Microbial Community Composition to Temperature Gradient and Carbon Steel Corrosion in Production Water of Petroleum Reservoir

    Directory of Open Access Journals (Sweden)

    Xiao-Xiao Li

    2017-12-01

    Full Text Available Oil reservoir production systems are usually associated with a temperature gradient and oil production facilities frequently suffer from pipeline corrosion failures. Both bacteria and archaea potentially contribute to biocorrosion of the oil production equipment. Here the response of microbial populations from the petroleum reservoir to temperature gradient and corrosion of carbon steel coupons were investigated under laboratory condition. Carbon steel coupons were exposed to production water from a depth of 1809 m of Jiangsu petroleum reservoir (China and incubated for periods of 160 and 300 days. The incubation temperatures were set at 37, 55, and 65°C to monitoring mesophilic, thermophilic and hyperthermophilic microorganisms associated with anaerobic carbon steel corrosion. The results showed that corrosion rate at 55°C (0.162 ± 0.013 mm year-1 and 37°C (0.138 ± 0.008 mm year-1 were higher than that at 65°C (0.105 ± 0.007 mm year-1, and a dense biofilm was observed on the surface of coupons under all biotic incubations. The microbial community analysis suggests a high frequency of bacterial taxa associated with families Porphyromonadaceae, Enterobacteriaceae, and Spirochaetaceae at all three temperatures. While the majority of known sulfate-reducing bacteria, in particular Desulfotignum, Desulfobulbus and Desulfovibrio spp., were predominantly observed at 37°C; Desulfotomaculum spp., Thermotoga spp. and Thermanaeromonas spp. as well as archaeal members closely related to Thermococcus and Archaeoglobus spp. were substantially enriched at 65°C. Hydrogenotrophic methanogens of the family Methanobacteriaceae were dominant at both 37 and 55°C; acetoclastic Methanosaeta spp. and methyltrophic Methanolobus spp. were enriched at 37°C. These observations show that temperature changes significantly alter the microbial community structure in production fluids and also affected the biocorrosion of carbon steel under anaerobic conditions.

  19. Selected durability studies of geopolymer concrete with respect to carbonation, elevated temperature, and microbial induced corrosion

    Science.gov (United States)

    Badar, Mohammad Sufian

    This thesis reports a comprehensive study related to the experimental evaluation of carbonation in reinforced geopolymer concrete, the evaluation of geopolymer concretes at elevated temperature, and the resistance of geopolymer concrete to microbial induced corrosion (MIC). Carbonation: Reinforced concretes, made of geopolymer, prepared from two class F fly ashes and one class C fly ash, were subjected to accelerated carbonation treatment for a period of 450 days. Electrochemical, microstructure and pore structure examinations were performed to evaluate the effect of corrosion caused due to carbonation. GPC specimens prepared from class F fly ash exhibited lower corrosion rates by a factor of 21, and higher pH values (pH>12) when compared with concrete specimens prepared from class C Fly ash (GPCMN). Microstructure and pore characterization of GPC prepared using class F fly ash revealed lower porosity by a factor of 2.5 as compared with thier counterparts made using GPC-MN. The superior performace of GPC prepared with the class F fly ash could be attributed to the dense pore structure and formation of the protective layer of calcium and sodium alumino silicate hydrates (C/N-A-S-H) geopolymeric gels around the steel reinforcement. Elevated Temperature: Geopolymers are an emerging class of cementitious binders which possess a potential for high temperature resistance that could possibly be utilized in applications such as nozzles, aspirators and refractory linings. This study reports on the results of an investigation into the performance of a fly ash based geopolymer binder in high temperature environments. Geopolymer concrete (GPC) was prepared using eleven types of fly ashes obtained from four countries. High content alumina and silica sand was used in the mix for preparing GPC. GPC was subjected to thermal shock tests following ASTM C 1100-88. The GPC samples prepared with tabular alumina were kept at 1093° C and immediately quenched in water. GPC specimens

  20. Microbiological corrosion of metals

    International Nuclear Information System (INIS)

    Vladislavlev, V.V.

    1992-01-01

    Problems is considered of development of the microbiological corrosion of the NPP equipment. The main attention is paid to the selective character of microbiological corrosion in zones of welded joints of austenitic steels. It is noted that the presence of technological defects promotes growth of corrosional damages. Methods for microbiological corrosion protection are discussed

  1. Temperature effect on corrosion fatigue strength of coated ship structural steel; Zosen`yoko tosozai no fushoku hiro kyodo ni okeru ondo no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Takanashi, M.; Fuji, A.; Kojima, M.; Kitagawa, M. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan); Kobayashi, Y. [Ship Research Inst., Tokyo (Japan); Kumakura, Y.

    1997-08-01

    The corrosion fatigue life was obtained using uncoated and tar epoxy resin specimens to clarify the temperature effect. The life curve for corrosion fatigue of machined and uncoated steel in the air and sea was obtained. The fatigue strength of uncoated steel largely decreases in the sea and breaks even in the nominal stress range of less than 1/2 of the fatigue limit in the air. The effect of temperature on the coated steel is represented by a corrosion coefficient. The steel coated at 25{degree}C is 1/1.03 to 1/1.13 at 40 to 60{degree}C. This showed that the fatigue strength decreases when the temperature exceeds 25{degree}C. However, it has not such tendency and significance that are represented quantitatively. There is a slight difference in the short-life area between the crack generation life and breaking life. However, the long-life area has no significance that influences the whole evaluation. In the long-life corrosion fatigue, the crack occurs from the corrosion pit due to the exposure below the coated film and progresses in the base material before the coated film is destroyed. The effect of the corrosion pit remarkably appears at a low-stress level. 14 refs., 14 figs., 4 tabs.

  2. Effect of the deposition temperature on corrosion resistance and biocompatibility of the hydroxyapatite coatings

    Science.gov (United States)

    Vladescu, A.; Braic, M.; Azem, F. Ak; Titorencu, I.; Braic, V.; Pruna, V.; Kiss, A.; Parau, A. C.; Birlik, I.

    2015-11-01

    Hydroxyapatite (HAP) ceramics belong to a class of calcium phosphate-based materials, which have been widely used as coatings on titanium medical implants in order to improve bone fixation and thus to increase the lifetime of the implant. In this study, HAP coatings were deposited from pure HAP targets on Ti6Al4V substrates using the radio-frequency magnetron sputtering technique at substrate temperatures ranging from 400 to 800 °C. The surface morphology and the crystallographic structure of the films were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion resistance of the coatings in saliva solution at 37 °C was evaluated by potentiodynamic polarization. Additionally, the human osteosarcoma cell line (MG-63) was used to test the biocompatibility of the coatings. The results showed that all of the coatings grown uniformly and that the increasing substrate temperature induced an increase in their crystallinity. Corrosion performance of the coatings was improved with the increase of the substrate temperature from 400 °C to 800 °C. Furthermore, all the coatings support the attachment and growth of the osteosarcoma cells with regard to the in vitro test findings.

  3. Effects of solution temperature on localized corrosion of high nickel content stainless steels and nickel in chromated LiBr solution

    International Nuclear Information System (INIS)

    Munoz, A. Igual; Anton, J. Garcia; Guinon, J.L.; Perez Herranz, V.

    2006-01-01

    The potentiodynamic technique has been used to study the general and localized corrosion resistance of high-alloyed stainless steels (UNS N02031 and UNS R20033) and nickel (UNS N02205) at different temperatures (from 25 deg. C to 80 deg. C) in a heavy brine Lithium Bromide solution. The engineering question of concern is the compatibility of the LiBr fluid with the structural materials of refrigeration systems which use absorption technology. The results of potentiodynamic polarization studies indicate excellent corrosion resistance for stainless steels in LiBr solution at room temperature and no big differences at temperatures above 50 deg. C. In the temperature range of 25-80 deg. C, a linear relationship exists between logarithmic of corrosion rate and reciprocal of absolute temperature (Arrhenius plot). The linear plots showed that the mechanism of the corresponding passivation process is the same for the three investigated alloys, essentially due to the presence of nickel. Tests indicated that stainless steels UNS N02031 and UNS R20033 were the most suitable for use to be used in the construction of absorption units for refrigeration purposes

  4. Corrosion on air preheaters and economisers; Korrosion hos luftfoervaermare och ekonomisrar

    Energy Technology Data Exchange (ETDEWEB)

    Nordling, Magnus

    2012-05-15

    Combustion plants in Sweden are exposed to considerable stress regarding low temperature corrosion, and failures due to low temperature corrosion occur regularly. Particularly common is corrosion problems connected to air preheaters and economisers. The number of combustion plants having air preheaters and economisers is however large, and the result of a collection of experiences regarding corrosion on air preheaters and economisers therefore has the potential to give a broad knowledge base. The summary of collection of experiences that has been done here, complemented with a literature survey, is expected to give plant owners and plant constructors a valuable tool to prevent corrosion on the flue gas side of air preheaters and economisers. The choice of plants for the inquiry was made using a list from the Swedish Naturvaardsverket (Environmental Protection Agency) indicating the emissions of NO{sub x}gases from Swedish combustion plants. From that list mainly the plants with the largest emissions were chosen, resulting in a number of 30 plants. Depending on that most of the plants have several boilers, and that the connected tubes often have several economisers and air preheaters, the number of economisers and air preheaters in this experience collection is at least 85. The study was however not limited to economisers and air preheaters, but also experiences connected to corrosion of other units were collected when mentioned, and the most interesting information here is also included in the report. Also a number of the plants were visited to improve the basis of the report, e.g. by photographing the most interesting parts. As the insight of the extension of the problem increased, renewed interview rounds were made, and the last one was made in August 2011.

  5. Summary of INCO corrosion tests in power plant flue gas scrubbing processes

    International Nuclear Information System (INIS)

    Hoxie, E.C.; Tuffnell, G.W.

    1976-01-01

    Corrosion tests in a number of flue-gas desulfurization units have shown that carbon steel, low alloy steels, and Type 304L stainless steel are inadequate in the wet portions of the scrubbers. Type 316L stainless steel is sometimes subject to localized corrosive attack in scrubber environments with certain combinations of pH and chloride content. A corollary is that corrosion of Type 316L stainless steel might be controlled by control of scrubbing media pH and chloride content. Although an attempt was made to correlate the pitting and crevice corrosion obtained on the Type 316 stainless steel test samples with chloride and pH measurements, relatively wide scatter in the data indicated only a modest correlation. This is attributed to variations in local conditions, especially beneath deposits, that differ from the liquor samples obtained for analysis, to processing upsets, to temperature differences, and to some extent to inaccuracies in measurement of pH and chloride levels. The data do show, however, that molybdenum as an alloying element in stainless steels and high nickel alloys was very beneficial in conferring resistance to localized attack in scrubber environments. High nickel alloys containing appreciable amounts of molybdenum such as Hastelloy alloy C-276 and Inconel alloy 625 can be used for critical components. Chloride stress corrosion cracking (SCC) of austenitic stainless steels has generally not been a problem in FGD scrubbers, apparently because operating temperatures are comparatively low. An exception is reheater tubing where some failures have occurred because of elevated temperatures in conjunction with condensate that forms during shut-down periods or carryover of chloride laden mist from the scrubber. This problem can be overcome by proper alloy selection or maintaining dry conditions

  6. Effect of zinc injection on BWR fuel cladding corrosion. Pt. 1. Study on an accelerated corrosion condition to evaluate corrosion resistance of zircaloy-2 fuel cladding

    International Nuclear Information System (INIS)

    Kawamura, Hirotaka; Kanbe, Hiromu; Furuya, Masahiro

    2002-01-01

    Japanese BWR utilities have a plan to apply zinc injection to the primary coolant in order to reduce radioactivity accumulation on the structure. Prior to applying the zinc injection to BWR plants, it is necessary to evaluate the effect of zinc injection on corrosion resistance of fuel cladding. The objective of this report was to examine the accelerated corrosion condition for evaluation of BWR fuel cladding corrosion resistance under non-irradiated conditions, as the first step of a zinc injection evaluation study. A heat transfer corrosion test facility, in which a two phase flow condition could be achieved, was designed and constructed. The effects of heat flux, void fraction and solution temperature on BWR fuel cladding corrosion resistance were quantitatively investigated. The main findings were as follows. (1) In situ measurements using high speed camera and a void sensor together with one dimensional two phase flow analysis results showed that a two phase flow simulated BWR core condition can be obtained in the corrosion test facility. (2) The heat transfer corrosion test results showed that the thickness of the zirconium oxide layer increased with increasing solution temperature and was independent of heat flux and void fraction. The corrosion accelerating factor was about 2.5 times in the case of a temperature increase from 288degC to 350degC. (author)

  7. Stress corrosion cracking of Inconel in high temperature water; Corrosion fissurante sous contrainte de l'Inconel dans l'eau a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Coriou,; Grall,; Gall, Le; Vettier, [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    Some Inconel samples were subjected to hot water corrosion testing (350 deg. C), under stress slightly above the elastic limit. It has been observed that different types of alloys - with or without titanium - could suffer serious intergranular damage, including a complete rupture, within a three months period. In one case, we observed an unusual intergranular phenomenon which appeared quite different from common intergranular corrosion. (author) [French] Des essais de corrosion d'Inconel sont realises dans l'eau a 350 deg. C, et sous contrainte legerement superieure a la limite elastique. On constate que differentes varietes d'alliage avec ou sans titane donnent lieu a des accidents intergranulaires graves allant jusqu'a rupture complete en 3 mois. Dans un cas, on observe un phenomene intergranulaire particulier tres different de la corrosion intergranulaire classique. (auteur)

  8. Effect of Mn Content and Solution Annealing Temperature on the Corrosion Resistance of Stainless Steel Alloys

    Directory of Open Access Journals (Sweden)

    Ihsan-ul-Haq Toor

    2014-01-01

    Full Text Available The corrosion behavior of two specially designed austenitic stainless steels (SSs having different Nickel (Ni and Manganese (Mn contents was investigated. Prior to electrochemical tests, SS alloys were solution-annealed at two different temperatures, that is, at 1030°C for 2 h and 1050°C for 0.5 h. Potentiodynamic polarization (PD tests were carried out in chloride and acidic chloride, whereas linear polarization resistance (LPR and electrochemical impedance spectroscopy (EIS was performed in 0.5 M NaCl solution at room temperature. SEM/EDS investigations were carried out to study the microstructure and types of inclusions present in these alloys. Experimental results suggested that the alloy with highest Ni content and annealed at 1050°C/0.5 hr has the highest corrosion resistance.

  9. BWR steel containment corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Tan, C.P.; Bagchi, G.

    1996-04-01

    The report describes regulatory actions taken after corrosion was discovered in the drywell at the Oyster Creek Plant and in the torus at the Nine Mile Point 1 Plant. The report describes the causes of corrosion, requirements for monitoring corrosion, and measures to mitigate the corrosive environment for the two plants. The report describes the issuances of generic letters and information notices either to collect information to determine whether the problem is generic or to alert the licensees of similar plants about the existence of such a problem. Implementation of measures to enhance the containment performance under severe accident conditions is discussed. A study by Brookhaven National Laboratory (BNL) of the performance of a degraded containment under severe accident conditions is summarized. The details of the BNL study are in the appendix to the report.

  10. Importance of temperature, pH, and boric acid concentration on rates of hydrogen production from galvanized steel corrosion

    International Nuclear Information System (INIS)

    Loyola, V.M.

    1982-01-01

    One of the known sources of hydrogen gas within a nuclear plant containment building during a LOCA is the high temperature corrosion of galvanized steel yielding hydrogen gas. The importance of this source of hydrogen will vary depending on the severity of the accident. In an accident which resulted in core degradation, for example, the major source of hydrogen would probably be the metal-water reaction of the zircaloy cladding, and the corrosion of galvanized steel would then become a relatively minor source of hydrogen. However, in an accident in which core degradation is avoided or limited to minor damage, the corrosion of galvanized steel, and presumably of other materials as well, would then become a major contributor to the buildup of hydrogen within containment. The purpose of this paper is to present the overall effects of temperature, pH, and boric acid concentration on the rate of hydrogen generation over a broad range of each parameter

  11. Elevated temperature erosion studies on some materials for high temperature applications

    International Nuclear Information System (INIS)

    Zhou Jianren.

    1991-01-01

    The surface degradation of materials due to high temperature erosion or combined erosion corrosion is a serious problem in many industrial and aeronautical applications. As such, it has become an important design consideration in many situations. The materials investigated in the present studies are stainless steels, Ti-6Al-4V, alumina ceramics, with and without silicate glassy phase, and zirconia. These are some of the potential materials for use in the high temperature erosive-corrosive environments. The erosion or erosion-corrosion experiments were performed in a high temperature sand-blast type of test rig. The variables studied included the temperature, material composition, heat treatment condition, impingement velocity and angle, erodent concentration, etc. The morphological features of the eroded or eroded-corroded surfaces, substrate deformation, and oxide characteristics were studied by optical and scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, thermogravimetric analysis. The scratch test, single ball impact, and indentation tests were used to understand the behavior of oxide film in particle impacts. Based on these studies, the understanding of the mechanisms involved in the mechanical or combined mechanical and chemical actions in erosion was developed

  12. Literature Survey on the Stress Corrosion Cracking of Low-Alloy Steels in High Temperature Water

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.P

    2002-02-01

    The present report is a summary of a literature survey on the stress corrosion cracking (SCC) behaviour/ mechanisms in low-alloy steels (LAS) in high-temperature water with special emphasis to primary-pressure-boundary components of boiling water reactors (BWR). A brief overview on the current state of knowledge concerning SCC of low-alloy reactor pressure vessel and piping steels under BWR conditions is given. After a short introduction on general aspects of SCC, the main influence parameter and available quantitative literature data concerning SCC of LAS in high-temperature water are discussed on a phenomenological basis followed by a summary of the most popular SCC models for this corrosion system. The BWR operating experience and service cracking incidents are discussed with respect to the existing laboratory data and background knowledge. Finally, the most important open questions and topics for further experimental investigations are outlined. (author)

  13. Corrosion of PWR steam generators

    International Nuclear Information System (INIS)

    Garnsey, R.

    1979-01-01

    Some designs of pressurized water reactor (PWR) steam generators have experienced a variety of corrosion problems which include stress corrosion cracking, tube thinning, pitting, fatigue, erosion-corrosion and support plate corrosion resulting in 'denting'. Large international research programmes have been mounted to investigate the phenomena. The operational experience is reviewed and mechanisms which have been proposed to explain the corrosion damage are presented. The implications for design development and for boiler and feedwater control are discussed. (author)

  14. Fighting corrosion in India

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopalan, K S; Rangaswamy, N S

    1979-03-01

    A survey covers the cost of corrosion in India; methods of preventing corrosion in industrial plants; some case histories, including the prevention of corrosion in pipes through which fuels are pumped to storage and the stress-corrosion cracking of evaporators in fertilizer plants; estimates of the increase in demand in 1979-89 for anticorrosion products and processes developed by the Central Electrochemical Research Institute (CECRI) at Karaikudi, India; industries that may face corrosion problems requiring assistance from CECRI, including the light and heavy engineering structural, and transport industries and the chemical industry; and some areas identified for major efforts, including the establishment of a Corrosion Advisory Board with regional centers and the expansion of the Tropical Corrosion Testing Station at Mandapam Camp, Tamil Nadu.

  15. Influence of Step Annealing Temperature on the Microstructure and Pitting Corrosion Resistance of SDSS UNS S32760 Welds

    Science.gov (United States)

    Yousefieh, M.; Shamanian, M.; Saatchi, A.

    2011-12-01

    In the present work, the influence of step annealing heat treatment on the microstructure and pitting corrosion resistance of super duplex stainless steel UNS S32760 welds have been investigated. The pitting corrosion resistance in chloride solution was evaluated by potentiostatic measurements. The results showed that step annealing treatments in the temperature ranging from 550 to 1000 °C resulted in a precipitation of sigma phase and Cr2N along the ferrite/austenite and ferrite/ferrite boundaries. At this temperature range, the metastable pits mainly nucleated around the precipitates formed in the grain boundary and ferrite phase. Above 1050 °C, the microstructure contains only austenite and ferrite phases. At this condition, the critical pitting temperature of samples successfully arrived to the highest value obtained in this study.

  16. Electrochemistry in light water reactors reference electrodes, measurement, corrosion and tribocorrosion issues

    CERN Document Server

    Bosch, R -W; Celis, Jean-Pierre

    2007-01-01

    There has long been a need for effective methods of measuring corrosion within light water nuclear reactors. This important volume discusses key issues surrounding the development of high temperature reference electrodes and other electrochemical techniques. The book is divided into three parts with part one reviewing the latest developments in the use of reference electrode technology in both pressurised water and boiling water reactors. Parts two and three cover different types of corrosion and tribocorrosion and ways they can be measured using such techniques as electrochemical impedance spectroscopy. Topics covered across the book include in-pile testing, modelling techniques and the tribocorrosion behaviour of stainless steel under reactor conditions. Electrochemistry in light water reactors is a valuable reference for all those concerned with corrosion problems in this key technology for the power industry. Discusses key issues surrounding the development of high temperature reference eletrodes A valuab...

  17. A flow reactor for the flow supercritical water oxidation of wastes to mitigate the reactor corrosion problem

    International Nuclear Information System (INIS)

    Chitanvis, S.M.

    1994-01-01

    We have designed a flow tube reactor for supercritical water oxidation of wastes that confines the oxidation reaction to the vicinity of the axis of the tube. This prevents high temperatures and reactants as well as reaction products from coming in intimate contact with reactor walls. This implies a lessening of corrosion of the walls of the reactor. We display numerical simulations for a vertical reactor with conservative design parameters that illustrate our concept. We performed our calculations for the destruction of sodium nitrate by ammonium hydroxide In the presence of supercritical water, where the production of sodium hydroxide causes corrosion. We have compared these results with that for a horizontal set-up where the sodium hydroxide created during the reaction ends up on the floor of the tube, implying a higher probability of corrosion

  18. Study of Temperature Effect on the Corrosion Inhibition of C38 Carbon Steel Using Amino-tris(Methylenephosphonic Acid in Hydrochloric Acid Solution

    Directory of Open Access Journals (Sweden)

    Najoua Labjar

    2011-01-01

    Full Text Available Tafel polarization method was used to assess the corrosion inhibitive and adsorption behaviours of amino-tris(methylenephosphonic acid (ATMP for C38 carbon steel in 1 M HCl solution in the temperature range from 30 to 60∘C. It was shown that the corrosion inhibition efficiency was found to increase with increase in ATMP concentration but decreased with temperature, which is suggestive of physical adsorption mechanism. The adsorption of the ATMP onto the C38 steel surface was found to follow Langmuir adsorption isotherm model. The corrosion inhibition mechanism was further corroborated by the values of kinetic and thermodynamic parameters obtained from the experimental data.

  19. NDT method in determining the rate of corrosion applicable to risk based inspection

    International Nuclear Information System (INIS)

    Mohamed Hairul Hasmoni; Mohamad Pauzi Ismail; Ab Razak Hamzah

    2004-01-01

    Corrosion is a major problem in oil and gas industries, refineries and chemical process plants as the equipment is often exposed to corrosive environments or elevated temperature. Important equipment need to operate safely and reliably to avoid injuries to personnel and the public, and to prevent loss time and cost incurred due to loss of production and shutdown. The paper assess the approach in evaluating the technique of non-destructive testing (NDT) using Ultrasonic Testing (UT) in determining the rate of corrosion and remaining life of equipment applicable to Risk Based Inspection (RBI). Methods in determining the corrosion rate are presented using analytical method. Examples and data from MINT chiller water pipeline are presented to illustrate the application of these methods. (Author)

  20. Corrosive components of nutshells and their chars

    Directory of Open Access Journals (Sweden)

    Karczewski Mateusz

    2016-01-01

    Full Text Available Biomass combustion stands among various technologies pointed at fossil fuels consumption decrease. Biomass can be found in very diversified sources spread more evenly across the globe, can be burned with use of traditional combustion solutions and is more CO2 neutral in combustion than their fossil fuel counterparts. On the other hand biomass has several problems with composition that despite its potential diversity. Problem of excess moisture can be already solved by material selection or by preliminary pyrolysis. The main problem concerns however biomass ash composition. Biomass ashes are more prone to have higher quantities of potentially corrosive components than their coal counterparts. The example of such constituents are alkali metals, sulphur and chlorine. Ash basic composition is also important due to various ash properties like its melting temperature and slagging or fouling tendencies. To address the problem, several indices for fast properties prediction and earlier problem identification can be appointed. This work concentrates on ash quality evaluation for potentially attractive biomass fuel from nutshell materials and their corresponding char obtained by pyrolysis in 300, 450 and 550 °C. Pistachio and hazelnut shells with their chars will be analysed for corrosive compounds and their potential influence on combustion process.

  1. Corrosion evaluation in insulated pipes by non destructive testing method

    International Nuclear Information System (INIS)

    Abd Razak Hamzah; Azali Muhammad; Mohammad Pauzi Ismail; Abd Nassir Ibrahim; Abd Aziz Mohamed; Sufian Saad; Saharuddin Sayuti; Shukri Ahmad

    2002-01-01

    In engineering plants, detection of corrosion and evaluation of deposit in insulated pipes using radiography method are considered as a very challenging tasks. In General this degradation problem is attributed to water condensation. It causes the formation of deposit and scale inside the pipe, as well as between the insulation and pipe in cold temperature pipes. On the other hand, for hot temperature pipes the main problem is mainly due to corrosion/erosion attack inside the pipe. In the study of corrosion in pipelines, one of the most important parameters to be monitored and measured is the wall thickness. Currently, most pipeline corrosion monitoring and evaluation for both insulated and non-insulated pipes is performed using an ultrasonic method. The most common technique is that based on the A-Scan, using either a normal flaw detector or some form of dedicated equipment. However, with recent development of ultrasonic technology, more advance method, namely B-Scan and C-scan techniques are also available. The most notable disadvantage of using this method is that the insulation covering the pipe has to be removed before the inspection can be carried out and this is considered as not so cost effective. Due to this reason, the possibility of employing other alternative NDT method, namely radiographic testing method were studied. The technique used in this studied are known as tangential technique. In this study it was found that the result found using tangential technique is consistent with the actual thickness of the pipe. Result of this study is presented and discussed in this paper. (Author)

  2. Corrosion resistance of Fe-Al alloy-coated steel under bending stress in high temperature lead-bismuth eutectic

    International Nuclear Information System (INIS)

    Yamaki, Eriko; Takahashi, Minoru

    2009-01-01

    Formation of thin Fe-Al alloy layers on the surface of cladding and structural materials is effective to protect a base material from corrosion in high temperature LBE. However, it is concerned that these protective layers may be damaged under various stress conditions. This study on Fe-Al alloy coatings deposited by unbalanced magnetron sputtering (UBMS) is focused to evaluate corrosion resistance and integrity of the Fe-Al coating layers with thickness of 0.5 mm under bending stress in high temperature LBE. High chromium steel specimens (HCM12A, Recloy10) with Fe-Al alloy coating were exposed to LBE pool with low oxygen concentration (up to 5.2x10 -8 wt%) at 550 and 650degC under 45kg-loading for 240 and 500 h. No LBE corrosion was observed in the base metal and coating layer after the tests at 550degC for 550 h. The coating layers could be barrier for corrosion resistance from LBE at 550degC, although the coating scales are cracked by the load. At 650degC, because the base metal was contoccured directly with LBE through cracks across the coating layer. Penetration of LBE to base metal and dissolution of beset metal into LBE occurred. Fe-Al coating layer was not corroded by LBE. (author)

  3. General and localized corrosion of carbon and low-alloy steels in oxygenated high-temperature water. Final report

    International Nuclear Information System (INIS)

    Macdonald, D.D.; Smialowska, S.; Pednekar, S.

    1983-02-01

    The susceptibilities to stress corrosion cracking (SCC) of two carbon steels, SA106-grB and SA333-gr6, which are used in seamless BWR piping, and a low-alloy pressure vessel steel, A508-C12, were studied in high purity water as a function of oxygen concentration (0.16 to 8 ppM) and temperature (50 to 288 0 C) . The susceptibility to SCC was measured using the slow strain rate technique. The fracture surfaces of the test specimens were also examined using SEM to determine the mode of failure. In water containing 1 and 8 ppM oxygen and at temperatures above 135 0 C, transgranular stress corrosion cracking (TGSCC) was observed to occur in A508-C12, SA333-gr6 and SA106grB steels at very high stresses. The susceptibility to SCC increased with temperature

  4. Corrosion mechanism of 13Cr stainless steel in completion fluid of high temperature and high concentration bromine salt

    International Nuclear Information System (INIS)

    Liu, Yan; Xu, Lining; Lu, Minxu; Meng, Yao; Zhu, Jinyang; Zhang, Lei

    2014-01-01

    Highlights: • The corrosion behavior of 13Cr steel exposed to bromine salt completion fluid containing high concentration bromine ions was investigated. • There are passive circles around pits on the 13Cr steel surface after 7 d of exposure. • Macroscopic galvanic corrosion formed between the passive halo and the pit. • The mechanism of pitting corrosion on 13Cr stainless steel exposed to heavy bromine brine was established. - Abstract: A series of corrosion tests of 13Cr stainless steel were conducted in a simulated completion fluid environment of high temperature and high concentration bromine salt. Corrosion behavior of specimens and the component of corrosion products were investigated by means of scanning electron microscope (SEM), confocal laser scanning microscopy (CLSM) and X-ray photoelectron spectroscopy (XPS). The results indicate that 13Cr steel suffers from severe local corrosion and there is always a passive halo around every pit. The formation mechanism of the passive halo is established. OH − ligand generates and adsorbs in a certain scale because of abundant OH − on the surface around the pits. Passive film forms around each pit, which leads to the occurrence of passivation in a certain region. Finally, the dissimilarities in properties and morphologies of regions, namely the pit and its corresponding passive halo, can result in different corrosion sensitivities and may promote the formation of macroscopic galvanic pairs

  5. Effect of Carbide Dissolution on Chlorine Induced High Temperature Corrosion of HVOF and HVAF Sprayed Cr3C2-NiCrMoNb Coatings

    Science.gov (United States)

    Fantozzi, D.; Matikainen, V.; Uusitalo, M.; Koivuluoto, H.; Vuoristo, P.

    2018-01-01

    Highly corrosion- and wear-resistant thermally sprayed chromium carbide (Cr3C2)-based cermet coatings are nowadays a potential highly durable solution to allow traditional fluidized bed combustors (FBC) to be operated with ecological waste and biomass fuels. However, the heat input of thermal spray causes carbide dissolution in the metal binder. This results in the formation of carbon saturated metastable phases, which can affect the behavior of the materials during exposure. This study analyses the effect of carbide dissolution in the metal matrix of Cr3C2-50NiCrMoNb coatings and its effect on chlorine-induced high-temperature corrosion. Four coatings were thermally sprayed with HVAF and HVOF techniques in order to obtain microstructures with increasing amount of carbide dissolution in the metal matrix. The coatings were heat-treated in an inert argon atmosphere to induce secondary carbide precipitation. As-sprayed and heat-treated self-standing coatings were covered with KCl, and their corrosion resistance was investigated with thermogravimetric analysis (TGA) and ordinary high-temperature corrosion test at 550 °C for 4 and 72 h, respectively. High carbon dissolution in the metal matrix appeared to be detrimental against chlorine-induced high-temperature corrosion. The microstructural changes induced by the heat treatment hindered the corrosion onset in the coatings.

  6. Effect of Annealing Temperature on the Mechanical and Corrosion Behavior of a Newly Developed Novel Lean Duplex Stainless Steel.

    Science.gov (United States)

    Guo, Yanjun; Hu, Jincheng; Li, Jin; Jiang, Laizhu; Liu, Tianwei; Wu, Yanping

    2014-09-12

    The effect of annealing temperature (1000-1150 °C) on the microstructure evolution, mechanical properties, and pitting corrosion behavior of a newly developed novel lean duplex stainless steel with 20.53Cr-3.45Mn-2.08Ni-0.17N-0.31Mo was studied by means of optical metallographic microscopy (OMM), scanning electron microscopy (SEM), magnetic force microscopy (MFM), scanning Kelvin probe force microscopy (SKPFM), energy dispersive X-ray spectroscopy (EDS), uniaxial tensile tests (UTT), and potentiostatic critical pitting temperature (CPT). The results showed that tensile and yield strength, as well as the pitting corrosion resistance, could be degraded with annealing temperature increasing from 1000 up to 1150 °C. Meanwhile, the elongation at break reached the maximum of 52.7% after annealing at 1050 °C due to the effect of martensite transformation induced plasticity (TRIP). The localized pitting attack preferentially occurred at ferrite phase, indicating that the ferrite phase had inferior pitting corrosion resistance as compared to the austenite phase. With increasing annealing temperature, the pitting resistance equivalent number (PREN) of ferrite phase dropped, while that of the austenite phase rose. Additionally, it was found that ferrite possessed a lower Volta potential than austenite phase. Moreover, the Volta potential difference between ferrite and austenite increased with the annealing temperature, which was well consistent with the difference of PREN.

  7. Corrosion of reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1963-01-15

    Much operational experience and many experimental results have accumulated in recent years regarding corrosion of reactor materials, particularly since the 1958 Geneva Conference on the Peaceful Uses of Atomic Energy, where these problems were also discussed. It was, felt that a survey and critical appraisal of the results obtained during this period had become necessary and, in response to this need, IAEA organized a Conference on the Corrosion of Reactor Materials at Salzburg, Austria (4-9 June 1962). It covered many of the theoretical, experimental and engineering problems relating to the corrosion phenomena which occur in nuclear reactors as well as in the adjacent circuits

  8. Corrosion behaviour of sensitized and unsensitized Alloy 900 (UNS 1.4462) in concentrated aqueous lithium bromide solutions at different temperatures

    International Nuclear Information System (INIS)

    Leiva-Garcia, R.; Munoz-Portero, M.J.; Garcia-Anton, J.

    2010-01-01

    Duplex stainless steels can undergo microstructural changes if they are heated improperly. When that happens, duplex stainless steels are sensitized and intermetallic phases appear. The high Chromium and Molybdenum content promotes the formation of secondary phases as a consequence of the heat treatment. These secondary phases, which are rich in alloying elements, such as Cr and Mo, deplete these elements from the neighbouring phases, leading to a reduction in corrosion resistance. In order to study the influence of the secondary phases on the corrosion parameters, samples of duplex stainless steel, Alloy 900 (UNS 1.4462), have been heated in argon atmosphere at 825 deg. C for 1 h. The corrosion behaviour of sensitized and unsensitized Alloy 900 has been analyzed in a concentrated aqueous lithium bromide (LiBr) solution of 992 g/L by means of cyclic potentiodynamic curves. Secondary phase presence reduces the pitting potential value of Alloy 900. Besides, the pitting potential decreases with temperature. On the other hand, the corrosion potential and open circuit potential values increase with temperature and sensitization.

  9. Acid corrosion inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, N G

    1964-04-28

    An acid corrosion inhibitor is prepared by a 2-stage vacuum evaporation of effluents obtained from the ammonia columns of the coking oven plant. The effluent, leaving a scrubber in which the phenols are removed at a temperature of 98$C, passes through a quartz filter and flows into a heated chamber in which it is used for preheating a solution circulating through a vacuum unit, maintaining the temperature of the solution at 55$ to 60$C. The effluent enters a large tank in which it is boiled at 55$ to 60$C under 635 to 640 mm Hg pressure. Double evaporation of this solution yields a very effective acid corrosion inhibitor. Its corrosion-preventing effect is 97.9% compared with 90.1% for thiourea and 88.5% for urotropin under identical conditions.

  10. Rhenium corrosion in chloride melts

    International Nuclear Information System (INIS)

    Stepanov, A.D.; Shkol'nikov, S.N.; Vetyukov, M.M.

    1989-01-01

    The results investigating rhenium corrosion in chloride melts containing sodium, potassium and chromium ions by a gravimetry potentials in argon atmosphere in a sealing quarth cell are described. Rhenium corrosion is shown to be rather considerable in melts containing CrCl 2 . The value of corrosion rate depending on temperature is determined

  11. Atmospheric corrosion of uranium-carbon alloys; Corrosion atmospherique des alliages uranium-carbone

    Energy Technology Data Exchange (ETDEWEB)

    Rousset, P; Accary, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    The authors study the corrosion of uranium-carbon alloys having compositions close to that of the mono-carbide; they show that the extent of the observed corrosion effects increases with the water vapour content of the surrounding gas and they conclude that the atmospheric corrosion of these alloys is due essentially to the humidity of the air, the effect of the oxygen being very slight at room temperature. They show that the optimum conditions for preserving U-C alloys are either a vacuum or a perfectly dry argon atmosphere. The authors have also established that the type of corrosion involved is a corrosion which 'cracks under stress' and is transgranular (it can also be intergranular in the case of sub-stoichiometric alloys). They propose, finally, two hypotheses for explaining this mechanism, one of which is illustrated by the existence, at the fissure interface, of corrosion products which can play the role of 'corners' in the mono-carbide grains. (authors) [French] Les auteurs etudient la corrosion des alliages uranium-carbone de composition voisine du monocarbure; ils montrent que l'importance des effets de la corrosion observee augmente avec la teneur en vapeur d'eau du milieu gazeux ambiant et concluent que la corrosion atmospherique de ces alliages est due essentiellement a l'humidite de l'air, l'action de l'oxygene de l'air etant tres faible a la temperature ambiante. Ils indiquent que les conditions optimales de conservation des alliages U-C sont le vide ou une atmosphere d'argon parfaitement desseches. D'autre part, les auteurs etablissent que le type de corrosion mis en jeu est une corrosion 'fissurante sous contrainte', transgranulaire (pouvant egalement etre intergranulaire dans le cas d'alliages sous-stoechiometriques). Ils proposent enfin deux hypotheses pour rendre compte de ce mecanisme, dont l'une est illustree par la mise en evidence, a l'interface des fissures, de produits de corrosion pouvant jouer le role de 'coins' dans les grains de

  12. Corrosion behaviour of Alloy 800 in high temperature aqueous solutions: Electrochemical studies

    International Nuclear Information System (INIS)

    Olmedo, A.M.; Villegas, M.; Alvarez, M.G.

    1996-01-01

    The anodic behaviour and passivity breakdown of Alloy 800 in aqueous solutions of sodium chloride, sodium sulphate and sodium bicarbonate were studied by electrochemical techniques in the temperature range from 60 C to 280 C. The pitting resistance and pitting morphology of the alloy in chloride plus sulphate and chloride plus bicarbonate mixtures, at 60 C and 280 C, were also examined. Increasing bicarbonate or sulphate additions to chloride solutions shift the characteristic pitting potential of Alloy 800 to higher values, both at low and high temperatures. Changes in pitting morphology were observed in sulphate containing solutions while the morphology of the attack found in bicarbonate containing solutions was similar to that in pure chloride solutions. Finally, no localized or substantial generalized corrosion was detected in pure sulphate or bicarbonate solutions at any temperature. (orig.)

  13. Corrosion of Zircaloy-clad fuel rods in high-temperature PWRs: Measurement of waterside corrosion in North Anna Unit 1

    International Nuclear Information System (INIS)

    Balfour, M.G.; Kilp, G.R.; Comstock, R.J.; McAtee, K.R.; Thornburg, D.R.

    1992-03-01

    Twenty-four peripheral rods and two interior rods from North Anna Unit 1, End-of-Cycle 7, were measured at poolside for waterside corrosion on four-cycle Region 6 assemblies F35 and F66, with rod average burnups of 60 GWD/MTU. Similar measurements were obtained on 24 two-cycle fuel rods from Region 8A assemblies H02 and H10 with average burnups of about 40 GWD/MTU. The Region 6 peripheral rods had been corrosion measured previously after three cycles, at 45 GWD/MTU average burnup. The four-cycle Region 6 fuel rods showed high corrosion, compared to only intermediate corrosion level after three cycles. The accelerated corrosion rate in the fourth cycle was accompanied by extensive laminar cracking and spalling of the oxide film in the thickest regions. The peak corrosion of the two-cycle region 8A rods was 32 μm to 53 μm, with some isolated incipient oxide spalling. In conjunction with the in-reactor corrosion measurements, extensive characterization tests plus long-term autoclave corrosion tests were performed on archive samples of the three major tubing lots represented in the North Anna measurements. The autoclave tests generally showed the same ordering of corrosion by tubing lot as in the reactor; the chief difference between the archive tubing samples was a lower tin content (1.38 percent) for the lot with the lowest corrosion rate compared with a higher tin content (1.58) for the lot with the highest corrosion rate. There was no indication in the autoclave tests of an accelerated rate of corrosion as observed in the reactor

  14. Stress corrosion of nickel alloys: influence of metallurgical, chemical and physicochemical parameters

    International Nuclear Information System (INIS)

    Gras, J.M.; Pinard-Legry, G.

    1997-01-01

    Stress corrosion of nickel alloys (alloys 600, X-750, 182, 82..)is the main problem of corrosion in PWR type reactors. This article gives the main knowledge about this question, considering particularly the influence of the mechanical, microstructural and physicochemical factors on cracks under stress of the alloy 600 in water at high temperature. The acquired knowledge allows nowadays to better anticipate and control the phenomenon. On the industrial point of view, they have allowed to improve the resistance of in service or future materials. While a lot of advances have been carried out in the understanding of the influence of parameters, several uncertainties still remain concerning the corrosion mechanism and the part of some factors. (O.M.)

  15. Composition and corrosion properties of high-temperature oxide films on steel type 18-10

    International Nuclear Information System (INIS)

    Vakulenko, B.F.; Morozov, O.N.; Chernysheva, M.V.

    1985-01-01

    The composition and propeties of oxide films, formed in the process of tube production of steel type 18-10, as well as the behaviour of the steels coated with oxide films under operating conditions of NPP heat-exchange equipment at the 20-300 deg C temperatures are determined. It is found, that the films have a good adhesion to the steel surface and repeat the metal structure without interfering with, the surface defect determination. Introduction of the NaNO 2 corrosion inhibitor decreases the film destruction rate to the level of the base metal corrosion. It is found acceptable to use tubes of steel 18-10 coated with dense oxide films in the heat-exchange and water supply systems of NPP

  16. Energy evaluations, graphite corrosion in Bugey I

    International Nuclear Information System (INIS)

    Brisbois, J.; Fiche, C.

    1967-01-01

    Bugey I presents a problem of radiolytic corrosion of the graphite by the CO 2 under pressure at high temperature. This report aims to evaluate the energy transferred to the gas by a Bugey I core cell, in normal operating conditions. The water, the carbon oxides and the hydrogen formed quantities are deduced as the consumed graphite and methane. Experimental studies are realized in parallel to validate the presented results. (A.L.B.)

  17. Recent improvements in the filtration of corrosion products in high temperature water and application to reactor circuits

    International Nuclear Information System (INIS)

    Darras, R.; Dolle, L.; Chenouard, J.; Laylavoix, F.

    1977-01-01

    The nature and physico-chemical behavior of corrosion products released by structural materials into high temperature water flowing in power reactor circuits have been investigated in test loops and different power plants. The results improve more particularly the knowledge of probable rate constants governing their disappearance through deposition of crud on the fuel cladding. It appears that a considerable limitation of radioactivity transportation in the primary circuit components of pressurized water reactors is in a general way only possible through extraction of the corrosion products by filtration at a rate adequate to minimize the amount of crud deposited in the core. This extraction rate has been estimated; its magnitude implicates a filtration operating on the high temperature water in the primary circuit which allows the necessary high flows. The application of magnetic and electromagnetic so as deep granular graphite bed filters has been studied. The results concerning efficiencies and limiting yields at high temperatures are given. Estimates concerning technological feasibility and corresponding investments are discussed

  18. Tailoring a High Temperature Corrosion Resistant FeNiCrAl for Oxy-Combustion Application by Thermal Spray Coating and HIP

    Directory of Open Access Journals (Sweden)

    Jarkko Metsäjoki

    2015-10-01

    Full Text Available Oxy-fuel combustion combined with CCS (carbon capture and storage aims to decrease CO2 emissions in energy production using fossil fuels. Oxygen firing changes power plant boiler conditions compared to conventional firing. Higher material temperatures and harsher and more variable environmental conditions cause new degradation processes that are inadequately understood at the moment. In this study, an Fe-Ni-Cr-Al alloy was developed based on thermodynamic simulations. The chosen composition was manufactured as powder by gas atomization. The powder was sieved into two fractions: The finer was used to produce thermal spray coatings by high velocity oxy-fuel (HVOF and the coarser to manufacture bulk specimens by hot isostatic pressing (HIP. The high temperature corrosion properties of the manufactured FeNiCrAl coating and bulk material were tested in laboratory conditions simulating oxy-combustion. The manufacturing methods and the results of high temperature corrosion performance are presented. The corrosion performance of the coating was on average between the bulk steel references Sanicro 25 and TP347HFG.

  19. Corrosion and stress corrosion cracking in supercritical water

    Science.gov (United States)

    Was, G. S.; Ampornrat, P.; Gupta, G.; Teysseyre, S.; West, E. A.; Allen, T. R.; Sridharan, K.; Tan, L.; Chen, Y.; Ren, X.; Pister, C.

    2007-09-01

    Supercritical water (SCW) has attracted increasing attention since SCW boiler power plants were implemented to increase the efficiency of fossil-based power plants. The SCW reactor (SCWR) design has been selected as one of the Generation IV reactor concepts because of its higher thermal efficiency and plant simplification as compared to current light water reactors (LWRs). Reactor operating conditions call for a core coolant temperature between 280 °C and 620 °C at a pressure of 25 MPa and maximum expected neutron damage levels to any replaceable or permanent core component of 15 dpa (thermal reactor design) and 100 dpa (fast reactor design). Irradiation-induced changes in microstructure (swelling, radiation-induced segregation (RIS), hardening, phase stability) and mechanical properties (strength, thermal and irradiation-induced creep, fatigue) are also major concerns. Throughout the core, corrosion, stress corrosion cracking, and the effect of irradiation on these degradation modes are critical issues. This paper reviews the current understanding of the response of candidate materials for SCWR systems, focusing on the corrosion and stress corrosion cracking response, and highlights the design trade-offs associated with certain alloy systems. Ferritic-martensitic steels generally have the best resistance to stress corrosion cracking, but suffer from the worst oxidation. Austenitic stainless steels and Ni-base alloys have better oxidation resistance but are more susceptible to stress corrosion cracking. The promise of grain boundary engineering and surface modification in addressing corrosion and stress corrosion cracking performance is discussed.

  20. Passive Corrosion Behavior of Alloy 22

    International Nuclear Information System (INIS)

    R.B. Rebak; J.H. Payer

    2006-01-01

    Alloy 22 (NO6022) was designed to stand the most aggressive industrial applications, including both reducing and oxidizing acids. Even in the most aggressive environments, if the temperature is lower than 150 F (66 C) Alloy 22 would remain in the passive state having particularly low corrosion rates. In multi-ionic solutions that may simulate the behavior of concentrated ground water, even at near boiling temperatures, the corrosion rate of Alloy 22 is only a few nano-meters per year because the alloy is in the complete passive state. The corrosion rate of passive Alloy 22 decreases as the time increases. Immersion corrosion testing also show that the newer generation of Ni-Cr-Mo alloys may offer a better corrosion resistance than Alloy 22 only in some highly aggressive conditions such as in hot acids

  1. Field test corrosion experiments in Denmark with biomass fuels Part I Straw firing

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Karlsson, A; Larsen, OH

    2002-01-01

    plants. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. A series of field tests have been undertaken in the various straw-fired power plants in Denmark, namely Masnedø, Rudkøbing and Ensted. Three types of exposure were undertaken......In Denmark, straw and other types of biomass are used for generating energy in power plants. Straw has the advantage that it is a "carbon dioxide neutral fuel" and therefore environmentally acceptable. Straw combustion is associated with corrosion problems which are not encountered in coal-fired...... to investigate corrosion: a) the exposure of metal rings on water/air cooled probes, b) the exposure of test tubes in a test superheater, and c) the exposure of test tubes in existing superheaters. Thus both austenitic steels and ferritic steels were exposed in the steam temperature range of 450-600°C...

  2. Corrosion behavior of corrosion resistant alloys in stimulation acids

    Energy Technology Data Exchange (ETDEWEB)

    Cheldi, Tiziana [ENI E and P Division, 20097 San Donato Milanese Milano (Italy); Piccolo, Eugenio Lo; Scoppio, Lucrezia [Centro Sviluppo Materiali, via Castel Romano 100, 00128 Rome (Italy)

    2004-07-01

    In the oil and gas industry, selection of CRAs for downhole tubulars is generally based on resistance to corrosive species in the production environment containing CO{sub 2}, H{sub 2}S, chloride and in some case elemental sulphur. However, there are non-production environments to which these materials must also be resistant for either short term or prolonged duration; these environments include stimulation acids, brine and completion fluids. This paper reports the main results of a laboratory study performed to evaluate the corrosion and stress corrosion behaviour to the acidizing treatments of the most used CRAs for production tubing and casing. Laboratory tests were performed to simulate both 'active' and 'spent' acids operative phases, selecting various environmental conditions. The selected steel pipes were a low alloyed steel, martensitic, super-martensitic, duplex 22 Cr, superduplex 25 Cr and super-austenitic stainless steels (25 Cr 35 Ni). Results obtained in the 'active' acid environments over the temperature range of 100-140 deg. C, showed that the blend acids with HCl at high concentration and HCl + HF represented too much severe conditions, where preventing high general corrosion and heavy localised corrosion by inhibition package becomes very difficult, especially for duplex steel pipe, where, in some case, the specimens were completely dissolved into the solution. On the contrary, all steels pipes were successfully protected by inhibitor when organic acid solution (HCOOH + CH{sub 3}COOH) were used. Furthermore, different effectiveness on corrosion protection was showed by the tested inhibitors packages: e.g. in the 90% HCl at 12% + 10 CH{sub 3}COOH acid blend. In 'spent' acid environments, all steel pipes showed to be less susceptible to the localised and general corrosion attack. Moreover, no Sulphide Stress Corrosion Cracking (SSC) was observed. Only one super-austenitic stainless steel U-bend specimen showed

  3. Survey of Water Chemistry and Corrosion of NPP

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ki Sok; Hong, Bong Geon

    2008-06-15

    Status of water chemistry of nuclear power plant and materials corrosion has been surveyed. For PWR, system chemistry of primary coolant and secondary coolant as well as the related corrosion of materials was surveyed. For BWR, system chemistry as whole has been surveyed with its accompanying corrosion problems. Radiolysis of coolant water and activation of corrosion products also was surveyed. Future NPP such as supercritical water cooled reactor and fusion reactor has also been surveyed for their water chemistry and corrosion problems. As a result, proposal for some research items has been suggested. Some related corrosion research techniques and electrochemical fundamentals are also presented.

  4. Survey of Water Chemistry and Corrosion of NPP

    International Nuclear Information System (INIS)

    Jung, Ki Sok; Hong, Bong Geon

    2008-06-01

    Status of water chemistry of nuclear power plant and materials corrosion has been surveyed. For PWR, system chemistry of primary coolant and secondary coolant as well as the related corrosion of materials was surveyed. For BWR, system chemistry as whole has been surveyed with its accompanying corrosion problems. Radiolysis of coolant water and activation of corrosion products also was surveyed. Future NPP such as supercritical water cooled reactor and fusion reactor has also been surveyed for their water chemistry and corrosion problems. As a result, proposal for some research items has been suggested. Some related corrosion research techniques and electrochemical fundamentals are also presented

  5. Fastener Corrosion: A Result of Moisture Problems in the Building Envelope

    Science.gov (United States)

    Samuel L. Zelinka

    2013-01-01

    This paper reviews recent literature on the corrosion of metals embedded in wood and highlights the link be-tween moisture accumulation in wood and fastener cor-rosion. Mechanisms of fastener corrosion are described including dependence upon wood moisture content. These fundamental concepts are applied to practical examples by explaining how hygrothermal models can be...

  6. The use of sewage sludge as additive to avoid operational problems at combustion of shredder residues

    International Nuclear Information System (INIS)

    Gyllenhammar, Marianne

    2010-01-01

    When shredder light fraction (SLF) from recovery of metal scrap is energy recovered it is usually mixed with more than 90% of other wastes. SLF is a fuel with high energy content but also with relatively high chlorine and metal content and could cause deposit and corrosion problems in incineration plants. Sewage sludge has previously been shown to reduce deposition and corrosion problems in combustion of alkali and chlorine containing biomass. In this work 20 % SLF (by energy content) has been combusted together with municipal solid waste and industrial wastes, with and without addition of 3 % (by energy content) sewage sludge. The initial fireside corrosion rate was then compared to the corrosion rate during combustion of the normal fuel mix, i.e. only municipal solid waste and industrial wastes. The tests were done at the 20 MW fluidized bed boiler of Lidkoping heat production plant. During the tests air-cooled corrosion and deposit probes were exposed for 24 hours. Deposit probes were placed at three different flue gas temperatures - in the combustion chamber, upstream and downstream the convection pass. The corrosion probes were placed upstream the convection pass and on the probes there were three different materials at three different water temperatures (280, 350 and 420 degree Celsius). The tests showed that sewage sludge could help avoiding deposition and corrosion problems when incinerating SLF. The amount of deposits was reduced and the content of the deposits was less corrosive when sewage sludge was added. The project was financed by Waste Refinery as a collaboration project between Stena Metall AB, Metso AB, High Temperature Corrosion Center at Chalmers University of Technology, SP Technical Research Institute of Sweden and Lidkopings Varmeverk. (author)

  7. Meeting the challenge of extremely corrosive service: A primer on clad oilfield equipment

    International Nuclear Information System (INIS)

    Pendley, M.R.

    1993-01-01

    Extremely corrosive environments, such as those often encountered in deep, hot, sour oil and gas wells, are usually characterized by the presence of hydrogen sulfide (H 2 S), carbon dioxide (CO 2 ), chlorides, and other corrosive species coupled with high temperatures (> 400 F/204 C) and high pressures (up to 20,000 psi/138 MPa). Most low alloy and stainless steel materials are not suitable for such environments. Extremely corrosive service conditions dictate the use of a corrosion-resistant alloy (CRA) in areas which are exposed to the hostile environment. However, it is often cost-prohibitive to make an entire component out of CRA material. An alternative strategy is to use a low alloy steel for the bulk of the component and clad critical surfaces with a corrosion-resistant material. Clad equipment can provide excellent corrosion resistance in hostile environments at a fraction of the cost of 100% CRA components. This paper will detail the problems posed by extremely corrosive environments and discuss how clad equipment provides a cost-effective solution

  8. Ultrasonic monitoring of pitting corrosion

    Science.gov (United States)

    Jarvis, A. J. C.; Cegla, F. B.; Bazaz, H.; Lozev, M.

    2013-01-01

    Exposure to corrosive substances in high temperature environments can cause damage accumulation in structural steels, particularly in the chemical and petrochemical industries. The interaction mechanisms are complex and varied; however initial damage propagation often manifests itself in the form of localized areas of increased material loss. Recent development of an ultrasonic wall thickness monitoring sensor capable of withstanding temperatures in excess of 500°C has allowed permanent monitoring within such hostile environments, providing information on how the shape of a pulse which has reflected from a corroding surface can change over time. Reconstructing localized corrosion depth and position may be possible by tracking such changes in reflected pulse shape, providing extra information on the state of the backwall and whether process conditions should be altered to increase plant life. This paper aims to experimentally investigate the effect certain localized features have on reflected pulse shape by `growing' artificial defects into the backwall while wall thickness is monitored using the sensor. The size and complexity of the three dimensional scattering problem lead to the development of a semi-analytical simulation based on the distributed point source method (DPSM) which is capable of simulating pulse reflection from complex surfaces measuring approximately 17×10λ Comparison to experimental results show that amplitude changes are predicted to within approximately 1dB and that pulse shape changes are accurately modelled. All experiments were carried out at room temperature, measurements at high temperature will be studied in the future.

  9. High-temperature Corrosion Resistance of Composite Coating Prepared by Micro-arc Oxidation Combined with Pack Cementation Aluminizing

    Directory of Open Access Journals (Sweden)

    HUANG Zu-jiang

    2018-01-01

    Full Text Available Al2O3 ceramic film was obtained by micro-arc oxidation (MAO process on Al/C103 specimen, which was prepared by pack cementation aluminizing technology on C103 niobium alloy. With the aid of XRD and SEM equipped with EDS, chemical compositions and microstructures of the composite coatings before and after high-temperature corrosion were analyzed. The behavior and mechanism of the composite coatings in high-temperature oxidation and hot corrosion were also investigated. The results indicate that oxidation mass gain at 1000℃ for 10h of the Al/C103 specimen is 6.98mg/cm2, and it is 2.89mg/cm2 of the MAO/Al/C103 specimen. However, the mass gain of MAO/Al/C103 specimen (57.52mg/cm2 is higher than that of Al/C103 specimen (28.08mg/cm2 after oxidation 20h. After hot corrosion in 75%Na2SO4 and 25%NaCl at 900℃ for 50h, the mass gain of Al/C103 and MAO/Al/C103 specimens are 70.54mg/cm2 and 55.71mg/cm2 respectively, Al2O3 and perovskite NaNbO3 phases are formed on the surface; the diffusion of molten salt is suppressed, due to part of NaNbO3 accumulated in the MAO micropores. Therefore, MAO/Al/C103 specimen exhibits better hot corrosion resistance.

  10. Effect of chlorides on the corrosion behaviour of mild steel

    International Nuclear Information System (INIS)

    Harada, Kazuyuki; Shimada, Minoru

    1980-01-01

    In PWR's steam generators, ''denting'' resulted from corrosion of support plate material, carbon steel is an important problem. The role of chlorides in corrosion acceleration of mild steel was studied. Corrosion tests were conducted at temperature from 100 0 C to 280 0 C in deaerated solutions of NaCl and MgCl 2 which are main content of sea water. 1) Solution of MgCl 2 was more corrosive than that of NaCl. The more increased in concentration of each chloride solution, the more corrosive in MgCl 2 soln. but the less corrosive in NaCl soln. 2) The rate of corrosion in the mixed solution of NaCl and MgCl 2 was governed by the concentration of MgCl 2 soln. The corrosion behaviour in sea water was suggested to be not controlled by NaCl but by MgCl 2 . 3) Acidification of MgCl 2 soln. could be evaluated by experiment at 100 0 C, the degree of acidification increased with increasing the concentration. However, the value of pH during corrosion was kept constant by the concentration of dissolved Fe 2+ ions. 4) The corrosion acceleration by MgCl 2 soln. was arised not only from acidification by the solution itself but from continuous supplementation of H + ions with the hydrolysis of dissolved Fe 2+ ions. This autocatalytic corrosion process not exhausting acid was characterized with the corrosion in closed system such as in crevice. In addition to acidification of MgCl 2 soln., the formation of non-protective magnetite film by Mg 2+ ion was estimated to be a reason of accelerated corrosion. (author)

  11. Synergy effect of naphthenic acid corrosion and sulfur corrosion in crude oil distillation unit

    Science.gov (United States)

    Huang, B. S.; Yin, W. F.; Sang, D. H.; Jiang, Z. Y.

    2012-10-01

    The synergy effect of naphthenic acid corrosion and sulfur corrosion at high temperature in crude oil distillation unit was studied using Q235 carbon-manganese steel and 316 stainless steel. The corrosion of Q235 and 316 in corrosion media containing sulfur and/or naphthenic acid at 280 °C was investigated by weight loss, scanning electron microscope (SEM), EDS and X-ray diffractometer (XRD) analysis. The results showed that in corrosion media containing only sulfur, the corrosion rate of Q235 and 316 first increased and then decreased with the increase of sulfur content. In corrosion media containing naphthenic acid and sulfur, with the variations of acid value or sulfur content, the synergy effect of naphthenic acid corrosion and sulfur corrosion has a great influence on the corrosion rate of Q235 and 316. It was indicated that the sulfur accelerated naphthenic acid corrosion below a certain sulfur content but prevented naphthenic acid corrosion above that. The corrosion products on two steels after exposure to corrosion media were investigated. The stable Cr5S8 phases detected in the corrosion products film of 316 were considered as the reason why 316 has greater corrosion resistance to that of Q235.

  12. Effect of corrosion potential on the corrosion fatigue crack growth behaviour of low-alloy steels in high-temperature water

    International Nuclear Information System (INIS)

    Ritter, S.; Seifert, H.P.

    2008-01-01

    The low-frequency corrosion fatigue (CF) crack growth behaviour of different low-alloy reactor pressure vessel steels was characterized under simulated boiling water reactor conditions by cyclic fatigue tests with pre-cracked fracture mechanics specimens. The experiments were performed in the temperature range of 240-288 deg. C with different loading parameters at different electrochemical corrosion potentials (ECPs). Modern high-temperature water loops, on-line crack growth monitoring (DCPD) and fractographical analysis by SEM were used to quantify the cracking response. In this paper the effect of ECP on the CF crack growth behaviour is discussed and compared with the crack growth model of General Electric (GE). The ECP mainly affected the transition from fast ('high-sulphur') to slow ('low-sulphur') CF crack growth, which appeared as critical frequencies ν crit = f(ΔK, R, ECP) and ΔK-thresholds ΔK EAC f(ν, R, ECP) in the cycle-based form and as a critical air fatigue crack growth rate da/dt Air,crit in the time-domain form. The critical crack growth rates, frequencies, and ΔK EAC -thresholds were shifted to lower values with increasing ECP. The CF crack growth rates of all materials were conservatively covered by the 'high-sulphur' CF line of the GE-model for all investigated temperatures and frequencies. Under most system conditions, the model seems to reasonably well predict the experimentally observed parameter trends. Only under highly oxidizing conditions (ECP ≥ 0 mV SHE ) and slow strain rates/low loading frequencies the GE-model does not conservatively cover the experimentally gathered crack growth rate data. Based on the GE-model and the observed cracking behaviour a simple time-domain superposition-model could be used to develop improved reference CF crack growth curves for codes

  13. Case histories of microbial induced corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Birketveit, Oe.; Liengen, T.

    2006-03-15

    Recent years bacterial activity has caused process problems and corrosion on several of Hydro s installations in the North Sea. The process problems are related to iron sulphide formed in process equipment and increased oil in discharge water. The corrosion problem is seen in downstream pipelines made of carbon steel, where deposits and formation of biofilm cause the corrosion inhibitor to be ineffective. In most cases the bacteria reproduce in the topside system and especially in the reclaimed oil sump tank. The problems observed, related to bacterial activity, are often a result of how the content from the reclaimed oil sump tank is re-circulated to the process system. Process modifications, changes in biocide treatment strategy, sulphide measurements, cleaning strategy and bio monitoring are presented. (author) (tk)

  14. Effect of the low temperature ion nitriding on the wear and corrosion resistance of 316L austenitic stainless steel biomaterials

    International Nuclear Information System (INIS)

    Sudjatmoko; Bambang Siswanto; Wirjoadi; Lely Susita RM

    2012-01-01

    In the present study has been completed done the ion nitriding process and characterization of the 316L SS samples. The ion nitriding process has been conducted on the samples for nitriding temperature variation of 350, 400, 450, 500, and 550 °C, the optimum nitrogen gas pressure of 1.8 mbar and optimum nitriding time of 3 hours. The micro-structure, elemental composition and the phase structure of the nitride layer formed on the surface of samples were observed using the techniques of SEM-EDAX and XRD, respectively. It is known that a thin layer of iron nitrides has been formed on the surface of the samples. Iron nitride layer has a phase structure including ε-Fe_2_-_3N, γ'-Fe_4N, CrN, Cr_2N and expanded austenite γN. The characterization results of the wear resistance of the 316L SS samples showed an increasing of about 2.6 times the wear resistance of standard samples after nitriding temperature of 350 °C. From the corrosion test by using the Hanks solution was obtained 29.87 mpy corrosion rate or the increasing of corrosion resistance of about 137%. Thus it can be seen that by using ion nitriding technique the iron nitride layer has been formed on the surface of the 316L SS samples, and they have an excellent properties of wear resistance and corrosion resistance, which were caused especially due to the formation of an expanded austenite γN. Properties of the high hardness and has the good corrosion resistance, especially due to the formation of iron nitride and expanded austenite phases γN at low temperature nitriding process. (author)

  15. Corrosion/96 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Topics covered by this conference include: cathodic protection in natural waters; cleaning and repassivation of building HVAC systems; worldwide opportunities in flue gas desulfurization; advancements in materials technology for use in oil and gas service; fossil fuel combustion and conversion; technology of corrosion inhibitors; computers in corrosion control--modeling and information processing; recent experiences and advances of austenitic alloys; managing corrosion with plastics; corrosion measurement technology; corrosion inhibitors for concrete; refining industry; advances in corrosion control for rail and tank trailer equipment; CO 2 corrosion--mechanisms and control; microbiologically influenced corrosion; corrosion in nuclear systems; role of corrosion in boiler failures; effects of water reuse on monitoring and control technology in cooling water applications; methods and mechanisms of scale and deposit control; corrosion detection in petroleum production lines; underground corrosion control; environmental cracking--relating laboratory results and field behavior; corrosion control in reinforced concrete structures; corrosion and its control in aerospace and military hardware; injection and process addition facilities; progress reports on the results of reinspection of deaerators inspected or repaired per RP0590 criteria; near 100% volume solids coating technology and application methods; materials performance in high temperature environments containing halides; impact of toxicity studies on use of corrosion/scale inhibitors; mineral scale deposit control in oilfield related operations; corrosion in gas treating; marine corrosion; cold climate corrosion; corrosion in the pulp and paper industry; gaseous chlorine alternatives in cooling water systems; practical applications of ozone in recirculating cooling water systems; and water reuse in industry. Over 400 papers from this conference have been processed separately for inclusion on the data base

  16. Nuclear reactor structural material forming less radioactive corrosion product

    International Nuclear Information System (INIS)

    Nakazawa, Hiroshi.

    1988-01-01

    Purpose: To provide nuclear reactor structural materials forming less radioactive corrosion products. Constitution: Ni-based alloys such as inconel alloy 718, 600 or inconel alloy 750 and 690 having excellent corrosion resistance and mechanical property even in coolants at high temperature and high pressure have generally been used as nuclear reactor structural materials. However, even such materials yield corrosion products being attacked by coolants circulating in the nuclear reactor, which produce by neutron irradiation radioactive corrosion products, that are deposited in primary circuit pipeways to constitute exposure sources. The present invention dissolves dissolves this problems by providing less activating nuclear reactor structural materials. That is, taking notice on the fact that Ni-58 contained generally by 68 % in Ni changes into Co-58 under irradiation of neutron thereby causing activation, the surface of nuclear reactor structural materials is applied with Ni plating by using Ni with a reduced content of Ni-58 isotopes. Accordingly, increase in the radiation level of the nuclear reactor structural materials can be inhibited. (K.M.)

  17. Corrosion Performance of Inconel 625 in High Sulphate Content

    Science.gov (United States)

    Ismail, Azzura

    2016-05-01

    Inconel 625 (UNS N06625) is a type of nickel-chromium-molybdenum alloy with excellent corrosion resistance in a wide range of corrosive media, being especially resistant to pitting and crevice corrosion. However, in aggressive environment, Inconel 625 will suffer corrosion attack like other metals. This research compared the corrosion performance of Inconel 625 when exposed to higher sulphate content compared to real seawater. The results reveal that Inconel 625 is excellent in resist the corrosion attack in seawater. However, at increasing temperature, the corrosion resistance of this metal decrease. The performance is same in seawater with high sulphate content at increasing temperature. It can be concluded that sulphate promote perforation on Inconel 625 and become aggressive agents that accelerate the corrosion attack.

  18. The effect of temperature and concentration on the corrosion inhibition mechanism of an amphiphilic amido-amine in CO2 saturated solution

    International Nuclear Information System (INIS)

    Desimone, M.P.; Gordillo, G.; Simison, S.N.

    2011-01-01

    Highlights: → Behaviour of N-[2-[(2-aminoethyl)amino]ethyl]-9-octadecenamide (AAOA) as CO 2 corrosion inhibitor. → The adsorption of the AAOA corrosion inhibitor obeys a Frumkin adsorption isotherm. → The inhibition efficiency of the AAOA depends on temperature and concentration. → There is a change in the adsorption mode of the inhibitor with concentration. → AAOA is mainly physi- or chemisorbed for low or high concentrations, respectively. - Abstract: The corrosion inhibition mechanism of the N-[2-[(2-aminoethyl)amino]ethyl]-9-octadecenamide on mild steel surface in CO 2 -saturated 5% NaCl solution has been studied. The inhibition efficiency decreases with increasing temperature. Adsorption of the inhibitor studied is found to follow the Frumkin adsorption isotherm. EIS results show that the mechanism of its corrosion inhibition at concentrations higher than critical micelle concentration is by forming a protective porous bi-layer. The activation energy, thermodynamic parameters and electrochemical results reveal a change in the adsorption mode of the inhibitor studied: the inhibitor could primarily be physically adsorbed at low concentrations, while chemisorption is favoured as concentration increases.

  19. Regularities of transition of steel corrosion products into aqueous medium

    International Nuclear Information System (INIS)

    Nikitin, V.I.; Gvozd', A.M.; Karpova, T.Ya.

    1981-01-01

    Effect of different factors on a degree of steel corrosion product transition to a water medium has been studied. Ratio of a specific masm qsub(c) of the corrosion products transferring to the water and a specific masm q of all the steel corrosion products produced under the given conditions was used as a criterium characterizing a degree of corrosion product transition from steel surfaces to water. The transition degree to water at a high temperature of different kind steel corrosion products differs relatively few (qsub(c)/q=0.5-0.7) in the water containing oxygen and different salts on increasing temperature, the corrosion process is characterized with continuous decrease of a relative amount of the corrosion products transferring to the medium. On the contrary, in the deaerated water the transition degree of perlite steel corrosion products to water remains constant in a wide temperature range (100-320 deg C). Besides chromium, nickel being a part of austenitic steel composition affects positively decrease of the transition degree of the corrosion products to water as well as q and qsub(c) reduction. The most difference in corrosion characteristics and the transition degree to water is observed when affecting colant steels in the low-temperature zone of the steam generator [ru

  20. Evaluation of the IGSCC(Intergranular Stress Corrosion Cracking) resistance of inconel alloys by static potential method in high temperature and high pressure environment

    International Nuclear Information System (INIS)

    Maeng, Wan Young; Nam, Tae Woon

    1997-01-01

    Inconel alloys which have good high temperature mechanical properties and corrosion resistance have been used extensively as steam generator tube of nuclear power plants. There have been some reports on the intergranular stress corrosion cracking (IGSCC) failure problems in steam generator tubes of nuclear reactors. In order to evaluate the effects of heat treatment and composition on the IGSCC behavior of inconel alloys in simulated nuclear reactor environment, four different specimens (inconel 600 MA, 600 TT, 690 MA and 690 TT) were prepared and tested by eletrochemical method. Static potential tests for stressed C-ring type inconel specimens were carried out in 10% NaOH solution at 300 deg C (75 atm). It was found that IGSCC was initiated in inconel 600 MA specimen, but the other three specimens were not cracked. Based on the gradients of corrosion current density of the four specimens as a function of test time, thermally treated alloys show better IGSCC resistance than mull-annealed alloys, and inconel 690 TT has better passivation characteristic than inconel 600 MA. Inconel 690 TT shows clear periodic passivation that indicates good SCC resistance. The good IGSCC resistance of inconel 690 TT is due to periodic passivation characteristics of surface layer. (author)

  1. Aluminum Corrosion and Turbidity

    International Nuclear Information System (INIS)

    Longtin, F.B.

    2003-01-01

    Aluminum corrosion and turbidity formation in reactors correlate with fuel sheath temperature. To further substantiate this correlation, discharged fuel elements from R-3, P-2 and K-2 cycles were examined for extent of corrosion and evidence of breaking off of the oxide film. This report discusses this study

  2. High temperature oxidation and corrosion behavior of Ni-base superalloy in He environment

    International Nuclear Information System (INIS)

    Lee, Gyoeng Geun; Park, Ji Yeon; Jung, Su jin

    2010-11-01

    Ni-base superalloy is considered as a IHX (Intermediate Heat Exchanger) material for VHTR (Very High Temperature Gas-Cooled Reactor). The helium environment in VHTR contains small amounts of impure gases, which cause oxidation, carburization, and decarburization. In this report, we conducted the literature survey about the high temperature behavior of Ni-base superalloys in air and He environments. The basic information of Ni-base superalloy and the basic metal-oxidation theory were briefly stated. The He effect on the corrosion of Ni-base superalloy was also summarized. This works would provide a brief suggestion for the next research topic for the application of Ni-base superalloy to VHTR

  3. Proceedings of the sixteenth national congress on corrosion control

    International Nuclear Information System (INIS)

    2012-01-01

    The congress was a forum for presenting the industrial problems and ideas derived from current research and various topics on corrosion. The conference thereon was focussed on corrosion degradation phenomena in various industries and mitigative actions or solutions to the issues of corrosion. The corrosion problems in ports, petroleum, chemical and fertilizer, power, steel, nuclear, shipping, defence, construction, and refinery industries are discussed. Papers relevant to INIS are indexed separately

  4. The dual role of microbes in corrosion.

    Science.gov (United States)

    Kip, Nardy; van Veen, Johannes A

    2015-03-01

    Corrosion is the result of a series of chemical, physical and (micro) biological processes leading to the deterioration of materials such as steel and stone. It is a world-wide problem with great societal and economic consequences. Current corrosion control strategies based on chemically produced products are under increasing pressure of stringent environmental regulations. Furthermore, they are rather inefficient. Therefore, there is an urgent need for environmentally friendly and sustainable corrosion control strategies. The mechanisms of microbially influenced corrosion and microbially influenced corrosion inhibition are not completely understood, because they cannot be linked to a single biochemical reaction or specific microbial species or groups. Corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. Information on the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments is scarce. As some microorganisms are able to both cause and inhibit corrosion, we pay particular interest to their potential role as corrosion-controlling agents. We show interesting interfaces in which scientists from different disciplines such as microbiology, engineering and art conservation can collaborate to find solutions to the problems caused by corrosion.

  5. The dual role of microbes in corrosion

    Science.gov (United States)

    Kip, Nardy; van Veen, Johannes A

    2015-01-01

    Corrosion is the result of a series of chemical, physical and (micro) biological processes leading to the deterioration of materials such as steel and stone. It is a world-wide problem with great societal and economic consequences. Current corrosion control strategies based on chemically produced products are under increasing pressure of stringent environmental regulations. Furthermore, they are rather inefficient. Therefore, there is an urgent need for environmentally friendly and sustainable corrosion control strategies. The mechanisms of microbially influenced corrosion and microbially influenced corrosion inhibition are not completely understood, because they cannot be linked to a single biochemical reaction or specific microbial species or groups. Corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. Information on the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments is scarce. As some microorganisms are able to both cause and inhibit corrosion, we pay particular interest to their potential role as corrosion-controlling agents. We show interesting interfaces in which scientists from different disciplines such as microbiology, engineering and art conservation can collaborate to find solutions to the problems caused by corrosion. PMID:25259571

  6. Thermal Cycling and High-Temperature Corrosion Tests of Rare Earth Silicate Environmental Barrier Coatings

    Science.gov (United States)

    Darthout, Émilien; Gitzhofer, François

    2017-12-01

    Lutetium and yttrium silicates, enriched with an additional secondary zirconia phase, environmental barrier coatings were synthesized by the solution precursor plasma spraying process on silicon carbide substrates. A custom-made oven was designed for thermal cycling and water vapor corrosion testing. The oven can test four specimens simultaneously and allows to evaluate environmental barrier performances under similar corrosion kinetics compared to turbine engines. Coatings structural evolution has been observed by SEM on the polished cross sections, and phase composition has been analyzed by XRD. All coatings have been thermally cycled between 1300 °C and the ambient temperature, without spallation, due to their porosity and the presence of additional secondary phase which increases the thermal cycling resistance. During water vapor exposure at 1200 °C, rare earth disilicates showed a good stability, which is contradictory with the literature, due to impurities—such as Si- and Al-hydroxides—in the water vapor jets. The presence of vertical cracks allowed the water vapor to reach the substrate and then to corrode it. It has been observed that thin vertical cracks induced some spallation after 24 h of corrosion.

  7. In-situ electrochemical study of Zr1nb alloy corrosion in high temperature Li{sup +} containing water

    Energy Technology Data Exchange (ETDEWEB)

    Krausová, Aneta [University of Chemistry and Technology, Technická 3, 166 28 Prague 6 (Czech Republic); Macák, Jan, E-mail: macakj@vscht.cz [University of Chemistry and Technology, Technická 3, 166 28 Prague 6 (Czech Republic); Sajdl, Petr [University of Chemistry and Technology, Technická 3, 166 28 Prague 6 (Czech Republic); Novotný, Radek [JRC-IET, Westerduinveg 3, 1755 LE Petten (Netherlands); Renčiuková, Veronika [University of Chemistry and Technology, Technická 3, 166 28 Prague 6 (Czech Republic); Vrtílková, Věra [ÚJP a.s., Nad Kamínkou 1345, 156 10 Prague 5 (Czech Republic)

    2015-12-15

    Long-term in-situ corrosion tests were performed in order to evaluate the influence of lithium ions on the corrosion of zirconium alloy. Experiments were carried out in a high-pressure high-temperature loop (280 °C, 8 MPa) in a high concentration water solution of LiOH (70 and 200 ppm Li{sup +}) and in a simulated WWER primary coolant environment. The kinetic parameters characterising the oxidation process have been explored using in-situ electrochemical impedance spectroscopy and slow potentiodynamic polarization. Also, a suitable equivalent circuit was suggested, which would approximate the impedance characteristics of the corrosion of Zr–1Nb alloy. The Mott–Schottky approach was used to determine the semiconducting character of the passive film. - Highlights: • Zr1Nb alloy was tested in WWER coolant and in LiOH solutions at 280 °C. • Corrosion rates were estimated in-situ from electrochemical data. • Electrochemical data agreed well with weight gains and metallography data. • Increase of corrosion rate in LiOH appeared after short exposure (300–500 h). • Very high donor densities (1.1–1.2 × 10{sup 20} cm{sup −3}) of Zr oxide grown in LiOH were found.

  8. Corrosion of carbon steel in oxidizing caustic solutions

    International Nuclear Information System (INIS)

    Divine, J.R.; Bowen, W.M.

    1984-01-01

    A series of tests have been completed on a range of proposed waste compositions at temperatures up to 100 0 C. These tests have sought data on uniform corrosion, pitting, and stress corrosion cracking. No indication of the latter two types of corrosion was observed within the test matrix. Corrosion rates after four months were generally below 25μm/y. By the end of twelve months all results, except for very concentrated mixtures, were below 13 μm/y. Prediction equations were generated from a model fitted to the data. The equations provide a rapid means of estimating the corrosion rate for waste compositions and temperatures within the test limits

  9. Effect of temperature on the level of corrosion caused by heavy petroleum on AISI 304 and AISI 444 stainless steel

    Directory of Open Access Journals (Sweden)

    João Paulo Sampaio Eufrásio Machado

    2006-06-01

    Full Text Available This work presents a study on the influence of national heavy petroleum in the corrosion of the AISI 444 and AISI 304 stainless steels in simulated refining operation conditions. The petroleum was first characterized through physicochemical analysis (density, fluidity point, viscosity, sulfur concentration. In an attempt to understand the corrosion effect of temperature and of the type of heating the referred types of steel thermal treatments were carried out at three levels of temperature (200, 300 and 400 °C. The procedure was done in conditions close to those in the distillation column. Heat was gradually increased from room temperature, and directly heated to working temperature. Each treatment took 4 hours to be completed. Scanning electronic microscopy (SEM and the analysis of X rays dispersive energy (EDX were used after the trials to characterize the samples. The results show that treatment temperature, as well as the type of heating, has distinct influences on each type of steel.

  10. Cases of corrosion in power plant components at NTPC

    International Nuclear Information System (INIS)

    Sanyal, S.K.; Bhakta, U.C.; Sinha, Ashwini

    2000-01-01

    Power plants are one of the major industries suffering from severe corrosion problems resulting in substantial losses. The problem is becoming more prominent as the plants are getting older. NTPC as the leading power utility with very good performance track record, had been conscious of the menace of corrosion prevailing in the industry and had established a Research and Development Centre to cater to applied O and M needs of the plants. A specialized group has been involved in studying the corrosion related problems and recommending suitable cost effective solutions to such problems. The present paper aims at discussing various corrosion related analysis carried out at the Research and Development Centre of NTPC and the remedial measures suggested. The paper also describes some of the case studies of corrosion related failures with recommendations given for preventing such failures in future. (author)

  11. Astrakhan-Mangyshlak water main (pipeline): corrosion state of the inner surface, and methods for its corrosion protection. Part III. The effects of KW2353 inhibitor. Part IV. Microbiological corrosion

    International Nuclear Information System (INIS)

    Reformatskaya, I.I.; Ashcheulova, I.I.; Barinova, M.A.; Kostin, D.V.; Prutchenko, S.G.; Ivleva, G.A.; Taubaldiev, T.S.; Murinov, K.S.; Tastanov, K.Kh.

    2003-01-01

    The effect of the KW2353 corrosion inhibitor, applied on the Astrakhan-Mangyshlak water main (pipeline) since 1997, on the corrosion processes, occurring on the 17G1S steel surface, is considered. The properties of the surface sediments are also considered. The role of the microbiological processes in the corrosion behavior of the water main (pipeline) inner surface is studied. It is shown, that application of the polyphosphate-type inhibitors, including the KW2353 one, for the anticorrosive protection of the inner surface of the extended water main (pipelines) is inadmissible: at the temperature of ∼20 deg C this corrosion inhibitor facilitates the development of the local corrosion processes on the water main (pipeline) inner surface. At the temperature of ∼8 deg C the above inhibitor discontinues to effect the corrosive stability of the 17G1S steel. The optimal way of the anticorrosive protection of the steel equipment, contacting with the water media, is the increase in the oxygen content therein [ru

  12. High temperature corrosion of nickel-base alloys in environments containing alkali sulphate

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Rachel; Flyg, Jesper; Caddeo, Sophie [Corrosion and Metals Research Institute, KIMAB, Stockholm (Sweden); Karlsson, Fredrik [Siemens Industrial Turbomachinery, Finspong (Sweden)

    2007-02-15

    This work is directed towards producing data to assist in lifetime assessment of components in gas turbines run in severely polluted industrial environments where the main corrosive species is SO{sub 2}, which can condense to form alkali sulphates. Corrosion rates have been measured for the base materials, in order to assess the worst-case scenario, in which cracks or other damage has occurred to the protective coating. The information is expected to be of value to manufacturers, owners and inspectors of gas turbines. Six nickel-base superalloys were subject to thermal cycles of 160 hours duration, and 0.8mg/cm{sup 2} of 20 mol % Na{sub 2}SO{sub 4} + 80mol% K{sub 2}SO{sub 4} was applied before each cycle. The test temperatures were 850 deg C and 900 deg C, with maximum test durations of 24 cycles and 12 cycles respectively. The metal loss was assessed by metallography of cross sections and the sulphidation attack was found to be very uneven. Mass change data indicated that the corrosion process was largely linear in character, and probability plots and estimations of the propagation rate of corrosion based on the linear growth assumption were produced. The performance of the alloys increased with increasing chromium content. The single crystal materials CMSX4 and MD2 showed such high corrosion rates that their use in severely contaminated industrial environments is considered inadvisable. The best performance was shown by Inconel 939 and Inconel 6203, so that even if cracks occur in the protective coating, a reasonable remaining lifetime can be expected for these materials. Sulphide formation occurred at the reaction front in all cases and mixed sulphides such as Ta-Ni or Ti-Nb sulphides were often present. The work has news value since very little long-term data is currently available for materials performance in severely sulphidising environments. The project goals in terms of exposures and metrology have been fully realised. Contributions have been made to the

  13. Long-term corrosion studies

    International Nuclear Information System (INIS)

    Gdowski, G.

    1998-01-01

    The scope of this activity is to assess the long-term corrosion properties of metallic materials under consideration for fabricating waste package containers. Three classes of metals are to be assessed: corrosion resistant, intermediate corrosion resistant, and corrosion allowance. Corrosion properties to be evaluated are general, pitting and crevice corrosion, stress-corrosion cracking, and galvanic corrosion. The performance of these materials will be investigated under conditions that are considered relevant to the potential emplacement site. Testing in four aqueous solutions, and vapor phases above them, and at two temperatures are planned for this activity. (The environmental conditions, test metals, and matrix are described in detail in Section 3.0.) The purpose and objective of this activity is to obtain the kinetic and mechanistic information on degradation of metallic alloys currently being considered for waste package containers. This information will be used to provide assistance to (1) waste package design (metal barrier selection) (E-20-90 to E-20-92), (2) waste package performance assessment activities (SIP-PA-2), (3) model development (E-20-75 to E-20-89). and (4) repository license application

  14. Analysis of corrosion product transport in PWR primary system under non-convective condition

    International Nuclear Information System (INIS)

    Han, Byoung Sub

    1992-02-01

    The increase of occupational radiation exposure (ORE) due to the increase of the operational period at existing nuclear power plant and also the publication of the new version of ICRP recommendation (ICRP publication No. 60) for radiological protection require much more strict reduction of radiation buildup in the nuclear power plant. The major sources of the radiation, i.e. the radioactive corrosion-products, are generated by the neutron activation of the corrosion products at the reactor core, and then the radioactive corrosion products are transported to the outside of the core, and accumulated near the steam generator side at PWR. Major radioactive corrosion-products of interest in PWR are Cr 51 ,: Mn 54 ,: Co 58 ,: Fe 59 and Co 60 . Among them Co 58 and Co 60 are known to contribute approximately more than 70% of the total ORE. Thus our main concerns are focused on predicting the transport and deposition of the Co radionuclides and suggesting the optimizing method which can minimize and control the ORE of the nuclear power plant. It is well known that Co-source is most effectively controlled by pH-solubility radiation control, and also some complex computer codes such as CORA and PACTOLE have been developed and revised to predict the corrosion product behavior. However these codes still imply some intrisic problems in simulating the real behavior of corrosion products in the reactor because of 1) the lack of important experimental data, coefficients and parameters of the transport and reactions under actual high temperature and pressure conditions, 2) no general theoretical modelling which can describe such many different mechanisms involved in the corrosion product movements, 3) the newly developed and measured behavior of the corrosion product transport mechanism. Since no sufficient and detailed information is available from the above-mentioned codes (also due to propriority problems), we concentrate on developing a new computer code, CP-TRAN (Corrosion

  15. Corrosion potentials of hafnium in molten alkaline-earth metal chlorides

    International Nuclear Information System (INIS)

    Kovalik, O.Yu.; Tkhaj, V.D.

    2000-01-01

    Corrosion potentials of hafnium in molten calcium, strontium and barium chlorides are measured and their temperature dependences are determined. It is stated that the corrosion potential of hafnium becomes more electropositive with an increase of the environment temperature. If the temperature is the same the potential shifts to the interval of more electronegative values in the row of CaCl 2 , SrCl 2 , BaCl 2 which corresponds to a lesser corrosion rate in environments positioned from left to right. the comparison of hafnium corrosion potentials with previously measured values for titanium and zirconium shows that a metal activity decrease results in a more electronegative corrosion potential [ru

  16. High temperature filtration of radioactivable corrosion products in the primary circuit of PWR type reactors

    International Nuclear Information System (INIS)

    Dolle, L.

    1976-01-01

    A effective limitation to the deposition of radioactive corrosion products in the core of a reactor at power operation, is to be obtained by filtering the water of the primary circuit at a flow rate upper than 1% of the coolant flow rate. However, in view of accounting for more important release of corrosion products during the reactor start-up and also for some possible variations in the efficiency of the system, it is better that the flow rate to be treated by the cleaning circuit is stated at 5%. Filtration must be effected at the temperature of the primary circuit and preferably on each loop. To this end, the feasibility of electromagnetic filtration or filtration through a deep bed of granulated graphite has been studied. The on-loop tests effected on each filter gave efficiencies and yields respectively upper than 90% and 99% for magnetite and ferrite particles in suspension in water at 250 deg C. Such results confirm the interest lying in high temperature filtration and lead to envisage its application to reactors [fr

  17. Corrosion of carbon steel in neutral water

    International Nuclear Information System (INIS)

    Kawai, Noboru; Iwahori, Toru; Kurosawa, Tatsuo

    1983-01-01

    The initial corrosion behavior of materials used in the construction of heat exchanger and piping system of BWR nuclear power plants and thermal power plants have been examined in neutral water at 30, 50, 100, 160, 200, and 285 deg C with two concentrations of dissolved oxygen in the water. In air-saturated water, the corrosion rate of carbon steel was so higher than those in deaerated conditions and the maximum corrosion rate was observed at 200 deg C. The corrosion rate in deaerated water gradually increased with increasing the water temperature. Low alloy steel (2.25 Cr, 1Mo) exhibited good corrosion resistance compared with the corrosion of carbon steel under similar testing conditions. Oxide films grown on carbon steel in deaerated water at 50, 100, 160, 200, and 285 deg C for 48 and 240 hrs were attacked by dissolved oxygen in room temperature water respectively. However the oxide films formed higher than about 160 deg C showed more protective. The electrochemical behavior of carbon steel with oxide films was also similar to the effect of temperature on the stability of oxide films. (author)

  18. Critical Study of Corrosion Damaged Concrete Structures

    OpenAIRE

    Sallehuddin Shah Ayop; John Cairns

    2013-01-01

    Corrosion of steel reinforcement in concrete is one of the major problems with respect to the durability of reinforced concrete structures. The degradation of the structure strength due to reinforcement corrosion decreases its design life. This paper presents the literature study on the influence of the corrosion on concrete structure starting from the mechanism of the corrosion until the deterioration stage and the structural effects of corrosion on concrete structures.

  19. The growing rate and the type of corrosion products of aluminium alloy AA 5052 in deionized water at temperature up to 3000C

    International Nuclear Information System (INIS)

    Ferreira, E.G.

    1980-01-01

    The process of corrosion concerning the aluminum alloy AA5052 in deionized water at temperatures of 40 0 C, 80 0 C, 90 0 C, 140 0 C, 200 0 C and 280 0 C is studied. The following methods are used: periodic weighting of the test samples; analysis by neutronic activation of the corrosion products dissolved in water; thermogravimetric and thermodiferential analysis; analysis through X-ray diffraction and from metalografic observations of the crystals produced in the corrosion process; an optical microscope using polarized and normal light and a scanning electronic microscope. The activation energies are calculated for the corrosion film formation, and for the dissolution of the corrosion products in the deionized water. (ARHC) [pt

  20. Improvement of PWR reliability by corrosion prevention

    International Nuclear Information System (INIS)

    Takamatsu, Hiroshi

    1999-01-01

    Since first PWR in Japan started commercial operation in 1970, we have encountered the various modes of corrosion on primary and secondary side components. We have paid much efforts for resolving these corrosion problems, that is, investigating the causes of corrosion and establishing the countermeasures for these corrosion. We summarize these efforts in this article. (author)

  1. Corrosion investigations at Masnedoe combined heat and power plant. Part VI

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, M. [Danmarks Tekniske Univ., Dept. for Manufacturing Engineering, Kgs Lyngby (Denmark); Karlsson, A. [ENERGI E2, Power Company, Copenhagen (Denmark); Hede Larsen, O. [Elsam - Fynsvaerket, Fredericia (Denmark)

    2001-02-01

    In Denmark, straw and other types of biomass are used for generating energy in power plats. Straw is considered a carbon dioxide neutral fuel and is therefore environmentally acceptable. Masnedoe CHP Plant is a straw-fired power plant on Sjaelland, Denmark. Corrosion tests were undertaken at Masnedoe CHP Plant by building a test superheater loop and subject it to higher steam temperatures than those of the actual plant. In addition a test section welded into superheater was investigated. The conclusions from the project are as follows: 1. The corrosion rates of the steels investigated are very close to one another and differences are small. 2. For the lower steam of 450 deg. C, a parabolic kinetic of oxide growth is not seen but more a paralinear corrosion rate for TP347H and a linear corrosion rate for the 12% Cr steel. 3. At temperatures above approx. 520 deg. C metal temperature for the austenitic steels, grain boundary attack is seen as a precursor for corrosion within the metal grains. For HCM12, attack of individual metal grains is also seen. The corrosion attack leads to depletion of chromium and manganese from the surface of the alloy. It is at these temperatures general corrosion changes to grain boundary corrosion attack. 4. Over one of the test superheater loops, varying corrosion rates could be measured that could not be explained by the change in steam temperature. This was related to the flue gas direction giving a higher surface metal temperature, however, there may be other factors giving localised high heat flux and therefore a higher metal temperature. The corrosion rate was lower this year (1999-2000) than the previous year and this is attributed to the lower flue gas temperatures or other factors such as a change in fuel or combustion characteristics. It must be noted that where the flue gas temperature is assumed to be highest similar corrosion rates are observed for both 1998-1999 and 1999-2000. There is much evidence to indicate that after

  2. Corrosion of Iron by Sulfate-Reducing Bacteria: New Views of an Old Problem

    Science.gov (United States)

    Garrelfs, Julia

    2014-01-01

    About a century ago, researchers first recognized a connection between the activity of environmental microorganisms and cases of anaerobic iron corrosion. Since then, such microbially influenced corrosion (MIC) has gained prominence and its technical and economic implications are now widely recognized. Under anoxic conditions (e.g., in oil and gas pipelines), sulfate-reducing bacteria (SRB) are commonly considered the main culprits of MIC. This perception largely stems from three recurrent observations. First, anoxic sulfate-rich environments (e.g., anoxic seawater) are particularly corrosive. Second, SRB and their characteristic corrosion product iron sulfide are ubiquitously associated with anaerobic corrosion damage, and third, no other physiological group produces comparably severe corrosion damage in laboratory-grown pure cultures. However, there remain many open questions as to the underlying mechanisms and their relative contributions to corrosion. On the one hand, SRB damage iron constructions indirectly through a corrosive chemical agent, hydrogen sulfide, formed by the organisms as a dissimilatory product from sulfate reduction with organic compounds or hydrogen (“chemical microbially influenced corrosion”; CMIC). On the other hand, certain SRB can also attack iron via withdrawal of electrons (“electrical microbially influenced corrosion”; EMIC), viz., directly by metabolic coupling. Corrosion of iron by SRB is typically associated with the formation of iron sulfides (FeS) which, paradoxically, may reduce corrosion in some cases while they increase it in others. This brief review traces the historical twists in the perception of SRB-induced corrosion, considering the presently most plausible explanations as well as possible early misconceptions in the understanding of severe corrosion in anoxic, sulfate-rich environments. PMID:24317078

  3. High temperature electrochemistry related to light water reactor corrosion

    International Nuclear Information System (INIS)

    Nagy, Gabor; Kerner, Zsolt; Balog, Janos; Schiller, Robert

    2004-01-01

    The present work deals with corrosion problems related to conditions which prevail in a WWER primary circuit. We had a two-fold aim: (A) electrochemical methods were applied to characterise the hydrothermally produced oxides of the cladding material (Zr-1%Nb) of nuclear fuel elements used in Russian made power reactors of WWER type, and (B) a number of possible reference electrodes were investigated with a view to high temperature applications. (A) Test specimens made of the cladding material, Zr-1%Nb, were immersed into an autoclave, filled with an aqueous solution typical to a WWER primary circuit, and were treated for different periods of time up to 28 weeks. The electrode potentials were measured and electrochemical impedance spectra (EIS) were taken regularly both as a function of oxidation time and temperature. This rendered information on the overall kinetics of oxide growth. By combining in situ and ex situ impedance measurements, with a particular view of the temperature dependence of EIS, we concluded that the high frequency region of impedance spectra is relevant to the presence of oxide layer on the alloy. This part of the spectra was treated in terms of a parallel CPE||R ox equivalent circuit (CPE denoting constant phase element, R ox ohmic resistor). The CPE element was understood as a dispersive resistance in terms of the continuous time random walk theory by Scher and Lax. This enabled us to tell apart electrical conductance and oxide growth with a model of charge transfer and recombination within the oxide layer as rate determining steps. (B) Three types of reference electrodes were tested within the framework of the LIRES EU5 project: (i) external Ag/AgCl, (ii) Pt/Ir alloy and (iii) Pd(Pt) double polarised active electrode. The most stable of the electrodes was found to be the Pt/Ir one. The Ag/AgCl electrode showed good stability after an initial period of some days, while substantial drifts were found for the Pd(Pt) electrode. EIS spectra of the

  4. Corrosion and deposit evaluation in industrial plants by non destructive testing method

    International Nuclear Information System (INIS)

    Azali Muhammad; Abd Razak Hamzah; Abd Aziz Mohamed; Mohd Pauzi Ismail; S Saad; S Sayuti; S Ahmad

    2000-01-01

    In petrochemical plants, the detection of corrosion and evaluation of deposit in insulated pipes using a radiography method are very challenging tasks. This main degradation problem experienced by pipelines is due to water condensation. It will cause deposit and scale inside the pipe, as well as between the insulation and pipe for the cold temperature pipes. On the other hand, for the hot temperature pipes the main problem is mainly due to corrosion/erosion attack inside the pipe. In the case of corrosion study one of the most important parameters in a piping or pipeline to be monitored and measured is that the wall thickness. In general, most pipeline corrosion monitoring and evaluation for both insulated and non-insulated pipes is done by using an ultrasonic method. The most common technique for corrosion is that based on the A-Scan, using either a normal flow detector or some form of dedicated equipment. However, with recent development of ultrasonic technology, more advance method, namely B-Scan and C-scan techniques are also available. The most notable disadvantage of using this current method is that the insulation covered the pipe has to be removed before the inspection can be carried out and this is considered as not so cost effective. Due to this reason other alternative NDT method, namely radiographic testing method has been studied. The testing technique used in this studied are tangential technique and double wall radiographic technique which involve studying the changing in density of radiographic film. The result found using tangential technique is consistent with real thickness of the pipe. However for the later technique the result is only achieved with a reasonable accuracy when the changing in wall thickness is very small. The result of the studies is discussed in this paper

  5. Task 20 - Prevention of Chloride Corrosion in High-Temperature Waste Treatment Systems (Corrosives Removals from Vitrification Slurries)

    International Nuclear Information System (INIS)

    Timpe, R.C.; Aulich, T.R.

    1998-01-01

    GTS Duratek is working with BNFL Incorporated on a US Department of Energy (DOE) contract to develop a facility to treat and immobilize radioactive waste at the Hanford site in southeast Washington. Development of the 10-ton/day Hanford facility will be based on findings from work at Duratek's 3.3-ton/day pilot plant in Columbia, Maryland, which is in the final stage of construction and scheduled for shakedown testing in early 1999. In prior work with the Catholic University of America Vitreous State Laboratory, Duratek has found that slurrying is the most efficient way to introduce low-level radioactive, hazardous, and mixed wastes into vitrification melters. However, many of the Hanford tank wastes to be vitrified contain species (primarily chloride and sulfate) that are corrosive to the vitrifier or the downstream air pollution control equipment, especially under the elevated temperature conditions existent in these components. Removal of these corrosives presents a significant challenge because most tank wastes contain high (up to 10-molar) concentrations of sodium hydroxide (NaOH) along with significant levels of nitrate, nitrite, and other anions, which render standard ion-exchange, membrane filtration, and other separation technologies relatively ineffective. In Task 20, the Energy and Environmental Research Center (EERC) will work with Duratek to develop and optimize a vitrification pretreatment process for consistent, quantitative removal of chloride and sulfate prior to vitrifier injection

  6. Stress corrosion cracking of austenitic stainless steel in high temperature and high pressure water

    International Nuclear Information System (INIS)

    Uragami, Ken

    1977-01-01

    Austenitic stainless steels used in for equipment in chemical plants have failed owing to stress corrosion cracking (SCC). These failures brought about great problems in some cases. The failures were caused by chloride, sulfide and alkali solution environment, in particular, by chloride solution environment. It was known that SCC was caused not only by high content chloride solution such as 42% MgCl 2 solution but also by high temperature water containing Cl - ions as NaCl. In order to estimate quantitatively the effects of some factors on SCC in high temperature water environment, the effects of Cl - ion contents, oxygen partial pressure (increasing in proportion to dissolved oxygen), pH and temperature were investigated. Moreover SCC sensitivity owing to the difference of materials and heat treatments was also investigated. The experimental results obtained are summarized as follows: (1) Regarding the effect of contaminant Cl - ions in proportion as Cl - ion contents increased, the material life extremely decreased owing to SCC. The tendency of decreasing was affected by the level of oxygen partial pressure. (2) Three regions of SCC sensitivity existed and they depended upon oxygen partial pressure. These were a region that did not show SCC sensitivity, a region of the highest SCC sensitivity and a region of somewhat lower SCC sensitivity. (3) In the case of SUS304 steel and 500 ppm Cl - ion contents SCC did not occur at 150 0 C, but it occurred and caused failures at 200 0 C and 250 0 C. (auth.)

  7. Corrosion protection and control using nanomaterials

    CERN Document Server

    Cook, R

    2012-01-01

    This book covers the use of nanomaterials to prevent corrosion. The first section deals with the fundamentals of corrosion prevention using nanomaterials. Part two includes a series of case studies and applications of nanomaterials for corrosion control.$bCorrosion is an expensive and potentially dangerous problem in many industries. The potential application of different nanostructured materials in corrosion protection, prevention and control is a subject of increasing interest. Corrosion protection and control using nanomaterials explores the potential use of nanotechnology in corrosion control. The book is divided into two parts. Part one looks at the fundamentals of corrosion behaviour and the manufacture of nanocrystalline materials. Chapters discuss the impact of nanotechnology in reducing corrosion cost, and investigate the influence of various factors including thermodynamics, kinetics and grain size on the corrosion behaviour of nanocrystalline materials. There are also chapters on electrodeposition ...

  8. Corrosion Monitors for Embedded Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Alex L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pfeifer, Kent B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Casias, Adrian L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorensen, Neil R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Missert, Nancy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    We have developed and characterized novel in-situ corrosion sensors to monitor and quantify the corrosive potential and history of localized environments. Embedded corrosion sensors can provide information to aid health assessments of internal electrical components including connectors, microelectronics, wires, and other susceptible parts. When combined with other data (e.g. temperature and humidity), theory, and computational simulation, the reliability of monitored systems can be predicted with higher fidelity.

  9. Irradiation-assisted stress corrosion cracking considerations at temperatures below 288 degree C

    International Nuclear Information System (INIS)

    Simonen, E.P.; Jones, R.H.; Bruemmer, S.M.

    1995-03-01

    Irradiation-assisted stress corrosion cracking (IASCC) occurs above a critical neutron fluence in light-water reactor (LWR) water environments at 288 C, but very little information exists to indicate susceptibility as temperatures are reduced. Potential low-temperature behavior is assessed based on the temperature dependencies of intergranular (IG) SCC in the absence of irradiation, radiation-induced segregation (RIS) at grain boundaries and micromechanical deformation mechanisms. IGSCC of sensitized SS in the absence of irradiation exhibits high growth rates at temperatures down to 200 C under conditions of anodic dissolution control, while analysis of hydrogen-induced cracking suggests a peak crack growth rate near 100 C. Hence from environmental considerations, IASCC susceptibility appears to remain likely as water temperatures are decreased. Irradiation experiments and model predictions indicate that RIS also persists to low temperatures. Chromium depletion may be significant at temperatures below 100C for irradiation doses greater than 10 displacements per atom (dpa). Macromechanical effects of irradiation on strength and ductility are not strongly dependent on temperature below 288 C. However, temperature does significantly affect radiation effects on SS microstructure and micromechanical deformation mechanisms. The critical conditions for material susceptibility to IASCC at low temperatures may be controlled by radiation-induced grain boundary microchemistry, strain localization due to irradiation microstructure and irradiation creep processes. 39 refs

  10. Corrosion characteristics of K-claddings

    International Nuclear Information System (INIS)

    Park, J. Y.; Choi, B. K.; Jung, Y. H.; Jung, Y. H.

    2004-01-01

    The Improvement of the corrosion resistance of nuclear fuel claddings is the critical issue for the successful development of the high burn-up fuel. KAERI have developed the K-claddings having a superior corrosion resistance by controlling the alloying element addition and optimizing the manufacturing process. The comparative evaluation of the corrosion resistance for K-claddings and the foreign claddings was performed and the effect of the heat treatment on the corrosion behavior of K-claddings was also examined. Corrosion tests were carried out in the conditions of 360 .deg. C pure water, PWR-simulating loop and 400 .deg. C steam, From the results of the corrosion tests, it was found that the corrosion resistance of K-claddings is superior to those of Zry4 and A claddings and K6 showed a better corrosion resistance than K3. The corrosion behavior of K-cladding was strongly influenced by the final annealing rather than the intermediate annealing, and the corrosion resistance increased with decreasing the final annealing temperature

  11. Impact of chlorinated disinfection on copper corrosion in hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Montes, J. Castillo [Centre Scientifique et Technique du Bâtiment Nantes, 11 rue Henri Picherit, BP 82341, 44323 Nantes Cedex 03 (France); Laboratoire des Sciences de l’Ingénieur pour l’Environnement, UMR-CNRS 7356, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1 (France); Hamdani, F. [Laboratoire des Sciences de l’Ingénieur pour l’Environnement, UMR-CNRS 7356, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1 (France); Creus, J., E-mail: jcreus@univ-lr.fr [Laboratoire des Sciences de l’Ingénieur pour l’Environnement, UMR-CNRS 7356, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1 (France); Touzain, S. [Laboratoire des Sciences de l’Ingénieur pour l’Environnement, UMR-CNRS 7356, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1 (France); Correc, O. [Centre Scientifique et Technique du Bâtiment Nantes, 11 rue Henri Picherit, BP 82341, 44323 Nantes Cedex 03 (France)

    2014-09-30

    Highlights: • Impact of disinfectant treatment on the durability of copper pipes. • Synergy between disinfectant concentration and temperature. • Pitting corrosion of copper associated to the corrosion products formation on copper. - Abstract: In France, hot water quality control inside buildings is occasionally ensured by disinfection treatments using temperature increases or addition of sodium hypochlorite (between 0.5 ppm and 1 ppm residual free chlorine). This disinfectant is a strong oxidiser and it could interact with metallic pipes usually used in hot water systems. This work deals with the study of the impact of these treatments on the durability of copper pipes. The objective of this work was to investigate the influence of sodium hypochlorite concentration and temperature on the copper corrosion mechanism. Copper samples were tested under dynamic and static conditions of ageing with sodium hypochlorite solutions ranging from 0 to 100 ppm with temperature at 50 °C and 70 °C. The efficiency of a corrosion inhibitor was investigated in dynamic conditions. Visual observations and analytical analyses of the internal surface of samples was studied at different ageing duration. Corrosion products were characterised by X-ray diffraction and Raman spectroscopy. Temperature and disinfectant were found to considerably affect the copper corrosion mechanism. Surprisingly, the corrosiveness of the solution was higher at lower temperatures. The temperature influences the nature of corrosion products. The protection efficiency is then strongly depend on the nature of the corrosion products formed at the surface of copper samples exposed to the aggressive solutions containing different concentration of disinfectant.

  12. Thermal spray coating for corrosion under insulation (CUI) prevention

    Science.gov (United States)

    Fuad, Mohd Fazril Irfan Ahmad; Razak, Khalil Abdul; Alias, Nur Hashimah; Othman, Nur Hidayati; Lah, Nik Khairul Irfan Nik Ab

    2017-12-01

    Corrosion under insulation (CUI) is one of the predominant issues affecting process of Oil and Gas and Petrochemical industries. CUI refers to external corrosion, but it is difficult to be detected as the insulation cover masks the corrosion problem. One of the options to prevent CUI is by utilizing the protective coating systems. Thermal spray coating (TSC) is an advanced coating system and it shows promising performance in harsh environment, which could be used to prevent CUI. However, the application of TSC is not attractive due to the high initial cost. This work evaluates the potential of TSC based on corrosion performance using linear polarization resistance (LPR) method and salt spray test (SST). Prior to the evaluation, the mechanical performance of TSC was first investigated using adhesion test and bend test. Microstructure characterization of the coating was investigated using Scanning Electron Microscope (SEM). The LPR test results showed that low corrosion rate of 0.05 mm/years was obtained for TSC in compared to the bare steel especially at high temperature of 80 °C, where usually normal coating would fail. For the salt spray test, there was no sign of corrosion products especially at the center (fully coated region) was observed. From SEM images, no corrosion defects were observed after 336 hours of continuous exposure to salt fog test. This indicates that TSC protected the steel satisfactorily by acting as a barrier from a corrosive environment. In conclusion, TSC can be a possible solution to minimize the CUI in a long term. Further research should be done on corrosion performance and life cycle cost by comparing TSC with other conventional coating technology.

  13. Corrosion protection performance of palm and mineral oil media

    International Nuclear Information System (INIS)

    Wan Nik Sani, W.B.; Ani, F.N.; Masjuki, H.H.

    2002-01-01

    In European forest, especially Scandinavian, almost all forest machines are filled with biodegradable fluid. The fluid is of synthetic type. The ratio between the lowest cost of mineral oil and the synthetic fluid is about 1:4. The high cost of this biodegradable fluid can be a major obstacle to be used in developing countries. Malaysia and South East Asia are known for its natural beauties. However, a spill of mineral based oils to their land and seas may result in long term water and soil contamination. Thus crop or agricultural based oil product can provide the solution to this problem. However, considering the demand placed on the oil in service, the service performance such as relation to component compatibility with the crop based oil is crucial to be investigated. The ability of crop based oils to protect and reduce corrosion formation is still unexplored. It is important for each oil to preserve its oxidation stability and remain non-corrosive during service. This paper reports the results of copper corrosion tests. The test includes mass change monitoring, oxide scales and microscopic analysis using Scanning Electron Microscope (SEM). Relative Increase of total acid number and weight loss during copper immersion has proved that metal corrosion in contact with oil was caused by oil degradation that produces acidic compounds. Coppers that were immersed in oil temperature of 60 0 C show that increase of temperature in presence of transition metal induces oil degradation. (Author)

  14. Corrosion in Electronics

    DEFF Research Database (Denmark)

    Ambat, Rajan; Gudla, Helene Virginie Conseil; Verdingovas, Vadimas

    2017-01-01

    Electronic control units, power modules, and consumer electronics are used today in a wide variety of varying climatic conditions. Varying external climatic conditions of temperature and humidity can cause an uncontrolled local climate inside the device enclosure. Uncontrolled humidity together...... and high density packing combined with the use of several materials, which can undergo electrochemical corrosion in the presence of water film formed due to humidity exposure and bias conditions on the PCBA surface. This article provides a short review of the corrosion reliability issues of electronics due...... to the use of electronics under varying humidity conditions. Important PCBA aspects, which are fundamental to the corrosion cell formation under humid conditions, are discussed. Effect of hygroscopic residues from the process and service and their role in assisting water film build up and corrosion...

  15. Materials Problems and Solutions in Biomass fired plants

    DEFF Research Database (Denmark)

    Larsen, Ole Hede; Montgomery, Melanie

    2006-01-01

    be directly ascribed to the composition of the deposit and the metal surface temperature. In woodchip boilers, a similar corrosion rate and corrosion mechanism has on some occasions been observed. Cofiring of straw (10 and 20% energy basis) with coal has shown corrosion rates lower than those in straw fired......Owing to Denmark's pledge to reduce carbon dioxide emissions, biomass is being increasingly utilised as a fuel for generating energy. Extensive research and development projects, especially in the area of material performance for biomass fired boilers, have been undertaken to make biomass a viable...... fuel resource. When straw is combusted, potassium chloride and potassium sulphate are present in ash products, which condense on superheater components. This gives rise to specific chlorine corrosion problems not previously encountered in coal fired power plants. The type of corrosion attack can...

  16. Materials Problems and Solutions in Biomass Fired Plants

    DEFF Research Database (Denmark)

    Larsen, Ole Hede; Montgomery, Melanie

    2006-01-01

    ascribed to the composition of the deposit and the metal surface temperature. In woodchip boilers, a similar corrosion rate and corrosion mechanism has on some occasions been observed. Co-firing of straw (10 and 20% energy basis) with coal has shown corrosion rates lower than those in straw-fired plants......Due to Denmark’s pledge to reduce carbon dioxide emissions, biomass is utilised increasingly as a fuel for generating energy. Extensive research and demonstration projects especially in the area of material performance for biomass fired boilers have been undertaken to make biomass a viable fuel...... resource. When straw is combusted, potassium chloride and potassium sulphate are present in ash products, which condense on superheater components. This gives rise to specific chlorine corrosion problems not previously encountered in coal-fired power plants. The type of corrosion attack can be directly...

  17. Superheater Corrosion In Biomass Boilers: Today's Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, William (Sandy) [SharpConsultant

    2011-12-01

    This report broadens a previous review of published literature on corrosion of recovery boiler superheater tube materials to consider the performance of candidate materials at temperatures near the deposit melting temperature in advanced boilers firing coal, wood-based fuels, and waste materials as well as in gas turbine environments. Discussions of corrosion mechanisms focus on the reactions in fly ash deposits and combustion gases that can give corrosive materials access to the surface of a superheater tube. Setting the steam temperature of a biomass boiler is a compromise between wasting fuel energy, risking pluggage that will shut the unit down, and creating conditions that will cause rapid corrosion on the superheater tubes and replacement expenses. The most important corrosive species in biomass superheater corrosion are chlorine compounds and the most corrosion resistant alloys are typically FeCrNi alloys containing 20-28% Cr. Although most of these materials contain many other additional additions, there is no coherent theory of the alloying required to resist the combination of high temperature salt deposits and flue gases that are found in biomass boiler superheaters that may cause degradation of superheater tubes. After depletion of chromium by chromate formation or chromic acid volatilization exceeds a critical amount, the protective scale gives way to a thick layer of Fe{sub 2}O{sub 3} over an unprotective (FeCrNi){sub 3}O{sub 4} spinel. This oxide is not protective and can be penetrated by chlorine species that cause further acceleration of the corrosion rate by a mechanism called active oxidation. Active oxidation, cited as the cause of most biomass superheater corrosion under chloride ash deposits, does not occur in the absence of these alkali salts when the chloride is present as HCl gas. Although a deposit is more corrosive at temperatures where it is molten than at temperatures where it is frozen, increasing superheater tube temperatures through

  18. Microbiologically induced corrosion

    International Nuclear Information System (INIS)

    Stein, A.A.

    1988-01-01

    Biological attack is a problem that can affect all metallic materials in a variety of environments and systems. In the power industry, corrosion studies have focused on condensers and service water systems where slime, barnacles, clams, and other macro-organisms are easily detected. Efforts have been made to eliminate the effect of these organisms through the use of chlorination, backflushing, organic coating, or thermal shock. The objective is to maintain component performance by eliminating biofouling and reducing metallic corrosion. Recently, corrosion of power plant components by micro-organisms (bacteria) has been identified even in very clean systems. A system's first exposure to microbiologically induced corrosion (MIC) occurs during its first exposure to an aqueous environment, such as during hydrotest or wet layup. Corrosion of buried pipelines by sulfate-reducing bacteria has been studied by the petrochemical industry for years. This paper discusses various methods of diagnosing, monitoring, and controlling MIC in a variety of systems, as well as indicates areas where further study is needed

  19. Kinetic modelling of bentonite-canister interaction. Long-term predictions of copper canister corrosion under oxic and anoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wersin, P; Spahiu, K; Bruno, J [MBT Tecnologia Ambiental, Cerdanyola (Spain)

    1994-09-01

    A new modelling approach for canister corrosion which emphasises chemical processes and diffusion at the bentonite-canister interface is presented. From the geochemical boundary conditions corrosion rates for both an anoxic case and an oxic case are derived and uncertainties thereof are estimated via sensitivity analyses. Time scales of corrosion are assessed by including calculations of the evolution of redox potential in the near field and pitting corrosion. This indicates realistic corrosion depths in the range of 10{sup -7} and 4*10{sup -5} mm/yr, respectively for anoxic and oxic corrosion. Taking conservative estimates, depths are increased by a factor of about 200 for both cases. From these predictions it is suggested that copper canister corrosion does not constitute a problem for repository safety, although certain factors such as temperature and radiolysis have not been explicitly included. The possible effect of bacterial processes on corrosion should be further investigated as it might enhance locally the described redox process. 35 refs, 11 figs, 6 tabs.

  20. Kinetic modelling of bentonite-canister interaction. Long-term predictions of copper canister corrosion under oxic and anoxic conditions

    International Nuclear Information System (INIS)

    Wersin, P.; Spahiu, K.; Bruno, J.

    1994-09-01

    A new modelling approach for canister corrosion which emphasises chemical processes and diffusion at the bentonite-canister interface is presented. From the geochemical boundary conditions corrosion rates for both an anoxic case and an oxic case are derived and uncertainties thereof are estimated via sensitivity analyses. Time scales of corrosion are assessed by including calculations of the evolution of redox potential in the near field and pitting corrosion. This indicates realistic corrosion depths in the range of 10 -7 and 4*10 -5 mm/yr, respectively for anoxic and oxic corrosion. Taking conservative estimates, depths are increased by a factor of about 200 for both cases. From these predictions it is suggested that copper canister corrosion does not constitute a problem for repository safety, although certain factors such as temperature and radiolysis have not been explicitly included. The possible effect of bacterial processes on corrosion should be further investigated as it might enhance locally the described redox process. 35 refs, 11 figs, 6 tabs

  1. Corrosion strength monitoring of NPP component residual lifetime

    International Nuclear Information System (INIS)

    Denisov, V.G.; Belous, V.N.; Arzhaev, A.I.; Shuvalov, V.A.

    1994-01-01

    Importance of corrosion and fatigue monitoring; types of corrosion determine the NPP equipment life; why automated on-line corrosion and fatigue monitoring is preferable; major stages of lifetime monitoring system development; major groups of sensors for corrosion and strength monitoring system; high temperature on-line monitoring of water chemistry and corrosion; the RBMK-1000 NPP unit automatic water chemistry and corrosion monitoring scheme; examples of pitting, crevice and general corrosion forecast calculations on the basis of corrosion monitoring data; scheme of an experimental facility for water chemistry and corrosion monitoring sensor testing. 2 figs., 4 tabs

  2. The Tension and Puncture Properties of HDPE Geomembrane under the Corrosion of Leachate.

    Science.gov (United States)

    Xue, Qiang; Zhang, Qian; Li, Zhen-Ze; Xiao, Kai

    2013-09-17

    To investigate the gradual failure of high-density polyethylene (HDPE) geomembrane as a result of long-term corrosion, four dynamic corrosion tests were conducted at different temperatures and durations. By combining tension and puncture tests, we systematically studied the variation law of tension and puncture properties of the HDPE geomembrane under different corrosion conditions. Results showed that tension and puncture failure of the HDPE geomembrane was progressive, and tensile strength in the longitudinal grain direction was evidently better than that in the transverse direction. Punctures appeared shortly after puncture force reached the puncture strength. The tensile strength of geomembrane was in inversely proportional to the corrosion time, and the impact of corrosion was more obvious in the longitudinal direction than transverse direction. As corrosion time increased, puncture strength decreased and corresponding deformation increased. As with corrosion time, the increase of corrosion temperature induced the decrease of geomembrane tensile strength. Tensile and puncture strength were extremely sensitive to temperature. Overall, residual strength had a negative correlation with corrosion time or temperature. Elongation variation increased initially and then decreased with the increase in temperature. However, it did not show significant law with corrosion time. The reduction in puncture strength and the increase in puncture deformation had positive correlations with corrosion time or temperature. The geomembrane softened under corrosion condition. The conclusion may be applicable to the proper designing of the HDPE geomembrane in landfill barrier system.

  3. Corrosion of aluminum alloys in simulated dry storage environments

    International Nuclear Information System (INIS)

    Peacock, H.B. Jr.; Sindelar, R.L.; Lam, P.S.

    1996-01-01

    The effect of temperature and relative humidity on the high temperature (up to 150 degrees C) corrosion of aluminum alloys was investigated for dry storage of spent nuclear fuels in a closed or sealed system. A dependency on alloy type, temperature and initial humidity was determined for 1100, 5052 and 6061 aluminum alloys. Results after 4500 hours of environmental testing show that for a closed system, corrosion tends to follow a power law with the rate decreasing with increasing exposure. As corrosion takes place, two phenomena occur: (1) a hydrated layer builds up to resist corrosion, and (2) moisture is depleted from the system and the humidity slowly decreases with time. At a critical level of relative humidity, corrosion reactions stop, and no additional corrosion occurs if the system remains closed. The results form the basis for the development of an acceptance criteria for the dry storage of aluminum clad spent nuclear fuels

  4. High temperature corrosion studies on friction welded low alloy steel and stainless steel in air and molten salt environment at 650 oC

    International Nuclear Information System (INIS)

    Arivazhagan, N.; Narayanan, S.; Singh, Surendra; Prakash, Satya; Reddy, G.M.

    2012-01-01

    Highlights: → Thermogravimetric analysis on friction welded AISI 304 with AISI 4140 exposed in air and molten salt environment. → Comparative study on friction welded AISI 4140 with AISI 304 exposed in air, Na 2 SO 4 -60%V 2 O 5 and NaCl-50%Na 2 SO 4 at 650 o C. → SEM/EDAX, XRD analysis on corroded dissimilar AISI 304 and AISI 4140 materials. -- Abstract: The investigation on high-temperature corrosion resistance of the weldments is necessary for prolonged service lifetime of the components used in corrosive environments. This paper reports on the performance of friction welded low alloy steel AISI 4140 and stainless steel AISI 304 in air as well as molten salt environment of Na 2 SO 4 -60%V 2 O 5 and NaCl-50%Na 2 SO 4 at 650 o C. This paper reports several studies carried out for characterizing the weldments corrosion behavior. Initially thermogravimetric technique was used to establish the kinetics of corrosion. For analyzing the corrosion products, X-ray diffraction, scanning electron microscopy/energy-dispersive analysis and electron probe micro analysis techniques were used. From the results of the experiments, it is observed that the weldments suffered accelerated corrosion in NaCl-Na 2 SO 4 environment and showed spalling/sputtering of the oxide scale. Furthermore, corrosion resistance of weld interface was found to be lower than that of parent metals in molten salt environment. Weight gain kinetics in air oxidation studies reveals a steady-state parabolic rate law while the kinetics with salt deposits displays multi-stage growth rates. Moreover NaCl is the main corrosive species in high temperature corrosion, involving mixtures of NaCl and Na 2 SO 4 which is responsible for formation of internal attack.

  5. Effect of Chlorine and Sulphur on Stainless Steel (AISI 310) Due To High Temperature Corrosion.

    OpenAIRE

    Onaivi Daniel Azamata; Titus Yusuf Jibatswen; Odinize C. Michael

    2016-01-01

    In a power station boiler, there are temperature of regimes of corrosion which occurs mainly in the economizer, boiler steam generation tubes, super-heater tubes and air tubes. The specific gas temperatures in degrees centigrade for the following include: 150 – 370oC for the economizer, 1000 – 1650oC for the boiler steam generation tubes, 650 – 1000oC for super-heater tubes and 1000 – 1200oC for air tubes. For power station boilers that burn coal as the source of fuel it is recommended that a...

  6. Corrosion of circulating water pipings in thermal and nuclear power stations and corrosion prevention measures

    International Nuclear Information System (INIS)

    Hachiya, Minoru

    1982-01-01

    In the age of energy conservation at present, the power generation facilities have been examined from the viewpoint of performance, endurance and economy, and in particular, the prevention of the loss due to the corrosion of various facilities is one of most important problems. Since circulating water pipings are in contact with sea water and soil, the peculiar corrosion phenomena are brought about on their external and internal surfaces. Namely, the pitting corrosion due to the environment of soil quality difference, the defects of coating and the contact with reinforcing bars in concrete occurs on the external surface, and the overall corrosion due to the increase of flow velocity and the pitting corrosion due to the defects of coating, the contact with different kinds of metals and the gap in corrosion-resistant steel occur on the internal surface. As the measures for corrosion prevention, corrosion-preventive coating and electric corrosion prevention are applied. The principle, the potential and current density, the system, the design procedure and the examples of application of electric corrosion prevention are described. (Kako, I.)

  7. Stress Corrosion Cracking of Zircaloy-4 in Halide Solutions: Effect of Temperature

    Directory of Open Access Journals (Sweden)

    Farina S.B.

    2002-01-01

    Full Text Available Zircaloy-4 was found to be susceptible to stress corrosion cracking in 1 M NaCl, 1 M KBr and 1 M KI aqueous solutions at potentials above the pitting potential. In all the solutions tested crack propagation was initially intergranular and then changed to transgranular. The effect of strain rate and temperature on the SCC propagation was investigated. An increase in the strain rate was found to lead to an increase in the crack propagation rate. The crack propagation rate increases in the three solutions tested as the temperatures increases between 20 and 90 °C. The Surface-Mobility SCC mechanism accounts for the observation made in the present work, and the activation energy predicted in iodide solutions is similar to that found in the literature.

  8. Corrosion of fuel assembly materials

    International Nuclear Information System (INIS)

    Noe, M.; Frejaville, G.; Beslu, P.

    1985-08-01

    Corrosion of zircaloy-4 is reviewed in relation with previsions of improvement in PWRs performance: higher fuel burnup; increase coolant temperature, implying nucleate boiling on the hot clad surfaces; increase duration of the cycle due to load-follow operation. Actual knowledge on corrosion rates, based partly on laboratory tests, is insufficient to insure that external clad corrosion will not constitute a limitation to these improvements. Therefore, additional testing within representative conditions is felt necessary [fr

  9. Corrosion of beryllium oxide; Corrosion de l'oxyde de beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Elston, J; Caillat, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Data are reported on the volatilization rate of beryllium oxide in moist air depending on temperature and water vapour concentration. They are concerned with powder samples or sintered shapes of various densities. For sintered samples, the volatilization rate is very low under the following conditions: - temperature: 1300 deg. C, - water vapour concentration in moist air: 25 g/m{sup 3}, - flow rate: 12 I/hour corresponding to a speed of 40 m/hour on the surface of the sample. For calcinated powders (1300 deg. C), grain growth has been observed under a stream of moist air at 1100 deg. C. For instance, grain size changes from 0,5 to at least 2 microns after 500 hours of exposure at this temperature. Furthermore, results data are reported on corrosion of sintered beryllium oxide in pressurized water. At 250 deg. C, under a pressure of 40 kg/cm{sup 2} water is very slightly corrosive; however, internal strains are revealed. Finally, some features on the corrosion in liquid sodium are exposed. (author)Fren. [French] La volatilisation de l'oxyde de beryllium dans l'air humide est etudiee en fonction de la temperature pour differentes teneurs de vapeur d'eau. Les essais decrits portent sur de l'oxyde de beryllium en poudre ou sur des echantillons d'oxyde de beryllium fritte de differentes densites. Avec un debit d'air de 12 I/h contenant 25 g de vapeur par m{sup 3} correspondant a une vitesse de 40 m/h sur la surface de l'echantillon, la volatilisation des frittes a 1300 deg. C reste tres faible. Sur de la poudre d'oxyde de beryllium calcinee initialement a 1300 deg. C, on observe un grossissement de la taille des grains sous l'influence de l'air humide a 1100 deg. C. Par exemple, elle passe de 0,5 a au moins 2 microns apres 500 heures d'exposition a cette temperature. On donne d'autre part les resultats d'une etude de la corrosion de frittes d'oxyde de beryllium par l'eau, en autoclave. A 250 deg. C, sous une pression de 40 kg/cm{sup 2}, l'action de l'eau reste tres

  10. The corrosive well waters of Egypt's western desert

    Science.gov (United States)

    Clarke, Frank Eldridge

    1979-01-01

    The discovery that ground waters of Egypt's Western Desert are highly corrosive is lost in antiquity. Inhabitants of the oases have been aware of the troublesome property for many decades and early investigators mention it in their reports concerning the area. Introduction of modern well-drilling techniques and replacements of native wood casing with steel during the 20th century increased corrosion problems and, in what is called the New Valley Project, led to an intense search for causes and corrective treatments. This revealed that extreme corrosiveness results from combined effects of relatively acidic waters with significant concentrations of destructive sulfide ion; unfavorable ratios of sulfate and chloride to less aggressive ions; mineral equilibria and electrode potential which hinder formation of protective films; relative high chemical reaction rates because of abnormal temperatures, and high surface velocities related to well design. There is general agreement among investigators that conventional corrosion control methods such as coating metal surfaces, chemical treatment of the water, and electrolytic protection with impressed current and sacrificial electrodes are ineffective or impracticable for wells in the Western Desert's New Valley. Thus, control must be sought through the use of materials more resistant to corrosion than plain carbon steel wherever well screens and casings are necessary. Of the alternatives considered, stainless steel appears to. be the most promising where high strength and long-term services are required and the alloy's relatively high cost is acceptable. Epoxy resin-bonded fiberglass and wood appear to be practicable, relatively inexpensive alternatives for installations which do. not exceed their strength limitations. Other materials such as high strength aluminum and Monel Metal have shown sufficient promise to. merit their consideration in particular locations and uses. The limited experience with pumping in these desert

  11. Corrosion of beryllium oxide

    International Nuclear Information System (INIS)

    Elston, J.; Caillat, R.

    1958-01-01

    Data are reported on the volatilization rate of beryllium oxide in moist air depending on temperature and water vapour concentration. They are concerned with powder samples or sintered shapes of various densities. For sintered samples, the volatilization rate is very low under the following conditions: - temperature: 1300 deg. C, - water vapour concentration in moist air: 25 g/m 3 , - flow rate: 12 I/hour corresponding to a speed of 40 m/hour on the surface of the sample. For calcinated powders (1300 deg. C), grain growth has been observed under a stream of moist air at 1100 deg. C. For instance, grain size changes from 0,5 to at least 2 microns after 500 hours of exposure at this temperature. Furthermore, results data are reported on corrosion of sintered beryllium oxide in pressurized water. At 250 deg. C, under a pressure of 40 kg/cm 2 water is very slightly corrosive; however, internal strains are revealed. Finally, some features on the corrosion in liquid sodium are exposed. (author) [fr

  12. Detection and evaluation of corrosion zones at high temperature in steam generators; Deteccion y evaluacion de zonas de corrosion en alta temperatura de generadoras de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Villafane, Alberto; Chacon Nava, Jose G; Huerta Espino, Mario; Mojica Calderon, Cecilio; Castillo Viveros, Antonio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1991-12-31

    This paper presents the methodology for the detection and evaluation of high corrosion zones at high temperature. The results found up to now, show a critical zone in the Babcock Hitachi design, specifically in the high temperature reheater in the zone nearby the outlet header. In the normalized design CE (Mitsubishi) of 300 MW and CE (Canada) of 300 MW, the results found in recent years show small thickness reduction, therefore a good operation of these steam generators is recognized. [Espanol] En este trabajo se presenta la metodologia para la deteccion y evaluacion de zonas de corrosion en alta temperatura. Los resultados encontrados hasta el momento muestran una zona critica en el diseno Babcock Hitachi, especificamente en el recalentador de alta temperatura en la zona cercana al cabezal de salida. En el diseno normalizado CE (Mitsubishi) de 300 MW y CE (Canada) de 300 MW, los resultados encontrados en anos recientes muestran poca disminucion de espesor, por lo que se considera una buena operacion de estos generadores de vapor.

  13. Detection and evaluation of corrosion zones at high temperature in steam generators; Deteccion y evaluacion de zonas de corrosion en alta temperatura de generadoras de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Villafane, Alberto; Chacon Nava, Jose G.; Huerta Espino, Mario; Mojica Calderon, Cecilio; Castillo Viveros, Antonio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1990-12-31

    This paper presents the methodology for the detection and evaluation of high corrosion zones at high temperature. The results found up to now, show a critical zone in the Babcock Hitachi design, specifically in the high temperature reheater in the zone nearby the outlet header. In the normalized design CE (Mitsubishi) of 300 MW and CE (Canada) of 300 MW, the results found in recent years show small thickness reduction, therefore a good operation of these steam generators is recognized. [Espanol] En este trabajo se presenta la metodologia para la deteccion y evaluacion de zonas de corrosion en alta temperatura. Los resultados encontrados hasta el momento muestran una zona critica en el diseno Babcock Hitachi, especificamente en el recalentador de alta temperatura en la zona cercana al cabezal de salida. En el diseno normalizado CE (Mitsubishi) de 300 MW y CE (Canada) de 300 MW, los resultados encontrados en anos recientes muestran poca disminucion de espesor, por lo que se considera una buena operacion de estos generadores de vapor.

  14. Assessing corrosion in oil refining and petrochemical processing

    Directory of Open Access Journals (Sweden)

    Randy C. John

    2004-03-01

    Full Text Available This paper summarizes the development of an information system used to manage corrosion of metals and alloys by high temperature gases found in many different oil refining, petrochemical, power generation, and chemical processes. The database currently represents about 7.9 million h of exposure time for about 5,500 tests with 89 commercial alloys for a temperature range of 200 - 1,200°C. The system manages corrosion data from well-defined exposures and determines corrosion product stabilities. New models used in the analysis of thermochemical data for the Fe-Ni-Cr-Co-C-O-S-N-H system are being compiled. All known phases based upon combinations of the elements have been analyzed to allow complete assessments of corrosion product stabilities. Use of these data allows prediction of stable corrosion products and hence identification of the possible dominant corrosion mechanisms. The system has the potential to be used in corrosion research, alloy development, failure analysis, lifetime prediction, and process operations evaluations. The corrosion mechanisms emphasized are oxidation, sulfidation, sulfidation/oxidation, and carburization.

  15. High temperature materials; Materiaux a hautes temperatures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  16. EFFECT OF INTERMETALLIC PHASES ON CORROSION BEHAVIOR AND MECHANICAL PROPERTIES OF DUPLEX STAINLESS STEEL AND SUPER-DUPLEX STAINLESS STEEL

    OpenAIRE

    Prabhu Paulraj; Rajnish Garg

    2015-01-01

    Duplex Stainless Steels (DSS) and Super Duplex Stainless Steel (SDSS) have excellent integration of mechanical and corrosion properties. However, the formation of intermetallic phases is a major problem in their usage. The mechanical and corrosion properties are deteriorated due to the presence of intermetallic phases. These phases are induced during welding, prolonged exposure to high temperatures, and improper heat treatments. The main emphasis of this review article is on intermetallic pha...

  17. Influence of pre-deformation, sensitization and oxidation in high temperature water on corrosion resistance of AISI 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Jinlong, E-mail: ljltsinghua@126.com [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Liang, Tongxiang [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Luo, Hongyun [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Xueyuan Road 37, Beijing 100191 (China)

    2016-12-01

    Highlights: • The pre-strain accelerated desensitization and sensitization for austenitic stainless steels. • Low temperature sensitization (carbide precipitation) induced α′-martensite. • The sensitization level could affect directly corrosion resistance of the oxide film. - Abstract: The effects of pre-deformation on sensitization of AISI 304 stainless steel were investigated by the double loop electrochemical potentiokinetic reactivation test. The effects of pre-deformation and sensitization on high temperature oxidized film formed in high temperature water were analyzed by a XRD and SEM. The electrochemical impedance spectroscopy at room temperature was used to study corrosion resistance of oxidized film. The point defect density of oxidized film was calculated by Mott–Schottky plots. The results showed that the value of the degree of sensitization first decreased and then slight increased with the increasing of engineering strain. Moreover, low temperature promoted to form sensitization induced “secondary” α′-martensite. The sample with 20% engineering strain had higher impedance value than other samples. The result was supported by further Mott–Schottky experiments. Considering increased α′-martensite with the increasing of strain, the results of the impedance were more consistent with values of the degree of sensitization.

  18. Corrosion rate transients observed by linear polarization techniques at Zr-1%Nb alloy

    International Nuclear Information System (INIS)

    Beran, J.; Cerny, K.

    1997-01-01

    Momentary corrosion rate of Zr-1%Nb alloy during nonisothermal autoclave experiments at temperature up to 328 deg. C in various solutions was determined by T/R p values (T - absolute temperature, R p - polarization resistance), multiplied by temperature independent conversion factor. This factor was found by comparison of conventional corrosion loss evaluation with electrochemical measurements. Corrosion rate transients in boric acid solutions and in lithium hydroxide differed significantly. Great differences were also found in stabilized corrosion rates at the end of experiments. Temperature irregularities caused considerable changes in corrosion rate. (author). 5 refs, 5 figs, 1 tab

  19. Corrosion rate transients observed by linear polarization techniques at Zr-1%Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Beran, J; Cerny, K [ZJS SKODA plc., Pelzen (Czech Republic)

    1997-02-01

    Momentary corrosion rate of Zr-1%Nb alloy during nonisothermal autoclave experiments at temperature up to 328 deg. C in various solutions was determined by T/R{sub p} values (T - absolute temperature, R{sub p}- polarization resistance), multiplied by temperature independent conversion factor. This factor was found by comparison of conventional corrosion loss evaluation with electrochemical measurements. Corrosion rate transients in boric acid solutions and in lithium hydroxide differed significantly. Great differences were also found in stabilized corrosion rates at the end of experiments. Temperature irregularities caused considerable changes in corrosion rate. (author). 5 refs, 5 figs, 1 tab.

  20. Synergy effect of naphthenic acid corrosion and sulfur corrosion in crude oil distillation unit

    Energy Technology Data Exchange (ETDEWEB)

    Huang, B.S., E-mail: yinwenfeng2010@163.com [College of Materials Science and Engineering, Southwest Petroleum University, Sichuan, Chengdu, 610500 (China); Yin, W.F. [College of Mechatronic Engineering, Southwest Petroleum University, Sichuan, Chengdu, 610500 (China); Sang, D.H. [Sheng Li Construction Group International Engineering Department, Shandong, Dongying, 257000 (China); Jiang, Z.Y. [College of Materials Science and Engineering, Southwest Petroleum University, Sichuan, Chengdu, 610500 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer The corrosion of a carbon-manganese steel and a stainless steel in sulfur and/or naphthenic acid media was investigated. Black-Right-Pointing-Pointer The corrosion rate of the carbon-manganese steel increased with the increase of the acid value and sulfur content. Black-Right-Pointing-Pointer The critical values of the concentration of sulfur and acid for corrosion rate of the stainless steel were ascertained respectively. Black-Right-Pointing-Pointer The stainless steel is superior to the carbon-manganese steel in corrosion resistance because of the presence of stable Cr{sub 5}S{sub 8} phases. - Abstract: The synergy effect of naphthenic acid corrosion and sulfur corrosion at high temperature in crude oil distillation unit was studied using Q235 carbon-manganese steel and 316 stainless steel. The corrosion of Q235 and 316 in corrosion media containing sulfur and/or naphthenic acid at 280 Degree-Sign C was investigated by weight loss, scanning electron microscope (SEM), EDS and X-ray diffractometer (XRD) analysis. The results showed that in corrosion media containing only sulfur, the corrosion rate of Q235 and 316 first increased and then decreased with the increase of sulfur content. In corrosion media containing naphthenic acid and sulfur, with the variations of acid value or sulfur content, the synergy effect of naphthenic acid corrosion and sulfur corrosion has a great influence on the corrosion rate of Q235 and 316. It was indicated that the sulfur accelerated naphthenic acid corrosion below a certain sulfur content but prevented naphthenic acid corrosion above that. The corrosion products on two steels after exposure to corrosion media were investigated. The stable Cr{sub 5}S{sub 8} phases detected in the corrosion products film of 316 were considered as the reason why 316 has greater corrosion resistance to that of Q235.

  1. Critical corrosion issues and mitigation strategies impacting the operability of LWR's

    International Nuclear Information System (INIS)

    Jones, R.L.

    1996-01-01

    Recent corrosion experience in US light water reactor nuclear power plants is reviewed with emphasis on mitigation strategies to control the cost of corrosion to LWR operators. Many components have suffered corrosion problems resulting in industry costs of billions of dollars. The most costly issues have been stress corrosion cracking of stainless steel coolant piping in boiling water reactors and corrosion damage to steam generator tubes in pressurized water reactors. Through industry wide R and D programs these problems are now understood and mitigation strategies have been developed to address the issues in a cost effective manner. Other significant corrosion problems for both reactor types are briefly reviewed. Tremendous progress has been made in controlling corrosion, however, minimizing its impact on plant operations will present a continuing challenge throughout the remaining service lives of these power plants

  2. The corrosion and stress corrosion cracking behavior of a novel alumina-forming austenitic stainless steel in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hongying [School of Mechanical Engineering, Anyang Institute of Technology, Anyang 455002 (China); Yang, Haijie [Modern Engineering Training Center, Anyang Institute of Technology, Anyang 455002 (China); Wang, Man [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Giron-Palomares, Benjamin [School of Mechanical Engineering, Anyang Institute of Technology, Anyang 455002 (China); Zhou, Zhangjian, E-mail: zhouzhj@mater.ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Lefu [School of Nuclear Science and Engineering, Shanghai Jiaotong University, No 800 Dongchuan Road, Shanghai (China); Zhang, Guangming, E-mail: ustbzgm@163.com [School of Automobile & Transportation, Qingdao Technological University, Qingdao 266520 (China)

    2017-02-15

    The general corrosion and stress corrosion behavior of Fe-27Ni-15Cr-5Al-2Mo-0.4Nb alumina-forming austenitic (AFA) steel were investigated in supercritical water under different conditions. A double layer oxide structure was formed: a Fe-rich outer layer (Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4}) and an Al-Cr-rich inner layer. And the inner layer has a low growth rate with exposing time, which is good for improvement of corrosion resistance. Additionally, some internal nodular Al-Cr-rich oxides were also observed, which resulted in a local absence of inner layer. Stress corrosion specimens exhibited a combination of high strength, good ductility and low susceptibility. The stress strength and elongation was reduced by increasing temperature and amount of dissolved oxygen. In addition, the corresponding susceptibility was increased with decreased temperatures and increased oxygen contents. - Highlights: • The general corrosion and SCC in SCW of the AFA steel have been limited reported. • Fe-rich inner and Al-Cr-rich outer layers are formed in 650 °C/25 MPa/10 ppb SCW. • The SCC behavior exhibits a combination of high strength and good ductility. • Strength and elongation are lowered by increase of temperature and oxygen content. • The AFA steel shows low SCC susceptibility and a superior corrosion resistance.

  3. Influence of Temperature and Chloride Concentration on Passivation Mechanism and Corrosion of a DSS2209 Welded Joint

    Science.gov (United States)

    Hachemi, Hania; Azzaz, Mohamed; Djeghlal, Mohamed Elamine

    2016-10-01

    The passivity behavior of a 2209 duplex stainless steel welded joint was investigated using potentiodynamic polarization, Mott-Schottky analysis and EIS measurements. In order to evaluate the contribution of temperature, chloride concentration and microstructure, a sequence of polarization tests were carried out in aerated NaCl solutions selected according to robust design of a three level-three factors Taguchi L9 orthogonal array. Analysis of signal-to-noise ratio and ANOVA were achieved on all measured data, and the contribution of every control factor was estimated. The results showed that the corrosion resistance of 2209 duplex stainless steel welded joint is related to the evolution of the passive film formed on the surface. It was found that the passive film on the welded zone possessed n- and p-type semiconductor characteristics. With the increase of solution temperature and chlorides concentration, the corrosion resistance of the passive film is more affected in the weldment than in the base metal.

  4. The corrosion and stress corrosion cracking behavior of a novel alumina-forming austenitic stainless steel in supercritical water

    International Nuclear Information System (INIS)

    Sun, Hongying; Yang, Haijie; Wang, Man; Giron-Palomares, Benjamin; Zhou, Zhangjian; Zhang, Lefu; Zhang, Guangming

    2017-01-01

    The general corrosion and stress corrosion behavior of Fe-27Ni-15Cr-5Al-2Mo-0.4Nb alumina-forming austenitic (AFA) steel were investigated in supercritical water under different conditions. A double layer oxide structure was formed: a Fe-rich outer layer (Fe 2 O 3 and Fe 3 O 4 ) and an Al-Cr-rich inner layer. And the inner layer has a low growth rate with exposing time, which is good for improvement of corrosion resistance. Additionally, some internal nodular Al-Cr-rich oxides were also observed, which resulted in a local absence of inner layer. Stress corrosion specimens exhibited a combination of high strength, good ductility and low susceptibility. The stress strength and elongation was reduced by increasing temperature and amount of dissolved oxygen. In addition, the corresponding susceptibility was increased with decreased temperatures and increased oxygen contents. - Highlights: • The general corrosion and SCC in SCW of the AFA steel have been limited reported. • Fe-rich inner and Al-Cr-rich outer layers are formed in 650 °C/25 MPa/10 ppb SCW. • The SCC behavior exhibits a combination of high strength and good ductility. • Strength and elongation are lowered by increase of temperature and oxygen content. • The AFA steel shows low SCC susceptibility and a superior corrosion resistance.

  5. Steam generator corrosion 2007; Dampferzeugerkorrosion 2007

    Energy Technology Data Exchange (ETDEWEB)

    Born, M. (ed.)

    2007-07-01

    Between 8th and 9th November, 2007, SAXONIA Standortentwicklungs- und -verwertungsgesellschaft GmbH (Freiberg, Federal Republic of Germany) performed the 3rd Freiberger discussion conference ''Fireside boiler corrosion''. The topics of the lectures are: (a) Steam generator corrosion - an infinite history (Franz W. Alvert); (b) CFD computations for thermal waste treatment plants - a contribution for the damage recognition and remedy (Klaus Goerner, Thomas Klasen); (c) Experiences with the use of corrosion probes (Siegfried R. Horn, Ferdinand Haider, Barbara Waldmann, Ragnar Warnecke); (d) Use of additives for the limitation of the high temperature chlorine corrosion as an option apart from other measures to the corrosion protection (Wolfgang Spiegel); (e) Current research results and aims of research with respect to chlorine corrosion (Ragnar Warnecke); (f) Systematics of the corrosion phenomena - notes for the enterprise and corrosion protection (Thomas Herzog, Wolfgang Spiegel, Werner Schmidl); (g) Corrosion protection by cladding in steam generators of waste incinerators (Joerg Metschke); (h) Corrosion protection and wear protection by means of thermal spraying in steam generators (Dietmar Bendix); (i) Review of thick film nickelized components as an effective protection against high-temperature corrosion (Johann-Wilhelm Ansey); (j) Fireproof materials for waste incinerators - characteristics and profile of requirement (Johannes Imle); (k) Service life-relevant aspects of fireproof linings in the thermal recycling of waste (Till Osthoevener and Wolfgang Kollenberg); (l) Alternatives to the fireproof material in the heating space (Heino Sinn); (m) Cladding: Inconal 625 contra 686 - Fundamentals / applications in boiler construction and plant construction (Wolfgang Hoffmeister); (n) Thin films as efficient corrosion barriers - thermal spray coating in waste incinerators and biomass firing (Ruediger W. Schuelein, Steffen Hoehne, Friedrich

  6. Corrosion experience in nuclear waste processing at Battelle Northwest

    International Nuclear Information System (INIS)

    Slate, S.C.; Maness, R.F.

    1976-11-01

    Emphasis is on corrosion as related to waste storage canister. Most work has been done in support of the In-Can Melter (ICM) vitrification system. It is assumed that the canister goes through the ICM process and is then stored in a water basin. The most severe corrosion effect seen is oxidation of stainless steel (SS) surfaces in contact with gases containing oxygen during processing. The processing temperature is near 1100 0 C and furnace atmosphere, used until now, has been air with unrestricted flow to the furnace. The oxidation rate at 1100 0 C is 15.8 g/cm 2 for 304L SS. Techniques for eliminating this corrosion currently being investigated include the use of different materials, such as Inconel 601, and the use of an inert cover gas. Corrosion due to the waste melt is not as rapid as the air oxidation. This effect has been studied extensively in connection with the development of a metallic crucible melter at Battelle. Data are available on the corrosion rates of several waste compositions in contact with various materials. Long-term compatibility tests between the melt and the metal have been run; it was found the corrosion rates due to the melt or its vapor do not pose a serious problem to the waste canister. However, these rates are high enough to preclude the practical use of a metallic melter. Interim water storage of the canister may be a problem if proper corrective measurements are not taken.The canister may be susceptible to stress corrosion cracking (SCC) because it will be sensitized to some extent and it will be nearly stressed to yield. The most favorable solution to SCC involves minimizing canister sensitization and stress plus providing good water quality control. It has been recommended to keep the chlorine ion concentration below 1 ppM and the pH above 10. At these conditions no failures of 304L are predicted due to SCC. It is concluded that corrosion of a canister used during the In-Can Melter process and interim storage can be controlled

  7. What are the advantages and disadvantages of imaging modalities to diagnose wear-related corrosion problems?

    Science.gov (United States)

    Nam, Denis; Barrack, Robert L; Potter, Hollis G

    2014-12-01

    Adverse tissue reactions are known to occur after total hip arthroplasty using both conventional and metal-on-metal (MoM) bearings and after MoM hip resurfacing arthroplasty (SRA). A variety of imaging tools, including ultrasound (US), CT, and MRI, have been used to diagnose problems associated with wear after MoM hip arthroplasty and corrosion at the head-trunnion junction; however, the relative advantages and disadvantages of each remain a source of controversy. The purposes of this review were to evaluate the advantages and disadvantages of (1) US; (2) CT; and (3) MRI as diagnostic tools in the assessment of wear-related corrosion problems after hip arthroplasty. A systematic literature review was performed through Medline, EMBASE, Scopus CINAHL, and the Cochrane Library without time restriction using search terms related to THA, SRA, US, CT, MRI, adverse tissue reactions, and corrosion. Inclusion criteria were Level I through IV studies in the English language, whereas expert opinions and case reports were excluded. The quality of included studies was judged by their level of evidence, method of intervention allocation, outcome assessments, and followup of patients. Four hundred ninety unique results were returned and 40 articles were reviewed. The prevalence of adverse local tissue reactions in both asymptomatic and symptomatic patients varies based on the method of evaluation (US, CT, MRI) and imaging protocols. US is accessible and relatively inexpensive, yet has not been used to report synovial thicknesses in the setting of wear-related corrosion. CT scans are highly sensitive and provide information regarding component positioning but are limited in providing enhanced soft tissue contrast and require ionizing radiation. MRI has shown promise in predicting both the presence and severity of adverse local tissue reactions but is more expensive. All three imaging modalities have a role in the assessment of adverse local tissue reactions and tribocorrosion

  8. Effect of Solder Flux Residues on Corrosion of Electronics

    DEFF Research Database (Denmark)

    Hansen, Kirsten Stentoft; Jellesen, Morten Stendahl; Møller, Per

    2009-01-01

    Flux from ‘No Clean’ solder processes can cause reliability problems in the field due to aggressive residues, which may be electrical conducting or corrosive in humid environments. The solder temperature during a wave solder process is of great importance to the amount of residues left on a PCBA...... testing and use in the field, consequences and recommendations are given. Failures, caused by harsh[1] customer environments, are not covered in this paper....

  9. Low temperature tensile properties and stress corrosion cracking resistance in the super duplex stainless steels weldments

    International Nuclear Information System (INIS)

    Lee, Jeung Woo; Sung, Jang Hyun; Lee, Sung Keun

    1998-01-01

    Low temperature tensile properties and SCC resistances of super duplex stainless steels and their weldments are investigated. Tensile strengths increase remarkably with decreasing test temperature, while elongations decrease steeply at -196 .deg. C after showing peak or constant value down to -100 .deg. C. Owing to the low tensile deformation of weld region, elongations of welded specimen decrease in comparison to those of unwelded specimen. The welded tensile specimen is fractured through weld region at -196 .deg. C due to the fact that the finely dispersed ferrite phase in the austenite matrix increases an opportunity to supply the crack propagation path through the brittle ferrite phase at low temperature. The stress corrosion cracking initiates preferentially at the surface ferrite phase of base metal region and propagates through ferrite phase. When the corrosion crack meets with the fibrously aligned austenite phase to the tensile direction, the ferrite phase around austenite continues to corrode. Eventually, fracture of the austenite phase begins without enduring the tensile load. The addition of Cu+W to the super duplex stainless steel deteriorates the SCC resistance in boiling MgCl 2 solution, possibly due to the increment of pits in the ferrite phase and reduction of N content in the austenite phase

  10. Atmospheric corrosion of metals in industrial city environment

    OpenAIRE

    Kusmierek, Elzbieta; Chrzescijanska, Ewa

    2015-01-01

    Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the s...

  11. Factors and mechanisms affecting corrosion of steel in concrete

    International Nuclear Information System (INIS)

    Dehqanian, Ch.

    1986-01-01

    Atomic power plants possess reinforced concrete structures which are exposed to sea water or sea atmosphere. Sea water or its surrounding environment contain very corrosive species which cause corrosion of metal in concrete. It should be mentioned that corrosion of steel in concrete is a complex problem that is not completely understood. Some of the factors which influence the corrosion mechanism and can be related to the pore solution composition is discussed. Chloride ion caused problems are the main source of the corrosion damage seen on the reinforced concrete structures. Corrosion rate in concrete varies and depends on the way chloride ion diffuses into concrete. In addition, the associated cations can influence diffusion of chloride into concrete. The type of portland cement and also the concrete mix design all affect the corrosion behaviour of steel in concrete

  12. High temperature degradation by erosion-corrosion in bubbling fluidized bed combustors

    Directory of Open Access Journals (Sweden)

    Hou Peggy

    2004-01-01

    Full Text Available Heat-exchanger tubes in fluidized bed combustors (FBCs often suffer material loss due to combined corrosion and erosion. Most severe damage is believed to be caused by the impact of dense packets of bed material on the lower parts of the tubes. In order to understand this phenomenon, a unique laboratory test rig at Berkeley was designed to simulate the particle hammering interactions between in-bed particles and tubes in bubbling fluidized bed combustors. In this design, a rod shaped specimen is actuated a short distance within a partially fluidized bed. The downward specimen motion is controlled to produce similar frequencies, velocities and impact forces as those experienced by the impacting particle aggregates in practical systems. Room temperature studies have shown that the degradation mechanism is a three-body abrasion process. This paper describes the characteristics of this test rig, reviews results at elevated temperatures and compares them to field experience. At higher temperatures, deposits of the bed material on tube surfaces can act as a protective layer. The deposition depended strongly on the type of bed material, the degree of tube surface oxidation and the tube and bed temperatures. With HCl present in the bed, wastage was increased due to enhanced oxidation and reduced oxide scale adherence.

  13. Study of the corrosion of metallic coatings and alloys containing aluminum in a mixed atmosphere - sulphur, oxygen - at high temperatures

    International Nuclear Information System (INIS)

    Fellmann, Daniel

    1982-01-01

    The objective of this research thesis is the development of materials for a sulphur experimental loop allowing the thermodynamic properties of such an energy cycle to be checked. As solutions must comply with industrial methods, rare materials are excluded as they are too expensive or difficult to implement. Iron-based materials have been tested but could not have at the same time a good corrosion resistance and high temperature forming and mechanical toughness properties. Therefore, metallic coatings have been chosen, specifically alumina. After having reported a bibliographical study on corrosion by sulphur vapour and by oxygen and by sulphur-oxygen, the author presents the experimental materials and methods. Then, the author reports the study of mixed corrosion (by sulphur and oxygen together) of metallic alloys (ferritic and austeno-ferritic alloys, aluminium and titanium alloys), and of the corrosion of FeAlx coatings, of AlTix alloys [fr

  14. Corrosion investigations of high-alloyed steels carried out in different marine area organized by European Federation of Corrosion

    International Nuclear Information System (INIS)

    Birn, J.; Skalski, I.

    1999-01-01

    Research works arranged by EFC Working Party on Marine Corrosion are described. The research was performed in sea areas of Norway, Finland, Sweden, France, Italy, Poland and Netherlands. Subjected to test were three corrosion resistant steel grades; 316, 904 and UNS S 31524. Two corrosion tests were carried out in the years 1993 and 1994 each of min. 6 month duration. The results show that chemical composition of water at salinity level of more than 0.7% has not great effect on corrosion aggressivity in relation to corrosion resistant steels. On the other hand temperature of sea water has great influence on corrosion process. (author)

  15. Corrosion detector apparatus for universal assessment of pollution in data centers

    Science.gov (United States)

    Hamann, Hendrik F.; Klein, Levente I.

    2015-08-18

    A compact corrosion measurement apparatus and system includes an air fan, a corrosion sensor, a temperature sensor, a humidity sensor, a heater element, and an air flow sensor all under control to monitor and maintain constant air parameters in an environment and minimize environmental fluctuations around the corrosion sensor to overcome the variation commonly encountered in corrosion rate measurement. The corrosion measurement apparatus includes a structure providing an enclosure within which are located the sensors. Constant air flow and temperature is maintained within the enclosure where the corrosion sensor is located by integrating a variable speed air fan and a heater with the corresponding feedback loop control. Temperature and air flow control loops ensure that corrosivity is measured under similar conditions in different facilities offering a general reference point that allow a one to one comparison between facilities with similar or different pollution levels.

  16. The effect of conditioning agents on the corrosive properties of molten urea

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, D E; Nguyen, D T; Norton, M M; Parker, B R; Daniels, L E

    1991-01-01

    From the process case histories of the failure of several heat exchanger tube bundles, it was revealed that molten urea containing lignosulfonate as a granulation conditioning-hardening agent (Urea LS[trademark]) is corrosive to Types 304 and 316 stainless steel. The results of field and laboratory immersion corrosion tests indicated that the corrosivity of molten urea is strongly dependent on the process temperature rather than the conditioner composition. At temperatures below 295F, molten Urea LS[trademark] is not aggressive to these stainless steels. However, at temperatures above 300F, the corrosion of these stainless steels is extremely severe. The corrosion rate of Types 304, 304L, 316, and 316L is as high as hundreds of mils per year. The corrosion mechanism tends to be more general than localized. The results of the laboratory corrosion test also revealed that among alloying elements, copper is detrimental to corrosion resistance of stainless steel exposed to molten Urea LS[trademark], chromium is the most beneficial, and nickel has only a minor effect. Thus, copper-free and chromium stainless steels have superior corrosion resistance to the molten Urea LS[trademark] at a wide range of temperatures up to 345F.

  17. Inhibitive effect of N,N'-Dimethylaminoethanol on carbon steel corrosion in neutral sodium chloride solution, at different temperatures

    Directory of Open Access Journals (Sweden)

    Hassoune Mohammed

    2018-01-01

    Full Text Available The inhibition of carbon steel corrosion in neutral sodium chloride solution by N,N'- Dimethylaminoethanol (DMEA, at different temperatures, was investigated using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS techniques. The results obtained confirm that DMEA is a good organic corrosion inhibitor for carbon steel in 0.5M of NaCl (concentration encountered in the Mediterranean seawater, over the whole range of temperatures studied. The inhibition efficiency (IE% increases with increasing DMEA concentration; it reaches highest value for a concentration around 0.125 mol.L-1. Potentiodynamic polarization data show that, the compound studied in this research predominantly act as anodic-type inhibitor. The EIS study reveals that the addition of DMEA decreases the corrosion rate of carbon steel in neutral sodium chloride solution, due to the fact that the inhibitor molecules are strongly adsorbed on the active sites following Langmuir isotherm, thus leading to the formation of a stable protective film on the steel surface which is able to keep the metal/solution interface in a passive state. Furthermore, the values of the activation parameters, i.e. ΔHa and Ea obtained in this study indicate that the adsorption process of DMEA is endothermic and could be mainly attributed to chemisorption, respectively.

  18. Monitoring and modeling stress corrosion and corrosion fatigue damage in nuclear reactors

    International Nuclear Information System (INIS)

    Andresen, P.L.; Ford, F.P.; Solomon, H.D.; Taylor, D.F.

    1990-01-01

    Stress corrosion and corrosion fatigue are significant problems in many industries, causing economic penalties from decreased plant availability and component repair or replacement. In nuclear power reactors, environmental cracking occurs in a wide variety of components, including reactor piping and steam generator tubing, bolting materials and pressure vessels. Life assessment for these components is complicated by the belief that cracking is quite irreproducible. Indeed, for conditions which were once viewed as nominally similar, orders of magnitude variability in crack growth rates are observed for stress corrosion and corrosion fatigue of stainless steels and low-alloy steels in 288 degrees C water. This paper shows that design and life prediction approaches are destined to be overly conservative or to risk environmental failure if life is predicted by quantifying only the effects of mechanical parameters and/or simply ignoring or aggregating environmental and material variabilities. Examples include the Nuclear Regulatory Commission (NRC) disposition line for stress-corrosion cracking of stainless steel in boiling water reactor (BWR) water and the American Society of Mechanical Engineers' Section XI lines for corrosion fatigue

  19. Mechanism of magnetite formation in high temperature corrosion by model naphthenic acids

    International Nuclear Information System (INIS)

    Jin, Peng; Robbins, Winston; Bota, Gheorghe

    2016-01-01

    Highlights: • Magnetite scales were found in naphthenic acid (NAP) corrosion. • Magnetite scales were formed due to thermal decomposition of iron naphthenates. • Formation and protectiveness of magnetite scales depended on structure of NAP. • Carboxylic acids confirm corrosion observations for commercial NAP. - Abstract: Naphthenic acid (NAP) corrosion is a major concern for refineries. The complexity of NAP in crude oil and the sulfidation process hinder a fundamental knowledge of their corrosive behavior. Studies with model acids were performed to explore the corrosion mechanism and magnetite scales were found on carbon steel. Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and X-ray diffraction methods detected differences in the quantity and quality of magnetite formed by model acids. These scales exhibited different resistance to higher severity NAP corrosion in a flow through apparatus. Magnetite is proposed to be formed by thermal decomposition of iron naphthenates.

  20. Steel corrosion in radioactive waste storage tanks

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.; Giordano, Celia M.; Saenz, E.; Weier, Dennis R.

    2004-01-01

    A collaborative study is being conducted by CNEA and USDOE (Department of Energy of the United States of America) to investigate the effects of tank waste chemistry on radioactive waste storage tank corrosion. Radioactive waste is stored in underground storage tanks that contain a combination of salts, consisting primarily of sodium nitrate, sodium nitrite and sodium hydroxide. The USDOE, Office of River Protection at the Hanford Site, has identified a need to conduct a laboratory study to better understand the effects of radioactive waste chemistry on the corrosion of waste storage tanks at the Hanford Site. The USDOE science need (RL-WT079-S Double-Shell Tanks Corrosion Chemistry) called for a multi year effort to identify waste chemistries and temperatures within the double-shell tank (DST) operating limits for corrosion control and operating temperature range that may not provide the expected corrosion protection and to evaluate future operations for the conditions outside the existing corrosion database. Assessment of corrosion damage using simulated (non-radioactive) waste is being made of the double-shell tank wall carbon steel alloy. Evaluation of the influence of exposure time, and electrolyte composition and/or concentration is being also conducted. (author) [es

  1. Recognition and Analysis of Corrosion Failure Mechanisms

    Directory of Open Access Journals (Sweden)

    Steven Suess

    2006-02-01

    Full Text Available Corrosion has a vast impact on the global and domestic economy, and currently incurs losses of nearly $300 billion annually to the U.S. economy alone. Because of the huge impact of corrosion, it is imperative to have a systematic approach to recognizing and mitigating corrosion problems as soon as possible after they become apparent. A proper failure analysis includes collection of pertinent background data and service history, followed by visual inspection, photographic documentation, material evaluation, data review and conclusion procurement. In analyzing corrosion failures, one must recognize the wide range of common corrosion mechanisms. The features of any corrosion failure give strong clues as to the most likely cause of the corrosion. This article details a proven approach to properly determining the root cause of a failure, and includes pictographic illustrations of the most common corrosion mechanisms, including general corrosion, pitting, galvanic corrosion, dealloying, crevice corrosion, microbiologically-influenced corrosion (MIC, corrosion fatigue, stress corrosion cracking (SCC, intergranular corrosion, fretting, erosion corrosion and hydrogen damage.

  2. Investigation of thermally sensitised stainless steels as analogues for spent AGR fuel cladding to test a corrosion inhibitor for intergranular stress corrosion cracking

    Science.gov (United States)

    Whillock, Guy O. H.; Hands, Brian J.; Majchrowski, Tom P.; Hambley, David I.

    2018-01-01

    A small proportion of irradiated Advanced Gas-cooled Reactor (AGR) fuel cladding can be susceptible to intergranular stress corrosion cracking (IGSCC) when stored in pond water containing low chloride concentrations, but corrosion is known to be prevented by an inhibitor at the storage temperatures that have applied so far. It may be necessary in the future to increase the storage temperature by up to ∼20 °C and to demonstrate the impact of higher temperatures for safety case purposes. Accordingly, corrosion testing is needed to establish the effect of temperature increases on the efficacy of the inhibitor. This paper presents the results of studies carried out on thermally sensitised 304 and 20Cr-25Ni-Nb stainless steels, investigating their grain boundary compositions and their IGSCC behaviour over a range of test temperatures (30-60 °C) and chloride concentrations (0.3-10 mg/L). Monitoring of crack initiation and propagation is presented along with preliminary results as to the effect of the corrosion inhibitor. 304 stainless steel aged for 72 h at 600 °C provided a close match to the known pond storage corrosion behaviour of spent AGR fuel cladding.

  3. Corrosion of 316 stainless steel in high temperature molten Li{sub 2}BeF{sub 4} (FLiBe) salt

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Guiqiu, E-mail: guiqiuzheng@gmail.com; Kelleher, Brian; Cao, Guoping; Anderson, Mark; Allen, Todd; Sridharan, Kumar

    2015-06-15

    In support of structural material development for the fluoride-salt-cooled high-temperature reactor (FHR), corrosion tests of 316 stainless steel were performed in the potential primary coolant, molten Li{sub 2}BeF{sub 4} (FLiBe) at 700 °C for an exposure duration up to 3000 h. Tests were performed in both 316 stainless steel and graphite capsules. Corrosion in both capsule materials occurred by the dissolution of chromium from the stainless steel into the salt which led to the depletion of chromium predominantly along the grain boundaries of the test samples. The samples tested in graphite capsules showed a factor of two greater depth of corrosion attack as measured in terms of chromium depletion, compared to those tested in 316 stainless steel capsules. The samples tested in graphite capsules showed the formation of Cr{sub 7}C{sub 3} particulate phases throughout the depth of the corrosion layer. Samples tested in both types of capsule materials showed the formation of MoSi{sub 2} phase due to increased activity of Mo and Si as a result of Cr depletion, and furthermore corrosion promoted the formation of a α-ferrite phase in the near-surface regions of the 316 stainless steel. Based on the corrosion tests, the corrosion attack depth in FLiBe salt was predicted as 17.1 μm/year and 31.2 μm/year for 316 stainless steel tested in 316 stainless steel and in graphite capsules respectively. It is in an acceptable range compared to the Hastelloy-N corrosion in the Molten Salt Reactor Experiment (MSRE) fuel salt.

  4. Corrosion and hydriding behaviour of some Zr 2.5 wt% Nb alloys in water, steam and various gases at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dalgaard, S. B.

    1962-05-15

    Fuel sheaths and pressure tubes in Canadian power reactors are at present made from Zircaloy-2. Mechanical properties of a suitably heat treated Zr 2.5 wt% Nb alloy are superior to those of Zircaloy-2, but any new alloy must have resistance to corrosion and hydriding by the coolant and by the gas that insulates the pressure tube from the cold moderator. Exposed to water at temperatures up to 325{sup o}C, the Zr 2.5 wt% Nb alloy has corrosion resistance acceptable for power reactors. Resistance to air and carbon dioxide is less favourable. Addition of tin, or iron and chromium, to the base alloy have little effect on the corrosion resistance, but the addition of copper reduces corrosion in water and steam to some extent and in air and carbon dioxide to a greater extent. Studies of the effect of heat treatment suggest that the amount of niobium in a solid-solution controls the rate of oxidation and hydriding and that concentration, size and distribution of second phase is of little importance. Initial results obtained in NRX indicate that a thermal flux of 3-7 x 10{sup 13} n/cm{sup 2}/sec has little or no effect on oxidation and hydriding in high temperature water. (author)

  5. Study on corrosion of metal materials in nitrate molten salts

    Science.gov (United States)

    Zhai, Wei; Yang, Bo; Li, Maodong; Li, Shiping; Xin, Mingliang; Zhang, Shuanghong; Huang, Guojia

    2017-01-01

    High temperature molten salts as a heat transfer heat storage medium has been more widely used in the field of concentrated solar thermal power generation. In the thermal heat storage system, metal material stability and performance at high temperatures are of one major limitation in increasing this operating temperature. In this paper, study on corrosion of 321H, 304, 316L, P91 metal materials in modified solar two molten salts. The corrosion kinetics of 304, 316L, 321H, P91 metal material in the modified solar two molten salts at 450°C, 500°C is also investigated. Under the same condition it was found that 304, 321H corroded at a rate of 40% less than P91. Spallation of corrosion products was observed on P91 steel, while no obvious observed on other kinds of stainless steel. Corrosion rates of 304, 321H, and 316L slowly increased with temperature. Oxidation mechanisms little varied with temperature. Corrosion products of metal materials observed at 450°C, 500°C were primarily Fe oxide and Fe, Cr oxide.

  6. On the problem of safe usage of 12MKh steel at elevated temperatures and high hydrogen pressures

    International Nuclear Information System (INIS)

    Archakov, Yu.I.; Teslya, B.M.

    1982-01-01

    The behaviour of the 12MKh steel in hydrogen at pressures of 4-100 MPa and temperatures of 450-600 deg C has been investigated to study the regularities of hydrogen corrosion process. The samples are held in hydrogen under all-round compression in autoclaves with subsequent determination of mechanical properties, carbon content and microstructure. Dependencies of time to begining of intensive embrittlement under given conditions are found. The empiric equation for the calculation of time to beginning of hydrogen corrosion is derived, the safe usage of the 12MKh steel at different temperatures and pressures are determined

  7. Liquid metal corrosion considerations in alloy development

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.

    1984-01-01

    Liquid metal corrosion can be an important consideration in developing alloys for fusion and fast breeder reactors and other applications. Because of the many different forms of liquid metal corrosion (dissolution, alloying, carbon transfer, etc.), alloy optimization based on corrosion resistance depends on a number of factors such as the application temperatures, the particular liquid metal, and the level and nature of impurities in the liquid and solid metals. The present paper reviews the various forms of corrosion by lithium, lead, and sodium and indicates how such corrosion reactions can influence the alloy development process

  8. Very-high-temperature gas reactor environmental impacts assessment

    International Nuclear Information System (INIS)

    Baumann, C.D.; Barton, C.J.; Compere, E.L.; Row, T.H.

    1977-08-01

    The operation of a Very High Temperature Reactor (VHTR), a slightly modified General Atomic type High Temperature Gas-Cooled Reactor (HTGR) with 1600 F primary coolant, as a source of process heat for the 1400 0 F steam-methanation reformer step in a hydrogen producing plant (via hydrogasification of coal liquids) was examined. It was found that: (a) from the viewpoint of product contamination by fission and activation products, an Intermediate Heat Exchanger (IHX) is probably not necessary; and (b) long term steam corrosion of the core support posts may require increasing their diameter (a relatively minor design adjustment). However, the hydrogen contaminant in the primary coolant which permeates the reformer may reduce steam corrosion but may produce other problems which have not as yet been resolved. An IHX in parallel with both the reformer and steam generator would solve these problems, but probably at greater cost than that of increasing the size of the core support posts. It is recommended that this corrosion problem be examined in more detail, especially by investigating the performance of current fossil fuel heated reformers in industry. Detailed safety analysis of the VHTR would be required to establish definitely whether the IHX can be eliminated. Water and hydrogen ingress into the reactor system are potential problems which can be alleviated by an IHX. These problems will require analysis, research and development within the program required for development of the VHTR

  9. Corrosion penetration monitoring of advanced ceramics in hot aqueous fluids

    Directory of Open Access Journals (Sweden)

    Klaus G. Nickel

    2004-03-01

    Full Text Available Advanced ceramics are considered as components in energy related systems, because they are known to be strong, wear and corrosion resistant in many environments, even at temperatures well exceeding 1000 °C. However, the presence of additives or impurities in important ceramics, for example those based on Silicon Nitride (Si3N4 or Al2O3 makes them vulnerable to the corrosion by hot aqueous fluids. The temperatures in this type of corrosion range from several tens of centigrade to hydrothermal conditions above 100 °C. The corrosion processes in such media depend on both pH and temperature and include often partial leaching of the ceramics, which cannot be monitored easily by classical gravimetric or electrochemical methods. Successful corrosion penetration depth monitoring by polarized reflected light optical microscopy (color changes, Micro Raman Spectroscopy (luminescence changes and SEM (porosity changes will be outlined. The corrosion process and its kinetics are monitored best by microanalysis of cross sections, Raman spectroscopy and eluate chemistry changes in addition to mass changes. Direct cross-calibrations between corrosion penetration and mechanical strength is only possible for severe corrosion. The methods outlined should be applicable to any ceramics corrosion process with partial leaching by fluids, melts or slags.

  10. Corrosion and indices of operating reliability of steam-water circuits of foreign NPP

    International Nuclear Information System (INIS)

    Martynova, O.I.

    1983-01-01

    Corrosion failures in circuits of foreign NPPs are considered. According to American statistics there are more corrosion failures in two-circuit NPPs than in NPPs with one circuit. Steam generators mostly suffer from ''corrosion denting''. Lately pitting corrosion becomes a potentially serious problem. Steam generator vertical tubes are maiply subjected to this corrosion type. Attention is drawn to intercrystalline corrosion. The causes of corrosion are described. The problem of optimization of structural materials is discussed to reduce corrosion failures as well as other methods of decreasing corrosion failures. Organization of nondestructive testing, increased requirements to water and steam purity are of great importance

  11. Evaluation of Electrochemical Behavior of Nopal Extract (Opuntia Ficus- Indica as Possible Corrosion Inhibitor

    Directory of Open Access Journals (Sweden)

    Araceli Mandujano-Ruíz

    2017-11-01

    Full Text Available Corrosion is one of the main problems of degradation in components, tooling, equipment and even in structural applications, examples of this are the carbon steels. In the present work, the capacity of corrosion inhibition of a biodegradable organic extract from the Nopal plant (Opuntia ficus-indica, for the protection of carbon steel type AISI 1018 was studied adding 50% v/v of the Nopal extract (EN in a solution of H2SO4 (0.6 mol.l-1. Polarization Resistance (LPR and Electrochemical Impedance Spectroscopy (EIS techniques were used for the electrochemical evaluation at room temperature for 24 h in order to obtain corrosion rates (Vcorr and inhibition efficiency (IE. Metallographic examination was also carried out to register the surface damage by corrosion. The results showed a reduction of the Vcorr with a maximum IE value of about 84% by adding the organic- liquid extracted from Nopal.

  12. Effect of heat treatment on the grooving corrosion resistance of ERW pipes

    International Nuclear Information System (INIS)

    Lee, Jong Kwon; Lee, Jae Young; Lim, Soo Hyun; Park, Ji Hwan; Seo, Bo Min; Kim, Seon Hwa

    2002-01-01

    The v-sharp grooving corrosion of ERW(electrical resistance welding) steel pipes limited their wide application in the industry in spite of their high productivity and efficiency. The grooving corrosion is caused mainly by the different microstructures between the matrix and weld that is formed during the rapid heating and cooling cycle in welding. By this localized corrosion reaction of pipes, it evolves economic problems such as the early damage of industrial facilities and pipe lines of apartment, and water pollution. Even though the diminishing of sulfur content is most effective to decrease the susceptibility of grooving corrosion, it requires costly process. In this study, improvement of grooving corrosion resistance was pursuited by post weld heat treatment in the temperature range between 650 .deg. C and 950 .deg. C. Also, the effect of heat input in the welding was investigated. By employing chromnoamperometry and potentiodynamic experiment, the corrosion rate and grooving corrosion index(α) were obtained. It was found that heat treatment could improve the grooving corrosion resistance. Among them, the heat treated at 900 .deg. C and 950 .deg. C had excellent grooving corrosion resistance. The index of heat treated specimen at 900 .deg. C and 950 .deg. C were 1.0, 1.2, respectively, which are almost immune to the grooving corrosion. Potential difference after the heat treatment, between base and weld metal was decreased considerably. While the as-received one measured 61∼71 mV, that of the 900 .deg. C heat treated steel pipe measured only 10mV. The results were explained and discussed

  13. Dictionary corrosion and corrosion control

    International Nuclear Information System (INIS)

    1985-01-01

    This dictionary has 13000 entries in both languages. Keywords and extensive accompanying information simplify the choice of word for the user. The following topics are covered: Theoretical principles of corrosion; Corrosion of the metals and alloys most frequently used in engineering. Types of corrosion - (chemical-, electro-chemical, biological corrosion); forms of corrosion (superficial, pitting, selective, intercrystalline and stress corrosion; vibrational corrosion cracking); erosion and cavitation. Methods of corrosion control (material selection, temporary corrosion protection media, paint and plastics coatings, electro-chemical coatings, corrosion prevention by treatment of the corrosive media); Corrosion testing methods. (orig./HP) [de

  14. High temperature corrosion of thermally sprayed NiCr- and amorphous Fe-based coatings covered with a KCl-K{sub 2}SO{sub 4} salt

    Energy Technology Data Exchange (ETDEWEB)

    Varis, T.; Suhonen, T.; Tuurna, S.; Ruusuvuori, K.; Holmstroem, S.; Salonen, J. [VTT, Espoo (Finland); Bankiewicz, D.; Yrjas, P. [Aabo Akademi Univ., Turku (Finland)

    2010-07-01

    New process conditions due to the requirement of higher efficiency together with the use of high-chlorine and alkali containing fuels such as biomass and waste fuels for heat and electricity production will challenge the resistance and life of tube materials. In conventional materials the addition of alloying elements to increase the corrosion resistance in aggressive combustion conditions increases costs relatively rapidly. Thermally sprayed coating offer promising, effective, flexible and cost efficient solutions to fulfill the material needs for the future. Some heat exchanger design alteractions before global commercialization have to be overcome, though. High temperature corrosion in combustion plants can occur by a variety of mechanisms including passive scale degradation with subsequent rapid scaling, loss of adhesion and scale detachment, attack by melted or partly melted deposits via fluxing reactions and intergranular-/interlamellar corrosion. A generally accepted model of the ''active oxidation'' attributes the responsibility for inducing corrosion to chlorine. The active oxidation mechanism plays a key role in the thermally sprayed coatings due to their unique lamellar structure. In this study, the corrosion behaviour of NiCr (HVOF and Wire Arc), amorphous Fe-based, and Fe13Cr (Wire Arc) thermally sprayed coatings, were tested in the laboratory under simplified biomass combustion conditions. The tests were carried out by using a KCl-K{sub 2}SO{sub 4} salt mixture as a synthetic biomass ash, which was placed on the materials and then heat treated for one week (168h) at two different temperatures (550{sup 0}C and 600 C) and in two different gas atmospheres (air and air+30%H{sub 2}O). After the exposures, the metallographic cross sections of the coatings were studied with SEM/EDX analyzer. The results showed that the coatings behaved relatively well at the lower test temperature while critical corrosion through the lamella boundaries

  15. Alloy SCR-3 resistant to stress corrosion cracking

    International Nuclear Information System (INIS)

    Kowaka, Masamichi; Fujikawa, Hisao; Kobayashi, Taiki

    1977-01-01

    Austenitic stainless steel is used widely because the corrosion resistance, workability and weldability are excellent, but the main fault is the occurrence of stress corrosion cracking in the environment containing chlorides. Inconel 600, most resistant to stress corrosion cracking, is not necessarily safe under some severe condition. In the heat-affected zone of SUS 304 tubes for BWRs, the cases of stress corrosion cracking have occurred. The conventional testing method of stress corrosion cracking using boiling magnesium chloride solution has been problematical because it is widely different from actual environment. The effects of alloying elements on stress corrosion cracking are remarkably different according to the environment. These effects were investigated systematically in high temperature, high pressure water, and as the result, Alloy SCR-3 with excellent stress corrosion cracking resistance was found. The physical constants and the mechanical properties of the SCR-3 are shown. The states of stress corrosion cracking in high temperature, high pressure water containing chlorides and pure water, polythionic acid, sodium phosphate solution and caustic soda of the SCR-3, SUS 304, Inconel 600 and Incoloy 800 are compared and reported. (Kako, I.)

  16. An Influence of Ageing on the Structure, Corrosion Resistance and Hardness of High Aluminum ZnAl40Cu3 Alloy

    Directory of Open Access Journals (Sweden)

    Michalik R.

    2016-03-01

    Full Text Available Zn-Al-Cu alloys are used primarily because of their tribological properties as an alternative material for bronze, cast iron and aluminum alloy bearings and as a construction material. Particularly interesting are high aluminum zinc alloys. Monoeutectic zinc and aluminum alloys are characterized by the highest hardness, tensile strength and wear resistance of all of the zinc alloys. A significant problem with the use of the Zn-Al-Cu alloys is their insufficient resistance to electrochemical corrosion. Properties of Zn-Al-Cu alloys can be improved by heat treatment. The purpose of examination was to determine the effect of heat treatment (aging at various temperatures on the microstructure and corrosion resistance of the ZnAl40Cu3 alloy. The scope of the examination included: structural examinations, determination of hardness using Brinell’s method and corrosion resistance examinations. Ageing at higher temperatures causes a creation of areas where is an eutectoid mixture. The study showed that ageing causes a decrease in hardness of ZnAl40Cu3 alloy. This decrease is even greater, when the temperature of ageing is lower. The studies have shown a significant influence of ageing on the corrosion resistance of the alloy ZnAl40Cu3. Maximum corrosion resistance were characterized by the sample after ageing at higher temperatures.

  17. Corrosion Cost and Corrosion Map of Korea - Based on the Data from 2005 to 2010

    International Nuclear Information System (INIS)

    Kim, Y. S.; Lim, H. K.; Kim, J. J.; Hwang, W. S.; Park, Y. S.

    2011-01-01

    Corrosion of metallic materials occurs by the reaction with corrosive environment such as atmosphere, marine, soil, urban, high temperature etc. In general, reduction of thickness and cracking and degradation are resulted from corrosion. Corrosion in all industrial facilities and infrastructure causes large economic losses as well as a large number of accidents. Economic loss by corrosion has been reported to be nearly 1-6% of GNP or GDP. In order to reduce corrosion damage of industrial facilities, corrosion map as well as a systematic investigation of the loss of corrosion in each industrial sector is needed. The Corrosion Science Society of Korea in collaboration with 15 universities and institutes has started to survey on the cost of corrosion and corrosion map of Korea since 2005. This work presents the results of the survey on cost of corrosion by Uhlig, Hoar, and input-output methods, and the evaluation of atmospheric corrosion rate of carbon steel, weathering steel, galvanized steel, copper, and aluminum in Korea. The total corrosion cost was estimated in terms of the percentage of the GDP of industry sectors and the total GDP of Korea. According to the result of Input/output method, corrosion cost of Korea was calculated as 2.9% to GDP (2005). Time of wetness was shown to be categories 3 to 4 in all exposure areas. A definite seasonal difference was observed in Korea. In summer and fall, time of wetness was higher than in other seasons. Because of short exposure period (12 months), significant corrosion trends depending upon materials and exposure corrosion environments were not revealed even though increased mass loss and decreased corrosion rate by exposure time

  18. Effect of Chromium on Corrosion Behavior of P110 Steels in CO2-H2S Environment with High Pressure and High Temperature

    Directory of Open Access Journals (Sweden)

    Jianbo Sun

    2016-03-01

    Full Text Available The novel Cr-containing low alloy steels have exhibited good corrosion resistance in CO2 environment, mainly owing to the formation of Cr-enriched corrosion film. In order to evaluate whether it is applicable to the CO2 and H2S coexistence conditions, the corrosion behavior of low-chromium steels in CO2-H2S environment with high pressure and high temperature was investigated using weight loss measurement and surface characterization. The results showed that P110 steel suffered localized corrosion and both 3Cr-P110 and 5Cr-P110 steels exhibited general corrosion. However, the corrosion rate of 5Cr-P110 was the highest among them. The corrosion process of the steels was simultaneously governed by CO2 and H2S. The outer scales on the three steels mainly consisted of FeS1−x crystals, whereas the inner scales on Cr-containing steels comprised of amorphous FeS1−x, Cr(OH3 and FeCO3, in contrast with the amorphous FeS1−x and FeCO3 mixture film of P110 steel. The more chromium the steel contains, the more chromium compounds the corrosion products contain. The addition of chromium in steels increases the uniformity of the Cr-enriched corrosion scales, eliminates the localized corrosion, but cannot decrease the general corrosion rates. The formation of FeS1−x may interfere with Cr-enriched corrosion scales and lowering the corrosion performance of 3Cr-P110 and 5Cr-P110 steels.

  19. Effect of Chromium on Corrosion Behavior of P110 Steels in CO2-H2S Environment with High Pressure and High Temperature

    Science.gov (United States)

    Sun, Jianbo; Sun, Chong; Lin, Xueqiang; Cheng, Xiangkun; Liu, Huifeng

    2016-01-01

    The novel Cr-containing low alloy steels have exhibited good corrosion resistance in CO2 environment, mainly owing to the formation of Cr-enriched corrosion film. In order to evaluate whether it is applicable to the CO2 and H2S coexistence conditions, the corrosion behavior of low-chromium steels in CO2-H2S environment with high pressure and high temperature was investigated using weight loss measurement and surface characterization. The results showed that P110 steel suffered localized corrosion and both 3Cr-P110 and 5Cr-P110 steels exhibited general corrosion. However, the corrosion rate of 5Cr-P110 was the highest among them. The corrosion process of the steels was simultaneously governed by CO2 and H2S. The outer scales on the three steels mainly consisted of FeS1−x crystals, whereas the inner scales on Cr-containing steels comprised of amorphous FeS1−x, Cr(OH)3 and FeCO3, in contrast with the amorphous FeS1−x and FeCO3 mixture film of P110 steel. The more chromium the steel contains, the more chromium compounds the corrosion products contain. The addition of chromium in steels increases the uniformity of the Cr-enriched corrosion scales, eliminates the localized corrosion, but cannot decrease the general corrosion rates. The formation of FeS1−x may interfere with Cr-enriched corrosion scales and lowering the corrosion performance of 3Cr-P110 and 5Cr-P110 steels. PMID:28773328

  20. Zircaloy-4 corrosion in PWR's

    International Nuclear Information System (INIS)

    Fyfitch, S.; Smalley, W.R.; Roberts, E.

    1985-01-01

    Zircaloy-4 waterside corrosion has been studied extensively in the nuclear industry for a number of years. Following the early crud-related corrosion failures in the Saxton test reactor, Westinghouse undertook numerous programs to minimize crud deposition on fuel rods in power reactors through primary coolant chemistry control. Modern plants today are operating with improved coolant chemistry guidelines, and crud deposition levels are very low in proportion to earlier experience. Zircaloy-4 corrosion under a variety of coolant chemistry, heat flux and exposure conditions has been studied extensively. Experience to date, even in relatively high coolant temperature plants, has indicated that -for both fuel cladding and structural components- Zircaloy-4 waterside corrosion performance has been excellent. Recognizing future industry trends, however, which will result in Zircaloy-4 being subjected to ever increasing corrosion duties, Westinghouse will continue accumulating Zircaloy-4 corrosion experience in large power plants. 13 refs.

  1. Atmospheric corrosion of metals in industrial city environment.

    Science.gov (United States)

    Kusmierek, Elzbieta; Chrzescijanska, Ewa

    2015-06-01

    Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the samples without pretreatment. The corrosion products determined with the SEM/EDS method prove that the most corrosive pollutants present in the industrial city air are SO2, CO2, chlorides and dust.

  2. Effects of annealing on tensile property and corrosion behavior of Ti-Al-Zr alloy

    International Nuclear Information System (INIS)

    Kim, Tae-Kyu; Choi, Byung-Seon; Jeong, Yong-Hwan; Lee, Doo-Jeong; Chang, Moon-Hee

    2002-01-01

    The effects of annealing on the tensile property and corrosion behavior of Ti-Al-Zr alloy were evaluated. The annealing in the temperature range from 500 to 800 deg. C for 1 h induced the growth of the grain and the precipitate sizes. The results of tensile tests at room temperature showed that the strengths and the ductility were almost independent of the annealing temperature. However, the results of corrosion test in an ammonia aqueous solution of pH 9.98 at 360 deg. C showed that the corrosion resistance depended on the annealing temperature, and the corrosion rate was accelerated with increasing annealing temperature. Hydrogen contents absorbed during the corrosion test of 220 days also increased with the annealing temperature. It could be attributed to the growth of Fe-rich precipitates by annealing. It is thus suggested that the lower annealing temperatures provide the better corrosion properties without degrading the tensile properties

  3. Functionalizable Sol-Gel Silica Coatings for Corrosion Mitigation

    Science.gov (United States)

    Gąsiorek, Jolanta; Babiarczuk, Bartosz; Kaleta, Jerzy; Jones, Walis; Krzak, Justyna

    2018-01-01

    Corrosion is constantly a major problem of the world economy in the field of metal products, metal processing and other areas that utilise metals. Previously used compounds utilizing hexavalent chromium were amongst the most effective materials for corrosion protection but regulations have been recently introduced that forbid their use. Consequently, there is a huge drive by engineers, technologists and scientists from different disciplines focused on searching a new, more effective and environmentally-friendly means of corrosion protection. One novel group of materials with the potential to solve metal protection problems are sol-gel thin films, which are increasingly interesting as mitigation corrosion barriers. These environmentally-friendly and easy-to-obtain coatings have the promise to be an effective alternative to hexavalent chromium compounds using for anti-corrosion industrial coatings. In this review the authors present a range of different solutions for slow down the corrosion processes of metallic substrates by using the oxides and doped oxides obtained by the sol-gel method. Examples of techniques used to the sol-gel coating examinations, in terms of anti-corrosion protection, are also presented. PMID:29373540

  4. Functionalizable Sol-Gel Silica Coatings for Corrosion Mitigation.

    Science.gov (United States)

    Gąsiorek, Jolanta; Szczurek, Anna; Babiarczuk, Bartosz; Kaleta, Jerzy; Jones, Walis; Krzak, Justyna

    2018-01-26

    Corrosion is constantly a major problem of the world economy in the field of metal products, metal processing and other areas that utilise metals. Previously used compounds utilizing hexavalent chromium were amongst the most effective materials for corrosion protection but regulations have been recently introduced that forbid their use. Consequently, there is a huge drive by engineers, technologists and scientists from different disciplines focused on searching a new, more effective and environmentally-friendly means of corrosion protection. One novel group of materials with the potential to solve metal protection problems are sol-gel thin films, which are increasingly interesting as mitigation corrosion barriers. These environmentally-friendly and easy-to-obtain coatings have the promise to be an effective alternative to hexavalent chromium compounds using for anti-corrosion industrial coatings. In this review the authors present a range of different solutions for slow down the corrosion processes of metallic substrates by using the oxides and doped oxides obtained by the sol-gel method. Examples of techniques used to the sol-gel coating examinations, in terms of anti-corrosion protection, are also presented.

  5. Effect of flow on corrosion in catenary risers and its corrosion inhibitor performance

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Pedro Altoe; Magalhaes, Alvaro Augusto Oliveira; Silva, Jussara de Mello [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Kang, Cheolho; More, Parimal P. [Det Norske Veritas (DNV), Oslo (Norway)

    2009-07-01

    In oil and gas production, multiphase flow is often encountered and a range of different flow patterns can be experienced in pipelines. The flow regime transition and flow characteristics can be changed with the change of pipeline topography, which affects the corrosion and the performance of corrosion inhibitor in these multiphase pipelines. This paper outlines on the effect of inclination on the flow characteristics and their subsequent effect on corrosion rates. Also, this paper presents on the performance of three candidate corrosion inhibitors under severe slugging conditions at low water cut. For the simulation of offshore flow lines and risers, the experiments were carried out in a 44 m long, 10 cm diameter, three different pipeline inclinations of 0, 3 and 45 degrees. Light condensate oil with a viscosity of 2.5 cP at room temperature was used and water cut was 20%. The results indicated that the baseline corrosion rate in 45 degrees showed higher than other inclinations. Each corrosion inhibitor showed a different inhibitor performance. (author)

  6. Hot corrosion behavior of Ni based Inconel 617 and Inconel 738 superalloys

    Energy Technology Data Exchange (ETDEWEB)

    El-Awadi, G.A., E-mail: gaberelawdi@yahoo.com [Atomic Energy Authority, NRC, Cyclotron Project, Abo-zabal, 13759 Cairo (Egypt); Abdel-Samad, S., E-mail: salem_abdelsamad@yahoo.com [Atomic Energy Authority, NRC, Cyclotron Project, Abo-zabal, 13759 Cairo (Egypt); Elshazly, Ezzat S. [Atomic Energy Authority, NRC, Metallurgy Dept., Abo-zabal, 13759 Cairo (Egypt)

    2016-08-15

    Highlights: • Supperalloy good resistance to high temperature oxidation. • Ni-base alloy IN738 and Inconel 617 good resistance to hot corrosion. • Corrosion resistance of supperalloys depending on environment of abrasive ions such as (NaCl or NaSO{sub 4}). • Hot corrosion resistance depend on what the oxides phases where formed. - Abstract: Superalloys are extensively used at high temperature applications due to their good oxidation and corrosion resistance properties in addition to their high stability were made at high temperature. Experimental measurements of hot corrosion at high temperature of Inconel 617 and Inconel 738 superalloys. The experiments were carried out at temperatures 700 °C, 800 °C and 900 °C for different exposure times to up to 100 h. The corrosive media was NaCl and Na{sub 2}SO{sub 4} sprayed on the specimens. Seven different specimens were used at each temperature. The corrosion process is endothermic and the spontaneity increased by increasing temperature. The activation energy was found to be Ea = 23.54 and E{sub a} = 25.18 KJ/mol for Inconel 738 and Inconel 617 respectively. X-ray diffraction technique (XRD) was used to analyze the formed scale. The morphology of the specimen and scale were examined by scanning electron microscopy (SEM). The results show that the major corrosion products formed were NiCr{sub 2}O{sub 4}, and Co Cr{sub 2}O{sub 4} spinles, in addition to Cr{sub 2}O{sub 3}.

  7. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  8. Time-temperature influence on the corrosion resistance of Ni-Cr-Nb superalloys in contact with Na2SO4-V2O5 molten mixtures

    International Nuclear Information System (INIS)

    Otero, E.; Pardo, A.; Hernaez, J.; Hierro, P.

    1990-01-01

    Corrosion rate data obtained by the polarization resistance method in nickel-base superalloys in contact with Na 2 SO 4 -V 2 O 5 molten mixtures are presented. The instrumental technique is also described. Time-temperature influence on the corrosion kinetics in the described conditions is discussed (Author)

  9. Galvanic corrosion between carbon steel 1018 and Alloy 600 in crevice with boric acid solution

    International Nuclear Information System (INIS)

    Kim, Dong Jin; Kim, Hong Pyo; Kim, Joung Soo; Machonald, Digby D.

    2005-01-01

    This work dealt with the evaluation of galvanic corrosion rate in a corrosion cell having annular gap of 0.5 mm between carbon steel 1018 and alloy 600 as a function of temperature and boron concentration. Temperature and boron concentration were ranged from 110 to 300 .deg. C and 2000∼10000 ppm, respectively. After the operating temperature of the corrosion cell where the electrolyte was injected was attained at setting temperature, galvanic coupling was made and at the same time galvanic current was measured. The galvanic corrosion rate decreased with time, which was described by corrosion product such as protective film as well as boric acid deposit formed on the carbon steel with time. From the galvanic current obtained as a function of temperature and boron concentration, it was found that the galvanic corrosion rate decreased with temperature while the corrosion rate increased with boron concentration. The experimental results obtained from galvanic corrosion measurement were explained by adhesive property of corrosion product such as protective film, boric acid deposit formed on the carbon steel wall and dehydration of boric acid to be slightly soluble boric acid phase. Moreover the galvanic corrosion rate calculated using initial galvanic coupling current instead of steady state coupling current was remarked, which could give us relatively closer galvanic corrosion rate to real pressurized water reactor

  10. Superheater fireside corrosion mechanisms in MSWI plants: Lab-scale study and on-site results

    Energy Technology Data Exchange (ETDEWEB)

    Brossard, J.M.; Chaucherie, X.; Nicol, F. [Veolia Environnement R and D, Zone Portuaire de Limay, 291 Avenue Dreyfous Ducas, Limay 78520 (France); Diop, I. [Veolia Environnement R and D, Zone Portuaire de Limay, 291 Avenue Dreyfous Ducas, Limay 78520 (France); Institut Jean Lamour, departement Chimie et physique des solides et des surfaces, UMR 7198 CNRS - Universite Henri Poincare Nancy 1, Vandoeuvre-Les-Nancy (France); Rapin, C.; Vilasi, M. [Institut Jean Lamour, departement Chimie et physique des solides et des surfaces, UMR 7198 CNRS - Universite Henri Poincare Nancy 1, Vandoeuvre-Les-Nancy (France)

    2011-06-15

    Combustion of municipal waste generates highly corrosive gases (HCl, SO{sub 2}, NaCl, KCl, and heavy metals chlorides) and ashes containing alkaline chlorides and sulfates. Currently, corrosion phenomena are particularly observed on superheater's tubes. Corrosion rates depend mainly on installation design, operating conditions i.e., gas and steam temperature and velocity of the flue gas containing ashes. This paper presents the results obtained using an innovative laboratory-scale corrosion unit, which simulates MSWI (Municipal Solid Waste Incineration) boilers conditions characterized by a temperature gradient at the metal tube in the presence of corrosive gases and ashes. The presented corrosion tests were realized on carbon steel at fixed metal temperature (400 C). The influence of the flue gas temperature, synthetic ashes composition, and flue gas flow pattern were investigated. After corrosion test, cross sections of tube samples were characterized to evaluate thickness loss and estimate corrosion rate while the elements present in corrosion layers were analyzed. Corrosion tests were carried out twice in order to validate the accuracy and reproducibility of results. First results highlight the key role of molten phase related to the ash composition and flue gas temperature as well as the deposit morphology, related to the flue gas flow pattern, on the mechanisms and corrosion rates. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. The effect of temperature and concentration on the corrosion inhibition mechanism of an amphiphilic amido-amine in CO2 saturated solution

    OpenAIRE

    Desimone, Paula Mariela; Gordillo, Gabriel Jorge; Simison, Silvia Noemi

    2017-01-01

    The corrosion inhibition mechanism of the N-[2-[(2-aminoethyl)amino]ethyl]-9-octadecenamide on mild steel surface in CO2-saturated 5% NaCl solution has been studied. The inhibition efficiency decreases with increasing temperature. Adsorption of the inhibitor studied is found to follow the Frumkin adsorption isotherm. EIS results show that the mechanism of its corrosion inhibition at concentrations higher than critical micelle concentration is by forming a protective porous bi-layer. The a...

  12. Corrosion of Al-7075 by uranium hexafluoride

    International Nuclear Information System (INIS)

    1989-01-01

    The results of the Al-7075 corrosion by uranium hexafluoride are presented in this work. The kinetic study shows that corrosion process occurs by two temperature dependent mechanism and that the alloy can be safely used up to 140 0 C. The corrosion film is formed by uranium oxifluoride with variable composition in depth. Two alternative corrosion models are proposed in order to explain the experimental results, as well as the tests taht will be carried out to confirm one of them [pt

  13. General Corrosion and Localized Corrosion of Waste Package Outer Barrier

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J.C.; McCright, R.D.

    2000-01-28

    Alloy 22 is an extremely Corrosion Resistant Material, with a very stable passive film. Based upon exposures in the LTCTF, the GC rates of Alloy 22 are typically below the level of detection, with four outliers having reported rates up to 0.75 #mu#m per year. In any event, over the 10,000 year life of the repository, GC of the Alloy 22 (assumed to be 2 cm thick) should not be life limiting. Because measured corrosion potentials are far below threshold potentials, localized breakdown of the passive film is unlikely under plausible conditions, even in SSW at 120 deg C. The pH in ambient-temperature crevices formed from Alloy 22 have been determined experimentally, with only modest lowering of the crevice pH observed under plausible conditions. Extreme lowering of the crevice pH was only observed under situations where the applied potential at the crevice mouth was sufficient to result in catastrophic breakdown of the passive film above the threshold potential in non-buffered conditions not characteristic of the Yucca Mountain environment. In cases where naturally ocurring buffers are present in the crevice solution, little or no lowering of the pH was observed, even with significant applied potential. With exposures of twelve months, no evidence of crevice corrosion has been observed in SDW, SCW and SAW at temperatures up to 90 deg C. An abstracted model has been presented, with parameters determined experimentally, that should enable performance assessment to account for the general and localized corrosion of this material. A feature of this model is the use of the materials specification to limit the range of corrosion and threshold potentials, thereby making sure that substandard materials prone to localized attack are avoided. Model validation will be covered in part by a companion SMR on abstraction of this model.

  14. Atmospheric corrosion of metals in industrial city environment

    Directory of Open Access Journals (Sweden)

    Elzbieta Kusmierek

    2015-06-01

    Full Text Available Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the samples without pretreatment. The corrosion products determined with the SEM/EDS method prove that the most corrosive pollutants present in the industrial city air are SO2, CO2, chlorides and dust.

  15. Development of Self-Powered Wireless-Ready High Temperature Electrochemical Sensors for In-Situ Corrosion Monitoring for Boiler Tubes in Next Generation Coal-based Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingbo [West Virginia Univ., Morgantown, WV (United States)

    2015-06-30

    The key innovation of this project is the synergy of the high temperature sensor technology based on the science of electrochemical measurement and state-of-the-art wireless communication technology. A novel self-powered wireless high temperature electrochemical sensor system has been developed for coal-fired boilers used for power generation. An initial prototype of the in-situ sensor demonstrated the capability of the wireless communication system in the laboratory and in a pilot plant (Industrial USC Boiler Setting) environment to acquire electrochemical potential and current signals during the corrosion process. Uniform and localized under-coal ash deposit corrosion behavior of Inconel 740 superalloy has been studied at different simulated coal ash hot corrosion environments using the developed sensor. Two typical potential noise patterns were found to correlate with the oxidation and sulfidation stages in the hot coal ash corrosion process. Two characteristic current noise patterns indicate the extent of the corrosion. There was a good correlation between the responses of electrochemical test data and the results from corroded surface analysis. Wireless electrochemical potential and current noise signals from a simulated coal ash hot corrosion process were concurrently transmitted and recorded. The results from the performance evaluation of the sensor confirm a high accuracy in the thermodynamic and kinetic response represented by the electrochemical noise and impedance test data.

  16. Modelling of zirconium alloys corrosion in LWRs

    International Nuclear Information System (INIS)

    Kritskij, V.G.; Berezina, I.G.; Kritskij, A.V.; Stjagkin, P.S.

    1999-01-01

    Chemical parameters, that exerted effect on Zr+1%Nb alloy corrosion and deserved consideration during reactor operation, were defined and a model was developed to describe the influence of physical and chemical parameters on zirconium alloys corrosion in nuclear power plants. The model is based on the correlation between the zirconium oxide solubility in high-temperature water under the influence of the chemical parameters and the measured values of fuel cladding corrosion under LWR conditions. The intensity of fuel cladding corrosion in the primary circuits depends on the coolant water quality, growth of iron oxide deposits and vaporization portion. Mathematically, the oxidation rate can be expressed as a sum of heat and radiation components. The temperature dependence on the oxidation rate can be described by the Arrenius equation. The radiation component of Zr uniform corrosion equation is a function of several factors such as neutron fluency, the temperature the metallurgical composition and et. We assume that the main factor is the changing of water chemistry and the H 2 O 2 concentration play the determinative role. Probably, the influence of H 2 O 2 is based on the formation of unstable compound ZrO 3 ·nH 2 O and Zr(OH) 4 with high solubility. The validity of the used formulae was confirmed by corrosion measurements on WWER and RBMK fuel cladding. The model can be applied for calculating the reliability of nuclear fuel operation. (author)

  17. EFFECT OF INTERMETALLIC PHASES ON CORROSION BEHAVIOR AND MECHANICAL PROPERTIES OF DUPLEX STAINLESS STEEL AND SUPER-DUPLEX STAINLESS STEEL

    Directory of Open Access Journals (Sweden)

    Prabhu Paulraj

    2015-08-01

    Full Text Available Duplex Stainless Steels (DSS and Super Duplex Stainless Steel (SDSS have excellent integration of mechanical and corrosion properties. However, the formation of intermetallic phases is a major problem in their usage. The mechanical and corrosion properties are deteriorated due to the presence of intermetallic phases. These phases are induced during welding, prolonged exposure to high temperatures, and improper heat treatments. The main emphasis of this review article is on intermetallic phases and their effects on corrosion and mechanical properties. First the effect of various alloying elements on DSS and SDSS has been discussed followed by formation of various intermetallic phases. The intermetallic phases affect impact toughness and corrosion resistance significantly. Their deleterious effect on weldments has also been reviewed.

  18. High temperature corrosion behavior of different grain size specimens of 2.25 Cr-1 Mo steel in SO2+O2 environment

    International Nuclear Information System (INIS)

    Ghosh, D.; Mitra, S.K.

    2011-01-01

    The investigation is primarily aimed at the high temperature corrosion behavior of different grain sizes of 2.25 Cr-1 Mo steel at SO 2 +O 2 (mixed oxidation and sulfidation). The various grain sizes (18 μm,26 μm, 48 μm, and 72 μm) are obtained by different annealing treatment. Isothermal corrosion studies are carried out in different grain size specimens at 973K for 8 hours. The corrosion growth rate and the reaction kinetics are studied by weight gain method. The external scales of the post corroded specimen are studied in Scanning Electron Microscope (SEM) to examine the corrosion products morphology on the scale. X-ray mapping analysis of the different elements (Fe, O, Cr and S) is carried out by Energy Dispersive Spectroscopy (EDS) attached with SEM. The X-ray Diffraction Analysis (XRD) is also carried out to identify the corrosion products in the external scale. Finally, it is concluded that that the corrosion rate of 2.25 Cr-1 Mo steel strongly depend on grain sizes of the specimens. The corrosion rate increases with the decreases of grain size. The finer grain (18 μm) show higher corrosion rate than the coarse grains (72 μm). The weight gain kinetics follows the parabolic growth rate which further indicates that the corrosion process is diffusion controlled. The scale analysis shows the thicker scale and extensive scale cracking and spallations in case of finer grain size specimen (18 μm), whereas the coarse grain specimen (72 μm) shows compact and adherent layer. The XRD analysis shows that the corrosion products consist of mixtures of iron oxides( Fe 3 O 4 and Fe 2 O 3 ) and iron sulfides (FeS). The details mechanism of the corrosion is discussed to explain the difference in corrosion rate for different grain sizes. (author)

  19. The Investigation of the Corrosion Resistance of the Tension Clamps Skl14

    Directory of Open Access Journals (Sweden)

    Marek Pětioký

    2015-05-01

    Full Text Available At the level crossings it is possible to find the problems with the corrosion of the parts of the fastening system. These problems are especially at the rubber level crossings and in the tunnels. As a part of the thesis the problem of the corrosion of the tension clamp Skl14 of the producer Vossloh at the rubber level crossings is examined. For the purposes of the comparison the tension clamps without the corrosion protection and the tension clamps with the corrosion protection KTL were examined. As a first step the corrosion features of the tension clamps Skl14 were solved. The examination was divided into two parts. First part it was the examination according to ČSN EN ISO 9227. The samples of the tension clamps were putted into the corrosion chamber. After 1728 h the results of the corrosion impacts were not satisfied. It was decided for the second step of the examination. It was the immersion in an electrolyte solution. As a result of the paper the corrosion features of the tension clamps without the corrosion protection and with the corrosion protection are compared.

  20. A STUDY OF CORROSION AND STRESS CORROSION CRACKING OF CARBON STEEL NUCLEAR WASTE STORAGE TANKS

    International Nuclear Information System (INIS)

    BOOMER, K.D.

    2007-01-01

    The Hanford reservation Tank Farms in Washington State has 177 underground storage tanks that contain approximately 50 million gallons of liquid legacy radioactive waste from cold war plutonium production. These tanks will continue to store waste until it is treated and disposed. These nuclear wastes were converted to highly alkaline pH wastes to protect the carbon steel storage tanks from corrosion. However, the carbon steel is still susceptible to localized corrosion and stress corrosion cracking. The waste chemistry varies from tank to tank, and contains various combinations of hydroxide, nitrate, nitrite, chloride, carbonate, aluminate and other species. The effect of each of these species and any synergistic effects on localized corrosion and stress corrosion cracking of carbon steel have been investigated with electrochemical polarization, slow strain rate, and crack growth rate testing. The effect of solution chemistry, pH, temperature and applied potential are all considered and their role in the corrosion behavior will be discussed

  1. The anaerobic corrosion of carbon steel in concrete

    International Nuclear Information System (INIS)

    Naish, C.C.; Balkwill, P.H.; O'Brien, T.M.; Taylor, K.J.; Marsh, G.P.

    1990-11-01

    The report describes the work of a two year programme investigating the anaerobic corrosion of carbon steel embedded in a range of candidate repository cements and concretes at laboratory temperatures. The factors investigated in the study were the rate of the anaerobic corrosion reaction, the effect of hydrogen overpressure on the reaction rate and the form of the corrosion product. Both electrochemical and sample weight loss corrosion rate measurements were used. The cements and concretes used were prepared both with and without small additions of chloride (2% by weight of mix water). The results indicate that the corrosion rate is low, < 1 μm/year, the effect of hydrogen overpressure is not significant over the range of pressures investigated, 1-100 atmospheres, and that the corrosion product is dependent on the cement used to cast the samples. Magnetite was identified in the case of blast furnace slag replacement cements but for pulverised fuel ash and ordinary Portland cements no corrosion product was evident either from X-ray diffraction or laser Raman measurements. Further work is presently underway to investigate the effects of elevated temperatures and chloride levels on the anaerobic corrosion reaction and the rate of hydrogen gas production. (author)

  2. Corrosion of ferrous materials in a basaltic environment

    International Nuclear Information System (INIS)

    Brehm, W.F.

    1990-01-01

    The results of corrosion tests on A27 cast low-carbon steel are discussed. The corrosion performance of these materials was tested in condensed systems at temperature ranging from 50 C to 200 C and in air-steam mixtures between 150 C and 300 C. The groundwater used was a deoxygenated mild sodium chloride solution. When used, the packing material was 75 percent crushed basalt and 25 percent Wyoming sodium bentonite. In synthetic groundwater corrosion rates for both cast carbon steel and A387 steel in saturated packing and air-steam mixtures were low; maximum rates of 9 μm/a for A27 steel and 1.8 μm/a for A387 steel were observed. These maximum rates were observed at intermediate temperatures because of the formation of non-protective corrosion films. In A27 steel magnetite was the principal corrosion product, with non-protective siderite observed at 100 C. Pits were difficult to produce in saturated packing in A27 steel and did not grow. In air-steam mixtures corrosion rates of both steels were again very low, less than 1 μm/a. Magnetite and small amounts of hematite were detected in corrosion product films

  3. Corrosion behavior of the tube - tubular plate joint zone in the presence of sediments

    International Nuclear Information System (INIS)

    Lucan, D.; Fulger, M.; Pirvan, I.; Cotolan, V.

    1997-01-01

    The corrosion is a very important problem which concerns the safe operation of steam generators. The predominant part of corrosion problems is related to the local concentration of aggressive species and/or to the impurities from the slow-flow regions, like those created by cracks in tube - tubular plate joint zones. The consequences of such local concentrations are very important and as such entail interest in the design and utilization of steam generators. This study presents the results of the corrosion tests performed under specific operation conditions of the secondary circuit in NPP (temperature, 260 o C; pressure, 5.1 MPa) on a crack simulating device made of carbon steel SA 508 cl.2 (forming the tubular plate) and Incoloy-800 (forming the tubes). The chemical medium of these tests was the following: solution of NaCl, 25g/l (pH=10.5); solution of NaCl, 50 g/l (pH=10.5); solution of NaCl, 75g/l (pH=10.5); solution of NaCl, 75g/l + solution of Na 2 SO 4 , 10 g/l (pH=10.5). The behavior of these two materials to corrosion was studied by metallographic investigations. The results are presented as microphotographs evidencing the occurrence of pitting corrosion first on material of the tubular plate, in the presence of medium particularly aggressive and on the material of the tubes. The aim of this study is to establish the corrosion mechanism as well as the formation of the oxide layer on the carbon steel in crack simulating devices. (authors)

  4. Corrosion behaviour of metallic containers during long term interim storages

    International Nuclear Information System (INIS)

    Desgranges, C.; Feron, D.; Mazaudier, F.; Terlain, A.

    2001-01-01

    Two main corrosion phenomena are encountered in long term interim storage conditions: dry oxidation by the air when the temperature of high level nuclear wastes containers is high enough (roughly higher than 100 C) and corrosion phenomena as those encountered in outdoor atmospheric corrosion when the temperature of the container wall is low enough and so condensation is possible on the container walls. Results obtained with dry oxidation in air lead to predict small damages (less than 1μm on steels over 100 years at 100 C) and no drastic changes with pollutants. For atmospheric corrosion, first developments deal with a pragmatic method that gives assessments of the indoor atmospheric corrosivities. (author)

  5. Evaluation method of corrosive conditions in cooling systems of nuclear power plants by combined analyses of flow dynamics and corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Shunsuke [Nuclear Power Engineering Corporation (NUPEC), Tokyo (Japan); Atomic Energy Society of Japan (AESJ) (Japan). Research Committee on Water Chemistry Standard; Naitoh, Masanori [Nuclear Power Engineering Corporation (NUPEC), Tokyo (Japan); Atomic Energy Society of Japan (AESJ) (Japan). Computational Science and Engineering Div.; Uehara, Yasushi; Okada, Hidetoshi [Nuclear Power Engineering Corporation (NUPEC), Tokyo (Japan); Hotta, Koji [ITOCHU Techno-Solutions Corporation (Japan); Ichikawa, Ryoko [Mizuho Information and Research Inst., Inc. (Japan); Koshizuka, Seiichi [Tokyo Univ. (Japan)

    2007-03-15

    Problems in major components and structural materials in nuclear power plants have often been caused by flow induced vibration, corrosion and their overlapping effects. In order to establish safe and reliable plant operation, it is necessary to predict future problems for structural materials based on combined analyses of flow dynamics and corrosion and to mitigate them before they become serious issues for plant operation. The analysis models are divided into two types. 1. Prediction models for future problems with structural materials: Distributions of oxidant concentrations along flow paths are obtained by solving water radiolysis reactions in the boiling water reactor (BWR) primary cooling water and hydrazine-oxygen reactions in the pressurized water reactor (PWR) secondary cooling water. Then, the electrochemical corrosion potential (ECP) at the point of interest is also obtained by the mixed potential model using oxidant concentration. Higher ECP enhances the possibility of intergranular stress corrosion cracking (IGSCC) in the BWR primary system, while lower ECP enhances flow accelerated corrosion (FAC) in the PWR secondary system. 2. Evaluation models of wall thinning caused by flow accelerated corrosion: The degree of wall thinning is evaluated at a location with a higher possibility of FAC occurrence, and lifetime is estimated for preventive maintenance. General features of models are reviewed in this paper and the prediction models for oxidant concentrations are briefly introduced. (orig.)

  6. Evaluation method of corrosive conditions in cooling systems of nuclear power plants by combined analyses of flow dynamics and corrosion

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Hotta, Koji; Ichikawa, Ryoko; Koshizuka, Seiichi

    2007-01-01

    Problems in major components and structural materials in nuclear power plants have often been caused by flow induced vibration, corrosion and their overlapping effects. In order to establish safe and reliable plant operation, it is necessary to predict future problems for structural materials based on combined analyses of flow dynamics and corrosion and to mitigate them before they become serious issues for plant operation. The analysis models are divided into two types. 1. Prediction models for future problems with structural materials: Distributions of oxidant concentrations along flow paths are obtained by solving water radiolysis reactions in the boiling water reactor (BWR) primary cooling water and hydrazine-oxygen reactions in the pressurized water reactor (PWR) secondary cooling water. Then, the electrochemical corrosion potential (ECP) at the point of interest is also obtained by the mixed potential model using oxidant concentration. Higher ECP enhances the possibility of intergranular stress corrosion cracking (IGSCC) in the BWR primary system, while lower ECP enhances flow accelerated corrosion (FAC) in the PWR secondary system. 2. Evaluation models of wall thinning caused by flow accelerated corrosion: The degree of wall thinning is evaluated at a location with a higher possibility of FAC occurrence, and lifetime is estimated for preventive maintenance. General features of models are reviewed in this paper and the prediction models for oxidant concentrations are briefly introduced. (orig.)

  7. Waterwall corrosion evaluation in coal-fired boilers using electrochemical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Davis, K.; Lee, C.; Seeley, R.; Harding, S.; Heap, M.; Cox, W.

    2000-07-01

    Until recently, waterwall corrosion in North American coal-fired boilers was uncommon and relatively mild. However, the introduction of combustion modifications to reduce in-furnace NOx formation has led to notable increases in the frequency and severity of waterwall wastage. Reaction Engineering International (REI) has worked with the Department of Energy and EPRI to improve predictive capabilities and provide solutions for furnace wall wastage for a wide range of coal-fired furnaces. To date, this work has emphasized computational simulations. More recently, REI in partnership with Corrosion Management has begun complementary efforts to improve their services by evaluating technologies capable of determining the location/rate of high water wall wastage resulting from corrosion. After an evaluation of commercially available options, electrochemical noise (EN) technology has been chosen for continued development. This approach has been successfully applied to corrosion-related problems involving acid dewpoint corrosion in flue gas ductwork, FGD systems, cooling water systems, oil and gas production, and acid cleaning (Cox et al, 1999). This paper presents the results of preliminary testing of an EN probe in a high temperature environment typical of the lower furnace of a cyclone-fired boiler operating under staged conditions. The relationship between electrochemical responses and (1) stoichiometry and (2) local hydrogen sulfide concentration is investigated and the qualitative and quantitative usefulness of the approach for on-line risk management is considered.

  8. Effect of diamond-like carbon coating on corrosion rate of machinery steel HQ 805

    Science.gov (United States)

    Slat, Winda Sanni; Malau, Viktor; Iswanto, Priyo Tri; Sujitno, Tjipto; Suprapto

    2018-04-01

    HQ 805 is known as a super strength alloys steel and widely applied in military equipment and, aircraft components, drilling device and so on. It is due to its excellent behavior in wear, fatigue, high temperature and high speed operating conditions. The weakness of this material is the vulnerablality to corrosion when employed in sour environments where hydrogen sulfide and chlorides are present. To overcome the problems, an effort should be made to improve or enhance the surface properties for a longer service life. There are varieties of coatings developed and used to improve surface material properties. There are several kinds of coating methods; chemical vapour deposition (CVD), physical vapour deposition (PVD), thermochemical treatment, oxidation, or plasma spraying. This paper presents the research result of the influence of Diamond-Like Carbon (DLC) coating deposited using DC plasma enhanced chemical vapor deposition (DC-PECVD) on corrosion rate (by potentiodynamic polarization method) of HQ 805 machinery steel. As a carbon sources, a mixture of argon (Ar) and methane (CH4) with ratio 76% : 24% was used in this experiment. The conditions of experiment were 400 °C of temperature, 1.2 mbar, 1.4 mbar, 1.6 mbar and 1.8 mbar of pressure of process. Investigated surface properties were hardness (microhardness tester), roughness (roughness test), chemical composition (Spectrometer), microstructure (SEM) and corrosion rate (potentiodynamic polarization). It has been found that the optimum condition with the lowest corrosion rate is at a pressure of 1.4 mbar with a deposition duration of 4 hours at a constant temperature of 400 °C. In this condition, the corrosion rate decreases from 12.326 mpy to 4.487 mpy.

  9. Corrosion and Mechanical Properties of Al-5 At. Pct Cr Produced by Cryomilling and Subsequent Consolidation at Various Temperatures

    Science.gov (United States)

    Esquivel, J.; Darling, K. A.; Murdoch, H. A.; Gupta, R. K.

    2018-04-01

    An Al-5 at. pct Cr alloy was produced by high-energy ball milling at liquid nitrogen temperature followed by consolidation using equal-channel axial extrusion at 200 °C, 300 °C and 450 °C. The microstructure and corrosion response were compared with a cast alloy of the same composition. Rather than the intermetallics expected by the phase diagram and seen in the cast alloy, consolidated HEBM alloys exhibited extended solid solubility of Cr in the aluminum matrix in addition to a finely dispersed Cr-rich phase. This led to improvement in the corrosion behavior as investigated via potentiodynamic polarization and constant immersion tests in NaCl solution. Hardness and tensile tests were performed to evaluate the mechanical properties. The highest consolidation temperature (450 °C) contributed to significant grain growth and Cr diffusion, lessening the beneficial effects of processing with HEBM.

  10. Corrosion study in molten fluoride salt

    International Nuclear Information System (INIS)

    Keny, S.J.; Kumbhar, A.G.; Rangarajan, S.; Gupta, V.K.; Maheshwari, N.K.; Vijayan, P.K.

    2013-01-01

    Corrosion behaviors of two alloys viz. Inconel 625 and Inconel 617 were tested in molten fluoride salts of lithium, sodium and potassium (FLiNaK) in the temperature range of 550-750 ℃ in a nickel lined Inconel vessel. Electrochemical polarization (Tafel plot) technique was used for this purpose. For both alloys, the corrosion rate was found to increase sharply beyond 650 ℃ . At 600 ℃ , Inconel 625 showed a decreasing trend in the corrosion rate over a period of 24 hours, probably due to changes in the surface conditions. After fifteen days, re-testing of Inconel 625 in the same melt showed an increase in the corrosion rate. Inconel 625 was found to be more corrosion resistant than Inconel 617. (author)

  11. Effects of annealing on the corrosion behavior and mechanical properties of Ti-Al-V alloy

    International Nuclear Information System (INIS)

    Kim, T. K.; Choi, B. S.; Baek, J. H.; Choi, B. K.; Jeong, Y. H.; Lee, D. J.; Jang, M. H.; Jeong, Y. H.

    2002-01-01

    In order to determine the annealing condition after cold rolling, the effects of annealing on the corrosion behavior and mechanical properties of Ti-Al-V alloy were evaluated. The results of tensile tests at room temperature showed that the strengths and the ductility were almost independent of the annealing temperature. The results of hardness test also revealed that the hardness was independent of the annealing, However, the results of corrosion test in an ammoniated water of pH 9.98 at 360 .deg. C showed that the corrosion resistance depended on the annealing temperature, and the corrosion rate was accelerated with increasing annealing temperature. Hydrogen contents absorbed during the corrosion test of 120 days also increased with the annealing temperature. It may be attributed to the growth of α' precipitates by annealing. It is thus suggested that the lower annealing temperatures provide the better corrosion properties without degrading the tensile properties

  12. Functionalizable Sol-Gel Silica Coatings for Corrosion Mitigation

    Directory of Open Access Journals (Sweden)

    Jolanta Gąsiorek

    2018-01-01

    Full Text Available Corrosion is constantly a major problem of the world economy in the field of metal products, metal processing and other areas that utilise metals. Previously used compounds utilizing hexavalent chromium were amongst the most effective materials for corrosion protection but regulations have been recently introduced that forbid their use. Consequently, there is a huge drive by engineers, technologists and scientists from different disciplines focused on searching a new, more effective and environmentally-friendly means of corrosion protection. One novel group of materials with the potential to solve metal protection problems are sol-gel thin films, which are increasingly interesting as mitigation corrosion barriers. These environmentally-friendly and easy-to-obtain coatings have the promise to be an effective alternative to hexavalent chromium compounds using for anti-corrosion industrial coatings. In this review the authors present a range of different solutions for slow down the corrosion processes of metallic substrates by using the oxides and doped oxides obtained by the sol-gel method. Examples of techniques used to the sol-gel coating examinations, in terms of anti-corrosion protection, are also presented.

  13. Stochastic process corrosion growth models for pipeline reliability

    International Nuclear Information System (INIS)

    Bazán, Felipe Alexander Vargas; Beck, André Teófilo

    2013-01-01

    Highlights: •Novel non-linear stochastic process corrosion growth model is proposed. •Corrosion rate modeled as random Poisson pulses. •Time to corrosion initiation and inherent time-variability properly represented. •Continuous corrosion growth histories obtained. •Model is shown to precisely fit actual corrosion data at two time points. -- Abstract: Linear random variable corrosion models are extensively employed in reliability analysis of pipelines. However, linear models grossly neglect well-known characteristics of the corrosion process. Herein, a non-linear model is proposed, where corrosion rate is represented as a Poisson square wave process. The resulting model represents inherent time-variability of corrosion growth, produces continuous growth and leads to mean growth at less-than-one power of time. Different corrosion models are adjusted to the same set of actual corrosion data for two inspections. The proposed non-linear random process corrosion growth model leads to the best fit to the data, while better representing problem physics

  14. Corrosion and Materials Performance in biomass fired and co-fired power plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Larsen, OH; Biede, O

    2003-01-01

    not previously encountered in coal-fired power plants. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. In woodchip boilers, a similar corrosion rate and corrosion mechanism has on some occasions been observed. Co-firing of straw (10...... and 20% energy basis) with coal has shown corrosion rates lower than those in straw-fired plants. With both 10 and 20% straw, no chlorine corrosion was seen. This paper will describe the results from in situ investigations undertaken in Denmark on high temperature corrosion in biomass fired plants....... Results from 100% straw-firing, woodchip and co-firing of straw with coal will be reported. The corrosion mechanisms observed are summarized and the corrosion rates for 18-8 type stainless steels are compared....

  15. General corrosion, irradiation-corrosion, and environmental-mechanical evaluation of nuclear-waste-package structural-barrier materials. Progress report

    International Nuclear Information System (INIS)

    Westerman, R.E.; Pitman, S.G.; Nelson, J.L.

    1982-09-01

    Pacific Northwest Laboratory is studying the general corrosion, irradiation-corrosion, and environmentally enhanced crack propagation of five candidate materials in high-temperature aqueous environments simulating those expected in basalt and tuff repositories. The materials include three cast ferrous materials (ductile cast iron and two low-alloy Cr-Mo cast steels) and two titanium alloys, titanium Grade 2 (commercial purity) and Grade 12 (a Ti-Ni-Mo alloy). The general corrosion results are being obtained by autoclave exposure of specimens to slowly replenished simulated ground water flowing upward through a bed of the appropriate crushed rock (basalt or tuff), which is maintained at the desired test temperature (usually 250 0 C). In addition, tests are being performed in deionized water. Metal penetration rates of iron-base alloys are being derived by stripping off the corrosion product film and weighing the specimen after the appropriate exposure time. The corrosion of titanium alloy specimens is being determined by weight gain methods. The irradiation-corrosion studies are similar to the general corrosion tests, except that the specimen-bearing autoclaves are held in a 60 Co gamma radiation field at dose rates up to 2 x 10 6 rad/h. For evaluating the resistance of the candidate materials to environmentally enhanced crack propagation, three methods are being used: U-bend and fracture toughness specimens exposed in autoclaves; slow strain rate studies in repository-relevant environments to 300 0 C; and fatigue crack growth rate studies at ambient pressure and 90 0 C. The preliminary data suggest a 1-in. corrosion allowance for iron-base barrier elements intended for 1000-yr service in basalt or tuff repositories. No evidence has yet been found that titanium Grade 2 or Grade 12 is susceptible to environmentally induced crack propagation or, by extension, to stress corrosion cracking

  16. Corrosion engineering in nuclear power industry

    International Nuclear Information System (INIS)

    Prazak, M.; Tlamsa, J.; Jirousova, D.; Silber, K.

    1990-01-01

    Corrosion problems in nuclear power industry are discussed from the point of view of anticorrosion measures, whose aim is not only increasing the lifetime of the equipment but, first of all, securing ecological safety. A brief description is given of causes of corrosion damage that occurred at Czechoslovak nuclear power plants and which could have been prevented. These involve the corrosion of large-volume radioactive waste tanks made of the CSN 17247 steel and of waste piping of an ion exchange station made of the same material, a crack in a steam generator collector, contamination of primary circuit water with iron, and corrosion of CrNi corrosion-resistant steel in a spent fuel store. It is concluded that if a sufficient insight into the corrosion relationships exists and a reasonable volume of data is available concerning the corrosion state during the nuclear facility performance, the required safety can be achieved without adopting extremely costly anticorrosion measures. (Z.M.)

  17. Chemical Industry Corrosion Management: A Comprehensive Information System (ASSET 2). Final Report

    Energy Technology Data Exchange (ETDEWEB)

    John, Randy C. [Shell Global Solutions, Houston, TX (United States); Young, Arthur L. [Humberside Solutions, Toronto, ON (Canada); Pelton, Arthur D. [CRCT, Ecole Polytechnique de Montreal, Quebec (Canada); Thompson, William T. [Royal Military College of Canada, Kingston, ON (Canada); Wright, Ian G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2008-10-10

    The research sponsored by this project has greatly expanded the ASSET corrosion prediction software system to produce a world-class technology to assess and predict engineering corrosion of metals and alloys corroding by exposure to hot gases. The effort included corrosion data compilation from numerous industrial sources and data generation at Shell Oak Ridge National Laboratory and several other companies for selected conditions. These data were organized into groupings representing various combinations of commercially available alloys and corrosion by various mechanisms after acceptance via a critical screening process to ensure the data were for alloys and conditions, which were adequately well defined, and of sufficient repeatability. ASSET is the largest and most capable, publicly-available technology in the field of corrosion assessment and prediction for alloys corroding by high temperature processes in chemical plants, hydrogen production, energy conversion processes, petroleum refining, power generation, fuels production and pulp/paper processes. The problems addressed by ASSET are: determination of the likely dominant corrosion mechanism based upon information available to the chemical engineers designing and/or operating various processes and prediction of engineering metal losses and lifetimes of commercial alloys used to build structural components. These assessments consider exposure conditions (metal temperatures, gas compositions and pressures), alloy compositions and exposure times. Results of the assessments are determination of the likely dominant corrosion mechanism and prediction of the loss of metal/alloy thickness as a function of time, temperature, gas composition and gas pressure. The uses of these corrosion mechanism assessments and metal loss predictions are that the degradation of processing equipment can be managed for the first time in a way which supports efforts to reduce energy consumption, ensure structural integrity of equipment

  18. Aspects of the effects of temperature and electrolyte composition on pitting corrosion of stainless steel in dairy fluids

    Energy Technology Data Exchange (ETDEWEB)

    Perrin, F.X. [Toulon Univ., 83 - La Garde (France). Lab. de Chimie Appliquee; Girard, H.; Pagetti, J. [Universite de Franche-Comte, Besancon (France). Lab. de Corrosion et Traitments de Surfaces; Daufin, G. [INRA, Rennes (France). Lab. de Recherches de Technologie Laitiere

    2001-08-01

    The pitting corrosion resistance of 304L stainless steel in dairy fluids (milks, wheys, soya juice and peptidic fluids) was studied using electrochemical measurements. The effects of temperature, chloride content and other components of the fluids was particularly investigated. In the range 30- 70 C, the pitting potential in whole milk E{sub p} is related to the temperature by the relation ln(E{sub p} + 100) = aT{sup -1} + b. Above 70 C, a further phenomenon adds to the common activation effect of temperature. Heat induced conformational changes (denaturation) of the proteins were believed to explain such a behaviour. A typical linear relationship was found between E{sub p} and the logarithm of chloride concentration. All fluids are well represented by a single relationship. Therefore, the buffering capacity of casein micelles in milks do not significantly change the pitting resistance of the oxide film. In dairy industry, the corrosion risk is usually estimated from the difference between the pitting potential and the potential of a gold electrode (E{sub g}). It is noteworthy that the pitting risk decreases when temperature increases in the temperature range 50-90 C. Such a trend was due to the strong decrease in dissolved oxygen above 50 C. Besides, in aggressive peptidic solutions, the resistance of the passive film to localized attack is directly related to the Cr, Mo and N alloy content of stainless steel. (orig.)

  19. Microstructure and intergranular corrosion of the austenitic stainless steel 1.4970

    International Nuclear Information System (INIS)

    Terada, Maysa; Saiki, Mitiko; Costa, Isolda; Padilha, Angelo Fernando

    2006-01-01

    The precipitation behaviour of the DIN 1.4970 steel and its effect on the intergranular corrosion resistance were studied. Time-temperature-precipitation diagrams for the secondary phases (Ti, Mo)C (Cr, Fe, Mo, Ni) 23 C 6 and (Cr, Fe) 2 B are presented and representative samples have been selected for corrosion studies. The susceptibility to intergranular corrosion of the samples was evaluated using the double loop electrochemical potentiokinetic reactivation technique. The results showed that the solution-annealed samples and those aged at 1173 K did not present susceptibility to intergranular corrosion, whereas aging treatment from 873 to 1073 K resulted in small susceptibility to intergranular attack that decreased with aging temperature. The preferential formation of (Ti, Mo)C at higher aging temperatures comparatively to M 23 C 6 , retained the chromium in solid solution preventing steel sensitization and, consequently, intergranular corrosion

  20. Contribution of the characterization of radioactive surfaces after sodium corrosion

    International Nuclear Information System (INIS)

    Menken, G.; Holl, M.

    1978-01-01

    Since 1972 INTERATOM is performing sodium mass and activity transfer investigations in an SNR-corrosion mockup loop which allows to study the transport of activated corrosion products in the primary heat transfer system of a sodium cooled reactor. The loop simulates the temperature and flow conditions and the materials combination of the SNR 300. The mass transfer examinations were aimed at the determination of the following: the linear corrosion and deposition rates; the selective corrosion of the alloying elements; the transfer of activated corrosion products. The results of a number of corrosion runs will be used in the following contribution to characterize the contaminated and corroded surface layers of reactor components. The loop reached a total operation time of 12300 h while the cold trap temperature was changed between 105 deg. C and 165 deg. C in successive runs

  1. Aqueous corrosion study on U-Zr alloy

    International Nuclear Information System (INIS)

    Pal, Titas; Venkatesan, V.; Kumar, Pradeep; Khan, K.B.; Kumar, Arun

    2009-01-01

    In low power or research reactor, U-Zr alloy is a potential candidate for dispersion fuel. Moreover, Zirconium has a low thermal-neutron cross section and uranium alloyed with Zr has excellent corrosion resistance and dimensional stability during thermal cycling. In the present study aqueous corrosion behavior of U-Zr alloy samples was studied in autoclave at 200 deg C temperature. Corrosion rate was determined from weight loss with time. (author)

  2. The oxidation and corrosion of ODS alloys

    Science.gov (United States)

    Lowell, Carl E.; Barrett, Charles A.

    1990-01-01

    The oxidation and hot corrosion of high temperature oxide dispersion strengthened (ODS) alloys are reviewed. The environmental resistance of such alloys are classified by oxide growth rate, oxide volatility, oxide spalling, and hot corrosion limitations. Also discussed are environmentally resistant coatings for ODS materials. It is concluded that ODS NiCrAl and FeCrAl alloys are highly oxidation and corrosion resistant and can probably be used uncoated.

  3. Oxidation And Hot Corrosion Of ODS Alloy

    Science.gov (United States)

    Lowell, Carl E.; Barrett, Charles A.

    1993-01-01

    Report reviews oxidation and hot corrosion of oxide-dispersion-strengthened (ODS) alloys, intended for use at high temperatures. Classifies environmental resistances of such alloys by rates of growth of oxides, volatilities of oxides, spalling of oxides, and limitations imposed by hot corrosion. Also discusses environmentally resistant coatings for ODS materials. Concludes ODS NICrAl and FeCrAl alloys highly resistant to oxidation and corrosion and can be used uncoated.

  4. Improvement of corrosion resistance of vanadium alloys in high-temperature pressurized water

    International Nuclear Information System (INIS)

    Fujiwara, Mitsuhiro; Sakamoto, Toshiya; Satou, Manabu; Hasegawa, Akira; Abe, Katsunori; Kaiuchi, Kazuo; Furuya, Takemi

    2005-01-01

    Corrosion tests in pressurized and vaporized water were conducted for V-based high Cr and Ti alloys and V-4Cr-4Ti type alloys containing minor elements such as Si, Al and Y. Weight losses were observed for every alloy after corrosion tests in pressurized water. It was apparent that addition of Cr effectively reduced the weight change in pressurized water. The weight loss of V-4Cr-4Ti type alloys in corrosion tests in vaporized water was also reduced as Cr content increased. The V-20Cr-4Ti alloy had a slight weight gain, almost same as that of SUS316, which had the best corrosion properties in the tested alloys. The elongation of alloys with in excess of 10% Cr was reduced as Cr content increased. The elongations of the V-12Cr-4Ti and the V-15Cr-4Ti alloys were significantly reduced by corrosion and cleavage fracture was observed reflecting hydrogen embrittlement. The reduced elongations of the alloys of the alloys were recovered to the same level of as annealed conditions after hydrogen degassing. After corrosion, the V-15Cr-4Ti-0.5Y alloy still kept enough elongation, suggesting that the addition of Y is effective to reduce the hydrogen embrittlement. (author)

  5. Erosion and corrosion of nuclear power plant materials

    International Nuclear Information System (INIS)

    1994-01-01

    This conference is composed of 23 papers, grouped in 3 sessions which main themes are: analysis of corrosion and erosion damages of nuclear power plant equipment and influence of water chemistry, temperature, irradiations, metallurgical and electrochemical factors, flow assisted cracking, stress cracking; monitoring and control of erosion and corrosion in nuclear power plants; susceptibility of structural materials to erosion and corrosion and ways to improve the resistance of materials, steels, coatings, etc. to erosion, corrosion and cracking

  6. Corrosion of niobium and niobium alloys

    International Nuclear Information System (INIS)

    Yau, T.L.; Webster, R.T.

    1987-01-01

    Niobium and niobium alloys are used in several corrosion-resistant applications, principally rocket and jet engines, nuclear reactors, sodium vapor highway lighting, and chemical-processing equipment. Niobium has many of the same properties of tantalum, its sister metal, but has one half the density of tantalum (see the article ''Corrosion of Tantalum'' in this Volume). A common property of niobium and tantalum is the interaction with the reactive elements hydrogen, oxygen, nitrogen, and carbon at temperatures above 300 0 C (570 0 F). These reactions will cause severe embrittlement. Consequently, at elevated temperatures, the metal must be protectively coated or used in vacuum or inert atmospheres. Niobium resists a wide variety of corrosive environments, including concentrated mineral acids, organic acids, liquid metals (particularly sodium and lithium), metal vapors, and molten salts

  7. Deposition and High-Temperature Corrosion in Biomass-Fired Boilers

    DEFF Research Database (Denmark)

    Michelsen, Hanne Philbert

    with a newly developed condensation probe. SEM analyses revealed that the vapor deposits consisted of individual angular particles of primarily KCl (1-2 µm) and a sponge-like matrix of submicron particles consisting primarily of K2SO4, which may represent vapor condensate agglomerates. Potassium deposits...... deposits at Masnedø CHP. The density and morphology of these layers indicate that they have been molten. This was taken as evidence of a reaction between the deposit and the metal tube.A corrosion mechanism for chlorine corrosion is suggested. The mechanism is based on gaseous chlorine attack where iron...

  8. Potential for erosion corrosion of SRS high level waste tanks

    International Nuclear Information System (INIS)

    Zapp, P.E.

    1994-01-01

    SRS high-level radioactive waste tanks will not experience erosion corrosion to any significant degree during slurry pump operations. Erosion corrosion in carbon steel structures at reported pump discharge velocities is dominated by electrochemical (corrosion) processes. Interruption of those processes, as by the addition of corrosion inhibitors, sharply reduces the rate of metal loss from erosion corrosion. The well-inhibited SRS waste tanks have a near-zero general corrosion rate, and therefore will be essentially immune to erosion corrosion. The experimental data on carbon steel erosion corrosion most relevant to SRS operations was obtained at the Hanford Site on simulated Purex waste. A metal loss rate of 2.4 mils per year was measured at a temperature of 102 C and a slurry velocity comparable to calculated SRS slurry velocities on ground specimens of the same carbon steel used in SRS waste tanks. Based on these data and the much lower expected temperatures, the metal loss rate of SRS tanks under waste removal and processing conditions should be insignificant, i.e. less than 1 mil per year

  9. Corrosion and Protection of Metal in the Seawater Desalination

    Science.gov (United States)

    Hou, Xiangyu; Gao, Lili; Cui, Zhendong; Yin, Jianhua

    2018-01-01

    Seawater desalination develops rapid for it can solve water scarcity efficiently. However, corrosion problem in the seawater desalination system is more serious than that in normal water. So, it is important to pay attention to the corrosion and protection of metal in seawater desalination. The corrosion characteristics and corrosion types of metal in the seawater desalination system are introduced in this paper; In addition, corrosion protect methods and main influencing factors are stated, the latest new technologies about anti-corrosion with quantum energy assisted and magnetic inhibitor are presented.

  10. Stress corrosion cracking behaviour of Alloy 600 in high temperature water

    International Nuclear Information System (INIS)

    Webb, G.L.; Burke, M.G.

    1995-01-01

    The stress corrosion cracking (SCC) susceptibility of Alloy 600 in deaerated water at 360 deg. C, as measured with statistically-loaded U-bend specimens, is dependent upon microstructure and whether the material was cold-worked and annealed (CWA) or hot-worked and annealed (HWA). All cracking was intergranular, and materials lacking grain boundary carbides were most susceptible to SCC initiation. CWA tubing materials are more susceptible to SCC initiation than HWA ring-rolled forging materials with similar microstructures, as determined by light optical metallography (LOM). In CWA tubing materials one crack dominated and grew to a large size that was observable by visual inspection. HWA materials with a low hot-working finishing temperature (below 925 deg. C) and final anneals at temperatures ranging from 1010 deg. C to 1065 deg. C developed both large cracks, similar to those found in CWA materials, and also small intergranular microcracks, which are detectable only by destructive metallographic examination. HWA materials with a high hot-working finishing temperature (above 980 deg. C) and high-temperature final anneal (above 1040 deg. C), with grain boundaries that are fully decorated, developed only microcracks, which were observed in all specimens examined. These materials developed no large, visually detectable cracks, even after more than 300 weeks exposure. A low-temperature thermal treatment (610 deg. C for 7h), which reduced or eliminates SCC in Alloy 600, did not eliminate microcrack formation in the high temperature processed HWA materials. Detailed microstructural characterization using conventional metallographic and analytical electron microscopy (AEM) techniques was performed on selected materials to identify the factors responsible for the observed differences in cracking behaviour. 11 refs, 12 figs, 3 tabs

  11. Corrosion Fatigue Crack Propagation Rate Characteristics for Weldable Ship and Offshore Steels with Regard to the Influence of Loading Frequency and Saltwater Temperature

    Directory of Open Access Journals (Sweden)

    Jakubowski Marek

    2017-03-01

    Full Text Available After Vosikovsky (1975, the corrosion fatigue crack growth rate (CFCGR characteristics have been divided into three regions. The region-III rates are very close to mechanical fatigue crack growth rates. CFCGR formulae, including the long-crack length effect (in region I only, the loading frequency effect (in region II only, and the saltwater temperature effect, have been proposed. It has been assumed that CFCGR is proportional to f-k, where f is the loading frequency and k is a constant. The averaged k-value for all steels of yield stress (YS below 500 MPa, usually with ferrite-pearlite microstructures, is higher than that for YS > 500 MPa, usually with quenched and tempered microstructures. The temperature effect does not appear in region I below room temperature. In the remaining cases, that is, in region I for elevated temperatures and in region II for both low and elevated temperatures, the CFCGR increases with increasing temperature. Under a potential of -0.8 V, a long-crack-length effect, qualitatively similar to analogous effect for free corrosion conditions, appears.

  12. Corrosion behavior of austempered ductile iron (ADI) in iron ore slurry

    African Journals Online (AJOL)

    ADI austempered at higher temperature showed better corrosion resistance than the ..... temperature and time on corrosion behaviour of ductile iron in chloride and acidic ... iron ore in ball mills, Transactions of the Indian Institute of Metals, Vol.

  13. 9% Cr steel high temperature oxidation. Solutions investigated for improving corrosion resistance of the steel

    Energy Technology Data Exchange (ETDEWEB)

    Evin, Harold Nicolas; Heintz, Olivier; Chevalier, Sebastien [UMR 5209 CNRS-Bourgogne Univ. (France). Lab. Interdisciplinaire Carnot de Bourgogne; Foejer, Cecilia; Jakani, Saad; Dhont, Annick; Claessens, Serge [OCAS N.V. ArcelorMittal Global R and D, Gent (Belgium)

    2010-07-01

    The improvement of high temperature oxidation resistance of low chromium content steels, such as T/P91, is of great interest in regards with their application in thermal power generating plants. Indeed, they possess good creep properties, but are facing their limits of use at temperature higher than 600 C, due to accelerated corrosion phenomena. Good knowledge of the mechanisms involved during their oxidation process is needed to prevent the degradation of the materials and to extend life time of the power plants components. Oxide layers thermally grown, on 9% Cr steels (provided by OCAS N.V), during isothermal tests between 600 C and 750 C in laboratory air under atmospheric pressure were investigated, by Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). The oxidation behaviour appeared very limited at 750 C, due to the presence of a breakaway, which can be linked to iron porous oxide grown over the surface of the samples. ''In situ'' X-ray Photoelectron spectroscopy (XPS) analyses were performed in air at 600 C after short exposures (between 5 min and 25 h). A complex mixture of iron oxide, Cr{sub 2}O{sub 3} and Cr (VI) species were characterized in the scales. The in-situ analyses were compared and related to XPS analyses performed on thick oxide scales formed on samples oxidized in air at 600 C for 100h. An oxidation mechanism is then proposed to understand the oxide scale growth in the temperature range 600 - 750 C. The second step of this study consists in improving the high temperature corrosion resistance of these steels without modifying their mechanical properties. Thus several solutions were investigated such as MOCVD coatings, pack cementation coatings, and tested in cycle conditions prior. (orig.)

  14. Fatigue and Corrosion in Metals

    CERN Document Server

    Milella, Pietro Paolo

    2013-01-01

    This textbook, suitable for students, researchers and engineers, gathers the experience of more than 20 years of teaching fracture mechanics, fatigue and corrosion to professional engineers and running experimental tests and verifications to solve practical problems in engineering applications. As such, it is a comprehensive blend of fundamental knowledge and technical tools to address the issues of fatigue and corrosion. The book initiates with a systematic description of fatigue from a phenomenological point of view, since the early signs of submicroscopic damage in few surface grains and continues describing, step by step, how these precursors develop to become mechanically small cracks and, eventually, macrocracks whose growth is governed by fracture mechanics. But fracture mechanics is also introduced to analyze stress corrosion and corrosion assisted fatigue in a rather advanced fashion. The author dedicates a particular attention to corrosion starting with an electrochemical treatment that mechanical e...

  15. Wire-Arc-Sprayed Aluminum Protects Steel Against Corrosion

    Science.gov (United States)

    Zimmerman, Frank R.; Poorman, Richard; Sanders, Heather L.; Mckechnie, Timothy N.; Bonds, James W., Jr.; Daniel, Ronald L., Jr.

    1995-01-01

    Aluminum coatings wire-arc sprayed onto steel substrates found effective in protecting substrates against corrosion. Coatings also satisfy stringent requirements for adhesion and flexibility, both at room temperature and at temperatures as low as liquid hydrogen. Developed as alternatives to corrosion-inhibiting primers and paints required by law to be phased out because they contain and emit such toxic substances as chromium and volatile organic compounds.

  16. Corrosion behaviour of unalloyed steel in Portland cement

    International Nuclear Information System (INIS)

    Grauer, R.

    1988-04-01

    The production of hydrogen can cause problems in a repository for low and intermediate level waste. Since the production of gas is mainly due to the corrosion of unalloyed steel, it is important to have as reliable data as possible for the corrosion rate in anaerobic cement. A review of the literature shows that the corrosion current densities are in the range of 0.01 to 0.1 μA/cm 2 (corresponding to corrosion rates between 0.1 and 1.2 μm/a). This implies hydrogen production rates between 0.022 and 0.22 mol/(m 2 a). Corrosion rates of the abovementioned order of magnitude are technically irrelevant, so that there is little interest in determining them accurately. Furthermore, their determination entails problems of measurement technique. In the present situation it would therefore appear risky to accept the lower value as proven. Experiments are proposed to reduce the present uncertainty. (author) 35 refs., 10 figs

  17. Corrosion behaviour of unalloyed steel in Portland cement

    International Nuclear Information System (INIS)

    Grauer, R.

    1988-01-01

    The production of hydrogen can cause problems in a repository for low and intermediate level waste. Since the production of gas is mainly due to the corrosion of unalloyed steel, it is important to have as reliable data as possible for the corrosion rate in anaerobic cement. A review of the literature shows that the corrosion current densities are in the range of 0.01 to 0.1 μA/cm 2 (corresponding to corrosion rates between 0.1 and 1.2 μm/a). This implies hydrogen production rates between 0.022 and 0.22 mol/(m 2 xa). Corrosion rates of the abovementioned order of magnitude are technically irrelevant, so that there is little interest in determining them accurately. Furthermore, their determination entails problems of measurement technique. In the present situation it would therefore appear risky to accept the lower value as proven. Experiments are proposed to reduce the present uncertainty. (author) 35 refs., 10 figs

  18. Effect of aluminum coatings on corrosion properties of AZ31 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chiu Liuho; Lin Hsingan; Chen Chunchin; Yang Chihfu [Dept. of materials engineering, Tatung Univ., Taipei (Taiwan); Chang Chiahua; Wu Jenchin [Physical chemistry section, chemical systems research div., Chung-Shan Inst. of Science and Technology, Tao-Yuan (Taiwan)

    2003-07-01

    This investigation aimed to increase the corrosion resistance of an AZ31 magnesium alloy by an aluminum arc spray coating and a post-treatment consisted of hot pressing and anodizing. It was found that the aluminum arc spraying alone was incapable of protection against corrosion due to the high amount of pores present in the coating layer. In order to solve the problem, densification of the Al arc-sprayed layer was carried out by hot pressing the coated AZ31 Mg alloy plate under an appropriate range of temperature, time and pressure. After hot pressing the Al coated AZ31 Mg alloy plate exhibited a much improved corrosion resistance. A final anodizing treatment applied to the AZ31 alloy with the dense Al coating further improved its resisting to corrosion. The results showed that, by adopting the Al arc spraying, hot pressing and anodizing process, the corrosion current density of the AZ31 alloy in a 3.5 wt% NaCl solution was from 2.1 x 10{sup -6} A/cm{sup 2} (original AZ31) to 3.7 x 10{sup -7} A/cm{sup 2} (after the surface treatment), which value is close to that of an anodized aluminum plate. (orig.)

  19. Zinc corrosion after loss-of-coolant accidents in pressurized water reactors – Physicochemical effects

    Energy Technology Data Exchange (ETDEWEB)

    Kryk, Holger, E-mail: h.kryk@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany); Hoffmann, Wolfgang [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany); Kästner, Wolfgang; Alt, Sören; Seeliger, André; Renger, Stefan [Hochschule Zittau/Görlitz, Institute of Process Technology, Process Automation and Measuring Technology, Theodor-Körner-Allee 16, D-02763 Zittau (Germany)

    2014-12-15

    Highlights: • Physicochemical effects due to post-LOCA zinc corrosion in PWR were elucidated. • Decreasing solubility of corrosion products with increasing temperature was found. • Solid corrosion products may be deposited on hot surfaces and/or within hot-spots. • Corrosion products precipitating from coolant were identified as zinc borates. • Depending on coolant temperature, different types of zinc borate are formed. - Abstract: Within the framework of the reactor safety research, generic experimental investigations were carried out aiming at the physicochemical background of possible zinc corrosion product formation, which may occur inside the reactor pressure vessel during the sump circulation operation after loss-of-coolant accidents in pressurized water reactors. The contact of the boric acid containing coolant with hot-dip galvanized steel containment internals causes corrosion of the corresponding materials resulting in dissolution of the zinc coat. A retrograde solubility of zinc corrosion products with increasing temperature was observed during batch experiments of zinc corrosion in boric acid containing coolants. Thus, the formation and deposition of solid corrosion products cannot be ruled out if the coolant containing dissolved zinc is heated up during its recirculation into hot regions within the emergency cooling circuit (e.g. hot-spots in the core). Corrosion experiments at a lab-scale test facility, which included formation of corrosion products at a single heated cladding tube, proved that dissolved zinc, formed at low temperatures in boric acid solution by zinc corrosion, turns into solid deposits of zinc borates when contacting heated zircaloy surfaces during the heating of the coolant. Moreover, the temperature of formation influences the chemical composition of the zinc borates and thus the deposition and mobilization behavior of the products.

  20. Zinc corrosion after loss-of-coolant accidents in pressurized water reactors – Physicochemical effects

    International Nuclear Information System (INIS)

    Kryk, Holger; Hoffmann, Wolfgang; Kästner, Wolfgang; Alt, Sören; Seeliger, André; Renger, Stefan

    2014-01-01

    Highlights: • Physicochemical effects due to post-LOCA zinc corrosion in PWR were elucidated. • Decreasing solubility of corrosion products with increasing temperature was found. • Solid corrosion products may be deposited on hot surfaces and/or within hot-spots. • Corrosion products precipitating from coolant were identified as zinc borates. • Depending on coolant temperature, different types of zinc borate are formed. - Abstract: Within the framework of the reactor safety research, generic experimental investigations were carried out aiming at the physicochemical background of possible zinc corrosion product formation, which may occur inside the reactor pressure vessel during the sump circulation operation after loss-of-coolant accidents in pressurized water reactors. The contact of the boric acid containing coolant with hot-dip galvanized steel containment internals causes corrosion of the corresponding materials resulting in dissolution of the zinc coat. A retrograde solubility of zinc corrosion products with increasing temperature was observed during batch experiments of zinc corrosion in boric acid containing coolants. Thus, the formation and deposition of solid corrosion products cannot be ruled out if the coolant containing dissolved zinc is heated up during its recirculation into hot regions within the emergency cooling circuit (e.g. hot-spots in the core). Corrosion experiments at a lab-scale test facility, which included formation of corrosion products at a single heated cladding tube, proved that dissolved zinc, formed at low temperatures in boric acid solution by zinc corrosion, turns into solid deposits of zinc borates when contacting heated zircaloy surfaces during the heating of the coolant. Moreover, the temperature of formation influences the chemical composition of the zinc borates and thus the deposition and mobilization behavior of the products